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Abstract We show that Bochner-flat para-Kéhler surfaces are self-dual Walker man-
ifolds and therefore they are locally isometric to the cotangent bundle of an affine
surface equipped with a modified Riemannian extension. Explicit examples of con-
stant and non-constant scalar curvature are given.
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1 Introduction

A para-Kihler manifold is a symplectic manifold (M?", Q) that is locally diffeo-
morphic to a product of Lagrangian submanifolds. This way its tangent bundle
decomposes as a Whitney sum of Lagrangian subbundles TM = L @ L’. Consid-
ering 7, and 7, the projections on each subbundle, the (1, 1)-tensor field defined
by J = m; — mp is an almost paracomplex structure on M. Moreover, since L and
L' are Lagrangian subspaces one has that Q(JX, JY) = —Q(X, Y) for all vector
fields X, Y on M and so g(X,Y) = Q(J X, Y) defines a neutral signature metric on
M suchthat g(J X, JY) = —g(X,Y) and VJ = 0, where V denotes the Levi-Civita
connection of (M, g).

Para-Kéhler structures, which are also called bi-Lagrangian manifolds in the lit-
erature, are relevant for both Physics and Geometry. Para-Kéhler geometry plays an
important role in the study of several geometric problems such as the non-uniqueness
of the metric for the Levi-Civita connection [5], the classification of symplectic con-
nections [7], the spaces of oriented geodesics [3], the study of cones over pseudo-
Riemannian manifolds [2] or the classical Monge-Kantorovich mass transport [15]
(see also [11] for applications to supersymmetry). Paracomplex geometry is also rel-
evant for understanding Weierstrass and Enneper type representations for Lorentzian
surfaces in R%! [10, 16].
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The Bochner curvature tensor was introduced by S. Bochner in 1949 [4]. It is
formally defined as an analogue of the Weyl curvature tensor, so that the curvature
tensor of a Bochner-flat manifold is completely determined by its Ricci tensor. Let
(M*, g, J) be a para-Kihler manifold. Its Bochner curvature tensor is defined as

o(X,Y)Z — ;R](X, Y)Z

B(X,Y)Z =R(X,Y)Z + 2(n +2)

r
—— R
2n+2)2n +4)
for all vector fields X, Y, Z on M, where

Ro(X.Y)Z = g(X, 2)Y —g(Y, 2)X
+9(JX,2)JY —g(JY,Z)JX +29(JX,Y)J Z,

Ri(X,Y)Z = g(X, Z)Ric(Y) — g(¥, Z) Ric(X) + g(X, JZ) Ric(JY)
— g(Y, JZ)Ric(JX) + 29(X, JY)Ric(J Z) + p(X, Z)Y
—p(Y, )X + p(X,JZ)JY — p(Y, JZ)JX +2p(X, JY)JIZ .

A para-Kihler manifold is said to be Bochner-flat if its Bochner tensor vanishes
identically. A para-Kihler manifold has constant paraholomorphic sectional curva-
ture c if and only if its curvature tensor is of the form R(X,Y)Z = ﬁRo(X ,Y)Z
(see [14]). This way, any para-Kéhler manifold of constant paraholomorphic sec-
tional curvature is Bochner-flat. Moreover, a Bochner-flat para-Kihler manifold has
constant paraholomorphic sectional curvature if and only if it is Einstein.

Even though the condition of being Bochner-flat is somehow analogous to that
of being locally conformally flat, it is more restrictive since a Bochner-flat para-
Kihler manifold has constant scalar curvature if and only if it is locally symmetric
[17]. Moreover, if its Ricci operator is diagonalizable then the manifold either has
constant paraholomorphic sectional curvature or it is locally isometric to a product
of two spaces of constant opposite paraholomorphic sectional curvature.

The anti-self-dual Weyl curvature tensor of a four-dimensional para-Kéhler man-
ifold is determined by its scalar curvature as W~ = % diag[2, —1, —1] and the sym-
plectic form €2 is an eigenvector for the distinguished eigenvalue. On the other hand,
the self-dual Weyl curvature tensor of a para-Kihler manifold is completely deter-
mined by the Bochner tensor, so W = 0 if and only if the manifold is Bochner-flat
(see [6]). An immediate consequence of these facts is that a four-dimensional para-
Kihler manifold is locally conformally flat if and only if it is Bochner-flat and its
scalar curvature vanishes identically.

