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Abstract In the motion tasks of an autonomous vehicle it is necessary to consider 
the position of individual obstacles and various unsafe zones. We consider a multi-
agent system whose motion is carried out towards a common goal according to 
algorithms of swarm behavior based on Reynolds rules: speed matching, collision 
avoidance with neighbors and attraction to neighbors. Three approaches to modeling 
swarming behavior based on articles (Olfati-Saber, Flocking for multi-agent dynamic 
systems: algorithms and theory. IEEE Trans Autom Control, 51(3), 2016; Olfati-
Saber, Murray, Flocking with obstacle avoidance: cooperation with limited commu-
nication in mobile networks. In: 42nd IEEE international conference on decision 
and control, vol 2, 2022–2028) are presented. The peculiarities of this work are that 
the approaches considered together help to realize such a model of motion, which 
ensures the avoidance of collision with all available types of obstacles. The method is 
intended for implementation in those spaces, where there will be many autonomous 
vehicles. The main problem is that when a dynamic obstacle is encountered, conges-
tion can occur—the agents closest to the obstacle react quickly, while distant agents 
do so with a lag and create crush. The goals of this paper are to propose a method of 
indirectly transmitting danger information between swarm members without using 
communication channels. This means that those robots that do not see the danger 
can get information about it from other agents by observing their behavior. For this 
purpose, a method of escaping from a pack from a “predator” based on Q-learning 
is implemented. 
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1 Introduction 

Pack behavior is the basis for the behavior of a system based on social interaction 
[3, 4]. A group of communicating entities is called a multiagent system. 

Flocking is a form of collective behavior of many interacting agents with a 
common goal that the whole group has. Agents can be cells, complex organisms. 
For example, they can be birds, animals, groups of people and crowds. We will call 
members of our group α-agents. 

Groups are examples of self-organizing networks of mobile agents. The first 
animation was created after Reynolds’ introduction of three rules of agent behavior 
[6] based on swarm behavior: 

1. Group cohesion. This means that agents should stay close to their neighbors; 
2. Avoiding collisions. This means avoiding collisions with neighbors; 
3. Speed matching. It means comparing the velocity with the nearest neighbors. 

Three flocking algorithms are presented. Two of them are for free movement and 
one for constrained movement. The first algorithm embodies Reynolds rules [5]. The 
second is an algorithm for moving to the target in free three-dimensional space. The 
third algorithm makes it possible to bypass obstacles when moving to the target. 

These algorithms combine consensus, cooperative learning, and crowding control 
to determine the direction of predator attack. They are also necessary for learning to 
run away from predators in a coordinated manner. 

2 General Rules for Methods 

The idea of solving problems by a group of simple systems has long been a focus 
in the field of artificial intelligence. In today’s world, mobile robots in groups are 
designed to replace human-machine systems and single robots. For example, they 
are needed to perform labor-intensive, large-scale, monotonous, or tedious tasks, as 
well as tasks that are hazardous to human health or life. 

Many concepts are based on graph theory [6]. Consider a graph G, representing 
a pair of (ν, ε) which consists of a set of vertices ν = {1, 2, . . . ,  n} and edgesε ⊆ 
{(i, j ) : i, j ∈ ν, j �= i}. The  value  n is the number of nodes to be interpreted as 
agents of the system. The values |ν| and |ε| are called the order and size of the graph, 
respectively. Let qi ∈ Rm denote the position of the i-th node in the set ν. The  set  
of neighbors of node i is defined as Ni =

{
j ∈ ν : ai j �= 0

} = { j ∈ ν : (i, j ) ∈ ε}, 
where ai j  is the matrix of links between robots. 

Consider a group of dynamic agents with equation of motion (1):

{
q̇i = pi 
ṗi = ui 

(1)
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where qi , pi , ui ∈ Rm are the coordinates, velocity, and acceleration of the α-agents, 
respectively, m = 2, 3, i ∈ ν. 

