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Abstract Although it originated in the study of 4-dimensional spacetimes, the
Newman-Penrose formalism is also an effective tool in dimension three, provided
that a distinguished vector field is present. Here we show how a 3-dimensional ver-
sion of theNewman-Penrose formalism can be used to study both the local and global
geometry of Lorentzian 3-manifolds. Globally, we find obstructions to Lorentzian
metrics generalizing those of constant curvature; locally, we classify Lorentzian 3-
manifolds that admit a timelike Killing vector field. These results have appeared in
[1] and [3], the latter joint with R. Ream.
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1 Introduction

On three-dimensional Lorentzian manifolds, and in the presence of distinguished
timelike vector field, the Newman-Penrose formalism—when properly adapted to
such a setting—is a useful frame technique by which to derive results both global
and local. In this paper we give examples of both, to illustrate the method. We
start with the global setting first, where we generalize the nonexistence of positive
Lorentzian Einstein metrics in dimension 3, by proving the following:

Theorem 1 Let M be a closed 3-manifold, λ > 0 a constant, and f a smooth func-
tion that never takes the values 0,λ. Then there is no Lorentzian metric g on M
whose Ricci tensor satisfies

Ric = f g + ( f − λ)T � ⊗ T �, (1)

for any unit timelike vector field T . If (1) holds with λ = 0, then (M, g) is isometric
to (S1× N ,−dt2 ⊕ h) with (N , h) a Riemannian manifold.
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Although Theorem 1 does not cover the case f = λ, nevertheless this would
reduce (1) to the Einstein condition Ric = λg with positive Einstein constant.
In dimension 3, this is equivalent to (M, g) having constant positive sectional
curvature—and it is well known that there are no such (closed) Lorentzianmanifolds.
(Its proof came in two stages: [7] showed that there are no geodesically complete
such manifolds, in any dimension; [10] then showed that every closed constant cur-
vature Lorentzian manifold must be geodesically complete, with the flat case having
already been established in [5]. See [11] for a comprehensive account.) It is in this
sense that (1) generalizes the nonexistence of positive Einstein metrics. Notice that
the distinguished timelike vector field here is T : it defines the direction of deviation
from the Einstein condition.

We nowmove to the local setting, together with a stronger condition on T , namely,
that it be a timelike Killing vector field, LT gL = 0. The Newman-Penrose formalism
here allows for a complete local classification of Lorentzian 3-manifolds admitting
timelike Killing vector fields:

Theorem 2 Let (M, gL) be a Lorentzian 3-manifold that admits a unit timelike
Killing vector field T . Then there exists local coordinates (t, r, θ) and a smooth
function ϕ(r, θ) such that

T = ∂t , gL = −(T �)2 + dr2 + ϕ2dθ2, (2)

and where the quotient metric dr2 + ϕ2dθ2 has Gaussian curvature

−ϕrr

ϕ
= 1

2

(
SL − RicL(T, T )

)
,

with SL and RicL the scalar curvature and Ricci tensor of gL , respectively.

In both Theorems 1 and 2, we use the three-dimensional version of the Newman-
Penrose formalism [12], which we outline in Sect. 2. This is a frame technique which
has by now appeared in many guises in dimensions 3 and 4, both Lorentzian and
Riemannian; see, e.g., [2, 4, 9, 13, 20]. The principal virtue of the Newman-Penrose
formalism is that it converts second-order differential equations involving curvature
into first-order differential equations involving properties of the flow of our distin-
guished vector field, be it the vector field T in (1) or the one in (2). Doing so will, it
turns out, simplify the analysis in the proofs of Theorems 1 and 2 considerably.

2 The Newman-Penrose Formalism for Lorentzian
3-Manifolds

Let T be a smooth unit length timelike vector field defined in an open subset of a
Lorentzian 3-manifold (M, g) without boundary, so that ∇vT ⊥ T for all vectors v
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(∇ is the Levi-Civita connection, and we adopt the index − + + for the Lorentzian
metric g). Let X and Y be two smooth spacelike vector fields such that {T, X,Y } is a
local orthonormal frame, where by “timelike” and “spacelike” we mean simply that

g(T, T ) = −1 , g(X, X) = g(Y,Y ) = 1.

For such a T , there is an endomorphism D defined on the normal bundle T⊥ ⊂ T M :

D : T⊥ −→ T⊥ , v �→ ∇vT . (3)

As is well known, the matrix of D with respect to the frame {T, X,Y },

D =
(

g(∇XT , X) g(∇Y T , X)

g(∇XT ,Y ) g(∇Y T ,Y )

)

carries three crucial pieces of information associated to the flow of T :

1. The divergence of T , denoted div T , is the trace of D.
2. By Frobenius’s theorem, T⊥ is integrable if and only if the off-diagonal elements

of (6) satisfy

ω := g(T, [X,Y ]) = g(∇Y T , X) − g(∇XT ,Y ) = 0. (4)

Sinceω2 equals the determinant of the anti-symmetric part of D (see (6) below),ω
is invariant up to sign, called the twist of T . We say that the flow of T is twist-free
if ω = 0.

3. The third piece of information is the shear σ of T ; it is given by the trace-free
symmetric part of D, whose components σ1,σ2 we combine here into a complex-
valued quantity, for reasons that will become clear below:

σ:= 1

2

(
g(∇Y T ,Y ) − g(∇XT , X)

)

︸ ︷︷ ︸
σ1

+ i
1

2

(
g(∇Y T , X) + g(∇XT ,Y )

)

︸ ︷︷ ︸
σ2

.

