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Abstract Weshow that Bochner-flat para-Kähler surfaces are self-dualWalkerman-
ifolds and therefore they are locally isometric to the cotangent bundle of an affine
surface equipped with a modified Riemannian extension. Explicit examples of con-
stant and non-constant scalar curvature are given.
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1 Introduction

A para-Kähler manifold is a symplectic manifold (M2n,�) that is locally diffeo-
morphic to a product of Lagrangian submanifolds. This way its tangent bundle
decomposes as a Whitney sum of Lagrangian subbundles T M = L ⊕ L ′. Consid-
ering πL and πL ′ the projections on each subbundle, the (1, 1)-tensor field defined
by J = πL − πL ′ is an almost paracomplex structure on M . Moreover, since L and
L ′ are Lagrangian subspaces one has that �(J X, JY ) = −�(X,Y ) for all vector
fields X , Y on M and so g(X,Y ) = �(J X,Y ) defines a neutral signature metric on
M such that g(J X, JY ) = −g(X,Y ) and ∇ J = 0, where ∇ denotes the Levi-Civita
connection of (M, g).

Para-Kähler structures, which are also called bi-Lagrangian manifolds in the lit-
erature, are relevant for both Physics and Geometry. Para-Kähler geometry plays an
important role in the study of several geometric problems such as the non-uniqueness
of the metric for the Levi-Civita connection [5], the classification of symplectic con-
nections [7], the spaces of oriented geodesics [3], the study of cones over pseudo-
Riemannian manifolds [2] or the classical Monge-Kantorovich mass transport [15]
(see also [11] for applications to supersymmetry). Paracomplex geometry is also rel-
evant for understandingWeierstrass and Enneper type representations for Lorentzian
surfaces in R2,1 [10, 16].
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The Bochner curvature tensor was introduced by S. Bochner in 1949 [4]. It is
formally defined as an analogue of the Weyl curvature tensor, so that the curvature
tensor of a Bochner-flat manifold is completely determined by its Ricci tensor. Let
(M2n, g, J ) be a para-Kähler manifold. Its Bochner curvature tensor is defined as

B(X,Y )Z = R(X,Y )Z + τ

(2n + 2)(2n + 4)
R0(X,Y )Z − 1

2(n + 2)
R1(X,Y )Z

for all vector fields X , Y , Z on M , where

R0(X,Y )Z = g(X, Z)Y − g(Y, Z)X
+ g(J X, Z)JY − g(JY, Z)J X + 2g(J X,Y )J Z ,

R1(X,Y )Z = g(X, Z)Ric(Y ) − g(Y, Z)Ric(X) + g(X, J Z)Ric(JY )

− g(Y, J Z)Ric(J X) + 2g(X, JY )Ric(J Z) + ρ(X, Z)Y
− ρ(Y, Z)X + ρ(X, J Z)JY − ρ(Y, J Z)J X + 2ρ(X, JY )J Z .

A para-Kähler manifold is said to be Bochner-flat if its Bochner tensor vanishes
identically. A para-Kähler manifold has constant paraholomorphic sectional curva-
ture c if and only if its curvature tensor is of the form R(X,Y )Z = c

4 R0(X,Y )Z
(see [14]). This way, any para-Kähler manifold of constant paraholomorphic sec-
tional curvature is Bochner-flat. Moreover, a Bochner-flat para-Kähler manifold has
constant paraholomorphic sectional curvature if and only if it is Einstein.

Even though the condition of being Bochner-flat is somehow analogous to that
of being locally conformally flat, it is more restrictive since a Bochner-flat para-
Kähler manifold has constant scalar curvature if and only if it is locally symmetric
[17]. Moreover, if its Ricci operator is diagonalizable then the manifold either has
constant paraholomorphic sectional curvature or it is locally isometric to a product
of two spaces of constant opposite paraholomorphic sectional curvature.

