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Abstract Given a null hypersurface in a Lorentzian manifold we can construct a
Riemannian metric on it called the rigged metric. This is not a canonical construction
because it depends on the choice of a rigging, that is, a vector field transverse to the
null hypersurface, but it can be used as an auxiliary tool which allows us to apply
Riemannian techniques on null hypersurfaces. We show two such applications: in
the first one the rigged metric is used to obtain conditions for a totally umbilic null
hypersurface to be contained in a null cone. In the second one it is used to ensure
that a codimension two spacelike submanifold through a null hypersurface is a leaf
of the (integrable) screen distribution.

Keywords Null hypersurface · Rigging technique · Rigged metric · Null cone ·
Codimension two spacelike submanifold · Maximum principle

1 Introduction

Given a hypersurface L of a n-dimensional Lorentzian manifold (M, g), we call
Rad(Tx L) = Tx L ∩ Tx L⊥ for all x ∈ L . Since the signature of g is one, we have
that 0 ≤ dim Rad(Tx L) ≤ 1. If L is a timelike or spacelike hypersurface, then it is
clear that dim Rad(Tx L) = 0 for all x ∈ L . In the case dim Rad(Tx L) = 1 for all
x ∈ L it is said that L is a null hypersurface.

A null hypersurface has a unique null direction, given by Rad(T L), which is
orthogonal to the whole null hypersurface itself. Moreover, it does not contain time-
like directions and it is easy to check that the leaves of the one-dimensional foliation
given by Rad(T L) are locally null geodesics. Being foliated by null geodesic is not
enough to characterize a null hypersurface, [12, Theorem 1]. For example, a timelike
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plane in the Minkowski space is foliated by null geodesics and obviously it is not a
null hypersurface.

The biggest problem that we have to face when dealing with null hypersurfaces
is that the induced metric is degenerate. To overcome it we introduced the following
idea.

Definition 1 ([8]) A rigging for a null hypersurface L is a vector field ζ defined in
some open neighbourhood of L such that ζx /∈ Tx L for all x ∈ L . If ζ is defined only
on L , then we call it a restricted rigging.

Observe that a timelike vector field in M is a rigging for any null hypersurface.
Therefore, locally it always exists a rigging for a null hypersurface, but its global
existence is not guaranteed. The reason is that the existence of a rigging implies the
existence of a globally defined null section in the null hypersurface ξ ∈ Γ (Rad(T L))

normalized by the condition g(ζ, ξ) = 1. It is called the rigged vector field associated
to ζ and it allows us to decompose

Tx L = Sx ⊕ span(ξx ) (1)

for all x ∈ L , where S is a spacelike foliation in L called screen distribution and it
is defined by S = T L ∩ ζ⊥.

The following example shows that the existence of the rigged vector field is a
non-trivial restriction.

Example 1 Consider the Minkowski space (L3, g) = (R3, dx2 + dy2 + dydz) and
call M the quotient by the isometry group generated by

Φ(x, y, z) = (x − 1,−y,−z).

We can induce a Lorentzian metric on M and the projection of the plane y = 0 is
a null hypersurface diffeomorphic to a Möbius band. It does not exist a globally
defined null section ξ ∈ X(L), so it does not admit a rigging.

On the other hand, the existence of a screen distribution and a null section is
equivalent to the existence of a restricted rigging [5, Theorem 1.1, pg. 79] in the
sense that there exists a restricted rigging which induces them.

If we call N = ζ − 1
2g(ζ, ζ)ξ, which is the unique null vector field transverse

to L , orthogonal to the screen distribution and normalized by g(N , ξ) = 1, then we
have the decomposition

TxM = Tx L ⊕ span(Nx ) (2)

for all x ∈ L . The induced connection ∇L is the projection onto T L according to
this decomposition of ∇UV for all U, V ∈ X(L). It is a symmetric connection on L
which in general is not compatible with the metric g.
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The null second fundamental form of L is defined by B(U, V ) = −g(∇Uξ, V ) for
allU, V ∈ X(L) and the local second fundamental formasC(U, X) = −g(∇U N , X)

for all U ∈ X(L) and X ∈ Γ (S). B is symmetric, but C is symmetric if and only if
the screen distribution is integrable. We define the null mean curvature H and the
screen mean curvature Ω as

