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Abstract The general notion of anisotropic connections ∇ is revisited, including
its precise relations with the standard setting of pseudo-Finsler metrics, i.e., the
metric nonlinear connection and the (linear) Finslerian connections. In particular,
the vertically trivial Finsler connections are canonically identified with anisotropic
connections. So, these connections provide a simple intrinsic interpretation of a part
of any Finsler connection closer to the Koszul formulation in M . Moreover, a new
covariant derivative and parallel transport along curves is introduced, taking first a
self-propagated vector (instantaneous observer) so that it serves as a reference for
the propagation of the others. The covariant derivative of any anisotropic tensor is
given by the natural derivative of a curve of tensors obtained by parallel transport
along a curve and, in the case of pseudo-Finsler metrics, this is used to characterize
the Levi-Civita–Chern anisotropic connection as the one that preserves the length of
parallelly propagated vectors.
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1 Introduction

The standard geometric picture for the description of a (pseudo-)Finsler metric
L = F2 : A (⊂ T M) → R comprises two elements: a (nonlinear) connection ν on
the fibration A → M and a linear connection∇∗ ≡ (

(
Γ H

)k
i j ,

(
Γ V

)k
i j ) on the vertical

vector bundle VA → A. The former is canonically associated with the spray deter-
mined by L , whose integral curves are the critical points of the energy functional.
However, there are quite a few non-equivalent choices for the latter (Berwald, Cartan,
Chern, Hashiguchi...). Motivated by the complexity of this and other settings, some
researchers have introduced the concept of anisotropic connection, a generalization
of the (pseudo-)Riemannian setting which incorporates in a natural way the direction
dependent geometric structures of Finsler geometry [13, 20, 24, 25].

Recently, one of the authors has developed systematically the anisotropic calculus
[11, 12], namely, how to make computations with an anisotropic connection, which
can be seen as a natural and intuitive generalization of the usual Koszul connections.
Some applications have been obtained in [10, 17]. In the present article, we revisit
this notion, showing precisely its relations with the other elements of the standard
setting and providing a further insight on its associated parallel transport.

More precisely, in Sect. 2 we introduce heuristically the notions of pseudo-Finsler
metric, by looking for general ways of measuring the lengths of curves, and Finsler
spacetime, by stressing geometric elements related with measurements. In Sect. 3
anisotropic tensor fields on M are introduced and the concept of anisotropic con-
nection ∇ is defined. First, ∇ is regarded as a type of covariant derivative which
applies to usual vector fields X,Y on M so that it provides an anisotropic vector field
∇XY . Then, the usual rules of derivations are discussed so that ∇X can be applied to
any anisotropic tensor. We emphasize some issues which will become relevant later
such as homogeneity (natural invariance by homotheties), the notion of torsion or
the affine structure of the space of all the anisotropic connections.

In Sects. 4 and 5 we make a detailed study of the relation between anisotropic
connections ∇ and, resp., (nonlinear) connections ν on A → M and linear connec-
tions ∇∗ on VA → A (ν and ∇∗ are not assumed to come from any Finsler function
L a priori). A detailed correspondence is given for the former, in particular:

Any anisotropic connection ∇ with Christoffel symbols Γ a
i j is characterized by a pair com-

posed by a nonlinear connection Na
i = Γ a

i j y
j and a tensor Q satisfying Qa

i j y
j = 0. In

the homogeneous case, all nonlinear connections can be obtained from anisotropic ones
(Theorem 2).

The relation between an anisotropic ∇ and a linear ∇∗ becomes subtler. Indeed,

if we are given an auxiliary nonlinear connection
o
ν, then ∇∗ can be determined

by specifying the covariant derivatives (of the sections of VA → A) with respect

to the
o
ν-horizontal and vertical directions. This is standard in Finsler geometry,

and the connections with vanishing vertical derivatives are called vertically trivial

here; clearly, they are independent of
o
ν. Such trivial connections can be put in one
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to one correspondence with the anisotropic connections by using
o
ν. However, this

correspondence also becomes independent of
o
ν. Summing up:

There is a natural bijection between vertically trivial connections∇∗ and anisotropic connec-
tions∇. It identifies the homothety invariant∇∗’s with the homogeneous∇’s (Proposition 3,
Theorem 3).

In Sect. 6 we focus on the pseudo-Finsler case. As explained therein, the last
result above becomes essential for the identification of anisotropic connections in
the pseudo-Finsler setting. Indeed, the 2-homogeneity of L leads to the homogeneity

of the involved linear connection ∇∗ (and the canonical nonlinear one
o
ν). Some

Finsler connections such as Berwald or Chern are vertically trivial and, thus, directly
identifiable with anisotropic connections. Moreover, the non vertically trivial ones,

as Cartan or Hashiguchi, will project on vertically trivial ones (by using
o
ν). So,

anisotropic connections provide the non-vertical part of any Finslerian connection,
expressed tidily as Koszul-type derivations on M . As already pointed out in [11], the
metric L allows one to select a unique Levi-Civita anisotropic connection, which is
then identifiable to Chern’s.

In Sect. 7, we introduce the covariant derivative Dγ and parallel transport along
curves γ for any anisotropic connection ∇. Taking into account the dependence of
∇ on the direction, one can choose a reference W (a vector field on γ which takes
values on A ⊂ T M) as in [2, p. 121], to define its associated covariant derivative
DW

γ and W -parallel transport, which will behave as the usual (isotropic) one. This
parallel transport is of crucial importance, as it can be used to define in a very
natural way the covariant derivative of tensors, but the dependence on the direction
inherent to Finslerian geometry introduces additional subtleties. As a first step, one
can parallel transport the observer, which in Finsler spacetimes is interpreted as the
(timelike) direction on the tangent bundle where we are doing the computations. This
is defined using a parallel observer determined by DV

γ V = 0, a nonlinear equation
whose solutions may not be extended on the whole γ. However, they do extend in
the most interesting cases, such as the standard Finsler and the Lorentz-Finsler ones.
Once we have a parallel observer along a curve, we can make the parallel transport
of any other vector using as a reference this parallel observer. The parallel transport
of the observer coincides with the one provided by a nonlinear connection (see for
example [19, Chap. VII], [1, Sect. 2.1.6], [25, p. 103], [4, Sect. 2.1], [8, Definition
1.4] and [27, Sect. 7.6]). However, as far as we know, the second parallel transport
with respect to an observer has not been considered in literature.

It turns out that the most economical way to codify all the information of the
covariant derivatives along curves in a smooth setting with natural assumptions is
with an anisotropic connection, which allows for covariant derivatives of any kind
of tensor (see Theorem 1). These covariant derivatives were introduced in [12] from
a rather abstract viewpoint as tensor derivations which satisfy the Leibniz rule of the
tensor product and commute with contractions. To enhance the geometric meaning
of these covariant derivatives, we will show in Theorem 6 that they coincide with
the (usual) derivative in a vector space of the curve of tensors obtained with parallel
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transport (and therefore using only covariant derivatives along curves). Finally, one
can wonder if given a pseudo-Finsler metric, there is an anisotropic connection with
a parallel transport which preserves the length of vectors. We show in Sect. 7.3 that
this connection exists and it is the Levi-Civita-Chern anisotropic connection, which
can be identified (as a vertically trivial linear connection) with the classical Chern
connection.

Finally, we would like to emphasize that our approach is useful in the classical
Finsler case a well as its (positive definite) variants, such as Kropina, Randers-
Kropina, conic and wind Finsler metrics [5, 14, 16, 29]. In this article, we emphasize
the case of Finsler spacetimes (introducingnotions such asobserver) not only because
these constitute an active topic of research where our setting applies naturally [3, 9,
21], but also because its physical intuitions suggest interesting geometric definitions
valid even for the positive definite case.

2 General Background

2.1 Pseudo-Finsler Metrics

Let us pose the following problem. Given a manifold M , we want to define a general
smooth structure that allows us tomeasure the length of curves. It seems quite natural
that this length should be defined as

�(γ) :=
∫ b

a
F(γ̇(s))ds

for some function F : T M → R in the tangent bundle T M . From a geometrical
viewpoint, this definition should not depend on the parametrization of γ, which
can be achieved by requiring that F is a homogeneous function of degree 1 when
restricted to any tangent space.Moreover, if onewants to include relativisticmeasures
and to remain in the smooth realm, it is better to consider the square L = F2, because
otherwise one would findmany examples where F is not smooth on lightlike vectors,
namely, vectors v ∈ T M where F(v) = 0. Indeed, this happens when one considers
the one-homogeneous function F : R4 → R given by

F(τ , v1, v2, v3) =
√

τ 2 − (v1)2 − (v2)2 − (v3)2,

which is non-smooth on the lightlike vectors.
We will make two additional assumptions on L .

(i) The first one is that L is not necessarily defined in the whole tangent bundle T M ,
but only in some directions. Sometimes, there are some forbidden directions
because of some constraints of the problem, or as in General Relativity, because
only trajectories with directions on a cone (say, the future-directed timelike one)
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will become relevant. Therefore, we will choose as domain of L a subset A
in T M which is conic, to permit arbitrary positive reparametrizations of the
curves, and open for the sake of simplicity, even though the boundary of A can
be considered in different ways (as in wind Riemannian metrics [5] or Finsler
spacetimes [15]).

(ii) The second one is related to the (vertical) Hessian of L ,

gv(u, w) := 1

2

∂2

∂t∂s
L(v + tu + sw)|t=s=0,

which, as we will see later, can be thought as the best scalar product approxi-
mation of L . We will assume that this scalar product is nondegenerate for every
v ∈ A but not necessarily Euclidean (positive definite). Nondegenericity will be
essential to obtain the existence and uniqueness of the covariant derivative.

