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Abstract The software industry is working hard to keep up with these rapid changes 
by devising methods to increase the pace of their work without compromising soft-
ware quality and reliability. Various factors, such as the testing environment, testing 
strategy, and resource allocation, can influence the optimal release time. The choice of 
whether or not to release a software product would become much more complicated 
and significant. When a software developer, clients, or end-users face significant 
potential financial losses, a decision has strategic significance. A software release 
decision is a trade-off between early release to take advantage of an earlier market 
launch and product release deferral to ensure reliability. If a software product is 
released too soon, the software developer must pay for post-release costs to correct 
bugs. To decide the best software release time, two attributes, reliability and cost, 
must be combined. This study discusses a realistic approach to determining when 
to stop software testing that considers reliability and cost. A multi-attribute util-
ity theory-based proposed decision model is analyzed on various separate weighted 
combinations of utility functions. 

Keywords Software reliability growth model · Multi-attribute utility function ·
Optimal release time · Non-homogeneous poisson process 

1 Introduction 

Software technologies are the most prevalent human-made technology that impacts 
our daily lives due to the importance of software applications in recent years. In 
the last two decades, the penetration of software-based technologies into people’s 
everyday lives has been remarkable. Everything we see around us is dependent on 
software or has some connection to software systems. There is a requirement for
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highly dependable, secure, and high-quality software development since our social 
structure has become increasingly dependent on software-based technologies [31]. 
Reliability can only be accomplished by thoroughly testing the program before it is 
made available to the public. Program errors are found, identified, and fixed through-
out the testing process, improving software reliability [13]. Reliability is an essential 
statistic for evaluating commercial software quality in the testing and operational 
phases. Software reliability may be defined as the likelihood of error-free software 
execution in a particular environment over a predetermined duration [17, 23]. Non-
homogeneous Poisson process (NHPP) based growth models are frequently used in 
software systems to describe stochastic failure behavior and measure growth relia-
bility [3, 5, 7, 9, 33].

NHPP models have also been extensively used in the cost-control analysis, soft-
ware time-to-market analysis, and resource allocation issues [1, 10, 12, 26, 32]. 
The correctness and security of a software system can only be improved with suf-
ficient testing time and effort, such as CPU hours and qualified testing specialists 
[10, 29]. In general, software testing uses around half of the resources for software 
development. Continuous software testing for a more extended period may obstruct 
the timely delivery of the software system. Furthermore, it will quickly result in 
significant development expenses. Simultaneously, shorter testing combined with an 
insufficient debugging procedure would cause customer disappointment, potentially 
affecting the growth of the software as well as the software firm’s goodwill. In today’s 
market, a software testing budget should be prioritized over its development budget 
[11, 20]. As a result, software reliability engineering provides a cost-effective com-
promise between client needs for dependability, accessibility, delivery time, and life 
cycle [16, 19]. SRGMs are used to optimize testing techniques for increased orga-
nizational competitiveness, estimate the amount of required resources, and calculate 
the overall cost of the development process [22, 34, 39, 40]. 

The software reliability may be predicted using appropriate software reliability 
growth models (SRGMs) based on the fault count data obtained during the testing 
process [21, 36]. The testing phase is the most significant since it is at this step 
that the fault detection and removal procedure takes place, which is critical for the 
dependability and quality of any software system. A critical decision point for man-
agement is when to end testing and release the software system to the user [30]. 
This is referred to as the “Software Release Time Problem”. Before being released, 
the software is subjected to a rigorous testing procedure in order to identify flaws 
that might have devastating effects if not corrected. Several methods of software 
testing are now in use with the goal of eliminating faults. It’s possible that many 
bugs went undiscovered because of the short testing time and the sudden release 
[37]. The choice to release software is a complicated one, and there are significant 
dangers involved with a release agreement that is either too rapid or too delayed 
[18, 24]. One of the most common applications of SRGMs is to assist developers in 
determining the optimal timing to deploy software [2, 6, 22, 35].
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The main contribution of this work is as follows: 

1. Proposed new SRGMs with log-logistic and Burr Type XII distribution as a fault 
detection rate. 

2. This study suggests the multi-attribute utility theory based optimal release time. 

2 Software Reliability Modeling 

The NHPP based SRGM is used in this work. The NHPP is a method of calculating 
the total number of faults found throughout the testing procedure. In this technique, 
SRGMs such as exponential [8], delayed S-Shaped [41], inflected delayed S-shaped 
[27], and power function have been used to anticipate potential bugs laying latent 
in the program. Let N (t) be the total number of defects discovered at time t , and 
m(t) be the expected number of faults. The failure intensity λ(t) is therefore linked 
as follows: 

m(t) = E[N (t)] =
∫ t 

0 
λ(s)ds  , (1) 

where N (t) has a Poisson probability mass function with parameter m(t), which is 
as follows: 

Pr{N (t) = n} =  
m(t)n.e−m(t) 

n! , x = 0, 1, 2, ... (2) 

Various time-dependent models that describe the stochastic failure process of an 
NHPP have been published in the literature. The failure intensity function λ(t) differs 
across these models, and therefore m(t). In the case of finite failure NHPP models, 
let “Λ” indicate the estimated total number of faults that would be identified given 
infinite testing time. 

