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Abstract Nilpotent structures of neutral 4-manifolds are analogues of complex
structures and paracomplex structures. Nilpotent structures give two-dimensional
involutive distributions and the integral surfaces are light-like and analogues of com-
plex curves and paracomplex curves. Light-like surfaces in neutral 4-manifolds with
local horizontal lifts are characterized in terms of the curvature tensors and such
surfaces are analogues of isotropic minimal surfaces in Riemannian 4-manifolds.
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1 Introduction

Thepurpose of this paper is to study almost nilpotent structures of neutral 4-manifolds
and light-like surfaces in neutral 4-manifolds.

Almost nilpotent structures of neutral 4-manifolds are analogues of almost com-
plex structures of Riemannian 4-manifolds. Almost complex structures on an ori-
ented Riemannian 4-manifold (M, h) which are h-preserving and compatible with
the orientation of M correspond to sections of a suitable one of the twistor spaces
associated with M . Such an almost complex structure I is parallel with respect to the
Levi-Civita connection∇ of h if and only if the corresponding sectionΘ is horizontal
with respect to the connection ∇̂ of the 2-fold exterior power of the tangent bundle
TM induced by∇. It is known that∇ I = 0 just means that (M, h, I ) is a Kähler sur-
face and then I is its complex structure. If (M, h, I ) is a Kähler surface, then integral
surfaces of involutive I -invariant 2-dimensional distributions are complex curves of
(M, I ). A complex curve of a Kähler surface is just an isotropic minimal surface
compatible with the orientation of the space and equipped with at least one complex
point and notice that there exist totally geodesic surfaces inCP2,CH 2,CP1 × CP1,
CH 1 × CH 1 with no complex points ([1]). In general, an isotropic minimal surface
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in an oriented Riemannian 4-manifold compatible with the orientation of the space
is characterized by horizontality of a suitable one of the twistor lifts ([12]). See [7]
for the case where the space is S4. We can refer to [11] for the twistor spaces and
isotropic minimal surfaces.

On oriented neutral 4-manifolds, we can consider not only almost complex struc-
tures but also almost paracomplex structures. On such a 4-manifold (M, h), almost
complex (resp. paracomplex) structures which are h-preserving (resp.h-reversing)
and compatible with the orientation of M correspond to sections of a suitable one of
the space-like (resp. time-like) twistor spaces associated with M . See [3, 6] for the
space-like twistor spaces and [3, 13, 14] for the time-like twistor spaces. For almost
complex structures and almost paracomplex structures, we can find analogues of
results on almost complex structures of oriented Riemannian 4-manifolds ([3]). In
addition, for complex curves of neutral Kähler surfaces and paracomplex curves of
paraKähler surfaces, we can find analogues of results on complex curves of Kähler
surfaces; for space-like or time-like surfaces in oriented neutral 4-manifolds with
zero mean curvature vector which are isotropic and compatible with the orienta-
tions of the spaces, we can find analogues of results on isotropic minimal surfaces
in oriented Riemannian 4-manifolds compatible with the orientations of the spaces
([3]).

The space-like (resp. time-like) twistor spaces associated with an oriented neutral
4-manifold (M, h) are fiber bundles such that fibers are hyperboloids of two sheets
(resp. one sheet). They are contained in subbundles

∧2
±TM of rank 3 in the 2-fold

exterior power
∧2TM of TM . We can find fiber bundles U0(

∧2
±TM) in

∧2
±TM

respectively such that fibers are light-like cones. Our main objects of study in the
present paper are almost nilpotent structures and they correspond to sections of
either U0(

∧2
+TM) or U0(

∧2
−TM). We will see that an almost nilpotent structure N

is parallel with respect to ∇ if and only if the corresponding section Θ is horizontal
with respect to ∇̂. If ∇N = 0, then (h, N ) is called a nilpotent Kähler structure of
M , and M equipped with (h, N ) is called a nilpotent Kähler 4-manifold. Neutral
hyperKähler 4-manifolds have almost nilpotent structures parallel with respect to
∇ and we can refer to [10, 15] for neutral hyperKähler 4-manifolds. An almost
nilpotent structure N of M gives a light-like 2-plane of the tangent space at each
point of M . Therefore we have a light-like two-dimensional distribution D . We will
see that D is involutive if and only if for the section Θ corresponding to N and
each tangent vector V of M contained in D , the covariant derivative ∇̂V Θ is given
by Θ up to a constant. In particular, if ∇N = 0, then D is involutive. In the case
where ∇N = 0, we can consider integral surfaces of D to be analogues of complex
curves and paracomplex curves. Since D is light-like, we naturally have interest in
light-like surfaces of M . Referring to the discussions on whetherD is involutive, we
will study a light-like surface in M with a nonzero horizontal section of a suitable
one of the pull-back bundles of U0(

∧2
±TM) on a neighborhood of each point and

we will see that a light-like surface in M has such a section if and only if ∇ induces
a connection of the surface such that the curvature tensor of ∇̂ vanishes. We can
consider light-like surfaces in M with local nonzero horizontal sections as above
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to be analogues of isotropic minimal surfaces in oriented Riemannian 4-manifolds
compatible with the orientations of the spaces.