(5)

Althoughσ itself is not invariant, itsmagnitude |σ2| is: by (6) below, it isminus the
determinant of the trace-free symmetric of D. We say that the flow of T is shear-
free if σ = 0. As with being twist-free, being shear-free is a frame-independent
statement. In terms of div T , ω, and σ, D is

D =
( 1

2div T − σ1 σ2 + ω
2

σ2 − ω
2

1
2div T + σ1

)
· (6)

Note that (3) has been applied to arbitrary n-dimensional Lorentzian manifolds,
yielding integral inequalities via Bochner’s technique, in particular when D is
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skew-symmetric, or (in dimension 3) when the vector field of interest is spacelike,
in [17] and [18].

We now present the Newman-Penrose formalism for Lorentzian 3-manifolds,
which is well known; see [9], andmore recently, [13]. Our presentation here parallels
the three-dimensional Riemannian treatment to be found in [2], and is meant to fix
notation; in what follows, any sign changes that arise due to the Lorentzian index, as
compared to the Riemannian case in [2], are indicated by red text—we will in fact
need the Riemannian version in Sect. 4. Let {T, X,Y } be as above and define the
complex-valued quantities

m := 1√
2
(X − iY ) , m := 1√

2
(X + iY ).

Henceforth we work with the complex frame {T,m,m}, for which only g(T, T ) =
−1andg(m,m) = 1are nonzero.The followingquantities associated to this complex
triad play a central role in all that follows.

Definition 1 The spin coefficients of the complex frame {T,m,m} are the complex-
valued functions

κ = −g(∇T T ,m) , ρ = −g(∇mT ,m) , σ = −g(∇mT ,m),

ε = g(∇Tm,m) , β = g(∇mm,m).

Note that the flow of T is geodesic, ∇T T = 0, if and only if κ = 0; that

ε = ig(∇T X ,Y )

is purely imaginary; that σ is actually the complex shear (5); and finally that the spin
coefficient ρ is given by

− 2ρ = div T + i ω. (7)

It is clear that κ, ρ,σ directly represent the three geometric properties of the flow of
T discussed above. In terms of the five spin coefficients in Definition 1, the covariant
derivatives of {T,m,m} are given by

∇T T=−κ̄m − κm,

∇mT=−ρ̄m − σ m,

∇Tm=−κ T + εm,

∇mm=−σ T + β m,

∇mm=−ρ̄ T − β m,

while their Lie brackets are
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[T,m]=−κ T + (ε + ρ̄)m + σ m, (8)

[m,m]=−(ρ̄ − ρ) T + β̄ m − β m. (9)

All other covariant derivatives, as well as the Lie bracket [T,m], are obtained by
complex conjugation. Now onto curvature; begin by observing that the Riemann and
Ricci tensors

R(u, v,w, z)=g(∇u∇vw − ∇v∇uw − ∇[u,v]w, z),

Ric(· , ·)=−R(T, ·, ·, T ) + R(m, ·, ·,m) + R(m, ·, ·,m),

satisfy the following relationships in the complex frame {T,m,m}:
⎧
⎪⎪⎨

⎪⎪⎩

Ric(m,m)=+R(T,m, T,m),

Ric(T, T )=−2R(T,m, T,m),

Ric(T,m)=−R(T,m,m,m),

Ric(m,m)=− 1
2Ric(T, T ) − R(m,m,m,m).

Using these, and expressing the Riemann tensor as

R(u, v,w, z)=ug(∇vw, z) − g(∇vw,∇u z) − vg(∇uw, z)

+ g(∇uw,∇v z) − g(∇[u,v]w, z),

leads to the following equations; along with (15) and (16) below, play the crucial
role in the Newman-Penrose formalism:

T (ρ) − m(κ)=−|κ|2 + |σ|2 + ρ2 + κβ̄ + 1

2
Ric(T, T ), (10)

T (σ) − m(κ)=−κ2 + 2σε + σ(ρ + ρ̄) − κβ −Ric(m,m), (11)

m(ρ) − m(σ)=2σβ̄ − (ρ̄ − ρ)κ + Ric(T,m), (12)

T (β) − m(ε)=σ(κ̄ − β̄) + κ(−ε − ρ̄) + β(ε + ρ̄) − Ric(T,m), (13)

m(β̄) + m(β)=− |σ|2 + |ρ|2 − 2|β|2 − (ρ − ρ̄)ε − Ric(m,m) − 1

2
Ric(T, T ). (14)

Finally, there are two nontrivial differential Bianchi identities,

(∇T R)(T,m,m,m) + (∇mR)(T,m,m, T ) + (∇mR)(T,m, T,m) = 0,

(∇T R)(m,m,m,m) + (∇mR)(m,m,m, T ) + (∇mR)(m,m, T,m) = 0,

which, in terms of spin coefficients, take the following forms:
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T (Ric(T,m)) − 1

2
m(Ric(T, T )) − m(Ric(m,m)) = (15)

−κ
(+Ric(T, T ) + Ric(m,m)

) + (
ε + 2ρ + ρ̄

)
Ric(T,m)

+σ Ric(T,m) − (
κ̄ − 2β̄

)
Ric(m,m)

and

m(Ric(T,m)) + m(Ric(T,m)) − T
(
Ric(m,m)+ (1/2)Ric(T, T )

) =

− (ρ + ρ̄)
(
Ric(T, T )+Ric(m,m)

) − σ̄Ric(m,m) − σRic(m,m) (16)

− (−2κ̄ + β̄
)
Ric(T,m) − (−2κ + β

)
Ric(T,m).

