
Chapter 6
Information-Theoretic Approaches

Max Garzon , Sambriddhi Mainali, and Kalidas Jana

Abstract An entirely different but extremely relevant approach to dimensionality
reduction can be taken using a different criterion, namely quantifying the informa-
tion content of the features involved, within themselves or in relation to others. It
turns out that Shannon’s definition of information yields surprisingly interesting
reductions. This chapter discusses five major variations of this idea, including
comparisons using the concept of mutual information previously used in statistics
and machine learning.

The problem of reliable telecommunication across a noisy channel (such as a phone
line or extraterrestrial space between planets) led Shannon to fundamental research,
an objective definition of information and the well-known theory of error-detecting
and error-correcting codes in his foundational paper [1]. The theory blossomed into
the field of information theory. The key concept in this field, Shannon entropy,
quantifies the degree of uncertainty of (complementary to information in) a random
process. This metric provides the mathematical foundation for information-theoretic
analyses of channel capacity that characterize the maximum amount of information
that can be transmitted through a noisy channel, while allowing noise removal
without loss of information [1]. It has been also interpreted as a measure of the
degree of randomness and/or diversity in a stochastic process. (The concept of
entropy itself can be traced back to [2], later used in physics for heat theory and
thermodynamics by [3], but here it will only refer to Shannon entropy and be just
referred to as entropy and denoted by the customary H .)

Independence between features can be quantified using Shannon’s conditional
entropy H(X1 | X2 ) between two features X1 and X2. When this entropy is low,
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X2 essentially determines X1, and thus X1 is not an informative feature and could
be discarded in favor of X1. Five major variations of this kind will be reviewed.

The goal of this chapter is to show that the concept of entropy can be very
effective for dimensionality reduction in unexpected ways.

6.1 Shannon Entropy (H)

This section provides definitions of Shannon entropy, conditional entropy, and their
interpretations, along with a description of software libraries that can be used when
manual computation becomes prohibitively costly, for example, when working with
large datasets. Shannon entropy affords a nonlinear and nongeometric approach to
dimensionality reduction based on information theory. A feature selection strategy
can be based on the concept of conditional Shannon entropy of a random variable.
(Sect. 11.1 defines background concepts in statistics and probability.)

According to Shannon, the information content I (a) provided by an observation
[X = a] (or just X = a) of a random variable (RV) X on a probability space with a
sample space Ω is the real number

I (a) = − log
2
(P (X = a)) ,

where P(X = a) is the probability of the event [X = a] = {e ∈ Ω : X(e) = a} =
X−1(a) associated with an observation of a value a for X.

The Shannon entropy H(X) of a discrete RV X is the expected value (mean) I of the
information content of the observations of all possible values of X, i.e., if X takes on only
a finite number of values a1, . . . , an with corresponding probabilities P1, . . . , Pn, then the
entropy of X is given by

H(X) = −
n∑

i=1

P(Xi = ai) log
2

P(Xi = ai) = −
n∑

i=1

Pi log
2
Pi . (6.1)

Since it takes just about log
2
(n) bits to express an integer n in, say, binary,

I (a) amounts to the average number of bits necessary to remove the uncertainty
in answering a question like what is the value of the observation of X? when
performing the random experiment in the background probability space. This is the
key idea in Shannon’s definition of information (content).

Entropy can thus be regarded as a measure of the average uncertainty in
determining any given outcome of an observation of X or its quantification as the
average number of bits necessary to identify all possible (unique) values of X (such
as the 2 outcomes of a Bernoulli trial, somewhere between 0 and 1 bit, or the 6
outcomes of the roll of a die, somewhere between 2 and 3 bits). (If natural logarithms
are used, the unit is called “nats” not bits. Throughout this book, entropies are
reported in bits.)
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Example 6.1 (Entropy of a Bernoulli Trial) In a Bernoulli trial (defined in
Sect. 11.1), i.e., a sample space Ω with just two outcomes (success and failure,
or heads and tails, or simply 1 and 0) with probabilities, p and 1 − p, respectively,
the RV X with value X = 1 if and only if the outcome is a success (X = 0 if it is a
failure), the probability distribution of X is P(X = 1) = P and P(X = 0) = 1−P .
The entropy is

H(X) = −P log
2
(P ) − (1 − P) log

2
(1 − P).

