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Abstract In this notewedevelop ahalf-spacemodel for the pseudo-hyperbolic space
H

p,q , for any p, q with p ≥ 1. This half-space model embeds isometrically onto the
complement of a degenerate totally geodesic hyperplane in H

p,q . We describe the
geodesics, the totally geodesic submanifolds, the horospheres, the isometry group in
the half-space model, and we explain how to interpret the boundary at infinity in this
setting.
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1 Introduction

The pseudo-hyperbolic space Hp,q of signature (p, q) is the space

H
p,q = {X ∈ R

p,q+1 | 〈X, X〉 = −1}/{±Id} ,

where Rp,q+1 is the pseudo-Euclidean space of signature (p, q + 1). It is equipped
with a pseudo-Riemannian metric induced by the bilinear form of Rp,q+1, which
makes it a geodesically complete pseudo-Riemannian manifold of constant sectional
curvature−1. See for instance [3, 5, 8] for more details onHp,q in arbitrary signature
and dimension.When q = 0,Hn,0 is isometric to the hyperbolic spaceHn; for q = 1,
H

n,1 is the Anti-de Sitter space, see for instance [1, 2].

A. Seppi (B)
Institut Fourier, UMR 5582, Laboratoire de Mathématiques, Université Grenoble Alpes, 40700
38058, Grenoble cedex 9, France
e-mail: andrea.seppi@univ-grenoble-alpes.fr

E. Trebeschi
Dipartimentodi Matematica “Felice Casorati”, Università degli Studi di Pavia, Via Ferrata, 5,
27100 Pavia, Italy
e-mail: enrico.trebeschi01@universitadipavia.it

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. L. Albujer et al. (eds.), Developments in Lorentzian Geometry, Springer Proceedings
in Mathematics & Statistics 389, https://doi.org/10.1007/978-3-031-05379-5_17

285

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05379-5_17&domain=pdf
mailto:andrea.seppi@univ-grenoble-alpes.fr
mailto:enrico.trebeschi01@universitadipavia.it
https://doi.org/10.1007/978-3-031-05379-5_17


286 A. Seppi and E. Trebeschi

The purpose of this note is to describe a half-spacemodel forHp,q . This is defined
as the open half-space {z > 0} inRp+q endowed with the pseudo-Riemannian metric

dx21 + · · · + dx2p−1 − dy21 − · · · − dy2q + dz2

z2
,

and denoted Hp,q . When q = 0, this is the usual half-space model of Hn . When
q ≥ 1, this space is not globally isometric to H

p,q (which is indeed not simply
connected, hence not even homeomorphic to the half-space). In Sect. 2 we will show
that Hp,q embeds isometrically into H

p,q , with image the complement of a totally
geodesic degenerate hyperplane. In other words,Hp,q is not a geodesically complete
pseudo-Riemannian manifold.

We remark that the half-space model for the Anti-de Sitter space H2,1 has been
introduced by Danciger in [4], and has been used for instance in [10]; in any dimen-
sion, the half-space model of Hn,1 also appears in [9]. Of course one analogously
defines the pseudo-spherical space Sp,q , by taking the space of vectors X such that
〈X, X〉 = 1 in R

p+1,q , and taking the quotient by {±Id}. The space obtained in this
way is anti-isometric to H

q,p. A half-space model of Sp,q is defined similarly, pro-
vided q ≥ 1. As a particular case, the half-space model of the de Sitter space Sp,1

has been studied in [7]. We decided to focus on the case of Hp,q for the sake of
definiteness: up to changing a sign to the pseudo-Riemannian metric, one recovers
the half-space model for Sq,p if p ≥ 1.

The main results of this note aim at describing the geometry of Hp,q . We give a
classification result for the totally geodesic subspaces of any dimension (Sect. 3), and
then a more refined classification of the geodesics (Sect. 4). We will see that space-
like geodesics (i.e. those for which the tangent vector is positive for the pseudo-
Riemannian metric) are of four types: vertical lines, ellipses, half-parabolas and
half-branches of hyperbolas, all orthogonal to the horizontal hyperplane (i.e. the
boundary of the half-space). The first two types include the usual geodesics in the
half-spacemodel of the hyperbolic space. Lightlike and timelike geodesics (i.e. those
for which the tangent vector is respectively null and negative) are lines and branches
of hyperbolas respectively. In Sect. 5 we provide a description of the boundary at
infinity ∂∞H

p,q , seen from the half-space model. Of course the boundary ∂Hp,q in
R

p+q , which is a copy of the pseudo-Euclidean spaceRp−1,q , is conformally embed-
ded in ∂∞H

p,q ; we describe topologically its compactification ∂∞Hp,q in terms of
divergence of totally geodesic degenerate hypersurfaces. In Sect. 6 we describe the
horospheres in the half-space model. Finally, in Sect. 7, we compute the isometry
group Isom(Hp,q), as a result of the analysis of geodesics. We remark that this does
not correspond to the isometry group of Hp,q , but only to a subgroup that preserves
the complement of a degenerate hyperplane. Nevertheless, we study the action of
Isom(Hp,q) on the half-space model in terms of Isom(Hp,q) and some transforma-
tions which are the analogue of inversions in hyperbolic geometry.
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2 First Definitions and Properties

We start by recalling the standard definition of pseudo-hyperbolic space. Given inte-
gers p, q ≥ 0, we define:

˜H
p,q = {X ∈ R

p,q+1 | 〈X, X〉 = −1} ,

whereRa,b is the pseudo-Euclidean space of signature (a, b) and 〈·, ·〉denotes the cor-
responding bilinear form, namely if X = (X1, . . . , Xa+b) and Y = (Y1, . . . ,Ya+b)

then
〈X,Y 〉 = X1Y1 + . . . XaYa − Xa+1Ya+1 − · · · − Xa+bYa+b .

It is known that ˜H
p,q , endowed with the restriction of the bilinear form 〈·, ·〉, is

a pseudo-Riemannian manifold of signature (p, q) of constant sectional curvature
−1. Then we define the pseudo-hyperbolic space as

H
p,q = ˜H

p,q/{±Id} .

Since ±Id acts isometrically on ˜H
p,q , Hp,q inherits a pseudo-Riemannian metric of

constant sectional curvature −1.
Recall also that the boundary at infinity of pseudo-hyperbolic space is defined as:

∂∞H
p,q = P{X ∈ R

p,q+1 | 〈X, X〉 = 0} ⊂ RPp+q ,

namely the projectivised cone of null (i.e. isotropic) vectors.

2.1 The Half-Space Model

Let us now introduce the half-space model of Hp,q , which is the main object of this
paper. In the following, we will always assume p ≥ 1.

Definition 1 The half-space model of pseudo-hyperbolic geometry is the space

Hp,q = {(x, y, z) ∈ R
p−1 ⊕ R

q ⊕ R | z > 0} ,

endowed with the pseudo-Riemannian metric

gp,q = dx21 + · · · + dx2p−1 − dy21 − · · · − dy2q + dz2

z2
. (1)

We will also denote by ∂Hp,q the boundary of Hp,q in R
p+q , namely the hyper-

plane {z = 0}. We mention here some well-known specific cases.
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Example 1 When q = 0,Hn,0 is the usual half-space model of the hyperbolic space
H

n = H
n,0.

Example 2 When q = 1, Hn−1,1 is the so-called half-space model of the Anti-de
Sitter space AdSn = H

n−1,1. This has been introduced for AdS3 in [4], and has been
applied for instance in [10], and in [9] in arbitrary dimension.

Example 3 The pseudo-hyperbolic space H1,n−1 coincides with the n-dimensional
de Sitter space dSn−1,1 up to changing the sign to the metric tensor. The half-space
model in this case, again up to changing the sign, appeared in [7].

2.2 An Isometric Embedding

It can be checked directly that the sectional curvature ofHp,q is constant and equal to
−1, for any p, q. Nevertheless, this follows from the next proposition, which justifies
the claim that Hp,q is a “model” for the pseudo-hyperbolic space Hp,q .

Proposition 1 There exists an isometric embedding

ιp,q : Hp,q → H
p,q .

If q = 0, ιp,q is surjective.Otherwise, its image is the complement of a totally geodesic
degenerate hyperplane in Hp,q .

