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Abstract The causal boundary of a spacetime is examined in terms of a foliation by
timelike curves—a preferred class of observers. In the present instance, the foliates
are assumed to be future-incomplete. Conditions are given on the observers which
imply that the Future Causal Boundary is purely spacelike, has the same topology as
the foliation space, and fits into the future-completion in a particularly simple man-
ner as boundary of a manifold-with-boundary. However, one of these conditions is
not robust, as it fails for Interior Schwarzschild, the intended model. Next, assuming
that a spacetime as above has the requisite properties identifying the Future Causal
Boundary as desired—and assuming a geometric simplification, that the drift-form
vanishes—conditions are given in terms of an integral condition on sectional curva-
ture that allow for the metric to extend in a continuous manner, along each foliation,
to the boundary: ForΠ a 2-plane containing the foliation velocity vector, it’s required
that the sectional curvature K (Π) be monotone along each foliate and that

√|K (Π)|
be integrable. But a further condition is required to have the metric be continuous
within the boundary. This is a preliminary report, giving full explanations but very
few proofs.

1 Introduction

The causal boundary construction has seen a fair bit of use in elucidating behavior at
infinity for a range of classical spacetimes: standard static, especially with spherical
symmetry, as in [4, 15]; beginning work in stationary spacetimes, as in [6]; multi-
warped products, mentioned in [13] (as well as [1, 2]) and, especially spherically
symmetric, in [15]; and some general results on quotients by group actions, as in
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[13]. This note presents preliminary results on causal boundary without any such
symmetries or algebraically special situations.

The reason for using the causal boundary, instead of, for instance, conformal
boundaries, is that the causal boundary construction is an intrinsic construction
depending solely on the causal structure of the spacetime: not only does it have
no explicitly ad hoc formulations, but it even has categorically universal proper-
ties with respect to causal structure—at least, when one considers solely the Future
Causal Boundary, the FCB (see [10]). Imposing a topology is more complex, and
there are competing notions for a good topology ([11, 5]—respectively, the Future
Chronological Topology and what I like to call the Andalusian topology, introduced
originally in [3]). But these proposed topologies agree in the case of a spacelike
FCB—and, in that case, the Future Chronological Topology also has categorically
universal properties, so that any reasonable candidate for a future boundary must be
a topological quotient of the FCB in the Future Chronological Topology (see [11]).

This note presents the current state of a project to characterize FCB in very broad
categories of spacetimes, with no assumptions of structure other than the existence
of a “reasonable” class of observers, i.e., a foliation by timelike curves. The intent of
the project is to find properties of the spacetime, observable by local groups of these
observers, that result in identification of the Future Causal Boundary and how it sits
within the future completion of the spacetime.

This initial stage of the project examines the case in which the FCB occurs “at
finite distance”, i.e., the observers are all assumed to have finite lifetimes. The intent
is to replicate what happens in Interior Schwarzschild, where the FCB is R

1 × S
2

(line cross a sphere), embedded in the future completion as {0} × R
1 × S

2 within
[0, 2m) × R

1 × S
2; that is to say, with spacetime M having a foliation by unit-

speed timelike curves {γq : (A, 0) → M | q ∈ Q}, that the FCB of M , within the
future completion, be realized as {0} × Q sitting within (A, 0] × Q. Results will be
presented as quasi-local conditions on M , observable by the given class of observers,
that guarantee this result, with appropriate causal and topological properties. But
these results are preliminary, in that one of them is not robust: it fails for Interior
Schwarzschild.

As the causal boundary construction is inherently of low regularity (yielding a
topology but not necessarily a differentiable structure, andwith the future completion
not necessarily being a manifold with boundary), it is also of interest to ask just
how regular it might be in certain circumstances. Also appearing in this note are
preliminary results on extension of the spacetime metric to the causal boundary in
a C0 manner—again, in terms of properties measurable by the preferred class of
observers, particularly sectional curvature. This portion of the project is also still
ongoing, and may be strengthened with additional research.

Section 2 presents the detailed definitions and nine conditions that guarantee the
appropriate behavior for FCBof the spacetime. Section 3 presents sectional curvature
properties that guarantee the continuous extension of the metric to the boundary
(clearly not to be obeyed by Interior Schwarzschild).
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2 Spacelike Causal Boundary at Finite Distance

The causal boundary of a strongly causal spacetime M was introduced in 1972 by
Geroch,Kronheimer, andPenrose, [9], and itwas brought towide attention in [16].As
explored in [10] it consists of a Future Causal Boundary, a Past Causal Boundary, and
a melding of those two to produce the complete causal boundary; or, more precisely,
there is the future completion M̂ of M , in which one identifies M and its Future
Causal Boundary ∂̂(M); the past completion M̌ of M , comprising M and its Past
Causal Boundary ∂̌(M)); and a melding of M̂ with M̌ , in which M is preserved, with
the remainder being the complete causal boundary. But the current project concerns
itself only with M̂ and ∂̂(M).