We take as r > 0 the radius of the region under consideration, which is the range 
of interaction between agents. We consider N agents in two-dimensional space. Let 
us take the range d > 0, which will be the desired distance between them. 

Let us introduce a scalar interaction function: 

ρh(z) = 

⎧ 
⎨ 

⎩ 

1, z ∈ [0, h);
1 
2

(
1 + cos

(
π z−h 

1−h

))
, z ∈ [h, 1); 

0, else. 

Here h ∈ (0, 1). The function ρh(z) is needed to arrange the communica-
tion between the robots as a continuous change from maximum to minimum 
communication. 

Let’s set the action function φα(z) = ρh
(
z 
r

)
φ(z − d), where φ(z) =

1 
2 ((a + b)σ (z + c) + (a − b)). The  value  σ (z) = z √

1+z2 
is a non-uniform sigmoidal 

function with parameters that satisfy the conditions 0 < a ≤ b, c = |a−b| √
4ab 

. Such 
parameter values ensure that φ(0) = 0. The  value  a affects the repulsive force from 
the robots, and b affects the attraction to them. This function ensures that the distance 
between the robots is maintained. The function φα(z) is used to study the system for 
stability. 

The swarm movement can be modeled well. The α-agent is a member of a group 
with dynamics q̈i = ui . 

Algorithm 1. The simplest example of a group consisting only of α-agents in free 
space. ui = uα 

i = f g i + f d i is the sum of the rate-based term ( f g i ) and the term based 
on the gradient ( f d i ) due to changes in the bonds between the agents. Values f 

g 
i =

∑
j∈Ni 

φα

(∣∣∣∣q j − −qi
∣∣∣∣)�ni j ; f d i = ∑

j∈Ni 
ai j  (q)

(
p j − pi

); ai j  (q) = ρh

( ||q j−qi ||
r

)
. 

Here �ni j  = q j−qi ||q j−qi || is a vector along the line connecting i-th and j-th agents. ai j  is 
an element in the relation matrix A, which is responsible for the presence or absence 
of interaction between the objects. This algorithm leads to a swarming motion with 
a limited set of initial states. When the number of α-agents is large, the algorithm 
leads to fragmentation of the group into separate subgroups. This method is key for 
all subsequent algorithms since it forms the structure of the swarm. 

Algorithm 2. An example of a group when moving to the target in free space. 
ui = uα 

i + uγ 
i , where u

γ 
i = −c1(qi − qr )−c2(pi − pr )—navigation feedback. Here 

c1, c2 > 0. The pair (qr , pr ) is the state of γ-agent, which represents the goal of the 
group. The goal of α-agent is to track γ-agent. 

The collective behavior of a group of robots according to the first algorithm differs 
from the behavior of robots according to the second algorithm. That is, there is no 
fragmentation, the robots move cohesively towards the goal.
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Algorithm 3. An example of a group when moving to a goal in a space with obstacles 
with the possibility of avoiding multiple obstacles. 

ui = uα 
i + uβ 

i + uγ 
i . Here  u

β 
i is the distributed navigational feedback between the 

α-agent of the robot group and the obstacle: the β-agent. The expression is defined 
similarly to uα 

i . The relationship between the robot in question and the set of obstacles 
in the field of vision is considered. 

Here uβ 
i is defined similarly to the first algorithm, except for the following: φα(z) 

is replaced by φβ (z) = ρh(z)
(
σ
(
x − dβ

) − 1
)
, which ensures constant repulsion. 

Here dβ is the minimum distance from the agent to the object. 

3 Stability Analysis of Algorithms 

The character of swarm movement of a group does not depend on the initial condi-
tions: the location of agents, obstacles, and targets. However, it depends on the initial 
parameters of the model: the ratio of forces of attraction to each other and to the target, 
forces of repulsion from obstacles, the initial location of agents, the area of visibility, 
the reaction of agents to obstacles. 

If the initial parameters are chosen correctly, the algorithm achieves the goal and 
does not depend on the dynamics of the situation, which confirms its stability. 