Proof. Wewill first define an embedding ι̃p,q : Hp,q → ˜H
p,q ⊂ R

p,q+1. To simplify
the notation, we will write

h(x, y) = x21 + · · · + x2p−1 − y21 − · · · − y2q

for (x, y) ∈ R
p−1 ⊕ R

q . Then define ι̃p,q(x, y, z) = (X1, . . . , X p+q+1) where:

Xi = xi
z

i = 1, . . . p − 1,

X p = 1 − h(x, y) − z2

2z

X j+p = y j
z

j = 1, . . . q,

X p+q+1 = 1 + h(x, y) + z2

2z
.

One checks immediately that X2
p − X2

p+q+1 = −1 − h(x, y)/z2, hence ι̃p,q takes

values in ˜H
p,q , namely 〈ι̃p,q(x, y, z), ι̃p,q(x, y, z)〉 = −1.

To prove that ι̃p,q is an isometry, one can easily compute the differential:
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d ι̃p,q

(

∂

∂xi

)

= 1

z

∂

∂Xi
− xi

z

∂

∂X p
+ xi

z

∂

∂X p+q+1

d ι̃p,q

(

∂

∂y j

)

= y j
z

∂

∂X p
+ 1

z

∂

∂X j+p
− y j

z

∂

∂X p+q+1

d ι̃p,q

(

∂

∂z

)

= −
p−1
∑

i=1

xi
z2

∂

∂Xi
− 1 − h(x, y) + z2

2z2
∂

∂X p
−

−
q

∑

j=1

y j
z2

∂

∂X j+p
− 1 + h(x, y) − z2

2z2
∂

∂X p+q+1

and then an easy calculation shows that ι̃∗p,q〈·, ·〉 equals the metric tensor (1).
Let us now show that

ι̃p,q(Hp,q) = ˜H
p,q ∩ {X p + X p+q+1 > 0} . (2)

The inclusion⊆ is trivial as X p + X p+q+1 = 1/z > 0. For the other inclusion, given
(X1, . . . , X p+q+1) such that X2

1 + · · · + X2
p − X2

p+1 − · · · X2
p+q+1 = −1 and X p +

X p+q+1 > 0, define

xi = Xi

X p + X p+q+1
i = 1, . . . p − 1

y j = X j+p

X p + X p+q+1
j = 1, . . . q

z = 1

X p + X p+q+1
.

Then one checks that ι̃p,q(x, y, z) = (X1, . . . , X p+q+1).
Incidentally, in the above argument we constructed an inverse of ι̃p,q over its

image, which implies that ι̃p,q is injective. It also follows from (2) that the restric-
tion of π to the image of ι̃p,q is injective, where π is the projection from ˜H

p,q to
H

p,q . Hence, defining ιp,q = π ◦ ι̃p,q , ιp,q is an isometric embedding whose image
is the complement of P ∩ H

p,q , where P is the hyperplane defined by the condition
X p + X p+q+1 = 0. It is known that (when q ≥ 1) this is a totally geodesic hyperplane
in H

p,q , which is degenerate because P is degenerate in R
p,q+1, being the orthog-

onal complement of the line spanned by the isotropic vector ∂/∂X p − ∂/∂X p+q+1.
Observe that for q = 0, the intersection P ∩ H

p,0 is empty, hence we recover that
ιp,0 is a global isometry between the half-space model and the hyperboloid model of
the hyperbolic space. �
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2.3 Symmetries

The following lemma, which also serves as a definition for the group G, introduces
some symmetries of the model Hp,q .

Lemma 1 The group

G = {(x, y, z) �→ λ(A(x, y) + (x0, y0), z) | λ > 0, A ∈ O(p − 1, q), (x0, y0) ∈ R
p−1 ⊕ R

q }

is a subgroup of the isometry group Isom(Hp,q).
Moreover, G acts transitively onHp,q and the stabilizer of a point is isomorphic

to O(p − 1, q).

Proof. It is immediate to check that G is a subgroup. To see that it acts by isometries
onHp,q , it suffices to show that the transformations of the form

(x, y, z) �→ λ(x, y, z)

(x, y, z) �→ (A(x, y), z)

(x, y, z) �→ (x + x0, y + y0, z)

preserve the metric tensor (1), which we leave as an easy exercise.
The action of G is transitive since the map

(x, y, z) �→ z0

(

x + x0
z0

, y + y0
z0

, z

)

sends (0, 0, 1) to (x0, y0, z0). Then an isometry of G fixes (0, 0, 1) if and only if
λ = 1, x0 = y0 = 0, i.e. StabG(0, 0, 1) ∼= O(p − 1, q). �

We will see in Theorem 3 that G is actually the full isometry group Isom(Hp,q)

when q ≥ 1. Since every local isometry between open neighbourhoods of H
p,q

extends to a global isometry, the isometric embedding ιp,q induces a groupmonomor-
phism from G to Isom(Hp,q), which is clearly not surjective because in Isom(Hp,q)

there are isometries that do not preserve the totally geodesic hyperplane whose com-
plement is the image of ιp,q . (Indeed if n = p + q, then G is a Lie group of dimen-
sion (n2 − n + 2)/2, while Isom(Hp,q), which is isomorphic to a double quotient of
O(p, q + 1), has dimension n(n + 1)/2 = dimG + n − 1).

3 Totally Geodesic Submanifolds

The next step in our analysis is the study of the totally geodesic subspaces ofHp,q . In
the following, when referring to a totally geodesic submanifold (and in the particular
case of geodesics and totally geodesic hypersurfaces) we will always implicitely
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assume that they aremaximal, i.e. not properly included in any other totally geodesic
submanifold of the same dimension.

3.1 The Geodesic Equations

We start by writing the geodesic equations. One can easily check that the only non-
vanishing Christoffel symbols ofHp,q are

�xi
xi ,z = �xi

z,xi = −1/z i = 1, . . . p − 1,

�
y j
y j ,z = �

y j
z,y j = −1/z j = 1, . . . q,

�z
xi ,xi = 1/z i = 1, . . . p − 1,

�z
y j ,y j = −1/z j = 1, . . . q,

�z
z,z = −1/z.

In the following, by a small abuse of notation, given a point (x, y, z) ∈ Hp,q (with
x ∈ R

p−1, y ∈ R
q , z ∈ R), we will denote by ‖ · ‖ the Euclidean norm of x and y,

namely:

‖x‖2 =
p−1
∑

i=1

x2i ‖y‖2 =
q

∑

j=1

y2j .

From the above computation of Christoffel symbols, we obtain that a curve γ (t) =
(x(t), y(t), z(t)) is geodesic if and only if the following system of ODEs is satisfied:

⎧

⎪

⎨

⎪

⎩

x ′′ − 2z′
z x ′ = 0

y′′ − 2z′
z y′ = 0

z′′ + 1
z

(‖x ′‖2 − ‖y′‖2 − |z′|2) = 0

. (3)

As a consequence of this expression of the geodesic equations, we show here that
vertical subspaces of any dimension are totally geodesic. For non-degenerate sub-
spaces, this could be proved also by a standard symmetry argument, by finding an
isometry whose fixed points set coincides with the subspace. But the argument below
works for degenerate subspaces as well.

Proposition 2 Every submanifold of the form

V� := {(x, y, z) ∈ R
p−1 ⊕ R

q ⊕ R | (x, y) ∈ �, z > 0} ,

for � an affine subspace of Rp+q−1, is totally geodesic.
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Proof. Let us define � as the set of solutions of a finite number of affine conditions
of the form

p−1
∑

i=1

ai xi +
q

∑

j=1

b j y j = c . (4)

We claim that if γ is a geodesic such that γ ′(0) is tangent to the subspace V�, namely

p−1
∑

i=1

ai x
′
i (0) +

q
∑

j=1

b j y
′
j (0) = 0 , (5)

then γ (t) satisfies (4) for all times of definition. This clearly implies that V� is totally
geodesic.

To show the claim, define the function

χ(t) =
p−1
∑

i=1

ai x
′
i (t) +

q
∑

j=1

b j y
′
j (t) .

Taking a linear combination of the equations (3), χ satisfies the following ODE:
χ ′(t) = f (t)χ(t), for f (t) = −2z′(t)/z(t). By our hypothesis (5), χ(0) = 0, hence
χ ≡ 0. This implies that γ (t) identically satisfies (4) and concludes the proof. �

3.2 Totally Geodesic Hypersurfaces

We now give the classification of totally geodesic submanifolds of codimension one.
The general case (i.e. in any codimension) will then follow in Theorem 1.

