
Chapter 4
Energy-Efficient Resource Management
of Virtual Machine in Cloud
Infrastructure

H. Priyanka and Mary Cherian

Contents

4.1 Introduction . 107
4.2 Background . 109
4.3 Proposed Work. 110

4.3.1 Design of Cloud Environment . 110
4.3.2 Selection of Workload . 111
4.3.3 Allocation Policy . 112
4.3.4 Framework Monitor . 116
4.3.5 Migration of Virtual Instances . 118
4.3.6 VM Selection Policy. 119

4.4 Result and Analysis . 121
4.4.1 Experimental Results . 121
4.4.2 Analysis of Complexity of Time . 129

4.5 Conclusion and Future Work. 129
References . 130

4.1 Introduction

Cloud computing has evolved as a computational tool for large enterprises because
of the advancement in the Internet and virtualization technologies. Cloud computing
can be defined “as a type of distributed system which consists of a collection
of dynamically sourced resources with interconnected and virtualized computers”
[1]. There is a huge demand for the cloud services in large industries. To meet
the customer requirements, huge number of servers are needed at the data center.
This consumes more energy and emission of carbon dioxide also increases. Cloud
computing possesses some obstacles such as reliability, management of resources,
security, efficiency, and power consumption [2]. One of the resource management

H. Priyanka (�)
CSE R&D Centre, Dr. Ambedkar Institute of Technology, Bengaluru, Karnataka, India

M. Cherian
Department of CSE, Dr. Ambedkar Institute of Technology, Bengaluru, Karnataka, India

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
R. Buyya et al. (eds.), New Frontiers in Cloud Computing and Internet of Things,
Internet of Things, https://doi.org/10.1007/978-3-031-05528-7_4

107

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05528-7_4&domain=pdf

 5249 61494 a 5249 61494
a

https://doi.org/10.1007/978-3-031-05528-7_4

108 H. Priyanka and M. Cherian

challenges is scheduling of tasks. Task scheduling refers to allocating cloudlets
(tasks) to the resources which are accessible, this will improve the performance
and maximize resource utilization [3, 4].

We have proposed a conceptual framework to reduce power consumption and
improve the utilization of infrastructural resources of the data center. The framework
efficiently assists in provisioning the resources and minimizing the migrations of a
virtual instance.

The framework is designed with the help of a hybrid data center with highly
configured infrastructural resources [5] for the experimental evaluation of our
proposed algorithms. It monitors the processes of cloud environments dynamically,
collects, and updates all the characteristics of data center frequently. In the proposed
framework, the task scheduling initially receives the workloads with the help of
the user’s demand. It considers the configuration of Virtual Machines (VMs) and
tasks by using the Expected Computation Time (ECT) matrix to generate an initial
population.

The Genetically Enhanced and Shuffled Frog Leaping Algorithm (GESFLA) is
proposed to select the optimal VMs to schedule the tasks and allocate them into
Physical Machines (PMs). The proposed data center monitoring system checks
the host utilization and observes the state and mode of it. If a host is in high
or low loaded state by over or under-utilization of tasks in an active mode, the
VMs are migrated from these hosts to imbalanced or idle hosts. The proposed
algorithm executes applications through efficient resource management. Also, the
proposed GESFLA reduces power consumption, improves the utilization of cloud
infrastructures with minimum migration of VMs. This proposed algorithm performs
better than the Genetic Algorithm and Particle Swarm Optimization (GAPSO)
algorithm [6].

The virtualization of computer systems and use of servers are increased, thereby
leading to increased power consumption and bandwidth demand in the data centers.
For the migration of the VMs, transfer time also increases. This raises the data
center’s costs, carbon dioxide emissions and leads to global warming.

To address these problems, Genetic Algorithm (GA) [7] and SFLA [8] are
chosen because GA generates uniform initial population and it can be applied for
optimization problems. It is helpful as it gives a better solution. The GA cannot
be applied for large optimization problems as it selects random crossover point for
transferring of VMs and convergence time is also more. In our proposed method,
we have combined SFLA with GA because of following advantages of SFLA:

(i) The searching capability is faster.
(ii) It is robust because it does the shuffling of frog memplexes and results in good

solution.
(iii) It has early convergence criteria.

The GA and SFLA are combined to get better results. The genetic algorithm
convergence is slow, which can be overcome by applying SFLA. The GESFLA has
following advantages in comparison with GAPSO.

4 Energy-Efficient Resource Management of Virtual Machine in Cloud Infrastructure 109

(i) Efficient optimization of task scheduling is carried out on the server.
(ii) GAPSO algorithm takes relatively large computation time.
(iii) As it takes more time to terminate, VM migration time is also increased and

the resources are not utilized efficiently.

The research objective is stated below. The various phases of GESFLA are explained
in Sect. 4.4.

The goals and objectives of research are as follows:

(i) The applications running inside the virtual machine are tracked, and the load
should be stored uniformly between all the virtual machines.

(ii) To reduce the execution time of the task and transfer time of the VM, by
tracking the usage of cloud resources of applications (tasks) running within
VMs.

(iii) To reduce Cloud data center power consumption by efficient scheduling of
resources, VM migration allows cloud operators to achieve various resource
management goals, such as green computing, load balancing, and maintenance
of real-time servers.

This chapter is organized as follows: Section 4.2 elaborates the background
of existing works. Section 4.3 explains the proposed methodology GESFLA and
its different phases and algorithms. Section 4.4 evaluates the experimental results.
Finally, in Sect. 4.5, this chapter is concluded and also future work is discussed.

