
Springer Series in Reliability Engineering

Vijay Kumar
Hoang Pham Editors

Predictive
Analytics
in System
Reliability

Springer Series in Reliability Engineering

Series Editor

Hoang Pham, Department of Industrial and Systems Engineering,
Rutgers University, Piscataway, NJ, USA

Today’s modern systems have become increasingly complex to design and build,
while the demand for reliability and cost effective development continues. Reli-
ability is one of the most important attributes in all these systems, including
aerospace applications, real-time control, medical applications, defense systems,
human decision-making, and home-security products. Growing international compe-
tition has increased the need for all designers, managers, practitioners, scientists and
engineers to ensure a level of reliability of their product before release at the lowest
cost. The interest in reliability has been growing in recent years and this trend will
continue during the next decade and beyond.

The Springer Series in Reliability Engineering publishes books, monographs and
edited volumes in important areas of current theoretical research development in
reliability and in areas that attempt to bridge the gap between theory and application
in areas of interest to practitioners in industry, laboratories, business, and government.

Now with 100 volumes!

Indexed in Scopus and EI Compendex

Interested authors should contact the series editor, Hoang Pham, Department of
Industrial and Systems Engineering, Rutgers University, Piscataway, NJ 08854,
USA. Email: hopham@rci.rutgers.edu, or Anthony Doyle, Executive Editor,
Springer, London. Email: anthony.doyle@springer.com.

mailto:hopham@rci.rutgers.edu
mailto:anthony.doyle@springer.com

Vijay Kumar · Hoang Pham
Editors

Predictive Analytics
in System Reliability

Editors
Vijay Kumar
Department of Mathematics
Amity Institute of Applied Sciences
Amity University Uttar Pradesh
Noida, Uttar Pradesh, India

Hoang Pham
Department of Industrial and Systems
Engineering
Rutgers University
Piscataway, NJ, USA

ISSN 1614-7839 ISSN 2196-999X (electronic)
Springer Series in Reliability Engineering
ISBN 978-3-031-05346-7 ISBN 978-3-031-05347-4 (eBook)
https://doi.org/10.1007/978-3-031-05347-4

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Switzerland AG 2023
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-031-05347-4

Preface

The development of modern methodologies allows for efficient updating the system
when information changes. Automatic model calibration with existing latest tech-
niques from Machine Learning (ML), Artificial Intelligence (AI), Big Data, Genetic
Algorithm (GA), Information Theory, Multi-criteria decision-making (MCDM)
provides disruptive solutions for business insight. Predictive analytics refers to
making predictions about the future based on different parameters which are from
historical data. The historical data is fed into a mathematical model that considers
key trends and patterns in the data. The model obtained is then applied to current
data to predict the future trends. Machine Learning, Artificial Intelligence, Big Data,
Genetic Algorithm (GA), Information Theory, Multi-criteria decision-making, and
other techniques play a vital role to analyze the historical data and forecasts about
what may happen in the future with an acceptable level of reliability. Overall, ML
and other techniques are capable of providing novel insights and opportunities to
solve important challenges in reliability and safety applications. Reliability analysis
is one of the most multidimensional area in systems reliability engineering. The
recent developments in system reliability has also created many opportunities and
challenges for both industrialists and academicians. It has also revolutionized and
completely transformed the systems engineering environment. Most of the modeling
tasks can now be undertaken within a simulated environment using latest simulation
and virtual reality technologies.

The main aim of the book is to publish the well-written original research studies
and articles that describe the latest research and developments in the area of system
reliability engineering with the application of Machine Learning, Artificial Intelli-
gence, Big data, Genetic Algorithm, Information Theory, Multi-criteria decision-
making, and other techniques. The book “Predictive Analytics in System Relia-
bility” consists of 17 chapters featuring a broad range of topics including the latest
applications of predictive analytics in comprehensive range of systems reliability
engineering. Each chapter is written by well-known researchers and IT practi-
tioners to present recent trends and research opportunities in the area of reliability

v

vi Preface

engineering. More specifically, Chapter “Deep Learning Approach Based on Fault
Correction Time for Reliability Assessment of Cloud and Edge Open Source Soft-
ware” discussed a machine learning approach considering the characteristics relia-
bility trends of edge open source project. Authors proposed a method to extract the
characteristics data in order to comprehend the trend of failure big data recorded on
the bug tracking system in edge open source project. Chapter “System Reliability
Models with Random Shocks and Uncertainty: A State-of-the-Art Review” focused
on the review of system reliability models with random shocks and the uncertainty of
the degradation process. The system reliability models based on five random shock
models that are commonly used in Reliability Engineering, cumulative shock model,
extreme shock model, run shock model, δ-shock model, and mixed shock model were
reviewed. Chapter “A Hybrid Approach for Evaluation and Prioritization of Soft-
ware Vulnerabilities” has sub-grouped software vulnerability into code execution
vulnerabilities and improper authentication vulnerabilities and focused on assessing
the vulnerabilities which are most prone to attacks. This chapter describes a hybrid
methodology comprising of the fuzzy Best Worst Method to prioritize the identified
software vulnerabilities, followed by a two-way analysis to integrate the opinion of
decision-makers.

Chapter “Investigating Bad Smells with Feature Selection and Machine Learning
Approaches” discussed optimisation features of Android code smells in terms of
software metrics using feature selection technique based on Correlation on 2896
instances of open source projects which are extracted from GitHub. Further, authors
have examined the performance measures like accuracy, precision, F-measure and
execution time, etc., with the reduced features data set of Android code smells and
discussed about implementation of correlation-based feature selection algorithm to
reduce the features of code smells. Chapter “SDE Based SRGM Considering Irreg-
ular Fluctuation in Fault Introduction Rate” proposed a software reliability growth
model considering the irregular fluctuation of fault introduction rate over time with
non-constant fault detection rate and assuming that fault introduction changes non-
linearly over time and the fault introduction rate fluctuates irregularly. Chapter “Ant
Colony Optimization Algorithm with Three Types of Pheromones for the Compo-
nent Assignment Problem in Linear Consecutive-k-out-of-n:F Systems” presented
an ACO algorithm with three types of pheromones for solving the component assign-
ment problem of the linear consecutive--out-of-:F system. This configuration can be
used to represent a real system in which consecutive failed components cause system
failures.

Chapter “Reliability Assessment and Profit Analysis of Automated Teller Machine
System Under Copular Repair Policy” presented the structure for analyzing Auto-
mated Teller Machines (ATMs) failures that allows for the identification of the most
appropriate methods for removing them and formulated expressions for system
availability, reliability, mean time to failure (MTTF), and cost function related to
performance measures. Chapter “An Efficient Regression Test Cases Selection &
Optimization Using Mayfly Optimization Algorithm” adopted Mayfly Optimization
Algorithm to solve the regression test case selection problem to minimize the main-
tenance cost with the aim to optimize the number of test cases to re-execute to reduce

Preface vii

the execution time and cost. Chapter “Development of Reliability Block Diagram
(RBD) Model for Reliability Analysis of a Steam Boiler System” used reliability
block diagrams (RBD) to estimate the reliability of boiler systems used in Indian
textile industries considering their physical arrangement in the system and analyzed
the impact of item failures on system availability.

Chapter “Computation Signature Reliability of Computer Numerical Control
System Using Universal Generating Function” aimed to deal with a complex manu-
facturing system using the Computer Numerical Control as the bottom case manu-
facturing system, where the arrangement of various complex subsystems is in series,
parallel, or in both the configurations. Chapter “Evaluate and Measure Agile Soft-
ware Efficiency by the Integrated Strategy of Fuzzy MOORA and AHP” used an
approach or proposed an integrated strategy of Fuzzified Multi-Objective Optimiza-
tion on the bases of Ratio Analysis (MOORA) and Analytic Hierarchy Process
(AHP) to determine the efficiency of Agile software. Chapter “Software Reliability
Models and Multi-attribute Utility Function Based Strategic Decision for Release
Time Optimization” discussed a realistic approach for determining when to stop soft-
ware testing that considers reliability and cost. A multi-attribute utility theory-based
proposed decision model is analyzed on various separate weighted combinations of
utility functions.

Chapter “Reliability Analysis of Centerless Grinding Machine Using Fault Tree
Analysis” addresses the Fault Tree Analysis (FTA) of the Centerless Grinding
Machine (CGM) for safety purposes. FTA is one of the reliability evaluation tech-
nique that plays a crucial role in the design process. Fault Tree is a graphical
representation of major faults or critical failures associated with a system. It uses
Boolean logic and low-level event methods to analyze the possible mechanisms
of failures and evaluate the expected frequency of their occurrences by describing
undesired states of the system. Chapter “Machine Learning Based Software Defect
Categorization Using Crowd Labeling” proposed a learning model which learns
effectively to predict the impact category of software defects using the expecta-
tion maximization algorithm and shows the better performance according to the
various types of metrics by improving the existing technique by 8% and 11% accu-
racy for Compendium and Mozilla datasets respectively. Chapter “Development
of an Algorithm Using the Vikor Method to Increase Software Reliability” used
the VIKOR (VIsekriterijumska optimizacija i KOmpromisno Resenje) method for
the development of an algorithm to increase software reliability. Chapter “Mathe-
matical Modeling for Evaluation Reliability of a Bleaching System” deals with the
various reliability measures analysis for a complex bleaching system. The system
has a complex structure with three subsystems associated with each other in series
arrangement. Chapter “An Effort Allocation Model for a Three Stage Software Reli-
ability Growth Model” analyzes the optimal efforts allocation plan for minimizing
overall cost during the testing phase of the software development life cycle using
three stages of fault detection, isolation, and removal in a dynamic environment.

The book is enriched by figures, examples, and case studies. The main benefit of
the book is to look at recent methods and algorithms, techniques, ML with AI related
areas and their applications in system reliability. The book is a timely publication

viii Preface

and will be a valuable source of reference for graduate, post graduate, research
students, and for professionals in research groups of large companies involved in
reliability engineering. We hope our readers will enjoy the book and will find it
both interesting and useful. As Editors of this book, we very much thank the authors
for accepting to contribute with their invaluable research, their efforts, and time.
Our special thanks to Dr. Anthony Doyle, the Executive Editor and Kavitha Sathish,
the Project coordinator, for their extensive support and cooperation in bringing out
this book. We acknowledge Springer for this opportunity and professional support
extended to us in the project.

Noida, India
Piscataway, USA
March 2022

Vijay Kumar
Hoang Pham

Contents

Deep Learning Approach Based on Fault Correction Time
for Reliability Assessment of Cloud and Edge Open Source Software . . . 1

System Reliability Models with Random Shocks and Uncertainty:
A State-of-the-Art Review 19
Yuhan Hu and Mengmeng Zhu

Hironobu Sone, Shoichiro Miyamoto, Yukinobu Kashihara,
Yoshinobu Tamura, and Shigeru Yamada

. 39

Investigating Bad Smells with Feature Selection and Machine
Learning Approaches 53
Aakanshi Gupta, Rashmi Gandhi, and Vijay Kumar

SDE Based SRGM Considering Irregular Fluctuation in Fault
Introduction Rate 67
Deepika, Adarsh Anand, Shinji Inoue, and Prashant Johri

:F Systems 81
Taishin Nakamura, Isshin Homma, and Hisashi Yamamoto

Ant Colony Optimization Algorithm with Three Types
of Pheromones for the Component Assignment Problem in Linear
Consecutive-k-out-of-n

Reliability Assessment and Profit Analysis of Automated Teller
Machine System Under Copular Repair Policy 97
Ibrahim Yusuf and Abdullahi Sanusi

An Efficient Regression Test Cases Selection & Optimization Using
Mayfly Optimization Algorithm 119
Abhishek Singh Verma, Ankur Choudhary, Shailesh Tiwari,
and Bhuvan Unhelkar

A Hybrid Approach for Evaluation and Prioritization of Software
Vulnerabilities
Vivek Kumar, Misbah Anjum, Vernika Agarwal, and P. K. Kapur

. .

. .

. .

. .

. .

. .

ix

Development of Reliability Block Diagram (RBD) Model
for Reliability Analysis of a Steam Boiler System 137
Suyog S. Patil, Anand K. Bewoor, Ravinder Kumar, and Iliya K. Iliev

Computation Signature Reliability of Computer Numerical
Control System Using Universal Generating Function 149
Tripty Pandey, Arpita Batra, Mansi Chaudhary, Anjali Ranakoti,
Akshay Kumar, and Mangey Ram

Evaluate and Measure Agile Software Efficiency by the Integrated
Strategy of Fuzzy MOORA and AHP 159
Abhishek Srivastava, P. K. Kapur, Alakkshendra Rawat, Aditya Mittal,
and Vidhyashree Nagaraju

Software Reliability Models and Multi-attribute Utility Function
Based Strategic Decision for Release Time Optimization 175
Vishal Pradhan, Joydip Dhar, and Ajay Kumar

Reliability Analysis of Centerless Grinding Machine Using Fault
Tree Analysis 191
Rajkumar B. Patil, Sameer Al-Dahidi, Saurabh Newale,
and Mohamed Arezki Mellal

Machine Learning Based Software Defect Categorization Using
Crowd Labeling 213
Sushil Kumar, Meera Sharma, S. K. Muttoo, and V. B. Singh

Development of an Algorithm Using the Vikor Method to Increase
Software Reliability 229
Shafagat Mahmudova

Mathematical Modeling for Evaluation Reliability of a Bleaching
System 247
Subhi Tyagi, Akshay Kumar, Nupur Goyal, and Mangey Ram

An Effort Allocation Model for a Three Stage Software Reliability
Growth Model 263
Sujit Kumar Pradhan, Anil Kumar, and Vijay Kumar

x Contents

. .

.

. .

.

. .

. .

. .

. .

. .

About the Editors

Dr. Vijay Kumar received his M.Sc. in Applied Mathematics and M.Phil. in Math-
ematics from Indian Institute of Technology (IIT), Roorkee, India in 1998 and
2000, respectively. He has completed his PhD from the Department of Operational
Research, University of Delhi. Currently, he is an Associate Professor in the Depart-
ment of Mathematics, Amity Institute of Applied Sciences, Amity University Uttar
Pradesh, Noida, India. He is the coauthor of one book and has published more than 55
research papers in the areas of software reliability, mathematical modeling and opti-
mization in international journals and conferences of high repute. His current research
interests include software reliability growth modeling, optimal control theory, and
marketing models in the context of innovation diffusion theory. He has reviewed
many papers for Soft Computing (Springer), IJRQSE, IJQRM, IJSAEM, and other
reputed journals. He has edited special issues of IJAMS, IJCMESM (Taylor &
Francis), and RIO journal. He is an editorial board member of IJMEMS. He is a life
member of Society for Reliability Engineering, Quality and Operations Management
(SREQOM).

Dr. Hoang Pham is a Distinguished Professor and former Chairman (2007–2013)
of the Department of Industrial and Systems Engineering at Rutgers University,
New Jersey. Before joining Rutgers, he was a Senior Engineering Specialist with
the Boeing Company and the Idaho National Engineering Laboratory. He has been
served as Editor-in-Chief, Editor, Associate Editor, Guest Editor, and board member
of many journals. He is the author or coauthor of 7 books and has published over
190 journal articles and edited 15 books including Springer Handbook in Engi-
neering Statistics and Handbook in Reliability Engineering. He has delivered over
40 invited keynote and plenary speeches at many international conferences. His
numerous awards include the 2009 IEEE Reliability Society Engineer of the Year
Award. He is a Fellow of the Institute of Electrical and Electronics Engineers (IEEE)
and the Institute of Industrial Engineers (IIE).

xi

Deep Learning Approach Based on Fault
Correction Time for Reliability
Assessment of Cloud and Edge Open
Source Software

Hironobu Sone, Shoichiro Miyamoto, Yukinobu Kashihara,
Yoshinobu Tamura, and Shigeru Yamada

Abstract We discuss a method of machine learning in order to consider the charac-
teristics reliability trends of edge open source project. Then, we focus on the method
based on deep learning analysis. Thereby, the proposed method will be able to extract
the characteristics data in order to comprehend the trend of fault big data recorded
on the bug tracking system in edge open source project. Moreover, several numerical
examples are shown by using actual fault big data in the edge open source project.
Then, the illustrative results based on the deep learning are shown by using our
methods discussed in this chapter. We discuss that our method by deep learning and
prediction model are useful to assess the quality and reliability of the edge open
source project.

H. Sone
IBM Japan, Ltd., Tokyo, Japan

S. Miyamoto · Y. Tamura (B)
Yamaguchi University, Yamaguchi, Japan
e-mail: tamuray@yamaguchi-u.ac.jp

S. Miyamoto
e-mail: i083fe@yamaguchi-u.ac.jp

Y. Kashihara
Tokyo City University, Tokyo, Japan
e-mail: g2181424@tcu.ac.jp

S. Yamada
Tottori University, Tottori, Japan
e-mail: yamada@tottori-u.ac.jp

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Kumar and H. Pham (eds.), Predictive Analytics in System Reliability,
Springer Series in Reliability Engineering,
https://doi.org/10.1007/978-3-031-05347-4_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05347-4_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05347-4_1&domain=pdf
mailto:tamuray@yamaguchi-u.ac.jp
mailto:tamuray@yamaguchi-u.ac.jp
mailto:i083fe@yamaguchi-u.ac.jp
mailto:i083fe@yamaguchi-u.ac.jp
mailto:g2181424@tcu.ac.jp
mailto:g2181424@tcu.ac.jp
mailto:yamada@tottori-u.ac.jp
mailto:yamada@tottori-u.ac.jp
https://doi.org/10.1007/978-3-031-05347-4protect LY1	extunderscore 1
https://doi.org/10.1007/978-3-031-05347-4_1

2 H. Sone et al.

1 Introduction

In the future, software services based on the edge computing will be in widespread
use all over the world. For example, StarlingX is known as the cloud infrastructure
software stack for the edge. StarlingX is one of the component in the cloud service
software OpenStack.

At present, almost of commercial software are included some open source soft-
ware. Considering the edge open source software, it will be used in various area. We
discuss the method of machine learning in order to consider the characteristics relia-
bility trends of edge open source project. Then, this chapter focuses on the prediction
method of mean time between software failures based on deep learning. Thereby,
the proposed method will be able to extract the characteristics data in order to com-
prehend the trend of fault big data recorded on the bug tracking system in edge open
source project. Then, we focus on the major fault level in fault severity in terms of
the reliability.

Moreover, several numerical examples are shown by using actual large scale fault
data in the edge open source project. Then, numerical illustrations focused on the
major fault level are shown by using our methods proposed. Finally, we discuss that
our method by deep learning and prediction model are useful to control the quality
and reliability of the edge open source project.

Traditionally, many of open source software (OSS) are developed under various
OSS projects. Several researchers discuss the reliability assessment methods of OSS
[1]. Historically, many methods of software reliability management based on the
stochastic process models have been proposed by several researchers [2–5]. More-
over, our research group has been proposed the method of reliability assessment for
the OSS [1]. However, the plausible researches focused on the reliability manage-
ment by deep learning for OSS fault big data have not been proposed in the past. On
the other hand, it is important for the OSS managers to control the OSS project in
terms of the quality management. The proper control of the OSS faults will directly
relate to the quality, reliability, and cost. Therefore, it will be successful in achieving
reliability improvement and the reduction of development cost in OSS if the OSS
project is properly managed.

This chapter discusses the reliability index of the correction time of software
faults for OSS project considering various situation in performance resulting from
OSS operation. In particular, this chapter discusses the learning situation of deep
learning for the actual data sets. Then, we propose the suitable learning conditions
by the prediction method of the correction time of software faults based on deep
learning. Then, we offer the estimation examples by applying the proposed method.
Especially, we discuss the learning simulation for several conditions of data dividing

Deep Learning Approach Based on Fault Correction … 3

in the learning data sets. Moreover, several numerical examples based on the proposed
method by using the actual fault big data are shown. Then, the actual data sets of
three pattern for the learning phase in deep learning are used.

2 Estimation of Correction Time of Software Faults Based
on Deep Learning

There are several approaches for the software reliability management by using the
machine learning [6, 7]. Traditionally, the comparison results between the software
reliability models and the method of neural network have been discussed in the past.
Especially, the past research papers based on the neural network have been used the
fault data only. On the other hand, we use several different data type depended on
the software reliability in the proposed method. The unique features of our research
is to use several kinds of explanatory variables as the input data sets. Moreover, we
focus on the fault level in this chapter. We show the fault levels recorded on the bug
tracking system in the actual data set as follows:

• High
• Low
• Medium
• Unspecified
• Urgent

We focus on the high level fault, because the number of detected high level faults
is larger than the other level. On the other hand, the number of detected low level
faults is smaller than the other level.

Moreover, the algorithm of the deep learning is shown in Fig. 1. Several algorithms
of deep learning have been discussed by some researchers [8–13]. In this chapter,
we apply the deep feedforward neural network to learn the fault big data on bug
tracking systems of OSS projects. We apply the following amount of information to
estimate the parameters of deep learning. Then, the objective variable is given as the
correction time of software faults in the cases of high level faults only, because the
correction time of high level faults will become long necessarily. Moreover, the high
level faults deeply depend on the reliability of OSS.

As mentioned above, we apply the correction time of software failures as the
output values. Therefore, the following 12 kinds of explanatory variables are set to
the amount of input layer:

4 H. Sone et al.

Input Shape: 200

Output: 300

Input Shape: 300

Output: 200

Input Shape: 200

Output: 100

Input Shape: 100

Output: 1

Dropout: 0.3

Dropout: 0.3

Dropout: 0.3

Input Shape: 13

Output: 200

Dropout: 0.3

Fig. 1 The structure of deep feedforward neural network in this chapter

• Opened
• Changed
• Reporter
• Product
• Component
• Status

Deep Learning Approach Based on Fault Correction … 5

• Resolution
• Hardware
• OS
• Severity
• Version
• Summary

The large scale data sets on several explanatory variables are converted from the
text data to the numerical one such as fault occurrence rate by using the frequency
encoding. The correction time of OSS faults will be useful to understand the property
of correction difficulty in the OSS fault.

3 Data for Numerical Illustration Based on Deep
Feedforward Neural Network

In the historical deep learning, several algorithms based on deep learning have been
discussed by some researchers [8–13]. We use the Adam (Adaptive moment esti-
mation) optimizer [13] known as the optimization algorithms of deep learning. The
Adam is the algorithms improved the AdaGrad and RMSProp. The algorithm of
Adam is shown in the reference [13] in detail. Figure 1 shows the detailed parame-
ters based on Adam optimizer in the proposed method.

We show the data used in the proposed method in the Figs. 2 and 3. In particular,
we use mainly the count encoding and frequency encoding methods converting from
the raw data to the numeric values. Then, the data will be converted from Figs. 2 to 3.
There is no way to know that any variables out of 12 kinds of explanatory variables
depend on the reliability. Therefore, we will be able to automatically identify several
variables in terms of the reliability by using the deep learning.

4 Comparison Results Based on the Amount of Learning
Data

We analyze the fault big data in terms of the time between software failures (faults)
in OpenStack [14] including the edge component such as “StarlingX ”. This fault
big data set includes the following items such as “2 Estimation of Correction Time
of Software Failures Based on Deep Learning”.

6 H. Sone et al.

F
ig
. 2

A
 p
or
tio

n
of
 th

e
ra
w
 d
at
a
fo
r
th
e
in
pu
t i
n
th
e
de
ep
 le
ar
ni
ng

Deep Learning Approach Based on Fault Correction … 7

Fig. 3 A portion of the actual data for the input in the deep learning

Fig. 4 The estimated correction time of software failures for 20% testing data

8 H. Sone et al.

Fig. 5 The comparison results between the estimates and 20% testing data

Deep Learning Approach Based on Fault Correction … 9

Fig. 6 The estimated instantaneous correction time of software failures for 20% testing data

Fig. 7 The estimation error between learning data and validation in case of 20% testing data

10 H. Sone et al.

Fig. 8 The estimated cumulative mean time between software failures for 50% testing data

• Opened
• Changed
• Reporter
• Product
• Component
• Status
• Resolution
• Hardware
• OS
• Severity
• Version
• Summary

In this chapter, we discuss the cumulative correction time of software faults and
the instantaneous correction time of software faults. Then, we define as follows:

The cumulative correction time of software faults:
the cumulative time from the detection of each new fault to the end of time for its
fault correction.

The instantaneous correction time of software faults:
the time period from the detection of new fault to the correction of its fault.

Deep Learning Approach Based on Fault Correction … 11

Fig. 9 The comparison results between the estimates and 50% testing data

12 H. Sone et al.

Fig. 10 The estimated instantaneous mean time between software failures for 50% testing data

Moreover, we compare the estimation results according to the rate of learning.
First, in case of 20% testing data, Figs. 4, 5, 6 and 7 show the estimated cumulative

correction time of software failures (faults), the comparison results between the
estimates, the estimated instantaneous correction time of software failures, and the
absolute error between learning data and validation, respectively.

Second, in case of 50% testing data, Figs. 8, 9, 10 and 11 show the estimated
cumulative correction time of software failures, the comparison results between the
estimates, the estimated instantaneous correction time of software failures, and the
error between learning data and validation, respectively.

Similarly, in case of 80% testing data, Figs. 12, 13, 14 and 15 show the estimated
cumulative correction time of software failures, the comparison results between the
estimates, the estimated instantaneous correction time of software failures, and the
error between learning data and validation, respectively.

Deep Learning Approach Based on Fault Correction … 13

Fig. 11 The estimation error between learning data and validation in case of 50% testing data

Fig. 12 The estimated cumulative mean time between software failures for 80% testing data

14 H. Sone et al.

Fig. 13 The comparison results between the estimates and 80% testing data

Deep Learning Approach Based on Fault Correction … 15

Fig. 14 The estimated instantaneous mean time between software failures for 80% testing data

Fig. 15 The estimation error between learning data and validation in case of 80% testing data

16 H. Sone et al.

5 Concluding Remarks

Many OSS are used for various situation such as the embedded system, server system,
cloud computing, edge computing, and the component based system. Several OSS
projects have been controlled by using the bug tracking system. The huge data sets
in terms of many faults have been recorded on the bug tracking system. It will be
helpful for OSS project managers to assess the reliability of OSS, if the huge data on
bug tracking system are effectively utilized by using the automated machine learning
such as the deep learning.

In this chapter, we have discussed the estimation method of correction time of
software failures (faults) for the cloud and edge computing by OSS. It will be able to
control the manpower in terms of the OSS reliability of edge computing, if the OSS
managers can estimate the correction time of software failures. Also, the estimation
method of the correction time of software failures based on the deep learning consid-
ering the complexity of OSS project has been developed in this chapter. In particular,
the huge data sets on OSS bug tracking system is useful for the OSS managers to
control the manpower of OSS project. Furthermore, we have compared the proposed
method according to several cases of learning data.

In the future study, it is necessary to compare the estimation results in cases of
the other fault levels such as Medium and Urgent.

Funding This study was funded by the JSPS KAKENHI Grant No. 20K11799 in Japan.
Conflict of Interest The authors declare that they have no conflict of interest.

Acknowledgements This work was supported in part by the JSPS KAKENHI Grant No. 20K11799
in Japan.

References

1. Yamada S, Tamura Y (2016) OSS reliability measurement and assessment. Springer Interna-
tional Publishing Switzerland

2. Lyu MR (ed) (1996) Handbook of software reliability engineering. IEEE Computer Society
Press, Los Alamitos, CA

3. Yamada S (2014) Software reliability modeling: fundamentals and applications. Springer,
Tokyo/Heidelberg

4. Kapur PK, Pham H, Gupta A, Jha PC (2011) Software reliability assessment with OR appli-
cations. Springer, London

5. Kingma DP, Rezende DJ, Mohamed S, Welling M (2014) Semi-supervised learning with deep
generative models. In: Proceedings of the 27th international conference on neural information
processing systems, pp 1–9

6. Karunanithi N, Whitley D, Malaiya YK (1992) Using neural networks in reliability prediction.
IEEE Softw 9(4):53–59

7. Dohi T, Nishio Y, Osaki S (1999) Optimal software release scheduling based on artificial neural
networks. Ann Softw Eng 8(1):167–185

Deep Learning Approach Based on Fault Correction … 17

8. Blum A, Lafferty J, Rwebangira MR, Reddy R (2004) Semi-supervised learning using ran-
domized mincuts. In: Proceedings of the international conference on machine learning, pp
1–8

9. George ED, Dong Y, Li D, Alex A (2012) Context-dependent pre-trained deep neural networks
for large-vocabulary speech recognition. IEEE Trans Audio Speech Lang Process 20(1):30–42

10. Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol PA (2010) Stacked denoising autoen-
coders: Learning useful representations in a deep network with a local denoising criterion. J
Mach Learn Res 11(2):3371–3408

11. Martinez HP, Bengio Y, Yannakakis GN (2013) Learning deep physiological models of affect.
IEEE Comput Intell Mag 8(2):20–33

12. Hutchinson B, Deng L, Yu D (2013) Tensor deep stacking networks. IEEE Trans Pattern Anal
Mach Intell 35(8):1944–1957

13. Kingma DP, Ba JL (2015) Adam: a method for stochastic optimizations. In: Proceedings of the
international conference on learning representations, pp 1–15

14. The OpenStack project, OpenStack. http://www.openstack.org/

http://www.openstack.org/
http://www.openstack.org/

System Reliability Models with Random
Shocks and Uncertainty:
A State-of-the-Art Review

Yuhan Hu and Mengmeng Zhu

Abstract Reliability evaluation is an important task in safety–critical applications.
The failure of a system is generally caused by random shocks resulting from adverse
events or internal degradations. This chapter thus mainly focuses on the review of
system reliability models with random shocks and the uncertainty of the degradation
process. In the category of system reliability models with random shocks, we review
system reliability models based on five random shock models that are commonly
used in Reliability Engineering, cumulative shock model, extreme shock model, run
shock model, δ-shock model, and mixed shock model. In addition, three sources of
variabilities, commonly discussed in the literature, can result in the uncertainty of
the degradation process, which are temporal variability in the degradation process,
unit-to-unit variability, and measurement error caused by imperfect instruments or
imperfect inspection. In the category of system reliability model with uncertainty,
we review system reliability models using stochastic degradation models in terms
of three stochastic processes, Wiener process, gamma process, and inverse Gaussian
process.

Keywords Reliability model · Random shocks · Uncertainty · Stochastic process

1 Introduction

Reliability is defined as the probability that a product can function properly without
failure during its designed life under the designed operating conditions [1]. The
failure of a system has a wide-ranging societal impact. For example, a plane from
Sudan lost control on the runway while landing due to the bad weather on June

Y. Hu · M. Zhu (B)
Department of Textile Engineering, Chemistry and Science, North Carolina State University,
Raleigh, NC 27606, USA
e-mail: mzhu7@ncsu.edu

M. Zhu
Operations Research Graduate Program, North Carolina State University, Raleigh, NC 27606,
USA

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Kumar and H. Pham (eds.), Predictive Analytics in System Reliability,
Springer Series in Reliability Engineering,
https://doi.org/10.1007/978-3-031-05347-4_2

19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05347-4_2&domain=pdf
mailto:mzhu7@ncsu.edu
https://doi.org/10.1007/978-3-031-05347-4_2

20 Y. Hu and M. Zhu

10, 2008, which caused the death of 1 crew member and 29 passengers. In addi-
tion, random incidents in our daily life, such as collisions with vehicles, are also
very common, which can influence the lifespan of the product, and even influence
human life. Thus, considering the random incidents into the reliability modeling
can effectively improve the accuracy of the reliability evaluation in safety–critical
applications. These random incidents can exert random stresses in the system, which
can be modeled by random shocks received by a system in the field of Reliability
Engineering.

Generally, random shock models are classified into five groups, cumulative
shock model, extreme shock model, run shock model, δ-shock model, and mixed
shock model. The reliability model with random shocks is first proposed by Esary
and Marshall [2], in which the shock loadings are assumed to be independently
distributed. Based on this, the development of the random shock-based reliability
model is further investigated in many studies [1–16]. Gut [3] proposed a cumulative
shock model, where the system fails when the cumulative shock damage is larger
than a preset threshold. Later, Che et al. [4] developed a reliability model with a
mutually dependent degradation process and shock process. Dong et al. [5] devel-
oped a multi-component system reliability model with generalized cumulative shocks
and a stochastic degradation process. The extreme shock model is first developed
by Shanthikumar and Sumita [6], in which the system failure is determined by the
magnitude of the shock and further studied by [4, 8]. Based on the studies [3, 6],
Gut [9] investigated a mixed shock model that considers the cumulative shock model
and extreme shock model, which assumed that the system fails when the magnitude
of the shock is larger than a threshold or the accumulative shock damage is larger
than another critical threshold. Later, other types of shock models are introduced,
which are run shock model [10] and δ-shock model [11]. Their applications in the
reliability estimation can be referred to studies [12–16].

With the increasing complexity of the system engineering problems, the uncer-
tainty caused by the internal product properties or external factors has also become
significant. Generally, there are three sources of variabilities [17, 18]. The first source
is the temporal variability representing the inherent uncertainty in the degradation
path [17]. The second source is the unit-to-unit variability. Take the battery manage-
ment system in electric vehicles as an example. One battery pack consists of numerous
battery cells. The degradation of one battery cell may be different from the other cells
even they are manufactured from the same production line. When considering the
degradation of a battery cell, it is necessary to consider the degradation differences
between cells. The third source is the measurement error caused by an imperfect
instrument or imperfect inspection which is the distinction between the true value
and the measured value. In many cases, regardless of the precision of the instru-
ment, the experimental data is always contaminated in the experiment, which will
influence the reliability prediction accuracy of the target system. In literature, many
studies have considered the three sources of uncertainty in the system reliability
modeling [19–34]. Three classic stochastic processes that are commonly used to
address the uncertainty are Wiener process [19, 20], gamma process [21–23], and
inverse Gaussian process [24].

System Reliability Models with Random Shocks … 21

The rest of this chapter is organized as follows. In Sect. 2, we first introduce the
definitions and applications of random shock models and then review the related
work on system reliability models considering different types of random shocks.
Section 3 reviews the literature on system reliability models with uncertainty in
terms of different stochastic processes. Section 4 concludes this chapter.

2 System Reliability Models with Random Shocks

Typically, five random shock models are widely used in the field of Reliability Engi-
neering, cumulative shock model, extreme shock model, run shock model, δ-shock
model, and mixed shock model. These models are generally defined by the inter-
arrival time between consecutive shocks and/or the damage from shocks. Section 2
is divided into two parts. Section 2.1 reviews the definitions and applications of
random shock models. Section 2.2 reviews the literature on system reliability models
incorporating different types of random shocks.

The following notations are defined for Sect. 2. R(t) is the system reliability
function by time t . M(t) is the system degradation function by time t . X (t) is the
internal degradation function by time t . S(t) is the cumulative shock damage function
by time t . N (t) is the total number of random shocks by time t .

2.1 Shock Model Categorization

Shock models, cumulative and extreme shock models, are initially proposed in the
1970s, to apply for predicting the system reliability in a random environment [2].
Based on these two classic models, other shocks models, such as run shock model
and δ-shock model, have been developed in the early 2000s. Meanwhile, the mixed
shock model is proposed, which combines two types of random shock models, such
as the combination of the extreme shock model and δ-shock model. Nowadays, the
mixed shock model is not limited to the combination of two types of random shocks
but extends to integrating three types of random shocks in order to predicate the
complex engineering system reliability.

The cumulative shock model commonly use the following equation:

S(t) =
N (t)∑

k=1

Yk (1)

where Yk is the damage caused by kth shock. The system fails when the accumu-
lative damage S(t) exceeds a pre-specified threshold. This model is applied in the
situation where the system is subject to a series of random shocks. Take an example
in practice. A car accident can be regarded as a random shock for the engine. For a

22 Y. Hu and M. Zhu

vehicle, it is likely to have more than one accident. To assess the damage from all
accidents on the engine, it is indeed to summarize these damages. When the total
damage on the engine is larger than a threshold, the engine will fail. Other applica-
tions in literature, for example, Che et al. [4] regarded the contamination lock in the
jet pipe servo value as one random shock that can cause wear debris on the value.
The cumulative wear debris will increase with time and finally results in failure when
the total wear exceeds a threshold. Dong et al. [5] predicted the reliability of micro
electro-mechanical systems that withstand three different kinds of shocks, mechan-
ical vibration, piezoelectric stimuli, and magnetic stimuli. The shock damage from
different kinds of shocks can be summarized. The micro electro-mechanical systems
will fail when the damage exceeds a threshold.

The extreme shock model is commonly defined as the system fails when the
magnitude of any shock exceeds the given level. In other words, the system lifetime
is determined by the magnitude of individual random shock. The applications of
the extreme shock model are presented as follows. In Che et al. [4], because the
contamination lock can fail suddenly when there is sufficient friction generated to
withstand the normal actuating force, the extreme shock model is utilized to model
this application. Wang et al. [7] applied the extreme shock model to model the impact
load in the microelectromechanical system because the load can cause the system
failure directly. Hao and Yang [8] regarded the vessel collision on the bridge as
one random shock and classified the shocks as fatal and nonfatal according to their
magnitude based on the extreme shock model.

The run shock model is first proposed by Mallor and Omey [10], which defined the
system breaks down when there are consecutive shocks whose magnitudes are above
a threshold. This model is usually applied in mechanical and electronic systems,
which generally suffered from fatigue damage. Specifically, fatigue damage refers
to the situation that the system is under repeated shocks above a critical threshold.
It is noted that the run shock model measures the magnitude of consecutive shocks
instead of the magnitude of an individual shock.

The δ-shock model is first proposed by Li and Kong [11], which defined the
system failure when the inter-arrival time between two consecutive shocks less than
a pre-specified threshold δ. Compared with the traditional shock models, cumulative
shock, and extreme shock models, there are some phenomena that are more suitable
to use the inter-arrival time to define system failure. For example, when the damage
caused by random shocks is hard to be determined, it is more suitable to use the
δ-shock model since it pays more attention to the shock occurrence rate instead of
the individual or cumulative damage of shocks.

The mixed shock model defines the system failure caused by two or more random
shock models. For example, if cumulative shock and extreme shock are considered,
the system will fail when the cumulative shock loadings are larger than one threshold
or the magnitude of an individual shock is larger than another threshold, whichever
occurs first. Parvardeh and Balakrishnan [35] proposed two mixed shock models
based on the δ-shock model. One is the combination of the extreme shock model
and δ-shock model, and the other is the combination of the cumulative shock model
and δ-shock model. Lorvand et al. [16] combined the extreme shock model and run

System Reliability Models with Random Shocks … 23

shock model as a mixed shock model. The mixed shock model is not limited to the
combination of two shock models. Rafiee et al. [36] developed a mixed shock model
that employed extreme shock model, δ-shock model, and run shock model.

2.2 System Reliability Models with Shock Models

2.2.1 System Reliability Models with Cumulative Shock Model

Systems are generally subject to two competing risks, degradation, and random
shocks. Given many research efforts have been focused on modeling the dependent
relationship between degradation and random shocks. We review the literature on
system reliability models with cumulative shock model, considering the dependent
relationship between degradation and random shocks. In general, random shocks
are commonly assumed to have two types of impacts on the system, sudden incre-
mental jump on the system degradation, and degradation rate acceleration [4, 37–40,
43]. The cumulative shock model is usually used to describe these impacts and
further employed to calculate the accumulated system degradation. To represent the
sudden incremental jumps, many studies [4, 38–40, 43] described the individual
shock damage as an independent and identically distributed random variable. The
cumulative shock damage is the summation of individual shock damages, which is
shown in Eq. (1). Other studies [37, 41, 42] applied the shock magnitude instead
of the individual shock damage to S(t)[37]. Assumed each shock damage is linear
dependent with its shock magnitude, namely, S(t) = ∑N (t)

k=1 (αW k), N (t) > 0, where
Wk is the magnitude of kth shock and α is the coefficient. In general, system degrada-
tion, M(t), consists of the internal degradation X (t) and cumulative shock damage
S(t):

M(t) = X (t) + S(t) (2)

The failure happens when the system degradation exceeds a critical threshold.
Generally, system reliability, R(t), can be modeled as:

R(t) = P(X(t) + S(t) < H) (3)

where H is the failure threshold.
The system may become more susceptible because of undertaking shocks, which

makes degradation increase faster. Therefore, the degradation rate will not be ideally
constant and will be accelerated by random shocks. Wang and Pham [38] developed a
system reliability model with multiple degradation processes and random shocks. The
arrival of random shocks follows a homogeneous Poisson process (HPP). The impacts
of random shocks are classified into sudden incremental jump and degradation rate
acceleration. The sudden incremental jump is adopted from Eq. (1). The degradation

24 Y. Hu and M. Zhu

rate acceleration is illustrated by incorporating a time-scaled factor G
(
t, γ (i)

)
into

the ith degradation process, in which G
(
t, γ (i)

) = γ (i) 1 N2(t) + γ (i) 2 S(t), where γ (i) 1

and γ (i) 2 denote the impact magnitude on the degradation rate of the i th degradation
process and N2(t) is the total number of nonfatal shocks by time t . The internal
degradation for the i th degradation process is modeled by a basic multiplicative path
function, which is Xi ·ηi (t; θi), where Xi is the random variable representing the unit-
to-unit variability, ηi (t; θi) is the ith mean degradation path function with a parameter

vectorθi . The ith degradation function is thus modeled as Xi · ηi
(
teG(t,γ (i)); θi

)
+

∑N (t)
k=1 wi j , where wi j is the loading from shock j in the ith degradation process.

The marginal reliability function Ri (t) of the i th degradation process with no fatal
shock is: Ri (t) = P

(
Xi · ηi

(
teG(t,γ (i)); θi

)
+ ∑N2(t)

k=1 wi j < Hi

)
, in which Hi is the

corresponding failure threshold of the ith degradation process. The system reliability
model is [38]:

R(t) = C(R1(t), R2(t), . . . , Rm(t)Pr(N1(t) = 0) (4)

where C is the joint copula of the marginal reliability function and N1(t) is the total
number of fatal shocks by time t .

The degradation impact on random shocks can be reflected by shock arrival
frequency. Fan et al. [41] assumed the number of random shocks follow the nonho-
mogeneous Poisson process (NHPP) with rate λ(t). λ(t) is assumed to be linearly
related with the current internal degradation X (t):

λ(t) = λ0 + β · X (t) (5)

where λ0 is the initial intensity of NHPP and β is the dependence factor.
Because the shocks with different magnitude have different impacts on the system,

they are classified into three zones, safety zone, damage zone, and fatal zone [41].
Noting that only the shocks in the damage zone can generate damage on the system,
while the fatal shock will fail the system directly, and the shocks in the safety zone
have no effect on the system. The system can function if the internal degradation does
not reach one threshold, the cumulative shock damage in the damage zone does not
exceed another threshold, and there is no shock in the fatal zone. Thus, the reliability
function is [41]:

R(t) =
∑∞

k=0
P(X(t) < H1, S(t) < H2, N2(t) = 0|N1(t) = k)P(N1(t) = k)

(6)

where k denotes random shock, H1 is the threshold for the internal degradation, H2

is the threshold for cumulative shock damage, N1(t) is the number of shocks in the
damage zone, and N2(t) is the number of shocks in the fatal zone.

System Reliability Models with Random Shocks … 25

Based on the study [41], Che et al. [4] carried out that the shock intensity λ(t) is not
only affected by the current internal degradation but also by the shock occurrences
by time t . The intensity after k random shocks is defined as λk(t) = (1 + ηk)λ0(t),
where λ0(t) is the initial intensity influenced by the current degradation level and
η is the facilitation factor. The formulation of system reliability in reference [4] is
based on Eq. (4).

Moreover, a few studies did not follow the common assumption of cumulative
shock models, which is the shocks follow a distribution. In reality, such an assumption
may not be practical because the frequency of the shock occurrence can be deter-
mined by many factors. For example, Gong et al. [12] developed a system reliability
model incorporating the influence of shocks from different sources under the cumu-
lative shock model. The system is subject to random shocks, which come from m
sources, and the probability of each source is πi . The magnitude of shocks from each
source follows a phase-type (PH) distribution. The continuous PH distribution is a
probability distribution constructed by the convolution of exponential distributions.
According to the property of PH distribution, the summation of independent PH
random variables still follows PH distribution, which is further utilized in modeling
system reliability.

Ranjkesh et al. [44] proposed a new cumulative shock model considering the
dependency between shock damage and inter-arrival time, and utilized this model
to predict the system reliability of civil structures, such as bridges. A parameter δ,
which represents the system recover time, is set to determine the shock damage level.
When the inter-arrival time between two consecutive shocks, Xk , is larger than δ,
the damage level, Yk , is defined as mild since the system may recover itself from the
previous shock. When the shock time-lapse is less than δ, the damage level is defined
as severe because the system does not have enough time to recover from the shock:

Yk =
{
Yk1, Xk ≤ δ
Yk2, Xk > δ

(7)

where Yk1 is the severe damage of the kth shock and Yk2 is the mild damage of the kth
shock. The system fails when the cumulative load and severe shock damage is larger
than a certain threshold. Hence, the system reliability function [44] is as follows:

R(t) =
∑∞

m=0

∑m

m1=0

(
m

m1

)
P

(∑m1

k=0
Y
k1

+
∑m

k=m1+1
Y
k2

< H
)

P
(
X1, . . . , Xm1 ≤ δ, Xm1+1, . . . , Xm > δ, N (t) = m

)
(8)

Recently, Wang and Zhu [43] proposed a shock-loading based degradation model
based on the magnitude of impacts caused by random shocks on degradation
processes. Random shock are grouped into fatal shocks and nonfatal shocks. They
incorporated a threshold H ′ to measure the temporal loading level. H ′ is a time-
dependent critical ratio, calculated by H ′ = S(t)/S, where S is the cumulative shock

26 Y. Hu and M. Zhu

loading that can cause the system failure. If H
′
< H0, where H0 is the preset crit-

ical threshold, nonfatal shocks can only cause the degradation rate acceleration. If
H

′
> H0, nonfatal shocks can cause both accelerate degradation rate and sudden

incremental jump. The method to model system reliability with multiple dependent
degradation process incorporating the proposed shock-loading based degradation
model is based on Eq. (4).

2.2.2 System Reliability Models with Extreme Shock Model

The extreme shock model defined the system failure when the magnitude of any
shock exceeds the given level [4, 37–41]. From this definition, many studies classi-
fied shocks based on the magnitude of shocks and further impacts on the system. For
example, Wang and Pham [38] considered two types of shocks in the model, fatal
and nonfatal shocks. Fatal shocks can fail the system directly, while nonfatal shocks
can accelerate the degradation processes. Fan et al. [41] modeled the random shocks
into three zones according to their magnitude, fatal, damage, and safety zones. Song
et al. [40] classified random shocks into different sets according to their function,
size, and affected components. Each component in the system has its own shock set,
which indicates that only when the shock belongs to the shock set of that compo-
nent, the damage will exist. Consider the magnitude of the kth shock that belongs
to the j th shock set impacting component l, Wl, j,k , follows a normal distribution

Wl, j,k ∼ N
(
μWl, j , σ 2 Wl, j

)
, the reliability function of component l, Rl (t), considering

an extreme shock that belongs to the j th shock set is:

Rl (t) = P
(
Wl, j,k < Hl

) = φ
(
Hl − μWl, j

σWl, j

)
f or l = 1, 2, . . . , n, jεφl (9)

where Hl is the failure threshold of the component l, φ(·) is the cumulative density
function (CDF) of a standard normally distributed function, and φl is the shock set
for component l.

Some studies assumed that random shocks can be classified into fatal shocks
and nonfatal shocks [38, 43, 45]. In this case, fatal shocks are extreme shocks.
These studies [38, 43, 45] assumed that random shocks follow HPP with rate λ. The
probability that a shock that could be fatal to the system at time t is p(t). Thus,
fatal shocks follow NHPP with rate λp(t). Rafiee et al. [39] proposed a system
reliability model considering degradation and random shocks. The degradation rate
is assumed to be changed by shocks because the system may become vulnerable.
The first shock that leads to the degradation rate change is defined as a trigger shock,
denoted as the kth shock. The overall degradation is represented as a linear path
function: X (t) = βt + ϕ + ε, where ϕ is the initial degradation, β is the degradation
rate, and ε is the measurement error. Considering the impact of the trigger shock,
X (t) is modeled as:

System Reliability Models with Random Shocks … 27

X (t) =
{

β1t + ϕ + ε, k > N (t)
β1Tk + β2(t − Tk) + ϕ + ε, k ≤ N (t)

(10)

where k is a random variable, Tk is the arrival time of the kth shock, β1 is the initial
degradation rate, and β2 is the changed degradation rate. The reliability function
with extreme shock model in reference [39] is developed based on two conditions,
no shock occurs by time t and at least one shock occurs by time t .

Eryilmaz and Kan [46, 47] considered there are changes of distributions of the
shock magnitude to propose a system reliability model. These models are preferable
to use in the conditions that there is an urgent or a dramatic change in environments,
which can cause a larger shock in the system. The change point is assumed to follow
a certain distribution, for example, a geometric distribution with a given probability
mass function. The reliability function can be derived based on the proposed extreme
shock model.

2.2.3 System Reliability Models with Run Shock Model

System reliability models with run shock model is discussed in a few studies. For
example, Gong et al. [48] assessed the reliability of the system under a run shock
model with two thresholds H1 and H2, where H1 < H2. There are two cases that
cause system failure: (1) more than k1 successive shocks with the magnitude above
H1; (2) more than k2 successive shocks with the magnitude above H2. The inter-
arrival time and the magnitude of shocks are modeled by PH distribution. Compared
with the classic run shock model, adding one more threshold helps determine the
severity of a shock. Ozkut and Eryilmaz [13] proposed a Marshall-Olkin run shock
model to predict system reliability. The system is assumed to have two components
subject to three sources of shocks. In this run shock model, the system failure occurs
when k critical shocks arrive in succession and these shocks should come from the
same source. Later, Wu et al. [14] proposed an N -critical shock model based on
Markov renewal process. The run shock model is a special case of the developed
model when N shocks occur consequently.

2.2.4 System Reliability Models with δ-shock Model

Wang and Peng [15] studied a generalized δ-shock model with two types of shocks,
type 1 and type 2, with the recovery times are δ1 and δ2, respectively. Assume the
arrival of shocks follow a HPP with rate λ, and the probability of being type 1 is p
and type 2 is q = 1 − p. They also assume: (1) if either type of shock arrives during
the recovery time, the system will fail; (2) if no shock occurs during the recovery
time, the system will be recovered from the damage and shown as good as new. The
reliability function of the δ-shock model is shown as [15]:

28 Y. Hu and M. Zhu

R(t) =
∑∞

n1=0

∑∞

n2=0
P(T > t, N1(t) = n1, N2(t) = n2) (11)

where Ni (t) is the number of type i shock by time t[15]. Discussed several cases
to compute Eq. (11). First, there is no shocks occurred by time t . Second, there is
one type of shock occurred by time t . Third, there are two types of shocks occurred
by time t , in which the authors proposed a reliability function with the generalized
δ-shock model.

Poursaeed [49] developed a new δ-shock model with two thresholds δ1 and δ2,
where 1 ≤ δ1 < δ2. When the time interval is smaller than δ1, the system fails. When
the time interval falls between δ1 and δ2, the probability of system failure is θ . When
the time interval is larger than δ2, the shocks do not cause damage to the system.
Thus, the reliability function based on the proposed δ-shock model is:

R(t) = P
(
Tδ1,δ2,θ > t

) = P
(∑L1

i=0
Yi +

∑L2

i=1
Zi + W > t

)
(12)

where Tδ1,δ2,θ is the system failure time, L1 is the number of intervals in [δ2, ∞),
and L2 is the number of intervals in (δ1, δ2). Xi is the time intervals between the i th
and (i + 1)th shock. Yi ∼ X |X > δ2,Zi ∼ X |δ1 < X < δ2 for i = 1, 2, . . . , and
W ∼ X |δ1 < X ≤ δ2 or W ∼ X |X ≤ δ1, where X ∼ Y indicates that X and Y
follow the same distribution.

Typically, the arrival of random shocks is modeled by HPP, in other words,
the inter-arrival time between two consecutive shocks follows an exponential
distribution, which is commonly adopted in many studies. HPP has the advan-
tages of the simplicity of mathematical expressions; however, the limitation also
exists. For example, Liu [50] pointed out that HPP can only fit the data which
is equal-dispersion, that is, the mean should be equal to the variance. However,
the mean and the variance of the shock inter-arrival time are not equal in most
cases. Also, HPP can only represent the situation when the hazard rate is constant,
while the rate can be either increasing or decreasing in the real life. Thus, a
reliability model subject to degradation and random shocks is developed under
the assumption that the inter-arrival time of shocks follows Weibull distribu-
tion. There are two advantages over HPP. First, Weibull distribution can model
the under-dispersion data and over-dispersion data besides the equal-dispersion
data. Second, Weibull distribution can specifically simulate the impact caused by
related system failures. Under this assumption, the probability that n shocks occur

is: P(N (t) = n) = ∑∞
j=n

[
(−1) j+n

(
t
λ

)cj
αn
j

]
/�(cj + 1), n = 0, 1, 2, . . . , where

�(·) is the Gamma function λ is the scale parameter of Weibull distribution, c
is the shape parameter of Weibull distribution, α0

j = �(cj + 1)/�(j + 1), and
αn+1
j = ∑ j−1

m=nα
n
m�(cj − cm + 1)/�(j − m + 1). Hence, the reliability function

under the δ-shock model is expressed as [50]:

System Reliability Models with Random Shocks … 29

R(t) =
∑∞

n=0
P(min(B1, B2, . . . , Bn) > δ, X (t) < H |N (t) = n)P(N (t) = n)

(13)

where Bk is the inter-arrival time between the (k − 1)th shock and kth shock, X (t)
is the total degradation value, and H is the threshold. All Bk are independent and
follow Weibull distribution.

Eryilmaz and Bayramoglu [51] investigated the system reliability under the δ-
shock model by assuming the interarrival time follows a uniform distribution. This
assumption is useful when the first-order effects of random changes are important
to the result; in other words, when the difference between deterministic models and
stochastic models is critical. Eryilmaz [52] studied the reliability properties of a
discrete-time shock model. The inter-arrival time is assumed to follow a geometric
distribution with a mean 1/p.

In addition, the inter-arrival time in the δ-shock model in most studies is assumed
to be independently and identically distributed. Some studies considered the inter-
arrival time are dependent. For example, Eryilmaz [53] proposed a reliability model
under the δ-shock model when the occurrence of shocks follows Polya process. In

this case, P{N (t) = n} =
(

α+n−1
n

)(
t

t+β

)n(
β

β+t

)α
, for n = 0, 1, . . . , where α and

β are parameters. In other words, N (t) follows a negative Binomial distribution with
parameters α and β/(β + t). The reliability function is derived as [53]:

R(t) = P(T > t) =
(

β
β + t

)α∑[t δ]
n=0

(
α + n − 1

n

)(
t − nδ
t + β

)n

(14)

where [x] is the integer part of x for t ≥ 0.
Some studies consider the inter-arrival times are nonidentical. For example, Tuncel

and Eryilmaz [54] described the inter-arrival times as a proportional hazard rate
process which can apply to the situation that the inter-arrival time is stochastically
increasing or decreasing. The reliability function of the interarrival time Xi is thus
expressed as:

Ri (t) = P(Xi > t) = (
G(t)

)αi
, αi > 0 (15)

where G is the reliability function of a baseline random variable.