One of the main goals of testing is to identify software faults to fix them. Once 
the software code has been written, testing can begin. Before the software is released 
to the public, the software testing team thoroughly tests it to ensure that the software 
contains the least number of bugs. Despite the fact is that it is almost impossible to 
eliminate all the software bugs. As a result, when the testing team tests the software, 
there’s a probability they’ll only find a finite number of problems in the code (less 
than the total number of faults). 

2.1 Assumption 

i. NHPP models the failure observation/fault removal phenomenon. 
ii. The software system is susceptible to failure at any time due to errors that have 

remained in the system.
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iii. There are a finite number of bugs present in the software. 
iv. When a failure occurs, it is instantly removed. 
v. The severity level of all faults is the same. 
vi. The perfect debugging environment is taken into account. 
vii. All remaining software faults have an equal impact on the failure rate. 
viii. The number of defects discovered throughout the testing process is directly 

proportional to the number of faults still present in the software. 
ix. With a probability distribution function, each occurrence of failure is distributed 

independently and identically across the software life-cycle. 

As a result, finite numbers of bugs are perfectly eradicated, with the mathematical 
equation. The finite failure NHPP models’ differential equation formulated based on 
the modeling assumption and it expressed as: 

dm(t) 
dt  

= r (t)[Λ − m(t)] (3) 

When Eq. (3) is solved for the initial condition m(0) = 0, the MVF can be calculated 
as follows: 

m(t) = Λ[1 − e− ∫ t 
0 r(v)dv] =  Λ[1 − e−B(t)] (4) 

m(t) = Λ.F(t) . (5) 

where F(t) is a distribution function. 
Various researches assume that fault detection is constant throughout the testing 

process, but it is not possible in practical behavior. For the detection rate, we know 
that it is low at the initial stage, and in the mid-stage, it’s on the peak; in the later stage, 
it’s again low. So, the FDR is modeled through the specific distribution handling the 
situation. Therefore, this study proposed the SRGMs with the two most applica-
ble distribution functions for B(t), i.e., Log-logistic and Burr type XII distribution 
functions. 

2.2 Fault Detection Rate 

2.2.1 Log-Logistic Distribution 

The logistic distribution and the log-logistic distribution are closely linked. A prob-
ability distribution whose logarithm has a logistic distribution is known as a log-
logistic distribution. Log(x) is distributed logistically with mean and standard devi-
ation if x is distributed loglogistically with parameters μ and σ. The log-logistic 
distribution is a good replacement for the Weibull distribution. It’s a hybrid of the 
Gompertz and Gamma distributions, with the mean and variance values equal to 
one. The log-logistic distribution has its own status as a life testing model; it is an 
increasing failure rate model as well as a weighted exponential distribution. The gen-
eralized log-logistic distribution refers to several distinct distributions that include the
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Fig. 1 Log-logistic distributions with effect of a shape and b scale parameter values 

log-logistic as a particular instance. The Burr Type XII distribution and the Dagum 
distribution, both of which have a second shape parameter, are examples. It’s a flex-
ible distribution family that may represent a wide range of distribution types that are 
shown in Fig. 1. In survival analysis, this distribution is frequently used to simulate 
events that have an initial rate increase followed by a rate decrease. 

The log-logistic distribution with positive scale parameter γ and shape parameter 
α is described as follows: 

B(t) = ( t 
γ )

α 

1 + ( t 
γ )

α , (6) 

and the density function is: 

b(t) = 
( α 

γ )( 
t 
γ )

α−1 

[1 + ( t 
γ )

α]2 (7) 