The anti-self-dual Weyl curvature tensor of a four-dimensional para-Kähler man-
ifold is determined by its scalar curvature asW− = τ

12 diag[2,−1,−1] and the sym-
plectic form � is an eigenvector for the distinguished eigenvalue. On the other hand,
the self-dual Weyl curvature tensor of a para-Kähler manifold is completely deter-
mined by the Bochner tensor, so W+ = 0 if and only if the manifold is Bochner-flat
(see [6]). An immediate consequence of these facts is that a four-dimensional para-
Kähler manifold is locally conformally flat if and only if it is Bochner-flat and its
scalar curvature vanishes identically.

Let (M, g, J ) be a para-Kähler manifold and denote D± = ker(J ∓ Id) the
eigenspaces corresponding to the eigenvalues ±1 of the paracomplex structure J .
D± are parallel degenerate distributions and so any para-Kähler surface has an under-
lying Walker structure. This fact allows us to study para-Kähler structures through
Walker manifolds.

The present work is organized as follows. Section 2 is devoted to the description
of Walker structures in dimension four, paying special attention to self-dual Walker
structures, in order to pave the way for the understanding of Bochner-flat para-Kähler
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structures in Sect. 3. Note that the para-Kähler and the Walker structures induce dis-
tinguished opposite orientations on themanifold, a fact that plays an important role in
the theory. The classification of Bochner-flat para-Kähler surfaces of constant scalar
curvature is given in Theorem 2, specifying the different curvature models realized
in each situation. Finally, some examples of Bochner-flat para-Kähler surfaces of
non-constant scalar curvature are provided in Sect. 3.2.

2 Walker Structures

Let (M, g,D) be a four-dimensional Walker manifold, i.e. a pseudo-Riemannian
manifold (M, g) of neutral signature admitting a parallel degenerate plane field D
of maximal dimension. Walker showed in [19] the existence of local coordinates
(x1, x2, x1′ , x2′) so that D = span{∂x1′ , ∂x2′ } and the metric expresses as

g = dxi ⊗ dxi ′ + dxi ′ ⊗ dxi + gi j (x
1, x2, x1′ , x2′)dxi ⊗ dx j . (1)

The simplest examples ofWalkermanifolds are given by the so-calledRiemannian
extensions.We briefly review their construction as follows. Consider a surface� and
let π : T ∗� → � be the projection from its cotangent bundle. Let (p,ω) ∈ T ∗�
denote a point in T ∗�, where p ∈ � and ω ∈ T ∗

p �. For each vector field X on� the
evaluation map is the function ιX ∈ C∞(T ∗�) defined by ιX (p,ω) = ω(X p). Two
vector fields X̄ and Ȳ on T ∗� satisfy X̄ = Ȳ if and only if they act on evaluation
maps as X̄(ιZ) = Ȳ (ιZ) for any vector field Z on�. Given a vector field X on�, its
complete lift XC is the vector field determined by the identity XC(ιZ) = ι[X, Z ]. In
the same way as vector fields on T ∗� are characterized by their action on evaluation
maps, (0, s)-tensor fields on T ∗� are characterized by their action on complete lifts
of vector fields. In particular, any (1, 1)-tensor field T on � induces a 1-form ιT on
T ∗� characterized by ιT (XC) = ι(T X) (see [20] for more details concerning this
matter).

Riemannian extensions of torsion-free connections were introduced by Patterson
and Walker in [18] as metrics on T ∗� such that gD(XC ,YC ) = −ι(DXY + DY X),
where D is a torsion-free connection on the base manifold�.Deformed Riemannian
extensions are neutral signature metrics on T ∗� such that gD,� = gD + π∗�, where
� is a symmetric (0, 2)-tensor field on the affine surface. Afifi showed in [1] that a
Walker manifold with parallel null distributionD is locally isometric to a deformed
Riemannian extension of an affine connection if and only if its curvature tensor
satisfies R(·,D)D = 0. These metrics were further generalized in [8] as follows.
Considering a symmetric (0, 2)-tensor field � and (1, 1)-tensor fields T and S on
an affine surface (�, D), the modified Riemannian extension is the neutral signature
metric on T ∗� defined by gD,�,T,S = ιT ◦ ιS + gD + π∗�, where ‘◦’ denotes the
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symmetric product. Considering local coordinates (x1, x2) on a neighbourhood U in
� and induced coordinates (x1, x2, x1′ , x2′) on π−1(U), one has

gD,�,T,S = dxi ⊗ dxi ′ + dxi ′ ⊗ dxi

+ {
1
2 xr ′xs ′(Tir S j

s + Tj
r Sis) − 2xk ′ D�i j

k + �i j
}
dxi ⊗ dx j ,

where T = Tij dxi ⊗ ∂x j , S = Sij dxi ⊗ ∂x j , � = �i j dxi ⊗ dx j and D�i j
k are the