The Future Causal Boundary ∂̂(M) consists of the TIPs (Terminal Indecompos-
able Past sets) of M : pasts of future-endless timelike curves. Then the future com-
pletion M̂ of M consists, as a set, of M ∪ ∂̂(M); this set must be endowed, first, with
an extension of the chronology relation� and, second, with a topology that respects
that of M . The chronology relation is this: For x ∈ M and P, Q ∈ ∂̂(M),

x � Q ⇐⇒ x ∈ Q

P � x ⇐⇒ for some point y � x, P ⊂ I −(y)

P � Q ⇐⇒ for some point y ∈ Q, P ⊂ I −(y)

This yields a “future-complete” object M̂ , i.e., for any future chain c given by x1 �
· · · � xn � xn+1 � · · · , there is some x ∈ M̂ with with I −(x) = I −[c].

We also want to specify an extension of the causal-past relationship ≺ in M :

x ≺ Q ⇐⇒ I −(x) ⊂ Q

P ≺ x ⇐⇒ P ⊂ I −(x)

P ≺ Q ⇐⇒ P � Q

The topology that will be employed here is the Future Chronological Topology,
as developed in [4, 11]. It is defined not through a definition of open set, but through
the more primitive notion of defining limits of a sequence: Given any set X with a
relation�much like a spacetime’s chronology relation, for any sequence of elements
σ = {xn} in X , we define the future-limits L̂(σ ) of that sequence as follows:

x ∈ L̂(σ ) ⇐⇒
for all y � x, y � xn for sufficiently large n, and

I −(x) is maximal among all IPs P satisfying

for all y ∈ P, y � xn for infinitely many n
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where an IP in X is the past of any future chain (among the assumptions on � in
X is that I −(x) is always an IP). In slightly different words: x ∈ L̂(σ ) ⇐⇒ I −(x)

is contained in LI(I −(xn)) and is a maximal IP in LS(I −(xn)) (LI(An) denotes
points eventually in An , LS(An) denotes points in infinitely many An). For any set
A ⊂ X , let L̂[A] = ⋃

a∈A L̂(x). Then we define A ⊂ X to be closed in the Future
Chronological Topology if L̂[A] = A (constructively, the closure of a set A is by
means of transfinite induction of the L̂ operator: closure(A) = L̂�[A], where � is
the first uncountable ordinal; this works because of a separability assumption on X
and its chronology relation).

This topology has a number of good points: points are closed, X is dense in X̂ , and,
while X need not be open in X̂ , the Future Chronological Topology on X coincides
with the subspace topology of X in X̂ ; and, most importantly, for M a strongly causal
spacetime, the Future Chronological Topology on M̂ yields the manifold topology
on M (which is open in M̂). Furthermore, in the case of spacelike-or-null boundaries
(i.e, no chronology relations between boundary elements), the future completion,
using the Future Chronological Topology, has a categorically universal property:
passing to the future completion is left adjoint to the forgetful functor, forgetting
about being future-complete.

The primary example to concentrate on is that of M being Interior Schwarzschild,

SchInt: (0, 2m) × R
1 × S

2 with metric g = − 1
2m
r − 1

dr2 + (
2m
r − 1

)
dt2 + r2 kS2

(kS2 being the round metric on the unit 2-sphere). We have M̂ = [0, 2m) × R
1 × S

2

with ∂̂(M) occurring as {0} × R
1 × S

2, all in the natural topology; and ∂̂(M) is
spacelike.

This section will be devoted to explicating a number of assumptions to make
about a spacetime M that, together, will ensure that M̂ , the future completion of
M , has (in the Future Chronological Topology) the topology of a manifold with
boundary, (A, 0] × Q, with M the interior and ∂̂(M) appearing as {0} × Q, spacelike
in the induced chronology relation. (Actually, it’s slightly more general than that,
amounting to an open subset of (A, 0) × Q for M , but with the same ∂̂(M).) All the
assumptions except the last one, the ninth, are obeyed by SchInt; the failure of the
last assumption to hold for SchInt means that this is not yet a robust list of properties.

Assumption 1 Foliation by observers.

We assume that M comes equipped with a foliationF of future-directed timelike
curves, each being a line (i.e., not a closed curve). Physically this means we are
looking at a preferred class of observers (onewhich is at least topologically consistent
with a causal spacetime). Let us take these to be unit-speed, as befits a field of
observers.

We then let Q = M/F be the leaf-space with natural projection π : M → Q (i.e.,
the quotient by the equivalence relation of existing within the same foliate).

In SchInt this foliation is topologically the set of r -coordinate curves; but we
want to parametrize them not by the coordinate r , but by arc-length. So for any
(t, p) ∈ R

1 × S
2 we define γt,p : (−πm, 0) → (0, 2m) × R

1 × S
2 via γt,p(s) =
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(ρ−1(s), t, p), where ρ : (0, 2m) → (−πm, 0) is the orientation-reversing function

ρ(r) = 2m
(
arctan

√
2m
r − 1 + r

2m

√
2m
r − 1

)
− πm. For practical use, this is best

written as γt,p(ρ(r)) = (r, t, p).

Assumption 2 No ancestral pairs.