4.2 Background

Multi-server energy consumption strategy aims at reducing the power usage of the
data center by using the least amount of resources that are available in the PMs
while switching off inactive PMs at the data center. Man et al. [9] and Ajiro et al.
[10] used different methods, such as “First Fit,” “Best Fit,” to solve VMs allocation
problem. A global optimum solution is obtained from the heuristic approaches.
“Best fit heuristic solution” is inaccessible because it takes more convergence
time, and the proposed work has one more limitation based on a “single objective
function.” Beloglazov et al. [11] recommended a “Modified Best Fit Decreasing
(MBFD) algorithm” by arranging the ascending order of PMs and descending order
of VMs based on their processing capability. In the “First Fit Decreasing (FFD),”
VM allocation on PMs is done after VMs and PMs are sorted. The drawbacks
are: Distinct allocation goal for VMs and MBFD is not flexible as huge requested
VMs get influenced at the data center. The VM allocation issue is solved by
using different types of algorithms. Many researchers employed bio-inspired and
evolution-inspired algorithms for the cloud data center for allocation of VMs, such
as “Genetic Algorithm (GA) [12],” “Particle swarm optimization (PSO),” etc. Xiong
et al. [13] used PSO to resolve the issue of allocating energy-efficient VMs. The
authors considered a single VM type as it is the major drawback of this research.

110 H. Priyanka and M. Cherian

“Ant colony”-based VM is proposed for VM allocation by the cloud data centers by
Gao et al. [14]. The authors used only a single VM and PM combination which is
the drawback of their work. Wang et al. [15] recommended the use of PSO to locate
efficient VMs in a data center. The drawback of this research is that the allocations
of VMs change the particle velocity that requires more iterations and gives an
inaccurate result. “Particle Swarm Optimization (PSO) algorithm” [16] is derived
from bird flocking, its a bio-inspired algorithm [17]. It is through PSO that each
particle in the swarm gives a solution with four dimensions, its present location, the
position, its speed, and the location found among all the particles in the population.
Its location is set in the search area based on the position its neighborhood has
reached. The limitations of PSO algorithms suffer from the partial optimism that
triggers less accurate velocity and distance control. PSO is unable to address particle
issues in the field of energy consumption. Sharma et al. proposed “Genetic algorithm
and Particle Swarm Optimization (GAPSO)” [6, 8], hybridization of GA and PSO
results in increasing the fitness value of the parent chromosomes, and thus allocation
of VMs to the PMs is achieved in lesser time.The limitation of GAPSO algorithm
takes more convergence time.

4.3 Proposed Work

In this section, the proposed method is discussed with different algorithms. Figure
4.1 shows the different phases of GESFLA. To efficiently carry out the process of
migration, VM allocation and VM placement, the GESFLA is designed with various
phases as follows:

1. Design of Cloud environment
2. Selection of workload
3. Allocation policy
4. Framework monitor
5. Migration of virtual instances
6. VM selection policy

4.3.1 Design of Cloud Environment

This phase designs the data center environment with the help of CloudSim simulator.
The basic configuration of servers like types of a host, speed of processors
(MIPS), number of processing elements, size of memory, bandwidth for I/O data
transmission, the capacity of storage, and number of servers are placed to create
a power data center. In the power data center environment, we can instantiate the
virtual resources to fulfill the user’s requirements. As per the user’s requirements,

4 Energy-Efficient Resource Management of Virtual Machine in Cloud Infrastructure 111

Design of Cloud environment

Configuration of

1.VM 2.Hosts 3.Datacenter Broker

Selection of workload

1.Planet Lab

2.Google

1. Day 1
2. Day 2
3. Day 3

1. Initialization of population
 using Max Min algorithm
2. Calculation of fitness
3. Apply Genetic and Shuffling
 frog leaping Algorithm

Allocation policy

1. VM provisioning
2. VM utilization
3. Host Mode / Host states
4. Monitoring of Hosts and
 VM

Framework monitor

1. Find optimal VM and Hosts
2. High load / Low load host
 detection
3. VM migration to PM

Migration of virtual instances.

1. Minimum Time on migration

VM Selection Policy.

Host 1 Host 2 Host n

VM 1 VM2---
VM N

VM 1 VM2---
VM N

VM 1 VM2---
VM N

Fig. 4.1 Workflow of GESFLA

the VMs are configured and data center is initialized to experiment with our
proposed and existing model.

4.3.2 Selection of Workload

(a) PlanetLab
The PlanetLab’s realistic traces of VM utilization were collected for 3 days, it has
288 readings. The PlanetLab workload traces are converted into cloudlet format
and are used as per user’s requirements for experimental purpose and it consists of
10 days task details respectively.

(b) Google Datasets
A new “2019” trace [18] has been released by Google, which contains comprehen-
sive Borg work scheduling data from eight different compute cluster of Google. The
Google Computing Clusters (Borg cells) contains data of May 2019.The latest trace
contents are an extension of the 2011 trace data [19, 20].

112 H. Priyanka and M. Cherian

4.3.3 Allocation Policy

It consists of the following processes:

(i) Adaptive selection of VM.
(ii) Scheduling of Tasks.
(iii) Identification of suitable hosts based on their states and modes.
(iv) Assigning the VMs to the hosts. The processes are done by combining

genetically enhanced and shuffled frog leaping algorithm as follows.

4.3.3.1 Genetic Algorithm

There are three basic genetic operations. They are selection, crossover, and muta-
tion.

(i) The population is generated from GA, in which parents are selected randomly.
(ii) The parents are cross-bred to produce offspring in the crossover.
(iii) The children will be altered as per the policy of mutation.

In genetic algorithm, the solution obtained is called individuals, and the generations
are considered as variants of an algorithm. Apart from the basic three operations of
the genetic algorithm, it has some preliminary and repetitive operations such as:

(i) Initial production of the population.
(ii) Fitness function.

(i) Initial Production of the Population
The initial population includes individuals in which chromosome sizes are specified.
In this method, the initial population is considered for having a better solution from
“MIN-MIN” [19] and “MAX-MIN” [20] scheduling methods.

Meta Task (MT): In the data center, the series of tasks will be assigned to
available resources. MT = {t1, t2, t3, · · · , tn}.

“Min-Min Algorithm: It is based on the concept of assigning task having
minimum completion time (MCT) for execution on the resource” [19]. The Min-
Min algorithm is divided into two steps:

(i) The completion time of each task is calculated on each resource of the meta
task.

(ii) The job with the shortest processing time is chosen and allocated to the
respective resource, and the selected task is deleted from the meta task. This
method continues until all the meta tasks are mapped.

Algorithm 4.1: Min-Min Algorithm

Input: Submitted task
Output: Completion time

4 Energy-Efficient Resource Management of Virtual Machine in Cloud Infrastructure 113

Stage 1: The minimum completion time of each task is calculated.