Christoffel symbols of the affine connection D. Moreover, the Walker distribution
is given by D = ker π∗. Furthermore, a Walker metric corresponds to the modified
Riemannian extension of an affine connection if and only if (∇DR)(D, ·)D = 0.

2.1 Self-Dual Walker Manifolds

The existence of a parallel degenerate 2-dimensional distributionD on a neutral sig-
nature manifold (M, g) of dimension four naturally induces an orientation.We recall
the discussion in [12]. Let p ∈ M and let {u, v} be an arbitrary basis ofDp. Then the
Hodge-star operator satisfies �(u∗ ∧ v∗) = ±(u∗ ∧ v∗), where u∗, v∗ ∈ T ∗

p M denote
the corresponding dual forms. This way, any four-dimensional Walker manifold is
naturally oriented by the self-duality of u∗ ∧ v∗. Let (x1, x2, x1′ , x2′) be local coor-
dinates on a four-dimensional Walker manifold as in (1). Then the Walker orienta-
tion determined by �(dx1′ ∧ dx2′) = dx1′ ∧ dx2′ corresponds to the volume element
volg = dx1 ∧ dx2 ∧ dx1′ ∧ dx2′ . Self-dual Walker manifolds were described in [8]
as follows.

Theorem 1 ([8, Theorem 7.1]) A four-dimensional Walker manifold is self-dual if
and only if it is locally isometric to the cotangent bundle T ∗� of an affine surface
(�, D) with metric

g = ιX (ι Id ◦ι Id) + ιT ◦ ι Id+gD + π∗�, (2)

where gD denotes de Riemannian extension of the affine connection, X is a vector
field on � and T and � are a (1, 1)-tensor field and a symmetric (0, 2)-tensor field
on �, respectively.

Let � be a surface with local coordinates (x1, x2) and consider (x1, x2, x1′ , x2′) the
induced local coordinates on T ∗�. The canonical symplectic structure of the cotan-
gent bundle determined by the tautological 1-form θ = xk ′dxk induces an orientation
determined by the volume form dθ ∧ dθ = −dx1 ∧ dx2 ∧ dx1′ ∧ dx2′ , which is the
opposite of the orientation induced by the Walker structure given by D = ker π∗.
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3 Bochner-Flat Para-Kähler Surfaces

Let (M, g, J ) be a para-Kähler surface and denoteD± = ker(J ∓ Id). We consider
Walker coordinates (x1, x2, x1′ , x2′) as in (1) and set theWalker distribution to beD =
D+ so that J |D = Id. We point out that para-Kähler surfaces are Walker manifolds
but the converse is not true, since the parallelizability of D = D+ does not ensure
the integrability of the complementary distribution D−. The almost para-Hermitian
structures satisfying J |D = Id are locally parametrized by a real-valued function
f (x1, x2, x1′ , x2′) so that

J f ∂x1 = −∂x1 + g11∂x1′ + f ∂x2′ , J f ∂x1′ = ∂x1′ ,

J f ∂x2 = −∂x2 + (2g12 − f )∂x1′ + g22∂x2′ , J f ∂x2′ = ∂x2′ .
(3)

Their associated Kähler 2-forms � f (X,Y ) = g(J f X,Y ) are given by � f = ( f −
g12)dx1 ∧ dx2 + dx1′ ∧ dx1 + dx2′ ∧ dx2, thus

d� f = ∂x1′ ( f − g12)dx1′ ∧ dx1 ∧ dx2 + ∂x2′ ( f − g12)dx2′ ∧ dx1 ∧ dx2.

