
A Paper-Based Keyboard Using ArUco
Codes: ArUco Keyboard

Onur Toker(B), Bayazit Karaman, and Doga Demirel

Florida Polytechnic University, Lakeland, FL 33805, USA
{otoker,bkaraman,ddemirel}@floridapoly.edu

Abstract. Object tracking in computer vision can be done either by
using a marker-less or marker-based approach. Computer vision systems
have been using Fiducial markers for pose estimation in different appli-
cations such as augmented reality [5] and robot navigation [4]. With the
advancements in Augmented Reality (AR), new tools such as Augment-
edReality uco (ArUco) [6] markers have been introduced to the litera-
ture. ArUco markers, are used to tackle the localization problem in AR,
allowing camera pose estimation to be carried out by a binary matrix.
Using a binary matrix not just simplifies the process but also increases
the efficiency. As a part of our initiative to create a cost-efficient, 24/7
accessible, Virtual Reality (VR) based chemistry lab for underprivileged
students, we wanted to create an alternative way of interacting with the
virtual scene. In this study, we used ArUco markers to create a low-cost
keyboard only using a piece of paper and an off-the-shelf webcam. We
believe this method of keyboard will be more beneficial to the user as
they can see the keys before they are typing in the corner of the screen
instead of an insufficient on the screen VR keyboard or a regular key-
board where the user can’t see what they are typing with a VR headset.
As potential extensions of the base system, we have also designed and
evaluated a stereo camera and an IMU sensor based system with various
sensor fusion techniques. In summary, the stereo camera reduces occlu-
sion related problems, and the IMU sensor detects vibrations which in
turn simplifies the KeyPress detection problem. It has been observed
that use of any of these additional sensors improves the overall system
performance.

Keywords: ArUco codes · IMU sensors · Sensor fusion

1 Introduction

Object tracking in computer vision can be done either by using a marker-less
or marker-based approach. Computer vision systems have been using Fiducial
markers for pose estimation in different applications such as augmented real-
ity [5] and robot navigation [4]. With the advancements in Augmented Reality
(AR), new tools such as AugmentedReality uco (ArUco) [6] markers have been
introduced to the literature. ArUco markers, are used to tackle the localization
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Kurosu (Ed.): HCII 2022, LNCS 13303, pp. 195–208, 2022.
https://doi.org/10.1007/978-3-031-05409-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05409-9_15&domain=pdf
https://doi.org/10.1007/978-3-031-05409-9_15

196 O. Toker et al.

problem in AR, allowing camera pose estimation to be carried out by a binary
matrix. Using a binary matrix not just simplifies the process but also increases
the efficiency. As a part of our initiative to create a cost-efficient, 24/7 accessi-
ble, Virtual Reality (VR) based chemistry lab for underprivileged students, we
wanted to create an alternative way of interacting with the virtual scene. In this
study, we used ArUco markers to create a low-cost keyboard only using a piece
of paper and an off-the-shelf webcam. We believe this method of keyboard will
be more beneficial to the user as they can see the keys before they are typing
in the corner of the screen instead of an insufficient on the screen VR keyboard
or a regular keyboard where the user can’t see what they are typing with a VR
headset.

Our setup is straightforward and consists of a webcam and a piece of paper
with a keyboard-like pattern printed on it, see [4]. Basically, there is a numeric
keypad with rectangular regions labeled from 0 to 9, and each region has the
ArUco code for the corresponding key value. When the system is running in
“live” mode, users can use this printed paper as a keypad. All “touched” key val-
ues will be translated to keypress events and the printed paper will act as a reg-
ular keyboard. This system needs both computer vision and smoothing/filtering
techniques which can be fine-tuned for an average user or a specific user.

