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Abstract Reliability evaluation is an important task in safety–critical applications. 
The failure of a system is generally caused by random shocks resulting from adverse 
events or internal degradations. This chapter thus mainly focuses on the review of 
system reliability models with random shocks and the uncertainty of the degradation 
process. In the category of system reliability models with random shocks, we review 
system reliability models based on five random shock models that are commonly 
used in Reliability Engineering, cumulative shock model, extreme shock model, run 
shock model, δ-shock model, and mixed shock model. In addition, three sources of 
variabilities, commonly discussed in the literature, can result in the uncertainty of 
the degradation process, which are temporal variability in the degradation process, 
unit-to-unit variability, and measurement error caused by imperfect instruments or 
imperfect inspection. In the category of system reliability model with uncertainty, 
we review system reliability models using stochastic degradation models in terms 
of three stochastic processes, Wiener process, gamma process, and inverse Gaussian 
process. 
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1 Introduction 

Reliability is defined as the probability that a product can function properly without 
failure during its designed life under the designed operating conditions [1]. The 
failure of a system has a wide-ranging societal impact. For example, a plane from 
Sudan lost control on the runway while landing due to the bad weather on June
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10, 2008, which caused the death of 1 crew member and 29 passengers. In addi-
tion, random incidents in our daily life, such as collisions with vehicles, are also 
very common, which can influence the lifespan of the product, and even influence 
human life. Thus, considering the random incidents into the reliability modeling 
can effectively improve the accuracy of the reliability evaluation in safety–critical 
applications. These random incidents can exert random stresses in the system, which 
can be modeled by random shocks received by a system in the field of Reliability 
Engineering. 

Generally, random shock models are classified into five groups, cumulative 
shock model, extreme shock model, run shock model, δ-shock model, and mixed 
shock model. The reliability model with random shocks is first proposed by Esary 
and Marshall [2], in which the shock loadings are assumed to be independently 
distributed. Based on this, the development of the random shock-based reliability 
model is further investigated in many studies [1–16]. Gut [3] proposed a cumulative 
shock model, where the system fails when the cumulative shock damage is larger 
than a preset threshold. Later, Che et al. [4] developed a reliability model with a 
mutually dependent degradation process and shock process. Dong et al. [5] devel-
oped a multi-component system reliability model with generalized cumulative shocks 
and a stochastic degradation process. The extreme shock model is first developed 
by Shanthikumar and Sumita [6], in which the system failure is determined by the 
magnitude of the shock and further studied by [4, 8]. Based on the studies [3, 6], 
Gut [9] investigated a mixed shock model that considers the cumulative shock model 
and extreme shock model, which assumed that the system fails when the magnitude 
of the shock is larger than a threshold or the accumulative shock damage is larger 
than another critical threshold. Later, other types of shock models are introduced, 
which are run shock model [10] and δ-shock model [11]. Their applications in the 
reliability estimation can be referred to studies [12–16]. 

With the increasing complexity of the system engineering problems, the uncer-
tainty caused by the internal product properties or external factors has also become 
significant. Generally, there are three sources of variabilities [17, 18]. The first source 
is the temporal variability representing the inherent uncertainty in the degradation 
path [17]. The second source is the unit-to-unit variability. Take the battery manage-
ment system in electric vehicles as an example. One battery pack consists of numerous 
battery cells. The degradation of one battery cell may be different from the other cells 
even they are manufactured from the same production line. When considering the 
degradation of a battery cell, it is necessary to consider the degradation differences 
between cells. The third source is the measurement error caused by an imperfect 
instrument or imperfect inspection which is the distinction between the true value 
and the measured value. In many cases, regardless of the precision of the instru-
ment, the experimental data is always contaminated in the experiment, which will 
influence the reliability prediction accuracy of the target system. In literature, many 
studies have considered the three sources of uncertainty in the system reliability 
modeling [19–34]. Three classic stochastic processes that are commonly used to 
address the uncertainty are Wiener process [19, 20], gamma process [21–23], and 
inverse Gaussian process [24].
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The rest of this chapter is organized as follows. In Sect. 2, we first introduce the 
definitions and applications of random shock models and then review the related 
work on system reliability models considering different types of random shocks. 
Section 3 reviews the literature on system reliability models with uncertainty in 
terms of different stochastic processes. Section 4 concludes this chapter. 

2 System Reliability Models with Random Shocks 

Typically, five random shock models are widely used in the field of Reliability Engi-
neering, cumulative shock model, extreme shock model, run shock model, δ-shock 
model, and mixed shock model. These models are generally defined by the inter-
arrival time between consecutive shocks and/or the damage from shocks. Section 2 
is divided into two parts. Section 2.1 reviews the definitions and applications of 
random shock models. Section 2.2 reviews the literature on system reliability models 
incorporating different types of random shocks. 

The following notations are defined for Sect. 2. R(t) is the system reliability 
function by time t . M(t) is the system degradation function by time t . X (t) is the 
internal degradation function by time t . S(t) is the cumulative shock damage function 
by time t . N (t) is the total number of random shocks by time t . 