Hx =
n∑

i=3

B(ei , ei ),

Ωx =
n∑

i=3

C(ei , ei ),

being {e3, . . . , en} an orthonormal basis of Sx .
The third fundamental tensor of a null hypersurface is the so-called rotation one-

form, given by τ (U ) = g(∇Uζ, ξ) for all U ∈ X(L). If we call A∗ : T L → S char-
acterized by B(U, V ) = g(A∗(U ), V ) for all U, V ∈ X(L), then A∗(ξ) = 0 and

∇Uξ = −τ (U )ξ − A∗(U ),

so ξ is a pre-geodesic vector field.
The tensors B, C and τ depend on the chosen rigging, but in a predictable way,

[15]. The case of the tensor B is specially favourable. Indeed, if ζ ′ is another rigging,
then the respective rigged vector fields are proportional, ξ′ = f ξ where f = 1

g(ζ ′,ξ) ,
and thus B ′ = f B and H ′ = f H .

A null hypersurface is totally umbilical if the null second fundamental form is
proportional to the metric, B = ρg for some ρ ∈ C∞(L), and it is totally geodesic if
B = 0. These definitions are independent of any choice due to the fact commented
above.

We say that a rigging is screen conformal if C = ϕB for some ϕ ∈ C∞(L) and
we say that the screen distribution is totally umbilic if C = Ω

n−2g. In both cases,
the screen distribution is integrable. On the other hand, we say that the rigging is
distinguished if the rotation one-form vanishes. Most of the important examples of
null hypersurfaces admit a screen conformal and distinguished rigging.

A rigging also induces a Riemann metric on L given by g̃ = g + ω ⊗ ω, being
ω = i∗α, α the g-metrically equivalent one-form to ζ and i : L → M the canonical
inclusion. With this metric, ξ is unitary and orthogonal to the screen distribution S.
The one-form ω is called the rigged one-form.

We have that ω is closed if and only if the screen distribution is integrable and ξ
is g̃-geodesic. Moreover, we have the following.

Lemma 1 ([11]) Let L be a null hypersurface and ζ a rigging for it.

1. If ζ is screen conformal and distinguished, then dω = 0.
2. If the screen is totally umbilical and ζ is distinguished, then dω = 0.
3. If ζ is a conformal vector field and screen conformal, then it is distinguished.

Moreover, if the conformal factor of ζ never vanishes, then L is totally umbilical
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If the null hypersurface is totally umbilical and ω is closed, then the rigged metric
can be decomposed.

Theorem 1 ([8, 10]) Let (M, g) be a Lorentzian manifold and L a totally umbilical
null hypersurface. Suppose that ζ is a restricted rigging for L such that its rigged
one-form ω is closed. Take S a leaf of S andΦ : A → L the flow of ξ. IfΦ restricted
to (a, b) × Σ ⊂ A, where (a, b) ⊂ R and Σ ⊂ S, is injective, then

Φ : (
(a, b) × Σ, dt2 + λ(t, x)2g|S

) → (L , g̃),

being λ(t, x) = exp
(
− ∫ t

0
H(Φs (x))

n−2 ds
)
, is an isometric embedding.

2 Characterization of a Null Cone

An important family of null hypersurfaces in a Lorentzian manifold are the local null
cones. They are defined as

Cl
e0 = {expp(u) : u ∈ TpM ∩ exp−1

p (θ) is null and g(u, e0) < 0},

where e0 ∈ TpM is a fixed timelike vector and θ is a normal neighbourhood of p.
On the other hand, we define the null cone of e0 with vertex p as

Ce0 = {expp(u) : u ∈ TpM ∩ Θ is null and g(u, e0) < 0},

where Θ is the maximal definition domain of the exponential map at p. Null cones
are immersed null hypersurfaces except at conjugate points, see [9] and references
therein. In Robertson-Walker spaces (in particular in constant curvature Lorentzian
manifolds) the local null cones are totally umbilical null hypersurfaces. The converse
holds in some situations.

Theorem 2 ([1, 7]) A totally umbilical (non-totally geodesic) null hypersurface in
a constant curvature Lorentzian manifold is contained in a null cone.

