
Software Reliability Models and
Multi-attribute Utility Function Based
Strategic Decision for Release Time
Optimization

Vishal Pradhan, Joydip Dhar, and Ajay Kumar

Abstract The software industry is working hard to keep up with these rapid changes
by devising methods to increase the pace of their work without compromising soft-
ware quality and reliability. Various factors, such as the testing environment, testing
strategy, and resource allocation, can influence the optimal release time. The choice of
whether or not to release a software product would become much more complicated
and significant. When a software developer, clients, or end-users face significant
potential financial losses, a decision has strategic significance. A software release
decision is a trade-off between early release to take advantage of an earlier market
launch and product release deferral to ensure reliability. If a software product is
released too soon, the software developer must pay for post-release costs to correct
bugs. To decide the best software release time, two attributes, reliability and cost,
must be combined. This study discusses a realistic approach to determining when
to stop software testing that considers reliability and cost. A multi-attribute util-
ity theory-based proposed decision model is analyzed on various separate weighted
combinations of utility functions.

Keywords Software reliability growth model · Multi-attribute utility function ·
Optimal release time · Non-homogeneous poisson process

1 Introduction

Software technologies are the most prevalent human-made technology that impacts
our daily lives due to the importance of software applications in recent years. In
the last two decades, the penetration of software-based technologies into people’s
everyday lives has been remarkable. Everything we see around us is dependent on
software or has some connection to software systems. There is a requirement for

V. Pradhan (B) · J. Dhar · A. Kumar
ABV-Indian Institute of Information Technology and Management Gwalior,
Gwalior 474015, India
e-mail: vishal.iiitmg@gmail.com; vishalp@iiitm.ac.in

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Kumar and H. Pham (eds.), Predictive Analytics in System Reliability,
Springer Series in Reliability Engineering,
https://doi.org/10.1007/978-3-031-05347-4_12

175

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05347-4_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05347-4_12&domain=pdf
mailto:vishal.iiitmg@gmail.com
mailto:vishal.iiitmg@gmail.com
mailto:vishalp@iiitm.ac.in
mailto:vishalp@iiitm.ac.in
https://doi.org/10.1007/978-3-031-05347-4protect LY1	extunderscore 12
https://doi.org/10.1007/978-3-031-05347-4_12

176 V. Pradhan et al.

highly dependable, secure, and high-quality software development since our social
structure has become increasingly dependent on software-based technologies [31].
Reliability can only be accomplished by thoroughly testing the program before it is
made available to the public. Program errors are found, identified, and fixed through-
out the testing process, improving software reliability [13]. Reliability is an essential
statistic for evaluating commercial software quality in the testing and operational
phases. Software reliability may be defined as the likelihood of error-free software
execution in a particular environment over a predetermined duration [17, 23]. Non-
homogeneous Poisson process (NHPP) based growth models are frequently used in
software systems to describe stochastic failure behavior and measure growth relia-
bility [3, 5, 7, 9, 33].

NHPP models have also been extensively used in the cost-control analysis, soft-
ware time-to-market analysis, and resource allocation issues [1, 10, 12, 26, 32].
The correctness and security of a software system can only be improved with suf-
ficient testing time and effort, such as CPU hours and qualified testing specialists
[10, 29]. In general, software testing uses around half of the resources for software
development. Continuous software testing for a more extended period may obstruct
the timely delivery of the software system. Furthermore, it will quickly result in
significant development expenses. Simultaneously, shorter testing combined with an
insufficient debugging procedure would cause customer disappointment, potentially
affecting the growth of the software as well as the software firm’s goodwill. In today’s
market, a software testing budget should be prioritized over its development budget
[11, 20]. As a result, software reliability engineering provides a cost-effective com-
promise between client needs for dependability, accessibility, delivery time, and life
cycle [16, 19]. SRGMs are used to optimize testing techniques for increased orga-
nizational competitiveness, estimate the amount of required resources, and calculate
the overall cost of the development process [22, 34, 39, 40].