Therefore, d� f = 0 if and only if f (x1, x2, x1′ , x2′) = g12(x1, x2, x1′ , x2′) + h(x1,
x2) for some function h(x1, x2) and the almost paracomplex structure becomes

Jh∂x1 = −∂x1 + g11∂x1′ + (g12 + h)∂x2′ , Jh∂x1′ = ∂x1′ ,

Jh∂x2 = −∂x2 + (g12 − h)∂x1′ + g22∂x2′ , Jh∂x2′ = ∂x2′ .
(4)

Considering an almost para-Hermitian structure given by (1) and (4), the associated
Kähler 2-form is given by�h = hdx1 ∧ dx2 + dx1′ ∧ dx1 + dx2′ ∧ dx2. It is impor-
tant to emphasize that the para-Kähler and Walker orientations are opposite. Indeed,
the Kähler 2-form �h is anti-self-dual for the para-Kähler orientation determined by
the paracomplex structure Jh , but it is self-dual for the Walker orientation.

In order to describe Bochner-flat para-Kähler surfaces we consider the cotan-
gent bundle T ∗� of an affine surface (�, D) with metric g = ιX (ι Id ◦ι Id) + ιT ◦
ι Id+gD + π∗� as in (2) and set the paracomplex structure satisfying the condition
J |ker π∗ = Id. The almost para-Hermitian structures defined by (1) and (4) are not
para-Kähler in general. We use the notation (∇∂xα Jh)∂xβ = (∇ Jh)β;αγ∂xγ to denote
the components of ∇ Jh on T ∗� and (D∂xi

T )∂x j = DTj;i k∂xk , (D∂xi
�)(∂x j , ∂xk ) =

D� jk;i to represent the covariant derivatives of the (1, 1)-tensor field T and the
symmetric (0, 2)-tensor field � on �, respectively. Using the notation in Theorem
1, long but straightforward calculations show that:

Lemma 1 Let (M, g) be a self-dual Walker manifold of dimension four. Let Jh be an
almost paracomplex structure given by Jh |ker π∗ = Id so that (g, Jh) is an almost para-
Hermitian structure on M. Then the nonzero components of the covariant derivative
∇ Jh are given by
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8 (∇ Jh)1;1 4 = x31′
{
T21 tr(T ) + 8S2

1
} + x21′x2′

{
(T22)2 − (T11)2 + 8(S2

2 − S1
1)

}

+x1′x22′
{−T12 tr(T ) − 8S1

2
}

+x21′
{
8DT1;21 − 4DT2;11 + 2X1(8h − 4�12) − 4X2�22

}

+x1′x2′
{
8DT1;22 − 4DT2;12 − 4DT1;11 + 16hX2 + 8X1�11

}

+x22′
{−4DT1;12 + 4X2�11

}

+x1′
{
16ρD

21 + 10hT11 + 2hT22 − 2 tr(T )�12 + 4(�̂21 − �̂12)
}

+x2′
{−16ρD

11 + 8hT12 + 2 tr(T )�11
}

+8
{
∂1h − h(D�11

1 + D�12
2) + D�11;2 − D�12;1

}
,

8(∇ Jh)1;24 = x32′
{−T12 tr(T ) − 8S1

2
} + x21′x2′

{
T21 tr(T ) + 8S2

1
}

+x1′x22′
{
(T22)2 − (T11)2 + 8(S2

2 − S1
1)

}

+x21′
{
4DT2;21 − 4X1�22

}

+x1′x2′
{−8DT2;11 + 4DT1;21 + 4DT2;22 + 16hX1 − 8X2�22

}

+x22′
{−8DT2;12 + 4DT1;22 + 2X2(8h + 4�12) + 4X1�11

}

+x1′
{
16ρD

22 + 8hT21 − 2 tr(T )�22
}

+x2′
{
−16ρD

12 + 2hT11 + 10hT 2
2 + 2 tr(T )�12 + 4(�̂21 − �̂12)

}

+8
{
∂2h − h(D�22

2 + D�12
1) + D�12;2 − D�22;1

}
,

where X = Xi∂i , T = Tj
i∂xi ⊗ dx j and � = �i j dxi ⊗ dx j are the vector field, the

(1, 1)-tensor field and the symmetric (0, 2)-tensor field on � given in Theorem 1,
S is the (1, 1)-tensor field on � defined as S(Z) := DZ X, �̂(X,Y ) := �(T X,Y )

and D�i j
k are the Christoffel symbols of the affine connection.