E.g., to derive (16), expand the second differential Bianchi identity, beginning
with its first term:

(∇T R)(m,m,m,m) = T (R(m,m,m,m)) − R(∇Tm,m,m,m)

− R(m,∇Tm,m,m) − R(m,m,∇Tm,m) − R(m,m,m,∇Tm).

In terms of spin coefficients and the Ricci tensor, each term is

T (R(m,m,m,m))=−T (Ric(m,m)+ 1

2
Ric(T, T )),

R(∇Tm,m,m,m)=−κ̄ R(T,m,m,m)︸ ︷︷ ︸
−Ric(T,m)

+ ε̄R(m,m,m,m)︸ ︷︷ ︸
−Ric(m,m)− 1

2 Ric(T,T )

,

=R(m,m,m,∇Tm),

R(m,∇Tm,m,m)=−κ R(m, T,m,m)︸ ︷︷ ︸
−Ric(T,m)

+ εR(m,m,m,m)︸ ︷︷ ︸
−Ric(m,m)− 1

2 Ric(T,T )

,

=R(m,m,∇Tm,m),

Thus the term (∇T R)(m,m,m,m) simplifies to

−T
(
Ric(m,m)+ (1/2)Ric(T, T )

) − 2κRic(T,m)− 2κ̄Ric(T,m),

where two terms cancel because ε + ε̄ = 0. Repeating this process on the remain-
ing terms in the second differential Bianchi identity yields (16); the first differen-
tial Bianchi identity (15) is similarly derived. This concludes the derivation of the
Newman-Penrose formalism for Lorentzian 3-manifolds.
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3 The Newman-Penrose Formalism and Global
Obstructions

3.1 Evolution Equations for Divergence, Twist, and Shear

To prove Theorem 1, we first need to gather some information regarding the flow of
T appearing in (1); the first-order differential equations appearing here exemplify
“what the Newman-Penrose formalism is good for.”

Proposition 1 Let (M, g) be a Lorentzian 3-manifold whose Ricci tensor satisfies

Ric = f g + ( f − μ)T � ⊗ T �,

for some unit timelike vector field T , constant μ, and smooth function f which never
takes the value μ. Then T has geodesic flow, and its divergence, twist, and shear
satisfy the following differential equations:

T (div T )=ω2

2
− 2|σ|2 − 1

2
(div T )2 + μ, (17)

T (ω2)=−2(div T )ω2, (18)

T (|σ|2)=−2(div T ) |σ|2. (19)

Furthermore, f satisfies

T ( f − μ) = −(div T )( f − μ), (20)

and, recalling (6), the function H := det D − μ
2 satisfies

T (div T )=2H − (div T )2 + 2μ, (21)

T (H)=−(div T )H. (22)

Proof Let {T, X,Y } be an orthonormal frame, with X,Y possibly only locally
defined, and let {T,m,m} be the corresponding complex frame (recall that div T,ω2,
and |σ|2 are globally defined, frame-independent quantities). Then the Ricci tensor
in this complex frame satisfies

Ric(T, T ) = −μ , Ric(m,m)︸ ︷︷ ︸
1
2 (Ric(X,X) +Ric(Y,Y ))

= f,

with all other components vanishing. That T has geodesic flow, ∇T T = 0, now
follows from the differential Bianchi identity (15), which reduces to
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κ (Ric(m,m) + Ric(T, T ))︸ ︷︷ ︸
f −μ 
= 0

= 0,

hence κ = 0. Since κ = 0 if and only if ∇T T = 0, this proves the geodesic flow of
T . Next, (17) and (18) are the real and imaginary parts of (10), respectively, after
setting κ = 0 therein. With κ = Ric(m,m) = 0, (11) also simplifies, to

T (σ) = 2σε + σ(ρ + ρ̄)︸ ︷︷ ︸
−div T

,

from which (19) follows because |σ|2 = σσ̄ and ε + ε̄ = 0. The second differential
Bianchi identity (16) yields

−T ( f − μ/2) = (div T )(−μ + f ),

which is (20), since T ( f − μ/2) = T ( f − μ). Finally, as

det D = ω2

4
− |σ|2 + (div T )2

4
,

Equation (21) and (22) both follow from (17)–(19).

An immediate consequence of these evolution equations is the following

Corollary 1 Assume the hypotheses of Proposition 1. If μ ≥ 0 and M is closed, then
T is also divergence-free.

Proof By Proposition 1, T has geodesic flow; because M is closed, this flow is
complete. We now consider the cases μ > 0 and μ = 0 separately:

1. μ > 0: To show that div T = 0, we will use (22), by showing that H is in fact a
nonzero constant on M . Indeed, suppose that H(p) = 0 at some point p ∈ M ,
and let γ(p)(t) be the (complete) integral curve of T starting at p. By (22),
the function H ◦ γ(p) : R −→ R is identically zero; by (21), θ(t) := (div T ◦
γ(p))(t) satisfies

dθ

dt
= −θ2 + 2μ. (23)

With μ > 0, this has complete solutions θ(t) = √
2μ tanh

(√
2μ t + c

)
and

θ(t) = ±√
2μ. But in fact all of these solutions are impermissible, as can be

seen by restricting (20) to γ(p). Indeed, substituting θ(t) = ±√
2μ into (20)

yields the solutions
f (t) − μ = ( f (0) − μ)e∓√

2μ t .