The software reliability may be predicted using appropriate software reliability
growth models (SRGMs) based on the fault count data obtained during the testing
process [21, 36]. The testing phase is the most significant since it is at this step
that the fault detection and removal procedure takes place, which is critical for the
dependability and quality of any software system. A critical decision point for man-
agement is when to end testing and release the software system to the user [30].
This is referred to as the “Software Release Time Problem”. Before being released,
the software is subjected to a rigorous testing procedure in order to identify flaws
that might have devastating effects if not corrected. Several methods of software
testing are now in use with the goal of eliminating faults. It’s possible that many
bugs went undiscovered because of the short testing time and the sudden release
[37]. The choice to release software is a complicated one, and there are significant
dangers involved with a release agreement that is either too rapid or too delayed
[18, 24]. One of the most common applications of SRGMs is to assist developers in
determining the optimal timing to deploy software [2, 6, 22, 35].

Software Reliability Models and Multi-attribute Utility Function … 177

The main contribution of this work is as follows:

1. Proposed new SRGMs with log-logistic and Burr Type XII distribution as a fault
detection rate.

2. This study suggests the multi-attribute utility theory based optimal release time.

2 Software Reliability Modeling

The NHPP based SRGM is used in this work. The NHPP is a method of calculating
the total number of faults found throughout the testing procedure. In this technique,
SRGMs such as exponential [8], delayed S-Shaped [41], inflected delayed S-shaped
[27], and power function have been used to anticipate potential bugs laying latent
in the program. Let N (t) be the total number of defects discovered at time t , and
m(t) be the expected number of faults. The failure intensity λ(t) is therefore linked
as follows:

m(t) = E[N (t)] =
∫ t

0
λ(s)ds , (1)

where N (t) has a Poisson probability mass function with parameter m(t), which is
as follows:

Pr{N (t) = n} =
m(t)n.e−m(t)

n! , x = 0, 1, 2, ... (2)

Various time-dependent models that describe the stochastic failure process of an
NHPP have been published in the literature. The failure intensity function λ(t) differs
across these models, and therefore m(t). In the case of finite failure NHPP models,
let “Λ” indicate the estimated total number of faults that would be identified given
infinite testing time.

One of the main goals of testing is to identify software faults to fix them. Once
the software code has been written, testing can begin. Before the software is released
to the public, the software testing team thoroughly tests it to ensure that the software
contains the least number of bugs. Despite the fact is that it is almost impossible to
eliminate all the software bugs. As a result, when the testing team tests the software,
there’s a probability they’ll only find a finite number of problems in the code (less
than the total number of faults).

2.1 Assumption

i. NHPP models the failure observation/fault removal phenomenon.
ii. The software system is susceptible to failure at any time due to errors that have

remained in the system.

178 V. Pradhan et al.

iii. There are a finite number of bugs present in the software.
iv. When a failure occurs, it is instantly removed.
v. The severity level of all faults is the same.
vi. The perfect debugging environment is taken into account.
vii. All remaining software faults have an equal impact on the failure rate.
viii. The number of defects discovered throughout the testing process is directly

proportional to the number of faults still present in the software.
ix. With a probability distribution function, each occurrence of failure is distributed

independently and identically across the software life-cycle.

As a result, finite numbers of bugs are perfectly eradicated, with the mathematical
equation. The finite failure NHPP models’ differential equation formulated based on
the modeling assumption and it expressed as:

dm(t)
dt

= r (t)[Λ − m(t)] (3)

When Eq. (3) is solved for the initial condition m(0) = 0, the MVF can be calculated
as follows:

m(t) = Λ[1 − e− ∫ t
0 r(v)dv] = Λ[1 − e−B(t)] (4)

m(t) = Λ.F(t) . (5)

where F(t) is a distribution function.
Various researches assume that fault detection is constant throughout the testing

process, but it is not possible in practical behavior. For the detection rate, we know
that it is low at the initial stage, and in the mid-stage, it’s on the peak; in the later stage,
it’s again low. So, the FDR is modeled through the specific distribution handling the
situation. Therefore, this study proposed the SRGMs with the two most applica-
ble distribution functions for B(t), i.e., Log-logistic and Burr type XII distribution
functions.