Proposition 3 The totally geodesic hypersurfaces of Hp,q are precisely:

1. the vertical hyperplanes VL, for L an affine hyperplane in ∂Hp,q ;
2. the quadric hypersurfaces of the form

‖x − x0‖2 − ‖y − y0‖2 + z2 = c, c ∈ R (Q)

for some (x0, y0) ∈ ∂Hp,q . The hypersurfaces of the former type are degenerate if
and only if L is degenerate in R

p−1,q , and have signature (m + 1, n) where (m, n)

is the signature of L. Those of the latter type are degenerate if and only if c = 0, and
have signature (p − 1, q − 1) if c = 0, (p, q − 1) if c < 0, and (p − 1, q) if c > 0.

See also Fig. 1 for some pictures in dimension 3.

Proof. It has been proved in Proposition 2 that vertical hyperplanes are totally
geodesic. To prove that the quadric hypersurfaces as in the statement are totally
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Fig. 1 The totally geodesic quadric hypersurfaces in H2,1 (left) and H1,2 (right)

geodesic, we will show that the intersection of the quadric hypersurface with any
vertical 2-plane V� (for � a line) is a geodesic of Hp,q . This clearly implies that the
hypersurface is totally geodesic, since any ambient geodesic that is tangent to the
hypersurface at time zero remains in the hypersurface for all times.

To see this, we parameterize such a curve as

γ (t) = (u0 + tu, v0 + tv, f (t)),

where the function f is determined by the quadric Equation (Q), namely

f (t) =
√

c − ‖x(t) − x0‖2 + ‖y(t) − y0‖2 ,

which is defined for t in some interval I .
As in (3) one can compute

∇γ ′γ ′ =
(

−2 f ′

f
u,−2 f ′

f
v, f ′′ + ‖u‖2 − ‖v‖2 − | f ′|2

f

)

. (6)

Remarking that f (t)2 = c − ‖tu + u0 − x0‖2 + ‖tv + v0 − y0‖2, differentiating
twice one obtains

( f ′)2 + f ′′ f = −‖u‖2 + ‖v‖2.

Then the last term in (6) becomes −(2 f ′/ f ) f ′, that means ∇γ ′γ ′ = −(2 f ′/ f )γ ′,
i.e. γ in an unparameterized geodesic.

It only remains to show that these are all totally geodesic hypersurfaces. For
this purpose, we choose any vector (u, v, w) tangent to Hp,q at a point (x, y, z)
and we show that there exists a totally geodesic hypersurface (which is necessarily
unique) of the above two forms containing the point (x, y, z) and whose tangent
space is orthogonal to (u, v, w). The key observation is that the orthogonality can
be computed with respect to the flat metric
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g p,q = dx21 + · · · + dx2p−1 − dy21 − · · · − dy2q + dz2 ,

namely by seeing the half-space as a subset of a pseudo-Euclidean space of signature
(p, q), since g p,q is conformal to the metric gp,q .

If w = 0, then clearly the hypersurface we are looking for is VL, for L the affine
subspace of Rp−1 ⊕ R

q containing the point (x, y) and whose underlying vector
space is the orthogonal of (u, v). So let us now assume w �= 0. Let (x0, y0, 0) be
the point of intersection of the line through (x, y, z) having direction (u, v, w) with
∂Hp,q . The quadric hypersurfaces of the form (Q) are precisely the sets of points at
constant squared distance from (x0, y0, 0) for the conformal pseudo-Euclideanmetric
g p,q . Hence there is one quadric hypersurface that contains the point (x, y, z), and
it is orthogonal to the position vector (x, y, z) − (x0, y0, 0), which is proportional
to (u, v, w) by construction. The statement about the signature is easily checked,
by using again the conformal pseudo-Euclidean metric g p,q , since the signature of a
submanifold only depends on the conformal class of the metric. This concludes the
proof. �

Remark 1 For degenerate hypersurfaces, a direct computation, very similar to the
proof of Theorem 2 (but setting the constant a = 0), shows that vertical hyperplanes
and quadric hypersurfaces of the form (Q) with c = 0 are the preimages under ιp,q
of totally geodesic degenerate hypersurfaces in H

p,q . Indeed, the latter are formed
by the double quotient of the set the vectors X ∈ ˜H

p,q such that 〈X, V 〉 = 0, for
some null vector V . If we pick V of the form (u, 0, v, 0) for u ∈ R

p−1, v ∈ R
q and

‖u‖2 − ‖v‖2 = 0, a direct computation shows that the preimage is |x · u − y · v| =
0. If insteadwe pick instead V = (0, 1, 0, 1), the preimage is ‖x‖2 − ‖y‖2 + z2 = 0.
Up to translation, this concludes the claim of the remark. See Theorem 2 for more
details.

3.3 The General Classification

We can finally state the classification result for totally geodesic submanifolds.

Theorem 1 The totally geodesic submanifolds ofHp,q are precisely:

1. the vertical subspaces,
2. the intersections of quadric hypersurfaces of the form (Q)with a vertical subspace.

Proof. The submanifolds in the statement are totally geodesic: for the first item this
follows from Proposition 2, while for the second item from Proposition 3 and the fact
that the intersection of totally geodesic submanifolds is totally geodesic. To show
that they exhaust the totally geodesic submanifolds, pick any linear subspace W of
T(x,y,z)Hp,q . We will show that there exists a (necessarily unique) submanifold of the
above two forms tangent to W at (x, y, z). If W contains the vertical direction, then
we can write W = W0 ⊕ ∂/∂z, for W0 the orthogonal complement of ∂/∂z in W .
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Denoting by � the affine subspace through the point (x, y) with underlying vector
space W0, V� is a totally geodesic subspace tangent to W at (x, y, z).

Now suppose that W does not contain ∂/∂z, and extend W to a subspace W1

of codimension one which is still transverse to the vertical direction. By the proof
of Proposition 3, there exists a quadric hypersurface Q which is tangent to W1 at
(x, y, z). Also, as in the first part of this proof, we find a vertical subspace V� which
is tangent to W ⊕ ∂/∂z. Then Q ∩ V� is tangent to W at (x, y, z). This concludes
the proof. �

4 Geodesics

The next step in our analysis is the study of the geodesics of Hp,q . We will divide
our analysis in three cases, namely lightlike, timelike and spacelike geodesics.

We recall that a parameterized geodesic is complete if it is defined over R. Sim-
ilarly, a geodesic is complete on one side if it admits a parameterization defined on
a half-open interval [a,+∞). In the spacelike and timelike case, this corresponds
to requiring that, for any parameterization, the integral of the square root of the
absolute value of the quadratic form applied to the tangent vector is infinite over the
corresponding end.

To simplify the statements of the following propositions, we refer to geodesics as
unparametrized, i.e. our statements are actually about the image of the parametrized
curves.

4.1 Lightlike Geodesics

We start by lightlike geodesics, namely those for which the tangent vector is isotropic
for the metric tensor (1).

Proposition 4 Lightlike geodesics in Hp,q are precisely the straight lines spanned
by a lightlike vector. These are incomplete as they escape from compact sets of
Hp,q ∪ ∂Hp,q , unless they are contained in a horizontal hyperplane {z = c}.
Proof. Let (u, v, w) be a lightlike vector, that is, ‖u‖2 − ‖v‖2 + |w|2 = 0. Up to
changing the sign, we can assume w ≥ 0. We claim that if w > 0, then

γ (t) = (x0, y0, 0) + (1/t)(u, v, w)

is a parameterized geodesic; if instead w = 0, then

γ (t) = (x0, y0, z0) + t (u, v, 0)
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Fig. 2 The lightcone from a point in H2,1 (left) and H1,2 (right)

is a parameterized geodesic. This clearly implies the statement: these are all the
lightlike geodesics because, up to choosing the parameter t suitably, one finds such
a geodesic with tangent vector a multiple of (u, v, w) through any point of Hp,q .
Moreover, geodesics of the former type are defined on (0,∞), hence they are com-
plete only when they approach ∂Hp,q , while those of the latter type are defined on
R.

The claim is an easy computation from Equations (3). Indeed, since γ ′ is lightlike,
we have ‖x ′‖2 − ‖y′‖2 = −|z′|2, hence the equations become

(x ′′, y′′, z′′) = (2z′/z)(x ′, y′, z′) , (7)

and one immediately checks that both expressions above for γ satisfy (7). �

See Fig. 2 to visualize the cone of lightlike geodesics emanating from a point in
H2,1 and H1,2.