2.1 Shock Model Categorization 

Shock models, cumulative and extreme shock models, are initially proposed in the 
1970s, to apply for predicting the system reliability in a random environment [2]. 
Based on these two classic models, other shocks models, such as run shock model 
and δ-shock model, have been developed in the early 2000s. Meanwhile, the mixed 
shock model is proposed, which combines two types of random shock models, such 
as the combination of the extreme shock model and δ-shock model. Nowadays, the 
mixed shock model is not limited to the combination of two types of random shocks 
but extends to integrating three types of random shocks in order to predicate the 
complex engineering system reliability. 

The cumulative shock model commonly use the following equation: 

S(t) = 
N (t)∑

k=1 

Yk (1) 

where Yk is the damage caused by kth shock. The system fails when the accumu-
lative damage S(t) exceeds a pre-specified threshold. This model is applied in the 
situation where the system is subject to a series of random shocks. Take an example 
in practice. A car accident can be regarded as a random shock for the engine. For a
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vehicle, it is likely to have more than one accident. To assess the damage from all 
accidents on the engine, it is indeed to summarize these damages. When the total 
damage on the engine is larger than a threshold, the engine will fail. Other applica-
tions in literature, for example, Che et al. [4] regarded the contamination lock in the 
jet pipe servo value as one random shock that can cause wear debris on the value. 
The cumulative wear debris will increase with time and finally results in failure when 
the total wear exceeds a threshold. Dong et al. [5] predicted the reliability of micro 
electro-mechanical systems that withstand three different kinds of shocks, mechan-
ical vibration, piezoelectric stimuli, and magnetic stimuli. The shock damage from 
different kinds of shocks can be summarized. The micro electro-mechanical systems 
will fail when the damage exceeds a threshold. 

The extreme shock model is commonly defined as the system fails when the 
magnitude of any shock exceeds the given level. In other words, the system lifetime 
is determined by the magnitude of individual random shock. The applications of 
the extreme shock model are presented as follows. In Che et al. [4], because the 
contamination lock can fail suddenly when there is sufficient friction generated to 
withstand the normal actuating force, the extreme shock model is utilized to model 
this application. Wang et al. [7] applied the extreme shock model to model the impact 
load in the microelectromechanical system because the load can cause the system 
failure directly. Hao and Yang [8] regarded the vessel collision on the bridge as 
one random shock and classified the shocks as fatal and nonfatal according to their 
magnitude based on the extreme shock model. 

The run shock model is first proposed by Mallor and Omey [10], which defined the 
system breaks down when there are consecutive shocks whose magnitudes are above 
a threshold. This model is usually applied in mechanical and electronic systems, 
which generally suffered from fatigue damage. Specifically, fatigue damage refers 
to the situation that the system is under repeated shocks above a critical threshold. 
It is noted that the run shock model measures the magnitude of consecutive shocks 
instead of the magnitude of an individual shock. 

The δ-shock model is first proposed by Li and Kong [11], which defined the 
system failure when the inter-arrival time between two consecutive shocks less than 
a pre-specified threshold δ. Compared with the traditional shock models, cumulative 
shock, and extreme shock models, there are some phenomena that are more suitable 
to use the inter-arrival time to define system failure. For example, when the damage 
caused by random shocks is hard to be determined, it is more suitable to use the 
δ-shock model since it pays more attention to the shock occurrence rate instead of 
the individual or cumulative damage of shocks. 

The mixed shock model defines the system failure caused by two or more random 
shock models. For example, if cumulative shock and extreme shock are considered, 
the system will fail when the cumulative shock loadings are larger than one threshold 
or the magnitude of an individual shock is larger than another threshold, whichever 
occurs first. Parvardeh and Balakrishnan [35] proposed two mixed shock models 
based on the δ-shock model. One is the combination of the extreme shock model 
and δ-shock model, and the other is the combination of the cumulative shock model 
and δ-shock model. Lorvand et al. [16] combined the extreme shock model and run
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shock model as a mixed shock model. The mixed shock model is not limited to the 
combination of two shock models. Rafiee et al. [36] developed a mixed shock model 
that employed extreme shock model, δ-shock model, and run shock model. 

2.2 System Reliability Models with Shock Models 

2.2.1 System Reliability Models with Cumulative Shock Model 

Systems are generally subject to two competing risks, degradation, and random 
shocks. Given many research efforts have been focused on modeling the dependent 
relationship between degradation and random shocks. We review the literature on 
system reliability models with cumulative shock model, considering the dependent 
relationship between degradation and random shocks. In general, random shocks 
are commonly assumed to have two types of impacts on the system, sudden incre-
mental jump on the system degradation, and degradation rate acceleration [4, 37–40, 
43]. The cumulative shock model is usually used to describe these impacts and 
further employed to calculate the accumulated system degradation. To represent the 
sudden incremental jumps, many studies [4, 38–40, 43] described the individual 
shock damage as an independent and identically distributed random variable. The 
cumulative shock damage is the summation of individual shock damages, which is 
shown in Eq. (1). Other studies [37, 41, 42] applied the shock magnitude instead 
of the individual shock damage to S(t)[37]. Assumed each shock damage is linear 
dependent with its shock magnitude, namely, S(t) = ∑N (t) 

k=1 (αW k), N (t) > 0, where 
Wk is the magnitude of kth shock and α is the coefficient. In general, system degrada-
tion, M(t), consists of the internal degradation X (t) and cumulative shock damage 
S(t): 

M(t) = X (t) + S(t) (2) 