Summing up, the following notion of a pseudo-Finsler metric collects all the condi-
tions above for a very general definition of length of curves.

Definition 1 Let M be an n-manifold, π : T M → M the natural projection of T M
onto M and A ⊂ T M \ 0 an open subset of T M which is conic (namely, for every
v ∈ A and λ > 0, λv ∈ A) and satisfies π(A) = M. A smooth function L : A → R

is a pseudo-Finsler metric if

1. L is positive homogeneous of degree 2, that is, L(λv) = λ2L(v) for every v ∈ A
and λ > 0.

2. The fundamental tensor of L , namely gv defined by

gv(u, w) := 1

2

∂2

∂t∂s
L(v + tu + sw)|t=s=0

for any v ∈ A, and any u, w ∈ Tπ(v)M , is nondegenerate.

In this definition we have excluded the zero section from A. As A is open and
conic, the only case in which the zero section could be contained in A is when it
is the whole tangent bundle. But even in this case, there are problems with the zero
section, because L can be C2 on the zero section only if it comes pointwise from a
scalar product.1

Given a pseudo-Finsler metric L : A → R on a manifold M , for every p ∈ M ,
we define the indicatrix at p as

Σp = {v ∈ TpM ∩ A : L(v) = 1},

(sometimes the indicatrix of −L may be of interest too) and the lightcone as

Cp = {v ∈ TpM ∩ A : L(v) = 0}.

1 Indeed, if g is one half the Hessian of L at the 0 vector of each tangent space, then L(v) = g(v, v)

for every v ∈ T M , see [28, Proposition 4.1].
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Given p ∈ M and v ∈ TpM , let us discuss why gv is the best scalar product approx-
imation of L at v ∈ A. Assume for example that L(v) = 1, which can be assumed
by homogeneity if L(v) > 0. Recall that the restriction

gv|Σ : TvΣp × TvΣp → R

coincides with second fundamental form of Σp with respect to the opposite of the
position vector v computed with the affine connection of TpM (see for example [14,
Eq. (2.3)]). Moreover, one has that v is gv-orthogonal to TvΣp and, by homogeneity
(applying Euler’s theorem), that gv(v, v) = L(v). This implies that

Σgv = {w ∈ TpM : gv(w,w) = 1}

satisfies TvΣ
gv = TvΣp, and the second fundamental form of Σgv at v with respect

to the opposite of the position vector v coincides with that of Σp.

2.2 Finsler Spacetimes and Its Restspace

To generalize the definition of spacetime in a certain manifold M , the following
observations are in order:

1. We need to measure the length of curves to obtain the elapsed time along the
trajectory. By the discussion in the previous section, this leads us to consider a
pseudo-Finsler metric L : A ⊂ T M \ 0 → R.

2. Locally, it must approximate the Lorentz-Minkowski spacetime. This implies that
for every v ∈ A, the scalar product gv must be of Lorentz type since, as argued
above, gv is the best approximation of L around v.

3. There have to be some vectors with zero length, which are the directions of light
rays.

4. Moreover, these lightlike directions must be the limit of the timelike directions,
therefore, their boundary.

Definition 2 A Finsler spacetime is an n-manifold M , n ≥ 2, endowed with a
pseudo-Finsler metric L : A → (0,+∞) such that

(i) L is a Lorentz-Finsler metric, i.e., its indicatrix is strongly concave or equiva-
lently the index of gv is n − 1.

(ii) L extends as zero to the closure Ā of A in T M \ 0 and this extension is smooth
with nondegenerate gv .

(iii) For every p ∈ M , Ap := A ∩ TpM is connected, convex and salient, i.e., if
v ∈ Ap then −v /∈ Ap. (In fact, the last two conditions follow from the other
hypotheses, see [15, Remark 3.6].)

Moreover, the future-directed timelike unit vectors of the indicatrix Σp = {v ∈
TpM : L(v) = 1} are used to model the instantaneous observers, while the vectors in
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the null cone Cp = {v ∈ TpM : L(v) = 0} are the lightlike future-directed vectors.
The tangent space TvΣp = {w ∈ TpM : gv(v,w) = 0} is interpreted as the instan-
taneous restspace of v. Even if we assume that L is defined only in Ā, it is possible
to extend L (in a non-unique way) to the whole tangent bundle (see [21]). For more
details about the interpretation of the restspace see [3] (part (4) after Remark 9).

p

v

Cp
Σp

TvΣp

An observer in a Finsler spacetime is a (future-directed) unit timelike curve,
namely γ : I = (a, b) → (M, L) such that γ̇(s) ∈ A and L(γ̇(s)) = 1 for all s ∈ I .
The (instantaneous) restspace of the observer at s ∈ (a, b) is Tγ̇(s)Σγ(s). There are
two natural metrics in this restspace. The first one is given by

gγ̇(s)|Σ : Tγ̇(s)Σγ(s) × Tγ̇(s)Σγ(s) → R.

It is the fundamental tensor restricted to Σ , which is a definite metric. The direction
γ̇(s) is gγ̇(s)-orthogonal to Tγ̇(s)Σ . As we have said above, this metric is the best
approximation of L with a scalar product in the direction of γ̇(s) as the restriction
g|Σ is the second fundamental form of Σ with respect to the opposite to the position
vector (using the natural affine connection in TpM).

The other metric is a Finsler metric with indicatrix Sγ̇(s), where Sv = TvΣ ∩ Cp

(the set of velocities of light in the restspace of v). It is unclear which one is more
suitable tomeasure spacelike distances, and indeed, the choice ofmetric could depend
on the type of measure.

3 Anisotropic Connections

3.1 Anisotropic Tensor Fields and Their Vertical Derivatives

We will denote by x = (x1, . . . , xn) local coordinates on some open subset U of M
and (with a slight abuse of notation) by (x, y) = (x1, . . . , xn, y1, . . . , yn) the natural
ones induced on TU ⊂ T M . Let us denote by T ∗M the cotangent bundle of the

manifold M and by
r)⊗
T M ⊗

s)⊗
T ∗M the classical vector bundle of tensors of type

(r, s) overM . Recall that an (r, s)-tensor field onM is a smooth section of this bundle,
and let T r

s (M) be the space of all such tensor fields. We use the simplified notation
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for smooth functions and vector fields on M : T 0
0 (M) = F(M) and T 1

0 (M) = X(M)

resp. Now, let π∗
A(

r)⊗
T M ⊗

s)⊗
T ∗M) be the bundle over A pullbacked by the natural

projection πA : A → M . A smooth section T : A → π∗
A(

r)⊗
T M ⊗

s)⊗
T ∗M) of this

bundle is called an A-anisotropic tensor field on M , and let T r
s (MA) the space

of such fields (also by convention, T 0
0 (MA) = F(A)). In natural coordinates, with

summation in repeated indices and ∂a ≡ ∂xa ,

Tv = T a1,...,ar
b1,...,bs

(x, y) ∂a1

∣∣
x
⊗ ... ⊗ ∂ar

∣∣
x
⊗ dxb1 |x ⊗ ... ⊗ dxbs |x , v ∈ A ∩ TU ;

(1)
here, (x, y) and x are, resp., the coordinates of v and πA(v) (the functions T a1,...,ar

b1,...,bs
transform tensorially under changes of coordinates). Recall that, naturally, T r

s (MA)

becomes a module over the ring F(A) and the tensor products and contractions
induce further operations on sections, as in the case of usual tensor fields on M . In
particular, T 1

0 (MA) and T 0
1 (MA) will be called resp. the sets of anisotropic vector

fields and 1-forms on M .
We emphasize a particularity of anisotropic vector fields. The elements X ∈

T 1
0 (MA) are (smooth) sections of the pullback bundle π∗

A(T M) → A. This bundle
is naturally isomorphic to the vertical bundle VA → A, where

VvA := Ker(TvπA) = Span
{
∂yi |v : i ∈ {1, ..., n}} ⊂ TvA.

Thus, X ∈ T 1
0 (MA) can be identified with a vertical vector field XV on A, called the

vertical lift of X , such that

Xv = Xi (x, y)∂xi |x ∈ Tπ(v)M ↔ XV
v = Xi (x, y)∂yi |(x,y) ∈ VvA. (2)

Moreover, there is a canonical anisotropic vector field:

C = yi ∂xi ∈ T 1
0 (MA), Cv := v ∈ Tπ(v)M. (3)

Its vertical lift CV is usually called the Liouville vector field, and both C and CV are
actually smooth on the whole T M . It is also worth pointing out that there is a natural
inclusion

T r
s (M) ↪→ T r

s (MA), T → T̃ , (4)

just putting the components of T̃ in (1) as independent of directions and equal to
those of T . The tensor T̃ will be called isotropic and we will not distinguish between
T and T̃ when there is no possibility of confusion. Finally, we will say that a local
vector field V ∈ X(U ) is A-admissible (where U ⊂ M is an open subset) if Vp ∈ A
for all p ∈ U , i.e., V is a local section of the fibered manifold A → M .

Notice that, at each v ∈ A, the fiber of the bundle π∗
A(

r)⊗
T M ⊗

s)⊗
T ∗M) becomes

the space of all the (r, s)-tensors at p = πA(v). As this is a single vector space, the
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derivative of any curve in it is well defined. Thus, given an anisotropic tensor T ∈
T r
s (MA), we can define its vertical derivative at v ∈ A in any direction w ∈ TpM ,
p = π(v), as follows:

(∂̇wT )v := d

dt
Tv+tw|t=0,

which is again a tensor on TpM . As the map w → (∂̇wT )v is linear, we can natu-
rally introduce an (r, s + 1) tensor field as follows (we write directly the obvious
expression in coordinates).