Remark 1 In [5], nilpotent Kähler structures of an oriented vector bundle E of rank
4 over S1 = R/2πZ or T 2 = S1 × S1 were studied. Let h be a neutral metric of
E . Let ∇ be an h-connection of E , which means ∇h = 0. Suppose that E is over
S1. Then we can find a nowhere zero, horizontal section Θ of

∧2
+E ([5]). If Θ is

light-like, then Θ gives a nilpotent structure N of E and therefore (h,∇, N ) is a
nilpotent Kähler structure of E . Suppose that E is over T 2. Then for a light-like,
partially horizontal section Θ of

∧2
+E , there exists an h-connection ∇′ related to ∇

such that h, ∇′ and Θ give a nilpotent Kähler structure of E ([5]).

2 Complex Structures and Paracomplex Structures of
4-Dimensional Neutral Vector Spaces

Let X be an oriented 4-dimensional vector space and hX a neutral metric of X , i.e.,
an indefinite metric of X with signature (2, 2). Let

∧2X be the 2-fold exterior power
of X and ĥ X the metric of

∧2X induced by hX :

ĥ X (x1 ∧ x2, x3 ∧ x4)

= hX (x1, x3)hX (x2, x4) − hX (x1, x4)hX (x2, x3)

(xi ∈ X ). Let BX be the set of ordered pseudo-orthonormal bases of X giving the
orientation of X . Then (e1, e2, e3, e4) ∈ BX satisfies

hX (ei , e j ) =
⎧
⎨

⎩

1 (i = j = 1 or 2),
−1 (i = j = 3 or 4),
0 (otherwise).

For (e1, e2, e3, e4) ∈ BX , we set

θi j := ei ∧ e j (i, j ∈ {1, 2, 3, 4}, i �= j)

and

Θ±,1 := 1√
2
(θ12 ± θ34),

Θ±,2 := 1√
2
(θ13 ± θ42),

Θ±,3 := 1√
2
(θ14 ± θ23).
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Then Θ±,1, Θ±,2, Θ±,3 form a pseudo-orthonormal basis of
∧2X and therefore we

see that ĥ X has signature (2, 4). Let
∧2

+ X ,
∧2

− X be subspaces of
∧2X generated

by Θ−,1, Θ+,2, Θ+,3 and Θ+,1, Θ−,2, Θ−,3, respectively. Then by the definitions of∧2
± X , we have

∧2X = ∧2
+ X ⊕ ∧2

− X

and we see that
∧2

+ X ,
∧2

− X are orthogonal to each other and that the restriction of

ĥ X on each of them has signature (1, 2). In addition, noticing the double covering

SO0(2, 2) −→ SO0(1, 2) × SO0(1, 2),

we see that
∧2

± X do not depend on the choice of (e1, e2, e3, e4) ∈ BX .
We set

U+
(∧2

± X
)

:=
{
Θ ∈ ∧2

± X
∣
∣
∣ ĥ X (Θ,Θ) = 1

}
.

Then each Θ ∈ U+
(∧2

+ X
)
corresponds to a unique hX -preserving complex struc-

ture I of X satisfying

Θ = 1√
2
(e ∧ I (e) − e⊥ ∧ I (e⊥)), (1)

where e is a space-like and unit vector of X and e⊥ is a time-like vector of X satisfying

hX (e⊥, e⊥) = −1, hX (e, e⊥) = hX (I (e), e⊥) = 0.

Then we have (e, I (e), e⊥, I (e⊥)) ∈ BX , which means that I is compatible with the
orientation of X . Conversely, each hX -preserving complex structure I of X com-

patible with the orientation corresponds to a unique element of U+
(∧2

+ X
)
by (1).

Hence we have a one-to-one correspondence between U+
(∧2

+ X
)
and the set of hX -

preserving complex structures of X compatible with the orientation. Similarly, we

have a one-to-one correspondence betweenU+
(∧2

− X
)
and the set of hX -preserving

complex structures of X which are not compatible with the orientation.
We set

U−
(∧2

± X
)

:=
{

Θ ∈ ∧2
± X

∣
∣
∣ ĥ X (Θ,Θ) = −1

}
.