4 Avoiding Attacks of Predators 

The basic requirement for most robotic systems is the ability to navigate safely 
in general conditions. That is, the ability to move toward certain targets without 
encountering obstacles, teammates, or other groups. In some cases, agents need to 
change their destination to avoid a dangerous area. 

The following algorithm is equipped with the ability to temporarily move away 
from the main target if the group of agents is threatened. For example, some object, 
which we will call a predator, moves on them [7, 8]. 

After constructing the flocking algorithms, let us combine the advantages of 
consensus, grouping, and reinforcement learning for a system with partial observ-
ability. This means that only agents that are close to the predator can see the direction 
of the predator’s attack. Stages of execution of the predator avoidance algorithm: 

• Consensus: informing the pack of the predator’s direction of attack; 
• Training with reinforcement: using the predator’s direction of attack to inform the 

pack to move to a safe place (target); 
• Moving each agent to the target in the group using coordinated movement. 

The algorithm is organized on Q-learning, which is based on the action value 
function ai . This function gives the expected utility of performing action ai in each
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Fig. 1 Directions of escape 
from a predator 

state si . For robot i the state is defined as: number of predators Np in the detection 
range, direction of predator attack dk 

p, k = 1, ..., n p, number of neighboring agents∣∣Na 
i

∣∣ in range rα . 
The desired action of agents is to move in one of the eight directions to escape. 

This action is used to select a new reference point in the movement algorithm to 
escape from predators. 

Reward is a reward for the agent for the chosen action. The agent must maintain 
pack membership when escaping from a predator: 

ri =
{ ∣∣N α 

i

∣∣Dr ,
∣∣N α 

i

∣∣ < 6 
6Dr , else. 

The maximum reward an agent can get is 6 if it has all 6 neighbors. D is the scaling 
factor, which is chosen based on the direction of the predator Fig. 1. 

The direction of escape from the predator with coefficient Dr = 1 has a vector that 
coincides with the movement vector of the predator. The worst direction is toward 
the predator with Dr = 0. 

For cohesive pursuit of a single goal, the cooperative learning method is applied, 
for which each agent must first perform independent learning to obtain a separate 
table Qi : 

Qk+1 
i (si , ai ) ← Qk 

i (si , ai ) + α

[

rk i + γ max 
a

′
i ∈Ai 

Qk 
i

(
s

′
i , a

′
i

)
− Qk 

i (si , ai )

]

, (2) 

where α—learning rate, γ—coefficient of value strength. 
After performing independent learning (2), each agent’s Q-table is updated by 

interacting with its neighbors: 

Qk+1 
i (si , ai ) ← ωQk 

i (si , ai ) + (1 − ω)

∑|Ni | 
j=1 Q

k 
j

(
s j , a j

)

|Ni | , (3) 

where ω is the weight for determining confidence, such that 0 ≤ ω ≤ 1. When ω = 1 
the agent trusts only himself, and when ω = 0 the agent trusts only his neighbors. 

Let us carry out the predator detection phase. If the agent is within reach of the 
predator, it performs a measurement of its relative direction. Set the direction from
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the measured angle wp between the agent and the predator: 

in  f  oi = 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

1, 0 ≤ wp < 22.5, 337.5 ≤ wp ≤ 360; 
2, 22.5 ≤ wp < 67.5; 
3, 67.5 ≤ wp < 112.5; 
4, 112.5 ≤ wp < 157.5; 
5, 157.5 ≤ wp < 202.5; 
6, 202.5 ≤ wp < 247.5; 
7, 247.5 ≤ wp < 292.5; 
8, 292.5 ≤ wp < 337.5, 