Theorem 3 ([7])Any totally umbilic null hypersurface in a Robertson-Walker space
I × f S

n−1 (n > 3) with ∫

I

1

f (r)
dr > π (3)

is an open set of a null cone. In particular, it does not exist totally geodesic null
hypersurfaces.

In a constant curvature space we have Ric(u, u) = 0 for all null vector u. This
curvature condition is basically enough to ensure that a totally umbilical null hyper-
surface is contained in a null cone in an arbitrary Lorentzian manifold. Indeed, we
have the following.
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Theorem 4 ([10]) Let (M, g) be a null geodesically complete Lorentzian manifold
with dimension n > 3. Take L a totally umbilic null hypersurface satisfying the
following properties.

1. It has never vanishing null mean curvature.
2. Ric(u, u) = 0 for all null vector u ∈ T L.
3. It is strongly inextensible.

Then, L is contained in a null cone.

A null hypersurface is called strongly inextensible if it is not properly contained
in any immersed connected null hypersurface. For example, a degenerate hyperplane
and a null cone in theMinkowski space are strongly inextensible. This is a topological
necessary condition to get the conclusion of the theorem because if a totally umbilical
null hypersurface can be extended maybe we loss the umbilicity condition, which is
essential to prove that it is contained in a null cone.

In [10] there is an example showing this behavior. Toget itwe perturb the euclidean
metric inside a ball B = {(x, y) ∈ R

2 : x2 + y2 < 1} to obtain a complete Riemann
surface (R2, g0) such that the straight lines y = ±x are pregeodesics. Moreover, we
can construct g0 so that the time to reach the point ( 1√

2
, 1√

2
) from the origin when

we parametrize y = x by the arc length and the time to reach (− 1√
2
, 1√

2
) from the

origin when we also parametrize y = −x by the arc length are different.
Now, in theLorentzianmanifold

(
R × R

2,−dt2 + g0
)
wehave that L = {(t, x, y)

∈ R
3 : (t + 1)2 = x2 + y2, t > 0} is a totally umbilical null hypersurface with

Ric(u, u) = 0 for all null vector u ∈ T L , since out of the tube R × B the metric
coincides with the Minkowski metric. Obviously, L is not strongly inextensible and
it is not contained in a null cone because there are null geodesics in L (constructed
from y = ±x) which do not intersect themselves at any point.

On the other hand, the null geodesically completeness is also necessary. The easier
example is a null cone with the vertex at the origin of the Minkowski space. If we
remove the origin, then it is not contained in any null cone since we have removed
the vertex.

We can even give an example where the theorem does not holds if we suppose the
inextesibility of the ambient space instead of the null geodesically completeness. For
this, it is enough to consider the Kruskal space Q ×r S

2, [16]. The null hypersurface
L = {(u, v, x) ∈ Q × S

2 : u = u0} for a fixed u0 ∈ R − {0} is totally umbilical with
never vanishing null mean curvature but it is not contained in a null cone.

The key to prove the Theorem 4 is the Gauss-Codazzi equation for a null hyper-
surface given by

g(RUVW, ξ) =
(
∇L
U B

)
(V,W ) −

(
∇L
V B

)
(U,W ) + τ (U )B(V,W ) − τ (V )B(U,W )

for all U, V,W ∈ X(L). If L is totally umbilical (B = ρg), then contracting this
equation we get
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1

n − 2
Ric(ξ, ξ) = ξ(ρ) − ρ2 + τ (ξ)ρ. (4)

In order to simplify Eq. (4) it is convenient to deal with a geodesic rigged vector
field, i.e. τ (ξ) = 0. Its existence is guaranteed if there exists a conformal rigging
and in [12, Theorem 18] its existence is also ensured under a strong topological
assumption. On the other hand, we can always construct locally a geodesic rigging.
Evenmore, given an injective null geodesic γ : [0, b) → L there is a open set V ⊂ L
containing γ([0, b)) and a geodesic rigged ξ ∈ X(V ) with ξγ(t) = γ′(t).

For our purpose we need a refined version of the above claim, since we want to
apply Theorem 1 and for this we need an open set of the form (0, b) × Σ contained in
V . To state it, first we need to introduce a function measuring the maximal definition
interval of the integral curves of a geodesic rigged. Concretely, suppose that U ⊂ L
is an open neighbourhood and ξ ∈ X(U ) is a geodesic rigged. We call

b(x) = sup{t > 0 : γ([0, t)) ⊂ L , γ is the integral curve of ξ with γ(0) = x}.