2.2 Fault Detection Rate

2.2.1 Log-Logistic Distribution

The logistic distribution and the log-logistic distribution are closely linked. A prob-
ability distribution whose logarithm has a logistic distribution is known as a log-
logistic distribution. Log(x) is distributed logistically with mean and standard devi-
ation if x is distributed loglogistically with parameters μ and σ. The log-logistic
distribution is a good replacement for the Weibull distribution. It’s a hybrid of the
Gompertz and Gamma distributions, with the mean and variance values equal to
one. The log-logistic distribution has its own status as a life testing model; it is an
increasing failure rate model as well as a weighted exponential distribution. The gen-
eralized log-logistic distribution refers to several distinct distributions that include the

Software Reliability Models and Multi-attribute Utility Function … 179

Fig. 1 Log-logistic distributions with effect of a shape and b scale parameter values

log-logistic as a particular instance. The Burr Type XII distribution and the Dagum
distribution, both of which have a second shape parameter, are examples. It’s a flex-
ible distribution family that may represent a wide range of distribution types that are
shown in Fig. 1. In survival analysis, this distribution is frequently used to simulate
events that have an initial rate increase followed by a rate decrease.

The log-logistic distribution with positive scale parameter γ and shape parameter
α is described as follows:

B(t) = (t
γ)

α

1 + (t
γ)

α , (6)

and the density function is:

b(t) =
(α

γ)(
t
γ)

α−1

[1 + (t
γ)

α]2 (7)

2.2.2 Burr Type XII Distribution

The Burr distribution can fit a wide range of empirical data. The parameters’ various
values span a wide range of skewness and kurtosis. As a result, it is used to represent a
range of data types in diverse disciplines such as finance, hydrology, and reliability.
The Burr type XII distribution generalizes Burr distribution with additional scale
parameters. It is a three-parameter family of positive real-line distributions. It’s a
versatile distribution family that may represent a variety of different distribution
forms that are shown in Fig. 2. Many widely used distributions, such as gamma,
log-normal, log-logistic, bell-shaped, and J-shaped beta distributions, are included,
overlapped, or have the Burr distribution as a limiting case (but not U-shaped). The
Burr distribution is also found in several compound distributions. A Burr distribution
is created by compounding a Weibull distribution with a gamma distribution for the
scale parameter. There are two asymptotic limiting cases for the Burr distribution:
Weibull and Pareto Type I.

180 V. Pradhan et al.

Fig. 2 Burr Type XII distributions with effect of a shape, b shape and c scale parameters

The Burr distribution’s cumulative distribution function (cdf) is:

B(t) = 1 − 1[
1 +

(
t
γ

)α]β , (8)

b(t) =
αβ
γ (

t
γ)

α−1

[1 − (t
γ)

α]β+1
(9)

2.3 Software Reliability Growth Models

m(t) = Λ[1 − e−B(t)] (10)

Software Reliability Models and Multi-attribute Utility Function … 181

2.3.1 Model-1

The MVF of Log-logistic FDR based SRGM is defined as:

m(t) = Λ

⎡

⎢⎢⎢⎣1 − e
−

(t
γ)

α

1 + (t
γ)

α

⎤

⎥⎥⎥⎦
. (11)

2.3.2 Model-2

The MVF of Burr type XII FDR based SRGM is defined as:

m(t) = Λ

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 − e

−

⎛

⎜⎜⎜⎜⎝1−
1[

1 +
(

t
γ

)α]β

⎞

⎟⎟⎟⎟⎠

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

. (12)

One of the most common applications of SRGMs is to assist developers in deter-
mining the optimal timing to deploy software. This study formulated a cost model
to estimate the best software release timing in the latter portion of this paper. This
field of study is strongly connected to the wider software reliability research.

3 Numerical Illustration

The practical applicability of the suggested problem is demonstrated in this section
using historical fault discovery data as an example. The fault count data set was used
for the numerical illustration. The non-linear least square estimation (LSE) method
is used to estimate model parameters. The estimated model parameter findings for
detected faults throughout the testing period are shown in Table 1.