2.2.5 System Reliability Models with Mixed Shock Model

Parvardeh and Balakrishnan [35] proposed a mixed shock model which is the combi-
nation of extreme shock model and δ-shock model (extreme-δ mixed shock model).
The system fails when the magnitude of any shock is larger than a threshold γ or the
inter-arrival time between two consecutive shocks is smaller than another threshold

30 Y. Hu and M. Zhu

δ. In the extreme shock model, the time lapse between the (k − 1)th shock and the
kth shock Xk has the marginal distribution F and the magnitude of the kth shock,
Zk , has the marginal distribution G. Xk and Zk are assumed to be dependent and has
a joint distribution H. The reliability function is derived as [35]:

R(t) = (F(δ) − F(t))I[0,δ)(t)

+
∑∞

n=2

[
F(δ) − H(δ, γ)

]n−1
∫ ∞

0
P

(
S∗
n−1 > t − x

)
dF(x)

+H(max{δ, t}, γ) −
∑∞

n=2

[
F(δ) − H(δ, γ)

]n
P(S∗

n > t) (16)

where {S∗
n , n ≥ 1} is a renewal process with the time between successive renewals

whose CDF is Fδ,γ (x) = (H(x, γ) − H(δ, γ))/(G(γ) − H(δ, γ)), x > δ.
Lorvand et al. [55] proposed another extreme-δ mixed shock model by setting a

new threshold δ2, which can switch the system to a lower partially working state.
Thus, there are three situations that can cause system failure: (1) the classic δ-shock
model; (2) the classic extreme shock model; (3) when k out of interarrival times
between two successive shocks are in (δ1, δ2). The extreme-δ mixed shock model
has also been investigated by studies [56, 57].

Some studies considered the mixed shock models in the combination of more
than two shock models. For example, Rafiee et al. [36] discussed the system failures
can be caused by the internal degradation, or fatal shocks, in which the shock falls
into any of three shock models, run shock model, extreme shock model, and δ-shock
model. The system reliability function without degradation-based failure is expressed
as [36]:

R(t) =
∑∞

m=0
P(S > N (t), X (t) < H |N (t) = m)P(N (t) = m) (17)

where S is the number of fatal shocks, and H is the threshold of degradation failure.
Moreover, some studies considered the degradation rate and failure threshold

can be changed multiple times as the changes of three mixed shocks patterns [59].
Jiang et al. [58] assumed the failure threshold will decrease as the increase of shocks.
Specifically, when the inter-arrival time is smaller than δ or there are m shocks whose
magnitude is larger than γ , the threshold will decrease. Zhao et al. [60] incorporated
the system self-healing mechanism into random shock modeling to predict the system
reliability. The system is assumed to have two stages by incorporating a change point,
which is defined as the time when the cumulative number of valid shocks exceeds a
threshold. Before the change point, the system is capable of self-healing from shocks.
However, the system cannot recover from the damage after the change point.

System Reliability Models with Random Shocks … 31

3 System Reliability Models with Uncertainty

Generally, three sources result in the uncertainty of complex engineering systems,
temporal variability, item-to-item variability, and measurement error [19–28].
Temporal variability represents the inherent uncertainty changed with the degradation
progression over time [17]. Item-to-item variability refers to the diversity of degra-
dation paths induced by manufacturing processes and service conditions. Measure-
ment error represents the difference between the observed degradation data and the
true degradation data [19]. This error is mainly due to the imperfect instrument,
random environment, or imperfect inspection which is inevitable in the measure-
ment process. In this section, we review system reliability models with uncertainty
based on stochastic process, Wiener process [19, 20], gamma process [21–23], and
inverse Gaussian process [24]. Typically, Wiener process is utilized when the degra-
dation is non-monotonic, while gamma process and inverse Gaussian process are
used to analyze the monotonic degradation processes [21, 61, 62].

The following notations are defined in this section. Y (t) is the measured degrada-
tion by time t . X (t) is the true degradation by time t . ε(t) is the measurement error
by time t .

3.1 System Reliability Models Based on Wiener Process

In Sect. 3.1, we define the following notations. X (0) is the initial degradation value.
θ is the drift parameter of Wiener process. δB is the volatility parameter of Wiener
process. B(t) is the standard Brownian motion.

In general, a Wiener-based degradation model is expressed as [18]:

X (t) = X (0) + θ t + σB B(t) (18)

Si et al. [18] considered three sources of uncertainty in Wiener process to reli-
ability estimation. Stochastic dynamics of the degradation process is represented
by δB B(t) ∼ N

(
0, δ2 Bt

)
, t > 0. Item-to-item variation is illustrated by assuming

parameter θ as a random variable that follows a specific distribution. In most cases,
θ is assumed to follow a normal distribution, denoted as θ ∼ N (μθ , σ 2 θ), which is
s-independent of {B(t), t ≥ 0}. System reliability models developed in studies [19,
20, 26] are also based on Eq. (18).

According to the property of Wiener process, the first passage time exceeding the
critical threshold follows an inverse Gaussian distribution [63]. Thus, the probability
density function (PDF) of the lifetime T is:

fT (t) = H √
2π t3σ 2 B

exp

(
−

(H − θ t)2

2σ 2 Bt

)
, t > 0, θ > 0 (19)

32 Y. Hu and M. Zhu

where H is a threshold. Then, system reliability models can be obtained.
Equation (18) is the general function of the linear Wiener process. For complex

systems, it is necessary to take the degradation nonlinearity into account; thus, Liu and
Fan [64] used a nonlinear Wiener-based degradation model to model the degradation
process, X (t) = X(0) + θ�(t; γ) + σB B(t), where �(t; γ) is a nonlinear function
with unknown parameter γ . In their study [64], �(t; γ) is represented by a power
function, tγ . Zheng et al. [65] developed a generalized form of Wiener process:
X (t) = X (0) + f (t; θ1)T θ2 + σB B(t), where f (t; θ1)T is a n-dimensional vector
with a group of fundamental functions, θ1 and θ2 are parameter vectors, and θ2 ∈ Rn .
The temporal variability and the item-to-item variation are represented by B(t) and
θ2, respectively. Moreover, Wiener-based degradation model can be used to model
measurement error ε(t) following a normal distribution, Eq. (18) will be [64]:

Y (t) = X (t) + ε(t) (20)

The widely used assumptions [19, 20, 26–28] to model measurement error are:
(1) ε(t) follows a normal distribution; (2) all measurement error terms are mutu-
ally independent and independent with the true degradation. Similarly, by using the
concept of the first passage time, the lifetime of a system is modeled as [65]:

T = inf{t : X (t) ≥ w|X (0) < w} (21)

where w is the predetermined degradation-based failure threshold. Then, system
reliability models and remaining useful life models can be obtained [64, 65].

3.2 System Reliability Models Based on Gamma Process

A continuous-time stochastic process {X(t), t ≥ 0} is defined as a gamma process
with the shape function η(t) and scale parameter θ if the following properties can be
satisfied [66]:

(1) P(X (0) = 0) = 1;
(2) The increment �X(t1, t2) = X (t2) − X (t1), for all t2 > t1 ≥ 0, follows a

gamma distribution with shape parameter �η(t1, t2) = η(t2) − η(t1) and scale
parameter θ ;

(3) The increments are independent.

Gamma process can be used to represent the degradation path function with the
uncertainty, for example, temporal variability [21–23]. Moreover, a group of studies
further develop the gamma process-based degradation model to capture the item-to-
item variation. For example, Lawless and Crower [21] incorporated a random variable
z into X (t); thus, X(t) follows a gamma distribution with shaped parameter η(t) and
scale parameter zθ . Liu et al. [67] introduced the parameter vector θGa following a

System Reliability Models with Random Shocks … 33

gamma distribution with hyper-parameters θ H Ga =
(
δμGa , γμGa , δλGa , γλGa

)
to model

random effects.
Gamma process can also be used to model degradation path function with

measurement error [68]:

Y (t) = X (t) + ε(t) (22)

where ε(t) is assumed to follow a Gaussian distribution with the mean value as 0.
The true increment is expressed as�X (t) = X (t + �t)−X (t). The measured value
of increment �Y (t) expressed as [68]

�Y (t) = �X (t) + ε(t + �t) − ε(t) (23)

where �X(t) follows a gamma distribution, denoted as, X (t) ∼ Ga(α, 1/λ), and
ε(t + �t) − ε(t) follows a normal distribution, denoted as ε(t + �t) − ε(t) ∼
N (0, 2σ 2). Similar models are also studied in references [23, 69–73]. System reli-
ability models and remaining useful life predictions can be obtained based on the
assumption of gamma process [21–23, 69–73].

Measurement error is commonly assumed to be independent with degradation;
however, it may not be realistic in practice [74]. For example, Pulcini [66] proposed
a perturbed gamma process in which the measurement error is statistically dependent
on the degradation state. The error term in Eq. (22) is assumed to follow a normal
distribution with the zero mean and the variance equal to σ 2(xt), where xt is the
current degradation level. Under the condition that the true degradation is xt = X (t),
the conditional PDF of the measurement error ε(t) given the measured degradation
level yt is obtained [66]:

fε(t)(εt |yt) =
∫ ∞

0
fε(t)(εt |xt) fX (t)(xt |yt)dxt

= 1√
2π

∫ ∞
0

xη(t)−1
t

σ 2 ε (xt)
exp

[
− 1

2(εt /σ (xt)2
− 1 2

(
yt−xt
σ (xt)

)2 − xt
θ

]
dxt

∫ ∞
0

xη(t)−1
t
σ (xt) exp

[
− 1

2

(
yt−xt
σ (xt)

)2 − xt
θ

]
dxt

(24)

The system reliability model is then proposed in consideration of the false alarm
caused by the degradation measurement error [66].

34 Y. Hu and M. Zhu

3.3 System Reliability Models Based on Inverse Gaussian
Process

An inverse Gaussian process {X(t); t ≥ 0} with function�(t) and parameters β and
λ has the following properties [24, 75]:

(1) P(X (0) = 0) = 1;
(2) Each increment follows an inverse Gaussian distribution, expressed as

X (t + �t) − X (t) ∼ IG(β��(t), λ��(t)2);
(3) Increments are independent.

Inverse Gaussian process can be used to model monotonic degradation process
with uncertainty. For example, Pan et al. [75] assumed β as a random parameter to
denote the variability among products. They assume the prior distribution of 1/β
follows the normal distribution, expressed as 1/β ∼ N (μβ , 1/σ 2 β), which is statisti-
cally independent of λ. By using the concept of the first passage time, the lifetime T
of a system can be obtained. The CDF of the lifetime T with the random effect of β
is formulated by using the monotonicity property of inverse Gaussian process [75]:

FT (t) = P(X(t) > H) = �

⎛

⎝
√

λ
H

· (σ β t − μβ σβ H)√
σ 2 β + λH

⎞

⎠

− exp

(
2μβ λt +

2λ2t2

σ 2 β

)
× �

⎛

⎝−
√

λ
H

· (σ 2 β + 2λH)t + μβ σ 2 β H√
σ 4 β + λH σ 2 β

⎞

⎠ (25)

where H is a threshold.
Peng [76] established a normal-gamma mixture of inverse Gaussian degra-

dation model to incorporate the heterogeneity among products. To be specific,
λ is assumed to have a gamma density function, expressed as f (λ) =
[λα−1/�(α)τ α]exp(−λ/τ), λ, α, τ > 0. Let δ, δ = β−1, have a conditional
normal PDF with mean ξ and variance σ 2 β /λ. The PDF of δ is f (δ|λ) = √

λ/2π σ 2 β exp
(
−λ(δ − ξ)2 /2σ 2 β

)
, δ, ξ ∈ R, σ 2 β > 0. Later, Hao et al. [77] relaxed

the normal assumption of δ and assumed δ follows a skew-normal distribution, in
which δ ∼ SN (μ, σ 2, α). The PDF of δ is presented as [77]:

fδ(x) =
2

σ
�

(
x − μ

σ

)
�

(
α
x − μ

σ

)
(26)

where μ is the location parameter, σ is the scale parameter, and α is the shape
parameter. They [77] further model the CDF of the lifetime based on the skew-
normal distribution assumption of δ. Recently, Sun et al. [78] predicted the system
remaining useful life with the inverse Gaussian degradation model with measurement

System Reliability Models with Random Shocks … 35

errors and further applied to the hydraulic piston pump. The errors are assumed to
follow a normal distribution conditioning on the degradation level.

Meanwhile, the degradation path can be modeled by other distributions. For
example, Zhai and Ye [29] discussed that Gaussian distribution has low probabilities
in large values, which may result in a misleading result when some fatal errors are
introduced during the observation process. Thus, the measurement error is assumed
to follow a student’s t-distribution. Shen et al. [30] assumed the measurement error
follows a logistic distribution. This distribution has relatively heavier tails compared
with the normal distribution, which is more suitable to use when there are large errors
in the degradation data. Li et al. [32] considered that measurement errors are time-
series data, which has the auto-correlation due to modeling errors or environmental
changes especially when the time interval is short. Thus, a Wiener process degrada-
tion model with one-order autoregressive (AR(1)) measurement errors is established.
The AR(1) measurement error is also considered in studies [31, 33]. Giorgio et al.
[34] modeled ε(t) as a three-parameter inverse gamma distributed random variable
that is conditionally distributed on the degradation level.

4 Conclusion

Reliability evaluation of complex engineering systems is a critical task in many
safety–critical applications. System failure is generally caused by random shocks and
internal degradation. Typically, five random shock models are commonly used in the
field of Reliability Engineering, cumulative shock model, extreme shock model, run
shock model, δ-shock model, and mixed shock model. In addition, the uncertainty
in the degradation process can influence the accuracy of the reliability estimation. In
general, there are three sources of variability that can result in uncertainty, temporal
variability in the degradation process, unit-to-unit variability, and measurement error
caused by imperfect instruments or imperfect inspection. Considering the importance
and popularity of considering random shocks and uncertainty in modeling system
reliability, in this chapter, we first review system reliability models with random
shock models and then system reliability models with uncertainty in terms of three
classic stochastic processes, Wiener process, gamma process, and inverse Gaussian
process.

References

1. Pham H (2022) Statistical reliability engineering: methods, models and applications. Springer
2. Esary J, Marshall A (1973) Shock models and wear processes. Ann Probab 1(4):627–649
3. Gut A (1990) Cumulative shock models. Adv Appl Probab 22(2):504–507
4. Che H, Zeng S, Guo J, Wang Y (2018) Reliability modeling for dependent competing failure

processes with mutually dependent degradation process and shock process. Reliab Eng Syst
Saf 180:168–178

36 Y. Hu and M. Zhu

5. Dong W, Liu S, Bae SJ, Cao Y (2021) Reliability modelling for multi-component systems
subject to stochastic deterioration and generalized cumulative shock damages. Reliab Eng Syst
Saf 205:107260

6. Shanthikumar JG, Sumita U (1983) General shock models associated with correlated renewal
sequences. J Appl Probab 20(3):600–614

7. Wang J, Han X, Zhang YA, Bai G (2021) Modeling the varying effects of shocks for a multi-stage
degradation process. Reliab Eng Syst Saf 215:107925

8. Hao S, Yang J (2018) Reliability analysis for dependent competing failure processes with
changing degradation rate and hard failure threshold levels. Comput Ind Eng 118:340–351

9. Gut A (2001) Mixed shock models. Bernoulli 7:541–555
10. Mallor F, Omey E (2001) Shocks, runs and random sums. J Appl Probab 38(2):438–448
11. Li Z, Kong X (2007) Life behavior of δ-shock model. Statist Probab Lett 77(6):577–587
12. Gong M, Eryilmaz S, Xie M (2020) Reliability assessment of system under a generalized

cumulative shock model. Proc Inst Mech Eng Part O J Risk Reliab 234(1):129–137
13. Ozkut M, Eryilmaz S (2019) Reliability analysis under Marshall-Olkin run shock model. J

Comput Appl Math 349:52–59
14. Wu B, Cui L, Qiu Q (2021) Two novel critical shock models based on Markov renewal processes.

Nav Res Logist (NRL). 69(1):163–176
15. Wang GJ, Peng R (2017) A generalised δ-shock model with two types of shocks. Int J Syst Sci

Oper Logistics 4(4):372–383
16. Lorvand H, Nematollahi AR, Poursaeed MH (2020) Assessment of a generalized discrete time

mixed δ-shock model for the multi-state systems. J Comput Appl Math 366:112415
17. Giorgio M, Guida M, Pulcini G (2011) An age-and state-dependent Markov model for

degradation processes. IIE Trans 43(9):621–632
18. Si XS, Wang W, Hu CH, Zhou DH (2014) Estimating remaining useful life with three-source

variability in degradation modeling. IEEE Trans Reliab 63(1):167–190
19. Si XS, Wang W, Hu CH, Zhou DH (2011) Remaining useful life estimation–a review on the

statistical data driven approaches. Eur J Oper Res 213(1):1–14
20. Peng CY, Tseng ST (2009) Mis-specification analysis of linear degradation models. IEEE Trans

Reliab 58(3):444–455
21. Lawless J, Crowder M (2004) Covariates and random effects in a gamma process model with

application to degradation and failure. Lifetime Data Anal 10(3):213–227
22. Park SH, Kim JH (2016) Lifetime estimation of LED lamp using gamma process model.

Microelectron Reliab 57:71–78
23. Hazra I, Pandey MD, Manzana N (2020) Approximate Bayesian computation (ABC) method for

estimating parameters of the gamma process using noisy data. Reliab Eng Syst Saf 198:106780
24. Wang X, Xu D (2010) An inverse Gaussian process model for degradation data. Technometrics

52(2):188–197
25. Yuan XX, Pandey MD (2009) A nonlinear mixed-effects model for degradation data obtained

from in-service inspections. Reliab Eng Syst Saf 94(2):509–519
26. Si XS, Chen MY, Wang W, Hu CH, Zhou DH (2013) Specifying measurement errors for

required lifetime estimation performance. Eur J Oper Res 231(3):631–644
27. Meeker WQ, Escobar LA, Pascual FG (2021) Statistical methods for reliability data. Wiley, p

639
28. Ye ZS, Wang Y, Tsui KL, Pecht M (2013) Degradation data analysis using Wiener processes

with measurement errors. IEEE Trans Reliab 62(4):772–780
29. Zhai Q, Ye ZS (2017) Robust degradation analysis with non-Gaussian measurement errors.

IEEE Trans Instrum Meas 66(11):2803–2812
30. Shen Y, Shen L, Xu W (2018) A Wiener-based degradation model with logistic distributed

measurement errors and remaining useful life estimation. Qual Reliab Eng Int 34(6):1289–1303
31. Li J, Wang Z, Liu C, Qiu M (2019) Accelerated degradation analysis based on a random-effect

Wiener process with one-order autoregressive errors. Eksploatacja i Niezawodność 21(2)
32. Li J, Wang Z, Zhang Y, Liu C, Fu H (2018) A nonlinear Wiener process degradation model

with autoregressive errors. Reliab Eng Syst Saf 173:48–57

System Reliability Models with Random Shocks … 37

33. Lin JG, Wei BC (2007) Testing for heteroscedasticity and/or autocorrelation in longitudinal
mixed effect nonlinear models with AR (1) errors. Commun Stat Theory Methods 36(3):567–
586

34. Giorgio M, Mele A, Pulcini G (2019) A perturbed gamma degradation process with degradation
dependent non-Gaussian measurement errors. Appl Stoch Model Bus Ind 35(2):198–210

35. Parvardeh A, Balakrishnan N (2015) On mixed δ-shock models. Statist Probab Lett 102:51–60
36. Rafiee K, Feng Q, Coit DW (2015) Condition-based maintenance for repairable deteriorating

systems subject to a generalized mixed shock model. IEEE Trans Reliab 64(4):1164–1174
37. Hao S, Yang J, Ma X, Zhao Y (2017) Reliability modeling for mutually dependent competing

failure processes due to degradation and random shocks. Appl Math Model 51:232–249
38. Wang Y, Pham H (2011) Modeling the dependent competing risks with multiple degradation

processes and random shock using time-varying copulas. IEEE Trans Reliab 61(1):13–22
39. Rafiee K, Feng Q, Coit DW (2014) Reliability modeling for dependent competing failure

processes with changing degradation rate. IIE Trans 46(5):483–496
40. Song S, Coit DW, Feng Q (2014) Reliability for systems of degrading components with distinct

component shock sets. Reliab Eng Syst Saf 132:115–124
41. Fan M, Zeng Z, Zio E, Kang R (2017) Modeling dependent competing failure processes with

degradation-shock dependence. Reliab Eng Syst Saf 165:422–430
42. Song S, Coit DW, Feng Q (2016) Reliability analysis of multiple-component series systems

subject to hard and soft failures with dependent shock effects. IIE Trans 48(8):720–735
43. Wang R, Zhu M (2022) Shock-loading based method for modeling dependent competing risks

with degradation processes and random shocks. Int J Reliab Qual Saf Eng. In press
44. Ranjkesh SH, Hamadani AZ, Mahmoodi S (2019) A new cumulative shock model with damage

and inter-arrival time dependency. Reliab Eng Syst Saf 192:106047
45. Cha JH, Finkelstein M (2011) On new classes of extreme shock models and some generaliza-

tions. J Appl Probab 48(1):258–270
46. Eryilmaz S, Kan C (2019) Reliability and optimal replacement policy for an extreme shock

model with a change point. Reliab Eng Syst Saf 190:106513
47. Eryilmaz S, Kan C (2021) A new shock model with a change in shock size distribution. Probab

Eng Inf Sci 35(3):381–395
48. Gong M, Xie M, Yang Y (2018) Reliability assessment of system under a generalized run shock

model. J Appl Probab 55(4):1249–1260
49. Poursaeed MH (2021) Reliability analysis of an extended shock model. Proc Inst Mech Eng

Part O J Risk Reliab 1748006X20987794
50. Liu H (2019) Reliability and maintenance modeling for competing risk processes with Weibull

inter-arrival shocks. Appl Math Model 71:194–207
51. Eryilmaz S, Bayramoglu K (2014) Life behavior of delta-shock models for uniformly

distributed interarrival times. Stat Pap 55(3):841–852
52. Eryilmaz S (2013) On the lifetime behavior of a discrete time shock model. J Comput Appl

Math 237(1):384–388
53. Eryilmaz S (2017) δ-shock model based on Polya process and its optimal replacement policy.

Eur J Oper Res 263(2):690–697
54. Tuncel A, Eryilmaz S (2018) System reliability under δ-shock model. Commun Stat Theory

Methods 47(19):4872–4880
55. Lorvand H, Nematollahi A, Poursaeed MH (2020) Life distribution properties of a new δ-shock

model. Commun Stat Theory Methods 49(12):3010–3025
56. Wang GJ, Zhang YL (2005) A shock model with two-type failures and optimal replacement

policy. Int J Syst Sci 36(4):209–214
57. Doostmoradi A, Akhoond MR, Zadkarami MR (2021) Reliability of a system under a new

mixed shock model. Commun Stat Theory Methods 1–15
58. Jiang L, Feng Q, Coit DW (2012) Reliability and maintenance modeling for dependent

competing failure processes with shifting failure thresholds. IEEE Trans Reliab 61(4):932–948
59. Rafiee K, Feng Q, Coit DW (2017) Reliability assessment of competing risks with generalized

mixed shock models. Reliab Eng Syst Saf 159:1–11

38 Y. Hu and M. Zhu

60. Zhao X, Guo X, Wang X (2018) Reliability and maintenance policies for a two-stage shock
model with self-healing mechanism. Reliab Eng Syst Saf 172:185–194

61. Rodríguez-Picón LA, Flores-Ochoa VH, Méndez-González LC, Rodríguez-Medina MA (2017)
Bivariate degradation modelling with marginal heterogeneous stochastic processes. J Stat
Comput Simul 87(11):2207–2226

62. Ye ZS, Chen N (2014) The inverse Gaussian process as a degradation model. Technometrics
56(3):302–311

63. Folks JL, Chhikara RS (1978) The inverse Gaussian distribution and its statistical application—
a review. J Roy Stat Soc Ser B (Methodol) 40(3):263–275

64. Liu S, Fan L (2022) An adaptive prediction approach for rolling bearing remaining useful life
based on multistage model with three-source variability. Reliab Eng Syst Saf 218:108182

65. Zheng JF, Si XS, Hu CH, Zhang ZX, Jiang W (2016) A nonlinear prognostic model for
degrading systems with three-source variability. IEEE Trans Reliab 65(2):736–750

66. Pulcini G (2016) A perturbed gamma process with statistically dependent measurement errors.
Reliab Eng Syst Saf 152:296–306

67. Liu D, Wang S, Zhang C, Tomovic M (2018) Bayesian model averaging based reliability
analysis method for monotonic degradation dataset based on inverse Gaussian process and
Gamma process. Reliab Eng Syst Saf 180:25–38

68. Wei Q, Xu D (2014) Remaining useful life estimation based on gamma process considered
with measurement error. In: 2014 10th international conference on reliability, maintainability
and safety (ICRMS). IEEE, pp 645–649

69. Liu X, Matias J, Jäschke J, Vatn J (2022) Gibbs sampler for noisy transformed Gamma process:
inference and remaining useful life estimation. Reliab Eng Syst Saf 217:108084

70. Lu D, Pandey MD, Xie WC (2013) An efficient method for the estimation of parameters of
stochastic gamma process from noisy degradation measurements. Proc Inst Mech Eng Part O
J Risk Reliability 227(4):425–433

71. Kallen MJ, Van Noortwijk JM (2005) Optimal maintenance decisions under imperfect
inspection. Reliab Eng Syst Saf 90(2–3):177–185

72. Le Son K, Fouladirad M, Barros A (2012) Remaining useful life estimation on the non-
homogenous gamma with noise deterioration based on Gibbs filtering: a case study. In: 2012
IEEE conference on prognostics and health management. IEEE, pp 1–6

73. Bordes L, Paroissin C, Salami A (2016) Parametric inference in a perturbed gamma degradation
process. Commun Stat Theory Methods. 45(9):2730–2747

74. Rabinovich SG (2013) The international vocabulary of metrology and the guide to the expres-
sion of uncertainty in measurement: analysis, criticism, and recommendations. Evaluating
measurement accuracy. Springer, New York, NY, pp 269–285

75. Pan D, Liu JB, Cao J (2016) Remaining useful life estimation using an inverse Gaussian
degradation model. Neurocomputing 185:64–72

76. Peng CY (2015) Inverse Gaussian processes with random effects and explanatory variables for
degradation data. Technometrics 57(1):100–111

77. Hao S, Yang J, Berenguer C (2019) Degradation analysis based on an extended inverse Gaussian
process model with skew-normal random effects and measurement errors. Reliab Eng Syst Saf
189:261–270

78. Sun B, Li Y, Wang Z, Ren Y, Feng Q, Yang D (2021) An improved inverse Gaussian process
with random effects and measurement errors for RUL prediction of hydraulic piston pump.
Measurement 173:108604

A Hybrid Approach for Evaluation
and Prioritization of Software
Vulnerabilities

Vivek Kumar, Misbah Anjum, Vernika Agarwal, and P. K. Kapur

Abstract A software vulnerability is a technical flaw or glitch in the software which
might be exploited to contravene the security policy of the system. The intensity of
software vulnerabilities amplifies at an exponential rate, which is a tedious task
for software testers. The removal of these vulnerabilities is an important task for
software developers. With the constraint on the cost and time limitations, it becomes
important to prioritize the software vulnerabilities and identify those vulnerabilities
which are most severe. In this study, we have sub-grouped software vulnerability
types into two categories: code execution vulnerabilities and improper authentication
vulnerabilities. In this view, the present study focuses on assessing the vulnerabilities
which are most prone to attacks. The study utilizes a hybrid methodology comprising
of the fuzzy Best Worst Method to prioritize the identified software vulnerabilities,
followed by a two-way analysis to integrate the opinion of decision-makers. The
research findings show that the vulnerabilities that are caused because of improper
code execution are more severe than those of authentication error vulnerabilities.
The present framework is validated by using the case of an Indian software testing
company situated in the National capital region of India.

Keywords Software vulnerabilities · Multi-criteria decision-making (MCDM) ·
Fuzzy best–worst method (BWM) · Two-way analysis

V. Kumar
Department of Operational Research, University of Delhi, Delhi, India

M. Anjum
Amity Institute of Information Technology, Amity University, Noida, Uttar Pradesh, India

V. Agarwal (B)
Amity International Business School, Amity University, Noida, Uttar Pradesh, India
e-mail: vagarwal1@amity.edu

P. K. Kapur
Amity Center for Inter-Disciplinary Research, Amity University, Noida, Uttar Pradesh, India

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Kumar and H. Pham (eds.), Predictive Analytics in System Reliability,
Springer Series in Reliability Engineering,
https://doi.org/10.1007/978-3-031-05347-4_3

39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05347-4_3&domain=pdf
mailto:vagarwal1@amity.edu
https://doi.org/10.1007/978-3-031-05347-4_3

40 V. Kumar et al.

1 Introduction

The digital management system has massive and severe security requirements. The
main requirements are the continuous disclosure of software vulnerabilities that can
jeopardize their systems in certain aspects [1]. In the field of security and risk manage-
ment, vulnerability assessment plays a vital role. Vulnerability refers to defects or
weaknesses in the design, operation, or implementation of a system that might be
exploited to contravene the security policy of the system [2]. To access, harm, or
breach the information system illegally, any defect or weakness in an information
system might be exploited [3]. It is of paramount significance to classify and under-
stand common software vulnerabilities that lead to safety risks. It is believed that 90%
of the incidents reported are caused by the exploitation of design or software code
[4]. A single exploited software vulnerability can cause severe damage to an organi-
zation. Yearly damages of up to $226 billion from cyber-attacks have been recorded
worldwide [5]. It is important to incorporate measures for the integrated safety of
the enabling software in order to assure system stability, integrity and safety [6].
Before the deployment of software, it is essential to discover and mitigate software
vulnerabilities.

New vulnerabilities in software security are found nearly every day and have
caused major financial damage [7]. It is therefore essential that they can be detected
and solved as soon as possible. The security team is responsible for recognizing
and addressing these vulnerabilities using different software and hardware platforms
[8]. These vulnerabilities must be addressed and assessed to meet business dead-
lines and operate within limited financial resources [9]. Security managers generally
operate under a restricted budget so that the identified vulnerabilities have to be prior-
itized and the mitigating measures are taken into account [10]. A response procedure
proportional to its seriousness should address a vulnerability and priority should be
given to more serious vulnerabilities than less serious [11]. The reaction processes
for vulnerability are not standardized and may differ with regards to response speed,
roles involved, the effect of production and operations, and in a particular overall
cost of response [12].

Due to security flaws left during program developments software becomes suscep-
tible. The rate of vulnerability exploitation will increase. The process of assessing
and prioritizing vulnerability is thus a genuine difficulty and sensitive task [13].
In literature, the priority of vulnerability has been explored, and the necessity for
priority vulnerability is generally acknowledged in organizations [14]. The evalua-
tion should be done in such a way that the vulnerabilities that offer the largest threat
are fixed first [15]. Vulnerability priority contains different features that developers
and testing professionals need to take into account in selecting the order to remedy
the vulnerability [16]. It is thus a crucial responsibility for developers and testers to
identify these vulnerabilities according to the degree of their severity so that they
can be managed correctly and a fix can be delivered in good time [11].

A critical vulnerability can allow malicious code to be run without user inter-
actions, which may lead to a security breakdown if exploited by attackers [17].

A Hybrid Approach for Evaluation and Prioritization … 41

The literature has investigated the number of qualitative and quantitative assess-
ment approaches to attribute sensitivity ratings [18]. Several vulnerability scores
have been identified, endorsed, and implemented, qualitatively [19] or quantitatively
[20], by a diverse range of technological and non-profit providers. In the past vulner-
ability assessment studies, prioritization has been done using several “Multi-Criteria
Decision-Making” (MCDM) approaches such as [16] prioritized software vulner-
abilities using “Analytic Hierarchy Process”, “Normalized Criteria Distance” and
“DEMATEL”. [21] presented software vulnerability prioritization with “AHP” based
on “Verbal Rating Scales”. [22] analyzed prioritization using “Fuzzy Analytical
Hierarchy Process” and “fuzzy synthetic decision-making approach”. [19] prior-
itized vulnerabilities using the “Analytic Network Process” method. The authors
are concerned with assessing the code smells, based on their effect on large-scale
open-source (OSS) projects [23]. The study by Anjum et al. [11] has considered
very few software vulnerabilities for the prioritization process by using the best–
worst method. However, the crisp methodology involves ambiguity and uncertainty
caused by decision-makers contextual judgment, crisp constraints cannot be used to
construct multi-criteria decision-making (MCDM) issues in real-world settings. To
defy the problem of uncertainty we have used fuzzy best worst method to rank the
software vulnerabilities. Further, in this study, we have categorized 16 different soft-
ware vulnerabilities into two groups: improper code execution vulnerabilities and
improper authentication vulnerabilities. The categorization is being done based on
highly severe vulnerability types which is the novelty of our work.

From the above discussion the following research objectives can be identified:

• To identify the software vulnerability types into two groups of code execution
vulnerabilities and improper authentication vulnerabilities.

• To prioritize the evaluate the code execution vulnerabilities and improper
authentication vulnerabilities.

• To incorporate the ambiguity in decision-makers opinions by assessing the
vulnerabilities groups.

To address the above-mentioned research questions, the present study focuses
on assessing the vulnerabilities which are most prone to attacks. The study utilizes
a hybrid methodology comprising of the fuzzy Best Worst Method to prioritize
the identified software vulnerabilities, followed by a two-way analysis to inte-
grate the opinion of decision-makers. We have included the vulnerabilities caused
by code execution and incorrect authentication in this study. The vulnerabilities
involving authentication bypass could allow attackers to execute different harmful
activities by circumventing the device authentication system. The consequences of
flaws in authentication can be quite serious. Once an attacker is either bypassed or
brutalized into the account of a user, he may utilize all the data and features of the
afflicted account. If they can hack a highly privileged account, such as a system
administrator, the entire program may be monitored and the core infrastructure may
be accessed. In this article, we suggest the hybrid approach involving the best–worst
technique of classifying and prioritizing these vulnerabilities, and the total measure
of severity of vulnerabilities is then analyzed using the two-way technique.

42 V. Kumar et al.

The paper is structured accordingly: The research technique is covered in Sect. 2.
Section 3 displays the analysis of the data followed by the conclusion of the paper
and the possible future work in Sect. 4.

2 Research Methodology

This section focuses on research methodologies. In this article, we have devised
a dual approach to measure different software vulnerabilities. FBWM prioritizes
vulnerabilities in the initial stage. During the second step, the overall severity of the
vulnerabilities is calculated employing a two-way evaluation approach relying on
FBWM weights.

2.1 Dataset Description

Before the investigation begins, the literature survey initially finds various software
vulnerabilities that are either caused due to an authentication problem or improper
code execution. Remote code execution is caused by attackers creating malicious
code and injecting it into the server via input points. The server unknowingly executes
the commands, and this allows an attacker to gain access to the system. On the
other hand, authentication vulnerabilities are among the most apparent conceptual
concerns. However, they can be one of the most essential because of the link between
authentication and security and because attackers can access vital data and functions
directly. Additional attack surfaces are also displayed for future exploitation. That is
why it is essential to comprehend how code execution and authentication vulnera-
bilities are identified and exploited, including how typical protective measures may
be avoided. The authentic database for data collecting is the “National Vulnera-
bility Database” [24]. This study is aimed at industry professionals and academicians
(managers/developers, testers/stakeholders). The panel is made up of professionals
with minimum expertise in the relevant disciplines for 7–11 years (Table 1).

2.2 Fuzzy Best Worst Method

Considering the paucity of complete information and the uncertainty caused by
decision-makers contextual judgment, crisp constraints cannot be used to construct
multi-criteria decision-making (MCDM) issues in real-world settings. In this section,
the fuzzy best–worst approach is used to tackle such situations. The elaborate steps
of fuzzy BWM are as follows [25]:

A Hybrid Approach for Evaluation and Prioritization … 43

Table 1 Description of
software vulnerabilities

Vulnerability category Notations Vulnerability type

Code execution CDR1 SQL injection (SQLI)

CDR2 Cross-site scripting
(XSS)

CDR3 Buffer overflow (B0)

CDR4 File inclusion (FI)

CDR5 Code execution (CE)

CDR6 Race condition (RC)

CDR7 Memory corruption
(MC)

CDR8 Http response splitting
(HTTPRS)

Improper authentication AUE1 Cross site request
forgery (CSRF)

AUE2 Information gain (IG)

AUE3 Gain of privileges (GP)

AUE4 Bypass something (BS)

AUE5 Denial of service (DoS)

AUE6 Directory traversal
(DT)

AUE7 Improper
authentication (IA)

AUE8 Insufficient entropy
(IE)

Step 1. Establishment of decision criterion layout. In the present scenario,
improper code execution vulnerability collection (group 1) reflects the area of
decision set {D1, D2 …, Dn}.

Step 2. Identification of the most and least severe vulnerability with the help of
decision-makers opinions and are represented as DB, and Dz respectively.

Step 3. Determination of the severity of the most crucial vulnerability over others
using fuzzy comparisons. The fuzzy comparisons are done using the linguistic terms
as “Highly Severe [HS]” having a fuzzy value of (1, 1, 1), “Severe [Se]” of value
(0.6, 1, 1.5), “Medium Severe [MS]” as the value of (1.5, 2, 2.5), “Slightly Severe
[SS]” with value (2.5, 3, 3.5) and “Least Severe [LS]” of fuzzy value as (3.5, 4, 4.5).
The vector of fuzzy Best-to-Others is:

B̃B =
(
b̃B1, b̃B2, . . . , ̃bBn

)

where B̃B represents the fuzzy Best-to-Others vector; b̃B j represents the fuzzy
preference of DB over criterion j, j = 1, 2…, n, also b̃BB = (1, 1, 1).

44 V. Kumar et al.

Step 4. Determination of the severity of other vulnerabilities over the least crucial
vulnerability. The resulting vector of fuzzy worst-to-others is:

B̃z =
(
b̃1z, b̃2z, . . . , ̃bnz

)

where B̃z represent the fuzzy Others-to-Worst vector; b̃i z over Dz, i = 1, 2…, n, also
b̃zz = (1, 1, 1).

Step 5. Calculation of the optimal fuzzy weights

(̃z∗1, z̃∗2, . . . , z̃∗n)

The optimal fuzzy weight for each criterion is the one where for each fuzzy pair

Z̃ B/ Z̃ j and Z̃ j / Z̃z it should have
Z̃ B
Z̃ j

= b̃B j and Z̃ j Z̃ z
= b̃ j z . To satisfy these conditions

for all j, it should determine a solution where the maximum absolute gaps
∣∣∣ Z̃ B
Z̃ j

= b̃B j
∣∣∣

and
∣∣∣ Z̃ j
Z̃ z

= b̃ j z

∣∣∣ for all j are minimized. We use the following constrained optimization

problem for determining the optimal fuzzy weights (z̃∗1, z̃∗2, . . . , ̃z∗n) as follows:

min max
j

{∣∣∣∣
Z̃ B
Z̃i

− b̃B j

∣∣∣∣,
∣∣∣∣
Z̃ j
Z̃ z

− b̃ j Z

∣∣∣∣
}

s.t.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

n∑
j=1

Re(Z̃ j) = 1

ez j ≤ f z j ≤ gz j
ez j ≥ 0

j = 1, 2, ..., n

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(1)

where Z̃ B = (ez B , f
z
B , g

z
B), Z̃ j = (ez j , f

z
j , g

z
j), Z̃z = (ez Z , f

z
Z , g

z
Z), b̃B j =

(eBj , fB j , gBj), b̃ j z = (e jz, f j z, g jz) and e, f and g represent the lower, middle and
upper values respectively. Equation (1) can then be transferred to the following
nonlinearly constrained optimization problem.

min ψ̃

s.t.

⎧ ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣ Z̃ B
Z̃ j

− b̃B j
∣∣∣ ≤ ψ̃∣∣∣ Z̃ j

Z̃ Z
− b̃ j z

∣∣∣ ≤ ψ̃
n∑
j=1

Re(z̃ j) = 1

ez j ≤ f z j ≤ gz j
ez j ≥ 0
j = 1, 2, ..., n

⎫ ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2)

A Hybrid Approach for Evaluation and Prioritization … 45

Table 2 Consistency index table for FBWM

ãBw (1, 1, 1) (2/3, 1, 3/2) (3/2, 2, 5/2) (5/2, 3, 7/2) (7/2, 4, 9/2)

Consistency index 3.00 3.80 5.29 6.69 8.04

where ψ̃ = (eψ , f ψ , gψ).
Considering

min ψ̃∗

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣∣∣
(ez B, f z B , g

z
B)

(ez j , f
z
j , g

z
j)

− (eBj , fB j , gBj)

∣∣∣∣∣ ≤ (t∗, t∗, t∗)

∣∣∣∣∣
(ez j , f

z
j , g

z
j)

(ez j , f
z
j , g

z
j)

− (e jz, f j z, g jz)

∣∣∣∣∣ ≤ (t∗, t∗, t∗)

n∑
j=1

Re(Z̃ j) = 1

ez j ≤ f z j ≤ gz j
ez j ≥ 0
j = 1, 2, ..., n

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3)

Step 6. Check the consistency of the solution.
The closer the consistency ratio is to the zero value, the more consistent is the

comparison system provided by the DM. We check the consistency of the solution
by calculating the consistency ratio:

Consistency Ratio = ψ∗

Consistency Index . Table 2 is used to get the value of the
consistency index.

Step 7. The above steps from 1 to 6 are being repeated for another group of
vulnerabilities.

2.3 Two Way Assessment

We take account of the views of the stakeholders and developers concerning
the crucial nature of every vulnerability attribute and compute their criticality
concerning utility values [26]. Participants are requested to give priority to vulner-
abilities based on their severity. In this study, we take five severity values for each
vulnerability as determined K = (k1, k2, ..., k5) . The acceptability value of this study
is 2, 4, 6, 8, and 10, where k1 is the high severity of value 10, k2 has the severity of
8, whereas k3, k4, and k5 have moderate, slight, and low degree of severities. The
stakeholders’ opinions are gathered in the form of pairwise comparisons indicated
by Fij, which are expressed by a percentage depending on the intervener’s reaction to

46 V. Kumar et al.

Table 3 Overall utility measure for FBWM

Vulnerabilities FBWM
weights

Levels Expected
weight level

Contribution
to total
expected
utility (Ui)

Highly
severe

Severe Medium
severe

Slightly
severe

Least
severe

k1 k2 k3 k4 k5

AUE1 Ow1 F11 F12 F13 F14 F15 Ex1=
∑
j
F1jkj Ex1ow1

AUE2 Ow2 F21 F22 F23 F24 F25 Ex2=
∑
j
F2jkj Ex2ow2

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
AUEn Own Fn1 Fn2 Fn3 Fn4 Fn5 Exn=∑

j
Fnjkj Exnown

Total utility
∑
i
Exiowi

the criticality. The anticipated level weight (Ex) is then calculated by multiplying the
Fij values of each characteristic with their corresponding acceptance level (k) and by
adding each vulnerability attribute to the total value. We multiply the weight of all
attributes by their corresponding predicted level weight and the sum of all individual
utilities for measuring the individual perception, providing an overall utility measure
as set out in Table 3.

3 Data Analysis

As stated earlier, we address the vulnerabilities associated with an authentication
error as well as a code execution error. These assaults are slightly tougher to evaluate
automatically because programs find it almost impossible to identify whether a small
authorization error has been made by applications. The numerical description in this
part prioritizes the severity of the vulnerabilities to take the appropriate action as
quickly as possible.

3.1 Prioritizing Vulnerabilities Using FBWM

Following the stages of FBWM, we classified vulnerabilities of each group according
to their severity, as described in Sect. 2.2. Because FBWM needs fewer compar-
isons, decision-makers (DMs) are thus utilizing step 2 to pick the best/most severe
and worst/least severe criteria. In this study, we collected data from five different
decision-makers (1 software developer, 2 testers, and 2 academicians). From group
1 (i.e., improper code executed vulnerabilities) three out of four decision-makers
selected CDR1 as most severe and CDR8 as least severe. From group 2 (i.e., improper

A Hybrid Approach for Evaluation and Prioritization … 47

Table 4 Best-to-others (BO) and others-to-worst preference matrix

Vulnerability
category

Notations Preference of decision-makers

DM1 DM2 DM3 DM4 DM5

BO OW BO OW BO OW BO OW BO OW

Improper code
execution

CDR1 Se SS HS LS HS SS HS LS Se MS

CDR2 MS Se SS MS MS Se MS SS MS SS

CDR3 Se SS Se SS MS SS SS Se Se SS

CDR4 SS MS MS Se SS MS MS MS SS Se

CDR5 HS LS Se MS Se MS Se Se HS LS

CDR6 MS SS LS HS SS LS MS SS SS Se

CDR7 Se MS MS SS MS MS LS HS MS MS

CDR8 LS HS SS MS LS HS SS Se LS HS

Improper
authentication

AUE1 SS Se MS MS SS Se SS Se MS MS

AUE2 HS LS LS LS Se LS Se LS LS LS

AUE3 Se SS MS Se MS Se Se SS MS Se

AUE4 LS HS SS HS SS SS LS HS LS HS

AUE5 MS MS SS Se LS HS MS MS SS MS

AUE6 Se MS MS SS Se MS MS SS Se SS

AUE7 Se SS Se SS LS LS HS LS Se LS

AUE8 Se SS MS MS Se MS Se SS MS MS

authentication) AUE2 is identified as most severe and AUE4 as least severe. Steps 2
and 3 allow DM to provide its fuzzy preference of most crucial vulnerability to other
vulnerabilities (BO) and fuzzy preference of other vulnerabilities to the least crucial
vulnerability (OW) as outlined in Table 4.

We use the non-linear constrained programming problem given in Sect. 2.2 of
step 5 to discover the appropriate weights. On solving Eq. 1, the ideal weight value
is calculated.

As can be seen from Table 5, from group 1 the vulnerability CDR1 has the highest
weight of 0.223 followed by CDR5 with 0.207 and are therefore holding the rank Ist
and 2nd. From group 2 AUE2 has the highest weight 0.232 and is in rank Ist, AUE7
is ranked second with weights 0.178. Vulnerabilities CDR8 and AUE4 from both
the groups are having the least weight and are ranked at number 8th. From Table 4
it is shown that CDR1, CDR5 from group 1, and AUE2 and AUE7 vulnerabilities
from group 2 are extremely severe. Also, on checking the consistency our resulted
value comes out to be closer to zero which makes our data collection table matrix
consistent. Consequently, we utilize a two-way assessment to focus on the overall
impact of vulnerabilities in the decision-making process and evaluate the stakeholder
perspective.

48 V. Kumar et al.

Table 5 Weights of the
vulnerabilities calculated

Vulnerability category Notations Crisp weights Ranking

Improper code execution CDR1 0.223 I

CDR2 0.103 IV

CDR3 0.132 III

CDR4 0.092 VI

CDR5 0.207 II

CDR6 0.086 VII

CDR7 0.098 V

CDR8 0.065 VIII

Improper authentication AUE1 0.086 VI

AUE2 0.232 I

AUE3 0.111 V

AUE4 0.065 VIII

AUE5 0.078 VII

AUE6 0.118 IV

AUE7 0.178 II

AUE8 0.131 III

3.2 Two-Way Assessment Technique

The severity is computed using a two-way evaluation technique for each group of
vulnerabilities. The DM-rated vulnerabilities are based on specified weights. For
example, the weight of vulnerability CDR1 computed for two-way analysis is 22.375,
with 100% of respondents ranking it as extremely severe. To obtain the expected level
weight, we multiply (10 * 1) + (8 * 0) + (6 * 0) + (4 * 0) + (2 * 0) which is equal to
10. Also, multiplying weights calculated from FBWM the expected level weights i.e.,
22.375 * 10 = 223.750 gives us the individual criticality of SQL injection. Similarly,
we calculate the individual criticality and overall severity score of all the remaining
vulnerabilities belonging to both groups. The severity measure of vulnerabilities
related to code execution error listed in group 1 and authentication issues from group
2 are represented in Tables 6 and 7 respectively.

The total severity value of improper code error vulnerabilities (group 1) comes out
to be 796.889 while as the overall severity value of improper authentication vulnera-
bilities (group 2) comes out as 765.211. The individual severity of each vulnerability
in the descending order from group 1 are as CDR1 (223.750) > CDR5 (207.430)
> CDR3 (84.499) > CDR2 (70.667) > CDR6 (69.142) > CDR7 (66.769) > CDR4
(59.022) > CDR8 (15.610). Likewise, in group 2 the descending order of vulnerabil-
ities are as AUE2 (222.956) > AUE7 (192.370) > AUE8 (99.797) > AUE3(84.470)
> AUE1 (65.178) > AUE6 (56.715) > AUE5 (28.027) > AUE4 (15.698). The find-
ings derived from Tables 5 and 6 suggest that our overall severity value for code

A Hybrid Approach for Evaluation and Prioritization … 49

Table 6 Overall severity measure of group 1 vulnerabilities

Vulnerabilities FBWM
weights

Levels Expected
level
weight

Contribution
to total
expected
criticality
(Ui)

Highly
severe

Severe Medium
severe

Slightly
severe

Least
severe

10 8 6 4 2

CDR1 22.375 1.0 0.0 0.0 0.0 0.0 10 223.750

CDR2 10.392 0.0 0.4 0.6 0.0 0.0 6.8 70.667

CDR3 13.203 0.0 0.4 0.4 0.2 0.0 6.4 84.499

CDR4 9.222 0.0 0.4 0.4 0.2 0.0 6.4 59.022

CDR5 20.743 1.0 0.0 0.0 0.0 0.0 10 207.430

CDR6 8.643 0.2 0.4 0.4 0.0 0.2 8 69.142

CDR7 9.819 0.0 0.4 0.6 0.0 0.0 6.8 66.769

CDR8 6.504 0.0 0.0 0.0 0.2 0.8 2.4 15.610

Total severity 796.889

Table 7 Overall severity measure of group 2 vulnerabilities

Vulnerabilities FBWM
weights

Levels Expected
level
weight

Contribution
to total
expected
criticality
(Ui)

Highly
severe

Severe Medium
severe

Slightly
severe

Least
severe

10 8 6 4 2

AUE1 8.576 0.2 0.4 0.4 0.0 0.0 7.6 65.178

AUE2 23.225 0.8 0.2 0.0 0.0 0.0 9.6 222.956

AUE3 11.114 0.2 0.4 0.4 0.0 0.0 7.6 84.470

AUE4 6.541 0.0 0.0 0.0 0.2 0.8 2.4 15.698

AUE5 7.785 0.0 0.0 0.2 0.4 0.4 3.6 28.027

AUE6 11.816 0.0 0.0 0.4 0.6 0.0 4.8 56.715

AUE7 17.812 0.8 0.2 0.0 0.0 0.6 10.8 192.370

AUE8 13.131 0.2 0.4 0.4 0.0 0.0 7.6 99.797

Total severity 765.211

executed vulnerabilities from group 1 (Ui) = 796.889 is higher than the recom-
mended threshold (i.e., 600) and closer to the ideal best (i.e., 1000). It may thus be
argued that utmost efforts should be made to address these vulnerabilities first.

50 V. Kumar et al.

4 Conclusion

Vulnerabilities associated with coding errors and authentication errors pose a major
challenge to software security systems. Software testing must identify effective
measures to reduce the risks of software vulnerability to such attacks. In this context,
our study identifies the two primary vulnerability groups of code execution and
authentication errors. The novelty of the study lies in understanding the two groups
individually and further prioritizing these vulnerabilities based on their severity
levels. The fuzzy best-worst method is applied for both groups individually to prior-
itize software vulnerabilities. The fuzzy methodology is incorporated to include the
complexity and the subjectivity of decision-makers and to calculate the individual, as
well as overall utility of each vulnerability Two-way assessment technique, is used.
Our results show that the code executed vulnerabilities are having overall severity
more than authentication error vulnerabilities therefore, they need to be tackled first to
reduce the loss. Among all the 16 vulnerabilities that were selected for this study, SQL
Injection (CDR1), Code execution (CDR5), Information gain (AUE 2) and Improper
Authentication (AUE 7) vulnerabilities are highly severe vulnerabilities. While the
vulnerabilities like File inclusion (CDR4), HTTP Response splitting (CDR8), Bypass
Something (AUE 4), and Denial of service (AUE 5) are least severe so they can be
tackled later after finished with the highly severe ones. For validating the same a case
of an Indian software testing company situated in the National capital was used. The
future scope of the study will be to include the mathematical modeling in discovering
and patching of these software vulnerabilities as well as other MCDMs can also be
explored.

References

1. Bozorgi M, Saul LK, Savage S, Voelker GM (2010) Beyond heuristics: learning to classify
vulnerabilities and predict exploits. In: Proceedings of the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining, pp 105–114

2. Vallentin M (2008) Software vulnerabilities lecture notes
3. Kapur PK, Pham H, Gupta A, Jha PC (2011) Software reliability assessment with OR

applications. Springer, London, p 364
4. Wang JA, Wang H, Guo M, Xia M (2009) Security metrics for software systems. In: Proceedings

of the 47th annual southeast regional conference, pp 1–6
5. Cashell B, Jackson WD, Jickling M, Webel B (2004) The economic impact of cyber-attacks.