��
Figure 6.1 shows the graph of the Shannon entropy H(X) of the Bernoulli RV

X. It is a concave function of P that attains a minimum value of zero for P = 0
and P = 1 and reaches a maximum value of 1 bit at P = 0.5 = 1 − p. Thus, the
entropy is 0 when the outcome of the trial is a sure event (implying that there is no
uncertainty in the outcomes of the random experiment), but the entropy is maximum
when the outcomes are equally likely.

Fig. 6.1 For a Bernoulli random variable X with just two outcomes, the uncertainty is maximum
H(X) = 1 when the two outcomes are equally likely (with probability P = 1

2 ) and it is minimum
when one of them is certain (P = 1, hence the other impossible 1 − P = 0, or vice versa)
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Example 6.2 (Entropy of a Roll of a Fair Die) If a die is fair, then a throw of the die
has 6 equally likely outcomes, each with probability 1/6. Therefore, the Shannon
entropy in this case is

H(X) = −
6∑

i=1

Pi log
2
Pi = −

6∑

i=1

1

6
log

2
(
1

6
) = log

2
6 = 2.56 bits.

��
There is more uncertainty in this stochastic process than in a Bernoulli trial

because 2.58 > 1, which makes sense intuitively because there are now 6 > 2
possibilities. In other words, knowing the outcome of a dice roll is more informative
(removes more uncertainty) than knowing the outcome of a coin toss indeed!

If two RVs X and Z on the same sample space are correlated (e.g., the value up
on one of the dice in a roll of two and the sum of the two values for both dice), it is to
be expected that knowing the value of the outcome of the corresponding experiment
(rolling the dice) for the observations for one of them will reduce uncertainty in the
value of the other. This reduction can be quantified precisely as follows:

The conditional entropy H( Z | X ) of a RV Z on (or relative to) another RV X is the
average entropy of Z conditioned on the observation of a value of X, i.e., the expected
value E(H(Za)) of the entropies of the RVs given by Za : [Z | X = a], across all possible
values of a in the range of X.

Example 6.3 (Bivariate RVs) For conditional entropy for two scalar discrete RVs X

and Z, let X take on two values 1 and 2 and Z take on three values 1, 2, and 3, with
a joint probability distribution of X and Z given in Table 6.1. The Shannon entropy
of Z is H(Z) = 1.56 bits. ��

Thus, given the joint probability distribution (defined in Sect. 11.1) of a sample
of observations of X and Z, where X takes values x1, . . . , xm and Z takes values
z1, . . . , zn, the conditional entropy of Z given X is

H(Z | X ) =
m∑

i=1

P(X = xi)H(Z | X = xi )

= −
m∑

i=1

P(X = xi)

n∑

j=1

P(Z = zj |X = xi) log
2
(P (Z = zj |X = xi)).

Table 6.1 Shannon entropy
of Z and conditional entropy
of Z given X for the joint
probability distribution in the
entries

Z \ X 1 2

1 0.15 0.10

2 0.20 0.20

3 0.30 0.05

H(Z) = 1.56 bits
H( Z | X ) = 1.48 bits
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This conditional entropy can be interpreted as the uncertainty left in the values of
Z given the observations of covariate feature X in a given data point Zxi

, averaged
across all data points xi .

Example 6.4 (Conditional Entropy) If the joint probability distribution is as given
in Table 6.1, the conditional entropy of Z given X is H(Z | X ) = 1.48 bits. ��

The conditional entropy can be generalized to any number of conditions, i.e.,
H(Z | X1, X2, · · · , Xm ) can be interpreted as the average uncertainty left in feature
Z given the values of joint observations X1 = x1, X2 = x2, · · · , Xm = xm in the
same data points.