1. The tasks (ti) are submitted to meta task (MT).
2. Assign resources Rj.

3. Calculation of completion time CTij = ETij + rj is carried out.
4. Step 1 is ended.
5. Step 2 is ended.

Stage 2: Allocation of the resource to task ti with a least completion time.

6. In the MT, find the task ti with minimum completion time and the estimated
resource.

7. Check for the task ti, which has a minimum completion time and assign to the
resource Rj.

8. From MT, delete task ti.
9. Ready time of resource rj is updated.
10. Unmapped tasks’ completion time is upgraded in MT.
11. Until all activities have been mapped in meta task (MT), repeat 6–10 steps.
12. Step 6 ends.

“Max-Min Method. It is built on the concept of assigning a task having minimum
completion time (MCT)” [20]. For resource execution, it must have the maximum
completion time (fastest resource). This algorithm is divided into two steps.

(i) The completion time of each task is calculated on each resource of the meta
task.

(ii) The job with the longest processing time is chosen and allocated to the
respective resource, and the selected task is deleted from the meta task. This
method continues until all the meta tasks are mapped.

Minimum Completion Time (MCT): Assigning each task to the available host so
that the request can be completed as quickly as possible, which will yield the fastest
result, which means evaluating the resource availability before allocating the job.
Minimum completion time can be calculated by adding task ti execution time,
known as ETij, and resource ready time or start time, known as rj. This can be
expressed as:

MCT = ETij + rj .

Algorithm 4.2: Max-Min Algorithm

Input: Submitted task
Output: Completion time
Stage 1: The minimum completion time of each task is calculated.

1. The tasks (ti) are submitted to meta task (MT).
2. Assign resources Rj.

3. Calculation of completion time CTij = ETij + rj is carried out

114 H. Priyanka and M. Cherian

4. Step 1 is ended.
5. Step 2 is ended.

Stage 2: Allocation of the resource to task ti with a maximum completion time.

6. In the MT, find the task ti with minimum completion time and the estimated
resource.

7. Check for the task ti, which has a minimum completion time and assign to the
resource Rj.

8. From MT, delete task ti.
9. Ready time of resource rj is updated.
10. Unmapped tasks’ completion time is upgraded in MT.
11. Until all activities have been mapped in meta task (MT), repeat 6–10 steps.
12. The loop of Step 6 is ended.

(ii) Fitness Function
The fitness value plays a key role in determining the individuals to create the next
generation. In this work, the execution time (makespan) is considered, in which
the fitness value and the fitness function are obtained through Max-Min method.
To enhance resource management in the cloud environments, the utilization of
resources is increased, the makespan of the task is minimized and the energy
consumption of the host is also reduced. In this proposed algorithm, the GA
operators, the selection, crossover, and mutation operations are applied. A set of
solutions are produced; these solutions are considered to be the initial population
of SFLA, and the solution which is generated will become the next population to
GA. These operations are performed several times, and all the solutions are modified
when the SFLA terminates the operations. In this algorithm, the early convergence is
avoided by comparing the generated children with their parents. If the fitness value
is improved in comparison with parents, then the children must replace the parents
or it will be terminated. Based on the generation of the initial population, the fitness
values are evaluated. The termination condition is verified for each iteration of the
algorithm and the optimal solutions will be generated. Otherwise, the operators of
GA and SFLA algorithms are applied respectively to the individuals.

4.3.3.2 Shuffled Frog Leaping Algorithm

“SFLA” [21] is a meta-heuristic strategy of optimization. It is focused on analyzing,
imitating, and predicting a group of frog’s behavior while looking for the position
with the maximum quantity of food available. It is used to resolve several non-
linear, non-differentiable, and multi-model optimization challenges. SFLA has been
introduced mainly to solve the problems that occur in the field of engineering. The
most distinguished advantage of SFLA is its quick convergence speed. The SFLA
incorporates the advantages of both the “Particle Swarm Optimization” and the
“Memetic Algorithm” (MA) [22] influenced by social behavior.

4 Energy-Efficient Resource Management of Virtual Machine in Cloud Infrastructure 115

SFLA is a random search algorithm based on population, influenced by nature
memetics. In the SFLA, a feasible solution population is represented by a commu-
nity of frogs which is divided into multiple groups called memeplexes. Every frog
executes a local search in the memeplexes. The memeplexes are allowed to combine
after a specified range of memetics evolution steps, and newmemeplexes are created
through a shuffling phase. The shuffling processes and local search continues until
the convergence constraints are fulfilled.

Algorithm 4.3: Proposed GESFLA (Genetically Enhanced Shuffling Frog Leaping
Algorithm)

Input: GenesList = List of VMs and List of Cloudlets (tasks)
Output: Scheduling of tasks to VM

1. Create an initial population
2. Initialize parent 1 and parent 2
3. Calculate fitness value of both parent 1 andparent2
4. Set fitness value to population list
5. Population list = genesList and fitnessMakespan
6. Apply selection operator of Genetic
7. Call method 1
8. Apply mutation operator
9. Calculate the fitness of offspring produced

10. If (fitness of child > fitness of parent)
11. Add the offspring into the population list
12. End if
13. Apply mutation operator
14. Check the fitness value of the mutated population with parent’s
15. If (population. fitness makespan>mutationfitness)
16. Mutated population parent key value to be replaced
17. End if
18. Apply SFL Algorithm
19. Initialize frog_population list
20. Assign population of genetic to frog_population list
21. Select the population with a minimum fitness value
22. Create the frog list
23. Generate the virtual population and memeplex
24. Compute performance of memeplexes
25. Partitioning frog population into sub-memeplexes
26. Shuffle the memeplexes
27. Calculate the number of frogs for each submemeplex
28. Calculate the memetic evolution within each memeplex
29. Find execution time and makespan of sub-memeplex
30. Schedule the tasks to VMs
31. Calculate execution time and completion time of each memeplex

116 H. Priyanka and M. Cherian

Method 1: Selection Operator of Genetic

Input: Initial population
Population list = number of task, number of VM’s
Pop size = number of parents
Output: fittest chromosome

1. Assign pop size
2. While initial population size <pop size
3. Do
4. Create pop size random integers
5. Compute fitness
6. Spin the roulette wheel = pop size
7. If then
8. Choose the chromosome
9. End if

10. End while

4.3.4 Framework Monitor

It verifies and examines the behavior of the data center. The host usage and resource
management for the user’s service level agreement are retained, so that it should not
exceed the threshold limit. In case the hosts are in the state of high or low loaded [23,
24], it begins to move the VMs from the current host to another appropriate host.
This constantly monitors the host states, configurations, and data center activities.

