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Preface

Data science is about solving problems based on observations and data collected
in the real world. Problems may range from the mundane to difficult scientific
questions, for example, rating movies for recommendation systems, understanding
the earning power of American taxpayers, increasing revenue for a business, spam,
controlling the spread of misinformation through the internet, global warming, or
the expansion of our universe. Our ability to generate, gather, and store volumes of
data in the order of tera- and exo-bytes daily has far outpaced our ability to derive
useful information from it in many fields, with available computational resources.
The overarching goal of this book is to provide a practical and fairly complete, but
not encyclopedic, review of Data Science (DS) through the lens of Dimensionality
Reduction (DR).

The intended audience consists of professionals and/or students in any domain
science who need to solve problems to answer questions about their domain based
on data. Domain science is a fairly vague term that refers to a specialized area
of human knowledge characterized by specific questions about a certain aspect
of reality (like what is motion in physics, what are physical objects made of in
chemistry, what is life in biology, and so forth.) In addition to the well-established
sciences, they include just about any area where data can be recorded and analyzed
to answer questions concerning the population of individuals or objects the data is
about.

Data science presents a singular approach to problem solving when compared
to more established sciences. Traditional sciences are motivated by understanding
our world in order to survive and thrive. That requires a degree of analysis and
theorizing to understand the specific phenomena involved and to enable predictive
power. By contrast, with the advent of computer science and its abstractions into
the information age (as embodied by the internet and web for example), tools
have been created that can be used regardless of the specific domain. Once this
threshold is crossed, then it is a natural next step from mathematics and statistics
to synergistically combine them with the powerful computational tools developed
by computer science to create a new science that is more than the sum of the parts,
hence data science.

v



vi Preface

We have strived to leave our niche hats at the door and present an intuitive,
integrative and synergistic approach that captures the best of the three worlds. That
is the pervasive thread that readers will discover through examples and methods
throughout the book. Sections begin with intuitive examples of a problem to be
solved by the (perhaps new) concepts and results being described in the section. A
professional with an undergraduate degree in any science, particularly quantitative,
should be able to easily follow this part. These motivating examples are then
followed by precise definitions of the technical concepts and presentation of the
results in general situations. These require a degree of abstraction that can be
followed by re-interpreting concepts like in the original example(s). Finally, each
section closes with solutions to the original problem(s) afforded by these techniques,
perhaps in various ways to compare and contrast dis/advantages of the various DR
techniques based on quantitative and qualitative assessments back in the real world.

We are grateful to acknowledge support for this project from various sources.
First, support from the University of Memphis CoRS (Communities of Research
Scholars) program (through Deborah Hernandez) to start up research projects that
facilitated initial interactions that eventually led to the interdisciplinary collabora-
tion that produced this book, among other works, as well as access to the High
Performance Cluster (HPC) used in development and testing of most results herein.
Second, Lih-Yuan acknowledges support from the National Science Foundation
under an award for The Learner Data Institute (NSF-1934745: The opinions,
findings, and results are solely the authors’ and do not reflect those of the funding
agency.). Third, Max acknowledges faculty (Professor Luis Fernando Nino) and
student support (especially Alfredo Bayuelo for TA support and help with cartoon
design and rendering) at the National University of Colombia for their active
feedback and project outcomes at the XI International Cathedra on Data Science for
Bioinformatics in 2017, where several of the approaches, views, and some results
included in this book were conceived.

Bon voyage!

Memphis, TN, USA Max Garzon
November 2021 Ching-Chi Yang

Deepak Venugopal
Nirman Kumar

Kalidas Jana
Lih-Yuan Deng
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Chapter 1
What Is Data Science (DS)?

Max Garzon , Ching-Chi Yang , and Lih-Yuan Deng

Abstract Our ability to generate, gather, and store volumes of data (order of
tera- and exo-bytes (1012–1018 bytes) daily) has far outpaced our ability to derive
useful information from it in many fields, with available computational resources.
The theme of this book is a review of Data Science (DS) through the lens of
Dimensionality reduction (DR). Data science is about solving problems based on
observations of factors (referred to as co-variates, predictors, or just features) that
may determine a solution. Typical kinds of problems are described, including clas-
sification, prediction, and clustering problems, as well as data collection methods.

1.1 Major Families of Data Science Problems

In this section, problems typically dealt with in data science are described and
grouped into three major groups: classification, prediction, and clustering.

A population Ω is the entire group of individuals/objects of interest for a given problem,
while a sample refers to a (relatively very small) subset D ⊆ Ω of the population.

Data science problems can be regarded as computational problems in the sense
that they call for certain types of inputs as data to a problem (as described in
Sect. 1.3 below) and spell out an expectation in terms of the kind of result to be
produced as a solution. The solution is usually some sort of model or program/code,
ultimately to be translated into some sort of physical device to be run, typically
a conventional computer. In computer science, these problems are referred to as
algorithmic problems and are typically expressed in the forms of questions of a
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2 M. Garzon et al.

similar kind being provided as inputs from a population of objects, as illustrated
with the three major families described in the following subsections.

1.1.1 Classification Problems

One of the most common kind of problems is classification.

Example 1.1 Iris flower classification is a relatively simple example. The popula-
tion of objects under consideration for inputs is a feature vector x giving the length
and width of sepals and petals of an iris flower. The flower is to be placed in one of
the three categories. These categories must be specified in advance for the problem
and determine the type of classification being made into disjoint and exhaustive
classes, i.e., they constitute a partition Π of the population. If the categories
change, then we are dealing with a different problem since the answers will have
to change across the inputs. The problem can be stated precisely as follows, with
Π1 = {Setosa, Versicolor, Virginica}. ��

[IrisC] IRIS FLOWER CLASSIFICATION (Π1)

INSTANCE: A feature vector x = (sepal length, sepal width, petal length, petal
width) (in cms) describing an iris flower, e.g., (4.6, 3.1, 1.5, 0.2)

QUESTION: Which kind of flower in Π1 is x?

The brackets contain a mnemonic name [IrisC] used to refer to the problem in
the sequel. A dataset for this problem is described in more detail in Sect. 11.5.

Example 1.2 Malware classification is a more complex example. The population
of objects under consideration for inputs is a computer program/code that causes
harm when run on a computer, usually referred to as malware. A sample from
this population is discussed above in Sect. 1.1, where a given piece of malware is
expected to be categorized into nine (9) classes or categories, as shown in Table 1.1.

��
The problem can then be stated precisely as follows.

[MalC] MALWARE CLASSIFICATION (Π2)

INSTANCE: A piece of malware x

QUESTION: Which category c in Π2 does x belong in?

The Malware Classification Challenge (arxiv.org/abs/1802.10135, accessed
October 2021) dataset was released in 2015 and is publicly available through
kaggle.com. An available dataset consists of a set of 10,868 known malware files
representing a mix of 9 different malware families, as summarized in Table 1.1.
Each datapoint contains both the raw binary content of the malware file as well
as metadata information extracted using the IDA disassembler tool, for a total of
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Table 1.1 Microsoft’s malware classification problem. The labels for the classes in the partition
Π are in the first column

Labels Class name Type of malware Count

1 Ramnit Worm 1541

2 Lollipop Adware 2478

3 Kelihos_ver3 Backdoor 2942

4 Vundo Trojan 475

5 Simda Backdoor 42

6 Tracur TrojanDownloader 751

7 Kelihos_ver1 Backdoor 398

8 Obfuscator.ACY Any kind of obfuscated malware 1228

9 Gatak Backdoor 1013

10,868

1804 raw features. The classification challenge is to correctly assign every piece of
malware in the population to one of the nine (9) possible malware classes defined
with the challenge. A dataset for [MalC] is described in more detail in Sect. 11.5.

Example 1.3 A third and more difficult example of a classification problem is
species identification in biology for a given group of species (a taxon) T . The
population of objects under consideration consists of all living organisms belonging
to a species in T . The taxon T is the union of all specimens/individuals in the species
in the second column of Table 1.2, according to a given biological taxonomy, while
the partition labels Π are shown in the first column. ��

For a data sample, representative genes were obtained from mitochondrial DNA
(specifically, cytochrome Oxidase genes COI, COII, and COIII, CytB) of 249
organisms (as shown in the fourth column of Table 1.2) collected from biological
genetic repositories (e.g., GenBank at www.ncbi.nlm.nih.gov/genbank/ ). A dataset
for this problem is described in more detail in Sect. 11.5. The problem can then be
stated precisely as follows for an arbitrary taxon T .

[BioTC] BIOTAXONOMIC CLASSIFICATION

INSTANCE: A DNA sequence representing a living organism x

QUESTION: What species in T does x belong in?

In summary, a classification problem is defined by a partition Π of a population
Ω (into a number of mutually disjoint classes exhaustive of Ω) and the problem is
to place an arbitrary element of the population into the right class. A solution to the
problem is a model that will make a (hopefully correct) decision for every element
from the population (not just the sample) as to which class it belongs to.

www.ncbi.nlm.nih.gov/genbank/
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Table 1.2 Organisms in the sample data for [BioTC] of a biological taxon. The 21 classes/labels
in the partition Π are in the first column

Label T : genus species Common name Count

1 Apis mellifera Western honey bee 4

2 Arabidopsis thaliana Cress 5

3 Bacillus subtilis Hay/grass bacillus 18

4 Branchiostoma floridae Florida lancelet 18

5 Caenorhabditis elegans Round worm 6

6 Canis lupus Wolf 18

7 Cavia porcellus Pork 4

8 Danio rerio Zebra fish 9

9 Drosophila melanogaster Fruit fly 18

10 Gallus gallus Red junglefowl 18

11 Heterocephalus glaber Naked mole rat 3

12 Homo sapiens Human 18

13 Macaca mulatta Rhesus macaque 8

14 Mus musculus House mouse 18

15 Neurospora crassa Red bread mold 5

16 Oryza sativa Asian rice 12

17 Pseudomonas fluorescens Infectious bacterium 6

18 Rattus norvegicus Brown rat 18

19 Rickettsia rickettsii Tick-born bacterium 18

20 Saccharomyces cerevisiae Yeast 18

21 Zea mays Corn/maize 7

249

1.1.2 Prediction Problems

A second kind of problems is prediction.

Example 1.4 The population could be plants x (e.g., a specimen of A. thaliana) and
the question of interest is to know the area of the rosette of the plant covered by
the spread of its leaves at maturity. The problem can then be precisely defined as
follows for a taxon of plants T .

[RossP] ROSETTE AREA OF A PLANT (T )

INSTANCE: a (long) DNA sequence x (over the alphabet {a, c, g, t}) represen-
tative of a plant in T ?

QUESTION: What is the area of x’s rosette when fully grown?

Note that there is a dependency (not necessarily functional since environmental
factors appear to be involved, e.g., how well the plant was fed) that roughly
determines the rosette area given the genome of the plant. A similar problem can
be posed for the weight of a person as a function of their height. ��
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Example 1.5 Another example is the problem [LocP] of determining the origin of
the plant for a taxon of plants T based on DNA sequence alone, as stated below. ��
[LocP] PROVENANCE OF A PLANT (T )

INSTANCE: a (long) DNA sequence x (over the alphabet {a, c, g, t}) describing
a plant in T

QUESTION: Where on Earth (latitude, longitude) was x grown?

In summary, a prediction problem is defined by a function f on a population
that associates numerical values to every element in the population (usually hard to
measure directly) and the problem is to find the value f (x) of the function f for
an arbitrary element x in the population Ω . A solution is a model to determine that
value based on other features identifying the input elements x from Ω . Since this
may be difficult, one may need to settle for just approximate values.

1.1.3 Clustering Problems

A third kind of common problem is clustering.

Example 1.6 When a typical US town grows to a certain size, it is desirable to
set up some fire stations just in case a house or building catches fire. Naturally,
when your house is on fire, you would like the station to be as close as possible. To
conceptualize the problem, we can specify a number n of points ci (i = 1, · · · ,m)

in a 2D Cartesian plane to designate the positions of the fire stations. Thus, any fire
emergency at a house located at any given position x will be tended to by fire trucks
at station ci0 closest (at minimum distance) to it in distance, i.e., so that

i0 = arg min
i
‖ci − x‖ .

So, if there are two stations c1, c2, locations get clustered in two clusters, defined
by half-planes separated by the perpendicular bisector of the segment joining them.
If there are three stations, the regions are like cake slices, as shown in Fig. 1.1a,
with boundaries being the relevant fragments of the perpendicular bisectors of all
three pairs of stations. More stations will complicate the partition of the 2D plane,
as illustrated in Fig. 1.1b, but along the same ideas. This kind of diagram is called a
Voronoi diagram and is defined by the fire station locations c1, · · · , cm, which are
generically referred to as centroids. This diagram is a solution to the problem of
clustering the population into groups that are each served by the same fire station
according to the ordinary Euclidean (�2) distance. ��
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Fig. 1.1 Voronoi diagrams as solutions to the clustering problem defined by the Euclidean distance
in the population of the 2D plane for (a) three points (e.g., fire stations) and (b) 20 points

In summary, a clustering problem is defined by a metric (usually a distance
function, defined precisely below) function between elements in a population to
capture degrees of (dis)similarity, and the problem is to produce a partition (unlike
a classification problem, where the partition is given). A solution is to find a model
that will produce a partition such that elements in any one cluster are more similar
among each other than to elements in the other clusters.

It may be difficult to make a crisp distinction between these kinds of problems.
For example, a partition Π in a given classification problem can be regarded as a
function f on the same population assigning a numerical label in an enumeration of
the classes in some order, so it would appear that every classification problem is a
prediction problem (especially if a solution to the problem is used to label unknown
inputs). Conversely, if the range of f in a prediction problem is small, one can regard
it as a classification problem as well. Thus, we will speak of prediction problems
only when the range of f is a fairly large set of (perhaps infinitely many) analog
values. Therefore, typical classification problems usually involve a few categories in
their partitions (in the order of at most tens). Likewise, once a solution to a clustering
problem is obtained, one can use the clusters as a partition in a classification problem
to predict the clusters for unknown elements in the population.

Other kinds of problem besides these three categories can certainly arise in data
science. An example involves dynamical sequences of actions as inputs (e.g., a video
of a pedestrian crossing a street) and questions concerning the next expected action
(e.g., will the pedestrian run across or turn back on an upcoming car). There is no
telling what kind of problem could arise in any domain science. However, these
three main categories can always be used, at least in the first approximation to
a given problem. For example, the answers to the pedestrian problem can range
from a simple classification (forward/stop/back) to a prediction of the next step,
to prediction of complex sequence of moves. (What sequence of actions will the
pedestrian exactly take in the next 5 seconds?)
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1.2 Data, Big Data, and Pre-processing

In this section, a characterization of what is understood by data and major techniques
to conceptualize, visualize, and understand data are reviewed. Understanding data,
particularly large datasets and big data, can prove to be extremely difficult,
particularly when faced with acting on decisions based on data analytics discussed in
later chapters to sell a solution of a particular problem to management. Further, the
results of data analysis may impact an individual’s health, or even large communities
when applied at large scales in the real world, so understanding the scope and
rationale for the results of the analyses is critical.

1.2.1 What Is Data?

A basic question that any book on data science must address is, what exactly is data?
Many answers have been given to this question since the dawn of the information
age in the 1940s. For example, well-known computer scientists (such as Peter Naur
of BNF: Backus-Naur Normal Form fame) wanted to redefine computer science as
data science back in the mid-1950s. So have well know statisticians (such as C.F.
Jeff Wu of EM optimization and ‘Statistics = Data Science’ fame in the 1970s),
implying that data is about observations in the form of numbers, that it can be
used to make inferences about entire populations and that there is a computational
component to it. Like an iron age man on attempting to answer the question What
is iron?, we can tell data when we see it but are very hard pressed when asked to
give a rigorous noncircular definition of data. Plain numbers in abstract or computer
programs to crunch them cannot really be data as it is understood today. We will
thus adopt the following characterization.

Data is an objective recording of one or several event(s) in the real world that is accessible
at later times for perusal and analysis by at least one person.

Example 1.7 Thus, the following do not qualify as data: the plain occurrence of an
event; a memory in someone’s head as a witness of an event (unless an objective
recording is made of the witness describing or reliving the event -humans update
their memories as they remember them); the contents of a computer’s RAM memory
(unless it is being recorded); and so forth. On the other hand, the following can
be considered data: website contents containing inaccurate facts and spreading
misinformation; inaccurate scientific observations (due to faulty equipment or even
malicious intent); fossils of dead or extinct animals; videos of a person (even if no
longer living); and statistics collected through observations or machines and stored
on paper or machine. Thus, data requires the so-called four Ws: What, Who from,
Where, and When. ��

It will be useful to make further distinctions with other related concepts, such
as information and knowledge (wisdom is out of reach). In this book, data differs
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from information in that information requires, in addition, a purposeful observer, for
example, trying to solve a (data science) problem, as discussed below in Sect. 1.3.
Data becomes information if it can be used to extract a solution to the problem with
some processing, as illustrated by many examples in the following chapters. (The
more complex concept of knowledge will be re-visited in Sect. 10.2).

Data can assume a variety of formats, for example, numbers, text, DNA or protein
sequences, voice recordings, images, x-rays, videos, browser histories, time stamps,
and so forth. These recordings are considered to be raw or primary data. They
usually require transformation and processing to enable the kind of analysis done
in data science to solve a problem, as will be discussed in this section and later
chapters.

The most common format for the simplest kind of data is a two-dimensional
(henceforth, just 2D) table consisting of rows and columns, usually organized so
that attributes of the data are placed in the columns and each specific observation
(sometimes referred to as a datum) occupies an entry in the rows. Herein, they will
be referred to as features and records, respectively. Therefore,

a record is a p-dimensional (henceforth pD ) vector of features values (datums, or its latin
plural, data). A table can be regarded as an nD vector of pD vectors, the records. The
dimensionality (size) of the data/sample is p (n, respectively.)

Mathematically, a table can be regarded as a sample and its columns can be
regarded as random variables X, as described above in Sect. 1.1 (see Sect. 11.1 for
statistical background concepts). Single tables are good enough for small datasets
but a more complex dataset or problem may require many such tables to form a
data corpus for the problem simply because there may be many very different kinds
of observations and attributes about objects in the same population the corpus is
all about. Data corpora raise the problem of properly organizing the data so that
humans can comprehend it. A criterion or logic to organize a dataset or data corpus
is usually called an ontology for the data.

Example 1.8 If the problem of interest is the earning power of American taxpayers,
the underlying population is, of course, American citizens who must pay income
taxes by law. An important table here would contain a taxPayerID, a fiscal year,
an AGI (AdjustedGrossIncome), and possibly taxDue. Another table may include
demographic information, including taxPayerID, taxPayerFullName, CurrentAd-
dress, priorAddress, and bankAccountNr as features. A third table may contain
information about itemizedDeductions for a given year, and so forth. Many other
tables are probably necessary to keep a full history of a taxPayerID in the full data
corpus. The ontology in this case is the grouping of the information by taxPayerID
and into a number of categories (like tax data for the first table, demographic
data for the second, itemized deductions for the third) for each fiscal year. Other
ontologies are certainly possible (e.g., brute force, a single table with one record for
each American tax payer, and hundreds or even thousands of attributes for each of
them), although probably less desirable because it is less useful to work with and/or
understand the data. ��
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On closer examination, a feature and its values (datums) in a table can be
classified in various ways. For example, they could be qualitative or quantitative
variables. A qualitative variable only observes values in a limited and fixed set
of possible outcomes. If the list of outcomes can be sorted naturally, they are
referred to as ordinal. Otherwise, the feature is called nominal. On the other hand,
a quantitative variable observes values with a very large number of possibilities,
usually the result of measuring something. They can be further separated into
discrete or continuous variables. A discrete variable takes a value from a set of finite
or countable numbers (indexable by natural numbers), while a continuous variable
takes values from a set of uncountable numbers (like real numbers).

Example 1.9 (Qualitative or Quantitative) In order to distinguish qualitative and
quantitative variables, a useful criterion is, Can the values of the variable be added?
If a variable represents what is in a shopping bag, the bag may contain oranges and
apples as answers. Since oranges and apples cannot be added (orange-apple makes
no sense as a fruit), the list of items in the bag is qualitative data. However, if one is
counting items in the bag, the data will be quantitative, say 2+3=5 items. ��
Example 1.10 (Ordinal or Nominal) It is hard to objectively decide on a natural
order for apples, oranges, and bananas (though their names can easily be sorted
alphabetically). The variable typeOfFruit is nominal. On the other hand, a Likert
scale for answering whether one likes a particular fruit is ordinal (e.g., Like, Neutral,
Dislike). ��
Example 1.11 (Discrete or Continuous) The criterion for distinguishing discrete or
continuous variables can be, Could a decimal number be an answer? For example, if
one is counting how many people are in a theater, a number such as 3.14 is nonsense.
The number of people in a theater is discrete. However, if one considers the average
number of people in a theater for one show over a period of one year, the number
3.14 could be an answer; this variable is continuous. ��

1.2.2 Big Data

A similar problem to that in Example 1.8 arises with financial credit card trans-
actions for a given bank or credit card company and many other problems for
government and private organizations in every country. The data corpora can
become really huge and they are usually referred to as big data (in the order of
terabytes and larger). This fact raises the important issue of understanding datasets
and data corpora. A good ontology will enable a human to grasp the large picture
of what the data is all about (the four Ws) and make it possible to develop effective
strategies to solve problems about the given population.

Big data is usually characterized by the so-called five V ’s:

• Volume (raw number of records/amount of data),
• Variety (how diverse is the type, nature, and format of the data),
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• Velocity (speed of data generation),
• Veracity (trustworthiness/quality of captured data), and
• Value (insight and impact afforded by the data about the overall population).

Example 1.12 (Mobile Data with High Volume and Velocity) According to eric-
sson.com, total global mobile data traffic reached 49 exo-bytes (EB) per month
at the end of 2020. It is expected to grow with the launch of the 5G internet.
By comparison, the Iris dataset only contains 2.6 × 103 bytes, whereas a month
of total global mobile data contains 4.9 × 1018 bytes. The data is generated
extremely fast www.ericsson.com/en/mobility-report/dataforecasts/mobile-traffic-
forecast, so this dataset exhibits very high volume and velocity. ��
Example 1.13 (Data Variety) Long ago, data might have referred to a well-
organized spreadsheet, e.g., .txt or .csv files. Variety refers to any data that could
be mixedly generated by humans or by machines. For example, a Fitbit generates
sensor data of a body by continuously monitoring the body movements. Browser
history is generated by human activity. Twitch stream is a live video that records the
show and chats between hosts and viewers. A data corpus containing these chats
has high variety. ��
Example 1.14 (Anonymity on the Internet) For freedom of speech, websites may
offer online anonymity. However, it comes with the problem of data veracity. It is
easy to lie and the information therein cannot be trusted. Moreover, fake information
usually spreads faster than facts. ��
Example 1.15 (Educational Data) Data value is a subtle concept. It refers to how
useful the data is to answer research questions and turn it into business intelligence.
In the case of educational data, students’ progress/scores are stored from K-12th
grades. If the data are just stored without further use or analysis, it offers little value.
However, if one can utilize the data to further identify personalized key learning
strategies for students, its value increases tremendously for the benefit of society.

��
Computational resources and techniques today are not able to process the

extraordinary full volume of data being generated in so many fields. Because of
the overwhelming growth of data collection, it can be challenging to extract useful
information from big data with current computational resources. Choosing a good
subset of the data as the training sample to build some suitable models is a critical
issue. For proper big data modeling and analysis, it is common to use some statistical
and machine learning methods for preliminary pre-processing in order to make big
data amenable to analysis. It helps to reduce the computational time of the analysis
from years to feasible.

www.ericsson.com/en/mobility-report/dataforecasts/mobile-traffic-forecast
www.ericsson.com/en/mobility-report/dataforecasts/mobile-traffic-forecast
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1.2.3 Data Cleansing

Raw data, i.e., data that has not been processed and is not ready for analysis, requires
pre-processing or cleansing (e.g., (re)formatting, organization, and selective extrac-
tion) to become data ready-to-use (sometimes referred to as cooked data). The
process is also referred to as data cleaning, scrubbing, wrangling, and so forth.
Cleansing can be manually done or automatically done by a machine for large
datasets.

Example 1.16 (Handwritten Character Recognition) In handwritten character
recognition, a trace of handwriting is processed (e.g., zip codes on ordinary mail
envelopes in order to route the envelopes properly). Further details about this dataset
can be found in Sect. 11.5. ��
Example 1.17 (Malware Detection) Malware Classification ([MalC]) requires pro-
fessional/domain knowledge to extract the information from an executable (.exe
file) into cleanly labeled data suitable for analysis, where the rows are the pieces of
observed malware and columns are the features extracted from the executable file.

��
Example 1.18 (Stock Market) In the stock market, a trade can be made and recorded
nowadays in approximately 1

64 millionth of a second, i.e., at the rate of 64M per
second. It is difficult to analyze this raw data because of its volume. It has to be
organized and transformed for further analysis/prediction, e.g., by trading volume
or opening/closing price in a day, to be of value. ��

In Examples 1.16–1.18, raw data are not ready for answering research questions.
Additional procedures are required to organize observations and their features.

Cleansing is the process of screening and/or transforming data to enable processing and
analysis to derive value from it.

Needless to say, cleansing must be conducted prior to data analysis, although
it is sometimes done later upon failure to get useful results from an analysis due
to multiple reasons. The data may be incomplete, noisy, inconsistent, duplicated,
irrelevant, or simply be missing values. The aim of cleansing and pre-processing
is to remove noise, standardize the format, and retain useful information, so as to
make sure the scripts for analyses that expect a common format will not crash due
to formatting errors or missing values. This is a pre-condition to extracting value
from the data analyses. There are several common ways to accomplish this goal.

1.2.3.1 Duplication

For example, if a minority opinion is surveyed repeatedly and a large number of
duplicates are added to the dataset, the minority opinion might become the majority
opinion. By removing duplication, one can avoid biased inferences and misleading
conclusions.
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Example 1.19 (Online Sweepstakes) Online sweepstakes offer great prizes. If one
enters multiple times, the case is duplicated. To be fair, the website keeper should
remove the duplication or prevent a person from entering the sweepstakes twice. ��

1.2.3.2 Fixing/Removing Errors

It is always recommended to re-check the source to obtain the correct values for
the missing values. However, this is not always possible. Certain values cannot be
recovered in many situations. One way to handle it is to change the erroneous datum
to a missing one and handle it accordingly.

1.2.3.3 Missing Data

Missing data/value refers to a datum being unavailable or corrupted. Data can be
missing due to many reasons. For example, in a survey, an individual chose not
to report an answer; the datum was not observable/available; or the datum went
missing during data (pre-)processing. Missing value imputation is one common
technique to obtain a missing value. Some common imputation methods are:

1. Mean imputation
The missing value xij for the variable Xj can be filled in as the mean, i.e., X̄j .
This method is generally used for a continuous variable since the mean of a
discrete variable or a categorical variable might not make sense or be appropriate.

2. Interpolation and extrapolation (for numerical data)
The missing value can be imputed by prediction. While interpolation implies
the prediction falls within the range of data points, extrapolation implies the
prediction falls outside the range of data points. Basically, by connecting two
close data points without missing values with a straight line, the missing values
can be imputed as the value on the fitted line.

3. Regression imputation
The missing value can also be imputed by a model for the data obtained later by
analysis. One type of model is the regression type, which will be discussed in
detail in Sect. 2.1.

1.2.3.4 Outliers

An outlier is a data point containing a datum that is out of the range of the other
points in the feature. While the multivariate situation is considered, a distance
measurement, e.g., Mahalanobis distance, will be used to disrobe how far the
observation is from the bulk of the data. The goal of a whole research area called
outlier detection (also anomaly detection) is to estimate this distance and identify
the outliers. It can be used for detecting unusual observations, such as bank fraud.
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Example 1.20 (Bank Fraud Detection) It is essential to detect fraudulent transac-
tions not only for a personal account but also for money laundering. If an account
usually has transactions for grocery shopping, the occurrence of a large transaction
appears as an outlier. A bank will issue a hold on this type of activity until confirmed.
How large is considered “large” requires fine-tuning. (While keeping its customers’
assets safe is important, the bank will not want to issue a hold every time and ruin
most honest users’ experience.) ��

1.2.3.5 Multicollinearity

Multicollinearity (also collinearity) refers to the case where one predictor variable
in a multiple regression model (described in Sect. 2.1) can be linearly predicted
from the others with high accuracy. This technique is similar to combined inter-
extrapolation, but with more than one missing value. (Some consider dependencies
of this type to be “dirty” and require cleansing.)

1.2.4 Data Visualization

One of the major problems with data, particularly big or complex data, is to make
it understandable to humans. This is particularly important for humans to verify,
interpret, and/or rationalize the results of any analytics to act on a solution to
a problem as being consistent with the data that led to it. In Human–Computer
Interaction (HCI), the problem is usually solved by reaching into the human’s
head and finding a metaphor to transform and present the data to enable his/her
brainpower with an appropriate transformation into a more familiar situation.

Example 1.21 A typical example is the problem of navigation on the metro system
in a big city. A computer system can only store a list of metro lines and the locations
(latitude or longitude) of their stop stations. Presenting a time table of these stations
to a human will not enable easy navigation to instruct her to move from point A to
point B. The visualization in the form of a graph in various colors (the lines) roughly
following the layout of the city and their points of intersections and stops along the
lines is a familiar and effective solution because humans easily understand space,
distances, and orientation to navigate the city. ��

In statistics, data visualization refers to exploratory data analysis (EDA) as
an approach to analyzing datasets to summarize their main characteristics, often
using graphics about statistics of the data features. Based on the variable’s type
(qualitative/quantitative, discrete/continuous), different EDA methods can be used.
Table 1.3 and Figs. 1.2, 1.3, 1.4, 1.5, and 1.6 illustrate various techniques with the
Iris dataset.
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Table 1.3 A stem-and-leaf
plot of the sepal length for the
Iris dataset

Key: 4|3 = 4.3 cm

4 | 3444

4 | 566667788888999999

5 | 000000000011111111122223444444

5 | 5555555666666777777778888888999

6 | 00000011111122223333333334444444

6 | 5555566777777778889999

7 | 0122234

7 | 677779

Fig. 1.2 (a) A Pareto chart with the count for the species and (b) a boxplot for the sepal length of
the species in the species in the Iris dataset

Example 1.22 (Boxplot of a Continuous Variable) Boxplots are useful to represent
the five number summary of a feature: the minimum, the first quartile, the second
quartile, the third quartile, and the maximal of a variable. Figure 1.2b shows a
boxplot of the sepal length for the Iris dataset.

Note that quantiles are points that divide the range of the observations in a sample
variable into subranges (in a sequence) with equal probabilities. The most common
quantiles are the 4-quantiles (are also called quartiles), the 10-quantiles (are also
called deciles), and the 100-quantiles (are also called percentiles). ��
Example 1.23 (Pareto Chart of a Variable) A Pareto chart is a bar graph. Fig-
ure 1.2a shows a Pareto chart of the three species in the Iris data sample: Virginica,
Versicolor, and Setosa. The lengths of the bars are proportional to the frequency of
each category and the curve presents their cumulative distribution. ��
Example 1.24 (Histogram of a Continuous Variable) A histogram is an approxi-
mate representation of the distribution of numerical data. A histogram of the sepal
length for the Iris dataset is shown in Fig. 1.3. ��
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Fig. 1.3 A histogram of the sepal length in the Iris dataset

Fig. 1.4 A run chart of the sepal length in the Iris dataset
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Fig. 1.5 A scatter plot of sepal length and width for the Iris dataset

Example 1.25 (Stem-and-Leaf Plot for a Quantitative Variable) A stem-and-leaf
plot is a way of presenting a quantitative variable. The plot can also be treated
as a table. For example, a stem-and-leaf plot of the sepal length in the Iris
dataset is shown in Table 1.3. By studying a stem-and-leaf plot, one can achieve
a visualization similar to the one obtained from a histogram. ��
Example 1.26 (Run Chart)

To understand the dynamic change of a variable over time, a run chart is usually
used. If the first 50 observations are recorded in a sequence over a time period of
time for the Iris dataset, one may study whether the size of the flower will change
over time. A run chart of the sepal length for the Iris dataset is shown in Fig. 1.4. ��
Example 1.27 (Scatter Plot) It is common to have more than one variable (feature)
in a dataset. A scatter plot represents an observation by a dot in the figure for two
features (x-axis and y-axis). A scatter plot of the sepal length and sepal width in the
Iris dataset is shown in Fig. 1.5. ��
Example 1.28 (Multivariate Chart) A multivariate chart is used to combine differ-
ent visualizations of multiple variables into one single chart to enable an overall
comparison. A multivariate chart for the Iris dataset is shown in Fig. 1.6. ��
Example 1.29 (Targeted Projection Pursuit) In big data, there are too many vari-
ables in the data corpus. It is hard to visualize all of them at once. Targeted
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Fig. 1.6 A multivariate chart for the Iris dataset

projection pursuit projects the dataset into a lower dimensional space in order to get
a clearer visualization. For example, if one is only interested in the combinations of
the four Iris features, say

SepalLength = 0.4, SepalWidth = 0.1, PetalLength = 0.9, PetalWidth = 0.4 ;

and

SepalLength = 0.7, SepalWidth = 0.7, PetalLength = 0.2, PetalWidth = 0.1 ,

one can look at a scatter plot of the two targeted projection pursuit, shown in Fig. 1.7.
It is clear that this might be a better visualization for a human to understand the
difference/separation between the two species than Fig. 1.5. ��
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Fig. 1.7 A scatter plot of the targeted projection pursuit for the Iris dataset

In summary, various graphical visualization techniques can be used to visualize
and help understand a dataset better, including but not limited to (in alphabetic
order): Boxplots, Histograms, Multivariate charts, Pareto charts, Run charts,
Scatter plots, Stem-and-leaf plots, and Targeted projection pursuits.

However, when dealing with big data, even these simple summarizing techniques
might not perform well enough in providing a comprehensive picture. Other
techniques, such as clustering and granularity re-scaling, may be useful, but they
are applications of analytic techniques subject of the coming chapters, so they will
be discussed in Chap. 9.

1.2.5 Data Understanding

Another way to understand data is through the use of analogies and abstractions,
similar to the way life is understood in the form of specific organisms (my dog
or cat), then abstractions into groups (like the biological class of all domestic
cats or dogs), then even more abstract concepts (like mammals). Abstractions that
are particularly pervasive and powerful among humans involve the concepts of
space and time. They are fundamental to humans and much of intelligence has
to do with that (even to the point that some influential philosophers like Kant
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have proposed that any concept has to be ultimately translated into such geometric
concepts to really make sense to the human mind ([1] has more details). So, it is
not surprising that mathematicians, physicists, and even cognitive scientists have
developed conceptual tools to understand them. They are particularly useful in data
science, so it is worthwhile to take a closer look.

The starting point is the mathematical notion of Cartesian coordinate systems
familiar to most high school students. They are the usual Euclidean spaces used in
calculus and analytic geometry. Geometry is about points, lines, planes, distances,
and relationships between objects in terms of them (e.g., shape). (Although the so-
called synthetic geometry does not make use of metric rulers to measure distance, as
is the case of classical Euclidean geometry from high school, only analytic geometry
and its generalizations will be of concern here.) Psychologists have discovered that
humans use the concept of distance very loosely. For example, in a city, the distance
to go from point A to point B is not the length of the straight line segment joining
them because one cannot walk through buildings but has to follow the rectangular
street layout of the city. Likewise, if one is flying across the continent between New
York and San Francisco, the shortest straight route would require to dig a tunnel
through the round Earth, so a pilot will rather take a course along a segment of a
greatest circle in the air parallel to the surface of the Earth. Hence, mathematicians
have concluded that a more precise concept is required; one that can be characterized
as an abstract concept of distance in a given space E as follows.

A distance (or metric) is a function

d(∗ , ∗) : E× E −→ R

assigning a nonnegative real-number d(x, y) to every pair of points x, y ∈ E so that three
properties are satisfied for arbitrary points x, y, z :

• Reflexivity: d(x, y) = 0 if and only if x = y

(different points must be at positive distance, not 0);
• Symmetry: d(x, y) = d(y, x)

(distance is adirectional);
• Triangle Inequality: d(x, z) ≤ d(x, y)+ d(y, z)

(it is always farther to make a stop at y on the way from x to z).

A set of points E endowed with a distance function is called a metric space. (To ease
notation, d(x, y) may be just denoted |x, y| in the sequel.)

Mathematicians feel quite comfortable with it because they can reason about any
such notion just like they would about ordinary distance in Cartesian geometry, as
long as the three key properties above are satisfied for arbitrary points x, y, z ∈ E.
Likewise for ordinary people and pilots moving around cities on Earth.

Therefore, the city distance in a Euclidean plane between two points is fine, and
different metrics in the Euclidean space can be used to endow it with a geometric
structure for a variety of purposes. Real datasets that could be mapped into a metric
space can be analyzed by leveraging its structural properties that would otherwise
be invisible to us. This kind of approach will prove invaluable for dimensionality
reduction in upcoming chapters.
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Fig. 1.8 Balls (sets of points within a given radius r from a center c) in �p spaces for (a) p = 1;
(b) p = 2; (c) p = 3 in the Euclidean 2D plane (circles, top) and 3D space (spheres, bottom).
The balls can be closed B[c, r] or open B(c, r), depending on whether they include the points at
distance exactly r (on their boundary) or not, respectively

Example 1.30 In a Cartesian 2D plane, the distance between two points x =
(x1, x2) and y = (y1, y2) given by

�1 : |x, y| = |x1 − y1| + |x2 − y2|

is called the Manhattan distance and is the ideal definition of a city distance where
unit squares stand in for city blocks. The reader may notice that this distance has
been obtained by substituting the exponent p = 2 in the ordinary Euclidean distance
in Cartesian geometry by p = 1. The three properties of a metric still hold, although
we need to adjust our intuition a little. For example, in the ordinary distance, the disk
of radius 1 centered at the origin (i.e., the set of points within distance 1 from the
origin) looks like an ordinary circle, whereas in the Manhattan distance, the same
concept turns into a diamond since an equation |(x, y), 0| = |x| + |y| = 1 defines
line segments joining the four points (±1,±1|, as shown in Fig. 1.8. ��
Example 1.31 The Manhattan distance is sometimes called the �1 distance because
it is in fact just one in a family of distance functions {�p}p indexed by positive
integers p > 0 and given by

�p : |x, y|p = [ Σ1≤i≤n |xi − yi |p ]1/p.

The particular case p = 2 is actually identical to the ordinary Euclidean distance
in Cartesian geometry (the square root of the sum of squares of the coordinate
differences) and p = 1 gives the Manhattan distance. ��

These abstractions enable familiar concepts in a human mind to understand
and reason other apparently unrelated concepts (like the concept of a circle and
a diamond being abstractly as similar as cats and dogs are both mammals), as will
become more and more evident in the following chapters.
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1.3 Populations and Data Sampling

This section describes how to cope with the fact that populations are usually
large and inaccessible in the whole. Even if they became available, computational
constraints to find solutions usually prevent full use of them anyway, despite the fact
that what is needed are models that answer questions for arbitrary and unknown
elements of the population!

Solutions to problems require either (rarely met) assumptions on the target
population or lots of data to train models that may help answer the questions. Since
collecting a full or even a significant sample (about a subset) from the population is
commonly materially infeasible, sampling techniques are crucial to collect unbiased
and representative data. A good sample will contain enough information to represent
the key properties/characteristics of the population necessary to solve the problem
for the entire population (not just the sample). This is easier said than done
because

• Data collection is subject to available data and usually requires measurements
with available technology;

• Data acquisition is very costly in terms of effort and time;
• Data is ephemeral and constantly requires updates (even for historical data as a

result of new research!).

Therefore, sampling a population for good data requires careful planning and
carefully chosen methods.

1.3.1 Sampling

Example 1.32 (Political Poll/Economic Survey) One may want to make a prediction
about the result of the next presidential election. A single opinion is hardly a good
prediction, but obviously, it is impossible to survey all individuals or make a proper
and random selection from all citizens of the USA. With a proper sampling, a total
sample size of 1500–2000 would be sufficient to achieve, say 95% confidence about
the prediction of the outcome of the election in a population of over 200M eligible
voters. ��
Example 1.33 (Biomedical Study) Methylation of cytosine residues of cytosine-
phosphate-guanine dinucleotides (CpGs) is one of the important DNA-based
biomarkers associated with aging and/or some diseases. For any individual, there
are many CpG sites (out of 28,000,000 CpGs with over 680,000 “useable” CpGs)
that can be collected with all the CpGs values normalized to the range from 0 to 1.
Because of the high cost of the data collection, only a few thousands of individuals
can be sampled. The data can be used to build an “epigenetic clock” to predict
epigenetic age, or to find key biomarkers associated with some specific diseases.

��
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For these examples, a “good” random subset (sample) should include similar
characteristic of key variables (e.g., gender, race, age, socio-economic status).
However, there are major differences between these two examples in terms of the
goals of the study. The first example is typical in survey sampling, where the main
interest is to estimate the population characteristic (e.g., election result), whereas
the second example is typical in data science, where the major goal is to build a
predictive model between response (e.g., epigenetic age or specific disease status)
and the input features (e.g., CpG sites). In particular, the major goal of this book is to
describe techniques to reduce the number of variables (factors or features) necessary
to build a predictive model that yields results comparable with or even better than a
model obtained from many more features.

In general, feeding low quality data to a solution will produce, unsurprisingly,
a low quality solution (also known as Garbage in? Garbage out!). A good sample
should exhibit four characteristic properties (R2IBS):

• Relevant
• Representative
• Informative
• Barely Sufficient

Traditional sampling techniques were guided by statistical methods and usually
assumed that the population is finite. Sampling techniques can be classified accord-
ing to several criteria. One of them is whether a probabilistic model is considered
in choosing the datapoints. Probabilistic sampling selects elements assuming a
uniform distribution, e.g., every element of the population gets an equal chance
to be selected in the sample. Others include the types of sampling summarized in
Table 1.4

Usually, a combination of stratified sampling or cluster sampling and simple
random sampling is used. The key advantage of probabilistic sampling is that
it usually produces good results, e.g., meaningful statistical inferences on the
population based on the sample collected.

Table 1.4 Probabilistic sampling methods for data acquisition

Sampling How

Simple random sampling Select points randomly assuming a uniform distribution.

Stratified sampling Divide the population into strata (e.g., gender, regions) and do
simple sampling in each stratum.

Systematic sampling Index the population, select a first datapoint and then select every
kth datapoint after until a certain sample size is achieved.

Cluster sampling Divide the population into a few groups (e.g., family, genus), then
sample each group.

Multistage sampling If the population cannot be indexed, divide the population into
stages (e.g., states or counties), then sample each stage.
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Table 1.5 Nonprobabilistic sampling methods

Sampling How

Convenience sampling Select datapoints that happen to be most accessible to
the researcher.

Purposive (judgement) sampling Select datapoints that appear most useful for the
problem.

Quota sampling Nonprobabilistic version of stratified sampling.

When no probability distribution is available for the population, the sampling
techniques include those in Table 1.5. However, convenience sampling is unlikely
to yield a representative sample, so it cannot produce generalizable results.

1.3.2 Training, Testing, and Validation

Most of the data collected in the field of data science are ad-hoc “observational”
and so lack proper consideration of the methods used for sampling. Thus data
collection is usually done by nonprobabilistic sampling. As pointed out above, the
main goal of data science is to build a good predictive model for the response/target
variable based on input variables/features in the data. On the other hand, in
survey applications, other random sampling schemes play a major role for infer-
ence/estimation of population characteristics (e.g., mean or proportion) of interest.
Therefore, in statistical applications, it is common to treat the observed big data
as the “population” of interest and use probabilistic sampling techniques to select
a so-called training sample from this “population” to build a model and evaluate
the model accuracy on another selected testing sample. In this case, one can apply
various random sampling strategies (e.g., stratified random sampling) to choose
“good” training and testing sets for representative samples. This is a key element to
build a better model without the problem of over/under model fitting. Furthermore,
one can also choose yet a third dataset for the purpose of “validation” which is
commonly used for the purpose of model selection to choose from among competing
candidate model solutions. Such a sample is called a validation sample.

Since random sampling schemes are used in choosing various samples (training,
testing, and validation), the model built and its performance are expected to exhibit
random variations/fluctuations, especially for data of small/moderate sample sizes.
To obtain a more reliable performance measure, the entire procedure can be repeated
a few times to combine these results by taking simple averages or using other
advanced ensemble methods. With the decreasing computational cost and increasing
power of parallel processing, this may become standard practice in the future.

Finally, random sampling is also used in cross-validation (CV) methods used
to confirm a model’s performance with random multiple “folds” (subsamples) of
the training data against the remaining data points in the sample. This is clearly
different from the validation sample because it is separate (probably disjoint) from
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the training sample. CV has its origin in the Leave-one-out procedure used to build
and test a model leaving out one observation at a time (clearly infeasible when the
data size is moderately large or huge). Stratified cross-validation (SCV) is another
variation of CV where the data is split into folds, with some stratification, on
several subpopulations (e.g., gender or some rare event cases), so that each fold
is representative of the whole dataset. Using stratified random sampling for some
complex datasets can help to maintain the same proportion of different classes in
each fold.

On the other hand, in machine learning and data science, as pointed out before,
models are expected to have predictive power independently of the sample data used
to obtain them. The population is then assumed to be unknown and possibly infinite
and a sample is selected once and for all, then split into disjoint subsets as needed
(including training, testing, and/or cross-validation). (Sect. 1.4 has further details.)

1.4 Overview and Scope

The overarching goal of this book is to provide a practical and fairly complete, but
not encyclopedic, review of Data Science (DS) through the lens of Dimensionality
reduction (DR). It approaches data science from the standpoint of applications and
problem solving, while also providing prerequisite unifying theoretical foundations
and case studies. We have strived to capture the greatest value for professionals
seeking to solve problems in their domains of interest, including representative
sample datasets and readily available tools to produce tested solutions of high
quality.

The intended target audience consists of professionals in any domain science
where data science can help in solving problems and answering questions. Domain
science is a fairly vague technical term that refers to a specialized area of human
knowledge (the domain) characterized by specific questions about a certain aspect
of reality (like what is motion in physics, what are physical objects made of in
chemistry, what is life in biology, and so forth). In addition to the well-established
sciences (physics, chemistry, biology, and their subdomains), they include just about
any area where data can be recorded and analyzed to answer questions concerning
the individuals or objects the data is about.

Data science presents a singular approach to problem solving when compared
to the more established sciences. Traditional sciences are motivated by pressing
problems for people to survive and thrive in the world. That requires a degree
of understanding of the phenomena involved that enables predictive power. With
the advent of computer science and its abstractions into the information age (as
embodied by the internet and web, for example), tools were created that can be
used regardless of the specific domain. Once this threshold is crossed, then it is
natural to group and develop methods and platforms to do this kind of generic
science, hence data science. It is a natural next step from mathematics and statistics
to synergistically combine them with the powerful computational tools developed
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in computer science to create a new science that is more than the sum of the parts.
The basic background concepts required from these building blocks are summarized
in Chap. 11. We have strived to leave our niche hats at the door and present a
integrative and synergistic approach that captures the best of the three worlds. That
is the pervasive thread that readers will discover through examples and methods
throughout the book.

1.4.1 Prerequisites and Layout

The content of the book is presented using the same template approach in every
section. Sections begin with an intuitive example of a problem to be solved by
the concepts being introduced in that section. A professional with an undergrad-
uate degree in any quantitative science should be able to follow this part. We
have assumed that the reader is familiar with basic undergraduate mathematics
(multivariable calculus and linear algebra), including matrix algebra. Likewise, we
have assumed that the reader is familiar with the basic concepts in statistics and
probability, including sample spaces, probability distributions, random variables,
and the main results associated with them. Nevertheless, a refresher summary
is given in the Appendices in Sects. 11.1 and 11.2. Since readers may be less
familiar with basic computational background, a summary is likewise made of basic
concepts in computer science as well in Sects. 11.3 and 11.4

These motivating examples in a section are then followed by precise definitions
of the technical concepts and presentation of the results in general situations. That
requires a degree of abstraction that can be followed by re-interpreting the general
terms like in the original example(s). Finally, each section closes with solutions
to the original problem afforded by these techniques, perhaps in various ways to
compare and contrast advantages and disadvantages of the various DR techniques
based on quantitative and qualitative assessments of the solution(s) in the real world.

1.4.2 Data Science Methodology

Solving a data science problem typically requires several steps:

1. Define the problem precisely.
A good definition requires a clear distinction between the WHAT are one is trying
to do, versus HOW one is going to actually find a solution. The definition should
first make sense in the real world to common people who know nothing about DS
but have a goal to achieve. One can then say this definition is more like a business
definition. It should answer fundamental leading questions such as: WHAT needs
to be changed? WHAT is the desired outcome? Figure 1.9 illustrates the point.
An analogy to taking a trip is most appropriate. It is common to hear people say,
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Fig. 1.9 (a) Defining a data science problem appears easy, but (b) is a difficult task, because it has
to be distinguished from HOW to solve the problem. WHAT goal to achieve is a destination that
has to be decided first because it determines practically everything else and makes decisions easier

let us just get the data first, then we will see what we can do. That amounts to
saying, let us get in the car and start driving, we will decide on a destination later.
A moment’s reflection will make it obvious that this is nonsense really. Knowing
where one wants to go will lead her some place with some nonzero probability
(even if it is the wrong place!). Not knowing where to go should be expected
to prove disastrous. An objectively defined and clear destination is paramount,
possibly including a criterion of quality for a solution to be good enough and
acceptable.
Examples of proper ways to define a problem have been given in earlier chapters
and more examples are shown in Sect. 11.4. The easiest way is to identify
the problem as one of the standard problems in Data Science (Classification?
Prediction? Clustering?) or reformulate the problem into a related problem of
this kind that might help.

2. Name a destination.
Naming a destination determines virtually everything else (HOW to get there,
what to pack to wear, and so forth). In Data Science, it will help decide what
kind of data needs to be gathered or obtained, what kind of solutions could be
tried. There are no preset recipes (contrary to traditional sciences), just a set of
tools to try. What is amazing is that this approach usually lands one with some
good enough (although perhaps not perfect) solution.

3. Select an evaluation metric.
As lord Thompson (the inventor of the Celsius temperature scale) said, one
cannot really know something unless one can quantify it. The next step is how to
decide if a potential solution is good or not. A clear definition of the problem will
make it fairly obvious (they are described further below in this section). Since the
problem definition spelling a business goal to achieve was clearly defined in the
first step, the definition should provide a criterion whether the solution is good
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Fig. 1.10 Data science appears to have the (a) all-essential data as the core concept. However,
upon reflection, (b) it is really about problem identification and problem solving because (c) the
problem being solved dictates not only what and how much data is appropriate but also whether
we have gone enough around the loop to be able to deploy a solution for it that is viable in the real
world

enough or not (not whether it is optimal). If not, one may need to try to go through
this loop again, as shown in Fig. 1.10.

4. Business Intelligence
Finally, an acceptable solution requires re-insertion and implementation back in
the real world. That will be the real test whether the solution really makes sense,
i.e., whether the problem has been solved or not. If not, one needs to go through
the process all over again, with appropriate refinements for a better chance.
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1.4.3 Scope of the Book

This book is not meant to be an encyclopedia of data science that includes every
method or technique known to humans. Data science is too young to even tell where
it is headed to allow that. Deeper questions concerning related matters are touched
upon in an exploratory manner in Chap. 10, but only to give the reader a take-home
epiphany as to what data science and/or dimensionality reduction mean back in the
real world. Humans usually refer to that as experience and knowledge. They are
simply heuristics, because they are just rules of thumb that can easily fail with some
practical problem faced by a professional in his/her own domain. With this caveat,
readers can use it as a guide to choose and adapt the methods presented here to
tackle their own personal challenges.

Reference
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Chapter 2
Solutions to Data Science Problems

Deepak Venugopal, Lih-Yuan Deng , and Max Garzon

Abstract This chapter presents a review of statistical and machine learning
models to tackle data science problems, arguably the most popular approaches.
Both supervised and unsupervised algorithms are described along with practical
considerations when using these methods. Empirical results on exemplar datasets
are also presented where applicable to illustrate the application of these methods to
real-world problems.

2.1 Conventional Statistical Solutions

To study whether a feature can help in solving DS problems, most statistical
models formulate the problems into probabilities of mass/density functions in
various perspectives. By modeling the probabilities of getting the situations of
interest, practitioners can select important features, describe the relationship among
variables, make an inference, and classify, predict, or cluster future events.

This section presents a summary of various classical statistical solutions that can
be used to solve a problem by building a model or reduce the dimension of the
feature space.

2.1.1 Linear Multiple Regression Model: Continuous Response

A number of classical statistical methods can be used in many cases to provide a
better foundation for finding solution models and improve their predictions.
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In the notation of Chap. 1, given n data points (x1, y1), . . . , (xn, yn) , where xi =
(xi1, . . . , xip) is a covariate vector for the ith observation of predictor features and
yi is the target response, it is common to represent the dataset in matrix form

X =

⎡
⎢⎢⎢⎢⎢⎣

x11 . . . x1p

x21 . . . x2p

.

.

xn1 . . . xnp

⎤
⎥⎥⎥⎥⎥⎦
= [X1 X2 · · · Xp] Y =

⎡
⎢⎢⎢⎢⎢⎣

y1

y2

.

.

yn

⎤
⎥⎥⎥⎥⎥⎦

,

where the covariate matrix can be viewed as n row vectors (x1, x2, . . . , xn) of
dimension p, or p column vectors of dimension n (X1, X2, . . . , Xp) and Y is the
response column vector of dimension n, (y1, y2, . . . , yn)

′ .
If the response column vector Y is continuous, it is common to assume at first

that a solution model is given by

Y = f (X)+ ε = f (X1, X2, . . . , Xp)+ ε,

where f (·) is a function to be estimated and ε is a random variable (Sect. 11.1
gives some probabilistic and statistical background) for the error in the estimation.
Clearly, the general linear model is a special case with a linear function f (·)

Y =
p∑

j=0

βjXj + ε

and X0 = 1.
When the dimensionality of the data (the number of columns p of X) is large,

one may consider some variable selection procedure to find a reduced model with
fewer significant variables, or one may use leading principal dimensions from PCA
(principal component analysis, described in Sect. 4.1). Popular feature selection and
subset selection methods are:

1. Best subset
2. Stepwise selection: forward and backwards

A common selection criterion for assessing quality of fit of a model is the classical
R2 or the root mean-squared error (RMSE), given by

R2 = 1− SSE

SST
= 1−

∑n
i=1(yi − ŷi )

2
∑n

i=1(yi − ȳ)2

and

RMSE = √
MSE, MSE = SSE

n− p
.
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Clearly, R2 or RMSE for assessing quality of fit is very suitable because they tend
to choose models with more predictors.

Hence, a better quality criterion is needed that takes into account the size of the
model since small models are preferred that still fit well, even if one has to sacrifice
a small amount of “goodness-of-fit” for a smaller model. Three more criteria are
available, namely AIC, BIC, and Adjusted R2.

2.1.1.1 Akaike Information Criterion (AIC)

Another measure of the quality of a model is the AIC, defined as

AIC = n log

(
RSS

n

)
+ 2p,

where RSS =∑n
i=1(yi − ŷi )

2 and β̂ and σ̂ 2 and p is the number of β parameters in
the model. The term 2p is called a penalty component of the AIC because it is large
when p is large, while the aim is to find a small AIC (small RSSD and p).

Thus, a good model will strike a good balance between the conflicting goals of
fitting well and using a small number of parameters. The smaller the AIC, the better.

2.1.1.2 Bayesian Information Criterion (BIC)

The Bayesian Information Criterion BIC is similar to the AIC but has a larger
penalty:

BIC = n log

(
RSS

n

)
+ log(n)p.

BIC also quantifies the trade-off between a model that fits well and the number of
model parameters, although, for a reasonably large sample size, it generally picks a
smaller model than AIC. As with AIC, the model with the smallest BIC is selected.

The penalty for BIC is log(n)p rather than the AIC’s penalty of 2p. Therefore,
for any dataset where log(n) > 2, the BIC penalty will be larger than the AIC
penalty, and thus BIC will be likely to lead to a smaller model.

2.1.1.3 Adjusted R-Squared

It is common to make an adjustment to the popular R2 as

R2
a = 1− SSE/(n− p)

SST/(n− 1)
= 1−

(
n− 1

n− p

)
(1− R2).
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Unlike R2 that can never become smaller with added predictors, this adjusted
R2 effectively penalizes for additional predictors and can decrease with added
predictors. As with R2, larger is still better for the adjusted R2.

2.1.2 Logistic Regression: Categorical Response

If the response column vector Y is binary vector of 0s and 1s, it is common to
consider a generalized linear model of the form

g(E(Y|X)) = g(μ) = f (X)+ ε = f (X1, X2, . . . , Xp)+ ε,

where g(·) is a link function to be chosen and f (·) is a response function. Several
common choices can be considered:

1. Logistic regression (LR)
It is a very popular model for binary response with the logit link function, g(μ) =
ln [μ/ (1− μ)], and

g(μ) = ln

[
μ

1− μ

]
=

p∑
j=0

βjXj + ε.

2. Generalized additive model (GAM) [16]
The GAM can be considered an extension of LR without assuming f (·) is a
linear response function since it replaces βjXj with a general smooth function
sj (Xj )

g(μ) =
p∑

j=0

sj (Xj )+ ε.

Typically, GAM is generally used for nonlinear regression problems with
continuous response, but it can also be used to build a binary response classifier.
Hastie [16] first proposed a generalized additive model (GAM). The GAM can
be adapted to different situations, as generalized linear regression can be used
when different link functions are utilized. While there is no limit on the choice of
the link function g(μ), the “logit” link is commonly used for a binary classifier.

2.1.3 Variable Selection and Model Building

High-dimensional statistical problems are quite common in various fields of science,
and variable selection is important in statistical learning and scientific discovery.
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The standard procedure of best subset selection methods is based on AIC or BIC as
variable selection criteria are suitable only for a moderate number of input variables.
For high-dimensional data, these procedures can be very computationally expensive.
Procedures using penalized likelihood methods have been successfully developed
recently to deal with high-dimensional datasets. In addition to variable selection,
these methods can also be used in estimating their effect in high-dimensional
statistical inference. (Further discussion is given in Chap. 8.)

Model building to solve a problem is a process of finding the appropriate
relationship between response and input variables. Such a relationship could be
either a simple linear relationship or a complicated nonlinear relationship. In
addition to the first-order linear model, it is possible to consider other models
such as polynomial regression models or generalized additive models (GAMs).
One of the major problems for building models for high-dimensional data is the
problem of multi-collinearity among many input variables. Furthermore, building
GAM could be infeasible for a large number of highly correlated input variables.
In such cases, one can consider dimension reduction techniques such as principal
component analysis (PCA), to be discussed in Chap. 4.

2.1.4 Generalized Linear Model (GLM)

A popular model that includes both continuous and discrete models is the general-
ized linear model (GLM). The popular logistic regression model is a special case.
There are three components in the GLM, namely, a random component, a systematic
component, and a link function component.

Random Component
The random component of a GLM characterizes the distribution of the response variable
yi , i = 1, 2, . . . , n with a general form of the exponential family of distributions (described
in Sect. 11.1 for probability background). It is given by

f (yi; θi) = a(θi)b(yi) exp[yiQ(θi)],

where a(·) and Q(·) are functions of θi and b(·) is a function of yi .

Systematic Component
The systematic component of a GLM specifies a linear relationship between a transformed
parameter (via a link function below) and its input variables. Specifically, for each yi and
p predictor variables xij , j = 1, . . . , p, the parameter ηi is a linear function of xij of the
form

ηi =
∑
j

βj xij , i = 1, . . . , n .
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Link Function Component
The link function component of a GLM specifies the transformation, say g· (monotone,
differentiable), on the mean response of Yi , μi = E(Yi), so that

ηi = g(μi) ,

that is,

g(μi) =
∑
j

βj xij , i = 1, . . . , n .

Special cases of the link function are illustrated next.

Example 2.1 (Linear Model/Regression Model) The usual linear model/regression
model is included in the GLM formulation with

yi =
∑
j

βj xij + εi,

where εi’s are i.i.d. εi ∼ N(0, σ 2). The link function g(μ) = μ could be the
identity link function.