Remark 2 The fact that unparameterized lightlike geodesics are straight lines can
also be proved by observing that Hp,q is conformal to the upper half-space in R

p,q

endowed with the restriction of the pseudo-Euclidean metric, and applying the fact
that twoconformal pseudo-Riemannianmetrics have the sameunparameterized light-
like geodesics (see [6, Proposition 2.131]).

4.2 A Preliminary Computation

As a consequence of the classification in Theorem 1, geodesics are either straight
vertical lines or conics. We will give here a more precise classification in terms of
the eccentricity, computed with respect to the Euclidean distances inHp,q ⊂ R

p+q .
We start by a general computation that we will apply repeatedly.

Lemma 2 Geodesics of Hp,q are precisely:
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1. vertical lines;
2. conics of equation

‖u‖2 − ‖v‖2
‖u‖2 + ‖v‖2 s

2 + z2 + 2As = C , A,C ∈ R (Q’)

with respect to Euclidean coordinates (s, z) on a vertical 2-plane V�, where the
underlying vector space of � is spanned by (u, v).

Proof. By Theorem 1, geodesics are either vertical lines or obtained intersecting (Q)
with the a 2-plane V�. Up to a horizontal translation, we can assume that the line �

contains the origin, hence it can be parameterized as

(x, y) = s
√‖u‖2 + ‖v‖2 (u, v) . (8)

A direct computation from (Q) yields the Equation (Q’) with the constants A =
−(u · x0 − v · y0)/

√‖u‖2 + ‖v‖2 and C = c − ‖x0‖2 + ‖y0‖2. �

Observe that if ‖u‖2 − ‖v‖2 �= 0, then replacing the coordinate s by s − s0 for a
suitable choice of s0, and relabeling the constant C , one then obtains the following
equation:

‖u‖2 − ‖v‖2
‖u‖2 + ‖v‖2 s

2 + z2 = C , C ∈ R . (Q”)

Remark 3 Lemma 2 provides yet another method to obtain the straight lines as
lightlike geodesics. Consider Equation (Q”) for C = 0, namely

‖u‖2 − ‖v‖2
‖u‖2 + ‖v‖2 s

2 + z2 = 0

which is indeed a double line through the origin if ‖u‖2 − ‖v‖2 < 0. An immediate
computation shows that these lines are indeed lightlike. Similarly, considering (Q’)
with C > 0, A = 0 and ‖u‖2 − ‖v‖2 = 0, we obtain a horizontal line with lightlike
direction. A similar approach will be used in the next sections for the analysis of
spacelike and timelike geodesics.

4.3 Timelike Geodesics

We now move on to the study of timelike geodesics. Let us remark that if a vector
(u, v, w) is tangent to a timelike curve at any point, then necessarily ‖u‖ < ‖v‖ by
the expression of the metric (1).
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Fig. 3 A timelike geodesic (in red) and the four types of spacelike geodesics (blue)

Proposition 5 Timelike geodesics in Hp,q are exactly the branches of hyperbola
with center on ∂Hp,q , which do not meet ∂Hp,q , of eccentricity

eT (u, v) =
√

1 + ‖u‖2 + ‖v‖2
‖v‖2 − ‖u‖2 ,

where (u, v, w) is a vector tangent to the geodesic at any point. These are incomplete
on both sides.

See also Fig. 3.

Proof. Wewill consider timelike geodesics as the intersections of quadric hypersur-
faces with a vertical plane, as in Equation (Q’). In order to get a timelike geodesic, the
vertical plane is necessarily of signature (1, 1), hence ‖u‖ < ‖v‖, in which case we
can reduce to Equation (Q”). As we observed in Remark 3, if C = 0 then Equation
(Q”) gives a pair of lightlike lines with the same endpoint on ∂Hp,q . If C < 0, we
obtain a pair of hyperbolas meeting ∂Hp,q orthogonally. Since the half-space metric
is conformal to the pseudo-Euclidean metric on Rp+q , these are spacelike (they tend
to be vertical as they approach ∂Hp,q ).

We are left with the case of C > 0, which gives indeed a hyperbola that does
not meet ∂Hp,q . These are easily seen to be timelike, since the tangent vector at the
minimum point of the z-coordinate along the hyperbola is proportional to (u, v, 0),
which is timelike by our initial assumption ‖u‖ < ‖v‖. The eccentricity is eT (u, v).

It only remains to show that these are incomplete. First, observe that if H and H ′
are two such hyperbolas (considered as a subset ofHp,q ), then there is an element of
G that mapping H to H ′. Indeed, one can use a translation and a dilatation to map the
minimum of the z-coordinate on H to that on H ′. Composing with an isometry of the
form (x, y, z) �→ (A(x, y), z), one can then map the tangent vector to the tangent
vector, and this concludes the claim.
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To show incompleteness, it thus suffices to consider the hyperbolaγ parameterized
by y1(t) = sinh(t), z(t) = cosh(t), and all other coordinates identically zero. Its
length is

L(γ ) =
∫ +∞

−∞

√|gp,q(γ ′(t), γ ′(t))|dt =
∫ +∞

−∞
1

cosh(t)
dt = π .

Then all timelike geodesics are incomplete on both sides. �

4.4 Spacelike Geodesics

Finally, we conclude by the analysis of spacelike geodesics. See again Fig. 3.

Proposition 6 Spacelike geodesics inHp,q are exactly of one of the following types:

1. A vertical straight line;
2. A half-ellipse with foci on ∂Hp,q , of eccentricity eS(u, v) for ‖u‖ > ‖v‖;
3. A parabola with vertex and focus on ∂Hp,q , for ‖u‖ = ‖v‖;
4. Half of a branch of hyperbola with foci on ∂Hp,q , meeting ∂Hp,q , of eccentricity

eS(u, v), for ‖u‖ < ‖v‖;
where

eS(u, v) =
√

1 + ‖v‖2 − ‖u‖2
‖u‖2 + ‖v‖2

and (u, v, w) is a vector tangent to the geodesic at any point. The first three types
are complete, while the fourth type is incomplete as it escapes from compact sets of
Hp,q ∪ ∂Hp,q .

Before the proof, we observe that in particular all spacelike geodesics meet ∂Hp,q

at right angles with respect to the conformal metric

g p,q = dx21 + · · · + dx2p−1 − dy21 − · · · − dy2q + dz2,

which extends over the horizontal hyperplane.

Proof. The first type follows from the first point of Lemma 2. The arc-length param-
eterization is γ (t) = (x0, y0, et ), which is defined for all times. Let us now consider
the second point in Lemma 2, by distinguishing three cases according to the sign of
‖u‖2 − ‖v‖2.

If ‖u‖ < ‖v‖, we have already seen in the proof of Proposition 5 that Equation
(Q”) gives a spacelike geodesic if and only if C < 0. From the equation, in this case
the geodesic is a branch of hyperbola that meets ∂Hp,q orthogonally, of eccentricity
eS(u, v). To show that it has infinite length when approaching ∂Hp,q and finite
length at the other end, we can assume that (u, v) = (0, ∂/∂y1), up to isometry. Up
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to a translation, we can assume that the curve is parameterized by y1(t) = cosh(t),
z(t) = sinh(t), and all the other coordinates are identically zero.Adirect computation
shows that its length is

L(γ |[t0, t1]) =
∫ t1

t0

√

g(γ ′(t), γ ′(t))dt =
∫ t1

t0

1

sinh(t)
dt = [

log(tanh(t/2)
]t1
t0

.

Therefore it is complete as t0 → 0+, and incomplete as t1 → +∞.
If ‖u‖ > ‖v‖, then (Q”) is the equation of an ellipse (forC > 0) that meets ∂Hp,q

orthogonally, with eccentricity eS(u, v). We remark that it lies in a positive definite
vertical 2-plane, which is isometric to H2,0 ∼= H

2, and so is complete.
Finally, when ‖u‖ = ‖v‖, (Q’) becomes z2 + 2As = C .We remark that necessar-

ily A �= 0, because otherwise we would obtain a lightlike line as observed in Remark
3. Namely, we obtained a parabola with vertex and focus both on ∂Hp,q . To see that
it is complete, observe that the last equation of (6) becomes the ODE z′′ = (z′)2/z,
whose solution is z(t) = z0ewt/z0 , then it is defined for all times. The parameterized
geodesic is obtained by setting s(t) = (1/2A)(C − z2); then (x(t), y(t)) is expressed
from s(t) as a function of t by Equation (8). This shows that γ is complete. �

As a consequence of this analysis of geodesics, we now have all the tools to prove
that the group G introduced in Lemma 1 is actually the full isometry group of the
half-space modelHp,q . However, we postpone the proof to Sect. 7 (see Theorem 3),
where isometries are discussed in greater detail.