This definition of conditional entropy will be applied in Sect. 6.4 to achieve
dimensionality reduction to 12 or 6 features in a dataset of 345 malware features
taken from a sample of Microsoft’s Malware Classification dataset with 1805
features (described in Chap. 1 and Sect. 11.4). Because the sample dataset is big,
manual computation of conditional entropy is prohibitively costly. Software will
come in handy to make computation manageable for such big datasets. One
such software is the R package infotheo. It computes Shannon entropy using
the Miller–Madow asymptotic bias corrected empirical estimator (which requires
discretized features, and the option equalfreq can be used to discretize the data,
where necessary, as illustrated in Sect. 6.4).

The Shannon entropy is also defined for continuous random variables as well.
However, currently available computing software such as infotheo uses only
discretized data even if it is continuous at the source. This is not really an issue
since most data nowadays are collected with digital sensors and are thus discrete.
Otherwise, truly continuous data has to be processed on conventional computers and
so it has to be digitized in the process anyway.

6.2 Reduction by Conditional Entropy

This section and the next introduce alternative methods to use Shannon’s entropy to
reduce dimensionality in datasets with too many features, along with an assessment
of their effectiveness in preserving significant information from the original dataset.
The key idea here is to select more informative features or remove features whose
information content is determined by the selected features, as determined by
Shannon conditional entropy.

Example 6.5 The problem [MalC] of Malware Classification calls for an assign-
ment of types to malwares from a predetermined set of types. It is a major problem
in cyber security, where new malware is emerging at an alarming rate (for instance,
more than 4.62 million new instances of malicious code were detected in June–
July, 2019 [4].) A rigorous analysis to this problem is critical to study the evolution
of malware and in developing appropriate countermeasures to contain cybercrime.
Such an analysis can be either static or dynamic. A dynamic analysis depends on the



132 M. Garzon et al.

execution of malware in a controlled environment [5, 6] and is costly effortwise [7].
On the other hand, a static analysis relying on decompilation tools (like IDA Pro)
is more effective and efficient [8, 9]. However, it suffers from a major information
retrieval issue since important information (like code layout, meta annotations, and
even source language) in the source code is usually lost in the compilation process
and cannot be retrieved in decompilation. ��

This section addresses the problem only indirectly by identifying important
features to classify a piece of malware into categories for which known counter-
measures are available. There are just too many features that can be associated
with a piece of malware (e.g., 1809 in the Microsoft’s dataset, described in
Sect. 11.5.) Variants of entropy methods can be used to reduce the dimensionality
of pre-identified features of these malwares to solve the classification problem. A
first reduction by Ahmadi [10] (arxiv.org/abs/1802.10135) in 2016 used only 344
features extracted from the original Microsoft Malware Classification Challenge
containing more than a thousand features [11].

The versatility and effectiveness of these methods can be illustrated with a second
type of problem, the noisy classification problem (described in detail in Sect. 11.3.)

Example 6.6 One question of interest in any approach to DR is how good the
approach is at identifying dependencies (statistical or other) in the features in the
dataset. In a controlled experiment, a synthetic set can be designed with perfect
knowledge of these dependencies from independent (e.g., randomly generated) raw
(primitive) features. The effectiveness of DR methods can then be assessed by how
well they discover these hidden, yet most relevant and independent features from
a full set that includes other confounding features derived from the few primitive
ones.

The primitive features were generated using the method described in [12] and
publicly available as an API in Python at sklearn.datasets.make_classification. The
primitive features are mixtures of several Gaussian clusters located near corners
of the 12D hypercube and correspond to the labels in a classification problem. For
each class label, the informative features are drawn independently from the standard
normal distribution N(0, 1). Four more dependent features were added as various
linear combinations (with random coefficients) of the primitive features, as provided
in the API. In the second phase, 6 more predictors were generated as repeats of two
randomly selected (but uniform for all data points) primitive features/columns. One
more feature was added as the sum of squares of two features selected randomly,
one more feature consisting of the values of the predictions of a linear regression
model fitted using two other randomly selected features as predictors, and the next
feature was the deviation in the prediction from the true value. The last predictor was
obtained in a similar manner but using the squares of the randomly chosen feature
to predict one from the other. One last feature was generated as the outcome of the
natural logarithm of a randomly selected but uniform predictor (a transformation
that does not change entropy), for a total of 22 predictors. (A detailed description
of how the synthetic datasets were generated is given with the datasets SYN12 and
SYN23 in Sect. 11.5.)
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A second dataset was generated likewise but halving the number of all parameters
involved in generating features in the first set. ��

These datasets are used in Sect. 6.3 as well for assessment of the variant of the
method being discussed there.