2.2.2 Burr Type XII Distribution 

The Burr distribution can fit a wide range of empirical data. The parameters’ various 
values span a wide range of skewness and kurtosis. As a result, it is used to represent a 
range of data types in diverse disciplines such as finance, hydrology, and reliability. 
The Burr type XII distribution generalizes Burr distribution with additional scale 
parameters. It is a three-parameter family of positive real-line distributions. It’s a 
versatile distribution family that may represent a variety of different distribution 
forms that are shown in Fig. 2. Many widely used distributions, such as gamma, 
log-normal, log-logistic, bell-shaped, and J-shaped beta distributions, are included, 
overlapped, or have the Burr distribution as a limiting case (but not U-shaped). The 
Burr distribution is also found in several compound distributions. A Burr distribution 
is created by compounding a Weibull distribution with a gamma distribution for the 
scale parameter. There are two asymptotic limiting cases for the Burr distribution: 
Weibull and Pareto Type I.
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Fig. 2 Burr Type XII distributions with effect of a shape, b shape and c scale parameters 

The Burr distribution’s cumulative distribution function (cdf) is: 

B(t) = 1 − 1[
1 +

(
t 
γ 

)α]β , (8) 

b(t) = 
αβ 
γ ( 

t 
γ )

α−1 

[1 − ( t 
γ )

α]β+1 
(9) 

2.3 Software Reliability Growth Models 

m(t) = Λ[1 − e−B(t)] (10)
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2.3.1 Model-1 

The MVF of Log-logistic FDR based SRGM is defined as: 

m(t) = Λ 

⎡ 

⎢⎢⎢⎣1 − e 
− 

( t 
γ )

α 

1 + ( t 
γ )

α 

⎤ 

⎥⎥⎥⎦ 
. (11) 

2.3.2 Model-2 

The MVF of Burr type XII FDR based SRGM is defined as: 

m(t) = Λ 

⎡ 

⎢⎢⎢⎢⎢⎢⎢⎣ 

1 − e 

− 

⎛ 

⎜⎜⎜⎜⎝1− 
1[

1 + 
(

t 
γ 

)α]β 

⎞ 

⎟⎟⎟⎟⎠ 

⎤ 

⎥⎥⎥⎥⎥⎥⎥⎦ 

. (12) 

One of the most common applications of SRGMs is to assist developers in deter-
mining the optimal timing to deploy software. This study formulated a cost model 
to estimate the best software release timing in the latter portion of this paper. This 
field of study is strongly connected to the wider software reliability research. 

3 Numerical Illustration 

The practical applicability of the suggested problem is demonstrated in this section 
using historical fault discovery data as an example. The fault count data set was used 
for the numerical illustration. The non-linear least square estimation (LSE) method 
is used to estimate model parameters. The estimated model parameter findings for 
detected faults throughout the testing period are shown in Table 1. 

The behavior of actual defects data for software release is observed in the graph 
and most of them are in S-shaped form. This is further supported by the usage of 
the log-logistic and Burr Type XII FDR function to detect software faults. As evi-
denced by the values of several comparison criteria, model-1 and model-2 provide 
a perfect fit. Table 2 present the estimated values of proposed and existing models 
for DS-1 to DS-6. Table 3 present a comparative analysis of the proposed and exist-
ing models. The comparison criteria used here are the sum of square error (SSE), 
coefficient of determination (R2) and Adjusted R-square (R2 

ad j  ) Fig. 3 illustrate a 
graphical representation of estimated vs. real cumulative failures over time for a 
better understanding. Based on these findings, we can conclude that the proposed



182 V. Pradhan et al.

Table 1 Datasets from the existing literature 

Dataset (DS) Testing time Detected faults Remark 

DS-1 [38] 18 Weeks 176 Failure data of large  
medical record system 

DS-2 [38] 17 Weeks 204 Failure data of large  
medical record system 

DS-3 [42] 21 Weeks 43 System test data for a 
telecommunication 
system 

DS-4 [25] 30 Days 289 Real software project 
failure data 

DS-5 [8] 20 Weeks 100 Computer 
Programming Center 
of NTDS data 

DS-6 [28] 19 Weeks 328 Reported from Ohba 
1984 test data 

Table 2 Estimated values of SRGMs parameters for all six datasets 
DS Model-1 Model-2 GO model DSS model 

Λ γ α Λ γ α β Λ b Λ b 

DS-1 305.9 9.707 3.082 277.7 171.5 2.672 1805 985.9 0.9243 226.1 0.1741 

DS-2 358.9 3.111 0.980 325.2 2.3E+4 0.842 1500 197.4 0.3985 192.5 0.8814 

DS-3 106.7 19.63 1.917 82.74 661.8 1.903 987.2 1.6E+4 1.3E+4 62.30 0.1185 

DS-4 831.0 35.76 1.880 651.3 171.0 1.841 21.30 6.2E+4 1.4E+4 495.7 0.0645 

DS-5 52.85 5.29 1.448 67.19 1.334 4.198 0.083 31.66 0.1906 30.35 0.4601 

DS-6 979.8 23.5 1.311 741.9 2768 1.301 626.4 760.5 0.0323 374.1 0.1977 

Table 3 Performance comparison of SRGMs for all six datasets 
DS Model-1 Model-2 GO model DSS model 