Congressional research service documents, vol 2, CRS RL32331, Washington DC
6. Kapur PK, Yadavali VS, Shrivastava AK (2015) A comparative study of vulnerability discovery

modeling and software reliability growth modeling. In: 2015 international conference on futur-
istic trends on computational analysis and knowledge management (ABLAZE). IEEE, pp
246–251

7. Pham NH, Nguyen TT, Nguyen HA, Nguyen TN (2010) Detection of recurring software vulner-
abilities. In: Proceedings of the IEEE/ACM international conference on automated software
engineering, pp 447–456

8. Shi L et al (2012) Developing an evaluation approach for software trustworthiness using
combination weights and TOPSIS. JSW 7(3):532–543

A Hybrid Approach for Evaluation and Prioritization … 51

9. Viega J, McGraw G (2005) Building secure software. Addition Wesley
10. Agrawal A, Khan RA (2009) A framework to detect and analyze software vulnerabilities:

development phase perspective. Int J Recent Trends Eng 2(2):82
11. Anjum M, Kapur PK, Agarwal V, Khatri SK (2020) Assessment of software vulnerabilities

using best-worst method and two-way analysis. Int J Math Eng Manag Sci 5(2):328–342
12. Fruhwirth C, Mannisto T (2009) Improving CVSS-based vulnerability prioritization and

response with context information. In: 2009 3rd international symposium on empirical software
engineering and measurement. IEEE, pp 535–544

13. Lin Z, Jiang X, Xu D, Mao B, Xie L (2007) AutoPaG: towards automated software patch
generation with source code root cause identification and repair. In: Proceedings of the 2nd
ACM symposium on information, computer and communications security, pp 329–340

14. Bhatt N, Anand A, Yadavalli VSS, Kumar V (2017) Modeling and characterizing software
vulnerabilities

15. Manzuik S, Pfeil K, Gold A (2006) Network security assessment: from vulnerability to patch.
Elsevier

16. Sibal R, Sharma R, Sabharwal S (2017) Prioritizing software vulnerability types using multi-
criteria decision-making techniques. Life Cycle Reliab Saf Eng 6(1):57–67

17. Jimenez W, Mammar A, Cavalli A (2009) Software vulnerabilities, prevention and detection
methods: a review1. In: Security in model-driven architecture, vol 215995, p 215995

18. Schiffman M, Cisco C (2005) A complete guide to the common vulnerability scoring system
(cvss). White paper. Identification of basic measurable security components in software
intensive systems

19. Kansal Y, Kapur PK, Kumar U, Kumar D (2017) User-dependent vulnerability discovery model
and its interdisciplinary nature. Life Cycle Reliab Saf Eng 6(1):23–29

20. Symantec Corporation [US] (2018) Internet security threat report. https://www.symantec.com/
content/dam/symantec/docs/reports/istr-23-executive-summary-en.pdf

21. Liu Q, Zhang Y (2011) VRSS: a new system for rating and scoring vulnerabilities. Comput
Commun 34(3):264–273

22. Sarfaraz A, Mukerjee P, Jenab K (2012) Using fuzzy analytical hierarchy process (AHP) to
evaluate web development platform. Manag Sci Lett 2(1):253–262

23. Tandon S, Kumar V, Singh VB (2021) Empirical evaluation of code smells in open-source
software (OSS) using Best Worst Method (BWM) and TOPSIS approach. Int J Qual Reliab
Manag

24. National Vulnerability Database, N. http://nvd.nist.gov/
25. Guo S, Zhao H (2017) Fuzzy best-worst multi-criteria decision-making method and its

applications. Knowl Based Syst 121:23–31
26. Kapur PK, Singh G, Sachdeva N, Tickoo A (2014) Measuring software testing efficiency

using two-way assessment technique. Paper presented at the Proceedings of 3rd international
conference on reliability, Infocom technologies and optimization. IEEE, pp 1–6

https://www.symantec.com/content/dam/symantec/docs/reports/istr-23-executive-summary-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-23-executive-summary-en.pdf
http://nvd.nist.gov/

Investigating Bad Smells with Feature
Selection and Machine Learning
Approaches

Aakanshi Gupta, Rashmi Gandhi, and Vijay Kumar

Abstract Code Smell is a piece of code that is designed and implemented poorly
and it gives adverse effect on the software quality and maintenance. Now, a day’s
machine learning based techniques have been extensively used towards code smell
research. The main objective of this research is to optimise the features of Android
code smells in terms of software metrics using feature selection technique based
on Correlation on 2896 instances of open-source projects which are extracted from
GitHub. Further, we have examined the performance measures like accuracy, preci-
sion, F-measure and execution time etc. with the reduced features data set of Android
code smells. This paper also discussed about implementation of correlation-based
feature selection algorithm to reduce the features of code smells. Then, the data
has been analyzed with 4 machine learning algorithms that are Logistic Regres-
sion, Stochastic Gradient Descent (SGD), Simple Logistic and Sequential minimal
optimization (SMO). The performance metrics for the above-mentioned machine
learning algorithms with and without performing the feature selection have been
compared. The computed outcome shows that the best accuracy and lesser execution
time for all 3 considered Android code smells have been achieved using Logistic
Regression algorithm. After feature selection the accuracy has increased up to 16%,
25% and 4.7% for NLMR, MIM and DTWC code smells respectively. Meanwhile,
the other performance measures have also been increased.

Keywords Feature selection · Android code smell · Logistic regression · GITHUB

A. Gupta · R. Gandhi (B)
Computer Science & Engineering, Amity School of Engineering and Technology, Amity
University Uttar Pradesh, Noida, India
e-mail: rashmibehal@gmail.com

V. Kumar
Department of Mathematics, Amity Institute of Applied Sciences, Amity University Uttar
Pradesh, Noida, India

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Kumar and H. Pham (eds.), Predictive Analytics in System Reliability,
Springer Series in Reliability Engineering,
https://doi.org/10.1007/978-3-031-05347-4_4

53

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05347-4_4&domain=pdf
mailto:rashmibehal@gmail.com
https://doi.org/10.1007/978-3-031-05347-4_4

54 A. Gupta et al.

1 Introduction

Recently, most explored market is the mobile application market and will remain in
future as well [1]. In comparison with other software products; the mobile application
software are the most enriched software products [1]. The Android operating system
usage is 76.23% and the spare world constitutes another operating system [2]. In
contrast to other operating systems, cost’s and GUI’s of Android operating systems is
not so rib off so easily accessible to the world of billions. Thus, Android application
market is spreading and is persistent. In the Android software systems; there are
code smells that have adverse effect on the software in the future perspective [2–
6]. Fowler [7] states that deeper problems in software indicated as code smells.
The poor implementation methods are being used by software developer during the
implementation phase [1, 8–11]. Specifically, the software developer will not avoid
source code from its main output in spite they affect the performance and maintenance
of the software product [1, 7, 8]. Even so, they can work if design rules are not in
technical debts and maintainability problems [3, 5, 7, 8].

Ward Cunningham [12, 13] states technical debt as disparity among the selected
software product and its design, which is successful and flawless in any modus
operation. This disparity set in time delivery emphasis instead of optimal code
consignment. Distinction in desktop application development and mobile applica-
tion is conveyed with different programming and development approaches [14, 15].
Due to refrained resources of mobile phones such as battery, memory, CPU mobile
applications are confining. Still, in comparison to desktop application; it is ruled with
proper deadlines [6, 16].

Other factors are also impacting on mobile application such as screen size, inter-
active GUI’s, and device fragmentation. Developers and researchers in practice
observed code smells acting as an immoral characteristic of maintainability affair
which diminishes the performance and resources of the Android mobile applications
[15, 17, 18]. Literature focused that amount of work done on manual detection is
more than automatic detection of code smells [19]. Specific 30 categories of code
smells impacting Android application performance are proposed in Reimann et al.
[6]. Still, there were many techniques that emphasized for examining the code smells
in Android applications [20, 21]. Though in literature code smells are examined
and explored footprint of code smells on energy consumption [21], resource usage
(battery, memory, CPU) [1]. Software quality is always inspected while exploring the
Android applications and multi-objective approach is tried to identify code smells.

The feature selection is one of the machine learning tool which is used to analyze
the performance. The identification of most relevant features with maintaining the
characteristic of data for prediction and analysis is feature selection. Hall [22] stated
that with concept of correlation in data, it is useful to eliminate enquired data.
Feature Selection on the basis of correlation bound the evaluation with a mean-
ingful measure and searching strategy. It is a process to present the advantages of
learning methods without considering the size of data. There are two different feature
selection techniques popular known as wrapper and filter.

Investigating Bad Smells with Feature Selection and Machine … 55

Code smells can work with supervised filter technique as it is two-class data. In
this work, it is applied due to its fast execution time [7] as well as the benefits of
wrapper technique. To determine the responsible features in code smell identification
correlation based feature selection is employed. Identification results of 4 classifiers
are examined in the context of 3 code smells. There description is given below:

• Data Transmission Without Compressing (DTWC): Evaluates the worth of indi-
vidual predictive features follow when original file is not compressed over network
transmission.

• No Low Memory Resolver (NLMR): Evaluates the worth of individual predictive
features follow when outer class is referred by non-static inner class.

• Member Ignoring Method (MIM): Evaluates the worth of individual predictive
features follow when only static methods accessing internal properties of the class.

Definitely, this work presents some specific Android code smells completely.
Besides considering complete code smells with all its features, some lights up the
performance. It includes three prime steps, all are individually marked with tools
named as Understand, aDoctor and Weka. Initially, Data collection is primarily done
of 10 android applications. With the support of aDoctor, java-based source codes
are analyzed for exposure of specific code smells in android applications. To bring
about static metrics Understand tool is used. To select features in considered code
smells correlation feature selection is applied. Weka is imposed by using distinct
classification performance metrics on complete or selected features of code smells.
Hence, the subsequent sections constitute work to explore the android code smells
with all and selected features.

Applying feature selection algorithm and selecting the appropriate features of
code smells.

– Measuring performance on complete and selected features using classification
algorithms.

– Specifying the best classification algorithm for exploring the Android smells.
– The results are validated with 10-folds cross validation technique.
– The following Performances: Accuracy, Kappa Statistics, Precision, Recall etc.

are computed and analyzed.
– Logistic Regression algorithm computed the best accuracy for the considered

Android code smells.

The objective of this paper is the Android specific smell identification and detec-
tion in a hi-tech era are to maintain mobile phones with efficacy and efficiency. So, to
achieve this, elimination of irrelevant code with maintaining the structure of the data
is done. Among existing Feature selection methods, correlation is taken into account
for code smell detection. In this paper, the work explores correlation based feature
selection on three distinct types of purely dedicated Android detailed code smells.
Therefore, very less number of Android code smell type detection in comparison to
original ones.

The paper is organized as follows: Sect. 2 illustrates Motivation and description
of all the concerned terminology referred in current topic. Section 3 presents the

56 A. Gupta et al.

empirical study with data creation and data processing in detailed way. Section 4
describes the various experiments analysis for used in result discussion. Section 5
conclude the work for current and future reference.

2 Motivation and Related Work

The immense usage of mobile applications is raising the size of code smells and
degrading the performance measures. As every feature of the code smells has different
weightage in computation, so, rather than computing complete data of code smells,
some features can be selected to enhance the performance metrics. The motivation is
to select the efficient and correlated features to make a good prediction model. Feature
selection from the code smells is being performed using correlation statistics. This
will select features which are linearly dependent and impacting with same centre to
decide the code smell.

2.1 Feature Selection

The presence of irrelevant features in the data set may hamper the performance of
classification algorithms [23], while the predicting features may enhance the effec-
tiveness of the prediction with more effect and reliability [24]. Di Nucci et al. [25]
addressed that the existence of irrelevant features in original data set is a prime
issue. Their analysis investigates that most of the independent features are irrelevant,
which may cause to over fitting in classification performance. Literature stated that
many feature selection algorithm available for different applications [26]. The data
distribution metrics represent smelly and non-smelly codes using the Goal Ques-
tion Metrics [27]. Their experiments described to examine stacking heterogeneous
ensemble model for detection of code smells in context performance metrices like
f-measure, precision, recall, kappa statistics and classification accuracy.

2.2 Involvement of Android Smells

Conventionally, code smells symbolised that it is not perfect in software design and
require a lot of attention to maintain the software quality and maintenance cost.
Systems software may also impact on presence and effectiveness of code smells. In
Android system software, code smells ruled out when the software design was not
optimal. It happens when developers focus on deadlines rather than optimal software
design [1, 14]. Thus, code smells do not impact exactly on the functioning of an
application instead impact on poor performance. This may lead to major constraint
in the maintenance phase of application [20]. Earlier, Fowler introduced 22 code

Investigating Bad Smells with Feature Selection and Machine … 57

smells but these were not considered for Android applications. Now a days, research
is conducting on the studies of improving the poor performance measures in Android
applications. Till now, Reimann et al. [6] presented an archive of 30 Android related
code smells. Software clone detection survey researched for redundant code in soft-
ware system [14]. Gupta et al. [28] presented a systematic literature review for code
smells. Tufano et al. [29] reviewed the occurrence of bad smells in the existing soft-
ware’s. They also conformed durability of the bad smells over the revision of 200
projects (open source) from distinct software systems and explore the time of injec-
tion of code smells by programmers, besides the reasons and conditions responsible
for their occurrence. Gupta et al. [1] deployed a prediction model with the concept
of different entropies: Renyi, Shannon and Tsallis and Habchi et al. [30] study show
that during the advancement who should be pointed for the emergence of Android
code smells.

2.3 Empiricism Tools and Techniques

A famous tool aDoctor has been designed to observe 15 android related code smells
with 98% recall rate as well as precision rate for master code of 18 distinct android
applications [4]. Literature study explored the effect of 3 code smells on latest
smartphones with the resource consumption like memory and CPU by involving
refactoring techniques [16]. Besides, earlier study observed with different quality
metrics which may also referred for approximation of the quality of master code
with different existing tools like Paprika [31] and Infusion [6]. Dustin Lim [6] tested
conventional smell identification tool for android application’s code smell. Hecht
et al. [31] proposed automatic identification approach to detect 4 Android-related
antipatterns and 3 object-oriented from digital smartphone applications to trace the
software quality of smartphone applications during their advancements. Kessentini
et al. [20] introduced the identification rules of code smells in android applications
applying a multi-objective programming.

3 Empirical Study

With the provision of feature selection algorithms, the identification of android related
code smells datasets are formalized intentionally. The data sets must be relatively
legitimate in order to obtain the necessary identification features. However, once
the features are identified they will remotely enhance the performance of software
product and diminishes the over hanged software maintenance cost. Figure 1 depicts
an overview of the proposed work in the research work.

Initially, the range of Android applications may be considered for the appro-
priate extraction of steady data sets. For experimental analysis, the freely available
java source code on GitHub is taken. With the help of aDoctor tool android related

58 A. Gupta et al.

Fig. 1 Overview of the proposed methodology

code smells are extracted and a metrics and performance met rices [4]. Further, Co
relation feature selection method is applied to find the co relation between features
for better prediction. Later it is figured out that these both data sets can be eval-
uated using different classification algorithms. The sub sections are followed as
Sect. 3.1 describe data creation and Sect. 3.2 elaborate android related smell detec-
tion approach. Section 4.1 presents the correlation feature selection in association
with code smells. Section 3.3 evaluates appropriate classification algorithm.

The proposed method worked on extracted data from GitHub [29]. Initially, smelly
code is segregated from dataset with the help of detection tool. Further the processed
the smelly code are précised with the software metrics. On the basis of co relation
feature selection algorithm data is reduced. Finally, the original dataset and reduced
data are validated with machine learning classifiers to achieve the desired outcome.

3.1 Data Sets

In this section, Authors describe how data collection and selection can be done from
open-source platform, GitHub. These freely available open source codes were also
used in earlier work for code smells investigation. With this data set distinct Java based
android related application data sets are analyzed to select features for performance
metrices. The criteria for selection task for android related code smells and pointing
best features precisely. GitHub contains large number of varieties of software codes
and is based on application. Feature selection is performed with the help of aDoctor
tool to select android related code smells. The Scitools Understand and aDoctor
provides selection of code smells with best performance measures. For each code
smell there are around 1000 code listed. Each code smell is given a binary judgement
whether the code smell is android or not for a particular code. A static metric in the
available data set is represented using 20 metrics. The feature includes correlation
function popular in feature selection to select some of the highly performed metrics.

Investigating Bad Smells with Feature Selection and Machine … 59

3.2 Data Processing

Data pre-processing is the most valuable data mining techniques for the preparation of
data for the machine learning algorithms. It focuses to reduce the amount of data size
with different existing techniques like relationship between the data, normalization,
handling missing values etc. As this cloud era, makes as available plenty of multiple
data for the particular task. So, either programmer/data scientist can go with same
but performance is not achieved. So, to grab the performance they must need to focus
on the size of data.

Data reduction or dimension reduction acting as data reconstruction approach to
reduce the data set size. To consider, only the relevant and non-redundant data the
many techniques like linearity, input type, neighbourhood, inverse transform etc. are
available [32]. Data pre-processing helps in removing unwanted effects from the data
set so that meaningful information is being used for efficient modelling. It is mainly
dependent on dealing artefacts.

3.3 Performance Metrics

The strength of the model can be evaluated using the performance metrics such as
accuracy, precision, recall, and F1 score. The accuracy may be defined as the ratio
of the number of correctly predicted images to the total number of predictions.

accuracy = (Number of correct predictions)/(Total number of predictions) (1)

Another performance metrics are precision metrics which may be expressed as the
proportion of correctly predicted positive results (TP) to the total number of positive
results (TP + FP) predicted.

Precision = TP/(TP + FP) (2)

The Recall metrics may be expressed as the proportion of a number of true positive
results (TP) to the number of all samples (TP + FN).

Recall = TP/(TP + FN) (3)

where TP-True Positive, FP-False Positive, TN-True Negative, FN-False Negative.
The F1 score is used to calculate the model performance and it is found out taking
the weighted harmonic mean between the precision and recall.

Flscore = 2 × (Recall × Precision)/(Recall + Precision). (4)

60 A. Gupta et al.

4 Result and Discussions

4.1 Correlation Feature Selection in Code Smells

To confirm the strong correlation among Android related code smells and feature
selection analysis on entire data set is performed. Correlation is a statistical evalu-
ation method to analyse the relationship in two features. There are two correlation
coefficients Spear man Rho [33] and Kendall tau [22] are prominent to find the
stability of relationships between the features of non-normalize data. The correla-
tion value near to 0 indicates no relationship among the features. For this reason,
authors do not report co relation result table. Despite the literature results are not
entirely consistent, they indicate some android code smells appear more annoying
than others. In result analysis the tables summarize the approximate confirmation
of these finding which may fruitful to developer, who was designing when imple-
menting the code. Among the distinct available techniques feature subset selection
is used in this paper to represent data set to reduced volume w.r.t. maintaining the
integrity of original data set (Tables 1, 2 and 3).

r = n
(Σ

ab
) −

(Σ
a
)(Σ

b
)

[
n

Σ
a2 −

(Σ
a
)2][

n
Σ

b2 −
(Σ

b
)2] (5)

Here, n = Number of values
a = sum of corresponding values in a column
b = sum of corresponding values in b column
ab = sum of product of a and b values

Table 1 NLMR code smell with statistical measures on logistic, SGD, simple logistic, and SMO
classifiers

NLMR Time (s) Accuracy Precision Recall F measure Kappa

Logistic

Original 3.73 68.0939 0.695 0.681 0.688 0.0884

Reduced 1.96 79.005 0.745 0.790 0.718 0.0751

SGD

Original 1.38 78.5912 0.729 0.786 0.720 0.0794

Reduced 2.13 78.8674 0.738 0.789 0.717 0.0723

Simple logistics

Original 3.09 78.5912 0.728 0.786 0.718 0.0731

Reduced 3.21 77.6243 0.665 0.776 0.0695 0.0003

SMO

Original 1.25 78.8614 0.739 0.789 0.723 0.0913

Reduced 2.02 78.9293 0.733 0.787 0.717 0.0694

Investigating Bad Smells with Feature Selection and Machine … 61

Table 2 DTWC code smell with statistical measures on logistic, SGD, simple logistic, and SMO
classifiers

DTWC Time (s) Accuracy Precision Recall F measure Kappa

Logistic

Original 0.397 84.9448 0.827 0.849 0.836 0.2162

Reduced 0.6 88.9503 0.875 0.890 0.879 0.4154

SGD

Original 1.61 87.8453 0.861 0.878 0.834 0.1302

Reduced 1.28 87.7072 0.856 0.877 0.831 0.1138

Simple logistic

Original 2.34 87.7072 0.848 0.877 0.842 0.1861

Reduced 2.68 87.8453 0.851 0.878 0.847 0.2113

SMO

Original 1.31 87.5691 0.845 0.876 0.834 0.1354

Reduced 1.31 88.5359 0.873 0.885 0.877 0.4157

Table 3 MIM code smell with statistical measures on logistic, SGD, simple logistic, and SMO
classifiers

MIM Time (s) Accuracy Precision Recall F measure Kappa

Logistic

Original 5.608 61.326 0.615 0.613 0.612 0.2275

Reduced 0.198 76.7956 0.776 0.768 0.766 0.5349

SGD

Original 0.329 75.9669 0.768 0.760 0.757 0.5183

Reduced 0.07 77.6243 0.778 0.776 0.776 0.552

Simple logistic

Original 3.8 76.3852 0.781 0.775 0.773 0.5489

Reduced 0.29 77.4862 0.771 0.764 0.762 0.5267

SMO

Original 0.82 74.7238 0.755 0.747 0.745 0.4934

Reduced 0.3 76.9337 0.775 0.769 0.768 0.5379

a2 is the sum of squares of a column values
b2 is the sum of squares of b column values.
The data set experimented with 4 machine learning algorithms: Logistic Regres-

sion, Stochastic Gradient Descent (SGD), Simple Logistic and Sequential minimal
optimization (SMO) and compared the performance metrics with and without
performing the feature selection. The computed outcome shows that the best accu-
racy for the Android smell DTWC, NLMR and MIM have been achieved using
the Logistic Regression classifier. After feature selection; the accuracy of Logistic

62 A. Gupta et al.

Fig. 2 Analysis of original and reduced NLMR code smells in time, accuracy, precision, recall, F
measure and kappa statistics

Fig. 3 Analysis of original and reduced DTWC code smells in time, accuracy, precision, recall, F
measure and kappa statistics

Regression model has increased upto 16% for NLMR code smell, 25.23% for MIM
code smell and 4.7% for DTWC code smell (Figs. 2, 3 and 4).

5 Conclusion

Based on analytical information of code smells with feature selection techniques; we
have investigated and evaluated the extent of code smell detection process with the
reduced feature data set. Secondly, the evaluation metrics like accuracy, precision,

Investigating Bad Smells with Feature Selection and Machine … 63

Fig. 4 Analysis of original and reduced MIM code smells in time, accuracy, precision, recall, F
measure and kappa statistics

f-measure and kappa statistics are compared by using 4 classifiers between without
reducing and with reducing the features of Android code smells.

The results obtained in this research reflects the potential work to improve the
detection procedure of code smells with reduced features in terms of software metrics.
These outcomes can provide a guidance in improving the overall software quality
and software maintenance of the Android software systems. Furthermore, the various
code smells of different languages can be considered with other techniques of feature
selection can be analysed and compared in the future.

References

1. Palomba F, Di Nucci D, Panichella A, Zaidman A, De Lucia A (2019) On the impact of code
smells on the energy consumption of mobile applications. Inf Softw Technol 105:43–55

2. Ozkaya I, Kruchten P, Nord RL, Brown N (2011) Managing technical debt in software devel-
opment: report on the 2nd international workshop on managing technical debt, held at ICSE
2011. ACM SIGSOFT Softw Eng Notes 36(5):33–35

3. Gupta A, Suri B, Bhat V (2019) Android smells detection using ML algorithms with static
code metrics. In: International conference on recent developments in science, engineering and
technology. Springer, pp 64–79

64 A. Gupta et al.

4. Gupta A, Suri B, Kumar V, Misra S, Blazauskas T, Damasevicius R (2018) Software code smell
prediction model using Shannon, Rényi and Tsallis entropy. Entropy 20(5):372

5. Husien HK, Harun MF, Lichter H (2017) Towards a severity and activity based assessment of
code smells. Procedia Comput Sci 116:460–467

6. Reimann J, Brylski M, Aßmann U (2014) A tool-supported quality smell catalogue for
android developers. In: Proceedings of the conference Modellierung 2014 in the Workshop
Modellbasierte und modellgetriebene Softwaremodernisierung–MMSM, vol 2014

7. Habchi S, Moha N, Rouvoy R (2019) The rise of android code smells: who is to blame? In:
2019 IEEE/ACM 16th international conference on mining software repositories (MSR). IEEE,
pp 445–456

8. Lim D (2018) Detecting code smells in android applications
9. Tandon S, Kumar V, Singh VB (2021) Empirical evaluation of code smells in open-source

software (OSS) using best worst method (BWM) and TOPSIS approach. Int J Qual Reliab
Manag. https://doi.org/10.1108/IJQRM-02-2021-0045

10. Gupta A, Suri B, Kumar V, Jain P (2021) Extracting rules for vulnerabilities detection with
static metrics using machine learning. Int J Syst Assur Eng Manag 12(1):65–76

11. Kumar V, Ram M (eds) (2021) Predictive analytics: modeling and optimization, 1st edn. CRC
Press. https://doi.org/10.1201/9781003083177

12. Hecht G, Rouvoy R, Moha N, Duchien L (2015) Detecting antipatterns in android apps. In:
2015 2nd ACM international conference on mobile software engineering and systems. IEEE,
pp 148–149

13. Kumar NA, Krishna K, Manjula R (2016) Challenges and best practices in mobile application
development. Imp J Interdiscip Res 2(12):1607–1611

14. Parikh G (1982) The guide to software maintenance. Winthrop, Cambridge, MA
15. Zhang M, Hall, T, Baddoo N. Code bad smells: a review of current knowledge. J Softw Maint

Evolut: Res Pract 23(3):179–011
16. Hecht G, Benomar O, Rouvoy R, Moha N, Duchien L (2015) Tracking the software quality

of android applications along their evolution (t). In: 2015 30th IEEE/ACM international
conference on automated software engineering (ASE). IEEE, pp 236–247

17. Roy CK, Cordy JR (2007) A survey on software clone detection research. Queen’s School
Comput TR 541(115):64–68

18. Saifan AA, Al-Rabadi A (2017) Evaluating maintainability of android applications. In: 2017
8th international conference on information technology (ICIT). IEEE, pp 518–523

19. Fowler M, Beck K, Brant J, Opdyke W, Roberts D (1999) Refactoring: improving the design
of existing code. Addison-Wesley Professional, Berkeley, CA

20. Kessentini M, Ouni A (2017) Detecting android smells using multi-objective genetic program-
ming. In: 2017 IEEE/ACM 4th international conference on mobile software engineering and
systems (MOBILESoft). IEEE, pp 122–132

21. Tufano M, Palomba F, Bavota G, Oliveto R, Di Penta M, De Lucia A, Poshyvanyk D (2015)
When and why your code starts to smell bad. In: 2015 IEEE/ACM 37th IEEE international
conference on software engineering, vol 1. IEEE, pp 403–414

22. Alazba A, Aljamaan H (2021) Code smell detection using feature selection and stacking
ensemble: an empirical investigation. Inf Softw Technol 106648

23. John GH, Kohavi R, Pfleger K (1994) Irrelevant features and the subset selection problem. In:
Machine learning proceedings. Elsevier, pp 121–129

24. Aldehim G, Wang W (2017) Determining appropriate approaches for using data in feature
selection. Int J Mach Learn Cybern 8(3):915–928

25. Di Nucci D, Palomba F, Tamburri DA, Serebrenik A, De Lucia A (2018) Detecting code
smells using machine learning techniques: are we there yet? In: 2018 IEEE 25th international
conference on software analysis, evolution and reengineering (SANER). IEEE, pp 612–621

26. Gandhi R, Ghose U, Thakur HK (2021) Revisiting feature ranking methods using information-
centric and evolutionary approaches: survey. Int J Sens Wirel Commun Control 11. https://doi.
org/10.2174/2210327911666210204142857

https://doi.org/10.1108/IJQRM-02-2021-0045
https://doi.org/10.1201/9781003083177
https://doi.org/10.2174/2210327911666210204142857
https://doi.org/10.2174/2210327911666210204142857

Investigating Bad Smells with Feature Selection and Machine … 65

27. Basili VR, Rombach HD (1988) The tame project: towards improvement-oriented software
environments. IEEE Trans Softw Eng 14(6):758–773

28. Gupta A, Suri B, Misra S (2017) A systematic literature review: code bad smells in Java source
code. In: International conference on computational science and its applications. Springer,
Cham, pp 665–682

29. Ganesh S, Sharma T, Suryanarayana G (2013) Towards a principle-based classification of
structural design smells. J Object Technol 12(2):1–1

30. Palomba F, Di Nucci D, Panichella A, Zaidman A, De Lucia A (2017) Lightweight detection of
android-specific code smells: the adoctor project. In: 2017 IEEE 24th international conference
on software analysis, evolution and reengineering (SANER). IEEE, pp 487–491

31. Oliveira J, Viggiato M, Santos MF, Figueiredo E, Marques-Neto H (2018) An empirical study
on the impact of android code smells on resource usage. In: SEKE, pp 314–313

32. Nonato LG, Aupetit M (2018) Multidimensional projection for visual analytics: linking
techniques with distortions, tasks, and layout enrichment. IEEE Trans Vis Comput Gr
25(8):2650–2673

33. Gupta H, Kumar L, Neti LBM (2019) An empirical framework for code smell prediction using
extreme learning machine. In: 2019 9th Annual information technology, electromechanical
engineering and microelectronics conference (IEMECON). IEEE, pp 189–195

SDE Based SRGM Considering Irregular
Fluctuation in Fault Introduction Rate

Deepika, Adarsh Anand, Shinji Inoue, and Prashant Johri

Abstract Software debugging is complicated and can be considered as stochastic in
nature. During fault removal, debuggers at-times introduce new faults. Thereafter, the
fault introduction process can be said to be non-linear in nature. In this study, we have
proposed a software reliability growth model considering the irregular fluctuation of
fault introduction rate over time with non-constant fault detection rate. We assume
that fault introduction changes non-linearly over time and the fault introduction rate
fluctuates irregularly. Ito’s process is used for solving the differential equation to
find the analytical solution. The model is fitted on two real world data sets from
two open-source project: Mozilla and Gnome. The experimental findings show that
present model exhibit estimation result and having strong prediction skill.

Keywords Brownian motion · Irregular fluctuation · Ito’s integral · Fault
removal · Statistical analytical software (SAS) · Stochastic differential equation
(SDE) · Wiener process

1 Introduction

Software failure is considered as not only financial loss but also it is a major repu-
tational loss for the company since customers are always in need and want to take
a failure free product for their use. The percentage of software reliability is actually
identified by the project managers with the remnant faults during software testing

Deepika · A. Anand (B)
Department of Operational Research, Faculty of Mathematical Sciences, University of Delhi,
Delhi 110007, India
e-mail: adarsh.anand86@gmail.com

S. Inoue
Kansai University, Osaka, Japan
e-mail: ino@kansai-u.ac.jp

P. Johri
School of Computing Science & Engineering, Galgotias University, Gautam Budh Nagar, Greater
Noida, UP, India

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Kumar and H. Pham (eds.), Predictive Analytics in System Reliability,
Springer Series in Reliability Engineering,
https://doi.org/10.1007/978-3-031-05347-4_5

67

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05347-4_5&domain=pdf
mailto:adarsh.anand86@gmail.com
mailto:ino@kansai-u.ac.jp
https://doi.org/10.1007/978-3-031-05347-4_5

68 Deepika et al.

process. This is actually a complex process as it involves some inadequate resource
information apart from previously recorded fault data during the testing of the soft-
ware. Hence, we can say the fault detection of software is an uncertain process.
Development of model to check the software reliability in an actual situation can
help to study its practical use and efficiency during the testing time.

Non-Homogenous Poisson Process (NHPP) based Software Reliability Growth
Models (SRGMs) have been the major thrust area of research in the field of Software
Reliability Engineering. Over years, various aspects of reliability growth modelling
have been studied in great detail. Although, most models consider a deterministic
behaviour for the fault detection process but latest research has also considered
randomness in this rate. Randomness in the detection rate arises due to changes in
debugging process caused by changes in testing effort expenditure, testing efficiency,
etc. In large sized software prolonged testing takes place where numerous faults are
detected before software release. This extensive testing leaves very few latent faults
in the software in comparison to the original fault content. Such a situation can be
modelled well using a stochastic process [13, 14]. The uncertainty or randomness in
the testing efficiency, efforts, team skills, strategies, etc. in such a stochastic process
is described using a noise factor in the debugging process.

2 Related Work

In the past years, a plenty of NHPP based software reliability models have been devel-
oped by the researchers. They generally assume that the software testing is a perfect
debugging process in which no new faults are introduced during fault removal. For
example, the models recognized by Jelinski and Moranda [8] and Goel and Okomuto
(G–O) [6] assumed that the fault detection rate is constant and the fault intensity is
proportional to the number of remnant faults. By contrast, the delayed S-shaped
[29] and the inflection S-shaped models [18] assume that the fault detection rate
is an increasing variable. However, in realistic testing, fault detection and removal
are complicated and can be affected by many factors, such as testing resources,
testing tools, and tester’s skill. Therefore, the assumption of imperfect debugging is
reasonable in the development of a software reliability model. Yamada et al. [30] and
Pham and Zhang [19] proposed different imperfect software debugging models that
consider the function of the fault content following exponential distribution. Kapur
et al. [13, 14] assumed that the function of fault content is a linear function of the
mean function and the fault detection or removal distributes differently. Moreover,
they presented numerous imperfect software debugging models. Given that the func-
tion of the fault content is a linear function of time, some researchers established
related imperfect software debugging models [7, 30]. Although these models can be
applied effectively to specific testing environments, but they cannot be adapted to the
other testing situations due to the unrealistic assumption that the rate of fault intro-
duction is constant. In practice, software debugging is complicated and stochastic
[3, 25, 32]. During fault removal, debuggers can introduce new faults and Deepika

SDE Based SRGM Considering Irregular Fluctuation … 69

et al. [4] have developed software reliability models with testing domain concept.
It was Yamada et al. [28] who first introduced the exponential based SDE based
SRGM. According to them fault detection rate is linear along with noise factor. On
the contrary, Yamada et al. confirmed from their study using the probability distri-
butions that fault detection rate varied depending on applied software reliability
measures during the process. Similar studywas done by Shyur et al. [21] related to
stochasticity with imperfect debugging and change point. Lee et al. [17] described
the stochastic differential equation to illustrate per-fault detection rate that advo-
cates random fluctuation instead of a non-homogeneous poisson process. In 2006,
Tamura and Yamada [26] have extended their work and developed a flexible irreg-
ular fluctuation model considering distribution development environment. They also
discussed an optimum release time considering the reusable rate of software compo-
nents. Tamura and Yamada [27] implemented the stochastic based reliability model
to assess the active state of the open-source project. They considered the failure inten-
sity as a function of time, and the bug tracking system that report the software faults
account an irregular state. In addition, Kapur et al. [11] have worked on determina-
tion of logistic error detection rate in the modelling. The same team also studied [10]
on a unified approach for SRGMs related to SDE. In this similar time period Singh
et al. [24] inculcated the impact of randomness in the mathematical construction in
this domain. After that some researchers proposed the allocate the resources in an
optimal manner to minimize the cost during testing phase using FDP and FCP under
dynamic environment [16]. Recently, Singh et al. [22] modelled a multi up-gradation
framework that deploys the concept of randomness with learning effect and impact
of faults severity. Later, Anand et al. [1] proposed fault severity based modeling.
Then they proposed multi release Stochastic models with the concept of convolution
([23], Anand et al. 2018). In 2016, Kumar et al. assumed that there is a time lag
between fault detection and fault correction. Thus, removal of a fault is performed
after a fault is detected. In addition, detection process and correction process are
taken to be independent simultaneous activities with different budgetary constraints.
A structured optimal policy based on optimal control theory is proposed for soft-
ware managers to optimize the allocation of the limited resources with the reliability
criteria. Some authors develop a vulnerability discovery model that accumulate the
vulnerabilities due to the influence of previously discovered vulnerabilities. Further,
they evaluate the proportion of previously discovered vulnerabilities along with the
fraction additional vulnerabilities detected [2]. In 2019, Shakshi et al., developed
SDE based innovation diffusion model. Recently, Deepika et al., came up with the
concept of entropy prediction related to stochasticity [5]. Moreover, it can be state
that fault introduction is a non-linear changing process where rate of change of fault
introduction varies irregularly over time. More recently work done by Kumar et al.
[15] in which they talked that hybrid approach identifies the need of the relative
importance of criteria for a given application without which inter-criterion compar-
ison cannot be accomplished. It requires a set of model selection criteria along with a
set of SRGMs and their level of criteria for optimal selection. It successfully displays
the result in terms of a merit value which is used to rank the SRGMs.

70 Deepika et al.

In the current chapter, a new model with imperfect software debugging considering
fault introduction to be a non-linear procedure and the rate of fault introduction
to be a factor that fluctuates irregularly over time during software debugging has
been proposed. In this sense, the proposed model is in line with the actual software
debugging situation. The experimental results also confirm that our model has good
fitting capability and significantly better predictive performance than other imperfect
software debugging models.

2.1 Basic Assumptions

A reasonable assumption is necessary in building a good software reliability model.
Thus, the models proposed in this chapter has basic assumptions as follows:

1. The fault detection is based on NHPP.
2. Software is subjected to failure at random times as result of remaining faults in

the software.
3. Faults are introduced in to software at random times affected by remaining faults

in software debugging.
4. Fault introduction rate fluctuate irregularly over time. Change in total fault

content in small span is non-deterministic because of stochastic nature.
5. Each time a fault is detected, it is removed immediately and new faults can then

be introduced.
6. The function of the fault content is non-linear and time dependent.

2.2 Notations

m(t) Expected number of faults removed by time ‘t’.
β Learning parameter.
α Error generation rate.
a Initial fault content.
b Hazard rate function for fault removal.
σ Fluctuation rate in SDE.
a1 Total number of faults eventually introduced due to fluctuation.
γ (t) Standard Gaussian white noise.
a(t) Time dependent stochastic fault content function.

3 Model Development

Kapur and Garg Model [9] is created on the postulation that some added errors are
also removed by debugging team while eliminating some error without any failure.

SDE Based SRGM Considering Irregular Fluctuation … 71

The faults which are recognized on a failure are called as independent faults while
the faults removed in addition are named as dependent faults [13, 14].

f (t)
1 − F(t)

= p + qF(t) (1)

where f (t) is the probability density function of detection; F(t) is a cumulative
distribution function i.e., F(t) = m(t)

/
a; p symbolizes the fault detection rate for

independent faults and q denotes the fault detection rate for dependent faults which is
considered constants for this formulation. Additionally, let a denote the fault content.
Then, Kapur and Garg Model [9] (fault removal phenomenon) that represents the
cumulative number of faults which is attained by the following differential equation
(DE):

dm(t)
dt

=
(
p + q

m(t)
a

)
(a − m(t)) (2)

where m(t) defines the cumulative number of faults by time t , and (a−m(t)) denotes
the residual number of faults.

With the initial condition m(0) = 0, The above DE (Eq. (2)) is further solved, to
accomplish the mean value function i.e.,

m(t) = a

(
1 − e−(p+q)t

1 + (
q
/
p
)
e−(p+q)t

)

(3)

Equation (3) shows an S-Shaped form over the entire software lifespan.
According to Kapur et al. [13, 14] the alternative DE can be expressed as follow:

dm(t)
dt

= b(t)(a(t) − m(t)) (4)

here b(t) signifies the time-dependent detection rate and can be expressed as:

b(t) = b

1 + βe−bt
(5)

In Eq. (5), b means the detection parameter and β denotes the learning parameter.
In accumulation, Kapur et al. [12] presumed that fault content of a software develops
exponentially.

a(t) = a(t) = aeαt α > 0 (6)

72 Deepika et al.

where a is the original fault content and α denotes the error generation rate. Thus,
with the seed value m(0) = 0, Eq. (4) becomes:

m(t) = a
(

b

α + b

)[
eαt − e−bt

1 + βe−bt

]
(7)

where F(t) =
(
eαt−e−bt

1+βe−bt

)
, Considering, (i) b = p+ q, (ii) β = q p , and (iii) α = 0, i.e.

fault content is constant. We can conclude that the K-G model alternatively comes
from the Kapur et al. [12] model.

4 Proposed Methodology

The fault removal rate equations discussed in Eqs. (2) and (4) interprets in terms of
certainty. Thus, their behaviour can be forecast in deterministic form. Due to the non-
deterministic behaviour of various factors such as testing effort expenditure, testing
efficiency and skill, testing method and strategy, testing goes in uncertain way.

Hence, the fault content of software is described in probabilistic terms and based
on above mentioned assumption (Eq. 2), the differential equation can be built as:

dm(t)
dt

= b(t)[Ea(t) − m(t)] (8)

m(t) denotes the cumulative number of faults in the software by the time t , b(t)
denotes the hazard rate function for fault removal; a(t) represents the time dependent
stochastic fault content. So, hazard rate function is described as follow:

b(t) = f (t)
1 − F(t)

(9)

Again, the detection rate b(t) following logistic rate can be advocated

b(t) = b

1 + βe−bt
(10)

as prearranged by Kapur et al. [12]. Here b indicates the detection or measure param-
eter and β signifies the learning parameter. Increase value of b signifies the decrease
the value of β and hence make the possibility of rapid fault removal phenomenon.
Thus, (Eq. (10) in Eq. (8)), the instantaneous fault removal rate equation converts to:

dm(t)
dt

= b

1 + βe−bt
(E(a(t) − m(t)) (11)

SDE Based SRGM Considering Irregular Fluctuation … 73

Equation (11) portrays the proposed fault removal rate equation with variable
fault content. As per sixth postulation, the DE representing total fault content can be
stated using Eq. (12):

da(t)
dt

= α(t)[(a + a1) − a(t)] (12)

where α(t) denotes time dependent function in respect of fault content. a1 is the upper
bound of increase in the fault content. In this proposed model, the behaviour of fault
removal is framed using Brownian motion process during the software development
life cycle. And fault content a(t) is a random variable following the stochastic process.

If, h(t), probability density function and H(t), cumulative distribution function
of fault content by time t , then the mathematical expression for fault content using
the postulation (4) is:

α(t) =
h(t)

1 − H (t)
+ σγ (t) (13)

h(t)
/

(1 − H (t)) time dependent rate of fault content,
σ constant representing the scale of irregular fluctuation, and
γ (t) standard gaussian white noise that is stochastic in nature.
On substituting Eq. (13) in Eq. (12):

da(t)
dt

=
(

h(t)
1 − H (t)

+ σγ (t)
)

(a + a1 − a(t)) (14)

Equation (14) symbolizes the SDE, a modified of ordinary differential equations
that are parameterized by Weiner processes. Itô stochastic calculus is applied to
formulate the equation.

da(t) =
(

h(t)
1 − H (t)

−
σ 2

2

)
(a + a1 − a(t))dt

+σ (a + a1 − a(t))dW (t)

⎫
⎪⎬

⎪⎭
(15)

In this Eq. (15), W (t) symbolizes a Brownian motion or wiener process and it
hold the following axioms:

(i) Continuous process with W (0) = 0
(ii) Have independent increments ∀t > 0
(iii) Have Gaussian increments, i.e., W (t + dt) − W (t) ∼ N (0, dt); where

N (0, dt) is a normal distribution centred at zero.

Now, if x is a random variable then, fwt (x) = 1√
2π t e

− x2

2t .
Using the seed value, a(0) = 0 Eq. (15) can be combined using the Itô formula

to obtain the cumulative fault content function:

74 Deepika et al.

a(t) = a + a1(1 − (1 − H (t))e−σ W (t)
(16)

From Eq. (16), it can be derived that a(0) = a when t = 0 and a(∞) = a + a1,
when t → ∞. That is, the fault content at entry time is a and eventual fault content
over its life cycle will be a + a1. Considering expectation on both sides, Eq. (16) is
assumed as:

E[a(t)] = a + a1
(
(1 − (1 − H (t))e

σ 2 t
2

)
(17)

Equation (17) belong the uncertainty and random fluctuations in fault introduc-
tion rate. It was designed using two types of distribution functions to represent two
different behaviour of fault introduction function in the system.

5 General Framework

Fault introduction function following Erlang-k distribution function can be expressed
as:

H (t) ∼ Erlang(k, α) i.e. H(t) = 1 −
k−1∑

n=0

(αt)n

n! e−αt (18)

It is a continuous distribution function of the summation of k and identically
distributed random variables. Two parameters associated with Erlang distribution
function are shape (k) and scale (α) parameter.

For k = 1 and k = 2 in Eq. (18):

Case I: In this case, Erlang distribution becomes exponential distribution function.
i.e. H (t) ∼ exp(α)

It defines a continuous process where increments occur independently at a constant
rate.

H (t) = (1 − e−αt) (19)

Here, α is a scalar parameter signifying the introduction rate of fault content.
Thus, using Eq. (19), the expected value of fault content is:

E[a(t)] = a + a1
(
(1 − e−αt+ σ 2 t

2

)
(20)

Case II: If shape parameter is taken as k = 2, the distribution function for the fault
content can be written as:

SDE Based SRGM Considering Irregular Fluctuation … 75

H (t) ∼ Erlang(2, α)

H (t) = (1 − (1 + αt)e−αt) (21)

Thus, the expected value becomes:

E[a(t)] = a + a1(1 − (1 + αt)e−αt+ σ 2 t
2) (22)

Equation (22) symbolizes the S-shaped pattern of fault content function.
Using Eqs. (20) and (22), the DE (11) representing fault removal rate function

under t = 0, N(t) = 0 to attain the mean value function.
In Table 1, two diverse stochastic software reliability growth models are reported

using the proposed modeling framework.
In Table 1, model-1 depicts the cumulative fault removal with stochastic exponen-

tial nature. Besides, model-2 signifies the fault removal phenomenon with S-shaped
pattern. The most important characteristic of a stochastic model is converging to its
deterministic nature. So, when α and σ equals to zero, that is, the fault content held
deterministic and constant.

Then the proposed SDE based models will reduce to the following logistic fault
removal model. As stated in Eq. (15):

m(t) = a
(

1 − e−bt

1 + βe−bt

)
(23)

In Eq. (23), if b = p + q and β = q
/
p then model convert to widely-known

Kapur and Garg [9] fault removal phenomenon model.

6 Data Analysis and Comparison Criteria

We have carried out the data analysis of real software data sets. The parameters
of the models have been estimated using SAS(SAS)/ETS user’s guide 9.1 [20]. The
model is fitted on two real world data sets from two open-source project: Mozilla and
Gnome. In the total epoch, first data comprises of 53 in which 1497 faults have been
detected and second data has 17 weeks in which 354 faults has been detected [31]. The
experimental findings show that present model exhibit estimation result and having
strong prediction skill. The parameter estimation and comparison criteria result for
data set of the models (Model-I (M-I) and Model-II (M-II)) under consideration can
be viewed through Tables 2 and 3 respectively.

76 Deepika et al.

Ta
bl
e
1

Pr
op

os
ed
 s
to
ch
as
tic

 m
od

el
s

SD
E
 b
as
ed
 m

od
el
s

Fa
ul
t c
on
te
nt
 f
un
ct
io
n

M
ea
n
fa
ilu

re
 f
un

ct
io
n

M
od
el
 1

E
[a(

t)
]=

 a
+
a1

(
(1
 −

 e
−α

t+
σ
 2
t

2

)
m

(t
) =

1

1+
β
e−

bt
 ⎛

⎜ ⎜

⎝
 (a

 +
 a
1)

(1
−

e−
bt

)

+
2b

a1

−σ
 2

+
2α

 −
 2
b

(
e−

α
t+

σ
 2
t

2
−

e−
bt

)

⎞

⎟ ⎟

⎠

M
od
el
 2

E
[a(

t)
]=

 a
+
a1

(1
 −

 (1
 +

 α
t)

e−
α
t+

σ
 2
t

2
)

m
(t

) =

1
1+

β
e−

bt
 ⎛

⎜

⎜ ⎜

⎜ ⎜

⎜

⎝
 (a

 +
 a
1)

(1
−

e−
bt

)

+
2b

a1

−σ
 2

+
2α

 −
 2
b

⎛

⎜ ⎜

⎝

(
1

+
α
t
−

2α

σ
 2

−
2α

 +
 2
b

)
e−

α
t+

σ
 2
t

2

−(
1

−
2α

σ
 2

−
2α

 +
 2
b

)
e−

bt

⎞

⎟ ⎟

⎠
 ⎞

⎟

⎟ ⎟

⎟ ⎟ ⎟

⎠

SDE Based SRGM Considering Irregular Fluctuation … 77

Table 2 Parameters estimation

Parameter DS-I DS-II

Models M-I M-II M-I M-II

a 1904.112 1769.354 600 468

β 2.393689 1.968125 4.034 2.685231

b 0.008146 0.006859 3.803E-6 0.000032

α 0.041684 0.036854 0.056976 0.001253

σ 0.258942 0.317386 0.337555 0.1675832

a1 3.950815 4.321563 500 437

Table 3 Comparison criterion of proposed models

Parameter DS-I DS-II

Models M-I M-II Kapur and Garg
[9]

M-I M-II Kapur and Garg
[9]

SSE 2471.2 2089.6 4167.7 458.7 401.3 474.5

MSE 51.4842 45.2316 83.354 32.7618 46.7219 63.15

Root MSE 7.1752 8.1374 9.1299 5.7238 4.3653 8.777

R-square 0.9998 0.9887 0.99 0.9979 0.9956 0.99

Adj. R-square 0.9998 0.9789 0.99 0.9976 0.9896 0.99

7 Model Validation

In this chapter, widely known model Kapur and Garg [9] is considered as benchmark.
This model is considered due to its comprehensive applicability and flexibility. Five
statistical criteria sum of squared error (SSE), Mean squared error (MSE), Root mean
squared error (RMSE), the coefficient of determination (R2) and adjusted R-square
are evaluated for model validation. The fitness measures MSE measures the average
of squares of error between the observed and predictive number of faults, SSE is the
deviation of predicted faults from the observed faults, RMSE measures how much
error there in the predicted faults and the observed faults, R-square measures the
percentage of entire discrepancy and Adjusted R2 is a modified version of R2 that
is adjusted based on the independent terms that affects the dependent variables. If
m(t) is the observed faults value, �

m(t) is the estimated value, T is the number of data
points and n is the number of model parameters, then.

Mean Squared error, MSE =
(

T∑

t=1

(
m(t) − �

m(t)
)2

)/
T .

Sum of squared error, SSE =
T∑

t=1

(
m(t) − �

m(t)
)2
.

Root mean squared error, RM SE =
√(

T∑

t=1

(
m(t) − �

m(t)
)2

)/
T .

78 Deepika et al.

Coefficient of determination, R2 = 1 −

T∑

t=1
(m(t)−�

m(t))2

T∑

t=1
(m(t)−m(t))2

.

Adjusted R-square, R
2 = 1 − (1 − R2)(T − 1)

/
(T − n − 1).

where
�

m(t) signifies the mean value of predicted faults.
As per the results stated in Table 3, model 1and model 2 exhibited better results

with respect to Kapur and Garg [9] model for both the data sets. All five performance
measures MSE, SSE, RMSE, R-square and Adjusted R-Square displayed that the
Model 1 and Model 2 have a better fitting capability. The pictographic (Fig. 1 for
Mozilla (DS1) and Fig. 2 for Gnome (DS2)) representation indicates that the proposed
models fit the real fault removal curves excellently. Figures 1 and 2 show the fitting
and forecasting cases between the actual and estimated fault data. These data indicate
that our model can effectively fit historical fault data and precisely forecast the
number of software faults in the test.

Fig. 1 Goodness of fit curve
for DS-1

0
200
400
600
800

1000
1200
1400
1600

0 10 20 30 40 50 60

C
um

ul
at

iv
e

N
um

be
r

of
 F

au
lts

Time

Actual
Model I
Model II
Kapur & Garg 1992

Fig. 2 Goodness of fit curve
for DS-2

0
50

100
150
200
250
300
350
400

0 5 10 15 20

C
um

ul
at

iv
e

N
um

be
r

of
 F

au
lts

Time

Actual

Model I

Model II

Kapur & Garg 1992

SDE Based SRGM Considering Irregular Fluctuation … 79

8 Conclusion

This chapter advocates new SDE based models that can characterize the fault removal
phenomenon. Further, different type of distributions has been inculcated in the fault
removal process. We have reviewed standard distributions such as Exponential and
Erlang 2-stage for fault removal behaviour. The proposed mathematical modeling is
implemented on the open-source software data of Mozilla and Gnome. The proposed
models have produced reliable parameter estimates and goodness of fit curve. The
findings show that the proposed models have stronger prediction skills than the
benchmark model. In future, we can broaden the methodology to capture the more
realistic scenario such as imperfect debugging, testing effort etc.to yield a generalized
framework. Further, the more use of Itô’s process in fault introduction rate apart from
the fault detection rate can also be inculcated with stochastic differential equation.
The mean value function with both rate (introduction and detection) scenario will
formulated and hence it will be interesting to note the behavior. Also, we wish to
study two-dimensional aspect of proposed methodology i.e. the role of testing efforts
and time, in estimating the final count of bugs present in the software system.