For this variant of entropy methods, it is important to quantify the informational
independence between two predictors, unlike a dependent variable and a predictor
used in conventional methods. Such quantification is done using Shannon condi-
tional entropy between two predictors X1 and X2, i.e., H(X1 | X2 ). When this
entropy is high, knowledge of the values of X2 removes little of the uncertainty
in the values of X1 and selection of X1 may be necessary even if X2 has been
included [13]. Conversely, when this entropy is zero (or very low), X2 (essentially,
respectively) determines X1, and thus X2 is an informative feature and would
suffice because models in a solution could derive any information in X1 from it.
This concept is analogous to the concept of multicolinearity in regression models
described in Sect. 2.1. Multicolinearity is the condition that occurs if a few or
all predictors are linearly correlated. As with multicolinearity, the information
dependence between predictors is undesirable.

This section illustrates the application of two variants of this conditional entropy
first introduced in [13]. A few significant predictors from the full list of predictors
are obtained that possibly help in ascertaining target feature values (e.g., malware
type.) To use as few Xs as possible, only predictors informative of the target are
of interest. In particular, they should be as independent from other predictors as
possible. Information-theoretically, that means that the conditional entropies relative
to the other predictors (i.e., the uncertainty left in the predictor given another
predictor’s value) should be high overall. Thus, to decide whether to include Xi ,
the average is computed as

avgi = avg {H(Xi | Xj ) : 1 ≤ j �= i ≤ m}

of the H(Xi | Xj ) over all other Xj to quantify how informative predictor Xi is
as compared to others, for each i in the range of p predictors (excluding the target
feature). For a given dataset, as many features as desired can thus be selected from
the top features maximizing this average, after sorting the list in decreasing order.

A second paired variant of the same idea is to use the double conditional entropy
to compute H(Xi | Xj ,Xk ), for all j and k to determine how informative Xi is
given the pair Xj ,Xk when compared to all other pairs. If the average of these
entropies is high, Xi should be selected, as above. The same process can be repeated
to select more features as needed.

To compute conditional entropies between two predictors, infotheo package
available in R was used, as mentioned above. (The package can be installed using
the “install.packages(infotheo)” command in the R-console, as described in
Sect. 11.6.) The Microsoft Malware Classification dataset was used to select two
datasets using each variant. The first dataset contained only six predictors and the
second contained 12 predictors. Then, these datasets were fed to several statistical
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and machine learning algorithms to assess the performance of these variants based
on the performance of the resulting solutions for the classification problems on the
datasets SYN12 and SYN23.

To assess the quality of this method of DR, one can proceed in two ways.
First, the criterion being used (comparison of the information-theoretic content
of the features) provides a good rationale why the choices may be effective and
interpretable. However, there remains the issue of whether Shannon entropy really
defines information as humans conceive of it, a much harder question that has
remained unanswered. Alternatively, one can compare the effect of the choices on
how good solution models are (as described in Sect. 2.4) when obtained on various
sets of predictors. Thus, machine learning models trained on these reduced sets of
predictors were compared against the scores yielded by machine learning models
trained on the full set of predictor features, for both the Malware and synthetic
datasets.

Following the standard procedure described above in Sect. 2.4, these datasets
were split into training and testing subsets in a proportion of 80%–20%. The
machine learning models included Linear Discriminant Analysis (LDA), Support
Vector Machine (SVM), Multinomial Logistic Regression (MLR), Gaussian Naive-
Bayes (GNB), Random Forest (RF), k-Nearest Neighbors (kNNs), and Neural
Networks (NNs). The statistical models (the first four) were implemented using
R scripts and the machine learning models were implemented using Python code
(as in Sect. 11.6.) As usual, the F1-scores were selected as the metric to assess the
quality of the solution models trained and these scores and are shown in Fig. 6.2 and
Table 6.2 in the next section.