Definition 3 Given an A-anisotropic tensor T ∈ T r
s (MA), its vertical derivative

∂̇T ∈ T r
s+1(MA) is given (locally) by

(∂̇T )v = ∂ybs+1 T
a1,...,ar
b1,...,bs

(x, y) ∂a1

∣∣
x ⊗ ... ⊗ ∂ar

∣∣
x ⊗ dxb1 |x ⊗ ... ⊗ dxbsx ⊗ dxbs+1

x

in any natural coordinates as in (1).

3.2 Basic Notion of Anisotropic Connection

As with other kinds of connections, anisotropic connections can be defined in differ-
ent ways. We introduce them in the spirit of the Koszul formulation of connections,
namely as covariant derivatives (on a restricted domain of vector fields first, which
is extended later). Thus, we refer to any of their characterizations also as anisotropic
(or, more properly, A-anisotropic) covariant derivatives. Anyway, we will prove in
Sect. 5 that such derivatives can be identified with certain linear connections on a
suitable bundle (which appears naturally in the Finslerian setting).

Definition 4 An A-anisotropic connection (or covariant derivative) is a map

∇ : X(M) × X(M) → T 1
0 (MA), (X,Y ) → ∇XY,

such that

1. ∇X (Y + Z) = ∇XY + ∇X Z for all X,Y, Z ∈ X(M),
2. ∇X ( f Y ) = (X ( f )Y ) ◦ πA + ( f ◦ πA)∇XY for all f ∈ F(M); X,Y ∈ X(M),
3. ∇ f X+hY Z = ( f ◦ πA)∇X Z + (h ◦ πA)∇Y Z for all f, h ∈ F(M) and X,Y, Z ∈

X(M).

We say that an anisotropic connection∇ is homogeneous (of degree zero), or invariant
by homotheties, if for every v ∈ A and λ > 0, (∇XY )λv = (∇XY )v (that is, ∇XY =
∇XY ◦ hλ where hλ : A → A is the homothety given by hλ(v) = λv).

As in the case of affine connections, ∇ has a local nature. We can eventually use the
notation ∇v

XY := (∇XY )v and, consistently,
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∇V
X Y := (∇XY ) ◦ V ∈ X(U )

for any A-admissible local vector field V ∈ X(U ). By using coordinates, we can
express ∇ in terms of its Christoffel symbols Γ a

i j : TU ∩ A → R, which are defined
by

(∇∂i ∂ j )v (= ∇v
∂i
∂ j ) = Γ a

i j (v)∂a|π(v), that is, ∇V
∂i

∂ j = (
Γ a

i j ◦ V
)
∂a . (5)

Clearly, the homogeneity of∇ is then equivalent to the 0-homogeneity of its Christof-
fel symbols, Γ a

i j (λv) = Γ a
i j (v), λ > 0. The following properties of these symbols

are proven as in the standard case of affine connections.

Proposition 1 (1) Under a change of coordinates (U, x) � (Ū , x̄), the Christoffel
symbols Γ m

kl and Γ̄ a
i j are related by

Γ̄ a
i j (x̄, ȳ) = ∂ x̄ a

∂xm
(x)

(
∂2xm

∂ x̄ i∂ x̄ j
(x) + ∂xk

∂ x̄ i
(x)

∂xl

∂ x̄ j
(x) Γ m

kl(x, y)

)
. (6)

(2) Conversely, given any local choice of functions Γ k
i j for a coordinate atlas

satisfying the cocycle transformation (6), there exists a unique anisotropic connection
∇ whose Christoffel symbols are these functions. Moreover, if the functions are 0-
homogeneous in y, then the produced ∇ is homogeneous too.

(3)Any (classical, affine)Koszul connectionon M induces naturally ananisotropic
one with Christoffel symbols independent of y, for any open conic domain A ⊂ T M
which naturally projects onto the whole M.

(4) Given an anisotropic connection∇ with Christoffel symbolsΓ a
i j for each coor-

dinates (U, x), the choice of functions Γ a
ji for each (U, x) yields a new connection

∇̂, and ∇ is called symmetric if ∇ = ∇̂.

3.3 Extension to a Covariant Derivative of Anisotropic
Tensors

Note first that the (anisotropic) covariant derivatives of vector fields can be extended
to (anisotropic) covariant derivatives of tensor fields on M . That is, using the product
and contraction rules of tensor derivations, there is a unique extension of∇ : X(M) ×
X(M) → T 1

0 (MA) to a covariant derivative operator

∇ : X(M) × T r
s (M) → T r

s (MA), (X, T ) → ∇XT, (7)

such that
∇X f = X ( f ) ◦ πA (i.e.∇∂i f = ∂i f ◦ πA) (8)
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for all f ∈ F(M) = T 0
0 (M). For example, if ω ∈ T 0

1 (M), then ∇Xω is defined by

(∇Xω)(Ỹ ) = X (ω(Y )) − ω̃(∇XY )

(recall (4), in particular ω̃v = ωπA(v) ∈ T ∗
πA(v)M). In coordinates,

∇V
∂i
dxk = −(Γ k

i j ◦ V ) dx j .

Next, we will go beyond extending the operators ∇X to an (anisotropic) covariant
derivative of A-anisotropic tensor fields

∇ : X(M) × T r
s (MA) → T r

s (MA), (X, T ) → ∇XT, (9)

in a natural way (again, as usual, the same symbol ∇ will be used). The key to get
this new extension of ∇ is to find a definition of ∇Xh when h ∈ F(A), that is, to find
a natural extension of (8). The appropriate choice will be

(∇Xh)(v) = X p(h ◦ V ) − ∂̇(∇X p V )h, (10)

where p = πA(v) and V ∈ X(M) is such that Vp = v.

Lemma 1 The definition of∇Xh in (10) is independent of the choice of V .Moreover,
if h = f ◦ πA for some f ∈ F(M), then ∇Xh is equal to ∇X f in (8).

Proof It is enough to check that the expression (10) written in coordinates is inde-
pendent of V . Let V = V j∂ j , X = Xi∂i ∈ X(U ). Then

X (h ◦ V ) = Xi
(

∂h
∂xi ◦ V

) + Xi
(

∂h
∂y j ◦ V

)
∂V j

∂xi ,

∂̇(∇X V )h =
(
[X (V k) + XiV j

(
Γ k
i j ◦ V

)
] ◦ πA

)
∂̇kh,

in the latter using that ∇XV = X (V i )∂i + XiV j∇∂i ∂ j . So, (10) reads at each v of
coordinates (x, y):

∇Xh = (
Xi ◦ πA

) (
∂h

∂xi
− y jΓ k

i j

∂h

∂yk

)
, (11)

which is independent of the chosen V , as required.

Even though this lemma ensures the consistency of the definition of∇Xh, its meaning
is not so evident. Algebraically, it ensures a sort of chain rule for X (h ◦ V ). Anyway,
wewill give a further interpretation (see Remark 4). As a summary of this subsection,
we obtain

Theorem 1 Let ∇ be an A-anisotropic connection and X ∈ X(M). The operator
∇X : Y ∈ T 1

0 (MA) → ∇XY ∈ T 1
0 (MA) determines a unique tensor derivation of the
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tensor algebra T (MA) = ⊕

r,s≥0
T r
s (MA) such that∇Xh is given by (10) for h ∈ F(A).

If T ∈ T r
s (MA) has the coordinate expression (1), then the components of ∇kT :=

∇∂k T are

T a1,...,ar
b1,...,bs |k := (∇kT )

a1,...,ar
b1,...,bs

= ∂kT
a1,...,ar
b1,...,bs

− Γ i
k j y

j ∂̇i T
a1,...,ar
b1,...,bs

+ ∑r
l=1 Γ

al
k jl
T a1,..., jl ,...,ar
b1,...,bs

− ∑s
l=1 Γ

il
kbl
T a1,...ar
b1,...,il ,...bs

,

where ∂k = ∂/∂xk, ∂̇k = ∂/∂yk.

The proof can be carried out by following the indications above. Anyway, full com-
putations can be found in [11], where the following intrinsic version of the last
displayed formula (regarding T as a F(A)-multilinear map) can also be found in
[11, Theorem 11]: for any v ∈ A and (local) extension V ∈ X(U ) of v,

(∇XT )v(θ
1, . . . , θr , X1, . . . , Xs) =Xπ(v)(TV (θ1, . . . , θr , X1, . . . , Xs))

− (∂̇T )v(θ
1, . . . , θr , X1, . . . , Xs,∇V

X V ),

−
r∑

i=1

Tv(θ
1, . . . ,∇Xθi , . . . , θr , X1, . . . , Xs)

−
s∑

j=1

Tv(θ
1, . . . , θr , X1, . . . ,∇X X j , . . . , Xs),

(12)

where X, X1, . . . , Xs ∈ X(M) and θ1, . . . , θr ∈ X∗(M).

Remark 1 One can even extend ∇ to a map

∇ : T 1
0 (MA) × T r

s (MA) → T r
s (MA), (X, T ) → ∇XT,

just making it F(A)-linear with respect to the first variable.

Remark 2 We have seen that the domain of an anisotropic connection can be
extended from vector fields X,Y ∈ X(M) to anisotropic vector fields in T 1

0 (MA).
Additionally, multilinear maps over anisotropic tensor fields valued on anisotropic
vector fields can be regarded as anisotropic tensor fields.