References

1. Anand A, Singh O, Das S (2015) Fault severity based multi up-gradation modeling considering
testing and operational profile. Int J Comput Appl 124(4):9–15

2. Bhatt N, Anand A, Yadavalli VSS, Kumar V (2017) Modeling and characterizing software
vulnerabilities. Int J Math Eng Manag Sci 2(4):288–299

3. Bregon A, Alonso-González CJ, Pulido B (2014) Integration of simulation and state observers
for online fault detection of nonlinear continuous systems. IEEE Trans Syst Man Cybern Syst
44(12):1553–1568

4. Deepika OS, Anand A, Singh JN (2017) Testing domain dependent software reliability growth
models. Int J Math Eng Manag Sci 2(3):140–149

5. Deepika SO, Anand A, Singh J (2021) SDE based unified scheme for developing entropy
prediction models for OSS. Int J Math Eng Manag Sci 6(1):207–222

6. Goel AL, Okumoto K (1979) Time-dependent error-detection rate model for software reliability
and other performance measures. IEEE Trans Reliab 28(3):206–211

7. Pham H, Nordmann L, Zhang X (1999) A general imperfect software debugging model with
S-shaped fault detection rate. IEEE Trans Reliab R-48(2):169–175

8. Jelinski Z, Moranda P (1972) Software reliability research. Statistical computer performance
evaluation. Academic Press, pp 465–484

9. Kapur PK, Garg RB (1992) A software reliability growth model for an error-removal
phenomenon. Softw Eng J 7(4):291–294

10. Kapur PK, Anand S, Yadav K, Singh J (2012) A unified scheme for developing software
reliability growth models using stochastic differential equations. Int J Oper Res 15(1):48–63

11. Kapur PK, Anand S, Yamada S, Yadavalli VS (2009) Stochastic differential equation-based
flexible software reliability growth model. Math Probl Eng

12. Kapur PK, Bardhan AK, Jha PC (2004) An alternative formulation of innovation diffusion
model and its extension. Math Inf Theory 17–23

13. Kapur PK, Pham H, Anand S, Yadav K (2011a) A unified approach for developing software
reliability growth models in the presence of imperfect debugging and error generation. IEEE
Trans Reliab 60(1):331–340

80 Deepika et al.

14. Kapur PK, Pham H, Gupta A, Jha PC (2011b) Software reliability assessment with OR
applications. Springer, London, p 364

15. Kumar V, Saxena P, Garg H (2021) Selection of optimal software reliability growth models
using an integrated entropy–technique for order preference by similarity to an ideal solution
(TOPSIS) approach. Math Methods Appl Sci. https://doi.org/10.1002/mma.7445

16. Kumar V, Khatri SK, Dua H, Sharma M, Mathur P (2014) An assessment of testing cost with
effort-dependent FDP and FCP under learning effect: a genetic algorithm approach. Int J Reliab
Qual Saf Eng 21(06):1450027

17. Lee CH, Kim YT, Park DH (2004) S-shaped software reliability growth models derived from
stochastic differential equations. IIE Trans 36(12):1193–1199

18. Ohba M (1984) Inflection S-shaped software reliability growth model. Stochastic models in
reliability theory. Springer, Berlin, Heidelberg, pp 144–162

19. Pham H, Zhang X (1997) An NHPP software reliability model and its comparison. Int J Reliab
Qual Saf Eng 4(03):269–282

20. SAS Institute Inc. (2004) SAS/ETS user’s guide version 9.1. SAS Institute, Cary, NC
21. Shyur HJ (2003) A stochastic software reliability model with imperfect-debugging and change-

point. J Syst Softw 66(2):135–141
22. Singh J, Singh O, Kapur PK (2015) Multi up-gradation software reliability growth model with

learning effect and severity of faults using SDE. Int J Syst Assur Eng Manag 6(1):18–25
23. Singh O, Kapur PK, Anand A (2011) A stochastic formulation of successive software releases

with faults severity. In: 2011 IEEE international conference on industrial engineering and
engineering management. IEEE, pp 136–140

24. Singh O, Kapur PK, Anand A, Singh J (2009) Stochastic differential equation based modeling
for multiple generations of software. In: Proceedings of fourth international conference on
quality, reliability and infocom technology (ICQRIT), trends and future directions. Narosa
Publications, pp 122–131

25. Singh P, Pal NR, Verma S, Vyas OP (2016) Fuzzy rule-based approach for software fault
prediction. IEEE Trans Syst Man Cybern Syst 47(5):826–837

26. Tamura Y, Yamada S (2006) A flexible stochastic differential equation model in distributed
development environment. Eur J Oper Res 168(1):143–152

27. Tamura Y, Yamada S (2009) Optimisation analysis for reliability assessment based on stochastic
differential equation modelling for open source software. Int J Syst Sci 40(4):429–438

28. Yamada S, Kimura M, Tanaka H, Osaki S (1994) Software reliability measurement and assess-
ment with stochastic differential equations. IEICE Trans Fundam Electron Commun Comput
Sci 77(1):109–116

29. Yamada S, Ohba M, Osaki S (1983) S-shaped reliability growth modeling for software error
detection. IEEE Trans Reliab 32(5):475–484

30. Yamada S, Tokuno K, Osaki S (1992) Imperfect debugging models with fault introduction rate
for software reliability assessment. Int J Syst Sci 23(12):2241–2252

31. Yang J, Liu Y, Xie M, Zhao M (2016) Modeling and analysis of reliability of multi-release
open source software incorporating both fault detection and correction processes. J Syst Softw
115:102–110

32. Yin X, Li Z (2015) Reliable decentralized fault prognosis of discrete-event systems. IEEE
Trans Syst Man Cybern Syst 46(11):1598–1603

https://doi.org/10.1002/mma.7445

Ant Colony Optimization Algorithm
with Three Types of Pheromones
for the Component Assignment Problem
in Linear Consecutive-k-out-of-n:F
Systems

Taishin Nakamura, Isshin Homma, and Hisashi Yamamoto

Abstract The ant colony optimization (ACO) algorithm is a meta-heuristic opti-
mization method used to solve challenging optimization problems. Notably, the
pheromone model of ACO impacts algorithmic performance. Hence, this paper
presents an ACO algorithm with three types of pheromones for solving the component
assignment problem of the linear consecutive-k-out-of-n:F system. This configura-
tion can be used to represent a real system in which consecutive failed components
cause system failures. Moreover, the component assignment problem seeks a compo-
nent arrangement in which system reliability is maximized. The proposed algorithm is
incorporated with either adjacence-, position-, or k-interval-wise pheromones that are
compared using a numerical experiment. The results indicate that the ACO algorithm
with the position-wise pheromone performs well within the scope of the experiment.

1 Introduction

The ant colony optimization (ACO) algorithm is a meta-heuristic optimization
method that is often employed to solve challenging optimization problems [4, 6]. The
ACO algorithm was inspired by observing the social behavior of ants as they search
for food. Specifically, ants utilize pheromones as an indirect communication channel
to indicate the shortest paths between the nest and food sources. This behavioral
characteristic of real ants enables us to algorithmically solve several combinato-
rial optimization problems. The first ACO algorithm was implemented to solve the
traveling salesperson problem (i.e., “Ant System”).

T. Nakamura (B)
Tokai University, 1-4-1 Kitakaname, Hiratsuka, Japan
e-mail: nakamura@tsc.u-tokai.ac.jp

I. Homma · H. Yamamoto
Tokyo Metropolitan University, 6-6 Asahigaoka, Hino, Japan
e-mail: honma-issin@ed.tmu.ac.jp

H. Yamamoto
e-mail: yamamoto@tmu.ac.jp

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Kumar and H. Pham (eds.), Predictive Analytics in System Reliability,
Springer Series in Reliability Engineering,
https://doi.org/10.1007/978-3-031-05347-4_6

81

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05347-4_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05347-4_6&domain=pdf
mailto:nakamura@tsc.u-tokai.ac.jp
mailto:nakamura@tsc.u-tokai.ac.jp
mailto:honma-issin@ed.tmu.ac.jp
mailto:honma-issin@ed.tmu.ac.jp
mailto:yamamoto@tmu.ac.jp
mailto:yamamoto@tmu.ac.jp
https://doi.org/10.1007/978-3-031-05347-4protect LY1	extunderscore 6
https://doi.org/10.1007/978-3-031-05347-4_6

82 T. Nakamura et al.

Fig. 1 Lin/Con/k/n:F system

Fig. 2 Cir/Con/k/n:F system

The ACO algorithm has also been applied to reliability optimization problems,
e.g., the component assignment problem of the consecutive-k-out-of-n:F system,
which can represent a real system in which consecutive failed components cause
system failures. This system can be classified into two types according to the arrange-
ments of components: a linear consecutive-k-out-of-n:F system (i.e., Lin/Con/k/n:F
system) and a circular consecutive-k-out-of-n:F system (i.e., Cir/Con/k/n:F sys-
tem). The Lin/Con/k/n:F system comprises of n components arranged in a line
and fails if there exist k consecutive failed components, as shown in Fig. 1. The
Cir/Con/k/n:F system comprises of n components arranged in a circle, as shown
in Fig. 2. The applications of these systems are displayed as follows:

Example 1 Production Monitoring System (Zhao et al. [22]) Consider a produc-
tion monitoring system equipped with n monitors. The monitors, which are equally
spaced along the production line, can observe k units. When a single monitor fails, the
entire production line can be monitored by adjacent monitors that are still in oper-
ation. However, if k monitors break down consecutively, a dead zone will appear
in the monitoring system. As a result, failure occurs in the production monitoring
system. Therefore, such a system can be expressed as a Lin/Con/k/n:F system.

Example 2 Road Lights along a Highway (Dafnis et al. [5], Peng et al. [13])
For safety reasons, a highway is illuminated at night by lights installed at regular

Ant Colony Optimization Algorithm with Three Types of Pheromones … 83

intervals. If k consecutive road lights are not lit, there will be a particular area where
there is not enough light in a particular area. As a result, traffic may be affected. This
scenario can be represented as a Lin/Con/k/n:F system.

The component assignment problem (CAP) is a classic reliability engineering
optimization problem. Solving it requires a component arrangement in which system
reliability is maximized (i.e., the optimal arrangement). Here, reliability is defined as
the probability that the system and its components will perform the required function.
Obtaining an optimal arrangement is expected to reduce the occurrence of system
failures and ensure that the system operates with stability and longevity. The CAP
has been proven to belong to the NP-hard class [10], and, in recent decades, several
heuristic and meta-heuristic algorithms have been proposed to solve the CAP of the
Lin and Cir/Con/k/n:F systems.

Shingyochi et al. [16] proposed a genetic algorithm for this purpose. This algo-
rithm preferentially assigns reliable components to every k-th position in the system,
because system failure cannot occur if there exist working components at every k-th
position. Furthermore, Shingyochi et al. [17] proposed standard and improved simu-
lated annealing algorithms. The improved algorithm allows us to reduce the solution
space by effectively removing the equivalent arrangements.

In recent years, many researchers have utilized importance measures to efficiently
find a pseudo-optimal arrangement for CAP. Birnbaum importance (B-importance),
first proposed by Birnbaum [1], is a key index for measuring the influence of com-
ponent reliability on system reliability. Thus, the B-importance is able to identify the
most or least important component in a system; hence, it can provide insight into a
system and its components. For this reason, it has been applied to various algorithms
to enhance their performance. Si et al. [18] presented a summary of methods for
reliability optimization that utilize importance measures.

Using the B-importance, Zuo and Kuo [24] proposed two types of ZK-type heuris-
tics (i.e., ZKA and ZKB), and Lin and Kuo [11] presented LKA heuristics. Yao et
al. [20] outlined the B-importance-based two-stage approach (BITA) for seeking the
optimal arrangement. The BITA includes LKA, LKB, ZKB, and ZKD.

To design efficient metaheuristics, two contradictory criteria should be consid-
ered: diversification and intensification. Several studies have used genetic algorithms
(GAs) for diversification and B-importance for intensification. Yao et al. [21] built
a B-importance-based genetic local search algorithm (BIGLS). A gradual reduction
of the solution space can be achieved using a local search with ZK-type heuristics;
consequently, the BIGLS can find the pseudo-optimal arrangement efficiently. Subse-
quently, Cai et al. [2] developed a B-importance-based GA (BIGA), which integrates
the advantages of BITA and GAs to obtain the pseudo-optimal arrangement of the
Lin/Con/k/n:F system. Numerical experiments showed that BIGA outperformed
BIGLS for large Lin/Con/k/n:F systems. Accordingly, BIGA appears to currently
be one of the most efficient metaheuristics for solving CAP.

Cai et al. [3] first proposed an ACO algorithm for solving the CAP of the
Cir/Con/k/n:F system. Subsequently, Wang et al. [19] developed an ACO algo-

84 T. Nakamura et al.

rithm for the Lin/Con/k/n:F system, which incorporates B-importance. Wang et
al. [19] showed that the algorithm outperformed the BIGLS algorithm in seeking
optimal arrangements of large Lin/Con/k/n:F systems.

In ACO, the pheromone trail creates a probability distribution over the search
space, which determines which part of the search space is effectively selected [7]. In
the CAP example, the pheromone determines the probability of a component being
assigned. Cai et al. [3] and Wang et al. [19] determined the probability of component
assignment based on the information of the adjacent component. A pheromone that
determines probabilities based on the adjacent component is called an adjacence-
wise pheromone in this study. In Cir/Con/k/n:F systems, only the relative order
of the components is important because they are arranged in a circle. For example,
arrangements (1, 2, 3, 4, 5) and (3, 4, 5, 1, 2) have the same system reliability, which
is the objective function of CAP. On the other hand, in Lin/Con/k/n:F systems,
(1, 2, 3, 4, 5) and (3, 4, 5, 1, 2) represent two different solutions, each with different
reliabilities. Therefore, the positions of components may be more informative in
seeking the optimal arrangement of the Lin/Con/k/n:F system. A pheromone that
determines probabilities based on the positions of components is called a position-
wise pheromone in this study. Shingyochi et al. [16] also suggested that assigning
reliable components at k intervals may increase system reliability. Thus, we also
consider a pheromone that determines the probabilities based on the components at
k intervals, which is called a k-interval-wise pheromone in this study.

If we select the optimal pheromone model, it is expected that we will obtain a
high-performance ACO algorithm. However, identifying the best pheromone model
is challenging. Thus, the study develops an ACO algorithm with three types of
pheromones for the purpose of solving the CAP of the Lin/Con/k/n:F system.
A numerical experiment is then performed to investigate the efficacy of the three dif-
ferent types of pheromones. Additionally, the proposed ACO algorithm is compared
to BIGA, which is currently the most popular and efficient metaheuristic for solving
CAP.

The remainder of this paper is organized as follows: A mathematical description
of the CAP of the Lin/Con/k/n:F system is provided in Sect. 2. In Sect. 3, detailed
descriptions of the proposed ACO algorithm and its constituent parts are presented.
Section 4 presents the results of a numerical experiment and evaluates the efficacy
of the proposed ACO algorithms. Finally, the conclusion is presented in Sect. 5.

2 CAP of the Lin/Con/ k/n:F System

2.1 Definition of the CAP

Herein, the CAP of the Lin/Con/k/n:F system is defined. This paper assumes that

• each component of the system can have only two states: working or failed,
• the component reliabilities are given,

Ant Colony Optimization Algorithm with Three Types of Pheromones … 85

• all components are mutually statistically independent, and
• the components are functionally interchangeable.

We next define notation. Recall that the Lin/Con/k/n:F system comprises of
n components arranged in a line and fails if the system has k consecutive failed
components. For j = 1, 2, . . . , n, let j be the index of the components. The reliability
of component j is denoted by p j . The vector, p (= (p1, p2, . . . , pn)), represents
an n-vector with component reliabilities as its entries. Note that, without loss of
generality, we take p1 ≤ p2 ≤ · · · ≤ pn to be true, meaning that p j represents the
reliability of the j th least reliable component. Let a = 1, 2, . . . , n be the index of
component positions and π(a) be the index of the component assigned to position a.
Here, position a represents the a-th position from the left side in an arrangement.
Additionally, an arrangement of n components in which component π(a) to position a
for a = 1, 2, . . . , n is expressed as the n vector π = (π(1), π(2), . . . , π(n)). Let
RL (k, n, p; π) denote the reliability of the Lin/Con/k/n:F system which has p
under the arrangement of π.

The CAP aims to determine the arrangements of components so that the reliability
of the Lin/Con/k/n:F system can be maximized. Thus, we formulate the CAP of
the Lin/Con/k/n:F system as follows:

π∗ = arg max
π∈S

{RL (k, n, p; π)} , (1)

where S represents the set of all arrangements. In this study, we call the arrangement
π∗ that satisfies Eq. (1) an “optimal arrangement.”

2.2 B-Importance

In this subsection, we present the B-importance, which was first introduced by Birn-
baum [1] to measure the relative importance of a component to the overall system
reliability. Herein, the definition of the B-importance of a Lin/Con/k/n:F system is
presented, although it is worth noting that the B-importance can be applied to any
coherent system.

Definition 1 (Birnbaum [1]) The B-importance of a component assigned to posi-
tion a in a Lin/Con/k/n:F system having component reliabilities p and component
arrangement π, is denoted by IB (a; p, π) and defined as

IB (a; p, π) = RL (k, n, (1a, p); π) − RL (k, n, (0a, p);π), (2)

where (·i , p) = (p1, p2, . . . , pi−1, ·, pi+1, . . . , pn).

The B-importance can increase the exploration ability of algorithms for solving the
CAP.

86 T. Nakamura et al.

2.3 Necessary Condition

This subsection describes a necessary condition that needs to be met by the optimal
arrangement. Kuo et al. [9] provided this necessary condition for the CAP of the
Lin/Con/k/n:F system.

Theorem 1 (Kuo et al. [9]) Given the reliability of n components with p1 ≤ p2 ≤
· · · ≤ pn, the optimal arrangement of the Lin/Con/k/n:F systems with n ≥ 2k sat-
isfies the following condition:

π∗(1) < π∗(2) < · · · < π∗(k), (3)

π∗(n − k + 1) > π∗(n − k + 2) > · · · > π∗(n). (4)

As aforementioned, the components are numbered in ascending order of their reliabil-
ities. Thus, Eq. (3) states that components from positions 1 to k are in nondecreasing
order of the reliabilities of components.

Let us consider the arrangement (2, 1, 4, 6, 5, 3) of the Lin/Con/3/6:F system.
This arrangement does not satisfy the necessary condition in Eq. (3), meaning that it
will not be optimal. This is because there exists an arrangement with higher reliability
(e.g., the arrangement (1, 2, 4, 6, 5, 3)), which can be obtained by swapping compo-
nents π(1) and π(2). Therefore, the necessary condition can be used to reduce the
solution space. As a result, the computational load to find the optimal arrangement
can be reduced.

2.3.1 Remarks

This study considers the CAP for Lin/Con/k/n:F systems with n ≥ 2k. According
to Kuo et al. [9], if n < 2k, then the (2k − n) most reliable components should
be assigned between positions (n − k + 1) and k in any order. Subsequently, the
remaining components are optimally assigned to the Lin/Con/(n − k)/2(n − k):F
systems; as a result, the optimal arrangement is obtained. In summary, the CAP in
the case of n < 2k can be reduced to that of the n ≥ 2k case.

3 Proposal of the ACO Algorithm for Solving the CAP

This section presents the ACO algorithm for solving the CAP of the Lin/Con/k/n:F
system. The existing ACO algorithm used the adjacence-wise pheromone to deter-
mine the probability of a component to be assigned. However, this pheromone does
not account for the positions of components and those positioned at k intervals.
Therefore, we build the ACO algorithm with not only adjacence-wise pheromones
but also position-wise and k-interval-wise pheromones.

Ant Colony Optimization Algorithm with Three Types of Pheromones … 87

The notation used in the algorithm is as follows:

j : the index of components (j = 1, 2, . . . , n)
a : the index of positions (a = 1, 2, . . . , n), where position a indicates the a-th posi-

tion from the left side in each arrangement
m : the number of ants
h : the index of ants (h = 1, 2, . . . , m)
Imax : the maximum number of iterations (0 ≤ Imax)
t : the index of iterations (t = 1, 2, . . . , Imax)
τ ad j π(a−1), j : the value of the adjacence-wise pheromone, which indicates whether component j

should be assigned based on component π(a − 1) (i.e., the component in the right
adjacent position a)

τ pos a, j : the value of the position-wise pheromone, which indicates whether component j
should be assigned based on position a

τ k π(a−k), j : the value of the k-interval-wise pheromone, which indicates whether component j
should be assigned based on component π(a − k) (i.e., the component at the posi-
tion (k − 1) components away from position a)

τ0 : the initial value of the pheromone
ph (x, y) : the probability that ant h at node x visits node y
Jh : the set of nodes that have not been visited by ant h
LSstart : the number of iterations to start the local search
ρ : a parameter of pheromone evaporation (0 < ρ < 1)
Rh : the system reliability corresponding to an arrangement that ant h constructs
Rmax : the system reliability corresponding to an arrangement that an elite ant constructs

The pseudocode of the proposed ACO algorithm is presented as follows:

Algorithm 1 Pseudocode of the proposed ACO algorithm
1: Initialize the pheromone values
2: Generate the initial solutions using BITA [20].
3: t ← 1
4: while termination condition is not met (t < Imax) do
5: Construct the solutions using pheromones as per Eq. (5), (6), or (7)
6: Apply the local search based on ZKD [20]
7: Evaluate the solutions
8: Update the best solution
9: Update the pheromone values according to Eq. (8)
10: t ← t + 1
11: end while
12: return Best solution

In the following, each step is explained along with an overview of the underlying
theory.

88 T. Nakamura et al.

3.1 Initializing the Pheromone Values and Generating
the Initial Solutions

The algorithm begins by initializing pheromone values to a constant value. The initial
values of pheromone trails are set to be τ0 per Cai et al. [3].

Subsequently, the initial solutions are generated using the BITA proposed by Yao
et al. [20]. The BITA procedure is as follows [10]:

STEP 1 : Generate two initial arrangements by using both the LKA and LKB heuristics
STEP 2 : If the instance being solved contains only low-reliability components, (p j ≤

0.2 ∀ j), choose ZKB; otherwise, choose ZKD. ZKB or ZKD is applied separately
to the arrangements generated at STEP 1; then, the better of the two arrangements
is regarded as the solution

3.2 Constructing the Solutions

Herein, we describe the solution construction, which is the main part of the proposed
algorithm. In this algorithm, m ants construct m arrangements of the Lin/Con/k/n:F
systems. Specifically, the components corresponding to the nodes visited by an ant
are assigned one by one, starting from position 1. The n components are assigned
in the order of positions 1, 2, . . . , n. It should be noted that, in this algorithm, the
method for determining which component is assigned depends on positions 1 to k,
positions k + 1 to n − k, and positions n − k + 1 to n.

3.2.1 Assigning Components into Positions 1 to k

Herein, we explain the assignment of the components to positions 1 to k. It is assumed
that, at iteration (t − 1), an ant will have constructed an arrangement denoted by

π(t−1) = (π(t−1) (1), π(t−1) (2), . . . , π(t−1) (n)).

Let
π(t) = (π(t) (1), π(t) (2), . . . , π(t) (n))

be an arrangement constructed by the ant at iteration t . At iteration t , k components
assigned to positions n − k + 1 to n of π(t−1) are assigned to positions 1 to k of π(t) by
reversing their positions. That is, for a = 1, 2, . . . , k, π(t) (a) = π(t−1) (n − a + 1). It
is worth noting that, if components π(n − k + 1), . . . , π(n) assigned at iteration (t −
1) satisfy Eq. (4), then components π(1), . . . , π(k) assigned at iteration t satisfy
Eq. (3). Consequently, the arrangements that satisfy Eq. (3) can be easily generated.

Ant Colony Optimization Algorithm with Three Types of Pheromones … 89

3.2.2 Assigning Components into Positions k + 1 to n − k

Herein, we explain the assignment of the components to positions k + 1 to n − k.
The m ants construct arrangements probabilistically by iteratively adding compo-
nents to partial arrangements based on the pheromone type. There are three types of
pheromones available in the proposed ACO algorithm.

(1) Adjacence-wise Pheromone [3]

Let τ ad j π(a−1), j be the value of the adjacence-wise pheromone, which indicates whether
component j should be assigned based on component π(a − 1). This pheromone
was defined by Cai et al. [3]. Using τ ad j π(a−1), j , the probability that component j is
assigned to position a based on ant h, denoted by ph(π(a − 1), j)), is computed as

ph(π(a − 1), j) =

⎧
⎨

⎩

τ ad j π(a−1), j
Σ

s∈Jh
τ ad j π(a−1),s

if j ∈ Jh,

0 otherwise,
(5)

where Jh is the set of nodes that have not been visited by ant h and is implicitly
defined by the solution building process performed by ant h.

(2) Position-wise Pheromone

Let τ pos a, j be the value of the position-wise pheromone, which indicates whether
component j should be assigned based on position a. In this case, the positions of
components are considered to be informative when seeking the optimal arrangement
of the Lin/Con/k/n:F system. Thus, using τ pos a, j , the probability that component j
is assigned to position a based on ant h, denoted by ph(a, j), is given as

ph(a, j) =

⎧
⎨

⎩

τ pos a, j Σ
s∈Jh

τ pos a,s
if j ∈ Jh,

0 otherwise.
(6)

(3) k-interval-wise Pheromone

Let τ k π(a−k), j be the value of the k-interval-wise pheromone, which indicates whether
component j should be assigned based on component π(a − k). A Lin/Con/k/n:F
system fails if it has k consecutive failed components; thus, assigning reliable com-
ponents at k intervals can avoid system failure. Using τ k π(a−k), j , the probability that
component j is assigned to position a based on ant h, denoted by ph(π(a − k), j),
is given as

90 T. Nakamura et al.

ph(π(a − k), j) =

⎧
⎨

⎩

τ k π(a−k), j Σ
s∈Jh

τ k π(a−k),s
if j ∈ Jh,

0 otherwise.
(7)

Note that in standard ACO algorithms, the probability that an ant visits a node
is determined by not only the pheromone but also by the heuristic information of
the problem being solved. However, this study is devoted to comparing multiple
pheromones; hence, heuristic information is not considered.

3.2.3 Assigning Components into Positions n − k + 1 to n

Herein, we consider a procedure for the assignment of components to positions n −
k + 1 to n, which is dictated by the necessary condition [9]. In a situation in which
(n − k) components have been assigned to positions 1, 2, . . . , n − k, there exists
only one component arrangement satisfying Eq. (4). Recall that Eq. (4) states that
components in positions n − k + 1 to n are arranged in a nonincreasing order of com-
ponent reliability. Therefore, assigning the remaining components can be uniquely
determined based on the order of the reliabilities of the components. For example, let
us consider the arrangement (1, 2, 4, ·, ·, ·) of the Lin/Con/3/6:F system, where “·”
implies that a component has not been assigned; in this case, components 3, 5, 6 have
not been assigned. The only arrangement that satisfies Eq. (4) is (1, 2, 4, 6, 5, 3).

3.3 Applying the Local Search

Herein, the application of a local search is explained; local searches aim to seek a
better solution in a neighborhood of the current solution. The local search in the
proposed algorithm is based on ZKD, which was introduced by Yao et al. [20].
After a complete set of candidate solutions is obtained, if the number of iterations is
greater than or equal to LSstart (t ≥ LSstart), then the local search, based on ZKD,
is performed on m arrangements. The arrangements constructed by m ants can be
replaced by those obtained by the local search.

3.4 Evaluating the Solutions and Updating the Best Solution

The system’s reliability is used as a measure for evaluating the arrangements. These
arrangements are further improved by applying the local search based on ZKD [20].
We use the recursive equation derived by Hwang [8] to compute the reliability of a
Lin/Con/k/n:F system. If the system reliability is higher than the maximum system
reliability that is currently stored, the optimal solution is updated.

Ant Colony Optimization Algorithm with Three Types of Pheromones … 91

3.5 Updating the Pheromone Values

Herein, we explain the pheromone update (evaporation and deposit) for the purpose
of generating quality solutions for the following iterations. First, at each iteration, the
value of the pheromone is decreased, which mimics natural evaporation. The goal of
this evaporation is to avoid overly-fast convergence, which could result in becoming
trapped in sub-optimal solutions. Subsequently, the pheromone deposit increases the
value of the pheromone, which is based on the quality of the obtained solution. The
goal of this deposit is to make the elements of the solution more attractive to the ants
in the following iterations. Additionally, the proposed ACO algorithm utilizes an
elitist strategy in which the best solution that is found during the search contributes
significantly to the pheromone deposit. In this study, for each iteration, an ant that
constructs an arrangement with the maximum system reliability is called an “elite
ant.” By employing an elitist strategy, ants can find better solution quality in a small
number of iterations.

For instance, we now outline the update of the adjacence-wise pheromone. Let
τ ad j π(a−1), j (t) be the adjacence-wise pheromone at iteration t . By evaporation and

deposit, the adjacence-wise pheromone at iteration (t + 1) (τ ad j π(a−1), j (t + 1)) can
be computed as follows:

τ ad j π(a−1), j (t + 1) = (1 − ρ) · τ ad j π(a−1), j (t) +
mΣ

h=1

Δτ h π(a−1), j (t) + Δτ ∗
π(a−1), j (t), (8)

where ρ is a parameter called the “evaporation rate,” (0 < ρ < 1),

Δτ h π(a−1), j (t) =

⎧
⎪⎨

⎪⎩

Q · Rh if the comp. j is right adjacent to comp. π(a − 1)
in an arrangement constructed by ant h at iteration t,

0 otherwise,
(9)

and

Δτ ∗
π(a−1), j (t) =

⎧
⎪⎨

⎪⎩

Q · Rmax if comp. j is right adjacent to comp. π(a − 1) in an
arrangement constructed by an elite ant at iteration t,

0 otherwise.
(10)

92 T. Nakamura et al.

Here, Q is a parameter called the “deposit rate,” (0 < Q). The position-wise and
k-interval-wise pheromones are updated in a similar manner to the adjacence-wise
pheromone.

3.6 Checking the Termination Condition.

In this subsection, we describe the termination condition. If the maximum number
of iterations has not been achieved, (t < Imax), return to the solution construction in
Sect. 3.2; otherwise, the algorithm is terminated.

4 Numerical Experiment

This section presents the results of numerical experiments performed to evaluate
the efficacy of the proposed ACO algorithms. First, we investigate the performance
of the ACO algorithms with either adjacence-wise [3], position-wise, or k-interval-
wise pheromones to identify the best model. Second, we compare the proposed ACO
algorithm to the BIGA algorithm, proposed by Cai et al. [2]. BIGA was chosen for
comparison with the proposed algorithm because numerical experiments [2] have
confirmed that BIGA outperforms BIGLS for large Lin/Con/k/n:F systems. We
used C++ for the implementation language. The algorithms were compared in terms
of the quality of solutions (system reliability) and the computation time required to
obtain the pseudo-optimal arrangement.

We prepared six Lin/Con/k/n:F systems for n ∈ {30, 80} and k ∈ {5, 9, 12}.
Additionally, to investigate the performance under different ranges of component
reliability, three cases were considered for each system. The component reliabilities
were randomly generated from a uniform distribution on (a) [0.01, 0.99] (Arbitrary
case), (b) [0.01, 0.20] (Low-reliable case), or (c) [0.80, 0.99] (High-reliable case).
Each run of the algorithms was repeated 200 times, owing to the component relia-
bilities and the stochastic nature of ACO.

The ACO parameters are set as follows: the number of ants (m) is 20; the initial
value of the pheromone (τ0) is 10; the maximum number of iterations (Imax) is
100; the number of iterations required to start the local search (LSstart) is 99; the
parameter of pheromone evaporation (ρ) is 0.05; and the parameter for deposit (Q)
is 20.

Tables 1 and 2 show the comparisons of adjacence-wise [3], position-wise, and
k-interval-wise pheromones for Lin/Con/k/n:F systems with n = 30 and 80, respec-
tively. The best results are presented in bold for each case in these tables. As pre-
sented in Table 1, the ACO algorithm with the k-interval-wise pheromone achieved
a fast convergence. However, the ACO algorithm with the position-wise pheromone
outperformed those with the other pheromones in most cases. Notably, the computa-
tion times of the ACO algorithm with the position-wise pheromone were sufficiently

Ant Colony Optimization Algorithm with Three Types of Pheromones … 93

Table 1 Results of comparing adjacence-wise [3], position-wise, and k-interval-wise pheromones
for Lin/Con/k/30:F systems

Adjacence-wise [3] Position-wise k-interval-wise

k Comp. rel. Reliability Time (s) Reliability Time (s) Reliability Time (s)

Arbitrary 0.900503 0.265 0.900587 0.231 0.900521 0.185
5 Low 0.153258 0.265 0.153258 0.215 0.153258 0.197

High 0.997096 0.222 0.997098 0.190 0.997096 0.167

Arbitrary 0.998523 0.475 0.998522 0.385 0.998522 0.359
9 Low 0.777554 0.444 0.777559 0.365 0.777557 0.323

High 0.999999 0.451 0.999999 0.357 0.999999 0.330

Arbitrary 0.999937 0.543 0.999937 0.404 0.999937 0.395
12 Low 0.942238 0.450 0.942239 0.351 0.942239 0.342

High 1.000000 0.451 1.000000 0.337 1.000000 0.365

Table 2 Results of comparing adjacence-wise [3], position-wise, and k-interval-wise pheromones
for Lin/Con/k/80:F systems

Adjacence-wise [3] Position-wise k-interval-wise

k Comp. rel. Reliability Time (s) Reliability Time (s) Reliability Time (s)

Arbitrary 0.776391 6.299 0.776869 5.690 0.776431 5.155
5 Low 0.001770 6.773 0.001771 6.069 0.001770 5.755

High 0.990896 5.396 0.990899 5.004 0.990894 4.506

Arbitrary 0.994364 14.854 0.994365 13.848 0.994361 12.119
9 Low 0.318706 13.858 0.318707 12.700 0.318706 11.285

High 0.999993 12.570 0.999993 11.724 0.999993 10.171

Arbitrary 0.999662 18.632 0.999661 19.368 0.999661 17.091
12 Low 0.698446 17.475 0.698446 15.891 0.698445 16.480

High 1.000000 16.836 1.000000 15.013 1.000000 15.498

short. Table 2 shows that similar behavior was observed for the Lin/Con/k/80:F sys-
tem. Therefore, it can be concluded that the ACO algorithm with the position-wise
pheromone performed the best within the scope of the experiment.

Then, the ACO algorithm with the position-wise pheromone is compared to
BIGA, which is known as one of the best metaheuristics for solving the CAP
of Lin/Con/k/n:F systems. Here, the BIGA parameters are set as follows: the
maximum generation is 200; the population size is 20; the mutation probability
is 0.05; and the crossover probability is 0.8. Tables 3 and 4 show the comparisons
for Lin/Con/k/n:F systems with n = 30 and 80, respectively, where the best results
are presented in bold for each case in these tables. From the results, we observe
that the proposed algorithm compares favorably to BIGA in the cases of n = 30
and k = 9, 12. Overall, it seems that BIGA outperformed the proposed algorithm.
However, the proposed algorithm can determine the pseudo-optimal arrangement in

94 T. Nakamura et al.

Table 3 Results of comparing the proposed algorithm and BIGA in the n = 30 case
ACO with position-wise BIGA [2]

k Comp. rel. Reliability Time (s) Reliability Time (s)

Arbitrary 0.900587 0.231 0.900688 1.194

5 Low 0.153258 0.215 0.153259 0.416

High 0.997098 0.190 0.997108 0.840

Arbitrary 0.998522 0.385 0.998521 1.108

9 Low 0.777559 0.365 0.777561 0.720

High 0.999999 0.357 0.999999 0.327

Arbitrary 0.999937 0.404 0.999937 0.801

12 Low 0.942239 0.351 0.942239 0.684

High 1.000000 0.337 1.000000 0.034

Table 4 Results of comparing the proposed algorithm and BIGA in the n = 80 case
ACO with position-wise BIGA [2]

k Comp. rel. Reliability Time (s) Reliability Time (s)

Arbitrary 0.776869 5.690 0.777778 41.909

5 Low 0.001771 6.069 0.001770 9.784

High 0.990899 5.004 0.990949 33.579

Arbitrary 0.994365 13.848 0.994404 72.642

9 Low 0.318707 12.700 0.318720 35.902

High 0.999993 11.724 0.999993 29.057

Arbitrary 0.999661 19.368 0.999662 63.969

12 Low 0.698446 15.891 0.698458 52.451

High 1.000000 15.013 1.000000 4.585

a shorter time. In the proposed ACO algorithm, an improvement in the quality of
the solutions could be achieved by adding heuristic information into the CAP of the
Lin/Con/k/n:F systems and appropriately adjusting the parameter of the ACO.

5 Conclusion

In this paper, we presented the ACO algorithm for solving the CAP of the Lin/Con/
k/n:F system. The key feature of the proposed algorithm is to consider not only
adjacence-wise pheromones but also position-wise and k-interval-wise pheromones.
The performance of these pheromones was compared through a numerical experi-
ment. Results concluded that the ACO algorithm with the position-wise pheromone
performed well within the scope of the experiment. However, numerical experiments
showed that the proposed algorithm was not as good as the existing one in terms of

Ant Colony Optimization Algorithm with Three Types of Pheromones … 95

solution quality. The ACO algorithm with the position-wise pheromone could be
enhanced by adding heuristic information into the CAP of Lin/Con/k/n:F systems
and appropriately adjusting the parameter of the ACO; this is a challenge for further
research.

Zhu et al. [23] defined the multi-type component assignment problem, which is
an extension of CAP. The problem aims to determine the component arrangement
with maximized system reliability under the assumption that each component needs
to be assigned only to positions that belong to the same type of component. Several
studies [12, 14, 15] have proposed exact and heuristic algorithms for solving this
problem so far. One direction for our future work is to apply the ACO algorithm
proposed in this study to solve multi-type component assignment problems.

Acknowledgements This work was supported by the Nakajima Foundation, Grant-in-Aid for JSPS
KAKENHI Grant Numbers 21K14370 and 20K04964.

References

1. Birnbaum ZW (1969) On the importance of different components in a multicomponent system.
In: Krishnaiah PR (ed) Multivariate analysis, vol II. Academic Press, pp 581–592

2. Cai Z, Si S, Sun S, Li C (2016) Optimization of linear consecutive-k-out-of-n system with a
Birnbaum importance-based genetic algorithm. Reliab Eng Syst Saf 152:248–258. https://doi.
org/10.1016/j.ress.2016.03.016

3. Cai ZQ, Wang W, Zhang S, Jiang ZY (2017) Ant colony optimization for component assign-
ment problems in circular consecutive-k-out-of-n systems. In: Proceedings of the 2017 IEEE
international conference on industrial engineering and engineering management, pp 954–958

4. Colorni A, Dorigo M, Maniezzo V (1992) A genetic algorithm to solve the timetable problem.
Politecnico di Milano, Milan, Italy TR, pp 90-060

5. Dafnis SD, Makri FS, Philippou AN (2019) The reliability of a generalized consecutive system.
Appl Math Comput 359:186–193

6. Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating
agents. IEEE Trans Syst Man Cybern Part B (Cybern) 26(1):29–41

7. Dorigo M, Stützle T (2019) Ant colony optimization: overview and recent advances. Handbook
of metaheuristics, pp 311–351

8. Hwang FK (1982) Fast solutions for consecutive-k-out-of-n: F system. IEEE Trans Reliab
31(5):447–448. https://doi.org/10.1109/TR.1982.5221426

9. Kuo W, Zhang W, Zuo MJ (1990) A consecutive-k-out-of-n: G system: the mirror image of a
consecutive-k-out-of-n: F system. IEEE Trans Reliab 39(2):244–253

10. Kuo W, Zhu X (2012) Importance measures in reliability, risk, and optimization: principles
and applications. Wiley

11. Lin FH, Kuo W (2002) Reliability importance and invariant optimal allocation. J Heuristics
8(2):155–171. https://doi.org/10.1023/A:1017908523107

12. Nakamura T, Yamamoto H (2021) Branch-and-bound-based algorithm for solving the multi-
type component assignment problem in a consecutive-k-out-of-n:F system. Qual Reliab Eng
Int

13. Peng R, Wu D, Gao K (2019) Reliability of a dual linear consecutive system with three failure
modes. In: Li QL, Wang J, Yu HB (eds) Stochastic models in reliability, network security and
system safety. Springer, pp 259–269

https://doi.org/10.1016/j.ress.2016.03.016
https://doi.org/10.1016/j.ress.2016.03.016
https://doi.org/10.1016/j.ress.2016.03.016
https://doi.org/10.1109/TR.1982.5221426
https://doi.org/10.1109/TR.1982.5221426
https://doi.org/10.1023/A:1017908523107
https://doi.org/10.1023/A:1017908523107

96 T. Nakamura et al.

14. Qiu S, Ming X, Sallak M, Lu J (2022) A birnbaum importance-based two-stage approach for
two-type component assignment problems. Reliab Eng Syst Saf 218:108051

15. Shi Y, Guan Z, Qiu S (2021) A heuristic for a special kind of multi-type component assign-
ment problem. In: IOP conference series: materials science and engineering, vol 1043. IOP
Publishing, p 022054

16. Shingyochi K, Yamamoto H, Tsujimura Y, Kambayashi Y (2006) Genetic algorithm for solv-
ing optimal component arrangement problem of circular consecutive-k-out-of-n:F system. In:
Proceedings of the 2nd Asian international workshop, pp 176–184

17. Shingyochi K, Yamamoto H, Yamachi H (2012) Comparative study of several simulated
annealing algorithms for optimal arrangement problems in a circular consecutive-k-out-of-
n: F system. Qual Technol Quant Manag 9(3):295–303. https://doi.org/10.1080/16843703.
2012.11673293

18. Si S, Zhao J, Cai Z, Dui H (2020) Recent advances in system reliability optimization driven
by importance measures. Front Eng Manag 7:335–358

19. Wang W, Cai Z, Zhao J, Si S (2019) Optimization of linear consecutive-k-out-of-n systems
with Birnbaum importance based ant colony optimization algorithm. J Shanghai Jiaotong Univ
(Sci) 1–8

20. Yao Q, Zhu X, Kuo W (2011) Heuristics for component assignment problems based on the
Birnbaum importance. IIE Trans 43(9):633–646. https://doi.org/10.1080/0740817X.2010.
532856

21. Yao Q, Zhu X, Kuo W (2014) A Birnbaum-importance based genetic local search algorithm
for component assignment problems. Ann Oper Res 212(1):185–200. https://doi.org/10.1007/
s10479-012-1223-1

22. Zhao J, Si S, Cai Z (2019) A multi-objective reliability optimization for reconfigurable systems
considering components degradation. Reliab Eng Syst Saf 183:104–115

23. Zhu X, Fu Y, Yuan T, Wu X (2017) Birnbaum importance based heuristics for multi-type
component assignment problems. Reliab Eng Syst Saf 165:209–221

24. Zuo MJ, Kuo W (1990) Design and performance analysis of consecutive-k-out-of-n structure.
Naval Res Logist 37(2):203–230

https://doi.org/10.1080/16843703.2012.11673293
https://doi.org/10.1080/16843703.2012.11673293
https://doi.org/10.1080/16843703.2012.11673293
https://doi.org/10.1080/0740817X.2010.532856
https://doi.org/10.1080/0740817X.2010.532856
https://doi.org/10.1080/0740817X.2010.532856
https://doi.org/10.1007/s10479-012-1223-1
https://doi.org/10.1007/s10479-012-1223-1
https://doi.org/10.1007/s10479-012-1223-1

Reliability Assessment and Profit
Analysis of Automated Teller Machine
System Under Copular Repair Policy

Ibrahim Yusuf and Abdullahi Sanusi

Abstract The evaluation of reliability is a critical factor that ensures reliable system
operation, improving quality of product, and cutting production losses. The struc-
ture for analyzing Automated Teller Machines (ATMs) failures is presented in this
chapter, which also allows for the identification of the most appropriate methods
for removing them. It is also essential to have sufficient information on failure and
repair in order to assess system availability and reliability and calculate exact perfor-
mance rates. The model under consideration is made up of three distinct subsystems,
namely subsystems A, B, and C. All the components designed for this system have
access to exponential failure and repair. Failure times are thought to have an expo-
nential distribution, whereas repair times are thought to have a General distribution
and Gumbel–Hougaard family Copula. The transition diagram’s set of differential
equations was solved using regenerative point techniques and Laplace transforms.
For various assumed parameter values, different reliability characteristics such as
availability, reliability, MTTF, sensitivity, and cost benefit are derived and validated
to determine how the model under consideration affects them. A number of cases are
used to demonstrate the analysis in depth. Tables are used to present computed results
and while figures depicts the computed results. According to the computed results,
Copula is a superior repair technique for improving the efficiency of repairable
systems. Furthermore, the findings of the study are crucial for the banking sector’s
development.

Keywords Automated teller machine (ATM) · Availability · Reliability · Profit ·
Copula repair · General repair

I. Yusuf (B)
Department of Mathematical Sciences, Bayero University, Kano, Nigeria
e-mail: iyusuf.mth@buk.edu.ng

A. Sanusi
School of Continuing Education (SCE), Bayero University, Kano, Nigeria
e-mail: asanusi.sce@buk.edu.ng

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Kumar and H. Pham (eds.), Predictive Analytics in System Reliability,
Springer Series in Reliability Engineering,
https://doi.org/10.1007/978-3-031-05347-4_7

97

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05347-4_7&domain=pdf
mailto:iyusuf.mth@buk.edu.ng
mailto:asanusi.sce@buk.edu.ng
https://doi.org/10.1007/978-3-031-05347-4_7

98 I. Yusuf and A. Sanusi

1 Introduction

Over the years, banking sector has seen significant growth. Information and Commu-
nication Technology (ICT) changes and develops. Among them are the implemen-
tation of Automated Teller Machines (ATMs) which is a breakthrough that aims to
decongest the banking system. Customers no longer need to go to bank to complete
their transactions; instead, they can go to any nearby ATM. Cash withdrawals, cash
transfers, payment of bills and deposit are examples of financial transactions that
can be carried out using ATM. All researchers agree that ATMs are important for the
banking sector’s future development, however some of them have discovered a lack
of proportionality between increasing the extent of technology use and increasing
bank profitability.

Many banks recognize that service quality contributes to strategic competitiveness
in a volatile business environment. To get into this situation, system failures must be
addressed in a cost-effective and efficient manner. Thus, the necessity for Automated
Teller Machine system (ATMs) evaluation and profit analysis is unavoidable.

Several reliability research studies have been reported in survey articles under
various operating conditions and with assumptions, including as, Niwas and Garg
[23] proposed a cost-warranty repair policy for analyzing the reliability, dependability
and profitability of an industrial system, while Niwas and Kadyan [24] presented a
method for analyzing the dependability and profitability of a single-unit system with
multiple vacations. Singh et al. [36] investigated the performance of a CBT network
system composed of four subsystems connected in series via the Copula approach.
Chopra and Ram [4] applied Gumbel-Hougaard Copula to study reliability measures
for two dissimilar units connected in parallel. Garg [10] presented a performance
metric for an industrial system using a hybridized soft computing methodology.
Kumar et al. [16] discussed the availability and profitability of engineering systems
connected in series. Sanusi et al. [33] have recently studied the industrial systm
performance where the system has serial arrangement. The performance of the sugar
industry’s A-pan crystallization technology was investigated using the RAMD tech-
nique by Dahiya et al. [6]. Ram and Goyal [30] investigated the reliability of a manu-
facturing system using a coverage and copula approach, discovering that the mixed
coverage-copula technique improves system reliability. Garg [11] used credibility
theory and several types of intuitionistic fuzzy numbers to present a fresh technique
for analyzing the dependability of series–parallel systems. Ibrahim et al. [13] applied
family of copula to assess the reliability of a complex system consisting two subsys-
tems coupled in series connection. Kumar and Lather [17] applied a hybridized
technique to determine the reliability of a robotic system. Garg [12] discussed on
how to use Kolmogorov fuzzy differential equations to analyze the reliability of
industrial systems. Yusuf et al. [40] have recently demonstrated the effectiveness of
a multi client computer system consisting of three subsystems in serial connection
utilizing the Copula repair strategy. Lado and Singh [19] have analyzed the cost of a
sophisticated repairable system with two subsystems connected in series via copula

Reliability Assessment and Profit Analysis of Automated … 99

linguistic approach. Berk et al. [2] explored how to analyze the reliability of safety–
critical sensor data. Pourhassan et al. [28] proposed a simulation approach/technique
for assessing the reliability of systems subjected to degradation and random shock.
Abubakar and Singh [1] investigated the system clothing industry’s performance.
Yang et al. [41] investigated system reliability in the presence of inconsistencies in
priors and multi-level data. Saini and Kumar used RAMD analysis to investigate the
performance of an evaporation system in the sugar industry [38]. Gahlot et al. [7]
investigated the performance of a repairable serial system with multiple failure types
and two types of repairs. Zhao et al. [42] investigated the compressor rotor system of
an aero-engine. Gulati et al. [8] used the copula approach to examine the performance
of a repairable complex system with a serial connection under multiple failures and
repair disciplines. Singh and Ayagi [34] used Copula to investigate the performance
of a system under a proactive resume repair strategy. Jain et al. [14] analyzed the
performance of a machining fault-tolerant system (FTMS) with standbys and a skilled
or trained repairman. Kumar [18] develoed stochastic computer system models with
maintenance and maximum operation time. Mehta et al. [21] used a copula family
approach to assess the availability of an industrial system. Tyagi et al. [39] have
presented copula analysis of a parallel system with fault coverage. Choudhary et al.
[3] evaluated a cement plant based on its maintenance, availability, and reliability.
Malik and Tewari [22] investigated the water flow system maintenance priorities of a
coal-fired thermal power plant. Raissi and Ebadi [32] investigated a computer simu-
lation model for assessing the reliability of a complex system. Potapov et al. [26]
concentrated on simulating the dependability of a client–server information system.
Kadyan and Kumar [15] conducted research on the availability and profitability of
feeding systems in the sugar industry. Pandey et al. [27] assessed the dragline’s
critical subsystem’s reliability and failure rate.

Besides the above works, numerous academics have previously examined various
types of ATM systems using various techniques. Gupta et al. [9] used reliability
analysis to determine the operational behavior of the ATM using three subsystems:
the bank computer, the ATM machine, and the central computer, all of which were
subjected to standby configuration. Cheong et al. [5] presented daily unattended ATM
failures and then used forecasted results to optimize the number of field services to
develop in each geographical zone in order to reduce the number of daily unat-
tended ATM failures. Ram and Goyal [31] used stochastic modeling for reliability
investigation and sensitivity analysis of ATM repairable system. In (2015), Menna
provided a thorough understanding of ATM and its benefits. According to [25], finger-
print biometric authentication schemes for ATMs are more redeemable than personal
identification numbers (PINs) for identification and security clearance. Meena [20]
highlighted the importance of ATM in daily appears requesting monetary transac-
tions. Pandy et al. [27] analysed and determine the criticality and reliability of the
subsystems of three draglines and overall reliability of each dragline. Pourhassan
et al. [29] dealt with reliability modelling and analysis of power station exposed
to fatal and nonfatal. Ram and Goyal [31] dealt with modelling and evaluation of
reliability metrics ATM.

Given the preceding empirical investigation, it’s understandable that some
researchers have conducted research in the area of reliability engineering. However,

100 I. Yusuf and A. Sanusi

it is important to note that electronic payment has gained popularity in the banking
sector especially with the usage of automated teller machine (ATM) system. This
creates a significant gap, which the present ATM research attempts to fill. In partic-
ular, it evaluates the ATM’s availability and reliability, as well as estimating exact
performance rates.

2 Notations, Assumptions, and Materials and Methods

2.1 Notations

t To denote the time

s To denote variable of Laplace transform

λ1 To denote rate of failure of subsystem A

λ2 To denote rate of failure of subsystem B

λ3 To denote rate of failure of subsystem C

λ4 To denote rate of failure of subsystem D

h(x)/y(y) To denote service (repair) rate of subsystem A/subsystem B

α0(x)/α0(y) To denote service (repair) rate for completely failed states of subsystem A and
subsystem B respectively

β0(m)/β0(n) To denote service (repair) rate for completely failed states of subsystem C and
subsystem D respectively

Pi (t) For i =0 to 12, being probability of the system sojourn in Si at any given time

P(s) To denote the Laplace transformation of the state probability p(t)
Pi (x, t) Being probability that the system sojourn in Si and is receiving repair, and the

elapsed time to service (repair) is (x, t)

Pi (y, t) Being probability that the system sojourn in Si and is receiving repair, and the
elapsed time to service (repair) is (y, t)

Pi (m, t) Being probability that the system sojourn in Si and is receiving repair, and the
elapsed time to service (repair) and the system is under repair and the elapsed
time to service (repair) is (m, t)

Pi (n, t) Being probability that the system sojourn in Si and is receiving repair, and the
elapsed time to service (repair) and the system is under repair and the elapsed
time to service (repair) is (n, t)

E p(t) To denote Profit expected in the interval
[0, t)

C1, C2 To denote the expected revenue mobilized and service (repair)

μ0(x) Joint probability is expressed as:

cθ (u1(x), u2(x)) = exp
(
xθ + {

logφ(x)θ
} 1

θ

)
,1 ≤ θ ≤ ∞. Where μ1 = φ(x)

and u2 = ex

Reliability Assessment and Profit Analysis of Automated … 101

2.2 Assumptions

a. To begin with, all subsystems are presumed to be functional.
b. Two units from systems A and B, one unit from C, and two out of two from

subsystem D are required for system operation.
c. Any unit failure leads to adequate machine performance.
d. Any subsystem device that fails is repairable while it is in use or in the failure

state.
e. Restoration of system complete failure is done by Copula while restoration of

partial failure is done by general distribution.
f. The required machine unit should function as new, and the repair operation

should cause no damage.
g. The load is ready for the system’s effective performance as soon as the failed

unit is fixed.

2.3 Materials and Methods

The model/system considered in this chapter is made up of three distinct subsystems:

a. Subsystem A is comprised of two similar components, A 1 and A 2, each of
which has three active clients. Two clients from A 1 and A 2 must be operational
for the system to function. When one of the A 1 and A 2 clients fails, the system’s
capacity is reduced.

b. Subsystem B: This subsystem is made up of two active servers running in
parallel. When one of the subsystem’s two active servers fails, the system oper-
ates at a reduced capacity. While the failure of the two servers causes the system
to fail completely.

c. Subsystem C: this subsystem comprises of two parallel active units/servers. A
minimum of one unit/server must be operational. When both of the subsystem’s
units/servers fail, the system as a whole fail.

All system’s failure rates are constant and obeys exponential distribution, and
their repair is either obeying general repair and copula repair. When we have a situ-
ation where we need to fix failed states quickly and urgently, we can use Copula
repair to provide the essential input. So, in the event of total failure, Copula can
be used to correct all systems simultaneously, whilst General repair can be used to
restore partially failed states. To create differential equations for high reliability phys-
iognomies viz; availability, profit expected function, MTTF and reliability, MTTF,
we use supplementary variable technique, Gumbel-Hougaard family Copula, and
integral transformation (Fig. 1).

102 I. Yusuf and A. Sanusi

Fig. 1 Distributed parallel system

3 Model Formulation

Using the concept presented in Singh and Hamisu [35], Singh et al. [37], Gulati et al.
[8], Gahlot et al. [7], Chopra and Ram [4] and Abubakar and Singh [1] and Fig. 2,
the following of equations are derived:

{
∂
∂t

+ 2λ1 + 2λ2 + 2λ3 + 2λ4
}
P0(t) =

∞ ∫
0
h(x)P1(x, t)dx

+
∞ ∫
0
h(y)P2(y, t)dy +

∞ ∫
0

α0(y)P9(y, t)dy

+
∞ ∫
0

α0(x)P10(x, t)dx +
∞ ∫
0

β0(m)P11(m, t)dm

+
∞ ∫
0

β0(n)P12(n, t)dn, (1)

{
∂
∂t

+
∂

∂w
+ 2λ1 + 2λ2 + h(w)

}
Pi (w, t) = 0, w = (x, y) and i = (1, 2), (2)

Reliability Assessment and Profit Analysis of Automated … 103

() () ()
() () () ()

() ()() () ()

 Perfect state Partial failure state Complete failure state

() ()()

()() () ()()

() ()() () ()

Fig. 2 Transition diagram of the model

{
∂
∂t

+
∂
∂ y

+ 2λk + h(y)

}
Pi (y, t) = 0, k = (2, 2, 1) and i = (3, 6, 7), (3)

{
∂
∂t

+
∂
∂x

+ 2λk + h(x)

}
Pi (x, t) = 0, k = (1, 2, 1) and i = (4, 5, 8), (4)

{
∂
∂t

+
∂
∂r

+ j0(r)
}
Pi (r, t) = 0,

r = (y, x, m, n),
j0 = (α0, α0, β0, β0) and r = (9, 10, 11, 12). (5)

104 I. Yusuf and A. Sanusi

Boundary conditions

Pi (0, t) = 2λk P0(t), k = (1, 2) and i = (1, 2), (6)

P3(0, t) = 4λ1λ2 P0(t), (7)

P4(0, t) = 4λ1λ2 P0(t), (8)

Pi (0, t) = 4λ2
k P0(t), k = (1, 2) and i = (5, 7), (9)

P6(0, t) = 8λ2
1λ2 P0(t), (10)

P8(0, t) = 8λ1λ
2
2 P0(t), (11)

Pi (0, t) = 16λ2
1λ 2 2 P0(t), i = (9, 10), (12)

Pi (0, t) = 2λk P0(t), k = (3, 4) and i = (11, 12). (13)

3.1 Model Solution

With initial condition P(0) = 1 and the Laplace transforms of Eqs. (1)–(5) as:

{s + 2λ1 + 2λ2 + 2λ3 + 2λ4}P0(s) = 1 +
∞ ∫
0
h(x)P1(x, s)dx

+
∞ ∫
0
h(y)P2(y, s)dy +

∞ ∫
0

α0(y)P9(y, s)dy

+
∞ ∫
0

α0(x)P10(x, s)dx +
∞ ∫
0

β0(m)P11(m, s)dm

+
∞ ∫
0

β0(n)P12(n, s)dn, (14)

{
s +

∂
∂w

+ 2λ1 + 2λ2 + h(w)

}
Pi (w, t) = 0, w = (x, y) and i = (1, 2), (15)

{
s +

∂
∂ y

+ 2λk + h(y)

}
Pi (y, t) = 0, k = (2, 2, 1) and i = (3, 6, 7), (16)

Reliability Assessment and Profit Analysis of Automated … 105

{
s +

∂
∂x

+ 2λk + h(x)

}
Pi (x, t) = 0, k = (1, 2, 1) and i = (4, 5, 8), (17)

{
s +

∂
∂r

+ j0(r)
}
Pi (r, t) = 0,

r = (y, x, m, n),
j0 = (α0, α0, β0, β0) and r = (9, 10, 11, 12). (18)

Laplace transforms of the boundary conditions are given by:

−
Pi (0, s) = 2λk P0(s), k = (1, 2) and i = (1, 2), (19)

P3(0, s) = 4λ1λ2 P0(s), (20)

P4(0, s) = 4λ1λ2 P0(s), (21)

Pi (0, s) = 4λ2
k P0(s), k = (1, 2) and i = (5, 7), (22)

P6(0, s) = 8λ2
1λ2 P0(s), (23)

P8(0, s) = 8λ1λ
2
2 P0(s), (24)

Pi (0, s) = 16λ2
1λ 2 2 P0(s), i = (9, 10), (25)

Pi (0, s) = 2λk P0(s), k = (3, 4) and i = (11, 12). (26)

Equations (14)–(19) can be determined using the Laplace transform of boundary
conditions presented in Eqs. (20)–(27).