Let (M, g, J) be a para-Kihler manifold and denote ®. = ker(J F1d) the
eigenspaces corresponding to the eigenvalues £1 of the paracomplex structure J.
. are parallel degenerate distributions and so any para-Kéhler surface has an under-
lying Walker structure. This fact allows us to study para-Kihler structures through
Walker manifolds.

The present work is organized as follows. Section 2 is devoted to the description
of Walker structures in dimension four, paying special attention to self-dual Walker
structures, in order to pave the way for the understanding of Bochner-flat para-Kihler
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structures in Sect. 3. Note that the para-Kihler and the Walker structures induce dis-
tinguished opposite orientations on the manifold, a fact that plays an important role in
the theory. The classification of Bochner-flat para-Kihler surfaces of constant scalar
curvature is given in Theorem 2, specifying the different curvature models realized
in each situation. Finally, some examples of Bochner-flat para-Kéhler surfaces of
non-constant scalar curvature are provided in Sect.3.2.

2 Walker Structures

Let (M, g, ®) be a four-dimensional Walker manifold, i.e. a pseudo-Riemannian
manifold (M, g) of neutral signature admitting a parallel degenerate plane field ©
of maximal dimension. Walker showed in [19] the existence of local coordinates
(x', x%, x1/, x2) so that ® = span{d;, , Oy, } and the metric expresses as

g= dx' ® dxy + dxiy @ dx' + gi_i(xl,xz, Xy, x)dx' @ dx’. (D)

The simplest examples of Walker manifolds are given by the so-called Riemannian
extensions. We briefly review their construction as follows. Consider a surface ¥ and
let m: T*X — X be the projection from its cotangent bundle. Let (p,w) € T*X
denote a point in 7" %, where p € ¥ andw € T, X. For each vector field X on X the
evaluation map is the function ¢t X € C*°(T*X) defined by tX (p, w) = w(X,). Two
vector fields X and ¥ on T*X satisfy X = Y if and only if they act on evaluation
maps as X(Z) =Y (Z) for any vector field Z on X. Given a vector field X on X, its
complete lift X€ is the vector field determined by the identity X (1Z) = ([X, Z].In
the same way as vector fields on 7*X are characterized by their action on evaluation
maps, (0, s)-tensor fields on 7*X are characterized by their action on complete lifts
of vector fields. In particular, any (1, 1)-tensor field 7 on ¥ induces a 1-form ¢7" on
T*X characterized by .T (X€) = +(T X) (see [20] for more details concerning this
matter).

Riemannian extensions of torsion-free connections were introduced by Patterson
and Walker in [18] as metrics on 7* X such that gp(X€, Y¢) = —.(DxY + Dy X),
where D is a torsion-free connection on the base manifold X. Deformed Riemannian
extensions are neutral signature metrics on 7*X such that gp ¢ = gp + 7" P, where
® is a symmetric (0, 2)-tensor field on the affine surface. Afifi showed in [1] that a
Walker manifold with parallel null distribution © is locally isometric to a deformed
Riemannian extension of an affine connection if and only if its curvature tensor
satisfies R(-, ®)® = 0. These metrics were further generalized in [8] as follows.
Considering a symmetric (0, 2)-tensor field ® and (1, 1)-tensor fields 7 and S on
an affine surface (X, D), the modified Riemannian extension is the neutral signature
metric on 7*% defined by gp o.7.s = ¢T 0S4+ gp + 7" P, where ‘o’ denotes the
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symmetric product. Considering local coordinates (x!, x?) on a neighbourhood 2/ in
¥ and induced coordinates (x!, x2, xy/, x») on 7~ ' (), one has

gp.er.s =dx' @dxy + dxy @ dx’
+ {320 (TFS7 + T/ SP) = 200 T + @i} dx’ @ di/

where T = T/dx' ® 0., S = S7/dx' ® O,i, ® = ®;;dx' ® dx’ and PI';} are the
Christoffel symbols of the affine connection D. Moreover, the Walker distribution
is given by © = ker m,. Furthermore, a Walker metric corresponds to the modified
Riemannian extension of an affine connection if and only if (Vo R)(®D, ) = 0.