The failure happens when the system degradation exceeds a critical threshold. 
Generally, system reliability, R(t), can be modeled as: 

R(t) = P(X(t) + S(t) < H ) (3) 

where H is the failure threshold. 
The system may become more susceptible because of undertaking shocks, which 

makes degradation increase faster. Therefore, the degradation rate will not be ideally 
constant and will be accelerated by random shocks. Wang and Pham [38] developed a 
system reliability model with multiple degradation processes and random shocks. The 
arrival of random shocks follows a homogeneous Poisson process (HPP). The impacts 
of random shocks are classified into sudden incremental jump and degradation rate 
acceleration. The sudden incremental jump is adopted from Eq. (1). The degradation
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rate acceleration is illustrated by incorporating a time-scaled factor G
(
t,  γ  (i)

)
into 

the ith degradation process, in which G
(
t,  γ  (i )

) = γ (i) 1 N2(t) + γ (i) 2 S(t), where γ (i) 1 

and γ (i ) 2 denote the impact magnitude on the degradation rate of the i th degradation 
process and N2(t) is the total number of nonfatal shocks by time t . The internal 
degradation for the i th degradation process is modeled by a basic multiplicative path 
function, which is Xi ·ηi (t; θi ), where Xi is the random variable representing the unit-
to-unit variability, ηi (t; θi ) is the ith mean degradation path function with a parameter 

vectorθi . The  ith degradation function is thus modeled as Xi · ηi
(
teG(t,γ (i ) ); θi

)
+

∑N (t) 
k=1 wi j  , where wi j  is the loading from shock j in the ith degradation process. 

The marginal reliability function Ri (t) of the i th degradation process with no fatal 
shock is: Ri (t) = P

(
Xi · ηi

(
teG(t,γ (i ) ); θi

)
+ ∑N2(t) 

k=1 wi j  < Hi

)
, in which Hi is the 

corresponding failure threshold of the ith degradation process. The system reliability 
model is [38]: 

R(t) = C(R1(t), R2(t),  .  .  .  ,  Rm(t)Pr(N1(t) = 0) (4) 

where C is the joint copula of the marginal reliability function and N1(t) is the total 
number of fatal shocks by time t . 

The degradation impact on random shocks can be reflected by shock arrival 
frequency. Fan et al. [41] assumed the number of random shocks follow the nonho-
mogeneous Poisson process (NHPP) with rate λ(t). λ(t) is assumed to be linearly 
related with the current internal degradation X (t): 

λ(t) = λ0 + β · X (t) (5) 

where λ0 is the initial intensity of NHPP and β is the dependence factor. 
Because the shocks with different magnitude have different impacts on the system, 

they are classified into three zones, safety zone, damage zone, and fatal zone [41]. 
Noting that only the shocks in the damage zone can generate damage on the system, 
while the fatal shock will fail the system directly, and the shocks in the safety zone 
have no effect on the system. The system can function if the internal degradation does 
not reach one threshold, the cumulative shock damage in the damage zone does not 
exceed another threshold, and there is no shock in the fatal zone. Thus, the reliability 
function is [41]: 

R(t) =
∑∞ 

k=0 
P(X(t) < H1, S(t) < H2, N2(t) = 0|N1(t) = k)P(N1(t) = k) 

(6) 

where k denotes random shock, H1 is the threshold for the internal degradation, H2 

is the threshold for cumulative shock damage, N1(t) is the number of shocks in the 
damage zone, and N2(t) is the number of shocks in the fatal zone.
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Based on the study [41], Che et al. [4] carried out that the shock intensity λ(t) is not 
only affected by the current internal degradation but also by the shock occurrences 
by time t . The intensity after k random shocks is defined as λk(t) = (1 + ηk)λ0(t), 
where λ0(t) is the initial intensity influenced by the current degradation level and 
η is the facilitation factor. The formulation of system reliability in reference [4] is  
based on Eq. (4). 

Moreover, a few studies did not follow the common assumption of cumulative 
shock models, which is the shocks follow a distribution. In reality, such an assumption 
may not be practical because the frequency of the shock occurrence can be deter-
mined by many factors. For example, Gong et al. [12] developed a system reliability 
model incorporating the influence of shocks from different sources under the cumu-
lative shock model. The system is subject to random shocks, which come from m 
sources, and the probability of each source is πi . The magnitude of shocks from each 
source follows a phase-type (PH) distribution. The continuous PH distribution is a 
probability distribution constructed by the convolution of exponential distributions. 
According to the property of PH distribution, the summation of independent PH 
random variables still follows PH distribution, which is further utilized in modeling 
system reliability. 