SSE R2 R2 ad j SSE R2 R2 ad j SSE R2 R2 ad j SSE R2 R2 ad j  

DS-1 2544 0.9598 0.9544 2315 0.9634 0.9556 4789 0.9243 0.9196 3246 0.9487 0.9455 

DS-2 1034 0.9477 0.9402 910.2 0.9539 0.9433 1210 0.9388 0.9347 3489 0.8234 0.8117 

DS-3 59.80 0.9855 0.9839 56.00 0.9864 0.9840 125.8 0.9612 0.9598 62.19 0.9849 0.9841 

DS-4 2204 0.9912 0.9905 2194 0.9912 0.9902 9663 0.9612 0.9598 2277 0.9909 0.9905 

DS-5 43.80 0.9714 0.9696 26.15 0.9830 0.9810 62.29 0.9596 0.9581 102.4 0.9336 0.9311 

DS-6 2111 0.9892 0.9879 2025 0.9897 0.9876 2656 0.9865 0.9857 3205 0.9837 0.9827 

model-2 produces good performance and is more realistic when it comes to forecast-
ing the growth behavior of application-based software systems. 

In the next section we discuss about the optimal release policy.
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Fig. 3 a–f The fitting results of SRGMs comparison with actual failure data for DS-1-DS-6 

4 Optimal Release Policy 

With increasing competition in the software industry, continually changing client 
expectations, and the usual challenges involved with software maintenance, the tim-
ing of a new software release has become increasingly critical for a software vendor’s 
success in the market [15]. Given the fierce competition in the market, deploying soft-
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ware on time has become a vital aspect in deciding the software development team’s 
success. The dynamic release problem in software testing processes is discussed 
in this work [4]. The process of choosing between alternative courses of action in 
order to achieve goals and objectives is known as decision-making. Software release 
time, for example, estimating when it should be completed. Other managerial func-
tions rely substantially on decision-making, such as organizing, implementing, and 
controlling [14]. 

If the testing period is extended in the software development process, the devel-
oped software will presumably be more reliable, but the testing cost will escalate. 
If we end testing too soon, the program may have too many flaws, resulting in too 
many failures during operation and significant losses owing to failure penalties or 
customer discontent. We may incur a considerable testing expense if we spend too 
much time testing. If the testing period is too short, the software may not be error-
free. As a result, software testing and release are mutually exclusive. The testing 
procedure should determine the release timing dynamically. As a result, our goal is 
to come up with an appropriate release policy that reduces the cost and time of soft-
ware testing while increasing the system’s reliability. The ideal release time based 
on the cost-reliability criterion has been described and evaluated. 

4.1 Cost and Reliability Modeling 

4.1.1 Cost Modeling 

1. Testing cost per unit testing time: The effort necessary to perform and execute 
the testing procedure is included in the testing cost. The cost of testing rises 
linearly with the time of the test. If C1 is the testing cost per unit time, then the 
total testing cost is as follows: 

CTC  PU  = C1.T . (13) 

2. Debugging cost during testing-phase: This cost includes the testing team’s effort 
to handle failures. The expected number of bugs identified during this time is 
assumed linearly in software reliability literature. So, in the testing phase, the 
error-debugging cost is: 

CDC DT = C2.m(T ) . (14) 

3. Debugging cost during operational-field: In the operational phase, it is believed 
that Debugging cost during operational-field C2(T ) is proportional to the number 
of software faults that were removed. Thus, 

CDC DO = C3.[m(TLC ) − m(T )] . (15)
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Fig. 4 Cost versus testing time and reliability vs testing time for DS-2 and DS-5 

Because C2 represents the deterministic cost to remove each fault per unit time 
during testing, and C3(T ) represents the cost of eliminating a fault during the 
operational phase, C3 is typically more than C2, i.e., C3 > C2. 

They presented a three-part software cost model structure: testing cost per unit time, 
debugging cost in the testing phase, and debugging cost in the operational phase. 
The mathematical version of the overall cost model is: 

C(T ) = CDC DT + CDC DT + CDC DO . (16) 

= C1T + C2m(T ) + C3[m(TLC ) − m(T )] . (17) 

4.1.2 Reliability Modeling 

R(Δt/T ) = e−[m(T +Δt)−m(T )] (18) 

Cost and reliability analysis with time is shown in Fig. 4. 