2.1 Self-Dual Walker Manifolds

The existence of a parallel degenerate 2-dimensional distribution ® on a neutral sig-
nature manifold (M, g) of dimension four naturally induces an orientation. We recall
the discussion in [12]. Let p € M and let {u, v} be an arbitrary basis of © . Then the
Hodge-star operator satisfies x(u* A v*) = £(u™ A v*), where u™, v* € T;‘M denote
the corresponding dual forms. This way, any four-dimensional Walker manifold is
naturally oriented by the self-duality of u* A v*. Let (x', x2, xy/, x) be local coor-
dinates on a four-dimensional Walker manifold as in (1). Then the Walker orienta-
tion determined by x(dx A dxy) = dx A dxp corresponds to the volume element
vol, = dx' Adx® Adxy A dxy. Self-dual Walker manifolds were described in [8]
as follows.

Theorem 1 ([8, Theorem 7.1]) A four-dimensional Walker manifold is self-dual if
and only if it is locally isometric to the cotangent bundle T*X of an affine surface
(X2, D) with metric

g=1tX@IdotId) +¢T o tId +gp + 7* P, )

where gp denotes de Riemannian extension of the affine connection, X is a vector
field on ¥ and T and ® are a (1, 1)-tensor field and a symmetric (0, 2)-tensor field
on X, respectively.

Let T be a surface with local coordinates (x', x2) and consider (x', x2, x;/, x») the
induced local coordinates on 7*X. The canonical symplectic structure of the cotan-
gent bundle determined by the tautological 1-form = x;.dx* induces an orientation
determined by the volume form df A df = —dx' A dx* A dxy A dxy, which is the
opposite of the orientation induced by the Walker structure given by © = ker ,.
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3 Bochner-Flat Para-Kihler Surfaces

Let (M, g, J) be a para-Kihler surface and denote ® . = ker(J F Id). We consider
Walker coordinates (x!, x2, xy/, x») asin (1) and set the Walker distribution tobe ® =
D so that J|p = Id. We point out that para-Kihler surfaces are Walker manifolds
but the converse is not true, since the parallelizability of ® = ®_ does not ensure
the integrability of the complementary distribution ®_. The almost para-Hermitian
structures satisfying J|p = Id are locally parametrized by a real-valued function
fx', x2, xp, xp) so that

Jfa)c1 = —0u + 9118x1/ + fales Jfax]/ = 6_)(']/1 3)
Jfax2 = —Ux2 + (2g12 - f)axl/ + 9228x2m Jfaxzr = axz/'

Their associated Kahler 2-forms Q (X, Y) = g(Jy X, Y) are given by Qp = (f —
gr)dx' A dx* +dxy Adx' 4 dxy A dx?, thus

dQs = 0., (f — gr)dxy Adx' Adx* 4 0, (f — gin)dxy Adx' Adx?.

Therefore, dQ2y = 0 if and only if Fxb, x% xp, x0) = g, x2, x1, x0) + h(x!,
x2) for some function & (x', x?) and the almost paracomplex structure becomes

Jp0g = =0 + 9110y, + (g2 + W0y, JpOr, = Oy, @
JhOp = =02 + (912 — h)axl/ + 9228)(2/’ Jhaxzr = 8x2/~

Considering an almost para-Hermitian structure given by (1) and (4), the associated
Kihler 2-formis given by €, = hdx' A dx* + dx; A dx' + dxy A dx*.Itisimpor-
tant to emphasize that the para-Kahler and Walker orientations are opposite. Indeed,
the Kéhler 2-form €2, is anti-self-dual for the para-Kihler orientation determined by
the paracomplex structure Jj, but it is self-dual for the Walker orientation.