In any foliation of F by timelike curves in a spacetime M , we say two elements
of the foliation (γ, γ ′) form an ancestral pair if for all x ∈ γ and all x ′ ∈ γ ′, we
have x � x ′. It is shown in [12], Theorem 1.2, that if F has no ancestral pairs, then
Q = M/F is a Hausdorff manifold, and M is diffeomorphic to R

1 × Q (we have
the projection π : M → Q is a line bundle, and, Q being a manifold, there must be
a smooth cross-section).

(Typically, ancestral pairs result from removing a compact set from a spacetime:
If we remove the origin (0, 0) from Minkowski n-space L

n = L
1 × R

n−1, then the
t coordinate curves {γx | x ∈ R

n−1} for L
n still form a foliation, except there are two

of them, γ0+ and γ0− , where there used to be just γ0, and those two are respectively
the t > 0 and t < 0 portion of γ0; (γ0− , γ0+) form an ancestral pair.)

So we will assume in our spacetime M that the given class of observers has
no ancestral pairs, yielding a line bundle π : M → Q of smooth manifolds.

In SchInt the foliation F = {γt,p | (t, p) ∈ R
1 × S

2} has no ancestral pairs, yield-
ing Q = R

1 × S
2.

Assumption 3 Foliates are future-incomplete.

Thus far, the assumptions made are extremely mild: Any reasonable spacetime will
have a foliation by timelike curves, and asserting that there are no ancestral pairs
pretty much just rules out “mutilated” spacetimes. But now we start to give some
structure to our spacetime: We assume that all the foliates γ ∈ F are future-
incomplete. Since we’re already parametrizing them by arc-length, we might as
well give them all the same finite future-endpoint on their domains: For each q ∈ Q,
we will have γq defined on (Aq , 0) for some Aq < 0, possibly−∞ (we will typically
label our foliates by Q). Thus, {γq : (Aq , 0) → M} are our unit-speed foliates.

Note that this gives us a preferred global time coordinate τ : M → (−∞, 0):
For any x ∈ M , there is a unique t ∈ (Aq , 0), with q = π(x), so that x = γq(t);
then define τ(x) = t . This gives us the global function (τ, π) : M → R × Q—but
without further assumption, this need not be even continuous. Call τ the observer
time-function.

In SchInt, as noted above, we have At,p = −πm for all (t, p). The observer time-
function is given by τ(r, t, p) = ρ(r).

Assumption 4 τ is differentiable.

For any Riemannian manifold (N , h) and function f : N → R, we can define
the spacetime N f = {(t, x) ∈ R × N | t < f (x)} as an open subset in L

1 × N
(i.e., metric g = −(dt)2 + h). We have the foliation {γx | x ∈ N } given by γx :
(−∞, f (x)) → N f viaγx (s) = (s, x). But thisworks for any lower-semi-continuous



148 S. G. Harris

function f ; it need not even be continuous (consider N = R and f (x) = 0 for x ≤ 0,
f (x) = 1 for x > 1). We’re not going to get the kind of boundary we want to work
with unless we eliminate such eccentricities.

So we will assume that τ : M → (−∞, 0) is differentiable—at least C1. This
does quite a bit for us in terms of global analysis:

We will use T for the velocity vector field of the foliates, T = γ̇ ; this is a future-
directed unit-timelike field. Consider the 1-form α = −T �, i.e., α(X) = −〈X, T 〉.
For any vector X ∈ T M , let X⊥ = X − (α(X))T ; then X⊥ lies in the perpendicular
space to T ; in particular, X⊥ is spacelike. For any t , let i t : Q → M be the cross-
section of π given by i t (q) = γq(t) (actually, this is defined only for Qt = {q ∈
Q | Aq < t}). Note that i t∗(Tq Q) is transverse to T at the point x = γq(t); also note
that i t∗ is an endomorphism. It follows that statements about tensors at x need be
checked only on T and vectors of the form i t∗(A).

For any q ∈ Q and any t > Aq , define the two-covariant tensor ht at q by
ht = i t ∗(g + α2). It then follows that g + α2 = π∗ht , as can be seen by evaluat-
ing both sides on (T, T ), (i t∗ A, T ), and (i t∗ A, i t∗ B) (making use of π∗T = 0 and
π ◦ i t = id). Note that ht is positive-definite: For any non-0 A ∈ Tq Q, (i t∗ A)⊥ is
a non-0 spacelike vector, and |(i t∗ A)⊥|2 = 〈i t∗ A + 〈T, i t∗ A〉T, i t∗ A + 〈T, i t∗ A〉T 〉 =
〈i t∗ A, i t∗ A〉 + 〈T, i t∗ A〉2 = ht (A, A). Thus, ht amounts to a “time-dependent” Rie-
mannian metric on Q (actually, ht exists only on Qt ). We call this the (time-
dependent) observer-space metric.

Also define the covector ηt at q by ηt = i t ∗α. We then have α − dτ = π∗ηt ,
again by evaluating both sides on T and on any i t∗ A and using i t ∗dτ = 0. Then ηt

is a time-dependent one-form on Q (again: ηt exists only on Qt ). We call this the
(time-dependent) drift-form, in analogywith the drift-form on a stationary spacetime,
foliated by the stationary observers (see [14]).