Then each Θ ∈ U−
(∧2

+ X
)
corresponds to a unique hX -reversing paracomplex

structure J of X satisfying

Θ = 1√
2
(e ∧ J (e) − e⊥ ∧ J (e⊥)), (2)
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where e, e⊥ are as above. Thenwehave (e, J (e⊥), J (e), e⊥) /∈ BX , whichmeans that
J is not compatible with the orientation of X . Conversely, each hX -reversing para-
complex structure J of X which is not compatible with the orientation corresponds to

a unique element ofU−
(∧2

+ X
)
by (2). Hence we have a one-to-one correspondence

between U−
(∧2

+ X
)
and the set of hX -reversing paracomplex structures of X which

are not compatible with the orientation. Similarly, we have a one-to-one correspon-

dence between U−
(∧2

− X
)
and the set of hX -reversing paracomplex structures of X

compatible with the orientation.

3 Nilpotent Structures of 4-Dimensional Neutral Vector
Spaces

In the present paper, our main objects of study are closely related to the light-like
cones of

∧2
± X :

U0

(∧2
± X

)
:=

{
Θ ∈ ∧2

± X \ {0}
∣
∣
∣ ĥ X (Θ,Θ) = 0

}
.

For eachΘ ∈ U0

(∧2
+ X

)
, there exists an element (e1, e2, e3, e4) ofBX satisfying

Θ = Θ−,1 + Θ+,3. (3)

We call such a basis as (e1, e2, e3, e4) an admissible basis ofΘ . Let G be a subgroup
of SO(2, 2) defined by

G :=

⎧
⎪⎪⎨

⎪⎪⎩

B =

⎡

⎢
⎢
⎣

b1 −b2 b3 b4
b2 b1 −b4 b3
b3 −b4 b1 b2
b4 b3 −b2 b1

⎤

⎥
⎥
⎦

∣
∣
∣
∣
∣
∣
∣
∣

b1, b2, b3, b4 ∈ R,

b2
1 + b2

2 − b2
3 − b2

4 = 1

⎫
⎪⎪⎬

⎪⎪⎭

.

This is isomorphic to SU (1, 1). Let H be a subset of SO(2, 2) defined by

H :=

⎧
⎪⎪⎨

⎪⎪⎩

C(h) =

⎡

⎢
⎢
⎣

1 0 0 0
0 h2+2

2 h − h2

2
0 h 1 −h
0 h2

2 h − h2−2
2

⎤

⎥
⎥
⎦

∣
∣
∣
∣
∣
∣
∣
∣

h ∈ R

⎫
⎪⎪⎬

⎪⎪⎭

.

We see that H is a subgroup of SO(2, 2). Let (e′
1, e′

2, e′
3, e′

4) be another admissible
basis of Θ than (e1, e2, e3, e4). Then there exist B ∈ G, h ∈ R satisfying

(e′
1, e′

2, e′
3, e′

4) = (e1, e2, e3, e4)BC(h). (4)
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We set

Λ :=

⎡

⎢
⎢
⎣

0 −1 0 1
1 0 1 0
0 1 0 −1
1 0 1 0

⎤

⎥
⎥
⎦ .

Thenwe haveΛB = BΛ for any B ∈ G andΛC(h) = C(h)Λ for any h ∈ R. There-
fore we see that a linear transformation N of X can be defined by

(N (e1), N (e2), N (e3), N (e4)) = (e1, e2, e3, e4)Λ (5)

for an admissible basis (e1, e2, e3, e4) of Θ and that N is determined by Θ and does
not depend on the choice of an admissible basis (e1, e2, e3, e4) of Θ . We call N a

nilpotent structure of X corresponding to Θ ∈ U0

(∧2
+ X

)
. We denote byNX,+ the

set of nilpotent structures of X corresponding to the elements of U0

(∧2
+ X

)
. We

have

Θ = 1√
2
(e1 ∧ N (e1) − e3 ∧ N (e3))

= 1√
2
(e2 ∧ N (e2) − e4 ∧ N (e4)).

(6)

We set
V1 := e1 − e3, V2 := e2 + e4.

Then we have Θ = (1/
√
2)V1 ∧ V2. We see that Im N is generated by light-

like vectors V1, V2 and that it coincides with Ker N . We have hX (N (x), x) = 0
for any x ∈ X .

For eachΘ ∈ U0

(∧2
− X

)
, there exists an element (e1, e2, e3, e4) ofBX satisfying

Θ = Θ+,1 + Θ−,3.

We call such a basis as (e1, e2, e3, e4) an admissible basis of Θ . Let (e′
1, e′

2, e′
3, e′

4)

be another admissible basis ofΘ than (e1, e2, e3, e4). Then there exist B ∈ G, h ∈ R

satisfying
(e′

1, e′
2,−e′

3, e′
4) = (e1, e2,−e3, e4)BC(h).

