Bochner-Flat Para-Kähler Surfaces

María Ferreiro-Subrido

Abstract We show that Bochner-flat para-Kähler surfaces are self-dualWalker manifolds and therefore they are locally isometric to the cotangent bundle of an affine surface equipped with a modified Riemannian extension. Explicit examples of constant and non-constant scalar curvature are given.

Keywords Para-Kähler structures · Bochner tensor · Walker structures · Riemannian extension

1 Introduction

A para-Kähler manifold is a symplectic manifold (M^{2n}, Ω) that is locally diffeomorphic to a product of Lagrangian submanifolds. This way its tangent bundle decomposes as a Whitney sum of Lagrangian subbundles $TM = L \oplus L'$. Considering π_L and $\pi_{L'}$ the projections on each subbundle, the (1, 1)-tensor field defined by $J = \pi_L - \pi_{L'}$ is an almost paracomplex structure on *M*. Moreover, since *L* and *L'* are Lagrangian subspaces one has that $\Omega(JX, JY) = -\Omega(X, Y)$ for all vector fields *X*, *Y* on *M* and so $g(X, Y) = \Omega(JX, Y)$ defines a neutral signature metric on *M* such that $g(X, Y) = -g(X, Y)$ and $\nabla I = 0$, where ∇ denotes the Levi-Civita *M* such that $g(JX, JY) = -g(X, Y)$ and $\nabla J = 0$, where ∇ denotes the Levi-Civita connection of (*M*, ^g).

Para-Kähler structures, which are also called bi-Lagrangian manifolds in the literature, are relevant for both Physics and Geometry. Para-Kähler geometry plays an important role in the study of several geometric problems such as the non-uniqueness of the metric for the Levi-Civita connection [[5\]](#page-11-0), the classification of symplectic connections [\[7](#page-11-1)], the spaces of oriented geodesics [[3\]](#page-11-2), the study of cones over pseudo-Riemannian manifolds [\[2](#page-11-3)] or the classical Monge-Kantorovich mass transport [[15\]](#page-11-4) (see also [\[11](#page-11-5)] for applications to supersymmetry). Paracomplex geometry is also relevant for understanding Weierstrass and Enneper type representations for Lorentzian surfaces in $\mathbb{R}^{2,1}$ [[10,](#page-11-6) [16](#page-11-7)].

M. Ferreiro-Subrido (⊠)

Universidade de Santiago de Compostela, Santiago, Spain e-mail: mariaferreiro.subrido@usc.es

[©] The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 A. L. Albujer et al. (eds.), *Developments in Lorentzian Geometry*, Springer Proceedings in Mathematics & Statistics 389, https://doi.org/10.1007/978-3-031-05379-5_5

The Bochner curvature tensor was introduced by S. Bochner in 1949 [[4\]](#page-11-8). It is formally defined as an analogue of the Weyl curvature tensor, so that the curvature tensor of a Bochner-flat manifold is completely determined by its Ricci tensor. Let (M^{2n}, g, J) be a para-Kähler manifold. Its Bochner curvature tensor is defined as

$$
B(X, Y)Z = R(X, Y)Z + \frac{\tau}{(2n+2)(2n+4)}R_0(X, Y)Z - \frac{1}{2(n+2)}R_1(X, Y)Z
$$

for all vector fields *X*, *Y* , *Z* on *M*, where

$$
R_0(X, Y)Z = g(X, Z)Y - g(Y, Z)X + g(JX, Z)JY - g(JY, Z)JX + 2g(JX, Y)JZ,
$$

$$
R_1(X, Y)Z = g(X, Z) \text{Ric}(Y) - g(Y, Z) \text{Ric}(X) + g(X, JZ) \text{Ric}(JY) - g(Y, JZ) \text{Ric}(JX) + 2g(X, JY) \text{Ric}(JZ) + \rho(X, Z)Y - \rho(Y, Z)X + \rho(X, JZ)JY - \rho(Y, JZ)JX + 2\rho(X, JY)JZ.
$$

A para-Kähler manifold is said to be *Bochner-flat* if its Bochner tensor vanishes identically. A para-Kähler manifold has constant paraholomorphic sectional curvature *c* if and only if its curvature tensor is of the form $R(X, Y)Z = \frac{c}{4}R_0(X, Y)Z$ (see [\[14](#page-11-9)]). This way, any para-Kähler manifold of constant paraholomorphic sectional curvature is Bochner-flat. Moreover, a Bochner-flat para-Kähler manifold has constant paraholomorphic sectional curvature if and only if it is Einstein.

Even though the condition of being Bochner-flat is somehow analogous to that of being locally conformally flat, it is more restrictive since a Bochner-flat para-Kähler manifold has constant scalar curvature if and only if it is locally symmetric [[17\]](#page-11-10). Moreover, if its Ricci operator is diagonalizable then the manifold either has constant paraholomorphic sectional curvature or it is locally isometric to a product of two spaces of constant opposite paraholomorphic sectional curvature.

The anti-self-dual Weyl curvature tensor of a four-dimensional para-Kähler manifold is determined by its scalar curvature as $W^- = \frac{\tau}{12}$ diag[2, −1, −1] and the symplectic form Ω is an eigenvector for the distinguished eigenvalue. On the other hand, the self-dual Weyl curvature tensor of a para-Kähler manifold is completely determined by the Bochner tensor, so $W^+ = 0$ if and only if the manifold is Bochner-flat (see [\[6](#page-11-11)]). An immediate consequence of these facts is that a four-dimensional para-Kähler manifold is locally conformally flat if and only if it is Bochner-flat and its scalar curvature vanishes identically.

Let (M, g, J) be a para-Kähler manifold and denote $\mathfrak{D}_+ = \text{ker}(J \mp \text{Id})$ the eigenspaces corresponding to the eigenvalues ± 1 of the paracomplex structure *J*. \mathfrak{D}_\pm are parallel degenerate distributions and so any para-Kähler surface has an underlying Walker structure. This fact allows us to study para-Kähler structures through Walker manifolds.

The present work is organized as follows. Section [2](#page-2-0) is devoted to the description of Walker structures in dimension four, paying special attention to self-dual Walker structures, in order to pave the way for the understanding of Bochner-flat para-Kähler structures in Sect. [3.](#page-4-0) Note that the para-Kähler and the Walker structures induce distinguished opposite orientations on the manifold, a fact that plays an important role in the theory. The classification of Bochner-flat para-Kähler surfaces of constant scalar curvature is given in Theorem [2](#page-6-0), specifying the different curvature models realized in each situation. Finally, some examples of Bochner-flat para-Kähler surfaces of non-constant scalar curvature are provided in Sect. [3.2](#page-7-0).