In this paper, we propose using a real-time OpenCV-based computer vision
approach and a specific state-machine based fast smoothing/filtering algorithm.
The filter has a parameter, N , which represents the filter strength. We have
first created a dataset using six-digit numbers typed by the same user using this
paper-based keyboard. Then we varied the filter strength parameter N from 1
to 10 and measured the accuracy of the proposed paper-based keyboard. For a
specific trained user, and for a specific dataset of size ten, the system accuracy
is measured as 0.0 for N less than 4, 0.6 for N = 4, 1.0 for N = 5, 6, 7, 0.3 for
N = 8, 0.10 for N = 9, and finally 0.0 for N = 10. Optimal values seem to be
N = 5, 6, 7, but if we eliminate N = 5 and 7 as potential boundary cases, we get
N = 6 as the optimal choice for this specific trained user.

The ArUco keyboard used in this study is shown in Fig. 1, and the base
system demo is presented in Fig. 4. As potential extensions of the base system,
we have also designed and evaluated a stereo camera and an IMU sensor based
system with various sensor fusion techniques. The specific stereo camera used for
this research was a USB3 ZED camera, see Fig. 2, tested with a GeForce GTX
1050 Ti Max-Q 4 GB laptop running Ubuntu 18 LTS. It has been observed that
the stereo camera reduces occlusion related issues, and results more robust detec-
tion performance. The IMU sensor used in this research is a GY-521 accelerome-
ter and gyro sensor, see Fig. 3, interfaced to an Arduino Uno board over the SPI

A Paper-Based Keyboard Using ArUco Codes: ArUco Keyboard 197

Fig. 1. ArUco keyboard.

198 O. Toker et al.

interface. The IMU sensor detects keypress/touch related vibrations and sends
this information to the host computer. Most of the mobile devices used today
do have a camera(s) and IMU sensors, therefore the proposed extensions to our
base system is quite realistic. Basically, the IMU sensor detects vibrations which
in turn simplifies the KeyPress detection problem.

In summary, it has been observed that use of any of these additional sensors,
i.e. additional camera and/or IMU sensor, improves the overall system perfor-
mance.

Fig. 2. Stereo camera (USB3 ZED camera) based ArUco keyboard system.

A Paper-Based Keyboard Using ArUco Codes: ArUco Keyboard 199

Fig. 3. GY521: InvenSense MPU-6050 based IMU sensor board interfaced to an
Arduino Uno over SPI.

2 Base System

Our base system [1] shown in, Fig. 4, has a single webcam. The algorithm used
in this base implementation is shown in Algorithm 1. In each OpenCV frame,
we first detect all visible ArUco markers and then determine all blocked ArUco
markers. For each frame, we also determine the highest blocked marker value.
If the highest blocked marker is the same during the past N frames, then we
generate a KeyPress event. A KeyRelease event is generated in the first frame
having all ArUco markers visible.

The detection performance of the system depends on the value of N . For a
specific trained user, N = 6 value is found to be optimal for a webcam running
at 25 frames/s. In general, the optimal N value depends on the frame rate and
the user.

200 O. Toker et al.

Algorithm 1: Algorithm used for the base system
Input: OpenCV frame img as a numpy array
Result: Keyboard event and key code

1 Find all visible ArUco markers in the frame img

2 Determine all blocked ArUco markers
3 Memorize the list of blocked markers for the past N frames
4 Find the highest blocked marker for all of the past N frames
5 If the highest blocked marker does not change, trigger a KeyPress event and use

the highest blocked marker as the key value
6 Generate a KeyRelease event in the first frame having all ArUco markers visible
7 Goto Step 1

Fig. 4. ArUco keyboard: Base system, https://youtu.be/tnKc6zvXliY

3 IMU Sensor Based System

The base system presented in the previous section works by detecting blocked
ArUco markers in each frame. However, this single camera based system cannot
differentiate between blocked without touch and blocked because of touch cases.
Because of this technical difficulty, a user should be trained not to keep his/her
hand stationary for a “long” period of time (5/25 s) while being visible by the
camera. Although this is technically possible, and the training process is observed
to be not that difficult, we have developed an alternative approach to overcome
this problem.