Likewise, the solution θ(t) = √
2μ tanh

(√
2μ t + c

)
, when it is inserted into

(20), yields the solution
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f (t) − μ = (
f (0) − μ

)
sech

(√
2μ t + c

)
.

But in either case, the right-hand side goes to zero whereas the left-hand side is
bounded away from zero (recall that M is closed and f never takes the value
μ). Thus H must be nowhere vanishing on M , in which case, consider 1/H : by
(22), we have that T (1/H) = div T

H , and hence

T (T (1/H))
(21)= 2 + 2μ

H
· (24)

The latter equation has solution

(1/H)(t) = − 1

μ
+ c1e

√
2μ t + c2e

−√
2μ t ,

but unless c1 = c2 = 0, this solution is unbounded. We therefore conclude that
the function H is a nonzero constant on M , which immediately implies that
div T = 0 by (22).

2. μ = 0: Once again, suppose that H(p) = 0, so that H ◦ γ(p) : R −→ R is iden-
tically zero, in which case (21) now becomes

dθ

dt
= −θ2.

This has θ(t) = 0 as its only complete solution. If H(p) 
= 0, so that H ◦
γ(p) : R −→ R is nowhere vanishing, then applying (24) along γ(p) yields
(1/H)′′(t) = 2, hence (1/H)(t) = t2 + c1t + c2 and thus, by (24),

θ(t) = 2t + c1
t2 + c1t + c2

,

with c21 < 4c22 to ensure that (1/H)(t) is nowhere vanishing. But then (20) would
yield

f (t) = c3
t2 + c1t + c2

,

which is impossible because f , never taking the value μ = 0, must be bounded
away from 0 on closed M . We conclude that H must be the zero function, and
so div T = 0 once again.

This completes the proof.

(As an aside, it is instructive to consider what happens when μ < 0. In this case,
if H ◦ γ(p) : R −→ R is identically zero, then

dθ

dt
= −θ2 + 2μ
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has no complete solutions. Thus H must be nowhere vanishing on M , but this time
(24) yields

(1/H)(t) = − 1

μ
+ c1 sin(

√
2|μ| t) + c2 cos(

√
2|μ| t)

and (20)

f (t) = μ + c3
− 1

μ
+ c1 sin(

√
2|μ| t) + c2 cos(

√
2|μ| t) ·

But both of these are well behaved for appropriate constants, so there is no contra-
diction.) In any case, when μ > 0, then a distinguished orthonormal frame appears,
which plays a crucial role in the proof of Theorem 1:

Proposition 2 Assume the hypotheses of Proposition 1. If μ > 0 and M is closed
and simply connected, then there exists a global orthonormal frame {T, X,Y } with
respect to which the spin coefficients κ, ρ,σ take the form

κ = ρ + ρ̄ = 0 , σ = −
√

μ

2
+ i

ω

2
· (25)

Proof By Proposition 1, T has geodesic flow, so that κ = 0; by its Corollary, T is
also divergence-free, so that ρ = −i ω

2 (recall (7)). Now we show the existence of a
local orthonormal frame {T, X,Y } with respect to which the shear σ takes the form
(25). Begin by observing that when κ = div T = 0, (17) reduces to

2|σ|2 − ω2

2
= μ.

This in turn implies that the endomorphism D : T⊥ −→ T⊥, whose matrix is given
by (6), has the two distinct eigenvalues ±√

μ/2 (note that D is self-adjoint with
respect to the induced (Riemannian) metric g|T⊥ on T⊥ if and only if ω vanishes).
Therefore, consider the respective kernels of the two bundle endomorphisms D ±√

μ/2I : T⊥ −→ T⊥; ifM is simply connected, then these line bundles have smooth
nowhere vanishing global sections X,Y1,

D(X) = √
μ/2 X , D(Y1) = −√

μ/2 Y1,

which we can take to have unit length, and which are both spacelike because they
are orthogonal to T . If necessary, modify Y1 so that it is orthogonal to X , by defining

Y := −g(X,Y1)X + Y1

and normalizing Y to have unit length. Then the global orthonormal frame {T, X,Y }
now has shear σ given by (25); indeed, substituting (6) into D(X) = √

μ/2 X yields
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( −σ1

σ2 − ω
2

)
= √

μ/2

(
1
0

)
⇒ σ1 = −√

μ/2 , σ2 = ω

2
, (26)

completing the proof. �

Armed with Corollary 1 and Proposition 2, we now prove Theorem 1, starting
with the λ > 0 case:

Proof (Proof of λ > 0 case of Theorem1) Suppose a closed Lorentzian 3-manifold
(M, g) exists satisfying (1), withλ > 0. By theCorollary to Proposition 1, div T = 0.
Now assume that M is simply connected; then by Proposition 2, there exists a global
orthonormal frame {T, X,Y } satisfying