The behavior of actual defects data for software release is observed in the graph
and most of them are in S-shaped form. This is further supported by the usage of
the log-logistic and Burr Type XII FDR function to detect software faults. As evi-
denced by the values of several comparison criteria, model-1 and model-2 provide
a perfect fit. Table 2 present the estimated values of proposed and existing models
for DS-1 to DS-6. Table 3 present a comparative analysis of the proposed and exist-
ing models. The comparison criteria used here are the sum of square error (SSE),
coefficient of determination (R2) and Adjusted R-square (R2

ad j) Fig. 3 illustrate a
graphical representation of estimated vs. real cumulative failures over time for a
better understanding. Based on these findings, we can conclude that the proposed

182 V. Pradhan et al.

Table 1 Datasets from the existing literature

Dataset (DS) Testing time Detected faults Remark

DS-1 [38] 18 Weeks 176 Failure data of large
medical record system

DS-2 [38] 17 Weeks 204 Failure data of large
medical record system

DS-3 [42] 21 Weeks 43 System test data for a
telecommunication
system

DS-4 [25] 30 Days 289 Real software project
failure data

DS-5 [8] 20 Weeks 100 Computer
Programming Center
of NTDS data

DS-6 [28] 19 Weeks 328 Reported from Ohba
1984 test data

Table 2 Estimated values of SRGMs parameters for all six datasets
DS Model-1 Model-2 GO model DSS model

Λ γ α Λ γ α β Λ b Λ b

DS-1 305.9 9.707 3.082 277.7 171.5 2.672 1805 985.9 0.9243 226.1 0.1741

DS-2 358.9 3.111 0.980 325.2 2.3E+4 0.842 1500 197.4 0.3985 192.5 0.8814

DS-3 106.7 19.63 1.917 82.74 661.8 1.903 987.2 1.6E+4 1.3E+4 62.30 0.1185

DS-4 831.0 35.76 1.880 651.3 171.0 1.841 21.30 6.2E+4 1.4E+4 495.7 0.0645

DS-5 52.85 5.29 1.448 67.19 1.334 4.198 0.083 31.66 0.1906 30.35 0.4601

DS-6 979.8 23.5 1.311 741.9 2768 1.301 626.4 760.5 0.0323 374.1 0.1977

Table 3 Performance comparison of SRGMs for all six datasets
DS Model-1 Model-2 GO model DSS model

SSE R2 R2 ad j SSE R2 R2 ad j SSE R2 R2 ad j SSE R2 R2 ad j

DS-1 2544 0.9598 0.9544 2315 0.9634 0.9556 4789 0.9243 0.9196 3246 0.9487 0.9455

DS-2 1034 0.9477 0.9402 910.2 0.9539 0.9433 1210 0.9388 0.9347 3489 0.8234 0.8117

DS-3 59.80 0.9855 0.9839 56.00 0.9864 0.9840 125.8 0.9612 0.9598 62.19 0.9849 0.9841

DS-4 2204 0.9912 0.9905 2194 0.9912 0.9902 9663 0.9612 0.9598 2277 0.9909 0.9905

DS-5 43.80 0.9714 0.9696 26.15 0.9830 0.9810 62.29 0.9596 0.9581 102.4 0.9336 0.9311

DS-6 2111 0.9892 0.9879 2025 0.9897 0.9876 2656 0.9865 0.9857 3205 0.9837 0.9827

model-2 produces good performance and is more realistic when it comes to forecast-
ing the growth behavior of application-based software systems.

In the next section we discuss about the optimal release policy.

Software Reliability Models and Multi-attribute Utility Function … 183

Time (t)

0

20

40

60

80

100

120

140

160

180
C

um
ul

at
iv

e
nu

m
be

r o
f f

au
lts

Actual faults
Model-1
Model-2
GO model
DSS model

8 10 12 14 16 180 2 4 6 0 2 4 6 8 10 12 14 16 18
Time (t)

100

120

140

160

180

200

C
um

ul
at

iv
e

nu
m

be
r o

f f
au

lts

Actual faults
Model-1
Model-2
GO model
DSS model

Time (t)

0

5

10

15

20

25

30

35

40

45

C
um

ul
at

iv
e

nu
m

be
r o

f f
au

lts

Actual
Model-1
Model-2
GO model
DSS model

0 2 4 6 8 10 12 14 16 18 20 22 0 5 10 15 20 25 30
Time (t)

0

50

100

150

200

250

300

C
um

ul
at

iv
e

nu
m

be
r o

f f
au

lts

Actual
Model-1
Model-2
GO model
DSS model

Time (t)

