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Abstract We introduce the concept of ε -contact metric structures on oriented
(pseudo-)Riemannian three-manifolds, which encompasses the usual Riemannian
contact metric, Lorentzian contact metric and para-contact metric structures, but
which also allows the possibility for the Reeb vector field to be null. We investi-
gate in more detail this latter case, which we call null contact structure. We observe
that it is possible to extend in a natural and meaningful way both the Sasaki and
K-contact conditions for null-contact structures, but we find that they are not equiv-
alent conditions, in contradistinction to the situation for non-lightlike Reeb vector
fields. Finally, we define the notion of εη -Einstein structures and we discover that
appropriate direct products of these structures produce solutions of six-dimensional
minimal supergravity coupled to a tensor multiplet with constant dilaton.

Keywords Contact metric manifolds · Null contact structures · η-Einstein
manifolds · Supergravity · Lorentzian geometry with torsion

1 Introduction

Some of the most challenging problems which are being currently studied in Differ-
ential Geometry were originally encountered in the framework of String Theory or
supergravity [6, 9, 21]. Just tomention a few,wemay thinkofmirror symmetry [7, 13,
17], the Strominger system [14, 18, 24] or the classification of all simply-connected
manifolds which admit bosonic supergravity solutions in a certain dimension [8, 10,
15].

This latter problem is the one we will focus our efforts on. More concretely, we
will intend to help clear the panorama for the particular case of six-dimensional
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minimal supergravity coupled to a tensor multiplet with constant dilaton [19, 20].
If M̂ is a six-dimensional manifold, the bosonic configuration space Conf(M̂) of
this theory is formed by all pairs (̂g,H) of Lorentzian metrics ĝ on M̂ and three-
forms H ∈ �3(M̂). An element (̂g,H) ∈ Conf(M̂) is a solution of such theory if the
following equations hold:

Ricĝ − 1

4
H ◦ H = 0 , dH = 0 , d �ĝ H = 0 , |H|2ĝ = 0 , (1)

where Ricĝ is the Ricci curvature tensor of ĝ, �ĝ : �3(M̂) → �3(M̂) is the Hodge
star map and H ◦ H is a symmetric (0, 2)-tensor defined by (H ◦ H)(X,Y ) =
ĝ−1(ιX H, ιYH) for every X,Y ∈ X(M̂). With these provisos in mind, we shall look
for solutions (̂g,H) ∈ Conf(M̂) to Eq. (1) assuming the following direct-product
ansatz:

(M̂, ĝ) = (N × X,χ ⊕ h) , (2)

where (N ,χ) is 3-dimensional oriented Lorentzian manifold and (X, h) a
3-dimensional oriented Riemannian manifold. After imposing an ansatz for H con-
sistent with this splitting, the initially six-dimensional problem is in turn divided into
two three-dimensional problems.

It is precisely at this point where ε -contact metric structures arise. They are
defined over a three-dimensional orientedmanifold and encapsulate the usual notions
of Riemannian contact metric structures, Lorentzian contact metric structures and
para-contact metric structures [2, 4, 5] when the aforementioned three-manifold is
equipped with a metric of Riemannian or Lorentzian signature, correspondingly.
However, these ε -contact metric structures include a fourth type of structures, which
we call null contact metric structures. They are defined over Lorentzian manifolds
and are characterized by having a null Reeb vector field. These null contact metric
structures do not seem, to the best of our knowledge, to have been previously explored
in the literature and we have found them to enjoy fairly intriguing properties, such
as the corresponding Sasaki condition [23] for null contact structures not being
equivalent to that of K-contactness [2].

In the context of ε -contact metric structures, we introduce the notion of εη -
Einstein structures, characterized by possessing a Ricci curvature tensor with a pre-
scribed given structure. For non-null Reeb vector fields, they are particular cases of
the standard η -Einstein structures [3, 22] and their definition is justified because,
as it is proven in Theorem 1, it is possible to intertwine εη—structures on (N ,χ)

and (X, h) respectively to yield a direct-product six-dimensional manifold (M̂, ĝ)

admitting solutions of six-dimensional supergravity.
The outline of the document is as follows. First, we introduce the concept of ε -

contact metric structure and study some of its most important properties. Secondly,
we focus on null contact structures, specifying their more characteristic features and
showing that they admit meaningful notions for the Sasaki and K-contact conditions.
Finally, we define εη -Einstein structures and show that they can be used for the
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construction of solutions of six-dimensionalminimal supergravity coupled to a tensor
multiplet with constant dilaton.

The contents of this contribution are based on a previous work [16] of the author
together with C.S. Shahbazi.