Consider number of PMs = “n” and number of VMs = “m” to execute the tasks
in a data center, the use of PM (PMu) will be evaluated based on the allocated
number of VMs in it as shown in Eq. (4.1).

∑n

i=1
CVMijPMu = CPMj (4.1)

i = 1 to m, j = 1 to n.
Where CVMij is computing power of CPU (MIPS*Pes) of ith Virtual Machine

(VMij) on jth PM.
CPMj is the processing capability of the jth PM (PMj) CPU (MIPS*Pes).
The PM in “active” mode has the following threshold limit to define the

computational resource states.

(i) Upper threshold limit of PM >75% – High state.
(ii) 60%< threshold limit of PM ≤75% – Balanced state.
(iii) 40%≤ threshold limit of PM ≤60% – Imbalanced state.
(iv) Lower threshold limit of PM <40% – Low state.

4 Energy-Efficient Resource Management of Virtual Machine in Cloud Infrastructure 117

Algorithm 4.4: VM Allocation

Input: List of VMs, List of PMs
Output: Allocation of VM to PM

1. Check for host state: active or idle
2. If (host== idle)
3. sleep
4. else
5. check for suitability for placing the VM
6. if (Host utilization=Over utilized || Host utilization== Underutilized)
7. Host utilization = over utilized
8. Go to step 10
9. Host utilization = under utilized
11. Go to step 22
12. End if
13. If (hostUtilization> 0.75)
14. Host = highloaded;
15. host.setHostStates(“High”);
16. host.setHostUtilization(hostUtilization);
17. End if
18. else if (hostUtilization<= 0.75 &&hostUtilization> 0.60)
19. Host =BalancedHost
20. host.setHostStates(“Balanced”);
21. host.setHostUtilization(hostUtilization);
22. End if
23. else if (hostUtilization<= 0.60 &&hostUtilization>0.40)
24. Host = ImbalancedHost;
25. host.setHostStates(“Imbalanced”);
26. host.setHostUtilization(hostUtilization);
27. End if
28. else if (hostUtilization<= 0.40 &&hostUtilization> 0.0)
29. host.setHostStates(“Low”);
30. host.setHostUtilization(hostUtilization);
31. LowLoadedHost.add(host);
32. End
33. else
34. host.setHostUtilization(hostUtilization);
35. host.setHostMode(“Sleep”);
36. End
37. Allocate VMs to PMs
38. End

118 H. Priyanka and M. Cherian

4.3.5 Migration of Virtual Instances

VM migration [25] plays a key role in virtualization, allowing for quick migration
of a VM from one physical host to another. VM migration can prove helpful in
different situations like (i) balancing the load, (ii) maintenance of DC, (iii) energy
management, and (iv) the failures of VMs.

4.3.5.1 High Loaded Host Detection

If a host’s CPU consumption drops below the threshold, then all VMs must be
transferred from the current host to another host and to minimize idle power usage.
The current host should be switched to the sleep mode. If the consumption crosses
the higher limits of the threshold, it is required to transfer such VMs from the
existing host to minimize resource usage and to avoid SLA violations [26].

4.3.5.2 Low Loaded Host Detection

In this case, the system has a list of underloaded hosts [27]. Next, the system needs
to verify if VMs can be transferred to the other servers. Therefore, the proposed
algorithm checks the possibility of reorganizing all VMs to other active hosts before
commencing the live migrations. A host must fulfill three conditions for accepting
any VM:

1. It should not be under pressure: Once the host is in the migration process, it
cannot be approached for another migration.

2. It should have sufficient resources for VM: In this situation, the capacity of the
CPU, memory, and bandwidth are considered, it should not exceed the capacity
of the PM.

3. The VM should not be overloaded: After moving the VMs to an imbalanced or
idle host and if migration overloads the imbalanced host, the migration cycle will
be aborted to the specific host.

If the other active hosts accept all VMs, the host will be shifted to sleep mode and
its VMs will be included in the transfer list; or else the host will remain operational.
This cycle is repeated iteratively, for all under loaded hosts.

Algorithm 4.5: VM Placement

Input: List of VMs
Output: Placing the VM to PM

1. Create VM migration list
2. Sort VM according to their MIPS
3. Find the host for the VM migration

4 Energy-Efficient Resource Management of Virtual Machine in Cloud Infrastructure 119

4. if (migratedHost != null)
5. go to step 9
6. migrate.put(“host,” migratedVm);
7. End if
8. return
9. Get host list

10. for (Host host : getHostList())
11. if (host.isSuitableForVm(vm))
12. Calculate host utilization
13. utilization=((vm.getMips*vm.getNumberOfPes())/host.getTotalMips())
14. result = host.vmCreate(vm);
15. if (utilization >= 0.75)
16. if (utilization != 0 && utilization > 0.75)
17. Migration of VM to the host
18. Get VM id and host Id
19. Calculate host utilization
20. End if
21. End if
22. else
23. allocatedHost = host;
24. host.setHostUtilization(utilization);
25. Get the allocation of VM Id to the host
26. Get allocated host Id
27. return allocated host;
28. End for
29. Get the Vmsto Migrate FromUnderUtilized Host
30. for (Host HOST : host)
31. HOST.getId() &HOST.getHostStates());
32. Get the VM migrated list
33. for (Vmvm : HOST.getVmList())
34. if (!vm.isInMigration())
35. vmsToMigrate.add(vm)
36. End if
37. return vmsToMigrate;
38. End for

4.3.6 VM Selection Policy

When a server is overloaded, the next step is to select the VM’s and transfer from the
server. In this section, VM selection policy is discussed. After the VM is chosen for
migration, the server is tested for over-loaded condition. If the server is still deemed

120 H. Priyanka and M. Cherian

as overloaded, then again the VM selection policy will be implemented. The VM
selection policy is discussed in Sect. 4.3.6.1.