The information vector of each agent is assigned a confidence factor weighti,d . It  
corresponds to the number of agents by the number of directions and is determined 
by the agent’s measurements from Eq. (4): 

weigthi,d = 

⎧ 
⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩

(
1 − ||qp−qi ||

rp

)(
wm−wp+45 

45

)
,
∣∣∣∣qp − qi

∣∣∣∣ < rp, d = in  f  oi(
1 − ||qp−qi ||

rp

)(
wm−wp+45 

45

)
,
∣∣∣∣qp − qi

∣∣∣∣ < rp, d = in  f  oi(
1 − ||qp−qi ||

rp

)(
wm−wp+45 

45

)
,
∣∣∣∣qp − qi

∣∣∣∣ < rp, d = in  f  oi 
0, else, 

, (4) 

here wm is the average angle of the measured direction, in  f  oi +1 is the next direction 
counterclockwise, in  f  oi − 1 is the next direction clockwise. In this formula, we get 
an inverse relationship between the distance to the predator by the first summand. 
The second summand divides the distance weight by the two directions of the weight 
vector. The idea is to assign a weight based on proximity to the predator and proximity 
to sector centers. Once the weighti,d is found, a consensus can be conducted based 
on the weighted vote. 

Each agent updates its in  f  oi and weighti,d based on its neighbors. Goal: to recon-
cile the information by reaching consensus on the direction of the predator. The 
weights for the agents and its neighbors are summed into a weighted direction vector 
weighti such that: weighti = weighti +

∑Ni 
j=1 weight j . Then in  f  oi is set in the direc-

tion with the maximum weight in  f  oi = maxd (weighti.d ). Thus, the weight and info 
are updated for all agents. Then the weight for each agent is updated to the maximum 
weight between it and its neighbors: weighti = max 

weight

(
weightNi ∪ weighti

)
. This  

allows all agents to converge quickly in the same direction. It is these calculations 
that allow those agents that are far away from the predator to get information about 
the state of the system from their neighbors that are closer to the obstacles. The 
resulting value of weighti is used to determine the state of dirp in the reinforcement 
learning component.
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5 Simulation Results in Matlab 

5.1 Algorithms of Swarming Behavior 

Algorithm 1: choose a = b = 4.6 to preserve symmetry of attraction and repulsion. 
When the number of agents is large, fragmentation occurs, robots gather into separate 
groups. The algorithm is stable when the number of agents is less than 10. 

Algorithm 2: representation of Reynolds rules implemented in the first method, 
and function fi = −c1(qi − qr ) − c2(pi − pr ). Here  c1, c2 are constants affecting 
the force of attraction to the target. In the example there is one static target with 
coordinates (250, −25). The method preserves group cohesion when the number of 
agents is large. 

Algorithm 3: the final algorithm for the movement of a group of robots. Obstacle 
avoidance is accompanied by an oscillatory process that occurs under the influence of 
repulsive forces from neighbors and obstacles and attraction forces to the goal. The 
robots bypass the obstacles by splitting the group, and then reestablish the swarm 
behavior as they move toward the goal Fig. 2. Constants c1 = c2 = 0.2. Collision 
avoidance has the highest priority with respect to all available obstacles: robots, 
stationary objects, moving fences. The units are presented in m. 

Fig. 2 Simulation of Algorithm 3 for N = 8 robots
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5.2 Predator Avoidance Algorithm Based on Swarm Behavior 

The predator detection method is used to determine the direction of predator attack. 
The direction dirp obtained in Chap. 4 is used to determine the state of the system with 
respect to which Q-learning will be performed. Each learning episode consists of a 
certain period, which is sufficient for the agents to rush toward the target. The number 
of iterations is determined by the time step. In Fig. 4, the agents are represented by 
red rectangles and the predator is represented as a circle. 

The robots’ visibility area of the predators is larger than the predator’s visibility 
area. This allows them to escape earlier. 