A relevant example appears when two anisotropic connections ∇̄,∇ are consid-
ered. Their difference Q = ∇̄ − ∇ is naturally an F(M)-multilinear map

X(M) × X(M) −→ T 1
0 (MA),

which can be uniquely extended byF(A)-multilinearity to an anisotropic tensor field
Q ∈ T 1

2 (MA) (recall the embeddingX(M) = T 1
0 (M) ↪→ T 1

0 (MA) in (4)).Moreover,
Q can also be regarded as an F(A)-multilinear map
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T 1
0 (MA) × T 1

0 (MA) → T 1
0 (MA), or T 1

0 (MA) × T 1
0 (MA) × T 0

1 (MA) → F(A).

Applying the previous discussion to the case of the connection ∇̂ obtained from
∇ with Christoffel symbols Γ̂ k

ji = Γ k
i j (see Proposition 1), the following definition

becomes consistent.

Definition 5 The torsionof an anisotropic connection∇ is the tensor Tor ∈ T 1
2 (MA)

whose components are
Torki j = Γ k

i j − Γ k
ji .

The following consequence is also straightforward now.

Corollary 1 The space of all anisotropic connections on M has the structure of an
affine space with associated vector space T 1

2 (MA).
Moreover, the homogeneous anisotropic connections form an affine subspace with

associated vector space the subspace of T 1
2 (MA) composed by its 0-homogeneous

tensors (i.e., those which satisfy Q(λv) = Q(v), λ > 0).

4 Anisotropic Versus Nonlinear Connections

Any anisotropic connection induces a nonlinear connection on πA : A → M . Let us
start recalling the framework of the latter adapted to our case.

The coordinates (x, y) on TU induce naturally coordinates (x, y, ẋ, ẏ) on T A ⊂
T (T M). Then, the vertical bundle VA ⊂ T A is the subbundle of T A → A com-
posed by the elements with ẋ = 0, and so (x, y, ẏ) is a local coordinate system
for VA. Clearly, VA is naturally identifiable with the pullback bundle π∗

A(T M),
and, consequently, the (smooth) sections of the bundle VA → A can be regarded as
A-anisotropic vector fields on M (recall (2)).

4.1 Setting for Nonlinear Connections

There are several ways to define a connection on the fibered manifold A → M ,
commonly called a nonlinear connection in the Finsler geometry literature. One way
is to provide a vector bundle homomorphism ν : T A → VA such that ν|VA is the
identity. Then, the horizontal distribution HA := Ker ν characterizes ν and gives a
decomposition T A = HA ⊕ VA, which can also be used as an alternative definition
of the nonlinear connection. One has the following representations in coordinates:

ν

(

ẋ i
∂

∂xi

∣∣∣∣
(x,y)

+ ẏa
∂

∂ya

∣∣∣∣
(x,y)

)

= (
ẏa + Na

i (x, y)ẋ i
) ∂

∂ya

∣∣∣∣
(x,y)

,



188 M. Á. Javaloyes et al.

HvA = Span

{
δ

δxi

∣∣
∣∣
v

:= ∂

∂xi

∣∣
∣∣
v

− Na
i (v)

∂

∂ya

∣∣
∣∣
v

: i ∈ {1, ..., n}
}

, (13)

where the smooth functions Na
i are defined for v ∈ A ∩ TU . When taking a new

induced chart (TŪ , (x̄, ȳ)), the new connection coefficients N̄ a
i are related to the old

ones by

N̄ a
i (x̄, ȳ) = ∂ x̄ a

∂xb
(x)

(
∂2xb

∂ x̄ i∂ x̄ j
(x) ȳ j + ∂xk

∂ x̄ i
(x) Nb

k(x, y)

)
(14)

over T (U ∩ Ū ). One has that HvA can be identifiedwith TvA/VvA = Tπ(v)M , which
allows one to identify any X ∈ T 1

0 (MA)with a horizontal vector field XH on A, called
the horizontal lift of X , determined by

Xv = Xi (x, y)∂xi |x ∈ Tπ(v)M ↔ XH
v = Xi (x, y)δxi |(x,y) ∈ HvA, (15)

where we have simplified the notation δxi := δ/δxi in (13).

Remark 3 (a) Conversely, any covering of charts of M endowed with a set of func-
tions satisfying the cocycle transformation (14) determines unequivocally a nonlinear
connection of A → M . Incidentally, we recover a standard fact from the theory of
fibered manifolds: a nonlinear connection is the same thing as a section of the 1-jet
bundle J1A → A; see [18, Sect. 17] for instance. If, by means of such a section, for
the selected 1-jet at v ∈ A one puts

Na
i (v) = −∂V a

∂xi
(π(v))

(where V is a local extension of v that determines the jet), then it is straightforward
to see that these Na

i ’s satisfy (14).
(b) It makes sense to assume that the nonlinear connection on A → M is positive

homogeneous in the sense that the distribution HA is invariant under homotheties
hλ : A → A, that is, if Thλ : T A → T A is the tangent map (differential) of hλ, then
for each λ > 0 and v ∈ A,

(Thλ)v(Hv) = Hλv. (16)

Equivalently, the connection coefficients satisfy

Na
i ◦ hλ = λNa

i

(
Na
i (x,λy) = λNa

i (x, y)
)
.

As an integral curve (x(t), y(t)) of the horizontal vector field δxi satisfies dya/dxi =
−Na

i (x, y), the 1-homogeneity of the functions Na
i characterizes when (x(t),λy(t))

(= hλ(x(t), y(t))) is also an integral curve. In this case, the relations

δxi |λv = (Thλ)v (δxi |v), ∂yi |λv = λ−1 (Thλ)v (∂yi |v)
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(0-homogeneity of δxi and (−1)-homogeneity of ∂yi , see [4, Sect. 1.5]) are also
satisfied,

Na
i (x, y) = ∂y j Na

i (x, y)y j (17)

(by Euler’s theorem) and ∂y j Na
i (x, y) is 0-homogeneous in y (i.e., invariant under

hλ : (x, y) → (x,λy)).

It is worth pointing out that a nonlinear connection ν induces a (nonlinear) covari-
ant derivative of sections of A → M defined on open subsets U ⊂ M . Namely, let
XA(U ) be the set of all A-admissible vector fields on U (which behaves in a similar
way as a module on the positive functions on U when A is convex at each point)
and let W : U → A be an element of it; in coordinates, W (x) = (xi ,Wa(x)). The
ν-covariant derivative of W is2 ν ◦ TW , so that for any X ∈ X(U ) and in natural
coordinates (x, y, ẋ, ẏ),

ν ◦ TW (X) ≡ (xi ,Wa(x), 0, (DXW )a (x)),

where

(DXW )a (x) = Xi

(
∂Wa

∂xi
+ Na

i (W (x))

)
.

We denote the section x → (xi , (DXW )a (x)) (which is a vector field on U ) by
DXW . This induces a map

D : X(U ) × XA(U ) → X(U ), (X,W ) → DXW, (18)

which is linear in X but, in general,3 is not linear inW . Notice that DW characterizes
ν ◦ TW (so any of them can be called ν-covariant derivative), while D determines
the functions Na

i and, so, the connection ν.

The case of Koszul connections. The nonlinearity of a connection refers to the
nonlinearity of its covariant derivative (18). When this derivative is actually linear,
the connection is called linear too (as usual, the name “nonlinear”must be understood
in the sense of “non-necessarily linear”). Anyway, to bemore specific,wewill use the
name Koszul connection for the linear connections on T M → M as in Proposition1
(3). These (also named affine connections in the literature) are locally determined by
their Christoffel symbols, which depend only on x ≡ p ∈ M . Finally, to deal with
the Koszul case, recall first the following elementary technical result.

2 It is worth pointing out that some authors such as Shen, Dahl or Miron-Bucataru, consider an
alternative covariant derivative by using the flip automorphism of T M , namely (x, y, ẋ, ẏ) →
(x, ẋ, y, ẏ), see for example [22, Sect. 3.2]. This is avoided here, due to the different role of A and
T M in our approach.
3Technically, it is never linear, as A ⊂ T M \ 0 is not a vector bundle, but it could be the restriction to
A (i.e., to A-valued vector fields) of a mapX(U ) × X(U ) → X(U ) linear in the second component,
as we will see in Proposition 2.
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Lemma 2 Assume that the functions Na
i : A ∩ TU → R are 1-homogeneous and

can be smoothly extended to 0. Then there exist smooth functions Γ k
i j : U → R such

that
Na
i (x, y) = Γ a

i j (x)y
j . (19)

In particular, Na
i · j (x) := ∂y j Na

i (x, y) = Γ a
i j (x) and each Na

i can be naturally
extended to TU.

Proof Just recall that for each point p ∈ U and for any indices a, i , the function f
defined on TpM by f (v) = Na

i (v) is linear, as d f |0(v) = limλ↘0 f (λv)/λ = f (v)

for each v by homogeneity. �

Proposition 2 A nonlinear connection on A → M induces a Koszul connection
(that is, the map (18) is extended to X(U ) × X(U ) and, then, linear in the second
component) when its horizontal distribution can be smoothly extended to the zero
section (i.e., when its coefficients Na

i ’s satisfy (19) in every coordinate chart).

Most of the framework of linear connections explained here for A → M can be
extended to more general bundles in a standard way and will be used without further
comments in Sect. 6.

4.2 Interplay Between Anisotropic Connections and
Nonlinear Ones

Consider an anisotropic connection ∇ as in Definition 4. It can be proved that ∇
induces a horizontal distribution i.e., a nonlinear connection by using an intrinsic
approach [11, Sect. 3.1]. However, we would like to emphasize the following direct
relation with the cocycle transformation associated with the Christoffel symbols Γ a

i j
in (5).