Ranjkesh et al. [44] proposed a new cumulative shock model considering the 
dependency between shock damage and inter-arrival time, and utilized this model 
to predict the system reliability of civil structures, such as bridges. A parameter δ, 
which represents the system recover time, is set to determine the shock damage level. 
When the inter-arrival time between two consecutive shocks, Xk , is larger than δ, 
the damage level, Yk , is defined as mild since the system may recover itself from the 
previous shock. When the shock time-lapse is less than δ, the damage level is defined 
as severe because the system does not have enough time to recover from the shock: 

Yk =
{
Yk1, Xk ≤ δ 
Yk2, Xk >  δ  

(7) 

where Yk1 is the severe damage of the kth shock and Yk2 is the mild damage of the kth 
shock. The system fails when the cumulative load and severe shock damage is larger 
than a certain threshold. Hence, the system reliability function [44] is as follows:  

R(t) =
∑∞ 

m=0

∑m 

m1=0

(
m 

m1

)
P

(∑m1 

k=0 
Y 
k1 

+
∑m 

k=m1+1 
Y 
k2 

< H
)

P
(
X1,  .  .  .  ,  Xm1 ≤ δ, Xm1+1,  .  .  .  ,  Xm >  δ,  N (t) = m

)
(8) 

Recently, Wang and Zhu [43] proposed a shock-loading based degradation model 
based on the magnitude of impacts caused by random shocks on degradation 
processes. Random shock are grouped into fatal shocks and nonfatal shocks. They 
incorporated a threshold H ′ to measure the temporal loading level. H ′ is a time-
dependent critical ratio, calculated by H ′ = S(t)/S, where S is the cumulative shock
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loading that can cause the system failure. If H
′
< H0, where H0 is the preset crit-

ical threshold, nonfatal shocks can only cause the degradation rate acceleration. If 
H

′
> H0, nonfatal shocks can cause both accelerate degradation rate and sudden 

incremental jump. The method to model system reliability with multiple dependent 
degradation process incorporating the proposed shock-loading based degradation 
model is based on Eq. (4). 

2.2.2 System Reliability Models with Extreme Shock Model 

The extreme shock model defined the system failure when the magnitude of any 
shock exceeds the given level [4, 37–41]. From this definition, many studies classi-
fied shocks based on the magnitude of shocks and further impacts on the system. For 
example, Wang and Pham [38] considered two types of shocks in the model, fatal 
and nonfatal shocks. Fatal shocks can fail the system directly, while nonfatal shocks 
can accelerate the degradation processes. Fan et al. [41] modeled the random shocks 
into three zones according to their magnitude, fatal, damage, and safety zones. Song 
et al. [40] classified random shocks into different sets according to their function, 
size, and affected components. Each component in the system has its own shock set, 
which indicates that only when the shock belongs to the shock set of that compo-
nent, the damage will exist. Consider the magnitude of the kth shock that belongs 
to the j th shock set impacting component l, Wl, j,k , follows a normal distribution 

Wl, j,k ∼ N
(
μWl, j ,  σ  2 Wl, j

)
, the reliability function of component l, Rl (t), considering 

an extreme shock that belongs to the j th shock set is: 

Rl (t) = P
(
Wl, j,k < Hl

) = φ
(
Hl − μWl, j 

σWl, j

)
f or  l  = 1, 2,  .  .  .  ,  n, jεφl (9) 

where Hl is the failure threshold of the component l, φ(·) is the cumulative density 
function (CDF) of a standard normally distributed function, and φl is the shock set 
for component l. 

Some studies assumed that random shocks can be classified into fatal shocks 
and nonfatal shocks [38, 43, 45]. In this case, fatal shocks are extreme shocks. 
These studies [38, 43, 45] assumed that random shocks follow HPP with rate λ. The  
probability that a shock that could be fatal to the system at time t is p(t). Thus, 
fatal shocks follow NHPP with rate λp(t). Rafiee et al. [39] proposed a system 
reliability model considering degradation and random shocks. The degradation rate 
is assumed to be changed by shocks because the system may become vulnerable. 
The first shock that leads to the degradation rate change is defined as a trigger shock, 
denoted as the kth shock. The overall degradation is represented as a linear path 
function: X (t) = βt + ϕ + ε, where ϕ is the initial degradation, β is the degradation 
rate, and ε is the measurement error. Considering the impact of the trigger shock, 
X (t) is modeled as:
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X (t) =
{

β1t + ϕ + ε, k > N (t) 
β1Tk + β2(t − Tk) + ϕ + ε, k ≤ N (t) 

(10) 

where k is a random variable, Tk is the arrival time of the kth shock, β1 is the initial 
degradation rate, and β2 is the changed degradation rate. The reliability function 
with extreme shock model in reference [39] is developed based on two conditions, 
no shock occurs by time t and at least one shock occurs by time t . 

Eryilmaz and Kan [46, 47] considered there are changes of distributions of the 
shock magnitude to propose a system reliability model. These models are preferable 
to use in the conditions that there is an urgent or a dramatic change in environments, 
which can cause a larger shock in the system. The change point is assumed to follow 
a certain distribution, for example, a geometric distribution with a given probability 
mass function. The reliability function can be derived based on the proposed extreme 
shock model. 

2.2.3 System Reliability Models with Run Shock Model 

System reliability models with run shock model is discussed in a few studies. For 
example, Gong et al. [48] assessed the reliability of the system under a run shock 
model with two thresholds H1 and H2, where H1 < H2. There are two cases that 
cause system failure: (1) more than k1 successive shocks with the magnitude above 
H1; (2) more than k2 successive shocks with the magnitude above H2. The inter-
arrival time and the magnitude of shocks are modeled by PH distribution. Compared 
with the classic run shock model, adding one more threshold helps determine the 
severity of a shock. Ozkut and Eryilmaz [13] proposed a Marshall-Olkin run shock 
model to predict system reliability. The system is assumed to have two components 
subject to three sources of shocks. In this run shock model, the system failure occurs 
when k critical shocks arrive in succession and these shocks should come from the 
same source. Later, Wu et al. [14] proposed an N -critical shock model based on 
Markov renewal process. The run shock model is a special case of the developed 
model when N shocks occur consequently. 