2 Walker Structures

Let (M, g, \mathfrak{D}) be a four-dimensional Walker manifold, i.e. a pseudo-Riemannian manifold (M, q) of neutral signature admitting a parallel degenerate plane field \mathfrak{D} of maximal dimension. Walker showed in [[19\]](#page-11-12) the existence of local coordinates (x^1, x^2, x_1, x_2) so that $\mathfrak{D} = \text{span}\{\partial_{x_1}, \partial_{x_2}\}\$ and the metric expresses as

$$
g = dx^{i} \otimes dx_{i'} + dx_{i'} \otimes dx^{i} + g_{ij}(x^{1}, x^{2}, x_{1'}, x_{2'})dx^{i} \otimes dx^{j}.
$$
 (1)

The simplest examples ofWalker manifolds are given by the so-called Riemannian extensions. We briefly review their construction as follows. Consider a surface Σ and let $\pi : T^* \Sigma \to \Sigma$ be the projection from its cotangent bundle. Let $(p, \omega) \in T^* \Sigma$ denote a point in $T^* \Sigma$, where $p \in \Sigma$ and $\omega \in T_p^* \Sigma$. For each vector field *X* on Σ the evaluation man is the function $\iota X \in C^\infty(T^* \Sigma)$ defined by ιX $(n, \omega) = \omega(X)$. Two evaluation map is the function $\iota X \in C^{\infty}(T^*\Sigma)$ defined by $\iota X(p,\omega) = \omega(X_p)$. Two vector fields \bar{X} and \bar{Y} on $T^*\Sigma$ satisfy $\bar{X} = \bar{Y}$ if and only if they act on evaluation maps as $\bar{X}(\iota Z) = \bar{Y}(\iota Z)$ for any vector field *Z* on Σ . Given a vector field *X* on Σ , its complete lift *X^C* is the vector field determined by the identity $X^C(\iota Z) = \iota[X, Z]$. In the same way as vector fields on $T^*\Sigma$ are characterized by their action on evaluation maps, $(0, s)$ -tensor fields on $T^*\Sigma$ are characterized by their action on complete lifts of vector fields. In particular, any (1, 1)-tensor field *T* on Σ induces a 1-form ιT on *T*^{*}Σ characterized by $\iota T(X^C) = \iota(TX)$ (see [[20\]](#page-11-13) for more details concerning this matter).

Riemannian extensions of torsion-free connections were introduced by Patterson and Walker in [\[18](#page-11-14)] as metrics on $T^* \Sigma$ such that $g_D(X^C, Y^C) = -\iota(D_X Y + D_Y X)$, where *D* is a torsion-free connection on the base manifold Σ . *Deformed Riemannian extensions* are neutral signature metrics on $T^* \Sigma$ such that $g_{D, \Phi} = g_D + \pi^* \Phi$, where Φ is a symmetric (0, 2)-tensor field on the affine surface. Afifi showed in [\[1](#page-11-15)] that a Walker manifold with parallel null distribution $\mathfrak D$ is locally isometric to a deformed Riemannian extension of an affine connection if and only if its curvature tensor satisfies $R(\cdot, \mathfrak{D})\mathfrak{D} = 0$. These metrics were further generalized in [[8\]](#page-11-16) as follows. Considering a symmetric $(0, 2)$ -tensor field Φ and $(1, 1)$ -tensor fields *T* and *S* on an affine surface (Σ, D) , the *modified Riemannian extension* is the neutral signature metric on $T^* \Sigma$ defined by $g_{D,\Phi,T,S} = \iota T \circ \iota S + g_D + \pi^* \Phi$, where '∘' denotes the

symmetric product. Considering local coordinates (x^1, x^2) on a neighbourhood *U* in Σ and induced coordinates (x^1, x^2, x_1, x_2) on $\pi^{-1}(\mathcal{U})$, one has

$$
g_{D,\Phi,T,S} = dx^i \otimes dx_{i'} + dx_{i'} \otimes dx^i + \left\{ \frac{1}{2} x_{r'} x_{s'} (T_i^r S_j^s + T_j^r S_i^s) - 2 x_{k'}{}^D \Gamma_{ij}{}^k + \Phi_{ij} \right\} dx^i \otimes dx^j,
$$

where $T = T_i^j dx^i \otimes \partial_{x^j}$, $S = S_i^j dx^i \otimes \partial_{x^j}$, $\Phi = \Phi_{ij} dx^i \otimes dx^j$ and ${}^D\Gamma_{ij}^k$ are the Christoffel symbols of the affine connection D. Moreover, the Walker distribution Christoffel symbols of the affine connection *D*. Moreover, the Walker distribution is given by $\mathfrak{D} = \ker \pi_*$. Furthermore, a Walker metric corresponds to the modified Riemannian extension of an affine connection if and only if $(\nabla_{\mathcal{D}} R)(\mathcal{D}, \cdot)\mathcal{D} = 0$.

2.1 Self-Dual Walker Manifolds

The existence of a parallel degenerate 2-dimensional distribution $\mathfrak D$ on a neutral signature manifold (*M*, ^g) of dimension four naturally induces an orientation. We recall the discussion in [\[12](#page-11-17)]. Let $p \in M$ and let $\{u, v\}$ be an arbitrary basis of \mathfrak{D}_p . Then the Hodge-star operator satisfies $\star(u^* \wedge v^*) = \pm(u^* \wedge v^*)$, where $u^*, v^* \in T_p^*M$ denote the corresponding dual forms. This way, any four-dimensional Walker manifold is naturally oriented by the self-duality of $u^* \wedge v^*$. Let (x^1, x^2, x_1, x_2) be local coordinates on a four-dimensional Walker manifold as in [\(1](#page-2-1)). Then the Walker orientation determined by \star ($dx_1 \wedge dx_2$) = $dx_1 \wedge dx_2$ corresponds to the volume element vol_a = dx^1 ∧ dx^2 ∧ $dx_{1'}$ ∧ $dx_{2'}$. Self-dual Walker manifolds were described in [[8\]](#page-11-16) as follows.