In particular, the canonical link is a link function that transforms the mean μ to
the natural parameter

g(μi) = Q(θi) =
∑
j

βj xij .

��
Example 2.2 (Logit Models for Binary Data) For binary response data Y ∼
B(1, P ), its probability density function (pdf) can be written as

f (y;P) = P y(1− P)1−y = (1− P) exp

(
y log

P

1− P

)
,

where:

• a(P ) = 1− P , b(y) = 1, Q(P ) = log P
1−P

.

• The natural parameter is log P
1−P

log odds or logit of P .
• GLM is also called the logit model. ��
Example 2.3 (Poisson Loglinear Model) When the response Y represents data
counts, it is common to assume a Poisson distribution (described in Sect. 11.1) in
the Poisson Loglinear Model Y ∼ Poisson(μ), with probability distribution given
by

f (y;μ) = e−μμy

y! = e−μ(1/y!) exp(y log μ), y = 0, 1, 2, . . . ,
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Table 2.1 Generalized
Linear Models (GLMs)

Random Link Systematic Model

Normal Identity Continuous Regression

Binomial Logit Mixed Logistic regression

Poisson Log Mixed Loglinear

Table 2.2 Dataset with three
features to predict whether a
person likes a restaurant or
not

Price Fast On-campus Likes

High Yes Yes No

Low Yes Yes Yes

High Yes No No

High No Yes No

Low Yes No Yes

where:

• a(μ) = e−μ, b(y) = (1/y!), Q(μ) = log μ.

• The natural parameter is log μ, and the canonical link function is η = log μ.

log μi =
∑
j

βj xij , i = 1, . . . , n .

��
A summary of the various kinds of GLMs is shown in Table 2.1.

2.1.5 Decision Trees

Decision trees are models that use a tree structure to solve a classification problem.
Specifically, the internal nodes in the tree represent questions about the values of
features in the data, and the leaf nodes represent classes. Each feature is branched
(or conditioned) on different possible values for that feature. Given a dataset as
in Table 2.2, an example decision tree is shown in Fig. 2.1. To classify a data
instance, starting with the root node, each node is a decision point where one of
the branches is selected based on the feature value in that instance. The leaf nodes
in the decision tree (nodes with no children) correspond to class labels. For instance,
for the example tree shown in Fig. 2.1, to classify whether a patron likes a restaurant
or not, if for a specific data instance, Price = “high,” Fast = “no,” and On-campus
= “no,” the decision tree will make decisions to follow branches corresponding to
the feature values from root to leaf and output a class Likes = “No”.

Decision trees are highly versatile models since they can implement any Boolean
function. Specifically, given the truth table for any Boolean function, each path in
the decision tree can encode one row in the truth table of the Boolean function.
However, the size of a decision tree can be large when learning a complex classifier.
That is, a large number of nodes may be required to express the classifier function.
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Fig. 2.1 A decision tree (DT) classifier for the restaurant dataset in Table 2.2

The main goal in learning a decision tree from data is to learn a compact tree that
has as few nodes as possible. Several heuristics used to construct such trees are
described next.

Decision tree learning (sometimes called induction) incrementally grows the
decision tree given a training dataset. Typically, a greedy approach is used for tree
induction, where in each step, a feature is selected as a node in the decision tree.
The selected feature essentially splits the data into different branches based on
the possible values that the feature can take on. Therefore, in each step, the main
computational task is to select a “good” feature, i.e., a feature that acts as the best
classifier for the data. For example, among the three features in for dataset given in
Table 2.2, if the feature Price always determines whether one likes a restaurant or
not, then this feature encodes the most useful information required for classifying
the data and should be considered ahead of the other features while learning the
decision tree. To select the best feature in each step of decision tree learning, a
splitting criterion is used to score the utility of each feature.

While there are several different possible heuristics that can be used as a splitting
criterion, one of the most widely used decision tree learning algorithms, ID3 [22],
and its variants use conditional entropy in the splitting criteria. Entropy is a measure
of uncertainty or randomness in a sample, to be defined precisely in Sect. 6.1. For
example, given a dataset where all the instances belong to the same class, the entropy
of this dataset is 0 since there is no randomness. At the other extreme, consider two



2 Solutions to Data Science Problems 37

possible classes where half of the dataset belongs to one class and the other half
belongs to another class; in this case, the entropy is maximum. The conditional
entropy for a feature is a measure of randomness with respect to the class label after
splitting or conditioning the data according to each value of the feature. Thus, in the
example in Table 2.2, the conditional entropy for Price is 0 since for each value of
Price, the data samples have the same class label. On the other hand, for the feature
On-Campus, for each of its values, the data samples are equally distributed among
the two class labels. Therefore, the conditional entropy for the On-Campus feature
is large. In other words, if H(D) stands for the entropy of data D given c classes in
D, the entropy of D is given by

H(D) =
c∑

i=1

−Pi log2 Pi ,

where Pi is the proportion of D belonging to class i. If the splitting/conditioning of
D is performed using feature xi , the conditional entropy after this split is given by

H(D | xi ) =
∑

v∈V alues(xi )

|Dv|
|D| H(Dv),

where V alues(xi ) is the set of possible values for feature xi , Dv ⊆D where feature
xi has the value v. Thus, the conditional entropy for xi is computed by computing the
entropy values for subsets of the data specific to each value of xi and then computing
a weighted average of these values. It is easy to see that if a feature splits the data
such that for each value of the feature, the class labels are uniform (for example, the
feature Price in the aforementioned example), then the conditional entropy is equal
to 0. Thus, a feature with smaller conditional entropy can classify the data more
effectively than a feature with larger conditional entropy.

The decision tree algorithm proceeds as follows. In each step, the feature with
the smallest conditional entropy is selected. The selected feature is then used to
partition the data D, into splits D1 . . . Dk , where each split of the data corresponds
to a specific value of that feature. This process is repeated recursively for D1 . . . Dk .

Some practical considerations of decision tree learning include:

• To compute the conditional entropy, the features are assumed to be discrete.
Continuous features are thresholded into discrete values to approximate the
conditional entropy.

• Entropy computations are computationally expensive. Therefore, a common
problem in decision trees is that scaling them to big data is expensive. A simple
solution to this is to compute the conditional entropy values from a smaller
sample of the data.

• A significant advantage of decision trees is that they are perhaps among the most
interpretable machine learning models. That is, a human user can understand
the output of the decision tree, and for each classification that the decision tree
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makes, a trace of the sequence of decisions that led to that classification can easily
serve as a causal chain of reasoning for the label assignment. Therefore, decision
trees are among the leading models in applications where interpretability is
important such as healthcare [5] and business analytics [19].

2.1.6 Bayesian Learning

The Bayes theorem is among the most fundamental theorems in probability theory
(Sect. 11.1 defines background concepts in probability and statistics and gives a
precise statement). It can be applied for classification by assigning the most probable
class value given a set of features. Specifically,

C′ = arg max
C

P (C|x),

where P(C|x) is the probability of instance x having class label C. Using Bayes
theorem, one can rewrite the above results in the following classifier:

C′ = arg max
C

P (x|C)
P (C)

P (x)
,

where P(C) is the probability of the class C and P(x|C) is the probability of
observing features x given that the class is C. The denominator on the right-hand
side of the above equation is immaterial to compute the maximum, so the classifier
can be re-written as

C′ = arg max
C

P (x|C)P (C).

Given training data, estimating P(C) is quite straightforward. P(C) is estimated
by computing the percentage of instances in the data with class value equal to C.
Specifically, if the total number of training instances is n and among these, the
number of instances with class label C is nc, then the estimated probability is P(C)

= nc

n
. On the other hand, estimating P(x|C) is much harder. This probability is the

percentage of instances that have feature values exactly equal to x. To compute this,
the data needs to contain sufficient instances of any configuration of feature values,
which may not happen in practice. For example, if there are 10 binary features (0/1),
there are 210 = 1024 possible configurations of feature values given a class label,
and the training data would need to contain sufficient instances to estimate all 210

probabilities. As the number of features increase, the number of probabilities needed
to find the classifier grows exponentially.

To scale up Bayesian learning, the Naive Bayes classifier makes a simplifying
assumption that the features are conditionally independent given the class. This
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means that the joint probability (defined in Sect. 11.1) over the features given a
class can be expressed as a product of probabilities over each feature as follows:

P(C|x) = P(x|C)P (C)

P (x)
∝ P(x|C)P (C) (2.1)

∝ P(x1, x2, . . . , xK |C)P (C) =
K∏

i=1

P(xi |C)P (C) ,

where P(xi |C) is the probability of a single feature value xi given class C. In this
case, considering the previous example, 10 features only require 10 probabilities
corresponding to each class instead of 210 probabilities, an exponential reduction
that allows the classifier to scale up to a large number of features.

Learning the Naive Bayes classifier is straightforward where the probability
of a feature value given the class is simply the proportion of training examples
of the class where the feature takes that specific value. For example, if the
classification task is to identify spam/nonspam emails and one of the features is
the word “free,” where “free” occurs in 10% of the nonspam emails and 50% of
the spam emails in our training data, independently of other features (based on
an assumption of conditional independence), then P(“f ree”|Spam) = 0.5 and
P(“f ree”|NonSpam) = 0.1 . In general, if the total number of training instances
of class C is nc and among these, feature xi has value v in nv instances, the estimated
conditional probability is given by

P(xi = v|C) = nv

nc

. (2.2)

Some practical considerations in using the Naive Bayes classifier include:

• If a feature xi is continuous, then P(xi = v|C) can no longer be estimated by
counting the proportion of training examples with xi = v. In this case, a variant
of Naive Bayes called Gaussian Naive Bayes is used to estimate the conditional
probability. Specifically, each continuous feature has a conditional probability
that is assumed to be Gaussian, and the Gaussian parameters are learned from
the data.

• A probability estimate of 0 for the conditional probability corresponding to a
single feature makes the entire product of conditional probabilities in Eq. (2.1)
equal to 0. This happens when a particular feature value may be absent in
the training data for a given class. A widely used approach to correct zero
probabilities is called the Laplace correction. The idea is to assume that the
feature value occurred a constant number of times in the training data (even
though it may not have). The Laplace corrected value in Eq. (2.2) is equal to

nv+r
nc+r|xi | , where r is a constant and |xi | is the number of values feature xi can take
on.

• The Naive Bayes classifier makes the assumption of conditional independence
even though this assumption is generally false, i.e., in most cases features are not
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conditionally independent given the class. However, the Naive Bayes classifier
works quite well and in some cases (such as in text classification), where it
achieves highly competitive accuracy compared to much more sophisticated
models. (A formal analysis on the reasons for its good classification performance
despite its assumptions is provided in [8].)

• The Naive Bayes model can be easily interpreted since the conditional proba-
bilities of features can be compared with each other to understand the relative
importance of features in the model.

2.2 Machine Learning Solutions: Supervised

Machine learning (ML) methods are arguably one of the most widely used
approaches to solve data science problems. A machine learning model can be
viewed as a program that improves itself with experience [20]. The next two sections
provide a summary review of most commonly used machine learning algorithms.
The descriptions focus on practical aspects of these solutions related to solving
data science problems, with appropriate references to other sources for a more
comprehensive treatment of the technique(s).

ML algorithms can be roughly classified into two major categories, supervised
and unsupervised. Supervised algorithms require that the data contain a designated
target (response) feature with the expected answers to the instances of the problem
at hand, in addition to a given set of predictor features in a data point, whereas
unsupervised methods just require the predictor feature vectors describing the data
point.

This section gives an overview of supervised learning algorithms, and the next is
concerned with unsupervised learning methods. To ground the abstract concepts,
the classification problem for the problem [CharRC] of handwritten character
recognition and the MNIST dataset (Sect. 11.3 has more details) is used to illustrate
the methods throughout this section.

Example 2.4 The classification problem of handwritten digit recognition
[CharRC] (described in Sects. 1.1 and 11.4) calls for a category label of digits
0, 1, . . . , 9 for a given input image (presumably a handwritten digit), as illustrated
in Fig. 2.2. Each image is a 28x28 grayscale image of a single digit from actual
handwritten ZIP codes. Due to personal variations in writing, naturally the same
digit can appear differently in different instances, and while humans can perceive
these variations quite easily, coming up with an automated program to do the same
is quite challenging. To improve itself automatically and learn, a machine learning
algorithm must have a performance measure to decide how to improve. A good
choice here can be the accuracy with which the program identifies the handwritten
digits over a dataset. Much like how humans become better at a task with practice, to
obtain improvement in performance, some training helps a program gain experience
in solving the task. This training is provided to the program through data. The key
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Fig. 2.2 A sample of images
from the MNIST digits
dataset for the problem of
handwritten character
recognition [CharRC]

requirement of learning (as opposed to memorization) is that the program not only
performs well on data that it has been trained on, but it should also work on new data
it has never seen before. In other words, given an unseen image of a handwritten
digit, the program should be able to successfully identify the digit, even though that
specific image is new to the program. Thus, the program does not simply memorize
the data but learns some deeper patterns in the data to make useful inferences about
new data. ��

These kinds of algorithms are examples of what is known as supervised learning.
Specifically, in supervised learning, the algorithm is trained with data where each
data point includes a label for a specific discrete class giving the correct answer in
the problem. In general, the goal of any supervised learning algorithm is to refine
successive possible solutions based on data instances and their labels in such a way
that a new data instance that it has previously not seen during training is very likely
to elicit a correct classification.

Formally, supervised learning is defined as follows. Given n data points
(x1, y1), . . . , (xn, yn), where xi = (xi1, . . . , xip), yi are vectors representing
features for the ith observation and its corresponding class, the supervised learning
algorithm is to return a function f (·) defined on the population for the problem so
that yi = f (xi ).

Several algorithms for supervised learning are reviewed in the remainder of this
section.

2.2.1 k-Nearest Neighbors (kNN)

Example 2.5 The key idea in the k-nearest neighbors classifier is illustrated in
Fig. 2.3. If each image in the MNIST dataset can be represented as a single point
in a Euclidean space, an algorithm can classify a new image by simply using the
majority class among all its neighbors within certain radius in this space. This idea
is simple and intuitively appealing, but will it produce good results as a learning
algorithm? How can the neighborhood be chosen? ��
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Fig. 2.3 The key idea in the k-nearest neighbors algorithm on the MNIST dataset. Data points
belong to two classes (e.g., digits in the MNIST data), and X represents a new point to be classified
based on the majority class of k = 5 of its nearest neighbors

The kNN (k-nearest neighbors) algorithm is a type of instance-based learning.
In contrast to other solutions such as neural networks or decision trees, instance-
based learning methods do not learn a function for classification from training data.
Instead, they simply store the training data instances. When asked to classify a new
instance, they retrieve similar instances in the training data to help classify this new
instance. Thus, the function f is not defined in abstract, but in the context of every
instance, making this approach more flexible.

The kNN algorithm assumes that each data instance is a point in a pD metric
space, where P is the number of features in the data points. Given a new point xj

to classify, it computes k-nearest neighbors to this point among all the points in
the training data and classifies the new instances as the same class as the majority
of the k neighbors. Typically, the neighbors are computed using the ordinary
Euclidean distance �2 (defined in Sect. 1.2), although other distance metrics are not
uncommon. Naturally, an odd number is chosen as the value of k to guarantee a
majority among the class labels in the neighborhood. kNN assigns xj the same
class label as the one that occurs in majority of the k-nearest neighbors in its
neighborhood of xk .

kNN implicitly assumes that all neighbors are equally important. In a variant
of k-nearest neighbors, called distance-weighted k-nearest neighbors, neighbors
to a data point are weighted inversely by their distance to that point, thus giving
greater importance to closer neighbors. Further, the Euclidean distance computation
is also affected by the scale of each feature. For example, if one of the features
is the annual income and the other is credit card rating, naturally the scale of
annual income is much larger than credit card rating and dominates the distance
computation. Therefore, typically, the features are standardized using Z-scores
(defined in Sect. 11.1) before applying the kNN classifier (each feature value is
subtracted with the mean value for that feature and divided by the standard deviation
value for that feature).
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Table 2.3 Results for
MNIST varying the
neighborhood in kNN

k Precision Recall F1-score

1 0.982 0.982 0.982

3 0.986 0.986 0.986

5 0.993 0.993 0.993

Example 2.6 (k-Nearest Neighbors for MNIST) In the kNN solution to the hand-
written digits classification problem [CharRC], each pixel in the image represents
a single dimension in Euclidean space for a kNN classifier. Table 2.3 shows the
precision, recall, and F1-score (defined precisely below in Sect. 2.4) on a test dataset
(chosen to be 25% of the data) for varying k when kNN is applied to this problem.
As seen here, increasing k can smooth some of the local irregularities in the labels
and improves performance. ��

Important practical considerations in applying kNN include:

• kNN is a computationally expensive classifier since it needs to store/index
all the training data. In contrast, classifiers such as decision trees or neural
networks learn a model from the training data and do not need to use it
again after trained for classification. Thus, although training a classifier is time-
consuming, classifying a new instance is easy after training. On the other hand,
kNN has all the overhead in classifying a every new instance since they need to
search over the training data to find the neighborhood of that instance. Finding
neighborhoods for a point in higher-dimensional space (when the number of
features is large) is a search problem that becomes exponentially harder with
the size of the data. Typically, specialized data structures (such as KD trees)
are used to quickly find neighborhoods for a data point. Even with these data
structures, however, the scalability of kNN is quite limited when compared to
other methods.

• In most applications, it is generally the case that some features will be more
relevant than others. As the number of irrelevant features increases, the distances
computed in kNN become dominated by these features. This fact is generally
termed the curse of dimensionality (discussed further in Sect. 10.3). While most
machine learning methods perform poorly in the presence of irrelevant features,
kNN are sensitive to the curse of dimensionality and typically perform much
worse than other approaches with a large number of features.

• Since kNN assumes that data points live in a common Euclidean space, all the
features in the data must be real-valued. While it is possible to have features that
are discrete/categorical, such features need to be embedded in a Euclidean space
using an additional step to enable the k-nearest neighbors algorithm.
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2.2.2 Ensemble Methods

Ensemble methods refer to a general approach where various classifiers are
combined together for better performance.

Example 2.7 A natural approach in medical diagnosis is to use several expert
opinions rather than relying on a single doctor’s opinion. An illustration of ensemble
methods is shown in Fig. 2.4. Although each classifier separately may make a certain
degree of error in the classification, the combined classifier that uses the output of
all classifiers can correct these errors based on the collective outputs.

Two widely used approaches to combine classifiers include Bagging (Bootstrap
Aggregation) [4] and Boosting [25]. These methods try to improve generalization
performance of a classifier. Specifically, the ability of a classifier to generalize to
data points not used in training depends upon both the bias and variance of the
classifier. Intuitively, bias refers to the ability of the classifier to fit the training data,
i.e., a low-bias classifier gives accurate results on the training data. Variance refers to
the flexibility of a classifier, i.e., a high-variance classifier changes significantly even
with a slight change in the training data. The bias–variance trade-off in machine
learning states that a classifier with low bias usually has high variance and vice
versa. Ensemble models reduce generalization error by reducing the bias and/or
variance in the classifier.

In the basic Bagging approach, a (sub)sample of the given training data is drawn
(with replacement), and a classifier fi is learned using this sample. Repeating the
process k times produces k classifiers f1 . . . fk . Given a new data point x to classify,
these classifiers produce k labels f1(x) . . . fk(x), and the final class for x is decided
based on the majority.

Bagging does not have an effect on the bias of a classifier. To reduce bias,
Boosting methods are used on a classifier. Boosting methods combine multiple
weak classifiers into a combined classifier. Weak classifiers are those that may

Fig. 2.4 Ensemble classifiers combine the labels from several other classifiers (e.g., by majority)
on a a common given input (left) to produce a label c (far right) for the same input
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not fit the training data completely. That is, they have high bias and are simple
classifiers. The idea in boosting is to add several such simple classifiers to make
a combined classifier that has low bias. The most popular version of Boosting is
the AdaBoosting algorithm, a binary classifier with outputs of +/−. AdaBoosting
is an additive model that sequentially adds classifiers so that the classifier added in
iteration k is likely to correct the errors made by the classifier on the training data in
iteration k−1. To do this, AdaBoosting maintains a weighted training dataset, where
weights roughly correspond to the importance of choosing the instance to train
the next classifier in the ensemble. Specifically, in each iteration of Adaboosting,
the samples are re-weighted based on the errors made on the training data in the
previous iteration. A classifier is learned in each iteration from a sample of the
training data where the sampling is based on the weights, i.e., larger weighted
instances are more likely to be chosen in the training sample. If f1 . . . fk are k

classifiers learned in k iterations, they can be combined into a single classifier as
follows:

f (x) = sign

(
M∑

m=1

αmfm(x)

)
, (2.3)

where each fm(x) is assumed to output a 1 or −1 value (assuming a binary
classification) and αm is a real-valued weight that encodes the importance of the mth
classifier in the ensemble. The importance of the classifier added to the ensemble in
this iteration is given by

αm = 1− errm

errm
,

where errm is the error in the mth iteration. Thus, a smaller value of errm implies
that the classifier in the mth iteration has a larger weight in the overall ensemble. The
training instances are re-weighed using an exponential re-weighting. Specifically,
for all the correctly classified instances, their previous weight is multiplied by
exp−αm (which reduces the weight), and for the wrongly classified instances, their
previous weight is multiplied by expαm (which increases their weight). It can be
shown that this approach indeed reduces bias.

Example 2.8 (Ensemble Models for MNIST) One can combine several decision
trees (defined in Sect. 2.1) to get an ensemble model for MNIST classification.
Table 2.4 shows the precision, recall, and F1-score (described in Sect. 2.4) on a test
dataset (chosen to be 25% of the data) for increasing the number of decision trees
that are bagged together. Table 2.5 shows the same scores as the number of decision
trees in the AdaBoosting ensemble is increased. Boosting the number of classifiers
significantly improves performance since it reduces bias in the model, as compared
to bagging that only reduces variance. ��
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Table 2.4 Performance of
various ensemble solutions
for the [CharRC] problem on
the MNIST dataset increasing
the number (N ) of decision
trees in the Bagging ensemble

N Precision Recall F1-score

10 0.94 0.94 0.94

25 0.95 0.95 0.95

50 0.95 0.95 0.95

100 0.96 0.96 0.96

Table 2.5 Performance of various ensemble solutions for the [CharRC] problem on the MNIST
dataset increasing the number of decision trees in the AdaBoosting ensemble (N )

N Precision Recall F1-score

10 0.65 0.60 0.60

25 0.81 0.78 0.79

75 0.87 0.81 0.83

100 0.92 0.98 0.90

Practical considerations in the use of ensemble methods include the following:

• Bagging typically works better with unstable classifiers [4] such as decision
trees and neural networks. In such classifiers, small changes to the training
data affect the learned model significantly. A specialized form of Bagging is
implemented in a random forest [4] (an ensemble of decision trees). Random
forests are extremely powerful classifiers. A study based on more than 150
standard classification benchmarks showed that random forests outperform most
other classifiers in a majority of benchmarks [9].

• Though Adaboosting was originally designed for weak classifiers, in practice, it
can be used with all classifiers. Decision trees work especially well with boosting
methods. A newer boosting approach called gradient boosting [10] is not only
more flexible than the original Adaboosting approach, but it is highly scalable.
An open source implementation of Boosted trees is available with the XGBoost
library.

2.2.3 Support Vector Machines (SVMs)

Example 2.9 In an attempt to separate the data points from two classes shown in
Fig. 2.5 by a line, the best line separator is a line that maximizes its distance from
the data points in either class. The idea in support vector machine (SVM) classifiers
is to try to learn such a separator. In some cases, a linear separator may be too
restrictive, and therefore, using the idea of kernels (Sect. 4.1 gives more details on
kernels), the SVM can learn more complex shapes of separators, as illustrated in
Figs. 2.5 and 2.6.

Support vector machines (SVMs) are binary classifiers that learn a function such
that the distance between the decision boundary of this function and data instances



2 Solutions to Data Science Problems 47

Fig. 2.5 (a) Linear SVM and (b) polynomial kernel decision boundary that separates data points
of two classes (filled and empty circles). The encircled points are the support vectors, i.e., data
points closest to the boundary

Fig. 2.6 RBF kernel SVM decision boundary that separates data points of two classes (filled and
empty circles). The encircled points illustrate the support vectors, i.e., data points closest to the
boundary

from either class is maximized. For example, if the training data contains 2 classes
and the data corresponding to these classes can be separated by a linear decision
boundary, the line may be very close to data points from either class, and the
classifier is more likely to make mistakes on new data points that were not in the
training data. On the other hand, if the distance between the line and the training
data points on either side of the line is large, the classifier is more likely to assign
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the correct label on new data points. SVMs learn this type of decision boundary
through a technique called max-margin optimization.

It turns out that learning a decision boundary in an SVM is fairly complex since
it requires quadratic optimization. The idea behind this optimization procedure is to
add Lagrange coefficients αi corresponding to each data point. The optimization
method solves a dual problem that computes the optimal values for these coef-
ficients, from which the parameters for the classifier decision boundary can be
derived. The objective function of the dual problem is

max
αi

n∑
i=1

αi − 1

2

n∑
i=1

n∑
j=1

αiαjyiyj (xi · xj ), (2.4)

where α = α1 . . . αn are the Lagrange coefficients, xi · xj is the dot product
between the instances xi and xj in the training data, and yiyj is the product of
their class labels (assumed to be either 1 or −1). Importantly, in most cases, only a
few Lagrange coefficients have nonzero values. These correspond to the data points
that are those closest to the decision boundary, the so-called support vectors. The
parameter vector w defining the decision boundary can be derived from the support
vectors as follows:

w =
l∑

i=1

αiyixi ,

where α1 . . . αl are the support vectors. (Full technical details can be found in [7].)
The decision surface of SVMs is constrained to be linear when using the above

max-margin optimization. That is, if the training data has two features, the decision
surface is a line, for three features a plane and for n features, a (n− 1)D hyperplane.
To learn nonlinear decision boundaries, the data can be pre-processed using kernel
functions to enable SVMs. The idea in a kernel function is to implicitly add features
(or dimensions) that are transformations of some selected features in the given data.
Learning a linear decision boundary in this increased feature space is equivalent to
learning a nonlinear decision boundary in the feature space of the original data.
To learn an SVM using a kernel, the dot product between features, xi · xj in
formula (2.4), is replaced by a general kernel function K(xi , xj ). There are two
commonly used kernel functions, the polynomial kernel and the radial basis (RBF)
kernel. The polynomial kernel combines features using a polynomial function, while
the RBF kernel uses a Gaussian function.

Example 2.10 Table 2.6 shows the precision, recall, and F1-score (defined in
Sect. 2.4) on a test dataset (chosen to be 25% of the data) for various types of kernels.
The performance of SVMs with the RBF kernel yields the best performance in this
case. ��
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Table 2.6 Performance of SVMs on the handwritten digit classification problem [CharRC] using
different kernels to combine the pixels in the image to form higher-order features in pre-processing

Kernel Precision Recall F1-score

Linear 0.967 0.967 0.967

Polynomial 0.967 0.953 0.956

RBF 0.982 0.982 0.982

Some practical considerations in using SVMs include:

• Practical SVM implementations generally perform a soft-margin optimization
that contains a tunable hyper-parameter (typically called cost). Tuning this
parameter allows misclassifications by the SVM in the training data when the
training data cannot be separated by the decision boundary.

• SVMs are not easily explainable especially when using nonlinear decision
boundaries. The effect of a single feature cannot easily be mapped to the output
since features are combined with each other.

2.2.4 Neural Networks (NNs)

How do humans learn to recognize handwritten decimal digits, such as those
in MNIST images? Most likely, the neurons in our brains are specialized
in recognizing specific low-level features (such as line segments in certain
orientations) and then combining them together into more complex patterns
(such as curves) resulting in a full image, as discovered by Nobel prize
winners, neurophysiologists D. Hubel and T. Wiesel in visual processing in cats’
brains (braintour.harvard.edu/archives/portfolio-items/hubel-and-wiesel). A neural
network (NN) is an artificial model that tries to emulate this process.

Example 2.11 Figure 2.7 illustrates a neural network. It typically consists of many
processing units (akin to neurons) that are connected to each other by synaptic-like
connections, each of which plays a tiny part in processing the image. The network is
usually organized in layers, where previous layers pass on their outputs to neurons in
a higher layer, which combines them to discriminate increasingly complex patterns
in the input features. The final layer (usually a single neuron) gives an output that
labels the actual classification of the original input vector. ��

Neural networks were originally inspired by the working of the mammalian
brain. Specifically, just like the human brain performs complex tasks using signals
from an inter-connected network of neurons, neural networks learn functions
through a distributed network of computational units. Each individual unit, referred
to as a (artificial) neuron, is characterized by a certain number of activation states
and performs a mathematical operation based on inputs given to it to produce
an output that is forwarded to other units in the network, as specified by a
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Fig. 2.7 A feedforward neural network (FNN) architecture consists of layers of neurons, including
an input layer and an output layer. Inputs are fed to an input layer (e.g., pixels in an image, left); the
network cascades these signals through any neuron in successive hidden layers (middle) refining
feature extraction as it goes; finally, neurons in an output layer produce(s) a response in the output
layer (e.g., digit 6 coded in binary (right))

directed graph called the architecture of the neural network. The most widely
used architecture in neural networks is the feedforward architecture, where the
units are arranged in layers and units in one layer are only connected to units in
the layer next to it in the network. Each unit i in the neural network performs a
seemingly insignificant but nonlinear operation that transforms inputs given to unit
i into a single output based on weighted evidence neti of all incoming units using
a characteristic activation function, i.e., it determines how the individual unit in
the neural network changes its activation. Specifically, each unit i has weights wij

from other neurons j into it corresponding to each of its inputs. The inputs are
multiplied by these weights, and the activation function is applied to this net input
(the summation of the weighted outputs from other incoming neurons xj (t) at time
t), i.e.,

Ai(t) = σi(neti) = σj

∑
i

wij xj (t) ,

where wi is the weight for the ith input unit. The activation function σi on neti =∑
i xiwi computes a single output for time t + 1. There are many possible types

of networks depending on the type of activations and activation functions used to
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produce the output. Most learning neural networks use sigmoidal units with the
activation function given by

σ(u) = 1

1+ e−u
,

where u = neti = ∑
j wij xj . Several other types of activations may be used,

including functions such as tanh,RelU , and Softmax. A neural net (NN) is thus
a complex structure consisting of an architecture, a matrix of synaptic weights, and
activation sets and functions for each neuron (usually a sigmoidal common to all).
Changing any of them, particularly, the weights in training, will change the network
because its responses to the same inputs will change accordingly.

Given a data point input, a FNN classifies the input by propagating the outputs
of the units from layer to layer. This is called forward propagation, where the input
features are clamped on the units of the input layer. The outputs from the input
layer are then forwarded to the units in the next layer (at the ends of the edges
pointing right in the architecture graph in Fig. 2.7). The neurons in layers that are
not connected to the inputs or output neurons are called hidden neurons. They may
in turn be organized into one or more hidden layers in the neural network. The
neurons feeding signals to no other neurons form the final output layer.

What confers upon FNNs their powerful and versatile learning ability is the
backpropagation algorithm. It is the most well-known learning algorithm that
usually works on most varieties of data science problems. For example for a
classification problem, the learning here is to produce the weights for all units
in the neural network such that the output answers given by the neural network
match the true classes in the data points in the training subset of data points as
closely as possible. Specifically, if y1 . . . yn are the labels for the n instances in the
training data and o1, . . . , on represents the outputs of the neural network (given the
weights for the units in the neural network), backpropagation performs the following
optimization:

W0 = arg min
wij

1

2

n∑
k=1

(yk − ok)
2, (2.5)

where W = [wij ] represents the weight matrix among units j, i in the neural
network. Note that Eq. (2.5) assumes a single unit in the output layer for simplicity,
i.e., the neural network outputs a single value for each input instance. (In general,
the neural network can have multiple output neurons, but the same procedure is
applied to all of them.)

Backpropagation (BackProp) is a typical gradient descent algorithm (as
described in Sect. 11.3) if the activation function is differentiable (e.g., of sigmoidal
type). It solves the optimization problem for the objective function in Eq. (2.5). In
gradient descent, starting with a random initialization of weights, for each input
instance xk in the training data, weight updates are roughly proportional to their
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effect on the output ok the network generates for that instance. Bigger weights tend
to have a bigger effect on the outputs, and so more guilt is assigned to them for a
wrong answer, i.e., they change more. Intuitively, for an input instance, if the neural
network correctly classifies this instance, then the weights remain unchanged. But
for an incorrect classification, BackProp modifies the weights so that if the same
instance is encountered by the neural network again, the output of the modified
network will be closer to the true label for that instance. The weight update for
the output layer is slightly different from the weight update for the hidden layers.
Assuming that all the units are sigmoidal units, the equation for updating the weight
(wkj ) from unit j in the output layer is

Δwkj = η(yk − ok)ok(1− ok)Ij ,

where η is a small constant (the learning rate), ok is the output of the neural
network for the k-th instance in the training data (thus, the difference (yk − ok)

is the error from the true class label incurred by the output of the neural network
for the kth training data instance), and Ij is the value coming into the j th input of
the output unit. Note that if (yk − ok) = 0, then the weights remain unchanged,
i.e., the neural network accurately estimates the label for the kth instance with its
current weights. Recursively, for a hidden unit j now, its weight update depends
upon the units that it is connected to in the layer immediately above it. Intuitively,
if downCone(j) refers to all the units whose net input includes the output of j , the
unit can influence the output of the overall neural network only through downstream
units in DownCone(j). The weight updates can reflect this influence as

δj = oj (1− oj )
∑

k∈DownCone(j)

δkwkj ,

where oj is the output of j and wkj is the weight of the synaptic connection between
j and one of its downstream units k. A larger weight implies a greater influence that
j has through this downstream units. The update for hidden unit j th’s input weights
is then

Δwji = ηδj Iji ,

where η is a small constant called the learning rate and Iji is the value coming into
the ith input for the j th hidden unit. In practice, the learning rate η can be finetuned
to an optimal value based on experimental results. A very large value might cause
the weights to fluctuate rapidly and never converge, while a very small value might
result in slow convergence of the weights. Further, in practice, the weights may only
be updated with a net change once for every batch of inputs in an epoch to reduce
the running time of learning. A run of backpropagation where all the input data has
been processed is termed an epoch. In real-world data, a neural network may require
hundreds of epochs before the weights converge to an acceptable solution. (A full
derivation and more details of the BackProp algorithm can be found in [20].)
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Table 2.7 The performance of a neural network for [CharRC] improves with the size of the
hidden layer since they are learning higher-level features from the pixels. Performance peaks out
at 20 nodes for this choice of training data

N Precision Recall F1-score

5 0.880 0.880 0.880

10 0.940 0.940 0.940

15 0.964 0.964 0.964

20 0.971 0.971 0.971

25 0.971 0.971 0.971

Example 2.12 (Neural Networks for MNIST) One can apply neural networks to the
[CharRC] problem by considering each pixel as a feature in the input layer. Each
pixel is then connected to all nodes in one hidden layer. The hidden layer neurons
learn more complex, higher-level features of digit representations by combining
pixels from the images into abstract features. Finally, the hidden layer is connected
to the output layer to produce a class for the input image. The performance of
neural networks for different hidden layer architectures is shown in Table 2.7 using
precision, recall, and F1-score (defined below in Sect. 2.4) on a test dataset (chosen
to be 25% of the data) as the number of nodes in the hidden layer progressively
increases. The performance improves as the number of nodes in the hidden layer
increases since it is learning higher-level features from the pixels. Once all the useful
information has been represented, the performance peaks out at a certain point (20
nodes in this example), and adding neurons to the hidden layer does not contribute
any significant performance improvements. ��

Practical considerations for neural network learning include:

• Neural networks are perhaps the most powerful and versatile among machine
learning algorithms. A famous theorem discovered independently by several
groups shows that neural networks are universal function approximators for
continuous functions [11, 18], even after unbounded iteration as dynamical
systems [12], i.e., a neural network, even with a single hidden layer, always exists
to compute any continuous function on a given bounded region to any given
arbitrary degree of accuracy. However, this does not always mean that neural
networks produce the best approximations because large neural networks could
require an infeasibly large training dataset or training time for backpropagation
to learn appropriate weights.

• Overfitting is a common problem associated with neural networks. Overfitting
occurs when the neural network fits the training data accurately (memorizes
the data) but fails to generalize to data not used in training. One way to avoid
overfitting is to regularize the neural network by forcing it to learn smaller
valued weights by placing a penalty on large weights in Eq. (2.5). Recently,
other approaches have been developed to avoid overfitting, such as dropout. The
main idea in dropout is to force the neural network to learn simpler functions by
removing units from the network at random.
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• When the number of hidden layers is large (more than 2), the neural network
is typically called a deep network [14]. Deep networks have obtained the state-
of-the-art results in several applications such as image understanding, natural
language understanding, and game playing. One of the issues with applying
backpropagation to deep networks is that the weight updates tend to become
0 as the number of hidden layers increase, a problem referred to as the vanishing
gradient problem. Therefore, variants of backpropagation algorithms have been
developed to learn deep networks [17]. Further, since backpropagation and its
variants use several matrix operations, they can be efficiently implemented in
specialized hardware called GPUs to obtain significant improvements in the
speed of large deep learning networks.

• Another problem with neural networks is that it is hard to explain/interpret results
from the neural network, sometimes referred to as the credit assignment problem.
Specifically, the hidden layers in the neural network transform the original
features in the data into a representation that acts as a blackbox and makes it hard
to understand or rationalize why it is producing the results it does. Further, since
the final output from a neural network is based on a series of such transformations
layer after layer, particularly in a deep network with several hidden layers, the
network appears to be a black box harder to interpret by a human observer trying
to make sense of the responses it is putting out. Interpreting the results in neural
networks continues to be a highly active area of research that is vital to their use
in real-world applications (Sect. 10.4 further discusses this matter).

2.3 Machine Learning Solutions: Unsupervised

Labels in the features in a dataset are extremely useful to find solutions to a problem
using supervised learning methods, as described in the previous section. Naturally,
answers to specific instances of a problem are not always available in the real world.
For example, in a clustering problem, a label for a data point requires solving the
problem holistically for all data points before it can be given, so it is impossible to
include it in a dataset that one may hope to use to obtain a solution. Another family
of methods in the area of unsupervised machine learning become useful to address
such problems. Thus, the inputs to the algorithm are simply the data points without
the labels. The only recourse left for unsupervised learning is to aim to discover
regularities in the form of hidden patterns in the data in order to solve a problem.
The goal of this section is to describe some of these methods, including the most
popular ones, k-Means and Gaussian mixture models.

Example 2.13 By removing the labels in the Iris dataset (described in Sects. 1.1 and
11.5), a clustering problem arises. Ideally, the clustering would place instances of
the same variety of Iris flower within the same cluster. To make the illustrations easy
to visualize, just two features (the sepal width and sepal length) are considered in
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the discussion in this section, although the methods can work with the full dataset
in higher dimensions just as well. ��

There are two main types of clustering:

• Hard clustering is ideal clustering, i.e., it requires a partition of the data points
so that each instance belongs to exactly one part (or cluster).

• Soft clustering allows a fuzzy partition of the data points, where an instance is
assigned to belong in more than one cluster (i.e., the parts in the partition overlap)
or even perhaps no cluster at all (i.e., the parts do not exhaust the whole feature
space), or both.

2.3.1 Hard Clustering

Example 2.14 The most intuitive way of assigning data points to clusters follows
up on the idea of a Voronoi diagram (defined in Sect. 1.1), i.e., to select a number
of centroids and assign the points to the nearest centroids. The problem is that there
are no centroids to begin with. Even if some initial centroids could be selected at
random, how can one ascertain that the clustering is of good enough quality? One
could choose as centroids the midpoints (i.e., the component-wise average of the
points) in a cluster and so require a Euclidean space where these operations can be
performed. Figure 2.8 shows such a clustering for the Iris dataset. In this case, the
assumption is that data points that are close to each other in terms of the Euclidean
distance are similar to each other and should be placed in the same cluster and vice
versa. It thus appears necessary to have some criterion to assess the quality of a
clustering to decide the assignment is good enough or refine it. ��

Fig. 2.8 Clustering of the Iris data. The three optimal clusters are indicated by gray shades. (a)
k-Means clustering with three clusters based on sepal features; (b) Soft clustering by Gaussian
mixture clustering
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The most popular and elegant algorithm (due to its simplicity) for hard clustering
is the k-Means algorithm for cases where the measure of similarity defining the
problem is a Euclidean distance and a desired number of clusters k are given.
Specifically, if the input is the usual data matrix [x1 . . . xn], where each data
instance is a point in a Euclidean space (i.e., all its features are real numbers),
k-Means starts with a random initialization of k cluster centroids and iteratively
performs the following two steps aimed to improve performance until convergence:

1. Given the current centroids, assign each data point to the cluster determined by
its closest cluster centroid.

2. Given assignments of all points to their clusters, update the cluster centroids to
the mean of all its data points.

Convergence is achieved when the centroids no longer change. Figure 2.8 shows
the results of k-Means applied to the Iris dataset.

To assess the quality of the solution thus provided, consider the functional Δ

given by

Δ = min{cj }

{
n∑

i=1

|xi , cji
|2
}

for the �2 distance, where cij represents the cluster to which xi is assigned, cj is
the cluster center of a cluster j , and |∗, ∗|2 is the �2 distance. Δ is a measure of
the within cluster variation for a choice of k centroids {cj }. It has been shown [3]
that k-Means converges to a local minimum of this aggregated measure of how
close the data points are to their centroids across all clusters, so k-Means does
solve an optimization problem. However, convergence is not guaranteed, and when
it does converge, the clusters may not be guaranteed to be optimal across all possible
choices of centroids.

Inter-cluster variance minimization is re-assuring, but the value itself tells little
about the quality of the clustering. One could look at the results and assess them
visually, but that becomes impossible in higher dimensions, where the challenging
problems lie. Other metrics can be used, such as silhouette (defined below in
Sect. 2.4). A larger score indicates better clustering of similar images compared to
smaller scores. The range of silhouette scores is the interval [0, 1].
Example 2.15 (k-Means on the MNIST Dataset) Each pixel is considered a feature,
and similarity is based on the pixel RGB (or grayscale) values. Table 2.8 shows
silhouette scores for various k, the number of clusters. As seen in this table, as we
approach the true number of clusters (here 10), the silhouette score progressively
increases indicating that k-Means is detecting true patterns in the images corre-
sponding to each digit and is therefore able to cluster them optimally. ��
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Table 2.8 Performance of k-Means (second column) and Gaussian Mixtures Models (GMMs)
(third column) on the MNIST dataset for various numbers of clusters (k). As k nears the optimal
value 10, the silhouette score progressively increases to an optimal value of quality for k-
Means (still far from the ideal) and then increases further for GMMs

k Silhouette k-means Silhouette GMM

1 0.116 0.100

3 0.118 0.080

5 0.137 0.040

8 0.157 0.060

10 0.159 0.167

Some practical considerations when using k-Means clustering include:

• The clustering generated using k-Means depends upon the initial cluster
centroids. More sophisticated initialization methods than random initialization
are used in algorithms such as k-Means ++ [1].

• k-Means works well when the optimal clusters are globular, i.e., are roughly
spherical-shaped. Likewise, k-Means works well when the clusters have similar
sizes and densities, i.e., have roughly the same number of points in each cluster
with a similar spread of points.

• With nonglobular shapes, k-Means tends to separate clusters poorly. For
nonspherical clusters, a variant called kernel k-Means can be used where kernel
functions are applied to increase dimensionality of the data before clustering.
Alternatively, if the clusters are diamond-shaped, a different metric such as �1
(defined in Chap. 1 and illustrated in Fig. 1.8) could be used.

2.3.2 Soft Clustering

Example 2.16 In clustering the Iris dataset, if a certain flower data point’s features
put it into two different clusters, instead of forcing that instance into a single cluster,
one can determine how likely is an instance to belong to a cluster. The right panel of
Fig. 2.8 shows the clusters formed using a Gaussian Mixture Model (GMM) for the
Iris data. The three shaded regions illustrate the shape of the Gaussians, and so these
distributions will overlap, as shown. For every flower in the dataset, one can now
determine how likely it is to be part of the 3 clusters, and therefore, it is perfectly
feasible that a flower that lies at the intersection of two clusters is equally likely to
be a member of either cluster. ��

When the optimal clusters are uncertain, i.e., each data point can belong
to multiple clusters, instead of randomly choosing a cluster for a data point,
probabilistic methods can be used. The most well-known approach for probabilistic
clustering is the Gaussian Mixture Model (GMM)-based clustering. GMMs are
probability distributions using multiple Gaussians with some designated means. In
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the case of clustering, each cluster is represented by a Gaussian in the mixture.
The expectation–maximization (EM) algorithm (described in Sect. 11.3.2) is used
to learn the parameters of the GMM. Specifically, if there are k clusters in the data,
a GMM distribution is defined as

P(x|Θ) =
k∑

i=1

αiPi(x|θi),

where Pi(x|θi) is the ith Gaussian probability distribution and αi is its weight. The
ith Gaussian is defined by mean and co-variance matrix parameters θi = (μi,Σi),
i.e., its probability density function is

P(x|θk) = 1

(2π)p/2|Σk|1/2
exp−

1
2 (x−μk)

ᵀΣ−1(x−μk),

where p is the number of features in x. The parameters θi can be learned using the
EM algorithm. EM starts by assigning random values for the Gaussian parameters
in the mixture and iteratively updates them until they converge by repeatedly
performing the following two steps:

• Expectation step
The probability of each data point is computed for each of the Gaussians in
the mixture using the current Gaussian clusters. This step performs the soft
clustering.

• Maximization step
The Gaussians are re-parameterized based on the probabilities of the data
points computed in the expectation step using a method called max-likelihood
estimation (also described in Sect. 11.3.2).

Expectation–maximization is repeated until all the parameters for all the Gaussian
distributions have converged.

Example 2.17 (GMMs for MNIST) Table 2.8 also shows the silhouette scores as
the number of Gaussians (N ) in the GMM varies. As seen in this table, the results
are less intuitive than k-Means since increasing the Gaussians initially reduces
the silhouette score that seems counterintuitive. One reason for this could be that
since GMMs perform soft clustering, for similar looking digits (e.g., 1 and 7), the
probability of that digit belonging to several classes is somewhat similar, and thus
it is hard to make a distinction as to which class it truly belongs to. However, the
silhouette score increases indicating that as the sufficient number of Gaussians in
the GMM (in this case 10 digits) is reached, each Gaussian is modeling images
corresponding to a single digit. ��
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Some practical considerations when using Gaussian mixtures models include:

• GMMs are very expressive and can represent a wide range of distributions. In
fact, they are considered as universal approximators, i.e., they can represent any
type of distribution [27].

• The EM algorithm is not guaranteed to find the optimal clusters.
• While the basic GMM clustering algorithm pre-specifies the number of clusters

(i.e., it fixes the number of Gaussian distributions in the mixture), there are
more advanced variants of nonparametric Gaussian Mixture Models that infer
the optimal number of clusters in the data [6].

• A well-known application of GMM clustering is in topic modeling where the
task is to infer the number and topics in a text document [2].

2.4 Controls, Evaluation, and Assessment

Two tasks are critical in solving a well-defined problem in data science, namely, the
methods to find solutions and the evaluation and assessment of their quality [21].
This section describes methods and metrics to quantify and evaluate the quality of
solutions. Methods include training, testing, and cross-validation. Metrics include
accuracy, precision (specificity), recall (sensitivity), and clustering metrics. Such
methods are required not only in the training phase of the solution or model but more
importantly in the testing and cross-validation phases of a solution development
cycle. In addition, an assurance that the solution will work well in the production
environment is also desirable.

Example 2.18 The Netflix movie recommendation problem can be regarded as a
classification problem. A good movie recommendation system should provide a user
with a list containing movies that s/he is most likely to like. Therefore, a solution
not only needs to identify whether the user is going to like (with varying degree of
preference) a movie, but also predict the corresponding ratings so that the system
can figure out the top 5 or so to recommend the user. Accuracy does not appear
to be an appropriate metric to quantify performance since there are no objective
labels associated with a rating, and they are viewer-dependent. What would be an
appropriate metric to use? Should it use all the data points or only some of them to
get a sense how the solution will perform on unknown future data points? ��

2.4.1 Evaluation Methods

Generally, a dataset is split into three subsets, i.e., a training set, a testing set, and a
validation set (already mentioned in Sect. 1.3). A training dataset is a set of data
points used to train a model by fitting a set of relevant parameters. At the end
of the training phase, a fitted model is obtained that can then be assessed using
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a testing dataset, i.e., a set of data points left out during the training phase, to
determine the model’s quality. Finally, a validation dataset is a set of instances used
to tune the hyper-parameters for the production environment [23]. The distinction
between the testing and the validation phase is less sharp since both require data
points left out during the training phase. However, a distinction can be made [23]
by defining a validation set as a set of points used to tune the parameters of a
classifier (for example, the number of hidden units in a neural network), whereas the
testing set is used to assess the performance of a fully specified classifier. Several
quantitative metrics used to measure the performance of a ML model in each phase
are summarized in Table 2.10. For low-scale applications, just training and testing
sets are used to zoom into a solution.

A more robust (hence very popular) approach is k-fold cross-validation (k ≥ 2).
In this approach, the dataset is split into, say k = 5 parts, and a model is then
trained using four partitions and tested on the remaining partition, recording the
performance score on the latter partition. The process is repeated s number of times
(16 is a common number to establish a significance for a sample of small size), and
the average of these cross-validation scores is used as a metric to assess the quality
of the model.

2.4.2 Metrics for Assessment

In terms of specific scores for a given dataset, there are a number of choices,
each appropriate for various kinds of problems and cases. They are summarized
in Table 2.10. In the simplest case of a classification problem, the performance of a
solution (called a classifier) can be measured in various ways. The simplest one is
well known.

The accuracy of a classifier M on a dataset X is the ratio hits/misses, where a hit (miss)
is data point x for which M’s answer does (does not, respectively) agree with the label in x.

A binary classifier M for a classification problem with two categories T and F

(so that Ω = T ∪F , say T being the class of true interest) may miss in two different
ways: by placing the data point from F into T (a so-called false positive (FP) , or
vice versa (a so-called false negative (FN)) and ditto for F . A hit will place elements
of T in T , i.e., the True Positives (TP) and True Negatives obtained from M satisfy
|T | = |T P |+ |FN |. The accuracy would then be a = (|T P |+ |T N |)/(|T |+ |F |) .
If the classifier is not binary, hits and misses are calculated for elements in a class
of interest T by considering F to be the union of the remaining classes as a binary
classification.

Accuracy can be very misleading in lopsided classification problems where one
class is disproportionally large compared to the others. A lazy classifier can simply
place all elements in the large class and be assured high accuracy. In many situations,
especially in clinical settings, where T is healthy patients and F is patients with
some disease, the category of more interest is really F despite the fact it may be
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a relatively small class. In such a case, there are three other choices, depending on
which of the two categories is more important, T or F .

The recall (also called sensitivity) of a classifier M on a dataset X is the ratio T P/(T P +
FN), i.e., the proportion of correct classifications out of the total number of positive
classifications made (only considering the class T , which includes the FNs for the
classifier).

The precision of a classifier M on a dataset X is the ratio T P/(T P + FP), i.e., the
proportion of correct classifications out of the total number of positive classifications made
(only considering the class F , which includes the FPs for the classifier).

The specificity of a classifier M on a dataset X is the ratio T N/(T N + FP), i.e., the
proportion of correct classifications out of the total number of negative classifications made
(only considering the class F , which includes the FPs for the classifier).

The F1-score of a classifier M is the geometric mean

F1 = 1
1

recall + 1
precision

= precision ∗ recall/(precision+ recall).

These quantities are usually displayed together in a so-called confusion matrix (no
doubt, to avoid confusion!), as illustrated in Table 2.9.

For prediction problems where the target (or loss) function f takes on numerical
values, the error is measured by some �d (usually d = 1 or 2) distance between the
predicted value and the observed value (or label), either on average or relative to the
true value (Table 2.10).

The root mean-squared error (RMSE) is the average �2 distance between the model value
and the true value, averaged across all data points, i.e.,

RMSE = 1

n

√√√√
n∑

i=1

(yi − xi )2 / n .

The relative error (RE) is the average �1 distance (absolute value) between the model value
and the true value scaled to the true value, i.e.,

RE = 1

n

n∑
i=1

|Observedi − Predictedi | / |Observedi | .

Table 2.9 Confusion matrix for a classifier solution to a classification problem in relation to a
category T and the remaining categories F (The brackets are actual values for a given problem
and dataset)

Predicted

Observed True False

True (in T ) [TP] [FN]

False (not in T ) [FP] [TN]
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Table 2.10 Common quantitative metrics to assess the quality of a data science solution M [13,
15, 23, 24, 26] for a dataset D of size n and data points x1, . . . , xn

Metric Definition

Classification

Accuracy a = (T P + T N)/(T P + T N + FP + FN)

Recall (sensitivity) r = T P/(T P + FN)

Precision p = T P/(T P + FP)

Specificity p = T N/(T N + FP)

F1-score F1 = pr/(p + r)

Prediction

Root mean-squared error
(RMSE)

RMSE =
√∑n

i=1(Observedi − Predictedi )2/n

Relative error (RE) RE = 1
n

∑n
i=1 |Observedi − Predictedi | / |Observedi |

Clustering D = C1 ∪ . . . ∪ Ck

SSD Total sum of squared distances of xis from their centroids x̄i :

SSD =∑n
i=1 SSDi (M) =∑n

i=1 d(xi , x̄i )
2

k-Means—Elbow Method Choose k that causes a sharp turn in SSD

Silhouette value of a point s(i) = (b(i)− a(i))/ max{a(i), b(i)}, where

a(i) = 1
(|Cki

|−1)

∑
xj∈Cki

,xj �=xi
d(xi , xj ) ,

b(i) = minj �=ki

1
|Cj |

∑
u∈Cj

d(xi ,u) ,

Cki
is the cluster given by M for xi and

d(xi ,u) is the distance between data points xi and u
Silhouette of a clustering s is the average of the s(i) values of all points xi in D
Silhouette score for k sk for k clusters is the average of all such s’s

Silhouette coefficient Of D is the maximum silhouette score sk over all 1 ≤ k ≤ n

Regression

R-squared R2 = 1− (RSS/TSS), where

RSS is the sum of squares of residuals and

TSS is the total sum of squares

Akaike’s Information
Criterion (AIC)

AIC= 2 k − 2 log(L), where
k is the number of estimated parameters in the model M and

L is the maximum value of the likelihood function for M

Bayesian Information
Criterion (BIC)

BIC = k log(n)− 2 log(L), where
L is the maximized value of the likelihood function of the

model M and k is the number of parameters estimated by M

For clustering problems, there are several metrics to assess the quality of a
solution. They focus on measuring the density of the clusters (average intra-cluster
distance), as well as the separation between clusters (average inter-cluster distance),
on the average. A popular combined measure is the silhouette.
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The silhouette value of a point xi in a clustering of a dataset
D = C1 ∪ · · · ∪ Ck is given by

Silhouette s(i) = (b(i)− a(i))/ max{a(i), b(i)},

where a(i) is the average cohesion value of a data point xi in its cluster Cki
to all other data

points in the same cluster, measured by a(i) = 0 if Cki
= {xi}, else by

a(i) = 1

(|Cki
| − 1)

∑
xj∈Cki

,xj �=xi

d(xi , xj ),

b(i) is the minimum separation of the data point xi with all data points in the closest cluster
measured by

b(i) = min
j �=ki

1

|Cj |
∑
u∈Cj

d(xi ,u) ,

and d(xi ,u) is the distance between data points xi and u .

The silhouette for the clustering solution is the average of the silhouettes s(i) of its data
points xi . The silhouette score sk for k clusters is the average of the silhouettes s for all
clustering with k clusters. The silhouette coefficient for a dataset is the maximum of the
silhouettes scores sk across all possible values 1 ≤ k ≤ n (Table 2.11).

Once a performance metric is selected and computed on a test dataset, an
important question arises: is this score good enough for a quality solution? In
Example 2.18, if a recommender system got an average RE of 50%, can it be
deployed in a market? To make such a decision, a more thorough analysis should
be made considering several solutions, including competitors’ performance. One
approach is to compare it to published performance scores for similar problems as
a baseline and decide accordingly.

Another approach involves running an experimental control. This approach is
common for decision problems whose solutions have a large impact on a person

Table 2.11 Use of assessment metrics in typical problems in data science (PwP: Possible with
Pre-processing)

Metrics Classification Clustering Prediction

Accuracy Ok if supervised N/A (no labels) PwP

Recall (Sensitivity) Ok if supervised N/A (no labels) PwP

Precision Ok if supervised N/A (no labels) PwP

Specificity Ok if supervised N/A (no labels) PwP

F1-score Ok if supervised N/A (no labels) PwP

Silhouette PwP Yes PwP

R-squared PwP N/A (no response) Yes

Akaike’s Information Criterion (AIC) PwP N/A (no response) Yes

Bayesian Information Criterion (BIC) PwP N/A (no response) Yes

Root mean-squared error (RMSE) PwP N/A (no response) Yes

Relative error (RE) PwP N/A (no response) Yes
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or population. The simplest case is the well-known placebo control, where the
effectiveness of a drug may depend on subjective self-reporting that may be
misleading (the well-known placebo effect). A control requires changing a critical
feature predictor (provide a placebo instead of the actual drug) and comparing the
results with the complementary case where the predictor has the opposite value
(e.g., the actual drug is administered), while keeping everything else unchanged.
The difference in scores will be considered significant if the difference between the
scores is larger than the standard error of the scores in the positive case (e.g., actual
drug taken).

In summary, the decision whether a particular score is good enough really
depends on the definition of the business problem being tackled (as defined in
Sect. 1.4). Without that definition, it is impossible to make a decision. With it,
there is still room for argument in terms of the impact of the solution or decision
being implemented. A solution to be deployed into a market for production
requires careful consideration of financial and/or other implications. A movie
recommendation system that is going to be used by a handful of people would
tolerate a medium score. If the number of viewers ranges in the millions, the impact
may require much higher scores.
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Chapter 3
What Is Dimensionality Reduction (DR)?

Lih-Yuan Deng , Max Garzon , and Nirman Kumar

Abstract Solutions to problems require either assumptions on the target population
or lots of data to train models that may help answer the questions. Our ability to
generate, gather, and store volumes of data (order of tera- and exo-bytes, 1012−1018

daily) has far outpaced our ability to derive useful information from it in many fields,
with available computational resources. Therefore, data reduction is a critical step
in order to turn large datasets into useful information, the overarching purpose of
data science. DR thus becomes absolutely essential in DS, particularly for big data.

3.1 Dimensionality Reduction

With the proper context for data science presented in the previous chapters, we
can now proceed to the subject matter proper, dimensionality reduction (DR). This
chapter presents a high-level overview of the various approaches to DR in the
literature. To frame them in a conceptual framework, first a general and systematic
definition of DR is required.

In the simplest case, a problem can be regarded as defined by a number of
features, one of which is the so-called response (random) variable in statistics,
or simply target feature in this book. The remaining features are the so-called
predictors or independent variables in statistics, or simply input features in this
book. A sample of these features from the corresponding population constitutes the
data to be used to solve the problem. As discussed in Chap. 1, the sample X can
be regarded as a table consisting of a number n of observations (n > 1) given
by vectors (x1, y1), . . . , (xn, yn) where xi = (xi1, . . . , xip) is a covariate vector of
input features for the ith observation and yi is the target (response) variable. Without
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loss of generality one can assume that the target variable is of a scalar type and is not
included in X because the same approach can be repeated for each scalar component
in a multi-dimensional target vector. Thus the dataset can be represented as a matrix

Xnp =

⎡
⎢⎢⎢⎢⎢⎣

x11 . . . x1p

x21 . . . x2p

.

.

xn1 . . . xnp

⎤
⎥⎥⎥⎥⎥⎦
= [X1, X2, · · · , Xp], Y =

⎡
⎢⎢⎢⎢⎢⎣

y1

y2

.

.

yn

⎤
⎥⎥⎥⎥⎥⎦

, (3.1)

where the input matrix can be viewed as n row vectors (x1, x2, · · · , xn) of
dimension p (the data points) or p column vectors (X1, X2, · · · , Xp) of dimension
n (the features) and Y is the response column vector of dimension n. (To ease
notation, column vectors like BY will be shown as transposes (y1, y2, . . . , yn)

′ of
row vectors in the sequel.)