κ = 0 , ρ = −i
ω

2
, σ = −

√
λ

2
+ i

ω

2
· (27)

Using this information, we now show the existence of a vector field Z and a smooth
function ψ on M satisfying

Z(ψ) = f, (28)

which is impossible, as f never takes the value 0 and M is closed. This will be
shown by inserting the spin coefficients (27) into (11), (12), and (14). Indeed, (11)
simplifies to

T (σ)︸ ︷︷ ︸
0

(11)= 2σε,

where T (σ) = 0 because div T = 0, hence T (ω2) = 0 in (18); in particular, ε =
0 since σ 
= 0. Next, because β = 1√

2

(
g(∇Y X,Y ) − ig(∇XY, X)

) = 1√
2
(div X −

i div Y ) (since ∇T T = 0),

m(ρ) − m(σ)︸ ︷︷ ︸
− i√

2
X (ω)

(12)= 2σβ̄,

which in turn yields the pair of equations

{ √
2λ div X + ω div Y = 0,√

2λ div Y − ω div X = X (ω).
(29)

Finally, (14), when simplified using ε = 0, yields
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m(β̄) + m(β)︸ ︷︷ ︸
X (div X) + Y (div Y )

= −|σ|2 + |ρ|2︸ ︷︷ ︸
−λ/2

− 2|β|2 − (ρ − ρ̄)ε︸ ︷︷ ︸
0

− Ric(m,m)︸ ︷︷ ︸
f

− 1

2
Ric(T, T )︸ ︷︷ ︸

−λ

= −(div X)2 − (div Y )2 − f. (30)

This further simplifies,

X (div X)
(29)= − 1√

2λ
X (ω) div Y − ω√

2λ
X (div Y )

(29)= −(div Y )2 + ω√
2λ

(div X)(div Y )

︸ ︷︷ ︸
−(div X)2

− ω√
2λ

X (div Y ),

so that (30) reduces, finally, to

(
ω√
2λ

X − Y

)
(div Y ) = f. (31)

With Z := ω√
2λ
X − Y andψ := div Y , this is precisely (28). This proves theTheorem

in the case when M is simply connected. If M is not simply connected, then pass
to its simply connected universal cover (M̃, g̃); it is locally isometric to (M, g) via
the projection π : M̃ −→ M , and therefore its Ricci tensor R̃ic will satisfy (1), with
f ◦ π in place of f , and with T̃ the (complete) lift of T . Repeating step-by-step
our argument on (M̃, g̃), we arrive once again at (31). Although M̃ need not be
compact, a contradiction is still obtained because f ◦ π is bounded away from zero,
because div Y is also bounded (since dπ(Y ) is well defined up to sign, |div dπ(Y )|
is continuous on M), and because Z is complete on M̃ . This completes the proof. �
Proof (Proof of λ = 0 case of Theorem1) (This proof parallels that of Theorem 3
in [2], but generalizes it: due to our Corollary above, the function f is not assumed
to be constant, as it was in [2]; furthermore, (35) below is a necessary step that was
not required in [2].) When λ = 0,

|σ|2 − ω2

4
= 0, (32)

which implies that D has only the eigenvalue 0. As there are no longer two distinct
eigenvalues, we cannot call upon Proposition 2; instead, we prove that if (32) holds
then T must be parallel. Doing so will then allow us to draw two conclusions: first,
that (M, g) must be geodesically complete, by [16]; second, that the universal cover
of (M, g)must be isometric to (R × Ñ ,−dt2 ⊕ h̃) for some Riemannian 2-manifold
(Ñ , h̃), by the de Rham Decomposition Theorem for Lorentzian manifolds [29]. To
begin with, observe that T being parallel is equivalent to the condition
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κ = ρ = σ = 0.

By Proposition 1 and its Corollary, ∇T T = div T = 0, so that we need only show
that ω2 = 0; we’ll do this by showing that the open set

U = {p ∈ M : ω2(p) 
= 0}

is empty. Assume for the moment that U is simply connected. Then over U , D has
constant rank 1 (recall (6)), so that its kernel is a line bundle over U ; as the latter
is simply connected, this kernel has a nowhere vanishing section X on U . Now let
{T, X,Y } be an orthonormal frame, with Y perhaps only locally defined in U . Then
the analogue of (26) is now ( −σ1

σ2 − ω
2

)
=

(
0
0

)
,

so that σ1 = 0 and σ2 = ω/2. Thus the analogue of (25) is ρ = −i ω
2 and σ = i ω

2 .

Proceeding as in the proof of the λ > 0 case above, (29) becomes

ω(div Y ) = 0 , X (ω) = −ω (div X). (33)

Now div Y = 0 because ω is nowhere vanishing inU , in which case (30) reduces to

X (div X) = −(div X)2 − f. (34)

If the flow of X was complete in U , then we would obtain a contradiction because
(34) has no complete solutions when f > 0. Our task is therefore done if we can
prove that the flow of X is complete. Thus, let γ : [0, b) −→ U be an integral curve
of X that is maximally extended to the right, and suppose that b < ∞ (the case
(−b, 0] will follow from this one by letting X → −X , which leaves (33) and (34)
unaltered). To begin with, there is a sequence tn → b such that {γ(tn)} converges
to some q ∈ M\U (if q were in U , then the integral curve γ would be extendible,
contradicting our assumption that it was maximally extended; see, e.g., [15, Lemma
56]). (Though such a sequence is obvious because M is compact, let us give an
alternative proof that will also suffice should we need to pass to the universal cover
of M below: consider the Riemannian metric h on M defined by

h := g + 2T � ⊗ T �. (35)