5 The Boundary at Infinity

In this section we will study the boundary at infinity of the pseudo-hyperbolic space
Hp,q in the half-space model. We first show that the embedding ιp,q , introduced in
Proposition 1, extends to a non-surjective embedding of ∂Hp,q into ∂∞H

p,q ; we then
describe the missing points and the topology of the boundary in terms of lightlike
cones and hyperplanes.

5.1 The Extended Embedding

Recall that Proposition 1 provided an isometric embedding ιp,q of Hp,q into Hp,q .

Proposition 7 The isometric embedding ιp,q : Hp,q ↪→ H
p,q defined in Proposition

1 extends to an embedding ∂Hp,q ↪→ ∂∞H
p,q .

Proof. Consider the embedding ιp,q as a map from Hp,q to the projective space
RPp+q . From Proposition 1, it has the expression
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ιp,q(x, y, z) =
[

x

z
: 1 − h(x, y) − z2

2z
: y

z
: 1 + h(x, y) + z2

2z

]

=

=
[

x : 1 − h(x, y) − z2

2
: y : 1 + h(x, y) + z2

2

]

,

hence it extends to ∂Hp,q = {z = 0} by the above formula.
One can easily check that 〈ιp,q(x, y, 0), ιp,q(x, y, 0)〉 = 0, i.e. ιp,q(∂Hp,q) is con-

tained in ∂∞H
p,q . In particular ιp,q(Hp,q) ∩ ιp,q(∂Hp,q) = ∅. To show that ιp,q is

injective, it therefore suffices to show that it is injective when restricted to ∂Hp,q ,
since we already showed in Proposition 1 the injectivity of ιp,q on Hp,q .

For this purpose, suppose (x, y, 0), (t, w, 0) ∈ ∂Hp,q are such that ιp,q(x, y, 0) =
ιp,q(t, w, 0). It follows from the expression above that (t, w) = λ(x, y) for some
λ �= 0 and

{

λ (1 − h(x, y)) = 1 − h(t, w) = 1 − λ2h(x, y)

λ (1 + h(x, y)) = 1 + h(t, w) = 1 + λ2h(x, y)
,

which can be rewritten equivalently as

{

h(x, y)λ(1 − λ) = λ − 1

h(x, y)λ(1 − λ) = 1 − λ
,

whose only solution is λ = 1. This concludes that (t, w, 0) = (x, y, 0).
Moreover, using the same notation as in Proposition 1, X p + X p+q+1 = 1, one

immediately checks that ιp,q(x, y, 0) ∈ P{X p + X p+q+1 �= 0}. In fact

ιp,q(∂Hp,q) = ∂∞H
p,q ∩ P{X p + X p+q+1 �= 0} ⊂ RPp+q ,

because, given a null vector (X1, . . . , X p+q+1), up to rescaling we can assume X p +
X p+q+1 = 1, and a simple algebraic manipulation shows that, for xi = Xi and y j =
X j+p, ιp,q(x, y, 0) = [X1, . . . , X p+q+1]. �

5.2 The Full Boundary in the Half-Space Model

Our next goal is to describe the entire boundary ∂∞H
p,q , seen in the half-space

model. The starting observation is that ∂∞H
p,q is in bijection with the space of

degenerate totally geodesic hyperplanes in H
p,q . Indeed, to any X ∈ R

p,q+1 such
that 〈X, X〉 = 0, one associates the intersection of the orthogonal subspace of X with
H

p,q , more precisely (X⊥ ∩ ˜H
p,q)/{±Id}, which is a totally geodesic hyperplane in

H
p,q of degenerate type. We will simply denote it with X⊥, by a small abuse of

notation.
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Example 4 The hyperplane “at infinity” which is the complement of the embedding
ιp,q in Proposition 1 is defined by the equation X p + X p+q+1 = 0, hence it is the
orthogonal of any nonzero vector proportional to ∂/∂X p − ∂/∂X p+q+1 in Rp,q+1.

Clearly two hyperplanes X⊥ and Y⊥ coincide if and only if X and Y are propor-
tional, and every degenerate totally geodesic hyperplane is obtained in this way. It
is also clear that the topology of ∂∞H

p,q is homeomorphic, under this correspon-
dence, to the Hausdorff topology on closed subsets of ∂∞H

p,q . (Indeed, a sequence
of vectors Xn converges projectively to X if and only if the orthogonal subspace of
Xn converges to the orthogonal subspace of X .) Motivated by this observation, we
give the following definition.

Definition 2 We define

∂∞Hp,q = {degenerate totally geodesic hypersurfaces inHp,q} ∪ {∞} ,

where we endow the space of degenerate totally geodesic hyperplanes with the topol-
ogy induced by the Hausdorff pseudometric on the closed half-space, and ∂∞Hp,q

with its one-point compactification.

Recall from Proposition 3 that degenerate totally geodesic hypersurfaces inHp,q

are of the following two types:

– Vertical hyperplanes VL, where L is a degenerate affine hyperplane in Rp−1,q ;
– Quadric hypersurfaces Q(x0,y0) of equation

‖x − x0‖2 − ‖y − y0‖2 + z2 = 0 (9)

See also Remark 1. The discussion above contains all the elements to prove the
following statement, for which we leave the details to the reader.

Lemma 3 The embedding ιp,q induces a homeomorphism between ∂∞Hp,q and
∂∞H

p,q , which maps Q(x0,y0) to ιp,q(x0, y0, 0) and ∞ to the projective class of
∂/∂X p − ∂/∂X p+q+1 in RPp+q .

Remark 4 Let us describe more concretely how a sequence of elements in ∂Hp,q ,
seen as a subset of ∂∞Hp,q , can converge to a degenerate hyperplane of the form
VL. Consider a sequence Q(xn ,yn), for (xn, yn) in R

p−1,q . If (xn, yn) converges to
(x∞, y∞), then clearly Q(xn ,yn) converges to Q(x∞,y∞), which still gives an element
of ∂Hp,q . So let us assume that (xn, yn) diverges in Rp−1,q .

Up to extracting a subsequence,we can assume that xn/‖xn‖ → u and yn/‖yn‖ →
v, for (u, v) ∈ Sp−2 × Sq−1. Assume (u, v) is a lightlike vector inRp−1,q and more-
over that ‖xn‖ − ‖yn‖ has a finite limit a ∈ R. Then dividing by ‖yn‖ the defining
equation for Q(xn ,yn), namely ‖x − xn‖2 − ‖y − yn‖2 + z2 = 0, and observing that
by our assumption ‖xn‖/‖yn‖ → 1, we obtain that Q(xn ,yn) converges to the vertical
hyperplane of equation x · u − y · v = a , where · is the Euclidean inner product.
Namely, the limit is a vertical hyperplane VL whose underlying vector space is
orthogonal to (u, v).
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One can then show that otherwise Q(xn ,yn) escapes from all compact sets of the
half-space: in this situation the sequence (xn, yn) in ∂Hp,q converges to the point
∞ ∈ ∂∞Hp,q .

5.3 Examples

Let us now describe the topology of ∂∞Hp,q in two definite examples.

Example 5 Let us first consider H1,n , namely the half-space model of minus the
de Sitter space. In this case ∂H1,n is conformal to R

0,n , hence is negative definite,
therefore there are no degenerate affine hyperplanes in ∂H1,n . In otherwords, ∂∞H1,n

is the one-point compactification of ∂H1,n ∼= R
n , and therefore is homeomorphic to

the sphere Sn . This is not surprising indeed, as the (n + 1)-dimensional de Sitter
space shares the same boundary at infinity as the hyperbolic spaceHn+1 of the same
dimension.

From the point of view of H1,n , this corresponds to the fact that a sequence
of degenerate totally geodesic hypersurfaces Qyn of equation ‖y − yn‖2 − z2 = 0,
which is a cone over (yn, 0) (see Fig. 1 on the right), escapes from compact sets in
the half-space if the sequence yn is diverging in Rn .