Proposition 1 Let L be a strongly inextensible totally umbilical null hypersurface
of a geodesically null complete Lorentzian manifold with never vanishing null mean
curvature. Suppose that Ric(u, u) = 0 for all null vector u ∈ T L and take ξ ∈ X(U )

a geodesic riggedwith positive associated nullmean curvature, beingU ⊂ L an open
subset.

1. b(x) is finite for all x ∈ U and it defines a positive smooth function on U.
2. If we fix x0 ∈ U and we call γ : [0, b(x0)) → L the null geodesic with γ(0) = x0

and γ′(0) = ξx0 , then there exists an open set V ⊂ L such that:

– γ ([0, b(x0)) ⊂ V
– ξ can be extended (as a geodesic null section) to V and γ′(t) = ξγ(t) for all
t ∈ [0, b(x0)).

– If α : [0, b(x)) → L is a null geodesic with α(0) = x ∈ V and α′(0) = ξx ,
then α([0, b(x)) ⊂ V .

In fact,we can not only say that b(x) is finite, butwe can give an explicit expression
for it. Take x0 ∈ L and V a neighbourhood as in Proposition 1 and ξ ∈ X(V ) a
geodesic rigged. The flow of ξ is given by Φ(t, x) = expx (tξx ) and if we integrate
Eq. (4), then we get

ρ(Φ(t, x)) = 1
1

ρ(x) − t
(5)

for all 0 ≤ t ≤ b(x). Since limt→ 1
ρ(x)

− ρ(Φ(t, x)) = ∞, then b(x) ≤ 1
ρ(x) . We can see

that necessarily b(x) = 1
ρ(x) using the following lemma.

Lemma 2 Let (M, g) be a geodesically null complete Lorentzian manifold and L a
strongly inextensible and totally umbilic null hypersurface. Suppose that Ric(u, u) =
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0 for all null vector u ∈ T L, γ : [0, b) → L, 0 < b < ∞, is a null geodesic such
that γ(b) /∈ L and take a geodesic null section ξ as above. Then the associated null
mean curvature holds

lim
t→b−

ρ(γ(t)) = ∞.

Proof Take Σ ⊂ V a spacelike hypersurface in L through x0 = γ(0) and consider
Φ : R × Σ → M given by Φ(t, x) = expx (tξx ). We have Φ(t, x0) = γ(t) for all
t ∈ [0, b). Observe that (b, x0) is a singular point of Φ, otherwise L would not be
strongly inextensible since γ(b) /∈ L . Thus, there is w ∈ T(b,x0) (R × Σ), w �= 0,
such that Φ∗(b,x0)

(w) = 0. If we take (t (s), x(s)) a curve in R × Σ such that w =
t ′(0)∂t + x ′(0) then

Φ∗(b,x0)

(
x ′(0)

) = −t ′(0)γ′(b).

Now, take the geodesic variation X : [0,∞) × (−ε, ε) → M given by X (t, s) =
Φ(t, x(s)). The Jacobi vector field J (t) = Xs(t, 0) holds J (0) = x ′(0), J (b) =
Φ∗(b,x0)

(x ′(0)) = −t ′(0)γ′(b) and J ′(t) = ∇J (t)ξ for all t < b. If we call f (t) =
g(J, J ), then f (0) > 0, f (b) = 0 and

f ′(t) = 2g(∇J (t)ξ, J (t)) = −2B(J (t), J (t)) = −2ρ(γ(t)) f (t).

Therefore,
f (t) = f (0)e−2

∫ t
0 ρ(γ(t))dt

for t < b. Since f (b) = 0 we have
∫ b
0 ρ(γ(t))dt = ∞, but from Eq. (4) we have that

ρ(γ(t)) is increasing, so limt→b− ρ(γ(t)) = ∞.

Now, in order to prove Theorem 4, we only have to choose a suitable screen distri-
bution and apply Theorem 1 to ensure that the null geodesic of the null hypersurface
are getting closer.