Since M is closed, h is complete; as X has h-unit length,

dh(γ(0), γ(t)) ≤ Lh(γ|[0,t]) = t,

where dh is the Riemannian distance associated to h. This implies that

γ([0, b)) ⊆ {p ∈ M : dh(γ(0), p) ≤ b}.
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By the completeness of (M, h), the latter set is compact, hence any sequence {γ(tn)}
with tn → b has a convergent subsequence; cf. [8, Proposition 3.4].) Now set θ(t) :=
(div X ◦ γ)(t) and ω2(t) := (ω2 ◦ γ)(t); in particular, observe that limn→∞ ω2(tn) =
0 because q /∈ U . By (33),

ω2(t) = ω2
0 e

−2
∫ t
0 θ(s) ds for all t ∈ [0, b).

By (34), θ(t) is nonincreasing ( f > 0), in which case −2
∫ t
0 θ(s) ds ≥ −2θ0t for all

t ∈ [0, b). But then ω2(t) ≥ w2
0e

−2θ0t > 0, so that

lim
n→∞ w2(tn) > 0,

a contradiction. Thus we must have b = ∞; this proves thatU , if simply connected,
must be empty. If U is not simply connected, then pass to the universal covers of
(U, g|U ) ⊂ (M, g) and repeat the argument (with ω2 ◦ π, and noting that the lift of
the Riemannian metric (35) will be complete), noting that any integral curve of T
starting inU stays inU , because T (ω2) = 0 via (18). This completes the proof that the
universal cover of (M, g) is isometric to (R × Ñ ,−dt2 ⊕ h̃), in which case (M, g)

itself is isometric to (S1 × N ,−dt2 ⊕ h)with (N , h) a Riemannian 2-manifold. This
establishes the λ = 0 case of Theorem 1. �

4 The Newman-Penrose Formalism and Local
Classifications

We now move to the local setting. Simply put, the reason why the Newman-Penrose
formalism is so effective when T is a unit timelike Killing vector field is because,
although divergence and shear are not enough to characterize unit length Killing
vector fields in general, they do when dimM = 3. (For reasons that will become
clear below, we first start in the Riemannian setting.)

Lemma 1 A unit length vector field T on a Riemannian 3-manifold (M, g) is a
Killing vector field if and only if its flow is geodesic, divergence-free, and shear-free.

Proof The Killing condition, LT g = 0, is equivalent to

g(∇vT, w) + g(∇wT, v) = 0 for all v,w ∈ T M, (36)

from which it follows that any Killing vector field T is divergence-free and shear-
free, via (5). Finally, (36) also implies that any unit length Killing vector field must
have geodesic flow:

∇T T = 0.
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Conversely, suppose that a unit length vector field T is geodesic, divergence-free,
and shear-free, and consider (36). Writing v,w with respect to an orthonormal frame
{T, X,Y } as

v = a0T + a1X + a2Y , w = b0T + b1X + b2Y,

we have

g(∇vT, w) + g(∇wT, v)=a1g(∇XT, w) + a2g(∇Y T, w)

+ a1g(∇wT, X) + a2g(∇wT,Y )

=2a1b1g(∇XT, X) + (a1b2 + b1a2)g(∇XT,Y )

+ (a1b2 + b1a2)g(∇Y T, X) + 2a2b2 g(∇Y T,Y )︸ ︷︷ ︸
g(∇X T,X)

=2(a1b1 + a2b2) g(∇XT, X)︸ ︷︷ ︸
1
2 div T

+ (a1b2 + b1a2)
(
g(∇XT,Y ) + g(∇Y T, X)

)

︸ ︷︷ ︸
2σ2

.

This vanishes by our assumptions, completing the proof. �

Our plan of attack is as follows: as we have just seen, if T is a unit length Killing
vector field, then div T,σ, and ∇T T all vanish, so that only T ’s twist function ω2

is unknown. With half of the spin coefficients vanishing, the hope is that this will
simplify things enough to allow a full determination of the metric. And it turns out
that it will—even in the Riemannian setting, from which the Lorentzian case will
then follow easily.

4.1 The Riemannian Case

Staying in the Riemannian setting, we begin with the following Lemma to set the
stage:

Lemma 2 Let (M, g) be a Riemannian 3-manifold admitting a unit length Killing
vector field T with twist function ω2. With respect to any complex frame {T,m,m},
the Ricci tensor Ric and scalar curvature S satisfy

T (ω) = 0 , Ric(T, T ) = ω2

2
, Ric(m,m) = 0,

m(β̄) + m(β) = −2|β|2 − iωε − 1

2

(
S − ω2

2

)
· (37)
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When (37) is written in terms of the underlying orthonormal frame {T, X,Y } of the
complex frame, it is

X (div X) + Y (div Y ) = −(div X)2 − (div Y )2 − iωε − 1

2

(
S − ω2

2

)
· (38)

Proof By Lemma 1, we know that

κ = σ = ρ + ρ̄ = 0;

inserting these into (10) and (11) directly yields the first line of equations; e.g.,

Ric(T, T ) = ω2

2
, T (ω) = 0,

are, respectively, the real and imaginary parts of (10). Meanwhile, (37) follows from
(14), which has no imaginary part, and the fact that the scalar curvature S in terms
of the complex frame {T,m,m} is

S = Ric(T, T ) + 2Ric(m,m) = ω2

2
+ 2Ric(m,m).