2 ε -Contact Metric Structures

In this section we will present the definition of ε -contact metric structures and
show that it encompasses the usual notions of Riemannian contact metric struc-
tures, Lorentzian contact metric structures and para-contact metric structures. We
will study also some of the most relevant features of ε -contact metric structures and
define the Sasaki and K-contact conditions.

Definition 1 Let (M, g) be an oriented Riemannian or pseudo-Riemannian three-
manifold. An ε -contact metric structure (or just ε -contact structure) on M is a triple
(g,α, ε), with ε ∈ {−1, 0, 1} and α a one-form α ∈ �1(M) such that:

α = �gdα , |α|2g = ε , (3)

where �g : �r (M) → �3−r (M) (r = 0, 1, 2, 3) denotes the Hodge dual with respect
to g and the orientation fixed on M , which in turn is said to be an ε -contact (metric)
three-manifold. If g is Lorentzian, we will assume it to be oriented and time-oriented.

Remark 1 When denoting ε -contact structures (g,α, ε), we might drop sometimes
the number ε whenever it is clear from the context its precise value and no confusion
may arise. Also, owing the fact that wewill always assume the presence of a (pseudo-
)Riemannian metric, we will use indistinctly the nomenclature ε -contact metric
structure and ε -contact structure. Finally, note that the definition given here of ε -
contact metric structures refers only to three dimensions, so unless otherwise stated,
we will always suppose that we work with three-dimensional manifolds.

Remark 2 The equation α = �gdα can be equivalently expressed as:

�g α = sgdα , (4)

where sg = 1 if g is Riemannian and sg = −1 if g is Lorentzian.

Given any ε -contact structure (g,α, ε) on M , we define the Reeb vector field ξ ∈
X(M) and the endomorphisms φ : T M → T M and h : T M → T M as follows:

ξ = α� , φ(v) = −sg(ιv �g α)� , h(v) = (Lξφ)(v) ∀v ∈ T M , (5)

where � : T ∗M → T M denotes themusical isomorphism defined by g, ιv the interior
product with v and L the Lie derivative.
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Lemma 1 Let (g,α, ε) be an ε -contact structure on M. Then the following identities
hold:

g(Id ⊗ φ) = −g(φ ⊗ Id) = dα , φ(ξ) = 0 , α ◦ φ = 0 , (6)

φ2 = sg(−ε Id + ξ ⊗ α) , g(φ ⊗ φ) = sg(εg − α ⊗ α) , (7)

where Id : T M → T M denotes the identity map.

Proof By Eq. (5) it is clear that:

g(v1,φ(v2)) = −sgg(v1, (ιv2 �g α)�) = −sg �g α(v2, v1)

= dα(v1, v2) = −dα(v2, v1) = −g(φ(v1), v2) , v1, v2 ∈ X(M) .

(8)
This proves the first equation in (6). Similarly, since for any 1-form η ∈ �1(M) we
have that ιη� �g η = 0, the second and third equations in (6) follow. Regarding the
first equation in (7):

φ(φ(v)) = [ι(ιv�gα)� (�gα)]� = [(�gα)((ιv �g α)�)]� = [�g(α ∧ (ιv �g α))]�
= [− �g (ιv(α ∧ �gα)) + α(v)(�g �g α)]�
= −sgε v + sgα(v)ξ , v ∈ X(M)

(9)

Finally, the second equation in (7) is proven upon the use of the previous expressions:

g(φ(v1), φ(v2)) = −g(v1, φ
2(v2)) = sgεg(v1, v2) − sgα(v1)α(v2) , v1, v2 ∈ X(M) .

(10)

Using Lemma 1, we are able to prove:

Proposition 1 Let M be an oriented three-manifold. An ε -contact metric structure
(g,α, ε) on M defines a Riemannian contact metric structure if g is Riemannian, a
Lorentzian contact metric structure if g is Lorentzian and ε = −1 or a para-contact
metric structure if g is Lorentzian and ε = 1. The converse is also true for the three
previous cases.

Proof ByLemma 1, we observe that the defining conditions of a Riemannian contact
metric structure [2] are satisfied if g is Riemannian. Similarly, if g is Lorentzian and
ε = −1, we learn that we have a Lorentzian contact structure by direct comparison to
the usual definition [4]. Finally, if g is Lorentzian and ε = 1 we conclude that (g,α)

defines a para-contact structure on M after a careful look of the standard definition
[5]. The converse for these three cases can be seen to be true by reconstructing,
through the appropriate use of (6) and (7), the equations in (3).