For this, fix x0 ∈ L and ξ ∈ X(V ) a rigged as in Proposition 1. Since we are
supposing that ρ never vanishes, from Eq. (4) we have that ξ(ρ) �= 0 and so the level
sets of ρ form a well-defined screen distribution S in V .

Take S the leaf of S through x0. An integral curve α of ξ with α(0) = x ∈ S is
defined, by construction, in the interval [0, b(x)), but from Eq. (5), we have that b(x)
is constant through S, thus all the integral curves starting at S are defined in [0, b),
where b = b(x0).

Obviously, the screen distribution defined by the level sets of ρ is integrable and
so dω(X,Y ) = 0 for all X,Y ∈ Γ (S). Since Φ(t, x) = expx (tξx ) is the flow of ξ
and ρ is given by Eq. (5), the flow of ξ preserves the screen distribution and so
0 = Lξω = iξdω + diξω = iξdω. Thus dω(ξ,U ) = 0 for allU ∈ X(L) and we can
conclude that the rigged one-form ω is closed.

Since ρ is increasing along the integral curves of ξ, the restriction of the flow
of ξ to (0, b) × S is injective and Theorem 1 gives us an isometric embedding Φ :
(0, b) ×λ S → (L , g̃), where
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λ(t, x) = exp

(
−

∫ t

0
ρ(Φ(s, x))ds

)
= exp

(
−

∫ t

0

1
1

ρ(x) − s
ds

)
= 1 − t

b
.

Now observe that we can extend Φ to R × S because M is null geodesically
complete, so we can consider the map Ψ : S → M given by Ψ (t, x) = expx (bξx ) =
Φ(b, x). Saying that L is contained in a null cone is equivalent to show that Ψ is
a constant map. The key to prove this is to observe that the geodesics t → (t, x) in
(0, b) ×λ S are approaching when t tends to b because limt→b− λ(t) = 0.

Lemma 3 The map Ψ : S → M is a constant map.

Proof Take α : I → S any curve and consider the geodesic variation X (t, s) =
Φ(t,α(s)) = expα(s)(tξα(s)). The curves s �→ X (t, s) are in the leaf of S through
X (t, 0), so we have

g(Xt (t, s), Xs(t, s)) = 0,

g(Xs(t, s), Xs(t, s)) = λ(t)2g(α′(s),α′(s))

for all t ∈ (0, b). Taking limit as t approachesbwehave thatΨ∗α(0)

(
α′(0)

) = Xs(b, 0)
is zero or a null vector necessarily proportional to d

dt Φα(0)(t)|t=b. Thus, for each
x ∈ S we have Ψ∗x = 0 or dim kerΨ∗x = n − 3. Suppose that there is a point x0 ∈ S
which holds this last case. Since dim kerΨ∗x < n − 2 is an open condition, there
is a neighbourhood x0 ∈ U ⊂ S with dim kerΨ∗x = n − 3 for all x ∈ U and thus
H = kerΨ∗x defines a codimension one integrable distribution on U ⊂ S.

Take α : I → S a transverse curve to H with α(0) = x0 and ϕ = (z1, . . . , zn−2)

an adapted chart to H in a neighbourhood of x0 in S, i.e., the leaves of H are given
by zn−2 = c for a constant c. Since Ψ is constant through the leaves of H, then we
have that the curve

β(t) = ϕ−1(z1(α(t)) + ε, z2(α(t)), . . . , zn−2(α(t)))

for some ε > 0 holds Ψ (α(t)) = Ψ (β(t)) and x1 = β(0) �= α(0) = x0. Therefore,
Ψ∗x0

(α′(0)) = Ψ∗x1
(β′(0)).

Now, we know that d
dt Φx0(t)|t=b is proportional to Ψ∗x0

(α′(0)) and d
dt Φx1(t)|t=b

toΨ∗x1
(β′(0)), so there is a constant a �= 0 with d

dt Φx0(t)|t=b = a d
dt Φx1(t)|t=b which

means that Φx1(at + b) = Φx0(t + b). If a > 0 then we can take a value of t such
that t + b and at + b are in (0, b). Evaluating Eq. (5) we get a = 1. But this means
that the geodesics Φx0(t) and Φx1(t) are the same and in particular x0 = x1, which
is a contradiction.