Therefore we see that a linear transformation N of X can be defined by

(N (e1), N (e2),−N (e3), N (e4)) = (e1, e2,−e3, e4)Λ

for an admissible basis (e1, e2, e3, e4) of Θ and that N is determined by Θ and does
not depend on the choice of an admissible basis (e1, e2, e3, e4) of Θ . We call N a

nilpotent structure of X corresponding to Θ ∈ U0

(∧2
− X

)
. We denote byNX,− the
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set of nilpotent structures of X corresponding to the elements of U0

(∧2
− X

)
. We

have (6). We set
V1 := e1 + e3, V2 := e2 + e4.

Then we haveΘ = (1/
√
2)V1 ∧ V2. We see that Im N is generated by light-like vec-

tors V1, V2 and that it coincides with Ker N . We have hX (N (x), x) = 0 for any x ∈
X .

Let N be a linear transformation of X satisfying

(i) Im N = Ker N ,
(ii) Im N is a light-like 2-plane PN of X ,
(iii) hX (N (x), x) = 0 for any x ∈ X .

Let V2 be a nonzero vector of PN . Since PN = Ker N , we have N (V2) = 0. Since
PN = Im N , there exists a light-like vector U1 of X satisfying

N (U1) = V2, hX (U1, V2) = 0.

Then there exists a vector V1 of PN satisfying

hX (U1, V1) = 1.

We see that V1, V2 form a basis of PN and that the orientation given by the ordered
basis (V1, V2) is determined by N . Therefore we define the positive orientation of
PN by (V1, V2). There exists a light-like vector U2 satisfying

N (U2) = V1, hX (U2, V1) = hX (U2, U1) = 0.

We set
c := hX (U2, V2).

Whether c is equal to −1 is determined by N . We call N a nilpotent structure of X
if c = −1.

Let N be a nilpotent structure of X . We see that U1, U2, V1, V2 as above form
a basis of X and that whether an ordered basis (U1, U2, V1, V2) is contained in the
positive orientation of X is determined by N . Suppose that (U1, U2, V1, V2) gives
the positive orientation of X . We set

e1 := 1

2
(2U1 + V1), e2 := 1

2
(−2U2 + V2),

e3 := 1

2
(2U1 − V1), e4 := 1

2
(2U2 + V2).

Then (e1, e2, e3, e4) is an element of BX satisfying (5). We call such a basis as
(e1, e2, e3, e4) an admissible basis of N . For another admissible basis (e′

1, e′
2, e′

3, e′
4)

of N than (e1, e2, e3, e4), there exist B ∈ G, h ∈ R satisfying (4). Therefore we have
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V ′
1 ∧ V ′

2 = V1 ∧ V2, i.e.,

(e′
1 − e′

3) ∧ (e′
2 + e′

4) = (e1 − e3) ∧ (e2 + e4).

This means that Θ as in (3) does not depend on the choice of an admissible basis
(e1, e2, e3, e4) of N and that it is determined by N . In addition, we see that N is

a nilpotent structure corresponding to Θ ∈ U0

(∧2
+ X

)
. Hence we have a one-to-

one correspondence between U0

(∧2
+ X

)
andNX,+. Similarly, considering the case

where (U1, U2, V1, V2) does not give the positive orientation of X , we have a one-

to-one correspondence between U0

(∧2
− X

)
and NX,−.

4 Almost Complex Structures and Almost Paracomplex
Structures of Neutral 4-Manifolds

Let M be an oriented neutral 4-manifold and h its neutral metric. An almost com-
plex structure I of M is a (1, 1)-tensor field of M satisfying I 2 = −Id. There

exists a one-to-one correspondence between the set of sections of U+
(∧2

+TM
)

(resp.U+
(∧2

−TM
)
) and the set of almost complex structures which are h-preserving

and compatible (resp. not compatible) with the orientation of M .
Let∇ be the Levi-Civita connection of h and ∇̂ the connection of

∧2TM induced
by ∇. Then ∇̂ induces connections of

∧2
±TM .

Proposition 1 ([3]) An almost complex structure I which is h-preserving and com-
patible with the orientation of M is parallel with respect to ∇ if and only if the

corresponding section Θ of U+
(∧2

+TM
)

is horizontal with respect to ∇̂.

If I as in Proposition 1 is parallel with respect to∇, then (h, I ) is a neutral Kähler
structure of M and M equipped with (h, I ) is a neutral Kähler surface. Let (h, I )
be a neutral Kähler structure of M . Then integral surfaces of involutive I -invariant
2-dimensional distributions are complex curves of (M, I ).