Notice that the expressions in Lemma 1 are polynomials on the fiber coordinates x1′

and x2′ whose coefficients are functions of the base coordinates x1 and x2.

3.1 Bochner-Flat Para-Kähler Surfaces of Constant Scalar
Curvature

It follows from Theorem 1 that the scalar curvature of a Bochner-flat para-Kähler
surface is given by τ = 12ιX + 3 tr(T ), where ιX is the evaluation map of the
vector field X . Therefore if a Bochner-flat para-Kähler surface has constant scalar
curvature then the vector field X vanishes and T must have constant trace. If τ 
= 0
there exist local coordinates in which the (1, 1)-tensor field T = c Id with c ∈ R.
In this situation, a Bochner-flat para-Kähler surface has constant paraholomorphic
sectional curvature and so it is locally isometric to the cotangent bundle of a flat affine
surface (�, D) endowed with a modified Riemannian extension g = cι Id ◦ι Id+gD

(see [9, Theorem 2.2]).
Bochner-flat para-Kähler surfaces with τ = 0 are locally conformally flat. Work-

ing at a purely algebraic level, we consider (V, 〈·, ·〉, J ) a para-Hermitian inner prod-
uct space and a para-Kähler algebraic curvature tensor A : V × V × V × V → R
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so thatA(X,Y ) · J = J · A(X,Y ). There are three non-flat locally conformally flat
algebraic curvature models (V, 〈·, ·〉,A) as follows.

(M): ((V, 〈 · , · 〉,A) given by

A1413 = A3231 = −1

2

with respect to pseudo-orthonormal a basis {u1, u2, u3, u4}where the non-zero inner
products are 〈u1, u2〉 = 1 = −〈u3, u4〉.

(Nk): ((V, 〈 · , · 〉,A) given by

A1413 = A1442 = A3224 = A3231 = k

2

with respect to an orthonormal basis {u1, u2, u3, u4} where u1, u3 are spacelike vec-
tors and u2, u4 are timelike vectors.

(Pk): ((V, 〈 · , · 〉,A) given by

A1212 = A4334 = k

with respect to an orthonormal basis {u1, u2, u3, u4} where u1, u3 are spacelike vec-
tors and u2, u4 are timelike vectors.

It follows from Lemma 1 that if τ = 0, then the (1, 1)-tensor field T must be
parallel and so the classification of Bochner-flat para-Kähler surfaces of constant
scalar curvature is summarized as follows.

Theorem 2 ([13, Theorem 4.2]) Let (M, g, J ) be a Bochner-flat para-Kähler sur-
face of constant scalar curvature. Then it is locally isometric to a Riemannian exten-
sion of the form (T ∗�, g = ιT ◦ ι Id+gD) with paracomplex structure determined
by J |ker π∗ = Id, where T is a parallel (1, 1)-tensor field on a flat affine surface
(�, D). Moreover, one of the following holds:

(i) T = 0 and (M, g, J ) is flat.
(ii) T = c Id and (M, g, J ) has constant paraholomorphic sectional curvature

H = c.
(iii) T 2 = κ2 Id and (M, g, J ) is isometric to a product of two Lorentzian surfaces

of constant opposite curvature, thus modelled on (Pk).
(iv) T 2 = 0 and (M, g, J ) is modelled on (M).
(v) T 2 = −κ2 Id and (M, g, J ) is modelled on (Nk).
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3.2 Some Examples of Bochner-Flat Para-Kähler Structures
of Non-constant Scalar Curvature

Consider an affine surface (�, D) and let (g, Jh) be an almost para-Hermitian struc-
ture on T ∗� given by Jh |ker π∗ = Id, where the metric g = ιX (ι Id ◦ι Id) + ιT ◦
ι Id+gD + π∗� is given as in Theorem 1. Aimed to construct examples of Bochner-
flat para-Kähler surfaces of non-constant scalar curvature we analyze the case where
the (1, 1)-tensor field T is parallel. In this situation, the nonzero components of the
covariant derivative of Jh reduce to