The case a < 0 means that the geodesics Φx0(t) and Φx1(t) meet at Φx0(b) =
Φx1(b) but with opposite direction. If we do the same construction as before with a
point x2 �= x1, x0 then we can construct two distinct null geodesics which meet with
the same direction, but we have seen that this situation is not possible.
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The hypothesis about the Ricci curvature in Theorem 4 can be relaxed. Indeed, we
only need to ensure that the Ricci curvature is a constant through the null geodesics
of the null hypersurface, which allows us to solve the differential Eq. (4). An example
of a Lorentzian manifolds with this property is the direct product M = R × S

n . If
γ(t) is a null geodesic in M , then Ric(γ′(t), γ′(t)) is a constant, which depends on
the geodesic. In a similar way as in Theorem 4 we can prove the following.

Theorem 5 ([10]) Let (M, g) be a null geodesically complete Lorentzian manifold
with dimension n > 3. Take L a totally umbilic null hypersurface satisfying the
following properties.

1. It has never vanishing null mean curvature.
2. For each null geodesic γ : I → L it holds d

dt Ric(γ
′(t), γ′(t)) = 0.

3. It is strongly inextensible.

Then, L is contained in a null cone.

3 Codimension Two Spacelike Submanifolds Through a
Null Hypersurface

There are several papers where codimension two spacelike submanifold through
a null hypersurface are studied, but they focus mainly in null cones and constant
curvature ambients, [2–4, 13, 14, 17]. In this section we consider a codimension two
spacelike submanifold through an arbitrary null hypersurface as a hypersurface of
the Riemannian manifold constructed from the riggedmetric. This allows us to apply
the classical Eschenburg maximum principle to obtain conditions for a codimension
two spacelike submanifold through a null hypersurface to coincide with a leaf of an
integrable screen.

TakeΣ a codimension two spacelike submanifold contained in a null hypersurface
L with rigging ζ. Since (TxΣ)⊥ is a timelike plane, we can suppose that

(TxΣ)⊥ = span(ξ, η),

where η is the unique null vector field over Σ with g(ξ, η) = 1. It is easy to check
that the second fundamental form of Σ is given by

I(U, V ) = −g(∇Uη, V )ξ + B(U, V )η (6)

for allU, V ∈ X(Σ) and therefore the mean curvature vector of Σ as a submanifold
of M is

�HΣ = trΣ Aη · ξ + H · η,

where Aη(U ) = − (∇Uη)TΣ .
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The null hypersurface L does not need to be totally geodesic or umbilical even if
Σ is totally geodesic or umbilical in (M, g), since the Eq. (6) only holds along Σ

and not in the whole L .
Now, we consider Σ as a hypersurface of the Riemannian manifold (L , g̃) and

we wonder what the mean curvature of Σ in (L , g̃) is. First we need a g̃-unitary and
normal vector field toΣ . For this, decompose η according to decompositions (1) and
(2) as

η = X0 + αξ + N ,

where X0 ∈ Γ (S) and α = g(η, N ). Observe that X0(p) ∈ (
TpΣ ∩ Sp

)⊥
for all

p ∈ Σ and α ≤ 0 by the construction of N .
The vector field given by

E = 1√
1 − 2α

(X0 + ξ)

is a g̃-unitary and normal vector field to Σ as a hypersurface of (L , g̃). Moreover,
1√

1−2α
can be interpreted as the cosine of the g̃-angle between TpΣ and Sp for

each p ∈ Σ . Therefore, the mean curvature of Σ as a hypersurface of the Riemann
manifold (L , g̃) is given by

H̃Σ(p) =
n∑

i=3

−g̃(∇̃ui E, ui ),

where {u3, . . . , un} is a g̃-orthonormal basis of TpΣ . The following proposition
gives us an expression for H̃Σ in term of the fundamental tensors of L and the
second fundamental form and mean curvature vector of Σ .

Proposition 2 ([11]) Let L be a null hypersurface in a Lorentzian manifold and ζ
a rigging vector field for it such that dω = 0. If Σ is a spacelike codimension two
submanifold of M through L, then the mean curvature H̃Σ of Σ respect to E holds

H̃Σ

cos θ
= g( �HΣ, N ) − Ω − B(X0, X0) + 1

cos2 θ
H

+ cos2 θ (C(X0, X0) − g(IΣ(V0, V0), N ) − τ (X0 + V0)) ,

where θ is the g̃-angle between TpΣ and Sp and V0 = X0 + 2αξ.