Theorem 2 (1) An anisotropic connection ∇ defines canonically a nonlinear con-
nection ν∇ whose coefficients Na

i with respect to a chart are4

Na
i (x, y) = Γ a

i j (x, y) y
j . (20)

If ∇ is homogeneous then ν∇ is also homogeneous.
(2) A nonlinear connection ν defines canonically an anisotropic connection ∇ν

whose Christoffel symbols Γ a
i j with respect to a chart are

Γ a
i j (x, y) = ∂̇ j N

a
i (x, y) (= Na

i · j (x, y)).

4 In fact, there would also be a second nonlinear connection Γ a
ji (x, y) y

j . In our terms, this one

would be ν∇̃ for ∇̃ = ∇ − Tor (recall Remark 2).
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If ν is homogeneous then ∇ν is also homogeneous and ν(∇ν ) = ν. In particular, the
map ∇ → ν∇ is onto when it is restricted to the sets of homogeneous anisotropic
and nonlinear connections.

(3) For any homogeneous nonlinear connection ν, the set {∇ anisotropic
connection : ν∇ = ν} is

{∇ν + Q : Q ∈ T 1
2 (MA) and Qk

i j y
j = 0}.

(4) On the set of Koszul covariant derivatives (restricted to A), the map ∇ → ν∇
is injective and its image consists precisely of the (restrictions to A of the) linear
connections on T M → M.

Proof (1) Notice that the functions Na
i satisfy the cocycle transformation (14). Then,

the 0-homogeneity of the Christoffel symbols Γ a
i j (x, y) gives the 1-homogeneity of

the connection coefficients Na
i (x, y).

(2) The cocycle (14) for Na
i (x, y) implies the cocycle (6) for Γ a

i j . Then, the
homogeneity of ν implies (17) and thus (20).

(3) Straightforward from part (2) and (20).
(4) For such a ∇, the Christoffel symbols are direction independent and ν∇ is

linear. Given a second ∇̄ with ν∇̄ = ν∇ , the difference Q = ∇̄ − ∇ is also direction
independent and Qk

i j (x)y
j = 0, which implies Q = 0 by taking derivatives with

respect to each yl . �

In item (2), one sees in coordinates that the torsion of ∇ν (recall Definition 5)
coincides with the torsion of ν, which can be defined intrinsically [27, (7.8.10)].

Remark 4 Finally, we can give the promised interpretation of the definition of∇Xh
in (10), (11). Indeed, any X p = Xi (x)∂i |x ∈ TpM , p ≡ x , gives a horizontal lift
XH

v = Xi (x) δ/δxi |(x,y) ∈ HvA (⊂ TvA) for any v ≡ (x, y) with πA(v) = p. So,
substituting the expressions in the formulas of H(x,y)A and (20), we find

XH
v (h) = Xi (π(v))

(
∂i h − Γ k

i j y
j ∂̇kh

)
(v) = (∇Xh)v.

The last equality is in agreement with (11).

5 Anisotropic Versus Linear Connections

Next, our goal will be to identify anisotropic connections with a class of linear
connections on the vector bundle VA → A.

As shown at the beginning of Sect. 4, VA (⊂ T A) admits as natural coordinates
(x, y, ẏ), which will be relabeled here as (x, y, z). Thus, we can write za∂ya |(x,y) ∈
V(x,y)A. The tangent bundle T (VA) includes the vertical subbundle V(VA), whose
fiber Vw(VA) is generated by the ∂za |(x,y,z), where (x, y, z) are the coordinates of
w ∈ VA.
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5.1 Linear Connections on VA → A

In order to define an (Ehresmann) connection on VA → A, we have to provide a
smooth horizontal decomposition T (VA) = H(VA) ⊕ V(VA). Notice first that any
positive homothety hλ on A induces a natural morphism

hλ∗ = (Thλ)|VA : VA → VA, (x, y, z) → (x,λy,λz).

The new horizontal distribution (and then the Ehresmann connection itself) is called
invariant by positive homotheties if it is preserved by the tangent map of hλ∗ , i.e., if
for w ∈ VA,

(Thλ∗)w (Hw(VA)) = Hhλ∗ (w)(VA). (21)

In what follows, we will focus on the particular case when a linear connection ν∗
is given on VA → A. The (linear) covariant derivative operator associated with ν∗
will be denoted by∇∗. As the sections of VA → A are identified with the anisotropic
vector fields in T 1

0 (MA) (recall the vertical isomorphism (2)), ∇∗ becomes a map

∇∗ : X(A) × T 1
0 (MA) → T 1

0 (MA), (W, Z) → ∇∗
W Z . (22)

(The reader may appreciate the similarities and differences between (22) and the
anisotropic covariant derivative (9), the latter with (r, s) = (1, 0).) Moreover, it
is straightforward but tedious to prove (from the definition of ∇∗ in terms of the
corresponding horizontal decomposition) that the homothety invariance of ∇∗ is
characterized as follows. If a section ZV : A → VA is 0-homogeneous (meaning
ZV ◦ hλ = λ−1hλ∗ ◦ ZV as in [4, Sect. 1.5]), then

∇∗
Thλ(W )Z

V = λ−1Thλ(∇∗
W ZV). (23)

To specify ∇∗ by means of its Christoffel symbols, one has to choose a basis for
X(A) and another one for T 1

0 (MA). A possible choice would be the one associated
with coordinates, namely {∂i |(x,y), ∂̇i |(x,y)} = {∂xi |(x,y), ∂yi |(x,y)} for the former and5

{∂ j |x } ≡ {∂̇ j |(x,y)} for the latter. However, in case we have a prescribed nonlinear

connection
o
ν on A → M , a more convenient choice than {∂i , ∂̇i } may be {δi , ∂̇i }:

δi |(x,y) = δ

δxi

∣∣
∣∣
(x,y)

= ∂xi |(x,y) −
o
Na
i (x, y)∂ya |(x,y), ∂̇ j |(x,y) = ∂y j |(x,y).

This happens in the pseudo-Finsler case, where
o
ν is provided by the geodesic spray

and, thus, is homogeneous. This last property of
o
ν will be assumed for the sake

of simplicity, even though actually it will be important only when the homogene-

5 Keep in mind that this identification also corresponds exactly to the vertical isomorphism (2).
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ity of the Christoffel symbols is involved. From the homogeneity of
o
ν, δi is 1-

homogeneous, namely δi |(x,λy) = (Thλ)(x,y) (δi |(x,y)), while ∂̇i is 0-homogeneous,
namely ∂̇i |(x,λy) = λ−1 (Thλ)(x,y) (∂̇i |(x,y)).
Definition 6 The horizontal and vertical Christoffel symbols of ∇∗ with respect to

a prescribed homogeneous nonlinear connection
o
ν in the coordinates (U, x) are the

functions
(
Γ H

)a
i j ,

(
Γ V

)a
i j determined on A ∩ TU by

(
Γ H)a

i j (x, y) ∂a|x = ∇∗
δi |(x,y)∂ j (≡ ∇∗

δi |(x,y) ∂̇ j = (
Γ H)a

i j (x, y)∂̇a|(x,y)),
(
Γ V

)a
i j (x, y) ∂a|x = ∇∗

∂̇i |(x,y)∂ j (≡ ∇∗
∂̇i |(x,y) ∂̇ j = (

Γ V
)a
i j (x, y)∂̇a|(x,y)).

Proposition 3 (1) The Christoffel symbols
(
Γ H

)a
i j
,
(
Γ V

)a
i j
of ∇∗ with respect to

o
ν

satisfy:
(a) The cocycle for

(
Γ H

)a
i j (resp.,

(
Γ V

)a
i j ) under a change of coordinates coincides

with the one for the Christoffel symbolsΓ a
i j of an A-anisotropic connection (6) (resp.,

the one of an A-anisotropic (1, 2) tensor). In particular, if all the
(
Γ V

)a
i j ’s vanish

for some coordinates on U, then they vanish for any coordinates therein.
(b) If the linear connection ∇∗ is invariant by homotheties then, for all λ > 0
(b1)

(
Γ H

)a
i j

(x,λy) = (
Γ H

)a
i j

(x, y) (0-homogeneity), and

(b2)
(
Γ V

)a
i j (x,λy) = λ−1

(
Γ V

)a
i j (x, y) ((−1)-homogeneity).

(2) Conversely, once a homogeneous nonlinear connection
o
ν is prescribed, any

local choice of functions
(
Γ H

)a
i j ,

(
Γ V

)a
i j satisfying (a) for a coordinate atlas deter-

mines a unique linear connection ∇∗, whose Christoffel symbols with respect to
o
ν in

that atlas coincide with the original
(
Γ H

)a
i j ,

(
Γ V

)a
i j . Moreover, if (consistently with

(b) above) the functions
(
Γ H

)a
i j ,

(
Γ V

)a
i j are chosen to be, resp., with 0 and (−1)

homogeneity in y, then the produced ∇∗ is invariant by homotheties.

Proof (1) The cocycles of
(
Γ H

)a
i j and

(
Γ V

)a
i j can be checked from their definitions

using the transformation laws

δ̄i = ∂xk

∂ x̄ i
δk,

¯̇∂i = ∂xk

∂ x̄ i
∂̇k, ∂ j = ∂ x̄ l

∂x j
∂̄l

(recall that the last x j ’s are the ones on M and not those on T M). Then, using
only the definition of

(
Γ H

)a
i j and

(
Γ V

)a
i j , the 1-homogeneity of the δi ’s, and the

0-homogeneity of the ∂̇i ’s, the following identities hold true:

(
Γ H

)a
i j (x,λy) ∂̇a

∣∣
(x,λy) = ∇∗

δi |(x,λy) ∂̇ j = ∇∗
(Thλ)(x,y)( δi |(x,y))∂̇ j , (24)
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(
Γ H

)a
i j (x, y) ∂̇a

∣∣
(x,y) = ∇∗

δi |(x,y) ∂̇ j

= (
Γ H

)a
i j (x, y)λ (Thλ)

−1
(x,y) ( ∂̇a

∣∣
(x,λy)) = (Thλ)

−1
(x,y) (λ

(
Γ H

)a
i j (x, y) ∂̇a

∣∣
(x,λy)).