8 (∇ Jh)1;1 4 = x31′
{
T21 tr(T ) + 8S2

1
} + x21′x2′

{
(T22)2 − (T11)2 + 8(S2

2 − S1
1)

}

+x1′x22′
{−T 2

1 tr(T ) − 8S1
2
} + x21′

{
2X1(8h − 4�12) − 4X2�22

}

+x1′x2′
{
16hX2 + 8X1�11

} + x22′
{
4X2�11

}

+x1′
{
16ρD

21 + 10hT11 + 2hT22 − 2 tr(T )�12 + 4(�̂21 − �̂12)
}

+x2′
{−16ρD

11 + 8hT12 + 2 tr(T )�11
}

+8
{
∂1h − h(D�11

1 + D�12
2) + D�11;2 − D�12;1

}
,

8(∇ Jh)1;24 = x32′
{−T12 tr(T ) − 8S1

2
} + x21′x2′

{
T21 tr(T ) + 8S2

1
}

+x1′x22′
{
(T22)2 − (T11)2 + 8(S2

2 − S1
1)

} + x21′
{−4X1�22

}

+x1′x2′
{
16hX1 − 8X2�22

} + x22′
{
2X2(8h + 4�12) + 4X1�11

}

+x1′
{
16ρD

22 + 8hT21 − 2 tr(T )�22
}

+x2′
{
−16ρD

12 + 2hT11 + 10hT22 + 2 tr(T )�12 + 4(�̂21 − �̂12)
}

+8
{
∂2h − h(D�22

2 + D�12
1) + D�12;2 − D�22;1

}
.

Since the tensor field T is parallel, it has constant trace and X must be nonzero so
that τ = 12ιX + 3 tr(T ) is non-constant.

If X1 
= 0 it follows immediately from the expression of the coefficient of x21′
in (∇ Jh)1;24 above that �22 = 0. Knowing this, the expression of the coefficient of
x1′x2′ in (∇ Jh)1;24 shows that h = 0. The same coefficient in (∇ Jh)1;14 shows that
�11 = 0 and now, focusing on the coefficient of x21′ in (∇ Jh)1;14 we see that�12 = 0.
If X2 
= 0, proceeding analogously it follows that h and � vanish identically.

Since both the function h and the symmetric (0, 2)-tensor field � vanish, the
components of the covariant derivative ∇ Jh reduce to

8 (∇ Jh)1;1 4 = x31′
{
T21 tr(T ) + 8S2

1
} + x21′x2′

{
(T22)2 − (T11)2 + 8(S2

2 − S1
1)

}

+x1′x22′
{−T12 tr(T ) − 8S1

2
} + 16x1′ρD

21 − 16x2′ρD
11,

8(∇ Jh)1;24 = x32′
{−T12 tr(T ) − 8S1

2
} + x21′x2′

{
T21 tr(T ) + 8S2

1
} + 16x1′ρD

22
+x1′x22′

{
(T22)2 − (T11)2 + 8(S2

2 − S1
1)

} − 16x2′ρD
12.

The linear terms in these two expressions show that the Ricci tensor of the affine
surface must vanish identically. Therefore the affine connection is necessarily flat.
Assume that T is trace-free. At this point, the components of ∇ Jh take the form
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8 (∇ Jh)1;1 4 = 8x31′S2
1+x21′x2′

{
(T22)2−(T11)2+8(S2

2−S1
1)

} − 8x1′x22′ S12,
8(∇ Jh)1;24 = 8x21′x2′S2

1+x1′x22′
{
(T22)2−(T11)2+8(S2

2−S1
1)

} − 8x32′S1
2.

The existence of parallel (1, 1)-tensor fields on affine surfaces was studied in [9]
showing that (besides the case where T = 0) a trace-free parallel (1, 1)-tensor field
on an affine surface (�, D) corresponds to one of the following.

(a) An affine para-Kähler structure (det(T ) = −κ2 < 0), which in suitable adapted
coordinates becomes T = κ(∂x1 ⊗ dx1 − ∂x2 ⊗ dx2).

(b) An affine nilpotent Kähler structure (T 2 = 0), which in suitable adapted coor-
dinates becomes T = κ∂x1 ⊗ dx2.