We thus have an expression for the spacetime metric as g = −α2 + π∗ht =
−(dτ + π∗ηt )2 + π∗ht , valid at points x ∈ Mt = π−1(Qt ). More succinctly, we
can write

g = −(dτ + π∗ητ )2 + π∗hτ

which is quite reminiscent of the way the spacetime metric in stationary spacetimes
is expressed in [14]. Also note that (τ, π) provides us a diffeomorphism Mt ∼=
(t, 0) × Qt . This also gives us M diffeomorphic to R × Q (same differentiability
class as τ ), but not by a “nice” map.

The time-dependent drift-form controls a lot of structure in the spacetime: If it is
constant—η′ = 0, where η′ = d

dt η
t—then each foliate γq is geodesic (and if h′ = 0

also, then the spacetime is stationary). If η′ = 0 and dηt = 0 for all t , then T ⊥ is
integrable.

For SchInt, we have T =
√

2m
r − 1 ∂

∂r , α = 1√
2m
r −1

dr , ητ = 0, and hτ =
(
2m
r − 1

)
dt2 + r2kS2 (recall τ(r, t, p) = ρ(r)).

Assumption 5 Small drift-form.
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In [14] it is shown that in a stationary-complete spacetime, the drift-form must have
length no more than 1 for the spacetime to be strongly causal—and, in fact, there
are considerable restrictions on the behavior of the drift-form if its length has a
supremum of 1, if the spacetime is to be strongly causal. We will need to impose a
uniform restriction on the time-dependent drift-form:

We will assume for some a < 1, |ηt |ht ≤ a for all points q ∈ Q and all t > Aq ;
note that measurement of ηt is bymeans of ht . (Technically, this is saying |(ηt)


t |ht ≤
a, where 
t : T ∗

q Q → Tq Q is the index-raising linear isomorphism that makes use
of ht .)

With this assumption, we can conclude M is strongly causal: For any future-
directed causal curve σ , with c = π ◦ σ we have (τ ◦ σ)′ + ητ◦σ (ċ) ≥ |ċ|hτ◦σ , so
τ ′ ≥ (1 − a)|ċ|hτ :We get that τ is strictly increasing along any future-directed causal
curve, and that implies strong causality. (Consider a neighborhoodUn of any point x ,
consisting of I −(yn) ∩ I +(xn) for, say, yn = γq(t0 + 1/n) and xn = γq(t0 − 1/n),
where q = π(x) and t0 = τ(x), and with n large enough that the metric doesn’t
change much over Un; then any future-causal curve exiting Un must do so on the
past-null cone from yn , and, if it re-enters Un , must do so on the future-null cone
from xn , in violation of increasing τ .) As strong causality is necessary to define the
Future Causal Boundary, this was a necessary step to obtain.

In SchInt, a = 0 works.

Assumption 6 Bound on shrinkage under hτ .

We are now in a position to start making assumptions that are specifically related
to obtaining the topology and causal structure of ∂̂(M). The plan: Identify ∂̂(M)

with Q by means of the IPs {Pq = I −[γq ] | q ∈ Q}, show that there are no � or
≺ relations within this set, and establish the topology to be that of Q, with ∂̂(M)

sitting appropriately within M̂ to make that the obvious manifold with boundary:
M̂ = {(t, q) ∈ (−∞, 0] × Q | t > Aq}.

Our first chore is an integral condition that guarantees all the Pq are distinct
from one another—and, fortuitously, this also establishes the spacelike nature of
{Pq | q ∈ Q}.

We establish a locally uniform bound on how quickly a given vector X ∈ Tq Q
can shrink in the time-dependent observer-space metric. Specifically: We assume
that for any non-vanishing vector field X on Q, each q ∈ Q has a neighborhood
U such that, for some t0 < 0,

∫ 0

t0

dt

inf p∈U |X p|ht
< ∞

This guarantees, for all q �= q ′ ∈ Q, that Pq �⊂ Pq ′ . Thus, all the IPs generated by the
foliates are distinct from one another; and, furthermore, we do not have any instances
of Pq � Pq ′ or Pq ≺ Pq ′ .

Furthermore: If we know that the {Pq} are the only TIPs, then this information
leads us to the desired topological conclusion: In the Future Chronological Topology,
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∂̂(M) ∼= Q and sits in M̂ as {0} × Q in {(t, q) ∈ (−∞, 0] × Q | t > Aq}. And this
identification of both ∂̂(M) and M̂ is not just by homeomorphism: It is by diffeo-
morphism of the same class of differentiability as τ .

In SchInt, recall Q = R
1 × S

2; let P : Q → S
2 be projection. For X ∈ Tt,p Q,

we have |X |hs =
√(

2m
r − 1

)
((dt)X)2 + r2|P∗ X |2 (where s = τ(r, t, p) = ρ(r))—

independent of the point (t, p) in Q—so the relevant integral ignores the inf

and becomes
∫ 0

ρ(r0)

ds
√(

2m
r − 1

)
((dt)X)2 + r2|P∗ X |2

with s = ρ(r). Using ds =

ρ ′(r) dr = − dr√
2m
r −1

, we obtain the following: For (dt)X �= 0, the integral is approx-

imately
∫ r0
0

1
|(dt)X |

dr
2m
r −1

.= 1
|(dt)X |

r20
4m ; and for (dt)X = 0, the integral is approximately

∫ r0
0

1
|P∗ X |

dr

r
√

2m
r −1

.= 2
|P∗ X |

√
r0
2m . So in either case, the integral is finite.