Theorem 1 ([\[8](#page-11-16), Theorem 7.1]) *A four-dimensional Walker manifold is self-dual if and only if it is locally isometric to the cotangent bundle* $T^* \Sigma$ of an affine surface (Σ, D) *with metric*

$$
g = \iota X(\iota \operatorname{Id} \circ \iota \operatorname{Id}) + \iota T \circ \iota \operatorname{Id} + g_D + \pi^* \Phi,\tag{2}
$$

where ^g*^D denotes de Riemannian extension of the affine connection, ^X is a vector field on* Σ *and* T *and* Φ *are a* (1, 1)*-tensor field and a symmetric* (0, 2)*-tensor field on* Σ *, respectively.*

Let Σ be a surface with local coordinates (x^1, x^2) and consider (x^1, x^2, x_1, x_2) the induced local coordinates on $T^* \Sigma$. The canonical symplectic structure of the cotangent bundle determined by the tautological 1-form $\theta = x_{k'}dx^{k}$ induces an orientation determined by the volume form $d\theta \wedge d\theta = -dx^1 \wedge dx^2 \wedge dx_{1'} \wedge dx_{2'}$, which is the opposite of the orientation induced by the Walker structure given by $\mathfrak{D} = \ker \pi_*$.

3 Bochner-Flat Para-Kähler Surfaces

Let (M, q, J) be a para-Kähler surface and denote $\mathfrak{D}_+ = \text{ker}(J \mp \text{Id})$. We consider Walker coordinates (x^1, x^2, x_{1}, x_{2}) as in ([1\)](#page-2-1) and set the Walker distribution to be $\mathfrak{D} =$ \mathfrak{D}_+ so that $J|_{\mathfrak{D}} =$ Id. We point out that para-Kähler surfaces are Walker manifolds but the converse is not true, since the parallelizability of $\mathfrak{D} = \mathfrak{D}_+$ does not ensure the integrability of the complementary distribution \mathcal{D}_- . The almost para-Hermitian structures satisfying $J|_{\mathfrak{D}} =$ Id are locally parametrized by a real-valued function $f(x^1, x^2, x_{1}, x_{2})$ so that

$$
J_f \partial_{x^1} = -\partial_{x^1} + g_{11} \partial_{x_{1'}} + f \partial_{x_{2'}} , \qquad J_f \partial_{x_{1'}} = \partial_{x_{1'}} , J_f \partial_{x^2} = -\partial_{x^2} + (2g_{12} - f) \partial_{x_{1'}} + g_{22} \partial_{x_{2'}} , \qquad J_f \partial_{x_{2'}} = \partial_{x_{2'}} .
$$
 (3)

Their associated Kähler 2-forms $\Omega_f(X, Y) = g(J_f X, Y)$ are given by $\Omega_f = (f - g(x))dx^1 \wedge dx^2 + dx^2 \wedge dx^1 + dx^2 \wedge dx^2$ thus g_{12}) $dx^1 \wedge dx^2 + dx_1 \wedge dx^1 + dx_2 \wedge dx^2$, thus

$$
d\Omega_f = \partial_{x_{1'}}(f - g_{12})dx_{1'} \wedge dx^1 \wedge dx^2 + \partial_{x_{2'}}(f - g_{12})dx_{2'} \wedge dx^1 \wedge dx^2.
$$

Therefore, $d\Omega_f = 0$ if and only if $f(x^1, x^2, x_1, x_2) = g_{12}(x^1, x^2, x_1, x_2) + h(x^1, x^2)$ for some function $h(x^1, x^2)$ and the almost paracomplex structure becomes x^2) for some function $h(x^1, x^2)$ and the almost paracomplex structure becomes

$$
J_h \partial_{x^1} = -\partial_{x^1} + g_{11} \partial_{x_{1'}} + (g_{12} + h) \partial_{x_{2'}} , \quad J_h \partial_{x_{1'}} = \partial_{x_{1'}} , J_h \partial_{x^2} = -\partial_{x^2} + (g_{12} - h) \partial_{x_{1'}} + g_{22} \partial_{x_{2'}} , \quad J_h \partial_{x_{2'}} = \partial_{x_{2'}} .
$$
 (4)

Considering an almost para-Hermitian structure given by ([1\)](#page-2-1) and ([4\)](#page-4-1), the associated Kähler 2-form is given by $\Omega_h = h dx^1 \wedge dx^2 + dx_{1'} \wedge dx^1 + dx_{2'} \wedge dx^2$. It is important to emphasize that the para-Kähler and Walker orientations are opposite. Indeed, the Kähler 2-form Ω_h is anti-self-dual for the para-Kähler orientation determined by the paracomplex structure J_h , but it is self-dual for the Walker orientation.

In order to describe Bochner-flat para-Kähler surfaces we consider the cotangent bundle $T^* \Sigma$ of an affine surface (Σ, D) with metric $g = \iota X(\iota \operatorname{Id} \circ \iota \operatorname{Id}) + \iota T \circ$ ι Id +g_D + π ^{*} Φ as in ([2\)](#page-3-0) and set the paracomplex structure satisfying the condition $J|_{\text{ker }\pi_*}$ = Id. The almost para-Hermitian structures defined by ([1\)](#page-2-1) and [\(4](#page-4-1)) are not para-Kähler in general. We use the notation $(\nabla_{\partial_{x^{\alpha}}}J_{h})\partial_{x^{\beta}} = (\nabla J_{h})_{\beta;\alpha}{}^{\gamma}\partial_{x^{\gamma}}$ to denote the components of ∇L on $T^*\Sigma$ and $(D_{\alpha}, T)\partial_{x^{\beta}} = DT_{\alpha,k}{}^{\beta}A_{k,l}$ $(D_{\alpha}, \Phi)(\partial_{x^{\beta}} \partial_{x^{\beta}}) =$ the components of ∇J_h on $T^* \Sigma$ and $(D_{\partial_{\chi_i}}T) \partial_{\chi_j} = DT_{j;i}{}^k \partial_{\chi_i}$, $(D_{\partial_{\chi_i}}\partial_{\chi_i} \partial_{\chi_i} = D\mathcal{F}_{j;i}$, $(D_{\partial_{\chi_i}}T)$ and the *D*^o $D\Phi_{ikj}$ to represent the covariant derivatives of the (1, 1)-tensor field *T* and the symmetric (0, 2)-tensor field Φ on Σ , respectively. Using the notation in Theorem [1,](#page-3-1) long but straightforward calculations show that:

Lemma 1 Let (M, g) be a self-dual Walker manifold of dimension four. Let J_h be an *almost paracomplex structure given by* $J_h|_{\text{ker }\pi_*} = \text{Id}$ *so that* (g, J_h) *is an almost para-Hermitian structure on M. Then the nonzero components of the covariant derivative* ∇ *Jh are given by*

$$
8 (\nabla J_{h})_{1;1}^{4} = x_{1'}^{3} \left\{ T_{2}^{1} \operatorname{tr}(T) + 8S_{2}^{1} \right\} + x_{1'}^{2} x_{2'} \left\{ (T_{2}^{2})^{2} - (T_{1}^{1})^{2} + 8(S_{2}^{2} - S_{1}^{1}) \right\} + x_{1'} x_{2'}^{2} \left\{ -T_{1}^{2} \operatorname{tr}(T) - 8S_{1}^{2} \right\} + x_{1'}^{2} \left\{ 8DT_{1;2}^{1} - 4DT_{2;1}^{1} + 2X^{1}(8h - 4\Phi_{12}) - 4X^{2}\Phi_{22} \right\} + x_{1'} x_{2'} \left\{ 8DT_{1;2}^{2} - 4DT_{2;1}^{2} - 4DT_{1;1}^{1} + 16hX^{2} + 8X^{1}\Phi_{11} \right\} + x_{2'}^{2} \left\{ -4DT_{1;1}^{2} + 4X^{2}\Phi_{11} \right\} + x_{1'} \left\{ 16\rho_{21}^{D} + 10hT_{1}^{1} + 2hT_{2}^{2} - 2\operatorname{tr}(T)\Phi_{12} + 4(\hat{\Phi}_{21} - \hat{\Phi}_{12}) \right\} + x_{2'} \left\{ -16\rho_{11}^{D} + 8hT_{1}^{2} + 2\operatorname{tr}(T)\Phi_{11} \right\} + 8 \left\{ \partial_{1}h - h(\mathcal{P}_{11}^{1} + \mathcal{P}_{12}^{2}) + D\Phi_{11;2} - D\Phi_{12;1} \right\},
$$

$$
8(\nabla J_{h})_{1;2}^{4} = x_{2}^{3} \{-T_{1}^{2} \text{tr}(T) - 8S_{1}^{2}\} + x_{1}^{2}x_{2} \{T_{2}^{1} \text{tr}(T) + 8S_{2}^{1}\} + x_{1}'x_{2}^{2} \{(T_{2}^{2})^{2} - (T_{1}^{1})^{2} + 8(S_{2}^{2} - S_{1}^{1})\} + x_{1'}^{2} \{4DT_{2;2}^{1} - 4X^{1}\Phi_{22}\} + x_{1}'x_{2'} \{-8DT_{2;1}^{1} + 4DT_{1;2}^{1} + 4DT_{2;2}^{2} + 16hX^{1} - 8X^{2}\Phi_{22}\} + x_{2'}^{2} \{-8DT_{2;1}^{2} + 4DT_{1;2}^{2} + 2X^{2}(8h + 4\Phi_{12}) + 4X^{1}\Phi_{11}\} + x_{1'} \{16\rho_{22}^{D} + 8hT_{2}^{1} - 2\text{tr}(T)\Phi_{22}\} + x_{2'} \{-16\rho_{12}^{D} + 2hT_{1}^{1} + 10hT_{2}^{2} + 2\text{tr}(T)\Phi_{12} + 4(\hat{\Phi}_{21} - \hat{\Phi}_{12})\} + 8 \{\partial_{2}h - h(\text{Pr}_{22}^{2} + \text{Pr}_{12}^{1}) + D\Phi_{12;2} - D\Phi_{22;1}\},
$$

where $X = X^i \partial_i$, $T = T^j_i \partial_{x^i} \otimes dx^j$ and $\Phi = \Phi_{ij} dx^i \otimes dx^j$ are the vector field, the $(1, 1)$ -tensor field and the symmetric $(0, 2)$ -tensor field on Σ given in Theorem 1 ([1,](#page-3-1) 1)-tensor field and the symmetric $(0, 2)$ -tensor field on Σ given in Theorem 1, *S* is the (1, 1)*-tensor field on* Σ *defined as* $S(Z) := D_Z X$, $\hat{\Phi}(X, Y) := \Phi(TX, Y)$ and ${}^D\Gamma_{ij}{}^k$ are the Christoffel symbols of the affine connection.

Notice that the expressions in Lemma [1](#page-4-2) are polynomials on the fiber coordinates x_1 and x_2 whose coefficients are functions of the base coordinates x^1 and x^2 .

3.1 Bochner-Flat Para-Kähler Surfaces of Constant Scalar Curvature

It follows from Theorem [1](#page-3-1) that the scalar curvature of a Bochner-flat para-Kähler surface is given by $\tau = 12\iota X + 3$ tr(*T*), where ιX is the evaluation map of the vector field *X*. Therefore if a Bochner-flat para-Kähler surface has constant scalar curvature then the vector field *X* vanishes and *T* must have constant trace. If $\tau \neq 0$ there exist local coordinates in which the (1, 1)-tensor field $T = c$ Id with $c \in \mathbb{R}$. In this situation, a Bochner-flat para-Kähler surface has constant paraholomorphic sectional curvature and so it is locally isometric to the cotangent bundle of a flat affine surface (Σ, D) endowed with a modified Riemannian extension $q = c \iota \text{Id} \circ \iota \text{Id} + q \iota$ (see [\[9](#page-11-18), Theorem 2.2]).

Bochner-flat para-Kähler surfaces with $\tau = 0$ are locally conformally flat. Working at a purely algebraic level, we consider $(V, \langle \cdot, \cdot \rangle, J)$ a para-Hermitian inner product space and a para-Kähler algebraic curvature tensor $A: V \times V \times V \times V \rightarrow \mathbb{R}$

so that $A(X, Y) \cdot J = J \cdot A(X, Y)$. There are three non-flat locally conformally flat algebraic curvature models $(V, \langle \cdot, \cdot \rangle, \mathcal{A})$ as follows.

 $(\mathfrak{M}): ((V, \langle \cdot, \cdot \rangle, \mathcal{A})$ given by

$$
A_{1413} = A_{3231} = -\frac{1}{2}
$$

with respect to pseudo-orthonormal a basis $\{u_1, u_2, u_3, u_4\}$ where the non-zero inner products are $\langle u_1, u_2 \rangle = 1 = -\langle u_3, u_4 \rangle$.