This new approach [2] is based on using an IMU sensor, see Fig. 5, to dif-
ferentiate between blocked without touch and blocked because of touch. IMU
sensors have acceleration sensors in x, y and z directions, and can be used to
detect even a slight tap on a surface. We have used an InvenSense MPU6050

https://youtu.be/tnKc6zvXliY

A Paper-Based Keyboard Using ArUco Codes: ArUco Keyboard 201

chip as our IMU sensor. A first order digital low-pass filter is used for smooth-
ing, and a thresholding with hysteresis is used for tap detection. In this case, the
microcontroller sends the tap events to the host device, and only after this stage
the host device starts executing Algorithm 1. See the full source code given in
the appendix for digital low-pass filter, thresholding and hysteresis parameters.

Fig. 5. ArUco keyboard: IMU sensor based version, https://youtu.be/sIuhZQpu0AE

4 Stereo Camera Based System

As a final improvement of the proposed ArUco keyboard system, we have imple-
mented a stereo camera based solution [3] shown in Fig. 6. A stereo camera based
system provides more data which can be used to improve the overall system per-
formance, and this is true with or without using an IMU sensor. Sometimes, we
may have certain ArUco markers being blocked because of occlusion, and not
because of touch. Basically, after a touch or tap is detected we may still have
multiple ArUco markers being blocked. The priority scheme used in Algorithm 1
seems to work for most cases, but the failure rate is non-zero and becomes more
noticeable if the ArUco keyboard is rotated significantly. A stereo camera greatly
improves detection performance for such cases.

https://youtu.be/sIuhZQpu0AE

202 O. Toker et al.

Fig. 6. ArUco keyboard: Stereo camera version (USB3 ZED camera), https://youtu.
be/ssbv2NqfAJg

If both cameras report a particular ArUco marker as not detected, then the
probability of failure, i.e. being not-detected because of occlusion, will be smaller
compared to a single camera system. Therefore, use of a stereo camera reduces
false KeyPress events and also key value errors. But it requires more processing
power and more complex hardware which may not be practical for all possible
use cases.

5 Conclusion

In this paper, we have presented a paper based numeric keypad using ArUco
markers. Full details of all source codes are given in the appendix. This system
can be quite useful as a low-cost disposable keyboard for VR systems and mobile
devices equipped with a camera. It has been observed that, the use of an IMU
sensor greatly improves the overall system performance. Since almost all mobile
devices, whether it is a phone or a tablet, do have IMU sensors, the improved
IMU based keyboard can be used without any additional sensor or equipment.
We have also implemented a stereo camera based system, but to the best of
our knowledge mobile devices with stereo cameras are not widely available. The
stereo camera based implementation is a feasible alternative for VR systems.

https://youtu.be/ssbv2NqfAJg
https://youtu.be/ssbv2NqfAJg

A Paper-Based Keyboard Using ArUco Codes: ArUco Keyboard 203

Acknowledgments. Funding is provided by NSF-1919855, Advanced Mobility Insti-
tute grants GR-2000028, GR-2000029, and Florida Polytechnic University startup grant
GR-1900022.

Appendix I: ArUco Code Detection Module aruco tools.py

import cv2

from cv2 import aruco

import numpy as np

Module constants

my_aruco_dictionary = aruco.DICT_4X4_50

def detect_markers(image):

gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

OTSU threshold

aruco_dict = aruco.Dictionary_get(aruco.DICT_ARUCO_ORIGINAL)

aruco_dict = aruco.Dictionary_get(my_aruco_dictionary)

parameters = aruco.DetectorParameters_create()

corners, ids, rejectedImgPoints = aruco.detectMarkers(gray, aruco_dict, parameters=parameters)

frame_markers = aruco.drawDetectedMarkers(gray.copy(), corners, ids)

ids = np.array(ids)

ids = ids.reshape((-1,))

ls = []

for k, mid in enumerate(ids):

if not (mid == None):

print(k, mid, corners[k])

c = corners[k][0]

x_pixel = int(np.round(c[:, 0].mean()))

y_pixel = int(np.round(c[:, 1].mean()))

ls.append((mid, x_pixel, y_pixel))

return ls

Appendix II: Base System minikdb mono.py

import cv2

from aruco_tools import detect_markers

import winsound

import pyttsx3

initialize Text-to-speech engine

engine = pyttsx3.init()

openCV

cap = cv2.VideoCapture(0)

mid_list = [0,1,2,3,4,5,6,7,8,9]

tts = {0:’zero’, 1:’one’, 2:’two’, 3:’three’, 4:’four’, 5:’five’, 6:’six’, 7:’seven’, 8:’eight’, 9:’nine’}

frame_counter = 0

num_rep=7

key_pressed = False

key_value = -1

hist_list = num_rep*[-1]

while True:

frame_counter += 1

success, color_frame = cap.read()

if not success:

print("Ignoring empty camera frame.")