The remaining assumptions are all addressed to ruling out the existence of any
other boundary IPs. To do this, we need to examine any future-directed endless null
curve in M ; we can accomplish this by looking at any future-directed null lift ĉ of
any curve c in Q. What we’re looking for is

1. ĉ approaches some (0, q)

2. and then I −[ĉ] = Pq

It’s that last that is the trickiest.

Assumption 7 Non-timelike past boundary.

For c : [0, ω) → Q any curve, we want to make sure the future-null lift (t (s), c(s))
(specified by t ′ = −ηt (ċ) + |ċ|ht ) isn’t future-endless unless t (ω) = 0. That is to say:
A future-endless null curve shouldn’t “run out of τ” (via τ → Aq ) while approaching
a point q ∈ Q. For otherwise, we would have the endpoint of ĉ on the past causal
boundary of M , instead of on {0} × Q. In other words: We need that the past causal
boundary ∂̌(M) to be spacelike or null, but nowhere timelike; that way no future-
directed null curve can meet it.

To that end, we assume that for any q ∈ Q,
⋂

τ<0 I −(γq(τ )) = ∅. This prevents
the problem above.

It might be objected, that if it’s so simple to express the spacelike nature of a causal
boundary component, why not just make a similar assumption for the Future Causal
Boundary?The answer is, thatwe’re assuming thatwhile the FutureCausal Boundary
is somewhatmysterious or tricksy, the Past Causal Boundary of the spacetime at hand
is well-understood, and that it’s easy to make calculations such as that above.

In SchInt, we have (r ′, t ′, p′) � (r, t, p) implies, among other things, that r ′ < r .
Therefore,

⋂
2m<r<0 I −(r, t, p) = ∅. Indeed, the Past Causal Boundary of SchInt can

be identifiedwith a portion of the FutureCausal Boundary of Exterior Schwarzschild,
forming the Event Horizon (see [4] or [15]).
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Assumption 8 Uniform completeness of hτ .

We also don’t want ĉ(s) having the τ coordinate complete its appointed journey—
τ(ĉ(s)) = t (s) = 0—while π ◦ ĉ fails to do so, i.e., we don’t want ĉ “running out
of q”, with c(s) failing to approach some point in Q. So we must be concerned
with an assumption concerning curves in Q which escape all compact sets. If we
had a fixed metric on Q, we’d just assert that Q must be complete; then no curve
c : [0, ω) → Q going out to infinity could have a null lift that doesn’t hit the τ = 0
boundary somewhere in the interior of [0, ω), i.e, at some s0 < ω; ĉ would approach
(0, q) for q = c(s0).

But we don’t have that luxury of a fixed metric. What’s needed is that ht be
complete for each t , but in uniform manner:

We assume that for any curve c in Q exiting all compact sets, there is some
parametrization of c on [0,∞) and a not-necessarily-connected open interval I
that is co-extensive with [0,∞), such that, picking some s0 ≥ 0, for all t , for all
s ∈ I , |ċ(s)|ht ≥ |ċ(s0)|ht .

In SchInt we’re looking at c(s)=(t (s), p(s)) with, say, t (s) → ∞; we might
as well take t (s)=s, for our initial parametrization. Then for any r , |ċ(s)|hτ =√

( 2m
r − 1)2 + r2| ṗ(s)|2. If there is any sequence {si } increasing monotonically to

∞ with {| ṗ(si )|} non-decreasing, then we form our interval I around those {si },
using our initial parametrization. Failing that, we have | ṗ(s)| strictly decreasing after
some s0. We change to a parametrization via s(σ ) with, say, s(0) = s0; then we’re
looking for

(
( 2m

r − 1)2 + r2| ṗ(s)|2) s ′(σ )2 ≥ (
( 2m

r − 1)2 + r2| ṗ(s0)|2
)

s ′(0)2, i.e.,

s ′(σ ) ≥ s ′(0)

√
√
√
√
√
√

1 +
(

r
2m
r −1

)2 | ṗ(s0)|2

1 +
(

r
2m
r −1

)2 | ṗ(s(σ ))|2
. But the denominator is never smaller than

1, so it suffices if we just arrange for s ′(σ ) ≥ s ′(0)

√
√
√
√1 +

(
r

2m
r − 1

)2

| ṗ(s0)|2. Note
that the fraction under the radical is decreasing as r → 0. So pick some r0 > 0

and just take s ′(σ ) to be constant at s ′(0)

√
√
√
√1 +

(
r0

2m
r0

− 1

)2

| ṗ(s0)|2 for σ ≥ σ0 for

some σ0 > 0, and then take I = [σ0,∞). (What is crucial here is that in the multiply
warped product metric, the ratio of the warping factor for the compact factor to that
for the non-compact factor, is decreasing.)

Assumption 9 Locally uniform bound on η′, h′ (not robust).