 (\mathfrak{N}_k) : $((V, \langle \cdot, \cdot \rangle, \mathcal{A})$ given by

$$
A_{1413} = A_{1442} = A_{3224} = A_{3231} = \frac{k}{2}
$$

with respect to an orthonormal basis $\{u_1, u_2, u_3, u_4\}$ where u_1, u_3 are spacelike vectors and u_2 , u_4 are timelike vectors.

 (\mathfrak{P}_k) : $((V, \langle \cdot, \cdot \rangle, \mathcal{A})$ given by

$$
A_{1212} = A_{4334} = k
$$

with respect to an orthonormal basis $\{u_1, u_2, u_3, u_4\}$ where u_1, u_3 are spacelike vectors and u_2 , u_4 are timelike vectors.

It follows from Lemma [1](#page-4-2) that if $\tau = 0$, then the (1, 1)-tensor field *T* must be parallel and so the classification of Bochner-flat para-Kähler surfaces of constant scalar curvature is summarized as follows.

Theorem 2 ([\[13](#page-11-19), Theorem 4.2]) *Let* (*M*, ^g, *^J*) *be a Bochner-flat para-Kähler surface of constant scalar curvature. Then it is locally isometric to a Riemannian extension of the form* $(T^*\Sigma, g = \iota T \circ \iota \mathrm{Id} + g_D)$ *with paracomplex structure determined by* $J|_{\text{ker } \pi_*} = \text{Id}$, where *T* is a parallel (1, 1)-tensor field on a flat affine surface (Σ, D) *. Moreover, one of the following holds:*

- *(i)* $T = 0$ *and* (M, q, J) *is flat.*
- *(ii)* $T = c$ Id *and* (M, q, J) *has constant paraholomorphic sectional curvature* $H = c$.
- *(iii)* $T^2 = \kappa^2$ Id *and* (M, q, J) *is isometric to a product of two Lorentzian surfaces of constant opposite curvature, thus modelled on* (\mathfrak{P}_k) *.*
- *(iv)* $T^2 = 0$ *and* (M, q, J) *is modelled on* (\mathfrak{M}) *.*
- (*v*) $T^2 = -\kappa^2$ Id *and* (M, q, J) *is modelled on* (\mathfrak{N}_k) *.*

3.2 Some Examples of Bochner-Flat Para-Kähler Structures of Non-constant Scalar Curvature

Consider an affine surface (Σ, D) and let (g, J_h) be an almost para-Hermitian structure on $T^* \Sigma$ given by $J_h|_{\ker \pi_*} = \text{Id}$, where the metric $g = \iota X(\iota \operatorname{Id} \circ \iota \operatorname{Id}) + \iota T \circ$ ι Id +g_D + $\pi^*\Phi$ is given as in Theorem [1](#page-3-1). Aimed to construct examples of Bochnerflat para-Kähler surfaces of non-constant scalar curvature we analyze the case where the $(1, 1)$ -tensor field T is parallel. In this situation, the nonzero components of the covariant derivative of *Jh* reduce to

$$
8 (\nabla J_{h})_{1;1}^{4} = x_{1'}^{3} \left\{ T_{2}^{1} \operatorname{tr}(T) + 8S_{2}^{1} \right\} + x_{1'}^{2} x_{2'} \left\{ (T_{2}^{2})^{2} - (T_{1}^{1})^{2} + 8(S_{2}^{2} - S_{1}^{1}) \right\} + x_{1'} x_{2'}^{2} \left\{ -T_{1}^{2} \operatorname{tr}(T) - 8S_{1}^{2} \right\} + x_{1'}^{2} \left\{ 2X^{1} (8h - 4\Phi_{12}) - 4X^{2} \Phi_{22} \right\} + x_{1'} x_{2'} \left\{ 16hX^{2} + 8X^{1} \Phi_{11} \right\} + x_{2'}^{2} \left\{ 4X^{2} \Phi_{11} \right\} + x_{1'} \left\{ 16\rho_{21}^{D} + 10hT_{1}^{1} + 2hT_{2}^{2} - 2 \operatorname{tr}(T) \Phi_{12} + 4(\hat{\Phi}_{21} - \hat{\Phi}_{12}) \right\} + x_{2'} \left\{ -16\rho_{11}^{D} + 8hT_{1}^{2} + 2 \operatorname{tr}(T) \Phi_{11} \right\} + 8 \left\{ \partial_{1}h - h(^D\Gamma_{11}^{1} + ^D\Gamma_{12}^{2}) + D\Phi_{11;2} - D\Phi_{12;1} \right\},
$$

$$
8(\nabla J_{h})_{1;2}^{4} = x_{2}^{3} \{-T_{1}^{2} \text{tr}(T) - 8S_{1}^{2}\} + x_{1}^{2} x_{2} \{T_{2}^{1} \text{tr}(T) + 8S_{2}^{1}\} + x_{1} x_{2}^{2} \{(T_{2}^{2})^{2} - (T_{1}^{1})^{2} + 8(S_{2}^{2} - S_{1}^{1})\} + x_{1'}^{2} \{-4X^{1}\Phi_{22}\} + x_{1'} x_{2'} \{16hX^{1} - 8X^{2}\Phi_{22}\} + x_{2'}^{2} \{2X^{2}(8h + 4\Phi_{12}) + 4X^{1}\Phi_{11}\} + x_{1'} \{16\rho_{22}^{D} + 8hT_{2}^{1} - 2\text{tr}(T)\Phi_{22}\} + x_{2'} \{-16\rho_{12}^{D} + 2hT_{1}^{1} + 10hT_{2}^{2} + 2\text{tr}(T)\Phi_{12} + 4(\hat{\Phi}_{21} - \hat{\Phi}_{12})\} + 8 \{\partial_{2}h - h(^{D}\Gamma_{22}^{2} + {^D}\Gamma_{12}^{1}) + D\Phi_{12;2} - D\Phi_{22;1}\}.
$$

Since the tensor field *T* is parallel, it has constant trace and *X* must be nonzero so that $\tau = 12\iota X + 3$ tr(*T*) is non-constant.

If $X^1 \neq 0$ it follows immediately from the expression of the coefficient of x_1^2 in $(\nabla J_h)_{1;2}^4$ above that $\Phi_{22} = 0$. Knowing this, the expression of the coefficient of $x_{1'}x_{2'}$ in $(\nabla J_h)_{1;2}$ ⁴ shows that $h = 0$. The same coefficient in $(\nabla J_h)_{1;1}$ ⁴ shows that $\Phi_{11} = 0$ and now, focusing on the coefficient of $x_{1'}^2$ in $(\nabla J_h)_{1;1}^4$ we see that $\Phi_{12} = 0$. If $X^2 \neq 0$, proceeding analogously it follows that *h* and Φ vanish identically.