On the other hand, it is always possible to define a special (local) frame which is
highly convenient for computations. We call it ε -contact frame.
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Definition 2 Let (g,α, ε) be an ε -contact structure. An ε -contact frame is a local
frame {ξ, u,φ(u)}, with u a locally-defined vector field which does not vanish in its
domain of definition, such that:

g(u, ξ) = 1 − ε2 , g(u, u) = sgε . (11)

In the case ε = 0, we will refer to an ε -contact frame as a light-cone frame.

Note that ε -contact frames always exist, at least locally. An ε -contact frame satisfies:

g(ξ, ξ) = ε , g(ξ,φ(u)) = 0 , g(u,φ(u)) = 0 , g(φ(u),φ(u)) = 1 . (12)

Some additional properties of ε -contact structures are given by the following Propo-
sition:

Proposition 2 Let (g,α, ε) be an ε -contact structure on M. Then:

∇ξξ = 0 , ∇ξφ = 0 , h(ξ) = 0 , Tr(h) = 0 , Lξα = 0 , h ◦ φ = −φ ◦ h ,

(13)
where∇ is the Levi-Civita connection of g. Furthermore, h is symmetric with respect
to g.

Proof Since |α|2g = ε and α = �gdα, then we directly have that Lξα = 0. Then:

0 = Lξα(v) = ξ(g(v, ξ)) − g(∇ξv − ∇vξ, ξ) = g(v,∇ξξ) , v ∈ X(M) . (14)

Consequently ∇ξξ = 0. Applying now ∇ξ on both sides of g(Id ⊗ φ) = sg �g α we
see that∇ξφ = 0.On the other hand,h(ξ) = 0 follows trivially from the definition and
applyingLξ on the expression for φ2 in (7) we get straightforwardly h ◦ φ = −φ ◦ h.
Choosing an ε -contact frame {ξ, u,φ(u)}, for ε �= 0 we have:

Tr(h) = sgεg(u, h(u)) + g(φ(u), h ◦ φ(u)) = sgεg(u, h(u)) + g(u, h ◦ φ2(u)) = 0 . (15)

For ε = 0:

Tr(h) = g(ξ, h(u)) + g(φ(u), h ◦ φ(u)) = g(ξ, h(u)) = g(ξ,−∇φ(u)ξ + φ(∇uξ)) = 0 ,

(16)
where we have used that g(φ(u), h ◦ φ(u)) = g(u, h ◦ φ2(u)) = 0 since φ2(u) = −ξ
when ε = 0. Finally, the symmetry of h for all ε follows from observing that
g(ξ, h(u)) = g(ξ,−∇φ(u)ξ + φ(∇uξ)) = 0,g(ξ, h ◦ φ(u)) = 0 andg(u, h ◦ φ(u)) =
g(h(u),φ(u)).

Remark 3 In this contribution we follow the conventions in which the exterior
derivative dω of any p-form ω takes the form:
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dω(X0, . . . , X p) =
∑

i

(−1)i Xi (ω(X0, . . . , X̂i , . . . , Xi ))

+
∑

i< j

(−1)i+ jω([Xi , X j ], X0, . . . , X̂i , . . . , X̂ j , . . . , X p) .

Much of the literature on contact geometry, see for example [2], uses the conventions
of Kobayashi and Nomizu [12], in which the formula of the exterior derivative differs
by a factor of 1

p+1 from the one stated above.

We finish this section by presenting the notions of Sasaki and K-contact ε -contact
metric structures.

Definition 3 Let (g,α, ε) be an ε -contact metric structure on M . It is said to be
Sasakian (or simply Sasaki) if h = 0. Similarly, it is said to be K-contact if the Reeb
vector field is Killing, Lξg = 0.

In 3-dimensions, it is known that the Sasaki and K-contact conditions are equivalent
for ε -contact structures with ε �= 0. However, we will see in the next section that
this is no longer true when ε = 0.

3 Null Contact Metric Structures

We devote this section to the study of ε -contact structures with ε = 0, which we
simply call null contact structures. To the best of our knowledge, these structures do
not seem to have been previously explored in the literature. They are qualitatively
different from the other ε -contact structures, since if (g,α) is a null contact structure:

α ∧ dα = −α ∧ �gα = 0 , (17)

where we have used that |α|2g = 0. This implies that the 1-form α defining the null
contact structure is not a contact form. However, since null contact structures sat-
isfy that ιξdα = 0 and the concept of ε -contact structures encompass Riemannian
contact, Lorentzian contact and para-contact metric structures, it is natural to think
of null contact structures as a generalization in which the Reeb vector field is null.
Furthermore, we will see later that it is possible to introduce reasonable notions of
Sasakianity and K-contactness, in analogy to the ε �= 0 cases.

We start by pinpointing some characteristic properties of null contact structures.