We now have enough to guarantee that for any endless future-null curve β in M ,
τ ◦ β → 0 and for some q ∈ Q,π ◦ β → q. Butwe don’t yet know that I −[β] = Pq .
The problem is that it’s entirely possible for multiple null curves to “converge to
(0, q)” but to have different pasts, properly including Pq . This is the trickiest issue
to deal with.
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I present here a condition that suffices; but it is clearly not robust, in that it is not
obeyed by SchInt.

In the following, η′ and h′ are to be understood as time-dependent, i.e., more
properly written as η′τ and h′τ . We will measure them using hτ . For the former,
we’ll consider |η′|hτ . For the latter, we first raise an index using hτ , i.e., define the
(1,1)-tensor h′
 via hτ (h′
 X, Y ) = h′(X, Y ) (so h′
 is most accurately written as
h′τ 
τ

). We then consider the operator-norm on h′
: ||h′
||τ = sup|X |hτ =1 |h′
(X)|hτ .
We assume that for all q ∈ Q, there is a neighborhood U of q so that for some

t0 > Aq ,
∫ 0

t0
supU

(|η′|hτ

)
dτ < ∞ and

∫ 0
t0
supU

(||h′
||τ
)

dτ < ∞.
I conjecture that it suffices to put such locally uniform integral bounds, instead of

on ητ and hτ 
, on their hτ -gradients (this is obeyed by SchInt, since ητ = 0 anyway
and hτ is constant in each τ -slice); but the truth of this conjecture is far from clear.

In SchInt we have hτ(r,t,p) = hρ(r) = (
2m
r − 1

)
dt2 + r2 kS2 , so h′ = d

dτ
hτ =

dr
dτ

d
dr hρ(r) = −

√
2m
r − 1

(− 2m
r2 dt2 + 2r kS2

)
, giving us h′
 = 1√

2m
r −1

2m
r2 dt ⊗ ∂

∂t −
2
r

√
2m
r − 1 idS2 , so ||h′
|| = max

{
1√
2m
r −1

2m
r2 , 2

r

√
2m
r − 1

}
.= 2

√
2m r− 3

2 , which is

not integrable on (0, r0).

Theorem 1 Let M be a spacetime satisfying Assumptions 1–9, i.e., M is chronolog-
ical with a foliation by timelike future-incomplete curves having no ancestral pairs,
with the observer time-function τ differentiable, the drift-form bounded away from 1
in size, a locally uniform integral bound on shrinkage of vectors in Q (the leaf-space),
a simply-behaving (non-timelike) past boundary, a uniform completeness condition
on the observer-space metric hτ , and a locally uniform integral bound on the size of
both η′ and h′
. Then

1. M̂, the future completion of M, is, in the Future Chronological Topology, diffeo-
morphic to the subset of (−∞, 0] × Q consisting of (t, q) with t > Aq (where
−Aq is the length of the foliate corresponding to q), and

2. ∂̂(M), the Future Causal Boundary, appears there as {0} × Q; it is spacelike.

The diffeomorphism class is that of τ .

Why this is a delicate issue:
The problem is to find a property that can be observed by just a local class of

observers, that will prevent a situation such as this: With M = (−∞, 0) × R
1, we

specify a conformal class of metrics by defining two classes of foliations by curves—
the left-directed and right-directed past-null curves. The right-directed are the stan-
dard null lines: {β+

a | a ∈ R}, β+
a : (0,∞) → M , β+

a (t) = (−t, a + t). The left-
directed (all parametrized on (0,∞)) are a portion of the standard null lines, {β−

a | a ≥
0}, β−

a (t) = (−t, a − t); lines of different slope from the origin, {δm | 1
2 < m < 1},

δm(t) = (−mt,−t); and slope- 12 lines, {β̂−
a | a ≤ 0}, β̂−

a (t) = (− 1
2 t, a − t). The foli-

ation by observers is the set of vertical lines: {γa | a ∈ R}, γa : (−∞, 0) → M ,
γa(t) = (t, a), so the leaf-space Q = R. The various future-null lifts of the curve
c : (−∞, 0) → Q, c(s) = s, (i.e., the various δm , parametrized future-wards) all end
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up at (0, 0), but each I −[δm] properly contains I −[γ0]; indeed, FCB for M has two
spacelike segments (pasts of the β̂−

a and of the β−
a ) separated by a null segment (pasts

of the δm).
The causal issue here is visible; the problem is expressing it geometrically or

analytically, detectable locally, in a robust form. If one nails down this example with
an explicit metric, then one finds η′ misbehaving in a way that violates Assumption 9.
But that is too strong; there ought to be something which prevents this example but
allows SchInt.

3 C0 Extension of the Metric to the Causal Boundary

A number of papers in recent years have addressed the question of possible low-
regularity extensions of spacetimes that are not C2 extendible (see [7, 8]), with
some particular focus on Interior Schwarzschild (such as [18, 19], where it is shown
that there is no isometric embedding of SchInt into a spacetime with a C0 metric,
that actually extends SchInt). We focus here on possible extension of the metric in
the context of Sect. 2, first in the sense of C0 extension of the spacetime metric to
the Future Causal Boundary, purely along each foliate individually; and then, with
somewhat less satisfactory answer, in the sense of C0 extension of the metric to the
Future Causal Boundary in a more complete manifold-with-boundary manner.