In order to describe Bochner-flat para-Kihler surfaces we consider the cotan-
gent bundle 7*¥ of an affine surface (X, D) with metric g = ¢ X (¢Idoc1d) 4+ ¢T o
t1d4gp + 7" ® as in (2) and set the paracomplex structure satisfying the condition
Jlker=, = Id. The almost para-Hermitian structures defined by (1) and (4) are not
para-Kihler in general. We use the notation (Vp,. J;)0ys = (VJj)3,0" Ox to denote
the components of VJj, on T*% and (Dy, T)0,; = DTj;[kﬁxk, (Do, @)(Oys, Opr) =
D®j;.; to represent the covariant derivatives of the (1, 1)-tensor field T and the
symmetric (0, 2)-tensor field ® on X, respectively. Using the notation in Theorem
1, long but straightforward calculations show that:

Lemma 1 Let (M, g) be a self-dual Walker manifold of dimension four. Let Jy, be an
almost paracomplex structure given by Jy, |xer r, = Id sothat (g, Ji,) is an almost para-
Hermitian structure on M. Then the nonzero components of the covariant derivative
V Jy, are given by
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8 (VI * = x) (T u(T) +88) } + xixo {(T9)? — (TV)* + 8(SF — SH}
+X1/X%, {—T12 tr(T) — 8812}
+x3 {8DT1,! —4DTy, 1" +2X'(8h — 4d ;) — 4X2 D}
+xpxy {8DT12> — 4DTs, > — 4DTy, ' + 16hX? + 8X' @y}
+x§, —4DT1;12 + 4X2(D11 }
txp {1698 + 100T) + 20T2 — 240(T) D1y + 4(da; — cinn)}
+xo {—16p0 + 8hT¢ + 2tr(T) Py, }
+8{01h — h(°T'1}' + °T'1?) + D@11 — DDy},

S(VJh)1;24 = x%, {—le tr(T) — 8812} + x12,X2/ {T21 tr(T) + 8821}
+xpxy (1) = (T1)* + 8(S7 — S}
+)C12/ {4DT2;21 — 4X1¢)22}
+xyxy {—8DTy' +4DT " +4DT 5% + 160X — 8X2 Py}
—l—x%, —8DT2;12 + 4DT];22 + 2X2(8h + 4@12) + 4X1q>1] }
+x1 {16p2, 4+ 8h Ty — 2tr(T) P2}
txy | =168, + 20T + 10RTE + 2te(T) D1y + 4(dy; — élz)}
+8{0xh — h("Ty? + PT'1)) + D®yyy — DDy},

where X = X'0;, T = T} 0, ® dx’ and ® = ®;;dx" ® dx’ are the vector field, the
(1, 1)-tensor field and the symmetric (0, 2)-tensor field on ¥ given in Theorem I,
S is the (1, 1)-tensor field on X defined as S(Z) .= Dz X, &(X, Y):=®(TX,Y)
and °T ,~‘,~k are the Christoffel symbols of the affine connection.

Notice that the expressions in Lemma 1 are polynomials on the fiber coordinates x;-
and x, whose coefficients are functions of the base coordinates x' and x2.

3.1 Bochner-Flat Para-Kdihler Surfaces of Constant Scalar
Curvature

It follows from Theorem 1 that the scalar curvature of a Bochner-flat para-Kéhler
surface is given by 7 = 12¢X + 3tr(T), where (X is the evaluation map of the
vector field X. Therefore if a Bochner-flat para-Kihler surface has constant scalar
curvature then the vector field X vanishes and 7 must have constant trace. If 7 # 0
there exist local coordinates in which the (1, 1)-tensor field T = ¢ Id with ¢ € R.
In this situation, a Bochner-flat para-Kéhler surface has constant paraholomorphic
sectional curvature and so it is locally isometric to the cotangent bundle of a flat affine
surface (X, D) endowed with a modified Riemannian extension g = c¢Id ot Id +¢gp
(see [9, Theorem 2.2]).

Bochner-flat para-Kéhler surfaces with 7 = 0 are locally conformally flat. Work-
ing at a purely algebraic level, we consider (V, (-, -), J) a para-Hermitian inner prod-
uct space and a para-Kihler algebraic curvature tensor 4: V x V. xV xV — R
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sothat A(X,Y) - J = J - A(X, Y). There are three non-flat locally conformally flat
algebraic curvature models (V, (-, -}, A) as follows.

o: (V, (-, -),.A) given by

1
Az = Az = )

with respect to pseudo-orthonormal a basis {u1, us, u3, us} where the non-zero inner
products are (uj, ur) = 1 = —(us, uy).