Proposition 3 Let (g,α) be a null contact structure. Then:

φ2 = −ξ ⊗ α , φ3 = 0 , h ◦ φ = φ ◦ h = 0 , h = μ ξ ⊗ α , (18)

for a function μ ∈ C∞(M).
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Proof The first two equations follow directly from Lemma 1 after setting ε = 0.
Regarding the third equation, let us note the identity dα(v1,φ(v2)) = −α(v1)α(v2)

for every v1, v2 ∈ X(M) and apply Lξ at both sides:

dα(Lξv1,φ(v2)) + dα(v1, h(v2)) + dα(v1,φ(Lξv2)) =
− α(Lξv1)α(v2) − α(v1)α(Lξv2) .

(19)

Therefore dα(v1, h(v2)) = g(v1,φ ◦ h(v2)) = 0, so h ◦ φ = φ ◦ h = 0. From here,
since ker(φ) = 0, h = μξ ⊗ α for a certain function μ ∈ C∞(M) and we conclude.

Example 1 Take (M, g) = (R3, δ) where δ = diag(−1, 1, 1) is the Minkowski
metric. Consider the 1-form α = eyq(x − t)(dt − dx), which is globally-defined
if we assume that the function q ∈ C∞(R) is smooth everywhere and has no
zeros. Then (δ,α) defines a null contact structure. The Reeb vector field is ξ =
−eyq(t − x)(∂t + ∂x ) and we have that:

Lξδ = 2eyq ′(t − x) (dt ⊗ dt − dt � dx + dx ⊗ dx)

+ eyq(t − x) (dt � dy − dx � dy) ,
(20)

where � denotes the symmetric tensor product. Hence it is clearly not K-contact.
On the other hand, the endomorphism φ reads:

φ = eyq(t − x)
(
∂t ⊗ dy + ∂y ⊗ dt + ∂x ⊗ dy − ∂y ⊗ dx

)
. (21)

Consequently, by direct computation:

h = Lξφ = e2y(q(t − x))2(∂t ⊗ dt + ∂x ⊗ dt − ∂t ⊗ dx − ∂x ⊗ dx) = −ξ ⊗ α .

(22)
Therefore (δ,α) is not Sasakian either.

3.1 Sasakian and K-Contact Null Contact Structures

The Sasaki and K-contact conditions were already defined for ε -contact structures
back at Definition 3. Regarding the Sasakian condition, for ε -contact structures with
ε �= 0 it is known [2, 4] that it is equivalent to the existence of a certain integrable
endomorphism in the tangent bundle T (M × R)whose square equals−εsgId, where
Id is the identity operator. Interestingly enough, we are going to see next that this
result extends naturally for null contact structures.

For that, let us define:

J : T (M × R) → T (M × R) , (v, c ∂t ) �→ (φ(v) + cξ,α(v)∂t ) , (23)
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where t is the canonical coordinate onR and c ∈ R. By direct computation we check
that J 2 = 0.

Definition 4 Let E ∈ �(End(T N )) be a field of endomorphisms on a manifold N .
It is said to be integrable if around each point n ∈ N there exists a coordinate system
on which the matrix representation of E has constant coefficients.

Note that, for almost complex structures, the usual notion of integrability is equivalent
to the one given at Definition 4. By a result of Thompson [25], a given field of
endomorphisms J ∈ �(End(T (M × R))) is integrable if and only if the following
three conditions hold simultaneously:

• The Nijenhuis tensor NJ of J , defined as:

NJ (v1, v2) = [J (v1), J (v2)] − J [v1, J (v2)] − J [J (v1), v2]
+ J 2[v1, v2] , v1, v2 ∈ T (M × R)

(24)

vanishes.
• J is a zero-deformable field of endomorphisms, i.e. around every point there exists
a frame relative to which the Jordan form of this endomorphism is constant.

• The distribution ker(J ) ⊂ T (M × R) is involutive.

Proposition 4 Anull contact structure (g,α) is Sasakian if and only if the associated
endomorphism J : T (M × R) → T (M × R) is integrable.