Let (M, h) be an oriented neutral 4-manifold. Let S+ be a Riemann surface and
F : S+ −→ M a space-like and conformal immersion with zero mean curvature
vector. Let Q be a complex quartic differential defined on S+ by F (see [2, 4]). Then
F is isotropic if and only if Q vanishes. Let IF be the complex structure of the pull-

back bundle F∗TM of TM by F corresponding to the lift of F into U+
(∧2

+F∗TM
)
.

Then by definition, F is strictly isotropic, that is, F is isotropic and compatible with
the orientation of M if and only if F satisfies IFσ(T1, T1) = σ(T1, T2), where σ is
the second fundamental form of F and T1 := ∂/∂u, T2 := ∂/∂v for a local complex
coordinate w = u + √−1v.

The following proposition gives a characterization of complex curves in terms of
isotropicity of space-like surfaces with zero mean curvature vector.
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Proposition 2 ([3]) A surface in a neutral Kähler surface is a complex curve if and
only if it is a space-like surface with zero mean curvature vector which is strictly
isotropic and equipped with at least one complex point.

In general, we obtain

Proposition 3 ([3]) Let F : S+ −→ M be a space-like and conformal immersion of
S+ into an oriented neutral 4-manifold M with zero mean curvature vector. Then F

is strictly isotropic if and only if the lift of F into U+
(∧2

+F∗TM
)

is horizontal.

An almost paracomplex structure J of an oriented neutral 4-manifold M is a
(1, 1)-tensor field of M satisfying J �= Id and J 2 = Id. There exists a one-to-one

correspondence between the set of sections of U−
(∧2

−TM
)
(resp.U−

(∧2
+TM

)
)

and the set of almost paracomplex structures which are h-reversing and compatible
(resp. not compatible) with the orientation of M .

Proposition 4 ([3]) An almost paracomplex structure J which is h-reversing and
compatible with the orientation of M is parallel with respect to ∇ if and only if the

corresponding section Θ of U−
(∧2

−TM
)

is horizontal with respect to ∇̂.

If J as in Proposition 4 is parallel with respect to ∇, then (h, J ) is a paraKähler
structure of M and M equipped with (h, J ) is a paraKähler surface. Let (h, J )

be a paraKähler structure of M . Then integral surfaces of involutive J -invariant
2-dimensional distributions are paracomplex curves of (M, J ).

Let (M, h) be an oriented neutral 4-manifold. Let S− be a Lorentz surface and F :
S− −→ M a time-like and conformal immersion with zero mean curvature vector.
Let Q be a paracomplex quartic differential defined on S− by F (see [3, 4]). Then F
is isotropic if and only if Q vanishes. Let JF be the paracomplex structure of the pull-

back bundle F∗TM of TM by F corresponding to the lift of F into U−
(∧2

−F∗TM
)
.

Then by definition, F is strictly isotropic if and only if F satisfies JFσ(T1, T1) =
σ(T1, T2), where T1 := ∂/∂u, T2 := ∂/∂v for a local paracomplex coordinate w =
u + jv.

The following proposition gives a characterization of paracomplex curves in terms
of isotropicity of time-like surfaces with zero mean curvature vector.

Proposition 5 ([3]) A surface in a paraKähler surface is a paracomplex curve if
and only if it is a time-like surface with zero mean curvature vector which is strictly
isotropic and equipped with at least one paracomplex point.

In general, we obtain

Proposition 6 ([3]) Let F : S− −→ M be a time-like and conformal immersion of
S− into an oriented neutral 4-manifold M with zero mean curvature vector. Then F

is strictly isotropic if and only if the lift of F into U−
(∧2

−F∗TM
)

is horizontal.
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5 Almost Nilpotent Structures of Neutral 4-Manifolds

Let M be an oriented neutral 4-manifold and h its metric. Let N be a (1, 1)-tensor
field of M . We call N an almost nilpotent structure of M if N gives a nilpotent
structure of the tangent space of M at each point. Each almost nilpotent structure of

M corresponds to a section of either U0

(∧2
+TM

)
or U0

(∧2
−TM

)
.

Theorem 1 An almost nilpotent structure N of M is parallel with respect to the
Levi-Civita connection ∇ of h if and only if the corresponding section Θ of either

U0

(∧2
+TM

)
or U0

(∧2
−TM

)
is horizontal with respect to the connection ∇̂ of

∧2TM induced by ∇.

Proof Let (e1, e2, e3, e4) be a local ordered pseudo-orthonormal frame field of TM .
We set

∇e j =
4∑

i=1

ωi
j ei ( j = 1, 2, 3, 4).