Since both the function *h* and the symmetric $(0, 2)$ -tensor field Φ vanish, the components of the covariant derivative ∇J_h reduce to

$$
8(\nabla J_{h})_{1;1}^{4} = x_{1'}^{3} \left\{ T_{2}^{1} \operatorname{tr}(T) + 8S_{2}^{1} \right\} + x_{1'}^{2} x_{2'} \left\{ (T_{2}^{2})^{2} - (T_{1}^{1})^{2} + 8(S_{2}^{2} - S_{1}^{1}) \right\} + x_{1'} x_{2'}^{2} \left\{ -T_{1}^{2} \operatorname{tr}(T) - 8S_{1}^{2} \right\} + 16x_{1'} \rho_{21}^{D} - 16x_{2'} \rho_{11}^{D}, 8(\nabla J_{h})_{1;2}^{4} = x_{2'}^{3} \left\{ -T_{1}^{2} \operatorname{tr}(T) - 8S_{1}^{2} \right\} + x_{1'}^{2} x_{2'} \left\{ T_{2}^{1} \operatorname{tr}(T) + 8S_{2}^{1} \right\} + 16x_{1'} \rho_{22}^{D} + x_{1'} x_{2'}^{2} \left\{ (T_{2}^{2})^{2} - (T_{1}^{1})^{2} + 8(S_{2}^{2} - S_{1}^{1}) \right\} - 16x_{2'} \rho_{12}^{D}.
$$

The linear terms in these two expressions show that the Ricci tensor of the affine surface must vanish identically. Therefore the affine connection is necessarily flat. Assume that *T* is trace-free. At this point, the components of ∇J_h take the form

$$
8(\nabla J_{h})_{1;1}^{4} = 8x_{1'}^{3}S_{2}^{1} + x_{1'}^{2}x_{2'} \left\{ (T_{2}^{2})^{2} - (T_{1}^{1})^{2} + 8(S_{2}^{2} - S_{1}^{1}) \right\} - 8x_{1'}x_{2'}^{2}S_{1}^{2},
$$

\n
$$
8(\nabla J_{h})_{1;2}^{4} = 8x_{1'}^{2}x_{2'}S_{2}^{1} + x_{1'}x_{2'}^{2} \left\{ (T_{2}^{2})^{2} - (T_{1}^{1})^{2} + 8(S_{2}^{2} - S_{1}^{1}) \right\} - 8x_{2'}^{3}S_{1}^{2}.
$$

The existence of parallel (1, 1)-tensor fields on affine surfaces was studied in [[9\]](#page-11-18) showing that (besides the case where $T = 0$) a trace-free parallel (1, 1)-tensor field on an affine surface (Σ, D) corresponds to one of the following.

- (a) An *affine para-Kähler structure* ($det(T) = -\kappa^2 < 0$), which in suitable adapted coordinates becomes $T = \kappa (\partial_{x_1} \otimes dx_1^1 - \partial_{x_2} \otimes dx_2^2)$.
- (b) An *affine nilpotent Kähler structure* ($T^2 = 0$), which in suitable adapted coordinates becomes $T = \kappa \partial_{x^1} \otimes dx^2$. dinates becomes $T = \kappa \partial_{x^1} \otimes dx^2$.
An *affine Kähler structure* (det(*T*)
- (c) An *affine Kähler structure* (det(*T*) = $\kappa^2 > 0$), which in suitable adapted coor-
dinates becomes $T = \kappa(\partial \cdot \otimes dx^1 \partial \cdot \otimes dx^2)$ dinates becomes $T = \kappa (\partial_{x^2} \otimes dx^1 - \partial_{x^1} \otimes dx^2)$.

Straightforward calculations now show that, for any case described above, there exist local coordinates in which the (1, 1)-tensor filed $S = DX$ takes the form $S = \lambda Id$ for some function $\lambda \in C^{\infty}(\Sigma)$ and the scalar curvature is given by $\tau = \iota X$.

We summarize the discussion above in the following

Theorem 3 Let (Σ, D) be an affine surface and let (a, J_h) be an almost para-*Hermitian structure on* $T^* \Sigma$ *such that*

$$
J_h|_{\ker \pi_*} = \text{Id} \quad \text{and} \quad g = \iota X (\iota \text{Id} \circ \iota \text{Id}) + \iota T \circ \iota \text{Id} + g_D + \pi^* \Phi.
$$

If T is parallel and $tr(T) = 0$ *then* $(T^*\Sigma, q, J_h)$ *is a Bochner-flat para-Kähler surface if and only if* $h = 0$, $\Phi = 0$, the affine connection D is flat and $S = \lambda$ Id for some $\lambda \in C^{\infty}(\Sigma)$, being $\mathcal{S}(Z) = D_Z X$.

Remark 1 If the affine connection *D* is flat, there exist local coordinates on Σ so that all the Christoffel symbols are zero. After a suitable linear transformation on the coordinates one can set *T* being of one of the forms described above. Straightforward calculations show that there exist suitable adapted coordinates in which Bochner-flat para-Kähler structures determined by a trace-free parallel (1, 1)-tensor field *T* are given by the vector field $X = ax^i \partial_{x^i}$, where $a \in \mathbb{R}$ and thus $S = a$ Id.
We subsequently examine the different possibilities We subsequently examine the different possibilities.

(a) Let *T* be an affine para-Kähler structure on a flat affine surface (Σ, D) and take local coordinates so that ${}^D\Gamma_{ij}^k = 0$, $T = \kappa (\partial_x \otimes dx^1 - \partial_x \otimes dx^2)$ and $X = a x^i \partial_x$. Then the Bochner-flat metric induced on $T^* \Sigma$ is given by $X = ax^i \partial_{x^i}$. Then the Bochner-flat metric induced on $T^* \Sigma$ is given by

$$
g = x_{1'}^2 (ax_{1'}x^1 + ax_2x^2 + \kappa) dx^1 \otimes dx^1 + x_{2'}^2 (ax_{1'}x^1 + ax_2x^2 - \kappa) dx^2 \otimes dx^2 + ax_{1'}x_2 (x_{1'}x^1 + x_{2'}x^2) (dx^1 \otimes dx^2 + dx^2 \otimes dx^1) + dx^1 \otimes dx_{1'} + dx^2 \otimes dx_2.
$$

A straightforward calculation shows that the Ricci curvatures are given by

$$
\lambda_{\pm} = 2\iota X \pm \sqrt{(\iota X)^2 + 2\iota(TX) + \kappa^2},
$$

and the Ricci operator diagonalizes with real eigenvalues on the zero section of $T^* \Sigma$. The curvature on the zero section of the cotangent bundle corresponds to that of a locally conformally flat para-Kähler surface determined by an affine para-Kähler structure, thus it is modelled on (\mathfrak{P}_k) .