M): ((V, (-, -), A) given by

k
Auaz = Araar = Aspos = Az = 3

with respect to an orthonormal basis {u, us, us, us} where u, us are spacelike vec-
tors and u,, uy are timelike vectors.

(Po): (V, (-, -), A) given by
A = Ausza =k

with respect to an orthonormal basis {u, u, us, us} where u, uz are spacelike vec-
tors and u,, uy are timelike vectors.

It follows from Lemma 1 that if 7 = 0, then the (1, 1)-tensor field 7 must be
parallel and so the classification of Bochner-flat para-Kéhler surfaces of constant
scalar curvature is summarized as follows.

Theorem 2 ([13, Theorem 4.2]) Let (M, g, J) be a Bochner-flat para-Kdihler sur-
face of constant scalar curvature. Then it is locally isometric to a Riemannian exten-
sion of the form (T*X, g = 1T o 11d +gp) with paracomplex structure determined
by Jlxerr, =1d, where T is a parallel (1, 1)-tensor field on a flat affine surface
(X, D). Moreover, one of the following holds:

(i) T=0and (M, g, J) is flat.
(ii) T =cld and (M, g, J) has constant paraholomorphic sectional curvature
H=c
(iii) T? = k*1d and (M, g, J) is isometric to a product of two Lorentzian surfaces
of constant opposite curvature, thus modelled on (By,).
(iv) T?> =0and (M, g, J) is modelled on (ON).
(v) T?> = —x*1d and (M, g, J) is modelled on (Ny).
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3.2 Some Examples of Bochner-Flat Para-Kdhler Structures
of Non-constant Scalar Curvature

Consider an affine surface (X, D) and let (g, J) be an almost para-Hermitian struc-
ture on T*% given by Jylkerr, = Id, where the metric g = ¢ X (¢Idoc1d) 4+ ¢T o
t1d 4+gp + m* @ is given as in Theorem 1. Aimed to construct examples of Bochner-
flat para-Kéhler surfaces of non-constant scalar curvature we analyze the case where
the (1, 1)-tensor field T is parallel. In this situation, the nonzero components of the
covariant derivative of J;, reduce to

8(VI * =} {T (1) + 88} + xixy {(TH)* — (T2 + 8(SE — SV}
txpx3 { T2 a(T) — 882} + x7 {2X' (8h — 4d ) — 4X? Dy, )
+xpxy {16hX? + 8X' @y, } 4 x5 {4X2 Dy}

{1692 + 108T + 20T2 — 240(T) D1y + 4(ds; — &12)}
+xp {—16pf) + 8hT¢ + 2tr(T) Py, }
+8{01h — h(°T'1' + T #) + D®yy; — DDy},

8(VI) it = x3 { TP e (T) — 887} + x3xy { T r(T) + 8S,'}
+xvx3 {(TH? — (T1)? 4+ 8(SF — S} + xf {—4X" D1}
+x1xy {16h X" — 8X2 Py} + x3 {2X*(8h + 4®1p) + 4X' Dy}
—+x1 16p2Dz + ShTzl — 2tr(T)d>22}
oy [ —16p2 + 20T + 10KTE + 2te(T) P13 + 4(dy; — &12)}
+8{0xh — h("Ty? + PT'1d) + D®yay — DD}

Since the tensor field T is parallel, it has constant trace and X must be nonzero so
that 7 = 12:X + 3 tr(T) is non-constant.

If X! # 0 it follows immediately from the expression of the coefficient of x7
in (VJ;,)1.2* above that ®5, = 0. Knowing this, the expression of the coefficient of
xpxy in (VJ,)1.2* shows that i = 0. The same coefficient in (V J;,)1.;* shows that
®,; = 0 and now, focusing on the coefficient ofxlz, in (VJp)1. * we see that @, = 0.
If X? # 0, proceeding analogously it follows that 4 and ® vanish identically.

Since both the function /# and the symmetric (0, 2)-tensor field ® vanish, the
components of the covariant derivative V J;, reduce to

8(VIi * = x) (T w(T) +88) } + xixy {(TH? — (T1)* + 8(SF — SH}
+X1/X§, {—T12 tI'(T) - 8812} + 16X1/pé)] - 16XZ/p?|,

8(VIpi* = x3 {—TAtr(T) — 887} + xixy { T tr(T) + 88, } + 16x1p8
+xvx3 {(TH* — (TH? + 8(SE — S} — 16x2p.