Proof Assume first that (g,α) is Sasakian. If {ξ, u,φ(u)} denotes a local light-cone
basis, let {ξ, u,φ(u), ∂t } be a local frame on T (M × R). In this basis J has thematrix
representation:

J =

⎛

⎜⎜⎝

0 0 −1 1
0 0 0 0
0 1 0 0
0 1 0 0

⎞

⎟⎟⎠ . (25)

Since at every point there exist local frames {ξ, u,φ(u), ∂t }, this proves J is zero
deformable. On the other hand, it is clear that:

ker(J ) = SpanC∞(ξ,φ(u) + ∂t ) . (26)

However, we observe that [ξ,φ(u) + ∂t ] = [ξ,φ(u)] = φ([ξ, u]) + h(u) = κξ for
someκ ∈ C∞(M), since byLξα = 0wehave thatα([ξ, u]) = 0. This implies ker(J )

is involutive. Similarly, after some computations:
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NJ (ξ, u) = −J [ξ,φ(u)] = 0 , NJ (ξ,φ(u)) = −J [ξ, J (φ(u))] = 0 ,

NJ (u,φ(u)) = −J [J (φ(u)), J (φ(u))] = 0 , NJ (ξ, ∂t ) = −J [ξ, J (∂t )] = 0 ,

NJ (u, ∂t ) = [φ(u), ξ] − J [u, ξ] = −Lξ(φ(u)) + J (Lξu)

= −Lξ(φ(u)) + φ(Lξu) = −h(u) = 0 ,

NJ (φ(u), ∂t ) = [J (φ(u)), J (∂t )] − J [φ(u), J (∂t )]
= [φ2(u), ξ] − J [φ(u), ξ] = φ2(Lξu) = 0 .

Consequently NJ is identically zero and therefore J is integrable. To prove the
converse, let us assume J is integrable. Then NJ = 0 and similarly as above, we
compute:

NJ (u, ∂t ) = [φ(u), ξ] − J [u, ξ] = −Lξ(φ(u)) + J (Lξu)

= −Lξ(φ(u)) + φ(Lξu) = −h(u) = 0 ,
(27)

Since by Proposition 3 h(u) = 0 if and only if h = 0, we conclude.

The Sasakian and K-contact conditions are not equivalent for null contact structures,
as the following example clarifies.

Example 2 ConsiderM to be a connected and simply connected Lie group endowed
with a left-invariant global coframe {e+, e−, e2} satisfying:

de+ = −ae+ ∧ e− − e+ ∧ e2 , de+ = e− ∧ e2 , de2 = e+ ∧ e− − ae− ∧ e2 ,

(28)
wherea ∈ R. TheLie group structure generatedby this coframe is that of the universal
cover of the two-dimensional real special linear group S̃l(2,R). Let us denote by
{e+, e−, e2} the corresponding dual frame. If we define the following Lorentzian
metric on M :

g = e+ � e− + e2 ⊗ e2 , (29)

then settingα = e− and ξ = e+ weobserve that (g,α)defines a null contact structure.
In turn, {ξ, e−,−e2} defines a light-cone frame. By direct computation:

h(e−) = [ξ,φ(e−)] − φ([ξ, e−]) = −ξ + ξ = 0 . (30)

Hence (g,α) is Sasakian. However, it is not always K-contact, since:

(Lξg)(e−, e−) = −2g([ξ, e−], e−) = −2ag(ξ, e−) = −2a , (31)

which is non-zero whenever a �= 0.

Although Sasakian null contact structures do not have to be K-contact, the converse
turns out to be true.
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Proposition 5 Let (g,α) be a null K-contact structure (g,α). Then (g,α) is
Sasakian.

Proof Let {ξ, u,φ(u)} be a light-cone frame. By Proposition 3, we just have to check
that g(h(u), u) = 0, since this implies that h = 0. Indeed:

0 = −(Lξg)(u,φ(u)) = g(Lξu, φ(u)) + g(u, h(u)) + g(u,φ(Lξu)) = g(u, h(u)) , (32)

and we conclude.

We finish this section by providing the necessary and sufficient condition for a
Sasakian null contact structure to be K-contact.

Proposition 6 Let (g,α) be a Sasakian null contact structure and {ξ, u,φ(u)} be a
light-cone frame. Then (g,α) is K-contact if and only if:

g(Lξu, u) = 0 . (33)

Proof Since Lξα = 0 implies that α([ξ, u]) = 0, then we have that [ξ, u] = bξ +
cφ(u) for some b, c ∈ C∞(M). Since (g,α) is Sasakian, then [ξ,φ(u)] = −cξ. Then
we observe that (Lξg)(ξ, ξ) = (Lξg)(ξ, u) = (Lξg)(ξ,φ(u)) = (Lξg)(u,φ(u)) =
(Lξg)(φ(u),φ(u)) = 0. Consequently, to guarantee that ξ is Killing we just need
to impose:

g(Lξu, u) = 0 , (34)

and we conclude.

Remark 4 Note that not every Sasakian null contact structure satisfies that
g(Lξu, u) = 0, as the Example 2 proves. Hence we explicitly check that the Sasakian
condition for null contact structures is weaker than K-contactness. Interestingly
enough, this is contrary to the situation for non-null contact structures, for which
the Sasaki and K-contact conditions are equivalent in three dimensions whereas in
higher dimensions Sasakianity is stronger than the K-contact condition.