4.3.6.1 Minimum Time on Migration (MTM)

The MTM strategy migrates a VM (VM) that takes less amount of time to
accomplish a migration in comparison with other VMs assigned to the server. “The
transfer time is measured as the amount of the RAM used by the VM, separated
by the available network bandwidth of the server” [28]. Vk is a collection of VMs
assigned to server “k.” The MTM strategy discovers a VM (b) that matches the
conditions shown in Eq. (4.2).

RAMu(b)/NETi

vm ∈ Vk| ∀b ∈ Vk
(4.2)

Where,

RAMu (b) = percentage of RAM presently used by the VM (b)
NETi = spare bandwidth for the server k

The transfer time is calculated using the formula given below. The total band-
width available for the Host is 1 GB. Half of the network bandwidth is used for
communication among the VMs and another half is used for the VM migration.

1. VMs Transfer Time
The transfer time of the VM on the PM is calculated using the formula as follows:

Transfer time =
n∑

i=1

1

2
∗ VMRAM

HostBW

Where,

Transfer Time: This refers to the time that needed to migrate the task to the candidate
VM.

VMRam = Total available ram of VM.
HostBW = Total network bandwidth = 1 GB/s.

2. Utilization Ratio
The resource utilization of each host is calculated using the formula as follows:

Host utilization ratio = (VM requested MIPS) / (Total Host MIPS)

Memory utilization ratio = (VM requested RAM) / (Host Total RAM)

4 Energy-Efficient Resource Management of Virtual Machine in Cloud Infrastructure 121

3. Reduction of Power Consumption
In our model, the number of VMs = N, number of PMs = M, and set of
resources = R. The Yj variable checks if the PMj is operational and the Xij variable
checks if VMi assigned to PMj. Our goal is to minimize a data center’s energy
consumption, based on the formula as shown in Eq. (4.3).

Pj =
(
P active

j − P idle
j

)
× UP

j + P idle
j (4.3)

Where, UP
j is the usage of the CPU (UP

j ε [0, 1]), and P active
j and P idle

j are the
average power values while the jth PM is active and idle.

The consumption of total energy is shown in Eq. (4.4).

Min
M∑

j=1

P PM
j =

M∑

j=1

Yj

(
P active

j − pidle
j

)
×

N∑

i=1

(
Xij · Ri,1

vm) + P idle
j (4.4)

Where,
Ri,1

vm-is a set of CPUs that are needed by VMi

Virtual Machines (VMs) = N
Physical Machines (PMs) = M,
The total number of resources = R.
The Yj variable determines whether PMj is operational
The Xij variable determines whether VMi has been allocated to PMj.

In the VM formula, Ri, VM is a range of CPUs that VMi requires.

4.4 Result and Analysis

The suggested algorithm is designed to be implemented through the conceptual
framework. Minimizing resource usage and optimizing the transfer time is the
primary focus of our proposed algorithm.

4.4.1 Experimental Results

Experimental Setup: In heterogeneous environment, we have used various com-
binations of VMs and PMs. Table 4.1 shows the different types of PMs and
VMs combinations for conducting detailed experiments. To check the proposed
algorithm results, we have used the Cloudsim simulator [29]. Java language is used
to implement our proposed GESFL algorithm.

The simulation is carried out using PlanetLab [28] datasets, which is a part
of the CoMon [28] initiative. CPU usage data was taken from 500 different

122 H. Priyanka and M. Cherian

Table 4.1 Configuration of simulation

Factor Value

Host configuration HP ProLiant ML110 G4 servers

MIPS = 1860

PES = 2

RAM = 4096

HP ProLiant ML110 G5 servers

MIPS = 2660

PES = 2

RAM = 4096

BW = 1 Gbit/s

STORAGE = 1 GB
Number of hosts 800

400 = HP ProLiant ML110 G4 servers

400 = HP ProLiant ML110 G5 servers
VM configuration 1. Extra-Large [MIPS = 2500, PES = 1, RAM = 1740]

2. Medium [MIPS = 2000, PES = 1, RAM = 1740]

3. Small

[MIPS = 2000, PES = 1, RAM = 870]

4. Micro

[MIPS = 500, PES = 1, RAM = 613]

BW = 1 Gbit/s = for all 4 types of VM.
Google cluster datasets 29 days
PlanetLab-workload 10 days

locations around the world which are running on the server from thousands of VMs.
Therefore, every trace has (24 × 60)/5 = 288 entries. CPU usage was taken in
intervals of 5 min. The server with more cores are chosen mainly to simulate a large
number of servers and to analyse the impact of consolidating VM. It is advantageous
to simulate less powerful CPUs, as fewer tasks are needed for server overloading.
Therefore, to check the resource management algorithms designed for multi-core
processor architectures, dual-core CPUs are sufficient.

A dataset of Google Cluster Trace is published by Google in May 2019 and
contains about 30 days of cell results. A collection of multiple machines sharing an
eight cluster management system is defined by each cell. Each trace job involves
one or more tasks that may contain many processes to be run on a single machine
for each task. The trace data includes the following tables: Table of Machine Events,
Table of Machine Attributes, Table of Instance Events, Table of Collection Events,
and Table of Instance Usage.

In instance usage table, the cpu_usage_distribution and tail_cpu_usage_distrib
ution vectors provide detailed information about the distribution of CPU consump-
tion with 5 min intervals. These details are used to carry out the simulation.