Let X̄ be the matrix of n×p with each row as (row) sample average of the matrix
product X=1′X/n, where 1 = (1, 1, · · · , 1)′ is an n-dimensional column vector of
1s. The sample variance–covariance matrix is

S = 1

n− 1
(X− X̄)′(X− X̄), X̄ = 1

n
11′X. (3.2)

In general, the overarching goal of DR is to find lower dimensional represen-
tations of data that preserve their key properties for a given problem. Historically,
the classical technique to DR was principal component analysis, commonly referred
to as PCA. Other techniques were eventually developed to include feature/variable
selection (particularly including targets) rather than feature extraction. In general,
choosing between feature extraction with PCA or just feature/variable selection
depends mostly on the problem being solved. DR is most effective for big data
with a large number of input variables that are correlated with each other.

The classical statistical approach assumes that the solution to a given problem
is some function f of p covariates in X that produces the nD response vectors Y
(containing the responses for all the n input feature vectors in the data), where p is
too large to efficiently build a good approximation of f . Typically, X may have a
high correlation among some of the columns, or some columns may have a nonlinear
relationship. Therefore, one can first attempt to reduce the number of features to a
much smaller number k (k � p). This reduction can be viewed as a transformation
Ψ of the original dataset X into another matrix X∗ with k columns,

Ψ (X) ≡ X∗ ≡ [X∗
1, X∗

2, · · · , X∗
k ] . (3.3)
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This reduced feature set could then be used to solve the problem of determining the
response from the features as a relation between Y and X∗ given by

Y = f (Ψ (X∗))+ ε, (3.4)

where ε is a random error term and f (·) is the response function.
Ψ could be a selection from the original (given raw) features in X or could be a

combination of them into other new derived (or abstract) features. Generally, there
are two more cases to consider, reductions Ψ (·)s which would only involve the
matrix X, not the response Y, and reductions that do. The first kind of reduction
originates in statistics, where it is considered a kind of statistical inference. On the
other hand, feature selection/variable selection refers to methods for identifying
fewer “optimal” in a feature subset yielding a small error rate ε.

Example 3.1 A linear mapping is most useful when some of the column vectors in
X are linearly correlated with each other. In this case,

Ψ (X) = XC, (3.5)

where C is a matrix representing variable selection and/or DR. Various choices for
the matrix C in the model (3.5) produce several cases:

1. First, when C = I, the p-dimensional identity matrix, it is reduced to the full set
of features X and a model Y = f (X)+ ε.

2. When C is a subset of columns in I, it is reduced to the usual sub-model with only
a few columns/variables that can be selected by various methods (e.g., entropy-
based, as discussed in Chap. 6).

3. The PCA method can be considered a special case with C being a weight matrix
consisting of a certain column combination of features in X that maximizes the
variation of the data in X .

��
Most of the classical statistical model building and machine learning methods

are quite inefficient with a huge number of input variables. Applying an exhaustive
search of the space for feature/variable selection is computationally intractable for
all but the smallest of data sets, especially when the number of features p is large.
Because of the complexity of big data, it is often necessary to use DR techniques
before attempting to conduct statistical inference or solve a problem.

In addition to PCA and its variants, several other powerful DR techniques will
be discussed throughout the remainder of this book. A summary of the methods
is shown in Table 3.1, followed by a high-level overview of them in the following
sections. Other efficient and powerful search algorithms in the literature for variable
selection will also be introduced in Chap. 8.

Each of DR methods briefly described below is designed to maintain certain
aspects of the original data and, therefore, may be appropriate for one task but
inappropriate for another. In addition, most methods have parameters to tune and/or
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Table 3.1 Dimensionality reduction methods

Method Description Section

Principal Component
Analysis (PCA)

Creates key principal components capturing
maximum data variation as combinations of
orthogonal linear input variables

4.1

Kernel PCA (KPCA) Generalizes of PCA to other possible weights for the
distance variation

4.2.1

Independent component
analysis (ICA)

Decomposes the data into several components for the
purpose of object separation or clustering

4.2.2

Multi-Dimensional Scaling
(MDS)

Given the distance between pairs of objects in a set,
MDS places each object into a lower dimensional
representation such that the between-object distances
are (mostly) preserved

5.2.1

Isometric Mapping
(ISOMAP)

Builds a mapping preserving a distance measure
defined over a lower dimensional manifold that can fit
the between-data distances reasonably well

5.2.2

t-Stochastic Neighbor
Embedding (t-SNE)

Improves the probabilistic approach SNE
transforming objects given by high-dimensional
vectors or by pairwise dissimilarities, into a lower
dimensional space preserving neighbor identities

5.2.3

Conditional Entropy Selects features/input variables by minimizing
conditional entropy, or equivalently, by maximizing
mutual information or information gain

6.2

Iterated Conditional
Entropy

Selects features/input variables by minimizing
conditional entropy on previous choices iteratively

6.3

Conditional Entropy of
Targets

Selects features/input variables by minimizing
conditional entropy of the target/response variable

6.4

Reduction by Genomic
Signatures

Uses the pointwise hybridization pattern exhibited by
a dataset encoded as DNA sequences to
noncrosshybridizing (nxh) DNA chips designs based
on the deep structure of DNA spaces

7.3

Reduction by Pmeric
Signatures

Uses the barycentric coordinates of a set of DNA
sequences in a DNA space encoding the points in a
dataset in the convex hull of the Euclidean encoding
of their centroids

7.4

make specific assumptions. Therefore, the quality of the model or solution to a
problem may strongly depend on their tuning, with the added complexity to DR
methods.

3.2 Major Approaches to Dimensionality Reduction

This section presents a summary review of major dimensionality reduction (DR)
methods for datasets and problem solutions subject of this book. Supervised
methods require labeled data containing the expected answers, in addition to a given
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set of features describing a data point, whereas unsupervised methods just require
the feature vector specifying the data point. The descriptions focus on practical
aspects of these solutions related to solving data science problems, with further
references to other sources for a more comprehensive treatment of the technique(s)
as appropriate.

3.2.1 Conventional Statistical Approaches

This section describes major statistical methods for DR. To study whether a feature
can help in solving a data science problem, most statistical models formulate
the problem into statistical metrics such as probabilities mass/density functions.
(Sect. 11.1 contains a description of basic probability and statistical background.)
By assessing these metrics, a practitioner can select important features, describe
the relationship among variables, make inferences, and classify, predict, or cluster
future events.

From a statistical perspective, a most important metric of the data is its variability,
as captured by common measures of dispersion such as variance/standard deviation
and correlations between its various features. Preserving such variability is used as
the primary criterion to search for and assess methods to reduce dimensionality.

Example 3.2 (Principal Component Analysis (PCA)) Principal Component Anal-
ysis (PCA) is clearly the most popular DR method. When the dimensionality p

is large, PCA is commonly used in exploratory data analysis and for extracting
features and developing models. The key concept here is principal component
(PC) of variability. The first principal component is the direction that maximizes
the variance of a projection of the data onto a single line in feature space. The
second principal component can be taken as a direction orthogonal to the first
principal component that maximizes the variance of the remaining components of
the projected data, as illustrated in Fig. 3.1.

Fig. 3.1 (a) The first principal component (z1) of a 2D dataset is best captured by (b) a projection
along the solid black line (z1) and its orthogonal second principal component (z2). (c) plot of the
recoding of the data in the new coordinate system with axes the principal components z1 and z2
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Iterating the process, PCA computes the third principal component orthogonally
to the first two PC’s. PCA reduces dimensionality by projecting each data point
onto only the first few principal components to obtain lower dimensional data
representations, while preserving as much of the data’s variation as possible.
Overall, PCS amounts to a change of basis of the coordinate axes in feature space
(e.g., by appropriate rotations, as illustrated in Fig. 3.1) in order to capture the most
variability of the data along the new axes. Thus, PCA extracts features that retain
the most amount of the variance/covariance in the high dimension data. Since these
projections are linear operators, they can be easily implemented using a singular
value decomposition (SVD) of its variance–covariance matrix with optimized and
very fast linear algebra software libraries. ��

Example 3.3 (Kernel PCA (KPCA)) KPCA is an extension of PCA obtained by
choosing a transformation of the data by a so-called kernel that defines some
“weighted distance” measure. PCA is recovered as a particular case when the
kernel is linear. Other kernels can be considered, such as (a) polynomial kernels,
(b) Gaussian kernels, and (c) Laplacian kernels. ��
Example 3.4 (Independent Component Analysis (ICA)) Both PCA and ICA share
the common feature of finding a set of vectors as a basis to re-code the data. PCA can
greatly compress the data into fewer dimensions. On the other hand, ICA is useful
to find a representation of high-dimensional data as independent subelements that
can be used to separate data. Therefore, ICA is useful when the data (usually image
data) is a mixture of multiple signals for the separation of the various independent
components. ICA is used mostly for the purpose image processing. ��

3.2.2 Geometric Approaches

From a geometric perspective, PCA can be viewed as fitting a linear (flat) subspace
to the data so as to minimize the error given by the total sum of squared distances of
the data points from the subspace of reduced dimension. In a more general setting,
the data may not be “flat,” so a curved surface may best fit the data. What should
be the distance between data points in this case (the straight distance or along the
curve)? Also, while the dimension of a flat affine subspace is well defined and
understood, what should be the dimension of a curved surface? The appropriate
concept to better discuss these issues is the concept and language of manifolds.
Roughly speaking, a manifold is a geometric object that appears to be flat like a
Euclidean object (line, plane, affine hyperplane), for example, a sphere as big as the
Earth. Some variants of this idea for DR are briefly sketched next. These approaches
will be discussed in detail in Sect. 5.2.
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The general idea of a geometric approach is to reduce dimensionality while
minimizing some appropriate loss function that measures discrepancies in the
distances, or some other function of the distances is minimized. The notion of
distance being used defines a specific method.

Example 3.5 (Multi-Dimensional Scaling (MDS)) MDS has its origins in the field
of psychometrics and it can be used to visualize the level of similarity of individual
cases of a dataset by translating information about the pairwise “distances” among
a set of n objects or individuals into a configuration of points mapped into an
abstract Euclidean space. It can be viewed as a form of nonlinear dimensionality
reduction from a given distance matrix. When the distance matrix actually consists
of Euclidean distances, a procedure based on Linear algebra can be used to find a
mapping of the objects to points in a Euclidean space, known as classical MDS.
The algorithm will succeed and is in fact equivalent to the PCA algorithm, if the
distances are actually Euclidean. ��
Example 3.6 (Isometric Mapping (ISOMAP)) ISOMAP is a mapping that preserves
a distance measure defined over a lower dimensional manifold that can fit the data
reasonably well. Its basic philosophy is to assume that “learning” this manifold is
key to successful data analysis, and that the distances between the points are the
“intrinsic” or geodesic distances between the points on the manifold. The key issues
are: (a) how to build algebraic equations for a manifold from the sampled data; and
(b) the effect of such a mapping into a lower dimensional space on the dataset for
problem solving. ��
Example 3.7 (t-Stochastic Neighbor Embedding (t-SNE)) t-SNE is considered the
state of the art in visualization algorithms. The t-SNE method, proposed by van
der Maaten and Hinton [1], is a complex method that builds over and addresses
the shortcomings of its precursor the stochastic neighbor embedding (SNE) method
by Hinton and Roweis [2]. SNE is a probabilistic approach transforming objects
given by high-dimensional vectors or by pairwise dissimilarities, into a lower
dimensional space in such a way that neighbor identities are preserved. Unlike other
dimensionality reduction methods, SNE can represent each object with a mixture of
widely separated lower dimensional images. ��

In summary, MDS can preserve dissimilarities between items, as measured either
by Euclidean distance, some nonlinear squashing of distances, or shortest graph
path lengths as with ISOMAP. Principal components analysis (PCA) finds a linear
projection of the original data which captures as much variance as possible. SNE
can place the objects in a lower dimensional space so as to optimally preserve
neighborhood identity and can be naturally extended to allow multiple different low
dimensional images of each object. The t-SNE method is an improvement on the
SNE method. A detailed discussion and comparison are given in Chap. 5.
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3.2.3 Information-Theoretic Approaches

One can also perform a dimensionality reduction procedure using Shannon’s con-
cept of conditional entropy (CE). The basic idea is to select features/input variables
by minimizing conditional entropy or, equivalently, to select features/input variables
by maximizing mutual information. Specifically, mutual information measures the
reduction in uncertainty for one variable when the value of another variable is
known. This concept is closely related to the concept of information gain in machine
learning, as a quantitative measure of the reduction in entropy, given the values
of another random variable. The reduction can be used either to select predictor
features using conditional entropies on others or to select them supervised mode
using conditional entropies with the response/target variable.

Another interesting variation is to select features based on a recursive procedure
by selecting the first feature as before to maximize the average single conditional
entropy and make further selections by conditioning on previous choices. Unlike
other DR methods, CE reduction can be used in both modalities, supervised and
unsupervised learning. A detailed discussion is given in Chap. 6.

3.2.4 Molecular Computing Approaches

The key motivation of this approach is to exploit structural properties built deeply
into DNA by millions of years of evolution that can be utilized for extreme
dimensionality reduction and solution efficiency. They can be naturally used with
genomic data, but perhaps surprisingly, with ordinary abiotic data just as well.
There are several variations of this idea, and two major representative families
of techniques of this kind are reviewed in detail in Chap. 7, namely genomic and
pmeric coordinate systems for DNA sequences below.

Example 3.8 (Reduction by Genomic Signatures) It is based on the pointwise
hybridization patterns exhibited by encodings of the data into DNA sequences to
a common judiciously selected set of DNA oligonucleotides (a noncrosshybridizing
DNA microarray or chip) of the same length blanketing the entire DNA space, and
hence the dataset. ��
Example 3.9 (Reduction by Pmeric Signatures) Another way of reducing dimen-
sionality of genomic sequences is to capture their hybridization affinity (in terms
of their hybridization distance (the h-distance), as described in Chap. 7), to some
carefully selected oligonucleotides (the centroids of DNA spaces of a fixed length)
that have the capacity to represent the whole DNA space and DNA sequences of
arbitrary length. The method is based on the barycentric coordinates of the data
points (after translation into DNA spaces) in the convex hull of the Euclidean
representations of the centroids of DNA spaces of a fixed length. ��
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Similar to the categorization of supervised/unsupervised machine learning,
dimensionality reduction methodologies can be categorized by whether the infor-
mation of the response/target feature is used. Based on the specific target problem
or research goal, an objective function can be identified to find an optimal solution to
the problem. Specifically, dimensionality reduction can be achieved by optimizing
an objective function. For example, to obtain the optimal linear combination to
retain the maximal variation, the objective function will be the variance of a
candidate linear combination. PCA is then the algorithm that provides the optimal
solution.

3.3 The Blessings of Dimensionality

How does the dimensionality of the data impact data analyses? To answer this
question, one can look at the geometric properties of high-dimensional spaces that
are relevant for various computational aspects of data analysis. It turns out that high
dimensionality can be both beneficial as well as problematic. The first of these facts
is referred to as the blessing of dimensionality and it is somewhat lesser known
than its counterpart, the curse of dimensionality. They are both sides of the same
coin, as they depend on the same bare mathematical facts. This section describes
the blessings of high dimensionality, while the curse is deferred to Sect. 10.6.

Both the blessing and the curse of dimensionality can be traced back to the same
fundamental reason. In a nutshell, there is too much room in higher dimensional
spaces. There is no pun intended here because the meaning of this multifaceted
statement can be comprehended by doing some calculations about volume (the
quantification of space) in higher dimensions and following up on their implications
for DR and problem solving.

Example 3.10 On the 1D line, any point x separates other points in the 1D line
in two sides so that it is impossible to pass from one to the other without passing
through the point x. However, some sets of two points S = {x, y} cannot always be
separated from a third point z, for example, if z lies in between x and y. There is not
enough room to accommodate or fit a separator between them (S) and z. However,
in 2D (or 3D) space, unless x, y, z are not in general position (i.e., are collinear
or coplanar) as above, there are infinitely many 1D lines (2D planes, respectively)
that will separate the point z from the set S, i.e., put it on opposite sides of the flat
separator. ��

Another subtle way in which high dimensionality manifests itself, but still a
consequence of the fundamental reason above, is that “in higher dimensions, mass
tends to be concentrated near the boundary.” This is a fact known in probability
theory as the concentration of measure phenomenon [3]. Several consequences that
were first termed as blessings of dimensionality by Donoho [4] depend on it. They
are referred to as blessings [4] since they help computationally. For example, they
have been very useful in the design of randomized algorithms and data structures [5].
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In particular, one of the consequences is that a so-called Lipschitz function (i.e., a
function whose values f (x) change slowly from the value f (x0) with the distance
|x − x0| from x0) can be estimated with high probability in high dimensions by
sampling it at single points randomly. Another consequence is that nearest neighbor
search in high dimensions can be approximately solved very quickly with high
probability.

The nearest neighbor problem [NNbrs] for a given dataset D ⊂ Rd of
dimensionality d was stated precisely in Sect. 2.2.1 as follows.

[NNbrs] NEAREST NEIGHBOR (D)

INSTANCE: A point x ∈ Rd

QUESTION: Which is the nearest point in D to point x?

Example 3.11 Such queries are useful in Geographic Information Systems (such as
your favorite Map app), for example, to answer queries like “Where is the nearest
gas station?” (i.e., D is the set of gas station locations and x is your current location.)
Such nearest neighbor queries happen often and, therefore, it is desirable to answer
such queries fast. ��

Solutions to the nearest neighbors and the k nearest neighbors (kNN s) problems
are important algorithmic constructs in higher dimensions, particularly for the
purposes of classification, clustering, and function approximation (described in
more detail in Sect. 2.2.1). A linear scan of all n points in D will yield the
closest point in linear time, but are there substantially faster ways to answer such
queries? Indeed, in low dimensions such as 2D, one can preprocess the points
into a data structure (a Voronoi diagram) of size in the order of n (i.e., O(n))
such that nearest neighbor queries can be answered in O(log n) time. In higher
dimensions, however, although one can still precompute such a Voronoi diagram,
the curse of dimensionality rears its ugly head as a combinatorial explosion. In
higher dimensions, a Voronoi diagram becomes an exploding collection of points,
edges, 2D faces, 3D and higher dimensional polytopes (about O(nd/2) of them),
which are computationally infeasible to store or search (more later in Sect. 10.6).
The curse of dimensionality strikes again!

On the other hand, there is a blessing too that helps alleviate this situation, if one
is willing to accept only approximate solutions. In the approximate nearest neighbor
search one usually has some stringency parameter ε > 0 and instead of asking for
the exact nearest neighbor, one settles with an (1+ε)-approximate nearest neighbor,
i.e., a point z′ in D whose distance |z′−x| from the query point is within (1+ε) times
the distance to the true nearest neighbor z . The hashing scheme is called locality
sensitive hashing and is a well-known acceptable solution to this problem. Such
algorithms have been very successful and they afford sublinear query time (great
savings when looking for a gas station) compared to a linear scan. This guarantee
can be given for this solution design only because of the concentration of measure
phenomenon mentioned above.

There are yet other good consequences of the blessing of dimensionality, as
pointed out by Donoho and Tanner [6], and Barany and Furedi [7]. Roughly speak-
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ing, they show that if we sample data points independently in higher dimensions
with, say, a standard normal distribution (or uniform within a ball), it is true that,
with high probability, each point is a vertex of the convex hull of all the points, even
for a sample size exponentially large in the dimension d. Intuitively, this is true since
all points sampled will lie near the boundary with high probability, as mentioned
above. In particular, this means that each point can be separated from all the others
by a hyperplane. This fact is important in the design of correctors in AI systems
[8], for example. More specifically, if an AI system makes a mistake, some decision
rules need to be changed to address it. However, since a complete re-training of the
system may be infeasible on every mistake, a re-training is postponed until several
mistakes are encountered. Using the linear separability mentioned above, simple
correctors can be designed that can cause an AI system to change its decision on
a single point to avoid future mistakes without affecting other points, unless the
number of mistakes is too large.
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Chapter 4
Conventional Statistical Approaches

Ching-Chi Yang , Max Garzon , and Lih-Yuan Deng

Abstract The objective of dimensionality reduction is to retain key properties
of the given data to solve a problem with fewer features in a lower dimensional
space. Statistical methods aim to preserve characteristic parameters such as mean,
variance, and covariance of features in the population, as estimated from the dataset.
Methods include Principal Component Analysis (PCA) and its variants, Independent
component analysis and Discriminant Analysis. Linear algebra methods offer
other approaches, including Singular value Decomposition (SVD) and Nonnegative
Matrix Factorization (NMF).

4.1 Principal Component Analysis (PCA)

Principal component analysis (PCA) extracts features that retain the most amount of
the variance/covariance of a dataset and can be easily implemented using elementary
methods in statistics and linear algebra (summarized in Sects. 11.1 and 11.2). The
variance is the measurement of how spread out the data is in the set, a measure
of variability. PCA takes a dataset with a lot of dimensions and flattens it to fewer
dimensions (say 2D or 3D) so the power of the human eye can look at it and get
a deeper understanding of the data. It is also a classical feature extraction and
data representation technique widely used in the areas of pattern recognition and
computer vision such as face recognition. Therefore, PCA is a classical and very
popular dimensionality reduction method.

Example 4.1 (PCA with Iris Data) The Iris dataset was introduced in Sect. 1.1 (also
described in Sect. 11.4). In the problem [IrisC] of classifying iris flowers, one
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Fig. 4.1 (a) Scatter plot based on Sepal Length and Sepal Width. (b) Scatter plot based on the first
and the second principal components. The grey levels of the points represent three different types
of species

class is linearly separable (by a hyperplane) from the other two, but the latter are
not linearly separable from each other. As expected, the measurements in the four
features (SepalLength, SepalWidth, PetalLength, and PetalWidth) are correlated.
PCA extracts features that will be orthogonal to the others. The extracted features,
then, will be treated as uncorrelated features, so they might confuse a classifier less,
while at the same time attempting to retain the most variation in the data to solve the
problem. As mentioned in Sect. 3.2, the key concept in PCA is principal component
onto which the data is being projected to find these components. Figure 4.1b
shows the result after projecting the Iris dataset onto the first two principal
components. ��

4.1.1 Obtaining the Principal Components

PCA projects the original data in a direction that maximizes variance, as illustrated
in Fig. 3.1 in Sect. 3.2 and Fig. 4.1b. The first principal component (PC1) is the axis
that affords the most variation when projecting the data onto a single 1D axis.

In general, the dataset X can be first centered so that their sample mean is 0
(by subtracting the mean of the feature values from each feature Xi). The first
component PC1 is chosen as a column vector W1 satisfying

W1 = arg max||w||=1
{‖XW‖2} = arg max||w||=1

{W′X′XW}. (4.1)

Thereafter, the kth principal component PCk (k > 1) is found recursively as the
axis that spans the most variation in residual projections of the data onto directions
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orthogonal to the first component. The kth greatest variance lies along the kth
component. PCk is aimed to obtain a column vector Wk such that

Wk = arg max
‖W‖=1

{||X̂kW||2} = arg max
‖W‖=1

{W′X̂′kX̂kW} , (4.2)

where

X̂k = X−
k−1∑
i=1

XWiWi
′ .

Therefore, PCA can be regarded as an orthogonal (i.e., perpendicular axes) linear
transformation that recodes data into a new coordinate system so that the greatest
variance by some projection of the data lies on the axes of the new system, i.e.,
the principal components. However, directly solving the PCA optimization problem
might not be efficient. Section 4.1.2 presents another approach to solving the PCA
optimization problem via linear algebra.

PCA measures the variation based on Euclidean distances between the data
points. Some researchers have extended the idea to other metrics. Other approaches
and extensions are discussed in Sect. 4.2.

4.1.2 Singular Value Decomposition (SVD)

The variance optimization problem admits a very nice solution using standard
linear algebraic techniques to compute eigenvectors (summarized in Sect. 11.2).
The corresponding eigenvectors yield the principal components, as shown next.

Singular value decomposition (SVD) is a well-known matrix factorization
method in linear algebra. It decomposes an n × p matrix X into a factorization
of the form

X = UDV′,

where U = (U1,U2, . . . ,Un) is an n×n orthogonal matrix, V = (V1,V2, . . . ,Vp)

is a p × p orthogonal matrix, and D is an n × p rectangular matrix with nonzero
elements along the first p × p submatrix diagonal with n > p, that is, D =
Λ(d1, d2, . . . , dp) where d1 ≥ d2 ≥ · · · ≥ dp ≥ 0. (Typically, the p elements
of the submatrix diagonal are organized from the largest value to the smallest one.
A matrix (U1,U2, . . . ,Un) is called orthogonal if its column vectors Ui and Uj are
orthogonal, i.e., their inner product U′iUj = 0 for all pairs i �= j and U′iUi = 1
for all i. Thus, the inverse of an orthogonal matrix is its transpose, i.e., the product
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D′ D = I.) If one re-expresses the data matrix X by UDV′, the variance of XW can
be written as

W′X′XW
n− 1

= W′VD′DV′W
n− 1

.

It can be shown that one will obtain the largest variance d2
1/(n − 1) by making

W = V1, with value

W′X′XW = V′1X′XV1 = V′1VD′DV′V1 = e′1D′De1 = d2
1 ,

where e1 is the first base vector of dimension p. Similarly, if one uses Vk instead of
V1, the linear combination XVk will result in the kth largest residual variance. The
column vectors of V are the eigenvectors of X′X and the values d2

i are the square of
the eigenvalues of X′X.

Example 4.2 (SVD for the Iris Dataset) If SVD is implemented on the centered
150× 4 matrix Iris data X (by subtracting the mean value from each features), the
matrices U, D, and V will be a 150× 150 orthogonal matrix, a 150× 4 matrix with
4 diagonal nonzero elements, and a 4 × 4 orthogonal matrix, respectively. Since U
will contain all zero entries from the 5th to the 150th column, the matrix can be
simplified to a 150× 4 matrix. Similarly, the matrix D will be simplified to a 4× 4
diagonal matrix.

U =

⎡
⎢⎢⎢⎢⎢⎣

−0.11 −0.05 0.01 0.00
−0.11 0.03 0.06 0.05
−0.12 0.02 −0.01 0.01

· · ·
0.06 0.05 −0.11 −0.08

⎤
⎥⎥⎥⎥⎥⎦

, D =

⎡
⎢⎢⎣

25.10 0.00 0.00 0.00
0.00 6.01 0.00 0.00
0.00 0.00 3.41 0.00
0.00 0.00 0.00 1.88

⎤
⎥⎥⎦ and

V =

⎡
⎢⎢⎣

0.36 −0.66 0.58 0.32
−0.08 −0.73 −0.60 −0.32
0.86 0.17 −0.08 −0.48
0.36 0.08 −0.55 0.75

⎤
⎥⎥⎦

��

4.2 Nonlinear PCA

So far, PCA has been considered only for populations and data living in Euclidean
spaces with Euclidean distances. Chapter 5 will pursue refinements of PCA in other
spaces. As the Manhattan distance shows, other distances might be more suitable for
other datasets and populations. This section discusses some techniques extending
the idea to get some variations of PCA for data with other metrics in other spaces
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(although not to metric spaces of infinite dimension, such as Hilbert spaces). Kernel
PCA (KPCA) maximizes variance along other bases, while Independent Component
Analysis (ICA) focuses on the independence of the features (the PC axes).

4.2.1 Kernel PCA

Two major strengths of PCA are that one obtains the maximal variation with a small
set of features along PCs and the PCs are orthogonal and hence linearly independent.
This section explores the case where the data can be transformed into other metric
spaces. In a different space, the variation may have to be measured differently. PCA-
like algorithms in such spaces are generally called kernel PCA.

Example 4.3 (Kernel PCA with Iris Data) A change in distance metric can cause
PCs to look very different, even for the same dataset. The first two princi-
pal components of the Iris data set with different kernel metrics are shown in
Fig. 4.2. ��

Section 4.1 showed how PCA aims to maximize the value of the distances
‖XW‖2. They can be rewritten as an inner product XW·XW which is just W′X′XW.
As described in Sect. 2.2, SVMs can change the inner product to better describe the
distance between observations to facilitate solving a problem. The recoding function
K(xi , xj ) is called a kernel function. It re-scales the data points to make analysis by
ordinary linear PCA possible. In general, the distances can be weighted. By utilizing
different weight functions K(xi , xj ), the separation boundary will fit the data better
and improve performance. Commonly used kernels are

• Linear kernel (no recoding)
Essentially PCA itself using Euclidean distance.

• Polynomial kernel
K(xi , xj ) = (xixj

′ + 1)d , recoding by a polynomial of degree d. The distance
between two observations will be enlarged by a factor of a power d of the
distances. (The formula contains a shift “+1” to guarantee that the distance is
larger when xi

′ · xj
′ is less than 1.)

• Gaussian kernel
K(xi , xj ) = exp{−‖xi − xj‖2/2σ 2}. Instead of enlarging the distance between
two observations, one can instead pull the “outliers” back in. A Gaussian
distributions can be used, such as f (x) ∝ exp{−x2/σ 2}. The “distance” should
rather be interpreted as similarity now because the metric properties from
Sect. 1.2 may fail. If ‖xi − xj‖2 is larger, the value of K(xi , xj ) is near 0 (no
similarity); if ‖xi − xj‖2 is 0, the value of K(xi , xj ) is 1 (no change in the
distance).
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Fig. 4.2 Scatter plots of the first two principal components (PCs) of the Iris dataset with
nonEuclidean distances based on (a) linear kernel; (b) polynomial kernel with two degrees of
freedom; (c) Gaussian kernel with α = 1; (d) Laplacian kernel with α = 1

• Laplacian/exponential kernel
K(xi , xj ) = exp{−||xi − xj ||/σ }. Instead of using ‖xi − xj‖2 in determining
the similarity, one can also consider using ‖xi − xj‖ by leaving out the square of
the norm.

Generally, Gaussian and Laplace kernels are called radial basis kernels.
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4.2.2 Independent Component Analysis (ICA)

ICA is a computational technique for decomposing a multivariate signal into
additive subcomponents. The objective now is to obtain “independent” components
u1, u2, . . . ,uk of dimension p, so that xi = wi1u1+wi2u2+· · ·+wikuk+ε, where
ε is a Gaussian error of dimension p.

Example 4.4 (ICA with Iris Data) Although ICA is commonly used in image
recognition, it is still possible to utilize it on the Iris dataset. (to be fair, one
should randomize the order of the observations.) One can obtain the independent
“signals” based on ICA. Figure 4.3a shows the first two independent components
(ICs) and Fig. 4.3b shows the ICs with respect to their observation indices. The first
independent components in Fig. 4.3a already separate Iris species well.

Similar to decorrelation of features in PCA by principal components in Sect. 4.1,
a pre-whitening procedure decorrelates each observation data matrix by its mean
by performing an eigenvalue decomposition on XX′ = UDD′U′. The decorrelated
observations will simply be DU′X. So, without loss of generality, one can assume
that X is pre-whitened data. The objective of ICA is then to find the direction
for the weight vector W, a column vector of dimension n, that maximizes either
nonGaussianity or mutual information. This section focuses on nonGaussianity.
Mutual information-related topics will be described in Chap. 6.

FastICA is an efficient and popular algorithm for ICA invented by Aapo
Hyvärinen at the Helsinki University of Technology. Like most ICA algorithms,
FastICA seeks an orthogonal rotation of pre-whitened data through a fixed-point
iteration scheme that maximizes a measure of nonGaussianity of the rotating

Fig. 4.3 (a) Scatter plot of the first two independent components of the Iris dataset. (b) The
observations are fairly separated in the first independent component and can be used to solve the
problem of [IrisC]
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components. Hyvärinen [6] suggests the nonlinear function f (u) = log(cosh(u))

for general purposes and f (u) = − exp{−u2/2} for robustness, as described next.
Let g(x) = f ′(x) and h(x) = f ′′(x) denote the first and the second derivative of

the function f . The FastICA algorithm obtains first component as follows:

1. Initialize the weight vector W randomly;
2. Update expectations and weights using

• Expectation: v = X(g(W′X))′ − (h(W′X)1p)W;
• Weights: W = v/‖v‖ ;

3. Iterate steps 1 and 2 until W has converged.

Thus, the first independent component s1 is W′X and the final weight is denoted
by W1. To obtain the kth independent component, a similar procedure is performed,
with the additional constraint that it should be orthogonal to the previously obtained
ICs in the second step:

• Expectation: t = X(g(W′X))′ − (h(W′X)1p)W,

• Orthogonalization: v = t−∑k−1
j=1(t

′Wj )Wj ;
• Weights: W = v/||v|| .
Once W has converged, one obtains the kth independent component sk as W′ X and
the final weights as Wk .

4.3 Nonnegative Matrix Factorization (NMF)

In this section, a further exploration of linear algebra methods along matrix
factorization for DR is shown to be useful for certain kinds of problems involving
semantic concepts (i.e., abstract ideas such as word meaning, usually expressed
as images or text). The key idea here is that feature abstraction as a combination
of raw features is better than just feature selection as a way to produce fewer
informative features for solving a DS problem. The key difficulty is to find the
right criterion to combine features effectively. PCA is a very good example based
on the criterion of capturing the variance/covariance of the sample by projections
onto individual axes (the principal components). Formally, it amounts to an SVD
decomposition of the data X into a product of three matrices X = UDV′, where D
is a (possibly rectangular) diagonal matrix of eigenvalues. In Sect. 4.2 the idea was
focused on different combinations of axes (linear bases) with kernel PCA and on
the independence of the components. In this section, focus is shifted rather to more
semantic and abstract features that may extract deeper structural properties of the
data, where negative values can make intuitive interpretations difficult, as illustrated
in the following examples.

Example 4.5 An interesting problem in understanding abstract concepts is to
capture commonalities among a social group of n individuals (say, users), for
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example, in terms of liking or disliking specific p items (say, movies), where n

and p are fairly large. A good recommender system for movies would have to
“understand” why exactly it is that people tend to like certain movies but dislike
others. A specific individual may give a high rating to a movie simply because her
favorite actor is the main character. Another may give it a low rating because the
topic is LGBT. If the data consists of a matrix Xn×p of ratings xij of users i of
movies j , it would be desirable to identify a few features (say, main characters,
topics, directors, whether it is an academy award nominee, and so forth) that
primarily determine the rating for an individual user. These features are considered
latent or hidden, in the sense that they are not mentioned explicitly in data or ratings,
but weigh heavily on them. Each such feature can be thought of as adding a bit of a
“like” component to the whole group rating of a given movie, so that each column
Xj of X expressing the group’s sentiment for a specific movie j is actually a linear
(weighted) combination of little “likes” contributed by each user for each latent
feature, i.e.,

Xj = UVj ,

where Vj is the j th column of a certain matrix V capturing all those little “likes”
(which must be nonnegative), and U is the recoding of the features in V to retrieve
the data X. Mathematically, this simply means that the matrix X is being decom-
posed into a product X = UV of two (perhaps nonsquare rectangular) matrices
U and V with nonnegative entries, a so-called nonnegative matrix factorization
(NMF). Finding such a decomposition will deliver a recommender system for the
problem of predicting the rating of a random user would give to a particular movie,
or even for finding a movie to recommend to a particular user (by finding the movies
with such top ratings). ��

Actually, the r rows of V will correspond to the latent features to be selected,
while the number of columns is p, the number of movies. An algorithm solving the
NMF problem generates these abstract features, so they do not have to correspond to
features that would necessarily be intuitively understandable to humans. Although
thus less explainable, they have the advantage of being objective (observer indepen-
dent) since they are up to the mathematics of matrix multiplication.

Example 4.6 (Latent Semantic Analysis) Another challenging problem in Natural
Language Processing (NLP) is to formulate the concept of word meaning in an
objective and user-independent way, so that a machine could have some sense of the
semantics of a word in a natural language like English and use it to communicate
better with humans. The problem can be solved by an SVD factorization of the
matrix X counting the number of occurrences of each of the p words in n documents,
of the form

X = UDV′,
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where D is a rectangular diagonal matrix and U,V perform the recoding of the
original data from D. The factorization altogether would determine the meaning
of a word through the various uses of the word in the documents, as discussed
in Sect. 4.2. (Note that the matrix factors may have negative entries. Section 11.2
describes SVD decomposition in some detail.) The feature vector coding the
words and texts correspond to projections of the corresponding original frequency
representations onto the eigenvectors of a suitable selection of the top eigenvalues
in D. ��

Example 4.7 (k-Means Clustering by Factorization) The third problem where
factorization can help is a clustering problem, specifically the k-Means algorithm
discussed above in Sect. 2.1. As discussed in Sect. 4.2, the problem can be solved
by a similar NMF factorization of the matrix

X = UDV′

counting the number of occurrences of p words in n documents, which together
would determine the meaning a word through the various uses of the word in the
sample of users. ��

Unlike with ordinary integers and prime numbers, a NMF of a matrix is not
unique (i.e., there can be several equally useful but distinct concepts for an abstract
feature) and can admit a large number of solutions; moreover, finding exact solutions
is not only computationally hard (even with restrictions on the type of matrix X, e.g.,
symmetric with a diagonal submatrix of equal rank), and even if not all solutions are
to be found. Additional criteria are needed to guide the search for the latent features.
The problem of NMF can then be defined precisely as an optimization problem
where the factors only provide the search space for a matrix of nonnegative entries,
while the goal is to optimize the given criterion (a loss function or a cost function).
For example, in PCA, the SVD decomposition aims at maximizing the variance of
the data along orthogonal principal components in relation to the variance of the
given matrix X. The problem can be further complicated where the data available is
very large (e.g., a large number of users and movies, as was the case in the Netflix
challenge problem (https://en.wikipedia.org/wiki/Netflix_Prize), incomplete, and/or
sometimes even dynamically changing at high velocity (more users and new movies
being added, e.g., in the problem of collaborative filtering in recommender systems).

4.3.1 Approximate Solutions

A solution to an NMF problem for a data set Xn×p provides DR for data if the
number of latent factors (intermediate dimension) is substantially smaller than
both n and p. The explainability of the solution also requires the entries to be

https://en.wikipedia.org/wiki/Netflix_Prize
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nonnegative. This constraint precludes the use of a number of other linear algebra
techniques such as SVD to solve the problem.

One of the most popular solutions, because of the simplicity and ease of its
implementation, is due to Lee and Sung [7]. The trade-off is that the solution is only
approximate, i.e., the product of the factor matrices is only close to X according
to some distance function in matrix spaces, such as the �2 function (ordinary
distance in Euclidean spaces of dimension n2). The strategy for this solution is the
multiplicative update rule used in binary decision making based on the advice from
various experts, whose opinions can be weighed (un)equally. A decision maker can
simply make the first decision based on the majority of the experts’ advice, weighed
equally at first. In successive rounds, the weight of an advisor’s opinion can be
repeatedly updated based on the correctness of their prior advice. For NMF, the cost
function can be chosen as the square of the �2-distance

‖X− UV‖2
2
=
∑
i,j

[ Xij − (UV)ij ]2 (4.3)

of the product of the estimated factors from the target X. Given approximate factors
U and V in the t th iteration, an additive update to improve V can be proportional to
that difference in the t + 1st iteration, i.e.,

Vij ← Vij + ηij [ (UT X)ij − (UT UV)ij ] ,

and likewise for U. The values of the learning rates ηij can be obtained by
gradient descent (described in Sect. 11.3) in matrix space, i.e., the projection of the
components of the gradient (vector of partial derivatives) of the cost function (4.3)
with respect to the entries in (X− UV)ij along the (ij)th direction.

However, perhaps surprisingly, the multiplicative update rule with larger updates
given entrywise by

Vij ← Vij

(UT X)ij

(UT UV)ij

and

Uij ← Uij

(XVT )ij

(UVVT )ij

will still converge to factors where the updates will be 0 at the local optimal values.
As a technical point, the monotonic convergence of the algorithm can be proven

using an auxiliary function analogous to that used for proving convergence of
the Expectation Maximization algorithm in Probability Theory [7] (described in
Sect. 11.3.2). The algorithm can also be interpreted as a diagonally rescaled gradient
descent, where the rescaling factor is optimally chosen to ensure convergence.
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4.3.2 Clustering and Other Applications

With the least squares criterion, NMF is equivalent to a relaxed form of k-
Means clustering. In k-Means clustering (described in Sect. 2.3) of data X, if the
cluster centroid vectors ck are the columns of a matrix H, then an optimal solution
for hard clustering will minimize the aggregate inter-cluster distance between points
across all clusters, i.e., the least squared error function

Jk(C) =
k∑

j=1

∑
i∈Ck

‖xi − cj‖2 , (4.4)

where C is the matrix of cluster centroids c1, . . . , ck and the Cks are the clusters.
In hard clustering, the cluster indicator vector for cluster ci has a 1 or a 0 at
position j depending on whether data point j belongs to the cluster ci or not, so
that indicator vectors for two different clusters are perpendicular vectors with dot
product 0 because the clusters make a partition of the dataset (hence a 1 in one
position forces 0 in the same position in all the other cluster indicator vectors). Thus,
the matrix H with columns the indicator vectors in some ordering of the clusters is
orthogonal, and the matrix V = HH′ can be used for a factorization. Therefore,
when U is required to be orthogonal (i.e., UU′ = I, the identity matrix) and V = U′
in a matrix factorization, a (an approximate) solution corresponds to an optimal
(approximate, respectively) clustering of the data. The dominant entries Vkj > Vij

determine a cluster Ck of the input data. This property tends to hold even if the
orthogonality condition is not enforced. Furthermore, if the optimization criterion is
the Kullback–Leibler divergence (defined precisely in Sect. 5.2), NMF is equivalent
to the Latent Semantic Analysis popular in Natural Language Processing (NLP) for
document clustering. (More details can be found in [2].)

NMF has a wide variety of applications in other fields, including the original
application in astronomy (e.g., detecting exoplanets outside the solar system), com-
puter vision (object identification), audio signal processing (nonstationary speech
denoising), and bioinformatics (identifying gene cluster responsible for cancers
by certain types of genetic mutations; predicting miRNA disease associations [3];
quantification of single-cell RNA gene expression [9]). A broad survey of NMF,
its generalizations (tensor factorization) and their applications can be found in [1]
and [5].

4.4 Discriminant Analysis

Fisher’s Discriminant analysis [4] can be used to classify qualitative response
variables into two or more classes. The method uses prior probabilities of belonging
to each class together with density functions associated with predictor variables.
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Fig. 4.4 Linear Discriminant Analysis (LDA) on the first two discriminant dimensions of the Iris
dataset

Using Bayes theorem (described in Sect. 11.1), posterior distributions are calculated
for the probability that an observed response belongs to each class given the value of
the predictor variable. LDA and QDA are generalizations of Fisher’s Discriminant
Analysis. Linear discriminant analysis (LDA) assumes that observations within
each class come from a multivariate normal distribution with different means for
each class but a common covariance matrix for all classes. Quadratic discriminant
analysis (QDA) makes a similar assumption but it allows each class to have its own
covariance matrix.

Example 4.8 (LDA and QDA with Iris Data) The Iris data can be visualized by
projecting the data into the first two LD dimensions. Figure 4.4 shows the decision
boundaries based on LDA. By assuming the same covariance matrix, the boundaries
will be straight lines, hence the name linear discriminant analysis.

The Iris dataset can be transformed to illustrate the advantages of LDA and
QDA. Sharper boundaries between the classes can be established in both cases
by just transforming Petal Length and Petal Width, as shown in Fig. 4.5. These
boundaries will be linear if the covariance matrices for each class are similar. By
allowing different covariance matrices for each class, the decision boundaries can
be nonlinear. In fact, they are quadratic boundaries, hence quadratic discriminant
analysis. ��
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Fig. 4.5 Different decision boundaries on Petal Length and Petal Width for the Iris dataset via (a)
LDA and (b) QDA. The classes are now more easily separable

4.4.1 Linear Discriminant Analysis (LDA)

Fisher’s Linear discriminant analysis (LDA) aims to find a linear combination of the
given variables that separates two or more classes. LDA uses Bayesian learning and
Bayes’ theorem (stated in Sect. 11.1). The main idea separating LDA and Bayesian
learning is that LDA assumes that the distribution of the conditional probability
P(X = x|C = c) follows a Gaussian distribution with the same covariance matrix
Σ . Specifically, the multivariate Gaussian distribution for [X|C = c] is given by

P(X|C = c) = 1

(2π)p/2|Σ |1/2
exp

{
−1

2
(x− μc)Σ

−1(x− μc)
′
}

,

where μc is an estimated mean (a row vector of dimension p) for class value c

and Σ is a p × p estimated covariance matrix. By Bayes theorem, P(C = c|x) ∝
P(x|C = c)P (C = c). Therefore, the decision boundary between class j and k is
{x : P(x |C = j) P (C = j) = P(x |C = k)P (C = k)} . By taking logarithms of
both sides, the decision boundary will be determined by

log(πj )− 1

2
(x− μj )Σ

−1(x− μj )
′ = log(πk)− 1

2
(x− μk)Σ

−1(x− μk)
′,

which can be further simplified to

log(πj )− 1

2
μjΣ

−1μ′j + xΣ−1μ′j = log(πk)− 1

2
μkΣ

−1μ′k + xΣ−1μ′k .



4 Conventional Statistical Approaches 93

Table 4.1 Prediction accuracies of LDA and QDA with Petal Length and Petal Width as input
variables for the Iris classification problem [IrisC]
LDA Setosa Versicolor Virginica

setosa (pred.) 50 0 0

versicolor (pred.) 0 48 4

virginica (pred.) 0 2 46

QDA Setosa Versicolor Virginica

setosa (pred.) 50 0 0

versicolor (pred.) 0 49 2

virginica (pred.) 0 1 48

4.4.2 Quadratic Discriminant Analysis (QDA)

Instead of assuming the same covariance matrix across all classes, QDA assumes
that the distribution of the random variable [X|C = k] follows a Gaussian
distribution with different covariances matrix Σk . Using a similar derivation to LDA
in Sect. 4.4.1, the decision boundary for class j and class k will be given by

log(πj )− 1

2
μjΣ

−1
j μ′j + xΣ−1

j μ′j = log(πk)− 1

2
μkΣ

−1
k μ′k + xΣ−1

k μ′k .

QDA allows more flexibility on the variation of the classes and thus can be
regarded as a generalization of LDA. Table 4.1 shows the accuracies of LDA and
QDA when one only considers Petal Length and Petal Width. In the case of big
data, QDA is expected to be more accurate if the covariance matrix can be properly
estimated.

4.5 Sliced Inverse Regression (SIR)

In a fashion similar to LDA, one can also utilize the information based on the
response while obtaining the maximal “variation.” Instead of directly obtaining the
maximal variation based on the input features (e.g., PCA), sliced inverse regression
(SIR) obtains the linear combination of features resulting in the maximal variation
of the expected value E(X|y). (Related approaches from a machine learning
standpoint involving the responses/targets are discussed in Chap. 8.)

Example 4.9 (SIR with Iris Data) SIR is commonly utilized when the response is
a continuous variable. For a comparison to other method presented earlier, Fig. 4.6
shows the first two dimensions of the Iris data (by slicing the data into 5 subgroups
for each species) run on SIR. ��

Criteria other than maximizing the variation of X consider the information in the
response feature Y . Ker-Chau [8] proposed the method of sliced inverse regression
for dimensionality reduction. The criterion is now to maximize the variation of the
conditional expectation E(X|y), instead of the variation of the covariates X. The
directions retaining the maximal variation of E(X|y) will better capture the change
in response Y .
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Fig. 4.6 Scatter plot on the first two dimensions of the Iris dataset via SIR

Example 4.10 (The Space Spanned by X|Y ) In the simplest case, no error terms
occur and the underlying model has the form

y = f (β1x
′),

where β1 is a pD row vector. The objective is to choose the right value of β1. One
can rewrite the underlying model as

β1x
′ = f−1(y)

assuming that f is invertible. Changing y, the β1x
′ will change accordingly.

Therefore, one only needs to examine the space spanned by X|Y to reveal the
coefficient β1. ��

In a real world situation, the underlying model can be as complex as mentioned
in Chap. 2, i.e.,

y = f (β1x
′,β2x

′, . . . ,βKx
′)+ ε.
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Then, following similar strategies, one only needs to study the space spanned by
E(X|Y ) due to the error terms ε. The general procedure can be expressed as
follows:

• Slice data into subdata sets based on the range of Y ;
• Estimate the inverse mean E(X|y) of each subdata;
• Obtain the direction which maximizes the variation of E(X|y).

Practically, the number of slices that can be selected depends on the number of
desirable reduced dimensions. For example, if only two dimensions are needed, the
number of slices can be as small as 3. The reduction will converge quickly if more
slices are utilized. For example, if the number of slices is 3 in the Iris dataset, the
reduced dimensions via SIR will be similar to the reduced dimensions via LDA.

In summary, statistical DR exploits variations of the theme of PCA using
statistical learning to fit parameters for classification and clustering problems, based
only on predictor and/or target features.
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Chapter 5
Geometric Approaches

Nirman Kumar

Abstract It is often the case that data is encoded as numeric vectors and hence is
naturally embedded in a Euclidean space, with a dimension equal to the number of
features. After the classical PCA that fits a linear (flat) subspace so that the total
sum of squared distances of the data from the subspace (errors) is minimized, any
distance function in this space can be used to endow it with a geometric structure,
where ordinary intuition can be particularly powerful tools to reduce dimensionality.
The idea can be generalized by changing the flat space to obtain a possibly nonlinear
curved object (a so-called manifold) that can be fitted to the data while trying to
minimize the deformations of distances as much as possible. Four major methods
of this kind are reviewed, namely MDS, ISOMAP, t-SNE, and random projections.

5.1 Introduction to Manifolds

Data is (or can be, even nonnumeric) often encoded as numeric vectors and hence
can be naturally considered to “live” in a Euclidean space. The dimension of this
space appears to be just the number of features in each data point. However, the
data itself can be essentially lower-dimensional.

Example 5.1 Consider a synthetic 10D dataset generated by the following ran-
domized process. We repeatedly take independent samples Xi, Yi of two standard
normal distributions Xi, Yi ∼ N(0, 1) and set the j th datum in a data point
xi = (xi1 , . . . , xi10) to be

xij = 10jXi + 2j2Yi + εij ,

where εij ∼ N(0, 10−4) is some small random error distributed normally as
Gaussian noise with mean 0 and variance σ 2 = 10−8.
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Arguably, the real dimensionality of the data is 2 rather than 10, but that is not
apparent if one is just looking at the dataset without knowing exactly how it came
about. The goal of dimensionality reduction is to discover this true lower dimension.

��
Most humans have an intuitive sense of what dimension may mean, and these

intuitive ideas may be good enough for informal discussions. However, Example 5.1
raises the question as to what is really meant by dimension of a dataset. Thus,
a serious discussion of dimensionality reduction necessitates a deeper discussion
and proper definition of this term. The traditional area of knowledge where it
belongs is geometry, and mathematicians have developed conceptual frameworks to
understand it, including some generalizations in subject areas such as linear algebra,
algebraic geometry, differential geometry, and topology. The goal of this chapter is
to examine these geometric concepts to understand dimension and use geometric
ideas to develop effective dimensionality reduction techniques.

A geometric approach to dimensionality reduction strives to find fewer features
that “preserve” essential information in the data for a given problem (e.g., shape),
which eventually translates into various relationships among the distances across all
data points, like in a sphere. In a nutshell, the geometric approach is to reduce the
dimensionality while minimizing some appropriate function (e.g., a loss function)
that quantifies discrepancies between a) distances between points in the given space
and b) mapped points in the lower-dimensional space.

Example 5.2 PCA can be interpreted geometrically as fitting a linear (flat) subspace
to the data (as shown in Fig. 3.1) so that the error defined as the total sum of squared
distances of the data points from the subspace is minimized. ��

However, in general, the data may not be close to “flat.” A curved object may
fit the data better. In general, PCA will not be very successful in fitting a linear
subspace of the “correct” dimension to the data.

Example 5.3 The 3D dataset of 200 random points on a spiral is depicted in Fig. 5.1.
Any attempt to reduce dimensionality using PCA on this dataset will not yield any
useful reduction since there is no lower-dimensional subspace that can fit the data
points close enough. ��

This example raises the need to discuss two points. First, it should be clear that
the notion of “dimension” requires a more careful definition, even if only theoretical.
Intuitively, the dimension of the dataset in Example 5.3 is 3 since it does not lie in
any plane. Moreover, even projecting to most planes may cause two different data
points, far off from each other, to collapse onto the same point.

The second issue is how one should define the distance between data points in
the general case for the purposes of dimension reduction, i.e., Euclidean distances
may not always be the best choice. A geometric technique for DR by strictly
preserving Euclidean distance between data points may not be successful, and
alternative distance functions (defined in Sect. 1.2) may work better. In Example 5.3,
it seems clear that this might be impossible to do without significantly distorting
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Fig. 5.1 (a) A synthetic 3D
dataset of 200 random points.
(b) The data actually lies
along a spiral curve (not part
of the data) so data points can
be parametrized by the
distance from one end along
the spiral and so it is really
1D

some distances. However, looking at it another way, the dimensionality of the data
is not even 2. In fact, it is 1 if one agrees that distances between data points are
the distances along the spiral curve. Under this interpretation, the data points on the
spiral curve can be unrolled to a 1D line. The reason for this apparently tricky and
difficult situation is that the data has a somewhat curved shape. Mathematicians have
developed a conceptual apparatus to address curves, already present in elementary
Calculus, with the concepts of tangent lines and derivatives to approximate curves
with straight objects such as tangent lines, at least locally around a point. This
property can be generalized to higher-dimensional situations where tangent planes
or spaces must be used. Such smooth curved objects are technically referred to as
smooth manifolds, and the areas of mathematics studying them are called differential
geometry and its generalization, topology (to be defined further below).

Example 5.4 The ordinary graph of a differentiable function (one that has deriva-
tives) such as f (x) = x2 is an example of a smooth 1D manifold because for
every point of the graph (t, t2) one can fit a straight tangent line of slope m = 2t

that approximates the points and shape of the parabola at points sufficiently close
to (t, t2) regardless of the value of t , as illustrated in Fig. 5.2a. Likewise, as an
idealization of the points on the surface of the Earth, a sphere is a smooth 2D
manifold because at every point (x, y, z) one can find a flat 2D object, i.e., a tangent
plane that does essentially the same for the sphere, as illustrated in Fig. 5.2b. ��

The critical concept is thus that of a neighborhood. For the purpose of this book,
the concept can simply be understood as a ball (without the boundary, as defined in
Sect. 1.3).

Two subsets in two Euclidean spaces E,E′ are smoothly homeomorphic if and only if there
exists a smooth bijective mapping

φ : E −→ E′
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Fig. 5.2 (a) The graph of a parabola like y = x2 is a smooth 1D manifold because the tangent
line E1 at any one of its points (x, x2) is a good flat approximation within a small neighborhood of
any point on the parabola. Likewise, (b) the surface of the unit sphere in 3D Euclidean space is a
smooth 2D manifold because the tangent plane E2 at any one of its points (x, y,±√r2 − x2 − y2)

is a good 2D flat approximation within a small neighborhood of the point on the sphere of radius r

with a smooth inverse between them that preserves neighborhoods, i.e., φ maps some
neighborhood of every point x ∈ E onto a neighborhood of the point φ(y) ∈ E′, for all
x, y ∈ E.

Example 5.5 Two circles (spheres) of radii 1 and 4 in the Euclidean plane (space)
are smoothly homeomorphic by the mapping (e.g., φ(x, y) = (4x, 4y)) in the first
quadrant. However, a circle in the plane consisting of points at a set distance |x, 0| =
1 from the origin is not homeomorphic to an interval in the 1D line because such
a φ cannot exist (being differentiable implies being continuous, and one cannot
transform the circle into the interval without cutting it somewhere, i.e., introducing
a discontinuity in the transformation). Likewise for a sphere in 3D Euclidean space
and a 2D disk. ��

A dD smooth manifold M is a subset of Euclidean space where every point x has a
neighborhood that is smoothly homeomorphic to some neighborhood in the dD Euclidean
space Rd .

In other words, dD smooth manifolds are nice objects in Euclidean spaces in the
sense that they have neighborhoods at every point that look like (i.e., are smoothly
deformable without tearing or breaking) into flat neighborhoods of Euclidean spaces
of some fixed Euclidean dimension d, despite the fact that they may be living in a
higher-dimensional Euclidean space Rn. The calculus of manifolds shows how to
extend the existing mathematical techniques on flat spaces to curved spaces that
may not be full Euclidean spaces, but only look locally like them.

Example 5.6 No one would argue that “locally,” say within the distance one can
walk in an hour, the Earth is nice and flat just like the surface of a table. Thus, the
surface of the Earth can be thought of as a space that locally looks like a flat 2D
plane. Of course, it is now known that this is an “illusion,” but our ancestors found
it very real and this only happens because the radius of the Earth is very large and
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Fig. 5.3 A visualization of a torus, an idealization of the surface of a doughnut

one is only looking at a very small patch on its surface. What is then the “intrinsic”
geometry of the Earth’s surface? Should the surface of the Earth be considered 2D,
which is so natural because it looks like a 2D plane locally, or 3D because it is
defined as part of a 3D Euclidean space and intuitively one could not stretch out
the whole surface of the Earth onto a 2-dimensional plane without “tearing” it? A
manifold geometry would consider the surface of the Earth to be a 2D manifold, but
not a plane. ��
Example 5.7 An idealization of the surface of a doughnut (known in mathematics
as a 2D torus) is also a smooth 2D manifold, as illustrated in Fig. 5.3. Although
it is not smoothly homeomorphic (cannot be deformed) onto a sphere, it is surely
smoothly homeomorphic to an ordinary coffee mug. The small flat patches provide
local approximations to the curved surface. A small patch can be smoothly and
bijectively mapped onto an open disk (i.e., an open 2D ball). ��
Example 5.8 The surface of a cube in 3D Euclidean space has sharp corners, and
as such, under the inherited metric from the ambient Euclidean space, it is not a
smooth 2D manifold. (The transformation φ mapping a corner to a neighborhood in
the 2D plane is not differentiable.) ��

On a smooth manifold, one can use the notion of length of a shortest path
between two points x, y and speak of the geodesic distance from x to y, which
is called a Riemannian metric. Manifolds endowed with such a concept are called
Riemannian manifolds. Thus, all smooth manifolds are also Riemannian manifolds.
(Their technical definition refers to line integrals on the manifold along paths, but
the conceptual idea is good enough here.) Indeed, one of the manifold learning
algorithms (ISOMAP) described in Sect. 5.2 tries to approximate this process—it
assumes that data lies on a Riemannian manifold and that around a small Euclidean
neighborhood the geodesic distances are very well approximated by the Euclidean
distances, so in a small neighborhood (defined using k-nearest neighbors of the
points for some k), the Euclidean distances are used. Otherwise a shortest path
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algorithm is used on the k-nearest neighbor graph. This intuitive definition of
Riemannian manifolds should hopefully demystify this process, at least on an
intuitive level, to convey how DR works on “curved” datasets using these geometric
ideas.

The crucial point is that the calculus of manifolds shows how to extend the
existing mathematical techniques in Euclidean spaces to curved spaces that are
non-Euclidean spaces, but only look locally like them. These matters are relevant
to data science because even though data may appear high-dimensional and non-
Euclidean, one may be able to analyze them with concepts and algorithms available
for Euclidean techniques, even in lower dimensions.

Smooth manifolds such as the examples above are important examples of a
larger class of mathematical structures called topological manifolds. More recently,
mathematicians have found a way to make sense of homeomophisms without the
notion of smoothness (differentiability) or measuring distances, by distilling the
notion of neighborhoods to more general spaces, if one is willing to preserve certain
more generic but essential constraints. The resulting structures are called topological
spaces and topological manifolds, of which the (historically first) smooth manifolds
discussed above are just important examples. The structures enable geometric
concepts such as continuity, connectedness, and deformation to make sense in more
general settings. Thus, every smooth manifold in the Euclidean space Rd is a
topological space as is the surface of a sphere. Topology studies what properties
of spaces remain unchanged under arbitrary homeomorphisms (i.e., continuous
functions that are not necessarily smooth), such as the deformation of a sphere into
a pointed cube in 3D space mentioned above. Homeomophisms are transformations
that do not “tear” the space, although they may “bend” it. Properties such as the
connectivity of the ball do not change, and as such it is a topological property.
Topology is thus also known as rubber sheet geometry, and topologists are also
described as mathematicians who cannot distinguish between a coffee cup and a
donut! General topological spaces can be very complicated and weird as allowed
by these abstract generalizations, but all of them are nice in the sense that they
have neighborhoods at every point that are like flat Euclidean spaces of some fixed
dimension d. More precisely, a topological d-manifold is a topological space such
that every point has a neighborhood homeomorphic to Rd , i.e., the neighborhood
is continuously deformable to Rd in a one-to-one manner (bijectively). (There are
other technical conditions that are parts of the definition that must be left out to keep
the discussion manageable.)