(b) Let *T* be an affine nilpotent Kähler structure on a flat affine surface (Σ, D) and take local coordinates so that ${}^D\Gamma_i{}^k = 0$, $T = \kappa \partial_{x^1} \otimes dx^2$ and $X = ax^i \partial_{x^i}$. Then the Bochner-flat metric induced on $T^* \Sigma$ is given by the Bochner-flat metric induced on $T^* \Sigma$ is given by

$$
g = ax_1^2(x_1x_1 + x_2x_2)dx_1 \otimes dx_1 + x_2(ax_2(x_1x_1 + x_2x_2) + \kappa x_1)dx_2 \otimes dx_2
$$

+ $\frac{1}{2}x_1(2ax_2(x_1x_1 + x_2x_2) + \kappa x_1)(dx_1 \otimes dx_2 + dx_2 \otimes dx_1)$
+ $dx_1 \otimes dx_1 + dx_2 \otimes dx_2$.

A straightforward calculation shows that the Ricci curvatures are given by

$$
\lambda_{\pm} = 2\iota X \pm \sqrt{(\iota X)^2 + 2\iota(TX)},
$$

and the Ricci operator is two-step nilpotent on the zero section of $T^* \Sigma$. The curvature on the zero section of the cotangent bundle corresponds to that of a locally conformally flat para-Kähler surface determined by an affine nilpotent Kähler structure, thus it is modelled on (\mathfrak{M}) .

(c) Let *T* be an affine Kähler structure on a flat affine surface (Σ, D) and take local coordinates so that ${}^D\Gamma_{ij}^k = 0$, $T = \kappa(\partial_{x^2} \otimes dx^1 - \partial_{x^1} \otimes dx^2)$ and $X = ax^i \partial_{x^i}$.
Then the Bochner-flat metric induced on $T^* \Sigma$ is given by Then the Bochner-flat metric induced on $T^* \Sigma$ is given by

$$
g = x_{1'}(ax_{1'}(x_{1'}x^1 + x_{2'}x^2) + \kappa x_{2'})dx^1 \otimes dx^1 + x_{2'}(ax_{2'}(x_{1'}x^1 + x_{2'}x^2) - \kappa x_{1'})dx^2 \otimes dx^2 + (ax_{1'}x_{2'}(x_{1'}x^1 + x_{2'}x^2) + \frac{1}{2}(x_{2'}^2 - x_{1'}^2)\kappa) (dx^1 \otimes dx^2 + dx^2 \otimes dx^1) + dx^1 \otimes dx_{1'} + dx^2 \otimes dx_{2'}.
$$

A straightforward calculation shows that the Ricci curvatures are given by

$$
\lambda_{\pm} = 2\iota X \pm \sqrt{(\iota X)^2 + 2\iota(TX) - \kappa^2},
$$

and the Ricci operator has complex eigenvalues on the zero section of $T^*\Sigma$. The curvature on the zero section of the cotangent bundle corresponds to that of a locally conformally flat para-Kähler surface determined by an affine Kähler structure, thus it is modelled on (\mathfrak{N}_k) .

Remark 2 In the case where *T* is a parallel (1, 1)-tensor field with nonzero trace on (Σ, D) , we denote $T^0 = T - \frac{\text{tr}(T)}{2}$ Id the traceless part of *T* so that $T = T^0 + \mu$ Id, being $\text{tr}(T) = 2\mu$. Since the affine connection *D* is flat, there exist local coordinates in being tr(*T*) = 2μ . Since the affine connection *D* is flat, there exist local coordinates in which all the Christoffel symbols ${}^D\Gamma_{ij}{}^k$ are zero. After a suitable linear transformation on the coordinates we can set T^0 being of one of the forms described in (a), (b) and (c) above. Straightforward calculations show that there exist suitable adapted coordinates

in which Bochner-flat para-Kähler structures determined by a parallel (1, 1)-tensor field *T* with tr(*T*) \neq 0 correspond to one of the following situations.

(a) If T^0 is an affine para-Kähler structure then the $(1, 1)$ -tensor fields *T* and *S* commute and there exist local coordinates in which $T = (\mu + \kappa)\partial_{x^1} \otimes dx^1 + (\mu \kappa$)∂_{*x*}2 ⊗ *dx*² and *X* = *ax*¹∂_{*x*¹} + (*a* + ^{*k*µ} 2</sub>)∂_{*x*². The Bochner-flat metric induced on T^* E has Ricci curvatures given by} on $T^* \Sigma$ has Ricci curvatures given by

$$
\lambda_{\pm} = \frac{3}{2}\mu + 3\iota X \pm \sqrt{(\iota X)^2 + \iota(TX) + \iota(KX) + \kappa^2},
$$

where $K = T - tr(T)$ Id. The Ricci operator diagonalizes with real eigenvalues $\lambda_{\pm} = \frac{3}{2}\mu \pm \kappa$ on the zero section of the cotangent bundle $T^* \Sigma$.

 $\lambda_{\pm} = \frac{3}{2}\mu \pm \kappa$ on the zero section of the cotangent bundle $T^* \Sigma$.
(b) If T^0 is an affine nilpotent Kähler structure then the (1, 1)-tensor fields *T* and *S* commute and there exist local coordinates in which $T = \mu(\partial_{x^1} \otimes dx^1 + \partial_{x^2} \otimes dx^2) + \kappa \partial_{x^1} \otimes dx^2$ and $X = (ax^1 - \frac{\kappa \mu}{2}) \partial_{x^1} + ax^2 \partial_{x^2}$. The Bochner- $\partial_{x^2} \otimes dx^2$ + $\kappa \partial_{x^1} \otimes dx^2$ and $X = (ax^1 - \frac{\kappa \mu}{4}x^2) \partial_{x^1} + ax^2 \partial_{x^2}$. The Bochner-
flat metric induced on $T^* \Sigma$ has Ricci curvatures given by flat metric induced on $T^*\Sigma$ has Ricci curvatures given by

$$
\lambda_{\pm} = \frac{3}{2}\mu + 3\iota X \pm \sqrt{(\iota X)^2 + \iota(TX) + \iota(KX)},
$$

where $K = T - tr(T)$ Id. On the zero section of the cotangent bundle the Ricci operator has a single eigenvalue $\lambda = \frac{3}{2}\mu$ that is a double root of its minimal nolynomial polynomial.