4 εη -Einstein Structures and Six-Dimensional
Supergravity

In this last section of the manuscript we introduce the concept of εη -Einstein struc-
tures, which for ε -contact structures with ε �= 0 are particular cases of the usual
notion of η -Einstein structures. Afterwards we will see how that these εη -Einstein
structures can be used for the construction of solutions of six-dimensional minimal
supergravity coupled to tensor multiplet with constant dilaton.

Definition 5 An ε -contact structure (g,α, ε) on a three-dimensional manifold M
is said to be εη -Einstein if and only if the Ricci curvature tensor Ricg of g satisfies:
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Ricg = sg
2

(λ2 + κε)g − sgκα ⊗ α , (35)

where sg = 1 if g is Riemannian, sg = −1 if g is Lorentzian and λ,κ ∈ R are real
constants which satisfy that κ ≥ 0 if g is Lorentzian. We shall refer to λ2 and κ as
the εη -Einstein constants.

Definition 6 Let (M, g) be an oriented (pseudo-)Riemannian three-manifold. We
denote by Contεη(M, ε,λ2,κ) the space of all εη -Einstein structures on M with
εη -Einstein constants λ2 and κ and whose Reeb vector field is of norm ε. Similarly,
we denote by ContεηL (M, ε,λ2,κ) (ContεηR (M,λ2,κ)) the space of all Lorentzian
(Riemannian) εη -Einstein structures on M with εη -Einstein constants λ2 and κ and
whose Reeb vector field is of norm ε.

Now we continue by presenting examples of εη -Einstein structures, which we will
use later to obtain explicit solutions of six-dimensional supergravity.

Example 3 Take the Lie group SU(2) and consider a left-invariant global frame
{e1, e2, e3} satisfying the following Lie brackets:

[e2, e3] = e1 , [e3, e1] = λ2e2 , [e1, e2] = λ2e3 . (36)

whereλ �= 0 is a real constant. Let {e1, e2, e3} be the corresponding dual coframe and
let us consider the Riemannian metric h = e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3 on SU(2).
Let αR = e1. Then (h,αR) defines a Riemannian contact metric structure. Also, the
Ricci curvature turns out to be:

Rich = 1

2
(2λ2 − 1)h + (1 − λ2)αR ⊗ αR . (37)

Hence we check (h,αR) ∈ ContεηR (SU(2),λ2,λ2 − 1) and thus defines an εη -
Einstein structure on SU(2).

Example 4 Let S̃l(2,R) denote the universal cover of the 2-dimensional special lin-
ear group. Consider a left-invariant global frame {e0, e1, e2} satisfying the following
Lie brackets:

[e0, e1] = λ2e2 , [e0, e2] = −λ2e1 , [e1, e2] = −e0 , (38)

where 1 ≥ λ2 > 0. If {e0, e1, e2} is the corresponding dual coframe, let χ = −e0 ⊗
e0 + e1 ⊗ e1 + e2 ⊗ e2 andαL = e0. Then (χ,αL) defines a Lorentzian contact met-
ric structure. Furthermore, since the Ricci curvature of χ reads:

Ricχ = −1

2
(2λ2 − 1)χ + (1 − λ2)αL ⊗ αL . (39)

Therefore (χ,αL) ∈ ContεηL (S̃l(2,R),−1,λ2, 1 − λ2), defining thus an εη -Einstein
structure.
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Example 5 Take S̃l(2,R) and let {e0, e1, e2} be a left-invariant global frame satis-
fying the following Lie brackets:

[e1, e2] = −λ2e0 , [e1, e0] = −λ2e2 , [e2, e0] = e1 , (40)

where λ2 ≥ 1. Let {e0, e1, e2} is the corresponding dual coframe and define αL = e1

and the Lorentzian metric χ = −e0 ⊗ e0 + e1 ⊗ e1 + e2 ⊗ e2. Then (χ,αL) defines
a para-contact metric structure. On the other hand, the Ricci curvature of χ turns out
to be:

Ricχ = −1

2
(2λ2 − 1)χ + (λ2 − 1)αL ⊗ αL . (41)

Consequently (χ,αL) ∈ ContεηL (S̃l(2,R), 1,λ2,λ2 − 1), so that it is an εη -Einstein
structure.