Example 6 Let us now consider a more interesting situation, namely the Anti-de
Sitter half-spaceHn,1. In this case ∂∞Hn,1 decomposes as the disjoint union of ∂Hn,1,
which is a copy of the n-dimensional Minkowski space Rn−1,1, the singleton {∞},
and the space of vertical hyperplanes VL. The latter is in bijection with the space
of degenerate hyperplanes in R

n−1,1, which is a trivial bundle Sn−2 × R, where
the Sn−2 factor determines the orthogonal direction (i.e. the projectivization of the
cone {‖x‖2 − y2 = 0} of null directions), and the R factor the intercept on the y
axis. The complement ∂∞Hn,1 \ ∂Hn,1 is therefore the one-point compactification
of Sn−2 × R.

When n = 2, S0 × R is the disjoint union of two lines, and its one-point compact-
ification is homeomorphic to a wedge sum of two circles. Hence we directly recover
the fact that ∂∞H

2,1 is homeomorphic to a torus S1 × S1. Indeed, from Remark 4 we
see that R1,1 is compactified by adding a point to compactify every line of the form
y = x + a (this is the first copy of R in S0 × R), and a point for every line of the
form y = −x + a (the second copy of R). By adding the point ∞, we then see that
the obtained topology is that of a torus, see Fig. 4. Compare also ([4, Appendix]) for
a more algebraic approach to this compactification.
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Fig. 4 The compactification
of ∂H2,1, which is a copy of
R
1,1 represented by the

interior of the diamond,
inside ∂∞H2,1. The lines at
±45◦ represent the
degenerate affine subspaces
in R1,1, and each of them is
compactified to a different
point. The point ∞ then
corresponds to the vertices of
the diamond. The
identifications of the sides
clearly give the topology of a
torus on ∂∞H2,1

5.4 Geodesics Revisited

To conclude this section,we discuss again the geodesics inHp,q , now in terms of their
endpoints in ∂∞Hp,q . Indeed, in H

p,q the geodesics have the following topological
behaviour:

– Spacelike geodesics converge to two different points in ∂∞Hp,q at the two ends.
– Lightlike geodesics converge to the same point in ∂∞Hp,q at the two ends.
– Timelike geodesics are closed, hence do not intersect ∂∞Hp,q .

We will classify geodesics, distinguishing their type as usual, in relation with their
endpoints.

Remark 5 Before stating the results, we give a preliminary observation that will
be used repeatedly. It will be important to understand when a sequence of points
(xn, yn, zn) ∈ Hp,q converges to a point of ∂∞Hp,q . In Sect. 5.2 we explained this
for a sequence in ∂Hp,q , i.e. for zn ≡ 0 (see the discussion preceding Definition 2).

When the points are in the interior, we can apply a similar consideration, namely
the fact that a sequence of points Xn ∈ H

p,q converges (projectively) to X ∈ ∂∞H
p,q

if and only if the lightcone emanating from Xn converges to the totally geodesic
degenerate hypersurface which corresponds to the orthogonal complement of X .
Hence to check that a sequence (xn, yn, zn) ∈ Hp,q converges to a point of ∂∞Hp,q ,
whichwe recall is identified to the space of totally geodesic degenerate hypersurfaces,
it suffices to check the convergence of the lightcones from (xn, yn, zn) ∈ Hp,q (as in
Fig. 2).
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In particular, it is clear that the topology on Hp,q ∪ ∂Hp,q coincides with that
of the closed half-space, because if (xn, yn, zn) → (x0, y0, 0), then the lightcones
‖x − xn‖2 − ‖y − yn‖2 + |z − zn|2 = 0 converge to the totally geodesic degenerate
hypersurface ‖x − x0‖2 − ‖y − y0‖2 + |z|2 = 0.

Let us first consider spacelike geodesics, beginning with the case where the two
endpoints are both in ∂Hp,q ⊂ ∂∞Hp,q .

Proposition 8 Let (x0, y0), (x ′
0, y

′
0) ∈ ∂Hp,q and let (u, v) = (x ′

0 − x0, y′
0 − y0)

and (xm, ym) = ((x0 + x ′
0)/2, (y0 + y′

0)/2). Then:

– If ‖u‖ > ‖v‖, then the unique geodesic ofHp,q with endpoints (x0, y0) and (x ′
0, y

′
0)

is contained inHp,q , and is the ellipse of eccentricity eS(u, v)with center (xm, ym).
– If ‖u‖ < ‖v‖, then the unique geodesic ofHp,q with endpoints (x0, y0) and (x ′

0, y
′
0)

is contained inHp,q except for one point, and its intersection withHp,q consists of
the two upper half-branches of the hyperbola of eccentricity eS(u, v) with center
(xm, ym).

– If ‖u‖ = ‖v‖, there is no geodesic with endpoints (x0, y0) and (x ′
0, y

′
0).

Recall that the value eS(u, v) of the eccentricity appears in Proposition 6.

Proof. There is not much left to prove here. The first point follows from Proposition
6. For the third point, it is known that if two points in ∂∞H

p,q are connected by
a lightlike segment in the boundary, then they are not connected by a spacelike
geodesic; however the non-existence also follows from Proposition 6. For the second
point, using again Proposition 6, the only thing left to prove is that the two half-
branches of the same hyperbola are parts of the same spacelike geodesic inHp,q , and
are separated by a single point. (We have showed that these branches are incomplete
on the upper end, so they certainly converge to the interior of Hp,q , since H

p,q is
geodesically complete.)

To prove this statement, we can apply the isometry group of Hp,q and reduce
to the curve parameterized by y1(t) = ± cosh(t), z(t) = sinh(t), and all the other
coordinates identically zero (exactly as we did in the proof of Proposition 6). A
direct computation shows that ιp,q maps this curve to a curve in H

p,q whose only
nonzero coordinates are X p = 1/ sinh(t) and X p+1 = ± cosh(t)/ sinh(t). Clearly
these points all lie on the same geodesic, because they are contained in a unique 2-
plane in Rp,q+1, and the limit as t → +∞ is the same point inHp,q (i.e. after taking
the quotient by {±Id}) regardless of the sign ± in front of y1(t). This concludes the
proof. �

Remark 6 A very similar computation shows that timelike geodesics of Hp,q are
mapped to the complement of a point on a (closed) timelike geodesic ofHp,q . Indeed,
up to isometry, we can reduce to the branch of hyperbola given by y1(t) = sinh(t),
z(t) = cosh(t) and all the other coordinates identically zero. One can then show that
the limit of the image under the embedding ιp,q is the same point inHp,q as t → ±∞.

The case where one point is on ∂Hp,q and the other is∞ is very easy to deal with.
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Proposition 9 Let (x0, y0) ∈ ∂Hp,q . The unique geodesic with endpoints (x0, y0)
and ∞ is the vertical line over (x0, y0).

Proof. Applying Remark 5, the endpoints of the vertical line over (x0, y0) are clearly
(x0, y0) and ∞, for the lightcone over (x0, y0, z) converges to the totally geodesic
hypersurface ‖x − x0‖2 − ‖y − y0‖2 + |z|2 = 0 as z → 0, and escapes from com-
pact sets as z → +∞. �

We are only left with the case where one point is on ∂Hp,q , and the other is
represented by a totally geodesic hypersurface VL. Indeed, after proving the next
proposition, and comparing with Proposition 6, we see that a posteriori there are no
geodesics inHp,q connecting two points of the form VL or ∞.

Proposition 10 Let (x0, y0) ∈ ∂Hp,q , (u, v) ∈ R
p−1,q such that ‖u‖ = ‖v‖ and

‖u‖2 + ‖v‖2 = 1, a ∈ R and La
(u,v) the degenerate affine hyperplane in ∂Hp,q of

equation
(x − x0) · u − (y − y0) · v = a .

Then the unique geodesic with endpoints (x0, y0) and VLa
(u,v)

is the parabola

x(t) = x0 + t2

2a
u, y(t) = y0 + t2

2a
v, z(t) = t . (10)

Proof. Up to a horizontal translation, which does not affect the conclusion of the
statement, we can assume (x0, y0) = (0, 0). Set α = 1/4a. The lightcones over
(x(t), y(t), z(t)) satisfy the equation

‖x − 2αt2u‖2 − ‖y − 2αt2v‖2 + |z − t |2 = 0 .