The methods have been used with similar success on other datasets, including
[BioTC] and the synthetic datasets, selecting sets of various sizes (6 and 12
features) as well, as described in [13]. In terms of solutions, some models (RFs,
kNNs) perform significantly better regardless of the problem ([MalC], [BioTC],
or [NoisC]), while others (SVMs, LDAs, and MLRs) perform very inconsistently
across these three representative problems. On average, solution models using only
6 features mostly performed poorly as compared to those using 12 features. Six (6)
features might be too few for solving a complex problem, so reducing features too
much may hurt for abiotic data.

Moreover, these DR methods offer the additional advantage of being computa-
tionally efficient because they are parallelizable. To compute conditional entropies
between a pair of features (either two predictors or one predictor plus a target), the
information about other features is not required, and hence several disjoint subsets of
data can always be extracted and assigned to different computing nodes. This makes
the process of feature extraction feasible by parallelization, even for big datasets.

In summary, conditional entropy performs competitively, if not very well, across
the board compared to random selection of features or other methods.
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Fig. 6.2 Overall performance of DR to (a) 6 features (top) and (b) 12 features (bottom) based
on conditional entropy on the problem of Malware Classification [MalCP]. Conditional entropy
performs competitively, if not very well, with most machine learning solutions, The DR methods
are selection by conditional entropy on predictors only (single H+m, paired H+m+, iterated
H+m++) excluding targets, except LDA, GNB, and NN for paired iterative entropies (H++)

6.3 Reduction by Iterated Conditional Entropy

The results of Shannon conditional entropy for DR discussed in the previous section
suggest the possibility that the interaction between various predictors at various
levels might (perhaps jointly) contain better information about other predictors
(which might have been deemed as most informative by themselves.) Therefore,
another interesting variation is to select features based on a recursive procedure in
which earlier choices affect together later selections.

In order to demonstrate the effectiveness of this alternative method for DR,
the same procedure problems and datasets presented in the examples in Sect. 6.2
were used to assess the quality of machine learning models being trained using
features selected by this alternative (indicated by H+m++). The scores are presented
in Figs. 6.2 and 6.3, together with previously discussed variants of conditional
entropy. On average, machine learning models seem to give better scores when the
dimensionality reduction is done using the iterated conditional entropy method on
the malware dataset. There seems to be no significant difference in the performance
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Table 6.2 Performance comparison (F1-scores) between machine learning models trained using
all features (last column) and those trained using reduced features (second and third columns) from
the large synthetic dataset SYN23 for the problem of Noisy Classification [NoisC]

DR variant Solution Reduced All features

All features LDA 0.6937

MLR 0.8013

SVM 0.8690

GNB 0.5085

RF 0.9291

kNN 0.9680

NN 0.6860

H+m (Conditional) LDA 0.9402

MLR 0.5728

SVM 0.8104

GNB 0.9096

RF 0.9717

kNN 0.9460

NN 0.8726

H+m+ (Paired Conditional) LDA 0.9484

MLR 0.9345

SVM 0.9902

GNB 0.9425

RF 0.9800

kNN 0.9578

NN 0.9082

H+m++ (Iterated) LDA 0.9481

MLR 0.9345

SVM 0.9906

GNB 0.9547

RF 0.9794

kNN 0.9910

NN 0.9417

of machine learning models trained on the features selected using single and paired
conditional entropies. Moreover, these models seem to give better performance
when 12 reduced features are used as predictors instead of 6. On the other hand, the
running times on an HPC of the relative entropy calculations to select features are
in the order of minutes (single entropies), under 2 h (paired entropies) and under 6 h
(iterated entropies.) So, there is a trade-off between the performance of the machine
learning models and the computational resources required to select features using
these information-theoretic DR methods.