0

5

10

15

20

25

30

35

C
um

ul
at

iv
e

nu
m

be
r o

f f
au

lts

Actual
Model-1
Model-2
GO model
DSS model

0 5 10 15 20 25 30 2 4 6 8 10 12 14 16 18 20
Time (t)

0

50

100

150

200

250

300

350

C
um

ul
at

iv
e

nu
m

be
r o

f f
au

lts

Actual
Model-1
Model-2
GO model
DSS model

Fig. 3 a–f The fitting results of SRGMs comparison with actual failure data for DS-1-DS-6

4 Optimal Release Policy

With increasing competition in the software industry, continually changing client
expectations, and the usual challenges involved with software maintenance, the tim-
ing of a new software release has become increasingly critical for a software vendor’s
success in the market [15]. Given the fierce competition in the market, deploying soft-

184 V. Pradhan et al.

ware on time has become a vital aspect in deciding the software development team’s
success. The dynamic release problem in software testing processes is discussed
in this work [4]. The process of choosing between alternative courses of action in
order to achieve goals and objectives is known as decision-making. Software release
time, for example, estimating when it should be completed. Other managerial func-
tions rely substantially on decision-making, such as organizing, implementing, and
controlling [14].

If the testing period is extended in the software development process, the devel-
oped software will presumably be more reliable, but the testing cost will escalate.
If we end testing too soon, the program may have too many flaws, resulting in too
many failures during operation and significant losses owing to failure penalties or
customer discontent. We may incur a considerable testing expense if we spend too
much time testing. If the testing period is too short, the software may not be error-
free. As a result, software testing and release are mutually exclusive. The testing
procedure should determine the release timing dynamically. As a result, our goal is
to come up with an appropriate release policy that reduces the cost and time of soft-
ware testing while increasing the system’s reliability. The ideal release time based
on the cost-reliability criterion has been described and evaluated.

4.1 Cost and Reliability Modeling

4.1.1 Cost Modeling

1. Testing cost per unit testing time: The effort necessary to perform and execute
the testing procedure is included in the testing cost. The cost of testing rises
linearly with the time of the test. If C1 is the testing cost per unit time, then the
total testing cost is as follows:

CTC PU = C1.T . (13)

2. Debugging cost during testing-phase: This cost includes the testing team’s effort
to handle failures. The expected number of bugs identified during this time is
assumed linearly in software reliability literature. So, in the testing phase, the
error-debugging cost is:

CDC DT = C2.m(T) . (14)

3. Debugging cost during operational-field: In the operational phase, it is believed
that Debugging cost during operational-field C2(T) is proportional to the number
of software faults that were removed. Thus,

CDC DO = C3.[m(TLC) − m(T)] . (15)

Software Reliability Models and Multi-attribute Utility Function … 185

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Time (T)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
R

el
ia

bi
lit

y

4500

5000

5500

6000

6500

7000

7500

8000

8500

C
os

t

Reliability and Cost

0 5 10 15 20 25 30 35 40
Time (T)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
el

ia
bi

lit
y

1500

2000

2500

3000

3500

4000

4500

C
os

t

Reliability and Cost

Fig. 4 Cost versus testing time and reliability vs testing time for DS-2 and DS-5

Because C2 represents the deterministic cost to remove each fault per unit time
during testing, and C3(T) represents the cost of eliminating a fault during the
operational phase, C3 is typically more than C2, i.e., C3 > C2.

They presented a three-part software cost model structure: testing cost per unit time,
debugging cost in the testing phase, and debugging cost in the operational phase.
The mathematical version of the overall cost model is:

C(T) = CDC DT + CDC DT + CDC DO . (16)

= C1T + C2m(T) + C3[m(TLC) − m(T)] . (17)

4.1.2 Reliability Modeling

R(Δt/T) = e−[m(T +Δt)−m(T)] (18)

Cost and reliability analysis with time is shown in Fig. 4.