4.1.3 Release Time Problem Using MAUT 

When a sequence of possibilities is presented, the goal is to obtain a conjoint measure 
indicating how desirable one conclusion is in comparison to the others. It is a classi-
cal multi-objective optimization technique that addresses the optimization problem 
by applying weights and utility functions to determine which objectives should be 
prioritized [30]. The following is the formula for the multi-attribute utility function 
(MAUF), a weighted sum of single utility functions. It is defined as follows:
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U (x1, x2, ...xn) = f (u(x1), u(x2), ...u(xn)) = 
nΣ 

i=1 

θi ui (xi ) (19) 

This work uses MAUT to construct a new decision model for software release 
schedule determination that trades off two conflicting objectives at the same time. 

The process of determining the utility value consists of four steps. 

1. Selection of Attributes. 
2. Evaluate the utility function for a single attribute. 
3. Allocation of credit and preference for trade-offs. 
4. Single attribute to multi attribute utility function transformation. 

1. Attribute selection Reliability is a necessary attribute that influences optimal 
software time-to-market and testing length selections. As a result, the proposed 
optimization problem’s first attribute is reliability (R). The second attribute is 
overall software development cost (C), because no company wants to spend more 
than it can afford. We take the R and C as two attributes in this study. Our initial 
goal is to strike a compromise between these two goals by maximizing reliability 
while minimizing total software development costs: 

max : R(T ) = e−[m(T+Δt)−m(T )] , (20) 

min : C(T ) =
[
C(T ) 
Cb

]
, 

C(T ) 
Cb 

≤ 1 . (21) 

The total budget available to the testing team is denoted by Cb. 

2. Single attribute utility function 
Each attribute’s aim is represented by a utility function applied to each attribute. 
The single-attribute utility theory (SAUF) expresses the level of satisfaction of 
management concerning each of the attributes. There are many different functional 
forms of the utility function, such as linear, exponential, and so on. The utility 
function of two qualities, namely, reliability and cost function, is used in this 
study. The linear (additive) form u(x) = y1 + y2x should be employed if they 
are equivalent to each other because management is risk-neutral. The proposed 
framework is illustrated as follows: 

u(R) = lr R(T ) + kr , (22) 

u(C) = lcC(T ) + kc . (23) 

where, kr , lr , kc, lc are constants.



Software Reliability Models and Multi-attribute Utility Function … 187

Table 4 Optimal release time by MAUT for DS-2 and DS-5 

Attribute weights Release time (T ∗) 
wr wl DS-2 DS-5 

0.4 0.5 14 11 

0.5 0.6 15 13 

0.6 0.4 16 15 

0.7 0.3 18 17 

0.8 0.2 20 21 

0.9 0.1 25 27 

3. Weight parameter estimation 
The management decision determines the relative value of each attribute. In this 
study, we perform various weight combinations values for each attribute. The 
weight parameter has a value between 0 and 1, with a value closer to 1 denoting 
greater significance. Furthermore, the sum of the weight parameters must equal 
1, i.e., 

wr + wc = 1 . (24) 

where wr and wc are weight for the reliability and cost respectively. 

4. Formulation of MAUT 
The MAUT function is created by multiplying all of the single utility functions by 
their corresponding weights. The MAUT function with the maximizing objective 
for the given problem is: 

Max  : U (R, C) = wr .u(R) − wc.u(C) . (25) 

where 
u(R) = 2R − 1 , (26) 

u(C) = 2C − 1 . (27) 

U (R, C) is a max function that has been written in terms of R and C . From the  
manager’s perspective, R should be maximized while C should be minimized. 
where, TLC = 1000, C1 = 100, C2 = 10, C2 = 50. For DS-2,  Cb = 8500$, Δt = 
0.025 and for DS-5, Cb = 8500$, Δt = 0.4. With the different combination of 
weights to reliability and cost based optimal release time is shown in Table 4.
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5 Conclusions 

It is also possible to optimize software release and testing times by maximizing util-
ity. The results show that a corporation should publish software early to achieve a 
competitive edge. The solution to the problem can also assist software firms design 
efficient release and testing procedures. In this work, we propose an effort-based 
optimum decision model that takes into account the cost of detection during testing 
and operational phases separately using MAUT. SRGMs provide a statistical founda-
tion for determining optimal software testing release time. A decision model based 
on MAUT is suggested to make wise decisions on optimal test runs before soft-
ware release. This study optimizes cost and reliability using multi-attribute utility 
theory and gets optimal release time. These models may help the software industry 
anticipate software system dependability and release time. 
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