Manifolds are important objects for DR. For example, points sampled from
the curved surface of the 3D Chicago Bean shown in Fig. 5.4 can be locally (i.e.,
neighborhood-wise) conceptualized as flat, so the bean has intrinsic dimensionality
2 not 3. In doing a dimension reduction for this dataset, one would seek a mapping
of the Bean’s surface to the plane that is nice in any neighborhood of a point, i.e.,
it maps a patch on its surface to a disk in the plane. Thus, in this geometric view of
DR, the dimension reduction is done “locally,” but that is still consistent globally.
The concept of manifold also helps clarify the notion of geometric dimension. First,
let us consider affine dimension. Suppose for a given dataset, if all the data points
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Fig. 5.4 The surface of the Chicago Bean is a 2D manifold

lie on a line (collinear), then the data is one-dimensional. If the data lies on a two-
dimensional plane, then it is two-dimensional and so on (multicollinearity). The
notion of dimension being used is the commonly used affine dimension, i.e., the
smallest possible dimension of a subspace such that its translate contains the data
points. PCA can be used to fit the smallest dimensional affine subspace possible
to the data. However, this notion is restrictive since it assumes some “flatness”
in the data. For example, if the data points lie on a circle situated in 3D space,
it will be considered 2D, as the circle sits in a 2D plane; likewise, a torus cannot
be 2D because it does not live in a 2D Euclidean plane. Yet, the notion of intrinsic
dimension for a circle is 1D, more consistent with our intuition since every point can
be described by a single number, namely its distance from some fixed point on the
circle. Likewise for data on a torus is 2D (parametrizing along two orthogonal circles
on the torus). This way of understanding the circle or the torus is referred to as a
parametrization. The circle is also a 1D manifold, and the torus is a 2D manifold.
Generalizing this example, if the data lies on a dD-manifold in a Euclidean space
Rn, the dimensionality of the data is the dimension of the manifold, d, even if d < n.
Thus, intrinsic dimension can be thought of as the smallest number of independent
parameters needed to “describe” the data, if only locally.
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Further evidence of the importance of manifolds for data science comes from
the following observation borne from experience, even for data that may be high-
dimensional (i.e., with many features).

The Manifold Hypothesis
All points in every dataset usually lie on or close to a low-dimensional manifold.

The term “manifold” is being stretched here a bit (and so should not be taken too
seriously) to mean precise mathematically defined manifolds (as in the examples
above). Indeed, the data could lie, say on the union of two manifolds and still
be considered low-dimensional. In addition, there is always the noise factor with
real data. So, the statement is not an infallible fact (otherwise it would be a
theorem), just an intuitive observation across datasets, a guiding principle. It should
be rather interpreted to mean that the data “looks” like a mathematically defined
low-dimensional manifold. Now, data is easy to understand and visualize when the
manifold, such as the circle in the example above, is given in the way the data is
encoded or organized (as part of the ontology, perhaps using a parametrization).
However, data is usually just given as a table of numeric data points, not by a
parametrization. The goal of geometric methods for DR is to fit a manifold of the
smallest possible dimension to the given data, perhaps at the cost of losing some
precision in passing to an approximation. How can such a manifold be constructed?
Once that is done, how can it be parametrized? Such techniques are also known
as manifold learning methods. They usually directly provide a mapping of the
unknown manifold to a lower-dimensional Euclidean space, and this mapping also
serves as a parametrization. The following subsections present a review of the most
common methods. ([16] provide a more thorough treatment.)

5.2 Manifold Learning Methods

This section describes three major manifold learning methods, namely multi-dimen-
sional scaling (MDS), isometric mapping (ISOMAP), and t-stochastic neighbor
embedding (t-SNE). Two datasets will be used in running examples:

• The Swiss roll dataset is a synthetic set on a curved surface in 3D that models
the surface of the common Swiss roll pastry. To generate this dataset, one first
generates some random points (t, h) on the Euclidean 2D plane and then lifts
them to 3D space by mapping them to (t cos(t), h, t sin(t)). Figure 5.5 shows
such a dataset of size 1000.

• The modified National Institute of Standards and Technology (MNIST) dataset
consists of 28×28 grayscale images of single handwritten ZIP codes (described
in more detail in Sect. 11.5). A toy version of this dataset consisting of 1,797
data points (each a 8 × 8 64D binary image of a single digit from 0 to 9) was
used to extract a random subsample of 597 data points, some of which are shown
in Fig. 5.6 to illustrate the dimensionality reduction techniques described next.
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Fig. 5.5 The Swiss roll dataset with 1000 points. The shapes of the points indicate their position
along the roll

Fig. 5.6 A subset of 120 images from the MNIST dataset

Dimensionality reduction here attempts to figure out a small number of variation
parameters such as slope, height, and roundness of curves that contain enough
information to identify the digit.

The basic philosophy of MDS and ISOMAP is to map the data points onto a
lower-dimensional manifold such that the Euclidean distances between pairs of
points reflect the “dissimilarity” between the original pairs of data points. The
dissimilarities are explicitly given for MDS (assuming they are coming from
the same problem domain), while ISOMAP assumes they lie on some higher-
dimensional manifold and can be parametrized using the intrinsic geodesic distance
on the manifold. The t-SNE algorithm computes distributions defined using the
dissimilarity data and tries to match up these distributions in the reduction to the
lower-dimensional space as closely as possible.
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The output of a manifold learning algorithm is a dataset in lower dimension that
can be used for visualization, classification, clustering, and other tasks. Visualizing
the outputs of the algorithms on our two datasets mentioned above will afford the
user a good feel whether the algorithm is really doing the job. For example, for
the synthetic Swiss roll dataset, the dimensionality should be 2, and intuitively, the
reduction should really amount to an “unrolling” of the roll in the dataset. For the
MNIST dataset, the geometric manifold structure is not clear. However, the quality
of the reduction can be assessed by how well it “separates” out the digits, i.e., there
should be a good clustering. This is to be expected if dissimilarities are preserved.

5.2.1 Multi-Dimensional Scaling (MDS)

Multi-dimensional scaling (MDS) originated in the subfield of psychometrics in
psychology. The term was coined by Torgerson, who also proposed the first method
for solving the problem [23]. In psychometrics, a basic technique is to assign
quantitative coordinates (scaling) to judgments of stimuli such as “object A is
brighter than object B” or “A is twice as large as B.” As observed by Torgerson, what
seems to be a single-dimensional judgment, say “brighter” or “larger,” may in fact be
multi-dimensional, i.e., multiple factors may be involved in the qualitative judgment
(hence, the M for multi-dimensional in MDS). An issue here is the reference or zero
point in assessments such as “A is twice as large as B,” as opposed to “A is larger
than B.” Torgerson calls these comparative distances and argues that after a shift by
a constant c, such comparative distances can be interpreted as absolute distances.
After this step is taken, the basic problem is whether, given some absolute pairwise
distances between some objects (i.e., a distance matrix), one can assign coordinates
so that these assessments are actually realized as distances between points in some
Euclidean space. Such a realization would help in visualizing the set of objects. This
is a very good example of MDS in action for the data scientist.

Example 5.9 Figure 5.7 shows a visualization of the Swiss roll dataset (obtained
using the Python scikit-learn library, described in Sect. 11.5). From the visualiza-
tion, it is clear that the method tried to flatten the Swiss roll to a 2D plane. ��
Example 5.10 Figure 5.8 shows a visualization of the MNIST digits dataset. Here,
it seems that points corresponding to some digits such as “0” and “9” are well
separated from the rest, but clearly similar to each other, while digits such as “8”
and “5” are more spread out. Clearly, MDS does not produce a very good clustering
here. ( t-SNE produces a very clear visualization of the MNIST dataset below.) ��

Torgeson’s problem of “scaling” is also known as the metric MDS problem and
turns up in other fields such as marketing, sociology, biology, and data science.
When the specified distance matrix actually arises from Euclidean distances, a
procedure based on spectral methods can be used to find the mapping of objects
to points in Euclidean space and is known as classical MDS. The algorithm will
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Fig. 5.7 The Swiss roll dataset mapped to 2D space by MDS

Fig. 5.8 The MNIST digits dataset sample mapped to a 2D space by MDS (obtained using the
Python scikit-learn library)

succeed if distances are actually Euclidean, and then it is equivalent to the PCA
algorithm. Surprisingly, the algorithm “works” (producing some output points)
even if the given distances are not Euclidean, but clearly the distance between the
produced points may not equal the desired input distances. Another approach based
on an optimization view is also used here. These two approaches are discussed
separately next.
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5.2.1.1 Classical MDS: Spectral Approach

Given a dataset of size n to reduce into a set O of n mapped objects x1, . . . , xn, their
pairwise distances define a matrix D = [dij ], so that dii = 0 and dij = dji for all
1 ≤ i, j ≤ n, where each xi = (xi1, . . . , xik)

′, is a point in pD space. For now, p

remains undetermined. The unknowns x1, . . . , xn can be organized as a k×n matrix
X, as usual. The goal of MDS is to find xis such that ‖xi − xj‖ = dij . As posed,
the solution cannot possibly be unique since shifts of the points in a solution by a
common vector c will also be a solution. Thus, the mean of the xi should be zero,
that is

∑n
i=1 xi = 0 or equivalently,

∑n
i=1 xji = 0 for j = 1, . . . , p. To find the xi ,

MDS proceeds as follows:

• It computes the entry-wise squares of D (also known as the Hadamard square),
i.e., the matrix A = (aij ), where aij = d2

ij .

• It computes the matrix B = − 1
2HAH, where H = I − 1

n
11′ is the centering

matrix, I is the n× n identity matrix, and 1 = [1, 1, . . . , 1]′ ∈ Rn is a column of
1’s. (Altogether these steps transform the distance matrix to the Gram matrix of
the unknown points, i.e., if the desired condition ‖xi − xj‖ = dij holds true and
the mean of the xi is 0, then it will be true that X′X = B, i.e., the (i, j)-th entry
is not the distance between xi , xj , but their dot product x′ixj . The advantage of
this is that X can be further recovered by a spectral decomposition.)

• It finds the spectral decomposition B = VΛV′ of B, where Λ = D(λ1, . . . , λn)

is the diagonal matrix of eigenvalues of B and V = [v1, . . . , vn] is the matrix of
eigenvectors normalized such that v′v = 1 (as described in Sect. 11.2), and the
eigenvalues have been arranged in decreasing order λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0.
Let p ≤ n be the number of nonzero eigenvalues.

• It finds B = V1Λ1V′1, where Λ1 = diag(λ1, . . . , λp) and V1 = [v1, . . . , vp] .
• It returns X as X = V1Λ

1/2
1 , where Λ

1/2
1 = diag(λ

1/2
1 , . . . , λ

1/2
p ) .

In this procedure, the sign of the eigenvectors vi could be all flipped (corre-
sponding to a reflection across the origin). Thus while centering removes some
indeterminacy in the solution, reflections can still leave a choice of sign. However,
this is not really an issue, as either choice will work.

The algorithm above can be used on a given distance matrix D, even if it does
not arise from Euclidean distances. What will happen in this case is that the matrix
in step 2 above will not necessarily be a Gram matrix. However, if it is positive
semi-definite, the algorithm would still “go through” producing the desired matrix
X. On the other hand, if B is not positive semi-definite (this is equivalent to some
eigenvalue being negative or complex), one approach [18] is to make B positive
semi-definite by starting with a new distance matrix D, after adding the same
constant c to each entry dij with i �= j . This additive constant can always be
found, as shown by Messick and Abelson [18]. Another approach is to neglect
the negative eigenvalues (and corresponding eigenvectors) [5]. In this case, MDS
produces some sort of approximate solution to the problem, i.e., it will not be the
case that ‖xi − xj‖ = dij , but hopefully so that ‖xi − xj‖ ≈ dij . Another remark is
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that the dimension of the space for the points xi does not necessarily have to be the
number of nonzero eigenvalues. Any number k ≤ p less than the number of nonzero
eigenvalues will do. (This is analogous to choosing the top k principal components
in PCA.)

5.2.1.2 Metric MDS: Optimization-Based Approach

In this case, the given distance matrix D is now called the matrix of dissimilarities.
They do not have to be Euclidean distances between the n points. In fact, they may
be non-Euclidean metric distances, dissimilarities, or even not arising from a metric.
Yet, one wants to find points x1, . . . , xn such that now ‖xi − xj‖ ≈ dij , the best
one can hope for under these conditions. The matrix X = [x1, . . . , xn] is termed a
configuration. Of course, if dij actually arises from Euclidean distances, then one
might get equality for some configuration. What about the dimension of the space k

in which the points are supposed to lie? Usually, k is also given as input or chosen
to be something small, e.g., 2 or 3 since MDS is usually used for visualization of the
data. The problem can thus be formulated as an optimization problem for a quantity
σ(X) called the stress of (unknown) configuration X and given by

σ(X) =
∑
i<j

wij (dij − ‖xi − xj‖)2,

where wij are the entries of a known matrix of weights. The weights are usually
chosen simply as wij = 1 for all i < j , but more generally, they can be chosen so
as to give higher weights for some pairs i, j , and lesser for others. In particular, in
many data analysis situations, some of the dij may be completely unknown or not
very trustworthy. In that case, one can set wij = 0. Thus, it is clear that an “ideal
solution” to the problem would achieve σ(X) = 0. Therefore, it is natural to define
the solution X as

X = arg min
X∈Rk×n

σ (X).

In other words, MDS chooses an X that minimizes the stress. The stress σ(X) seems
like a complicated function to minimize. In fact, different definitions of stress may
be used. It is interesting to observe that one such choice would, in particular, lead to
the same minimization problem as PCA if the given objects are themselves points
in Rd , the dissimilarities are the distances, and X is required to be a projection of
the data points onto some subspace.

There are also many ways to minimize the stress. SMACOF is a strategy to
minimize a supposedly “complicated” function f : Rd → R. The strategy works
as follows. Given a guess x(t) for the argument minimizing f (perhaps chosen
randomly to begin with), SMACOF finds a majorizing function g : Rd × Rd → R
that is somewhat of a “simpler function” to minimize, i.e., such that f (x) ≤
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g(x, x(t)), f (x(t)) = g(x(t), x(t)) for all x in the domain and that can be minimized
to produce a better estimate x(t+1) for the minimizer of f . The following chain of
inequalities,

f (x(t+1)) ≤ g(x(t+1), x(t)) ≤ g(x(t), x(t)) = f (x(t)),

referred to as the sandwich inequality, shows that the minimum value of g(x, x(t))

is sandwiched between f (x(t+1)) and f (x(t)). The algorithm replaces x(t) by x(t+1)

and iterates the update until f (x(t))−f (x(t−1)) < ε for some fixed (small) constant
ε, or until a certain number of iterations is reached. Although SMACOF can lead to
local minima (as shown by Groenen and Heiser [9]), local minima are more likely
to occur in lower-dimensional solutions (for very small values of k).

How can the SMACOF strategy help MDS? Well, it can be shown that the stress
σ(X) to be minimized can be re-written as

σ(X) =
∑
i<j

wij (dij − ‖xi − xj‖)2 = η2
D + Tr(X′VX)− 2Tr(X′F(X)X),

where Tr(·) is the trace operator (for square matrices), the value

η2
D =

∑
i<j

wij d
2
ij

is a constant, the matrix V is an n× n matrix given as

[V]ii =
∑
j �=i

wij , [V]ij = −wij for i �= j,

and F is a matrix function mapping matrix X = [x1, . . . , xn] to another matrix F(X)

defined entry-wise as

[F(X)]ij =
{

wij dij

‖xi−xj ‖ if ‖xi − xj‖ �= 0

0 if ‖xi − xj‖ = 0 .

Letting ρ(X) = Tr(X′F(X)X) and

η2(X) =
∑
i<j

w2
ij‖xi − xj‖2 = Tr(X′VX) ,

it turns out that

σ(X) = η2
D + η2(X)− 2ρ(X)
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is actually a convex quadratic function since it is a sum of weighted squares of
distances. The complicated part is ρ(X), and the majorization strategy tries to
separate it off. It can be shown that the following function is a good choice to
majorize the stress,

T (X,Y) = η2
D + η2(X)− 2ρ̃(X,Y),

where ρ̃(X,Y) = Tr(X′F(Y)Y). Then, the SMACOF strategy will minimize the
stress starting from any configuration X(0) (at t = 0) by iterating the following
steps:

• Sets Y = X(t) and computes the stress σ(X(t))

• Stops if t > 0 and |σ(X(t)) − σ(X(t−1))| < ε; else computes X(t+1) by
minimizing T (X,Y) over all X

It turns out that some linear algebra shows that the minimum can be expressed as

X(t+1) = V+F(Y)Y ,

where V+ is the Moore–Penrose inverse,

V+ =
(
V+ 1

n
11′

)−1

− 1

n
11′.

The transformation, X(t+1) = V+F(Y)Y, is known as the Guttman transform of
configuration Y [10]. For the simple case often used in practice, where wij = 1 for
all i �= j , the Guttman transform simply becomes X(t+1) = 1

n
F(Y)Y.

In further work, Shepard [20] extended MDS to the nonmetric MDS case where
only rankings of the distances are given, instead of precise distance information
between pairs of objects. So, for each object A, one can rank the other objects in
some ordering. Then, using a monotonic transformation function f , one can map
such orderings to absolute distances and fall back to the metric case of MDS. ([5]
give more details.)

The MDS procedure is an important method because it solves a very general
problem. Also, it can be used in other manifold learning methods, such as ISOMAP.

5.2.2 Isometric Mapping (ISOMAP)

An isometric mapping (ISOMAP) is a mapping that preserves distances. It was
introduced by Tenenbaum et al. [22]. If one could fit a low k-dimensional manifold
to the data or come very close to it (a reasonable assumption in sight of the Manifold
Hypothesis), the ISOMAP algorithm’s basic philosophy is to assume that “learning”
this manifold could help data analysis and that the distances between the points are
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the “intrinsic” geodesic distances between the points on the manifold. While this
seems reasonable and intuitive, there are at least three problematic issues that must
be considered:

• What is given is a sample of points and not the approximating manifold
“equations” (for example, algebraic equations that define a surface, like (x, x2)
in 1D). How are such geodesic distances to be computed?

• Even if such distances could be computed, can the dimension be reduced while
preserving the distances?

• Even if these two issues are addressed, how is an actual DR mapping to a lower-
dimensional space to be done?

Intuitive justifications to address these issues are given below, but first an example
is due to see ISOMAP in action.

Example 5.11 Figure 5.9 shows ISOMAP’s output when applied to the MNIST
dataset described in Sect. 11.5. As can be seen, ISOMAP does an excellent job.
It essentially unrolls the Swiss roll flat onto a plane, while preserving the distances
nicely, just like unrolling a piece of paper with the data rolled up into a cylinder (the
manifold) back to a flat sheet of paper (the 2D Euclidean space).

Example 5.12 Figure 5.10 shows ISOMAP’s output when applied to the MNIST
dataset described in Sect. 11.5. Although a manifold structure is not obvious in the
data, ISOMAP is comparable to MDS in performance. Some of the digits are nicely
clustered, although others are spread out.

Fig. 5.9 The Swiss roll dataset mapped to 2D space by ISOMAP
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Fig. 5.10 The MNIST digits dataset sample mapped to 2D space by ISOMAP

To address the second issue first, at least at a somewhat intuitive level, i.e.,
without working through any mathematical definitions, a deep theorem of Nash [19]
shows that:

Any Riemannian manifold of dimension k (initially lying in some higher- dimen-
sional space Rd , possibly with d � k) can be embedded isometrically into
Euclidean space of dimension 2k + 1.

Thus, at least in principle, one can rest assured that such a dimensionality
reduction is possible. Now, the first issue mentioned above looks like a difficult
question. In particular, even if the manifold is “known” analytically (e.g., by as
some algebraic equations defining a surface), computing geodesic distances requires
integrals and higher-dimensional Calculus. Being given just a sample of points, how
can such distances be computed? Well, taking a practical approach and recalling
that a manifold looks “locally flat,” then the distances between nearby points can be
simply computed using the distance formula for the Euclidean space. For farther-off
points, the usual definition of a geodesic—that of a shortest path on the manifold
between the points, can be used. In the absence of the manifold itself, such shortest
path will be defined on an appropriate neighborhood weighted graph with the given
data points as vertices. The neighbors of a vertex are vertices lying “close enough”
so that the distance between them can be defined as the Euclidean lengths of the
edges (as weights). A shortest path algorithm is then used to compute the distance
between two arbitrary vertices of the graph. The neighborhood graphs are usually
defined by selecting a small integer ε > 0 and ε nearest neighbors of a data point as
the neighborhood of the point. (Alternatively, one could use all neighbors within a
distance ε of a given data point.)
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One obtains the so-called ε-neighborhood graph Gε. With this parameter in
place, ISOMAP proceeds as follows. It:

• Weighs each edge (u, v) with its distance ‖u− v‖ in Rd .
• Computes shortest path distances between every pair of vertices using any all-

pair shortest path algorithm, e.g., Floyd–Warshall’s.
• Returns the resulting n× n distance matrix D.
• Returns an appropriate value of the reduced dimension t using MDS on the

distance matrix D.

ISOMAP has a worst-case run-time of O(n3). Using the ε-NN graph with
εneighbors, one can also use Dijkstra’s algorithm with Fibonacci heaps to reduce
it to O(εn2 log n) time. There are even faster approaches exploiting the sparse
structure of the neighborhood graph (as in [15]). The algorithm answers the third
issue raised above.

It has been shown theoretically that if the data indeed lies on a low-dimensional
manifold whose geometry is that of a convex region of space and if the data points
are sufficiently dense on this manifold, then ISOMAP returns a distance matrix that
is close to the actual geodesic distances and, in the limiting case, converges to it.
How dense the points should be for this to happen depends on some geometric
parameters of the manifold. Even though the parameters are not known to the
algorithm, this is an important theoretical result since it assures us that the method
is “faithful” to the geodesic distances, i.e., sufficiently dense data would lead to
the correct distance computation. The actual result is in fact quantitative. (Further
details can be pursued in [22].)

The ISOMAP algorithm is very good at discovering nonlinear structures in the
data. Since ISOMAP uses MDS in its last step, the stress loss function used in MDS
can also serve to estimate the quality of the dimensionality reduction by ISOMAP.
An alternative measure that can be used for PCA MDS and ISOMAP is the residual
variance,

1− R(D,DX)2 ,

where D is the distance matrix, DX is the matrix of actual distances once the
dimensionality reduction is done, and R is the standard linear correlation coefficient
computed over the entries of D and DX.

One problem with MDS, and hence ISOMAP, is that they are extremely slow in
practice because the optimization is expensive, and so are the distance computations.
These issues are somewhat addressed by a variant of ISOMAP called Landmark
ISOMAP [21].
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5.2.3 t-Stochastic Neighbor Embedding ( t-SNE )

The t-SNE method by van der Maaten and Hinton [17] is a complex method that
builds over and addresses the shortcomings of its precursor, the stochastic neighbor
embedding(SNE) method by Hinton and Roweis [11]. So SNE is described first,
pointing out the problems identified and then showing how t-SNE addresses them.
In the process, the meaning of the somewhat intriguing t in t-SNE will be revealed.
Overall, t-SNE is considered the state-of-the-art in geometric DR and visualization
algorithms.

Example 5.13 Figure 5.11 shows a visualization of the Swiss roll dataset by t-SNE.
t-SNE does an excellent job of clustering the like points together and ensuring good
inter-cluster separation. ��
Example 5.14 Figure 5.12 shows a visualization of the MNIST dataset by t-SNE. In
this case, it separates out the clusters corresponding to the points for each digit quite
nicely. It seems to be doing a much better job, compared to MDS and ISOMAP. ��

Generally, given n data points x1, x2, . . . , xn in some higher-dimensional space
Rd , the SNE algorithm associates to each point xi (a base point) a probability
distribution Pi obtained from the points in the dataset. These distributions are in
general different for each of the points since they depend on the distances from
the base point to the other points. More specifically, Pi is a Gaussian distribution

Fig. 5.11 The Swiss roll dataset mapped to 2D space by t-SNE
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Fig. 5.12 The MNIST digits dataset sample mapped to ndS space by t-SNE

centered at base point xi and determined by some standard deviation σi to be
determined later. A weight for another point xj (j �= i) is set as

Pj |i = e−‖xi−xj ‖2/2σ 2
i

∑
k �=i e−‖xi−xk‖2/2σ 2

i

, (5.1)

while the value Pi|i is set to 0 since the method is interested in modeling
dissimilarities between different points. It is important to notice that Pi assigns more
probability measure to the points closer to xi than to farther-off points.

Now, let yi denote the point in the lower-dimensional space Rk that xi is to
be mapped to. Similar probability distributions Qi with probabilities qj |i for the
mapped points are set with the provision that the variance for the ith point yi equals
1
2 and thus

qj |i = e−‖yi−yj ‖2

∑
k �=i e−‖yi−yk‖2 .

The variance in the lower-dimensional space is constant ( 1
2 ) for all the points

but may possibly differ from the variances σ 2
i in the higher- dimensional space.

Therefore, even if SNE maps points from Rd to Rd , it will not necessarily map
them to the same points.
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The SNE algorithm attempts to find the points yi so that the sum of the
Kullback–Leibler (KL) divergence (a measure of the dissimilarity of two probability
distributions) of the distributions Pi and Qi is minimized, i.e., so that

C =
∑

i

KL(Pi ||Qi) =
∑

i

∑
j

pj |i log
pj |i
qj |i

is as small as possible. However, this KL divergence is not a distance function
between distributions because it is asymmetric and does not satisfy the triangle
inequality. Lack of symmetry causes this loss function to penalize close together
points by mapping them to far-off points more than vice versa. Ideally, one would
like to have a perfect match: qj |i = pj |i , but this does not usually happen; hence,
the “penalty” term pj |i log

pj |i
qj |i in C. The loss function is affected much more when

pj |i is small and qj |i is large than vice versa. Intuitively, this means that the SNE
cost function is really trying to preserve the local structure of the data, ignoring the
global structure to some extent.

Now, how to choose σi? A single value of σi is probably not optimal for all data
points. Usually, smaller values of σi are more appropriate in denser regions than in
sparser regions of the data. Using the Shannon entropy H(Pi) (defined in Sect. 6.1)
of the distribution Pi , the quantity

Perp(Pi) = 2H(Pi),

is called as the perplexity of the distribution Pi . It increases monotonically with
σi . The perplexity can be interpreted as a smooth measure of the effective number
of neighbors; typical values range between 5 and 50 [17]. In order to set σi , SNE
requires the user to specify a perplexity value and then performs a binary search for
σi such that the Perp(Pi) matches the given value.

The minimization of the loss function C is done by gradient descent since the
gradient is

∂C

∂yi

= 2
∑
j

(pj |i − qj |i + pi|j − qi|j )(yi − yj ).

This gradient has a nice physical interpretation, as the resultant force exerted by a
set of springs between y i and other points yj . The spring between yi and yj exerts
a force on yj along the direction yi − yj , and it causes an attraction or repulsion
based on the mismatch value (pj |i − qj |i + pi|j − qi|j ). For example, if xi , xj are
very close, pj |i and pi|j are large. If yi , yj are far apart, i.e., qj |i and qi|j are small,
then the force,

(pj |i − qj |i + pi|j − qi|j )(yi − yj ),
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is attractive and tries to bring yj closer to yi . To initialize the gradient descent
algorithm, n points are sampled randomly in Rk from an isotropic Gaussian
distribution with mean at the origin, i.e., a multivariate distribution with marginals
independent and Gaussian with the same standard deviation and mean 0. Then the
yis are repeatedly updated as

y(t)
i ← y(t−1)

i + η

(
∂C

∂yi

)

yi=y(t−1)
i

+ α(t)(y(t−1)
i − y(t−2)

i ),

where η is the learning rate and α(t) is the momentum at iteration t . The effect of the
momentum term is to effectively add a decaying sum of the previous gradients. Also,
in early iterations, Gaussian noise is added after each iteration. Gradually reducing
the variance of this noise (akin to simulated annealing) helps the algorithm drive
the candidate solution out of “wells” about local minima. The optimization is thus
quite complex, and in practice, one runs it several times to find results for DR and
data visualization.

The variant of SNE, the t-distributed SNE algorithm (t-SNE ), differs from SNE
as follows. First, it breaks asymmetry between pi|j and pj |i by introducing pij =
(pi|j + pj |i )/2n; second, the qij are defined using Student’s t-distribution as

qij = (1+ ‖yi − yj‖2)−1
∑

k �=l (1+ ‖yk − yl‖2)−1 , (5.2)

while keeping pii and qii equal to 0. Finally, instead of using different distributions
Pi,Qi one for each input and base point, it uses a single common distribution called
P on [n] × [n] and Q (for the mapped points).

The cost function is now the KL divergence given by

C = KL(P ||Q) =
∑

i

∑
j

pij log
pij

qij

.

The reasons for the different choices made by the t-SNE algorithm are:

1. the Pi|j and Pj |i to Pij are now symmetrized. Alternatively, this can be done, for
example, by setting,

Pij = e−‖xi−xj ‖2/2σ 2

∑
k �=l e

−‖xk−xl‖2/2σ 2 .

However, if one of the points xi is an outlier too far from the other points, the
probabilities Pij are all very small, and therefore the location of yi does not affect
the loss function much. The proposed symmetrization Pij = (Pj |i + Pi|j )/2n

ensures
∑

j Pij > 1/2n for all points xi , so that each point has some reasonable
effect on the cost function.
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2. This type of dimensionality reduction runs into the so-called crowding problem,
i.e., in high dimension d, the volume of a ball of radius r scales as rd . This
implies that if the points are packed inside such a ball, say all at least r/2 from
each other, one could pack about 4d such points inside the ball, a nice and tight
cluster (a “crowd”) in the input data near xi . In order to map this to a lower
dimension k, one cannot pack all of the crowd inside a ball of radius r because
such a ball will only contain about 4k such points. Thus, any mapping to Rk will
push some points farther off from the center of the ball, i.e., many distances will
be much larger than, say r . Going back to the spring metaphor, there are many
springs now that are very stretched, and therefore exert a large force on yi . To
be in equilibrium, yi must be pushed somewhat to the center. Thus, the centers
of all such tight clusters get pushed to the center and therefore closer to each
other. This is counterproductive since now different clusters start to merge into
each other. To alleviate this challenging problem, the t-SNE algorithm employs
a heavy tailed distribution, like the Student’s t with 1 degree of freedom (i.e., the
Cauchy distribution). In a higher-dimensional space, a Gaussian is used to define
the probabilities. By using a heavy tailed distribution in the lower-dimensional
space, a moderate distance is allowed within the cluster to be faithfully modeled
by a large distance in the lower-dimensional space. Thus, somewhat the tight
cluster balloons naturally into a larger cluster in low dimensions. The net effect
is that the attractive forces are not too large and do not force yi too much to the
center. The resulting map clusters the data much better.

The gradient of the loss function is now

∂C

∂yi

= 4
∑
j

(pij − qij )(yi − yj )(1+ ‖yi − yj‖2)−1. (5.3)

There are other reasons too for using the Student t-distribution. It has been shown
that it is an infinite mixture of Gaussians [12] and is therefore closely related to the
Gaussian distribution. It is also faster to evaluate since no exponentials are involved.

The final form of t-SNE requires the perplexity Perp, the maximum number of
iterations T , a learning rate η, and a momentum α(t). It then proceeds as follows:

• It computes the pj |i using Eq. 5.1 and perplexity Perp and sets pij = (pj |i +
pi|j )/2n .

• It samples an initial solution Y(0) = (y(0)
1 , . . . , y(0)

n ), where each y(0)
i is sampled

from the standard normal distribution N(0, 10−4I ) .

• It repeats:

– It computes the qij using Eq. 5.2.
– It computes the loss function C and its gradient using Eq. 5.3.
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– It updates

Y(t) = Y(t−1) + η

(
∂C

∂Y

)

Y=Y(t−1)

+ α(t)(Y(t−1) − Y(t−2)) ,

where ∂C
∂Y = ( ∂C

∂y1
, . . . , ∂C

∂yn
) ,

for t = 1, 2, . . . , T .

Some tricks can be used to improve it, but they become too technical for the goal
of this chapter. [17] has more details.

5.3 Exploiting Randomness (RND)

The geometric methods above were generally to map points to a lower-dimensional
space such that the pairwise distances (dissimilarities) are preserved. Surprisingly
for Euclidean distances, for any given finite set of points, there always exists a
map that is simply a projection to a lower-dimensional subspace that approximately
preserves all the interpoint distances! Moreover, the target dimension, i.e., the
dimension of the space to which the projection is done, is independent of the space
in which the given points lie. It only depends on n, the number of points, and, of
course, how accurately the distances need to be preserved.

Example 5.15 In the word document model, a document is usually represented as a
bag of words. Each document is a dD vector where d is the number of dictionary
words (or a subset of such words of interest) and the ith entry is the count of
such words in the document. A collection of n documents can be arranged as a
dataset in a d × n matrix D, where each column vector represents a document. The
similarity of two documents represented by vectors x, y is their dot product (defined
in Sect. 11.2) denoted x′ ·y (or just x′y ). Computing all such similarities would take
about O(n2d) time, which can be prohibitively large if d is very large.

To speed up this method, one way is to project all vectors x to x̄ in a much
lower kD subspace (k � d) such that the Euclidean distances are approximately
preserved, i.e., ‖x̄ − ȳ ‖ ≈ ‖x − y‖ . Therefore, so would be the dot products to
within some additive error, i.e., x̄′ȳ ≈ x′y .

This section shows that a random projection to a lower-dimensional subspace
achieves such distance preservation and allows faster computation in O(n2k) time,
as opposed to O(n2d) time.

Example 5.16 Given a collection of 64 × 64 pixel images (e.g., as in the MNIST
dataset), where each pixel has 3 values specified by its R,G,B components, they
can be represented as vector in 12,288D since 64 × 64 × 3 = 12,288. Collections
like these are common in data science for clustering problems or classification tasks
(e.g., object recognition or identification in pictures). Such clustering algorithms
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usually compute the Euclidean distances between vectors, and each distance
computation involves about 12,288 arithmetic operations, resulting in very slow
performance. A much faster approach is to first randomly project the images to a
much lower-dimensional space and then compute distances in that space. ��

This section describes a famous result for Euclidean spaces in functional
analysis by Johnson and Lindenstrauss [14] that almost any projection to a lower-
dimensional space achieves this effect, including some quantitative bounds on the
dimension required. Specifically, the Johnson–Lindenstrauss (JL) lemma states that
provided the target dimension k is sufficiently large, there is a projection from Rd to
Rk such that all pairwise distances between a given set S of points are approximately
preserved. How large a k is required? In fact, the proof of the lemma sketched below
shows that such a projection can also be found easily in randomized polynomial
time, as a projection to a random subspace of the required dimension.

Johnson Lindenstrauss Lemma
For every set S of n points in Rd and every ε ≤ 1/2 and k ≥ 20 log n/ε2, there
exists a map f : Rd → Rk such that for every pair of points u, v ∈ S,

(1− ε)‖u− v‖ ≤ ‖f (u)− f (v)‖ ≤ (1+ ε)‖u− v‖.

There is also a generalization of this fact to manifold geodesic distances.
Results by Baraniuk and Wakin [3] and improvements by Clarkson [4] show that
a projection to a random subspace of the correct dimension (determined by the
manifold) preserves geodesic distances as well. In this case, the mapped manifold
is considered as a new manifold, and the geodesic distances are considered on that
one. This result is intuitively clear as geodesic distances can be considered as path
distances with a sufficiently dense sample on the manifold (as in ISOMAP). By the
JL Lemma, the distances among the sample points are then preserved, and hence so
are shortest path distances in the graph.

In practice, random projections are used quite often to do dimensionality
reduction and visualizations as well.

Example 5.17 Figure 5.13 shows a random projection to 2D of the Swiss roll
dataset.

Example 5.18 Figure 5.14 shows a random projection to 2D of the MNIST dataset.
Since the images are binary and sparse and the projection is to a very low-
dimensional space, the projection seems to have points divided into vertical and
horizontal lines, i.e., many of the sparse high-dimensional images would project to
the same first or second coordinate.

For the mathematically inclined reader, here is a sketch why the powerful JL
lemma is true (simplified from the original by Frankl and Maehara [8], following
Arriaga and Vempala [2], Dasgupta and Gupta [6], and Indyk and Motwani [13].
A proof that uses a sparser random matrix was also given by Achlioptas [1]). The
basic reason why the JL lemma is true is a so-called norm preservation lemma.
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Fig. 5.13 The Swiss roll dataset projected to a random 2D subspace

Fig. 5.14 The MNIST dataset projected to a random 2D subspace

Norm Preservation Lemma
Let ε ∈ [0, 1] and k ∈ N. If A is a random k × d matrix where each entry is a
N(0, 1) random variable, then for any x ∈ Rd ,

P

(
(1− ε)‖x‖2 ≤ ‖ 1√

k
Ax‖2 ≤ (1+ ε)‖x‖2

)
≤ 1− 2e−(ε2−ε3)k/4.
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The norm preservation lemma implies the JL lemma as follows. Basically, it
suffices to find a distribution on random projections f : Rd → Rk for k =
20 log n/ε2 such that for any given x ∈ Rd , the norm of x is approximately
preserved under the mapping with high probability, 1 − 1/2n2. Since f is linear,
it preserves norms approximately, and hence, it also preserves distances between
points approximately since d(u, v) = ‖u− v‖, and

d(f (u), f (v)) = ‖f (u)− f (v)‖ = ‖f (u− v)‖ ≈ ‖u− v‖ = d(u, v),

where the first equality is by definition, the second by linearity, the third is implied
by the norm preservation lemma, and the fourth again by definition.

To find such a projection, fixing any two points u, v ∈ S, the undesirable events
Euv happen when ‖f (u)− f (v)‖2 lies outside the interval [(1− ε)‖u− v‖2, (1+
ε)‖u− v‖2]. By the norm preservation lemma above, there follows that P (Euv) ≤
2e−(ε2−ε3)k/4. An estimate for this quantity for the range of ε can be given as

(ε2 − ε3)k/4 = ε2(1− ε)k/4 ≥ ε2(20 log n)/8ε2 > 2 log n,

where the first equality is an identity, the second inequality uses ε ≤ 1/2, and
the third follows since 20 > 16. Therefore, P (Euv) < 2e−2 log n = 2/n2. Now, to
approximately preserve all the interpoint distances in S, it suffices to show that none
of the bad events should occur, i.e.,

⋃
u,v∈S Euv does not occur. The union bound

implies that

P

⎛
⎝ ⋃

u,v∈S

Euv

⎞
⎠ ≤

∑
u,v∈S

P (Euv) ≤ n2 × 1/2n2 = 1/2 .

Thus the bad events happen with probability at most 1/2. In particular, there must
exist a sample point (i.e., a choice of the random A) such that the map defined by A

preserves all interpoint distances in S approximately.
This argument is constructive because it provides clues to design a simple

randomized algorithm to compute such an A. By simply sampling for an A by
choosing kd independent Gaussians normally distributed as N(0, 1), a good A can
be had with probability at least 1/2 since testing that A preserves all the interpoint
distances in S is easy to do. If the first given choice fails, the procedure can be
repeated. The probability estimate guarantees that by in worst case the second or
third sample of A is good enough.

An outline of a proof of the norm preservation lemma uses advanced tools in
probability theory that lie beyond the scope of this book. Nevertheless, here is a
sketch for the technically minded readers. First, it uses an important property of
the Gaussian distribution. If g1, . . . , gd be independent Gaussian N(0, 1) random
variables and a1, . . . , ad are arbitrary real numbers, then the random variable,∑d

i=1 aigi , is distributed as ‖a‖X where X ∼ N(0, 1), i.e., it is a Gaussian with
mean 0 and variance ‖a‖2, where a = (a1, . . . , ad)t . This property of the Gaussian
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distribution is known as 2-stability. (The 2 indicates that it is the �2 norm of the
vector a.) The theory of stable random variables is a deep topic in probability theory
[7], and there are distributions that are α stable for any given α with 0 < α ≤ 2.
The case α = 2 is the Gaussian distribution, and α = 1 corresponds to the
Cauchy distribution. The general definition is that a linear combination of α stable
independent random variables a1X1 + . . . + adXd will be distributed as ‖a‖αX

where X has the same distribution as each Xi . (More details can be found at [7].)
Second, row i of Ax is [Ax]i = ∑d

j=1 Aijxj , and thus it is distributed as ‖x‖Xi ,
where Xi ∼ N(0, 1). Moreover, all the rows are independent since the Aij are all
independent. Therefore, its expectation satisfies

E

(
‖ 1√

k
Ax‖2

)
= E

(
1

k

k∑
i=1

([Ax]i )2

)
= E

(
1

k
‖x‖2

d∑
i=1

X2
i

)

= ‖x‖2

k

d∑
i=1

E
(
X2

i

)
= ‖x‖2.

Thus, while the variance of the squared norm ‖ 1√
k
Ax‖2 is precisely ‖x‖2, it suffices

to show that it is very close to ‖x‖2 with high probability. While the variance of
1
k
‖Ax‖2 can be computed, a simple analysis of variance cannot give a result as

strong as the norm preservation lemma. A strong concentration inequality [2] is
required for the so-called χ2 distribution (common distributions are summarized in
Sect. 11.1) with k degrees of freedom. In other words, if a random variable X is
the sum of squares of k independent Gaussians, i.e., X = Z2

1 + . . . + Z2
k , where

Zi ∼ N(0, 1), and they are all independent, then X ∼ χ2(k) by definition. Now, the

random variable ‖Ax‖2

‖x‖2 is distributed precisely as χ2(k). A lot is known about the

χ2(k) distributions including their density and distribution functions. Finally, the
norm preservation lemma follows from the following lemma.

Concentration Lemma
If X ∼ χ2(k) is a random variable distributed as χ2 and ε ∈ [0, 1], then

P (X > (1+ ε)k) ≤ e−(ε2−ε3)k/4 and P (X < (1− ε)k) ≤ e−(ε2−ε3)k/4.

The proof of this lemma uses moment generating functions (MGFs), but it is a
bit too involved to further pursue at this point. (More details can be found in [2].)
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Chapter 6
Information-Theoretic Approaches

Max Garzon , Sambriddhi Mainali, and Kalidas Jana

Abstract An entirely different but extremely relevant approach to dimensionality
reduction can be taken using a different criterion, namely quantifying the informa-
tion content of the features involved, within themselves or in relation to others. It
turns out that Shannon’s definition of information yields surprisingly interesting
reductions. This chapter discusses five major variations of this idea, including
comparisons using the concept of mutual information previously used in statistics
and machine learning.

The problem of reliable telecommunication across a noisy channel (such as a phone
line or extraterrestrial space between planets) led Shannon to fundamental research,
an objective definition of information and the well-known theory of error-detecting
and error-correcting codes in his foundational paper [1]. The theory blossomed into
the field of information theory. The key concept in this field, Shannon entropy,
quantifies the degree of uncertainty of (complementary to information in) a random
process. This metric provides the mathematical foundation for information-theoretic
analyses of channel capacity that characterize the maximum amount of information
that can be transmitted through a noisy channel, while allowing noise removal
without loss of information [1]. It has been also interpreted as a measure of the
degree of randomness and/or diversity in a stochastic process. (The concept of
entropy itself can be traced back to [2], later used in physics for heat theory and
thermodynamics by [3], but here it will only refer to Shannon entropy and be just
referred to as entropy and denoted by the customary H .)

Independence between features can be quantified using Shannon’s conditional
entropy H(X1 |X2 ) between two features X1 and X2. When this entropy is low,
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X2 essentially determines X1, and thus X1 is not an informative feature and could
be discarded in favor of X1. Five major variations of this kind will be reviewed.

The goal of this chapter is to show that the concept of entropy can be very
effective for dimensionality reduction in unexpected ways.

6.1 Shannon Entropy (H)

This section provides definitions of Shannon entropy, conditional entropy, and their
interpretations, along with a description of software libraries that can be used when
manual computation becomes prohibitively costly, for example, when working with
large datasets. Shannon entropy affords a nonlinear and nongeometric approach to
dimensionality reduction based on information theory. A feature selection strategy
can be based on the concept of conditional Shannon entropy of a random variable.
(Sect. 11.1 defines background concepts in statistics and probability.)

According to Shannon, the information content I (a) provided by an observation
[X = a] (or just X = a) of a random variable (RV) X on a probability space with a
sample space Ω is the real number

I (a) = − log
2
(P (X = a)) ,

where P(X = a) is the probability of the event [X = a] = {e ∈ Ω : X(e) = a} =
X−1(a) associated with an observation of a value a for X.

The Shannon entropy H(X) of a discrete RV X is the expected value (mean) I of the
information content of the observations of all possible values of X, i.e., if X takes on only
a finite number of values a1, . . . , an with corresponding probabilities P1, . . . , Pn, then the
entropy of X is given by

H(X) = −
n∑

i=1

P(Xi = ai) log
2

P(Xi = ai) = −
n∑

i=1

Pi log
2
Pi . (6.1)

Since it takes just about log
2
(n) bits to express an integer n in, say, binary,

I (a) amounts to the average number of bits necessary to remove the uncertainty
in answering a question like what is the value of the observation of X? when
performing the random experiment in the background probability space. This is the
key idea in Shannon’s definition of information (content).

Entropy can thus be regarded as a measure of the average uncertainty in
determining any given outcome of an observation of X or its quantification as the
average number of bits necessary to identify all possible (unique) values of X (such
as the 2 outcomes of a Bernoulli trial, somewhere between 0 and 1 bit, or the 6
outcomes of the roll of a die, somewhere between 2 and 3 bits). (If natural logarithms
are used, the unit is called “nats” not bits. Throughout this book, entropies are
reported in bits.)
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Example 6.1 (Entropy of a Bernoulli Trial) In a Bernoulli trial (defined in
Sect. 11.1), i.e., a sample space Ω with just two outcomes (success and failure,
or heads and tails, or simply 1 and 0) with probabilities, p and 1 − p, respectively,
the RV X with value X = 1 if and only if the outcome is a success (X = 0 if it is a
failure), the probability distribution of X is P(X = 1) = P and P(X = 0) = 1−P .
The entropy is

H(X) = −P log
2
(P )− (1− P) log

2
(1− P).

��
Figure 6.1 shows the graph of the Shannon entropy H(X) of the Bernoulli RV

X. It is a concave function of P that attains a minimum value of zero for P = 0
and P = 1 and reaches a maximum value of 1 bit at P = 0.5 = 1 − p. Thus, the
entropy is 0 when the outcome of the trial is a sure event (implying that there is no
uncertainty in the outcomes of the random experiment), but the entropy is maximum
when the outcomes are equally likely.

Fig. 6.1 For a Bernoulli random variable X with just two outcomes, the uncertainty is maximum
H(X) = 1 when the two outcomes are equally likely (with probability P = 1

2 ) and it is minimum
when one of them is certain (P = 1, hence the other impossible 1− P = 0, or vice versa)
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Example 6.2 (Entropy of a Roll of a Fair Die) If a die is fair, then a throw of the die
has 6 equally likely outcomes, each with probability 1/6. Therefore, the Shannon
entropy in this case is

H(X) = −
6∑

i=1

Pi log
2
Pi = −

6∑
i=1

1

6
log

2
(
1

6
) = log

2
6 = 2.56 bits.

��
There is more uncertainty in this stochastic process than in a Bernoulli trial

because 2.58 > 1, which makes sense intuitively because there are now 6 > 2
possibilities. In other words, knowing the outcome of a dice roll is more informative
(removes more uncertainty) than knowing the outcome of a coin toss indeed!

If two RVs X and Z on the same sample space are correlated (e.g., the value up
on one of the dice in a roll of two and the sum of the two values for both dice), it is to
be expected that knowing the value of the outcome of the corresponding experiment
(rolling the dice) for the observations for one of them will reduce uncertainty in the
value of the other. This reduction can be quantified precisely as follows:

The conditional entropy H( Z |X ) of a RV Z on (or relative to) another RV X is the
average entropy of Z conditioned on the observation of a value of X, i.e., the expected
value E(H(Za)) of the entropies of the RVs given by Za : [Z |X = a], across all possible
values of a in the range of X.

Example 6.3 (Bivariate RVs) For conditional entropy for two scalar discrete RVs X

and Z, let X take on two values 1 and 2 and Z take on three values 1, 2, and 3, with
a joint probability distribution of X and Z given in Table 6.1. The Shannon entropy
of Z is H(Z) = 1.56 bits. ��

Thus, given the joint probability distribution (defined in Sect. 11.1) of a sample
of observations of X and Z, where X takes values x1, . . . , xm and Z takes values
z1, . . . , zn, the conditional entropy of Z given X is

H(Z |X ) =
m∑

i=1

P(X = xi)H(Z |X = xi )

= −
m∑

i=1

P(X = xi)

n∑
j=1

P(Z = zj |X = xi) log
2
(P (Z = zj |X = xi)).

Table 6.1 Shannon entropy
of Z and conditional entropy
of Z given X for the joint
probability distribution in the
entries

Z \X 1 2

1 0.15 0.10

2 0.20 0.20

3 0.30 0.05

H(Z) = 1.56 bits
H( Z |X ) = 1.48 bits
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This conditional entropy can be interpreted as the uncertainty left in the values of
Z given the observations of covariate feature X in a given data point Zxi

, averaged
across all data points xi .

Example 6.4 (Conditional Entropy) If the joint probability distribution is as given
in Table 6.1, the conditional entropy of Z given X is H(Z |X ) = 1.48 bits. ��

The conditional entropy can be generalized to any number of conditions, i.e.,
H(Z |X1, X2, · · · , Xm ) can be interpreted as the average uncertainty left in feature
Z given the values of joint observations X1 = x1, X2 = x2, · · · , Xm = xm in the
same data points.

This definition of conditional entropy will be applied in Sect. 6.4 to achieve
dimensionality reduction to 12 or 6 features in a dataset of 345 malware features
taken from a sample of Microsoft’s Malware Classification dataset with 1805
features (described in Chap. 1 and Sect. 11.4). Because the sample dataset is big,
manual computation of conditional entropy is prohibitively costly. Software will
come in handy to make computation manageable for such big datasets. One
such software is the R package infotheo. It computes Shannon entropy using
the Miller–Madow asymptotic bias corrected empirical estimator (which requires
discretized features, and the option equalfreq can be used to discretize the data,
where necessary, as illustrated in Sect. 6.4).

The Shannon entropy is also defined for continuous random variables as well.
However, currently available computing software such as infotheo uses only
discretized data even if it is continuous at the source. This is not really an issue
since most data nowadays are collected with digital sensors and are thus discrete.
Otherwise, truly continuous data has to be processed on conventional computers and
so it has to be digitized in the process anyway.

6.2 Reduction by Conditional Entropy

This section and the next introduce alternative methods to use Shannon’s entropy to
reduce dimensionality in datasets with too many features, along with an assessment
of their effectiveness in preserving significant information from the original dataset.
The key idea here is to select more informative features or remove features whose
information content is determined by the selected features, as determined by
Shannon conditional entropy.

Example 6.5 The problem [MalC] of Malware Classification calls for an assign-
ment of types to malwares from a predetermined set of types. It is a major problem
in cyber security, where new malware is emerging at an alarming rate (for instance,
more than 4.62 million new instances of malicious code were detected in June–
July, 2019 [4].) A rigorous analysis to this problem is critical to study the evolution
of malware and in developing appropriate countermeasures to contain cybercrime.
Such an analysis can be either static or dynamic. A dynamic analysis depends on the
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execution of malware in a controlled environment [5, 6] and is costly effortwise [7].
On the other hand, a static analysis relying on decompilation tools (like IDA Pro)
is more effective and efficient [8, 9]. However, it suffers from a major information
retrieval issue since important information (like code layout, meta annotations, and
even source language) in the source code is usually lost in the compilation process
and cannot be retrieved in decompilation. ��

This section addresses the problem only indirectly by identifying important
features to classify a piece of malware into categories for which known counter-
measures are available. There are just too many features that can be associated
with a piece of malware (e.g., 1809 in the Microsoft’s dataset, described in
Sect. 11.5.) Variants of entropy methods can be used to reduce the dimensionality
of pre-identified features of these malwares to solve the classification problem. A
first reduction by Ahmadi [10] (arxiv.org/abs/1802.10135) in 2016 used only 344
features extracted from the original Microsoft Malware Classification Challenge
containing more than a thousand features [11].

The versatility and effectiveness of these methods can be illustrated with a second
type of problem, the noisy classification problem (described in detail in Sect. 11.3.)

Example 6.6 One question of interest in any approach to DR is how good the
approach is at identifying dependencies (statistical or other) in the features in the
dataset. In a controlled experiment, a synthetic set can be designed with perfect
knowledge of these dependencies from independent (e.g., randomly generated) raw
(primitive) features. The effectiveness of DR methods can then be assessed by how
well they discover these hidden, yet most relevant and independent features from
a full set that includes other confounding features derived from the few primitive
ones.

The primitive features were generated using the method described in [12] and
publicly available as an API in Python at sklearn.datasets.make_classification. The
primitive features are mixtures of several Gaussian clusters located near corners
of the 12D hypercube and correspond to the labels in a classification problem. For
each class label, the informative features are drawn independently from the standard
normal distribution N(0, 1). Four more dependent features were added as various
linear combinations (with random coefficients) of the primitive features, as provided
in the API. In the second phase, 6 more predictors were generated as repeats of two
randomly selected (but uniform for all data points) primitive features/columns. One
more feature was added as the sum of squares of two features selected randomly,
one more feature consisting of the values of the predictions of a linear regression
model fitted using two other randomly selected features as predictors, and the next
feature was the deviation in the prediction from the true value. The last predictor was
obtained in a similar manner but using the squares of the randomly chosen feature
to predict one from the other. One last feature was generated as the outcome of the
natural logarithm of a randomly selected but uniform predictor (a transformation
that does not change entropy), for a total of 22 predictors. (A detailed description
of how the synthetic datasets were generated is given with the datasets SYN12 and
SYN23 in Sect. 11.5.)
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A second dataset was generated likewise but halving the number of all parameters
involved in generating features in the first set. ��

These datasets are used in Sect. 6.3 as well for assessment of the variant of the
method being discussed there.

For this variant of entropy methods, it is important to quantify the informational
independence between two predictors, unlike a dependent variable and a predictor
used in conventional methods. Such quantification is done using Shannon condi-
tional entropy between two predictors X1 and X2, i.e., H(X1 |X2 ). When this
entropy is high, knowledge of the values of X2 removes little of the uncertainty
in the values of X1 and selection of X1 may be necessary even if X2 has been
included [13]. Conversely, when this entropy is zero (or very low), X2 (essentially,
respectively) determines X1, and thus X2 is an informative feature and would
suffice because models in a solution could derive any information in X1 from it.
This concept is analogous to the concept of multicolinearity in regression models
described in Sect. 2.1. Multicolinearity is the condition that occurs if a few or
all predictors are linearly correlated. As with multicolinearity, the information
dependence between predictors is undesirable.

This section illustrates the application of two variants of this conditional entropy
first introduced in [13]. A few significant predictors from the full list of predictors
are obtained that possibly help in ascertaining target feature values (e.g., malware
type.) To use as few Xs as possible, only predictors informative of the target are
of interest. In particular, they should be as independent from other predictors as
possible. Information-theoretically, that means that the conditional entropies relative
to the other predictors (i.e., the uncertainty left in the predictor given another
predictor’s value) should be high overall. Thus, to decide whether to include Xi ,
the average is computed as

avgi = avg {H(Xi |Xj ) : 1 ≤ j �= i ≤ m}

of the H(Xi |Xj ) over all other Xj to quantify how informative predictor Xi is
as compared to others, for each i in the range of p predictors (excluding the target
feature). For a given dataset, as many features as desired can thus be selected from
the top features maximizing this average, after sorting the list in decreasing order.

A second paired variant of the same idea is to use the double conditional entropy
to compute H(Xi |Xj ,Xk ), for all j and k to determine how informative Xi is
given the pair Xj ,Xk when compared to all other pairs. If the average of these
entropies is high, Xi should be selected, as above. The same process can be repeated
to select more features as needed.

To compute conditional entropies between two predictors, infotheo package
available in R was used, as mentioned above. (The package can be installed using
the “install.packages(infotheo)” command in the R-console, as described in
Sect. 11.6.) The Microsoft Malware Classification dataset was used to select two
datasets using each variant. The first dataset contained only six predictors and the
second contained 12 predictors. Then, these datasets were fed to several statistical
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and machine learning algorithms to assess the performance of these variants based
on the performance of the resulting solutions for the classification problems on the
datasets SYN12 and SYN23.

To assess the quality of this method of DR, one can proceed in two ways.
First, the criterion being used (comparison of the information-theoretic content
of the features) provides a good rationale why the choices may be effective and
interpretable. However, there remains the issue of whether Shannon entropy really
defines information as humans conceive of it, a much harder question that has
remained unanswered. Alternatively, one can compare the effect of the choices on
how good solution models are (as described in Sect. 2.4) when obtained on various
sets of predictors. Thus, machine learning models trained on these reduced sets of
predictors were compared against the scores yielded by machine learning models
trained on the full set of predictor features, for both the Malware and synthetic
datasets.

Following the standard procedure described above in Sect. 2.4, these datasets
were split into training and testing subsets in a proportion of 80%–20%. The
machine learning models included Linear Discriminant Analysis (LDA), Support
Vector Machine (SVM), Multinomial Logistic Regression (MLR), Gaussian Naive-
Bayes (GNB), Random Forest (RF), k-Nearest Neighbors (kNNs), and Neural
Networks (NNs). The statistical models (the first four) were implemented using
R scripts and the machine learning models were implemented using Python code
(as in Sect. 11.6.) As usual, the F1-scores were selected as the metric to assess the
quality of the solution models trained and these scores and are shown in Fig. 6.2 and
Table 6.2 in the next section.

The methods have been used with similar success on other datasets, including
[BioTC] and the synthetic datasets, selecting sets of various sizes (6 and 12
features) as well, as described in [13]. In terms of solutions, some models (RFs,
kNNs) perform significantly better regardless of the problem ([MalC], [BioTC],
or [NoisC]), while others (SVMs, LDAs, and MLRs) perform very inconsistently
across these three representative problems. On average, solution models using only
6 features mostly performed poorly as compared to those using 12 features. Six (6)
features might be too few for solving a complex problem, so reducing features too
much may hurt for abiotic data.

Moreover, these DR methods offer the additional advantage of being computa-
tionally efficient because they are parallelizable. To compute conditional entropies
between a pair of features (either two predictors or one predictor plus a target), the
information about other features is not required, and hence several disjoint subsets of
data can always be extracted and assigned to different computing nodes. This makes
the process of feature extraction feasible by parallelization, even for big datasets.

In summary, conditional entropy performs competitively, if not very well, across
the board compared to random selection of features or other methods.



6 Information-Theoretic Approaches 135

Fig. 6.2 Overall performance of DR to (a) 6 features (top) and (b) 12 features (bottom) based
on conditional entropy on the problem of Malware Classification [MalCP]. Conditional entropy
performs competitively, if not very well, with most machine learning solutions, The DR methods
are selection by conditional entropy on predictors only (single H+m, paired H+m+, iterated
H+m++) excluding targets, except LDA, GNB, and NN for paired iterative entropies (H++)

6.3 Reduction by Iterated Conditional Entropy

The results of Shannon conditional entropy for DR discussed in the previous section
suggest the possibility that the interaction between various predictors at various
levels might (perhaps jointly) contain better information about other predictors
(which might have been deemed as most informative by themselves.) Therefore,
another interesting variation is to select features based on a recursive procedure in
which earlier choices affect together later selections.