2.2.4 System Reliability Models with δ-shock Model 

Wang and Peng [15] studied a generalized δ-shock model with two types of shocks, 
type 1 and type 2, with the recovery times are δ1 and δ2, respectively. Assume the 
arrival of shocks follow a HPP with rate λ, and the probability of being type 1 is p 
and type 2 is q = 1 − p. They also assume: (1) if either type of shock arrives during 
the recovery time, the system will fail; (2) if no shock occurs during the recovery 
time, the system will be recovered from the damage and shown as good as new. The 
reliability function of the δ-shock model is shown as [15]:
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R(t) =
∑∞ 

n1=0

∑∞ 

n2=0 
P(T > t, N1(t) = n1, N2(t) = n2) (11) 

where Ni (t) is the number of type i shock by time t[15]. Discussed several cases 
to compute Eq. (11). First, there is no shocks occurred by time t . Second, there is 
one type of shock occurred by time t . Third, there are two types of shocks occurred 
by time t , in which the authors proposed a reliability function with the generalized 
δ-shock model. 

Poursaeed [49] developed a new δ-shock model with two thresholds δ1 and δ2, 
where 1 ≤ δ1 <  δ2. When the time interval is smaller than δ1, the system fails. When 
the time interval falls between δ1 and δ2, the probability of system failure is θ . When 
the time interval is larger than δ2, the shocks do not cause damage to the system. 
Thus, the reliability function based on the proposed δ-shock model is: 

R(t) = P
(
Tδ1,δ2,θ > t

) = P
(∑L1 

i=0 
Yi +

∑L2 

i=1 
Zi + W > t

)
(12) 

where Tδ1,δ2,θ is the system failure time, L1 is the number of intervals in [δ2, ∞), 
and L2 is the number of intervals in (δ1,  δ2). Xi is the time intervals between the i th 
and (i + 1)th shock. Yi ∼ X |X >  δ2,Zi ∼ X |δ1 < X <  δ2 for i = 1, 2,  .  .  .  , and 
W ∼ X |δ1 < X ≤ δ2 or W ∼ X |X ≤ δ1, where X ∼ Y indicates that X and Y 
follow the same distribution. 

Typically, the arrival of random shocks is modeled by HPP, in other words, 
the inter-arrival time between two consecutive shocks follows an exponential 
distribution, which is commonly adopted in many studies. HPP has the advan-
tages of the simplicity of mathematical expressions; however, the limitation also 
exists. For example, Liu [50] pointed out that HPP can only fit the data which 
is equal-dispersion, that is, the mean should be equal to the variance. However, 
the mean and the variance of the shock inter-arrival time are not equal in most 
cases. Also, HPP can only represent the situation when the hazard rate is constant, 
while the rate can be either increasing or decreasing in the real life. Thus, a 
reliability model subject to degradation and random shocks is developed under 
the assumption that the inter-arrival time of shocks follows Weibull distribu-
tion. There are two advantages over HPP. First, Weibull distribution can model 
the under-dispersion data and over-dispersion data besides the equal-dispersion 
data. Second, Weibull distribution can specifically simulate the impact caused by 
related system failures. Under this assumption, the probability that n shocks occur 

is: P(N (t) = n) = ∑∞ 
j=n

[
(−1) j+n

(
t 
λ

)cj  
αn 
j

]
/�(cj  + 1), n = 0, 1, 2,  .  .  .  , where

�(·) is the Gamma function λ is the scale parameter of Weibull distribution, c 
is the shape parameter of Weibull distribution, α0 

j = �(cj  + 1)/�( j + 1), and 
αn+1 
j = ∑ j−1 

m=nα
n 
m�(cj  − cm + 1)/�( j − m + 1). Hence, the reliability function 

under the δ-shock model is expressed as [50]:
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R(t) =
∑∞ 

n=0 
P(min(B1, B2,  .  .  .  ,  Bn) >  δ,  X (t) < H |N (t) = n)P(N (t) = n) 

(13) 

where Bk is the inter-arrival time between the (k − 1)th shock and kth shock, X (t) 
is the total degradation value, and H is the threshold. All Bk are independent and 
follow Weibull distribution. 

Eryilmaz and Bayramoglu [51] investigated the system reliability under the δ-
shock model by assuming the interarrival time follows a uniform distribution. This 
assumption is useful when the first-order effects of random changes are important 
to the result; in other words, when the difference between deterministic models and 
stochastic models is critical. Eryilmaz [52] studied the reliability properties of a 
discrete-time shock model. The inter-arrival time is assumed to follow a geometric 
distribution with a mean 1/p. 