Dividing by t2 and using ‖u‖2 = ‖v‖2, we see that these lightcones converge to the
vertical hyperplane of equation x · u − y · v = 1/4α = a. Clearly (x(t), y(t), z(t))
converges to (x0, y0, 0) ∈ ∂Hp,q as t → 0. This concludes the proof. �

Remark 7 One might wonder what is the geometric interpretation of the parameter
a, which encodes the relation between the parabola and its endpoint at infinity, seen
as a vertical hyperplane that does not contain the parabola itself. Let us describe
the geometric intuition behind this relation. Given a parabola as in Equation (10),
contained in a degenerate 2-plane V�, where � is an affine line directed by (u, v), one
can uniquely express this parabola as the intersection of V� and a totally geodesic
degenerate hypersurface, which is a lightcone over a point (x̂, ŷ, 0). The vertical
hyperplane to which the parabola is asymtoptic to is then the unique vertical hyper-
plane VL such that the underlying vector space of L is the orthogonal of (u, v) and
contains (x̂, ŷ, 0).

Let us now move on to lightlike geodesics.
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Proposition 11 Given (x0, y0) ∈ ∂Hp,q , the lightlike geodesics of Hp,q with end-
point (x0, y0) are contained inHp,q except for one point, and their intersection with
Hp,q consists of two straight half-lines contained in the same vertical 2-plane.

Proof. Up to a horizontal translation, it suffices to show that the half-lines t �→
t (u, v, w) and t �→ t (−u,−v,w), composed with the embedding ιp,q , converge to
the same point in H

p,q at t → +∞, which can be checked similarly to Proposition
8 and Remark 6. �

We now conclude our analysis by the only case left.

Proposition 12 Given a degenerate affine hyperplane L in ∂Hp,q , the lightlike
geodesics ofHp,q with endpoint VL are the horizontal straight lines contained in the
vertical hyperplane VL itself.

Proof. By Remark 5, one has to check that the lightcones emanating from (x0 +
tu, y0 + tv, z0) converge to the vertical hyperplane through (x0, y0) whose underly-
ing vector space is the orthogonal of (u, v). The computation is done exactly as in
Remark 4. �

6 Horospheres

We now briefly turn the attention to the study of the horospheres, in the half-space
model. Let us recall the definition of horosphere in Hp,q .

Definition 3 An horosphere in Hp,q is a smooth hypersurface Sa which is obtained
as the projection in Hp,q of

˜Sa = {X ∈ ˜H
p,q | 〈X, V 〉 = a} , (11)

for some null vector V ∈ R
p,q+1 (i.e. 〈V, V 〉 = 0) and some constant a �= 0. We say

that the horosphere ˜Sa has point at infinity [V ] ∈ ∂∞H
p,q .

Observe that, when V = ∂/∂X p − ∂/∂X p+q+1, the corresponding horosphere Sa
is precisely the image of z = |a| ⊂ Hp,q by the embedding ιp,q . We will use again
this observation in the proof of Theorem 2 below.

For the sake of completeness, we provide a well-known characterization of horo-
spheres in Hp,q , that generalizes a classical description in hyperbolic space.

Lemma 4 The horospheres Sa with point at infinity [V ] are precisely the smooth
hypersurfaces orthogonal to all the spacelike geodesics having [V ] as an endpoint
at infinity.

Proof. To check the statement, since orthogonality can be computed locally, we will
work in the double cover ˜H

p,q . Let˜Sa = {X ∈ ˜H
p,q | 〈X, V 〉 = a} and X ∈ ˜Sa . Then
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TX˜Sa = TX˜H
p,q ∩ TX (V⊥ + X) = X⊥ ∩ V⊥. (12)

Now, every geodesic of ˜H
p,q is contained in the intersection of ˜H

p,q with a linear
2-dimensional subspace. In particular, the unique spacelike geodesic γ such that
γ (0) = X and having [V ] as an endpoint at infinity is contained in Span(X, V ).
So γ ′(0) ∈ Span(X, V ). Comparing with (12), we showed that γ ′(0) intersects ˜Sa
orthogonally.

Finally, observe that every spacelike geodesic inHp,q with endpoint at infinity [V ]
intersects Sa . Indeed, working again in the double cover, the preimages of spacelike
geodesics of Hp,q are the intersection of ˜H

p,q with linear 2-dimensional subspaces.
Given such a subspace containing the vector V , pick X such that 〈X, V 〉 = a. Then
for every λ ∈ R we have 〈X − λV, V 〉 = a. Choosing λ = (〈X, X〉 + 1)/2a, we
obtain

〈X − λV, X − λV 〉 = 〈X, X〉 − 2λa = −1,

hence X − λV ∈ ˜H
p,q , and therefore X − λV ∈ ˜Sa . This concludes the proof. �

Despite the term horospheres, which is borrowed from classical hyperbolic geom-
etry, horospheres are not topologically spheres. The boundary at infinity ∂∞Sa of a
horosphere Sa , namely its frontier in ∂∞H

p,q , is precisely the lightcone in ∂∞H
p,q

from [V ]; then Sa ∪ ∂∞Sa is homeomorphic to ∂∞H
p,q .

In this section we will describe the horospheres in the half-space model Hp,q .

Theorem 2 The horospheres of Hp,q are, for a parameter c > 0:

1. horizontals hyperplanes {z = c}, if the point at infinity is ∞;
2. wedges of hyperplanes of the form

z = c|x · u − y · v + d|

if the point at infinity corresponds to the vertical hyperplane VL, for L the hyper-
plane of equation x · u − y · v + d = 0 (for (u, v) ∈ R

p−1,q a null vector and
d ∈ R);

3. piecewise quadric hypersurfaces of the form

‖x − x0‖2 − ‖y − y0‖2 + (z ± c)2 = c2

if the point at infinity is (x0, y0, 0) ∈ ∂Hp,q .

See Figs. 5 and 6.

Proof. Recall that we introduced the embedding ι̃p,q : Hp,q → ˜H
p,q in the proof

Proposition 1, that induces the embedding ιp,q : Hp,q → ˜H
p,q in the quotient. Also

observe that every point in a horosphere Sa has two preimages X in ˜H
p,q , which

satisfy either 〈X, V 〉 = a or 〈X, V 〉 = −a. Hence to determine the horospheres in
Hp,q (or more precisely, the portion of horospheres contained inHp,q ) it suffices to
find the preimage of |〈X, V 〉| = a under ι̃p,q , for a > 0.



The Half-Space Model of Pseudo-hyperbolic Space 309

Fig. 5 Horizontal horospheres, and wedges of hyperplanes

Fig. 6 Horospheres in H2,1

corresponding to a point in
∂H2,1

In the first case, the point at infinity is∞ and corresponds to [V ] in ∂∞H
p,q , where

V is defined by Vp = 1, Vp+q+1 = −1, and all the other Vi ’s vanish. In Proposition 1
we showed that, via ι̃p,q , X p + X p+q+1 = 1/z. This shows that the level sets {z = c}
are precisely the preimages of 〈X, (0, 1, 0,−1)〉 = a, where a = 1/c.

Consider now the case where the point at infinity is VL. Up to a translation, we can
assume that d = 0, namely L is a degenerate hyperplane in R

p−1,q containing the
origin. The corrisponding point [V ] ∈ ∂∞H

p,q is [u : 0 : v : 0]. Hence the preimage
of the horosphere defined by the equation |〈X, V 〉| = a is the set of solutions of

|x · u − y · v| = az

which concludes the second case, again by setting c = 1/a.
Finally, we consider the case where the point at infinity is (x0, y0, 0) ∈ ∂Hp,q . Up

to translation, we can assume (x0, y0) = (0, 0). The corresponding point in ∂∞H
p,q

is [V ], where Vp = Vp+q+1 = 1 and the other coordinates of V are zero. Hence we
need to determine the preimage of those X satisfying

|〈X, (0, 1, 0, 1)〉| = |X p − X p+q+1| = a.
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Observe that X p − X p+q+1 = −(h(x, y) + z2)/z, hence we obtain the equation
|h(x, y) + z2| = az. A simple manipulation gives the equivalent expression

‖x‖2 − ‖y‖2 +
(

z ± a

2

)2 = a2

4
,

which is the desired formula, for c = a/2. �

Remark 8 We conclude by remarking that the proof of Theorem 2 could have been
done by checking directly that the hypersurfaces of the three types are orthogonal
to all the spacelike geodesics in Hp,q which share an endpoint in ∂∞Hp,q . This is
evident for the horizontal horospheres {z = c}, which are orthogonal to all vertical
geodesics, i.e. with endpoint ∞.

For the wedges of hyperplanes, one can show directly, using Proposition 10 and
Remark 7, that the union of the hyperplanes z = ±(x · u − y · v) is orthogonal to
all the parabolas whose endpoint corresponds to the vertical hyperplane VL, L =
{x · u − y · v = 0}, namely those parabolas which are obtained as the intersection
of a vertical 2-plane projecting to an affine line directed by (u, v), and a lightcone
based on a point of L.