(c) An affine Kähler structure (det(T ) = κ2 > 0), which in suitable adapted coor-
dinates becomes T = κ(∂x2 ⊗ dx1 − ∂x1 ⊗ dx2).

Straightforward calculations now show that, for any case described above, there exist
local coordinates in which the (1, 1)-tensor filed S = DX takes the form S = λ Id
for some function λ ∈ C∞(�) and the scalar curvature is given by τ = ιX .

We summarize the discussion above in the following

Theorem 3 Let (�, D) be an affine surface and let (g, Jh) be an almost para-
Hermitian structure on T ∗� such that

Jh |ker π∗ = Id and g = ιX (ι Id ◦ι Id) + ιT ◦ ι Id+gD + π∗�.

If T is parallel and tr(T ) = 0 then (T ∗�, g, Jh) is aBochner-flat para-Kähler surface
if and only if h = 0, � = 0, the affine connection D is flat and S = λ Id for some
λ ∈ C∞(�), being S(Z) = DZ X.

Remark 1 If the affine connection D is flat, there exist local coordinates on � so
that all the Christoffel symbols are zero. After a suitable linear transformation on
the coordinates one can set T being of one of the forms described above. Straight-
forward calculations show that there exist suitable adapted coordinates in which
Bochner-flat para-Kähler structures determined by a trace-free parallel (1, 1)-tensor
field T are given by the vector field X = axi∂xi , where a ∈ R and thus S = a Id.
We subsequently examine the different possibilities.

(a) Let T be an affine para-Kähler structure on a flat affine surface (�, D) and
take local coordinates so that D�i j

k = 0, T = κ(∂x1 ⊗ dx1 − ∂x2 ⊗ dx2) and
X = axi∂xi . Then the Bochner-flat metric induced on T ∗� is given by

g = x21′(ax1′x1+ax2′x2+κ)dx1⊗ dx1+x22′(ax1′x1+ax2′x2 − κ)dx2⊗ dx2

+ax1′x2′(x1′x1+x2′x2)(dx1⊗ dx2+dx2⊗ dx1)+dx1⊗dx1′ +dx2⊗dx2′ .

A straightforward calculation shows that the Ricci curvatures are given by

λ± = 2ιX ±
√

(ιX)2 + 2ι(T X) + κ2,
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and the Ricci operator diagonalizes with real eigenvalues on the zero section of
T ∗�. The curvature on the zero section of the cotangent bundle corresponds to
that of a locally conformally flat para-Kähler surface determined by an affine
para-Kähler structure, thus it is modelled on (Pk).

(b) Let T be an affine nilpotent Kähler structure on a flat affine surface (�, D) and
take local coordinates so that D�i j

k = 0, T = κ∂x1 ⊗ dx2 and X = axi∂xi . Then
the Bochner-flat metric induced on T ∗� is given by

g = ax21′(x1′x1+x2′x2)dx1 ⊗ dx1+x2′(ax2′(x1′x1+x2′x2) + κx1′)dx2 ⊗ dx2

+ 1
2 x1′(2ax2′(x1′x1+x2′x2)+κx1′)(dx1 ⊗ dx2+dx2 ⊗ dx1)

+dx1 ⊗ dx1′ +dx2 ⊗ dx2′ .

A straightforward calculation shows that the Ricci curvatures are given by

λ± = 2ιX ±
√

(ιX)2 + 2ι(T X),

and the Ricci operator is two-step nilpotent on the zero section of T ∗�. The
curvature on the zero section of the cotangent bundle corresponds to that of a
locally conformally flat para-Kähler surface determined by an affine nilpotent
Kähler structure, thus it is modelled on (M).

(c) Let T be an affine Kähler structure on a flat affine surface (�, D) and take local
coordinates so that D�i j

k = 0, T = κ(∂x2 ⊗ dx1 − ∂x1 ⊗ dx2) and X = axi∂xi .
Then the Bochner-flat metric induced on T ∗� is given by

g = x1′(ax1′(x1′x1 + x2′x2) + κx2′)dx1 ⊗ dx1

+x2′(ax2′(x1′x1 + x2′x2) − κx1′)dx2 ⊗ dx2

+(
ax1′x2′(x1′x1+x2′x2)+ 1

2 (x
2
2′ −x21′)κ

)
(dx1 ⊗ dx2+dx2 ⊗ dx1)

+dx1 ⊗ dx1′ +dx2 ⊗ dx2′ .