In addition, the inter-arrival time in the δ-shock model in most studies is assumed 
to be independently and identically distributed. Some studies considered the inter-
arrival time are dependent. For example, Eryilmaz [53] proposed a reliability model 
under the δ-shock model when the occurrence of shocks follows Polya process. In 

this case, P{N (t) = n} =
(

α+n−1 
n

)(
t 

t+β

)n(
β 

β+t

)α 
, for  n = 0, 1,  .  .  .  , where α and 

β are parameters. In other words, N (t) follows a negative Binomial distribution with 
parameters α and β/(β + t). The reliability function is derived as [53]: 

R(t) = P(T > t) =
(

β 
β + t

)α∑[ t δ ] 
n=0

(
α + n − 1 

n

)(
t − nδ 
t + β

)n 

(14) 

where [x] is the integer part of x for t ≥ 0. 
Some studies consider the inter-arrival times are nonidentical. For example, Tuncel 

and Eryilmaz [54] described the inter-arrival times as a proportional hazard rate 
process which can apply to the situation that the inter-arrival time is stochastically 
increasing or decreasing. The reliability function of the interarrival time Xi is thus 
expressed as: 

Ri (t) = P(Xi > t) = (
G(t)

)αi 
,  αi > 0 (15) 

where G is the reliability function of a baseline random variable. 

2.2.5 System Reliability Models with Mixed Shock Model 

Parvardeh and Balakrishnan [35] proposed a mixed shock model which is the combi-
nation of extreme shock model and δ-shock model (extreme-δ mixed shock model). 
The system fails when the magnitude of any shock is larger than a threshold γ or the 
inter-arrival time between two consecutive shocks is smaller than another threshold
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δ. In the extreme shock model, the time lapse between the (k − 1)th shock and the 
kth shock Xk has the marginal distribution F and the magnitude of the kth shock, 
Zk , has the marginal distribution G. Xk and Zk are assumed to be dependent and has 
a joint distribution H. The reliability function is derived as [35]: 

R(t) = (F(δ) − F(t))I[0,δ)(t) 

+
∑∞ 

n=2

[
F(δ) − H(δ, γ )

]n−1
∫ ∞ 

0 
P

(
S∗ 
n−1 > t − x

)
dF(x) 

+H(max{δ, t},  γ  ) −
∑∞ 

n=2

[
F(δ) − H(δ, γ )

]n 
P(S∗ 

n > t) (16) 

where {S∗
n , n ≥ 1} is a renewal process with the time between successive renewals 

whose CDF is Fδ,γ (x) = (H(x,  γ  ) − H(δ, γ ))/(G(γ ) − H(δ, γ )), x >  δ. 
Lorvand et al. [55] proposed another extreme-δ mixed shock model by setting a 

new threshold δ2, which can switch the system to a lower partially working state. 
Thus, there are three situations that can cause system failure: (1) the classic δ-shock 
model; (2) the classic extreme shock model; (3) when k out of interarrival times 
between two successive shocks are in (δ1,  δ2). The extreme-δ mixed shock model 
has also been investigated by studies [56, 57]. 

Some studies considered the mixed shock models in the combination of more 
than two shock models. For example, Rafiee et al. [36] discussed the system failures 
can be caused by the internal degradation, or fatal shocks, in which the shock falls 
into any of three shock models, run shock model, extreme shock model, and δ-shock 
model. The system reliability function without degradation-based failure is expressed 
as [36]: 

R(t) =
∑∞ 

m=0 
P(S > N (t), X (t) < H |N (t) = m)P(N (t) = m) (17) 

where S is the number of fatal shocks, and H is the threshold of degradation failure. 
Moreover, some studies considered the degradation rate and failure threshold 

can be changed multiple times as the changes of three mixed shocks patterns [59]. 
Jiang et al. [58] assumed the failure threshold will decrease as the increase of shocks. 
Specifically, when the inter-arrival time is smaller than δ or there are m shocks whose 
magnitude is larger than γ , the threshold will decrease. Zhao et al. [60] incorporated 
the system self-healing mechanism into random shock modeling to predict the system 
reliability. The system is assumed to have two stages by incorporating a change point, 
which is defined as the time when the cumulative number of valid shocks exceeds a 
threshold. Before the change point, the system is capable of self-healing from shocks. 
However, the system cannot recover from the damage after the change point.
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3 System Reliability Models with Uncertainty 

Generally, three sources result in the uncertainty of complex engineering systems, 
temporal variability, item-to-item variability, and measurement error [19–28]. 
Temporal variability represents the inherent uncertainty changed with the degradation 
progression over time [17]. Item-to-item variability refers to the diversity of degra-
dation paths induced by manufacturing processes and service conditions. Measure-
ment error represents the difference between the observed degradation data and the 
true degradation data [19]. This error is mainly due to the imperfect instrument, 
random environment, or imperfect inspection which is inevitable in the measure-
ment process. In this section, we review system reliability models with uncertainty 
based on stochastic process, Wiener process [19, 20], gamma process [21–23], and 
inverse Gaussian process [24]. Typically, Wiener process is utilized when the degra-
dation is non-monotonic, while gamma process and inverse Gaussian process are 
used to analyze the monotonic degradation processes [21, 61, 62]. 

The following notations are defined in this section. Y (t) is the measured degrada-
tion by time t . X (t) is the true degradation by time t . ε(t) is the measurement error 
by time t . 

3.1 System Reliability Models Based on Wiener Process 

In Sect. 3.1, we define the following notations. X (0) is the initial degradation value. 
θ is the drift parameter of Wiener process. δB is the volatility parameter of Wiener 
process. B(t) is the standard Brownian motion. 