Then we have

(i) ωi
i = 0 for i = 1, 2, 3, 4,

(ii) ω
j
i = −ωi

j for {i, j} = {1, 2} or {3, 4},
(iii) ω

j
i = ωi

j for {i, j} = {1, 3}, {1, 4}, {2, 3} or {2, 4}.
Let N be an almost nilpotent structure of M corresponding to a section Θ of

U0

(∧2
+TM

)
. Suppose that (e1, e2, e3, e4) gives an admissible basis of N to the

tangent space of M at each point. Then we have (5). Therefore we obtain (3) and

∇̂Θ = −(ω1
3 − ω2

4)Θ + (ω1
2 + ω1

4 + ω3
2 + ω3

4)Θ+,2. (7)

Therefore ∇̂Θ = 0 if and only if {ωi
j } satisfies

ω1
3 = ω3

1 = ω2
4 = ω4

2, ω1
2 + ω1

4 + ω3
2 + ω3

4 = 0. (8)

We see that ∇N = 0 is equivalent to

∇(N (ei )) = N (∇ei ) (i = 1, 2, 3, 4).

Therefore we see by (5) that∇N = 0 is equivalent to (8). Hence we see that∇N = 0

is equivalent to ∇̂Θ = 0. In the case where Θ is a section of U0

(∧2
−TM

)
, we can

obtain the same result and we have finished the proof of Theorem 1. �

If N is parallel with respect to∇, then (h, N ) is called a nilpotent Kähler structure
of M , and M equipped with (h, N ) is called a nilpotent Kähler 4-manifold.
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Example 1 Let M be a neutral hyperKähler 4-manifold. Then either
∧2

+TM or
∧2

−TM is a product bundle. Suppose that
∧2

+TM is a product bundle. Then we can
suppose that sections Θ−,1, Θ+,2, Θ+,3 of

∧2
+TM are horizontal and that they form

a psuedo-orthonormal frame field of
∧2

+TM . In particular, Θ as in (3) is horizontal.
Therefore an almost nilpotent structure N of M corresponding to Θ is parallel with
respect to ∇ and (h, N ) is a nilpotent Kähler structure of M .

Remark 2 Let M be a manifold and E an oriented vector bundle over M of rank
4 with its neutral metric h. Let N be a section of End (E). We call N a nilpotent
structure of E if N gives a nilpotent structure of the fiber of E at each point of

M . Each nilpotent structure of E corresponds to a section of either U0

(∧2
+E

)
or

U0

(∧2
−E

)
. Let ∇ be an h-connection of E and ∇̂ the connection of

∧2E induced

by ∇. Then ∇̂ induces connections of
∧2

±E . Referring to the proof of Theorem 1,
we can prove that a nilpotent structure N of E is parallel with respect to ∇ if and

only if the corresponding section Θ of either U0

(∧2
+E

)
or U0

(∧2
−E

)
is horizontal

with respect to ∇̂. We call (h,∇, N ) a nilpotent Kähler structure of E if N is parallel
with respect to ∇.

Let N be an almost nilpotent structure of M . Then at each point of M , N gives
its light-like 2-plane of the tangent space of M . Therefore we have a light-like two-
dimensional distribution D .

Theorem 2 The distribution D given by N is involutive if and only if for the section

Θ of either U0

(∧2
+TM

)
or U0

(∧2
−TM

)
corresponding to N and each tangent

vector V of M contained in D , the covariant derivative ∇̂V Θ is given by Θ up to a
constant. In particular, if N is parallel with respect to ∇, then D is involutive.

Proof Suppose that Θ is a section of U0

(∧2
+TM

)
. Then D is locally generated by

e1 − e3, e2 + e4. ThereforeD is involutive if and only if the bracket [e1 − e3, e2 + e4]
is contained in D . The latter condition is rewritten into

h([e1 − e3, e2 + e4], e1 − e3) = 0,

h([e1 − e3, e2 + e4], e2 + e4) = 0.
(9)

Since ∇ is torsion-free, we have

[e1 − e3, e2 + e4] = ∇e1−e3(e2 + e4) − ∇e2+e4(e1 − e3).

Therefore (9) is rewritten into

h(∇e1−e3(e2 + e4), e1 − e3) = 0,

h(∇e2+e4(e1 − e3), e2 + e4) = 0.
(10)
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Noticing (7) and that (10) is equivalent to

h(∇V (e2 + e4), e1 − e3) = 0 (11)

for any tangent vector V in D , we see that D is involutive if and only if for each
V ∈ D , ∇̂V Θ is given by Θ up to a constant. In the case where Θ is a section of

U0

(∧2
−TM

)
, we obtain the same result. �

Remark 3 We see from the above proof that D is involutive if and only if (11)
holds, that is, the covariant derivatives of the local generators e1 − e3, e2 + e4 of D
by V ∈ D are contained in D . Therefore D satisfies this condition if (M, h,D) is a
Walker manifold, that is, if the covariant derivatives of the local generators e1 − e3,
e2 + e4 ofD by any tangent vector of M are contained inD . See [8, 9, 16] forWalker
manifolds.