(c) If T^0 is an affine Kähler structure then the (1, 1)-tensor fields *T* and *S* commute and there exist local coordinates in which $T = \mu(\partial_{x^1} \otimes dx^1 + \partial_{x^2} \otimes dx^2)$ + $\kappa(\partial_{x^2} \otimes dx^1 - \partial_{x^1} \otimes dx^2)$ and $X = \left(ax^1 + \frac{\kappa \mu}{4}x^2\right)\partial_{x^1} + \left(ax^2 - \frac{\kappa \mu}{4}x^1\right)\partial_{x^2}$. The Bochner-flat metric induced on $T^*\Sigma$ has Ricci curvatures given by Bochner-flat metric induced on $T^* \Sigma$ has Ricci curvatures given by

$$
\lambda_{\pm} = \frac{3}{2}\mu + 3\iota X \pm \sqrt{(\iota X)^2 + \iota(TX) + \iota(KX) - \kappa^2},
$$

where $K = T - tr(T)$ Id. The Ricci operator is complex-diagonalizable with eigenvalues $\lambda_{\pm} = \frac{3}{2}\mu + \sqrt{-\kappa^2}$ on the zero section of $T^* \Sigma$.
If $T^0 = 0$ there exist local coordinates in which the (1)

(d) If $T^0 = 0$ there exist local coordinates in which the (1, 1)-tensor field *T* is a multiple of the identity $T = \mu$ Id and $X = ax^i \partial_{x^i}$. The Bochner-flat metric induced on $T^* \Sigma$ has Ricci curvatures given by induced on $T^* \Sigma$ has Ricci curvatures given by

$$
\lambda_{\pm} = \frac{3}{2}\mu + 3\iota X \pm \sqrt{(\iota X)^2 + \iota(TX) + \iota(KX)},
$$

where $K = T - tr(T)$ Id. On the zero section of the cotangent bundle, the Ricci operator is diagonalizable with a single real eigenvalue $\lambda = \frac{3}{2}\mu$. Therefore the parabolomorphic sectional curvature is constant on the zero section of $T^*\Sigma$ paraholomorphic sectional curvature is constant on the zero section of $T^* \Sigma$.

Acknowledgements This work has been supported by projects PID2019-105138GB-C21(AEI/ FEDER, Spain), and ED431C 2019/10, ED431F 2020/04 (Xunta de Galicia, Spain).

References

- 1. Afifi, Z.: Riemann extensions of affine connected spaces, *Quart. J. Math., Oxford Ser. (2)* **5** (1954), 312–320
- 2. Alekseevsky, D. V., Cortés, V., Galaev, A.S., Leistner, T.: Cones over pseudo-Riemannian manifolds and their holonomy, *J. Reine Angew. Math.*, **635** (2009), 23–96
- 3. Alekseevsky, D. V., Guilfoyle, B., Klingenberg, W.: On the geometry of spaces of oriented geodesics, *Ann. Glob. Anal. Geom.* **40** (2011), 389–409
- 4. Bochner, S., Curvature and Betti numbers, II, *Ann. Math.*, **50** (1949), 77–93
- 5. Borowiec, C., Francaviglia, M., Volovich, I.: Anti-Kählerian manifolds, *Differential Geom. Appl.* **12** (2000), 281–289
- 6. Bryant, R.: Bochner-Kähler metrics, *J. Am. Math. Soc.* **14** (2001), 623–7165
- 7. Cahen, M., Schwachhöfer, L. J.: Special symplectic connections, *J. Diff. Geom.* **83** (2009), 229–271
- 8. Calviño-Louzao, E., García-Río, E., Gilkey, P., and Vázquez-Lorenzo, R.: The geometry of modified Riemannian extensions, *Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.* **465** (2009), 2023–2040
- 9. Calviño-Louzao, E., García-Río, E., Gilkey, P., Gutiérrez-Rodríguez, I., and Vázquez-Lorenzo, R.: Affine surfaces which are Kähler, para-Kähler, or nilpotent Kähler, *Results Math.* **73** (2018), no. 4, Art. 135, 24 pp
- 10. Cintra, Adriana A., Onnis, Irene I.: Enneper representation of minimal surfaces in the threedimensional Lorentz-Minkowski space, *Ann. Mat. Pura Appl. (4)* **197** (2018), no.1, 21–39
- 11. Cortés, V., Mayer, C., Mohaupt, T., Saueressig, F.: Special geometry of Euclidean supersymmetry. I. Vector multiplets. *J. High Energy Phys.* (2004), no. 3, 028, 73 pp
- 12. Derdzinski, A.: Connections with skew-symmetric Ricci tensor on surfaces. *Results Math.* **52** (2008), 223–245
- 13. Ferreiro-Subrido, M., García-Río, E., and Vázquez-Lorenzo, R.: Locally conformally flat Kähler and para-Kähler manifolds, *Ann. Global Anal. Geom.* **59** (2021), 483–500
- 14. Gadea, P. M., Montesinos Amilibia, A.: Spaces of constant paraholomorphic sectional curvature, *Pacific J. Math.* **136** (1989), no. 1, 85–101
- 15. Harvey, F. Reese, Lawson, H. Blaine, Jr.: Split special Lagrangian geometry, *Metric and differential geometry*, 43–89, *Progr. Math*, **297**, Birkhäuser/Springer, Basel, 2012
- 16. Lawn, Marie-Amélie: Immersions of Lorentzian surfaces in $\mathbb{R}^{\bar{2},1}$, *J. Geom. Phys.*, **58** (2008), no. 6, 683–700
- 17. Łuczyszyn, D.: On Bochner flat para-Kählerian manifolds, *Cent. Eur. J. Math.*, **3** (2005), no. 2, 331–341
- 18. Patterson, E. M., and Walker, A. G.: Riemann extensions, *Quart. J. Math., Oxford Ser. (2)* **3** (1952), 19–28
- 19. Walker, A. G.: Canonical form for a Riemannian space with a parallel field of null planes *Quart. J. Math., Oxford Ser. (2)* **1** (1950), 69–79
- 20. Yano, K., and Ishihara, S.: *Tangent and cotangent bundles*, Marcel Dekker, New York, 1973