Several variants of the agents’ behavior were investigated: 

• One target: the agents move only toward it, avoiding the predator only through 
repulsive forces Fig. 3; 

• Two targets: the agents choose one of them, the better one, and move in its direc-
tion. The rest of the participants rush after the agents due to the large area of the 
pack’s visibility and the force of attraction to it Fig. 5. When the area of visibility 
and the force of attraction are reduced, the swarm separates, but the movement to 
the same target is maintained; 

• All targets are involved: in the first iterations, the agents split into separate swarms, 
choosing different directions, which leads to an oscillatory process. Also, oscil-
lation occurs when all agents have chosen the same goal. This is since the agents 
coordinate speed and distance among themselves Fig. 4; 

• All targets are engaged, and the predator moves along the same trajectory: the 
agents select the same target. If the predator approaches them, the agents move

Fig. 3 Running away from a 
predator with one target
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Fig. 4 Escaping from a 
predator with eight targets 

Fig. 5 Escaping from a 
predator with two targets 

away from it to a safe distance in a coordinated manner. It is worth noting that 
the agents only choose the direction of the temporary target. They do not have 
the task of reaching the temporary destination. If the predator is not in sight, the 
agents return to their main target, which was set before the encounter with the 
obstacle Fig. 6.

The units of measurement in Figs. 3, 4, 5 and 6 are in m. The horizontal axis is 
the X-axis, the vertical axis is the Y-axis.
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Fig. 6 Running away from a 
moving predator along a 
trajectory with eight targets 

The paper considers the application of the predator avoidance method in the case 
of such a space, which the robot cannot see now in its current position, or at the 
junction of two walls, behind which there is a corridor. The predator is artificially 
placed in the passage (blue circle in Fig. 7), or at the junction of walls in order to 
maneuver the agent at a greater distance: slow down before the passage to analyze 
the situation or with a large radius of curvature make a turn around the corner to have 
time to react to a possible interference. 

Fig. 7 Movement of agents 
in the polygon in the 
presence of a predator
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6 Movement of Agents in a Confined Space 

Earlier we considered situations when agents move in unrestricted space. Agents 
can, oriented by the situation, go quite a long distance from the main target if the 
predator keeps moving in their direction. 

When moving in an enclosed space, which is shown in Fig. 7, the agents perform 
deflection maneuvers away from obstacles. Thus, in addition to the previously consid-
ered interactions, the repulsive force from the walls is also considered. The method 
of potential forces is the summation of all forces of attraction to the target point and 
repulsion from the obstacles. It is based on realization of mobile robot movement in 
the field of “information forces”. The algorithms described above are based precisely 
on this method of correlation of arising forces in the system. When an agent moves 
in the polygon, the minimum distance to the walls is calculated for the method of 
potential forces. In Fig. 7, this is the distance between the agent (blue dot) and the 
intersection between the wall and the perpendicular drawn from the agent to the wall 
(red square). The blue circles are responsible for the areas of visibility between the 
agents (small circle) and the radius of visibility of the predator (large circle). The 
red circle represents an overview of the predator. Calculations are performed in the 
global coordinate system. Thus, the repulsion vector is composed of the repulsive 
forces of the agent from each visible wall. The predator is represented as a purple 
circle. Located at the intersection of two walls. Targets are represented as “*” in 
green. 

7 Conclusion 

This paper considers a model of robot swarming in the presence of a predator, 
designed to move autonomous agents in confined spaces with insecure areas and 
obstacles. 

Experiments were conducted under different initial conditions and scenes. Exper-
iments have shown that when the number of agents is greater than 10, the swarm 
maintains its configuration and separates in the presence of an obstacle on the way 
to the target. 

When considering the method of fleeing from a predator, the experiment showed 
that the agents change their main target to a temporary one and successfully get away 
from dynamic obstacles. There is still work to be done on the method, as in some 
experiments agents split into separate groups when fleeing from a predator. 

When an agent on a simulated range has an exit from a room, there is a chance 
that he will not have time to assess the situation if an obstacle appears in the passage. 
This is because the agent increases speed immediately before exiting. The proposed 
method of predator avoidance will allow in such situations to put “special points” in 
dangerous places (for example, at the corner of the corridor bend or at the exit of the
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room) to reduce speed in advance and bypass this area at a greater distance to assess 
the space. 
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