In order to demonstrate that feature selection using entropy methods without
target is most likely an optimal choice than using the whole dataset, the methods
was tried also on the synthetic datasets mentioned above (described in Sect. 11.5).
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Fig. 6.3 Overall performance of DR to (a) 6 features (top) and (b) 12 features (bottom) based
on conditional entropy on the problem of Synthetic Data Classification [NoisC] (with controlled
dependencies) on synthetic datasets SYN12 and SYN23. Conditional entropy performs competi-
tively, if not very well, with most machine learning solutions. The DR methods are selection by
conditional entropy on predictors only (H+m, paired H+m+, iterated H+m++) excluding targets,
except LDA, GNB, and NN for paired iterative entropies (H++)

Standard metrics like accuracy, precision, recall, and F1-score were used to evaluate
the performance of different ML models trained and validated on these datasets.
A dimensionality reduction method was deemed to be of a good quality if an
average performance score of several machine learning models trained to solve these
problems is above 81% (average of the scores reported in [13]) for both problems.

A comparison of the scores is shown in Table 6.2. As described above, the
synthetic dataset was designed so as to contain some predictors that could be derived
using some kind of combination of other predictors. Therefore, these features
are not informationally independent. Although the impact of this dependency is
not so evident in some machine learning models on the given dataset, the usage
of all features led to solution models with the performance being dominated by
those trained using reduced features on average. Therefore, as a general rule of
thumb, one can easily conclude that in the presence of too many predictors, it is
always a wise choice to look out for some dimensionality reduction methods to
obtain only informationally rich features. However, there is still a question that
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remains unanswered, i.e., what is the threshold determining too many predictors?
The answer to this question really ultimately depends on the type of data science
problem at hand and the choice of features in the dataset. One can only hope to
consider all constraints impacting the search for a solution, for example, answering
the following questions (perhaps among others):

• Is it computationally feasible to include all features available?
• Is there enough time to train a model with all features and validate it?
• Are there enough datapoints to include all features (for example, a dataset

containing only 10 points might be enough to train a statistical model if there is
only one predictor, but not when more than six predictors are to be considered)?

As with conditional entropy in Sect. 6.2, the methods have been used with similar
success on other datasets, including one for BioTC and the synthetic datasets
SYN12 and SYN23, selecting sets of various sizes (6 and 12 features) as well, as first
described in [13]. In terms of solutions, some models (RFs, kNNs) perform better
regardless of the problem ([MalC], [BioTC], or [NoisC]), while others (SVMs,
LDAs, and MLRs) perform very inconsistently across these three representative
problems. On average, solution models using only 6 features performed mostly
poorly as compared to those using 12 features. Six (6) features might be too few
for solving a complex problem, so reducing features too much may hurt for abiotic
data.

In terms of the computational efficiency, the advantage of being parallelizable
is not as impressive. Because of their nature, to compute iterated conditional
entropies between a pair of features (either both predictors or one predictor plus
another target), data from other features is now required and the number of possible
combinations is explosive. These facts make the process of feature extraction
feasible less attractive, particularly for big datasets. Perhaps, a combination of the
two methods, first selecting a smaller subset using conditional entropy and then
using iterated conditional entropy of the smaller subset, may be a more productive
approach.

In summary, conditional entropy and iterated conditional entropy perform com-
petitively, if not very well, across the board compared to random selection of
features or other methods.

6.4 Reduction by Conditional Entropy on Targets

This section shows how dimensionality reduction of predictor features can be
achieved using conditional entropy of the target feature relative to the predictors.
Two examples are used to illustrate reductions to a set of 6 or 12 features out of 344
singles features and 6 or 12 paired features in a sample dataset of 345 features from
the Microsoft’s Malware Classification dataset of 1805 features for predicting the
target feature “Class” (type of malware). As a result, a principled argument can be
made in Sect. 6.5 to show how selecting features by minimizing conditional entropy
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is equivalent to selecting features by maximizing mutual information with respect
to the target feature, the commonly used approach in the literature on information-
theoretic methods for feature selection.