6 Light-Like Surfaces in Neutral 4-Manifolds

Let L be a 2-dimensional manifold and F : L −→ M an immersion of L into M . We
say that F is light-like if for any nonzero tangent vector V of L , d F(V ) is light-like.
Let F : L −→ M be a light-like immersion of L into M . Let V1, V2 be vector fields
on a neighborhood O of each point of L which form a local frame field. Then V1 ∧ V2

gives a local section of either U0

(∧2
+F∗TM

)
or U0

(∧2
−F∗TM

)
. We consider ∇, ∇̂

to be connections of F∗TM ,
∧2

ε F∗TM , respectively (ε ∈ {+,−}).
Proposition 7 The Levi-Civita connection ∇ of h induces a connection of L if and
only if for V1, V2 as above and each tangent vector V of O, there exists a number c
satisfying

∇̂V V1 ∧ V2 = cV1 ∧ V2. (12)

Proof We see that ∇ induces a connection of L if and only if for any vector field W
on L ,∇W gives a section of End (TL). Let (e1, e2, e3, e4) be a local ordered pseudo-
orthonormal frame field of F∗TM satisfying V1 = e1 − e3, V2 = e2 + e4. Then ∇
induces a connection of L if and only if

h(∇(e2 + e4), e1 − e3) = 0,

that is, ω1
2 + ω1

4 + ω3
2 + ω3

4 = 0. Therefore ∇ induces a connection of L if and
only if for each V , there exists a number c satisfying (12). Hence we obtain
Proposition 7. �

Remark 4 Let M , E and h be as in the previous remark. Let N be a nilpotent
structure of E . Then at each point of M , N gives its light-like 2-plane of the fiber
of E . Therefore we have a subbundle EN of E of rank 2. Referring to the proof of
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Proposition 7, we can prove that an h-connection ∇ of E induces a connection of
EN if and only if for local sections ξ1, ξ2 of EN on a neighborhood O of each point
of M which form a local frame field and each tangent vector V of O , there exists a
number c satisfying ∇̂V ξ1 ∧ ξ2 = cξ1 ∧ ξ2. In particular, if N is parallel with respect
to ∇, then ∇ induces a connection of EN .

Let L be a 2-dimensional manifold and ∇ a connection of L . Then ∇ induces a
connection ∇̂ of

∧2 TL . Let (u1, u2) be local coordinates of L andΓ k
i j (i, j, k = 1, 2)

the Christoffel symbols of ∇ with respect to (u1, u2). We set

fk := Γ 1
k1 + Γ 2

k2 (k = 1, 2)

and
Ω := d( f1du1 + f2du2).

Lemma 1 The 2-form Ω does not depend on the choice of (u1, u2). It is defined on
L and determined by ∇.

Proof We have

∇̂∂/∂uk
∂

∂u1
∧ ∂

∂u2
= fk

∂

∂u1
∧ ∂

∂u2
(k = 1, 2). (13)

Let (ũ1, ũ2) be local coordinates of L other than (u1, u2). Let Γ̃ k
i j (i, j, k = 1, 2) be

the Christoffel symbols of ∇ with respect to (ũ1, ũ2) and set f̃k := Γ̃ 1
k1 + Γ̃ 2

k2. Then
noticing (13), we obtain

fk = ∂ log |D|
∂uk

+ ∂ ũ1

∂uk
f̃1 + ∂ ũ2

∂uk
f̃2 (k = 1, 2),

where

D := ∂(ũ1, ũ2)

∂(u1, u2)
=

∣
∣
∣
∣
∣

∂ ũ1

∂u1
∂ ũ1

∂u2

∂ ũ2

∂u1
∂ ũ2

∂u2

∣
∣
∣
∣
∣
.

This yields
f1du1 + f2du2 = d log |D| + f̃1dũ1 + f̃2dũ2.

Therefore we obtain

d( f1du1 + f2du2) = d( f̃1dũ1 + f̃2dũ2)

and we have proved Lemma 1. �
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Remark 5 Let L be an l-dimensional manifold and ∇ a connection of L . Let
(u1, . . . , ul) be local coordinates of L and Γ k

i j (i, j, k = 1, . . . , l) the Christoffel
symbols of ∇ with respect to (u1, . . . , ul). We set

fk :=
l∑

j=1

Γ
j

k j (k = 1, . . . , l), Ω := d

(
l∑

k=1

fkduk

)

.

Then Ω does not depend on the choice of (u1, . . . , ul).

We will prove

Theorem 3 Let L be a 2-dimensional manifold and ∇ a connection of L. Then the
following are mutually equivalent:
(a) on a neighborhood of each point of L, there exists a nonzero horizontal section

of
∧2TL with respect to ∇̂;

(b) the curvature tensor R̂ of ∇̂ vanishes;
(c) Ω ≡ 0.