P0(s) =
1

�(s)
, (27)

Pi (s) =
2λk

�(s)

{
1 − Sh(s + 2λ1 + 2λ2)

s + 2λ1 + 2λ2

}
, k = (1, 2) and i = (1, 2), (28)

Pi (s) =
4λ1λ2

�(s)

{
1 − Sh(s + 2λk)

s + 2λk

}
, k = (3, 4) and i = (2, 1), (29)

P5(s) =
4λ2

1

�(s)

{
1 − Sh(s + 2λ2)

s + 2λ2

}
, (30)

106 I. Yusuf and A. Sanusi

P6(s) =
8λ2

1λ2

�(s)

{
1 − Sh(s + 2λ2)

s + 2λ2

}
, (31)

P7(s) =
4λ2

2

�(s)

{
1 − Sh(s + 2λ1)

s + 2λ1

}
, (32)

P8(s) =
8λ1λ

2
2

�(s)

{
1 − Sh(s + 2λ1)

s + 2λ1

}
, (33)

Pi (s) =
16λ2

1λ
2
2

�(s)

{
1 − Sα0 (s)

s

}
, i = (9, 10), (34)

Pi (s) =
2λk

�(s)

{
1 − Sβ0 (s)

s

}
, i = (11, 12) and K = (3, 4). (35)

where:

�(s) =(s + 2λ1 + 2λ2 + 2λ3 + 2λ4)
− {

2λ1Sh(s + 2λ1 + 2λ2) + 2λ2Sh(s + 2λ1 + 2λ2)
+ 16λ2

1λ
2
2 + 32λ2

1λ
2
2Sα0 (s) + 2λ3Sβ0 (s) + 2λ4Sβ0 (s)

}
.

Adding up all the Laplace transformations of the system’s state change probabil-
ities that the system is operating. That is,

Pup(s) = P0(s) + P1(s) + P2(s) + P3(s) + P4(s) + P5(s) + P6(s) + P7(s) + P8(s)

=
1

�(s)

{
2λ1

(
1 − Sh(s + 2λ1 + 2λ2)

s + 2λ1 + 2λ2

)
+ 2λ2

(
1 − Sh(s + 2λ1 + 2λ2)

s + 2λ1 + 2λ2

)
+

4λ1λ2

(
1 − Sh(s + 2λ2)

s + 2λ2

)
+ 4λ1λ2

(
1 − Sh(s + 2λ1)

s + 2λ1

)

+4λ2
1

(
1 − Sh(s + 2λ2)

s + 2λ2

)
+ 8λ2

1λ2

(
1 − Sh(s + 2λ2)

s + 2λ2

)
+

4λ2
2

(
1 − Sh(s + 2λ1)

s + 2λ1

)
+ 8λ1λ

2
2

(
1 − Sh(s + 2λ1)

s + 2λ1

)}

(36)

and

Reliability Assessment and Profit Analysis of Automated … 107

Pdown(s) = 1 − Pup(s). (37)

4 Investigation of the System in Various Scenarios

a. System’s availability analysis

The system performance is termed as availability when regular repairs are supplied
to the system’s failed units. To distinguish between the two types fixes (repairs) i.e.,
Copula and General repairs, the system availability was investigated in two ways.

i. When repair follows Copula Distribution

Here, we set Sμ0 (s) = Sexp[xθ +{log ϕ(x)}θ]1/θ (s) = exp[xθ +{log ϕ(x)}θ]1/θ

s+exp[xθ +{log ϕ(x)}θ]1/θ , Sh(s) = h
s+h ,

the failure rates are set as λ j at 0.1, 0.2,0.3 and 0.4,ϕ = h = x = y = m = n = 1
and all the repair rates are set equal to 1 i.e. h(x) = h(y) = α0(x) = α0(y) =
β0(m) = β0(n) = 1 in Eq. (37). Applying the inversion of Laplace transform, we
can derive the availability equation as follows:

Pup(s) =
{
0.9457494251e−0.1181247621t − 0.1242677829e−1.759389402t+

0.2818807657e−4.440785836t − 0.02409114046e−1.400000000t

−0.07927126743e−1.200000000t
}
.

(38)

Pdown(s) = 1 − {
0.9457494251e−0.1181247621t − 0.1242677829e−1.759389402t+

0.2818807657e−4.440785836t − 0.02409114046e−1.400000000t

−0.07927126743e−1.200000000t
}
.

(39)

Using varying numbers for time i.e., t = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10. Table
1 and Fig. 3 show the system’s availability when Copula distribution is used.

ii. When repair follows general distribution

Setting Sh(s) = h
s+h in Eq. (37) and differentiating between parameters by assigning

distinct values for λ j at 0.1, 0.2,0.3 and 0.4, and ϕ = 1, h = 1, and applying inversion
of Laplace transform, one may obtain availability expression as:

Table 1 Availability when Copula distribution is used

Time 0 1 2 3 4 5 6 7 8 9 10

Pup(t) 1.0000 0.7924 0.7344 0.6603 0.5887 0.5236 0.4654 0.4136 0.3675 0.3266 0.2902

Pdown (t) 0.0000 0.2075 0.2655 0.3396 0.4112 0.4763 0.5345 0.5863 0.6324 0.6733 0.7097

108 I. Yusuf and A. Sanusi

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10

Av
ai

la
bi

lit
y

Time

Pup

Pdown

Fig. 3 Availability against time t when Copula distribution is followed by repair

Pup(s) =
{
0.239829654e−3.082898540t + 0.01734502810e−1.440657089t+

0.5895248394e−0.07644437064t + 0.04022627278e−1.200000000t

+0.1130742049e−1.400000000t
}
.

(40)

Pdown(s) = 1 − Pup(s). (41)

Using time t = 0, 1, 2, 3, and so on, one can calculate the system’s availability
when the general distribution is followed by repair as shown in Table 2 and Fig. 4.

b. System’s reliability analysis.

The chance of successful system operation is termed reliability if the repair is not
performed. Hence, where there is no repair and the failure rates are taken λ j at 0.1,
0.2,0.3 and 0.4 in Eq. (37). Then using the inversion Laplace transform, the reliability
model is given as:

R(t) = {
0.4285714286e−0.6000000000t + 0.3492063492e−2.0t+

0.1422222222e−0.2000000000t + 0.08000000000e−0.4000000000t
}
.

(42)

With the aid of (43) and t ∈ [0, 10], Table 3 and Fig. 5 are obtained below.

Table 2 Availability when the general distribution is followed by repair

Time 0 1 2 3 4 5 6 7 8 9 10

Pup(t) 1.0000 0.6012 0.5179 0.4717 0.4350 0.4024 0.3727 0.3452 0.3198 0.2962 0.2744

Pdown (t) 0.0000 0.3987 0.4820 0.5282 0.5649 0.5975 0.6272 0.6547 0.6801 0.7037 0.7255

Reliability Assessment and Profit Analysis of Automated … 109

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10

Av
ai

la
bi

lit
y

Time

Pup

Pdown

Fig. 4 Availability versus time t when general distribution is followed by repair

iii. Formulation amd analysis of MTTF

Suppose the service facility is unavailable, in which case all repairs in Eq. (37) are
zero. Using limit, when s goes to 0, the MTTF can be calculated as:

Table 3 Reliability against time t

Time 0 1 2 3 4 5 6 7 8 9 10

Reliability 1.0000 0.4525 0.2667 0.1738 0.1190 0.0845 0.0618 0.0463 0.0355 0.0276 0.0217

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12

Re
lia

bi
lit

y

Time

Reliability

Fig. 5 Reliability versus time t

110 I. Yusuf and A. Sanusi

�(s) = lim
s→0

�(s) = 2λ1 + 2λ2 + 2λ3 + 2λ3.

MT T F = lim
s→0

Pup(s) =
1

�(s){
1 + 2λ1

2λ1 + 2λ2
+ 2λ2

2λ1 + 2λ2
+ 2λ1 + 2λ2 +

2λ2
1

λ2
+ 4λ2

1 +
2λ2

2

λ1
+ 4λ2

2

}
.

(43)

Table 4 and Fig. 6 show the fluctuation of MTTF with respect to λ j for fixed
values of some λ j at 0.1, 0.2,0.3 and 0.4 are used and λ j is varied between
0.01, 0.02, 0.03, 0.04, 0.05, . . . , 0.09. in Eq. (44).

Table 4 MTTF values for different values of λ j
Failure rate MT T F MT T F MT T F MT T F

λ1 λ2 λ3 λ4

0.01 5.8139 2.6311 2.6056 3.0327

0.02 3.5900 2.0058 2.5694 2.9838

0.03 2.8490 1.8001 2.5342 2.9365

0.04 2.4800 1.7014 2.5000 2.8906

0.05 2.2605 1.6470 2.4666 2.8461

0.06 2.1165 1.6161 2.4342 2.8030

0.07 2.0162 1.5996 2.4025 2.7611

0.08 1.9436 1.5929 2.3717 2.7205

0.09 1.8900 1.5916 2.3417 2.6811

0

1

2

3

4

5

6

7

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

M
TT

F

Failure Rate

Fig. 6 MTTF against λ j

Reliability Assessment and Profit Analysis of Automated … 111

iv. Sensitivity analysis

The partial derivative of MTTF with respect to failure rates in Eq. (43) can be used
to calculate sensitivity. Table 5 and accompanying Fig. 7 show the sensitivity of
MTTF for fixed values of some λ j at 0.1, 0.2,0.3 and 0.4 and λ j is varied between
0.01, 0.02, 0.03, 0.04, 0.05, . . . , 0.09.

e. Benefit function

The formula below will calculate the profit expected for the interval [0, t)

E p(t) = C1

t∫
0

Pup(t)dt − C2t. (44)

Table 5 The MTTF’s sensitivity to changes in failure rate

Failure rate ∂
(
MT T F

λ1

)
∂
(
MT T F

λ2

)
∂
(
MT T F

λ3

)
∂
(
MT T F

λ4

)

0.01 −444.6966 −125.1742 −3.6699 −4.9717

0.02 −111.2065 −31.1290 −3.5686 −4.8126

0.03 −49.3263 −13.4834 −3.4715 −4.6611

0.04 −27.5744 −7.1326 −3.3783 −4.5166

0.05 −17.4321 −4.0553 −3.2888 −4.3786

0.06 −11.8621 −2.2719 −3.2029 −4.2470

0.07 −8.4530 −1.1039 −3.1202 −4.1211

0.08 −6.1976 −0.2675 −3.0407 −4.0008

0.09 −4.6144 −0.1675 −2.9642 −3.8857

-500

-450

-400

-350

-300

-250

-200

-150

-100

-50

0
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

Se
ns

iti
vi

ty

Failure Rate

Fig. 7 The MTTF’s sensitivity to changes in failure rate

112 I. Yusuf and A. Sanusi

where C1 revenues to be obtaine and C2 cost of service in the interval [0, t).
Case 1: Profit expected when the copula distribution is followed by repair.
Assuming that the system’s failure rates are as follows: λ1 = 0.1, λ2 = 0.2, λ3 =

0.3, λ4 = 0.4, Sh(s) = h
s+h and ϕ = 1, h = 1, combining Eqs. (37) and (45), one

can obtain Eq. (46) as:

E p(t) = C1
{
0.07063119896e−1.759389402t − 0.06347542442e−4.440785836t−

8.006360464e−0.1181247621t + 0.01720795747e−1.400000000t

+0.06605938952e−1.200000000t + 7.915937342
} − C2t.

(45)

Table 6 and Fig. 8 can be obtained by using different values of the time vari-
able, such as t = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and by applying the inverse Laplace

Table 6 Profit expected as a function of time for Copula distribution followed by repair

t EP (t)EP (t)
C2

0.06 0.05 0.04 0.03 0,02 0.01

0
1
2
3
4
5
6
7
8
9
10

0
0.7771
1.4833
2.1209
2.6851
3.1807
3.6147
3.9938
4.3240
4.6107
4.8588

0
0.7871
1.5033
2.1509
2.7251
3.2307
3.6747
4.0638
4.4040
4.7007
4.9588

0
0.7971
1.5233
2.1809
2.7651
3.2807
3.7347
4.1338
4.4840
4.7907
5.0588

0
0.8071
1.5433
2.2109
2.8051
3.3307
3.7947
4.2038
4.5640
4.8807
5.1588

0
0.8171
1.5633
2.2409
2.8451
3.3807
3.8547
4.2738
4.6440
4.9707
5.2588

0
0.8271
1.5833
2.2709
2.8851
3.4307
3.9147
4.3438
4.7240
5.0607
5.3588

0

5

10

15

20

25

30

35

1 2 53 4 6 7 8 9 10 11

Ex
pe

ct
ed

 p
ro
fit

Time

C2=0.01

C2=0.02

C2=0.03

C2=0.04

C2=0.05

C2=0.06

Fig. 8 Profit expected as a function of time for Copula distribution followed by repair

Reliability Assessment and Profit Analysis of Automated … 113

transform to Eq. (46) with C1 = 1 and C1 = 0.06, 0.05, 0.04, 0.03, 0.02, 0.01,
respectively.

Case 2: Prpfit expected profit when the general distribution is followed by repair

E p(t) = C1
{−0.08076728921e−1.400000000t − 0.03352189398e−1.200000000t

−0.07779356076e−3.082898540t − 0.01203966456e−1.440657089t

−7.711814938e−0.07644437064t + 7.91593747
} − C2t.

(46)

Table 7 Profit expected as a function of time for general distribution followed by repair

t EP (t)EP (t)
C2

0.06 0.05 0.04 0.03 0,02 0.01

0 0 0 0 0 0 0

1 0.6752 0.6852 0.6952 0.7052 0.7152 0.7252

2 1.1686 1.1886 1.2086 1.2286 1.2486 1.2686

3 1.6022 1.6322 1.6622 1.6922 1.7222 1.7522

4 1.9951 2.0351 2.0751 2.1151 2.1551 2.1951

5 2.3663 2.4036 2.4536 2.5036 2.5536 2.6036

6 2.6810 2.7410 2.8010 2.8610 2.9210 2.9810

7 2.9798 3.0498 3.1198 3.1898 3.2598 3.3298

8 3.2522 3.3322 3.4122 3.4922 3.5722 3.6522

9 3.5001 3.5901 3.6801 3.7701 3.8601 3.9501

10 3.7253 3.8253 3.9253 4.0253 4.1253 4.2253

0

5

10

15

20

25

30

1 52 3 4 6 7 8 9 10 11

Ex
pe

ct
ed

 p
ro
fit

Time

C2=0.01

C2=0.02

C2=0.03

C2=0.04

C2=0.05

C2=0.06

Fig. 9 Profit expected as a function of time for general distribution followed by repair

114 I. Yusuf and A. Sanusi

Table 7 and Fig. 9 can be obtained by varying the time variable’s value, such as
t ∈ [0, 10] and by applying the inverse Laplace transform to Eq. (47) with C1 = 1
and C1 = 0.06, 0.05, 0.04, 0.03, 0.02, 0.01, respectively.

5 Result Analysis

This section examines the numerical results presented in the Tables and Figures in
order to validate the extracted models and provide quick insight into the system’s
optimal design.

Table 1 and Fig. 3 depicts the system’s availability and chance of failure as func-
tion of time for Copula distribution in which failure rates are set to varying levels.
When failure rates are reduced, system availability falls until t = 1, at which point
the variation slows and the chance of failure increases, eventually stabilizing after a
sufficiently long period of time. As a result, the model’s graphical analysis demon-
strates that the behavior of a complex system can be easily forecasted at any time for
any set of parametric values.

Table 2 and Fig. 4 depict the availability and failure probability of the general
distribution system over time in which failure rates are varied. Where repair obeys
a general distribution, the availability values are lower than when repair obeys a
Copula distribution. Figures 3 and 4 show this. According to the findings of this
study, Copula repair improves system availability more than General repair.

Table 3 and Fig. 5 provide information on system’s reliability in the event that it
is not repaired. Table 3 and Fig. 5 indicate the decrement in reliability as time passes
for various failure rates. When the value of availability is compared against the value
of reliability, it is clear that reliability is declining drastically. Hence, there is a need
to keep the maintenance requirements for a good operation to a minimum.

Table 4 and Fig. 6 present the system’s MTTF as a function of λ j , j = 1, 2, 3, 4
when all other parameters remain constant. The MTTF of the system reduces when
λ j , j = 1, 2, 3, 4 change, as shown in Table and Figure. The MTTFs for λ3 and λ4

are nearly identical, indicating that both subsystems operate in a comparable manner.
The results of the sensitivity analysis investigated in this study are shown in Table

5 and Fig. 7.
Where C1 the revenue generated equal to 1 and C2 the cost of service is assigned

values 0.06, 0.05, 0.04, 0.03, 0.02, 0.01, respectively, the expected profit obtained
from the system using when the repair is following Copula distribution and General
distribution is displayed in Table 6 and its corresponding Table 7 and Fig. 8 and
its related Fig. 9, respectively. A close examination of Table 6 and Fig. 8 revealed
that as service cost C2 decreases, predicted profit increases over time. In general,
when comparing low service costs (C2 = 0.01) to high service costs (C2 = 0.06),
the predicted profit is higher i.e., low service cost gives the maximum profit and
high service gives the minimum profit. Same scenario can be observed in Table 7
and Fig. 9 when the repair conforms to general distribution The estimated profit for
Copula repair, on the other hand, in Table 6 and Fig. 8 is significantly higher than the

Reliability Assessment and Profit Analysis of Automated … 115

expected profit for General repair in Table 7 and Fig. 9. According to this sensitivity
study, Copula repair generates greater profit than General repair. This has gone a
long way towards demonstrating why Copula repair is preferable to General repair.

6 Conclusion

Failures of systems in various industrial systems can result in a variety of issues,
including unsatisfactory usage and a loss in profitability. To prevent these situations,
we need to have enough knowledge about system failures as well as certain mainte-
nance strategies. For illustration, we used the Automated Teller Machine, where the
repair is performed utilizing Copula and General distributions.

To describe the detail account of the model under consideration, we formulate
expressions for system availability, reliability, mean time to failure (MTTF), and cost
function related to performance measures. The study present the numerical findings
in Tables and Figures to validate the models generated and provide immediate insight
for the optimal system design.

Based on numerical data derived in Tables 1, 2, 3, 4, 5, 6, 7 and Figs. 3, 4, 5,
6, 7, 8, 9 for a specific scenario, we note that using Copula repair improves system
availability, reliability, and profit function over General repair. We also discovered
that the system profit is lowest when the service cost is high and highest when the
service cost is low. As a result, system engineers and maintenance managers will
benefit more from repairing repairable systems with Copula distribution.

References

1. Abubakar MI, Singh VV (2019) Performance assessment of African textile manufacturers,
LTD, in Kano state, Nigeria, through Multi failure and repair using copula. Oper Res Decis
29(4):1–18

2. Berk M, Schubert O, Kroll H-M, Buschardt B, Straub D (2019) Reliability assessment of
safety-critical sensor information. IEEE Trans Reliab 68(4):1227–1241

3. Choudhary D, Tripathi M, Shankar R (2019) Reliability, availability and maintainability anal-
ysis of a cement plant: a case study. Int J Qual Reliab Manag. https://doi.org/10.1108/IJQRM-
10-2017-0215

4. Chopra G, Ram M (2019) Reliability measures of two dissimilar units parallel system using
Gumbel–Hougaard family copula. Int J Math, Eng Manag Sci. https://doi.org/10.33889/IJM
EMS.2019.4.1-011

5. Cheong MLF, Koo PS, Babu BC (2015) Ad-Hoc automated teller machine failure forecast
and field service optimization. automation science and engineering (CASE). In: International
Conference on IEEE, pp 1427–1433

6. Dahiya O, Kumar A, Saini M (2019) Mathematical modeling and performance evaluation of
A-Pan crystallization system in a sugar industry. SN Appl Sci. https://doi.org/10.1007/s42452-
019-0348-0

https://doi.org/10.1108/IJQRM-10-2017-0215
https://doi.org/10.1108/IJQRM-10-2017-0215
https://doi.org/10.33889/IJMEMS.2019.4.1-011
https://doi.org/10.33889/IJMEMS.2019.4.1-011
https://doi.org/10.1007/s42452-019-0348-0
https://doi.org/10.1007/s42452-019-0348-0

116 I. Yusuf and A. Sanusi

7. Gahlot M, Singh VV, Ismail Ayagi H, Goel CK (2018) Performance assessment of repairable
system in the series configuration under different types of failure and repair policies using
Copula Linguistics. Int J Reliab Saf 12(4): 367–374

8. Gulati J, Singh VV, Rawal DK, Goel CK (2016) Performance analysis of complex system in
series configuration under different failure and repair discipline using copula. Int J Reliab Qual
Saf Eng 23(2):812–832

9. Gupta SK, Choudhari R, Sinha BK (2015) Mathematical modeling of behavior of automatic
teller machine with respect to reliability analysis. Int J Math Trends Technol 26(1):29–34

10. Garg H (2017) Performance analysis of an industrial system using soft computing based
hybridized technique. J Braz Soc Mech Sci Eng, Springer 39(4):1441–1451

11. Garg H (2016) A novel approach for analyzing the reliability of series-parallel system using
credibility theory and different types of intuitionistic fuzzy numbers. J Braz Soc Mech Sci Eng,
Springer 38(3):1021–1035. https://doi.org/10.1007/s40430-014-0284-2

12. Garg H (2015) An approach for analyzing the reliability of industrial system using fuzzy
Kolmogorov’s differential equations. Arab J Sci Eng, Springer 40(3):975–987

13. Ibrahim KH, Singh VV, Lado A (2017) Reliability assessment of complex system having two
subsystems arranged in series configuration via Gumbel–Hougaard family copula distribution.
J Appl Math Bioinform 7(2):1–27

14. Jain M, Sharma R, Meena RK (2019) Performance modeling of fault-tolerant machining system
with working vacation and working breakdown. Arab J Sci Eng 44:2825–2836

15. Kadyan MS, Kumar R (2015) Availability and profit analysis of a feeding system in the sugar
industry. Int J Syst Assur Eng Manag 8:301–316

16. Kumar N, Pant S, Singh SB (2017) Availability and cost analysis of an engineering system
involving subsystems in series configuration. Int Qual Reliab Manag 34(6):879–894

17. Kumar N, Lather JS (2018) Reliability analysis of a robotic system using hybridized technique.
J Ind Eng Int 14:443. https://doi.org/10.1007/s40092-017-0235-5

18. Kumar A (2013) Reliability and cost-benefit analysis of computer systems subject to maximum
operation and repair time. PhD thesis, Maharishi Dayanand University, Rohtak, India

19. Lado A, Singh VV (2019) Cost assessment of complex repairable systems in series configura-
tion using Gumbel Hougaard family copula. Int J Qual Reliab Manag 36(10):1683–1698

20. Meena R (2015) Automated teller machine-its benefits and challenges. Int J Commer Bus
Manag 4(6):815–821

21. Mehta M, Singh J, Sharma S (2018) Availability analysis of an industrial system using
supplementary variable technique. Jordan J Mech Ind Eng 12(4):245–251. ISSN 1995-6665

22. Malik S, Tewari PC (2018) Performance modeling and maintenance priorities decision for water
flow system of a coal-based thermal power plant. Int J Qual Reliab Manag 35(4):996–1010

23. Niwas R, Garg H (2018a) An approach for analyzing the reliability and profit of an industrial
system based on the cost-free warranty policy. J Braz Soc Mech Sci Eng 40(5)

24. Niwas R, Kadyan MS (2018b) Stochastic analysis of a single-unit system with repairman
having multiple vacations. Int J Comput Appl 1(8)

25. Onyessolu MO, Ezeani IM (2012) ATM security using fingerprint biometric identifier: an
investitive study. Int J Adv Comput Sci Appl 3(4):68–72

26. Potapov VI, Shafeeva OP, Gritsay AS, Makarov VV, Kuznetsova OP, Kondratukova LK (2019)
Reliability in the model of an information system with client-server architecture. Int J Phys:
Conf Ser 1260(2): 022007. IOP Publishing

27. Pandey P, Mukhopadhyay AK, Chattopadhyaya S (2018) Reliability analysis and failure rate
evaluation for critical subsystems of the dragline. J Braz Soc Mech Sci Eng 40:50. https://doi.
org/10.1007/s40430-018-1016-9

28. Pourhassan MR, Raissi S, Hafezalkotob A (2020) A simulation approach on reliability assess-
ment of complex system subject to stochastic degradation and random shock. Eksploatacja i
Niezawodnosc—Maintenance Reliab 22(2):370–379. https://doi.org/10.17531/ein.2020.2.20

29. Pourhassan MR, Raissi S, Apornak A (2021) Modeling multi-state system reliability analysis
in a power station under fatal and nonfatal shocks: a simulation approach. Int J Qual Reliab
Manag. https://doi.org/10.1108/IJQRM-07-2020-0244

https://doi.org/10.1007/s40430-014-0284-2
https://doi.org/10.1007/s40092-017-0235-5
https://doi.org/10.1007/s40430-018-1016-9
https://doi.org/10.1007/s40430-018-1016-9
https://doi.org/10.17531/ein.2020.2.20
https://doi.org/10.1108/IJQRM-07-2020-0244

Reliability Assessment and Profit Analysis of Automated … 117

30. Ram M, Goyal N (2018) Bi-directional system analysis under copula-coverage approach.
Commun Stat-Simul Comput 47(6):1831–1844

31. Ram M, Goyal N (2016) Automated teller machine network inspection under stochastic
modelling. J Eng Sci Rev 9(5):1–8

32. Raissi S, Ebadi S (2018) A computer simulation model for reliability estimation of a complex
system. Int J Res Ind Eng 7(1):19–31

33. Sanusi A, Yusuf I, Mamuda BY (2020) Performance evaluation of an industrial configured as
series-parallel system. J Math Comput Sci 10:692–712

34. Singh VV, Ayagi HI (2018) Stochastic analysis of a complex system under preemptive resume
repair policy using Gumbel-Hougaard family copula. Int J Math Oper Res 12(2):273–291.
https://doi.org/10.1504/IJMOR.2018.089681

35. Singh VV, Hamishu HI (2018) Stochastic analysis of a complex system under preemptive
resume repair policy using Gumbel–Hougaard family copula. Int J Math Oper Res 12(2):273–
291

36. Singh VV, Lado Ismail AK, Yusuf I, Abdullahi AH (2021) Probabilistic assessment of
computer-based test (CBT) network system consists of four subsystems in series configuration
using copula linguistic approach. J Reliab Stat Stud

37. Singh VV, Poonia PK, Rawal DK (2021) Reliability analysis of repairable network system of
three computer labs connected with a server under 2- out- of- 3 G configuration. Life Cycle
Reliab Saf Eng 10:19–29. https://doi.org/10.1007/s41872-020-00129-w

38. Saini M, Kumar A (2019) Performance analysis of evaporation system in sugar industry using
RAMD analysis. J Braz Soc Mech Sci Eng 41:4

39. Tyagi V, Arora R, Ram M, Triantafyllou IS (2021) Copula based measures of repairable parallel
system with fault coverage. Int J Math Eng Manag Sci. https://doi.org/10.33889/IJMEMS.2021.
6.1.021

40. Yusuf I, Ismail AL, Singh VV, Ali UA, Sufi NA (2020) Performance analysis of multi-computer
system consisting of three subsystems in series configuration using copula repair policy. SN
Comput Sci 1(5):1–11

41. Yang L, Guo Y, Wang Q (2019) Reliability assessment of a hierarchical system subjected to
inconsistent priors and multilevel data. IEEE Trans Reliab 68(4):277–292

42. Zhao B, Xie L, Li H, Zhang S, Wang B, Li C (2020) Reliability analysis of aero-engine
compressor rotor system considering cruise characteristics. IEEE Trans Reliab 68(4):245–259

https://doi.org/10.1504/IJMOR.2018.089681
https://doi.org/10.1007/s41872-020-00129-w
https://doi.org/10.33889/IJMEMS.2021.6.1.021
https://doi.org/10.33889/IJMEMS.2021.6.1.021

An Efficient Regression Test Cases
Selection & Optimization Using Mayfly
Optimization Algorithm

Abhishek Singh Verma, Ankur Choudhary, Shailesh Tiwari,
and Bhuvan Unhelkar

Abstract Testing has been an inevitable activity in the software development life
cycle. In the current scenario, software development has become evolutionary in
nature where software is released in cycles, each cycle fulfilling the requirements
of the customer on a priority basis. This evolutionary development of software also
demands high maintenance in the form of retesting. This re-testing is called regres-
sion testing and the literature reveals that it is a proven N-P hard problem that attracts
the application of approximation algorithms such as meta-heuristics. In this paper,
Mayfly Optimization Algorithm has been adopted to solve the regression test case
selection problem to minimize the maintenance cost. The aim is to optimize the
number of test cases to re-execute to reduce the execution time and cost. The perfor-
mance of the adopted approach is further compared with state-of-the-art approaches
with the help of statistical tests. The shows that the adopted approach performs well
in comparison to state of art approaches.

Keywords Software testing · Mayfly optimization algorithm · SIR ·
MetaHeuristics · Regression test case selection

A. Singh Verma
Dr. APJ Abdul Kalam Technical University, Lucknow, India

A. Singh Verma · A. Choudhary (B)
School of Engineering & Technology, Sharda University, Greater Noida, India
e-mail: ankur.tomer@gmail.com

S. Tiwari
ABES Engineering College, Ghaziabad, India

B. Unhelkar
Universitu of South Florida, Tampa, USA

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Kumar and H. Pham (eds.), Predictive Analytics in System Reliability,
Springer Series in Reliability Engineering,
https://doi.org/10.1007/978-3-031-05347-4_8

119

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05347-4_8&domain=pdf
mailto:ankur.tomer@gmail.com
https://doi.org/10.1007/978-3-031-05347-4_8

120 A. Singh Verma et al.

1 Introduction

Regression testing is a significant activitiy of software maintenance phase under
SDLC. Today, the growth and success of every software industry is based on full-
filing customer needs and delivering good quality products within the stipulated
time frame and budget [1]. So, it is very difficult for software industries to fullfill the
frequently changing customer requirements and technology upgradation. When an
organization wants to modify the existing software during the maintenance phase, the
software has to be retest. The process of retesting the modified part of the software
is known as Regression testing [2], which helps industries to find out errors in the
modified part of the software and ensure its reliability after regression testing. Being
a repetitive process the number of test cases will increase due to modification and
subsequently the size of the test suite will also increase after every testing cycle. It is
very difficult to maintain a large test suite. Retesting of complete test suite consumes
more execution time and effort. So, it is necessary to find out obsolete as well as
redundant test cases from the existing test suite and remove them to reduce the test
suite size. The process of selection of appropriate test cases from the existing test suite
as per applicability during regression testing is called as Regression Test Case Selec-
tion (RTCS) technique [3, 4]. As evident in the literature RTCS is an N-P complete
problem. To solve the NP-complete problem greedy approach, dynamic program-
ming and metaheuristics algorithms are the ways to find the optimal solution. But
they are not providing the exact solution. So, to find the solution to RTCS problems
various nature-inspired algorithms have been utilized such as Genetic Algorithm [5,
6], ACO [7], PSO [8], Bat Search Algorithm [9], Cuckoo Search Optimization [10],
Firefly Optimization [11], Butterfly Optimization [12], Crow Search Algorithm [13]
and many more.

This paper utilizes the latest and existing population-based metaheuristic algo-
rithm which combines the properties of swarm intelligence as well as evolutionary
algorithms named as Mayfly Optimization Algorithm (MA) [14] to provide the solu-
tion of RTCS problem. The mayfly algorithm is inspired by the mating process as
well as the flight behavior of mayflies.

The main objective of using the Mayfly Optimization Algorithm (MA) to solve the
RTCS problem is to find the maximum fault covered, the execution time of the algo-
rithm as well as unique fault covered [15]. Further, the results have been compared
with Bat Search Algorithm (BA) and Improved Grey Wolf Optimization (IGWO)
in terms of maximum no. of fault coverage for different experimental objects. The
performance of various approaches is evaluated over five benchmarked objects from
SIR [16].

The flow of the remaining paper is as follows: The existing related work carried out
by previous authors is discussed in Sect. 2. A brief description of the RTCS problem
has been discussed in Sect. 3. In Sect. 4, the author briefly discussed the proposed
MA approach in detail. Section 5 explained the experimental setup and discusses the
results received. Finally, Sect. 6 Concludes the whole paper with discussion.

An Efficient Regression Test Cases Selection … 121

2 Related Work

Nature always provides sources of learning and inspiration to all of us. According to
the literature, this learning has been applied to various domains to solve complex engi-
neering problems and conclude some results. Various researchers performed various
studies to solve RTCS problems using a variety of nature-inspired metaheuristic
algorithms.

Yoo et al. [17] performed an empirical study and proposed an approach to solve
RTCS problem using the concept of Pareto efficient multi-objective optimization
and concluded that for multi-objective problems, greedy algorithms are not always
Pareto efficient. Maia et al. [18] provided the solution of RTCS problems using a
multiobjective algorithm with the help of NSGA-II algorithm and the results showed
that the NSGA-II provides optimal solutions to such problems. Singh & Gupta [19]
proposed a fusion technique for RTCS using GA and ACO, which identifies and
reduces the size of test data. It provides better results in optimum time. Pravin et al.
[20] have been proposed an algorithm for prioritizing the test cases which works for
both requirement and testing. The algorithm has been testing on limited size data set
and validate it by taking large size projects having a large number of test cases. In
2013, Wang et al. [21] proposed weight-based GA’s to reduce the test suite size and
also achieving maximum fault detection capability and pairwise coverage. Conducted
a comparison between three weights-based GA’s and evaluated the best performance.
De-souza et al. [22] have been developed a hybrid algorithm for structural test case
selection by adding a local search approach into binary multiobjective PSO. The
algorithm considered both execution cost and branch coverage. Narciso et al. [23]
presented a systematic literature review on various test case selection approaches
and performed an empirical evaluation on 18 different approaches of 32 papers of
test case selection.

In the year 2015, Shi et al. [24] performed a study that compares and combines
the two approaches test suite reduction and test case selection, and evaluate the
performance of approaches on 17 open source projects and conclude the results.
Panichella et al. [25] proposed a novel multiobjective Genetic Algorithm named
Diversity-based GA which combined the features of NSGA-II and formulated a
diversity preserving method to solve multiobjective test case selection problems.
Mondal et al. [26] have been analyzed coverage-based & diversity-based RTCS
approaches to solve bi-objective optimization problems where both objectives maxi-
mize the coverage/diversity and reduce the test execution time. The study represents
that the diversity-based approach is a little more effective than the coverage-based
approach. Nagar et al. [27] proposed an algorithm for RTCS using cuckoo search
via levy flight algorithm and observed that cuckoo search algorithm reduced approx.
40% test suite size of the problem. Rosero et al. [28] performed a literature survey on
various regression testing techniques used in the last 15 years, identified 31 regression
testing techniques, and discussed the issues such as identification of new algorithms,
use of AI-based techniques, design of new optimization algorithms etc. Srisura et al.
[29] proposed a technique to ensure the quality and validity by selecting suitable

122 A. Singh Verma et al.

false test cases, generated during regression testing and conclude that the false TCS
technique minimized the test suite size. Kazmi et al. [30] performed a SLR on effec-
tive RTCS techniques. This SLR examined 47 empirical studies and categorize the
selected studies using various criteria.

Now in the year 2018, Garousi et al. [31] performed a literature review and also
proposed a framework called MORTOGA (Multi-objective regression test selec-
tion using a genetic algorithm) and found that the proposed framework reduced the
cost of regression testing. Bajaj et al. [32] performed a study on various nature-
inspired algorithms applied in regression testing & found that Genetic algorithm
is performed better than others as well as the use of nature-inspired algorithms
provides cost-effective and more accurate results. Agrawal et al. [33] presented the
performance comparison of two metaheuristic algorithms: ACO & Hybrid PSO to
solve the RTCS problem and consider two performance parameters—fault coverage
and execution time. Gupta et al. [34] presented a literature review on various opti-
mization techniques mostly used in the domain of software testing and found that
various intelligent and hybrid algorithms are used from 2007 through 2018. Pandey
et al. [35] applied a novel approach of a genetic algorithm and hybrid firefly for
test data generation and test case selection in regression testing and found that the
hybrid approaches provide better results considering various parameters. Staron et al.
[36] empirically evaluate the effect of three different feature extraction algorithms
on the performance of an existing ML-based selective regression testing technique.
Yadav et al. [37] presented a technique for selection and prioritization of regression
test cases using UML diagrams & code-based analysis for object-oriented software.
Guizzo et al. [38] have performed an empirical study to assess the use of static and
dynamic regression test selection techniques with genetic improvement to improve
seven real-world programs. MA et al. [39] proposed a method that selects test cases
to improve the fault detection rate considering traverse target paths and achieve
coverage balance. Chen et al. [40] presented a new approach that evaluates fault
detectability of every regression test and proposed two optimization algorithms to
optimize a multi-objective function.

The various approaches and techniques discussed above show that both heuristic
and metaheuristic algorithms are used to solve regression test case selection prob-
lems, but being an NP-complete problem, still, the scope of other optimization algo-
rithms also exists. In this paper, the authors applied the Mayfly optimization algo-
rithm to enhance the performance of the RTCS problem by finding maximum no.
of fault coverage in minimum execution time and compare the results with already
utilized meta-heuristic algorithms Bat Algorithm (BA) and Improved Grey Wolf
Optimization (IGWO).

3 Problem Statement of Regression Test Case Selection

Given: Suppose there exist a software S and a updated software version S’. The test
suite (TS) is represented as T S = (tc1,tc2,tc3, . . . tcm). Let n ≤ m, here n is the

An Efficient Regression Test Cases Selection … 123

number of total test case in the pool and m is the no. of selected test cases in the
optimal suite. The objective of the problem is to find the TS’ (updated test suite) to
provide the maximum coverage in minimum execution time.

4 Proposed Mayfly Optimization Algorithm

Mayflies are the small size of aquatic insects also known as fishflies or up-winged
flies. It is estimated that there are approximately 3500 species and 42 families of
mayflies worldwide. Despite their name, mayflies are active from May to July.

Mayflies are small to medium-sized insects, belongs the family of Ephemeroptera
having a genus called Atalophlebia. The mayfly optimization algorithm is a modified
version of PSO and combines the best properties of PSO, GA, and FA. This algorithm
was designed and developed based on the behavior of mayflies.

In this algorithm, individual mayflies have been identified as male and female
mayflies and explain the different behaviors of mayflies such as movements of male
mayflies, movements of female mayflies, and mating of mayflies. These different
behaviors of mayflies are mathematically implemented in Sect. 4.1.

4.1 Mathematical Implementation of MA

The inspiration of this algorithm is the social behavior & mating behavior of mayflies.
It is assumed that mayflies come as adults after crosshatching from the eggs. Only
the fittest mayflies will live. In search space, the mayfly positions have represented
a possible solution to the problem. The working procedure of this algorithm is as
follows: At the initial stage, two pairs of mayflies are generating randomly in which
one male set and the second one female set from the population. Out of these two
pairs, each mayfly in search space is randomly placed as an optimal solution denoted
by a d-dimensional vector y = (y1,…,yd), and the performance of this vector has
been assessed with the help of existing objective function f(y). In the search space
w = (w1,…,wd), the mayfly velocity is defined as the change of mayfly’s position.
The flying direction of all mayflies is dynamic interaction that reflects the individual
and social flying experiences. In particular, every mayfly changes its flight direction
towards, either pbest position which represents its personal best position, or gbest
position which represents the global best position of the mayfly.

4.1.1 Movement of Male Mayflies

During iterations, male mayflies have been adopted the exploration or exploitation
approach. The position of male mayfly may adjust to follow their own experience
and that of their neighbors. Suppose, the current position of i th mayfly in search

124 A. Singh Verma et al.

space at time instance t is represented as yt
i and the current position has changed by

added a velocity factor wt+1
i into the current position. Now, the position of mayfly

is denoted as:

yt+1
i = yt

i + wt+1
i (1)

While performing the nuptial dance, the male mayflies are maintaining a gap of
few meters from the water in the upward direction. It is assumed that they move at a
constant speed as they cannot develop the best speed for movement. So, the velocity
of i th male mayfly is formulated as:

wt+1
i j = wt

i j + α1e−βr2 p
(

pbest i j − yt
i j

) + α2e−βr2 g (gbest j − yt
i j) (2)

where velocity and position of mayfly i is represented by wt
i j and y

t
i j respectively in

dimension j = 1, 2, 3, . . . , n at time instance t, attraction constants are represented
by α1 & α2. β is the fixed visibility coefficient. The individual best position &
global best position of i th mayfly in search space is denoted by pbest i and gbest i

as well as rp and rg represented the cartesian distance between yi and pbest i ,gbest
respectively.

The cartesian distances are calculated with the help of equation no. (3):

||yi − Yi || =

√ |
|√

nΣ

j=1

(yi j − Yi j)
2 (3)

In Eq. (3), yi j represented the jth element of mayfly i and Yi is the corresponds to
pbest i and gbest .

The best mayflies may perform the nuptial dance in the upward and downward
direction as per their best characteristics. The changing velocity of best mayfly is
calculated as:

wt+1
i j = wt

i j + dn ∗ r1 (4)

where in Eq. (4), r1 is a random number with values in between [1, 1], and the nuptial
dance coefficient is represented by dn .

4.1.2 Movement of Female Mayflies

While comparing the behavior of male mayflies with females, it has been noticed that
female mayflies do not assemble in swarms. The female mayflies have not updated
their velocities when they changing movement style. The survival duration of female
mayflies is at most one day to one week only. During this period, female mayfly fly

An Efficient Regression Test Cases Selection … 125

towards the males for mate and reproduce themselves. Let us assume, the current
position of i th female mayfly is denoted by zt

i at time instance t , if the velocity wt+1
i

added then the current position mentioned as

zt+1
i = zt

i + wt+1
i (5)

The process of attraction would be in a random manner as per their fitness function
which means that the female mayfly with the best properties should be attracted by
the best male mayfly and the other best female attracted by the best male and so on.
So, for the ith female mayfly in dimension j = 1, 2, 3, . . . , n at time instance t, the
velocities are formulated as:

wt+1
i =

{
wt

i j + α2e−βr2 m f
(
yt

i j − zt
i j

)
i f f (zi) > f (yi)

wt
i j + f l ∗ r1 i f f (zi) ≤ f (yi)

}

(6)

where in Eq. (6), wt+1
i is the female mayfly velocity, zt

i j represented the current
position of the i th female mayfly in dimension j = 1, 2, 3, . . . , n at time instance
t, attraction constants are represented by α2 and β is the fixed visibility coefficient.
The cartesian distance is represented by rm f which is calculated by using equation
number (3). Whereas r1 is a random number with values in between [1, 1] and f l is
represented a random walk coefficient.

4.1.3 Mating Process of Mayflies

To represent the mating process between male and female mayflies, the crossover
operator from the genetic algorithm is utilized in which for mating one male selected
one female from the population. All the best half male would be mated with best
half female mayflies and the other best male with other best female and so on and
produce the pair of children for every one of them. The two offspring as a result of
the crossover are generated as follows:

of f spring1 = l ∗ Male + (1 − l) ∗ Female (7)

of f spring2 = l ∗ Female + (1 − l) ∗ Male (8)

where ‘l’ is a random number with specified values and initial velocities of offspring
are considered as zero.

4.1.4 Pseudo Code of Mayfly Optimization Algorithm

The pseudocode of the Mayfly Optimization Algorithm (MA) is explained below:

126 A. Singh Verma et al.

(1) calculate objective function f(y) where y = (y1, y2…,yd)T

(2) initialize the population of male mayflies using mmi (i = 1,2,3…,N) &
velocities vmi

(3) initialize the population of female mayflies using fmi (i = 1,2,3…,M) &
velocities vfi

(4) evaluate the possible solutions
(5) find global best gbest
(6) {
(7) Do-while
(8) stopping criteria not met
(9) {
(10) update velocities and solutions of males and females’ mayflies
(11) assess the solutions
(12) ranking of mayflies for mating
(13) mating process of mayflies
(14) assess the offspring
(15) randomly separate offspring to male & female mayflies
(16) change worst solutions with the best new solution
(17) update pbest & gbest
(18) }
(19) end of while loop
(20) postprocess and visualize the results.
(21) }
(22) End

5 Experimental Setup

This section has been described the experimental work & analyzed the perfor-
mance of the proposed MA approach against BA & IGWO based optimization
algorithms for RTCS problem. The subsections have been discussed the research
objectives designed, parameters setting of various optimization algorithms, Research
Hypotheses, & characteristics of five subject programs utilized to evaluate the
performance of proposed approach.

5.1 Research Objectives

The author have designed three research questions to analyze the performance of
proposed MA-based approach:

RQ1. Is the performance of MA, BA & IGWO the same?
RQ2. Is there any significant impact on the performance of the various adopted

algorithms in terms of execution time?

An Efficient Regression Test Cases Selection … 127

RQ3. Is there any advantage of selecting different test suite size to evaluate the
performance of adopted algorithms?

The parameter setting utilized for MA, BA & IGWO have been shown in Table
1.

5.2 Research Hypothesis

To justify the answers to research questions designed in Sect. 5.1, three research
hypothesis have been formed:

Ho: MA = BA = IGWO.
Ha: MA /= BA /= IGWO.
Ho: Execution_Time of MA = Execution_Time of BA = Execution_Time of

IGWO.
Ha: Execution_Time of MA /= Execution_Time of BA /= Execution_Time of

IGWO.
Ho: Performance of RTCS_5 = Performance of RTCS_10 = Performance of

RTCS_15.
Ha: Performance of RTCS_5 /= Performance of RTCS_10 /= Performance of

RTCS_15.

5.3 Subject Programs

The adopted algorithms are evaluated to analyze the performance on a benchmarked
dataset consisting of 5 different versions of open-sourced programs written in ‘C’
and ‘JAVA’. These versions are retrieved from benchmarked SIR [16] in regression
testing under a controlled experimental setting (Table 2).

6 Result Discussion

The adopted approaches have been executed fifteen times & the faults coverage is
considered as performance parameter already mentioned in Table 1. In every run,
500 iterations were performed.

(a) Response to Research Question RQ 1
To provide the answer of RQ1, the author have used the mean fault-coverage
values collected from experiment executed. Table 3 reflects the fault-coverage
capabilities of different approaches on different subjects’ programs. The high-
lighted means in the Table 3 reflects that the MA algorithm performs superior
than other adopted optimization algorithms. Figure 1 also confirms the same.

128 A. Singh Verma et al.

Ta
bl
e
1

Pa
ra
m
et
er
 s
et
tin

g
va
lu
es
 u
se
d
fo
r
B
A
, I
G
W
O
 &

 M
A

Pa
ra
m
et
er
s
va
lu
es
 o
f

IG
W
O
 a
lg
or
ith

m

Pa
ra
m
et
er
s
va
lu
es
 o
f
B
A
 a
lg
or
ith

m
Pa
ra
m
et
er
s
va
lu
es
 o
f
m
ay
fly

 a
lg
or
ith

m

N
o.
 o
f

se
ar
ch

ag
en
ts

N
o
of

ite
ra
tio

ns

N
o.
 o
f

ba
ts

Fr
eq
ue
nc
y

L
ou
dn
es
s

Pu
ls
e

ra
te

N
o.
 o
f
fix

ed

po
pu
la
tio

n
(N

)
(2
0
M
al
es

&
20

Fe

m
al
es
)

A
ttr
ac
tio

n
co
ns
ta
nt
s
α
1

&
 α
2

re
sp
ec
tiv

el
y

V
is
ib
ili
ty

co
ef
fic

ie
nt

(β
)

N
up
tia
l

da
nc
e
(d
)

R
an
do
m

fli
gh
t (
fl)

U
ni
fo
rm

cr
os
so
ve
r

ra
te

30
50
0

30
75

0.
75

0.
25

40
1
&

1.
5

2
0.
1

0.
1

0.
05

An Efficient Regression Test Cases Selection … 129

Table 2 Subject program’s characteristics

Name of objects Flex_v1 Flex_v2 Flex_v3 Flex_v4 Flex_v5

Total no. of seeded faults 19 20 17 16 9

Total no. of test cases 567 567 567 567 567

Type of test suite TSL TSL TSL TSL TSL

Table 3 Tukey HSD of mean fault coverage of adopted algorithms

Name of Algorithms N Subsets

1 2 3

BA 225 9.85

IGWO 225 10.54

MA 225 10.90

Sig 1.000 1.000 1.000

Fig. 1 Performance_Algo. versus Subject programs w.r.t. Fault_Coverage

To further validate the performance a two-way ANOVA test is conducted. The
significance value obtained from two-way ANOVA test shown in Table 4 is less
than 0.05, which displays that the null hypothesis has been rejected in favor of
the alternate hypothesis. So, the fault coverage capabilities of MA algorithm
are superior to BA & IGWO optimization algorithms.

130 A. Singh Verma et al.

Table 4 Results of 2-way ANOVA test conducted on fault coverage

Name of
sources

Sum of squares Difference (df) Mean square F value Significance

Corrected
model

10,402.350a 44 236.417 1499.423 0.000

Intercept 73,466.317 1 73,466.317 465,944.091 0.000

Algo 127.825 2 63.913 405.352 0.000

Subject 9922.350 4 2480.587 15,732.585 0.000

TS_Size 49.834 2 24.917 158.031 0.000

Algo * Subject 184.264 8 23.033 146.082 0.000

Algo *
TS_Size

9.490 4 2.373 15.048 0.000

Subject *
TS_Size

70.477 8 8.810 55.873 0.000

Algo * Subject
* TS_Size

38.110 16 2.382 15.106 0.000

Error 99.333 630 0.158

Total 83,968.000 675

Corrected total 10,501.683 674

aR squared value = 0.991
*Represents multiplication

(b) Response to Research Question RQ 2
To provide the answer of RQ2, the author have analyzed the mean of execution
time obtained after the experiment conducted. The Table 5 presents the mean
of execution time of different utilized algorithms. The highlighted mean values
of execution time reflect that MA consumes lesser time as compare to BA and
IGWO. The Fig. 2 also confirms the same. To further validate the results a two-
way ANOVA test has been performed as shown in Table 6. The significance
value obtained from two –way ANOVA test shown in Table 6 is less than
0.05, which shows that null hypothesis has been rejected in favor of alternate
hypothesis. Now, it is clear from the evidences that the performance of MA in
terms of execution time is superior than BA & IGWO algorithms.

(c) Response to Research Question RQ 3

Table 5 Homogenous subsets of mean execution time of algorithms

Name of algorithms Mean of execution time Standard error Confidence interval = 95%

Lower bound Upper bound

BA 1.383 0.023 1.338 1.428

IGWO 1.384 0.023 1.339 1.429

MA 1.263 0.023 1.218 1.308

An Efficient Regression Test Cases Selection … 131

Fig. 2 Performance_Algo. versus Subject programs w.r.t. Execution Time

Table 6 Results of 2-way ANOVA test of variables and their combined effects on execution time

Name of sources Sum of squares Difference (df) Mean square F value Significance

Corrected model 104.992a 44 2.386 20.261 0.000

Intercept 1217.719 1 1217.719 10,339.506 0.000

Algo 2.172 2 1.086 9.220 0.000

Subject 4.770 4 1.192 10.125 0.000

TS_Size 2.047 2 1.024 8.691 0.000

Algo * Subject 9.805 8 1.226 10.406 0.000

Algo * TS_Size 72.866 4 18.217 154.675 0.000

Subject *
TS_Size

6.975 8 0.872 7.403 0.000

Algo * Subject *
TS_Size

6.357 16 0.397 3.373 0.000

Error 74.197 630 0.118

Total 1396.908 675

Corrected total 179.189 674

aR squared value = 0.586
*Represents multiplication

132 A. Singh Verma et al.

Table 7 Tukey HSD of mean fault coverage of test-suite size

Test suite size N Subsets

1 2 3

5 225 10.06

10 225 10.55

15 225 10.69

Sig. 1.000 1.000 1.000

To answer the research question RQ3, we have selected three different sizes of
test cases 5, 10, and 15 from the test suite. To check the impact of these selected
different test suites sizes on fault coverage we have collected the mean value
of fault coverage as shown in Table 7. Table 7 shows that there is a difference
in the mean value of fault coverage for 5 as compared with 10 and 15 test cases
(Figs. 3 and 4).

Fig. 3 Test suite sizes versus Fault_Cov w.r.t. Algorithms

An Efficient Regression Test Cases Selection … 133

Fig. 4 Performance of algorithms versuss Fault_Cov w.r.t. Test suite size

7 Conclusion & Future Scope

In this paper, the Mayfly Optimization algorithm has been adopted for the selection
of test cases during regression testing, and the performance of the adopted algo-
rithm is evaluated against IGWO and Bat search algorithm using five versions of
benchmarked subject programs taken from the SIR repository. The answers to three
research questions formulated to evaluate the performance of the adopted approach
are concluded as follows:

(a) It is clear from the results of Table 3, that the fault detection capabilities of the
Mayfly algorithm is superior than the other adopted state-of-the-art algorithms.