In statistics, when selecting features for predictors, the target feature is naturally
taken into account. In this variant, the degree with which a target Y is predictable
given a feature Xi is decided using conditional entropy H(Y | Xi ) between Y on
a feature Xi . When this entropy is low (high), the uncertainty is low (high) for the
values of Y given the values of Xi , so Xi is informative (or is not, respectively.)
Hence, Xi should be selected if this entropy is low. This is the opposite of the
criterion in Sects. 6.2 and 6.3 when predictors are being compared for selection,
but the approach is implemented just the same way, with the following changes:

• Calculate the H(Y | Xi ) over all Xi to quantify how informative predictor
feature Xi is compared to others.

• Select the top features minimizing this entropy after sorting the list in increasing
order.

As mentioned in Sect. 6.1, the conditional entropy H(Z | X ) can be generalized
to any number of conditions X1, X2, · · · , Xm instead of a single condition X

(Table 6.3).

Example 6.7 Table 6.4 shows 12 predictor features selected based on

H(Class | X1, X2, · · · , Xm )

Table 6.3 Top 12 single
features Xi (i = 1, · · · , 12)

(second column) selected by
sorting 344 values of
conditional entropies
H( Class | Xi ) in a sample
dataset of 345 features taken
from the Microsoft Malware
Classification dataset of 1805
features for predicting the
target feature “Class.”
Table 6.4 shows the values of
the entropies

ID Selected feature

1 db0_por

2 dbN0_por

3 db3_all

4 db3_rdata

5 dc_por

6 ent_p_1

7 ent_p_2

8 ent_p_4

9 ent_q_diff_diffs_10

10 ent_q_diff_diffs_11

11 ent_q_diff_diffs_1_mean

12 ent_q_diff_diffs_2_mean

13 ent_q_diff_diffs_2_min

14 ent_q_diffs_0

15 ent_q_diffs_mean

16 ent_q_diffs_var

17 known_Sections_por
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Table 6.4 Top single conditional entropies H( Class | Xi ) (entries in a row i in the second
column) and top conditional entropies H( Class | Xi,Xj ) (if more than one entry in a row in
columns j ≥ 1) of the top 12 pairs (Xi,Xj ) obtained by sorting

(344
2

) = 58,996 values of
H( Class | Xi,Xj ) corresponding to 58,996 pairs of the features in Table 6.3 used to solve the
Malware classification problem [MalC]. A blank entry indicates that the corresponding feature
was not selected, either as a single i or as part of a pair i, j

i : j H( Class | Xi ) 1 2 3 4 5 · · · 17

1

2

3

4

5 1.756

6 1.765

7 1.756

8 1.756

9 1.521 0.898

10 1.548 0.913 0.916 0.882 0.880 0.878 0.889

11 1.747

12 1.745

13 1.681

14 1.676

15 1.566 0.908 0.874 0.875

16 1.586 0.915 0.909

17

with m = 1 and 2, respectively, for predicting the target “Class”, i.e., the 345th fea-
ture in the sample dataset of 345 features taken from the population of Microsoft’s
Malware Classification dataset of 1805 features, by implementing the above two-
step procedure using infotheo. It is worth mentioning that the number 12 should
not be interpreted as any sort of “optimal” number of features in the sense of being
determined by some optimality criterion. Rather, it is just a low number chosen for
the purpose of comparison with choosing fewer features. ��

To assess the quality of this reduction, various machines learning solutions were
computed for the Microsoft’s malware dataset for the [MalC] problem, similar to
the procedure for the previous variants of the entropy method. Table 6.5 shows
the results. Furthermore, various machines learning solutions were also computed
on synthetic datasets SYN12 and SYN23 (described in Sect. 11.5) with primitive
features hidden from the conditional entropy reduction method. Tables 6.6 and 6.7
show the F1-scores for comparison.