In order to demonstrate the effectiveness of this alternative method for DR,
the same procedure problems and datasets presented in the examples in Sect. 6.2
were used to assess the quality of machine learning models being trained using
features selected by this alternative (indicated by H+m++). The scores are presented
in Figs. 6.2 and 6.3, together with previously discussed variants of conditional
entropy. On average, machine learning models seem to give better scores when the
dimensionality reduction is done using the iterated conditional entropy method on
the malware dataset. There seems to be no significant difference in the performance
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Table 6.2 Performance comparison (F1-scores) between machine learning models trained using
all features (last column) and those trained using reduced features (second and third columns) from
the large synthetic dataset SYN23 for the problem of Noisy Classification [NoisC]

DR variant Solution Reduced All features

All features LDA 0.6937

MLR 0.8013

SVM 0.8690

GNB 0.5085

RF 0.9291

kNN 0.9680

NN 0.6860

H+m (Conditional) LDA 0.9402

MLR 0.5728

SVM 0.8104

GNB 0.9096

RF 0.9717

kNN 0.9460

NN 0.8726

H+m+ (Paired Conditional) LDA 0.9484

MLR 0.9345

SVM 0.9902

GNB 0.9425

RF 0.9800

kNN 0.9578

NN 0.9082

H+m++ (Iterated) LDA 0.9481

MLR 0.9345

SVM 0.9906

GNB 0.9547

RF 0.9794

kNN 0.9910

NN 0.9417

of machine learning models trained on the features selected using single and paired
conditional entropies. Moreover, these models seem to give better performance
when 12 reduced features are used as predictors instead of 6. On the other hand, the
running times on an HPC of the relative entropy calculations to select features are
in the order of minutes (single entropies), under 2 h (paired entropies) and under 6 h
(iterated entropies.) So, there is a trade-off between the performance of the machine
learning models and the computational resources required to select features using
these information-theoretic DR methods.

In order to demonstrate that feature selection using entropy methods without
target is most likely an optimal choice than using the whole dataset, the methods
was tried also on the synthetic datasets mentioned above (described in Sect. 11.5).
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Fig. 6.3 Overall performance of DR to (a) 6 features (top) and (b) 12 features (bottom) based
on conditional entropy on the problem of Synthetic Data Classification [NoisC] (with controlled
dependencies) on synthetic datasets SYN12 and SYN23. Conditional entropy performs competi-
tively, if not very well, with most machine learning solutions. The DR methods are selection by
conditional entropy on predictors only (H+m, paired H+m+, iterated H+m++) excluding targets,
except LDA, GNB, and NN for paired iterative entropies (H++)

Standard metrics like accuracy, precision, recall, and F1-score were used to evaluate
the performance of different ML models trained and validated on these datasets.
A dimensionality reduction method was deemed to be of a good quality if an
average performance score of several machine learning models trained to solve these
problems is above 81% (average of the scores reported in [13]) for both problems.

A comparison of the scores is shown in Table 6.2. As described above, the
synthetic dataset was designed so as to contain some predictors that could be derived
using some kind of combination of other predictors. Therefore, these features
are not informationally independent. Although the impact of this dependency is
not so evident in some machine learning models on the given dataset, the usage
of all features led to solution models with the performance being dominated by
those trained using reduced features on average. Therefore, as a general rule of
thumb, one can easily conclude that in the presence of too many predictors, it is
always a wise choice to look out for some dimensionality reduction methods to
obtain only informationally rich features. However, there is still a question that
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remains unanswered, i.e., what is the threshold determining too many predictors?
The answer to this question really ultimately depends on the type of data science
problem at hand and the choice of features in the dataset. One can only hope to
consider all constraints impacting the search for a solution, for example, answering
the following questions (perhaps among others):

• Is it computationally feasible to include all features available?
• Is there enough time to train a model with all features and validate it?
• Are there enough datapoints to include all features (for example, a dataset

containing only 10 points might be enough to train a statistical model if there is
only one predictor, but not when more than six predictors are to be considered)?

As with conditional entropy in Sect. 6.2, the methods have been used with similar
success on other datasets, including one for BioTC and the synthetic datasets
SYN12 and SYN23, selecting sets of various sizes (6 and 12 features) as well, as first
described in [13]. In terms of solutions, some models (RFs, kNNs) perform better
regardless of the problem ([MalC], [BioTC], or [NoisC]), while others (SVMs,
LDAs, and MLRs) perform very inconsistently across these three representative
problems. On average, solution models using only 6 features performed mostly
poorly as compared to those using 12 features. Six (6) features might be too few
for solving a complex problem, so reducing features too much may hurt for abiotic
data.

In terms of the computational efficiency, the advantage of being parallelizable
is not as impressive. Because of their nature, to compute iterated conditional
entropies between a pair of features (either both predictors or one predictor plus
another target), data from other features is now required and the number of possible
combinations is explosive. These facts make the process of feature extraction
feasible less attractive, particularly for big datasets. Perhaps, a combination of the
two methods, first selecting a smaller subset using conditional entropy and then
using iterated conditional entropy of the smaller subset, may be a more productive
approach.

In summary, conditional entropy and iterated conditional entropy perform com-
petitively, if not very well, across the board compared to random selection of
features or other methods.

6.4 Reduction by Conditional Entropy on Targets

This section shows how dimensionality reduction of predictor features can be
achieved using conditional entropy of the target feature relative to the predictors.
Two examples are used to illustrate reductions to a set of 6 or 12 features out of 344
singles features and 6 or 12 paired features in a sample dataset of 345 features from
the Microsoft’s Malware Classification dataset of 1805 features for predicting the
target feature “Class” (type of malware). As a result, a principled argument can be
made in Sect. 6.5 to show how selecting features by minimizing conditional entropy
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is equivalent to selecting features by maximizing mutual information with respect
to the target feature, the commonly used approach in the literature on information-
theoretic methods for feature selection.

In statistics, when selecting features for predictors, the target feature is naturally
taken into account. In this variant, the degree with which a target Y is predictable
given a feature Xi is decided using conditional entropy H(Y |Xi ) between Y on
a feature Xi . When this entropy is low (high), the uncertainty is low (high) for the
values of Y given the values of Xi , so Xi is informative (or is not, respectively.)
Hence, Xi should be selected if this entropy is low. This is the opposite of the
criterion in Sects. 6.2 and 6.3 when predictors are being compared for selection,
but the approach is implemented just the same way, with the following changes:

• Calculate the H(Y |Xi ) over all Xi to quantify how informative predictor
feature Xi is compared to others.

• Select the top features minimizing this entropy after sorting the list in increasing
order.

As mentioned in Sect. 6.1, the conditional entropy H(Z |X ) can be generalized
to any number of conditions X1, X2, · · · , Xm instead of a single condition X

(Table 6.3).

Example 6.7 Table 6.4 shows 12 predictor features selected based on

H(Class |X1, X2, · · · , Xm )

Table 6.3 Top 12 single
features Xi (i = 1, · · · , 12)

(second column) selected by
sorting 344 values of
conditional entropies
H( Class |Xi ) in a sample
dataset of 345 features taken
from the Microsoft Malware
Classification dataset of 1805
features for predicting the
target feature “Class.”
Table 6.4 shows the values of
the entropies

ID Selected feature

1 db0_por

2 dbN0_por

3 db3_all

4 db3_rdata

5 dc_por

6 ent_p_1

7 ent_p_2

8 ent_p_4

9 ent_q_diff_diffs_10

10 ent_q_diff_diffs_11

11 ent_q_diff_diffs_1_mean

12 ent_q_diff_diffs_2_mean

13 ent_q_diff_diffs_2_min

14 ent_q_diffs_0

15 ent_q_diffs_mean

16 ent_q_diffs_var

17 known_Sections_por
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Table 6.4 Top single conditional entropies H( Class |Xi ) (entries in a row i in the second
column) and top conditional entropies H( Class |Xi,Xj ) (if more than one entry in a row in
columns j ≥ 1) of the top 12 pairs (Xi,Xj ) obtained by sorting

(344
2

) = 58,996 values of
H( Class |Xi,Xj ) corresponding to 58,996 pairs of the features in Table 6.3 used to solve the
Malware classification problem [MalC]. A blank entry indicates that the corresponding feature
was not selected, either as a single i or as part of a pair i, j

i : j H( Class |Xi ) 1 2 3 4 5 · · · 17

1

2

3

4

5 1.756

6 1.765

7 1.756

8 1.756

9 1.521 0.898

10 1.548 0.913 0.916 0.882 0.880 0.878 0.889

11 1.747

12 1.745

13 1.681

14 1.676

15 1.566 0.908 0.874 0.875

16 1.586 0.915 0.909

17

with m = 1 and 2, respectively, for predicting the target “Class”, i.e., the 345th fea-
ture in the sample dataset of 345 features taken from the population of Microsoft’s
Malware Classification dataset of 1805 features, by implementing the above two-
step procedure using infotheo. It is worth mentioning that the number 12 should
not be interpreted as any sort of “optimal” number of features in the sense of being
determined by some optimality criterion. Rather, it is just a low number chosen for
the purpose of comparison with choosing fewer features. ��

To assess the quality of this reduction, various machines learning solutions were
computed for the Microsoft’s malware dataset for the [MalC] problem, similar to
the procedure for the previous variants of the entropy method. Table 6.5 shows
the results. Furthermore, various machines learning solutions were also computed
on synthetic datasets SYN12 and SYN23 (described in Sect. 11.5) with primitive
features hidden from the conditional entropy reduction method. Tables 6.6 and 6.7
show the F1-scores for comparison.

In summary, a careful comparison with the other conditional entropy methods
shows that, perhaps surprisingly, taking into account the targets does not really seem
to make such a significant difference in the quality of the solutions to a data science
problem. However, choosing 12 features rather than 6 again does help significantly
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Table 6.5 Performance (F1-scores) comparison between machine learning models trained using
6 and 12 singles predictor features and 6 and 12 paired predictor features, selected by conditional
entropy of the target feature “Class” in the Malware Classification dataset. (Conditional entropy
of singles and paired features are denoted by H and H+, respectively)

Entropy variant ML solution model 6 features 12 features All features

All features LDA

MLR 0.6934

SVM 0.3772

GNB 0.7013

RF 0.8338

kNN

NN

Adaboost 0.7802

H LDA 0.3579 0.4624

MLR 0.6433 0.8398

SVM 0.7618 0.8152

GNB 0.3189 0.5871

RF 0.9746 0.9869

kNN 0.9593 0.9690

NN 0.6949 0.8397

H+ LDA 0.7087 0.7946

MLR 0.8230 0.9217

SVM 0.8398 0.9223

GNB 0.1072 0.6151

RF 0.9883 0.9895

kNN 0.9125 0.9323

NN 0.7447 0.9584

improve the quality of the solutions. Pairing now, however, does seem to make a
difference as well, in general.

6.5 Other Variations

A common information-theoretic approach used in statistics and data science, in
particular for feature selection, makes use of the concept of mutual information
I (Y : X).

The mutual information (also known as information gain) is given by

I (Y : X) = H(Y)−H( Y |X ).

This concept rather quantifies information independence between two variables,
analogously to the concept of statistical independence.
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Table 6.6 Performance (F1-scores) comparison between machine learning models trained using
6 and 12 singles predictor features, and 6 and 12 paired predictor features, selected by conditional
entropy of the target feature “Class” in the Noisy Classification dataset SYN13. (Conditional
entropy of singles and paired features are denoted by H and H+, respectively)

Entropy variant ML solution model 6 features 12 features All features

All features [14] 0.7970

[15] 0.9600

H LDA 1 1

MLR 0.9805 0.9828

SVM 0.9912 0.9946

GNB 0.8598 0.9358

RF 0.9806 0.9865

kNN 0.9840 0.9709

NN 0.9153 0.9826

H+ LDA 1 1

MLR 0.9811 0.9830

SVM 0.9922 0.9946

GNB 0.8598 0.9358

RF 0.9809 0.9867

kNN 0.9840 0.9709

NN 0.9232 0.9807

Table 6.7 Performance (F1-scores) comparison between machine learning models trained using
6 and 12 singles predictor features, and 6 and 12 pairs predictor features, selected by conditional
entropy of the target feature “Class” in Noisy Classification dataset (SYN22). (Conditional entropy
of singles or paired features is denoted by H or H+, respectively)

Entropy variant ML solution model 6 features 12 features All features

All features [14] 0.7970

[15] 0.9600

H LDA 0.5635 0.9402

MLR 0.9246 0.5728

SVM 0.9865 0.8104

GNB 0.4654 0.9096

RF 0.8063 0.9717

kNN 0.7657 0.946

NN 0.5029 0.8726

H+ LDA 0.9975 1

MLR 0.9292 0.9849

SVM 0.9875 0.9783

GNB 0.9940 1

RF 0.9910 9895

kNN 0.7646 0.9511

NN 0.7033 0.9779
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Example 6.8 The mutual information in the variables Z and X in Example 6.3 in
Sect. 6.1 above is

I (Z : X) = H(Z)−H(Y |X ) = 1.56− 1.48 = 0.08 bits .

��
Example 6.9 In the [MalC] problem, there are quite a few predictors in the original
dataset (1809 to be exact). Even after using the reduced dataset by [10] (344
predictors), there are still too many, and they may hide a number of dependencies
(e.g., some of these features might be collinear). One could alternatively follow
the approach discussed in previous sections, but using the mutual information as a
selection criterion instead of conditional entropy. ��

A comparison of the definitions of conditional entropy and mutual information
makes it is clear that they are complementary quantities in the entropy H(Y) of
the target Y , so that the lowest conditional entropy corresponds to the highest
mutual information with a predictor X, and vice versa. Therefore, selecting features
by maximizing mutual information, for any problem and dataset, is equivalent to
selecting features by minimizing conditional entropy, as has been done in Sects. 6.1–
6.4.
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Chapter 7
Molecular Computing Approaches

Max Garzon and Sambriddhi Mainali

Abstract Molecular approaches exploit structural properties built deep into DNA
by millions of years of evolution on Earth to code and/or extract some significant
features from raw datasets for the purpose of extreme dimensionality reduction and
solution efficiency. After describing the deep structure, it is leveraged to render
several variations of this theme. They can be used obviously with genomic data,
but perhaps surprisingly, with ordinary abiotic data just as well. Two major families
of techniques of this kind are reviewed, namely genomic and pmeric coordinate
systems for dimensionality reduction and data analysis.

Molecular approaches deal with the use of properties of deoxyribonucleic acid
(DNA) to code and extract some information-rich features from arbitrary raw
datasets (including digital abiotic data) for extreme dimensionality reduction and
solution efficiency of data science problems.

Advances in Internet technologies and sensing have enabled us to generate
and/or store huge amounts of data (in the scale of exabytes per day), but we still
lack methods to analyze them at the same scale and speed. A major roadblock
is that most real-life data, such as text and images, are unstructured in the sense
that they are not generated by a well-defined model or even organized in tabular
format. This lack of structure makes it harder to select or extract useful critical
information to solve problems at a humanly meaningful (semantic) level. Deep
learning methods have handled these difficulties to an extent, but it is very difficult
to explain how these methods learn significant features for such data analytics.
DNA, on the other hand, has been processing humongous amount of biological
information in the nick of time, as demonstrated by all living organisms in this
planet (e.g., protein synthesis and self-organization) [1]. In particular, recent works
have demonstrated that DNA deeply encodes enough information about an organism
so that features about taxonomic group [2], phenotype [3], and, perhaps surprisingly,
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even environmental conditions of the natural habitat where an organism grew up [4]
could be predicted. This chapter demonstrates a novel approach to leveraging this
property of DNA to solve some of these challenging problems.

Leveraging DNA’s exquisite discrimination ability to solve computational prob-
lems is not a new idea. Adleman [5] pioneered the field of DNA computing by
proposing to build computers using real DNA molecules. Eventually, it was realized
that fundamental problems (such as CODEWORD DESIGN ([CWD]) below) would
need to be solved to get DNA molecules to do something they did not evolve for
better than electronic computers. These problems are in the class NP-complete
(defined in Sect. 11.3) using any single reasonable metric that approximates the
strength of double helix bonding, thus practically excluding the possibility of finding
any procedure to find maximal sets exactly and efficiently [6]. The field then
refocused on a potentially more impactful application, namely the self-assembly of
complex nanostructures [7]. Rather than pursuing this line of research, this chapter is
rather focused more on using DNA and processes in vivo (within living organisms)
as an inspiration to develop new tools to solve problems in computer science and
biology in silico (in simulations on conventional computers).

[CWD] CODEWORD DESIGN

INSTANCE: A positive integer m and a threshold τ > 0
QUESTION: What is a largest set B of single DNA strands of length m that

do not crosshybridize to themselves or to their WC complements
(an nxh set) under stringency τ , i.e., their hybridization distance
|xy| > τ for all x, y ∈ B ?

To demonstrate the efficiency of these dimensionality reduction methods, several
fundamental and challenging problems in biology and computer science were
selected in [2, 3], and [4], i.e., species identification [BioTC] (or BioTaxonomy
as referred to in this chapter), phenotype prediction [RossP], and habitat prediction
[LocP] (all defined in Sect. 11.5). Species identification calls for a solution model
to identify a species of an organism from a predefined set of species given its DNA
sequence. All three kinds of problems can be solved using the same techniques, so
only results for [BioTC] are described in detail, in addition to the running examples,
such as [MalC] and [NoisC] (also described in Sect. 11.5) for abiotic data.

[BioTC] BIOTAXONOMIC CLASSIFICATION (T )

INSTANCE: A (long) DNA sequence (over the alphabet {a, c, g, t}) from a
living organism x

QUESTION: What species in T does x belong in?

The features representing an organism could be, for example, mitochondrial
genes COI, COII, COIII, and CytB from the organism’s genome. Other choices
give rise to different problems, as shown in the corresponding datasets in Sect. 11.5,
e.g., a most complex problem will arise if the full genome is used to represent an
instance of a biological organism.
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In biology, [BioTC] is a classical problem first formulated by Carl Linnaeus’
idea of a catalog of life on Earth into a hierarchical clustering system [8] back
in the 1700s. The literature available showcasing the attempts of biologists in
solving this problem reflect a slow shift, from considering only morphological
features, to relying only on molecular data (e.g., their genomic sequences), to a very
recent integrative approach of considering their genome, morphology, behavior,
geographic distribution, ecology, and so on to make such distinction [9, 10].
However, the scope of this chapter is only focused on the more challenging problem
of using the genomic sequences of organisms alone for data analysis since DNA
may encode enough information to derive some of these features as well.

To assess the performance of solution models trained using the features extracted
using biomolecular methods, two datasets are used, namely, the Malware dataset
described above and a biotic dataset of about 249 biological organisms spread across
21 species constructed for this purpose. These species and their representation
are shown in Table 7.1. Four significant genes from the mitochondrial DNA of
these organisms were chosen, namely three subunits of Cytochrome c oxidase
and Cytochrome b. The corresponding DNA sequences were downloaded from
GenBank [11].

Table 7.1 Organisms in the sample data for biotaxonomy classification [BioTC] of a biological
taxon. The 21 classes/labels in the partition are in the first column (the dataset is fully described in
Sect. 11.5)

Label T : Genus species Common name Count

1 Apis mellifera Western honeybee 4

2 Arabidopsis thaliana Thale cress 5

3 Bacillus subtilis Hay/grass bacillus 18

4 Branchiostoma floridae Florida lancelet 18

5 Caenorhabditis elegans Round worm 6

6 Canis lupus Wolf 18

7 Cavia porcellus Pork 4

8 Danio rerio Zebra fish 9

9 Drosophila melanogaster Fruit fly 18

10 Gallus gallus Red junglefowl 18

11 Heterocephalus glaber Naked mole rat 3

12 Homo sapiens Human 18

13 Macaca mulatta Rhesus macaque 8

14 Mus musculus House mouse 18

15 Neurospora crassa Red bread mold 5

16 Oryza sativa Asian rice 12

17 Pseudomonas fluorescens Infectious bacterium 6

18 Rattus norvegicus Brown rat 18

19 Rickettsia rickettsii Tick-born bacterium 18

20 Saccharomyces cerevisiae Yeast 18

21 Zea mays Corn/maize 7

249
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7.1 Encoding Abiotic Data into DNA

This section describes how to encode abiotic (e.g., malware) data into DNA
sequences for problem solving in data science.

The idea of leveraging DNA’s exquisite discrimination ability to solve computa-
tional problems was introduced in the 1990s [5]. Several attempts have been made in
that direction for abiotic data [12–14]. The authors in [14] used solutions to [CWD],
namely encoding data into DNA using so-called noncrosshybridizing (nxh) bases, to
solve Word Disambiguation and Textual Entailment in semantic analysis. However,
to be able to process abiotic data (e.g., text and images) using DNA, an automated
method to encode and transform abiotic data into DNA sequences must be used.

Example 7.1 The obvious and straightforward approach is to make homomorphic
substitutions of alphabet symbols, for example, substitute characters in English
text with their ASCII codes in binary and then convert binary strings into DNA
sequences by concatenating encodings of their characters in the same order. For
example, [15] simply uses DNA codons (DNA sequences of length 3 coding
for proteins) to homomorphically encode individual characters in computer files
totaling 739 kilobytes of hard disk storage encoding all 154 of Shakespeare’s
sonnets using a cipher where every byte of 0s and 1s is represented by a word
using 4 symbols a, c, g, and t . This method appears to be too coarse and noise
prone to hybridization patterns that may overload a model [13]. On the other hand,
using too sophisticated encoding methods that hide some processing might dilute
the credibility of a model to provide better solutions. Therefore, a straightforward
encoding of abiotic data is discussed next to demonstrate the ability of DNA to
process abiotic data, although many other methods are certainly possible. ��

A piece of malware can be regarded as an ordered set of hexcodes representing
a string of hexadecimal characters. Thus, a DNA encoding can be simply obtained
by converting each hexadecimal character to its binary equivalent and then concate-
nating these binaries into a sequence in DNA form. Two bits encode four possible
strings that can be regarded as a, c, g, or t , e.g.,

00 → a; 01 → c; 10 → g; 11 → t.

A subset of 511 malwares from all malwares in the Malware Challenge dataset was
drawn, and they were encoded into DNA sequences using this procedure.

In order to show the results, the method to reduce dimensionality using DNA
requires some other concepts in the following section.
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7.2 Deep Structure of DNA Spaces

It is well known that, as the blueprint of life, DNA encodes for critical information
required to develop and sustain life in every living organism (e.g., protein synthesis
and self-organization) due to its self-organizing properties. This critical role of DNA
motivated work in a new field, DNA computing, inspired by the ideas of using
DNA itself as a computational medium pioneered by Adleman [5] and as smart
glue for self-assembly applications by Seeman [7] and Winfree [16]. Eventually,
it was realized that fundamental problems (such as CODEWORD DESIGN [CWD]
below) would need to be solved to get DNA molecules to do something they did
not evolve for better than electronic computers. Finding a solution to this problem
is NP-complete using any single reasonable metric that approximates the Gibbs
energy, thus practically excluding the possibility of finding any procedure to find
maximal sets exactly and efficiently [6]. The field then refocused on a potentially
more impactful application, namely the self-assembly of complex nanostructures
[7] in vivo (in living organisms) and, primarily, in vitro (test tubes).

A parallel effort continues as well to use DNA and hybridization as an inspiration
to develop new tools to solve problems in computer science and biology in silico
i.e., in simulations on conventional computers. In particular, recent works further
demonstrate that DNA sequences encode enough information about an organism
so that features about phenotype, taxonomic group, environmental conditions of
the natural habitat where an organism lived, and so on could be predicted [2–4].
The most fundamental and powerful property of DNA is hybridization, its exquisite
discriminating ability in forming double strands (helices) as discovered by Watson
and Crick [1]. A systematic attempt to develop tools to tackle this challenging
[CWD] has been steadily pursued by several authors, e.g. [6, 17–20], because
of its importance, both fundamentally and bioinformatically. Useful insights into
the structure of Gibbs energy of DNA duplex formation governing hybridization
have been revealed through a metric approximation of the Gibbs energy between
two DNA oligonucleotides of the same length, known as the h-distance. This
distance allows topological sorting of DNA oligonucleotides in DNA spaces in
such a way that the physical distance between any two points in the space reflects
their hybridization affinity. In particular, two Watson–Crick (WC) complementary
oligonucleotides (e.g., aaa and ttt for oligonucleotides of length 3) are at distance
0 and collapse into a single point (the pair aaa/ttt, likewise for acg/cgt). Such
pairs are referred to as paired mers or simply pmers. Furthermore, this distance
allows us to reason about hybridization using geometric and spatial analogies with
the concepts of ordinary distance that people use so easily to facilitate reasoning
and conceptualization of the world, as described in Sect. 1.2. For example, aaa/ttt
(ccc/ggg) is located as sort of a north (south, respectively) pole in the DNA space of
3-pmers, as shown in Fig. 7.2a. These concepts enable understanding of the complex
Gibbs energy landscapes of DNA hybridization that are fundamental to genomics
and physiology in living organisms. In particular, they provide important clues how
to strategically select sets of pmers for probes in a microarray design that would
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optimize not only the extraction of information deeply encoded in the genomes of
living organisms but also find hidden structure in apparently unstructured abiotic
data codes into DNA sequences, as illustrated next.

Example 7.2 Here are some questions that DNA might know something about:

• Does DNA encode enough information to enable quantitative predictions of
phenotypic features in a biological organism, even though they depend on
environmental factors presumably beyond DNA?

• Does DNA actually encode enough information to say something informative
about environmental factors (e.g., latitude, longitude, temperature, and so on) of
the natural habitat where these organisms grew and lived?

• Is a principled and taxon-independent definition of the concept of species
possible that is universal for biological taxonomies?

• Can we provide an objective taxon independent and systematic definition of
pathogenicity shared between hosts (e.g., homo sapiens) and micro-organisms
(e.g., bacteria and fungi) based on a computational approach?

��
In order to make inroads into these questions, one must take a very deep look into

DNA sequences from the point of view of computer science. This inquiry will yield
impressive reductions in the dimensionality of DNA data and even abiotic sequences
below to address the problem of what kinds of information are encoded in DNA.

7.2.1 Structural Properties of DNA Spaces

This section describes a number of structural properties of DNA spaces. Some
precise definitions of concepts and terms are required to elucidate and describe
them.

Given a positive integer m, a DNA sequence x is a string defined over the alphabet Σ =
{a, c, g, t}. They will also be referred to as m-mers, where m = |x| is the length of string
x. The Watson–Crick (WC) complement of x is the string x′ obtained after first taking the
reverse of x (i.e., xr ) and replacing every a (c) by t (g, respectively) and vice versa, i.e.,
x′ = (xr )c. A pmer (or |x|-pmer) is an (unordered) pair of two WC complementary DNA
sequences {x,WC(x)} (simply denoted x/x′, or just x, the lexicographically first element
in the pair). The DNA space Dm of length m > 1 consists of the set of all such m-pmers.

If x is a WC-palindrome (i.e., WC(x) = x′ = x), then the corresponding pmer is
really a single string. For reasons that will become apparent below, WC-palindromes
will be excluded from consideration throughout.

Hybridization is governed by the familiar Gibbs energy, the chemical equivalent
of the potential energy in physics, which depends on physical parameters (such as
the internal energy, pressure, volume, temperature, and entropy) of the environment
in which the duplex is formed. The more negative the Gibbs energy, the more
stable the duplex formed. Unfortunately, the available models in biochemistry
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provide no gold standard to assess Gibbs energies other than just accepted empirical
approximations [21]. The most popular method to approximate the Gibbs energy
is the so-called Nearest Neighbor (NN) Model, but this model lacks all the three
properties of a metric (defined in Sect. 1.2) for a good approximation that lends
itself to deeper analysis. Furthermore, the size and composition of nxh sets are very
difficult to establish in this model due to the lack of intuition and tools as to the
structure of the Gibbs energy landscapes [6].

In the field of DNA computing, many attempts have been made to address this
issue. They have revolved about the [CWD] problem identified as a fundamental
problem in the field. Adleman [5] emphasized the need of a good coding strategy
for using DNA to process information. A coding scheme is crucial to experiments in
vitro, for mutational analysis and for sequencing [22]. For a biologist, the obvious
criteria for good choices were things like the GC content of the sequences since it is
a good indicator of the melting temperature (at which the double helix dissociates)
of short oligonucleotides. Arita and Kobayashi [22] introduced a template method
to generate a set of sequences of length l such that any of its members have
approximately l/3 mismatches (based on the GC content) with other sequences,
their complements and the overlaps of their concatenations. Some approaches also
tested combinatorial design, random generation, and genetic algorithms [18, 19].
A more refined approach considers the environment as an information channel
that introduces undesirable changes (noise) to oligonucleotides (rather than bits)
in transit to a double helix. DNA sequences diffuse in solution (the channel)
“looking” for a (WC) complementary sequence (the destination) to hybridize to.
If the probes used to encode data are not carefully selected, the equivalent of a
transmission error occurs since the intended target may hybridize to the wrong
probe (i.e., the hybridization affinity to the probe is not optimal). Thus, the [CWD]
problem appears to be the equivalent of designing error-detecting/correcting codes
in Shannon’s information theory. Shannon’s solution for error-detecting codes was
to use the Hamming distance in Boolean hypercubes (described in Sect. 11.2) to
quantify the error detecting and correcting capabilities by separating codewords
actually used to encode single bits, so the noisy transmissions remain noncoding
and can be detected and possibly corrected if they remain closer to the original
codeword than to others. The obvious choice for [CWD] would thus appear to be
the Hamming distance [23] between binary sequences. Since the Hamming distance
between any two aligned sequences counts the number of nonmatching characters
where the two do not match in a perfect alignment, the ordinary Hamming distance
must be modified so that matching now refers to Watson–Crick complementary
pairs, i.e., a’s and t’s (c’s and g’s) occurring in aligned sequences should be
considered as matches. Some authors [24] used this notion of Hamming distance to
obtain sets of “orthogonal” sequences solving the [CWD] problem experimentally
and theoretically for molecular recognition using microarrays. Although this a step
in the right direction, Hamming distance between two DNA strands appears to be too
crude as an estimate of the likelihood of hybridization simply because it excludes the
possibility of two strands hybridizing in shifted alignments [25], something much
more likely to occur. To address this issue, an alternative was introduced in [17].
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This h-distance turns out to be a reasonable choice for an approximation of the
Gibbs energy because it satisfies metric properties that the Gibbs energy does not,
and more importantly, because hybridization decisions made when the h-distance
falls below an appropriate threshold τ agree with those made using the Gibbs energy
given by the Nearest Neighbor Model (close to the actual decisions made by the real
oligomers of length below 60 or so) about 80% of the time [6, 12].

Given an integer m > 0, the h-measure h(x, y) between any two pmers x and y is the
minimum total number of WC complementary mismatches between facing nucleotide pairs
in an optimal alignment. Precisely, the computation of the h-measure proceeds as follows:

• Aligns x and yr (y reversed) in 2n − 1 alignments shifted by k characters (left shift if
k < 0; right if k > 0), −m < k < m

• Counts the total number ck of WC complementary mismatches between facing
nucleotide pairs (single nucleotides are counted as mismatches)

• Returns for the h-measure the value

h(x, y) = min
k
{ck} .

The h-distance (denoted just |xy| henceforth) between two pmers x and y is defined as
the minimum of the two h-measures h(x, y) and h(x, y′) between x and y, where y′ is the
WC-complement of y [17].

The workflow for the computation of the h-distance is illustrated in Fig. 7.1.

DNA Metric Spaces
For every m ≥ 1, the h-distance is a metric in Dm, i.e., it is reflexive and symmetric
and satisfies the triangle inequality. Furthermore, hybridization decisions between
two mers x and y made when their h-distance falls below an appropriate threshold
τ agree roughly about 80% of the time with one made using Gibbs’ energy Nearest
Neighbor Model with threshold −6 kCal/mole [17, 25].

Fig. 7.1 Workflow for
computing the h-distance |xy|
between any two pmers x and
y by optimizing the
frameshift for most
WC-complementary (min of
WC-nonmatching) pairs of
facing nucleotides in the
h-measure hm of the pairs
x, y and x, y′. (Single
nucleotides are considered
mismatches.)
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Table 7.2 Known isometries for DNA spaces Dm for m ≥ 1, according to [26]. They are
homomorphic substitutions named “bdef” to indicate that the characters in “acgt” in a pmer x/x′
are mapped to those in “bdef,” respectively. Any composition of two isometries is also an isometry

Name Isometry ID Mapping of acgt Transformation

WC Complement/Identity acgt acgt a↔t, c↔g Reverse+Complement

Polar φN
S acgt catg a↔c, t↔g

Reverse φR acgt tgca φ(x) = xR (reverse pmer of x)

Polar + Reverse acgt gtac Polar + Reverse

Polar2 acgt gtac a↔g, t↔c

g-c swap acgt agct a↔a, c↔g, t↔t

a-t swap acgt tcga a↔t, c↔c, g↔g

These metric properties of the h-distance can be used to solve the DNA

CODEWORD DESIGN ([CWD]) problem approximately, so that data representations
can be built and reasoned about as though they were physical objects like mass,
centroids, and so on. Furthermore, it reveals some deeper structure of DNA
hybridization landscapes, as follows:

An isometry φ of a DNA space Dm is an h-distance preserving transformation φ: Dm →
Dm, i.e., for every pair of pmers x, y ∈ Dm, |φ(x)φ(y)| = |xy|.
The deep structure of DNA can now be summarized more precisely by the

following properties exhibited by every space of oligonucleotides of a fixed length,
the Dm space (further details can be found in the original source [26]).

• Every isometry φ of Dm must be injective and surjective. In particular, its inverse
is also an isometry.

• The space Dm has at least 16 isometries.

Table 7.2 shows the known isometries of DNA spaces. They are obtained by
homomorphic (character by character) substitutions as shown. Thus, WC matchings
are preserved and the h-measure remains unaffected upon substitutions. Therefore,
they preserve the h-distance as well. (It is quite possible that other nonhomomor-
phic isometries are awaiting an explorer to discover them or show they are not
possible).

These isometries afford an even more complete picture of the structure of the
hybridization landscapes of oligomers of a given size (defined by the h-distance)
through their images in DNA spaces. It is particularly interesting that this structure
is something that humans are very familiar with in the planets Earth and Saturn
because the structure of a DNA space Dm (m ≥ 2) can be fully described by the
following geometric concepts present in them:

• Two m-pmers x and y are an antipodal pair if and only if |xy| = m.
• The north N (south S) pole is the pmer am/tm (cm/gm, respectively).
• The northern ice cap P m−1 is the set of pmers x satisfying
|xN | ≤ 1 and |xS| = m.

• The equator Em is the set of all pmers x equidistant from the poles, i.e., satisfying
|xN | = |xS|.
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• The northern hemisphere (HN ) is the set of pmers x satisfying
|xN | < |xS|.

• The images under the polar isometry φ of these objects are called the corresponding
southern ice cap Pm−1 and southern hemisphere (HS ).

Thus, the northern and southern equators are identical to the equator. The north
and south poles are an antipodal pair, and they partition the full DNA space Dm.

The parallels of Dm are the following subsets of Dm, for 1 ≤ i ≤ m:
the ith parallel is the set Pi of all m-pmers x satisfying
|xN | = R − i + εN and |xS| = R + i − εS ,
where R is the maximum possible value of |xN | and εN and εS are certain constants
depending on m and i.

Em of Dm satisfies the following properties for every m ≥ 2 :

• Em is identical to the 0th parallel (P0) with εN = εS = 0.
• Em consists of (nearly) balanced m-pmers, i.e., the maximum number of occur-

rences of a’s or t’s is (nearly) identical to the maximum number of c’s or g’s.
• Em is closed (hence invariant) under the polar and reversal isometries, i.e.,

φN
S (Em) ⊆ Em and φR(Em) ⊆ Em.

• Dm = HN ∪ Em ∪ HS .

The ellipse with foci given by two m-pmers f1 and f2 and a constant c ≥ 0 in a DNA space
Dm is the set of m-pmers x satisfying the condition |xf1| + |xf2| = c. The polar ellipse (as
shown in Fig. 7.2b) has foci at the poles N and S and the maximum possible value of c for
a nonempty ellipse.

The polar ellipse is the nonempty ellipse with the largest c at least 2R, where R is
the maximum possible distance of an m-pmer in the equator from the poles, and it
includes the whole equator Em.

The typical shape of the polar ellipse in DNA spaces is illustrated in Fig. 7.2b.

Let k > 0 be an integer and S be a set of pmers in Dm of size |S| and wz ( z ∈ S ) be a set
of real-valued weights for its elements. The (weighted) kth error function SEk

w Dn → R is
defined as the average kth powers of the h-distances from z to a pmer in S, i.e., SEk

w (z) =
1
|S|

∑
x ∈ S wz|zx|k . A pmer c ∈ Dm is a k-centroid of S (or simply centroid if k = 2) if and

only if it minimizes SEk
w(z) with all weights wk = 1, i.e., c = arg minz SE(z) across all z

in Dm.

An isometric image of a centroid in any DNA space Dm is also a centroid. There are
several centroids in every DNA space Dm for m ≥ 2 .

These facts reveal why the shape of these spaces is very similar to that of planets
in our solar system (like Earth and Saturn), as shown in Figs. 7.2 and 7.3.

Such structural features can be computed by brute force for small values of
m (m ≤ 8). But as the value of m increases, the size of Dm increases exponentially
(e.g., D3 has 32 pmers, D5 has 512 pmers, and D8 has 32,640 pmers), causing a
combinatorial explosion. Beyond D8, an exhaustive search of the space is practically
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Fig. 7.2 Deep structure of DNA spaces Dm illustrated with m = 3. (a) The hybridization
landscapes can be topologically sorted into positions on an equator, four parallels in the northern
and southern hemispheres, the artic caps, and the north (N) and south (S) poles. (b) The polar
ellipse (with foci at N and S) includes the full equator and the arctic caps (in long dashes around
the poles). (This rendition is not isometric, although the relative separation in 3D Euclidean space
between the location of the pmers is indicative of their actual h-distance, their likelihood of
hybridization.)

Fig. 7.3 Deep structure of DNA spaces Dm for (a) m = 4; and (b) m ≥ 5. The hybridization
landscapes can be topologically sorted into positions in structures reminiscent of the solar planet
Saturn, with equatorial rings not only around the equator but alternate parallels as well, in both
the north and southern hemispheres. This structure remains unaltered (except perhaps with more
alternate rings around more parallels) for longer m-pmers. (This rendition is not isometric, although
the relative separation in 3D Euclidean space between the location of pmers is indicative of their
actual h-distance, their likelihood of hybridization. WC-palindromes have been excluded.)

impossible. Therefore, algorithms to generate all and only pmers satisfying the
conditions in these properties would be useful for higher values of m. Some results
for attributes for the smaller Dms (m ≤ 8) are shown in Tables 7.3, 7.4, and 7.7.
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Table 7.3 Some statistics about the parallels Pi in the DNA spaces Dm (given by their first
lexicographic m-mers, e.g., ac stands for pmer ac/gt), according to [26]. The phenomenon of
concentration of mass on the equator discussed in Sect. 3.3 is evident here too (percentages in
parentheses)

m |xN | |xS| i /εN , εS |Pi | Pi

3 0 3 3/1, 2 1 P3 = { aaa }
1 3 2/1, 1 3 P2 = { aat,ata,taa }
1 2 1/0, 1 6 P1 = {aac,aag,aca,aga, caa,gaa }
2 2 0/0, 0 12 E3 = {acg,act,agc,atc, atg,cag,cga,cta, gac,gca,gta,tca }

4 |E4| = 20 (≈ 16.7%), as shown in Fig. 7.3

5 |E5| = 120 (≈ 23.4%)

6 |E6| = 580 (≈ 28.8%)

7 |E7| = 1820 (≈ 22.2%)

8 |E8| = 5832 (≈ 17.9%)

Table 7.4 Nxh bases for different DNA spaces [3, 20, 26]. Avg is the mean of the random variable
Nτ counting the number of m-pmers x that hybridize to any probe in the basis, i.e., with h(x, z) ≤
τ . Its Entropy is H(Nτ ). 4mP3 is the only basis with no hybridization uncertainty (every 4-pmer
sticks to exactly one of the 3 probes for the given τ , i.e., Nτ is constant Nτ = 1)

Nxh basis/chip Length Size τ Avg Entropy

3mE4b 3 4 1.1 1.09 0.45

4mP3 4 3 2.1 1 0

6miC4Sa 6 4 4.1 1.03 0.26

7miC4Sa 7 4 4.1 1.02 0.17

7miC4Sb 7 4 4.1 1.02 0.15

8mP10 8 10 4.1 1.10 0.57

Further details about the deep structure of DNA spaces can be found in [26]
and [6]. The structure can now be leveraged to perform exponential reductions in
dimensionality of biotic and abiotic data, as shown in the remainder of this chapter.

7.2.2 Noncrosshybridizing (nxh) Bases

Microarrays have been the standard and popular tool to extract information from
DNA sequences in biology. They consist of planar substrates such as glass, mica,
plastic, or silicon, where DNA strands are affixed to allow specific bindings
of bio-samples collected from an organism [27]. During the early 1990s, the
first microarray experiments were performed using complementary DNA (cDNA)
affixed to the microarrays. The length of a typical cDNA is 500–2500 base pairs, and
they are widely used in gene expression assays [27]. Since 1990s, microarrays have
been refined to capture and mine genomic and metabolomic data. The information
gathered from this tool and data has wide applications in the fields of biology,
medicine, health, and scientific research.
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However, microarrays have serious disadvantages. First, analyses relying on their
readouts give results that are hardly reproducible because of the high uncertainty in
hybridization of targets to probes. The probes may not crosshybridize because they
are affixed to the chip far apart, but the targets are floating in solution. No constraints
are implemented in microarrays to minimize crosshybridization between targets. As
a consequence, the results are not accurate and hence unreliable due to the lack of
reproducibility, as argued in [28]. A second disadvantage of microarrays is that they
may be too sparse and hence might miss target strands if they do not hybridize to any
probe on the microarray and thus miss signals that could yield useful information.

Recent advances in next generation sequencing (NGS) have moved researchers
away from microarrays directly to DNA fragments coding for proteins that can be
used for processing and analysis instead. Currently, a number of NGS platforms
using different sequencing technologies are available. These platforms perform
sequencing of millions of small fragments of DNA in parallel in fairly short times.
Some bioinformatic analyses join these fragments by mapping the individual reads
to a reference genome [29]. However, analyzing the sequences generated using these
platforms is a big challenge. Through the use of deep learning models on these
sequences directly to extract useful predictors automatically, the disadvantages of
microarray analyses could be reduced (no risk of unwanted hybridization as the
phenomenon is not considered at all). However, the performance of such networks is
highly dependent on the quality and/or relevance of the data as well as the size of the
data. In particular, such models can pretty much memorize data when it is limited.
In fact, there is an ongoing debate between two extreme approaches in the field of
machine learning (i.e., feed raw data to a model without any processing to avoid bias
vs manual selection of features that might be important), and the researchers have
concluded that there should be a trade-off [30]. Furthermore, the results obtained
using these methods are not explainable since it is not clear how the model is making
decisions (e.g., non/cancerous) that would allow a human to rationalize and accept
or reject the decisions.

Using the deep structure of DNA spaces, an entirely different approach to
dimensionality reduction emerges. A selected set of nxh pmers (nxh bases) could
be used to reduce the dimension of DNA sequences and thus extract more
relevant information about the sequences based on the knowledge of Gibbs energy
landscapes. These pmers will be referred to as probes (contrary to the standard use
in biology where they are referred to as targets). It has been shown [6, 31] that the
[CWD] problem can be reduced to a well-known and well-researched problem in
geometry, a sphere-packing problem. With some additional work, solutions to the
[CWD] problem can be had for values of m ≤ 8. Table 7.4 shows some of the nxh
bases used below for DR and their quality.

There are several advantages of using these strategically selected sets of probes
(called noncrosshybridizing (nxh) bases) with microarrays and NGS. First, nxh
bases can be used to transform arbitrary DNA sequence into numerical feature
vectors. These vectors could be used to train conventional statistical and machine
learning models like regression models, support vector machines, random forests,
decision trees, and multilayer perceptrons (defined in Sect. 2.2). The drawbacks of
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deep networks requiring abundant data for effective learning can be avoided with the
use of these models based on nxh features, as shown below. Furthermore, the results
obtained using these bases can be rationalized because they reflect deep knowledge
of the Gibbs energy landscapes of DNA hybridization critical to living organisms.
Hence, the results will be more explainable.

7.3 Reduction by Genomic Signatures

This section introduces a second kind of DR based on the pointwise hybridization
pattern exhibited by a dataset encoded as DNA sequences to a common judiciously
selected set of DNA oligonucleotides (an nxh DNA basis or DNA chip) of the same
length blanketing the entire DNA space. A classic problem of species identification
or biotaxonomic classification [BioTC] and malware classification [MalC] (both
defined in Sects. 1.2 and 11.4) are used as running examples and are further
discussed next.

Example 7.3 Biotaxonomic classification is a classical problem in biology. The
significance of and challenges surrounding this problem were briefly discussed
earlier in this chapter. Although these biological challenges fall outside of the scope
of this book, the usage of genomic sequences in statistical or machine learning
models serves as a suitable application of dimensionality reduction on genomic
data. One way to extract information from DNA sequences of living organisms
would be to do a homomorphic substitution of DNA characters by numbers (as
described above in Sect. 7.1) and then use convolutional networks to make some
predictions about their taxonomic groups. The disadvantage of using this approach
is that DNA sequences can be very long. For example, on average, the DNA
sequence of a gene like cytochrome c oxidase subunit I of organisms like blackfly
contains about 600–700 DNA oligonucleotides [32]. This number can increase
drastically if the sequences involved include the entire mitochondria or even, ideally,
the whole genome. So, using even 600 features requires advanced models like
convolutional networks demanding a lot of computational resources. On the other
hand, identifying some short DNA oligos very important in the context of the
geometric properties of DNA spaces (as discussed in the previous section) and
computing a pattern of hybridizing affinities of DNA sequences in a sample with
these short DNA oligos might help to reduce the dimensionality of these longer
DNA sequences. The corresponding features could then be fed to standard statistical
and/or machine learning models. ��
Example 7.4 Molecular dimensionality reduction can be applied to abiotic data
(having nothing to do with living organisms, e.g., malwares) as well. Naturally, that
requires the data to be coded into DNA first, as discussed above in Sect. 7.1. ��

The conceptual framework to perform such dimensionality reduction is based on
the deep structure of DNA described in Sect. 7.3.2 and is described in this section.
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7.3.1 Background

As a blueprint of life, DNA encodes critical information quinta-essential for the
development and survival of a living organism (e.g., protein synthesis) [1]. Its
properties allow the cell to store and process all kinds of information that determine
not only morphology and phenotype but also the metabolic behavior of an organism.
Prime examples are genes like BRCA1 and BRCA2, which play an important role
in breast and ovarian cancers caused in human females 60% of the time. Early
genetic studies showed that DNA is responsible for preservation of most phenotypes
from parents (specifying their structure and function) into their offspring; further
studies have probed into the role of epigenetics in disease [33], e.g., Jin and
Liu [34] point out that DNA methylation is one of the earliest such modifications
in humans. This type of alteration is linked with many cancer types (such as colon,
breast, liver, bladder, Wilms, ovarian, esophageal, prostate, and bone), autoimmune
diseases, metabolic disorders, neurological disorders, and so forth. For example,
clinical sequencing has demonstrated its effectiveness in serving as an alternative
to identify diseases caused by genetic factors. Furthermore, there is evidence now
that a genome may encode even information about environmental habitat where an
organism grew and lived [35].

In order to enable extraction of this information from DNA sequences, they must
be pre-processed. Microarrays have been the standard and popular tool to do so in
biology [27]. However, as pointed out above, the unreliability and irreproducibility
of the results (due to the noise present in microarray signals) led to current advances
in sequencing technologies (e.g., next generation sequencing, NGS). Enormous
progress in NGS in the last two decades has substantially lowered the cost and
time required for genome sequencing for any organism. But the major challenge
remains how to extract and interpret the huge amount of information about the
organism contained in these sequences to turn this data into useful and explainable
outcomes [36]. As it turns out, structural properties of DNA enable an even deeper
and more informative analysis. Judicious selections among the centroids of the
parallels in DNA spaces (as described in Sect. 7.2) afford designs of nxh bases and
help address these drawbacks of microarrays, as shown in Table 7.4.

7.3.2 Genomic Signatures

An nxh basis can be used to transform a genomic sequence into a numerical vector
that could be used to train machine learning models to solve challenging problems.

Given an nxh basis B of probe length m > 1 with k probes, a hybridization threshold
τ > 0, and a DNA sequence x of any length x ≥ m, the mD genomic signature of x on B

at h-threshold τ is obtained by an algorithm that

• Shreds x to nonoverlapping fragments of size m (ignoring any shorter leftover shreds, if
any)
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Fig. 7.4 Workflow to compute the genomic signature of an arbitrary DNA sequence x (perhaps
from a living organism) using an nxh basis B

• Computes the total number of shreds in x that hybridize with each probe zi ∈ B at
threshold τ

• Normalizes the mD vector obtained using the partition function (i.e., dividing all
components by the total number of shreds given by the nearest integer �|x|/m� at or
below |x|/m)

This workflow to compute such a signature is illustrated in Fig. 7.4. Perl and Python
scripts implementing this algorithm were used to shred an arbitrary DNA sequence
into fragments of probe length. For each probe in a given basis, the total number
of shreds in the sequence hybridizing with it given a stringency condition τ is
counted. The hybridization criterion is that two oligos of the same length hybridize
with each other if and only if their Gibbs energy, as approximated by their h-
distance, is less than τ ; this decision agrees with the decision based on Gibb’s energy
Nearest Neighbor Model about 80% of the time [6], as pointed out in Sect. 7.2.
The normalization of this vector is the genomic signature of the DNA sequence.
The signatures in a taxon of organisms capture very deep and useful information
about them (e.g., information to predict phenotypic features and environmental
features in the natural habitat of blackfly and Arabidopsis thaliana [3, 4]) despite
the enormous dimensionality reduction (from thousands and possibly millions or
billions of nucleotides to a vector of as many dimensions as the number of the few
probes in the nxh basis, as illustrated in Table 7.4).
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The quality of the information content of these signatures can be traced back
to the quality of the nxh bases used and the information content preserved in the
dimensionality reduction. The quality of nxh bases can be evaluated by using two
quantitative metrics, i.e., Shannon entropy and the average number of pmers a probe
is likely to hybridize. To compute the entropy of a basis, a random experiment can be
performed (as suggested in [35]). The experiment consists of randomly choosing a
pmer to check for hybridization with any probe. One good choice of random variable
observes the total number of probes in a basis that the random pmer hybridizes with.
If the variable is constant and its value is certain to occur, then there is no uncertainty
and H(X) = 0s, as is the case with the basis 4mP3 for D3. On the other hand, if the
values are about equally likely to occur, the variable has maximum uncertainty and
H(X) ≥ 1 (as is the case for a random selection of elements in a crosshybridizing
set). The entropy of the bases used for solutions and further assessment below is
shown in Table 7.4.

The quality of the information extracted by an nxh basis can be illustrated by the
fact that, surprisingly, genomic signatures actually capture even nongenetic informa-
tion encoded in DNA, for example, about the location and average temperature of
the environment where an organism lived. The genomic signatures of each data point
in the datasets for the [MalC] and [BioTC] problems can be computed following
the algorithm described above. An additional process of encoding malwares into
DNA sequences is required for the [MalC] problem. Since the genomic signatures
are so short, it is not surprising that the solutions obtained using these signatures
can be processed much faster than, say, CNNs networks would. The only time-
consuming step in the entire process is cleansing DNA sequences (i.e., removing
non-DNA characters in DNA sequences files in the dataset for BioTC problem; no
such cleansing is needed for the [MalC] problem). Even for the [BioTC] problem,
the process was completed under an hour and is a one-time event for a particular
data point). Then, the entire process of computing genomic signatures and training
models to solve the problems can be performed in the order of minutes for all
datasets in the assessment next.

Therefore, the critical question is how good these solutions to the chosen
problems [MalC] and BiotC] are. The scores are given in Tables 7.5 and 7.6.
In order to assess them, these models were compared against the state-of-the-
art solutions for these problems, shown below in Table 7.9. For the problem
[BiotC] of biotaxonomic classification, several solution models were proposed by
the authors in [40], namely Naive Bayes, Random Forests, k-Nearest Neighbors,
and DeepBarCoding (based on Deep Networks). The best score was obtained by
DeepBarCoding (F1-Score = 0.9763). The average across all models is 92.8 and
the standard deviation is 0.0475. All solution models with the scores above 92.88%
are thus of acceptable quality, namely Multiple Regression Models and Random
Forests trained using genomic signatures on basis 3mE4b. A similar comparison
for the [MalC] problem is shown together with another dimensionality reduction
technique in Sect. 7.4 next.
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Table 7.5 Performance of machine learning models when trained using genomic signatures to
solve the [BioTC] problem

Nxh basis Method Precision (%) Recall (%) F1-Score (%)

3mE4b k-Means 93.80 95.00 92.80

LDA 88.31

MLR 93.26

SVM 67.05

GNB 84.84

RF 95.89

kNN 91.82

NN 66.90

4mP3 k-Means 91.30 92.20 89.30

8mP10 LDA 43.16

MLR 49.14

SVM 45.44

GNB 41.61

RF 49.49

kNN 44.90

NN 42.79

Table 7.6 Performance of machine learning models when trained using genomic signatures to
solve the [MalC] problem and comparison to the state-of-the-art solutions

Nxh basis Method Precision (%) Recall (%) F1-Score (%)

Kaggle Winner [37] 99.63 99.07 99.35

SNNMAC [38] 99.21 99.18 99.19

MalNet [39] 99.14 97.96 99.55

RF [38] 84.46 82.34 83.38

LR [38] 71.42 67.38 69.34

SVMs [38] 54.84 28.75 37.72

3mE4b RF 99.33 99.05 99.13

kNN 94.42 95.19 94.11

8mP10 RF 73.22 74.79 73.34

kNN 71.08 70.85 69.86

7.4 Reduction by Pmeric Signatures

This section describes another reduction of DNA data based on the barycentric
coordinates of the Euclidean representation of the h-distance centroids of a DNA
space Dm. This reduction captures their hybridization affinity in terms of their h-
distances to some special pmers that have the capability of representing arbitrarily
long DNA sequences.
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Table 7.7 Centroids for the DNA spaces Dm of all pmers of length m (as given by their first
lexicographical m-mers, e.g., ac stands for pmer ac/gt), as described in [26]

m h-centroids

3 aca, aga, cac, ctc

4 acca, agga, caac, cttc

5 accat, aggat, caacg, cgaag, gaagc, gcaac, tacca, tagga

6 acaagc, agaacg, atccac, atggag, caccta, cgaaca, gaggta,gcaaga

7 actccat, agtggat, cagaacg, cgaacag, gacaagc, gcaagac,tacctca, taggtga

8 actatccg, agtatggc, attcgctg, attgcgtc, cggtatga, ctgcgtta, gcctatca, gtcgctta

Example 7.5 The problems of biotaxonomic classification [BioTC] and malware
classification [MalC] (along with the corresponding datasets described in
Sect. 11.5) can again be used to demonstrate the effectiveness of this dimensionality
reduction technique. ��

The conceptual framework necessary to understand this technique is based on the
concept of centroid in a DNA space defined in Sect. 7.2. These centroids are shown
in Table 7.7 for small m ≤ 8. It is motivated by the question, what is the center of the
space Dm? Since DNA spaces look spherical, the question makes some sense, e.g.,
what point is closest to all other pmers on the average (within the smallest radius)?

These centroids serve as an alternative way to transform DNA sequences into
lower dimensional feature vectors, the so-called pmeric signatures. The key idea is
that a point in a metric space may be determined by its distances from certain key
points, as is the case of Euclidean spaces in Cartesian coordinates (signed distances
from two fixed lines, the x- and y-axis) or polar coordinates (a distance from the
origin and a polar angle with the x-axis). There is no obvious concept of a line or
an angle in Dm, but the centroids act as natural origins. (Unlike on Earth where all
objects are attracted toward a unique center of mass due to gravitational forces, there
is no unique h-centroid in DNA spaces due to the symmetries (isometries) of Dm).
Furthermore, more than one pmer might share the same coordinates, i.e., pmeric
coordinates do not necessarily determine a point uniquely. However, the number of
appearances of these pmers in genomic sequences of different strings is likely to
be different if masses are placed at a pmer of size equal to the ratio of the total
number of times the pmer occurs in x to the total number of m-pmer shreds in x.
Thus, distinguishing several organisms/abiotic datapoints (e.g., images) based on
these vectors is still possible. These vectors will be used as the so-called pmeric
signatures for the respective strings, defined precisely as follows:

Let k be the number of centroids in Dm and x be a DNA string of size n > 1. The pmeric
signature of x is the mD vector obtained by:

• Shredding x into nonoverlapping fragments of size m (ignoring any shorter leftover
fragments, if any)
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• Computing yij = wj |zixj |, for each centroid zi ∈ Dm and for each unique shred xj ,
where wj is the fraction of the number of occurrences of xj to the total number of shreds
in x

• Taking for ith component of the pmeric signature of x the weighted average (given by
the sum of the yij s) across all shreds xj

A DNA sequence from a living organism can be sequenced to produce the
corresponding DNA string. A Python script can be written to shred DNA strings
into pmers of uniform length m. In particular, each pmer in Dm can be viewed as
a point with certain weights given by its h-distances from the h-centroids in Dm.
Although the pmeric signatures hardly determine the pmer uniquely because the
pmer is too short, longer sequences provide weights to distinguish them.

Example 7.6 The pmeric signatures of malwares can be computed using their DNA
encodings (as described in Sect. 7.1). These pmeric signatures can then be used as
feature vectors for training several machine learning models for a given problem.
The performance scores for [MalC] and [BioTC] are shown in Table 7.8. ��

Again, an important question arises about the quality of these models. To assess
it, the performance scores as reported below in Table 7.8 can be compared to
some state-of-the-art solution methods. From Tables 7.6 and 7.8, it is clear that
the performance scores of the dimensionality reduction method based on genomic
signatures using nxh basis 3mE4b are nearly equal to the ones of winner of the
challenge (as reported on kaggle.com). All performance scores (except for the DR
methods based on genomic signature using 8mP10) are greater than the difference
between the corresponding performance score of the winner and the standard
deviation of the scores from the literature (i.e., the threshold for precision = 83.93,
recall = 76.42, and F1-score = 79.27). Therefore, these models are of better
than acceptable quality. In fact, given that only 4D vectors are being used with
3mE4b after the dimensionality reduction, it is very surprising that these solutions
to malware classification are very competitive with the performance of the winner
of the Microsoft challenge (which involved over 300 selected features out of 1804)
(Table 7.9).

Table 7.8 Performance of pmeric signature features on machine learning models trained for the
malware classification problem [MalC]

Size m Method Precision (%) Recall (%) F1-Score (%)

8pmc RF 95.83 95.75 96.62

kNN 95.41 95.24 96.38
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Table 7.9 The performance scores of the state-of-the-art solutions for Biotaxonomical Classifi-
cation and Malware Classification

Nxh basis Method Precision (%) Recall (%) F1-Score (%)

Related work for [MalC]
Kaggle Winner [37] 99.63 99.07 99.35

SNNMAC [38] 99.21 99.18 99.19

MalNet [39] 99.14 97.96 98.55

In [41] 92.13 90.64 91.38

Machine learning models [38]

Random Forest 84.46 82.34 83.38

Xgboost 85.13 72.02 78.02

Naive Bayes 70.21 70.06 70.13

Logistic Regression 71.42 67.38 69.34

Support Vector Machine 54.84 28.75 37.72

Related work for [BioTC] [40]

SVM 0.9688

Machine learning models
Naive Bayes − − 0.8558

RF − − 0.9690

kNN − − 0.9036

NN − − 0.9345

DeepBarCoding − − 0.9763
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Chapter 8
Statistical Learning Approaches

Ching-Chi Yang and Lih-Yuan Deng

Abstract Instead of retaining certain properties when selecting or extracting
features, other methods aim to remove irrelevant and/or redundant features in the
data using primarily statistical criteria. Features are now selected or extracted that
have the highest impact on the prediction of the response/target variable based on
various statistical solution methods. This chapter describes methods using linear
regression and regularization that afford solutions to dimensionality reduction and
solutions to problems that are explainable to humans.

In Chap. 6, information-theoretic methods were used to reduce dimensionality in a
dataset aiming to maximize information in the selected features by pre-processing
the dataset. This chapter uses a similar idea but using various statistical methods
to solve data science problems (such as regression and statistical learning) for
dimensionality reduction.