continue

To improve performance, optionally mark the image as not writeable to pass by reference.

color_frame.flags.writeable = False

L = detect_markers(color_frame)

try:

dL = []

for mid, x_pixel, y_pixel in L:

dL.append(mid)

cv2.circle(color_frame, (x_pixel, y_pixel), 5, (0, 0, 255), 3)

except Exception as e:

print(e)

keypress_set = set(mid_list).difference(set(dL))

if len(keypress_set) > 0:

print(frame_counter, max(keypress_set))

204 O. Toker et al.

hist_list.pop(0)

hist_list.append(max(keypress_set))

hist_set = set(hist_list)

print(hist_list, key_pressed)

if len(hist_set) == 1:

ckey_value = min(hist_list)

if key_pressed == False:

key_value = ckey_value

key_pressed = True

print(’KeyPress’, key_value)

pyautogui.keyDown(str(key_value)) #Key press event

print(key_value, end=’’) #Write to console

winsound.Beep(2500, 200) #Audio feedback

engine.say(tts[key_value])

engine.runAndWait()

elif (key_pressed == True):

key_pressed = False

Key release event

print(’KeyRelease’)

cv2.imshow(’ARUCO’, color_frame)

key = cv2.waitKey(1)

Press esc or ’q’ to close the image window

if key & 0xFF == ord(’q’) or key == 27:

cv2.destroyAllWindows()

break

cap.release()

cv2.destroyAllWindows()

Appendix III: IMU Based System minikbd imu.py

import cv2

from aruco_tools import detect_markers

import winsound

import pyttsx3

import pyautogui

import serial

import winsound

import random

initialize Text-to-speech engine

engine = pyttsx3.init()

openCV

cap = cv2.VideoCapture(0)

mid_list = [0,1,2,3,4,5,6,7,8,9]

tts = {0:’zero’, 1:’one’, 2:’two’, 3:’three’, 4:’four’, 5:’five’, 6:’six’, 7:’seven’, 8:’eight’, 9:’nine’}

frame_counter = 0

num_rep=5

key_pressed = False

key_value = -1

armed = False

configure the serial connections (the parameters differs on the device you are connecting to)

ser = serial.Serial(port=’COM3’, baudrate=57600)

ser.isOpen()

num_fail = 0

for test_num in range(100):

rnd_num = int(random.uniform(100,999))

engine.say(str(rnd_num)), engine.runAndWait()

print(rnd_num)

in_str=’’

for digit_no in range(3):

hist_list = num_rep*[-1]

while True:

frame_counter += 1

success, color_frame = cap.read()

if not success:

print("Ignoring empty camera frame.")

continue

To improve performance, optionally mark the image as not writeable to pass by reference.

color_frame.flags.writeable = False

L = detect_markers(color_frame)

try:

dL = []

A Paper-Based Keyboard Using ArUco Codes: ArUco Keyboard 205

for mid, x_pixel, y_pixel in L:

dL.append(mid)

cv2.circle(color_frame, (x_pixel, y_pixel), 5, (0, 0, 255), 3)

except Exception as e:

print(e)

if armed == False:

if ser.inWaiting() == 0:

pass

else:

print(’beep’)

ser.read(ser.inWaiting())

if armed == False:

armed = True

hist_list = num_rep * [-1]

if armed == True:

keypress_set = set(mid_list).difference(set(dL))

if len(keypress_set) > 0:

print(frame_counter, max(keypress_set))

hist_list.pop(0)

hist_list.append(max(keypress_set))

hist_set = set(hist_list)

print(hist_set, hist_list, key_pressed)

if len(hist_set) == 1:

ckey_value = min(hist_list)

key_value = ckey_value

print(’KeyPress’, key_value)

pyautogui.keyDown(str(key_value))

print(key_value, end=’’)

in_str = in_str + str(key_value)

winsound.Beep(5000, 200)

engine.say(tts[key_value])

engine.runAndWait()

armed = False

ser.read(ser.inWaiting())