This is reminiscent of a Riemannian result on extension of metric to a putative
point-singularity in [20]: Suppose M has a Riemannian metric g on M − {p} (p ∈
M), such that the distance function defined by g on M − {p} extends to M (i.e., p
is at finite distance). Fix some (small) s0 > 0. For any s, define the annulus As =
{x ∈ M | s ≤ d(p, x) ≤ s0}, and define K (s) = sup |K (X, Y )|where the supremum
is over all non-dependent X, Y ∈ Tx M for all x ∈ As . Then if the ball of radius s0
around p is simply connected and has no geodesic loops with endpoints going to
p, and if

∫ s0
0 sK (s) ds < ∞, then the metric extends in a C1 fashion to p. (Indeed,

this theorem was the inspiration for the first conversations on a possible singularity-
extension theorem in spacetimes, as referred to in the acknowledgements note.) Note
that the simple take-away here is that for a non-extendible (i.e., actual) singularity,
sectional curvature must blow up at least inverse-quadratically in distance from the
putative singularity.

In light of Assumption 9 from Sect. 2 being non-robust, we will not employ that;
instead, we will just assume that each the various {Pq} constitute the entire Future
Causal Boundary.

The theorems presented here also are weak in that they assume no drift-form: η =
0. The reason is that this greatly simplifies the calculations for sectional curvature.
But this is not quite as strong a restriction as it appears at first glance: Once we know
that M̂ has the structure (roughly) of (A, 0] × Q, then it is not much of a stretch to
assume we can find a foliation of M by timelike geodesics, at least in a neighborhood
of ∂̂(M) in M̂—and that has η′ = 0 (as π∗∇T T = η′
 for T = γ̇q ). Small |η| with η

constant along foliates may work well for extending these results.
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So we will be assuming a foliation of spacetime M along the lines of Sect. 2,
Assumptions 1–8, with the additional assumption that there are no “confusing” TIPs
masquerading as Pq ; we know any future-endless null curve β “approaches” some
(0, q), and so we are assuming that I −[β] = Pq . Call this suite of assumptions our
Future-Incomplete Spacelike Boundary Ansatz.

We already know SchInt satisfies Assumptions 1–8. It fails Assumption 9, but it
none the less satisfies the Future-Incomplete Spacelike Boundary Ansatz, as can be
seen from its structure as a multiply warped product: As shown in [13], Proposition
3.5, if M = (a, b) × f1 N1 × · · · × fm Nm (i.e., metric is −(dt)2 + f1(t)h1 + · · · +
fm(t)hm), then ∂̂(M) is spacelike (and all the TIPs are of the form analogous to Pq ) iff

for all i with Ni non-compact, hi is complete and
∫ b

b− f
− 1

2
i < ∞. Employing τ = ρ(r)

as the t-coordinate, we have SchInt as (−πm, 0) × f1 R
1 × f2 S

2, so we just need to

check the f1 integral:
∫ 0
τ0

(
2m
r − 1

)− 1
2 dτ = ∫ 0

r0

(
2m
r − 1

)− 1
2

(
− (

2m
r − 1

)− 1
2

)
dr =

2m ln 2m
2m−r0

− r0 < ∞.
The intent here is to find conditions explicable in terms of sectional curvature in

the spacetime, that result in C0 extension of the metric along a foliate—specifically,
sectional curvature of planes containing T ; this amounts to the tidal accelerations
measured by each observer in its rest-space, in various directions, so it is an inherently
physical observation, not just a geometric quantity.

The simplest sort of condition to assume is an integrability condition on all planes
containing T . But we can weaken this to an assumption on specific planes, if we
are able to make a modest assumption on the eigenvectors of h′: Note that h′ is
self-adjoint (with respect to hτ ), so it has a complete set of eigenvectors; let μ be
the eigenvalue of h′ with maximum absolute value, and let E be some non-0 choice
within the eigenspace ofμ; call this the “distinguished” eigenvector. Generically, the
eigenspaces are 1-dimensional, and it is at least not uncommon for the line-bundle of
this particular eigenspace to have a limit as τ → 0 (though one can certainly create
counter-examples). We don’t need to assume anything about the dimensionality of
the μ eigenspace, but it will be handy if there is a choice of Eτ

q so that Eτ
q converges

to some E0
q in amanner which is uniform in q. Call this theConvergent Distinguished

Eigenvector Condition.
In SchInt, we have hτ = (

2m
r − 1

)
(dt)2 + r2 kS2 for τ(r, t, p) = ρ(r), and dτ

dr =
− 1√

2m
r −1

; this gives us hτ ′ = −
√

2m
r − 1

(− 2m
r2 (dt)2 + 2r kS2

)
, which yields hτ ′
 =

2m
r2

1√
2m
r −1

dt ⊗ ∂
∂t − 2

r

√
2m
r − 1 IdS2 . Both terms go to ∞ like r− 3

2 as r → 0; for

r < 2m
m+1 , the second one is larger in absolute value. So we have the eigenspace with

the largest absolute value of eigenvalue is (eventually) TpS
2. We are free to choose

any non-0 vector Up ∈ TpS
2 as Eτ

t,p for all τ , doing so in a manner continuous in p,
yielding that we have the Convergent Distinguished Eigenvector Condition satisfied.