4 Energy-Efficient Resource Management of Virtual Machine in Cloud Infrastructure 123

400 500 600 700 800 900 1,000 1,100 1,200
0

20

40

60

80

100

T
ra

ns
fe

r
T

im
e(

s)

Number of Vms

GESFLA GAPSO

Minimize Transfer Time

Fig. 4.2 VM transfer time (Google datasets)

400 500 600 700 800 900 1,000 1,100 1,200
0

20

10

40

30

60

50

80

70

T
ra

ns
fe

r
T

im
e(

s)

Number of Vms

GESFLA GAPSO

Minimize Transfer Time

Fig. 4.3 VM transfer time (PlanetLab)

Further, the GESFL algorithm transfer time is shown in Figs. 4.2 and 4.3 is
relatively smaller in comparison with GAPSO. If the load is balanced equally among
VMs, then the CPU is also utilized efficiently as shown in Figs. 4.4 and 4.5. The
energy usage is depicted in Figs. 4.6 and 4.7.

To determine the efficiency of our proposed GESFL algorithm, various combi-
nations of VMs and PMs are compared with GAPSO in the context of resource
utilization, time of migration, and energy consumption. GESFLA’s migration time
is calculated for the Google datasets and PlanetLab datasets as shown in Table 4.2.

124 H. Priyanka and M. Cherian

800700500300

Number of host

U
til

iz
at

io
n

ra
tio

GAPSO GESFLA

Maximum Host Utilization

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fig. 4.4 Utilization of the host (Google datasets)

800700600300 500 550

Number of host

U
til

iz
at

io
n

ra
tio

GAPSO GESFLA

Utilization of Host

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.45

0.30

0.40

0.50

Fig. 4.5 Host utilization (PlanetLab)

The improvement in the maximum utilization of our suggested algorithm is
calculated as shown in Table 4.3. The algorithm provides better outcomes for power
usage over the GAPSO algorithm, due to the usage of the VM transfer strategy
to turn off under loaded PMs at the data center. Thus, the CPU usage of PMs is
improved by reducing the number of VMs in data center. The migration of VMs
is built on fixed time intervals in data center. For every 60 s, we have received the
utilization status of every used PM and several VMs that are assigned to underused
PMs. Next, we can turn off the underused PMs in data center by transferring the

4 Energy-Efficient Resource Management of Virtual Machine in Cloud Infrastructure 125

800700300 500

Number of hosts

E
ne

rg
y

co
ns

um
pt

io
n(

in
 K

w
h)

GA-PSO GESFLA

Energy consumption

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Fig. 4.6 Power consumption (Google datasets)

800700300 500 550 600

Number of hosts

E
ne

rg
y

co
ns

um
pt

io
n(

in
 K

w
h)

GA-PSO GESFLA

Energy consumption

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Fig. 4.7 Power consumption (PlanetLab)

VMs using the migration policy discussed in Sect. 3.6.1. Table 4.4 depicts the
improvement of energy consumption of the hosts.

Since the fewer number of PMs and VMs are used, the transfer time of the
proposed GESFL algorithm significantly gives better results than the GAPSO
(PMs) configuration. As more PMs are switched off, data center’s expense reduces.
The hybrid model suggested by GESFLA has increased chromosomal fitness. The
children obtained by the crossover and mutation operations are of better quality

http://doi.org/10.1007/978-3-031-05528-7_3#Sec19

126 H. Priyanka and M. Cherian

Ta
bl
e
4.
2

Im
pr
ov
em

en
ti
n
tr
an
sf
er

tim
e

M
in
im

iz
in
g
th
e
tr
an
sf
er

tim
e
G
oo

gl
e
da
ta
se
ts

M
in
im

iz
in
g
th
e
tr
an
sf
er

tim
e

Pl
an
et
la
b
da
ta
se
ts

N
um

be
r
of

V
M
s

G
A
PS

O
(E
xi
st
in
g)

G
E
SF

L
A
(P
ro
po
se
d)

Im
pr
ov
em

en
t(
%
)
in

tr
an
sf
er

tim
e
of

G
E
SF

L
A

w
ith

G
A
PS

O
G
A
PS

O
G
E
SF

L
A

Im
pr
ov
em

en
t

(%
)
in

tr
an
sf
er

tim
e
of

G
E
SF

L
A
w
ith

G
A
PS

O

40
0

56
.5
3

37
.7
9

33
25
.4
2

24
.5
8

3
50
0

82
.6
0

63
.1
2

23
42
.2
8

32
.5
6

22
70
0

96
.2
8

83
.2
03

13
54
.0
6

47
.7
1

12
10
00

95
.6
5

78
.6
68

17
74
.1
9

62
.1
9

16
12
00

77
.8
0

60
.4
6

22
80
.8
8

70
.2
2

14

4 Energy-Efficient Resource Management of Virtual Machine in Cloud Infrastructure 127

Ta
bl
e
4.
3

Im
pr
ov
em

en
ti
n
C
PU

ut
ili
za
tio

n
of

ho
st

M
ax
im

um
C
PU

ut
ili
za
tio

n
of

th
e
ho
st
(G

oo
gl
e

w
or
kl
oa
d)

M
ax
im

um
ut
ili
za
tio

n
of

th
e
ho

st
(P
la
ne
tL
ab

w
or
kl
oa
d)

N
o
of

H
os
ts

G
A
PS

O
(E
xi
si
ng
)

G
E
SF

L
A
(P
ro
po
se
d)

Im
pr
ov
em

en
t(
%
)
in

th
e

ho
st
us
ag
e
of

G
E
SF

L
A

w
ith

G
A
PS

O
G
A
PS

O
G
E
SF

L
A

Im
pr
ov
em

en
t

(%
)
in

th
e

ho
st
us
ag
e
of

G
E
SF

L
A
w
ith

G
A
PS

O

30
0

0.
34
5

0.
36
29

5
0.
40
1

0.
47
8

16
50
0

0.
41

0.
32
8

20
0.
25
2

0.
30
1

15
70
0

0.
18
65

0.
23
5

20
0.
21
3

0.
26
4

19
80
0

0.
19
1

0.
22
3

14
0.
21
5

0.
24
6

12

128 H. Priyanka and M. Cherian

Ta
bl
e
4.
4

Im
pr
ov
em

en
ti
n
en
er
gy

co
ns
um

pt
io
n

M
in
im

iz
in
g
en
er
gy

co
ns
um

pt
io
n

(G
oo
gl
e
w
or
kl
oa
d)

M
in
im

iz
in
g
en
er
gy

co
ns
um

pt
io
n
(P
la
ne
tL
ab

w
or
kl
oa
d)