The null second fundamental form B is related to g̃ by the equation

(
Lξ g̃

)
(X,Y ) = −2B(X,Y )

for all X,Y ∈ Γ (S), [8]. In particular, the null mean curvature of the null hypersur-
face is the g̃-divergence of the rigged vector field,
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H = −d̃ivξ. (7)

Suppose that the rigged one-form ω is closed. Then the screen distribution S is
integrable and we can consider a leaf S also as a hypersurface of the Riemannian
manifold (L , g̃). It is clear that ξ is a g̃-unitary and normal vector field to S and so,
taking into account Eq. (7), its mean curvature as a hypersurface of (L , g̃) coincides
with the null mean curvature of the null hypersurface.

Now we can apply the Eschenburg maximum principle to the hypersurfaces Σ

and S in (L , g̃), [6, Theorem 1]. Roughly speaking, it says that if two hypersurfaces
are tangent at a point and locally around this point the mean curvatures are suitable
bounded by a constant and one of them is “on one side of the other one”, then the
hypersurfaces are the same. We make more precise this last statement in our context.

Observe that the rigged vector field ξ is always pregeodesics. IfS is integrable and
S is the leaf through a fixed point p ∈ Σ , then there are neighbourhoods p ∈ U ⊂ S
and p ∈ V ⊂ L such that Φ : (−ε, ε) ×U → V given by Φ(t, x) = expx (tξx) is
a diffeomorphism. We call dζ

S = Π ◦ Φ−1, where Π is the projection onto the first
factor. If dζ

S ≥ 0 in a neighbourhood of p in S, then Σ is locally “on one side of S”.
In this case, Σ and S are tangent at p and Ep = ξp.

If we suppose that Σ is totally geodesic, from Eq. (6) we have that B = 0 and in
particular H = 0 along Σ . If moreover the rigging is screen conformal we also have
C = 0 andΩ = 0 alongΣ . Therefore, if in addition the rigging is distinguished, then
from Proposition 2 we have that the mean curvature of Σ in (L , g̃) is zero and we
obtain the following result ensuring that a codimension two spacelike submanifold
through a null hypersurface coincides with a leaf of an integrable screen.

Theorem 6 ([11]) Let L be a null hypersurface of a Lorentzianmanifold, ζ a rigging
vector field for it and Σ a spacelike totally geodesic codimension two submanifold
of M through L. Take a point p0 ∈ Σ and let S be the leaf of the screen distribution
through p0. Suppose that

1. ζ is distinguished.
2. ζ is screen conformal.
3. dζ

S ≥ 0 in a neighborhood of p0 in Σ .
4. H(p) ≥ 0 for all p in a neighborhood of p0 in S.

Then Σ coincides with the leaf S in a neighborhood of p0.

A more careful application of the Eschenburg maximum principle allows us to
obtain other results as the following.

Theorem 7 ([11]) Let L be a null hypersurface of a Lorentzianmanifold, ζ a rigging
vector field for it and Σ a spacelike totally umbilical codimension two submanifold
of M through L. Take a point p0 ∈ Σ and let S be the leaf of the screen distribution
through p0. Suppose that

1. ζ is distinguished.
2. ζ is screen conformal with conformal factor ϕ.
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3. dH = cω for some non-positive function c ∈ C∞(L).
4. dζ

S ≥ 0 in a neighborhood of p0 in Σ .
5. H(p0) ≤ 0.
6. g( �HΣ, N ) ≤ ϕH in a neighborhood of p0 in Σ .

Then Σ coincides with the leaf S in a neighborhood of p0.

The Raychaudhuri equation asserts that

dH(ξ) = Ric(ξ, ξ) + trace(
(
A∗)2) ≥ Ric(ξ, ξ).

Thus, if Ric(ξ, ξ) ≥ 0 and H is not constant, then we can not apply the above
theorem, due to point 3. This happens for example in a null cone in a constant
curvature Lorentzian manifold.

Theorem 8 ([11]) Let L be a totally geodesic null hypersurface of a Lorentzian
manifold and ζ a rigging for it such that

1. ζ is distinguished.
2. The screen distribution is totally umbilical.