A straightforward calculation shows that the Ricci curvatures are given by

λ± = 2ιX ±
√

(ιX)2 + 2ι(T X) − κ2,

and the Ricci operator has complex eigenvalues on the zero section of T ∗�.
The curvature on the zero section of the cotangent bundle corresponds to that
of a locally conformally flat para-Kähler surface determined by an affine Kähler
structure, thus it is modelled on (Nk).

Remark 2 In the case where T is a parallel (1, 1)-tensor field with nonzero trace on
(�, D), we denote T 0 = T − tr(T )

2 Id the traceless part of T so that T = T 0 + μ Id,
being tr(T ) = 2μ. Since the affine connection D is flat, there exist local coordinates in
which all the Christoffel symbols D�i j

k are zero. After a suitable linear transformation
on the coordinates we can set T 0 being of one of the forms described in (a), (b) and (c)
above. Straightforward calculations show that there exist suitable adapted coordinates
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in which Bochner-flat para-Kähler structures determined by a parallel (1, 1)-tensor
field T with tr(T ) 
= 0 correspond to one of the following situations.

(a) If T 0 is an affine para-Kähler structure then the (1, 1)-tensor fields T and S com-
mute and there exist local coordinates in which T = (μ + κ)∂x1 ⊗ dx1 + (μ −
κ)∂x2 ⊗ dx2 and X = ax1∂x1 + (a + κμ

2 )∂x2 . The Bochner-flat metric induced
on T ∗� has Ricci curvatures given by

λ± = 3
2μ + 3ιX ±

√
(ιX)2 + ι(T X) + ι(K X) + κ2,

where K = T − tr(T ) Id. The Ricci operator diagonalizes with real eigenvalues
λ± = 3

2μ ± κ on the zero section of the cotangent bundle T ∗�.
(b) If T 0 is an affine nilpotent Kähler structure then the (1, 1)-tensor fields T

and S commute and there exist local coordinates in which T = μ(∂x1 ⊗ dx1 +
∂x2 ⊗ dx2) + κ∂x1 ⊗ dx2 and X = (

ax1 − κμ
4 x2

)
∂x1 + ax2∂x2 . The Bochner-

flat metric induced on T ∗� has Ricci curvatures given by

λ± = 3
2μ + 3ιX ±

√
(ιX)2 + ι(T X) + ι(K X),

where K = T − tr(T ) Id. On the zero section of the cotangent bundle the Ricci
operator has a single eigenvalue λ = 3

2μ that is a double root of its minimal
polynomial.

(c) If T 0 is an affine Kähler structure then the (1, 1)-tensor fields T and S commute
and there exist local coordinates in which T = μ(∂x1 ⊗ dx1 + ∂x2 ⊗ dx2) +
κ(∂x2 ⊗ dx1 − ∂x1 ⊗ dx2) and X = (

ax1 + κμ
4 x2

)
∂x1 + (

ax2 − κμ
4 x1

)
∂x2 . The

Bochner-flat metric induced on T ∗� has Ricci curvatures given by

λ± = 3
2μ + 3ιX ±

√
(ιX)2 + ι(T X) + ι(K X) − κ2,

where K = T − tr(T ) Id. The Ricci operator is complex-diagonalizable with
eigenvalues λ± = 3

2μ + √−κ2 on the zero section of T ∗�.
(d) If T 0 = 0 there exist local coordinates in which the (1, 1)-tensor field T is

a multiple of the identity T = μ Id and X = axi∂xi . The Bochner-flat metric
induced on T ∗� has Ricci curvatures given by

λ± = 3
2μ + 3ιX ±

√
(ιX)2 + ι(T X) + ι(K X),

where K = T − tr(T ) Id. On the zero section of the cotangent bundle, the Ricci
operator is diagonalizable with a single real eigenvalue λ = 3

2μ. Therefore the
paraholomorphic sectional curvature is constant on the zero section of T ∗�.
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