N
o
of

H
os
t

G
A
PS

O
(E
xi
st
in
g)

G
E
SF

L
A
(P
ro
po
se
d)

Im
pr
ov
em

en
t(
%
)
of

G
E
SF

L
A
w
ith

G
A
PS

O
G
A
PS

O
G
E
SF

L
A

Im
pr
ov
em

en
t(
%
)
of

G
E
SF

L
A
w
ith

G
A
PS

O

30
0

2.
64

2.
45

3
2.
62

2.
50

4
50
0

2.
26

2.
16

4
3.
09

2.
95

5
70
0

3.
05

2.
64

13
3.
31

3.
25

12
80
0

2.
82

2.
65

6
3.
43

3.
30

3

4 Energy-Efficient Resource Management of Virtual Machine in Cloud Infrastructure 129

and thus have achieved the optimal solution for allocating VMs. This helps in
maximizing the usage of the resource by reducing execution time and transfer time.

The efficiency of GESFLA is increased because mutation and crossover opera-
tors of genetic algorithm helps to generate quality of good children. The children
produced are grouped into memeplexes using SFLA. The memeplexes does the
shuffling of children produced and the local search of availability of resources. This
takes very less convergence time, which reduces the transfer time of VMs from one
host to another.

It is necessary to consider the power consumption because it is a crucial factor for
data center’s [30] and also for the service providers. Minimizing power consumption
[31] helps to reduce the cost of data center. We are considering under loaded hosts
and enabling the host to switch to the balanced state by shutting down the under
loaded host. The shuffling process of SFLA helps VMs to find the underloaded
hosts and it is beneficial in maintaining the load among the hosts.

4.4.2 Analysis of Complexity of Time

The proposed GESFLA processing time is dependent upon GA and SFLA algo-
rithms.

Consider,

“k” = number of tasks
“x” = number of PMs
“y” = number of VMs and
“s” = size of the generation’ and
“C” = crossover rate of each generation

GA’s time complexity is focused on the distinct operations of generation,
crossover, and mutation. SFLA focuses on Frog generation, memeplex number,
an update of the position, estimation of memeplex fitness, Frog’s location, return
the missing VMs, and delete duplicate VMs for specified intervals. GAPSO-based
migration of VM needs O (nlogn) processing time. GESFLA = O (GA) + O
(SFLA). As a result, the time complexity of GESFLA = O (logn) is equal to O
(n: k,s,m) + n logn computation.

4.5 Conclusion and Future Work

We have discussed different phases of our proposed GESFL algorithm. The
algorithm is tested for Google cluster trace datasets as well as real-time workload
traces from the PlanetLab. The suggested approach used threshold values for VM
migration and load on the server is reduced by frequent monitoring of all the VMs.
The experimental results indicate that GESFLA framework efficiency is better than
the GAPSO algorithm. The proposed algorithm increases the performance of data

130 H. Priyanka and M. Cherian

center by minimizing the transfer time by 17%, maximizing resource utilization
around 14–16% and energy consumption is reduced in comparison with the existing
algorithm by 6%. The limitation of our proposed algorithm is that we have listed
only four combinations of VMs and PMs which can be enhanced with more
combinations. In the future, the algorithm can be applied for actual data centers
in real-time.

References

1. H. Priyanka, Analytics of application resource utilization within the virtual machine. Int. J. Sci.
Res. 5(4), 1690–1693 (2016)

2. H. Hajj, W. El-Hajj, M. Dabbagh, T.R. Arabi, An algorithm centric energy-aware design
methodology. IEEE Trans. Very Large Scale Integr. Syst. 22(11), 2431–2435 (2014)

3. F. Ramezani, J. Lu, F.K. Hussain, Task-based system load balancing in cloud computing using
particle swarm optimization. Int. J. Parallel Prog., Springer 42, 739–754 (2014)

4. L. Guo, S. Zhao, S. Shen, C. Jiang, Task scheduling optimization in cloud computing based on
a heuristic algorithm. J. Networks 7(3), 547–553 (2012)

5. H. Priyanka, M. Cherian, The challenges in virtual machine live migration and resource
management. Int. J. Eng. Res. Technol. 8(11), 5 (2020)

6. N.K. Sharma, G. Ram Mohana Reddy, Multi-objective energy efficient virtual machines
allocation at the cloud data center. IEEE Trans. Serv. Comput. 12(1), 158–171 (2019)

7. Y. Ge, G. Wei, GA-based task scheduler for the cloud computing systems, in Proceedings of the
International Conference on Web Information Systems and Mining (WISM ’10), vol. 2, (IEEE,
2010), pp. 181–186

8. G. Giftson Samuel, C. Christober Asi Rajan, Hybrid: Particle Swarm Optimization–Genetic
Algorithm and Particle Swarm Optimization–Shuffled Frog Leaping Algorithm for long-term
generator maintenance scheduling. Int. J. Elect. Power Energy Syst., Elsevier 65, 432–442
(2015)

9. E.G. Coffman Jr., M.R. Garey, D.S. Johnson, Approximation algorithms for bin packing: A
survey, in Approximation Algorithms for NP-Hard Problems, ed. by D. S. Hochbaum, (PWS
Publishing Co, Boston, 1997), pp. 46–93

10. Y. Ajiro, A. Tanaka, Improving packing algorithms for server consolidation, in Proceedings of
the 33rd International Computer Measurement Group Conference, December 2–7, 2007, San
Diego, CA, USA, (DBLP, 2007), pp. 399–406

11. A. Beloglazov, R. Buyya, Managing overloaded hosts for dynamic consolidation of virtual
machines in cloud data centers under quality of service constraints. IEEE Trans. Parallel
Distrib. Syst. 24(7), 1366–1379 (2013)

12. K. Dasgupta, B. Mandal, P. Dutta, J.K. Mandal, S. Dam, A genetic algorithm (GA) based load
balancing strategy for cloud computing. Procedia Technol. 10, 340–347 (2013)

13. A.-P. Xiong, C.-X. Xu, Energy efficient multiresource allocation of virtual machine based on
PSO in cloud data center. Math. Probl. Eng. 2014, 1–8 (2014)