(b) From the results reported in Table 5, it is concluded that the execution time of
the Mayfly algorithm to find the maximum no. of faults is lesser than the BA
as well as IGWO optimization algorithms.

(c) It has been observed from Table 7 that while increasing the size of test suites
from 5 to 10 and 15, it will also increase the fault coverage capabilities of
adopted optimization algorithms.

So, these concluded point’s leads to show the superiority of the adopted approach.

134 A. Singh Verma et al.

References

1. Kumar V, Khatri SK, Dua H, Sharma M, Mathur P (2014) An assessment of testing cost with
effort-dependent FDP and FCP under learning effect: a genetic algorithm approach. Int J Reliab
Qual Saf Eng 21(6):1–16

2. Binkley D, Society IC (1997) Semantics guided regression test cost reduction. IEEE Trans
Softw Eng. 23(8), 498–516

3. Rothermel G, Harrold MJ (1997) A safe, efficient regression test selection technique. (2), 1–35
4. Harrold MJ et al (2011) Regression test selection for Java software. ACM SIGPLAN Not.

36(11):312–326
5. Goldberg DE, Deb K (1991) A comparative analysis of selection schemes used in genetic

algorithms, pp. 69–93
6. Kumar V, Sahni R (2020) Dynamic testing resource allocation modeling for multi-release

software using optimal control theory and genetic algorithm. Int J Qual Reliab Manag 37(6–
7):1049–1069

7. Dorigo M, Di Caro G (1999) Ant colony optimization: a new meta-heuristic. Proc. 1999 Congr.
Evol. Comput. CEC 1999 2:1470–1477

8. Kennedy J, Eberhart R (1995) Particle swarm optimization. Adapt Learn Optim 15:45–82
9. Yang XS (2010) A new metaheuristic bat-inspired algorithm. Stud Comput Intell 284:65–74
10. Yang X, Deb S, Behaviour ACB (2009) Cuckoo Search via L ́ evy Flights. Ieee 210–214
11. Yang XS (2009) Firefly algorithms for multimodal optimization. Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol 5792 LNCS, pp 169–178

12. Arora S, Singh S (2019) Butterfly optimization algorithm: a novel approach for global
optimization. Soft Comput 23(3):715–734

13. Askarzadeh A (2016) A novel metaheuristic method for solving constrained engineering
optimization problems: crow search algorithm. Comput Struct

14. Zervoudakis K, Tsafarakis S (2020) A mayfly optimization algorithm, vol 145. Elsevier Ltd.
15. Kumar V, Sahni R (2016) An effort allocation model considering different budgetary constraint

on fault detection process and fault correction process. Decis Sci Lett 5(1):143–156
16. Do H, Elbaum S, Rothermel G (2005) Supporting controlled experimentation with testing

techniques: an infrastructure and its potential impact. Empir Softw Eng 10(4):405–435
17. Yoo S, Harman M (2007) Pareto efficient multi-objective test case selection. In: International

Symposium on Software Testing and Analysis, pp 140–150
18. Maia CLB, Do Carmo RAF, De Freitas FG, De Campos GAL, De Souza JT (2009) A multi-

objective approach for the regression test case selection problem. XLI Brazilian Symp Oper
Res XLI SBPO 2009, pp 1824–1835

19. Singh G, Gupta D (2013) An Integrated Approach to Test Suite Selection Using ACO and
Genetic Algorithm. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 3(6):2277–3128

20. Pravin A, Srinivasan S (2013) An efficient algorithm for reducing the test cases which is used
for performing regression testing. 2nd Int Conf Comput Tech Artif Intell 119:194–197

21. Wang S, Ali S, Gotlieb A (2013) Minimizing test suites in software product lines using weight-
based genetic algorithms. GECCO 2013—Proc 2013 Genet Evol Comput Conf 1493–1500

22. De Souza LS, Prudêncio RBC, De Barros FA (2014) A hybrid binary multi-objective particle
swarm optimization with local search for test case selection. In: Proceedings—2014 Brazilian
Conference on Intelligent System, BRACIS 2014, pp 414–419

23. Narciso EN, Delamaro ME, De Lourdes Dos Santos Nunes F (2014) Test case selection: a
systematic literature review. Int J Softw Eng Knowl Eng 24(4):653–676

24. Shi A, Yung T, Gyori A, Marinov D (2015) Comparing and combining test-suite reduction
and regression test selection. In: 2015 10th Joint Meeting European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE) 2015—
Proceedings, pp 237–247

25. Panichella A, Oliveto R, Di Penta M, De Lucia A (2015) Improving multi-objective test case
selection by injecting diversity in genetic algorithms. IEEE Trans Softw Eng 41(4):358–383

An Efficient Regression Test Cases Selection … 135

26. Mondal D, Hemmati H, Durocher S (2015) Exploring test suite diversification and code
coverage in multi-objective test case selection. In: IEEE 8th International Conference on
Software Testing, Verification and Validation, ICST 2015—Proceedings

27. Nagar R, Kumar A, Singh GP, Kumar S (2015) Test case selection and prioritization
using cuckoos search algorithm. In: 2015 1st International conference on futuristic trend in
computational analysis and knowledge management ABLAZE 2015, pp 283–288

28. Rosero RH, Gómez OS, Rodríguez G (2016) 15 years of software regression testing
techniques—a survey. Int J Softw Eng Knowl Eng 26(5):675–689

29. Srisura B, Lawanna A (2016) False test case selection: Improvement of regression testing
approach. In: 2016 13th International conference on futuristic trend in computational analysis
and knowledge management ECTI-CON 2016

30. Kazmi R, Jawawi DNA, Mohamad R, Ghani I (2017) Effective regression test case selection:
a systematic literature review. ACM Comput Surv 50(2)

31. Garousi V, Özkan R, Betin-Can A (2018) Multi-objective regression test selection in practice:
an empirical study in the defense software industry. Inf Softw Technol 103:40–54

32. Bajaj A, Sangwan OP (2018) A survey on regression testing using nature-inspired approaches.
In: 2018 4th International Conference on Computing, Communication and Automation ICCCA
2018, pp 1–5

33. Agrawal AP, Kaur A (2018) A comprehensive comparison of ant colony and hybrid
particle swarm optimization algorithms through test case selection. Adv Intell Syst Comput
542(August):397–405

34. Gupta N, Sharma A, Pachariya MK (2019) An insight into test case optimization: ideas and
trends with future perspectives. IEEE Access 7:22310–22327

35. Pandey A, Banerjee S (2019) Test suite optimization using firefly and genetic algorithm. Int J
Softw Sci Comput Intell 11(1):31–46

36. Al-Sabbagh KW, Staron M, Ochodek M, Hebig R, Meding W (2020) Selective regression
testing based on big data: comparing feature extraction techniques, pp 322–329

37. Yadav DK, Dutta S (2020) Regression test case selection and prioritization for object oriented
software. Microsyst Technol 26(5):1463–1477

38. Guizzo G, Petke J, Sarro F, Harman M (2021) Enhancing genetic improvement of software
with regression test selection, pp 1323–1333

39. Ma B, Wan L, Yao N, Fan S, Zhang Y (2021) Evolutionary selection for regression test cases
based on diversity. Front Comput Sci 15(2):3–5

40. Chen Y, Chen M (2021) Multi-objective regression test selection 76:105–116

Development of Reliability Block
Diagram (RBD) Model for Reliability
Analysis of a Steam Boiler System

Suyog S. Patil, Anand K. Bewoor, Ravinder Kumar, and Iliya K. Iliev

Abstract Industrial steam boilers are prone to occurrences such as equipment fail-
ures, human errors, and common-cause failures in a context of sophisticated main-
tenance, inspection, and testing management. These events will have an impact on
reliability of safety-related systems as well as the overall risk level. To analyze the
impact of item failures on system availability, reliability block diagrams (RBD) are
commonly used, taking into account their physical arrangement in the system. In this
research, the RBD technique is utilised to estimate the reliability of boiler systems
used in Indian textile industries. Furthermore, the boiler system reliability before and
after the preventative maintenance PM task is compared.

Keywords Steam boiler · RBD model · Preventive maintenance interval ·
Reliability

S. S. Patil (B)
Department of Mechanical Engineering, Zeal College of Engineering, SPPU, Pune, Maharashtra,
India
e-mail: suyogpatil21@gmail.com

Department of Mechanical Engineering, Sharad Institute of Technology College of Engineering,
Yadrav, Maharashtra, India

A. K. Bewoor
Department of Mechanical Engineering, Cummins College of Engineering, Pune, Maharashtra,
India

R. Kumar
Department of Mechanical Engineering, Lovely Professional University, Phagwara 144411,
Punjab, India

I. K. Iliev
Department of Thermotechnics, Hydraulics and Environmental Engineering, University of Ruse,
Ruse, Bulgaria
e-mail: iki@uni-ruse.bg

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Kumar and H. Pham (eds.), Predictive Analytics in System Reliability,
Springer Series in Reliability Engineering,
https://doi.org/10.1007/978-3-031-05347-4_9

137

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05347-4_9&domain=pdf
mailto:suyogpatil21@gmail.com
mailto:iki@uni-ruse.bg
https://doi.org/10.1007/978-3-031-05347-4_9

138 S. S. Patil et al.

1 Introduction

The knowledge of operational relationship between the subsystems and components
of a system is essential before any system reliability evaluations can be performed.
To improve or evaluate a system’s reliability, it is vital to understand how each of
its components functions and how these functions affect the system. Accurate repre-
sentations of these interactions are required to create meaningful predictions, alloca-
tions, and assessments. Reliability Block Diagram (RBD) can be used to represent
this information, as it is clear and easy to comprehend.

A reliability block diagram (RBD) can be used to examine a number of failure-
related characteristics of engineering systems such as reliability, availability, and
maintainability [1, 2]. A RBD, or graphical structure made up of blocks and connec-
tors, is used to depict the behaviour of a system. During the evaluation of a computa-
tional software’s reliability, for example, the blocks may represent the computational
elements with a given failure rate, and the connectors between them may be used
to describe various alternative paths required for a successful computation using the
given software [3]. In RBD, individual component failure rates can now be used
to assess a system’s failure characteristics, whereas the entire system fails when all
paths to successful execution fail. The RBD-based analysis has become a popular
technique for analysing the trade-offs of various system configurations during the
system design stage due to its ability to quantify the impact of component failures
on overall system safety and dependability.

RBD-based analysis has typically been carried out using proof methods on paper
and pencil, as well as computer simulations. Despite their limitations, these methods
cannot be depended on to give absolute accuracy. Formal approaches for dealing
with the above-mentioned inaccuracy issues have been proposed for the RBD-based
analysis. These solutions do not work for all sorts of complex engineering systems
due to their limited scope. This paper provides a brief overview of the aforementioned
RBD-based analysis methodologies.

The process industries are either batch or continuous. These can be found all
over the world and make a substantial contribution to a country’s economy. Steam is
frequently used as a heat transfer medium when transferring heat from one process
to another in many process industries such as food, beverages, chemicals, pharma-
ceuticals, petroleum, ceramics, base metals, coal, plastics, rubber, textiles, wood
and wood products, paper and paper products, etc. Many process industries rely on
the use of industrial steam boilers. The boiler is a complex system that necessitates
process integration, modern technology and software interfaces, as well as multidisci-
plinary tasks. Higher organisational needs, increasing complexity, and lower prices
are currently posing challenges to new product development [4]. The availability
research classifies boiler systems, subsystems, and components based on reliability
and maintainability in order to reduce system failure and safety-related issues. This
has switched the emphasis to reliability, maintainability, and lowering product life
cycle costs [5]. It is possible to improve the uptime and downtime of boiler subsys-
tems and components in order to increase plant availability. As a result, it is decided

Development of Reliability Block Diagram (RBD) Model … 139

to carry out an examination of the reliability, availability, and maintainability of the
components of a typical steam boiler used in process industries.

Only a few studies on boiler equipment failures have been undertaken. Visual
inspection, microstructural, hardness measurements, and residual stress measure-
ments using X-ray diffraction (XRD) methods [6], scanning electron microscopy,
optical microscopy, and energy dispersive spectroscopy methods [7], failure modes
and effects analysis (FMEA), stochastic technique [8] are all used to examine boiler
tube failures. In the boiler reliability and availability study, numerous studies have
also focused on the combustion, ignition, and fuel feeding systems, as well as their
reliability and availability. Vandermeer [9] researched and recorded the many causes
of a boiler’s starting flame failure in order to prevent this type of failure, and a flame
loss detector was developed. The coal crusher failures can be caused by a variety
of factors, including rotor wear, mill wear, inappropriate hammer usage, and coal
bunker issues [10]. Mariajayaprakash and Senthilvelan [11] provides an alternative
solution to fuel-feeding system failure using FMEA, the Taguchi technique, and a
Cause and Effect Diagram. A probabilistic feedback technique is proposed [12] to
construct the fuel feeding system maintenance schedule based on plant maintenance
records.

Examining the systems can increase the reliability and maintainability of the
existing plant. Some authors have identified the critical components of the boiler
system and conducted an analysis. Insufficient inlet air motion is a major cause of
FD fan failure in boiler fans, according to Parthiban [10]. According to Rajkumar
and Priyaa [13], a low water level in the boiler drum can cause an explosion, while a
high water level can cause water particles in the steam. Carazas et al. [14] proposed a
reliability and availability evaluation approach based on FMEA. A dynamic program-
ming system is intended to optimise alternative maintenance procedures, determine
maintenance methods, and reduce the biomass boiler’s operational and cleaning costs
Agarwal and Suhane [15]. Kiran et al. [16] established a model for improving plant
availability in a process plant using an appropriate maintenance schedule. Arjun-
wadkar et al. [17] investigated CFB boiler components for agglomeration, gas reflux,
and back-sifting, as well as emission control and bed temperature management.

A review of the literature finds that failure analysis of a few boiler components has
been fairly rare up until now. A few researchers in the process sector have attempted to
reduce boiler failure rates and discover the best maintenance methods. As a result of
the current study, steam boilers must be evaluated for reliability, maintainability, and
availability (RMA). This book chapter discusses a case study conducted on a typical
steam boiler in the process industry to estimate the preventive maintenance plan and
increase capacity utilisation using reliability, maintainability, and availability studies.
The rest of the chapter is structured as follows: Sect. 2 covers the methodologies
used to assess the reliability, maintainability, and availability. Section 3 offers a case
study on the boiler system reliability analysis using reliability block diagram (RBD).
Finally, Sect. 4 of this chapter finishes with a concluding remarks.

140 S. S. Patil et al.

2 Reliability Analysis Model for Boiler System

Barabady and Kumar [18] presented a technique for the selection of TTF and TTR
models based on various data trends. This approach is presented in simple way and
can be used to examine the maintenance data. On this basis, a modified framework
for selecting models is proposed. The model selection framework shown in Fig. 1 is
more comprehensive and easier to use for industrial applications. It shows a detailed
flow diagram that was used to identify and explore the issues in this case. Various
models are available for evaluating reliability data. TTF and TTR data must be used
to select the required system analysis model. In the literature, various methods for

Selection of the System

Component failure
frequency analysis

Best fit distribution

Data are iid distributed

Parameter evaluation

Does the data
have a trend?

Does the data have
a correlation?

Reliability and
maintainability analysis

Non-homogeneous poison
process (Power law

process)

Branching poison process
or other similar method

Data collection, sorting,
classification

Pareto chart analysis,

No action if frequency is low

Yes

Yes

No

No

Reliability improvement
measures, identify critical
components, availability

analysis

Reliability-based preventive
maintenance interval evaluation

Fig. 1 Framework for the selection of time to failure model [20]

Development of Reliability Block Diagram (RBD) Model … 141

modelling the reliability of repairable and non-repairable systems have been given.
To determine the patterns in the data and to assess the goodness of fit, a significant
number of studies in many processes must be performed.

Before a steam boiler system is selected for study, it is categorised into numerous
levels such as assembly, sub-systems, and component. Data for a RAM study is
gathered from a variety of sources, including maintenance history cards, registers,
and expert opinions. When there is insufficient data, the Bayesian approach may be
used. If enough information is available, a parametric or non-parametric analysis
can be performed. Because many system failures are seen as minor, the Pareto chart
analysis technique is useful for identifying critical components. This is followed
by an examination of data trends using graphical and analytic methods. In order to
analyse failure data, graphical techniques including cumulative failure versus time
plots, timeline plots, and serial co-relation charts and analytical methods such as
Mann test, military handbook tests can be employed [19].

Estimate the “goodness-of-fit” of the data before constructing a failure rate model.
The data can be used to fit other distributions, including Weibull, Exponential,
Normal, and Lognormal distributions. The most likely distribution is analysed and
distribution parameters are determined using the Chi-square, the classic p-value test,
or the Kolmogorov–Smirnov (K–S) test. Finally, reliability of the subsystems and
components of the boiler system are evaluated. After the reliability features have been
discovered and quantified, priority measurement can be used to detect the criticality
of each element and the partial failure subsystem. There includes an analysis of the
system’s weakest points, as well as a discussion of the changes that will improve the
system’s reliability.

3 Reliability Analysis of the Boiler System by RBD

Table 2 summarises the reliability values of all boiler components computed using
an exponential distribution. The Eq. (1) of exponential distribution for reliability
estimation is used to estimate reliability values of the components of boiler system.

R(t) = e[−λt] (1)

Similarly, by doing preventative maintenance, one can increase the reliability
values of the boiler components and, as a result, the system’s availability. Table 2
also shows the enhanced reliability values of all boiler components.

The reliability of the entire steam boiler system is evaluated by using the reliability
block diagram shown in Fig. 2. The boiler RBD is built on the assumption that all of
the boiler subsystems are connected in series, and that if one of the subsystems fails,
the entire system fails. The different codes used in this reliability block diagram are
presented in the Table 1. The Eqs. (2) and (3) are the reliability models of the steam
boiler system (Table 2).

142 S. S. Patil et al.

F
ig
. 2

R
el
ia
bi
lit
y
bl
oc
k
di
ag
ra
m
 o
f
th
e
bo

ile
r
sy
st
em

Development of Reliability Block Diagram (RBD) Model … 143

Table 1 Codes used to develop RBD for boiler system

Sr. No. Component Code Sr. No. Component Code

1 Furnace/Combustion
chamber

1-1 22 Induced drum (ID) fan 4-1

2 burner 1-2 23 Forced draft (FD) Fan 4-2

3 Temperature regulator 1-3 24 Mechanical dust collector
(MDC)

4-3

4 Water tubes 2-1 25 Rack and pinion coal feeding
mechanism

5-1

5 Feed water pump 2-2 26 Coal crusher 5-2

6 Back flow preventer valve 2-3 27 Coal crusher motor 5-3

7 Feed water pump-gauge 2-4 28 Coal storage tank 5-4

8 Supply water temperature
sensor

2-5 29 Header 6-1

9 Softnar 2-6 30 Steam circulation pipes 6-2

10 Feed water tank 2-7 31 Pressure relief valve (PRV)
station

6-3

11 Water level controller
(Mobari)

2-8 32 Pressure reducing valve 6-4

12 Feed check valve 2-9 33 Pressure gauge 6-5

13 Feed water hose 2-10 34 Steam water separator 6-6

14 Strainer 2-11 35 By-pass valve 6-7

15 Deaerator 2-12 36 Intake vent/air vent 6-8

16 Drain pump 3-1 37 Safety valves 7-1

17 Condensate filter 3-2 38 Main steam stop valve 7-2

18 Blow-down connections 3-3 39 Fusible plug 7-3

19 Return water temperature
sensor

3-4 40 Gate valve 8-1

20 Shut-off valve 3-5 41 Globe valve 8-2

21 Blow down valve 3-6 42 Ball valve 8-3

∴ RS = R1 × R2 × R3 × R4 × R5 × R6 × R7 × R8 (2)

∴ RS = {[1 − (1 − R1−3)(1 −
(
R1−1 × R1−2

)
)] × [1 − (1 − R2−3) × (1 − R2−4)

× (1 − R2−5) × (1 − (R2−1 × R2−2 × (1 − (
1 − R2−6

)(
1 − R2−7

)
) × R2−8

× R2−9 × R2−10 × R2−11 × R2−12)] × [1 − (1 − R3−4) × (1 − (R3−1 × R3−2

× R3−3)) × (1 − R3−5) × (1 − R3−6)] × [1 − (1 − R4−3) × (1 − (R4−1

× R4−2)] × [1 − (1 − R5−4) × (1 − (
R5−1 × R5−2 × R5−3

)
)] × [1 − (1 − R6−5)

× (1 − (R6−1 × R6−2 × R6−3 × R6−4)) × (1 − R6−6) × (1 − R6−7)
× (1 − R6−8)] × [1 − (1 − R7−3) × (1 − (R7−1 × R7−2))]
× [1 − (1 − R8−1) × (1 − R8−2) × (1 − R8−3)]} (3)

144 S. S. Patil et al.

Ta
bl
e
2

R
el
ia
bi
lit
y
va
lu
es
 o
f
bo

ile
r
co
m
po

ne
nt
s

Sr
. N

o.
N
am

e
of
 c
om

po
ne
nt

E
ar
lie

r
re
lia

bi
lit
y
va
lu
es

Im
pr
ov
ed
 r
el
ia
bi
lit
y
va
lu
es

M
T
T
F

λ
λ
t

R
(t
)

M
T
T
F

λ
λ
t

R
(t
)

1
H
ea
de
r

98
55
3.
91

1.
01
46
7E

−0
5

−0
.2
63
0

0.
76
87

10
84
09
.3
01

9.
22
43
E
−0

6
−0

.2
39
1

0.
78
73

2
H
ot
 g
as
 tu

be
s

98
55
3.
91

1.
01
46
7E

−0
5

−0
.2
63
0

0.
76
87

10
84
09
.3
01

9.
22
43
E
−0

6
−0

.2
39
1

0.
78
73

3
Fu

rn
ac
e/
Sh

el
l

10
2,
09
0

9.
79
52
7E

−0
6

−0
.2
53
9

0.
77
58

11
22
99
.0
44

8.
90
48
E
−0

6
−0

.2
30
8

0.
79
39

4
In
ta
ke
 v
en
t/a

ir
 v
en
t

96
02
4.
13

1.
04
14
E
−0

5
−0

.2
69
9

0.
76
34

12
0,
00
0

8.
33
33
3E

−0
6

−0
.2
16
0

0.
80
57

5
W
at
er
 tu

be
s

10
96
81
.2

9.
11
73
3E

−0
6

−0
.2
36
3

0.
78
95

12
06
49
.3

8.
28
84
9E

−0
6

−0
.2
14
8

0.
80
67

6
Su

pp
ly
 w
at
er
 te
m
pe
ra
tu
re
 s
en
so
r

61
89
.3
3

0.
00
01
61
56
8

−4
.1
87
9

0.
01
52

13
,0
00

7.
69
23
1E

−0
5

−1
.9
93
8

0.
13
62

7
B
ac
k
flo

w
 p
re
ve
nt
er
 v
al
ve

75
52
2.
4

1.
32
41
1E

−0
5

−0
.3
43
2

0.
70
95

90
,0
00

1.
11
11
1E

−0
5

−0
.2
88
0

0.
74
98

8
Fe

ed
 w
at
er
 p
um

p
50
07
1.
74

1.
99
71
3E

−0
5

−0
.5
17
7

0.
59
59

70
,0
00

1.
42
85
7E

−0
5

−0
.3
70
3

0.
69
05

9
Fe
ed
 w
at
er
 p
um

p-
ga
ug
e

52
49
7.
83

1.
90
48
4E

−0
5

−0
.4
93
7

0.
61
03

57
74
7.
61

1.
73
16
7E

−0
5

−0
.4
48
8

0.
63
84

10
So

ft
na
r

77
51
0.
29

1.
29
01
5E

−0
5

−0
.3
34
4

0.
71
58

82
,5
00

1.
21
21
2E

−0
5

−0
.3
14
2

0.
73
04

11
Fe

ed
 w
at
er
 ta
nk

28
76
7.
86

3.
47
61
E
−0

5
−0

.9
01
0

0.
40
62

31
64
4.
65

3.
16
00
9E

−0
5

−0
.8
19
1

0.
44
08

12
W
at
er
 le
ve
l c
on

tr
ol
le
r
(M

ob
ar
i)

99
10
8.
2

1.
00
9E

−0
5

−0
.2
61
5

0.
76
99

12
0,
00
0

8.
33
33
3E

−0
6

−0
.2
16
0

0.
80
57

13
Fe

ed
 c
he
ck
 v
al
ve

11
3,
07
4

8.
84
37
7E

−0
6

−0
.2
29
2

0.
79
51

12
43
81
.4

8.
03
97
9E

−0
6

−0
.2
08
4

0.
81
19

14
Fe

ed
 w
at
er
 h
os
e

97
12
0.
66

1.
02
96
5E

−0
5

−0
.2
66
9

0.
76
58

10
68
32
.7

9.
36
04
3E

−0
6

−0
.2
42
6

0.
78
46

15
St
ra
in
er

25
28
3.
99

3.
95
50
7E

−0
5

−1
.0
25
2

0.
35
87

40
,0
00

0.
00
00
25

−0
.6
48
0

0.
52
31

16
D
ea
er
at
or

10
40
05
.2

9.
61
49
1E

−0
6

−0
.2
49
2

0.
77
94

11
44
05
.6
65

8.
74
08
3E

−0
6

−0
.2
26
6

0.
79
73

17
R
et
ur
n
w
at
er
 te
m
pe
ra
tu
re
 s
en
so
r

95
16
.9
7

0.
00
01
05
07
5

−2
.7
23
6

0.
06
56

10
46
8.
66
7

9.
55
23
1E

−0
5

−2
.4
76
0

0.
08
41

18
D
ra
in
 p
um

p
43
92
5.
53

2.
27
65
8E

−0
5

−0
.5
90
1

0.
55
43

48
31
8.
08
3

2.
06
96
2E

−0
5

−0
.5
36
4

0.
58
48

19
C
on

de
ns
at
e
fil
te
r

59
85
.8
2

0.
00
01
67
06
1

−4
.3
30
2

0.
01
32

65
84
.4
02

0.
00
01
51
87
4

−3
.9
36
6

0.
01
95

20
Sh

ut
-o
ff
 v
al
ve

10
57
61
.8

9.
45
52
1E

−0
6

−0
.2
45
1

0.
78
26

11
63
37
.9
58

8.
59
56
5E

−0
6

−0
.2
22
8

0.
80
03

(c
on
tin

ue
d)

Development of Reliability Block Diagram (RBD) Model … 145

Ta
bl
e
2

(c
on
tin

ue
d)

Sr
.N

o.
N
am

e
of

co
m
po
ne
nt

E
ar
lie

r
re
lia

bi
lit
y
va
lu
es

Im
pr
ov
ed

re
lia

bi
lit
y
va
lu
es

M
T
T
F

λ
λ
t

R
(t
)

M
T
T
F

λ
λ
t

R
(t
)

21
B
lo
w
-d
ow

n
co
nn
ec
tio

ns
10
37
04
.2

9.
64
28
1E

−0
6

−0
.2
49
9

0.
77
88

11
40
74
.6
53

8.
76
61
9E

−0
6

−0
.2
27
2

0.
79
67

22
B
lo
w
 d
ow

n
va
lv
e

95
75
1.
03

1.
04
43
8E

−0
5

−0
.2
70
7

0.
76
28

10
53
26
.1
33

9.
49
43
2E

−0
6

−0
.2
46
1

0.
78
18

23
In
du
ce
d
dr
um

 (
ID

)
fa
n

94
92
4.
99

1.
05
34
6E

−0
5

−0
.2
73
1

0.
76
10

10
44
17
.4
89

9.
57
69
4E

−0
6

−0
.2
48
2

0.
78
02

24
Fo

rc
ed
 d
ra
ft
 (
FD

)
Fa
n

10
23
86
.8

9.
76
68
8E

−0
6

−0
.2
53
2

0.
77
63

11
26
25
.4
69

8.
87
89
9E

−0
6

−0
.2
30
1

0.
79
44

25
Se
co
nd
ar
y
ai
r
(S
A
)
fa
n

10
42
56
.9

9.
59
16
9E

−0
6

−0
.2
48
6

0.
77
99

11
46
82
.5
9

8.
71
97
2E

−0
6

−0
.2
26
0

0.
79
77

26
M
ec
ha
ni
ca
l d

us
t c
ol
le
ct
or
 (
M
D
C
)

40
76
4.
94

2.
45
30
9E

−0
5

−0
.6
35
8

0.
52
95

44
84
1.
43
4

2.
23
00
8E

−0
5

−0
.5
78
0

0.
56
10

27
R
ac
k
an
d
pi
ni
on

 c
oa
l f
ee
di
ng

 m
ec
ha
ni
sm

10
83
41
.3

9.
23
00
9E

−0
6

−0
.2
39
2

0.
78
72

11
91
75
.3
75

8.
39
1E

−0
6

−0
.2
17
5

0.
80
45

28
C
oa
l c
ru
sh
er

22
41
7.
63

4.
46
07
7E

−0
5

−1
.1
56
2

0.
31
47

24
65
9.
39
3

4.
05
52
5E

−0
5

−1
.0
51
1

0.
34
95

29
C
oa
l c
ru
sh
er
 m

ot
or

10
02
91
.8

9.
97
09
1E

−0
6

−0
.2
58
4

0.
77
23

13
0,
00
0

7.
69
23
1E

−0
6

−0
.1
99
4

0.
81
92

30
C
oa
l s
to
ra
ge
 ta
nk

80
19
9.
83

1.
24
68
9E

−0
5

−0
.3
23
2

0.
72
38

88
21
9.
81

1.
13
35
3E

−0
5

−0
.2
93
8

0.
74
54

31
Pr
es
su
re
 g
au
ge

67
09
3.
35

1.
49
04
6E

−0
5

−0
.3
86
3

0.
67
95

70
,0
00

1.
42
85
7E

−0
5

−0
.3
70
3

0.
69
05

32
St
ea
m
 c
ir
cu
la
tio

n
pi
pe
s

10
59
38
.8

9.
43
94
1E

−0
6

−0
.2
44
7

0.
78
30

11
65
32
.7

8.
58
12
8E

−0
6

−0
.2
22
4

0.
80
06

33
Pr
es
su
re
 r
el
ie
f
va
lv
e

10
60
50
.7

9.
42
94
6E

−0
6

−0
.2
44
4

0.
78
32

13
0,
00
0

7.
69
23
1E

−0
6

−0
.1
99
4

0.
81
92

34
Pr
es
su
re
 r
ed
uc
in
g
va
lv
e
(P
R
V
)
st
at
io
n

80
83
0.
56

1.
23
71
6E

−0
5

−0
.3
20
7

0.
72
57

85
,0
00

1.
17
64
7E

−0
5

−0
.3
04
9

0.
73
72

35
St
ra
in
er

65
83
3.
27

1.
51
89
9E

−0
5

−0
.3
93
7

0.
67
45

72
41
6.
6

1.
38
09
E
−0

5
−0

.3
57
9

0.
69
91

36
St
ea
m
 w
at
er
 s
ep
ar
at
or

10
23
86
.8

9.
76
68
8E

−0
6

−0
.2
53
2

0.
77
63

10
5,
00
0

9.
52
38
1E

−0
6

−0
.2
46
9

0.
78
13

37
B
y-
pa
ss
 v
al
ve

10
42
56
.9

9.
59
16
9E

−0
6

−0
.2
48
6

0.
77
99

11
46
82
.6

8.
71
97
2E

−0
6

−0
.2
26
0

0.
79
77

38
Sa

fe
ty
 v
al
ve
s

10
22
28
.5

9.
78
20
1E

−0
6

−0
.2
53
5

0.
77
60

11
24
51
.3
39

8.
89
27
4E

−0
6

−0
.2
30
5

0.
79
41

39
M
ai
n
st
ea
m
 s
to
p
va
lv
e

10
22
28
.5

9.
78
20
1E

−0
6

−0
.2
53
5

0.
77
60

11
24
51
.3
39

8.
89
27
4E

−0
6

−0
.2
30
5

0.
79
41

(c
on
tin

ue
d)

146 S. S. Patil et al.

Ta
bl
e
2

(c
on
tin

ue
d)

Sr
.N

o.
N
am

e
of

co
m
po
ne
nt

E
ar
lie

r
re
lia

bi
lit
y
va
lu
es

Im
pr
ov
ed

re
lia

bi
lit
y
va
lu
es

M
T
T
F

λ
λ
t

R
(t
)

M
T
T
F

λ
λ
t

R
(t
)

40
Fu

si
bl
e
pl
ug

11
20
4.
2

8.
92
52
2E

−0
5

−2
.3
13
4

0.
09
89

17
,5
00

5.
71
42
9E

−0
5

−1
.4
81
1

0.
22
74

41
G
at
e
va
lv
e

10
94
47
.2

9.
13
68
2E

−0
6

−0
.2
36
8

0.
78
91

12
03
91
.9
42

8.
30
62
E
−0

6
−0

.2
15
3

0.
80
63

42
G
lo
be
 v
al
ve

10
94
47
.2

9.
13
68
2E

−0
6

−0
.2
36
8

0.
78
91

13
0,
00
0

7.
69
23
1E

−0
6

−0
.1
99
4

0.
81
92

43
B
al
l v

al
ve

10
94
47
.2

9.
13
68
2E

−0
6

−0
.2
36
8

0.
78
91

11
5,
00
0

8.
69
56
5E

−0
6

−0
.2
25
4

0.
79
82

Development of Reliability Block Diagram (RBD) Model … 147

where RS is the boiler system reliability, and R1, R2, R3, … R8, are the reliabilities
of the boiler subsystems.

The earlier reliability of the steam boiler system after three years is calculated as
follows,

∴ RS = R1 × R2 × R3 × R4 × R5 × R6 × R7 × R8

∴ RS = 0.776 × 0.894 × 0.952 × 0.808 × 0.777 × 0.998 × 0.642 × 0.991
∴ RS (Earlier) = 0.2632

Similarly, the improved reliability of the steam boiler system after three years is
calculated as follows,

∴ RS = R1 × R2 × R3 × R4 × R5 × R6 × R7 × R8

∴ RS = 0.794 × 0.930 × 0.960 × 0.833 × 0.804 × 0.999 × 0.715 × 0.993
∴ RS (Improved) = 0.3367

Therefore the Change in system reliability = Improved reliability − Earlier
reliability.

(�R)3 year = 0.3367 − 0.2632 = 0.0735(27.92% increase)

The system reliability can be improved up to 30% by performing preventive
maintenance.

4 Conclusion

A system, including its subsystems and components, can be represented as a series
of blocks using reliability block diagrams (RBDs), allowing equipment failure rates,
operating philosophies, and maintenance strategies to be quantitatively assessed in
terms of their expected impact on system performance.

The study uses a reliability block diagram (RBD) to offer a qualitative and quan-
titative reliability analysis of the steam boiler system. This effort may help to create
and elaborate the RBD. The reliability values of all boiler system components are
evaluated using an exponential distribution. Finally, the RBD technique is used to
conduct a system reliability analysis. It is found that the boiler system’s reliability
may be improved by executing the necessary preventative maintenance at appropriate
intervals. This research estimates that system reliability can be improved by about
30%.

148 S. S. Patil et al.

References

1. Soszynska S (2010) Reliability and risk evaluation of a port oil pipeline transportation system
in variable operation conditions. Int J Press Vessels Pip 87(2–3):81–87

2. Huffman D, Antelme F (2009) Availability analysis of a solar power system with graceful
degradation. In: Reliability and Maintainability Symposium IEEE, pp 348–352

3. Abd-Allah A (1997) Extending reliability block diagrams to software architectures, USC-CSE-
97-501, Department of Computer Science, University of Southern California, USA

4. Ebling C (2000) An introduction to reliability and maintainability engineering. University of
Dayton, Tata McGraw Hill Education Private Limited.

5. Ascher HE, Feingold H (1984) Repairable system reliability: modeling, Interface, misconcep-
tion and their causes. Marcel Dekker, New York

6. Duarte C, Espejo E, Martinez JC (2017) Failure analysis of the wall tubes of a water-tube
boiler. Eng Fail Anal 79:704–713

7. Liu S, Wang W, Liu C (2017) Failure analysis of the boiler water-wall tube. Case Stud Eng
Failure Anal 9:35–39

8. Moghanlou L, Pourgol-Mohammad M (2017) Assessment of the pitting corrosion degradation
lifetime: a case study of boiler tubes. ASCE-ASME J Risk Uncertainty Eng Syst Part B Mech
Eng 3(4)

9. Vandermeer W (1998) Flame safeguard controls multi-burner environments, pp 1–33
10. Parthiban K (2006) Fans at work in boilers. Venus Energy Audit System Report
11. Mariajayaprakash A, Senthilvelan T (2013) Failure detection and optimization of sugar mill

boiler using FMEA and Taguchi method. Eng Fail Anal 30:17–26
12. Barry D, Hudson M (1986) Reliability modelling for the scheduling of plant work in majority

vote mode. Int J Qual Reliab Manag 3(2):12–20
13. Rajkumar T, Priyaa V (2013) Boiler drum level control by using wide open control with three

element control system. Int J Sci Eng Res 4(5):204–210
14. Carazas F, Salazar C, Souza C (2011) Availability analysis of heat recovery steam generators

used in thermal power plants. Energy 36:3855–3870
15. Agarwal S, Suhane A (2017) ScienceDirect study of boiler maintenance for enhanced reliability

of system a review. Mater Today Proc 4(2):1542–1549
16. Kiran S, Kumar KP, Sreejith B, Muralidharan M (2016) Reliability evaluation and risk based

maintenance in a process plant. Procedia Technol 24:576–583
17. Arjunwadkar A, Basu P, Acharya B (2016) A review of some operation and maintenance issues

of CFBC boilers. Appl Therm Eng 102:672–694
18. Barabady J, Kumar U (2008) Reliability analysis of mining equipment: a case study of a

crushing plant at Jajarm bauxite mine in Iran. Reliab Eng Syst Saf 93:647–653
19. Patil SS, Bewoor AK, Patil RB (2020) Availability analysis of a steam boiler in textile process

industries using failure and repair data: a case study. ASCE-ASME J Risk Uncertainty Eng
Syst Part B Mech Eng 2020

20. Patil SS, Bewoor AK (2020) Reliability analysis of a steam boiler system by expert judg-
ment method and best-fit failure model method: a new approach. Int. J. Qual. Reliab. Manag.
38(1):389–409

Computation Signature Reliability
of Computer Numerical Control System
Using Universal Generating Function

Tripty Pandey, Arpita Batra, Mansi Chaudhary, Anjali Ranakoti,
Akshay Kumar, and Mangey Ram

Abstract The aim of this research is to deal with a complex manufacturing system
using the Computer Numerical Control as the bottom case manufacturing system,
where the arrangement of various complex sub-systems is in series, parallel or in both
the configurations. The system reliability with several other factors like signature, tail
signature, expected time as well as expected cost and sensitivity have been obtained
with the assistant of universal generating function technique. The purpose of this
chapter is to comparison of the systems on the basis of signature and its measures
Further, a numerical example demonstrates the proposed system and technique for
a better understanding.

Keywords Signature · Reliability function · Computer numerical control · Tail
signature · Expected time · Universal generating function

1 Introduction

In the recent past, Reliability theory has played a key role in the history of engineering
fields. Researchers have studied and applied the signature reliability theories in day
to day life to solve the real-life problems. In the last few decades, reliability design
of the Computer Numerical Control (CNC) machines has been extensively used in
the manufacturing field. Ghare and Taylor [9] determined that the finest possible
answer to the corresponding issue was equivalent to the optimal solution for the

T. Pandey · A. Batra · M. Chaudhary · A. Ranakoti · A. Kumar (B)
Department of Mathematics, Graphic Era Hill University, Dehradun, Uttarakhand, India
e-mail: akshaykr1001@gmail.com

M. Ram
Department of Mathematics, Computer Science & Engineering, Graphic Era (Deemed to be
University), Dehradun, Uttarakhand, India

Institute of Advanced Manufacturing Technologies, Peter the Great St. Petersburg Polytechnic
University, 195251 Saint Petersburg, Russia

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Kumar and H. Pham (eds.), Predictive Analytics in System Reliability,
Springer Series in Reliability Engineering,
https://doi.org/10.1007/978-3-031-05347-4_10

149

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05347-4_10&domain=pdf
mailto:akshaykr1001@gmail.com
https://doi.org/10.1007/978-3-031-05347-4_10

150 T. Pandey et al.

optimized redundant problem through a procedure called branch and bound proce-
dure on a zero–one programming problem. Li and Lumb [21] proposed a technique
to determine the approximate reliability of an engineering system using methods like
curve fitting and numerical integration. This technique could be applied to both non-
Gaussian and Gaussian variables having non-linear or linear failure limits and also
effective for implicit evaluation tasks. Iyer et al. [12] demonstrated a practice-based
approach to study the behaviour of breakdown of computerized systems particu-
larly to examine everlasting failures. A variety of significant methods, which might
be generally implemented in failure as well as workload examination, are gath-
ered. A conventional combination was proposed by Shatz and Wang [33] derived
a quantitative allocation model, applied its theory to introduce, talk about systems
and algorithmic rule for second level or third level redundancy models. The conse-
quences provided a substitute to performance-oriented techniques and contributed to
the frame of knowledge on task allotment. Heimann et al. [10] collectively discussed
concepts like reliability, maintainability, availability etc. by addressing computer
system dependability analysis. Further, model verification and validation along with
the decision of the parameters, is also discussed. Enevoldsen and Sorensen [7] consid-
ered a reliability based design of structural system, developed direct and consequent
optimized processes to solve the optimization problems and hence included a new and
efficient technique called bounds iteration method which turned out to become highly
efficacious in reliability grounded maximisation of complicated systems. Dugan and
Van Buren [6] presented a combined scanning of the flight control model’s portion by
combining the fault trees with Markov models techniques, to further determine the
dependability of every single system and a system is considered reliable if it is giving
reasonable outcomes. Coit and Smith [4] designed and demonstrated a complication
particular generic algorithm technique to resolve the redundancy assigned issue for a
complex system with enough element options at hand for various k-out-of-n subsys-
tems. Barlow and Proschan [1] estimated system reliability at a constituent level,
assuming that the rate of failure is constant. Palisano et al. [28] discussed the neces-
sity for the standardized system for the classification of a gross motor function system
with cerebral palsy and developed a five-level classification system used in medicine
and determined the inter-rater reliability of the classification system. Boland and
Samaniego [3] discussed the signature of binary and k-out-of-n system. Authors
compared the various systems on the basis of signature analysis. Ding et al. [5]
evolved an inclusive structure to approximate the reliability of multi-state weighted
k-out-of-n systems for which they defined a pair of multi-state weighted k-out-of-n
system models based on fuzzy. The fuzzy universal generating function methods
and fuzzy recursive techniques were formed for computing such systems. The curve
fitting and clustering technique were accustomed to discover the probabilities of
states in the models, and fuzzy weights. Pang et al. [29] presented a novel AHP
based on the method of ELECTRE I of reliability design scheme decision for CNC
machine. The method of AHP was used in order to quantify the weights of reliability
design factors from decision model. The method of ELECTRE I was then constructed
for the ranking of reliability design scheme according to the preference of decision
maker. Sahner et al. [30] considered an approach based on the SHARPE Software

Computation Signature Reliability of Computer Numerical Control System … 151

Package which provided a range of probabilistic and discrete-state models to assess
the reliability, communication systems and conduct of the computer. Huang et al.
[11] examined the electrical system of a CNC machine tool for the reliability having
Bayesian network and the composition of the BNs was framed from fault trees too.
Kumar et al. [16] identified the complexity of different sub-systems by the func-
tioning of a multi-state repairable system having hot redundancy. The responsive
study of the system (the stochastic model) was carried out using Markov process
(probabilistic approach) which derived the first-order differential equations using
mnemonic rule affiliated with the stochastic model supposing that the repair rate as
well as failure criterion of each sub-system is exponentially distributed and constant.

In the context of signature reliability, Levitin [18] reflected upon a redundancy
optimization question for a multi-state system to lessen the amount of investment
costs with satisfying demand as well, from genetic and UGF algorithm in which the
working of the system is determined if the specified work is larger as compared to
the demand, presented by a cumulative demand curve while having the appointed
probability. Levitin [19] introduced a new model termed as linear multi-state sliding
window system that generalized the successive k-out-of-r-from-n:F system to multi-
state case where every single component could have unalike states due to abso-
lute failure up to best functioning and calculated the reliability of the system using
genetic algorithm method and UGF. Levitin [20] discussed the UGF technique with
its implementation in order to optimize and analyse the several types of multi-state
and binary system in a comprehensive up-to-date form. Samaniego [31] addressed
the need of system signatures in building reliability into systems and provided the
guidance on how reliability problems can be structured, modelled and solved and
further compared the actual system lifetimes using or omitting the tool. Samaniego
et al. [32] adapted the thesis of system signatures as explained in [31], to type of
signatures apt in dynamic reliability settings. The concept of dynamic signature was
introduced where a system is considered which is examined at the time (let’s say
t) and is detected to be running with floundered elements (let’s say k). Navarro and
Rychlik [25] studied the correlation and limits for the expected lifetime of mixed
or rational systems with separate elements that had indefinite distributions based on
the elements expected lifetimes, moreover they approximated the lifetime of inde-
pendent identically distributed components in the upper and lower pattern. Marichal
et al. [23] derived a decomposition based on signature of the joint reliability of a pair
of system established on the concept of joint structure signature of two systems. In
order to evaluate the joint structure signature of two or more systems, they provided
an explicit formula and in order for the joint reliability of the systems to acquire a
decomposition set up on signature they also discussed the necessary and sufficient
condition on this distribution. Kumar and Singh [13] discussed about the complex k-
out-of-n coherent system (acquiring independent and identically distributed compo-
nents) and its signature reliability using structure and reliability functions as well as
intended to evaluate the expected lifetime, Barlow-Proschan index, expected cost rate
and signature reliability of the proposed systems. Kumar and Singh [14] suggested
the evaluation of the signature, Barlow-Proschan index and mean time to failure in

152 T. Pandey et al.

the binary and multi-state sliding window system to calculate the cost and relia-
bility while using the UGF technique. Kumar and Singh [15] proposed to study a
structure of the sliding window coherent system that consisted of G linearly needed
multi-state components and parallel components (G in number) in A-within-B from-
D/G for every multi-state and used Owen’s method and UGF for approximating the
various attributes like Barlow-Proschan index, tail signature, signature, sensitivity,
and expected lifetime owning structure or reliability function. Kumar and Singh [17]
discussed the signature of consecutive k-out-of-n:F system having two states such
as working and failed with given allowable weight and authors also find various
parameters of the consider system.

2 Evaluation of Signature, Tail Signature and Expected
Cost

The signature of i.i.d. element like order statistics and reliability function methods
[2, 26, 27] is defined as

Sl = 1(
n

n − l + 1

) ∑
H⊆[n] |H|=n−l+1

ϕ(H) − 1(
n

n − 1

) ∑
H⊆[n] |H|=n−1

ϕ(H) (1)

which are some of the various coherent systems. And the polynomial form of struc-
ture functions of the arrangement with independent and identically distributed (i.i.d.)

elements is H(p) = ∑m
e=1 C j

(
m

e

)
peqn−e and Ce = ∑n

i=n−e+1 si , e = 1, 2, . . . , n.

For finding the tail signature we’ll change the signature of the system Sl =∑n
i=l+1 si = 1⎛

⎝
n

n − 1

⎞

⎠
∑

|H|=n−l ϕ(H) (given polynomial function) having n-tuples

set function like S = (S0, . . . , Sn), into P(X) = Xn H
(
1
X

)
using Taylor expansion

then the signature.

Sl =
n − 1
n! Dl P(1), l = 0, 1, . . . , n (2)

of the designated method [22] is

s = Sl−1 − Sl , l = 1, ..., n (3)

Computation Signature Reliability of Computer Numerical Control System … 153

Now computing the expected lifetime and cost of system from reliability function

[8, 24] defined as E(X) =
n∑

i=1
i.si , i = 1, 2, . . . , n and E(T) = μ

n∑
i=1

Ci
i formu-

lated on the quantity of failed elements and minimal signature of the given system
possessing mean value is one.

3 Model Description: Computer Numerical Control

Here, using CNC used in the bottom case manufacturing system (the shock absorber
manufacturing plant). This system consists of various complicated sub-systems func-
tioning in parallel, series or in both the configurations. The procedure of this system
begins with the blank casting connected in series with oil seal machining (which are
two in numbers connected in parallel, and if the couple units fails at the same time it
results in absolute collapse of the arrangement) which is next attached in series with
another sub-system BTA process (which is a sole unit that causes the whole system
failure if this unit fails). Then the BTA process is in series with axle hole machining
(which has three units attached in parallel and if these units fails at a time it results in
the absolute failure of the system) which is then connected in series with the fender
milling (It’s a single unit so the whole system fails if this unit fails). And finally
mounting hole drilling and tapping is executed, both connected in series (with zero
chances of failure).

4 Numerical Example

A BCM (bottom case manufacturing) system is a complex system comprising of 10
components. These 10 components can be abated in a binary system acquiring 2
components in series configuration where 8, 9 and 10 are connected in series and the
rest of them are attached in a combination of series–parallel configuration. Its system
structure function can be described as min(X1, max(X2, X3), X4, max(X5, X6, X7)
X8, X9, X10) and the rate of performance of working and non-working components
is given as 1, 0 which is based on working or failure of each unit shown as Fig. 1.

From using Fig. 1, UGF of above ten elements can be defined as

U1(z) = p1z1 + (1 − p1)z0

U2(z) = p2z1 + (1 − p2)z0

U3(z) = p3z1 + (1 − p3)z0

154 T. Pandey et al.

Fig. 1 Block diagram of computer numerical control

U4(z) = p4z1 + (1 − p4)z0

U5(z) = p5z1 + (1 − p5)z0

U6(z) = p6z1 + (1 − p6)z0

U7(z) = p7z1 + (1 − p7)z0

U8(z) = p8z1 + (1 − p8)z0

U9(z) = p9z1 + (1 − p9)z0

U10(z) = p10z1 + (1 − p10)z0 .

Now operating the UGF of above elements we get,

U11 = ϕ
par

(U2, U3) = U2 ⊗
max

U3 = [p2 + (1 − p2)p3]z1 + [(1 − p2)(1 − p3)]z0 .
U12 = ϕ

par
(U5, U6, U7) = U5 ⊗

max
U6 ⊗

max
U7

[(p5 + (1 − p5) p6 + (1 − p5)(1 − p6)p7]z1 + [(1 − p5)(1 − p6)(1 − p7)]z0.

U13 = ϕ
ser

(U8, U9, U10) = U8 ⊗
min

U9 ⊗
min

U10 = [p8 p9 p10(1 − p8 p9 p10)z0].
U14 = ϕ

ser
(U1, U11) = U1 ⊗

min
U11

= [p2 + (1 − p2)p3)p1]z1 + [(1 − p2)(1 − p3) + (p2 + (1 − p2)p3(1 − p1)]z0.

U15 = ϕ
ser

(U4, U12) = U4 ⊗
min

U12

= [p5 + (1 − p5)p6)p4 + [(1 − p5)(1 − p6)p7 p4]z1+

[p5 + (1 − p5)p6 + (1 − p5)(1 − p6)p7(1 − p4) + (1 − p5)(1 − p6)(1 − p7)]z0

Computation Signature Reliability of Computer Numerical Control System … 155

U16 = ϕ
ser

(U14, U15) = U14 ⊗
min

U15

= [p1 p2 + (1 − p2) p1 p3)(p4 p5 + (1 − p5)p4 p6
+ (1 − p5)(1 − p6)p4 p7)]z1 + [((1 − p2)(1 − p3)
+ p2 + (1 − p2)p3)(1 − p7)(1 − p5)(1 − p6) + (p5
+ (1 − p5) p6 + (1 − p5)(1 − p6)p7(1 − p4))
+ ((1 − p2)(1 − p3) + (p2 + (1 − p2) p3)(1 − p1)(p4 p5)
+ (1 − p5) p4 p6 + (1 − p5)(1 − p6)p4 p7)]z0 .

Now using the all u-functions connected in series manner such as

U (z) = ϕ
ser

(U16, U13) = U16 ⊗
min

U13

= [p1 p2 + (1 − p2)p1 p3)(p4 p5 + (1 − p5)p4 p6 + (1 − p5)(1 − p6)p4 p7)(p8 p9 p10]z1+
[((1 − p2)(1 − p3) + p2 + (1 − p2)p3)((1 − p7)(1 − p5)(1 − p6) + (p5 + (1 − p5)p6+
(1 − p5)(1 − p6)p7(1 − p4)) + ((1 − p2)(1 − p3) + (p2 + (1 − p2) p3(1 − p2)(1 − p1))
(p4 p5 + (1 − p5)p4 p6 + (1 − p5)(1 − p6)p4 p7+

(p1 p2) + (1 − p2)p1 p3(p4 p5 + ((1 − p5)p4 p6 + (1 − p5)(1 − p6)p4 p7(1 − p8 p9 p10)z0.
(4)

So, the system reliability can be obtained [20] by

R = (p1 p2 + (1 − p2)p1 p3)(p4 p5
+ (1 − p5)p4 p6 + (1 − p5)(1 − p6) p4 p7(p8 p9 p10). (5)

Let us suppose that all the probabilities are independent identically distributed
elements from each other, so let all the probabilities.

p1 = p2 = · · · = p10 = p

R = 6p7 − 9p8 + 5p9 − p10 (6)

Now, obtained tail signature using reliability function from Eqs. (6) and (1) is

S = (1, 1/2, 2/5, 1/20, 0, 0, 0, 0, 0, 0, 0). (7)

After getting tail signature, calculate the system signature by using Eqs. (2) and
(7), we have

s = (1/2, 1/10, 7/20, 1/20, 0, 0, 0, 0, 0, 0). (8)

156 T. Pandey et al.

Using structure function, we have evaluated the system’s minimal signature which
is

Min. signature = (0, 0, 0, 0, 0, 0, 6, −7, 5, 1). (9)

Hence, from Eq. (11) and E(T) = μ
∑n

i=1
Ci
i Expected time is

E(T) = 0.188. (10)

Expected X and Expected cost rate can be calculated by using E(X) =
n∑

i=1
isi , i = 1, 2, . . . , 10 & signature of the system is

E(X) = 1.95. (11)

From Eqs. (10) and (11), we have.
Cost rate = E(X)/E(T) = 10.372.

5 Conclusion

In the present chapter calculate reliability of the bottom case manufacturing system
CNC using the UGF technique as it is one of the most compelling methods as
compared to others. Signature analysis basically used for comparison system either
binary or complex using units of the proposed system. The system CNC having
signature (1/2, 1/10, 7/20, 1/20, 0, 0, 0, 0, 0, 0), tail signature (1, 1/2, 2/5, 1/20, 0, 0,
0, 0, 0, 0, 0), minimal signature (0, 0, 0, 0, 0, 0, 6, -7, 5, 1), and expected cost 10.372
have also been quantified to find the model’s efficiency. And since the mean value of
expected lifetime is 0.188 and cost of system is one the performance of the system
will be prominent. CNC types system is a various type of machine tools, decision
making, industrial robots, Computer systems for planning, data collection.