In general, a Wiener-based degradation model is expressed as [18]: 

X (t) = X (0) + θ t + σB B(t) (18) 

Si et al. [18] considered three sources of uncertainty in Wiener process to reli-
ability estimation. Stochastic dynamics of the degradation process is represented 
by δB B(t) ∼ N

(
0,  δ2 Bt

)
, t > 0. Item-to-item variation is illustrated by assuming 

parameter θ as a random variable that follows a specific distribution. In most cases, 
θ is assumed to follow a normal distribution, denoted as θ ∼ N (μθ ,  σ  2 θ ), which is 
s-independent of {B(t), t ≥ 0}. System reliability models developed in studies [19, 
20, 26] are also based on Eq. (18). 

According to the property of Wiener process, the first passage time exceeding the 
critical threshold follows an inverse Gaussian distribution [63]. Thus, the probability 
density function (PDF) of the lifetime T is: 

fT (t) = H √
2π t3σ 2 B 

exp

(
− 

(H − θ t)2 

2σ 2 Bt

)
, t > 0,  θ  >  0 (19)
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where H is a threshold. Then, system reliability models can be obtained. 
Equation (18) is the general function of the linear Wiener process. For complex 

systems, it is necessary to take the degradation nonlinearity into account; thus, Liu and 
Fan [64] used a nonlinear Wiener-based degradation model to model the degradation 
process, X (t) = X(0) + θ�(t; γ ) + σB B(t), where �(t; γ  )  is a nonlinear function 
with unknown parameter γ . In their study [64], �(t; γ  )  is represented by a power 
function, tγ . Zheng et al. [65] developed a generalized form of Wiener process: 
X (t) = X (0) + f (t; θ1)T θ2 + σB B(t), where f (t; θ1)T is a n-dimensional vector 
with a group of fundamental functions, θ1 and θ2 are parameter vectors, and θ2 ∈ Rn . 
The temporal variability and the item-to-item variation are represented by B(t) and 
θ2, respectively. Moreover, Wiener-based degradation model can be used to model 
measurement error ε(t) following a normal distribution, Eq. (18) will be [64]: 

Y (t) = X (t) + ε(t) (20) 

The widely used assumptions  [19, 20, 26–28] to model measurement error are: 
(1) ε(t) follows a normal distribution; (2) all measurement error terms are mutu-
ally independent and independent with the true degradation. Similarly, by using the 
concept of the first passage time, the lifetime of a system is modeled as [65]: 

T = inf{t : X (t) ≥ w|X (0) <  w} (21) 

where w is the predetermined degradation-based failure threshold. Then, system 
reliability models and remaining useful life models can be obtained [64, 65]. 

3.2 System Reliability Models Based on Gamma Process 

A continuous-time stochastic process {X(t), t ≥ 0} is defined as a gamma process 
with the shape function η(t) and scale parameter θ if the following properties can be 
satisfied [66]: 

(1) P(X (0) = 0) = 1; 
(2) The increment �X(t1, t2) = X (t2) − X (t1), for all t2 > t1 ≥ 0, follows a 

gamma distribution with shape parameter �η(t1, t2) = η(t2) − η(t1) and scale 
parameter θ ; 

(3) The increments are independent. 

Gamma process can be used to represent the degradation path function with the 
uncertainty, for example, temporal variability [21–23]. Moreover, a group of studies 
further develop the gamma process-based degradation model to capture the item-to-
item variation. For example, Lawless and Crower [21] incorporated a random variable 
z into X (t); thus, X(t) follows a gamma distribution with shaped parameter η(t) and 
scale parameter zθ . Liu et al. [67] introduced the parameter vector θGa following a
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gamma distribution with hyper-parameters θ H Ga =
(
δμGa ,  γμGa ,  δλGa ,  γλGa

)
to model 

random effects. 
Gamma process can also be used to model degradation path function with 

measurement error [68]: 

Y (t) = X (t) + ε(t) (22) 

where ε(t) is assumed to follow a Gaussian distribution with the mean value as 0. 
The true increment is expressed as�X (t) = X (t + �t)−X (t). The measured value 
of increment �Y (t) expressed as [68]

�Y (t) = �X (t) + ε(t + �t) − ε(t) (23) 

where �X(t) follows a gamma distribution, denoted as, X (t) ∼ Ga(α, 1/λ), and 
ε(t + �t) − ε(t) follows a normal distribution, denoted as ε(t + �t) − ε(t) ∼ 
N (0, 2σ 2). Similar models are also studied in references [23, 69–73]. System reli-
ability models and remaining useful life predictions can be obtained based on the 
assumption of gamma process [21–23, 69–73]. 