8.1 Reduction by Multiple Regression

One can infer relationships between features by building a linear regression model
with a straight forward interpretation. If a feature Xi in the dataset X can be inferred
from other features, then Xi is probably redundant and can be discarded if the other
features are included, just as it was done with methods based on entropy in Chap. 6.

Example 8.1 (Multiple Linear Regression for the Body Fat Dataset) Table 8.1
shows the coefficients of the input variables under multiple linear regression for the
body fat. One can then interpret the coefficients to make inferences. For example,
the coefficient 0.06 of the feature Age implies that a person one year older can be
expected to have 0.06 units more of body fat on average, assuming the values of the
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Table 8.1 Coefficients for a
multiple linear regression for
the target feature in the Body
Fat dataset with the remaining
features as predictors

Variable Coefficient Variable Coefficient

(Intercept) −18.07 Hip −0.21

Age 0.06 Thigh 0.23

Weight −0.09 Knee 0.03

Height −0.06 Ankle 0.17

BMI 0.07 Biceps 0.18

Neck −0.48 Forearm 0.45

Chest −0.03 Wrist −1.62

Abdomen 0.95

Fig. 8.1 The predicted values (x-axis) for the body fat dataset are fairly consistent (near the
diagonal) with the observed values (y-axis)

remaining variables remain fixed. Figure 8.1 shows the predicted values with the
observed values for the dataset. Since the scatter plot clusters about the diagonal,
the fitted linear model performs reasonably well. ��

In general, the dataset contains n observations (x1, y1), . . . , (xn, yn), where xi =
(xi1, . . . , xip) is a covariate vector (predictors/independent variables) for the i th

observation and yi is the corresponding response (as described in Chap. 1.) Without
loss of generality, one can assume that the response variable is a scalar type and is
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not included in X. The dataset can then be represented as a matrix X of size n× p

X =

⎡
⎢⎢⎢⎢⎢⎣

x11 ... x1p

x21 ... x2p

.

.

xn1 ... xnp

⎤
⎥⎥⎥⎥⎥⎦
= [X1, X2, · · · , Xp], Y =

⎡
⎢⎢⎢⎢⎢⎣

y1

y2

.

.

yn

⎤
⎥⎥⎥⎥⎥⎦

(8.1)

where the covariate matrix can be viewed as n row vectors (x1, x2, · · · , xn)
of dimension p (the data points) or p column vectors of dimension n

(X1, X2, · · · , Xp) (the features) and Y is the response column vector of dimension
n, the transpose (y1, y2, . . . , yn)

′. The matrix form of the multiple linear model is

Y = Xβ + ε, (8.2)

where ε ∼ N(0, σ 2I) and I denotes the identity matrix. This matrix form can also
be written as a linear model for the i th observation as

yi =
p∑

j=0

βjxij + εi . (8.3)

for i = 1, 2, · · · , n, where the εis are random error variables with i.i.d. N(0, σ 2).
The unknown parameter β can estimated using the Ordinary Least Squares (OLS)

method, i.e., so that the sum of squares of residuals is minimized using the loss
function

L(β) = ‖(Y− Xβ)‖2
2
= (Y− Xβ)′(Y− Xβ) .

The best solution is the least square estimator (LSE) for β given by

β̂ = (X′X)−1X′Y.

In many situations where many features can be used to predict a response variable
(e.g. with body fat), many of the features may have no effect on the response.
Including these variables in a subsequent model causes the analysis to be overly
complex without a return in useful information. One simple (but not very useful)
way to reduce the number of input variables is to perform a simple t-test on all
p variables individually. Other more effective procedures to reduce the number of
effective input variables are described next.
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8.2 Reduction by Ridge Regression

Before LASSO regression (described in Sect. 8.3) became popular, the Ridge
Regression method was one of the most popular methods. It is especially useful
when the number of input variables (p) is large and the whole data matrix may is of
nonfull rank, hence exhibits high multicollinearity or correlations among features.
Its main goal is to lower the size of the coefficients to avoid over-fitting, while
keeping them away from 0. Consequently, the final model is less interpretable
because it still has a large number of variables.

When there are more features than data points (p > n), the OLS procedure for
Multiple Linear Regression (MLR) will fail because the matrix (X′X) is singular
(no inverse exists.) Even if nonsingular, if p < n and the independent variables
are highly correlated, the matrix will be too close to singular to make MLR
haphazardous. As an alternative solution to the issue of least square estimators when
the data exhibits some highly correlated input variables or predictors, Hoerl and
Kennard [1] offered Ridge Regression. The most common form uses a �2-penalty of
the form

L(β) = ‖(Y− Xβ)‖2
2 + λ‖β‖2

2 .

The best solution is the ridge estimator of β given by

β̂ = (X′X+ λI)−1X′Y.

Ridge regression uses the �2-norm to penalize a larger number of input variables.
LASSO regression is another type of penalized regression that uses the �1-norm.
The main advantage of LASSO Regression is that it can provide a more precise
estimate for the ridge parameters, as its variance and mean square estimator are
often smaller than the least square estimators of Sect. 8.1. Compared with LASSO,
ridge regression usually does not provide a significant dimensionality reduction
by reducing the variable’s coefficient to 0s. By conservatively suggesting a bigger
set than LASSO regression does, researchers can be more confident to remove the
unselected variables. Because of the trade-off between LASSO and Ridge, people
usually consider a mixture penalty of LASSO and Ridge penalties.

To summarize, LASSO works better when one has more features and needs to
make a simpler and more interpretable model. However, if the features in the data
have high correlation, LASSO may not work well and Ridge Regression could be
a better choice. It is also possible to combine the two in the Elastic Net method
described below in Sect. 8.5.
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8.3 Reduction by Lasso Regression

LASSO regression is another type of penalized regression. It uses the �1-norm
(instead of the �2-norm in Ridge regression) to penalize using a larger number of
predictor variables .

Example 8.2 (LASSO Regression with the Body Fat Dataset) Figure 8.2 shows the
coefficients of the predictor variables for various values of the penalty (λ). The top of
the figure shows the number of variables recommended for different values of λ. If
the penalty term is larger, fewer variables have nonzero coefficients. By comparison
with the example in Sect. 8.3, Ridge regression still recommends the same number
of 14 variables for a different penalty λ. ��

Depending on the loss function f (defined in Chap. 2), the �1 regularization can
be generally written as

L(β) = ‖(Y− Xβ)‖2
2
+ λ

p∑
i=1

|βi |

where λ is a regularization weight. For a given λ, minimizing the penalized loss
function reduces some variables’ coefficients to 0. When λ becomes sufficiently
large, LASSO gives a null model because all coefficient estimates become 0.

Advantages of using a LASSO reduction include

1. feature selection;
2. it is much easier to interpret and produces simpler models;

Fig. 8.2 Coefficients of the predictor variables for various values of the penalty λ obtained using
(a) multiple LASSO regression; and (b) multiple Ridge regression
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3. performs better in a setting where a relatively small number of predictors have
large coefficients;

4. the remaining predictors have coefficients that are very small or equal 0;
5. LASSO tends to outperform Ridge regression in terms of bias, variance, and

MSE of the solutions.

In practice, a LASSO penalty provides many advantages and can be used in many
other loss functions. However, there are also disadvantages of using LASSO in a
number of research areas, including

1. if n < p (high dimensional case), LASSO can select at most n features because
of the nature of convex optimization LASSO relies on;

2. for correlated features (as is the case in most of the real word datasets),
LASSO will select only one feature from a group of correlated features, usually
arbitrarily. One might consider “group selection” instead;

3. even in the n > p case, for correlated features, Ridge regression exhibits better
predictive power than LASSO, although Ridge regression will not help feature
selection and the model is not very interpretable.

8.4 Selection Versus Shrinkage

In the previous Sects. 8.2 and 8.3, the regularization/penalization techniques
(LASSO and Ridge) are used in linear regression models. The techniques work
generally in two different ways, by selecting variables and by shrinkage of the
coefficients in a regression model. Variable selection means choosing a subset from
the feature set as predictors to solve the problem. On the other hand, shrinkage
means reducing the estimated coefficients in the regression, possibly to 0 in some
cases. The corresponding variable(s) can be left out. Thus, shrinkage can also be
regarded as a kind of dimensionality reduction method.

Example 8.3 As discussed in Sect. 8.3, LASSO uses a �1-norm penalty in selecting
variables while Ridge uses a �2-norm penalty and results in coefficients shrinkage.
Figure 8.2 (left) shows the variables recommended for different values of λ values.
If the penalty term is larger, fewer variables have nonzero coefficients. LASSO will
suggest the number of key variables from 12 to 3. In contrast, Ridge regression
still recommends the same number of 14 variables for a different penalty λ. The
strengths of the techniques are summarized in Table 8.2. ��

In general, the �1-penalty and �2-penalty techniques can be utilized with different
loss functions (defined in Chap. 2.) The Ridge penalty will be of the form

L(β) = f (Y,X, β)+ λ

p∑
i=1

β2
i
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Table 8.2 Summary of various variable selection methods via regression

Methods Description Strength

Linear regression Obtaining a linear combination of input variables
such that the values are close to the observed
response via (X′X)−1X′Y

Predicts outcomes

Ridge Utilizes �2-norm penalty to estimate the
coefficients while direct inverse of X′X is not
available

Estimates coefficients

LASSO Utilizes �1-norm penalty to reduce some
coefficients to exactly 0

Selects key variables

and the LASSO penalty will be of the form

L(β) = f (Y,X, β)+ λ

p∑
i=1

|βi |

where f is the loss function based on the data, and βi are its parameters. By
providing such a penalty, the statistical learning model will use a small number
of input variables to learn the underlying relationship. Generally speaking, LASSO
will help in selecting variables while Ridge will exhibit better predictive power.

Two main advantages of using a selection and shrinkage method are

• Prediction accuracy
Reducing model complexity results in reducing the variance at the cost of
introducing more bias. If the sweet spot (minimal) of the total error (variance
and the square of bias) can be obtained, one can improve the model’s prediction;

• Model interpretability
With too many predictors, it is hard to grasp all the relations between the
variables. By sacrificing some accuracy, a simpler model can help in getting the
big picture. (Interpretability is further discussed in Sect. 10.4.)

Besides penalization, many other techniques can help in selecting variables and
reducing dimension. Some typical examples are listed next.

Example 8.4 (Correlations in the Body Fat Dataset) One naive method of selecting
contributing input variables is studying the correlation between the response and the
input variables and then selecting those input variables whose correlation is far from
zero. Table 8.3 shows the correlations between the BodyFat and other variables.
If one uses 0.7 as a hard threshold, three variables will be selected: BMI, Chest,
and Abdomen. By contrast, linear regression via LASSO leads to Age, Height, and
Abdomen. ��

Example 8.5 (Variance Inflation Factor (VIF) in the BodyFat Dataset) Three vari-
ables can be selected: BMI, Chest, and Abdomen as shown in Example 8.4.
However, the selected variables are also highly correlated, as can be seen in
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Table 8.3 Correlations
between the response and the
input variables in the BodyFat
dataset

Variable Correlation Variable Correlation

Age 0.29 Hip 0.63

Weight 0.61 Thigh 0.56

Height −0.09 Knee 0.51

BMI 0.73 Ankle 0.27

Neck 0.49 Biceps 0.49

Chest 0.70 Forearm 0.36

Abdomen 0.81 Wrist 0.35

Table 8.4 Correlations
between BMI, chest, and
abdomen in the bodyFat
dataset

BMI Chest Abdomen

BMI 1 0.91 0.92

Chest 0.91 1 0.92

Abdomen 0.92 0.92 1

Table 8.5 VIF index of the
input variables in the BodyFat
dataset

Variable VIF Variable VIF

Age 2.25 Hip 15.16

Weight 33.79 Thigh 7.96

Height 2.26 Knee 4.83

BMI 16.16 Ankle 1.95

Neck 4.43 Biceps 3.67

Chest 10.68 Forearm 2.19

Abdomen 13.35 Wrist 3.38

Table 8.4, the so-called multicollinearity. One might not want to include all three
variables in a model because just one variable might represent the other two.

The variance inflation factor (VIF) quantifies the severity of multicollinearity
under the scenario of linear regression. It provides an index that measures how much
the predictor variable can be replaced by the other variables in the model. The key
idea is to regress the predictor variable on other input variables. If all 14 predictor
variables in the Body fat data are considered, the VIF index is shown in Table 8.5.
A rule of thumb for VIF is to remove the variables with index higher than 10. The
variables, Weight, BMI, Chest, Abdomen, and Hip should then be removed. ��

8.5 Further Refinements

Elastic Net is a regularization technique for variable selection and a hybrid of
LASSO and Ridge regression. The extension adds a penalty function that can be
estimated as a weighted average in the �1 and �2 norms as

L(β) = ‖(Y− Xβ)‖2
2 + λ1

p∑
i=1

β2
i + λ2

p∑
i=1

|βi |
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where λ1 and λ2 are constant weights to be estimated. The equivalent expression

L(β) = 1

n
‖(Y− Xβ)‖2

2 + λ((1− α)

p∑
i=1

β2
i /2+ α

p∑
i=1

|βi |)

is more common. Clearly, LASSO regression (α = 1) and Ridge regression (α = 0)
are extreme particular cases.

The main advantage of using an Elastic Net solution is that it simultaneously
does automatic variable selection and continuous shrinkage. It can select groups of
correlated variables and it often outperforms both LASSO and Ridge regression.
The Elastic Net solution has been successfully applied to various studies of
microarray datasets of high dimensionality (many thousands of predictor genes,
large p) and often a small sample size (small n.) Typically, these genes are likely
to share the same biological “pathway”, which in turn causes them to exhibit
correlations. An ideal variable (gene) selection method should a) eliminate the
trivial genes, and b) automatically include whole groups into the model once
one gene among them is selected. By comparison, LASSO regression lacks the
ability to reveal the grouping information because if there are groups of highly
correlated variables, LASSO tends to arbitrarily select only one from each group.
Consequently, these selected models are difficult to interpret because covariates that
are strongly associated with the outcome are not included in the predictive model.
(Further details can be found in the literature, for example, [2–4].)
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Chapter 9
Machine Learning Approaches

Deepak Venugopal and Max Garzon

Abstract Machine learning algorithms can train a model to extract some hidden
patterns in a dataset to solve a problem or elucidate dependencies among the
predictors and thus select or extract features that enable solutions to complex
questions from large datasets. This chapter reviews various machine learning
methods for dimensionality reduction, including autoencoders, neural networks
themselves, and other methods.

9.1 Autoassociative Feature Encoders

Autoencoders are neural networks (defined in Sect. 2.2) that learn to decompose the
identity function I (x) = x as a composite of an encoding function f and its inverse
f−1 that decodes its input back to reconstruct the original data x = f−1(f (x)).
Autoencoders perform dimensionality reduction if the encoding representation is
constrained to be of lower dimension than the dimensionality of the inputs. In
general, autoencoders work in unsupervised machine learning mode (described in
Sect. 2.3) since no labels are expected in the data. In other words, they employ
self-supervision since their goal is to reconstruct the given input. This section
describes the general structure of an autoencoder and illustrates various types using
the MNIST digits dataset (described in Sects. 5.1 and 11.5) as a running example to
reveal their operation and assess their performance.

Example 9.1 For the classification problem of [CharRC] and the MNIST dataset
consisting of images of handwritten digits (discussed in Sects. 2.2 and 11.5), a
solution classifier must place each digit image into one of 10 classes (one of the
digits 0, . . . , 9). An autoencoder solution might rather proceed as illustrated in
Fig. 9.1. It must learn to extract low-level primitives (e.g., curves, lines, shapes)
in any variant of a specific input image that are informative enough to be able to
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Fig. 9.1 An autoencoder for the MNIST dataset might produce an encoding (not shown) of the
input image for a 6 (left) and the reconstruction of the image from its encoding (right)

Fig. 9.2 Workflow of a typical autoencoder: (a) encoder E that is constrained to reduce into a
(b) lower dimensional representation of the input, and (c) decoder D that reconstructs the original
input

reconstruct it from them, as opposed to just decide which digit it is. For instance,
a classifier could distinguish between an image of an 8 from the image 7 simply
using the pixels in the image to check if the lines are straight or curved. On the other
hand, to an autoencoder that needs to learn to retain fewer key additional features
to reconstruct both handwritten 7s and 8s, how a digit is written (e.g., whether it
has intersecting curves or there are two distinct convex shapes that are joined at a
point, or the like) is useful. Thus, a reconstruction ability forces the model to learn
a representation that focuses on deeper features of the same inputs, but with lower
degrees of freedom. In other words, an autoencoder exhibits deeper richer semantic
meaning (one might even say knowledge). ��

Figure 9.2 shows the three main components in the typical workflow for an
autoencoder algorithm:

• The encoder E learns an encoding as a lower dimensional representation from the
inputs; the corresponding function g is parameterized by the weights of a neural
network, say φ, i.e.,

z = gφ(x) .
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• Likewise, the decoder D takes as input the lower dimensional vectors z generated
by the encoder E and learns to reconstruct the original data from the lower
dimensional representations z. The corresponding function f learned by the
decoder is parameterized by its own weights θ , i.e.,

x′ = fθ (z) = fθ (gφ(x)),

The loss function in the autoencoder is measured by the difference between
the input x and its reconstruction fθ (gφ(x)). By design, if the autoencoder can
reproduce the exact same input every time, i.e., if fθ (gφ(x)) = x, then it will not be
particularly useful for dimensionality reduction.

Several approaches have been developed that constrain the autoencoder to learn
an encoding in a reduced dimension, including

• Undercomplete Autoencoders have a smaller number of hidden units to encode
the input.

• Sparse Autoencoders add a sparsity penalty to perform dimensionality reduction.
• Variational Autoencoders perform dimensionality reduction by representing the

input with latent variables, each being assumed to represent a normal distribution.

9.1.1 Undercomplete Autoencoders

Example 9.2 Figure 9.3 illustrates an undercomplete autoencoder. In this architec-
ture, the input and output have the same number of units, but the number of units in

Fig. 9.3 Schematic representation of an undercomplete autoencoder (a) an input and (b) its
reconstructed output
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the hidden layer is much smaller and forces it to combine these features to generate
meta-features that can be decoded back to reproduce (a close approximation of) the
same input. ��

The most common loss function in use is the mean squared error

L(x, fθ (gφ(x)) = 1

2n

n∑
i=1

||xi − fθ (gφ(xi )||2,

where xi is the ith training instance and ‖xi − fθ (gφ(xi )‖2 is the squared error
between the input and reconstructed output. Undercomplete encoders have a direct
relationship to PCA (described in Sect. 4.1). If the encoder function fθ and the
decoder function gφ are constrained to be linear functions and the loss function
is the summed mean squared error loss, then it can be shown that autoencoders are
equivalent to PCA, i.e., the optimal dimensions in g for the autoencoder correspond
to the principal components learned by PCA [7]. In general, undercomplete
autoencoders can learn nonlinear manifolds, i.e., they are capable of representing
data with nonlinear surfaces since fθ and gφ are typically nonlinear. Compared to
approaches such as PCA, this increased flexibility may also result in the autoencoder
not learning the underlying input features but simply copying input to output. For
example, if the encoder has too many layers, the preceding layers increase the
capacity of the autoencoder making it more likely to memorize inputs rather than
extract latent features for effective dimensionality reduction, even if the output
layer’s dimension is small.

9.1.2 Sparse Autoencoders

Example 9.3 Figure 9.4 shows the architecture for a sparse autoencoder. In this
architecture, the input, output, and hidden layers have the same number of units.
Learning constrains a percentage of nodes in the hidden layer so that these units are
not active, i.e., they produce an output of 0. This forces the autoencoder to learn a
reduced dimensional representation for the input. ��

Undercomplete autoencoders perform dimensionality reduction by reducing the
number of units in the layer corresponding to the encoder’s output which forces the
neural network to represent the input with a smaller dimension vector. On the other
hand, sparse autoencoders reduce the number of active units in the encoder (a unit
in a neural network is active when its output is close to 1, as described in Sect. 2.2).
If only a small number of units are allowed to be active to encode given inputs, then
the network is forced to only encode features that are important to reconstruct the
inputs and leave out irrelevant features. A sparsity penalty constrains the activated
units for an input, i.e., the loss function in the autoencoder includes a penalty term
on the encoder output given by
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Fig. 9.4 Schematic representation of a sparse autoencoder for (a) an input and (b) its reconstructed
output. The nonfilled nodes represent the units that are not activated (i.e., their output is 0)

L(x, fθ (gφ(x))+Σ(h) ,

where Σ(h) is a regularization penalty imposed on the representation generated by
the encoder. Similar to Lasso regularization (described in Sect. 8.3), it can be shown
that the penalty term is a �1-penalty over the encoder output.

Σ(h) = λ

k∑
i=1

|hi | ,

where λ is a hyper-parameter that controls the number of activations and |hi | is the
absolute value of the output from the ith unit in the encoder. Thus, if the encoder
is able to encode the input with just a few activated units, the penalty term is
minimized. A slightly modified version of backpropagation is used to learn weights
through gradient descent for this modified loss function. (More details can be found
in [1].)

9.1.3 Variational Autoencoders

One of the most popular types of autoencoders is the variational autoencoder
(VAE) [3]. VAEs are a kind of generative model in machine learning.

Example 9.4 Figure 9.5 shows an example of a variational autoencoder (VAE).
The VAE encoder converts the inputs into latent vectors (comparable to the latent
features arising in nonnegative matrix factorization (NMF) in Sect. 4.3). Each latent
vector is a kind of code that represents the input. To do this conversion, the encoder
learns the parameters (mean and standard deviation) for a normal distribution over
the latent vectors. The decoder then samples a latent vector from this normal
distribution and then reconstructs the output. ��
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Fig. 9.5 Schematic representation of a variational autoencoder for (a) an input and (b) its
reconstructed output

In general, VAEs aim to model the data distribution. For instance, if PX is a
probabilistic model of the data distribution over images in the MINST dataset (each
data point x is a matrix of pixels), then the model should assign high probabilities
when x is an arrangement of pixels that appears to be a natural image. Thus, a
VAE can generate as many samples as needed from the distribution PX , where the
generated samples are similar (but not identical) to instances observed in the data.
In the case of graphical data, they could be images that look like real images but
are in fact synthetic. This makes VAEs very powerful since they essentially provide
unlimited amounts to data. This is particularly useful in applications where it may
be hard to obtain or display real data. For instance, to preserve privacy, fake images
of people can be generated by VAEs, of student data that do not correspond to real
students, or of health records that do not belong to any real person.

VAEs are derived based on a well-known technique in probabilistic models
called variational inference. In variational inference, the idea is to approximate
a data distribution that is unknown by a probability distribution from a known
distribution family (e.g., Gaussian). The distribution from the known family is then
estimated from the data, typically using optimization methods. VAEs apply this idea
to autoencoders. In this sense, VAEs are quite different from other autoencoders
since the ultimate goal in VAEs is not really dimensionality reduction but rather
data generation. Dimensionality reduction is a side bonus of learning a generative
model for the data.

For the MNIST dataset, a generative model for decimal digits 0–9 can be
developed as follows. To generate a certain image of x, the model sets pixel
values in the image such that the image resembles the shape of the digit. The
model first samples x to get a set z, which will be the latent variable, and then
conditions on z-values for pixels to generate the image. For different z’s, the sample
generates different handwritten digits. The latent variable may need to capture richer
information to be able to generate all possible variants of a digit. For example,
apart from the digit to generate, the latent information should include the angle
at which the digit is written, the thickness of the writing, curvature, and so forth.
Capturing this information is not straightforward, unless the distribution over the
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latent variables itself is complex. Instead, VAEs assume a simple distribution to
generate z and then pass this through a complex function over several layers in the
autoencoder to map the latent variables to an output. In particular, VAEs assume
that each dimension in the latent representation is independent of other dimensions
and is normally distributed, so that it can be easily sampled. The latent variable
represents the dimensionality-reduced instances for the data distribution.

If z was randomly sampled from a normal distribution and then an image was
generated from PX(x | z), this probability may be close to 0 in most cases; in other
words, the latent representation does not correspond to an actual meaningful digit
image. The main idea in VAEs is to use a variational distribution Q from which the
latent variables are sampled. That is, Q is a distribution over the latent variables,
and sampling a value from this distribution results in an assignment to the latent
variables that corresponds to a valid image of a digit. In other words, given an input
image x, Q should generate a z that produced x. As in standard variational inference,
the objective is to minimize the distance (measured using a standard measure such
as the Kullback–Leibler or KL divergence, as described in Sect. 5.2) between the
variational distribution and the true distribution. The KL divergence can be derived
as

D(Q(z)||P(z|X)) = Ez∼Q[logQ(z)− logP (X|z)− logP (z)] + logP (X) ,

where z ∼ Q indicates that the expected value is computed using samples from the
distribution Q. This formula can also be written as

logP (X)−D(Q(z)||P(z|X)) = Ez∼Q[logP (X|z)−D(Q(z|X)||P(z)].

The left-hand side represents the data distribution PX and a term that becomes
smaller if Q can generate the latent variables z that can be used to generate a
valid data instance (say, an image). The right-hand side has two parts, Q and P .
Q encodes a data point x to generate zs and P takes as input z to generate x. This
can be mapped into the autoencoder framework where the encoder generates values
of latent features for the decoder to be able to generate a valid output. An analogous
interpretation is that the encoder generates a code of reduced dimensional for the
input and the decoder can generate the output given this code.

To learn VAEs using BackProp (defined in Sect. 2.2), a stochastic layer is
required. Specifically, given an input, the encoder samples each latent variable
using a normal distribution. However, it turns out that technically doing this is
infeasible since BackProp is based on gradient descent because it is impossible to
take derivatives of stochastic variables. Therefore, VAEs introduced an additional
idea called the reparameterization trick. The main idea here is to make the
sample for the latent variables independent of the normal distribution parameters.
Specifically, if a unit corresponding to the latent variable has to sample from the
normal distribution N(μ(X),Σ(X)), it first generates a sample ε from N(0, I ), i.e.,
a normal distribution with mean 0 and covariance matrix the identity matrix. The
actual value of the latent variable z is then deterministically computed using ε along
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with the parameters of the original normal distribution μ,Σ as

z = μ(X)+Σ1/2(X) ∗ ε.

The reparameterization trick allows the gradient computations to be performed over
the layer encoding the latent variables. BackProp can therefore be applied indeed to
learn the parameters of the VAE network.

Though VAEs provide a sound probabilistic framework for autoencoders, there
are some practical concerns. One of the well-known difficulties with using VAEs is
that the latent codes generated tend to be uninformative. Specifically, it is hard to
understand what exactly each of the latent variables does. For the handwritten digits
in the MNIST dataset for example, ideally latent variables should encode specific
peculiarities of the writing, but this is hard to enforce in a VAE. Devising methods
to learn disentangled representations from VAEs that explain the latent variables
remains an active area of research [10].

9.1.4 Dimensionality Reduction in MNIST Images

This subsection presents some experimental results on dimensionality reduction
using autoencoders on the MNIST dataset (described in detail in Sect. 11.5).

The autoencoder architecture for MNIST is as follows. Since the data consists of
images, convolutional neural nets [9] are used in the encoder and decoder since they
are the de facto neural networks for image processing. Each convolutional layer has
kernels to perform convolutions (i.e., dot products) with the input to extract features.
The standard encoder architecture consists of three convolutional layers, with each
convolutional layer followed by a pooling layer that reduces the size of the input by
downsampling it. Similarly, the decoder consists of three convolutional layers and
each convolutional layer is followed by an upsampling layer that increases the size
of the input.

The output from the encoder layers is a 128D vector, a substantial reduction
of the 784 dimensions in the original image. Table 9.1 shows the decreasing loss,

Table 9.1 Performance of autoencoders for dimensionality reduction of the MNIST dataset for
various reduced dimensions in the output layer (columns 2–4). The reconstruction loss (a measure
of similarity between the reconstructed images and the original images) decreases toward 0 as the
number of epochs increases

Epochs Loss with 128D Loss with 64D Loss with 32D

5 0.110 0.141 0.177

10 0.100 0.131 0.161

15 0.099 0.126 0.153

20 0.096 0.122 0.150

25 0.094 0.118 0.149
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Fig. 9.6 The architecture of a convolutional neural network (CNN) consist of three layers:
convolutional layers (left) that look for spatiotemporal correlations in the input features and
produce a decomposition of the input into a flattened feature vector (middle), and deconvolutional
layers (right) that reconstruct the input from the flattened feature vector into a high-level
representation

Table 9.2 Reconstruction
and Kullback–Leibler (KL)
divergence loss for VAEs on
the MNIST dataset

Epochs Reconstruction loss KL loss

1 210 3.30

10 149 6.15

20 145 6.53

30 144 6.40

40 142 6.58

50 142 6.60

i.e., a measure of the difference between the original images in the dataset and
the corresponding reconstructed images. The loss value decreases toward 0 as the
number of epochs (iterations through the dataset) is increased. Furthermore, the
dimensionality of the encoder output also affects the loss.

The VAE architecture for MNIST digit generation (Fig. 9.6) consists of 2
convolutional layers and then a fully connected layer of 16 units, i.e., each output
of the convolutional layer is connected to all 16 units in the fully connected layer.
The fully connected layer is connected to the sampling layer for the latent variables.
The decoder takes as input the sampled code and uses one fully connected followed
by two convolutional layers to reconstruct the image. The reconstruction and the
KL losses are shown in Table 9.2. The reconstruction loss measures how well the
input image can be reconstructed from the encoded image, whereas the KL loss
measured the difference between the prior probability on the latent space Px(z) and
Q(z | |x), i.e., the distribution that encodes probabilities in the latent space given that
the latent representation does correspond to a digit image. The KL loss reflects the
spreading of the latent representations of the digit images in the latent space. Thus,
the decoder can generate an image for a given random point in this latent space.
This gives the VAE the ability to generate new digit images by randomly sampling a
point from the latent space. The reconstruction loss ensures that points that are close
to each other in the latent space actually correspond to similar images, and therefore
reconstructing them is easy for the decoder. The combination of the two losses
means that the latent space represents clusters corresponding to different digits and
that there is a smooth interpolation between these clusters. Table 9.2 shows the
reconstruction and the KL loss for different numbers of epochs. As clusters begin
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to form in the latent space corresponding to the different digits, the reconstruction
loss becomes smaller and the KL loss increases since the digit representations are
not spread randomly across the whole space.

Since VAEs represent the reduced dimensions through the mean and variance
parameters in a normal distribution, it is possible to visualize the latent space learned
by the VAE for the data points, as illustrated in Fig. 9.7. The latent space for 50
epochs shows that digit images corresponding to different digits are in different
clusters. Furthermore, there is a smooth interpolation across clusters. For example,
the representations for the digit 8 are close to those for 9 since the shape of 8 and
9 is such that an 8 can be obtained from a 9 by adding a single arc. This type of
interpolation is extremely useful since a new sample from the latent space generates
a new image that was never present in the training data. This property makes VAEs
a really powerful generative model.

Fig. 9.7 Ten clusters distinguishable in the latent space generated by the VAE for MNIST
handwritten digits show that codes generated for similar digits are also similar in the latent space,
from which VAE reconstructs the inputs
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9.2 Neural Feature Selection

In this section, neural networks are shown to facilitate DR in a manner akin to
DR using Shannon entropy discussed in Chap. 6. The key idea is that a feature
Xi is neurally dependent on a set of features F if its values can be predicted by
a feedforward neural net using the remaining features of a data point as inputs.
Variations of this idea are explored in detail using an application to develop a
neurocontrol for emotional displays in avatars, specifically for AutoTutor (https://
en.wikipedia.org/wiki/AutoTutor), following up on [6].

Anthropomorphic representations of software agents (avatars) can be used (e.g.,
instead of static pictures) in order to enhance the quality of communication and
remote interaction among humans or even between computer and human users.
Notable examples are AutoTutor, a software agent capable of tutoring a human
user in a restricted domain of expertise, such as computer literacy or elementary
physics, at the level of an untrained human tutor; Grace (www.cmu.edu/cmnews/
020906/020906_grace.html), a robot that registered and delivered a speech at the
2002 AAAI conference on Artificial Intelligence; and a videophone model for
videoconferencing on low bandwidth channels [13].

Example 9.5 AutoTutor is an embodied conversational agent consisting of a dialog
module that handles the computational intelligence to carry on a conversation
with a human student and an interface module embodied in a talking head to
convey nonverbal feedback [5, 13]. The simplest method to design such an interface
consists of designing an ontology of prototypical facial expressions or animations
that presumably reflect the desired type of cartoon-like responses by the avatar to
answers in natural language given by a student to questions posed by the avatar
in a round of conversation to learn a certain concept, based on pre-programmed
action sequences. While the result may suffice in some cases, it is clear that the
resulting solutions suffer from a number of problems, such unnaturalness of the
expressions, robotic appearance, inappropriate responses, and perhaps worst of all,
a continuing programming effort to produce scripts that do not adapt to a rich variety
of circumstances in a free-wheeling interaction with humans. ��

Another example is the videophone model described in [13]. It introduced a
technique that increases the efficiency of the communication at least 1000-fold
by replacing unrealistic video transmissions with a three-stage process, namely
extraction and coding of facial features into text form, transmission over a low-
bandwidth channel, and reconstruction of the visual expression in synch with voice
at the receiving end.

By contrast, recurrent neural nets have been trained as neurocontrollers for
emotional displays in avatars, on a continuous scale of positive, neutral, and negative
feedback, that are meaningful to users in the context of tutoring sessions on a
particular domain (e.g., computer literacy) for AutoTutor. It is desirable that the
avatar interacts with the live user in a naturalistic fashion, so that the conversation
takes place in a nonprescribed manner and in real time. The DR techniques

https://en.wikipedia.org/wiki/AutoTutor
https://en.wikipedia.org/wiki/AutoTutor
www.cmu.edu/cmnews/020906/020906{_}grace.html
www.cmu.edu/cmnews/020906/020906{_}grace.html
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using neural nets are described below to show a complete application for the
design of such an agent, Artsie, that autonomously and dynamically generates
and synchronizes the movements of facial features such as lips, eyes, eyebrows,
and gaze in order to produce facial displays that convey high information content
in nonverbal behavior to untrained human users. The neurocontrol is modular
and can be easily integrated with semantic processing modules of larger agents
that operate in real time, such as videoconference systems, tutoring systems, and
more generally, user interfaces coupled with affective computing modules for
naturalistic communication. A novel technique, cascade inversion, arises from this
DR technique that provides an alternative to backpropagation through time, which
may fail to learn recurrent neural nets from previously learned modules playing a
role in the solution.

9.2.1 Facial Features, Expressions, and Displays

The human face has the greatest mobility and facial display repertoire among
all primates. Nonverbal facial behavior may account for as much as 93% of
human affective communication events [2], compared to as low as 7% from
words. Blushing, eye rolling, eye winking, and tongue sticking are gestures that
people use in daily life to quickly communicate feelings, emotions, and attitudes
far more effectively than words. Mehrabian’s study [11] further suggests that
incongruencies between word and facial displays are resolved mostly by nonverbal
means (the study suggested about 7%/45%/55% attribution to verbal/vocal/facial
cues, respectively). Facial features are used by human speakers in a highly dynamic
and well-orchestrated process that has nothing to envy in the complexity and
information bandwidth already present in verbal discourse process. For example,
facial animations alone are an old and fertile art for communication, as evidenced
by long traditions of popular cartoonists and animators.

A human face is normally endowed with 43 muscles that can be flexed in a
continuous range each. The first step in this challenging DR task is thus to choose an
appropriate set of representative features that control a static facial expression, i.e.,
the actual face made in an instant by a human in communication with others, even
over the phone. Facial expressions have a structure (akin to following a “grammar")
of their own, e.g., they tend to be vertically symmetric and primarily involve the
eyes, the mouth, and the eyebrows. Furthermore, these expressions are chained in
smooth and continuous facial displays that change dynamically in ways peculiar to
each individual. A facial display is defined as an animation consisting of a sequence
of various key static frames (ranging from 5 to 15) shown at appropriate speed
to be perceived as motion by the human eye. To address this complexity, Ekman
developed a nomenclature to describe them, the Facial Action Coding System
(FACS) [4] based on 64 action units (AUs). The first reduction is to judiciously
select ten of them, namely two eyebrows (left LEB and right REB), distance
between the eyebrows, two eye lids (LEL, REL), two eye directions—horizontal
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(HED) and vertical (VED)—as well as a mouth height (MH), mouth width (MW),
and a frame duration. This reduced information still permits a continuous and
smooth animation, as facial expressions can be interpolated to produce a continuous
facial display. Moreover, the FACS system identifies six basic human emotions (i.e.,
confused, frustrated, negative neutral, neutral, positive neutral, and enthusiastic).
Rating a facial expression or display is the forward classification problem of
deciding for a given expression or display what emotion it is conveying or at least
how positive (or negative) it is. Neurocontrol design is actually the inverse problem,
i.e., given a particular emotion to be conveyed by an avatar (perhaps on a continuous
scale), how to configure these features so that a human will evaluate it to the given
(degree of) emotion. This degree is referred to as the emotional attitude and is
simply quantified by a number in the interval [0, 1], with 1 being most positive,
0.5 being neutral, and 0 being very negative.

9.2.2 The Cohn-Kanade Dataset

A training set based on recordings of human facial displays produced by real
life professional actors was captured in a well-known labeled database, known
as the Cohn-Kanade database [8]. This set consists of approximately 500 image
sequences from 100 subjects ranging in age from 18 to 30 years. Sixty-five percent
were female; 15 percent were African-American, and three percent were Asian or
Latino. Each begins from a neutral or nearly neutral face. For each, an experimenter
described and modeled the target display. Six were based on descriptions of
prototypic emotions (i.e., joy, surprise, anger, fear, disgust, and sadness). These
six tasks and mouth opening in the absence of other action units were annotated
by certified FACS coders. Seventeen percent (17%) of the data were comparison
annotated. Inter-observer agreement was quantified with Cohen’s kappa coefficient,
i.e., the proportion of agreement above what would be expected to occur by chance
(0 is bad and 1 is perfect). The mean kappa for inter-observer agreement was 0.86.
Image sequences from neutral to target display were digitized into 640 × 480 or
640× 490 pixel arrays with 8-bit precision for grayscale values. (Further details can
be found at ri.cmu.edu/project/cohn-kanade-au-coded-facial-expression-database/ )
(Fig. 9.8).

9.2.3 Primary and Derived Features

Modules that provide partial solutions to the inverse problem for facial gestures
were obtained by backpropagation training (as described in Sect.2.2) based on input
features and the rating of the desired emotional attitude. Feedforward nets with two
hidden layers [40 10 8 1] were required for learning to converge while training for
one feature at a time with rating as input instead. The performance of the trained
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Fig. 9.8 (a) An avatar Artsie for AutoTutor. (b) Facial expressions (positive: left; neutral: middle;
and negative: right) by trained actors in the Cohn-Kanade dataset

Table 9.3 Most selected facial features are derivable, except for the (primary) ones marked *

Features Training (%) Testing (%)

Rating* 95.0 69.0

Left eyebrow (LEB) 84.0 89.4

Right eyebrow (REB) 88.0 86.5

Distance between eyebrows (D) 98.7 85.5

Left eye lid (LEL) 98.0 91.0

Right eye lid (REL) 97.5 93.2

Horizontal eye direction (HED) 98.5 94.2

Vertical eye direction (VED) 99.0 98.0

Mouth height (MH)* 99.0 97.0

Mouth width (MW)* 99.0 86.0

Time duration (TD)* 99.0 80.0

networks can be seen in Table 9.3. Rating and all sequence features in the frames,
except for distance between eyebrows, mouth width, and time duration, were shown
to be derivable individually.

The mouth width was again found to be a primary feature that proved capable
of deriving the remaining features together with the frame duration and emotional
attitude. In particular, the height of the mouth was now, perhaps surprisingly,
derivable from these primary features. However, the mouth width again was found
to be a primary feature that proved capable of deriving the remaining features
together with the frame duration and emotional attitude. This is likely due to a high
correlation between the two features. On the other hand, the distance between the
eyebrows also turned out to be a primary feature for which a neural network could
not be trained, but with which other features could be derived (Fig. 9.9).

In the next step, given the structure of facial expressions and the multiple
dependencies among their constituent features, multiple combinations of features
were shown to be jointly derivable from the remaining features, all the way up to
seven (7) combinations at a time, as shown in Table 9.4. With the corresponding
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Fig. 9.9 (a) Performance of feedforward neural nets (FNNs) for derivable features for LEB, REB,
HED, and VED, shown in the corresponding places (training: left score in black and testing: right
score in gray). (b) Likewise for triple jointly derivable features

Table 9.4 Joint derivation of seven (7) features at a time, including left and right eye lid (LEL
and REL), horizontal and vertical eye direction (HED and VED), left and right eyebrows (LEB
and REB), with the remaining features as inputs (rows)

Features Training ( % ) Testing ( % )

Rating*

Left eyebrow (LEB) 96.0 93.6

Right eyebrow (REB) 97.0 93.5

Mouth height (MH) 99.4 95.2

trained networks, a neurocontrol for facial expressions was successfully trained with
excellent, in fact, nearly optimal results for a neurocontroller, as shown in Fig. 9.10.
Since the methodology was kept essentially intact in order to ascertain the effect of
the quality of the Cohn-Kanade dataset, it is clear that the improvement is due to
the more naturalistic data in the new training set. A posteriori, it is thus easy to see
why the complexity of the problem would not allow a simple and direct approach to
the problem using recurrent backpropagation on the facial displays to converge to a
neurocontrol solution.

This application shows that neural network methods can be used for feature
selection in DR so as to further enable a solution to a complex problem (inverse
problem for facial displays) that could not be had by a direct approach on the full
set of features. It illustrates the power of DR to solve a complex problem, where
simpler strategies may not work.
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Fig. 9.10 Once the primary features were identified, neural nets can be trained to derive multiple
combinations of features (as far as seven at a time) from the rating and the remaining ones; they
could then be used as modules for solution to the inverse problem for facial expressions with
inputs just the primary features and the rating (emotional attitude) to obtain a full set of features
for a facial expressions and eventually for facial displays by iteration over time

9.3 Other Methods

Dimensionality reduction methods typically work in an unsupervised manner, i.e.,
they learn a lower dimensional representation for the features in the data without
considering the response variable. In many cases, however, it may be more effective
to reduce the number of features based on the response variables or labels, if
available, corresponding in the data points, and therefore use solutions based on
supervised learning. Specifically, if the output of the dimensionality reduction
method is used within a supervised classifier, then, ignoring the response variable
makes dimensionality reduction harder or not efficient, particularly with data that
contains a large number of features that are irrelevant to the classification problem.
For example, selection of features that are most relevant for classification (as in
Chap. 8) may prove more effective in reducing dimensionality. This section presents
methods obtained by a commonly used feature selection approach called wrapper
methods.

Example 9.6 For the character recognition problem [CharRC] (described in
Sects.2.1 and 11.5), the features are pixels in a certain position in the image,
and the selection will choose the most relevant for the classifying of an MNIST
image. For, say, an image of the digit 7, the pixels near the top right corner where the
two lines intersect are important, while for an image of 4, the pixels at the bottom
left corner are more important. Using the labels of the instances to be classified, one
can reduce dimensionality by picking only the relevant features for each class. ��

In general, feature selection is a combinatorial problem that is computationally
hard to solve since, for example, there are 2d possible subsets of a set of
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dimensionality d features to choose from. Naturally, it is infeasible to go over all
possible subsets of features if d or the dataset is not small. Two general approaches
for feature selection to address this problem are as follows:

• Wrapper methods [12] search through the feature space to find the best subset of
features using the classifier as a black-box oracle.

• Embedded methods integrate the feature selection within the classifier, i.e.,
the selection is performed directly as part of the learning. Some supervised
machine learning algorithms implicitly perform feature selection. Specifically,
the decision tree classifier (defined in Sect. 2.2) selects features based on a
statistical measure of how well the feature classifies the data. The most popular
embedded method for feature selection is LASSO regression that performs �1
regularization (described in Sect. 8.3). LASSO removes features whose regres-
sion coefficients/weights are low or 0.

Wrapper methods for feature selection typically use a search strategy to find the
relevant features, with variations depending on the search strategy used to select
features for testing.

Example 9.7 Figure 9.11 shows the results of the wrapper method for selecting
features in the MNIST dataset. The idea is to use a classifier on different subsets of
features and evaluate the performance on these subsets. Only features with the best
performance for a given classifier are then selected as representative features, thus
resulting in a lower dimensional representation. ��

Different strategies have been developed to select features. Forward elimination
is an approach that starts with an empty set of features and adds the best feature from
the remaining features incrementally. To determine the best feature, the accuracy of
the classifier is estimated when a feature is added to it. Several approaches have been
used to assess this method, including standard methods such as cross-validation and
criteria such as AIC and BIC (as described in Sect. 2.4).

Fig. 9.11 Search of features subsets by typical wrapper methods for (a) inputs from on the MNIST
dataset and (b) corresponding outputs
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Table 9.5 Selected features
in Recursive Feature
Elimination for MNIST for
various numbers of features
selected (d)

d SVM AdaBoost Decision trees

2 0.28 0.26 0.34

4 0.42 0.46 0.55

8 0.81 0.71 0.81

16 0.87 0.76 0.87

64 0.96 0.85 0.87

Backward elimination uses the opposite strategy. It starts by selecting all the
features and then removes the worst feature in successive steps. Recursive Feature
Elimination (RFE) [12] is a popular variant of this wrapper method that recursively
eliminates features using a greedy strategy. It assumes that the classifier has weights
that can be used to rank features by their importance. They can be coefficients for
features learned in a linear classifier or in SVM (both are described in Sect. 2.2).
From these, the least important feature is dropped and the model is retrained
using the remaining features. Furthermore, in contrast with other dimensionality
reduction approaches, feature selection is more intuitively interpretable since the
retained features can be manually validated to see if they are indeed relevant to the
classification task.

RFE using support vector machine classifiers can yield impressive results even
with a small number of features. Table 9.5 illustrates the results for MNIST
classification using RFE for feature selection based on measuring the average F1-
score using fivefold cross-validation (described in Sect. 2.4) with various selection
sizes, i.e., for each classifier, RFE is used to select d features and use only them
to train solutions and compute their cross-validation scores. The quality of the
choices is assessed using accuracy across several different supervised learning
algorithms (discussed in Sect. 2.2). These results show that, as one increases the
number of features that are selected by RFE, the classification accuracy improves
for all classifiers, an indication that RFE indeed selects the most relevant features
for classification.
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Chapter 10
Metaheuristics of DR Methods

Deepak Venugopal, Max Garzon , Nirman Kumar , Ching-Chi Yang ,
and Lih-Yuan Deng

Abstract This chapter synthesizes key heuristics distilled from a number of
methods that can be applied to dimensionality reduction, leveraging choices such as
feature grouping and domain knowledge, as well as the meta-implications of feature
selection, such as explainability. Also, some points for reflection on the inherent
limitations of dimensionality reduction methods are considered.

10.1 Exploiting Feature Grouping

The dimensionality reduction techniques and solution models defined in the forego-
ing chapters work best when the input features belong to a single object in the data
ontology and thus have common characteristics. For example, there is an implicit
assumption in the use of PCA that all p columns in the dataset X have a similar
scale and/or similar characteristics, e.g., each column represents gene expression
or pixel intensities, but not a mixture of both. If not so, PCA may not perform so
well, for example if one variable dominates the variance simply because it is scaled
by a huge constant with respect to the others. The obvious “fix" is to rescale the
variables in the feature by standard statistical normalization into Z-scores (defined
in Sect. 11.1) with mean 0 and unit variance.

Example 10.1 (gPCA for Autonomous Vehicle Data Analysis) Data from
autonomous vehicles is inherently multimodal since it can contain image data,
sensor data, and behavioral data. Jointly reducing the dimensionality for the full
feature set may be difficult since each group can have unique characteristics. In this
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case, reducing dimension for features that have some commonalities is likely to be
effective. ��

In general and in practice, this assumption can be met by using the well-known
stratification technique from sampling (described in Sect. 1.3), i.e., the feature set
can be subdivided into several groups with similar characteristics within each. One
obtains a grouped variant Ψ (·) of any DR approach Ψ (·), for example, gPCA for
grouped PCA. Specifically, let g be the number of desired groups in the study, with
each group sharing a common scale and/or a similar characteristic for the features
within the group. The columns of X can then be rearranged as described in Sect. 3.1:

X = [X1,X2, . . . ,Xg].

After performing Ψ (·) (e.g., PCA) within each group Xi , i = 1, 2, . . . , g and
finding a reduction (its leading principal components) X∗d = XdCd , they are put
together to obtain a reduction for all components

X∗ = [X∗1,X∗2, . . . ,X∗g] = [X1C1,X2C2, . . . ,XgCg],

where Ψk(·) is a dimension reduction procedure for the kth group. It is even possible
to mix in different types of DR Ψk(·) for different groups. Grouping is commonly
used with PCA in statistics with good results.

In summary, gPCA is a variant of any DR method to address the problem with
heterogeneous features in the data by grouping them more homogeneously, reducing
dimensionality in each subset of a partition of the features set, and then putting all
reduced feature groups together into a reduced feature set.

Advantages of grouped DR include:

• It includes domain knowledge to group wisely and is likely to improve the quality
of the DR and solutions therefrom.

• A homogenous set of features reduces the sampling variation, as evidenced by
common similar techniques in statistics.

• Grouping can clearly reduce computing costs or bring it to the realm of the
feasible where the original dimensionality p is large. For PCA for example, it
would be inefficient or impossible to find the eigenvalues/eigenvectors for a large
variance–covariance matrix S of size p × p.

10.2 Exploiting Domain Knowledge

Knowledge is a critical component that determines the success of a data science
application. The field of knowledge representation (KR) has a rich history starting
with its study in philosophy and logic in western philosophy since ancient times.
In modern cognitive science and AI, KR is a well-known branch of research that
deals with representation of knowledge and using it for problem solving. Well-
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known KR systems that have been developed include Cyc [11] (for common sense
knowledge), WordNet [13] (for language semantics), and MYCIN [28] (an expert
system for medical diagnosis). More recently, a system called NELL [20] developed
at Carnegie Mellon University crawls web pages to extract data about knowledge
from the web and currently contains over 50 million facts. While the role of domain
knowledge (DK) in data science is acknowledged by all practitioners, a proper
and general definition of what “knowledge" really is remains a fuzzy but essential
unresolved issue for all sciences. It is not unreasonable to say that this roadblock has
stumped genuine advances in all sciences. This section proposes a general definition
for the concept of knowledge in data science and then presents an overview of
different approaches that have been used to incorporate domain knowledge into
dimensionality reduction methods.

10.2.1 What Is Domain Knowledge?

The definition of what constitutes knowledge has a long history in philosophy, and
an entire subfield of epistemology has been devoted to study the origin, nature,
and other foundational aspects of knowledge since ancient Greek times. A general
definition of knowledge is out of scope in this book (and probably overall), so a less
ambitious approach is taken here.

Example 10.2 Looking back at the history of science, the Copernican model
together with Kepler’s laws of planetary motion is arguably the first piece of
scientific knowledge concerning the understanding of our solar system (and even-
tually the physical universe due to its universality). Subsequent discoveries such as
universal gravitation and three laws of physics by Sir Isaac Newton put a crown
jewel on this body of knowledge in the domain of physics. A similar statement
can be made for discoveries such as the atomic theory of matter and the chemical
table of elements in the domain of chemistry, the neuronal model in the domain of
neurophysiology, and so forth for other natural science domains. ��

Generalizing these examples, a definition of domain knowledge in data science
is proposed as follows.

Domain Knowledge (DK) in data science is (equivalent to) a (set of) model(s) and/or
algorithms that can be used to solve various data science problems.

Example 10.3 Most of the models described throughout the foregoing chapters,
except perhaps Chaps. 1 and 3, for dimensionality reduction and for problem solving
can thus be considered knowledge in the domain of data science. More examples are
given in Chap. 11. ��

This general definition implies that knowledge is embedded at every step in the
data science pipeline. Specifically, it is used to represent the data through informa-
tive features and train the models for these representations to solve specific problems
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such as classification and clustering, or to make predictions. Further, it implies that
domain knowledge is also needed to evaluate and assess the performance of these
models in the real world. Based on testing models in the real world, one could
potentially discover aspects about the model that were previously unknown, forcing
a refinement of the model, thus improving the model over time in an ever going
monotonic process to augment the body of knowledge. Domain knowledge thus
requires domain experts who integrate the models into a coherent and organized
body of knowledge and assure their effectiveness, accumulate experience across
problems, datasets, and outcomes, and brainstorm about ways to address their
shortcomings.

10.2.2 Domain Knowledge for Dimensionality Reduction

Many of the methods for DR explored in previous chapters appear to be domain
agnostic, i.e., do not seem to require domain knowledge, except perhaps in the
mathematical or computational domains in the form of models and algorithms in
data science. It is quite conceivable that a domain expert can see beyond these
models and come up with better solutions out of prior experience in the domain.
Can Domain Knowledge really help in dimensionality reduction beyond the data
science models in Chaps. 2–9 in this book?

Example 10.4 For the problem of malware classification [MalC], one can try to
answer this question with an experiment, i.e., give the same problem and dataset to
an expert in this domain of cybersecurity and also to a proverbial educated layman or
data scientist. While the general data scientist can use generic data science models
(his domain knowledge), it is more likely that the expert will have more success due
to the use of specialized models (domain knowledge) that have historically worked
well for this problem in this domain.

For the specific case of dimensionality reduction, domain knowledge can act
as a guide that helps create more impactful representations of the data, where
the impact is measured by its effectiveness in solving the problem of interest.
While most of the dimensionality reduction approaches discussed in this book
are purely data dependent and do not require external domain knowledge; in
practice, the use of domain knowledge can significantly improve the performance of
dimensionality reduction. Some existing approaches that embed domain knowledge
in dimensionality reduction can be summarized as follows.

Constraint-Based Methods
In real-world data, similarities exist across different data points. Pictures of the
same person have a degree of similarity, and health records for the same individual
have similarities even if coming from different doctors. Adding this knowledge
of similarities in an ontology can help organize the data and produce better
dimensionality reduction, e.g., less redundant features. In general, this problem can
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be formulated as added constraints on the data instances. Such constraints have
also been applied to other unsupervised clustering methods (described in Sect. 2.3).
This set of constraints can be represented as a graph, where the nodes are the data
instances and the connections are constraints between the instances. In [9] , an
approach to dimensionality reduction is described that uses domain knowledge in
the form of a graph with link constraints to indicate the degree of similarity of two
data instances. The degree of similarity is encoded as a weight. Positive/negative
weights on an edge indicate a degree of similarity/dissimilarity between instances,
respectively. Dimensionality reduction thus projects the data into a space of lower
dimension (like with PCA) that depends on the weights between data instances,
say by pushing together similar instances and pushing far apart instances that
are dissimilar from one another. Using experimental results in several standard
machine learning benchmarks, it has been shown [9] that using this approach with
clustering, the reduced features yield better quality clusters compared to using PCA
for dimensionality reduction without external knowledge.

Grouping Methods
The constraint-based methods described above add constraints in the form of rows
to the data. The same idea can be used for columns. Specifically, there could be
domain knowledge associated with relationships between features in the data. In
datasets for autonomous vehicles, the data is multimodal since it can contain image
data, sensor data, and behavior data. Jointly reducing the dimensionality of all the
features is difficult since each of them can have unique characteristics, so finding
reduced features from groups suggested by the domain (autonomous vehicles) that
share a common characteristic is likely to be more effective (as just described in
Sect. 10.1). Approaches that group features based on domain knowledge to reduce
the dimensionality in the data have been shown to improve the performance of
regression models [14, 16]. (A more detailed description of grouping-based PCA
can be found in Sect. 10.1).

Example 10.5 For the malware classification problem [MalC] (described in
Sects. 1.1 and 11.4), domain knowledge that certain features extracted from the
software program are or should be related to others (e.g., they correspond to
memory usage in the program) can help enhance the dimensionality reduction
method through heuristics. Specifically, one can bundle features that are related
and perform dimensionality reduction on different groups independently, instead
of jointly performing dimensionality reduction on the full set of features. This
grouping approach may lead to better reductions of the original feature set (as
suggested in Sect. 10.1). ��

The malware dataset (defined in [1, 25] and summarized in Sect. 11.5) contains
several well-known features for malware classification. Finding a reduced dimen-
sional representation among the full set of a total of 350 features at once may not be
ideal due to the inherent differences in the feature properties. A possible heuristic
is to use knowledge about the domain (cybersecurity in this case) and group them
into 6 different categories, for example as shown in Table 10.1. A dimensionality
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Table 10.1 Grouping features using domain knowledge for reduction of the malware dataset

Group name Brief description # Features

Entropy Measurements of disorder in the malware bytecode 204

Sections Size of code sections 27

Assembler commands Frequency of assembly commands used in the code 67

Registers Frequency of registers used in the code 19

Data definitions Proportion of data definition commands 13

Keywords Manually chosen keywords in the metadata 20

reduction method (such as PCA in Sect. 4.1) or nonlinear geometric methods (as
in Sect. 5.2) can now be performed on groups that have features with common
properties, thus implicitly encoding domain knowledge in the dimensionality
reduction method.

Specialized Methods
While the previous two approaches work on generic datasets, more sophisticated
knowledge can help in dimensionality reduction for certain types of datasets, such
as natural language/text processing. In this case, dimensionality reduction methods
such as PCA will consider words as features and try to reduce dimensionality based
on statistics seen in the data. However, the hidden semantic meaning (synonyms,
antonyms) associated with words will always trump any correlations or directly
observable statistics in the data. Specifically, for the task of comparing content
in documents for semantic equivalence, if different words are used within the two
documents, but the words have the same meaning, then the dimensionality reduction
method should ideally generate a similar low-dimensional representation for both
documents. A manual specification of word similarities has been shown to improve
the performance of dimensionality reduction in text data [17]. That said, deep
learning models have been able to extract rich semantic information from newly
available massive datasets, without explicit domain knowledge. For instance, word
embedding methods (such as Word2Vec [18]) exploit the fact that similar words
tend to co-occur within the same context in documents in large-scale text corpora,
and consequently, syntactic approaches have been able to achieve dimensionality
reduction that factors in a good deal of semantic meaning of language. This is the
key idea in latent semantic analysis. However, reducing dimensionality of a domain-
specific vocabulary is a challenging problem [22]. For instance, in the specific
domain of oil and natural gas considered in [22], embedding methods do not work
as well as they use peculiar, rare words that are specific to the domain and so do
not occur in general documents. The effectiveness of adding domain knowledge to
deep-learning-based word embedding methods is an active area of research [10].
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10.3 Heuristic Rules for Feature Selection, Extraction,
and Number

There are many heuristic rules for feature selection and extraction. The rules are
usually based on prior knowledge of the research questions or problems. Two
examples are described below, but there are many more to explore.

Example 10.6 (Physics Rule/Knowledge of Predicting Velocity of An Object) A
baseball batter naturally wants to predict the velocity vt of a ball thrown by a pitcher,
at certain time t (when it will hit the bat). She knows the ball’s initial speed v0
(pitcher’s parameter) and the gravitational constant g. A common model can be
built directly with three input variables

vt = f (t, v0, g),

and one response, the target velocity. However, by understanding the physical laws
involved, one might just need to build a model based on one response and one input
variable,

π0 = g(π1),

where π0 = vt/v0, π1 = gt/v0. Although there are many different ways of
formulating the key input variables [31], the main reason is that the underlying true
model vt = v0 + gt is equivalent to its simplest form vt/v0 = 1 + gt/v0, that is,
π0 = 1+ π1. ��

Example 10.7 (Agriculture Rule/Knowledge of Classifying Iris Flowers) It is well
known that rich soil and more fertilizer can grow bigger flowers. In the Iris data,
Table 11.7, only the sizes of the flowers are measured and reported: petal length,
petal width, sepal width, and sepal length. However, to better classify the species,
the shape of the flower is essential. Thus, the ratios of their lengths might contain
more information than just lengths alone. ��

These examples illustrate that further analysis within the data’s domain can
provide insights into dimensionality reduction approaches, beyond the all-purpose
methods suggested by data science.