References

1. Barlow RE, Proschan F (1996) Mathematical theory of reliability. Soc Ind Appl Math
2. Boland PJ (2001) Signatures of indirect majority systems. J Appl Probab 38(2):597–603
3. Boland PJ, Samaniego FJ (2004) The signature of a coherent system and its applications in

reliability. In: Mathematical reliability: an expository perspective, pp 3–30. Springer, Boston,
MA

4. Coit DW, Smith AE (1996) Reliability optimization of series-parallel systems using a genetic
algorithm. IEEE Trans Reliab 45(2):254–260

5. Ding Y, Zuo MJ, Lisnianski A, Li W (2010) A framework for reliability approximation of
multi-state weighted k-out-of-n systems. IEEE Trans Reliab 59(2):297–308

Computation Signature Reliability of Computer Numerical Control System … 157

6. Dugan JB, Van Buren R (1994) Reliability evaluation of fly-by-wire computer systems. J Syst
Softw 25(1):109–120

7. Enevoldsen I, Sørensen JD (1993) Reliability-based optimization of series systems of parallel
systems. J Struct Eng 119(4):1069–1084

8 Eryilmaz S (2012) The number of failed elements in a coherent system with exchangeable
elements. IEEE Trans Reliab 61(1):203–207

9. Ghare PM, Taylor RE (1969) Optimal redundancy for reliability in series systems. Oper Res
17(5):838–847

10. Heimann DI, Mittal N, Trivedi KS (1990) Availability and reliability modeling for computer
systems. In: Advances in computers, vol 31, pp 175–233. Elsevier

11. Huang T, Yan J, Jiang M, Peng W, Huang H (2016) Reliability analysis of electrical system
of computer numerical control machine tool based on bayesian networks. J Shanghai Jiaotong
Univ (Sci) 21(5):635–640

12. Iyer RK, Rossetti DJ, Hsueh MC (1986) Measurement and modeling of computer reliability
as affected by system activity. ACM Trans Comput Syst (TOCS) 4(3):214–237

13. Kumar A, Singh SB (2017) Computations of the signature reliability of the coherent system.
Int J Qual Reliab Manage 34(6):785–797

14. Kumar A, Singh SB (2018) Signature reliability of linear multi-state sliding window system.
Int J Qual Reliab Manage 35(10):2403–2413

15. Kumar A, Singh SB (2019) Signature A-within-from B- -D/G sliding window system. Int J
Math Eng Manage Sci 4(1): 95–107

16. Kumar A, Kumar V, Modgil V (2019) Behavioral study and availability optimization of a
multi-state repairable system with hot redundancy. Int J Qual Reliab Manage 36(3):314–330

17. Kumar A, Singh SB (2021) Signature reliability of consecutive k-out-of-n: F system using
universal generating function. In: Reliability and risk modeling of engineering systems, pp
27–39. Springer, Cham

18. Levitin G (2001) Redundancy optimization for multi-state system with fixed resource-
requirements and unreliable sources. IEEE Trans Reliab 50(1):52–59

19. Levitin G (2002) Optimal allocation of elements in a linear multi-state sliding window system.
Reliab Eng Syst Saf 76(3):245–254

20. Levitin G (2005) The universal generating function in reliability analysis and optimization, p
442. Springer, London. https://doi.org/10.1007/1-84628-245-4

21. Li KS, Lumb P (1985) Reliability analysis by numerical integration and curve fitting. Struct
Saf 3(1):29–36

22. Marichal JL, Mathonet P (2013) Computing system signatures through reliability functions.
Statist Probab Lett 83(3):710–717

23. Marichal JL, Mathonet P, Navarro J, Paroissin C (2017) Joint signature of two or more systems
with applications to multistate systems made up of two-state components. Eur J Oper Res
263(2):559–570

24. Navarro J, Rubio R (2009) Computations of signatures of coherent systems with five
components. Commun Stat Simul Comput 39(1):68–84

25. Navarro J, Rychlik T (2010) Comparisons and bounds for expected lifetimes of reliability
systems. Eur J Oper Res 207(1):309–317

26. Navarro J, Ruiz JM, Sandoval CJ (2007a) Properties of coherent systems with dependent
components. Commun Stat Theory Methods 36(1):175–191

27. Navarro J, Rychlik T, Shaked M (2007b) Are the order statistics ordered? a survey of recent
results. Commun Stat Theory Methods 36(7):1273–1290

28. Palisano R, Rosenbaum P, Walter S, Russell D, Wood E, Galuppi B (1997) Development and
reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med
Child Neurol 39(4):214–223

29. Pang J, Zhang G, Chen G (2011) ELECTRE I decision model of reliability design scheme for
computer numerical control machine. JSW 6(5):894–900

30. Sahner RA, Trivedi K, Puliafito A(2012) Performance and reliability analysis of computer
systems: an example-based approach using the SHARPE software package. Springer Science &
Business Media

https://doi.org/10.1007/1-84628-245-4

158 T. Pandey et al.

31. Samaniego FJ (2007) System signatures and their applications in engineering reliability, vol.
110. Springer Science & Business Media. ISBN 978-0-387-71796-8

32. Samaniego FJ, Balakrishnan N, Navarro J (2009) Dynamic signatures and their use in
comparing the reliability of new and used systems. Naval Res Logist (NRL) 56(6):577–591

33. Shatz SM, Wang JP (1989) Models and algorithms for reliability-oriented task-allocation in
redundant distributed-computer systems. IEEE Trans Reliab 38(1):16–27

Evaluate and Measure Agile Software
Efficiency by the Integrated Strategy
of Fuzzy MOORA and AHP

Abhishek Srivastava, P. K. Kapur, Alakkshendra Rawat, Aditya Mittal,
and Vidhyashree Nagaraju

Abstract Now a day’s every business stakeholder wants that they will get best
output from their software development teams. There are many software developing
methodologies present in the market right now and every methodology has its own
advantages and disadvantages, even Agile has certain disadvantages, but agile always
try to give the best output product to their client and always welcomes the spontaneous
market changes, which most of the software developing methodologies are unable to
deliver. Now the question arises that how to measure the efficiency of this software
development or testing methodology. In this paper, we plan to use an approach or
propose an integrated strategy of Fuzzified Multi Objective Optimization on the bases
of Ratio Analysis (MOORA) and Analytic Hierarchy Process (AHP) to determine
the efficiency of Agile software. In this we first extracted some important factors
used in agile software development through correlational research and with the help
of agile certified professionals, then we compared those factors with help of the
above-mentioned tools Fuzzy based MOORA and AHP. The methodology utilized
in this certain research study article acts as very vital toolkit for the researchers
or professionals who want to measure and evaluate the efficiency of such software
development technology.

Keywords Agile methodologies · Fuzzy MOORA · AHP · Efficiency

A. Srivastava (B) · A. Rawat · A. Mittal
Amity School of Engineering and Technology, Amity University, Noida, Uttar-Pradesh, India
e-mail: abhishek.sri13@gmail.com

P. K. Kapur
Amity Center for Inter-Disciplinary Research, Amity University, Noida, Uttar-Pradesh, India

V. Nagaraju
Tandy School of Computer Science, The University of Tulsa, Tulsa, OK 74104, USA

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Kumar and H. Pham (eds.), Predictive Analytics in System Reliability,
Springer Series in Reliability Engineering,
https://doi.org/10.1007/978-3-031-05347-4_11

159

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05347-4_11&domain=pdf
mailto:abhishek.sri13@gmail.com
https://doi.org/10.1007/978-3-031-05347-4_11

160 A. Srivastava et al.

1 Introduction

In this mean time of twenty-first century everyone wants to be their work done in
hurry and as soon as possibly completed. As we can see the marketing environment
is changing extra ordinarily fast and it is really necessary to do both think out-of-
the-box and to focus on customer needs in productive and cost-efficient way, also we
have to focus on business value of the product. According to market requirements
we must be adaptable and flexible for any kind of usual and unusual market changes,
here ‘Agile’ comes in possession. Agile has the ability to tackle mostly any kind of
market requirement in minimum given time and giving the impressive outcome to
the clients. If we develop culture of agile then it can make a great impact on the long-
term success of company, Agile’s principles which are commonly utilised in the field
of software development can be applied to every other part of business, inclusive
of Human Resources (HR). Agile not only satisfy clients with their progressive
results but according to the survey the employees who are doing their work in agile
environment feel a great overall sense of satisfaction and pride in their work. They
feel more empowered as a result of having a clearer understanding of how their
function affects the business and working in a more collaborative atmosphere.

The methods employed in the research is briefly detailed here. The system’s
present design and architecture factors were first evaluated. Measurement of priority
weights was used to quantify design and architecture qualities. We estimated the
design’s utility metrics after successfully implementing two phase assessments. We
can take suitable remedial measures to improve the system’s efficiency based on the
results received.

In this research study we presented a framework to evaluate and measure agile
software’s efficiency by using an integrated strategy of Fuzzy MOORA and AHP.
The multi-objective optimization on the basis of ratio analysis which is collectively
referred to as MOORA, this approach was built by Brauers and Zavadskas in 2006 [1].
Fuzzy set theory helps to address the complication in tackling the obscurity in infor-
mation and the fuzziness in human perception, fuzzy set theory was first applied
by Zadeh in 1965. Multi-Objective Optimization on the basis of Ratio Analysis
(MOORA) also termed as multi-criteria or multi attribute optimization. It’s a frame-
work for synchronously enhancing more than two competing objectives (factors)
subject to certain limitations. It has overall two components, i.e., the reference point
approach and the ratio system approach. In MOORA various criteria and factors can
have different units. The priorities of conflicting criteria are considered by MOORA
technique, which were evaluated using AHP. Here AHP stands for Analytic Hier-
archy Process, it is a process which solves a problem in three hierarchal steps, the
initial part is the problem that it going to resolve, the secondary part is to find the
different solutions for one problem because a problem can we solve by alternate
methods, the method utilized to evaluate alternative approaches is the tertiary and
the most crucial part of the AHP method.

Evaluate and Measure Agile Software Efficiency … 161

2 Literature Review

In the past, the principles relevant to data distribution methods have been well known
and discussed.

Brauers et al. in 2012 [2] done a study on robustness of MULTIMOORA, which
states that different objectives have been taken care of by Multi-Objective Opti-
mization with the objectives keeping their own units. A cost-effective technique is
developed which process on the principle to balance and manage the criterions that
are conflicting, this process is named as multi-Objective optimization on the basis
of ratio Analysis (MOORA) [2].

Görener et al. in 2013 acknowledged in their research that using the multi-objective
optimization on the basis of ratio analysis (MOORA) and AHP they can rank the
locations of alternative branches of banks and target the locations with the profitable
client’s needs [3].

Kamariah et al. did a study in 2014 about the applications of hybrid MCDM
(Multi-Criteria Decision Analysis) for evaluating entrepreneurial intensity among
the SMEs they used Fuzzy Analytic Hierarchy Process (FAHP) for discovering the
weights of sub criteria and criteria [4].

Ashraf et al. (2013) analysed the effect on data retrieval time of fragmentation and
distribution and select the most suitable strategy of fragmentation focused mostly
on design and selection characteristics of both the database. It has been concluded
that as the technique is altered from centralised to distributed databases, the response
time decreases. Mazilu [5] in 2010 explored different approaches to replication of
databases and presented many benefits provided by them [6]. Various techniques
are also presented by the author in the form of cases in which data replication
can be applied. Goel and Buyya [7] proposed the algorithms of replication utilised
for various distribution systems and content management system through a survey.
Distributed DBMS, P2P networks, Data Grid and WWW were the replication algo-
rithms considered in this paper. Features such as performance, reliability, autonomy
of the site, control of the data and heterogeneity were used to evaluate these algorithms
[7].

Srivastava et al. in 2012. Highlights in their article the fundamental principles
behind distributed database systems, including the management of transactions and
access control. The suggested approach to implementing the homogenous distributed
database systems showed that contact traffic was decreased, and efficiencies were
improved. In order to achieve high data recall efficiency, Chen and others stated
in 2015 which was focused upon the use of clustering but explored usage geneti-
cally based clustering algorithm for data partitioning. Three new Genetic algorithm
operators were suggested by the authors [8].

AHP is a hypothesis that allows to scale or measure the absolute judgements that
how much one criteria or attribute is dominating in comparison to other criterions
or factors, this was stated by Saaty (2008). For implementing AHP firstly priority
scales must be derived then those are synthesized by simply multiplying with the
present parent node priorities [9].

162 A. Srivastava et al.

Priority weights were calculated by AHP, based on a expert opinion of stake-
holders, for the code smells of a business. Kapur et al. have put forward a framework
to explore the implementation of ERP systems using AHP through the Analytical
Hierarchy Process. In the implementation of ERP, the authors investigated 10 main
success factors. A contrast was made based on the opinion of experts and the priori-
ties were decided in relation to the essential success factors. Authors could improve
the implementation of the ERP using the proposed AHP-based Methodology [10].

After a comprehensive literature review of MOORA, AHP and data distribution
strategies, the authors concluded that a little work is being made on the selection of
the data distribution strategy in the research community. There is no work, however,
which can rank and choose the majority of effective data distribution strategy in
quantitative terms. This led authors to welcome the latest measurement research and
choose the best data distribution approach. This research explored a total of five
methods for data distribution and five parameters.

3 Agile

Agile software development has differential reaches to development of a software
in which solutions and requirements upgrade through the collaborative exertion of
cross-functional and self- organizing teams and their clients. Agile team prefer to
hand over the work in meagre, but adaptable, increments, instead of giving everything
to a “big bang” launch. Agile teams have legitimate structure to give a counter fir a
quick change because its results, requirements and plans are continuously evaluating.
Agile isn’t characterised by a lot of instructions or specific advancement strategies.
Or maybe, agile is a gathering of procedures that exhibit a guarantee to tight input
cycles and ceaseless.

Agile Manifesto

The approach of Agile towards development of software is explained by its promise
to develop the software in regular stages or incrementally. This strategy presents
clients with new releases, or versions, of software following brief intervals of work.
The brief intervals of work are frequently called sprints.

According to the Agile Manifesto, the four core values of Agile software
development are:

• Individuals and communication over process and tools.
• Prioritize working software instead of rigorous paperwork.
• Participation of customer instead contract disputes.
• Instead of following plan focuses on responding to changes.

The 12 principles that are stated in Agile Manifesto are:

1. Fulfilling clients’ needs through early and constant delivery of important work.

Evaluate and Measure Agile Software Efficiency … 163

2. Dividing enormous works in small assignments so that it can be completed
rapidly.

3. Observing that the finest work rises up out of self-coordinated teams.
4. Start by giving empowered team members with the bolster & environment

required by them, as well as believe them to get the entire job done.
5. Making procedure that support viable exercise.
6. Keeping up a consistent pace for finished work.
7. Always ready to welcome requirement to change anything in project, even it

is late.
8. Gathering and meeting with the project team and business professionals

consistently throughout the project.
9. Having a team to think about at normal interims on how to turn out to be

increasingly powerful, at that point tuning and modifying conduct in like
manner.

10. Estimating development by the amount of work done.
11. Consistently looking for greatness.
12. Saddling change for a competitive upper hand.

The purpose of Agile Manifesto is that the component of Agile methodologies
explains that the for values which is defines under the Agile manifesto sponsors the
process of software development which focuses on making quality products that fulfil
customer’s expectations and needs. The main motive to make those 12 principles is to
support and create a working climate which is totally concentrated on the consumer,
that coordinate business intentions and if the market focus and user needs changes
that can respond and pivot as quickly as possible.

4 Factors that Affect Agile Software Process

In this section some criterions are discussed which are very necessary for agile soft-
ware development. So after studying agile software development methodology, some
factors are extracted which are important for agile software development procedure,
after conveying a survey with the agile certified professionals to give 5 most impor-
tant factors from the list of many factors, then 5 important criterion are explained as
follows.

• Daily Scrum: In Agile when team member held meeting to discuss everyday’s
gaols that what they did yesterday? what will they going to do today? and are
there any flaw coming in your way? These meetings are termed as daily scrum
meeting which is also ‘’Daily Scrum”. These meetings are strictly held on same
place each day at same time. Daily scrum held in the morning which helps in
being clear about the day’s goals, daily scrum is typically has time-box of 15 min.
The leader of these meetings is addressed as Scrum Master.

• Iterative Development: in this method testers divide the whole software into
several modules and those modules then further go through the phase of unit testing

164 A. Srivastava et al.

independently after the unit testing phase these modules will integrated incremen-
tally and tested to ensure smooth interaction and interface between modules. End
time for the testing phase is not fixed in this method. In Iterative development
procedure is the process in which the development cycle goes on repeating itself
and keeps adding new features and functionalities in a cyclic repetitive manner.
Agile methodology joins the way of thinking of iterative and incremental soft-
ware advancement that is demonstrated around a continuous increment in features
additions and a cyclic release and redesigned upgraded pattern. The result of the
subsequent iteration is an improved working augmentation of the product. This
is rehashed until the product achieves the necessary functionalities.

• Agile Testing: We have discussed above about Agile testing where we elaborated
properly about each component of agile software testing. Basically agile has
some principles to run its testing, agile team focuses on continuous testing of
every iteration in the end of it because it is the only to monitor the progress of
the project, agile testing gives us proper and regular feedback which helps us to
make product met properly with the business requirements, acc to SDLC team
members has the approval to run test on the application while in agile BA’s and
developers are also included to test the application, in agile business teams are
involved in tests of every iteration because it give gives continuous feedback which
lessens the response time and expenses involved in fixing it, testing runs with the
implementation going on, agile does not support heavy documentation, reusable
checklists are used by the testers.

• Retrospective: In one of the 12 principles of Agile Manifesto, it is mentioned
that team must think about on how to become more effective, then adjust and tune
according to the behaviour. This principle fused in the agile groups in the face
of retrospective meetings. Retrospective meetings have the motive to reflect on
the most recent projects/sprints/milestones and to address the points which needs
to be improvised and then celebrate team wins. These meetings are to be held at
the end of the sprints and before the starting of next sprint, during retrospective
meetings teams survey the particular risky situations.

• User Story: A user story is a casual language portrayal of one or more aspects
of a software system used in product management and software development. A
user story is a tool used in agile development to capture a depiction of a software
feature from the perspective of the end-user. A user story depicts the user’s point of
view, what they require, and why they require it. Making a reorganized depiction
of requirement is easier with the help of a user story.

5 Approach Used to Measure Efficiency of Agile Software

We used an integrated strategy of Fuzzy MOORA and AHP to evaluate the efficiency
of an agile software. We are going to discuss now that what techniques and formulas
are used to find the values using the proposed layout of FUZZY MOORA and AHP.

Evaluate and Measure Agile Software Efficiency … 165

The norms and criterions have been evaluated and assigned by the priority weight
by the utilization of AHP, later on Fuzzy Based MOORA will use those priority
weights. It is an analytic tool utilized to resolve the problems with complex decision-
makings which gives us the quantitative values from the qualitative values.

Zadeh [11] developed the FUZZY set theory in 1965. This hypothesis helps in
modelling the framework quantitatively and qualitatively when their unclearness,
vulnerability and equivocalness exists. Fuzzy numbers can be of two types knows
as trapezoidal fuzzy numbers and triangular fuzzy numbers. We are going to use
triangular fuzzy numbers in this paper. Let µX(a) be represent the fuzzy sub-set X,
which maps element x in X into the interval of real numbers [0, 1].

µx (a) =
a − y
a − z′ y ≤ a ≥ z

=
a − c
z − c′ z ≤ a ≤ c

= 0, Others (1)

Above we mentioned the membership function µX(a) which is comprised of
triangular fuzzy numbers (y, z, c).

Now we are going to discuss about the steps which are adopted to conquer purpose
of this study.

5.1 Fuzzy Matrix of Decision

Making of the Fuzzy matrix of decision is the very initial step to use Fuzzy based
MOORA technique, which is made on the basis of expert responses. These experts
are those who have experience in depth regarding to the topic.

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

[
ya 11, y

b
11, y

c
11

] [
ya 12, y

a
12, y

a
12

] [
ya 13, y

b
13, y

c
13

] · · · [
ya 1n, y

b
1n, y

c
1n

]
[
ya 21, y

b
21, y

c
22

] [
ya 22, y

b
22, y

c
22

] [
ya 23, y

b
23, y

c
23

] · · · [
ya 2n, y

b
2n, y

c
2n

]
[
ya 31, y

b
31, y

c
31

] [
ya 32, y

b
32, y

c
32

] [
ya 33, y

b
33, y

c
33

] · · · [
ya 3n, y

b
3n, y

c
3n

]
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·[

ya m1, y
b
m1, y

c
m1

] [
ya m2, y

b
m2, y

c
m2

] [
ya m3, y

b
m3, y

c
m3

] · · · [
ya mn, y

b
mn, y

c
mn

]

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(2)

In the above matrix the lower, middle, and higher criteria is denoted by ya ij, y
b
ij, y

c
ij.

5.2 Fuzzy Decision Matrix’s Normalization

166 A. Srivastava et al.

T a i j =
ya i j√

∑m
1=1

[(
ya i j

)2 +
(
yb i j

)2 +
(
yc i j

)2
] (3)

T b i j =
yb i j√

∑m
1=1

[(
ya i j

)2 +
(
yb i j

)2 +
(
yc i j

)2
] (4)

T c i j =
yc i j√

∑m
1=1

[(
ya i j

)2 +
(
yb i j

)2 +
(
yc i j

)2
] (5)

Now in this step we have to normalize the decision matrix which is made by
the responses of experts by using the vector normalizing formula. By using above
formula, the normalized values for the elements of matrix of decision are evaluated.

5.3 Priority Weights Determination for Criteria

AHP is utilised to decide the specific weights for the priority in this step. In this
strategy we must conduct the pair-by-pair correlation of the criterions chosen by the
experts. All the criteria and factors are compared pair wise with each other (two at a
time) in this following technique. By using Saaty’s [9] scale 1–9 the qualitative judge-
ments of the comparison of two factors done by professionals, can be converted into
quantitative measure. The matrix structure captures the outcome of the comparison
which is named as matrix of judgement. When the values are allocated in the matrix
of judgement, priority weight (w) is evaluated after the normalization of the initial
matrix. The score of b in in the judgement matrix speaks to the overall significance
of the component in the row (i) over the component in the column (j).

X =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 b12 b13 · · · b1n
b21 1 b23 . . . b2n
b31 b32 1 . . . b3n
b41 b42 b43 · · · b4n
.

bn1 bn2 bn3 . . . 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

Sample of the judgement matrix is shown above.

Wi =
∑I

i=1

(
bi j∑J
j=1bi j

)

J
(6)

Evaluate and Measure Agile Software Efficiency … 167

The algorithm mentioned above is the algorithm which we going to use in this
following report to evaluate the weight of the priorities (W). In the above-mentioned
formula “j” denotes the column number while “i” denote the row number.

5.4 Weighted Normalized Fuzzy Matrix of Decision

va i j = Wi T
a
i j (7)

vb i j = Wi T
b
i j (8)

vc i j = Wi T
c
i j (9)

Above mentioned Eqs. (7), (8), (9) of the algorithm shoes that the weights obtained
by the AHP in preceding step is multiplied by each element present in the normalized
fuzzy matrix of decision for the extraction of weighted normalized fuzzy matrix of
decision.

5.5 Overall Rating for the Non-beneficial and Beneficial
Criteria

s+a
i =

n∑
j=1

va i j , W here j belongs to the bene f i cial cr i teria (10)

s+b
i =

n∑
j=1

vb i j , W here j belongs to the bene f i cial cr i teria (11)

s+c
i =

n∑
j=1

vc i j , W here j belongs to the bene f i cial cr i teria (12)

s−a
i =

n∑
j=1

va i j , Where j belongs to the non − bene f icial cr i teria (13)

s−b
i =

n∑
j=1

vb i j , Where j belongs to the non − bene f icial cr i teria (14)

s−c
i =

n∑
j=1

vc i j , Where j belongs to the non − bene f icial cr i teria (15)

168 A. Srivastava et al.

All the equations mentioned above will assist us to rate non beneficial and bene-
ficial criteria for every strategy. These equations will evaluate the overall ratings for
the strategy of data distribution and the beneficial and non-beneficial criterions for
the lower, middle, and upper values for triangular function.

5.6 Performance Index for Every Alternative

To determine the de-fuzzified values we will use the equation mentioned below in
this step, which will evaluate the overall index of performance (Si) for each and every
alternative.

Si
(
s+
i , s

−
i

) =
√
1

3

[(
s+a
i − s−a

i

)2 + (
s+b
i − s−b

i

)2 + (
s+c
i − s−c

i

)2]
. (16)

6 Discussions

In this paper the following data distribution sheet which contains AHP table and
fuzzy based MOORA calculations by keeping in mind the designing phase for the
local software like a video media player.

Table 1 is actually known as the cross matrix which is made for the comparison
purpose. These values are actually the quantitatively converted qualitative values
which are given by professionals/experts of the following field. It is basically calcu-
lated on the base of priority means what we want to choose over something and how
much priority we assign to something over something which are interrelated to each
other. In AHP we compare two criterions at a time, for e.g. Accessibility is compared
to A(Accessibility) first then it is compared to K(Availability) and so on, basically
every vertical criterion has been compared with every horizontal criterion.

Above in Table 2 we have calculated priority weights for each individual criterion.
Table 8.2 is the normalized form of the Table 1 which is evaluated using Eq. (6).

Table 1 Cross matrix—through AHP

Table 1—goal criteria A K M C

Accessibility 1 2 2 3

Availability 1/2 1 1 2

Manageability 1/2 1 1 2

Costs 1/3 1/2 1/2 1

Total 2.3333 4.5000 4.5000 8.0000

Note A(Accessibility), K(Availability), M(Manageability), C(Cost)

Evaluate and Measure Agile Software Efficiency … 169

Table 2 Criteria weights—through AHP

Table 1—goal criteria A K M C P.E.V

Accessibility 0.43 0.4444 0.44 0.3750 0.42

Availability 0.21 0.2222 0.22 0.2500 0.23

Manageability 0.21 0.2222 0.22 0.2500 0.23

Costs (H/S) 0.14 0.1111 0.11 0.1250 0.12

Total 1 1.0000 1.00 1.0000 1.00

Table 3 Fuzzy matrix of decision

A K M C

a b c a b c a b c a b c

User story 0.6 0.8 0.6 0.6 0.6 0.4 0.8 0.8 0.8 0.8 1 1

Daily scrum 0.4 0.6 0.6 0.2 0.2 0.2 0.2 0.4 0.6 0.6 0.6 0.6

Iterative Development 0.8 0.6 0.8 0.8 0.8 0.6 0.6 0.6 0.4 0.8 1 0.6

Agile testing 0.6 0.6 0.6 0.8 0.8 0.8 0.4 0.4 0.4 0.6 0.8 1

Retrospective 0.4 0.6 0.4 0.6 0.4 0.2 0.2 0.4 0.6 0.4 0.6 0.8

As we can see in the Table 3 above it is a matrix which contains values which
are filled by the three different experts who are professionals in their fields. The
triangular fuzzy number approach for making this matrix is used. The values in the
above matrix are the values which denotes the equivocalness on the scale of 0–1
between the two elements in which one is an attribute, and one is a condition which
is necessary for our software.

The contents of the Table 3 are normalized using the Eq. (3), (4), and (5) then as
the result we get the Table 4, which is normalized fuzzy Matrix of Decision.

The weighted normalized fuzzy matrix of decision mentioned in Table 5 is made
with the help of Analytic Hierarchy Process (AHP). The weights are ‘d’ in the Table
2. The values in the normalized fuzzy matrix of decision are multiplied by the weights
which are evaluated in the Table 2 then we get the resultant weighted normalized
fuzzy matrix of decision as exhibited above in Table 5.

The performance rating for the Table 6 is evaluated using the Eqs. (10) to (15).
Accessibility, Availability, and Manageability comes in the beneficial criteria that
means the values of the corresponding elements needs to be added and maximized
for the evaluation of performance rating. Now the Cost comes in the non-beneficial
criteria which values is needs to be subtracted and minimized using Eqs. (13) to (14).

In Table 7 the ranks of the overall performance rating are calculated by defuzzi-
fying the Beneficial and Non Beneficial matrix by the help of Eq. (16). Hence by
using the integrated strategy of AHP and Fuzzy MOORA, we evaluated the ranks of
the 5 criteria with the great success, that we extracted through correlational research
which are used in agile software development with help of some experts.

170 A. Srivastava et al.

Ta
bl
e
4

N
or
m
al
iz
ed
 f
uz
zy
 d
ec
is
io
n
m
at
ri
x

A
K

M
C

a
b

c
a

b
c

a
b

c
a

b
c

U
se
r
st
or
y

0.
25
2

0.
33
6

0.
25
2

0.
26
5

0.
26
5

0.
17
6

0.
38
1

0.
38
1

0.
38
1

0.
26
8

0.
33
5

0.
33
5

D
ai
ly
 s
cr
um

0.
16
8

0.
25
2

0.
25
2

0.
08
8

0.
08
8

0.
08
8

0.
09
5

0.
19
0

0.
28
6

0.
20
1

0.
20
1

0.
20
1

It
er
at
iv
e
D
ev
el
op

m
en
t

0.
33
6

0.
25
2

0.
33
6

0.
35
3

0.
35
3

0.
26
5

0.
28
6

0.
28
6

0.
19
0

0.
26
8

0.
33
5

0.
20
1

A
gi
le
 te
st
in
g

0.
25
2

0.
25
2

0.
25
2

0.
35
3

0.
35
3

0.
35
3

0.
19
0

0.
19
0

0.
19
0

0.
20
1

0.
26
8

0.
33
5

R
et
ro
sp
ec
tiv

e
0.
16
8

0.
25
2

0.
16
8

0.
26
5

0.
17
6

0.
08
8

0.
09
5

0.
19
0

0.
28
6

0.
13
4

0.
20
1

0.
26
8

Evaluate and Measure Agile Software Efficiency … 171

Ta
bl
e
5

N
or
m
al
iz
ed
 w
ei
gh

te
d
fu
zz
y
de
ci
si
on

 m
at
ri
x

A
K

M
C

a
b

c
a

b
c

a
b

c
a

b
c

U
se
r
st
or
y

0.
10
6

0.
14
2

0.
10
6

0.
06
0

0.
06
0

0.
04
0

0.
08
6

0.
08
6

0.
08
6

0.
03
2

0.
04
1

0.
04
1

D
ai
ly
 s
cr
um

0.
07
1

0.
10
6

0.
10
6

0.
02
0

0.
02
0

0.
02
0

0.
02
1

0.
04
3

0.
06
4

0.
02
4

0.
02
4

0.
02
4

It
er
at
iv
e
de
ve
lo
pm

en
t

0.
14
2

0.
10
6

0.
14
2

0.
08
0

0.
08
0

0.
06
0

0.
06
4

0.
06
4

0.
04
3

0.
03
2

0.
04
1

0.
02
4

A
gi
le
 te
st
in
g

0.
10
6

0.
10
6

0.
10
6

0.
08
0

0.
08
0

0.
08
0

0.
04
3

0.
04
3

0.
04
3

0.
02
4

0.
03
2

0.
04
1

R
et
ro
sp
ec
tiv

e
0.
07
1

0.
10
6

0.
07
1

0.
06
0

0.
04
0

0.
02
0

0.
02
1

0.
04
3

0.
06
4

0.
01
6

0.
02
4

0.
03
2

172 A. Srivastava et al.

Table 6 Performance rating

Beneficial (S +) Non-beneficial (S−)

a b c a b c

User story 0.253783 0.289416 0.233703 0.032892 0.041115 0.041115

Daily scrum 0.113007 0.1703 0.191961 0.24669 0.024669 0.024669

iterative Development 0.287835 0.252202 0.246094 0.32892 0.041115 0.024669

Agile testing 0.230541 0.230541 0.230541 0.24669 0.032892 0.041115

Retrospective 0.153167 0.190381 0.156329 0.016446 0.024669 0.032892

Table 7 Ranking of overall
performance rating

Name Rank

User story 3

Daily scrum 1

Iterative development 2

Agile testing 4

Retrospective 5

7 Conclusion

Agile is the mostly used and most advanced approach in software development now
a days, but the question is how much efficient this methodology is quantitatively
and qualitatively, for solving this problem we used the integrated strategy of Fuzzy
based MOORA and Analytic Hierarchy Process (AHP). We extracted 5 factors by
doing correlational research i.e., User Story, Daily Scrum, Iterative development,
Agile Testing, and Retrospective, we took quantitative values too for 5 factors from
certified agile experts those values were converted into fuzzy decision matrix using
the integrated strategy of Fuzzy MOORA and then that fuzzy matrix was normalized
by some calculations and using Eqs. (3), (4), and (5) that are mentioned in the
Sect. 5 of this paper. The above-mentioned strategies then placed using Horizontal
and Vertical Partitioning. We used AHP for determining priority weights for the 4
criterions for software quality i.e., Accessibility, Availability, Cost, Manageability,
and after using the Eqs. (7), (8), and (9) which are mentioned again in Sect. 5, it
is observed through the calculation that Accessibility got maximum weight than
other criterions. After that these weights were used in Fuzzy based MOORA for the
determination of the Ranks among the 5 Factors. The reason we calculated these ranks
is that to determine the best software development approach in Agile methodology.
After the calculations Daily Scrum gained the 1st Rank. For saving time and money
this method is useful for industry experts and researchers who wish to define factors
and criterions quantitively. So, this paper concludes that Daily Scrum is an important
entity to consider for better agility and growth.

Evaluate and Measure Agile Software Efficiency … 173

References

1. Brauers WKM, Zavadskas EK (2006) The MOORA method and its application to privatization
in a transition economy. Control Cybern

2. Brauers WKM, Zavadskas EK (2012) Robustness of Multimoora: a method for multi-objective
optimization. Informatica

3. Görener A, Dinçer H, Hacıoğlu U (2013) Application of multi-objective optimization on the
basis of ratio analysis (MOORA) method for bank branch location selection. Int J Finance
Banking Stud

4. Rostamzadeh R, Ismail K, Bodaghi Khajeh Noubar H (2014) An application of a hybrid MCDM
method for the evaluation of entrepreneurial intensity among the SMEs: a case study

5. Mazilu MC (2010) Database replication. Database Syst J
6. Ashraf I, Khokhar AS, Lundberg L (2013) Impact of data distribution on response time in

telecom databases. Int J Eng Res Appl
7. Goel S, Buyya R (2006) Data replication strategies in wide area distributed systems. Enterprise

service computing: from concept to deployment
8. Srivastava A, Shankar U, Tiwari SK (2012) Transaction management in homogenous

distributed real-time replicated database systems. Int J Adv Res Comput Sci Softw Eng
9. Saaty TL (2008) Decision making with the Analytic hierarchy process
10. Gupta V, Kapur PK, Kumar D (2016) Modelling and measuring code smells in enterprise

applications using TISM and two-way assessment. Int J Syst Assur Eng Manage
11. Zadeh LA (1965) Fuzzy sets. Int J Inform Control 8

Software Reliability Models and
Multi-attribute Utility Function Based
Strategic Decision for Release Time
Optimization

Vishal Pradhan, Joydip Dhar, and Ajay Kumar

Abstract The software industry is working hard to keep up with these rapid changes
by devising methods to increase the pace of their work without compromising soft-
ware quality and reliability. Various factors, such as the testing environment, testing
strategy, and resource allocation, can influence the optimal release time. The choice of
whether or not to release a software product would become much more complicated
and significant. When a software developer, clients, or end-users face significant
potential financial losses, a decision has strategic significance. A software release
decision is a trade-off between early release to take advantage of an earlier market
launch and product release deferral to ensure reliability. If a software product is
released too soon, the software developer must pay for post-release costs to correct
bugs. To decide the best software release time, two attributes, reliability and cost,
must be combined. This study discusses a realistic approach to determining when
to stop software testing that considers reliability and cost. A multi-attribute util-
ity theory-based proposed decision model is analyzed on various separate weighted
combinations of utility functions.

Keywords Software reliability growth model · Multi-attribute utility function ·
Optimal release time · Non-homogeneous poisson process

1 Introduction

Software technologies are the most prevalent human-made technology that impacts
our daily lives due to the importance of software applications in recent years. In
the last two decades, the penetration of software-based technologies into people’s
everyday lives has been remarkable. Everything we see around us is dependent on
software or has some connection to software systems. There is a requirement for

V. Pradhan (B) · J. Dhar · A. Kumar
ABV-Indian Institute of Information Technology and Management Gwalior,
Gwalior 474015, India
e-mail: vishal.iiitmg@gmail.com; vishalp@iiitm.ac.in

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Kumar and H. Pham (eds.), Predictive Analytics in System Reliability,
Springer Series in Reliability Engineering,
https://doi.org/10.1007/978-3-031-05347-4_12

175

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05347-4_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05347-4_12&domain=pdf
mailto:vishal.iiitmg@gmail.com
mailto:vishal.iiitmg@gmail.com
mailto:vishalp@iiitm.ac.in
mailto:vishalp@iiitm.ac.in
https://doi.org/10.1007/978-3-031-05347-4protect LY1	extunderscore 12
https://doi.org/10.1007/978-3-031-05347-4_12

176 V. Pradhan et al.

highly dependable, secure, and high-quality software development since our social
structure has become increasingly dependent on software-based technologies [31].
Reliability can only be accomplished by thoroughly testing the program before it is
made available to the public. Program errors are found, identified, and fixed through-
out the testing process, improving software reliability [13]. Reliability is an essential
statistic for evaluating commercial software quality in the testing and operational
phases. Software reliability may be defined as the likelihood of error-free software
execution in a particular environment over a predetermined duration [17, 23]. Non-
homogeneous Poisson process (NHPP) based growth models are frequently used in
software systems to describe stochastic failure behavior and measure growth relia-
bility [3, 5, 7, 9, 33].

NHPP models have also been extensively used in the cost-control analysis, soft-
ware time-to-market analysis, and resource allocation issues [1, 10, 12, 26, 32].
The correctness and security of a software system can only be improved with suf-
ficient testing time and effort, such as CPU hours and qualified testing specialists
[10, 29]. In general, software testing uses around half of the resources for software
development. Continuous software testing for a more extended period may obstruct
the timely delivery of the software system. Furthermore, it will quickly result in
significant development expenses. Simultaneously, shorter testing combined with an
insufficient debugging procedure would cause customer disappointment, potentially
affecting the growth of the software as well as the software firm’s goodwill. In today’s
market, a software testing budget should be prioritized over its development budget
[11, 20]. As a result, software reliability engineering provides a cost-effective com-
promise between client needs for dependability, accessibility, delivery time, and life
cycle [16, 19]. SRGMs are used to optimize testing techniques for increased orga-
nizational competitiveness, estimate the amount of required resources, and calculate
the overall cost of the development process [22, 34, 39, 40].

The software reliability may be predicted using appropriate software reliability
growth models (SRGMs) based on the fault count data obtained during the testing
process [21, 36]. The testing phase is the most significant since it is at this step
that the fault detection and removal procedure takes place, which is critical for the
dependability and quality of any software system. A critical decision point for man-
agement is when to end testing and release the software system to the user [30].
This is referred to as the “Software Release Time Problem”. Before being released,
the software is subjected to a rigorous testing procedure in order to identify flaws
that might have devastating effects if not corrected. Several methods of software
testing are now in use with the goal of eliminating faults. It’s possible that many
bugs went undiscovered because of the short testing time and the sudden release
[37]. The choice to release software is a complicated one, and there are significant
dangers involved with a release agreement that is either too rapid or too delayed
[18, 24]. One of the most common applications of SRGMs is to assist developers in
determining the optimal timing to deploy software [2, 6, 22, 35].

Software Reliability Models and Multi-attribute Utility Function … 177

The main contribution of this work is as follows:

1. Proposed new SRGMs with log-logistic and Burr Type XII distribution as a fault
detection rate.

2. This study suggests the multi-attribute utility theory based optimal release time.

2 Software Reliability Modeling

The NHPP based SRGM is used in this work. The NHPP is a method of calculating
the total number of faults found throughout the testing procedure. In this technique,
SRGMs such as exponential [8], delayed S-Shaped [41], inflected delayed S-shaped
[27], and power function have been used to anticipate potential bugs laying latent
in the program. Let N (t) be the total number of defects discovered at time t , and
m(t) be the expected number of faults. The failure intensity λ(t) is therefore linked
as follows:

m(t) = E[N (t)] =
∫ t

0
λ(s)ds , (1)

where N (t) has a Poisson probability mass function with parameter m(t), which is
as follows:

Pr{N (t) = n} =
m(t)n.e−m(t)

n! , x = 0, 1, 2, ... (2)

Various time-dependent models that describe the stochastic failure process of an
NHPP have been published in the literature. The failure intensity function λ(t) differs
across these models, and therefore m(t). In the case of finite failure NHPP models,
let “Λ” indicate the estimated total number of faults that would be identified given
infinite testing time.

One of the main goals of testing is to identify software faults to fix them. Once
the software code has been written, testing can begin. Before the software is released
to the public, the software testing team thoroughly tests it to ensure that the software
contains the least number of bugs. Despite the fact is that it is almost impossible to
eliminate all the software bugs. As a result, when the testing team tests the software,
there’s a probability they’ll only find a finite number of problems in the code (less
than the total number of faults).

2.1 Assumption

i. NHPP models the failure observation/fault removal phenomenon.
ii. The software system is susceptible to failure at any time due to errors that have

remained in the system.

178 V. Pradhan et al.

iii. There are a finite number of bugs present in the software.
iv. When a failure occurs, it is instantly removed.
v. The severity level of all faults is the same.
vi. The perfect debugging environment is taken into account.
vii. All remaining software faults have an equal impact on the failure rate.
viii. The number of defects discovered throughout the testing process is directly

proportional to the number of faults still present in the software.
ix. With a probability distribution function, each occurrence of failure is distributed

independently and identically across the software life-cycle.

As a result, finite numbers of bugs are perfectly eradicated, with the mathematical
equation. The finite failure NHPP models’ differential equation formulated based on
the modeling assumption and it expressed as:

dm(t)
dt

= r (t)[Λ − m(t)] (3)

When Eq. (3) is solved for the initial condition m(0) = 0, the MVF can be calculated
as follows:

m(t) = Λ[1 − e− ∫ t
0 r(v)dv] = Λ[1 − e−B(t)] (4)

m(t) = Λ.F(t) . (5)

where F(t) is a distribution function.
Various researches assume that fault detection is constant throughout the testing

process, but it is not possible in practical behavior. For the detection rate, we know
that it is low at the initial stage, and in the mid-stage, it’s on the peak; in the later stage,
it’s again low. So, the FDR is modeled through the specific distribution handling the
situation. Therefore, this study proposed the SRGMs with the two most applica-
ble distribution functions for B(t), i.e., Log-logistic and Burr type XII distribution
functions.

2.2 Fault Detection Rate

2.2.1 Log-Logistic Distribution

The logistic distribution and the log-logistic distribution are closely linked. A prob-
ability distribution whose logarithm has a logistic distribution is known as a log-
logistic distribution. Log(x) is distributed logistically with mean and standard devi-
ation if x is distributed loglogistically with parameters μ and σ. The log-logistic
distribution is a good replacement for the Weibull distribution. It’s a hybrid of the
Gompertz and Gamma distributions, with the mean and variance values equal to
one. The log-logistic distribution has its own status as a life testing model; it is an
increasing failure rate model as well as a weighted exponential distribution. The gen-
eralized log-logistic distribution refers to several distinct distributions that include the

Software Reliability Models and Multi-attribute Utility Function … 179

Fig. 1 Log-logistic distributions with effect of a shape and b scale parameter values

log-logistic as a particular instance. The Burr Type XII distribution and the Dagum
distribution, both of which have a second shape parameter, are examples. It’s a flex-
ible distribution family that may represent a wide range of distribution types that are
shown in Fig. 1. In survival analysis, this distribution is frequently used to simulate
events that have an initial rate increase followed by a rate decrease.

The log-logistic distribution with positive scale parameter γ and shape parameter
α is described as follows:

B(t) = (t
γ)

α

1 + (t
γ)

α , (6)

and the density function is:

b(t) =
(α

γ)(
t
γ)

α−1

[1 + (t
γ)

α]2 (7)

2.2.2 Burr Type XII Distribution

The Burr distribution can fit a wide range of empirical data. The parameters’ various
values span a wide range of skewness and kurtosis. As a result, it is used to represent a
range of data types in diverse disciplines such as finance, hydrology, and reliability.
The Burr type XII distribution generalizes Burr distribution with additional scale
parameters. It is a three-parameter family of positive real-line distributions. It’s a
versatile distribution family that may represent a variety of different distribution
forms that are shown in Fig. 2. Many widely used distributions, such as gamma,
log-normal, log-logistic, bell-shaped, and J-shaped beta distributions, are included,
overlapped, or have the Burr distribution as a limiting case (but not U-shaped). The
Burr distribution is also found in several compound distributions. A Burr distribution
is created by compounding a Weibull distribution with a gamma distribution for the
scale parameter. There are two asymptotic limiting cases for the Burr distribution:
Weibull and Pareto Type I.

180 V. Pradhan et al.

Fig. 2 Burr Type XII distributions with effect of a shape, b shape and c scale parameters

The Burr distribution’s cumulative distribution function (cdf) is:

B(t) = 1 − 1[
1 +

(
t
γ

)α]β , (8)

b(t) =
αβ
γ (

t
γ)

α−1

[1 − (t
γ)

α]β+1
(9)

2.3 Software Reliability Growth Models

m(t) = Λ[1 − e−B(t)] (10)

Software Reliability Models and Multi-attribute Utility Function … 181

2.3.1 Model-1

The MVF of Log-logistic FDR based SRGM is defined as:

m(t) = Λ

⎡

⎢⎢⎢⎣1 − e
−

(t
γ)

α

1 + (t
γ)

α

⎤

⎥⎥⎥⎦
. (11)

2.3.2 Model-2

The MVF of Burr type XII FDR based SRGM is defined as:

m(t) = Λ

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 − e

−

⎛

⎜⎜⎜⎜⎝1−
1[

1 +
(

t
γ

)α]β

⎞

⎟⎟⎟⎟⎠

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

. (12)

One of the most common applications of SRGMs is to assist developers in deter-
mining the optimal timing to deploy software. This study formulated a cost model
to estimate the best software release timing in the latter portion of this paper. This
field of study is strongly connected to the wider software reliability research.

3 Numerical Illustration

The practical applicability of the suggested problem is demonstrated in this section
using historical fault discovery data as an example. The fault count data set was used
for the numerical illustration. The non-linear least square estimation (LSE) method
is used to estimate model parameters. The estimated model parameter findings for
detected faults throughout the testing period are shown in Table 1.

The behavior of actual defects data for software release is observed in the graph
and most of them are in S-shaped form. This is further supported by the usage of
the log-logistic and Burr Type XII FDR function to detect software faults. As evi-
denced by the values of several comparison criteria, model-1 and model-2 provide
a perfect fit. Table 2 present the estimated values of proposed and existing models
for DS-1 to DS-6. Table 3 present a comparative analysis of the proposed and exist-
ing models. The comparison criteria used here are the sum of square error (SSE),
coefficient of determination (R2) and Adjusted R-square (R2

ad j) Fig. 3 illustrate a
graphical representation of estimated vs. real cumulative failures over time for a
better understanding. Based on these findings, we can conclude that the proposed

182 V. Pradhan et al.

Table 1 Datasets from the existing literature

Dataset (DS) Testing time Detected faults Remark

DS-1 [38] 18 Weeks 176 Failure data of large
medical record system

DS-2 [38] 17 Weeks 204 Failure data of large
medical record system

DS-3 [42] 21 Weeks 43 System test data for a
telecommunication
system

DS-4 [25] 30 Days 289 Real software project
failure data

DS-5 [8] 20 Weeks 100 Computer
Programming Center
of NTDS data

DS-6 [28] 19 Weeks 328 Reported from Ohba
1984 test data

Table 2 Estimated values of SRGMs parameters for all six datasets
DS Model-1 Model-2 GO model DSS model

Λ γ α Λ γ α β Λ b Λ b

DS-1 305.9 9.707 3.082 277.7 171.5 2.672 1805 985.9 0.9243 226.1 0.1741

DS-2 358.9 3.111 0.980 325.2 2.3E+4 0.842 1500 197.4 0.3985 192.5 0.8814

DS-3 106.7 19.63 1.917 82.74 661.8 1.903 987.2 1.6E+4 1.3E+4 62.30 0.1185

DS-4 831.0 35.76 1.880 651.3 171.0 1.841 21.30 6.2E+4 1.4E+4 495.7 0.0645

DS-5 52.85 5.29 1.448 67.19 1.334 4.198 0.083 31.66 0.1906 30.35 0.4601

DS-6 979.8 23.5 1.311 741.9 2768 1.301 626.4 760.5 0.0323 374.1 0.1977

Table 3 Performance comparison of SRGMs for all six datasets
DS Model-1 Model-2 GO model DSS model

SSE R2 R2 ad j SSE R2 R2 ad j SSE R2 R2 ad j SSE R2 R2 ad j

DS-1 2544 0.9598 0.9544 2315 0.9634 0.9556 4789 0.9243 0.9196 3246 0.9487 0.9455

DS-2 1034 0.9477 0.9402 910.2 0.9539 0.9433 1210 0.9388 0.9347 3489 0.8234 0.8117

DS-3 59.80 0.9855 0.9839 56.00 0.9864 0.9840 125.8 0.9612 0.9598 62.19 0.9849 0.9841

DS-4 2204 0.9912 0.9905 2194 0.9912 0.9902 9663 0.9612 0.9598 2277 0.9909 0.9905

DS-5 43.80 0.9714 0.9696 26.15 0.9830 0.9810 62.29 0.9596 0.9581 102.4 0.9336 0.9311

DS-6 2111 0.9892 0.9879 2025 0.9897 0.9876 2656 0.9865 0.9857 3205 0.9837 0.9827

model-2 produces good performance and is more realistic when it comes to forecast-
ing the growth behavior of application-based software systems.

In the next section we discuss about the optimal release policy.

Software Reliability Models and Multi-attribute Utility Function … 183

Time (t)

0

20

40

60

80

100

120

140

160

180
C

um
ul

at
iv

e
nu

m
be

r o
f f

au
lts

Actual faults
Model-1
Model-2
GO model
DSS model

8 10 12 14 16 180 2 4 6 0 2 4 6 8 10 12 14 16 18
Time (t)

100

120

140

160

180

200

C
um

ul
at

iv
e

nu
m

be
r o

f f
au

lts

Actual faults
Model-1
Model-2
GO model
DSS model

Time (t)

0

5

10

15

20

25

30

35

40

45

C
um

ul
at

iv
e

nu
m

be
r o

f f
au

lts

Actual
Model-1
Model-2
GO model
DSS model

0 2 4 6 8 10 12 14 16 18 20 22 0 5 10 15 20 25 30
Time (t)

0

50

100

150

200

250

300

C
um

ul
at

iv
e

nu
m

be
r o

f f
au

lts

Actual
Model-1
Model-2
GO model
DSS model

Time (t)

0

5

10

15

20

25

30

35

C
um

ul
at

iv
e

nu
m

be
r o

f f
au

lts

Actual
Model-1
Model-2
GO model
DSS model

0 5 10 15 20 25 30 2 4 6 8 10 12 14 16 18 20
Time (t)

0

50

100

150

200

250

300

350

C
um

ul
at

iv
e

nu
m

be
r o

f f
au

lts

Actual
Model-1
Model-2
GO model
DSS model

Fig. 3 a–f The fitting results of SRGMs comparison with actual failure data for DS-1-DS-6

4 Optimal Release Policy

With increasing competition in the software industry, continually changing client
expectations, and the usual challenges involved with software maintenance, the tim-
ing of a new software release has become increasingly critical for a software vendor’s
success in the market [15]. Given the fierce competition in the market, deploying soft-

184 V. Pradhan et al.

ware on time has become a vital aspect in deciding the software development team’s
success. The dynamic release problem in software testing processes is discussed
in this work [4]. The process of choosing between alternative courses of action in
order to achieve goals and objectives is known as decision-making. Software release
time, for example, estimating when it should be completed. Other managerial func-
tions rely substantially on decision-making, such as organizing, implementing, and
controlling [14].

If the testing period is extended in the software development process, the devel-
oped software will presumably be more reliable, but the testing cost will escalate.
If we end testing too soon, the program may have too many flaws, resulting in too
many failures during operation and significant losses owing to failure penalties or
customer discontent. We may incur a considerable testing expense if we spend too
much time testing. If the testing period is too short, the software may not be error-
free. As a result, software testing and release are mutually exclusive. The testing
procedure should determine the release timing dynamically. As a result, our goal is
to come up with an appropriate release policy that reduces the cost and time of soft-
ware testing while increasing the system’s reliability. The ideal release time based
on the cost-reliability criterion has been described and evaluated.

4.1 Cost and Reliability Modeling

4.1.1 Cost Modeling

1. Testing cost per unit testing time: The effort necessary to perform and execute
the testing procedure is included in the testing cost. The cost of testing rises
linearly with the time of the test. If C1 is the testing cost per unit time, then the
total testing cost is as follows:

CTC PU = C1.T . (13)

2. Debugging cost during testing-phase: This cost includes the testing team’s effort
to handle failures. The expected number of bugs identified during this time is
assumed linearly in software reliability literature. So, in the testing phase, the
error-debugging cost is:

CDC DT = C2.m(T) . (14)

3. Debugging cost during operational-field: In the operational phase, it is believed
that Debugging cost during operational-field C2(T) is proportional to the number
of software faults that were removed. Thus,

CDC DO = C3.[m(TLC) − m(T)] . (15)

Software Reliability Models and Multi-attribute Utility Function … 185

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Time (T)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
R

el
ia

bi
lit

y

4500

5000

5500

6000

6500

7000

7500

8000

8500

C
os

t

Reliability and Cost

0 5 10 15 20 25 30 35 40
Time (T)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
el

ia
bi

lit
y

1500

2000

2500

3000

3500

4000

4500

C
os

t

Reliability and Cost

Fig. 4 Cost versus testing time and reliability vs testing time for DS-2 and DS-5

Because C2 represents the deterministic cost to remove each fault per unit time
during testing, and C3(T) represents the cost of eliminating a fault during the
operational phase, C3 is typically more than C2, i.e., C3 > C2.

They presented a three-part software cost model structure: testing cost per unit time,
debugging cost in the testing phase, and debugging cost in the operational phase.
The mathematical version of the overall cost model is:

C(T) = CDC DT + CDC DT + CDC DO . (16)

= C1T + C2m(T) + C3[m(TLC) − m(T)] . (17)

4.1.2 Reliability Modeling

R(Δt/T) = e−[m(T +Δt)−m(T)] (18)

Cost and reliability analysis with time is shown in Fig. 4.