The linear terms in these two expressions show that the Ricci tensor of the affine
surface must vanish identically. Therefore the affine connection is necessarily flat.
Assume that T is trace-free. At this point, the components of V J, take the form
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8 (V)1 * = 8x S +xfxy {(Tzz)z—(T11)2+8(522—511)} — 8x1/x3, S,
8(VI)12* = 8x2xa S +xpx3 {(Tzz)z—(Tll)2+8(322—511)} — 8x3S¢.

The existence of parallel (1, 1)-tensor fields on affine surfaces was studied in [9]
showing that (besides the case where 7 = 0) a trace-free parallel (1, 1)-tensor field
on an affine surface (X, D) corresponds to one of the following.

(a) An affine para-Kdhler structure (det(T) = —k? < 0), which in suitable adapted
coordinates becomes T = (01 ® dx' — 0> ® dx?).

(b) An affine nilpotent Kihler structure (T* = 0), which in suitable adapted coor-
dinates becomes T = k0,1 @ dx?.

(c) An affine Kdhler structure (det(T) = k2 > 0), which in suitable adapted coor-
dinates becomes T = k(0,2 ® dx! — 0,1 @ dx?).

Straightforward calculations now show that, for any case described above, there exist
local coordinates in which the (1, 1)-tensor filed S = DX takes the form S = \Id
for some function A € C*°(X) and the scalar curvature is given by 7 = ¢ X.

We summarize the discussion above in the following

Theorem 3 Ler (X, D) be an affine surface and let (g, J,) be an almost para-
Hermitian structure on T*X such that

Jilkerm, =1d  and g=1X(Idot1d) + (T o t1d +gp + 7*P.

If T isparallelandtc(T) = Othen (T* X, g, Jy) is a Bochner-flat para-Kdhler surface
if and only if h = 0, ® = 0, the affine connection D is flat and S = \1d for some
A € C®(X), being S(Z) = Dz X.

Remark 1 If the affine connection D is flat, there exist local coordinates on X so
that all the Christoffel symbols are zero. After a suitable linear transformation on
the coordinates one can set 7 being of one of the forms described above. Straight-
forward calculations show that there exist suitable adapted coordinates in which
Bochner-flat para-Kihler structures determined by a trace-free parallel (1, 1)-tensor
field T are given by the vector field X = ax'd,:, where a € R and thus S = a Id.
We subsequently examine the different possibilities.

(a) Let T be an affine para-Kihler structure on a flat affine surface (X, D) and
take local coordinates so that T} =0, T = k(9 ® dx' — 0,2 ® dx?) and
X = ax'0,:. Then the Bochner-flat metric induced on T*X is given by

g= xlz,(axl/xl +axyx*+r)dx'® dx! —i—x%,(axl«xl +axyx? — K)dx*Q dx?

+axypxy (cpx'+xx2)(dx' @ dx?+dx*® dx")+dx' @dx; +dx*Qdxy.

A straightforward calculation shows that the Ricci curvatures are given by

A = 22X £V X)2 +2u(TX) + K2,
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(©)

M. Ferreiro-Subrido

and the Ricci operator diagonalizes with real eigenvalues on the zero section of
T*%. The curvature on the zero section of the cotangent bundle corresponds to
that of a locally conformally flat para-Kihler surface determined by an affine
para-Kéhler structure, thus it is modelled on (3;).

Let T be an affine nilpotent Kihler structure on a flat affine surface (X, D) and
take local coordinates so that T';} = 0, T = k0,1 ® dx? and X = ax'9,.. Then
the Bochner-flat metric induced on 7*¥ is given by

g= axlz,(xlrx1+x2rx2)dx1 ® dx'+xy (axy (xpx'+x0x2) + kx1)dx* @ dx?
+%x1/(2ax2r (xpx '+ x0x?) +kx1) (dx! @ dx*+dx* @ dx)
+dx' @ dxy+dx* @ dxy.