We use K (A, B) for the sectional curvature of span{A, B}. For any X ∈ T Q, let
X̄ t = i t ∗ X .
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First we look at a simple curvature condition, bounding the relevant curvatures
by a constant for each foliate:

Theorem 2 Let M be a spacetime obeying the Future-Incomplete Spacelike Bound-
ary Ansatz (for a foliation F = {γq | q ∈ Q}) with drift-form η = 0. If either

1. for all q ∈ Q, there is some Bq such that for all τ , for any X ∈ Tq, K (T, X̄ τ ) ≤
Bq, or

2. M obeys the Convergent Distinguished Eigenvector Condition and for all q, there
is some Bq such that for all τ , K (T, Ēτ

q ) ≤ Bq,

then for all q, the observer-space metric hτ
q has a limit tensor h0

q = limτ→0 hτ
q , and

h0
q is a Riemannian metric on Tq Q.

Thus, we have a continuous extension of the spacetime metric g = −(dτ)2 +
π∗hτ , individually along each foliate τ , to the Future Causal Boundary.

But what’s really wanted is a more flexible condition on curvature—an integral
condition. This, it turns out, cannot be done without an additional assumption, such
as monotonicity (counter-examples exist without this):

Theorem 3 Let M be a spacetime obeying the Future-Incomplete Spacelike Bound-
ary Ansatz (for a foliation F = {γq | q ∈ Q}) with drift-form η = 0. If either

1. for all q ∈ Q, for any X ∈ Tq Q, for some τ0 > Aq,
∫ 0
τ0

√
|K (T, X̄ τ

q )| dτ < ∞,
or

2. M obeys the Convergent Distinguished Eigenvector Condition and for all q,

K (T, Ēτ
q ) is monotonic and for some τ0 > Aq,

∫ 0
τ0

√
|K (T, Ēτ

q )| dτ < ∞,

then for all q, the observer-space metric hτ
q has a limit tensor h0

q = limτ→0 hτ
q , and

h0
q is a Riemannian metric on Tq Q.

Thus, we have a continuous extension of the spacetime metric g = −(dτ)2 +
π∗hτ , individually along each foliate τ , to the Future Causal Boundary.

It is worth noting that the main take-away here is that for a non-extendible (i.e.,
actual) singularity, the sectional curvature of relevant planes—if monotonic—must
blow up at least inverse-quadratically in Lorentzian distance from the putative sin-
gularity.

In SchInt we have, for any U ∈ T S
2, K ( ∂

∂r , Ū ) = − m
r3 (see, for instance, [17],

Proposition 13.5(2)). This gives us
∫ 0
τ0

√
|K (T, Ē)| dτ = ∫ r0

0

√
m

r3/2
1√
2m
r −1

dr =
∫ r0
0

√
m

r
√
2m−r

dr = ∞. In a sense, this is “why” the metric in SchInt cannot be extended

even C0 to the boundary.
These theorems are weak in that we do not obtain actual continuity of the tensor

field h0 on Q. That requires control on the Q-derivatives of h′. The following con-
dition suffices, though it is less than satisfactory in that it is not expressed in terms
of readily observable phenomena.



156 S. G. Harris

Let ∇τ denote the Levi-Civita connection on Q using hτ . Note that for any vector
field X on Q, while ∇τ

X is a derivative operator and not tensorial, (∇τ
X )′ = d

dτ
∇τ

X is a
(1,1)-tensor field on Q (difference of two connections being tensorial). Let ||(∇τ

X )′||τ
denote the operator-norm of (∇τ

X )′ with respect to hτ .
In SchInt, we have hτ = (

2m
r − 1

)
(dt)2 + r2 kS2 , which has very simple covariant

derivative: ∇τ
∂t

= 0 and for all U ∈ T S
2, ∇τ

U = ∇k
S2

U ◦ P , where P : R
1 × S

2 → S
2

is projection. There is no τ -dependence at all, so for any X ∈ T Q, (∇τ
X )′ = 0.

For any function f on M , we will say f is locally uniformly integrable if for all
q ∈ Q, there is a neighborhood U of q and an integrable function α : [t0, 0) → R

(with t0 > Ap for all p ∈ U ) such that for all p ∈ U , f (γp(t)) ≤ α(p).

Theorem 4 Let M be a spacetime obeying the Future-Incomplete Spacelike Bound-
ary Ansatz (for a foliation F = {γq | q ∈ Q}) with drift-form η = 0. If

1. either

(a) (a) for any vector field X on Q, the function
√

|K (T, X̄ τ )| is locally uniformly
integrable, or

(b) (b) M obeys the Convergent Distinguished Eigenvector Condition; for all q,
K (T, Ēτ

q ) is monotonic; and the function
√

|K (T, Ēτ )| is locally uniformly
integrable,

2. and also for any vector field X on Q, ||(∇τ
X )′||τ is locally uniformly integrable,

then hτ converges in a C0 manner in Q to a Riemannian metric h0. Thus, g has a
C0 extension to M̂.

Control over ||(∇τ
X )′||τ is elusive in terms of quantities readily accessible to

observers, such as curvature.
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