14. W.-T. Wen, C.-D. Wang, D.-S. Wu, Y.-Y. Xie, An ACO-based scheduling strategy on load
balancing in cloud computing environment, in Ninth IEEE International Conference on
Frontier of Computer Science and Technology, vol. 6, (IEEE, 2015), pp. 364–369

15. S. Wang, Z. Liu, Z. Zheng, Q. Sun, F. Yang, Particle swarm optimization for energy-aware
virtual machine placement optimization in virtualized data centers, in Proceedings of the IEEE
International Conference on Parallel and Distributed Systems, (IEEE, 2013), pp. 102–109

16. H. Xu, B. Yang, W. Qi, E. Ahene, A multi-objective optimization approach to workflow
scheduling in clouds considering fault recovery. KSII Trans. Internet Inf. Syst. 10(3), 976–994
(2016)

4 Energy-Efficient Resource Management of Virtual Machine in Cloud Infrastructure 131

17. S. Chitra, B. Madhusudhanan, G.R. Sakthidharan, P. Saravanan, Local minima jump PSO for
workflow scheduling in cloud computing environments, in Advances in Computer Science and
its Applications. Lecture Notes in Electrical Engineering, vol. 279, (Springer, 2014), pp. 1225–
1234

18. C. Reiss, J. Wilkes, J.L. Hellerstein, Google cluster-usage traces: Format+ schema. Technical
report at https://github.com/google/clusterdata, Google, Mountain View, CA, USA, Revised
2014-11-17 for version 2.2, Nov. 2011

19. Y. Mao, X. Chen, X. Li, Max–Min task scheduling algorithm for load balance in cloud
computing, in Proceedings of International Conference on Computer Science and Information
Technology. Advances in Intelligent Systems and Computing, ed. by S. Patnaik, X. Li, vol. 255,
(Springer, New Delhi, 2012)

20. B. Santhosh, D.H. Manjaiah, A hybrid AvgTask-Min and Max-Min algorithm for scheduling
tasks in cloud computing, in International Conference on Control, Instrumentation, Communi-
cation and Computational Technologies (ICCICCT), Kumaracoil, (IEEE, 2015), pp. 325–328.
https://doi.org/10.1109/ICCICCT.2015.7475298

21. J. Wilkes, More Google cluster data. Google research blog (Nov. 2011). Posted at http://
googleresearch.blogspot.com/2011/11/more-googlecluster-data.html

22. J. Wilkes, Google cluster-usage traces v3. Technical report at https://github.com/google/
cluster-data, Google, Mountain View, CA, USA, Nov. 2019

23. H. Priyanka, M. Cherian, Efficient utilization of resources of virtual machines through
monitoring the cloud data center, in International Conference on Communication, Computing
and Electronics Systems. Lecture Notes in Electrical Engineering, ed. by V. Bindhu, J. Chen,
J. Tavares, vol. 637, (Springer, Singapore, 2020), pp. 645–653

24. H. Priyanka, M. Cherian, Novel approach to virtual machine migration in cloud computing
environment – A survey. Int. J. Sci. Rep. 7(1), 81–84 (2018)

25. L. Weining, F. Ta, Live migration of virtual machine based on recovering system and CPU
scheduling, in 6th IEEE joint International Information Technology and Artificial Intelligence
Conference, Piscataway, NJ, USA, (IEEE, 2009), pp. 303–305

26. S.B. Melhem, A. Agarwal, N. Goel, M. Zaman, Markov prediction model for host load
detection and VM placement in live migration. IEEE Access 6, 7190–7205 (2017)

27. A. Kishor, R. Niyogi, Multi-objective load balancing in distributed computing environment:
An evolutionary computing approach, in Proceedings of the 35th Annual ACM Symposium on
Applied Computing, (Association for Computing Machinery, Brno, 2020), pp. 170–172

28. A. Beloglazov, R. Buyya, Optimal online deterministic algorithms and adaptive heuristics for
energy and performance efficient dynamic consolidation of virtual machines in cloud data
centers, in Concurrency and Computation: Practice and Experience, vol. 24, No. 13, (Wiley
Press, New York, 2011). https://doi.org/10.1002/cpe.1867

29. R.N. Calheiros, R. Ranjan, A. Beloglazov, C.A.F. de Rose, R. Buyya, CloudSim: A toolkit
for modeling and simulation of cloud computing environments and evaluation of resource
provisioning algorithms. Softw. Pract. Exp. 41(1), 23–50 (2011)

30. J. Singh, J. Chen, Optimizing energy consumption for cloud computing: A cluster and
migration based approach (CMBA), in Proceedings of the 2019 3rd International Conference
on Computer Science and Artificial Intelligence, vol. 22, No. 11, (Association for Computing
Machinery (ACM), 2019), pp. 28–32

31. S. Rahman, A. Gupta, M. Tornatore, B. Mukherjee, Dynamic workload migration over
backbone network to minimize data center electricity cost. IEEE Trans. Green Commun. Netw.
2, 570–579 (2018)

https://github.com/google/clusterdata
http://doi.org/10.1109/ICCICCT.2015.7475298
http://googleresearch.blogspot.com/2011/11/more-googlecluster-data.html
https://github.com/google/cluster-data
http://doi.org/10.1002/cpe.1867

	4 Energy-Efficient Resource Management of Virtual Machine in Cloud Infrastructure
	Contents
	4.1 Introduction
	4.2 Background
	4.3 Proposed Work
	4.3.1 Design of Cloud Environment
	4.3.2 Selection of Workload
	4.3.3 Allocation Policy
	4.3.3.1 Genetic Algorithm
	4.3.3.2 Shuffled Frog Leaping Algorithm

	4.3.4 Framework Monitor
	4.3.5 Migration of Virtual Instances
	4.3.5.1 High Loaded Host Detection
	4.3.5.2 Low Loaded Host Detection

	4.3.6 VM Selection Policy
	4.3.6.1 Minimum Time on Migration (MTM)

	4.4 Result and Analysis
	4.4.1 Experimental Results
	4.4.2 Analysis of Complexity of Time

	4.5 Conclusion and Future Work
	References