Example 6 Let us take again S̃l(2,R) and consider a left-invariant global frame
{e0, e1, e2} enjoying the following Lie brackets:

[e1, e2] = −2e0 − e2 , [e1, e0] = e0 , [e2, e0] = e1 . (42)

If {e0, e1, e2} is the corresponding dual coframe, define αL = α0(e0 − e2) for α0 �=
0 and the Lorentzian metric χ = −e0 ⊗ e0 + e1 ⊗ e1 + e2 ⊗ e2. We observe that
(χ,αL) defines a null contact structure. In particular, the Ricci curvature of χ takes
the form:

Ricχ = −1

2
χ + 1

α2
0

αL ⊗ αL . (43)

Weconclude that (χ,αL) ∈ ContεηL (S̃l(2,R), 0, 1,α−2
0 )defines anεη -Einstein struc-

ture.

Our next objective is to describe an explicit procedure to construct solutions of
six-dimensional minimal supergravity coupled to a tensor multiplet. We shall begin
by defining the configuration space of the theory as well as by specifying which
conditions must be satisfied in order to have proper solutions. For that, we will
assume in the following that M̂ is an oriented six-dimensional manifold.

Definition 7 We define the bosonic configuration space of six-dimensional minimal
supergravity coupled to a tensor multiplet with constant dilaton on M̂ as the set:

Conf(M̂) = {(̂g, H) ∈ (Lor(M̂) × �3(M̂)} , (44)

where Lor(M̂) denotes the set of Lorentzian metrics on M̂ .

Definition 8 Apair (̂g,H) ∈ Conf(M̂) is a bosonic solution of six-dimensionalmin-
imal supergravity coupled to a tensor multiplet with constant dilaton on M̂ if:

Ricĝ − 1

4
H ◦ H = 0 , dH = d �ĝ H = 0 , |H|2ĝ = 0 , (45)
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where �ĝ is the Hodge dual map associated to ĝ, |H|2ĝ denotes the norm of H with
respect to ĝ (obtained by contracting indices) and where for any three-forms ρ,σ ∈
�3(M̂) we have defined the operation:

(ρ ◦ σ)(X,Y ) = ĝ−1(ιXρ, ιYσ) , ∀X,Y ∈ X(M̂) . (46)

We denote by Sol(M̂) ⊂ Conf(M̂) the set of solutions on M̂ .

Now we are in disposition to state the theorem which tells us how to use εη -Einstein
structures to construct solutions of six-dimensional supergravity.

Theorem 1 Let (N ,χ) and (X, h) be three-dimensional Lorentzian andRiemannian
manifolds, respectively. Let:

(χ,αN , εN ) ∈ ContεηL (N , εN ,λ2, l2) ,

(h,αX ) ∈ ContεηR (X,λ2, εNl
2) ,

(47)

where λ, l ∈ R. Then, the oriented Cartesian product: manifold

M̂ = N × X (48)

carries a family of solutions (̂g,Hλ,l) ∈ Sol(M̂) of six-dimensional minimal super-
gravity coupled to a tensor multiplet with constant dilaton and given by:

ĝ = χ ⊕ h ,

Hλ,l = λνχ + l

3
(�χαN ) ∧ αX + l

3
αN ∧ (�hαX ) + λνh ,

(49)

and parametrized by (λ, l) ∈ R
2, where νχ and νh denote the metric volume forms

correspondingly.

Proof We begin by checking that Hλ,l is indeed closed:

dHλ,l = l

3

(
d(�χαN ) ∧ αX + (�χαN ) ∧ dαX + dαN ∧ (�hαX ) − αN ∧ d(�hαX )

)

= l

3

(
(�χαN ) ∧ dαX + dαN ∧ (�hαX )

) = l

3

(
�χαN ∧ �hαX − �χαN ∧ �hαX

) = 0 ,

where we used that dαN = − �χ αN and dαX = �hαX . Now we compute the Hodge
dual of Hλ,l :

�ĝ Hλ,l = −λνh + l

3
αN ∧ �hαX + l

3
�χ αN ∧ αX − λνχ , (50)

where we have used that, for ρ ∈ �q(N ) and σ ∈ �r (X):

�ĝ (ρ ∧ σ) = (−1)r(3−q) �χ ρ ∧ �hσ . (51)
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Then:

d �ĝ Hλ,l = −λ dνh + l

3
d(αN ∧ �hαX ) + l

3
d(�χαN ∧ αX ) − λ dνχ = 0 . (52)

Similarly:

Hλ,l ∧ �ĝHλ, = |Hλ,l |2ĝνχ ∧ νh = −λ2νχ ∧ νh − λ2νh ∧ νχ − l2

9
|αN |2χνχ ∧ νh

+ l2

9
|αN |2χνχ ∧ νh = 0 ,

(53)
and hence |Hλ,l |2ĝ = 0. Finally, we have to verify that Ricĝ = 1

4Hλ,l ◦ Hλ,l . For that,
we carry out the following computations:

Hλ,l ◦ Hλ,l |T N⊗T N = λ2νN ◦ νN + l2

9 (�χαN ∧ αX ) ◦ (�χαN ∧ αX )|T N⊗T N

+ l2

9 (αN ∧ �hαX ) ◦ (αN ∧ �hαX )|T N⊗T N .