(25)
Now, in case that ∇∗ is invariant by homotheties, one can use (23) with ZV = ∂̇ j .

From (23), (24) and (25) it follows that

(
Γ H

)a
i j (x,λy) ∂̇a

∣∣
(x,λy) =λ−1 (Thλ)(x,y) (∇∗

δi |(x,y) ∂̇ j )

=λ−1 (Thλ)(x,y) (
(
Γ H

)a
i j (x, y) ∂̇a

∣∣
(x,y))

=λ−1 (Thλ)(x,y) {(Thλ)
−1
(x,y) (λ

(
Γ H

)a
i j (x, y) ∂̇a

∣∣
(x,λy))}

= (
Γ H

)a
i j (x, y) ∂̇a

∣∣
(x,λy) ,

thus proving (b1). An analogous calculation proves (b2).
(2) Knowing the cocycles that the Christoffel symbols of such a∇∗ should satisfy,

it is possible to define ∇∗ by
(
Γ H

)a
i j ,

(
Γ V

)a
i j on each coordinate chart and, as usual,

assert that the local definitions patch together to form a global linear connection on
VA → A. Moreover, (24) and (25) are still valid for this∇∗, and so are the analogous
identities for the

(
Γ V

)a
i j
’s. So, if the

(
Γ H

)a
i j
’s are 0-homogeneous and the

(
Γ V

)a
i j
’s

are (−1)-homogeneous, then one can use those identities to show that

∇∗
(Thλ)(x,y)( δi |(x,y))∂̇ j = λ−1 (Thλ)(x,y) (∇∗

δi |(x,y) ∂̇ j ), (26)

∇∗
(Thλ)(x,y)( ∂̇i |(x,y))∂̇ j = λ−1 (Thλ)(x,y) (∇∗

∂̇i |(x,y) ∂̇ j ). (27)

By using that {δi , ∂̇i } is a basis for X(A), {∂̇i } is a basis for the vertical vector fields,
and the two expressions ∇∗

(Thλ)(x,y)(W(x,y))
ZV and λ−1 (Thλ)(x,y) (∇∗

W(x,y)
ZV) are linear

in W and Leibnizian in ZV, the identities (26) and (27) prove that ∇∗ satisfies (23),
hence that ∇∗ is invariant by homotheties. �

5.2 Anisotropic Connections as Vertically Trivial Linear
Connections

For a linear connection ∇∗ on VA → A, the vanishing of all
(
Γ V

)a
i j ’s involves

only vertical derivatives and, so, it is an intrinsic property (independent also of
o
ν in

Proposition 3 item (1)(a)). This makes possible the following definition.

Definition 7 Let∇∗ be a linear connection onVA → A.We say that∇∗ is vertically
trivial if its vertical Christoffel symbols vanish (

(
Γ V

)a
i j = 0 everywhere).
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Remark 5 From Proposition 3, it is clear that any homogeneous nonlinear connec-

tion
o
ν induces a projection of the set of all ∇∗’s onto the set of vertically trivial

connections, such that (
(
Γ H

)a
i j ,

(
Γ V

)a
i j ) → (

(
Γ H

)a
i j , 0).

Theorem 3 Let
o
ν be a homogeneous nonlinear connection on A → M. The map

between the sets of the vertically trivial and the A-anisotropic connections, defined
locally by

{vertically trivial ∇∗’s on VA → A} −→ {A-anisotropic∇′s},
(
(
Γ H

)a
i j ,

(
Γ V

)a
i j = 0) → Γ a

i j = (
Γ H

)a
i j ,

is well defined and bijective, and it also identifies the homothety invariant ∇∗’s with
the homogeneous ∇’s.

Moreover, this map does not depend on the choice of
o
ν. So, there exists a natural

identification between vertically trivial and anisotropic connections, and it preserves
the homothety invariance of the connections.

Proof The first part is straightforward from Proposition 3. For the independence

of
o
ν, recall that when chosing a second ν ′, the differences δ′

i − δi are vertical and
thus∇∗

δ′
i−δi

∂ j = 0 as∇∗ is vertically trivial. For the last assertion, recall that A → M
always admits a homogeneous nonlinear connection (for example, the onedetermined
by a pseudo-Finsler metric on A or, in particular, by a Riemannian metric on M). �

6 Anisotropic Versus Finsler Connections

When a pseudo-Finsler metric L is given on A, the standard approach focuses on
two geometric structures.6 The first one is its geodesic spray on A and, thus, its
associated homogeneous nonlinear connection on A → M ; these are canonically
constructed from L . The second one is a covariant derivative on VA → A invariant
by homotheties. However, a priori there is not a canonical choice for the latter. Let
us explain briefly the interplay of anisotropic connections with these two structures.

Recall that, as L is 2-homogeneous, the nonlinear connections and the covariant
derivatives to be considered here will be homogeneous (invariant by homotheties).
In particular, all the conclusions of Theorem 2 will be applicable and, for example,
the torsion of a nonlinear connection ν can be identified with the torsion of the
corresponding anisotropic connection ∇ν .

6 We recommend the nice essays by Dahl [7] and Minguzzi [22] for background.
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6.1 The Metric Spray

Definition 8 A spray on A is a (smooth) sectionG : A → T Awhich satisfies: (a)G
is a second order differential equation (or s. o. vector field), that is, it can be written
as7:

G = yi
∂

∂xi
− 2Ga ∂

∂ya
,

and (b) The Ga’s are 2-homogeneous, i.e., Ga ◦ hλ = λ2Ga for λ > 0.8

We summarize some basic relations between sprays and homogeneous nonlinear
connections (analogous to Theorem 2) following [22, Sect. 3.4]. Recall that the
integral curves (x(t), y(t)) of G, satisfy dxi/dt = yi and

dya

dt
+ 2Ga(x(t), y(t)) = 0; (28)

their projections to M are usually called geodesics of G. On the other hand, the
geodesics of a nonlinear connection ν are its autoparallel curves: in terms of (18),
Dγ̇ γ̇ = 0, whereas on coordinates, dxi/dt = yi and

dya

dt
+ Na

i (x(t), y(t))yi (t) = 0. (29)

Proposition 4 (1) A homogeneous nonlinear connection ν defines a natural spray
G = C

H (the ν-horizontal lift of the canonical anisotropic field, recall (3) and (15)).
In coordinates,

G = yi
∂

∂xi
− yi Na

i

∂

∂ya
.

The integral curves of G are the geodesics of ν.

(2) A spray G in A induces a natural homogeneous nonlinear connection
o
ν with

coefficients
o
Na
i = ∂Ga

∂yi
= Ga

·i .

Then, G = C

o
H (

o
ν-horizontal lift of C) and

o
ν is torsion-free.

(3) The geodesics of a homogeneous nonlinear connection ν are the integral
curves of a spray G iff G = C

H.
(4) Given a homogeneous nonlinear connection ν, consider the natural spray

G = C
H and the nonlinear connection

o
ν associated with this G. Then the difference

ν− o
ν is in T 1

1 (MA) with components

7 Intrinsically, TπA ◦ G is the identity in A.
8 More intrinsically, [CV,G] = G, where CV is the Liouville vector field on A. In terms of coordi-
nates, CV

v = yi∂yi |(x,y) (recall (3) and (2)).
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Na
i − Ga

·i = 1

2
Torai j y

j ,

where Tor is the torsion of∇ν (see part (2) of Theorem 2). Moreover, if this difference
vanishes, then actually Tor vanishes.

(5) Any homogeneous nonlinear connection is determined by its geodesics and
torsion.

Proof (1) These Ga’s satisfy the cocycle transformation required to form a second
order equation and their 2-homogeneity comes from the 1-homogeneity of Na

i .

(2) From the cocycle of a second order vector field, the
o
Na
i ’s satisfy (14). The

1-homogeneity of
o
ν comes from the 2-homogeneity of the Ga’s. (Then G = C

o
H is

nothing but the Euler relation for the Ga’s.) The components of the torsion tensor of
o
ν are Ga

·i · j − Ga
· j ·i = Ga

·i · j − Ga
·i · j = 0.

(3) Recall the geodesic equations (28) and (29). Their solutions coincide if and
only if yi Na

i = 2Ga .
(4) This is a straightforward computation taking into account that Ga = Na

i y
i/2

and Torai j = Na
i · j − Na

j ·i . Thus, if Tor
a
i j y

j = 0, then ν = o
ν and its torsion vanishes

due to (3).
(5) This follows directly from (4). �

Remark 6 As a consequence of Theorem 2, the
o
ν associated with G can be always

obtained from a canonical homogeneous anisotropic connection ∇ o
ν (item (2) of the

theorem). This ∇ o
ν is the so-called Berwald anisotropic connection. The remaining

anisotropic connections that yield G would be controlled by an anisotropic tensor Q
satisfying Qa

i j y
i y j = 0.