Suppose that Σ is a spacelike totally umbilical codimension two submanifold of M
through L and there is a point p0 ∈ Σ such that dζ

S ≥ 0 in a neighborhood of p0 in
Σ , where S is the leaf of the screen distribution through p0. If g( �HΣ, ζ) ≤ Ω in a
neighborhood of p0, then Σ coincides with the leaf S of the screen distribution in a
neighborhood of p0.

In the above results we have to assumemany conditions, but aswe said in the intro-
duction, most important examples of null hypersurfaces admit a screen conformal
and distinguished rigging. We give some examples.

Example 2 Take theLorentzianmanifold (M, g) = (
R × H

n−1,−dt2 + g0
)
, where

H
n−1 is the hyperbolic space Hn−1, which in turn can be decomposed as

(
R × R

n−2, ds2 + e−2sh0
)
,

being h0 the Euclidean metric. The hypersurface L given by

L = {(t, t, x) : t ∈ R, x ∈ R
n−2}

is a totally umbilical null hypersurface and its null mean curvature respect to the
rigging vector field ζ = ∂t is H = 2 − n, [7]. Moreover, we can check that

C = −1

2
g,

Ω = − (n − 2)

2
,

τ = 0,



Null Hypersurfaces and the Rigged Metric 141

so ζ is distinguished and screen conformal with conformal factor ϕ = 1
2 .

On the other hand, the leaf of the screen distribution through a point p0 =
(t0, s0, x0) ∈ L is given by S = {(t, s, x) ∈ R × R × R

n−2 : t = t0, s = s0}. Since
ξ = −∂t − ∂s , if we fix p0 ∈ L and S the leaf through p0, the condition dζ

S(p) ≥ 0
is equivalent to t (p) ≤ t (p0), where t : M → R is the canonical projection onto the
first factor. Moreover, the transverse vector field is N = 1

2 (∂t − ∂s). Therefore, con-
ditions 1, 2 and 3 in Theorem 7 are fulfilled and we can apply it to get the following.

Suppose that Σ is a codimension two totally umbilical spacelike hypersur-
face in R × H

n−1 contained in L = {(t, t, x) : t ∈ R, x ∈ R
n−2}. If there is a point

p0 = (t0, t0, x0) ∈ Σ such that t (p) ≤ t0 and g( �HΣ, ∂t − ∂s) ≤ 2 − n for all p in a
neighborhood of p0 in Σ , then Σ is locally contained in {(t0, t0, x) : x ∈ R

n−2}.
Example 3 Let � > 0 be a constant and Q = {(u, v) ∈ R

2 : − 2�
e < uv}. Take

the functions F(r) = 8�2

r e1− r
2� , f (r) = (r − 2�)e

r
2� −1 for 0 ≤ r and r(u, v) =

f −1(uv) for (u, v) ∈ Q. The Kruskal space is the product Q × S
n−2 endowed with

the metric
2F(r)dudv + r2g0,

where g0 is the standard metric in Sn−2. We call u, v : Q × S
n−2 → R the canonical

projections. The hypersurface

L = {p ∈ Q × S
n−2 : u(p) = 0}

is a null hypersurface and ζ = ∂u is a rigging vector field for it. The rigged vector
field is ξ = 1

F ∂v and the null transverse vector field is N = ζ. Observe that dω = 0,
although ζ is not closed, and the leaf of the screen distribution through a point p0 =
(0, v0, x0) ∈ L is S = {(0, v0, x) : x ∈ S

n−2}. Therefore, in this case, the condition
dζ
S(p) ≥ 0 is equivalent to v(p0) ≤ v(p).
A direct computation shows that L is totally geodesic. Moreover, using that r =

2� through L we have

τ = 0,

C = − v

2�
g,

Ω = − (n − 2)v

2�
.
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Using Theorem 8, ifΣ is a codimension two spacelike totally umbilical submanifold
contained in L and p0 ∈ Σ holds v(p0) ≤ v(p) and g( �HΣ, ∂u) ≤ 2−n

2� v for all p in a
neighborhood of p0 in Σ , then Σ is locally contained in the sphere {p ∈ Q × S

n−2 :
u(p) = 0, v(p) = v(p0)}.
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