Measurement error is commonly assumed to be independent with degradation; 
however, it may not be realistic in practice [74]. For example, Pulcini [66] proposed 
a perturbed gamma process in which the measurement error is statistically dependent 
on the degradation state. The error term in Eq. (22) is assumed to follow a normal 
distribution with the zero mean and the variance equal to σ 2(xt ), where xt is the 
current degradation level. Under the condition that the true degradation is xt = X (t), 
the conditional PDF of the measurement error ε(t) given the measured degradation 
level yt is obtained [66]: 

fε(t)(εt |yt ) =
∫ ∞ 

0 
fε(t)(εt |xt ) fX (t)(xt |yt )dxt 

= 1√
2π

∫ ∞ 
0 

xη(t)−1 
t 

σ 2 ε (xt ) 
exp

[
− 1 

2(εt /σ (xt )2 
− 1 2

(
yt−xt 
σ (xt )

)2 − xt 
θ

]
dxt

∫ ∞ 
0 

xη(t)−1 
t 
σ (xt ) exp

[
− 1 

2

(
yt−xt 
σ (xt )

)2 − xt 
θ

]
dxt 

(24) 

The system reliability model is then proposed in consideration of the false alarm 
caused by the degradation measurement error [66].
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3.3 System Reliability Models Based on Inverse Gaussian 
Process 

An inverse Gaussian process {X(t); t ≥ 0} with function�(t) and parameters β and 
λ has the following properties [24, 75]: 

(1) P(X (0) = 0) = 1; 
(2) Each increment follows an inverse Gaussian distribution, expressed as 

X (t + �t) − X (t) ∼ IG(β��(t),  λ��(t)2 ); 
(3) Increments are independent. 

Inverse Gaussian process can be used to model monotonic degradation process 
with uncertainty. For example, Pan et al. [75] assumed β as a random parameter to 
denote the variability among products. They assume the prior distribution of 1/β 
follows the normal distribution, expressed as 1/β ∼ N (μβ , 1/σ 2 β ), which is statisti-
cally independent of λ. By using the concept of the first passage time, the lifetime T 
of a system can be obtained. The CDF of the lifetime T with the random effect of β 
is formulated by using the monotonicity property of inverse Gaussian process [75]: 

FT (t) = P(X(t) > H) = �

⎛ 

⎝
√

λ 
H 

· (σ β t − μβ σβ H )√
σ 2 β + λH 

⎞ 

⎠ 

− exp

(
2μβ λt + 

2λ2t2 

σ 2 β

)
× �

⎛ 

⎝−
√

λ 
H 

· (σ 2 β + 2λH )t + μβ σ 2 β H√
σ 4 β + λH σ 2 β 

⎞ 

⎠ (25) 

where H is a threshold. 
Peng [76] established a normal-gamma mixture of inverse Gaussian degra-

dation model to incorporate the heterogeneity among products. To be specific, 
λ is assumed to have a gamma density function, expressed as f (λ) = 
[λα−1/�(α)τ α]exp(−λ/τ ),  λ,  α,  τ >  0. Let  δ, δ = β−1, have a conditional 
normal PDF with mean ξ and variance σ 2 β /λ. The PDF of δ is f (δ|λ) = √

λ/2π  σ  2 β exp
(
−λ(δ − ξ )2 /2σ 2 β

)
,  δ,  ξ  ∈ R,  σ  2 β > 0. Later, Hao et al. [77] relaxed 

the normal assumption of δ and assumed δ follows a skew-normal distribution, in 
which δ ∼ SN  (μ, σ 2,  α). The PDF of δ is presented as [77]: 

fδ(x) = 
2 

σ
�

(
x − μ 

σ

)
�

(
α 
x − μ 

σ

)
(26) 

where μ is the location parameter, σ is the scale parameter, and α is the shape 
parameter. They [77] further model the CDF of the lifetime based on the skew-
normal distribution assumption of δ. Recently, Sun et al. [78] predicted the system 
remaining useful life with the inverse Gaussian degradation model with measurement
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errors and further applied to the hydraulic piston pump. The errors are assumed to 
follow a normal distribution conditioning on the degradation level. 

Meanwhile, the degradation path can be modeled by other distributions. For 
example, Zhai and Ye [29] discussed that Gaussian distribution has low probabilities 
in large values, which may result in a misleading result when some fatal errors are 
introduced during the observation process. Thus, the measurement error is assumed 
to follow a student’s t-distribution. Shen et al. [30] assumed the measurement error 
follows a logistic distribution. This distribution has relatively heavier tails compared 
with the normal distribution, which is more suitable to use when there are large errors 
in the degradation data. Li et al. [32] considered that measurement errors are time-
series data, which has the auto-correlation due to modeling errors or environmental 
changes especially when the time interval is short. Thus, a Wiener process degrada-
tion model with one-order autoregressive (AR(1)) measurement errors is established. 
The AR(1) measurement error is also considered in studies [31, 33]. Giorgio et al. 
[34] modeled ε(t) as a three-parameter inverse gamma distributed random variable 
that is conditionally distributed on the degradation level. 

4 Conclusion 

Reliability evaluation of complex engineering systems is a critical task in many 
safety–critical applications. System failure is generally caused by random shocks and 
internal degradation. Typically, five random shock models are commonly used in the 
field of Reliability Engineering, cumulative shock model, extreme shock model, run 
shock model, δ-shock model, and mixed shock model. In addition, the uncertainty 
in the degradation process can influence the accuracy of the reliability estimation. In 
general, there are three sources of variability that can result in uncertainty, temporal 
variability in the degradation process, unit-to-unit variability, and measurement error 
caused by imperfect instruments or imperfect inspection. Considering the importance 
and popularity of considering random shocks and uncertainty in modeling system 
reliability, in this chapter, we first review system reliability models with random 
shock models and then system reliability models with uncertainty in terms of three 
classic stochastic processes, Wiener process, gamma process, and inverse Gaussian 
process. 
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