Key release event

print(’KeyRelease’)

winsound.Beep(2500, 200)

break

cv2.imshow(’ARUCO’, color_frame)

key = cv2.waitKey(1)

Press esc or ’q’ to close the image window

if key & 0xFF == ord(’q’) or key == 27:

cv2.destroyAllWindows()

break

#end of digit_num

if (str(rnd_num) == in_str):

print(’ ok ’, end=’’)

else:

print(’ failed’, end=’’)

num_fail += 1

print(’ ’, num_fail, ’ fails in’, test_num + 1, ’ pf = %’, round(100*num_fail / (test_num + 1)))

end of test_num

cap.release()

cv2.destroyAllWindows()

Appendix IV: Stereo Camera Based System minikbd zed.py

import cv2

import pyzed.sl as sl

from aruco_tools import detect_markers

import beepy

import serial

import random

ZEDCAM

init = sl.InitParameters()

cam = sl.Camera()

if not cam.is_opened():

print("Opening ZED Camera...")

status = cam.open(init)

if status != sl.ERROR_CODE.SUCCESS:

print(repr(status))

exit()

runtime = sl.RuntimeParameters()

mat = sl.Mat()

ArUco

206 O. Toker et al.

mid_list = [0,1,2,3,4,5,6,7,8,9]

tts = {0:’zero’, 1:’one’, 2:’two’, 3:’three’, 4:’four’, 5:’five’, 6:’six’, 7:’seven’, 8:’eight’, 9:’nine’}

frame_counter = 0

num_rep=5

key_pressed = False

key_value = -1

armed = False

configure the serial connections (the parameters differs on the device you are connecting to)

ser = serial.Serial(port=’/dev/ttyACM0’, baudrate=57600)

ser.isOpen()

num_fail = 0

for test_num in range(100):

rnd_num = int(random.uniform(100,999))

print(rnd_num)

in_str=’’

for digit_no in range(3):

hist_list = num_rep*[-1]

while True:

frame_counter += 1

err = cam.grab(runtime)

if err == sl.ERROR_CODE.SUCCESS:

cam.retrieve_image(mat, sl.VIEW.LEFT)

imgL = mat.get_data()

cam.retrieve_image(mat, sl.VIEW.RIGHT)

imgR = mat.get_data()

L = detect_markers(imgL)

mL = []

for mid, x_pixel, y_pixel in L:

mL.append(mid)

cv2.circle(imgL, (x_pixel, y_pixel), 5, (0, 0, 255), 3)

L = detect_markers(imgR)

mR = []

for mid, x_pixel, y_pixel in L:

mR.append(mid)

cv2.circle(imgR, (x_pixel, y_pixel), 5, (0, 0, 255), 3)

if armed == False:

if ser.inWaiting() == 0:

pass

else:

print(’beep’)

ser.read(ser.inWaiting())

if armed == False:

armed = True

hist_list = num_rep * [-1]

if armed == True:

mC = set(mL).union(set(mR))

keypress_set = set(mid_list).difference(mC)

if len(keypress_set) > 0:

print(frame_counter, max(keypress_set))

hist_list.pop(0)

hist_list.append(max(keypress_set))

hist_set = set(hist_list)

print(hist_set, hist_list, key_pressed)

if len(hist_set) == 1:

ckey_value = min(hist_list)

key_value = ckey_value

print(’KeyPress’, key_value)

pyautogui.keyDown(str(key_value))

print(key_value, end=’’)

in_str = in_str + str(key_value)

beepy.beep(sound=’coin’) # string as argument

armed = False

break

cv2.imshow("ZED LEFT", imgL)

cv2.imshow("ZED RIGHT", imgR)

key = cv2.waitKey(1)