The spray canonically associated with a pseudo-Finslermetric L , called itsmetric
spray, can be introduced in the following intrinsic way (see [4, Theorem 5.4.2]). The
1-form

d̂ L := ∂L

∂yi
dxi ∈ X∗(A)

is globally well-defined and, due to condition (2) in Definition 1, the 2-form dd̂ L is
nondegenerate. Thus, there exists a unique vector field G on A such that

ıGdd̂ L = −1

2
dL ,

where ı is the interior product operator. This G is indeed a spray and its geodesics
are those of (M, L) (the critical points of the energy functional). It is well-known
[25, (4.30)] that its components are Ga = γa

i j y
i y j , where

γa
i j = 1

2
gak

(
∂gki

∂x j
+ ∂gk j

∂xi
− ∂gi j

∂xk

)
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are the so-called formal Christoffel symbols. From them, the metric nonlinear con-

nection (that is, the
o
ν in Proposition 4 (2)) is the connection whose coefficients

are
o
Na
i = γa

i j y
j − gajCi jkγ

k
lm y

l ym,

where Ci jk = ∂ykgi j/2 is the Cartan tensor of L (which measures how far g is from
being pseudo-Riemannian).

Next our aim is to select an anisotropicLevi-Civita connection for a pseudo-Finsler
metric L , rethinking the role of the Chern connection.

Theorem 4 Given a pseudo-Finsler metric L and being its fundamental tensor g,
there exists a unique anisotropic connection ∇ that is torsion-free and metric, i.e.,
such that ∇g = 0. It is characterized by the Koszul-type formula

2gv(∇V
X Y, Z) = (X (gV (Y, Z)) − Z(gV (X,Y )) + Y (gV (X, Z))) (π(v))

+ gv([X,Y ] , Z) + gv([Z , X ] ,Y ) − gv([Y, Z ] , X)

− 2Cv(Y, Z ,∇V
X V ) − 2Cv(Z , X,∇V

Y V ) + 2Cv(X,Y,∇V
Z V ),

(30)
where v ∈ A, X,Y, Z ∈ X(M), V ∈ XA(U ) is any local extension of v and C is the
Cartan tensor defined above. Its Christoffel symbols are

Γ a
i j = 1

2
gak

(
δgki

δx j
+ δgk j

δxi
− δgi j

δxk

)
(31)

(the δ j are the ones of the associated nonlinear connection ν∇). This unique ∇ is
called the Levi-Civita anisotropic connection of L. The corresponding vertically
trivial linear connection is the Chern connection.

Proof Taking into account that ∂̇g = 2C , it follows that

(∇Xg)v(Y, Z) = X (gV (Y, Z))(π(v)) − gv(∇V
X Y, Z) − gv(Y,∇V

X Z) − 2Cv(Y, Z , ∇v
X V )

and using that ∇g = 0, as well as the above formula permuting X,Y, Z , one gets
(30). To get (31), observe that ∇g = 0 in coordinates means

δkgi j − Γ l
kigl j − Γ l

k jgil = 0,

which is equivalent to the structure equations of the Chern connection (see [2]),
and therefore its Christoffel symbols coincide with those of Chern’s as well as its
vertically trivial associated connection. �

Remark 7 We have seen that there are two distinguished anisotropic connections
associated with a pseudo-Finsler metric, the Berwald one (see Remark 6) and the
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Levi-Civita–Chern one (see the theorem just above). The difference between them
is a tensor L� metrically equivalent to the Landsberg tensor of L , which satisfies
L�

v(u, v) = 0 for all v ∈ A and u ∈ Tπ(v)M (see [25]). This property is essential as

it guarantees that both connections have the same associated nonlinear connection
o
ν

(the metric nonlinear connection of L). Indeed, the anisotropic connections differing
in a symmetric tensor Q with this property from the Chern or Berwald ones are

exactly the torsion-free anisotropic connections having
o
ν as their associated nonlinear

connection (recall Theorem 2, item (3)). The properties of this family of connections
as tools for the study of pseudo-Finsler metrics were collected in [12], where they
are referred to as distinguished connections.

6.2 The Finslerian Linear Connections

The linear connections associated with a pseudo-Finsler metric L live in the bundle
VA → A. As we have seen, L determines the metric spray G and, thus, the metric

nonlinear connection
o
ν, which plays the role of the prescribed auxiliary connection

seen in Sect. 5. Then, Proposition 3 and Theorem 3 are applicable. As a summary,
one has:

1. The linear connections ∇∗ used in pseudo-Finsler geometry are defined in the
vector bundle VA → A and they are homothetically invariant.

2. Such a ∇∗ can be specified by means of the Christoffel symbols with respect to

the metric nonlinear connection
o
ν (Proposition 3), namely:

(
Γ H

)k
i j
, which are

0-homogeneous, and
(
Γ V

)k
i j , which are (−1)-homogeneous.

3. The vertically trivial ∇∗’s are in natural correspondence with the homogeneous

A-anisotropic connections on M (Theorem 3). Using
o
ν, the non-vertically trivial

∇∗’s project onto the vertically trivial ones (Remark 5).
4. The most frequent choices of ∇∗ in Finsler Geometry have the following hori-

zontal and vertical parts:

– Berwald andHashiguchi:
(
Γ H

)k
i j = Nk

i · j := ∂̇ j N k
i ,where the N

j
i ’s come from

o
ν.

The Berwald connection is vertically trivial and the Hashiguchi connection has(
Γ V

)k
i j = Ck

i j = gklCi jl .

– Chern-Rund and Cartan:
(
Γ H

)k
i j = Γ k

i j as in (31). The Chern-Rund connection

is vertically trivial, and in the case of the Cartan connection,
(
Γ V

)k
i j = Ck

i j .
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7 Parallel Transport and Anisotropic Connections

Next, let us go back to our observers’ viewpoint in Sect. 2.2 to introduce parallel
transport and show how an anisotropic connection can be recovered from it.

7.1 Observers and Parallel Transport

The most natural way to compare vectors in different tangent spaces of a manifold
is by making use of parallel transport along a curve. Depending on what we want to
study, this parallel transport should preserve certain properties of vectors. In general,
we cannot ensure the preservation of the indicatrix of a pseudo-Finsler metric by a
linear map, because the indicatrices at different points may be not linearly equivalent.
Perhaps the best idea is to require the preservation of their best approximations by
a scalar product, namely, gv . As there is a dependence on v, we will need different
parallel transports for every v ∈ A. Summing up, the Christoffel symbols will depend
also on the direction, so the covariant derivative along a curve γ : I → M needs a
reference vector field W ∈ X(γ):

DW
γ : X(γ) → X(γ),

where X(γ) denotes the module of smooth vector fields along γ. Moreover, we will
assume that the dependence onW is pointwise, in the sense that at the instant t0, DW

γ

depends only on W (t0). Thinking about what happens in a Finsler spacetime, where
all the computations depend on the observer, we will make first the parallel transport
of the observer along γ by searching for a vector field V such that

DV
γ V = 0,

with the natural requirement that L ◦ V = 1. Finally,we are ready to parallel transport
vectors along γ using a parallel vector field Z , defined by

DV
γ Z = 0.

As we will see later, if we require this parallel transport to preserve also the metric gv

of the restspace, then the covariant derivative comes from the Levi-Civita–Chern
anisotropic connection. Geodesics are recovered as the curves with autoparallel
velocity, namely

Dγ̇
γ γ̇ = 0.

In particular, L ◦ γ̇ = const .
Of course, when we speak about a covariant derivative, we are assuming that

it satisfies the natural properties of a derivative. Let us put this on rigorous basis.
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In the following, given a smooth curve γ : [a, b] → M , F(I ) will denote the ring
of smooth real functions defined on I = [a, b]. Recall that A denotes a conic open
subset of T M , π : T M → M is the natural projection and γ∗(T M) is the pullbacked
of this bundle by means of the curve γ : [a, b] → M .

Definition 9 An A-anisotropic covariant derivative Dγ in A along a curve γ :
[a, b] → M is a map

Dγ : γ∗(A) × X(γ) → T M, (v, X) → Dv
γX ∈ Tπ(v)M

with a smooth dependence on v, such that if π(v) = γ(t0) with t0 ∈ [a, b], then
1. Dv

γ(X + Y ) = Dv
γX + Dv

γY ; X,Y ∈ X(γ),

2. Dv
γ( f X) = d f

dt (t0)X (t0) + f (t0)Dv
γX ; f ∈ F(I ), X ∈ X(γ).

Remark 8 Let πγ : γ∗(A) → [a, b] be the pullback fibered manifold obtained from
A → M by γ : [a, b] → M . The formal similarity of our definition of Dγ with
Definition 4 for anisotropic connections can be stressed by redefining: (a) the domain
of Dγ asX(γ) and (b) its codomain as the sections of the pullback bundleπ∗

γ(T M) →
γ∗(A) obtained from γ∗(T M) → [a, b] by πγ : γ∗(A) → [a, b].
The notion of anisotropic connection gathers the information of the covariant deriva-
tives along different curves. In fact, there is a unique covariant derivative along curves
determined by an anisotropic connection (see [12, Proposition 2.7]).

Proposition 5 Given a smooth curve γ : [a, b] → M, an A-anisotropic connection
∇ determines the unique A-anisotropic covariant derivative along γ with the follow-
ing property: if X ∈ X(M), then Dv

γ(Xγ) = ∇v
γ̇ X, where Xγ := X ◦ γ.

Proof Indeed, given a local chart (U, x) on M , we can express this covariant deriva-
tive in terms of the Christoffel symbols of the A-anisotropic connection ∇, which
are defined as the functions Γ k

i j : TU ∩ A → R determined by

∇v
∂i
∂ j = Γ k

i j (v) ∂k |π(v).