4.1.3 Release Time Problem Using MAUT

When a sequence of possibilities is presented, the goal is to obtain a conjoint measure
indicating how desirable one conclusion is in comparison to the others. It is a classi-
cal multi-objective optimization technique that addresses the optimization problem
by applying weights and utility functions to determine which objectives should be
prioritized [30]. The following is the formula for the multi-attribute utility function
(MAUF), a weighted sum of single utility functions. It is defined as follows:

186 V. Pradhan et al.

U (x1, x2, ...xn) = f (u(x1), u(x2), ...u(xn)) =
nΣ

i=1

θi ui (xi) (19)

This work uses MAUT to construct a new decision model for software release
schedule determination that trades off two conflicting objectives at the same time.

The process of determining the utility value consists of four steps.

1. Selection of Attributes.
2. Evaluate the utility function for a single attribute.
3. Allocation of credit and preference for trade-offs.
4. Single attribute to multi attribute utility function transformation.

1. Attribute selection Reliability is a necessary attribute that influences optimal
software time-to-market and testing length selections. As a result, the proposed
optimization problem’s first attribute is reliability (R). The second attribute is
overall software development cost (C), because no company wants to spend more
than it can afford. We take the R and C as two attributes in this study. Our initial
goal is to strike a compromise between these two goals by maximizing reliability
while minimizing total software development costs:

max : R(T) = e−[m(T+Δt)−m(T)] , (20)

min : C(T) =
[
C(T)
Cb

]
,

C(T)
Cb

≤ 1 . (21)

The total budget available to the testing team is denoted by Cb.

2. Single attribute utility function
Each attribute’s aim is represented by a utility function applied to each attribute.
The single-attribute utility theory (SAUF) expresses the level of satisfaction of
management concerning each of the attributes. There are many different functional
forms of the utility function, such as linear, exponential, and so on. The utility
function of two qualities, namely, reliability and cost function, is used in this
study. The linear (additive) form u(x) = y1 + y2x should be employed if they
are equivalent to each other because management is risk-neutral. The proposed
framework is illustrated as follows:

u(R) = lr R(T) + kr , (22)

u(C) = lcC(T) + kc . (23)

where, kr , lr , kc, lc are constants.

Software Reliability Models and Multi-attribute Utility Function … 187

Table 4 Optimal release time by MAUT for DS-2 and DS-5

Attribute weights Release time (T ∗)
wr wl DS-2 DS-5

0.4 0.5 14 11

0.5 0.6 15 13

0.6 0.4 16 15

0.7 0.3 18 17

0.8 0.2 20 21

0.9 0.1 25 27

3. Weight parameter estimation
The management decision determines the relative value of each attribute. In this
study, we perform various weight combinations values for each attribute. The
weight parameter has a value between 0 and 1, with a value closer to 1 denoting
greater significance. Furthermore, the sum of the weight parameters must equal
1, i.e.,

wr + wc = 1 . (24)

where wr and wc are weight for the reliability and cost respectively.

4. Formulation of MAUT
The MAUT function is created by multiplying all of the single utility functions by
their corresponding weights. The MAUT function with the maximizing objective
for the given problem is:

Max : U (R, C) = wr .u(R) − wc.u(C) . (25)

where
u(R) = 2R − 1 , (26)

u(C) = 2C − 1 . (27)

U (R, C) is a max function that has been written in terms of R and C . From the
manager’s perspective, R should be maximized while C should be minimized.
where, TLC = 1000, C1 = 100, C2 = 10, C2 = 50. For DS-2, Cb = 8500$, Δt =
0.025 and for DS-5, Cb = 8500$, Δt = 0.4. With the different combination of
weights to reliability and cost based optimal release time is shown in Table 4.

188 V. Pradhan et al.

5 Conclusions

It is also possible to optimize software release and testing times by maximizing util-
ity. The results show that a corporation should publish software early to achieve a
competitive edge. The solution to the problem can also assist software firms design
efficient release and testing procedures. In this work, we propose an effort-based
optimum decision model that takes into account the cost of detection during testing
and operational phases separately using MAUT. SRGMs provide a statistical founda-
tion for determining optimal software testing release time. A decision model based
on MAUT is suggested to make wise decisions on optimal test runs before soft-
ware release. This study optimizes cost and reliability using multi-attribute utility
theory and gets optimal release time. These models may help the software industry
anticipate software system dependability and release time.