Proof We obtain

R̂

(
∂

∂u1
,

∂

∂u2

)
∂

∂u1
∧ ∂

∂u2

= ∇̂∂/∂u1

(

f2
∂

∂u1
∧ ∂

∂u2

)

− ∇̂∂/∂u2

(

f1
∂

∂u1
∧ ∂

∂u2

)

=
(

∂ f2
∂u1

+ f2 f1

)
∂

∂u1
∧ ∂

∂u2
−

(
∂ f1
∂u2

+ f1 f2

)
∂

∂u1
∧ ∂

∂u2

=
(

∂ f2
∂u1

− ∂ f1
∂u2

)
∂

∂u1
∧ ∂

∂u2
.

(14)

Let Θ be a local nonzero section of
∧2TL . We locally represent Θ as

Θ = f
∂

∂u1
∧ ∂

∂u2
. (15)

If Θ is horizontal with respect to ∇̂, that is, if ∇̂Θ = 0, then we obtain ∂ f/∂uk +
f fk = 0 (k = 1, 2) and thereforewe have ∂ f2/∂u1 = ∂ f1/∂u2. Therefore by (14), we
obtain (b) from (a). If R̂ vanishes, then by (14), we obtain ∂ f2/∂u1 = ∂ f1/∂u2, which
means Ω ≡ 0. Therefore we obtain (c) from (b). Suppose Ω ≡ 0. Then there exists
a function φ defined on a neighborhood of each point of L satisfying ∂φ/∂uk = fk

(k = 1, 2).We set f := e−φ . Then forΘ as in (15),weobtain ∇̂∂/∂uk Θ = 0.Therefore
Θ is horizontal and we obtain (a) from (c). �

Remark 6 Let L , ∇ and Ω be as in the previous remark. Then we can prove that
the following are mutually equivalent:
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(a) on a neighborhood of each point of L , there exists a nonzero horizontal section
of

∧l TL with respect to ∇̂;
(b) the curvature tensor R̂ of ∇̂ vanishes;
(c) Ω ≡ 0.

Corollary 1 Let M be an oriented neutral 4-manifold. Let h be the neutral metric
of M and ∇ the Levi-Civita connection of h. Let L be a 2-dimensional manifold and
F : L −→ M a light-like immersion of L into M. Then the following are mutually
equivalent:
(a) on a neighborhood of each point of L, there exists a nonzero horizontal section

of either U0

(∧2
+F∗TM

)
or U0

(∧2
−F∗TM

)
given by a local section of

∧2TL;
(b) on a neighborhood O of each point of L, there exists a nilpotent structure N of

F∗TM |O with EN = F∗d F(T L)|O parallel with respect to ∇;
(c) ∇ induces a connection of L such that the curvature tensor R̂ of ∇̂ vanishes;
(d) ∇ induces a connection of L satisfying Ω ≡ 0.

Remark 7 Let M be an m-dimensional manifold and E a vector bundle over M of
rank n. Let ∇ be a connection of E . Then ∇ induces a connection ∇̂ of

∧n E . Let
ξ1, . . . , ξn form a local frame field of E on a neighborhood O of each point of M . Let
(u1, . . . , um) be local coordinates on O . Let Γ k

α j (α = 1, . . . , m, j, k = 1, . . . , n)
be functions on O given by

∇∂/∂uα ξ j =
n∑

k=1

Γ k
α jξk .

We set

fα :=
n∑

k=1

Γ k
αk (α = 1, . . . , m), Ω := d

(
m∑

α=1

fαduα

)

.

Then referring to the proof of Lemma 1, we can prove that Ω depends neither the
choice of (u1, . . . , um) nor the choice of (ξ1, . . . , ξn). In addition, referring to the
proof of Theorem 3, we see that the following are mutually equivalent:

(a) on a neighborhood of each point of M , there exists a nonzero horizontal section
of

∧n E ;
(b) the curvature tensor R̂ of ∇̂ vanishes;
(c) Ω ≡ 0.

Suppose n = 4 and that E is oriented and equipped with a neutral metric h and an
h-connection∇. Let E ′ be a subbundle of E of rank 2 such that each fiber is light-like.
Then the following are mutually equivalent:
(a) on a neighborhood of each point of M , there exists a local nonzero horizontal

section of either U0

(∧2
+E

)
or U0

(∧2
−E

)
given by a local section of

∧2E ′;
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(b) on a neighborhood O of each point of M , there exists a nilpotent structure N of
E |O with EN = E ′|O parallel with respect to ∇;

(c) ∇ induces a connection of E ′ such that the curvature tensor R̂ of ∇̂ vanishes;
(d) ∇ induces a connection of E ′ satisfying Ω ≡ 0.
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