10.4 About Explainability of Solutions

Explainability is an important aspect of data science solutions, particularly if the
solutions are to be used in critical applications such as healthcare or national
security, where decisions made have very high impact and/or cost. Recently, the
European Commission has proposed regulatory measures for the use of data science
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solutions [12], and according to these regulations, transparency is an important
aspect of such methods. It explicitly states that solutions should allow for human
oversight, which implies a human should be able to understand the solution. This
section characterizes the concept of explainability of a dimensionality reduction
method or problem solution.

Example 10.8 For the classification problem for the Iris dataset [IrisC] (as
described in Sects. 1.1 and 11.4), a nonexpert may inquire WHY a specific label
is assigned by a certain classifier to a specimen of flower, especially if it falls on
a borderline with another. A humanly understandable and rationalizable answer is
expected, beyond “That’s what the model says." One way to address the question
is by ranking the relative importance of features that contributed to the label.
That is, for a particular instance, the petal width may be more important to the
classifier as compared to the sepal width. If it is possible to provide such a ranking
of the features, then an expert in the domain (Iris flowers) can verify whether the
explanation is indeed plausible, i.e., it makes sense across the labels he has seen in
his long experience. This can help increase trust in classifiers that produces plausible
explanations and at the same time can help in viewing results from classifiers with
less plausible explanations (black boxes) with caution, even if such classifiers have
high accuracy. ��

10.4.1 What Is Explainability?

Explainability has been studied in various disciplines such as psychology and
cognitive sciences. In [21], the authors provide an overview of explainability
from the perspectives of different disciplines. It turns out that what is viewed
as explanation in data science is different from what has been considered as
explanation in other fields such as psychology, cognitive science, and philosophy.
In particular, data science explanations mainly focus on approximating complex
decision-making functions in the model. Philosophy, on the other hand, has a long
history in the study of explanations in terms of causality and epistemology. (A
detailed primer on the influence of other sciences in explainability can be found
in [19].) The term explanation (or explainability) as used in data science has received
multiple interpretations, depending on the context in which it is used. In general,
two important concepts underlying explainability of data science solutions include
interpretability and transparency, according to [21]. Since the labels in a classifier
are systematically produced by an algorithm behind it, ultimately the question is
really about the model or algorithm behind it.

10.4.1.1 Outcome Explanations

Explainability is a property of a model that enables humans to interpret the decisions
it makes. Thus, the explainability of a model can be characterized as its degree
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of interpretability, i.e., the extent to which the answers provided by the model are
consistent across a body of knowledge and so can be rationalized by an expert mind.
In general, explainability of a model involves two aspects. First, the model should
provide or allow a ranking of the variables used based on their relative importance in
arriving at a solution. Second, an external observer who has expertise in the domain
should be able to corroborate the influence of the features influencing the answers
with the ranking. Thus, if a model can relate its (complex) “black-box" decision-
making process to a simpler known process within the realm of human common
sense knowledge, then it is explainable.

Locally interpretable model-agnostic explanations (LIME) is a well-known
general approach that explains predictions made by any complex classifier by
ranking features based on their importance in the prediction. The main idea in LIME
is to compute a local approximation for the classification decision boundary of a
complex classifier. Specifically, given a data point whose prediction by the complex
classifier needs to be explained, the boundary of the complex classifier near that data
point is approximated with a simple linear decision boundary. The idea is that for
the complex decision boundary, it is hard to rank the importance of features, but for
the simple decision boundary, it is easier to do so. Thus, for any data point, LIME
outputs a ranking of features that play the most important role in determining the
response output by the complex classifier. (A full description of LIME can be found
in [24].)

10.4.1.2 Model Explanations

Another approach is in terms of global explanations. Specifically, a model is
transparent to a user if its operations can be explained for all inputs to the model.
This is more general than the outcome/post-hoc explanations described in the
previous subsection since it does not only explain how a model behaved for a
specific instance but covers the functioning of the model over the entire population.
That is, a model that is transparent to a user can explain how its decisions would
change if certain inputs were altered, or what inputs need to be altered to change
or obtain a certain classification. For example, if a model classifies an individual
as having the flu based on some symptoms, an explanation could indicate the
effect of changing a certain symptom on the flu prediction. This can help a user
“debug” the data science model used to make the prediction. These explanations
are also sometimes referred to as global explanations since they are not specific to
a single instance. Borrowing from causal models [26], one approach to providing a
global explanation is to establish a causal chain leading to an outcome. However, in
general it may be possible to have multiple causes attributed to an outcome. Another
potential direction is to use contrastive explanations, that is, explanations based on
examples suggesting how the model would be different if the data was modified.
Explainability of a data science model based on the degree of transparency is an
active area of research. In general, explainability is hard to evaluate quantitatively
since it is subjective. In practice, the standard approach to quantify explainability
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of a model is based on external knowledge. That is, another human is asked to give
a “second opinion" that confirms or rejects the decisions or labels that the model
outputs overall as an explainable solution to the problem.

10.4.2 Explainability in Dimensionality Reduction

The explainability of a dimensionality reduction method depends upon how it
represents features in the lower-dimensional space. For example, consider the digit
classification problem [CharRC] in Sect. 11.4. In this case, if the features directly
correspond to pixels, then an interpretable explanation method can potentially
measure the importance of these pixels in a particular classification model. A
human can then easily verify this explanation. For example, if a classifier labels
a digit image as the number 4, and the explainer points out that the pixels that
are most useful in the classification are those near the crossing of the horizontal
and vertical lines in the number 4, a human can verify that this explanation makes
sense since that feature is indeed important in recognizing the digit 4. On the other
hand, if the explainer points to random pixels, then the classification model will
be less trustworthy. However, applying dimensionality reduction can reduce the
explainability, since, for the features in the lower dimension, it may no longer be
possible to map them to the original features.

In methods that use nonlinear combinations of features (summarized in Chap. 3),
the features selected by the dimensionality reduction method become hard and
sometimes impossible to interpret. Therefore, the existing explanation methods
cannot give a valid explanation when using such dimensionality reduction methods.
On the other hand, for each dimension output by PCA (described in Sect. 4.1), the
original features and the coefficients for those features can be identified. Therefore,
if PCA outputs for a lower dimension are considered important by the explainer, that
explanation can be converted into an explanation on the original features. In general,
to be able to explain using reduced data, the dimensionality reduction method
needs to provide an inverse mapping that, given a dimension, returns the original
features represented by that dimension. While recent work has been performed
on interpreting nonlinear dimensionality reduction methods such as kernel PCA
(described in Sect. 4.1) [15], this area remains under active research.

Example 10.9 Predictions made by a complex classifier such as a random forest [5]
on the Iris dataset can be explained using the LIME explainer because LIME creates
an interpretable linear model that approximates the classifier locally around the
instance to be explained. It then ranks features in order of importance in the linear
model. An example classification using LIME for random forests is illustrated in
Table 10.2, according to [7]. Here, for specific instances of different classes in
the [IrisC] problem, namely, Setosa, Versicolor, and Virginica, LIME specifies the
relative importance of the features. The two most important features are shown in
the table as the explanation for that instance. A domain expert can now verify this
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Table 10.2 LIME explanations for some Iris dataset instances. PW is the petal width, PL is the
petal length, SL is the sepal width, and SW is the sepal length. The top two features are shown as
an explanation for an instance in each class, according to [7]

Class PL PW SL SW Explanation

Setosa 1.2 0.2 4.4 2.9 (PW,PL)

Virginica 2.5 6.1 7.2 3.6 (PW,PL)

Versicolor 3.7 1 5.5 2.4 (PL,PW)

explanation to validate if indeed the petal width and length are the most important
characteristics defining a kind of Iris flowers. If so, this would mean that the random
forest classifier is indeed using the more relevant features for classification, thus
increasing our trust in this model for the Iris flower classification problem. ��

10.5 Choosing Wisely

In this section, some rules that emerge from reflecting upon the methods presented
in the previous chapters and sections are suggested as take-home messages on
dimensionality reduction and solution models in data science. They are not universal
rules that apply everywhere with good enough results, but just high-level meta-
observations distilled from experience that have a number of specific applications
and can be useful rules of thumb in unknown situations.

First of all, the problem-solving methodology discussed in Sect. 1.4.2 is
extremely important because it may sound counterintuitive at times, especially
to someone eager to tackle a problem directly and immediately. It is important to
bear in mind that haste makes waste. If no problem/destination has been defined
precisely (with details on input and expected answers, as well as the context for
their eventual business application in the real world), no data can be appropriately
selected and nothing will really happen purposefully. Every door will lead nowhere.

Second, data selection, cleansing, and understanding discussed in Sect. 1.2
require careful planning throughout, with the final destination in mind. One needs
to be very mindful that garbage in, garbage out is a truism borne out of experience
that will exact a dear toll if ignored.

Third, dimensionality reduction can be tackled in a number of ways, each with
a particular criterion, and not every approach will be appropriate for any dataset,
especially if optimal feature selection or extraction is desirable. Heuristically, one
can only say that generally (a summary is in Table 10.3):

• Grouping features usually helps, especially if the available dataset is of a mixed,
heterogeneous kind.

• Statistical approaches work well if the data is homogeneous and exhibits
correlations across features.
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Table 10.3 A comparison of DR methods along three major practical criteria (column headers)
(A blank entry indicates a No answer)

DR method Big data? Explainable? Parallelizable?

PCA �
Regression � �
Shrinkage �
Entropy � � �
MDS
ISOMAP
t-SNE
(RND)

DNA � � �
Autoencoders � �
Neural nets � �

• Feature selection may work better on datasets that might have a small subset of
important/relevant features.

• Feature extraction may work better on datasets that involve abstract relationships
and semantics (e.g., text data and social media data).

• The number of reduced features may not be as important as the impact of
the structure of the data in the quality of the reduction and/or the solution to
a problem, as demonstrated by biomolecular approaches to DR and problem
solving. On the other hand, it is easy to overdo it. For example, on average,
solution models using only 6 features mostly performed poorly as compared to
those using 12 features across in several problems in Chap. 6. Six (6) features
might be too few for solving a complex problem, so reducing dimensionality too
much may hurt for abiotic data, while it is quite possible for DNA sequences, as
demonstrated by the impressive reductions with nxh chips in Chap. 7.

• Computational running times may be determinant of the success of an approach
to DR or a solution, particularly for big data. PCA is very effective because it
can be done with matrix methods for which libraries have been developed and
optimized, but only to a point since their optimization is done globally and all
the features need to be considered at once. On the other hand, entropy-based
approaches in Chap. 6 offer the additional advantage of being computationally
efficient because they are easily parallelizable on any platform (e.g., using
MapReduce/Hadoop). They can select features in the order of minutes (sin-
gle entropies), under 2 hours (paired entropies) and under 6 hours (iterated
entropies); for the nxh basis mentioned in Chap. 7, feature extraction on an HPC
(using a single node) also takes in the order of minutes for all datasets. Further,
these times essentially scale linearly with the size of the data, except for iterated
entropy. This makes the process of feature extraction feasible, even for huge
datasets. However, the systematic good performance of iterated entropy methods
comes at a dear price because the running times of extracting the features increase
exponentially with the dimensionality of the data.
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Table 10.4 A comparison of DR solution methods along three major practical criteria (column
headers) (A blank entry indicates a No answer)

DR method Big data? Explainable? Parallelizable?

Regression � �
Decision trees � �
Bayesian learning � � �
kNN � �
Ensemble methods � �
SVMs � �
Neural nets � �
k-Means � � �
DNA-based � � �

• Explainability of the solutions to human customers may be extremely impor-
tant for some applications. For example, machine learning methods based on
deep learning and convolutional neural nets may be hard to rationalize, while
information-theoretic methods and biomolecular computing methods have a
domain foundation behind them that makes them easier to justify. Thus, the
applications produced from these solutions may meet more acceptability than
those produced by other methods since they can be easily rationalized.

Fourth, for solution models, data science problems can be tackled in a number
of ways, each with particular strengths and blind spots, and not every model will be
appropriate for every problem. Table 10.4 only suggests some general heuristics
that may perfectly well prove ill-suited for a given problem. Since the solution
models are data dependent, it is hard to give exact rules for choosing one without
experimentally evaluating them using standard metrics since every method is data
dependent. However, below are some typical heuristics that could help us choose
solution models:

• GLM
Generalized linear models are most useful when the response variable is a
discrete categorical variable. In particular, GLM includes the popular logistic
regression model as an important special case.

• DTs
Decision trees are arguably the most interpretable machine learning methods.
However, decision tree optimization is computationally hard. Therefore, they
are less suited for big data applications. New approaches have been explored
to parallelize decision trees to improve scalability.

• Bayesian classifiers
Naive Bayes classifiers are useful when each feature is independent of other
features since that is the underlying assumption. However, even when the
assumption is not strictly met (e.g., text processing), Naive Bayes is known to
obtain accurate results in practice. It is highly scalable and therefore is well suited
for big data applications.
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• kNN
k-Nearest neighbors typically work well for lower-dimensional data (i.e., when
we have a small number of features). In higher-dimensional data, computing
neighbors is harder (due to the curse of dimensionality, as described in the next
section). Also, k-Nearest Neighbors scale poorly to big datasets since computing
neighborhoods over large datasets is a hard computational problem.

• Ensemble methods
Typically, bagging is used when the base classifier overfits, i.e., one obtains very
high training accuracy but poor test accuracy. Using bagging in this case helps
us reduce variance in the classifier and reduce overfitting. Further, bagging is
more helpful with unstable learning algorithms [6], where the classifier changes
significantly with a slight change in the training data. On the other hand,
boosting is typically more helpful when the classifier is underfitting, i.e., it has
poor accuracy on the training data. Boosting will combine several such weak
classifiers together and improve their performance.

• k-Means
k-Means clustering works best when there is a good separation of the data, and
the clusters have a globular shape. However, it is not always guaranteed to find
the optimal clusters. Further, if there are outliers in the data, k-Means tends to
return poor clusters. However, it is the method of choice for large datasets since
it is highly scalable.

• SVMs
Support vector machines work well in problems that have a large number of
features (e.g., text processing). In such cases, a linear SVM can find a good
decision boundary since it maximizes the margins, i.e., distance from the decision
boundary to support vector instances in either class in a binary classification
problem. In higher-dimensional data, the use of kernels may sometimes overfit
since dimensionality implicitly increases using a kernel. When the dataset is
imbalanced, SVMs typically perform poorly since they learn classifiers that are
biased toward the majority class.

• Neural nets
Neural nets are exceptionally suited to provide good enough solutions to just
about any problem one throws at them, as demonstrated by nearly 50 years of
practical experience now. As a consequence of the NFL theorem (described in
Sect. 10.7 below), no model can provide optimal solutions most of the time. They
are therefore a versatile tool one needs to have handy in any toolbox.

10.6 About the Curse of Dimensionality

The curse of dimensionality is a term coined by Richard Bellman [3] in 1957, who
used it to refer to the fact that using grid search to solve optimization problems
with many variables (high dimensions) is very inefficient and practically infeasible.
Subsequently, the term has been used in a variety of contexts. Though the details of
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each context differ, the underlying fundamental reason is the same as was introduced
in Sect. 3.3, and it can be intuitively described by the aphorism—“there is too much
space in high dimensions.” We elucidate this using some simple calculations and
then mention how this affects tasks in data analysis.

It is well known the area of a circle is proportional to the square of its radius and
the volume of a three-dimensional ball is proportional to the cube of its radius. The
same phenomena hold in higher dimensions. Let Bd(c, r) denote the ball of radius
r centered at a point c, and let vd(r) denote its volume, i.e., vd(r) = vd(Bd(c, r)),
where vd(·) denotes the d-dimensional volume. It is well known that

vd(r) = πd/2rd

Γ (d/2+ 1)
,

where Γ (·) is the Gamma function [2]. The following example will illustrate one of
the computational consequences of the above formula.

Example 10.10 Grid search is an important method to optimize hyperparameters in
deep learning (Sect. 2.2.4). An artificial but representative setting is the following—
this can arise for example if we are using hyperparameters with some regularization.
Suppose we want to minimize a certain function F(x1, x2, . . . , xd), where the xi are
the hyperparameters, and a regularization condition is that they lie within the ball
of radius r , i.e.,

∑d
i=1 x2

i ≤ r2. If the function F(x1, . . . , xd) is complicated as
for example the loss function for a deep neural network, this may not be feasible
analytically. One way to accomplish this practically is to sample from the ball of
radius r so that for each point of the ball, we have a sample point within a distance
of δr where δ is a small number, say 0.1. Such a set of points is known as a
net. Then, assuming the function F(x1, . . . , xd) is continuous (or varies slowly),
it would make sense to compute its minimum over a net and expect the computed
minimum to be not too far from the actual minimum. This would require us to
compute F(x1, . . . , xd) for each point of the net. As such, we would like the size of
such a net to be as small as possible. How large is the smallest possible net? In d = 1
dimensions, it can be verified that there is a net of size 2�1/δ� + 1, for example by
taking the points 0, δ, 2δ, . . . , min(1, �1/δ�). While it is not so easy to explicitly
enumerate such a net in higher dimensions, we remark that actually constructing
such a net is not too hard for example by finding all points on a sufficiently fine grid
inside the ball. However, there are constraints.

If S is any grid as described above, then |S| ≥
(

1
δ

)d

.

The following proof, which can be skipped if the reader so chooses, is to illustrate
the role the formula for volume mentioned above plays here.

Proof Since every point of the ball Bd(c, r) is within δr of a net point, we have that

Bd(c, r) ⊆
⋃
p∈S

Bd(p, δr).
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Fig. 10.1 (a) The unit ball is a good approximation to the unit cube in 2 dimensions. (b) A
depiction of a projection to 2 dimensions of a ball in very high dimensions—it looks spiky like
a porcupine. (c) A shell of width δr in a ball of radius r in �d . For δ = 0.1 and d = 100, the shell
has 99.9% of the ball volume

This implies, by elementary properties of the volume,

vd(Bd(c, r)) = vd(r) ≤
∑
p∈S

vd(Bd(p, δr)) = |S|vd(δr).

Putting in the formula above for vd(·) and simplifying, we get

|S| ≥
(

1

δ

)d

,

as claimed.

To see what this means, consider a situation where we are working in d = 100
dimensions and δ = 0.1. The size of such a net is then at least 10100. Storing or
iterating over a net, this large is computationally infeasible, and thus such a grid
search method is practically infeasible in this range. We need to look for alternative
methods or else satisfy ourselves with a smaller accuracy and thereby a smaller net.

The geometry of high dimensions can also be very counterintuitive. For example,
consider the cube [−1, 1]d . In d = 2 dimensions, the ball of radius 1 with center
at the origin is a good approximation to the cube, see Fig. 10.1a. In fact, we cannot
pack more than one such ball into the cube. However, in higher dimensions, such
a ball is a very bad approximation to the cube. Indeed, the volume of the cube is
2d , and the volume of the ball is πd/2/Γ (d/2 + 1). One can show by using simple
asymptotic approximations of the Gamma function that the volume of the ball of
radius 1 is

vd(1) ∼ (πe)d/2

√
2π(d/2)d/2+1

,
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which is already miniscule even for d = 20. This is quite contrary to the intuition,
particularly, since despite this fact that the volume of the unit ball is extremely small
compared to the cube, there is only one unit ball that can fit inside the cube! Indeed,
if the center of such a ball is anything other than the origin, part of such a ball will
be outside the cube. Thus our imagination of the cube being a well-rounded body is
sometimes described as an inaccurate picture. Probably, a more accurate description
is that the cube is “spiky” in high dimensions, and its center (that can fit the unit ball)
is a very small region, while most of the volume is carried by the spikes—in other
words, the cube looks like a porcupine. Figure 10.1b shows a representation of a 2-
dimensional projection of such a cube in very high dimensions. This spikiness can
be attributed to the fact that measure tends to concentrate near the boundary, also
mentioned in Sect. 3.3. We show a small calculation demonstrating this to develop
some intuition about the result.

Example 10.11 Imagine a ball of radius r centered at the origin. Consider a shell
inside the ball of width δr , see Fig. 10.1c. What is the measure inside this shell
compared to the measure inside the ball? To compute this, we find its volume and
divide it by the volume of the ball. This is precisely

vd(r)− vd((1− δ)r)

vd(r)
.

Using the formula for vd(·) = πd/2rd

Γ (d/2+1)
, this readily simplifies to 1 − (1 − δ)d ≥

1 − e−δd , which holds because of the inequality 1 − x ≤ e−x . Suppose d = 100
and δ = 0.1, i.e., we are just about 10% into the ball from its boundary to its center.
In this case, our estimate gives us that the shell contains at least 1 − e−10 > 0.999;
i.e., 99.9% of the measure of the entire ball is within the shell.

A consequence of this concentration of measure phenomena is its implication for
nearest neighbor search where the curse of dimensionality has serious consequences
that cannot be circumvented by any algorithmic technique. As was shown by Beyer
et. al [4], if one assumes that data points are selected independently from certain
distributions, and the query point is selected independently as well, then for any
fixed ε > 0 as the dimension increases, the distance of the query point to all the data
points is within (1+ ε) of its distance to the nearest neighbor, with high probability.
Thus all points appear roughly equally close, rendering the entire concept of nearest
neighbors useless in some sense. The distributions mentioned above are not too
restrictive, and in particular, they include but are not limited to product distributions
such as the uniform distribution on a cube. On the other hand, this result does
not hold for example when the dimensions are highly correlated, and therefore,
under the manifold hypothesis mentioned before (Sect. 5.1), one can still hope that
proximity queries are useful.
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10.7 About the No-Free-Lunch Theorem (NFL)

In pursuit of ever more general procedures to perform any job, e.g., problem
solving in any science (data science in particular) in a most general and optimal
way, humans are always faced with Shakespeare’s Macbeth’s dictum “[...] the
desire is boundless, and the act a slave to the limit." Every science ultimately
unearths limitations inherent in the phenomena it concerns. The second law of
thermodynamics, relativistic limits on the speed of light in physics, and Godel’s
incompleteness theorems in logic are but examples. So it is not surprising that
machine learning and data science have also discovered inherent limitations in how
far the power of their methods can go. The No-Free-Lunch (NFL) theorem is one
prime example. According to the seminal paper by Wolpert and Macready [8]:

We have dubbed the associated results NFL theorems because they demonstrate that if an
algorithm performs well on a certain class of problems, then it necessarily pays for that with
degraded performance on the set of all remaining problems.

So, what exactly is the “No Free Lunch Theorem” (NFL)? It is a practical (backed
up by a theoretical) finding that essentially says that all optimization algorithms
perform equally well when their performance is averaged over all possible objective
functions. In the field of machine learning, NFL implies that all optimization
algorithms perform equally well when their performance is averaged across all
possible problems. Consequently, it suggests that there cannot exist a single best
machine learning algorithm for solving problems such as classification, regression,
clustering, or prediction. (Further elaboration on NFLs can be found at [8].)

In machine learning problem and data science, it is common to use an algorithm
to figure out the relationship or function mapping between the features X and a target
Y . To build a model for the purpose of making predictions or solving a problem,
every machine learning algorithm makes its assumptions about the data. Obviously,
the “goodness" of the model depends on how well the underlying patterns in the data
fit the assumptions. Therefore, any particular learning method may not perform well
if the assumptions failed. One cannot have the “best” predictions, even with perfect
knowledge of the underlying data. Hence, a particular method most likely to be best
for one problem or even dataset is not necessarily going to work well for other data
with different characteristics, let alone other problems, even if apparently similar.
Therefore, it is the data scientist’s job to explore and understand data carefully in
order to develop the right model and various models to find good enough solutions.
It is important to know about the assumptions made by each algorithm so that one
can choose the right method to use. In summary, for a data scientist, the aim should
not be to find a single “best” method to solve all problems, but to find methods that
produce good enough solutions for a few problem at hand.

A famous result characterizing the difficulty in machine learning was proposed
by Wolpert [30] and Schaeffer [27]. Following this, a series of other formalizations
of the result for other tasks such as search and optimization [30] were developed.
These results are collectively called the No-Free-Lunch (NFL) theorems. Specif-
ically, the NFL theorems outline the implicit tradeoffs associated with learning
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a model based on data. In particular, the conservation law of generalization
performance [27] proves that no learning bias can outperform any other bias over
the space of all possible learning tasks. Here, a learning bias is an assumption made
by the learning algorithm. For example, in decision trees (described in Sect. 2.1),
an implicit bias is to prefer shallow-depth trees; in PCA (described in Sect. 4.1),
the bias is to learn linear combination of features to represent the original features.
The NFL result implies that no matter what assumptions one makes, there will be
a subset of problems for which these assumptions will fail to yield a good enough
model.

As a concrete example of NFL, several learning algorithms refer to what is
called as Occam’s razor to bias the learning such that simpler models are specified
over more complex ones [29]. However, there follows from NFL that a learning
bias such as Occam’s razor, though valuable in some tasks, can only be useful for
some subset of all possible learning tasks. In other words, there is no universal
learning bias that provably works for any learning task. However, if one argues
that real-world learning tasks are a subset of all possible learning tasks where
such learning biases work well, then even with the somewhat negative result of
the NFL theorems, practically, it is perfectly reasonable to use these biases within
learning and dimensionality reduction algorithms. In fact, in a related work [23], the
argument is made that real-world learning tasks are not uniformly distributed across
the possible learning tasks. A reasonably sound argument for why this is the case is
based on the fact that real-world learning tasks are a product of human knowledge.
For instance, to humans, in the type of problems that machine learning is useful for,
the independent variables are likely to be related to the dependent variable in ways
that can be inductively inferred by classifiers. Thus, despite negative results from
NFL, it is still possible to have an optimistic view of assumptions made in learning
and dimensionality reduction methods in general, if one is thoughtful enough to
make the right assumptions.
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Chapter 11
Appendices

Max Garzon , Lih-Yuan Deng , Nirman Kumar , Deepak Venugopal,
Kalidas Jana, and Ching-Chi Yang

Abstract This chapter presents a summary review of prerequisite concepts from
statistics, mathematics and computer science, although readers are expected to have
a nodding familiarity with most of them. It also provides some background on a
number of computational problems and data sets used in the book or particularly
useful for data science and dimensionality reduction; as well as a review of
computing environments and platforms that could be used as a playground to run
and test the methods and solutions described in this book. The aim is to provide a
refresher of what they are and point to sources in the literature where they could be
studied in more detail, if needed.

Basic concepts such as “element,” “set,” “subset,” “power set” of a given uni-
verse or populations of objects Ω and operations among them (such as “union,”
“intersection,” “complementation,” and such) and “functions” among them will be
assumed to be familiar to the reader so as to require no definition beyond their
ordinary intuitive meaning from elementary high school or college mathematics.
For example, the indicator function χ of a subset E ⊂ Ω is a function with domain
Ω into the real numbers R, given by χE(s) = 1 if s ∈ E and χE(s) = 0 in the
complement of E.
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11.1 Statistics and Probability Background

The subject matter of statistics is understanding and processing data at the level
of aggregates and populations through observations of their individual objects. The
subject matter of probability is random phenomena and their inherent uncertainty.
A cornerstone concept for both is that of a random experiment, i.e., any process in
the world that can be repeated any number of times and produces one of a certain
number of observations (or outcomes) every time, such as tossing a coin, rolling a
die, rolling a pair of dice, the total rainfall amounts at home on a given day, the
life length of the only light bulb in the kitchen, or the time between consecutive
emissions of atomic particles from this sample of a radioactive material. The set of
single outcomes (called simple or elementary) events of such an experiment is called
the sample space Ω of the experiment. For example, for the toss of the same coin
twice, the sample space is (Table 11.1)

Ω = {(H,H), (H, T ), (T ,H), (T , T )} .

Probabilistic analysis proceeds by assigning a measure of likelihood or uncer-
tainty to these elementary events and their combination into more complicated
compound events (all referred to as just events), like parity ({2, 4, 6}) in the case of
the roll of a die. These measures are usually assigned by frequency of occurrence in
a large number of repetitions of the experiment, but they can be arbitrarily assigned
as long certain rules of common sense are respected. Such a structure is called a
probability space.

A probability space consists of a sample space Ω and a function P on Ω that assigns a real
value P(s) to every simple event s ∈ Ω and by extension, a probability value to composite
events E according to

P(E) =
∑
s∈E

P (s) ,

so that P(∅) = 0 and P(Ω) = 1 .

In particular, if an event A = A1 ∪ · · · ∪ Ak can be partitioned into a disjoint set
of parts Ai , then P(A) = P(A1 ∪ · · · ∪ Ak) = ∑

i P (Ai), whereas only P(A) =
P(A1 ∪ · · · ∪ Ak) ≤ ∑

i P (Ai) is true if the subsets have overlaps. If Ω is finite,
this procedure assigns a probability to every subset of Ω . For infinite sets in the
continuum, the assignment is more involved (with sums of an infinite number of

Table 11.1 Sample space
and possible values of a
random variable X that
counts heads in the random
experiment of tossing a coin
twice

Simple event s First toss Second toss X(s)

(H,H) 1 1 2

(H, T ) 1 0 1

(T ,H) 0 1 1

(T , T ) 0 0 0
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terms), but P usually boils down to using measures such as length ( 1D intervals),
areas ( 2D regions), volumes (in 3D spaces) and perhaps hypervolumes (in higher
dimensional spaces), and follow the same basic rules.

Probability spaces can be classified as discrete or continuous depending on
whether the sample space is a finite or countable set, or whether it is larger in
cardinality, say the continuum of a line segment in 1D Euclidean space, where the
underlying random experiment could be taking a random point from the unit interval
[0, 1].

In a probability spaces, the conditional probability of an event B given another event A is

P( B |A ) = P(B ∩ A)/P (A)

Two events A,B in a probability space are stochastically independent if the outcome of
the random experiment being in A does not affect the probability of it being in B, i.e., if
P( B |A ) = P(B), or equivalently, P(A ∩ B) = P(A)P (B) .

A probability function P is a special case of a more general concept of random
variable as observations made on the outcomes of a random experiment.

A random variable (RV) is a real-valued function X : Ω → R defined over the probability
space (Ω, P ), i.e., for each s ∈ Ω , X(s) is a (properly defined) real value. A (discrete)
stochastic process is a sequence of random variables {Xt }t∈N defined on a common
probability space. A sample of a probability space (Ω, P ) are the values of a run of the
stochastic process (Xt≤n) for some finite value n ∈ N selected according to the same
probability model P (so the variables are independent and identically distributed (i.i.d.) .)

Example 11.1 The number of heads X when tossing two coins (all possible values
of X are 0, 1, or 2), and a value between 1 and 6 for the roll of a die are properly
defined RVs, but the name or age of the person who tossed the coin(s) is not since
the coin(s) tosses do not determine it. ��

RVs can also be classified as discrete or continuous depending on whether the
set of values taken on is a countable set (like a subset of the natural numbers N, as
with counting heads on coin tosses) or not (like the continuum of values in the real
numbers R, as with some measurement of a continuous quantity, like length, weight
or time.)

Any random variable X defines certain important events for given values a of one
observation. For example, the event denoted [X = a], (X = a), or simply X = a,
consists of the elementary events that produce a specific observation with value a.
The probabilities of these events define an important distribution associated with X.

The probability density function (pdf), also called mass function (pmf), of X is the function
fX (or just f if X is clear from the context) given by

f (x) = P(X = x), x ∈ R .

For continuous random variables that can take on infinitely many values in R
corresponding to points on an interval, the values could be nonzero despite the fact
that there is an infinite number of them and all their probabilities must still add up
to 1. Therefore, this definition still makes sense for continuous RVs X as well, but
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the calculations get more involved and it is not really required for the purpose of
this book.

Tables 11.2 and 11.3 show characteristic properties and facts about commonly
used discrete and continuous probability distributions, respectively.

In statistics and data science, understanding a RV may be difficult because of the
various values it may take in a variety of situations (say, the salaries of American
citizens today.) A human mind makes better sense of a few values, so statisticians
are challenged with the data science task of making RVs accessible to human minds.
For example, what single value to choose as most representative of the values taken
on by the RV? How spread are the values of the variable across the population Ω?

The expected value (or mean) μ = E(X) of a RV X is the weighted sum of the values of X

using as weights the probabilities Pk of the events [X = xk], i.e., for discrete X,

E(X) =
∑
x∈R

xf (x) =
∑

k

xk P (X = xk) =
∑

k

Pk xk ,

where the xks range over all the values taken on by X; and for continuous X,

E(X) =
∫

x∈R
xf (x) dx

Table 11.2 Common discrete RVs, probability distributions and their characterizing parameters
(pdf f (x), mean μ and variance σ 2 )

Distribution X ∼ parameters

Range of X pdf Mean σ 2

Standard uniform
X ∼ U(1, . . . , m)

1
m

(m+ 1)/2 m2−1
12

{1, · · · ,m}
General uniform
X ∼ U(A, . . . , B)

1
B−A+1 (A+ B)/2 (B−A+1)2−1

12

{A,A+ 1, · · · , B}
Bernoulli X ∼ Ber(P ) P x(1− P)n−x P P (1− P)

{0, 1}
Binomial X ∼ B(n, P )

(
n
x

)
P x(1− P)n−x nP nP (1− P)

{0, 1, 2, · · · , n}
Poisson X ∼ Poisson(λ) λxe−λ

x! λ λ

N = {0, 1, · · · }
Geometric X ∼ Geo(P ) P (1− P)x 1−P

P
1−P
P 2

N = {0, 1, · · · }
Negative binomial
X ∼ NB(r, P )

(
x+r−1

r−1

)
P r(1− P)x

r(1−P)
P

r(1−P)

P 2

N = {0, 1, · · · }
Hypergeometric
X ∼ HG(n,N, S)

(S
x)(

N−S
n−x )

(N
n)

n S
N

n S
N

(N−S)
N

N
(N−1)

{L, · · · , U} where L = max(0, n+ S −N) and U = min(n, S)
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Table 11.3 Common continuous RVs, probability distributions and their characterizing parame-
ters (pdf f (x), mean μ and Variance σ 2 )

Distribution X ∼ parameters pdf Mean σ 2

Range of X

Standard uniform X ∼ U([0, 1]) f (x) = 1 1 1
12

Interval [0, 1]
General uniform X ∼ U([A,B]) f (x) = 1

B−A
1 B−A

12

Interval [A,B]
Standard normal X ∼ N(0, 1) f (x) = 1√

2π
e−x2/2 0 1

R = (−∞,+∞)

General normal X ∼ N(σ,μ) f (x) = 1√
2πσ

e−(x−μ)2/(2σ 2) μ σ 2

R = (−∞,+∞)

Standard logistic X ∼ Logis(0, 1) f (x) = e−x

(1+e−x )2 0 π2

3

R = (−∞,+∞)

General logistic X ∼ Logis(μ, β) f (x) = 1
β

e−(x−μ)/β

(1+e−(x−μ)/β )2 μ π2

3β2

R = (−∞,+∞)

Standard exponential: X ∼ Exp(1) f (x) = e−x 1 1

[0,+∞)

General exponential: X ∼ Exp(λ) f (x) = λe−λx 1
λ

1
λ2

[0,+∞)

Double exponential: X ∼ DExp(λ) f (x) = λ
2 e−λ|x| 0 2

λ2

R = (−∞,+∞)

Gamma: X ∼ Gamma(α, β) f (x) = 1
Γ (α)βα xα−1e−x/β αβ αβ2

[0,+∞)

Beta: X ∼ Beta(α, β) f (x) = Γ (α+β)
Γ (α)Γ (β)

xα−1(1− x)β−1 αβ αβ2

[0, 1]
χ2 : X ∼ χ2(ν/2, 2) f (x) = 1

Γ (v/2)2v/2 xv/2−1e−x/2 ν 2ν

[0,+∞)

Student t: X ∼ t (ν/2, 2) f (x) = Γ v+1
Γ v

√
vπ

(
1+ x2

v

)− v+1
2

0 (v > 1) v
v−2

R = (−∞,+∞) (v > 2)

because the infinitely many terms in the sum force an integral.
The variance of X is

V ar(X) = E(X − E(X)) =
∑
x∈R

(x − μ)2f (x) or
∫

x∈R
(x − E(X))2f (x)dx

i.e., the mean of the RV Y = X − E(X). The standard deviation (std) of X is

σ = √
V ar(X) .

These parameters μ = E(X) and σ(X) provide useful statistics for humans to get
an intuitive understanding of a RV X. Besides having single numbers summarizing
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a dataset, they are useful in many other ways. For example, the features in a given
dataset X may be scaled different for different features and common scales may be
desirable. One can center the data by subtracting from each feature Xi its mean μi ,
so that the mean of the features are then all common and equal to 0. Further, one
can also rescale the centered values by their standard deviation σ , i.e., replace Xis
by (Xi − μi)/σi . This is the standard normalization of the new features to mean 0
and std 1 and are called the Z-scores. They exhibit essentially the same statistical
properties of the original data X, but may facilitate other methods (e.g., Principal
Component Analysis PCA with heterogeneous data.)

The concept of random variable can be extended to that of a random vector X in
dimension pD in the standard way, by adding more components in a Cartesian way.
Likewise for the mean, variance and standard deviation of a random vector X.

For a 2D discrete random vector X = (X, Y ), the joint pdf of X is given by fX,Y (x, y) =
P(X = x, Y = y) and its marginal pdf’s are

fX(x) = P(X = x) =
∑
y

P (X = x, Y = y) =
∑
y

fX,Y (x, y) , and

fY (y) = P(Y = y) =
∑
x

P (X = x, Y = y) =
∑
x

fX,Y (x, y).

11.1.1 Commonly Used Discrete Distributions

Table 11.2 shows common discrete probability distributions and typical applica-
tions.

Discrete Uniform Distribution
X ∼ U(1, 2, ..., m) with pdf f (x) = 1

m
, x = 1, 2, · · · ,m (m ≥ 1) .

One random experiment for this distribution is to toss a fair die once and observe
for X the number shown. In this case, X ∼ U(1, 2, ..., 6) . Another experiment for
such a distribution is to choose a random digit and observe for X the digit chosen.
In this case, X ∼ U(0, 1, 2, ..., 9) .

1. E(X) = m+1
2 .

2. V ar(X) = m2−1
12 .

In the general case, choosing an integer at random in the interval [A,B]
for X gives X ∼ U(A,A + 1, ..., B) with pdf f (x) = 1

C
, x = A,A +

1, · · ·B, where C = (B − A+ 1) .

1. E(X) = A+B
2 .

2. V ar(X) = C2−1
12 , where C = (B − A+ 1).
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Binomial Distribution
X ∼ B(n, p) with pdf f (x) = (

n
x

)
P x(1− P)n−x = n!

x!(n−x)!P
x(1− P)n−x, x =

0, 1, · · · , n.

One experiment for such a distribution is to toss a fair coin 10 times and observe
for X the number of successes (say, heads.) In this case, X ∼ B(10, 0.5) .

1. E(X) = nP .
2. V ar(X) = nP (1− P) .

There are conditions on the random experiment to yield a RV with this distribution:

• the experiment consists of n identical and independent trials;
• each trial is Bernoulli, i.e., it results in one of two outcomes, success or failure;
• from trial to trial, the probability of success on a trial is P and remains constant.

The probability of failure is 1− P .

Poisson Distribution
X ∼ Poisson(λ) with pdf f (x) = λxe−λ

x! , x = 0, 1, 2, · · ·
One experiment for such a distribution is to observe for X the number of traffic

accident at a certain location during a certain time interval (e.g., rush hour.)

1. E(X) = λ.
2. V ar(X) = λ.

Geometric Distribution
X ∼ Geo(P ) with pdf f (x) = P(1− P)x, x = 0, 1, 2, · · ·

One experiment for such distribution is to observe for X the number of (repeated)
failures in a Bernoulli trial needed to obtain the first success.

1. E(X) = 1−P
P

.
2. V ar(X) = 1−P

P 2 .

Negative Binomial Distribution
X ∼ NB(r, P ) with pdf

f (x) =
(

x + r − 1

r − 1

)
P r(1− P)x, x = 0, 1, 2, · · ·

One experiment for a such distribution is to observe for X the number of failures
in a Bernoulli trial until the r th success is observed.

1. E(X) = r 1−P
P

.
2. V ar(X) = r 1−P

P 2 .

Hypergeometric Distribution
A RV X has a hypergeometric distribution if and only if its pdf is

f (x) =
(
S
x

)(
N−S
n−x

)
(
N
n

) ,
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1. E(X) = n S
N

.
2. V ar(X) = n S

N
N−S

N
N

N−1 .

One experiment for such distribution is to draw balls from an urn and for X to
observe the number of balls drawn marked as “Success” in choosing n balls without
replacement from an urn containing N balls, with s of them marked as “Success”
and the remaining N − s balls marked as “Failure.”

11.1.2 Commonly Used Continuous Distributions

Table 11.3 shows commonly arising continuous probability distributions and their
characterizing parameters.

Uniform Distribution
X ∼ U(A,B) with pdf f (x) = 1

B−A
, A ≤ x ≤ B.

1. E(X) = A+B
2 .

2. V ar(X) = (B−A)2

12 .

The special case with A = 0, B = 1 yields the standard uniform continuous
distribution X ∼ U(0, 1) in the interval [0, a] with pdf

f (x) = 1, 0 ≤ x ≤ 1 .

1. E(X) = 1
2 .

2. V ar(X) = 1
12 .

Normal Distribution
X ∼ N(μ, σ 2) with pdf f (x) = 1√

2πσ
e−(x−μ)2/(2σ 2) .

1. E(X) = μ.
2. V ar(X) = σ 2.

If X ∼ N(μ, σ 2), then Y = aX + b ∼ N(aμ+ b, a2σ 2) .

The standard normal distribution is Z ∼ N(0, 1) with pdf f (z) = 1√
2π

e−z2/2 .

1. E(Z) = 0
2. V ar(Z) = 1

Logistic Distribution
X ∼ Logistic(μ, β) with pdf f (x) = 1

β
e−(x−μ)/β

(1+e−(x−μ)/β)
2 .

1. E(X) = 0.
2. V ar(X) = π2

3β2 .
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The standard logistic distribution is Logistic(0, 1) with μ = 0 and β = 1, i.e.,
its pdf is f (x) = ex

(1+ex)2 , or equivalently, f (x) = e−x

(1+e−x)2 ,−∞ < x < ∞. .

This is an important distribution because the popular logistic regression is based
on this distribution.

Exponential Distribution
X ∼ Exp(λ) with pdf f (x) = λe−λx , x ≥ 0 .

1. E(X) = 1
λ

.

2. V ar(X) = 1
λ2 .

The standard exponential distribution is Z = λX, with pdf f (z) = e−z , z ≥
0.

1. E(Z) = 1 .

2. V ar(X) = 1 .

Double Exponential Distribution
X ∼ DExp(λ) with pdf f (x) = λ

2 e−λ|x|.

1. E(X) = 0 .

2. V ar(X) = 2
λ2 .

Gamma Distribution
X ∼ Gamma(α, β) with pdf f (x) = 1

Γ (α)βα xα−1e−x/β, 0 ≤ x < ∞.

1. E(X) = αβ .

2. V ar(X) = αβ2 .

Beta Distribution
X ∼ Beta(α, β) with pdf f (x) = 1

B(α,β)
xα−1(1− x)β−1 ,

where 0 < x < 1 and B(α, β) = Γ (α)Γ (β)
Γ (α+β)

is a complete beta function.

1. E(X) = αβ .

2. V ar(X) = αβ2 .

χ2 Distribution
X ∼ χ2(v) if and only if X ∼ Gamma(v/2, 2) .

1. E(X) = v .

2. V ar(X) = 2v .

When v = 2, X ∼ χ2(2) if and only if X ∼ Exp(2) .

If U ∼ U(0, 1), then X = −2 ln(U) ∼ χ2(2) .

If Z ∼ N(0, 1), then X = Z2 ∼ χ2(1).
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Student’s t Distribution

X ∼ t (v) with pdf f (x) = Γ
(

v+1
2

)

Γ ( v
2 )
√

vπ

(
1+ x2

v

)− v+1
2

, −∞ < x < ∞ .

1. E(X) = 0 (where v > 1.)
2. V ar(X) = v

v−2 (where v > 2.)

F Distribution
Y with pdf Y = X1/v1

X2/v2
, where X1 ∼ χ2(v1) is independent of X2 ∼ χ2(v2) .

1. E(X) = v2
v2−2 (where v2 > 2.)

2. V ar(X) = 2
(

v2
v2−2

)2
v1+v2−2
v1(v2−4)

(where v2 > 4.)

The F distribution is commonly used in ANOVA tests.
Connection with the t distribution: if X ∼ t (v), then Y = X2 ∼ F(1, v) .

Connection with the beta distribution: if Y ∼ F(v1, v2), then Y = v2
v1

X
1−X

, with
X ∼ Beta(v1/2, v2/2) .

Weibull Distribution
X with pdf f (x) = α

β
xα−1e−xα/β, 0 ≤ x < ∞ .

Cauchy Distribution
X with pdf f (x) = 1

πb
(

1+( x−a
b )

2
.
)

1. E(X) does not exist.
2. V ar(X) does not exist.

Multivariate Normal Distribution
X ∼ Np(μ,Σ) with pdf f (x) = 1√|2πΣ | exp

(
− (x−μ)′Σ−1(x−μ)

2

)

If X ∼ Np(μ,Σ), then Y = AX+ b ∼ Np(Aμ+ b,AΣA′)
If Z = Σ−1/2(X− μ) ∼ Np(0, I), then Z ∼ Np(0, I) and

X = μ+Σ1/2Z ∼ Np(μ,Σ) .

The marginal distribution and conditional distribution are normal distributions.

The well-known property that
(

X−μ
σ

)2 ∼ χ2
1 , where X ∼ N(μ, σ 2), can be

extended to

(X− μ)′Σ−1(X− μ) ∼ χ2
p

Trinomial Distribution (Extension of the Binomial Distribution)
If there are three possible outcomes for a trial, where X is the count for the first
category with probability px , Y is the count for the second category with probability
py and n is the total number of trials, Z = n − X − Y is the count for the third
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category with probability 1 − px − py . This random vector X = (X, Y ) follows a
trinomial distribution with the probability density function

P(X = x, Y = y) = n!
x!y!(n− x − y)!P

x
x P

y
y (1− Px − Py)

n−x−y,

where x ≥ 0, y ≥ 0 and x + y ≤ n This is an extension of the binomial
distribution where the marginal distributions of X, Y , and X + Y are B(n, px),
B(n, py), B(n, px + py), respectively.

It can be further extended to multinomial distribution with more categories.

11.1.3 Major Results in Probability and Statistics

Bayes’ Theorem
If A,B ⊂ Ω are events in a probability space with P(A)P (B) �= 0, then

P(B |A ) = P(A |B )P (B)/P (A) .

More generally, if Ω = B1 ∪ B2 ∪ · · · ∪ Bm is a partition of the sample space Ω

(hence Bi ∩ Bj = ∅ for i �= j ), with P(Bi) �= 0, then

P(Bi |A ) = P(A |Bi) P (Bi)/[ΣiP (Bi)P (A |Bi )] .

For the next three results, let Xi, i = 1, 2, · · · , n be a random sample of size n

from a general distribution with mean μ and variance σ 2 and let X̄n = 1
n

∑n
i=1 Xi

be the mean of the initial subsample of size n.

Central Limit Theorem
If the sample size n is large, regardless of the given distribution of the Xis, the
random variable X̄ is approximately normally distributed

X̄ ∼ N(μ, σ 2/n),
X̄ − μ

σ/
√

n
∼ N(0, 1).

That is, the limiting distribution ofWn = X̄−μ

σ/
√

n
will converge toN(0, 1) as n →∞ .

Chebyshev’s Inequality
Regardless of the distribution of the Xis, for every ε > 0,

P( | X̄ − μ | ≥ ε ) ≤ σ 2

nε2
.
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Law of Large Numbers
Regardless of the distribution P and the value of ε > 0, the distribution of X̄ is
concentrated around its mean μ, i.e.,

P( | X̄n − μ | > ε ) → 0,

for all n > Nε , for some Nε sufficiently large.

11.2 Linear Algebra Background

This section summarizes important facts in linear algebra and matrices that are
useful to understand their role and implications for data science.

11.2.1 Fields, Vector Spaces and Subspaces

Concepts such as numbers of various kinds (natural, integer, rational, real and
perhaps complex) are usually part of the modern high school curriculum. The
concept of a vector occurs in courses like physics and chemistry as a quantity that
has associated with it not only a real number as a length but also a direction, such as
force, velocity and acceleration, usually represented by arrows to signify magnitude
(the length) and direction (the tip of the arrow).

These concepts are generalized in Cartesian geometry by abstraction into scalars
and vectors in higher dimensions beyond 3D using the same intuitions (just like
distances are in Sect. 1.1) and even into more abstract objects, still called scalars
and vectors by analogy. Mathematicians have produced a systematic exploration of
these concepts in the subfield of linear algebra, by distilling out the main concepts
necessary for working with vectors and coordinate systems in a more general and
effective fashion. The key rules to require are the usual properties of real and
complex numbers for the scalars and vectors for vectors spaces. The advantage of
this abstract setup is that the thinking only has to be done once by mathematicians,
but conclusions can be applied to any set of objects by us all, just as long as they
satisfy some key rules, as described next. They can be reasoned with in just the same
way one would with lengths and arrows pointing in some direction, even though they
may not be them literally.

A field F is a set of objects endowed with two operations addition (+) and multiplication
(·) between pairs of them that satisfy the usual properties of their likes with real numbers in
R:, i.e., for all elements a, b, c ∈ F :

• Both operations are associative ((a+b)+c = a+ (b+c)), commutative (a+b = b+a

and a · c = c · a), have neutral elements (like 0 for addition and 1 for multiplication)
and inverses (denoted −a for addition and b−1 for multiplication, except for 0, so that
a + 0 = a, a + (−a) = 0 and b · b−1 = 1 for b �= 0.)
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• Multiplication distributes over addition, i.e.,

a · (b + c) = (a · b)+ (a · c) .

(The · for multiplication is, as usual, dropped to ease notation.)

Example 11.2 The set R of real numbers is a field with the usual operations of
addition and multiplication. So are the sets of complex and of rational numbers.
Even the set with just two elements B = {0, 1} (the Boolean set) is a field under
addition modulo 2 and multiplication as usual, which makes it the smallest field
possible. It is even interesting to note that the hours in a clock of only 5 (or 3 or
7, or any prime number of) hours, i.e., the set Z5 = {0, 1, 2, 3, 4} is also a field if
the operations are performed as usual with integers, but taking care of subtracting or
adding 5 every time a result goes out to bring it back to this range 0-4 (e.g., 2+3 = 0
and 2 · 3 = 6 − 5 = 1 so 2,3 are both additive and multiplicative inverse of one
another. These latter are examples of finite fields (know as Galois fields, in honor of
their discoverer, the French mathematician E. Galois [9] in the 1800s.) ��

The concept of vector space requires a scalar field F . In this book, as in common
applications, the field of scalars is always the real R or complex numbers C.

A (linear) vector space V over a field F (with elements called scalars) is a nonempty set
of objects called vectors endowed with two operations of addition (+) and multiplication
by scalars from F (indicated by just concatenation) that satisfy the usual properties of their
likes with real numbers in R and vectors in Cartesian spaces, i.e., for all elements λ,μ ∈ F

and u, v,w ∈ V :

• addition is associative ((u + v) + w = u + (v + wc)), commutative (u + v = v + u),
has a neutral element (like 0 for addition) and inverses (denoted−u) so that u+ (−u) =
u− u = 0;

• Multiplication by a scalar is also associative and distributes over vector addition, i.e.,

λ(μu) = (λμ)u and λ(u+ v) = λu+ λv .

• Scalar multiplication by the multiplicative identity scalar leaves vectors unchanged, i.e.,
1v = v for all v ∈ V .

Example 11.3 If d > 0 is an integer and F is any field, the Cartesian product
V = Fd = F × · · · × F (d times) is a vector space over F with vector addition
and multiplication defined componentwise. (To ease the notation, a column vector is
written as the transpose (x′) of a row vector x = (x1, · · · , xd).) The familiar vector
space Rd (like the 2D plane and 3D spaces) are thus recovered as particular cases
with the real number field. ��

A subset W of a vector space V is a subspace if it satisfies the properties required by the
definition of vector spaces with the operations inherited from the container space V , i.e., W

is closed under addition, taking additive inverses and multiplying its elements by arbitrary
scalars.

A subspace is never empty, as it must contain at least the neutral element 0 under
addition.
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Example 11.4 If F = B, the smallest field (in fact, the Galois field Z2), the vector
space of dimension d over B is called the (Boolean) hypercube of dimension d

and consists of binary vectors of length/dimension d. It plays an important role in
Shannon’s theory of communication and error-detecting and error-correcting codes
for robust communication through a noisy channel. ��

11.2.2 Linear Independence, Bases and Dimension

The following concepts make sense in an arbitrary vector space V over a field F

(which can be thought of as R for the purposes of this book.)

A linear combination in V is a vector obtained as a sum of scalar products

λ1v1 + λ2v2 + . . .+ λnvn

of some finite subset of elements v1, v2, . . . , vd ∈ V with scalars λ1, λ2, . . . , λn ∈ F , The
set of all possible linear combinations of vectors v1, v2, . . . , vn ∈ S is the (linear) span of a
subset S ⊆ V and it is denoted L (S).
The subset S is linearly independent if no element in it is a linear combination of any other
elements in S. It is called linearly dependent otherwise.

Example 11.5 The vectors u = (1, 2, 3)′, v = (2,−1, 4)′ and w = (0,−5,−2)′
are linearly dependent since 2u− v+w = 0, i.e., v = 2u+w . A set containing the
zero vector 0 is always linearly dependent as 0 can always be obtained from others
as a linear combination with scalar coefficients 0. ��
Example 11.6 The vectors u = (1, 1, 1)′ and v = (1, 0,−1)′ are linearly
independent because neither one is a linear combination (in this case, that means
a scalar multiple) of the other: λu = (λ, λ, λ) = v = (1, 0,−1) implies that
λ = 1 = −1 = −λ, which is nonsense (except perhaps in the Galois field
{0, 1}.) If a linear combination is 0, e.g., λu + μv = 0 for some λ,μ ∈ R, then
(λ+ μ, λ, λ− μ)′ = 0 and this would mean that both λ and μ are the scalar 0, the
trivial linear combination producing the vector 0 . ��

It is evident that L (S) is always a (linear) subspace of V . For a vector space
V , it is of much interest to find a smallest subset B that generates the full space by
doing linear combinations with scalars from F .

A (linear) basis of a vector space V is a subset of vectors B with the smallest number
of elements that spans the space V , i.e., L (B) = V . The (linear) dimension of V is the
cardinality (number of elements) of such a basis.

Such a set has to be linearly independent since a vector that is a linear combination
of others can always be excluded to obtain a smaller such set with the same linear
span. Naturally, a vector space V that has a finite basis B is called finite dimensional.
Not all vector spaces are finite dimensional (for example, the space consisting
of one-way infinite sequences (x1, x2, · · · ) of real numbers with componentwise
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operations. Such spaces will be of no concern in this book since they are out of reach
for conventional computers, unless finite dimensional approximations are used.)

Example 11.7 The vector space Rd is finite dimensional since it has a basis
B = {e1, e2, . . . , ed} where ei = (0, . . . , 1, . . . , 0)′ has 0 coordinate everywhere
except at the i th position, where ei = 1. It is easy to verify that every vector
v = (v1, v2, . . . , vd)′ is a linear combination of the basis elements v = v1e1 +
v2e2 + . . .+ vded . This basis is called the standard basis, so the dimension of Rd is
dim(Rd) = d. ��

A subspace always has dimension no larger than that of the entire host space V ,
although this is not entirely obvious from the definitions above.

A subspace W of a finite dimensional vector space of finite dimension is never
larger than dim( V ), i.e. dim(W) ≤ dim( V ).

Example 11.8 Given a basis B of a vector space V , every vector must be expressible
as a linear combination of the elements of B. The coefficients in this combination
are unique, because two different combinations being equal would lead to a
combination for 0 (by transposing terms to just one side and re-grouping) with some
nonzero coefficient(s), which would in turn lead to one vector being expressible
as a linear combination of the others, nonsense since elements in B are linearly
independent. These coefficients can be put together into a vector (λ1, λ2, · · · , λd) to
obtain a Cartesian object over the scalar field so one can get rid of the abstract nature
of the objects in the original vector spaces V and handle them as usual business in
Rd for a vector space of dimension d, or in Fd for some scalar field F . ��

11.2.3 Linear Transformations and Matrices

In a linear space, as the basis elements go, so follows the rest of the space, as
illustrated by the following facts.

A linear transformation (or mapping) T : V → W between two vector spaces over the
same field F is a function that preserves linear combinations, i.e, for every pair of scalars
λ,μ ∈ F and of vectors u, v ∈ V ,

T (λu+ μv) = λT (u)+ μT (v) .

Example 11.9 In the 2D Euclidean space, any rotation counterclockwise (say 45◦)
is a linear transformation. A perpendicular projection onto a 1D line (such as the
45◦ line) is also a linear map. However, a translation by a fixed nonzero vector
v0 like (1, 1) given by T (u) = u + v0 is not since T (u + v) = u + v + v0 �=
(u+ v0)+ (v + v0) = (u+ v)+ 2v0. (The latter are called affine transformations.)

��
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There are several interesting subspaces associated with a linear map.

The kernel (or null space) K of a linear map T : V → W consists of all vectors in V that
collapse to the 0 of W under T , i.e.,

K = {u ∈ V |T (u) = 0} = T −1(0) .

The range of T is the set T (V ) = {T (u) : u ∈ V }, i.e., the set of all images T (u) obtained
by ranging u through all elements of V .

The action of any linear map is entirely determined by its mapping of the elements in
any basis of V . Linear maps can be represented by yet a richer concept of a number
over a given field F .

A matrix A (or Ad×k if dimensions are important) over a field F is a rectangular array of
dk elements of F (d rows and k columns.) The matrix A associated to a linear map T for
given bases B,B ′ of V,W respectively, has as i th column (out of dim( V ) = d columns )
of dimension k = dim( W) consisting of the coefficients of the image of the i th element bi

in B with respect the basis B ′ ; i.e., A = [T (b1)
′, . . . , T (bd)′] .

Such a matrix representation for the linear transformation T is not unique as it
depends on the choice of bases B,B ′, although it is of course unique if the bases are
fixed. Once B,B ′ are fixed, it can serve as a full representation of T . For example,
one advantage is that the image of an arbitrary element u ∈ V can be obtained as

T (u) = Au′ ,

i.e., just as the matrix product of A and the column vector u′ with coefficients the
components of u with respect to the basis B. Thus, just like a linear function in
one variable is given by f (x) = mx, where m is the slope of the line representing
its graph, so is the concept of matrix A an abstraction of the concept of slope to a
generalized vector space. In particular, one can regard a given dataset (a 2D table) as
a matrix A defining some linear transformation and whose decomposition(s) below
provide some high-level analysis of the dataset (examples are found in Sects. 2.1
and 9.3.)

11.2.4 Eigenvalues and Spectral Decomposition

A lot of other essential information about T is hidden inside A.

An eigenvalue of A (and so of T ) is a scalar λ such that T (u) = λu for some nonnull vector
u, i.e., T only stretches (if |λ| > 1) or shrinks (if |λ| < 1) u by a factor of λ (perhaps
reversing orientation if λ < 0) without changing its direction Such a vector u is called an
eigenvector of T for the eigenvalue λ.

Therefore, if T happens to have a set of linearly independent eigenvectors that form
a basis of V , understanding the effect of the transformation T becomes evident.

Example 11.10 If the eigenvectors are e1 and e2 in the 2D Euclidean plane and T

has two eigenvalues λ1 = 2 and λ2 = −1, the vector v = (3, 4) decomposes as
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V = 3e1 + 4e2, and then the effect of T on v is T (v) = 3T (e1) + 4T (e2) =
3(2e1) + (−1)e2) = 6e1 − 4e2, i.e., to stretch the e1 component by a factor of 2
and the e2 component by a factor of (−1) (reversing orientation) without stretching
since |λ| = | − 1| = 1 and combine the results back to get T (v) = (6,−4). If
the eigenvectors happen to be rotated with respect to the standard basis, changing
the basis to a basis of eigenvectors will simplify the expression of T into a just a
diagonal matrix (where the entries are zero (0) off the main diagonal (entries Aij =
0 where i �= j .) ��

The eigenvectors of a linear transformation T : V → V within a space V can
be computer manually by solving a system of equations determined by T (u) = λu,
for each eigenvalue λ root of the polynomial equation of degree d vanishing the
determinant

|I − λA| = 0 ,

one equation for each component, where I is the identity matrix of the same
dimension. Alternatively, they can be computed (perhaps only approximately)
by using software libraries in a computational platform (some are described in
Sect. 11.6.)