A straightforward calculation shows that the Ricci curvatures are given by

A = 20X £/ (X)2 + 2T X),

and the Ricci operator is two-step nilpotent on the zero section of 7*X. The
curvature on the zero section of the cotangent bundle corresponds to that of a
locally conformally flat para-Kéhler surface determined by an affine nilpotent
Kiéhler structure, thus it is modelled on (901).

Let T be an affine Kihler structure on a flat affine surface (X, D) and take local
coordinates so that °T';} = 0, T = k(0,» ® dx' — 0,1 ® dx?) and X = ax' .
Then the Bochner-flat metric induced on 7*X is given by

g = xy(axy(xpx! + Xox2) + kx2)dx' @ dx!
+xo (axy (xpx' + xpx?) — kx;)dx? ® dx?
+(CZX1/)C2r()C1fX1+X2f)€2)+%(x§,—xlz,)l{) dx' ® dx*+dx*> @ dx")
+dx' @ dxy+dx* @ dxy.

A straightforward calculation shows that the Ricci curvatures are given by

A = 20X £V 0X)2+2u(TX) — K2,

and the Ricci operator has complex eigenvalues on the zero section of 7*X.
The curvature on the zero section of the cotangent bundle corresponds to that
of a locally conformally flat para-Kihler surface determined by an affine Kéhler
structure, thus it is modelled on (D1;).

Remark 2 In the case where T is a parallel (1, 1)-tensor field with nonzero trace on

(%,

D), wedenote 70 = T — @ Id the traceless part of T so that T = T + wld,

being tr(T)) = 2u. Since the affine connection D is flat, there exist local coordinates in
which all the Christoffel symbols “T'; ¥ are zero. After a suitable linear transformation
on the coordinates we can set 7° being of one of the forms described in (a), (b) and (¢)
above. Straightforward calculations show that there exist suitable adapted coordinates
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in which Bochner-flat para-Kihler structures determined by a parallel (1, 1)-tensor
field T with tr(T") # 0 correspond to one of the following situations.

(a)

(b)

(©)

(d)

If 7° is an affine para-Kéhler structure then the (1, 1)-tensor fields 7 and S com-
mute and there exist local coordinates in which T = (u + k)0, ® dx' + (n—
k)0 @ dx? and X = ax'0y + (a + *)0x2. The Bochner-flat metric induced
on T*¥ has Ricci curvatures given by

Ai =3+ 3X £ V(X2 +uTX) + «(KX) + K2,

where K = T — tr(T) Id. The Ricci operator diagonalizes with real eigenvalues
Ay = %u =+ k on the zero section of the cotangent bundle 7*X.

If 7% is an affine nilpotent Kihler structure then the (1, 1)-tensor fields T
and S commute and there exist local coordinates in which T = u(0y ® dx' +
O ® dx?) + kO ® dx? and X = (ax1 — %xz) 0,1 + ax?0,2. The Bochner-
flat metric induced on 7*¥ has Ricci curvatures given by

A =30+ 31X £V0X)?+uTX) + u(KX),

where K = T — tr(7') Id. On the zero section of the cotangent bundle the Ricci
operator has a single eigenvalue \ = % w1 that is a double root of its minimal
polynomial.

If 7Y is an affine Kihler structure then the (1, 1)-tensor fields 7 and S commute
and there exist local coordinates in which T = p(0y ® dx' + 0 ® dx?) +
k(O @dx' — 0y ® dx?)and X = (ax1 + %xz) Oy + (ax2 - %xl) O,2.The
Bochner-flat metric induced on 7*¥ has Ricci curvatures given by

A =30+ 3X £ V(X2 +uTX) + o(KX) — K2,

where K = T — tr(T) Id. The Ricci operator is complex-diagonalizable with
eigenvalues Ay = % it + +/—r? on the zero section of T*X.

If T° =0 there exist local coordinates in which the (1, 1)-tensor field T is
a multiple of the identity 7 = pId and X = ax'd,:. The Bochner-flat metric
induced on 7*X has Ricci curvatures given by

Ai = 2 +3X £V/(X)? + uTX) + u(KX),

where K = T — tr(T) Id. On the zero section of the cotangent bundle, the Ricci
operator is diagonalizable with a single real eigenvalue A = % 1. Therefore the
paraholomorphic sectional curvature is constant on the zero section of 7*X.
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