Finally, (38) follows from the fact that, when ∇T T = 0,

β = 1√
2

(
g(∇Y X ,Y ) + ig(∇X X ,Y )

) = 1√
2
(div X − i div Y ), (39)

which completes the proof. �

We have not yet considered the differential Bianchi identities; let us do so now.
Inserting the contents of Lemma 2 into (15) and (16), as well as ρ̄ = −ρ, yields

T (m(ρ)) = (ε + ρ̄)m(ρ)

for (15); but this is precisely the Lie bracket (8) applied to ρ (bearing in mind that
T (ρ) = 0), and therefore carries no new information. As for (16), it yields

−m(m(ρ)) + m(m(ρ)) = −β̄ m(ρ) + β m(ρ),

where T (S) = 0 and ρ̄ = −ρ have been used. But this is precisely the Lie bracket
(9) applied to ρ, so that (16) also yields no new information.
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4.2 Local Coordinates

The goal of this section is to establish the “right” local coordinates in which to prove
Theorem 3 in the next section. To begin with, recall that because

κ = σ = ρ + ρ̄ = 0,

the only spin coefficients remaining are ε and β. Observe that the former is in fact
purely imaginary,

ε = ig(∇T X ,Y ), (40)

and the latter, when ∇T T = 0, is given by (39). The following “gauge freedom”
simultaneously enjoyed by these two spin coefficients will prove useful in the proof
of Theorem 3:

Proposition 3 Let T be a unit length Killing vector field with twist function ω2 and
{T,m,m} a complex frame. Then there exists a smooth real-valued function ϑ such
that the complex frame {T,m∗,m∗} defined by the rotation

m∗ := eiϑm , m∗ := e−iϑm

has spin coefficients κ∗ = σ∗ = 0, ρ∗ = ρ,

ε∗ = ρ , Re(β∗) = 0 , T (β∗) = 0. (41)

Proof By definition,
κ∗ = −g(∇T T ,m∗) = eiϑκ = 0;

similarly, σ∗ = e2iϑσ = 0, and ρ∗ = ρ (in particular, ω2∗ = ω2). Next,

ε∗=g(∇Tm∗,m∗)
=e−iϑg(∇T (eiϑm),m)

=ε + e−iϑT (eiϑ)

=ε + iT (ϑ). (42)

Similarly,

β∗=g(∇m∗m∗,m1)

=g(∇m(eiϑm),m)

=eiϑ(β + im(ϑ)).

By (40) and (42), we may choose a locally defined function ϑ so that
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ε∗ = ρ∗ = ρ.

Now, choose any other function ψ satisfying T (ψ) = 0 and rotate m∗,m∗ by ψ;
let {T,mo,mo} denote the corresponding frame. Then the analogue of (42) for the
frame {T,mo,mo} shows that εo remains unchanged,

εo = ε∗ = ρ∗ = ρ,

so that our task would be complete if we can find a ψ satisfying

T (ψ) = 0 and Re(βo) = 0. (43)

To do so, observe that when ε∗ = ρ∗, then

[T,m∗] (8)= 0. (44)

Let {T, X∗,Y∗} denote the underlying orthonormal frame corresponding to the com-
plex frame {T,m∗,m∗}. Since [T, X∗] = 0, there exist local coordinates (t, u, v)

and functions p, q, r such that

T = ∂t , X∗ = ∂u , Y∗ = p∂t + q∂u + r∂v,

with p, q, r functions of u, v only, since [T,Y∗] = 0, and with r nowhere vanishing.
The coframe metrically equivalent to {T, X∗,Y∗} is therefore

T � = dt − p

r
dv , X �

∗ = du − q

r
dv , Y �

∗ = 1

r
dv.

Next, since (X �∗)2 + (Y �∗ )2 defines a Riemannian metric on the 2-manifold with coor-
dinates {(u, v)}, and since any Riemannian 2-manifold is locally conformally flat
(see, e.g., [6]), it follows that there exist coordinates (x, y) and a smooth function
λ(x, y) such that

(X �
∗)

2 + (Y �
∗ )2 = e2λ(dx2 + dy2).

By a rotation in x, y if necessary, we may further assume that

X �
∗ = eλdx , Y �

∗ = eλdy.

In the new coordinates (t, x, y), we thus have that

T = ∂t , X∗ = e−λ(∂x + a∂t ) , Y∗ = e−λ(∂y + b∂t ),

for some smooth functions a(x, y), b(x, y). With these coordinates in hand, we now
return to the task of satisfying (43), namely, finding a function ψ(x, y) satisfying
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Re(βo) = Re
(
eiψ(β∗ + im∗(ψ))

) = 0, or

eiψ(β∗ + im∗(ψ)) + e−iψ(β̄∗ − i m∗(ψ)) = 0. (45)

When expanded, and using the fact that

div X∗ = λx

eλ
, div Y∗ = λy

eλ
,

(45) is a quasilinear first-order PDE in ψ,

(sinψ)ψx − (cosψ)ψy = (cosψ)λx + (sinψ)λy,

which has a solution by the method of characteristics. Finally, (12) and (13) together
yield