In summary, a careful comparison with the other conditional entropy methods
shows that, perhaps surprisingly, taking into account the targets does not really seem
to make such a significant difference in the quality of the solutions to a data science
problem. However, choosing 12 features rather than 6 again does help significantly
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Table 6.5 Performance (F1-scores) comparison between machine learning models trained using
6 and 12 singles predictor features and 6 and 12 paired predictor features, selected by conditional
entropy of the target feature “Class” in the Malware Classification dataset. (Conditional entropy
of singles and paired features are denoted by H and H+, respectively)

Entropy variant ML solution model 6 features 12 features All features

All features LDA

MLR 0.6934

SVM 0.3772

GNB 0.7013

RF 0.8338

kNN

NN

Adaboost 0.7802

H LDA 0.3579 0.4624

MLR 0.6433 0.8398

SVM 0.7618 0.8152

GNB 0.3189 0.5871

RF 0.9746 0.9869

kNN 0.9593 0.9690

NN 0.6949 0.8397

H+ LDA 0.7087 0.7946

MLR 0.8230 0.9217

SVM 0.8398 0.9223

GNB 0.1072 0.6151

RF 0.9883 0.9895

kNN 0.9125 0.9323

NN 0.7447 0.9584

improve the quality of the solutions. Pairing now, however, does seem to make a
difference as well, in general.

6.5 Other Variations

A common information-theoretic approach used in statistics and data science, in
particular for feature selection, makes use of the concept of mutual information
I (Y : X).

The mutual information (also known as information gain) is given by

I (Y : X) = H(Y) − H( Y | X ).

This concept rather quantifies information independence between two variables,
analogously to the concept of statistical independence.
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Table 6.6 Performance (F1-scores) comparison between machine learning models trained using
6 and 12 singles predictor features, and 6 and 12 paired predictor features, selected by conditional
entropy of the target feature “Class” in the Noisy Classification dataset SYN13. (Conditional
entropy of singles and paired features are denoted by H and H+, respectively)

Entropy variant ML solution model 6 features 12 features All features

All features [14] 0.7970

[15] 0.9600

H LDA 1 1

MLR 0.9805 0.9828

SVM 0.9912 0.9946

GNB 0.8598 0.9358

RF 0.9806 0.9865

kNN 0.9840 0.9709

NN 0.9153 0.9826

H+ LDA 1 1

MLR 0.9811 0.9830

SVM 0.9922 0.9946

GNB 0.8598 0.9358

RF 0.9809 0.9867

kNN 0.9840 0.9709

NN 0.9232 0.9807

Table 6.7 Performance (F1-scores) comparison between machine learning models trained using
6 and 12 singles predictor features, and 6 and 12 pairs predictor features, selected by conditional
entropy of the target feature “Class” in Noisy Classification dataset (SYN22). (Conditional entropy
of singles or paired features is denoted by H or H+, respectively)

Entropy variant ML solution model 6 features 12 features All features

All features [14] 0.7970

[15] 0.9600

H LDA 0.5635 0.9402

MLR 0.9246 0.5728

SVM 0.9865 0.8104

GNB 0.4654 0.9096

RF 0.8063 0.9717

kNN 0.7657 0.946

NN 0.5029 0.8726

H+ LDA 0.9975 1

MLR 0.9292 0.9849

SVM 0.9875 0.9783

GNB 0.9940 1

RF 0.9910 9895

kNN 0.7646 0.9511

NN 0.7033 0.9779
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Example 6.8 The mutual information in the variables Z and X in Example 6.3 in
Sect. 6.1 above is

I (Z : X) = H(Z) − H(Y | X ) = 1.56 − 1.48 = 0.08 bits .

��
Example 6.9 In the [MalC] problem, there are quite a few predictors in the original
dataset (1809 to be exact). Even after using the reduced dataset by [10] (344
predictors), there are still too many, and they may hide a number of dependencies
(e.g., some of these features might be collinear). One could alternatively follow
the approach discussed in previous sections, but using the mutual information as a
selection criterion instead of conditional entropy. ��

A comparison of the definitions of conditional entropy and mutual information
makes it is clear that they are complementary quantities in the entropy H(Y) of
the target Y , so that the lowest conditional entropy corresponds to the highest
mutual information with a predictor X, and vice versa. Therefore, selecting features
by maximizing mutual information, for any problem and dataset, is equivalent to
selecting features by minimizing conditional entropy, as has been done in Sects. 6.1–
6.4.
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