We work out also the following:

λ2νN◦νN = −2λ2χ , (αN ∧ �hαX ) ◦ (αN ∧ �hαX )|T N⊗T N = 18αN ⊗ αN ,

(�χαN ∧ αX ) ◦ (�χαN ∧ αX )|T N⊗T N = 18(αN ⊗ αN − |αN |2χ χ) .

This implies that

1

4
Hλ,l ◦ Hλ,l |T N⊗T N = −λ2

2
χ − l2

2
|αN |2χ χ + l2αN ⊗ αN . (54)

Analogously, we have that:

1

4
Hλ,l ◦ Hλ,l |T X⊗T X = λ2

2
h + l2

2
|αN |2χ h − l2|αN |2χαX ⊗ αX . (55)

Finally, it can be seen that the mixed components vanish identically:

Hλ,l ◦ Hλ,l |T N⊗T X = Hλ,l ◦ Hλ,l |T X⊗T N = 0 .

Consequently, taking into account that (χ,αN , εN ) ∈ ContεηL (N , εN ,λ2, l2) and
(h,αX ) ∈ ContεηR (X,λ2, εNl2), we encounter that:

1

4
Hλ,l ◦ Hλ,l = 1

4
Hλ,l ◦ Hλ,l |T N⊗T N + 1

4
Hλ,l ◦ Hλ,l |T X⊗T X = Ricχ + Rich . (56)

Therefore we prove that (̂g,Hλ,l) ∈ Sol(M̂) and we conclude.
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Remark 5 Let ∇H be the unique metric compatible connection on (M̂, ĝ) with
totally skew-symmetric torsion given by H ∈ �3(M̂):

∇H = ∇ ĝ + 1

2
ĝ−1H , (57)

being∇ ĝ the Levi-Civita connection associated to ĝ. Then the Ricci curvature tensor
of ∇H, Ric(∇H), is related to that of ∇ ĝ by:

Ric(∇H) = Ricĝ − 1

4
H ◦ H = 0 . (58)

Consequently, under the conditions and nomenclature of Theorem 1, we conclude via
the first equation of (45) that the oriented Cartesian Lorentzian product (N × X,χ ⊕
h) carries a bi-parametric family of metric-compatible, Ricci-flat connections with
totally skew-symmetric, isotropic, closed and co-closed torsion given by Hλ,l .

Remark 6 Solutions of (45) constructed as the Theorem 1 proposes do not need to
be supersymmetric (to see the precise definition of supersymmetric solution in this
context, we refer the reader to [1, 11, 16] and references therein). Therefore, this
Theorem gives us a way to obtain generically non-supersymmetric solutions.

We finish the document by presenting some explicit examples of solutions of six-
dimensional minimal supergravity through the use of Theorem 1.

Example 7 Let (χ,αL ,−1) ∈ ContεηL (S̃l(2,R),−1,λ2, 1 − λ2) with 1 ≥ λ2 > 0
be the εη -Einstein structure of Example 4 and (h,αR) ∈ ContεηR (SU(2),λ2,λ2 − 1)
as in Example 3. Then (χ ⊕ h,Hλ,l), as dictated by Theorem 1, is a solution of
six-dimensional minimal supergravity coupled to a tensor multiplet with constant
dilaton constructed through the product of a Lorentzian contact metric structure and
a Riemannian contact metric structure.

Example 8 Take (χ,αL , 1) ∈ ContεηL (S̃l(2,R), 1,λ2,λ2 − 1) with λ2 ≥ 1 as in
Example 5 and let (h,αR) ∈ ContεηR (SU(2),λ2,λ2 − 1) be the εη -Einstein struc-
ture of Example 3. Then (χ ⊕ h,Hλ,l) ∈ Sol(M̂), constructed as the product of a
para-contact metric structure and a Riemannian contact metric structure.

Example 9 Take (χ,αL , 0) ∈ ContεηL (S̃l(2,R), 0, 1,α−2
0 ) with λ2 ≥ 1 as in

Example 6 and (h,αX ) ∈ ContεηR (SU(2), 1, 0)be the εη -Einstein structure ofExam-
ple 3 with λ2 = 1. Then (χ ⊕ h,Hλ,l), as prescribed by Theorem 1, is a solution of
six-dimensional minimal supergravity coupled to a tensor multiplet with constant
dilaton obtained through the product of a null contact metric structure and a Rieman-
nian contact metric structure.
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