T (β∗) − m(ε∗)︸ ︷︷ ︸
m∗(ρ∗)

(13)= −Ric(T,m∗)︸ ︷︷ ︸
m∗(ρ∗) by (12)

,

which gives T (β∗) = 0, completing the proof. �

The following Corollary collects together what we’ve established so far:

Corollary 2 Let (M, g) be a Riemannian 3-manifold and T a unit length Killing
vector field with twist function ω2. Then there exists an orthonormal frame {T, X,Y }
satisfying

κ = σ = 0 , ρ = ε = − i

2
ω , β = − i√

2
div Y, (46)

and with T (ω) = T (β) = 0. In this frame, (38) takes the form

Y (div Y ) = −(div Y )2 − 1

2

(
S + ω2

2

)
· (47)

Notice that (47) implies that such a frame may not always exist globally; e.g., if M
is compact and S is nonnegative and positive somewhere, then a standard Riccati
argument yields that in such a case the only complete solution to (47) is one where
div Y = S + ω2

2 = 0,which is impossible.Wenowproceed to our local classification.

4.3 The Local Classification

One further modification to the orthonormal frame satisfying (46) will, it turns out,
give us a complete local classification in the Riemannian setting, from which the
Lorentzian analogue will then follow easily:
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Theorem 3 Let (M, g) be a Riemannian 3-manifold that admits a unit length Killing
vector field T . Then there exist local coordinates (t, r, θ) and a smooth function
ϕ(r, θ) such that

T = ∂t , g = (T �)2 + dr2 + ϕ2dθ2, (48)

and where the quotient metric dr2 + ϕ2dθ2 has Gaussian curvature

− ϕrr

ϕ
= 1

2

(
S + Ric(T, T )

)
, (49)

with S and Ric the scalar curvature and Ricci tensor of g, respectively.

Proof Let (M, g) be a Riemannian 3-manifold and T a unit length Killing vec-
tor field with twist function ω2. By Corollary 2, there exist a local orthonormal
frame {T, X,Y } satisfying (46) and coordinates (t, x, y) in which T = ∂/∂t . Let
{T �, X �,Y �} denote the dual coframe.We nowmodify the coordinates (t, x, y)while
keeping T = ∂/∂t unchanged. The key is that (8) and (9) satisfy

[T, X ] = [T,Y ] = 0 , [X,Y ] = ωT + (div Y )X,

from which it follows that Y � is closed, dY � = 0; hence

Y � = dr

for some smooth function r(x, y). Similarly,

dX � = (div Y )Y � ∧ X �

implies that X � = ϕdθ for some smooth functions ϕ(x, y) > 0 and θ(x, y), with the
former satisfying

Y (ϕ) = (div Y )ϕ (50)

(recall that T (β) = 0). Since X (r) = Y (θ) = 0, we can define new coordinates
(t, r, θ), in terms of which the frame {T, X,Y } takes the form

T = ∂t , X = h∂t + 1

ϕ
∂θ , Y = k∂t + ∂r , (51)

for some smooth functions h, k; furthermore,ϕt = ht = kt = 0 (recall that [T, X ] =
[T,Y ] = 0), so that ϕ, h, k are all functions of r, θ only. Thus

g = (T �)2 + (X �)2 + (Y �)2 = (T �)2 + dr2 + ϕ2dθ2,
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confirming (48).Now, thequotientmetricdr2 + ϕ2dθ2 has scalar curvature−2ϕrr/ϕ,
hence Gaussian curvature −ϕrr/ϕ. To relate this to the curvature of (M, g), we take
a Y -derivative of (50), make use of (47), and note that ∂t (div Y ) = 0 by (41), to
obtain ϕrr = Y (div Y )ϕ + (div Y )2ϕ, which yields

−ϕrr

ϕ

(47)= 1

2

(
S + ω2

2

)
·

Since Ric(T, T ) = ω2

2 by Lemma 2, this confirms (49).

It is now an easy step to the Lorentzian setting and a proof of Theorem 2.

4.4 The Lorentzian Setting

Before proceeding to a proof of the Lorentzian analogue of Theorem 3, first observe
that if a timelike T has unit length, gL(T, T ) = −1, then the metric

gR := gL + 2(T �L )2 (52)

defines a Riemannian metric on M (here T �L = gL(T, ·)). The following properties
now hold between gR and gL :

1. T is a unit length Killing vector field with respect to gR if and only if T is a unit
timelike Killing vector field with respect to gL (see, e.g., [14]).

2. If T is a gR-unit length Killing vector field, then

RicR(T, T ) = RicL(T, T )

(consult [14]; this follows because ∇ R
X T = −∇ L

X T for any unit length X that is
gR- or gL-orthogonal to T , where ∇ R and ∇ L are, respectively, the Levi-Civita
connections of gR and gL), while their scalar curvatures SR and SL satisfy

SL = SR + 2RicR(T, T ).

In particular, SR + RicR(T, T ) = SL − RicL(T, T ).

With these facts established, the Lorentzian analogue of Theorem 3 now follows
easily:

Proof (Proof of Theorem2) By our remarks above, T is a unit length Killing
vector field with respect to the Riemannian metric gR, with SR + RicR(T, T ) =
SL − RicL(T, T ); thus Theorem 2 follows immediately from Theorem 3. �
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