Acknowledgements One of the authors, Mr. Vishal Pradhan, would like to thank to Ministry of
Education (earlier MHRD) for financial support provided. The support is gratefully acknowledged.

References

1. Chatterjee S, Chaudhuri B, Bhar C, Shukla A (2020) Optimal release time determination
using FMOCCP involving randomized cost budget for FSDE-based software reliability growth
model. Int J Reliab Qual Saf Eng 27(01):2050004

2. Chatterjee S, Shukla A (2017) An ideal software release policy for an improved software
reliability growth model incorporating imperfect debugging with fault removal efficiency and
change point. Asia-Pac J Oper Res 34(03):1740017, e2150

3. Chatterjee S, Shukla A (2019) A unified approach of testing coverage-based software reliability
growth modelling with fault detection probability, imperfect debugging, and change point. J
Softw Evol Process 31(3):e2150

4. Choudhary C, Kapur PK, Khatri SK, Muthukumar R, Shrivastava AK (2020) Effort based
release time of software for detection and correction processes using MAUT. Int J Syst Assur
Eng Manage 11(2):367–378

5. Dhaka R, Pachauri B, Jain A (2021) Two-dimensional SRGM with delay in debugging by
considering the uncertainty factor and predictive analysis. Reliab Theory Appl SI 2(64):82–94

6. Dhaka R, Pachauri B, Jain A (2022) Two-dimensional software reliability model with consid-
ering the uncertainty in operating environment and predictive analysis. In: Data engineering
for smart systems, pp 57–69. Springer

7. Goel AL (1983) A guidebook for software reliability assessment. Technical report, SYRACUSE
UNIV NY

8. Goel AL, Okumoto K (1979) Time-dependent error-detection rate model for software reliability
and other performance measures. IEEE Trans Reliab 28(3):206–211

9. Hsu C-J, Huang C-Y, Chang J-R (2011) Enhancing software reliability modeling and prediction
through the introduction of time-variable fault reduction factor. Appl Math Model 35(1):506–
521

10. Huang CY, Lo JH, Kuo SY, Lyu MR (2004) Optimal allocation of testing-resource considering
cost, reliability, and testing-effort. In: 10th IEEE Pacific Rim international symposium on
dependable computing proceedings, pp 103–112. IEEE

Software Reliability Models and Multi-attribute Utility Function … 189

11. Huang CY, Lyu MR (2005) Optimal release time for software systems considering cost, testing-
effort, and test efficiency. IEEE Trans Reliab 54(4):583–591

12. Jain M, Manjula T, Gulati TR (2014) Prediction of reliability growth and warranty cost of
software with fault reduction factor, imperfect debugging and multiple change point. Int J Oper
Res 21(2):201–220

13. Kapur PK, Goswami DN, Bardhan A, Singh O (2008) Flexible software reliability growth
model with testing effort dependent learning process. Appl Math Model 32(7):1298–1307

14. Kapur PK, Khatri SK, Tickoo A, Shatnawi O (2014) Release time determination depending on
number of test runs using multi attribute utility theory. Int J Syst Assur Eng Manage 5(2):186–
194

15. Kapur PK, Panwar S, Singh O, Kumar V (2019) Joint release and testing stop time policy with
testing-effort and change point. In: Risk based technologies, pp 209–222. Springer

16. Kapur PK, Pham H, Aggarwal AG, Kaur G (2012) Two dimensional multi-release software
reliability modeling and optimal release planning. IEEE Trans Reliab 61(3):758–768

17. Kapur PK, Pham H, Gupta A, Jha PC (2011) Software reliability assessment with OR appli-
cations. Springer

18. Kapur PK, Shrivastava AK, Singh O (2017) When to release and stop testing of a software. J
Ind Soc Probab Stat 18(1):19–37

19. Kapur PK, Singh O, Shrivastava AK (2014) Optimal price and testing time of a software under
warranty and two types of imperfect debugging. Int J Syst Assur Engi Manage 5(2):120–126

20. Kumar V, Sahni R, Shrivastava AK (2016) Two-dimensional multi-release software modelling
with testing effort, time and two types of imperfect debugging. Int J Reliab Saf 10(4):368–388