It is easy to check that if X = Xk∂k , then

DW
γ X = (Ẋ i + (Γ i

jk ◦ W )γ̇ j Xk)∂i . (32)

This provides coordinate expressions for the covariant derivative.

Moreover, given a curve γ : [a, b] → M , if one fixes the reference vector field W ∈
X(γ) and t1, t2 ∈ [a, b], then it is possible to define a parallel transport

PW
t1,t2 : Tγ(t1)M → Tγ(t2)M

in such a way that PW
t1,t2(z) = Z(t2), where Z ∈ X(γ) is such that DW

γ Z = 0 and
Z(t1) = z.
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Remark 9 The parallel transport PW
t1,t2 shares all the natural properties of the parallel

transport with respect to an affine connection (it is a well-defined linear isomorphism,
invariant under reparametrizations of γ including the reversal of the sign). Indeed, as
the value of the Christoffel symbols is determined by W , which is fixed, (32) yields
an equation for the transport of the same type as in the affine case.

There is a different type of parallel transport which is not always well-defined,
namely, when the goal is to find a vector field V along γ such that DV

γ V = 0. The
existence of this parallel transport is not guaranteed along the whole curve unless we
have some control on the Christoffel symbols.

Definition 10 A smooth curve γ : [a, b] → M is parallel transport complete if for
every v ∈ A ∩ Tγ(a)M , there exists a (unique) A-admissible vector field V ∈ X(γ)

such that DV
γ V = 0 and V (a) = v. Consistently with Sect. 3.1, here A-admissible

means that V (t) ∈ A for all t ∈ [a, b].
Remark 10 From standard results of ODE’s one has that, for every v ∈ A ∩ Tγ(a)M ,
there exists some ε > 0 such that a parallel V as above is well-defined in [a, a + ε].
Moreover, all the curves are parallel transport complete in the following two cases:
(1) when A = T M \ 0 and the anisotropic connection is homogeneous, and (2) in
the case of a Finsler spacetime (M, L)with a distinguished connection (for the latter,
notice that the anisotropic connection is homogeneous and L(V ) is constant for any
parallelly transported vector V , so that it cannot abandon A). From now on, we
will restrict ourselves to work with curves where this parallel transport is defined
everywhere.

Let us define the parallel transports which have a geometric meaning to compare
what happens in different points of the manifold.

Definition 11 (Instantaneous observer’s parallel transport) Let ∇ be an
A-anisotropic connection and γ : [a, b] → M a parallel transport complete curve.
For each t1, t2 ∈ [a, b], the instantaneous observer’s parallel transport is the map

Pt1,t2 : A ∩ Tγ(t1)M → A ∩ Tγ(t2)M

given by Pt1,t2(v) = V (t2), for V ∈ X(γ) satisfying V (t1) = v and DV
γ V = 0.

This parallel transport coincides the one obtained from the nonlinear connection
which appears in many classical textbooks devoted to Finsler geometry as [19, Chap.
VII], [1, Sect. 2.1.6], [25, p. 103], [4, Sect. 2.1], [8, Definition 1.4] and [27, Sect. 7.6].
In some other textbooks there is an additional notion of parallel transport taking as a
referencevector the velocity of the curve (see [25,Definition7.3.1], [26, Sect. 5.3] and
[6, Chap. 4]). Recall that we defined instantaneous observers in the setting of Finsler
spacetimes as vectors v ∈ A of unit length L(v) = 1. Of course, the constraint on the
length is not relevant for the transport. In the case of general anisotropic connections
such a restriction makes no sense but we have maintained the name of observers to
stress the relativistic geometric intuitions.
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Definition 12 (Parallel transport with respect to an instantaneous observer) Let
∇ be A-anisotropic connection and γ : [a, b] → M a parallel transport complete
curve. For each t1, t2 ∈ [a, b] and observer v ∈ Tγ(t1)M ∩ A, the parallel transport
with respect to v is the map

Pv
t1,t2 : Tγ(t1)M → Tγ(t2)M

obtained as Pv
t1,t2(w)=W (t2), whereW ∈ X(γ) satisfies thatW (t1)=w and DV

γ W =
0 with V satisfying DV

γ V = 0 and V (t1) = v.

Recall that, as V is fixed by v, this parallel transport satisfies the natural properties of
the transport explained in Remark 9. See [23] for a general treatment of parallelism.

7.2 Recovering the Anisotropic Connection from the
Transport

First observe that given a smooth curve γ : [a, b] → M , we can define the parallel
transport of covectors with respect to the instantaneous observer v ∈ Tγ(a)M ∩ A,

Pv
a,b : Tγ(a)M

∗ → Tγ(b)M
∗,

as
Pv
a,b(θ)(w) = θ(Pv

b,a(w))

for any θ ∈ Tγ(a)M∗ and w ∈ Tγ(b)M , so that a parallel covector field on a parallel
vector field will be constant. Imposing commutativity with the tensor product, this
parallel transport can be extended to arbitrary (r, s)-tensors.

Next, we write explicitly such a transport regarding the tensors as multilinear
maps. Consider an A-anisotropic tensor T ∈ T r

s (MA) and a curve γ : [a, b] → M .
Then we can define the parallel transport Pt1,t2(T )v for any t1, t2 ∈ [a, b] as the map

Pt1,t2(T )v : T ∗
π(v)M ×

r
︷︸︸︷· · · ×T ∗

π(v)M × Tπ(v)M ×
s

︷︸︸︷· · · ×Tπ(v)M → R

given by

Pt1,t2(T )v(θ
1, . . . , θr , v1, . . . , vs)

= TPt2 ,t1 (v)(P
v
t2,t1(θ

1), . . . , Pv
t2,t1(θ

r ), Pv
t2,t1(v1), . . . , P

v
t2,t1(vs)).

In particular, we can define a curve of anisotropic tensors in Tπ(v)M :

Pt (T ) = Pt,a(T ).
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Our next goal is to compare this parallel transport with the covariant derivative of
any A-anisotropic tensor, as given in Theorem 1 and formula (12). Namely, being
Pt (T ) a curve in a vector space, let us relate its natural derivative with ∇γ̇(a)T .

Proposition 6 Given an A-anisotropic tensor T ∈ T r
s (MA), an A-anisotropic con-

nection ∇ and a regular curve γ : [a, b] → M, it holds that

(∇γ̇(a)T )v = d

dt
Pt (T )v|t=a,

for any v ∈ Tγ(a)M ∩ A.

Proof Assume first that r = 0. Recall that we can compute (∇γ̇(a)T )v(v1, . . . , vs)

choosing an A-admissible extension V of v and arbitrary extensions X, X1, . . . , Xs

of γ̇(a), v1, . . . , vs , respectively. In particular, these extensions can be chosen in such
a way that ∇V

X V = ∇V
X X j = 0 along γ for all j = 1, . . . , s. With these choices,

(∇γ̇(a)T )v(v1, . . . , vs) = Xγ(a)(TV (X1, . . . , Xs))

= d

dt
(TVγ(t) ((X1)γ(t), . . . , (Xs)γ(t)))|t=a . (33)

Finally, observe that Vγ(t) = Pa,t (v), since V (t) := Vγ(t) is a parallel observer along
γ (recall that ∇V

X V = 0) and V (a) = Vγ(a) = v. Moreover, (Xi )γ(t) = Pv
a,t (vi ) since

∇V
X Xi = 0 and (Xi )γ(a) = vi . Replacing these quantities in (33), we get

(∇γ̇(a)T )v(v1, . . . , vs)|t=a

= d

dt
TPa,t (v)(P

v
a,t (v1), . . . , P

v
a,t (vs))|t=a = d

dt
Pt (T )v(v1, . . . , vs)|t=a,

as required.
For the general case r > 0, observe that given the covector fields θ1, . . . , θr , it

is possible to choose one-forms ωi such that ∇V
X ωi = 0 and (ωi )γ(a) = θi . Then,

applying the proposition for r = 0, it can be shown that (ωi )γ(t) = Pa,t (θ
i ). The

result follows analogously to the case r = 0 by computing the covariant derivative
with V as a reference vector and ω1, . . . ,ωr , X1, . . . , Xs as above. �

It is worth pointing out that, as only the parallel transport close to t = a is needed
for each chosen v, the result can be applied even if the curve is not parallel transport
complete (see Remark 10).

7.3 Levi-Civita–Chern Connection of a Finsler Spacetime

Let (M, L) be a pseudo-Finsler manifold with L : A → R. We aim to find an A-
anisotropic connection that defines a parallel transport which preserves some metric
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properties. As we explained in Sect. 7, the parallel transport of an instantaneous
observer should preserve the L-length and the parallel transport with respect to an
instantaneous observer should preserve the fundamental tensor gv , namely, for any
curve γ : [a, b] → M and v ∈ A ∩ Tγ(a)M such that the parallel transport of v is
well-defined along γ,

gPa,b(v)(P
v
a,b(u), Pv

a,b(w)) = gv(u, w) (34)

for all u, w ∈ Tπ(v)M . Observe that this implies in particular that L(v) = L(Pa,b(v)),
as

L(v) = gv(v, v) = gPa,b(v)(P
v
a,b(v), Pv

a,b(v)) = L(Pv
a,b(v)) = L(Pa,b(v)).

Proposition 7 Let (M, L)beapseudo-Finslermanifold. Then its Levi-Civita–Chern
A-anisotropic connection is the only torsion-free connectionwith a parallel transport
that preserves the fundamental tensor of L.

Proof Observe that byProposition 6, the fact that the parallel transport of∇ preserves
the fundamental tensor g as in (34) is equivalent to ∇g = 0, and therefore ∇ is the
Levi-Civita–Chern connection of (M, L). �
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