Finally, for the horospheres of the third type, one could check that these are
orthogonal to the geodesics with endpoint in (x0, y0, 0) in the following way. Up
to an isometry ofHp,q , assume (x0, y0) = (0, 0) and c = 1. Then one “sweeps” the
hypersurface by curves of four types. The first case is that of a curve contained in a
vertical 2-plane which is positive definite. Up to an isometry of the form (x, y, z) �→
(A(x, y), z), which leaves the horosphere invariant, it suffices to consider the curve
x1(t) = sin(t), z(t) = cos(t) + 1, and all the other coordinates identically zero. Then
one shows that this curve is orthogonal to all the geodesics with endpoint (0, 0) that
it intersects, which are ellipses (circles, in this specific situation). This is exactly
analogous to the half-space model ofHn . Second, one consider curves in a vertical 2-
plane which is indefinite. Again up to isometry, one reduces to two curves, defined by
y1(t) = sinh(t), and z(t) = cosh(t) + 1 or z(t) = cosh(t) − 1. These are orthogonal
to all the spacelike geodesics which are hyperbolas and have (0, 0) as an endpoint.
In the former case, the curve intersects the branch containing (0, 0); in the latter, the
other branch. Finally, the horizontal planar curves contained in the horosphere are
trivially ortogonal to all parabolas with endpoint (0, 0), because they are lightlike
and contained in a degenerate vertical 2-plane.

7 Isometries

Let us conclude this paper by describing the isometries of Hp,q , and the action of
those of Hp,q , in the half-space model.
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7.1 The Isometry Group Isom(H p,q)

We remarked in Sect. 2.3 that ιp,q induces a monomorphism G → Isom(Hp,q), as a
consequence of the fact that local isometries between open neighbourhoods of Hp,q

uniquely extend to global isometries. From our study of geodesics in Sect. 4, we can
deduce that the group G introduced in Lemma 1 is the full isometry group of the
half-space model.

Theorem 3 Whenq ≥ 1, the groupG coincideswith the isometry group Isom(Hp,q).
Moreover, G corresponds precisely to the isometries of Isom(Hp,q) that preserve the
totally geodesic degenerate hyperplane Hp,q \ ιp,q(Hp,q).

Proof. Since G < Isom(Hp,q) acts transitively by Lemma 1, it suffices to prove that
StabG(0, 0, 1) = StabIsom(Hp,q )(0, 0, 1). Observe that StabG(0, 0, 1) is the subgroup
of StabIsom(Hp,q )(0, 0, 1) preserving oriented vertical lines, i.e. it consists of those
isometries f such that d f(0,0,1)(∂/∂z) = ∂/∂z. We claim that all isometries f in
StabIsom(Hp,q )(0, 0, 1) have this property.

By contradiction, assume d f(0,0,1)(∂/∂z) �= ∂/∂z. First, if d f(0,0,1)(∂/∂z) =
−∂/∂z, then a lightlike geodesic starting at (0, 0, 1) and parameterized in such
a way that the z-coordinate is increasing along the geodesic (hence incomplete)
would be sent to another lightlike geodesic parameterized in such a way that the
z-coordinate is decreasing (hence complete) which is an absurd since isometries pre-
serve completeness of geodesics. Otherwise, d f(0,0,1)(∂/∂z)⊥ �= (∂/∂z)⊥. The hor-
izontal hyperplane (∂/∂z)⊥ ∼= R

p−1,q is generated by lightlike vectors, hence there
exists a horizontal lightlike vector v such that d f(0,0,1)(v) is not horizontal. This is
an absurd as lightlike geodesics are complete (in both directions) if and only if the
initial velocity is horizontal (Lemma 4), and again isometries preserve completeness.

The second part of the statement is clear, because every isometry ofHp,q extends
to an isometry of Hp,q which preserves the image of ιp,q , hence also its comple-
ment. Conversely, every isometry of Hp,q that preserves the image of ιp,q induces
an isometry ofHp,q , and therefore is in G. �

7.2 Inversions

In order to describe the action of the isometry group Isom(Hp,q) on the half-space
model,wenow introduce a new typeof isometries, that are the analogous of inversions
in hyperbolic geometry. Recall that, given a point (x0, y0) ∈ ∂Hp,q , Q(x0,y0) denotes
the totally geodesic hypersurface made of lightlike geodesics with endpoint (x0, y0),
as in (9).

Proposition 13 The involution J : Hp,q \ Q(0,0) → Hp,q \ Q(0,0) defined by

(x, y, z) �→ (μ(x, y, z)x, μ(x, y, z)y, |μ(x, y, z)|z) ,
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whereμ(x, y, z) := (‖x‖2 − ‖y‖2 + z2)−1, is an isometry which extends to a global
isometry of Hp,q via ιp,q .

We remark that if q = 0, Q(0,0) = ∅ and μ > 0, hence we recover the fact that J is
a global isometry of the hyperbolic space.

Proof. Let f ∈ Isom(Hp,q) be the isometry induced by the reflection in the hyper-
plane X p = 0. To prove the statement, we show that the following diagram com-
mutes:

Hp,q \ Q(0,0) H
p,q

Hp,q \ Q(0,0) H
p,q

ιp,q

J f

ιp,q

.

We first remark that

μ(J (x, y, z)) = μ(x, y, z)−2(‖x‖2 − ‖y‖2 + z2)−1 = μ(x, y, z)−1 , (13)

which also immediately implies that J is an involution. Observe that J is defined
precisely on the complement of {μ = 0}. Suppose firstμ > 0. Denote ι̃p,q(x, y, z) =
(X1, . . . , X p+q+1) (these are defined in the proof of Proposition 1) and ι̃p,q ◦
J (x, y, z) = (Y1, . . . ,Yp+q+1). We have:

Yi = μx

μz
= x

z
= Xi i = 1, . . . p − 1

Yp = 1 − μ

2μz
= −1 − h(x, y) − z2

2z
= −X p

Y j+p = μy

μz
= y

z
= X j+p j = 1, . . . q

Yp+q+1 = 1 + μ

2μz
= 1 + h(x, y) + z2

2z
= X p+q+1

where in the second and fourth linewe have used (13) togetherwith the fact that, in the
notation of the embedding, μ(x, y, z)−1 = h(x, y) + z2. This shows that ι̃p,q ◦ J =
f̃ ◦ ι̃p,q , where f̃ ∈ O(p, q + 1) is the reflection fixing the hyperplane X p = 0.
One immediately checks that ι̃p,q ◦ J = − f̃ ◦ ι̃p,q whenμ < 0. Since f̃ and− f̃

induce the same isometry on H
p,q , the claim is proved. �

Remark 9 We saw that the involution J corresponds to a reflection in Isom(Hp,q).
In fact its fixed point set is the totally geodesic hypersurface

‖x‖2 − ‖y‖2 + z2 = 1 .

The other inversions, fixing the general totally geodesic hypersurface of the form
(Q) for c > 0, can be easily found conjugating J by elements of G.
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7.3 Action of Isom(H p,q)

We conclude by describing the action of the full isometry group Isom(Hp,q) on
Hp.q . Roughly speaking, the subgroup G and the inversion J (or more precisely,
their extensions to Hp,q ) generate Isom(Hp,q).

Theorem 4 Any isometry of Hp,q can be written in Hp,q as the composition of
elements of G and J .

Proof. Since G corresponds precisely to the stabilizer of a point in ∂∞H
p,q by

Theorem 3, it suffices to show that the elements of G, together with J , induce
a transitive action on ∂∞Hp,q . Clearly G acts transitively on ∂Hp,q , while J
maps (0, 0) ∈ ∂Hp,q to ∞, which is trivial since ιp,q(0, 0, 0) = [0 : 1 : 0 : 1] and
ιp,q(∞) = [0 : −1 : 0 : 1]. Also,G acts transitively on the degenerate vertical hyper-
planes of the form VL. Hence it remains to show that in the subgroup generated by G
and J , there is an element that maps some point in ∂Hp,q to some point in ∂∞Hp,q

that corresponds to a vertical hyperplane VL. But this clear because by Proposition
13 J extends to an element f ∈ Isom(Hp,q), whose action on ∂∞H

p,q is a home-
omorphism, hence it maps a neighbourhood of ∞ (which contains elements of the
form VL) to a neighborhood of (0, 0) (which only contains points in ∂Hp,q ). �
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