21. Kumar V, Saxena P, Garg H (2021) Selection of optimal software reliability growth models
using an integrated entropy–technique for order preference by similarity to an ideal solution
(topsis) approach. Math Methods Appl Sci

22. Lee DH, Hong Chang I, Pham H, Song KY (2018) A software reliability model considering the
syntax error in uncertainty environment, optimal release time, and sensitivity analysis. Appl
Sci 8(9):1483

23. Lin C-T, Huang C-Y (2008) Enhancing and measuring the predictive capabilities of testing-
effort dependent software reliability models. J Syst Softw 81(6):1025–1038

24. Majumdar R, Shrivastava AK, Kapur PK, Khatri SK (2017) Release and testing stop time of a
software using multi-attribute utility theory. Life Cycle Reliab Saf Eng 6(1):47–55

25. Meeker WQ, Hong Y (2014) Reliability meets big data: opportunities and challenges. Qual
Eng 26(1):102–116

26. Mishra G, Kapur PK, Shrivastava AK (2017) Multi release cost model : a new perspective. Int
J Reliab Qual Saf Eng 24(06):1740007

27. Ohba M, Yamada S (1984) S-shaped software reliability growth models, pp 430–436
28. Ohba M (1984) Software reliability analysis models. IBM J Res Dev 28(4):428–443
29. Pachauri B, Kumar A, Dhar J (2013) Modeling optimal release policy under fuzzy paradigm

in imperfect debugging environment. Inf Softw Technol 55(11):1974–1980
30. Pachauri B, Kumar A, Dhar J (2014) Software reliability growth modeling with dynamic faults

and release time optimization using GA and MAUT. Appl Math Comput 242:500–509
31. Pham H (2007) System software reliability. Springer Science & Business Media
32. Pham H, Zhang X (2003) NHPP software reliability and cost models with testing coverage.

Eur J Oper Res 145(2):443–454
33. Pradhan V, Dhar J, Kumar A (2022) Testing-effort based NHPP software reliability growth

model with change-point approach. J Inf Sci Eng 38(2)
34. Pradhan V, Dhar J, Kumar A, Bhargava A (2020) An S-shaped fault detection and correction

SRGM subject to gamma-distributed random field environment and release time optimization.
Decis Anal Appl Ind 285–300. Springer

35. Pradhan V, Kumar A, Dhar J (2021) Modelling software reliability growth through generalized
inflection s-shaped fault reduction factor and optimal release time. In: Proceedings of the insti-
tution of mechanical engineers, Part O: journal of risk and reliability, p 1748006X211033713

190 V. Pradhan et al.

36. Saxena P, Kumar V, Ram M (2021) Ranking of software reliability growth models: a entropy-
electre hybrid approach. Reliab Theory Appl SI 2(64):95–113

37. Shrivastava AK, Kumar V, Kapur PK, Singh O (2020) Software release and testing stop time
decision with change point. Int J Syst Assur Eng Manage 11(2):196–207

38. Stringfellow C, Amschler Andrews A (2002) An empirical method for selecting software
reliability growth models. Empir Softw Eng 7(4):319–343

39. Tamura Y, Yamada S (2019) Software reliability model selection based on deep learning with
application to the optimal release problem. J Ind Eng Manage Sci 2019(1):43–58

40. Tickoo A, Kapur PK, Shrivastava AK, Khatri SK (2016) Testing effort based modeling to
determine optimal release and patching time of software. Int J Syst Assur Eng Manage 7(4):427–
434

41. Yamada S, Ohba M, Osaki S (1984) S-shaped software reliability growth models and their
applications. IEEE Trans Reliab 33(4):289–292

42. Zhang X, Jeske DR, Pham H (2002) Calibrating software reliability models when the test
environment does not match the user environment. Appl Stochast Models Bus Ind 18(1):87–99

	 Software Reliability Models and Multi-attribute Utility Function Based Strategic Decision for Release Time Optimization
	1 Introduction
	2 Software Reliability Modeling
	2.1 Assumption
	2.2 Fault Detection Rate
	2.3 Software Reliability Growth Models

	3 Numerical Illustration
	4 Optimal Release Policy
	4.1 Cost and Reliability Modeling

	5 Conclusions
	References