Press esc or ’q’ to close the image window

if key & 0xFF == ord(’q’) or key == 27:

cv2.destroyAllWindows()

break

#end of digit_num

if (str(rnd_num) == in_str):

print(’ ok ’, end=’’)

A Paper-Based Keyboard Using ArUco Codes: ArUco Keyboard 207

else:

print(’ failed’, end=’’)

num_fail += 1

print(’ ’, num_fail, ’ fails in’, test_num + 1, ’ pf = %’, round(100*num_fail / (test_num + 1)))

end of test_num

cv2.destroyAllWindows()

cam.close()

Appendix V: IMU Sensor Code for Arduino Uno

#include<Wire.h>

const int MPU=0x68;

const int LED=13;

const int BUZZER=5;

int16_t AcX,AcY,AcZ,Tmp,GyX,GyY,GyZ;

int16_t AcZp = 0;

float d = 0;

int key_state = 0;

int count = 0;

void setup(){

pinMode(LED, OUTPUT);

pinMode(BUZZER, OUTPUT);

digitalWrite(LED, LOW);

Wire.begin();

Wire.beginTransmission(MPU);

Wire.write(0x6B);

Wire.write(0);

Wire.endTransmission(true);

Serial.begin(57600);

}

void loop(){

Wire.beginTransmission(MPU);

Wire.write(0x3B);

Wire.endTransmission(false);

Wire.requestFrom(MPU,12,true);

AcX=Wire.read()<<8|Wire.read();

AcY=Wire.read()<<8|Wire.read();

AcZ=Wire.read()<<8|Wire.read();

// Digital low-pass filtering

d = 0.8 * d + 0.2 * abs(AcZ - AcZp);

// Saturation/Limiter/Hysteresis

if (d > 300) {

d = 300;

digitalWrite(LED, HIGH);

analogWrite(BUZZER, 1);

if (key_state == 0) {

//Serial.println(count++);

Serial.print(’x’); // keypress notification

}

key_state = 1;

}

if (d < 150) {

d = 0;

digitalWrite(LED, LOW);

analogWrite(BUZZER, 0);

key_state = 0;

}

//Serial.println(round(d));

AcZp = AcZ;

delay(10);

}

References

1. ArUco keyboard demo video: Base system. https://youtu.be/tnKc6zvXliY
2. ArUco keyboard demo video: IMU sensor based version. https://youtu.be/

sIuhZQpu0AE
3. ArUco keyboard demo video: Stereo camera version (USB3 ZED camera). https://

youtu.be/ssbv2NqfAJg

https://youtu.be/tnKc6zvXliY
https://youtu.be/sIuhZQpu0AE
https://youtu.be/sIuhZQpu0AE
https://youtu.be/ssbv2NqfAJg
https://youtu.be/ssbv2NqfAJg

208 O. Toker et al.

4. Bacik, J., Durovsky, F., Fedor, P., Perdukova, D.: Autonomous flying with quadro-
copter using fuzzy control and ArUco markers. Intell. Serv. Robot. 10(3), 185–194
(2017). https://doi.org/10.1007/s11370-017-0219-8

5. Billinghurst, M., Clark, A., Lee, G.: A survey of augmented reality. Found.
Trends Hum.-Comput. Interact. 8(2–3), 73–272 (2015). http://dx.doi.org/10.1561/
1100000049

6. Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F., Maŕın-Jiménez, M.:
Automatic generation and detection of highly reliable fiducial markers under occlu-
sion. Pattern Recogn. 47(6), 2280–2292 (2014). https://doi.org/10.1016/j.patcog.
2014.01.005

https://doi.org/10.1007/s11370-017-0219-8
http://dx.doi.org/10.1561/1100000049
http://dx.doi.org/10.1561/1100000049
https://doi.org/10.1016/j.patcog.2014.01.005
https://doi.org/10.1016/j.patcog.2014.01.005

	A Paper-Based Keyboard Using ArUco Codes: ArUco Keyboard
	1 Introduction
	2 Base System
	3 IMU Sensor Based System
	4 Stereo Camera Based System
	5 Conclusion
	References