Spectral Decomposition
If A = Ad×d has d different eigenvalues λ1, . . . , λd and their eigenvectors are
linearly independent, then A has a factorization (the spectral decomposition of A)
of the form

A = QΛQ−1 ,

where Q is an invertible matrix consisting of the eigenvectors of A (as columns)
and Λ is a diagonal matrix with the eigenvalues in the main diagonal (i.e., all
entries off the diagonal are 0, hence denoted just by Λ = D(λ1, . . . , λd) , or just
(λ1, . . . , λd) .)

Example 11.11 For the transformation in Example 11.10, Λ = D(2,−1) and the
columns of Q are u1 = (1, 0)′ and u1 = (0, 1)′, i.e., Q = I is the identity matrix
(which it its own inverse) and A is its own spectral decomposition A = Λ. If T

is a rotation as in Example 11.9, then the matrix of T with respect to the standard
basis is A = [s(1, 1)′ s(−1, 1)′], where s = sin(45◦) = cos(45◦) = √

2/2 is a
shrink factor to get the rotation of the standard vector (1, 1)′ to have length 1, i.e.,
s = √

2/2. The eigenvalues of A are the solution to the quadratic equation

| I − λA | = [(1, 0)′(0, 1)′ − λA | = λ2 − sλ+ (1+ s2) ,

which are not real, but have a complex imaginary component, so A is not
diagonalizable. ��

All symmetric matrices have real eigenvalues (possibly with so-called multiplici-
ties when two eigenvalues are equal, as in the solution of (λ−1)2 = 0, in which case
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the eigenspace generated by the eigenvectors of such an eigenvalue have dimension
larger than 1.) Nonetheless, in the more general case of a nondiagonalizable matrix,
a similar decomposition is possible if one is willing to substitute the entries in the
spectral decomposition by square blocks submatrices (of dimension equal to the
dimension of the eigensubspaces corresponding to such eigenvalues of multiplicity
larger than 1.)

In Euclidean spaces, every matrix A has a Jordan Canonical Form (or Jordan
decomposition) as a product

A = PΛQ ,

where Λ is a block superdiagonal matrix with eigenvalues in the tridiagonal band
and possibly some ones (1s) in the first superdiagonal (entries λij with j = i + 1.)

In the most general case where the range space W of T has different dimension
from V , a decomposition is still possible, but the matrices may no longer be square,
e.g., Λ may be a truncated diagonal matrix and P,Q must have the appropriate
dimensions for the matrix products to make sense (in a product ΛQ, the number of
columns of Λ must match the number of rows of Q.) This factorization is called
the Singular Value Decomposition (SVD) of A. This decomposition has found many
interesting applications in data science, for example in Latent Semantic Analysis
(LSA), where the number of documents (data points) n = d is different from the
number of distinct words (features) p appearing in all the documents. (More details
can be found in Sects. 4.3 and 10.2.)

Finally, Euclidean and Boolean spaces are yet richer in structure. The length of
the projection of a vector u onto another v can be computed using the so-called dot
product (also scalar product), given by

γ = u · v =
d∑

i=1

ui vi = ‖u‖‖v‖ cos(α)

(sometimes simply denoted by the juxtaposition uv .) The projection of u onto v

is then γ v (and also γ u of v onto u.) So, vectors orthogonal to one another have
dot product 0 and a matrix A is orthogonal exactly when every pair of its column
vectors are orthogonal. They represent linear transformations obtained by rotating
the standards basis vectors ei to other vectors (the columns in A) so as to preserve
their orthogonality between any pair of them. In particular, the length of a vector
(distance of the tip from the origin 0) is then given by ‖u‖ = √

u · u . This structure
applies as well to Boolean hypercubes, which are metric spaces with the resulting
Hamming distance between u, v given by Ham(u, v) = ∑d

i=1 ui ⊕ vi , the sum of
the XOR (exclusive or) of their components.

Further details can be found in any standard textbook in linear algebra, e.g., [20].
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11.3 Computer Science Background

This section summarizes important facts in computer science that are useful to
understand its role and implications for data science, as we well as its scope and
limitations.

11.3.1 Computational Science and Complexity

The working definition of data science is problem solving to extract information
about questions concerning a population from samples of it. To really make sense
of this definition, the question of What exactly is information? would need to be
addressed. That is precisely the subject matter of computer science and so it plays a
central role in any science, data science in particular.

The subject matter of computer science would appear to go along the lines of
the science concerned with the study of computers. This definition turns out to be
inadequate for a variety of reasons. Among many others, there is a difference to
be made between information and its embodiment, usually called data, as well as
between information processing and data communication (which is what Shannon’s
concept of information aims to answer.) Second, there is no other science like
it (like car science, or microscope science, or even human science; but there is
computer science!) Third, a case can also be made that there are different kinds of
information, such as knowledge and even wisdom. The funny thing is, humans and
living organisms alike are all remarkable users of information, yet no one can define
precisely what it is. Thus, defining information is a far more difficult challenge that
has remained and will probably remain unsolved for a good time to come [5].

Another way to define computer science would be along the lines of the study
of information and its processing. But alas, in addition to answering “What is
information?”, this definition would require an answer to the question “What is
a processor.” Therefore, it is not surprising that the digital age has been born
more directly concerned with data processing devices, particularly in their specific
electronic implementation, i.e., the conventional computers of our time.

Yet another way to characterize a science is by defining the scope or aspect of
the world it is concerned with. Like data science, the scope of computer science can
then be regarded as concerning computational problems in the sense that they all
call for certain types of inputs as data (as described in Sect. 1.3) to a problem and
spell out an expectation in terms of the kind of result to be produced as an answer.

An algorithmic problem (AP) is a list of questions, each fully expressible as a finite string
over a fixed finite alphabet of characters, with an answer determined by the question and
also expressible as a finite string over the same alphabet.

APs include all data science problems dealt with in this book, but can be much more
general in terms of the questions to be answered and the solutions provided.
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Example 11.12 Primality testing is one of the most representative examples. The
alphabet is decimal (another problem could be in binary) and questions are follows.

[REC(Primes)] PRIMALITY TESTING

INSTANCE: A decimal string x

QUESTION: Does x represent a prime integer (no proper factorization)?

There is an infinite number of questions (one for each x, e.g., x = 19 or 32), but for
each there is a unique answer (e.g., Yes, No respectively.)

On the other hand, the outcome of a given toss of a specific coin (heads or tails)
is not an AP because first, it is probably impossible to fully specify a coin with a
finite string containing full information to determine it as a physical object different
from other coins, but more importantly, the answer to a question is not unique and
fully determined by the coin (even for the same coin) in advance. ��

APs come in three flavors, recognition problems, generation problems (how
to produce all and only the strings in a given language, like Python 7.9, from
some specification of it) and compaction problems (how to produce finite strings
fully describing potentially infinite sets such as a certain natural or computer
programming language.) Recognition problems have proved challenging enough
that most of what is understood by the foundations of computer science today is
concerned with them. Primality testing [REC(Primes)] is a typical example. A
recognition problem is specified by a set of strings (called a formal language) L

over some finite alphabet Σ as follows.

[REC(L)] MEMBERSHIP(L)

INSTANCE: A string x over alphabet Σ

QUESTION: Does x belong to L (“Yes” or “No”)?

Of course, many other types of APs are of interest in their own right in practice.
Common problems are [SORTING] and [SEARCHING]. A particular type is
particularly relevant to data science because they are about optimization of the type
involved in machine learning and data science algorithms.

[TSP] [TRAVELING SALES PERSON]

INSTANCE: A weighted finite graph G consisting of vertices V and (undi-
rected) edges joining them, weighted by nonnegative integer num-
bers

QUESTION: What is a tour of the graph visiting all nodes with the shortest total
sum of (the) weight(s) among all possible tours?

[SAT] [SATISFIABILITY]

INSTANCE: A Boolean formula ϕ(x1, · · · , xk) of k Boolean variables
QUESTION: Is ϕ satisfiable, i.e., does it evaluate true for any one assignment of

truth values of its variables x1, · · · , xk?
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For example, the formula ϕ(x, y) = (x and y) is satisfiable (if both x, y are
assigned the value True), but ϕ(x, y) = (x and x̄) is not (x̄ is the Boolean negation
of x.)

[ MORT(d) ] [MORTALITY](d)

INSTANCE: A finite set S of matrices of size d × d with integer entries
QUESTION: Is the set S mortal?

Here, a set of matrices is mortal if some product of elements from S (in some order
and possibly with repetitions of the choices) multiply out to the 0 (null) matrix.
Although with numbers (d = 1) this is only possible if some element in S is 0 itself,
as generalized numbers, products of two nonzero square matrices of size 2 × 2
may actually be the null matrix (like, two diagonal matrices with a single 1 in their
diagonal at different positions.)

What constitutes an acceptable solution of an arbitrary AP in general? Intuitively,
one would expect some kind of device that answers the questions in the AP, i.e.,

[S1] the device must be able to read any of the questions x in the problem as an
input, work on it for a finite period of time and eventually stop (halt) the
processing, after

[S2] returning the true answer to question x; in addition,
[S3] the same device must do so systematically for every question x in the AP

without any further modification, after its design is complete.

A solution to an AP is usually some sort of model or program/code, ultimately to be
translated into some sort of physical device to be run, typically a conventional computer, but
possibly very different (e.g., a human brain or a quantum computer) that satisfies conditions
[S1]–[S3] above.

What constitutes an acceptable specification of a device (which may quickly turn
into wishful thinking for a magical solution) is beyond the scope of this book.
(Alan Turing’s proposal in the foundational paper that marks the birth of computer
science [21] in 1936 is considered to be the simplest and rigorous standard.)
Nevertheless, one can get an understanding of what is now called a Turing machine
with an intuitive equivalent, the concept of an algorithm. Computer scientists
generally agree that the following thesis is the appropriate characterization of what
constitutes an acceptable solution to an AP, arrived at after searches lasting over
half a century of computer science by computer scientists all over the world for a
sound, objective and appropriate definition of “computer” and discovering that many
other possibilities are just Turing machines in disguise. That includes concepts such
as algorithms, computer programs, mechanical procedures, automatic procedures,
automatable procedures and many others.

The Church–Turing Thesis
Every algorithm solving an algorithmic problem can be specified and implemented
as a Turing machine.
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In a nutshell, an algorithmic problem is solvable if some device exists (which is
not quite to say it will be easy for humans to find) implementing some algorithm
that receives input data encoded as strings, crunches symbols with a fixed program
but unbounded storage and running time, and returns the answer encoded in a finite
string expressing the answer to each and all question(s) in the AP, correctly and
systematically. Solving an AP requires either a full and rigorous description of a
device that must ideally satisfy the three conditions [S1]–[S3], or, alternatively,
some argument that such a device could not possibly exist (i.e., that the problem
is unsolvable), independently of our state of knowledge today or in the future.

In particular, strictly speaking, a machine learning algorithm is such a procedure,
but usually the problem is only vaguely specified in advance. It produces a device
(such as a neural net, decision tree or the like) to answer some set of questions that
may not be exactly the ones originally intended, or produce answers that may not
be correct, or fail to provide answers to some of the intended questions but not to all
of them. They have to be algorithms nonetheless, executable on a physical device,
either practically built (such as a conventional digital computer) or at least an ideal
device that could possibly be built (such as a Turing machine.)

Much of computer science is devoted to elucidating the solvability status of
APs in general, either in theory or in practice. Turing [21] demonstrated that
there exist many unsolvable problems beyond the reach of conventional computers.
For example, MORT(d) is algorithmically unsolvable, according to the definition
above, i.e., no algorithm can ever be created or discovered by any genius that will
answer the question of mortality systematically for all sets of integer matrices of
size 3× 3. In fact, most algorithmic problems are actually unsolvable (even ideally)
and hence, it is necessary to relax the conditions [S1]-[S3] on a solution and accept
imperfect solutions that err or fail to produce exact and true answers in a systematic
fashion (systematicity is probably harder to give up since it requires intensive labor
in changing devices or programs as the questions change.)

Within the realm of solvable problems, there is a further distinction that is very
material for computer science and data science in particular. The definition of
solution to an AP does not impose any restrictions on how long it will take for the
device to produce the answers to the questions. In practice, this can become a huge
issue, if the amount of resources (typically time or memory) taken by the solution
device is too large, as illustrated in Table 11.4.

Table 11.4 Small and large growth rates of a running time for the brute force solution of the
[SAT] problem

n 1000nlog n 100n2 nlog n · · · 2n/3 2n

20 .09 sec .04 sec 4 sec · · · .0001 sec 1 sec.

50 .3 sec .25 sec 1.1 hr · · · .1 sec 35 years

100 .6 sec 1 sec 220 days · · · 2.7 hr 1010 cent.

200 1.5 sec 4 sec 125 cent. · · · 3× 104 cent. ?

1000 10 sec 2 min ? · · · ?! ??!!
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Thus, for example, to determine whether a formula containing n = 100 symbols
(a small size in typical applications of the algorithm) is satisfiable or not would take

2100sec/109 × 3600× 24× 365× 100 ≥ 108 centuries .

This is obviously unacceptable since any solution device would probably take longer
than the age of the universe. The trouble is, however, that this algorithmic problem
[SAT] of satisfiability of a Boolean formula (defined above) is not just an intellectual
curiosity of interest only to logicans and mathematicians. The hard fact of the
matter is, literally hundreds of problems of immediate economic importance in such
diverse fields as scheduling, combinatorial optimization (e.g., linear programming),
secure secret communication (e.g., factoring and primality testing) and even national
security can all be shown to be just as hard as (if not harder than) SAT, including
TSP. These considerations explain, at least in part, why one of the most important
problems in computing today is precisely to find new computational strategies that
do overcome the complexity barrier posed by this combinatorial explosion.

As an area of computer science, computational complexity aims to quantify and
analyze the efficiency of solutions to algorithmic problems, and hence their inherent
difficulty if they are to be solved by any device that qualifies as a computer. To
understand the basic paradigm, it is necessary to realize that the various instances
of an algorithmic problem will pose various degrees of difficulty to a solution
device. The situation is in contrast with other definitions of efficiency in physics and
chemistry, where the efficiency of a procedure is defined by some sort of percentage
measuring the amount of useful output compared to the amount of resource given.
For example, in thermodynamics one measures the efficiency of a thermal engine
as, say, 80% to indicate that the engine in capable of devoting eighty percent of
the given amount of energy in useful work output, while spending 20% in doing
its internal operations. The efficiency of a chemical reaction to produce alcohol, for
example, can likewise be given as some percentage of the amount of raw materials
fed to the reaction to produce it. The yield of an investment is usually given by a
percentage as well.

Such a simple minded scheme cannot be used to quantify the efficiency of
an algorithmic/computational problem simply because there are usually many
questions to gauge the performance on; moreover, each question may take more
or less work to answer. (e.g., it is much harder to figure out whether a longer
number 7583 is prime integer than to decide whether 5 is prime.) An example
is probably already familiar to the reader. The solutions to [SORTING], namely
sorting algorithms, require performing a number of operations. The input size can
be taken to be, for example, the number of items to be sorted, or the number of
bits necessary to describe the unsorted instance file. In a comparison-based sort, it
is to be expected that the bulk of the effort by a solution algorithm will be spent
on performing comparisons between the various items in the input instance. Thus,
a reasonable choice of resource to quantify to perform the analysis is comparisons,
although it is certainly not the only one. With these measurements, the worst-case
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efficiency (or complexity) of QUICKSORT , is O(n log n). Surprisingly, the average
case efficiency of QUICKSORT is O(n log n) as well.

In general, the measure of input size n for an arbitrary algorithmic problem in
Turing computation is naturally the length on the string x describing the instance.
The prime resources used in computational studies of complexity is based on the
mode of operation of the solutions, which ultimately go back to Turing machines
(by virtue of the Church–Turing thesis.) They are time (as measured by the number
of elementary steps or instructions executed by the algorithms to return the answers)
and space (the amount of memory used by the machine in the course of calculating
the answer to a given instance.) Since the problem usually has many questions given
by strings of variable length n, this time or memory spent becomes a function tn or
sn of n. Since counting can become very difficult, one is only interested in the order
of growth O(tn) or O(sn) of these functions for a given solution.

Once the complexity of a particular solution is defined, one can then make
precise the complexity of an algorithmic problem as the lowest possible complexity
achieved among all of the many possible solutions, either for time or space.

Given a bound {fn}n on the amount of resource ρ available, the complexity class ρ(fn)

consists of all algorithmic problems that admit (deterministic) solutions with complexity
O(fn) units of the given resource ρ.

Thus, in the running example, [SORTING], belongs to the class TIME(n log n)

(thanks to the QUICKSORT algorithm), but it also belongs to the class DTIME(n2),
as does [MINIMAL SPANNING TREE]. [SORTING] does not belong, however,
to the class DTIME(n) since QUICKSORT is an optimal general-purpose sorting
algorithm.

Based on these and other considerations to become evident below, it has been
proposed that the class of algorithmic problems that admit solutions that take at
most a polynomial amount of resource O(nd) in the size n of the input, should
be considered the class of feasibly solvable problems. The precise definition is as
follows.

An algorithmic problem is feasible if there exists a solution whose complexity is a poly-
nomial function in O(nd), for some integer constant d ≥ 1. The class of tractable/feasible
problems is the class of algorithmic problems that can be solved in polynomial time, i.e.,

P =
⋃
d≥0

DTIME (nd) .

Example 11.13 (REC(Primes)) is a feasible problem solvable in time O(n3) [1], a
fact that took over 2300 years to establish. (The ancient Greeks were aware of the
problem since they discovered there are infinitely many prime numbers.) ��

However, the feasibility of the related solvable problem [FACTORIZATION]
of integers into prime numbers remains a challenge. Moreover, the status of most
optimization problems of interest in data science, such as [TSP] or it numerous
equivalents, remains unknown, i.e., some unbeknownst clever algorithm (like for
primality testing) may exist that puts them in P. Or, perhaps they do not belong in
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P at all. No one knows and some computer scientists claim humans may not have
the tools to figure the answer out yet. In fact, there are outstanding prizes (like $1M
dollars) for anyone with a valid proof for an answer to this vexing question for over
half a century now. More details about Turing computation and complexity can be
found in any textbook in theoretical computer science, e.g., [11].

Nevertheless, there is some good news concerning this class of problems (which
most computer scientists believe is as good it it is going to get.) When confronted
with an optimization problem (such as the shortest route in the [TSP] problem),
no one can stop us or any dumb machine from randomly guessing an ordering of
the cities for a tour and figure out its cost by simply adding up the costs of the
edges as given for that tour. A lucky person will get a tour after a few trials that
can hardly be improved with further trials. As dumb luck may have it, that may
well be the optimal tour that cannot be improved at all by any other means, or at
least be just good enough for a practical solution. Most other optimization problems
exhibit similar properties, so they can be collected in a class of their own, the class
NP (N stands for “nondeterministic” because their solution can only be found by
guesswork, but they can be verified deterministically in polynomial time, although
it may be impossible to find them out without guessing them nondeterministically.)
The question of whether the two classes of algorithmic problems are identical, i.e.,
whether NP =?P, has remained an outstanding open problem in computer science
for over half a century now, and it is recognized today as perhaps the most profound
and consequential question for many sciences, data science included.

11.3.2 Machine Learning

Machine learning (ML) is commonly understood [18] as the design of algo-
rithms/programs that improve their performance with “experience,” i.e., accessing
and processing data about a problem. In general, ML faces three major issues:

• Problem representation
Humans have to represent the problem as a data science problem (as discussed in
Sect. 11.4) as well as gathering and cleansing appropriate data (possibly includ-
ing dimensionality reduction) to solve the problem. Successful data extraction
often requires deep understanding of the domain of interest the problem comes
from.

• Optimization
ML solutions usually formulate learning tasks as an optimization problem.
Typical methods used to solve these optimization problems include gradient
descent, Lagrange multipliers and Maximum Likelihood.

• Evaluation
Evaluating Machine learning solutions requires quantification of how well a
solution works on new datasets, a nontrivial task (described in the previous
subsection.) It is quite possible that the same procedure can yield very different
results based on different evaluation methods.
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Machine Learning (ML) can thus be better characterized as a collection of optimiza-
tion procedures for learning algorithms. The most common types of techniques used
to implement Machine learning solutions are described next.

Gradient Descent
This is one of the most frequently used tools in ML. The most common supervised
learning algorithm, Backpropagation (described in Sect. 2.2) used in training neural
networks, is a gradient descent algorithm.

Example 11.14 Gradient descent is used to find the minimum (or maximum) of a
given multivariable function f (x1 . . . xn), i.e.,

min
x1,...,xn

f (x1, . . . xd)

For such a function, the direction (of the many inputs xi) of fastest change from a
point x (the steepest slope in the container space (d + 1)D space of the graph of
the function) is indicated by a vector called the gradient whose components are the
partial derivatives with respect to each of the independent variables in the function
evaluated at the point x , i.e.,

�f (x1, . . . xn) =
[

∂f

∂x1
(x), . . . ,

∂f

∂xn

(x)
]

Naturally, this direction changes with the specific point x. To minimize f , one can
start (t = 0) at a nearby point x0 and take a small step in the direction that is
opposite to the gradient direction, i.e., that of −�f (x0). To update the candidate
optimal location x(t) for a minimum, the xi in iteration t > 0 is given by

x
(t)
i = x

(t−1)
i − ε

∂f

∂xi

(x(t−1))

where ε is a small positive constant. A choice of a very small ε may take a long time
to converge, while a large ε may jump over the optimal location for a minimum
value of f . For convex functions (with a single global minimum), gradient descent
is guaranteed to find the location where f attains its minimum value, the optimal
solution. ��
Max-Likelihood Estimation
Max-Likelihood Learning, also called Max-Likelihood Estimation (MLE), is a
general method for learning probabilistic models. MLE learns the parameters of a
distribution from observations. Given independent and identically distributed (i.i.d)
observations, x1 . . . xn, MLE aims to optimize the function

max
θ1,θ2,...,θk

P (x1 . . . xn | θ1, θ2, . . . , θk)
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where θ1, θ2, . . . , θk represent the parameters of the distribution. To estimate these
parameters, one can use a gradient ascent procedure (analogous to the gradient
descent procedure above, moving in the direction of �P(Θ0).)

Lagrange Multipliers
This method is common in multivariable calculus to optimize functions with several
variables, usually when there are constraints on the variables.

Example 11.15 Support Vector Machines (SVMs) employ this technique of opti-
mization. In order to maximize a function f (x1, x2) subject to a constraint between
x1 and x2 that g(x1, x2) ≥ 0, one considers a multiplier λ (called a Lagrange
multiplier) and reformulate the problem as an optimization problem with an extra
variable λ to maximize

L(x1, x2, λ) = f (x1, x2)+ λg(x1, x2) .

To solve the optimization problem in terms of the variables x1, x2 and λ, the
Karush–Kuhn–Tucker conditions (KKT conditions) specify that one can solve the
optimization problem in terms of three constraints.

g(x1, x2) ≥ 0

λ ≥ 0

λg(x1, x2) = 0

Thus, whenever λ �= 0, g(x1, x2) = 0. In SVMs, points corresponding to nonzero
Lagrange multipliers are referred to as support vectors. Intuitively, they represent
the boundary of the function. The stationary points at λ �= 0 turn out to be the points
at the boundary of the function, i.e., where g(x1, x2) = 0. ��
Gaussian Learning
Gaussian distributions (described in Appendix 11.1) are widely applied in unsuper-
vised learning, including Gaussian Mixture Models and autoencoders. For instance,
a single variable Gaussian distribution is defined by 2 parameters, the mean μ

(−∞ < μ < ∞) and variance (σ 2 ≥ 0). The distribution is defined as follows.

N(X |μ, σ 2) = 1

(2πσ 2)1/2 exp

(
− 1

2σ 2 (x − μ)2
)

E(X) = μ ,

V ar(X) = σ 2 ,

Mode(X) = μ .
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In a multivariable situation of dD vectors (d > 1), the Gaussian parameters
include a d-dimensional mean vector and d × d covariance matrix that is both
symmetric and positive-definite (described in Appendices 11.1 and 11.2.)

11.4 Typical Data Science Problems

Data science problems are defined as computational algorithmic problems and are
assigned a mnemonic name in brackets (e.g., [IrisC]) used to refer to the problem
elsewhere. The last character indicates the type of problem they are (Classification,
Prediction or Clustering.) The population of inputs is described in the INSTANCEs
of the problem, together with an example of such. The problems are usually solved
using certain samples described in the next Appendix 11.5, where more details about
the population can be gathered.

[AstroP] PLANETARY BODY LOCATION

INSTANCE: A celestial body x in our solar system (e.g., Mars or Saturn), a
location on Earth (latitude, longitude) and a time stamp t

QUESTION: What is the location (azimuth and elevation) in the sky where x

will be found from the given location at time t?

[IrisC] IRIS FLOWER CLASSIFICATION ({ Setosa, Versicolor, Virginica })
INSTANCE: A feature vector

x = (sepal length, sepal width, petal length, petal width) (in cms)
describing an iris flower, e.g., (4.6, 3.1, 1.5, 0.2)

QUESTION: Which kind of flower is x?

[NoisC] NOISY CLASSIFICATION

INSTANCE: A synthetic dataset D where some (derived) features have been
obtained by certain combinations (linear or statistical) from the
remaining hidden (primitive) features

QUESTION: Which are the derived and the primitive features in D?

[CharRC] CHARACTER RECOGNITION ({0, 1, 2, 3, 4, 5, 6, 7, 8, 9})
INSTANCE: A 2D picture of a handwritten decimal numerical digit x

QUESTION: Which digit is it?

[MalC] MALWARE CLASSIFICATION (Π )

INSTANCE: A piece of malware x (program)
QUESTION: Which category c in partition Π does x belong in?

The categories in the partition Π could be those listed in Table 11.13 in
Appendix 11.4.
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[BodyFP] HUMAN BODY FAT ESTIMATION

INSTANCE: A feature vector with a person x’s body measurements including
weight, height, age and others1

QUESTION: What is x’s body fat percent of the total weight?

The full set of features is listed in Table 11.9 in Sect. 11.4.

[BioTC] BIOTAXONOMIC CLASSIFICATION (T )

INSTANCE: A (long) DNA sequence (over the alphabet {a, c, g, t}) from a
living organism x

QUESTION: What species in taxon T does x belong in?

The features representing an organism could be, for example, mitochondrial genes
COI, COII, COIII, and CytB from the organism’s genome. Other choices give rise
to different problems, as shown in the corresponding dataset in Sect. 11.5. A most
complex problem will arise if the full genome is used to represent an instance of a
biological organism.

[PhenoP] PHENOTYPIC PREDICTION (T , F )

INSTANCE: A (long) DNA sequence x (over the alphabet {a, c, g, t}) from a
living organism in T ?

QUESTION: What’s the quantitative measurement of x’s phenotypic feature F

when fully grown?

Examples of phenotypic features are the area of the cephalic apotome (head top),
its peculiar spot pattern, the body color of its thorax/abdomen, or the area of the
postgenal cleft (mandible) in a black fly larva; Or, it could be the rosette dry mass
(leaf weight), or the life span of a specimen of A. thaliana when fully grown (end
of the reproductive cycle to adulthood.)

[RossP] ROSETTE AREA OF A PLANT (T )

INSTANCE: A (long) DNA sequence x (over the alphabet {a, c, g, t}) from a
plant in T ?

QUESTION: What’s the area of x’s rosette when fully grown?

[LocP] PROVENANCE OF A PLANT (T )

INSTANCE: A (long) DNA sequence x (over the alphabet {a, c, g, t}) describ-
ing a plant in T ?

QUESTION: Where on Earth (latitude, longitude) was x grown?

[CWD] CODEWORD DESIGN

INSTANCE: A positive integer m and a threshold τ > 0
QUESTION: What is a largest set B of single DNA strands of length m that do

not cross hybridize to themselves or to their complements (nxh set)
under stringency τ according to the h-distance , i.e., |xy| > τ for
all x, y ∈ B ?
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11.5 A Sample of Common and Big Datasets

This section summarizes datasets that are used throughout the book to illustrate
methods and solutions for a variety of dimensionality reduction methods and
problem solving, or that could be used in other applications. (They are organized
by domain area and are listed in alphabetic order.)

Astronomy
This dataset is perhaps one the oldest and most comprehensive and accurate set of
observations (for his time) of the skies with the naked eye, compiled over a period of
40+ years by the Danish astronomer Tycho Brahe and his assistants with the naked
eye (telescopes were not invented yet) in the late 1500s. His student Johannes Kepler
used the data to synthesize our current model of the solar system that reproduces the
data based in the knowledge expressed in the three well-known physical Kepler’s
laws (Table 11.5).

Biology
The Iris Flower dataset was used by Fisher to test his ideas about Discriminant
Analysis [7]. It is perhaps one of the oldest and well-known dataset in the statistics,
pattern recognition and data science literature. It contains 3 classes of 50 instances
each, where each class refers to a type of iris plant, as illustrated in Tables 11.6 and
11.7.

The Body Fat dataset contains estimates of the percentage of body fat for 252 men
determined by underwater weighing and various body circumference measurements.
(Accurate measurement of body fat is inconvenient/costly and it is desirable to
have alternative methods of estimating body fat based on more easily available
measurements.) The set was assembled and published by [12] (Tables 11.8, 11.9,
and 11.10).

Table 11.5 Tycho Brahe’s dataset

Population Celestial bodies

Dimensionality (features) Hundreds

Class distribution N/A

Size (Nr of data points) Tens of thousands

Sample data point Positions of Mars and comets in the celestial sky

Origin [3]

Table 11.6 The Iris flower
dataset

Population Iris flowers

Dimensionality (features) 4

Class distribution 50 50 50

Size (nr of data points) 150

Sample data point (4.6, 3.1, 1.5, 0.2)

Origin [7]



11 Appendices 249

Table 11.7 Iris dataset (lengths are given in cm)

ID Sepal length Sepal width Petal length Petal width Label (species)

1 5.1 3.5 1.4 0.2 Iris-setosa

2 4.9 3.0 1.4 0.2 Iris-setosa

· · · · · · · · · · · · · · · · · ·
50 5.0 3.3 1.4 0.2 Iris-setosa

51 7.0 3.2 4.7 1.4 Iris-versicolor

52 6.4 3.2 4.5 1.5 Iris-versicolor

· · · · · · · · · · · · · · · · · ·
100 5.7 2.8 4.1 1.3 Iris-versicolor

101 6.3 3.3 6.0 2.5 Iris-virginica

102 5.8 2.7 5.1 1.9 Iris-virginica

· · · · · · · · · · · · · · · · · ·
150 5.9 3.0 5.1 1.8 Iris-virginica

Table 11.8 Human body fat dataset

Population Humans

Dimensionality (features) 4

Size (Nr of data points) 252

Sample Data Point (154.25, 67.25, · · · , 17.10, 23, 12.30)

Origin [12]

Table 11.9 Examples of 16 features in the body fat dataset of 252 men (columns.) (If unspecified,
circumferences are given in cm)

Person IDs

Feature 1 2 3 4 · · · 252

Weight (lbs) 154.25 173.25 154.00 184.75 · · · 207.5

Height (in) 67.75 72.25 66.25 72.25 · · · 70

BMI(= W
H

in Kg/m) 23.70 23.40 24.70 24.90 · · · 29.80

Neck 36.20 38.50 34.00 37.40 · · · 40.8

Chest 93.10 93.60 95.80 101.80 · · · 112.4

Abdomen 85.20 83.00 87.90 86.40 · · · 108.5

Hip 94.5 98.70 99.20 101.20 · · · 107.1

Thigh 59.00 58.70 59.60 60.10 · · · 59.3

Knee 37.30 37.30 38.90 37.30 · · · 42.2

Ankle 21.90 23.40 24.00 22.80 · · · 24.6

Bicep 32.00 30.50 28.80 32.40 · · · 33.7

Forearm 27.40 28.90 25.20 29.40 · · · 30

Wrist 17.10 18.20 16.60 18.20 · · · 20.9

Age (years) 23 22 22 26 · · · 74

BodyFat (lbs) 12.30 6.10 25.30 10.40 · · · 31.9
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Table 11.10 The biotaxonomy dataset

Population Organisms in 21 species across the biome

Dimensionality (features) 500-10,000

Class distribution (Table 11.11)

Size (data points) 249

Typical data point (COI, COII, COIII, CytB) (DNA sequences)

Origin [16]

Table 11.11 Organisms in the sample data for species classification of a biological taxon. The 21
classes/labels in the partition are in the first column

Label T : Genus species Common name Count

1 Apis mellifera Western honey bee 4

2 Arabidopsis thaliana Thale cress 5

3 Bacillus subtilis Hay/grass bacillus 18

4 Branchiostoma floridae Florida lancelet 18

5 Caenorhabditis elegans Round worm 6

6 Canis lupus Wolf 18

7 Cavia porcellus Pork 4

8 Danio rerio Zebra fish 9

9 Drosophila melanogaster Fruit fly 18

10 Gallus gallus Red junglefowl 18

11 Heterocephalus glaber Naked mole rat 3

12 Homo sapiens Human 18

13 Macaca mulatta Rhesus macaque 8

14 Mus musculus House mouse 18

15 Neurospora crassa Red bread mold 5

16 Oryza sativa Asian rice 12

17 Pseudomonas fluorescens Infectious bacterium 6

18 Rattus norvegicus Brown rat 18

19 Rickettsia rickettsii Tick-born bacterium 18

20 Saccharomyces cerevisiae Yeast 18

21 Zea mays Corn/maize 7

249

The Biotaxonomy dataset was obtained from 249 organisms collected from genetic
repositories (e.g., GenBank at www.ncbi.nlm.nih.gov/genbank/) and is illustrated in
Tables 11.11 and 11.12.

Cybersecurity
The Malware Classification Challenge (arxiv.org/abs/1802.10135) [2, 19] dataset
was released in 2015 and is publicly available through kaggle.com. An available
dataset consists of a set of 10,868 known malware files representing a mix of nine (9)
different malware families, as summarized in Table 11.13, e.g., “ramnit.” Code.exe
is a computer executable binary file obtained from compiling the source malware

www.ncbi.nlm.nih.gov/genbank/
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Table 11.12 Microsoft’s Malware classification dataset

Population Malware

Dimensionality (features) 1804

Class distribution 1541 2478 2942 475 42 751 398 1228 1013

Size (data points) 10,868

Sample data point (Code.exe, . . ., Vundo)

Origin kaggle.com

Table 11.13 Microsoft’s Malware classification problem. The labels for the classes in the
partition are in the first column

Labels Class name Type of Malware Count

1 Ramnit Worm 1541

2 Lollipop Adware 2478

3 Kelihos_ver3 Backdoor 2942

4 Vundo Trojan 475

5 Simda Backdoor 42

6 Tracur TrojanDownloader 751

7 Kelihos_ver1 Backdoor 398

8 Obfuscator.ACY Any kind of obfuscated malware 1228

9 Gatak Backdoor 1013

—-

10, 868

(headers removed.) Each datapoint contains both the raw binary content of the
malware file as well as metadata information extracted using the IDA disassembler
tool. These features include source code snippets, assembly command frequencies,
registers used and their frequency, data section of the code, key words in the
disassembly code, as well as a number of other extracted features (e.g., entropies
of the various features.) The classification challenge was to correctly assign every
piece of malware to one of the nine (9) categories.

Finance
The Adult dataset was extracted from the 1944 Census Bureau database found at
the source by Barry Becker to predict whether a person makes over 50, 000 a year
(Tables 11.14 and 11.15).

The Audit dataset was used to support research by the Ministry of Electronics and
Information Technology (MEITY) of the government of India. The goal was to help
auditors classify whether a firm is fraudulent or not on the basis of historical and
current risk factors (Table 11.16).
The Bank Marketing dataset was designed by a Portuguese banking institution to
direct marketing campaigns on the phone to decide whether a client will subscribe
(yes/no) to a term deposit (Table 11.17).

https://www.kaggle.com/
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Table 11.14 Adult dataset

Population Census income

Dimensionality (features) 15

Class distribution 23.93% 76.07%

Size (nr of data points) 48,842

Sample data point (53, Confidential, 234, 721, 11th, 7, Married-civ-spouse, Handlers

-cleaners, Husband, Black, Male, 0, 0, 40, United-States, ≤ 50K)

Origin www.census.gov/ ftp/pub/DES/www/welcome.html

Table 11.15 Audit dataset

Population Fraudulent firms

Dimensionality (features) 27

Class distribution 114 77 82 70 47 95 1 4 5 3 1 41 37 200

Size (nr of data points) 776

Sample data point (3.89, 6, 0, 0.2, 0, 10.8, 0.6, 6.48, 10.8, 6, 0.6, 3.6,

11.75, 0.6, 7.05, 2, 0.2, 0.4, 0, 0.2, 0, 4.4, 17.53, 0.4,

0.5, 3.506, 1)

Origin archive.ics.uci.edu/ml/machine-learning-databases/00475/

Table 11.16 Bank marketing dataset

Population Bank clients

Dimensionality (features) 17

Class distribution N/A

Size (nr of data points) 45,211

Sample data point (47, blue-collar, married, N/A, no, 1506, yes, no, N/A,

5, may, 92, 1, −1, 0, N/A, no)

Origin archive.ics.uci.edu/ml/machine-learning-databases/00222/

Table 11.17 Taiwanese bankruptcy dataset

Population Customer default payers

Dimensionality (features) 24

Class distribution Unknown

Size (nr of data points) 30,001

Sample data point (50, 000, 2, 2, 1, 37, 0, 0, 0, 0, 0, 0, 46, 990, 48, 233,

49, 291, 49, 291, 28, 314, 28, 959, 29, 547, 2000, 2019,

1200, 1100, 1069, 1000, 0)

Origin archive.ics.uci.edu/ml/machine-learning-databases/00350/

The Taiwanese Bankruptcy dataset was used to evaluate the predictive accuracy
of six data mining probability models of default based on labeled customer data
(Yes/No) on default payments in Taiwan.

www.census.gov/ftp/pub/DES/www/welcome.html
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Image Processing
The MNIST dataset [15] consists of gray scale images of handwritten digits. The
digits were handwritten by members of the US Census Bureau and high school
students. The digit in each image is size-normalized and centered. The dataset
is fairly large. The MNIST dataset is a popular dataset and a benchmark in the
image processing, machine learning and neural network literature. One of its major
real world applications was in the postal service to automatically scan and infer
handwritten zip codes. The pixels are binary images, i.e., the pixels are either on or
off (0 or 1.) (Tables 11.18 and 11.19).

The ImageNet dataset [14] is the largest hand-labeled image dataset currently
available. The latest dataset was published for the ImageNet Large Scale Visual
Recognition Challenge 2017 (ILSVRC17) for the problem of object detection in
and classification of images, i.e., to identify and find the location of objects familiar
to humans in images in a bounding box. The dataset was inspired to create a standard
benchmark (North Star) for computer vision research, is organized according to the
WordNet ontology (nouns only) and has been expanded to include 1000 categories
for object localization and 30 fully labeled categorized for object detection in videos.
It is also publicly available through kaggle.com.

Leisure
The Old Faithful Geyser dataset was singled out by Azzalin and Bowman [4] and is
available as a standard set in the package R or at www.stat.cmu.edu/~larry/all-of-
statistics/=data/ faithful.dat. Eruptions have been clustered into 3 categories (Short,
Medium, Long) (Tables 11.20 and 11.21).

Table 11.18 MNIST dataset

Population 28× 28D handwritten images of decimal digits

Dimensionality (features) 784

Class distribution 0: 5923, 1: 6742, 2: 5958, 3: 6131, 4: 5842, 5: 5421, 6: 5918, 7:
6265, 8: 5851, 9: 5949

Size (nr of data points) 60,000

Sample data point(s) (Figs. 2.2 and 5.6)

Origin [15]

Table 11.19 ImageNet dataset

Population Images of objects familiar to humans

Dimensionality (features) 181,503

Class distribution 200 object categories;

456,567 images of 478,807 objects in a training set;

40,152 images in a testing set;

20,121 images of 55,502 objects in a validation set

Size (nr of data points) 516,840

Sample data point N/A

Origin image-net.org

www.stat.cmu.edu/~larry/all-of-statistics/=data/faithful.dat
www.stat.cmu.edu/~larry/all-of-statistics/=data/faithful.dat
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Table 11.20 Old faithful Geyser dataset

Population Eruptions of old faithful (Yellowstone national park)

Dimensionality (features) 2

Class distribution N/A

Size (nr of data points) 272

Sample data point (3.600, 79) =(Duration, wait time to next eruption) (mins)

Origin [7]

Table 11.21 Netflix movie rating dataset

Population Netflix movies

Dimensionality (features) 4

Class distribution N/A

Size (nr of data points) 2,817,131

Sample data point Quadruplets <user, movie, date of rating, rating>

Origin www.kaggle.com/ laowingkin/netflix-movie-recommendation

Table 11.22 The Ames housing dataset

Population Residential properties in Ames, Iowa

Dimensionality (features) 82

Class distribution N/A

Size (nr of data points) 2930

Sample data point 82D vectors describing property/houses

Origin Assessor’s
office,jse.amstat.org/v19n3/decock/DataDocumentation.txt

Th Movie Rating dataset was provided by Netflix to support an open competition to
develop a movie recommendation system in 2006. The dataset is publicly available
through kaggle.com. The movie rating files contain ratings (1 to 5 *s) from 480,189
randomly chosen, anonymous Netflix customers (not associated with Netflix nor in
certain blocked countries) over 17,770 movie titles. The data were collected between
October, 1998 and December, 2005 and reflect the distribution of all ratings received
during this period. The average user rated 2000 movies and each movie was rated
by over 5000 users on the average, with wide variation (some movies received only
3 ratings and one user rated over 17,000 movies.) Although no user information
is provided, the dataset has been has been criticized by privacy advocates for
leaking customer information, although it was supposed to have been constructed
to preserve customer privacy (Table 11.22).
The Ames Housing dataset contains information from the Ames Assessor’s Office
about the assessed values for individual residential properties sold in Ames, Iowa
from 2006 to 2010 (Fig. 11.1). The data has 82 columns which include 23 nominal,
23 ordinal, 14 discrete, and 20 continuous variables (and 2 additional observation
identifiers).

www.kaggle.com/laowingkin/netflix-movie-recommendation
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Fig. 11.1 Facial expressions (positive: left; neutral: middle; negative: right) by trained actors in
the Cohn-Kanada dataset

Table 11.23 The
Cohn-Kanade dataset

Population Humans

Dimensionality (features) 64

Size (Nr of data points) 500 from 100 actors

Sample Data Point (Fig. 11.1)

Origin [13]

Psychology
The Cohn-Kanade dataset consists of approximately 500 image sequences from 100
subjects ranging in age from 18 to 30 years (65% are female; 15% are African–
American and 3% are Asian or Latino.) Each begins from a neutral or nearly
neutral face. For each, an experimenter described and modeled the target display.
Six are based on descriptions of prototypic emotions (i.e., joy, surprise, anger, fear,
disgust, and sadness.) These six tasks and mouth opening in the absence of other
action units were annotated by certified FACS coders [6]. Seventeen percent (17%)
of the data were comparison annotated. Inter-observer agreement was quantified
with the kappa coefficient, which is the proportion of agreement above what would
be expected to occur by chance [22] [8], with an average observer agreement of
0.86. Image sequences from neutral to target display were digitized into 640 × 480
or 640 × 490 pixel arrays with 8-bit precision for grayscale values. (Further
details can be found at ://www.ri.cmu.edu/project/cohn-kanade-au-coded-facial-
expressiondatabase/ (Table 11.23).

www.ri.cmu.edu/project/cohn-kanade-au-coded-facial-expressiondatabase/
www.ri.cmu.edu/project/cohn-kanade-au-coded-facial-expressiondatabase/
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Table 11.24 US DOE campus safety and security dataset

Population Title IV College Campuses in the US

Dimensionality (features) Hundreds

Class distribution (Variable by year)

Size (data points) Nearly 11,000 campuses

Sample data point N/A

Origin US Department of Education at ope.ed.gov/campussafety

Table 11.25 Synthetic dataset SYN12

Population 12D unit cube in Euclidean space

Dimensionality (features) 12

Class distribution 12 (6 primitive and 5 derived features, plus one label)

Size (nr of data points) 1000

Sample data point 12D numerical vectors in the unit hypercube

Origin [16]

Table 11.26 Synthetic dataset SYN23

Population 23D unit cube in Euclidean space

Dimensionality (features) 12

Class distribution 23 (12 primitive and 10 derived features, plus one label)

Size (nr of data points) 500

Sample data point 23D numerical vectors in the unit hypercube

Origin [16]

Safety in College Campuses
The Department of Education (DOE) of the United States collects and dissemi-
nates the yearly crime statistics for all title IV colleges and universities in the
United States. Major crime categories include arrests, criminal offenses, disci-
plinary actions, fire statistics, hate crimes, VAWA offenses, and sexual misconduct
(Table 11.24).

Synthetic Data
These synthetic datasets are fully described in the reference above [16] where
the sets originated. They afford perfect prior knowledge of feature dependencies
that can remain hidden from the DR methods. The effectiveness of DR methods
can then be assessed by how well they discover these hidden but most relevant
and independent features, from a full set that includes other confounding features
derived from the few primitive ones (Tables 11.25 and 11.26).

The primitive features were designed using the method (API) described in [10]
and publicly available in Python at sklearn.datasets.make_classification. The sec-
ond data set was generated likewise but halving the number of all parameters
involved in generating features in the second dataset SYN23, so just the second and
largest set is described. The dataset was generated in two phases. First, the sklearn
API was used to generate the primitive features in a 12D hypercube with sides of
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length 1.6 = 2∗0.8 and assign about the same number of points to each of the eight
classes. Each class is composed of several Gaussian clusters located near corners of
the 12D hypercube. For each class, the informative features are drawn independently
from the standard normal distribution N(0, 1). Four more features X13, X14, X15
and X16 were generated as linear combinations (with random coefficients) of some
primitive features, as provided in the API. In the second phase, 6 more predictors
were generated as follows. Features X17 and X18 were drawn as a repeat of two
randomly selected primitive features/columns. X19 was generated as the sum of
squares of two features selected randomly as

X19 = X2
i +X2

j for some fixed 0 ≤ i, j ≤ 12 .

X20 was obtained from the values of a linear regression model fitted using two
randomly selected features Xi and Xj as predictors with the Label as response.
The value for X20 was the deviation between the pair of values in Label and the
regression prediction. X21 was obtained the same way but with X2

i and Xj as
predictors from another random selection of predictors Xi and Xj . Finally, X22
was generated as the outcome of the natural logarithm of a randomly selected
but uniform predictor Xi (a transformation that does not change entropy.) Again,
different types of predictors were used as described above.

In general, synthetic data has a number of uses in data science. First, as illustrated
with datasets SYN12 and SYN23, they may increase prior knowledge about the
data and allow for much greater control on the part of the analyst to test, validate
and assess data analyses. Second, they may alleviate a number of concerns making
data available to the analyst, including privacy (e.g., with health records), anonymity
(legal compliance with, e.g., HIPPA regulations), intellectual property, value (data
is nowadays considered to be the most valuable asset in an organization) and
accessibility. considered to be probably the major roadblick to data analytics.)
Where any of these issues is a concern, real datasets can be cleansed and/or
transformed into roughly equivalent synthetic datasets that preserve the critical
trends and structure of the real data while being completely “fake,” thus affording
results of the analyses that nonetheless apply to the original data and problems.
Third, using the DR techniques discussed in Chap. 8, they can be converted into
much more informative datasets while being smaller in size and easier to crunch
and analyze. This can be very useful in large datasets where a pilot feasibility
study would inform a decision whether the results will be worth a large and costly
effort and even whether a project is feasible. It is therefore not surprising that most
data analytics platforms (described in Appendix 11.6) offer facilities to generate
synthetic data for specific problems and/or solutions (e.g., classification, clustering,
regression.)

Text Processing
WordNet is a lexical database of semantic relations between abstract language con-
cepts (so-called synsets of cognitive synonyms) in a given natural language (more
than 200 now), including synonyms, hyponyms, and meronyms. WordNet has been
used for many purposes in information systems, including word-sense disambigua-
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tion, information retrieval, automatic text classification and text summarization,
machine translation and even automatic crossword puzzle generation. WordNet was
originally a lexical database for the English language created by researchers at
Princeton led by George Miller as part of the NLTK corpus (Table 11.27). It is
regularly updated by the Princeton WordNet group, whose aim is to ensure that
there is an up-to-date version of high quality available for the English language. It
is available at https://CRAN.R-project.org/package=wordnet.

Other Data Collections
Many other datasets are constantly being generated or updated, so it is impossible to
account for them all. A selection of other sources that may come in handy currently
are shown in Table 11.28, particularly for big data sets.

Table 11.27 WordNet

Population Distinct synsets (representing abstract semantic concepts)

Dimensionality (features) Labeled edges between synsets indicating lexical relationships

(like antonym, meronym, part-of-speech) in the WordNet tree

Class distribution N/A

Size (nr of data points) 117,000

Sample data point(s) (leg, meronym, chair), (arm-chair, hyponym, chair),

(love, antonym, hate)

Origin [17]

Table 11.28 Other available big dataset collections

Name Source Description

Digital sky survey sdss.org The Sloan Digital Sky Survey has
collected and organized outer
space astronomical observations
(order of terabytes daily) that has
produced the most detailed 3D
maps of the Universe ever made

EARTHDATA https://earthdata.nasa.gov/ NASA’s Common Metadata
Repository (CMR) is a
high-performance, high quality,
continuously evolving metadata
system that catalogs all data and
service metadata records for
NASA’s Earth Observing System
Data and Information System
(EOSDIS)

Marine Geoscience Data
System (MGDS)

www.re3data.org/
repository/r3d100010273

Data repository that provides free
public access to marine
geophysical data products and
datasets relevant to the formation
and evolution of the seafloor and
sub-seafloor

(continued)

https://earthdata.nasa.gov/
www.re3data.org/repository/r3d100010273
www.re3data.org/repository/r3d100010273
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Table 11.28 (continued)

Name Source Description

GenBank (NIH) www.ncbi.nlm.nih.gov/
genbank/

US National Institute of Health
genetic sequence data repository,
an annotated collection of all
publicly available DNA sequences

IEEE dataPort ieee-dataport.org/datasets Over 3000 datasets in 25+
categories of topics, including
biomedicine, COVID-19, ecology,
environment, power and energy,
social science and transportation

NOAA Data Catalog https://data.noaa.gov/
dataset/

US National Oceanic and
Atmospheric Administration’s
datasets, including oceans,
currents, glaciers, temperature and
barometric pressure

UCI Machine Learning
Repository

https://archive-beta.ics.uci.
edu/

600 datasets about a variety of
topics, from flowers, wine,
diabetes and heart disease, to
auction verification, student
academic success and ImageNet,
to air quality, energy efficiency, the
ozone. The datasets are organized
by various criteria (e.g., subject,
problems/tasks) and properly
documented (original design and
problems.) There is a facilitate to
donate datasets

Visual Datasets https://public.roboflow.
com/

About 40 datasets consistings of
images on topics including
mushrooms, aerial maritime
drones, wildfire smoke, pistols,
and self-driving cars

11.6 Computing Platforms

This section provides summaries of computing platforms for data science and basic
tips to get started with the software. More detailed tutorials can be found readily
available online.

11.6.1 The Environment R

R is a popular interactive environment for computational programming and statis-
tical analysis. It is also considered to be a programming language. R can be traced
back to S, a language and package developed at Bell Laboratories of AT&T by
John Chambers and others (in 1976) for statistical analysis that was originally free
but eventually became a commercial package, S-PLUS. In 1991, R was created by

www.ncbi.nlm.nih.gov/genbank/
www.ncbi.nlm.nih.gov/genbank/
https://ieee-dataport.org/datasets
https://data.noaa.gov/dataset/
https://data.noaa.gov/dataset/
https://archive-beta.ics.uci.edu/
https://archive-beta.ics.uci.edu/
https://public.roboflow.com/
https://public.roboflow.com/
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Ross Ihaka and Robert Gentleman in the Department of Statistics at the University
of Auckland and it become available to the public in 1993. Since S-Plus and R
are implementations of S, both products can execute the same functions and most
common statistical functions without modification.

R is freely available for download from a comprehensive R archive network,
CRAN at cloud.r-project.org. CRAN is composed of a set of mirror servers
distributed around the world. There is an extension, RStudio that offers a user
interface in an integrated development environment that can be downloaded from
www.rstudio.com/download.

R has several software packages (few system supplied and many user-
contributed) available to implement various supervised and unsupervised statistical
and machine learning algorithms and evaluation methods. A list of the important
software libraries in R is shown in Table 11.29. The packages can be downloaded

Table 11.29 Popular software packages in R

Package::FunName() Description

stats::lm() fits linear models

stats::glm() fits generalized linear models (GLMs)

glmnet::glmnet() fits a GLM with LASSO or ElasticNet regularization

base::svd() returns the singular value decomposition of a
rectangular matrix

stat::princomp() returns the principal components of the given data
matrix in an object of class princomp (via spectral
decomposition)

stat::prcomp() returns the principal components of the given data
matrix in an object of class prcomp (via singular value
decomposition-SVD)

fastICA::fastICA() performs Independent Component Analysis (ICA)

kernlab::kpac() performs kernel PCA (KPCA)

dimRed:: various dimensionality reduction methods implemented
in R (e.g., PCA, KPCA and nonlinear methods MDS ,
ISOMAP and t-SNE )

e1071::svm() fits a support vector machine-SVM for general
regression and classification

randomForest::
randomForest()

fits a random forests for classification and regression

mlogit::mlogit() fits a multinomial logit model for estimation and
classification (possibly with alternative-specific and/or
individual-specific variables)

tree::tree() fits a classification or regression tree

class::knn() fits a k-Nearest Neighbor classifier

MASS::lda() performs a linear discriminant analysis

MASS::qda() performs a quadratic discriminant analysis

infotheo::entropy() returns the values of the Shannon entropy(ies) of the
given data

infotheo::condentropy() returns the conditional entropy of the given random
variables

www.rstudio.com/download
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from cloud.r-project.org, along with tutorials and demonstrations for the packages.
Some handy commands to get a quick start with the methods discussed in this book
are shown in Table 11.30.

Table 11.30 Handy commands in R for dimensionality reduction in data science

Command Action Notes

help provide documentation/help
with any topic

help(help) shows more
help with how to use help

y<-eigen(A) assigns dataframe y the
spectral decomposition of
matrix A

y$val are the eigenvalues;
y$vectors are the
eigenvectors

y<-svd(A) assigns dataframe y the SVD
of matrix A

y$d is the vector of singular
values of A

y$u is a matrix with the left
singular vectors in the
columns

y$v is a matrix with the
right singular vectors in the
columns

PC <- prcomp(X) assigns dataframe PC the
principal components of data
X

PC$rotation contains the
rotated data (in the PC axes)

PC <- prcomp(X,
retx = TRUE, center
= TRUE, scale. =
FALSE tol = NULL,
rank = NULL, . . ..)

retx$d = TRUE iff
rotated values are returned;
center/scale=TRUE iff
the data X is centered/scaled
to Z-scores (advisable in
general, but scale cannot be
used if there are zero or
constant variables); subset
is an optional vector used to
select rows from data X;

defaults for prcomp ;
components are omitted if
their standard deviations are
less than or equal to tol
times the standard deviation
of the first component; rank
can be used instead to select
only the max rank of X

number of components;

PC <- princomp(X) similar to prcomp for PCs,
but princomp is a generic
function with “formula” and
“default” methods

PC$rotation contains the
rotated data (in the PCs axes)

predict(object,
newdata, ...)

predicts values for the
newdata using the SVD of
object

entropy(X,
method="emp")

computes the entropy using
estimator emp

X must be discrete; the
option equalfreq can be
used to discretize where
necessary)

condentropy(X,
Y=NULL,
method="emp")

computes the conditional
entropy H( X |Y ) using
estimator method emp

as with entropy
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11.6.2 Python Environments

A general list of software packages useful in data science is shown in Table 11.31.
The scikit-learn (sklearn) module in Python is a high-level module that includes

all libraries required for pre-processing data, implementing supervised and unsu-
pervised machine learning algorithms and computing evaluation metrics. A list of
the important libraries within sklearn is shown in Table 11.32. The packages can be
downloaded from scikit-learn.org, where tutorials and demonstrations how to use
the packages are also available.

Tables 11.33 and 11.34 show software libraries and commonly used commands
in Python (sklearn) for dimensionality reduction and supervised/unsupervised
Machine learning methods.

Table 11.31 Data science software in python

Name Description Link

Scikit-Learn Python module for data science scikit-learn.org

WEKA Machine Learning software in Java www.cs.waikato.ac.nz/ml/
weka/

R Several packages related to data science cran.r-project.org/

Matlab Statistics and Machine Learning Toolbox www.mathworks.com/
products/ statistics.html

TensorFlow Deep Learning Libraries www.tensorflow.org/

PyTorch Deep Learning Libraries pytorch.org/

Keras Python Deep Learning APIs keras.io/

Spark MLlib Machine Learning for Big Data spark.apache.org/mllib/

Google Vertex AI Machine Learning on the Cloud cloud.google.com

Table 11.32 Scikit-Learn Software packages in python

Name Description

sklearn.preprocessing Feature scaling, imputation of missing values

sklearn.decomposition Dimensionality reduction (PCA, KernelPCA, Nonnegative
Matrix Factorization, Singular Value Decomposition)

sklearn.manifold Nonlinear Dimensionality reduction (ISOMAP, t-SNE and
MDS )

sklearn.feature_selection.RFE Wrapper methods for feature selection

sklearn.model_selection Model selection using cross-validation and other approaches

sklearn.model_selection.metrics Metrics for supervised learning (e.g., precision, recall, and
F1-score) and unsupervised learning (e.g., silhouette score)

sklearn.neighbors k-Nearest Neighbors

sklearn.naive_bayes Naive Bayes Classifier

sklearn.tree Decision Trees

sklearn.ensemble Bagging, Boosting and other ensemble methods

sklearn.neural_network Neural Networks

sklearn.svm Support Vector Machines

sklearn.cluster Clustering algorithms

sklearn.mixture Gaussian Mixture Models

www.cs.waikato.ac.nz/ml/weka/
www.cs.waikato.ac.nz/ml/weka/
www.mathworks.com/products/statistics.html
www.mathworks.com/products/statistics.html
www.tensorflow.org/
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Table 11.33 Handy commands in sklearn for dimensionality reduction in data science

Command Action Notes

feature_selection.RFE
(estimator,
n_features_to_select)

Creates an RFE
feature selection
object

The base classifier
estimator selects
n_features_to_select

manifold.Isomap(n_neighbors,
n_components)

Creates an object
used to perform
ISOMAP based
dimensionality
reduction

uses n_neighbors for each
point and n_components
coordinates for the manifold

manifold.LocallyLinear
Embedding(n_neighbors,
n_components)

Creates an object
used to perform
LocallyLinearEm-
bedding based
dimensionality
reduction

uses n_neighbors
neighbors for each point and
n_components coordinates
for the manifold

manifold.MDS(n_components) Creates an object
used to perform
MDS based
dimensionality
reduction

immerses the dissimilarities in
n_components dimensions

manifold.TSNE
(n_components,perplexity)

Creates an object
used to perform
t-SNE based
dimensionality
reduction

uses perplexity nearest
neighbors to embed into
n_components in manifold
learning algorithms

manifold.Spectral Embedding
(n_components)

Creates an object
used to perform
Spectral embedding
for nonlinear
dimensionality
reduction

projects into a subspace with
n_components

decomposition.PCA
(n_components)

Creates an object
used to perform
PCA

keeps n_components

decomposition.KernelPCA
(n_components,kernel)

Creates an object
used to perform
KernelPCA

keeps n_components after
using a kernel type

decomposition.Truncated
SVD(n_components)

Creates an object
used to perform
dimensionality
reduction using
truncated SVD

keeps n_components in the
output data

decomposition.non_negative_
factorization(X)

Creates an object
used to perform
NMF

X is the input data

random_projection.
GaussianRandomProjection
(n_components)

Creates an object
used to perform
dimensionality
reduction through
random projections

projects onto
n_components in the target
space
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