4.1.3 Release Time Problem Using MAUT

When a sequence of possibilities is presented, the goal is to obtain a conjoint measure
indicating how desirable one conclusion is in comparison to the others. It is a classi-
cal multi-objective optimization technique that addresses the optimization problem
by applying weights and utility functions to determine which objectives should be
prioritized [30]. The following is the formula for the multi-attribute utility function
(MAUF), a weighted sum of single utility functions. It is defined as follows:

186 V. Pradhan et al.

U (x1, x2, ...xn) = f (u(x1), u(x2), ...u(xn)) =
nΣ

i=1

θi ui (xi) (19)

This work uses MAUT to construct a new decision model for software release
schedule determination that trades off two conflicting objectives at the same time.

The process of determining the utility value consists of four steps.

1. Selection of Attributes.
2. Evaluate the utility function for a single attribute.
3. Allocation of credit and preference for trade-offs.
4. Single attribute to multi attribute utility function transformation.

1. Attribute selection Reliability is a necessary attribute that influences optimal
software time-to-market and testing length selections. As a result, the proposed
optimization problem’s first attribute is reliability (R). The second attribute is
overall software development cost (C), because no company wants to spend more
than it can afford. We take the R and C as two attributes in this study. Our initial
goal is to strike a compromise between these two goals by maximizing reliability
while minimizing total software development costs:

max : R(T) = e−[m(T+Δt)−m(T)] , (20)

min : C(T) =
[
C(T)
Cb

]
,

C(T)
Cb

≤ 1 . (21)

The total budget available to the testing team is denoted by Cb.

2. Single attribute utility function
Each attribute’s aim is represented by a utility function applied to each attribute.
The single-attribute utility theory (SAUF) expresses the level of satisfaction of
management concerning each of the attributes. There are many different functional
forms of the utility function, such as linear, exponential, and so on. The utility
function of two qualities, namely, reliability and cost function, is used in this
study. The linear (additive) form u(x) = y1 + y2x should be employed if they
are equivalent to each other because management is risk-neutral. The proposed
framework is illustrated as follows:

u(R) = lr R(T) + kr , (22)

u(C) = lcC(T) + kc . (23)

where, kr , lr , kc, lc are constants.

Software Reliability Models and Multi-attribute Utility Function … 187

Table 4 Optimal release time by MAUT for DS-2 and DS-5

Attribute weights Release time (T ∗)
wr wl DS-2 DS-5

0.4 0.5 14 11

0.5 0.6 15 13

0.6 0.4 16 15

0.7 0.3 18 17

0.8 0.2 20 21

0.9 0.1 25 27

3. Weight parameter estimation
The management decision determines the relative value of each attribute. In this
study, we perform various weight combinations values for each attribute. The
weight parameter has a value between 0 and 1, with a value closer to 1 denoting
greater significance. Furthermore, the sum of the weight parameters must equal
1, i.e.,

wr + wc = 1 . (24)

where wr and wc are weight for the reliability and cost respectively.

4. Formulation of MAUT
The MAUT function is created by multiplying all of the single utility functions by
their corresponding weights. The MAUT function with the maximizing objective
for the given problem is:

Max : U (R, C) = wr .u(R) − wc.u(C) . (25)

where
u(R) = 2R − 1 , (26)

u(C) = 2C − 1 . (27)

U (R, C) is a max function that has been written in terms of R and C . From the
manager’s perspective, R should be maximized while C should be minimized.
where, TLC = 1000, C1 = 100, C2 = 10, C2 = 50. For DS-2, Cb = 8500$, Δt =
0.025 and for DS-5, Cb = 8500$, Δt = 0.4. With the different combination of
weights to reliability and cost based optimal release time is shown in Table 4.

188 V. Pradhan et al.

5 Conclusions

It is also possible to optimize software release and testing times by maximizing util-
ity. The results show that a corporation should publish software early to achieve a
competitive edge. The solution to the problem can also assist software firms design
efficient release and testing procedures. In this work, we propose an effort-based
optimum decision model that takes into account the cost of detection during testing
and operational phases separately using MAUT. SRGMs provide a statistical founda-
tion for determining optimal software testing release time. A decision model based
on MAUT is suggested to make wise decisions on optimal test runs before soft-
ware release. This study optimizes cost and reliability using multi-attribute utility
theory and gets optimal release time. These models may help the software industry
anticipate software system dependability and release time.

Acknowledgements One of the authors, Mr. Vishal Pradhan, would like to thank to Ministry of
Education (earlier MHRD) for financial support provided. The support is gratefully acknowledged.

References

1. Chatterjee S, Chaudhuri B, Bhar C, Shukla A (2020) Optimal release time determination
using FMOCCP involving randomized cost budget for FSDE-based software reliability growth
model. Int J Reliab Qual Saf Eng 27(01):2050004

2. Chatterjee S, Shukla A (2017) An ideal software release policy for an improved software
reliability growth model incorporating imperfect debugging with fault removal efficiency and
change point. Asia-Pac J Oper Res 34(03):1740017, e2150

3. Chatterjee S, Shukla A (2019) A unified approach of testing coverage-based software reliability
growth modelling with fault detection probability, imperfect debugging, and change point. J
Softw Evol Process 31(3):e2150

4. Choudhary C, Kapur PK, Khatri SK, Muthukumar R, Shrivastava AK (2020) Effort based
release time of software for detection and correction processes using MAUT. Int J Syst Assur
Eng Manage 11(2):367–378

5. Dhaka R, Pachauri B, Jain A (2021) Two-dimensional SRGM with delay in debugging by
considering the uncertainty factor and predictive analysis. Reliab Theory Appl SI 2(64):82–94

6. Dhaka R, Pachauri B, Jain A (2022) Two-dimensional software reliability model with consid-
ering the uncertainty in operating environment and predictive analysis. In: Data engineering
for smart systems, pp 57–69. Springer

7. Goel AL (1983) A guidebook for software reliability assessment. Technical report, SYRACUSE
UNIV NY

8. Goel AL, Okumoto K (1979) Time-dependent error-detection rate model for software reliability
and other performance measures. IEEE Trans Reliab 28(3):206–211

9. Hsu C-J, Huang C-Y, Chang J-R (2011) Enhancing software reliability modeling and prediction
through the introduction of time-variable fault reduction factor. Appl Math Model 35(1):506–
521

10. Huang CY, Lo JH, Kuo SY, Lyu MR (2004) Optimal allocation of testing-resource considering
cost, reliability, and testing-effort. In: 10th IEEE Pacific Rim international symposium on
dependable computing proceedings, pp 103–112. IEEE

Software Reliability Models and Multi-attribute Utility Function … 189

11. Huang CY, Lyu MR (2005) Optimal release time for software systems considering cost, testing-
effort, and test efficiency. IEEE Trans Reliab 54(4):583–591

12. Jain M, Manjula T, Gulati TR (2014) Prediction of reliability growth and warranty cost of
software with fault reduction factor, imperfect debugging and multiple change point. Int J Oper
Res 21(2):201–220

13. Kapur PK, Goswami DN, Bardhan A, Singh O (2008) Flexible software reliability growth
model with testing effort dependent learning process. Appl Math Model 32(7):1298–1307

14. Kapur PK, Khatri SK, Tickoo A, Shatnawi O (2014) Release time determination depending on
number of test runs using multi attribute utility theory. Int J Syst Assur Eng Manage 5(2):186–
194

15. Kapur PK, Panwar S, Singh O, Kumar V (2019) Joint release and testing stop time policy with
testing-effort and change point. In: Risk based technologies, pp 209–222. Springer

16. Kapur PK, Pham H, Aggarwal AG, Kaur G (2012) Two dimensional multi-release software
reliability modeling and optimal release planning. IEEE Trans Reliab 61(3):758–768

17. Kapur PK, Pham H, Gupta A, Jha PC (2011) Software reliability assessment with OR appli-
cations. Springer

18. Kapur PK, Shrivastava AK, Singh O (2017) When to release and stop testing of a software. J
Ind Soc Probab Stat 18(1):19–37

19. Kapur PK, Singh O, Shrivastava AK (2014) Optimal price and testing time of a software under
warranty and two types of imperfect debugging. Int J Syst Assur Engi Manage 5(2):120–126

20. Kumar V, Sahni R, Shrivastava AK (2016) Two-dimensional multi-release software modelling
with testing effort, time and two types of imperfect debugging. Int J Reliab Saf 10(4):368–388

21. Kumar V, Saxena P, Garg H (2021) Selection of optimal software reliability growth models
using an integrated entropy–technique for order preference by similarity to an ideal solution
(topsis) approach. Math Methods Appl Sci

22. Lee DH, Hong Chang I, Pham H, Song KY (2018) A software reliability model considering the
syntax error in uncertainty environment, optimal release time, and sensitivity analysis. Appl
Sci 8(9):1483

23. Lin C-T, Huang C-Y (2008) Enhancing and measuring the predictive capabilities of testing-
effort dependent software reliability models. J Syst Softw 81(6):1025–1038

24. Majumdar R, Shrivastava AK, Kapur PK, Khatri SK (2017) Release and testing stop time of a
software using multi-attribute utility theory. Life Cycle Reliab Saf Eng 6(1):47–55

25. Meeker WQ, Hong Y (2014) Reliability meets big data: opportunities and challenges. Qual
Eng 26(1):102–116

26. Mishra G, Kapur PK, Shrivastava AK (2017) Multi release cost model : a new perspective. Int
J Reliab Qual Saf Eng 24(06):1740007

27. Ohba M, Yamada S (1984) S-shaped software reliability growth models, pp 430–436
28. Ohba M (1984) Software reliability analysis models. IBM J Res Dev 28(4):428–443
29. Pachauri B, Kumar A, Dhar J (2013) Modeling optimal release policy under fuzzy paradigm

in imperfect debugging environment. Inf Softw Technol 55(11):1974–1980
30. Pachauri B, Kumar A, Dhar J (2014) Software reliability growth modeling with dynamic faults

and release time optimization using GA and MAUT. Appl Math Comput 242:500–509
31. Pham H (2007) System software reliability. Springer Science & Business Media
32. Pham H, Zhang X (2003) NHPP software reliability and cost models with testing coverage.

Eur J Oper Res 145(2):443–454
33. Pradhan V, Dhar J, Kumar A (2022) Testing-effort based NHPP software reliability growth

model with change-point approach. J Inf Sci Eng 38(2)
34. Pradhan V, Dhar J, Kumar A, Bhargava A (2020) An S-shaped fault detection and correction

SRGM subject to gamma-distributed random field environment and release time optimization.
Decis Anal Appl Ind 285–300. Springer

35. Pradhan V, Kumar A, Dhar J (2021) Modelling software reliability growth through generalized
inflection s-shaped fault reduction factor and optimal release time. In: Proceedings of the insti-
tution of mechanical engineers, Part O: journal of risk and reliability, p 1748006X211033713

190 V. Pradhan et al.

36. Saxena P, Kumar V, Ram M (2021) Ranking of software reliability growth models: a entropy-
electre hybrid approach. Reliab Theory Appl SI 2(64):95–113

37. Shrivastava AK, Kumar V, Kapur PK, Singh O (2020) Software release and testing stop time
decision with change point. Int J Syst Assur Eng Manage 11(2):196–207

38. Stringfellow C, Amschler Andrews A (2002) An empirical method for selecting software
reliability growth models. Empir Softw Eng 7(4):319–343

39. Tamura Y, Yamada S (2019) Software reliability model selection based on deep learning with
application to the optimal release problem. J Ind Eng Manage Sci 2019(1):43–58

40. Tickoo A, Kapur PK, Shrivastava AK, Khatri SK (2016) Testing effort based modeling to
determine optimal release and patching time of software. Int J Syst Assur Eng Manage 7(4):427–
434

41. Yamada S, Ohba M, Osaki S (1984) S-shaped software reliability growth models and their
applications. IEEE Trans Reliab 33(4):289–292

42. Zhang X, Jeske DR, Pham H (2002) Calibrating software reliability models when the test
environment does not match the user environment. Appl Stochast Models Bus Ind 18(1):87–99

Reliability Analysis of Centerless
Grinding Machine Using Fault Tree
Analysis

Rajkumar B. Patil, Sameer Al-Dahidi, Saurabh Newale,
and Mohamed Arezki Mellal

Abstract Reliability analysis plays a crucial role in the design and operational
process. Fault Tree Analysis (FTA), one of the reliability evaluation techniques,
plays a crucial role in the design process. Fault Tree is a graphical representation of
major faults or critical failures associated with a system. It uses Boolean logic and
low-level event methods to analyze the possible mechanisms of failures and evaluate
the expected frequency of their occurrences by describing undesired states of the
system. To increase the reliability of a system, analysis of failure data is essential.
This Chapter addresses the FTA of the Centerless Grinding Machine (CGM) for
safety purposes.

Keywords Reliability analysis · Fault tree analysis · Failure data analysis ·
Reliability block diagram · Centerless grinding machine

1 Introduction

In 1961, the Fault Tree Analysis (FTA) concept was originated in Bell Telephone
Laboratories as a technique to evaluate U.S. Air Force’s Minuteman missile launch
control System [1, 2]. It was recognized by Boing in 1963 and caught attention in
System Safety Conference, held in Seattle, June 1965. Thereafter, the U.S. Federal
Aviation Administration (FAA) adopted FTA in 1970. FTA used in nuclear reactor

R. B. Patil (B) · S. Newale
Department of Mechanical Engineering, Pimpri Chinchwad College of Engineering,
Pune 411044, India
e-mail: rajkumar.patil@pccoepune.org; rajkumarpatil2009@gmail.com

S. Al-Dahidi
Department of Mechanical and Maintenance Engineering, School of Applied Technical Sciences,
German Jordanian University, Amman 11180, Jordan
e-mail: sameer.aldahidi@gju.edu.jo

M. Arezki Mellal
LMSS, Faculty of Technology, M’Hamed Bougara University, Boumerdes, Algeria
e-mail: mellal.mohamed@univ-boumerdes.dz

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Kumar and H. Pham (eds.), Predictive Analytics in System Reliability,
Springer Series in Reliability Engineering,
https://doi.org/10.1007/978-3-031-05347-4_13

191

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05347-4_13&domain=pdf
mailto:rajkumar.patil@pccoepune.org
mailto:rajkumarpatil2009@gmail.com
mailto:sameer.aldahidi@gju.edu.jo
mailto:mellal.mohamed@univ-boumerdes.dz
https://doi.org/10.1007/978-3-031-05347-4_13

192 R. B. Patil et al.

safety study presented in WASH-1400 commissioned under Prof. N. Rasmussen [3].
After the Challenger space shuttle accident, FTA is considered as one of the most
significant system safety analysis techniques by NASA [1].

FTA is one of the reliability and maintainability analysis tools that can be used
to solve complicated problems both proactively and reactively [4, 5]. FTA is often
used from the product design stage to identify failure causes or failures and resolve
design issues, especially related to risk and performance in a proactive manner.
In a reactive approach, FTA provides a mechanism for determining causality in
order to support the examination of unwanted or undesired events. FTA is a well-
established and widely acknowledged method for assessing the reliability and risk
of aeronautical [6], nuclear [7–9], chemical [10–14], mechanical [15], electrical
[16, 17], electronics [18], mechatronics [19], renewable energy facilities [5, 20],
and communication systems in the engineering domain [21]. This technique also
considers how systems interact with their surroundings, human performance at the
individual and organizational level, processes such as manufacturing, installation,
and commissioning, and procedures such as operation and maintenance. In the system
architecture, FTA applies to all levels of indenture.

The Fault Tree (FT) is a deductive methodology that graphically represents the
failure events, both fault and normal, that occur in a given system that causes the
occurrence of a well-defined outcome, called a top event [22, 23]. The top event is
the most undesired state of the system. FT determines, logically, how a lower-level
failure mode produces unwanted failures at a higher level. Boolean logic is used to
develop the mathematical model that lower-level events. Fault tree has similarities
with Reliability Block Diagram (RBD).

The top-down deduction of the fault tree diagram comprises qualitative and quan-
titative analysis [24]. The qualitative analysis involves defining all the combinations
of basic faults that result in the top event, and it is often carried out using Minimal Cut
Sets (MCSs) methodology. A given fault typically has more than one cut set that can
result in the top event. An MCS is a group or combination of events and occurrences of
which causes the top event to occur. The quantitative analysis uses Boolean algebra,
probability, and failure rate evaluation. The quantitative methods include developing
a mathematical equation to evaluate the FT, identifying Cut Sets (CSs) and MCSs.
The application area of the FTA technique includes modeling system dependability,
faults, reliability analysis, and the associated application to safety analysis. The
discussion will include algorithms to identify MCSs, techniques to measure event
importance, and estimating the occurrence probability for the specified top event.
FTA is a proven analytical tool for complex systems.

Centerless Grinding Machine (CGM) is one of the essential machine tools widely
used in manufacturing industries [25], especially in Western Maharashtra, India,
which is one of the largest manufacturing hubs. The reliability of the component
largely depends upon manufacturing processes and confirming the design tolerances
[26]. The CGM is widely used in grinding operations and is responsible for the
quality and reliability of the component. The CGM is also required to maintain high
precision as it is used in mass production systems in which failure of a single CGM
hamper the manufacturing rate [25, 27]. Furthermore, the degraded state of the CGM

Reliability Analysis of Centerless Grinding Machine … 193

can affect the quality of the manufactured components, and reaction rate increases.
In both these cases, the manufacturer has to bear the losses due to increased rejection
rate, degradation in the quality, and pay penalty as manufacturing targets could not
get achieved.

An extensive literature survey states that reliability analysis of CGM can be carried
out by using various methods such as Failure Modes and Effects Analysis (FMEA),
Reliability Block Diagram (RBD), Fault Tree Analysis (FTA), Markov chains, Petri-
nets, and fishbone diagram. Artificial Intelligence (AI), Machine Learning (ML),
Multi-Criteria Decision Marking (MCDM), and Internet of Things (IoT) are some of
the recent methods that can be integrated with traditional reliability analysis methods
at data collection methods, data analysis, system reliability modeling, and estimating
reliability metric [28–35]. The first level of reliability analysis requires identifying
possible faults, failures, events (external or internal) that cause the system to fail
or hamper the system performance. It also provides logical propagation of failure
from the lowest level events to the top event. The outcomes of the FTA are generally
helpful in carrying out a detailed investigation of the critical components.

In this regard, in this Book Chapter, the FTA is used in identifying the possible
failures or faults of the CGM and their effects on the performance and reliability of the
CGM are presented. The data collection, analysis, and modeling steps include some
of the recent methods mentioned above. This study considers the significant faults
observed in the field and is based on the field’s experts. The required data has been
collected from the maintenance engineers and their records, service engineers, design
engineers, and machine operators. An FTA methodology is proposed to construct
fault of the CGM, and carry out its qualitative and quantitative analysis. The primary
objectives of this study are:

• Review the concept of FT and propose a simple framework for the FTA of the
CGM;

• Constructing FT of the CGM considering dominating faults/ failures by resorting
to field failure data and expert judgments;

• Developing equivalent RBD, mathematical model, and prioritizing the events
based on their occurrence probabilities and reliability.

This Chapter presents the concepts of FT, definitions of terminology, illustrations
of mathematics, and discussions of application to a Centerless Grinding Machine
(CGM) for safety purposes. The remainder of the Chapter is organized as follows:
Sect. 2 presents the basics of Fault Tree Analysis (FTA); Sect. 3 illustrates the termi-
nology and symbols used in FTA; Sect. 4 presents an integrated case study on FTA of a
Centerless Grinding Machine (CGM); The insights of the FTA and the interpretation
of the case study are summarized in Sect. 5.

194 R. B. Patil et al.

2 Basics of Fault Tree Analysis (FTA)

FTA is a top-down method of analysis to identify the faults/failure causes (hence-
forth called events) or group of events that can lead to the defined top event. The
term “undesired event”, also called “top event” is used to describe a pivotal event
defined for a given situation. The top events are typically defined from either a
safety or reliability perspective. The top event is an end for the logic associations of
intermediate and basic events that result in its occurrence. The deduction process is
performed in steps from the top down in order to identify all basic/incomplete events
that contribute to the occurrence of the top event. The result is FTA considers combi-
natorial events, events that occur in combination to result in a top event, and single
failure events that result in a top event. Thus, it is a vital tool for safety, reliability,
and root cause analyses. Central to the analysis is the graphical model showing the
logical connections between events in relation to the top event. The graphical model
uses three basic symbols: events, gates, and transfers. The event symbol is a text
box containing a short description of the event. The first event described is the top
event. Other events are logically deduced downward from the top event. There is an
inherent cause-and-effect relationship between events.

However, the FT should not be confused with other analysis methods, like Failure
Modes, Effects, and Criticality Analysis (FMECA), which seeks to identify all
possible failures of components in a system [36–41]. The FT does not necessarily
contain all possible events of the components of a system or its operation. Only
those failure modes that contribute to the existence occurrence of the top event are
modeled. Each top event description is specific so that only those events that result
in the specific top event apply. If a new top event is described, the FT must be
constructed that contains only events that result in the new top event. As a result,
systems or subsystems may require multiple FTAs to identify and characterize the
failure modes and mechanisms for all undesired events. Gate symbols define the
logical requirements of the lower-level events to result in the event immediately
above. As the gates are completed, the FT progresses through the gates concluding
in the top event after the uppermost gate inputs are satisfied.

The general methodology used for the fault tree analysis of the CGM is summa-
rized in Fig. 13.1. The first step in the FTA is to select a system, including a clear
understanding of the system functionality and the need for fault tree analysis. There-
after, the top event of the fault tree should be defined based on the primary objectives
of the FTA. The significant events (intermediate and basic) causing the top event to
occur are then to be identified. The ground rules, including symbols and logic gates,
need to be defined properly to construct the fault tree and connect the events to inter-
mediate and top events logically. The fault tree is then constructed by connecting the
basic events to intermediate and top events. The developed fault is then converted into
a mathematical equation (qualitative evaluation) and the probability of occurrence of
the basic, intermediate, and top events (quantitative evaluation) are calculated using
field failure. Constructing a model and producing an evaluation suitable for practical
interpretation to support a correct decision is easy for a clear and well-defined top

Reliability Analysis of Centerless Grinding Machine … 195

Fig. 13.1 Methodology
used in FTA Select system

Define top event

Define symbols and notations

Construct fault tree

Evaluate and analyze fault tree

Interpret results

event, with documented decisions relating to scope and resolution and ground rules
governing the conduct of the analysis.

The most critical part of the FTA is interpreting results. It includes identifying
the critical events, intermediate events, components, and subsystems, and estimating
their probability of occurrence and minimal cut-set. The obtained results need to
be used to improve system design, selection of components, deciding maintenance
practices, and defining troubleshooting procedures. The logic and math identify
the high-risk paths, deficiencies, common-mode, and common cause failures of the
system. The qualitative and quantitative interpretation provides better information
for better decisions. Better decisions early in design, development, and production
enable higher in-service reliability and reduced risk. In-service, FTA is applied in
investigative efforts to identify causality and eliminate failure modes that result in
undesired events.

3 Terminology and Symbols

The graphical model uses three basic symbols: events, gates, and transfers. Events
are shown by a text box (rectangular, circular, etc.) containing a basic description of
the event. Gate symbols are the symbols that identify the logical construct for the
input to output relationship. Transfer symbols are used to depict internal and external
relationships in the organization of the tree. This section describes the terminologies
and symbols used in the construction of the fault tree.

196 R. B. Patil et al.

Table 13.1 Event symbols

Symbol Event Meaning

Top or intermediate event It represents the most unwanted or undesired
event associated with the system or
sub-system

Basic event It is an independent elementary event
representing a basic fault or component. The
analysis ends with the basic event

Undeveloped or incomplete event The events which cannot be developed further
either information or knowledge is not
available or because it is of insufficient
consequence

Conditioning event Specific circumstances or conditions that are
applicable to a logic gate. It is primarily used
with the “PRIORITY AND” and “INHIBIT”
gates

House or external or normal event An event that is normally expected to occur.
A normally occurring event that may not be
considered as a fault

3.1 Event Symbols

The creation of any fault tree commences with the definition of the top event and
identifying all internal and external events that result in the occurrence of the top
event. The lower-level events, intermediate, basic, undeveloped, conditioning, and
external events are connected to the top events. The symbols used for showing these
event symbols are summarized in Table 13.1. The event symbol for an event is a
box containing a basic description of the event. Once the first event description is
complete, other events are deduced downward from the top event. The deduction
breaks down the higher event into parts with lower events describing all the possible
ways to get the event immediately above. The breaking down continues until a point
is reached where basic events, which serve as the enabling inputs to the tree, are
identified. Basic events are represented by circles, always at the furthest point down
any route leading to the top event. Between the top event and the basic events are all
the intermediate events. Top events and intermediate events are denoted in rectangle
boxes.

3.2 Gate Symbols

Each identified event should be connected to the intermediate and top events using
logic gate symbols. The logic gate symbols define the logical requirements of the

Reliability Analysis of Centerless Grinding Machine … 197

Table 13.2 Gate symbols

Symbol Gate Meaning

AND The higher-level (output) event occurs if and only if all lower-level
(input) events occur. Therefore, in Boolean algebra, the output is the
intersection of the input events

OR The occurrence of one of the lower-level (input) events causes the
higher-level (output) event to occur. Therefore, in Boolean algebra,
the output is the union of the input

Priority AND The higher-level (output) event occurs if and only if all of the
lower-level (input) events occur in a definite order. It is a special case
of AND gate

Exclusive OR The higher-level (output) event occurs if exactly one of the
lower-level (input) events occurs. Both events cannot occur at the
same time. It is a special case of OR gate

n

Combination The higher-level (output) event occurs if ‘n’ of the lower-level (input)
events occurs. It allows a user to specify the number of failures
within a group of inputs that will result in output from the gate

Inhibit The higher-level (output) event occurs if a single lower-level (input)
event occurs in the presence of an enabling condition

lower-level events to result in the event immediately above. The fundamental logic
gate symbols are AND and OR. Each of these has at least two lower-level events and
one immediate higher-level event. In the higher-level event, the AND gate occurs
if and only if all lower-level event occurs. The higher-level event for the OR gate
occurs if and only if at least one of the lower-level events occurs. If more complex
logical relationships are required, other logical representations such as priority AND,
exclusive OR, combination, and inhibit gates are used to describe the relationships.
The gate symbols, along with their logical meaning, are summarized in Table 13.2.
The gates provide an organized logic for the fault tree and are the analytical foundation
of the fault tree analysis.

3.3 Transfer Symbols and Definitions

The transfer symbol is typically a triangle, and the transfer-in and transfer-out
symbols are shown in Table 13.3. The transfer symbols help to construct and display
the fault tree with clarity if there are more and more events that cause the top event

198 R. B. Patil et al.

Table 13.3 Transfer symbols

Symbol Gate Meaning

Transfer-in Transfer-in indicates that the tree is developed further at the
occurrence of the corresponding transfer-out

Transfer-out Transfer-out indicates that this portion of the tree must be
attached at the corresponding transfer-in

to occur. It allows the fault tree constructor to insert the sub-fault tree into the main
fault tree. Transfer symbols also provide a means to manage time by eradicating the
need to redraw tree branches that are duplicated in other locations.

3.4 Fault Tree Construction

Fault tree construction is a top-down approach and starts with defining the top event
and connecting all possible events to the top event by using logic gates. Event descrip-
tions, predominantly the top event, are critical elements of the fault tree method-
ology. Event descriptions, though simple and brief, must comprise not only unde-
sired or failure states of the component but also a description of when the event
resulting in that state occurs. The “what” and “when” criteria are essential to all
event descriptions.

A sample fault tree for a “Pen is not working” (top event) is shown in Fig. 13.2. The
reason failure of a ballpoint pen can be internal or external and therefore these two
intermediate events are connected to the top event by OR logic gate as the occurrence
of one of the intermediate events leads to the occurrence of the top event. Broken
cover and thread failure are taken here as external events and they are connected
to the intermediate event by or gate as the occurrence of any event will cause the
intermediate to occur. Furthermore, refill failure and pointer failure due to human
mistakes are considered internal failures, and they are connected to the intermediate
event by the OR gate. Several other events could lead to the occurrence of the top
event, intermediate events, and undeveloped events, and can be considered for more
detailed analysis.

4 A Case Study: Centerless Grinding Machine

In this section, a detailed case study on a centerless grinding machine is presented.
The basic principle of centerless grinding operation is presented in Fig. 13.3, and a

Reliability Analysis of Centerless Grinding Machine … 199

Fig. 13.2 A simple fault for
ballpoint pen failure

A – broken cover, B – thread failure, C – refill failure, D –
pointer failure due to human mistake

typical centerless grinding machine is shown in Fig. 13.4. Centerless grinding is a
process for uninterruptedly grinding cylindrical surfaces in which the workpiece is
supported by rest blades and not by the chuck. The two wheels ground the workpiece.
The bigger grinding wheel grinds, while the smaller regulating wheel, which is
slanted at an angle, controls the speed of the workpiece’s axial movement. External
or internal centerless grinding, traverse feed, or plunge grinding are all options.
External traverse feed grinding is the most prevalent method of centerless grinding.
The centerless grinder has the grinding wheel on the left, the work blade in the center,
and the smaller diameter regulating wheel on the right, as seen from the operator’s
perspective. The centerlines of the grinding wheel and regulating wheel are in the
same plane, at identical heights above the machine bed, in most applications. The
work blade has to be adjusted so that the centerline of the workpiece is above the
centerline of the grinding and regulating wheels to provide rounding action. For
successful centerless grinding, this is a crucial relationship.

The contact points form three sides of a square of the workpiece rests on a flat
work blade in the center with the regulating and grinding wheels. Any high loca-
tion on the workpiece will displace the work slightly on the blade as the part is
ground in this technique, allowing the grinding wheel to cut a low spot precisely
opposite the high spot. This configuration will eventually result in three lobes on

Fig. 13.3 Principle of centerless grinding machine [42]

200 R. B. Patil et al.

Fig. 13.4 A typical centerless grinding machine (adapted from [43])

the workpiece that are dimensionally exact but not round. The centerless operation
generates roundness by using an angled work blade that slopes toward the regulating
wheel and supports the workpiece centerline above the centerlines of the regulating
and grinding wheels. Because of the angle produced between the centerlines of the
wheels and the workpiece, if a high spot comes into contact with either the blade or
the regulating wheel, it does not create a directly opposite low spot.

The work blade’s angle helps keep the workpiece in contact with and under control
of the slower rotating regulating wheel, preventing the workpiece from “spinning up”
to the grinding wheel’s speed. A spin-up can move a workpiece from 850 rpm to
nearly 60,000 rpm in the blink of an eye in some situations. This isn’t something
you’d like to happen. One-half of the workpiece diameter above the centerline of the
grinding and regulating wheels is a good rule of thumb for establishing the correct
height for a workpiece up to 1 inch in diameter. For a workpiece with a diameter of
one inch, the height should be half an inch above the wheel’s centerline.

Blade angles for centerless grinding work range from 0 to 45°. A top blade angle
of 30° appears to be ideal for most centerless grinding applications. However, there
are limitations. A shallower blade angle is appropriate for greater diameter and longer
work. Setting the regulating wheel to a low speed, around 30 rpm, is also a good place
to start improving the centerless grinding process. The diameter of the workpiece
and the rate of stock removal are factors in regulating wheel rotation speed. A black
diagram of the typical centerless grinding machine is shown in Fig. 13.5. Its func-
tionality and performance depend primarily upon the regenerative center function,
regenerative function, grinding stiffness, contact compliance of regulating wheel,
contact compliance of grinding wheel, and grinding machine.

Reliability Analysis of Centerless Grinding Machine … 201

Contact compliance of
regulating wheel

Regenerative
center

Regenerative
function

X Grinding
stifness

Contact compliance of
grinding wheel

Compliance of grinding
machine

Y

Fig. 13.5 Block diagram of a typical centerless grinding machine

4.1 Construction of Fault Tree

The centerless grinding machine consists of a large number of components, assem-
blies, and components and several failure causes (failure events), the occurrence of
which results in the failure of the whole centerless grinding machine or stops func-
tioning or will not give the required output. The required failure data is collected from
the user of the centerless grinding machine. It includes several subsystems, compo-
nents, failure causes, the occurrence of events, and expert judgments. Records such as
maintenance registers, daily, weekly and monthly maintenance predictive and correc-
tive maintenance sheets, and observations of a maintenance engineer, operator, and
supervisors are collected for one year. A detailed fault of the centerless grinding
machine (it includes major failures, faults, failure causes, and failure modes) has
been prepared considering only significant failure events, the occurrence of which
led to the failure of the centerless grinding machine. Several components rarely fail,
or failure of which does not lead to the failure of the whole system are neglected. The
symbols used to show events, and logic gates defined in Sect. 3 are used to construct
the fault tree.

4.1.1 Defining Top Event

The centerless grinding machine is expected to manufacture/provide the required
surface finish to the components over a given period of time without failure. If
the CGM is continuously producing the components which does not the design
requirement then it is also considered a failure. therefore, the top event is considered
as Failure of CGM (T). It means the occurrence of any event which causes the CGM
to manufacture the component does not fulfill the design requirements. The next step
in the fault tree construction is to find out the next level intermediate/basic events and
occurrence of which lead to the occurrence of the top event. There are such 12 events

202 R. B. Patil et al.

Grinding wheel failure F1 – Grinding wheel failure

1 - Worn-out surface

2 – Damaged grinding wheel holding
device

3 – Overloading 1 2 3

Fig. 13.6 Fault tree of grinding wheel failure

namely grinding wheel failure, work blade failure, swivel plate failure, ball screw
assembly failure, cooling system failure, grinding wheel head failure, regulating
wheel failure, regulating wheel head failure, main motor failure, lubrication system
failure, hydraulic system failure, and human error. The name and terminologies
of intermediate events are defined based on the literature review, names used in
industries, and referring to the manuals and registers.

4.1.2 First Level Lower-Level Event

The grinding wheel is one of the critical components as it continuously carries out
the direct grinding operation and has to provide the required surface finish to the
components to be manufactured. The failure of the grinding wheel may result in a
burnt workpiece, chatter marks on the workpiece, and poor surface finish. The failure
of the grinding wheel (F1) is primarily due to the worn-out surface due to continuous
usage (1), damaged grinding wheel holding unit (2), and overloading due to known
or unknown reasons (3). These three events (1, 2, and 3) are connected to the F1 by
the OR gate, as shown in Fig. 13.6. The failure of the grinding wheel will result in
burning out the workpiece, chatter marks on the workpiece, poor surface finish, and
increased rejection rate of the components.

Work blade is another component that plays a crucial role in the smooth func-
tioning of the CGM. The failure of the work blade (F2) occurs due to several lower-
level events: if it is integrated with the wrong tool (4), fixed at incorrect tension (5),
set at incorrect tension (6), and wear and tear (7). Events 4, 5, 6, and 7 are connected
to F2 by the OR gate as the occurrence of one of the events leading to the occurrence
of the event F2, shown in Fig. 13.7.

Another intermediate event, the occurrence of which leads to the occurrence of the
top event, is swivel plate failure (F3). The event F3 occurs impact loading, reduced
hardness, and swivel offset and connected to it by OR gate, shown in Fig. 13.8.

The failure of the CGM can also be due to the failure of the ball screw assembly
(F4). Misalignment (11), improper lubrication (12), and worn-out balls or screws
(13) are the events that cause the ball screws to function improperly. The fault tree
of the ball screw assembly failure is shown in Fig. 13.9.

The grinding operation generates a lot of heads and should be dissipated properly
to manufacture the workpiece with designed tolerances. Therefore, the failure of the

Reliability Analysis of Centerless Grinding Machine … 203

Work blade failure F2 – Work blade failure

4 – Integrated with wrong tool

5 – Fixed at incorrect tension

6 – Set at incorrect angle

7 – Wear and tear 4 5 76

Fig. 13.7 Fault tree of work blade failure

Swivel plate failure F3 – Swivel plate failure

8 – Impact loading

9 – Reduced hardness

10 – Swivel offset
8 9 10

Fig. 13.8 Fault tree of swivel plate

Ball screw assembly failure F4 – Ball screw assembly failure

11 – Misalignment

12 – Improper lubrication

13 – Worn-out balls or screw
11 12 13

Fig. 13.9 Fault tree of ball screw assembly failure

cooling system led to the occurrence of the top event. The cooling system failure
(F5) generally takes place due to contamination of foreign particles (14), coolant
pump failure (15), the incorrect combination of coolant and water (16), leaked hose
(17), and failure of control system (18). The fault tree of the cooling system failure
is shown in Fig. 13.10.

The failure of grinding wheel head (19), regulating wheel (20), regulating wheel
head (21), main motor (22), lubrication system (23), hydraulic system (24), and
human error (25) are some of the identified first-level intermediate events. There
may be many lower-level events that may cause these events (19 to 25) to occur.
However, the detailed information was not available and or recorded. Furthermore,
these events are connected to the top event by the OR gate and are shown in Fig. 13.11.

204 R. B. Patil et al.

Cooling system failure F5 – Cooling system failure
14 – Contamination of foreign particles
15 – Coolant pump failure
16 – Incorrect combination of coolant
and water
17 – Leaked hose
18 – Failure of control systems

14 16 18

15 17

Fig. 13.10 Fault tree of cooling system failure

4.2 Qualitative Evaluation of Fault Tree

Qualitative analysis of FT of CGM developed in the previous section gives the
relationship between undeveloped/basic and intermediate events with the top event.
Minimal cut sets i.e., all the combinations of undeveloped events which, when they
happen simultaneously, lead to the system failure can also be obtained. For analysis
purposes, the developed FT diagram is transformed into an equivalent reliability
block diagram (RBD). All the undeveloped events are connected to the top event
directly or indirectly by the ‘OR’ gate and the occurrence of a single event leads to
the occurrence of the top event. Therefore, all the basic events are connected in series
(series configuration) as shown in Fig. 13.12.

In the case of series configuration, all events are critical events as the failure of a
single event led to system failure or causes the top event to occur. Since reliability is
a probability, the reliability of centerless grinding machine may be determined from
the probability of non-occurrence of the events as:

1 - event 1 does not occur
2 - event 2 does not occur

.

.

.

25 - event 25 does not occur

The probability of survival (reliability) of the centerless grinding machine is
estimated using the laws of probability as:

RCGM = P(X1 ∩ X2 ∩ X3 ∩ X4 ∩ X5 ∩ X6 ∩ X7 ∩ X8 ∩ X9 ∩ X10 ∩ X11 ∩ X12

∩ X13 ∩ X14 ∩ X15 ∩ X16 ∩ X17 ∩ X18 ∩ X19 ∩ X20 ∩ X21 ∩ X22 ∩ X23 ∩ X24 ∩ X25

RCGM = P(X1) × P(X2) × P(X3) × (X4) × P(X5) × P(X6) × P(X7) × P(X8) × P(X9)

× P(X10) × P(X11) × P(X12) × P(X13) × P(X14) × P(X15) × P(X16) × P(X17) × P(X18)

× P(X19) × P(X20) × P(X21) × P(X22) × P(X23) × P(X24) × P(X25)

Reliability Analysis of Centerless Grinding Machine … 205

Fa
ilu

re
 o

f C
G

M
 (T

)

F1

1
2

3

4
5

7
6

F2

F3

8
9

10
 11

12
13

F4

14
16

18

15

17

F5

19
21

24
20

22

23
25

F
ig
. 1
3.
11

Fa
ul
t t
re
e
of
 th

e
ce
nt
er
le
ss
 g
ri
nd
in
g
m
ac
hi
ne

206 R. B. Patil et al.

1 32 4 5

Fig. 13.12 Equivalent reliability block diagram of centerless grinding machine

However,

P(X1) = R1; P(X2) = R2; P(X3) = R3; . . . ; P(X25) = R25;

where, R1—the reliability or probability of non-occurrence of event 1, R2—the reli-
ability or probability of non-occurrence of event 2, R3—the reliability or proba-
bility of non-occurrence of event 3, …, and R25—the reliability or probability of
non-occurrence of event 25.

RCGM = R1 × R2 × R3 × R4 × R5 × R6 × R7 × R8 × R9 × R10

× R11 × R12 × R13 × R14 × R15 × R16 × R17 × R18 × R19 × R20

× R21 × R22 × R23 × R24 × R25

∴ RCGM =
25∏

i=1

Ri = R1 × R2 × R2 × · · · × R25 (1)

Equation (1) is the governing reliability model of the centerless grinding machine.
In this case, all the events of the centerless grinding machine are assumed to be
independent (i.e., the occurrence or non-occurrence of one event component does
not affect the occurrence or non-occurrence of the other event). In other words, in
order for the system to function, all 25 events should not occur. Furthermore, if the
values of probability of occurrence (Fi) for all the 25 events are known, the reliability
of the centerless grinding machine (RCGM) is calculated as:

∴ RCGM =
25∏

i=1

(1 − Pi) = (1 − P1) × (1 − P2) × (1 − P3) × · · · × (1 − P25) (2)

The reliability (or probability of non-occurrence) of the first level intermediate
events can be estimated as:

RF1 = (1 − P1) × (1 − P2) × (1 − P3) (3)

RF2 = (1 − P4) × (1 − P5) × (1 − P6) × (1 − P7) (4)

RF3 = (1 − P8) × (1 − P9) × (1 − P10) (5)

Reliability Analysis of Centerless Grinding Machine … 207

RF4 = (1 − P11) × (1 − P12) × (1 − P13) (6)

RF5 = (1 − P14) × (1 − P15) × (1 − P16) × (1 − P17) × (1 − P18) (7)

Equations (3) to (7) can be used to estimate the reliability/probability of non-
occurrence of intermediate events F1 to F5.

4.3 Quantitative Evaluation of Fault Tree

In quantitative analysis, the probability of occurrence of all 25 events is estimated
using the laws of probability. As mentioned in the previous section that the required
database for the analysis has been collected from the users of the centerless grinding
machine. For some events, the failure probabilities are assumed or estimated using
expert judgment. The experts included the employees engaged in maintenance
activity, operators, service engineers, and design engineers of the centerless grinding
machine. The probability of occurrence of all basic events is also cross-verified using
expert judgments. The probability of occurrence of the events is summarized in Table
13.4.

The estimation of the probability of non-occurrence of intermediate events, F1 to
F5, using Eqs. (3)-(7) are as given below:

RF1 = (1 − 0.09) × (1 − 0.001) × (1 − 0.002) = 0.91 × 0.999 × 0.998 = 0.9072

RF2 = (1 − 0.03) × (1 − 0.03) × (1 − 0.06) × (1 − 0.075) = 0.8181

RF3 = (1 − 0.085) × (1 − 0.06) × (1 − 0.009) = 0.8523

RF4 = (1 − 0.08) × (1 − 0.06) × (1 − 0.06) = 0.8129

RF5 = (1 − 0.04) × (1 − 0.08) × (1 − 0.004) × (1 − 0.009) × (1 − 0.004) = 0.8683

Furthermore, if the values of probability of non-occurrence i.e., reliability of the
centerless grinding machine are calculated as:

RCGM = RF1 × RF2 × RF3 × RF4 × RF5 = 0.9072 × 0.8181 × 0.8523 × 0.8129
× 0.8683 = 0.4465

Therefore, the system reliability is estimated to be 0.4465. It is observed that the
events human error (25), worn-out grinding wheel (1), impact loading on swivel plate

208 R. B. Patil et al.

Table 13.4 Probability of occurrence of the events

Event Name Symbol Probability of occurrence Probability of
non-occurrence

Grinding wheel failure F1 0.0928 0.9072

Worn-out surface 1 0.09 0.91

Damaged grinding wheel
holding device

2 0.001 0.999

Overloading 3 0.002 0.998

Work blade failure F2 0.1819 0.8181

Integrated with wrong tool 4 0.03 0.97

Fixed at incorrect tension 5 0.03 0.97

Set at incorrect angle 6 0.06 0.94

Wear and tear 7 0.075 0.925

Swivel plate failure F3 0.1477 0.8523

Impact loading 8 0.085 0.915

Reduced hardness 9 0.006 0.994

Swivel offset 10 0.009 0.991

Ball screw assembly failure F4 0.1829 0.8129

Misalignment 11 0.08 0.92

Improper lubrication 12 0.06 0.94

Worn-out balls or screw 13 0.06 0.94

Cooling system failure F5 0.1317 0.8683

Contamination of foreign
particles

14 0.04 0.96

Coolant pump failure 15 0.08 0.92

Incorrect combination of
coolant and water

16 0.004 0.996

Leaked hose 17 0.009 0.991

Failure of control systems 18 0.004 0.996

Grinding wheel head 19 0.008 0.992

Regulating wheel 20 0.009 0.991

Regulating wheel head 21 0.001 0.999

Main motor 22 0.083 0.917

Lubrication system 23 0.031 0.969

Hydraulic system 24 0.023 0.977

Human error 25 0.12 0.88

Reliability Analysis of Centerless Grinding Machine … 209

(8), main motor (22), coolant pump (15), and misalignment in the ball screw bearing
(11) are the most critical events and needs to be monitored closely.

5 Discussion and Summary

Fault tree analysis is one of the reliability analyses tools that identify internal and
external faults/ failure causes/ failure events that lead to the occurrence of the top
event, i.e., the most undesirable event associated with the system. It is a graphical tool
that includes qualitative and quantitative analysis and therefore it is effective in new
system design (design stage) as well as in analyzing systems behavior in operations
(operation stage).

The effectiveness of this method is observed throughout the case study on the
reliability analysis of the Centerless Grinding Machine (CGM). The qualitative and
quantitative analysis of the CGM helped in carrying out the critical events/ compo-
nents of the CGM where more focus should be given during the operations. Further-
more, this analysis provides insights for design modifications and improvements.
However, this case study is based on a limited database. Detailed investigation can
be carried out with more data sets that can be collected from a greater number of
CGM users, experts in the field, component manufacturers, maintenance, and service
engineers. It is also essential to expand the fault tree by identifying all possible faults,
components, assemblies, and subsystems occurrence (failure) of which may lead to
the occurrence of the top event.

Fault tree analysis is one of the popular analytical methods and needs to be applied
with discipline. The probability of occurrence of intermediate (higher level) events
is carried by assuming the events occur independently and identically. However, in
actual practice several failures may be dependent, can occur simultaneously and the
occurrence of one event can trigger the other events to occur or it may accelerate the
life of another component. There is a need to integrate these aspects in the fault tree
analysis methodology.

One of the critical parameters in systems operation is human and needs to
be considered during analysis. It is required to calculate the occurrence of an
event/failure due to its inherent failure mechanism and the intervention of the human
needs to be investigated. It will reveal how, where and how much the human interven-
tion affects the system reliability. Such study may provide future direction to carry
out effective maintenance activity, how artificial intelligence and machine learning
(AI & ML) techniques can be effectively integrated with the fault tree analysis and
improve system reliability. A process of validation and verification of the results
obtained from the fault tree analysis should be developed and integrated.

210 R. B. Patil et al.

References

1. Haasl FD (1965) Advanced concepts in fault tree analysis. In: System safety symposium, pp
1–14

2. Kapur KC, Pecht M (2014) Reliability engineering. Wiley & Sons, Inc
3. Rasmussen N et al (1975) Reactor safety study: an assessment of accident risks in U.S.

commercial nuclear power plants
4. Signoret JP, Leroy A (2021) Fault tree analysis (FTA). In: Pham H (ed) Springer series in

reliability engineering. Springer, pp 209–225
5. Zhang J, Kang J, Sun L, Bai X (2021) Risk assessment of floating offshore wind turbines based

on fuzzy fault tree analysis. Ocean Eng 239:109859
6. Boeing Aerospace Company (1968) Fault tree for safety. Seattle, WA
7. Zhao D, Cai L, Gao C, Sun Y (2000) Application of FTA in operation safety design of nuclear

waste carrying manipulator. In: Proceedings of the world congress on intelligent control and
automation (WCICA) (Cat. No.00EX393), pp 729–732

8. Yoon S, Jo J, Yoo J (2011) A domain-specific safety analysis for digital nuclear plant protection
systems. In: 2011 5th international conference on secure software integration and reliability
improvement—companion, SSIRI-C 2011, pp 68–75

9. Nasimi E, Gabbar HA (2022) Chapter 11—challenges to probabilistic risk assessment of
nuclear power plants. In: Boucau J (ed) Fundamental issues critical to the success of nuclear
projects. Woodhead Publishing, pp 333–344

10. Ashraf AM, Imran W, Véchot L (2022) Analysis of the impact of a pandemic on the control of
the process safety risk in major hazards industries using a fault tree analysis approach. J Loss
Prevent Process Indus 74

11. Markulik S et al (2021) Application of FTA analysis for calculation of the probability of the
failure of the pressure leaching process. Appl Sci (Switzerland) 11(15):6731

12. Baig AA, Ruzli R, Buang AB (2013) Reliability analysis using fault tree analysis: a review.
Int J Chem Eng Appl 4(3):169–173

13. Kim H, Koh J-S, Kim Y, Theofanous TG (2005) Risk assessment of membrane type LNG
storage tanks in Korea-based on fault tree analysis. Korean J Chem Eng 22(1):1–8

14. Zhou K, Huang G, Wang S, Fang K (2022) Research on transportation safety of hazardous chem-
icals based on fault tree analysis (FTA). In: ICITM 2020—2020 9th international conference
on industrial technology and management, pp 206–209

15. Mohammadi H, Fazli Z, Kaleh H, Azimi HR, Moradi Hanifi S, Shafiee N (2021) Risk analysis
and reliability assessment of overhead cranes using fault tree analysis integrated with Markov
chain and fuzzy Bayesian networks. Math ProblEng 2021:6530541

16. Baek S, Heo G (2021) Application of dynamic fault tree analysis to prioritize electric power
systems in nuclear power plants. Energies 14(4):4119

17. Chen Y, He XQ, Lai P (2013) The application of fault tree analysis method in electrical
component. In: Proceedings of the 20th IEEE international symposium on the physical and
failure analysis of integrated circuits (IPFA), pp 658–661

18. Lakhotia A, Chang R, Santos D, Greene C (2020) Fault tree analysis to understand and improve
reliability of memory modules used in data center server racks. Procedia Manuf 51:989–997

19. Shu X, Guo Y, Yang H, Zou H, Wei K (2021) Reliability study of motor controller in electric
vehicle by the approach of fault tree analysis. Eng Failure Anal 121:105165

20. Akhtar I, Kirmani S (2020) An application of fuzzy fault tree analysis for reliability evaluation
of wind energy system. IETE J Res

21. Ikwan F, Sanders D, Hassan M (2021) Safety evaluation of leak in a storage tank using fault
tree analysis and risk matrix analysis. J Loss Prev Process Ind 73:104597

22. Fuentes-Bargues JL, González-Cruz MC, González-Gaya C, Baixauli-Pérez MP (2017) Risk
analysis of a fuel storage terminal using HAZOP and FTA. Int J Environ Res Public Health
14(7):705

23. Kabir S (2017) An overview of fault tree analysis and its application in model based
dependability analysis. Expert Syst Appl 77:114–135

Reliability Analysis of Centerless Grinding Machine … 211

24. Senol YE, Aydogdu YV, Sahin B, Kilic I (2015) Fault Tree Analysis of chemical cargo
contamination by using fuzzy approach. Expert Syst Appl 42(12):5232–5244

25. Hashimoto F et al (2012) Advances in centerless grinding technology. CIRP Ann Manuf
Technol 61(2):747–770

26. Patil RB, Mellal MA (2020) Fault tree analysis of a computerized numerical control turning
center. In: Kumar V, Ram M (eds) Predictive analytics, 1st ed. CRC Press Taylor & Francis
Group, pp 19–30

27. Lee SW, Choi HJ, Nam SH, Choi YJ (2005) Reliability prediction of centerless grinding
machine. Key Eng Mater 291–292:151–156

28. Mondal SC, Mandal P (2015) An application of particle swarm optimization technique for
optimization of surface roughness in centerless grinding operation. In: ICoRD’15—research
into design across boundaries, vol 2. Smart Innovation, Systems and Technologies, pp 687–697

29. Lee ES, Chun YJ, Kim NK (2005) A study on the optimum condition selection of rotary
dressing system of ultra-precision centerless grinding machine for ferrule. Key Eng Mater
291–292:189–194

30. Choi HZ, Lee SW, Kim GH, Chol YJ (2004) Reliability prediction of Centerless grinding
machine. In: Proceedings of the KSME conference, pp 1105–1108

31. Kim S-I, Cho J-W (2007) Thermal characteristic analysis of a high-precision centerless grinding
machine for machining ferrules. Int J Precis Eng Manuf 8(1):32–37

32. Enparantza R, Revilla O, Azkarate A, Zendoia J (2006) A life cycle cost calculation and manage-
ment system for machine tools. In: Proceedings of the 13th CIRP international conference on
life cycle engineering, LCE 2006, pp 717–722

33. Tuan NA (2021) Multi-objective optimization of process parameters to enhance efficiency
in the shoe-type centerless grinding operation for internal raceway of ball bearings. Metals
11(6):893

34. Jinfei L, Yinglei L, Xueming M, Liang W, Jielin L (2021) Fault tree analysis using Bayesian
optimization: a reliable and effective fault diagnosis approaches. J Fail Anal Prev 21(2):619–630

35. Katielnikov DI, Pustylnik LV, Rotshtein AP (2021) Reliability analysis: from fault tree to
catastrophe tree. J Comput Syst Sci Int 60(5):793–801

36. Mohanty JK, Dash PR, Pradhan PK (2020) FMECA analysis and condition monitoring of
critical equipments in super thermal power plant. Int J Syst Assur Eng Manage 11(3):583–599

37. Ahmed S, Gu X-C (2020) Accident-based FMECA study of Marine boiler for risk prioritization
using fuzzy expert system. Results Eng 6:100123

38. Piumatti D, Sini J, Borlo S, Reorda MS, Bojoi R, Violante M (2020) Multilevel simula-
tion methodology for fmeca study applied to a complex cyber-physical system. Electronics
(Switzerland) 9(10):1736

39. Giardina M, Morale M (2015) Safety study of an LNG regasification plant using an FMECA
and HAZOP integrated methodology. J Loss Prev Process Ind 35:35–45

40. Catelani M, Ciani L, Galar D, Guidi G, Matucci S, Patrizi G (2021) FMECA assessment
for railway safety-critical systems investigating a new risk threshold method. IEEE Access
9:86243–86253

41. Gupta G, Ghasemian H, Janvekar AA (2021) A novel failure mode effect and criticality analysis
(FMECA) using fuzzy rule-based method: a case study of industrial centrifugal pump. Eng Fail
Anal 123:105305

42. Hanson K (2016) Basics of centerless grinding. [Online]. Available: https://www.ctemag.com/
news/articles/basics-centerless-grinding. Accessed: 14 Nov 2021

43. Staff (2021) Centerless grinding. [Online]. Available: https://finemetalworking.com/centerless-
grinding

https://www.ctemag.com/news/articles/basics-centerless-grinding
https://www.ctemag.com/news/articles/basics-centerless-grinding
https://finemetalworking.com/centerless-grinding
https://finemetalworking.com/centerless-grinding

Machine Learning Based Software Defect
Categorization Using Crowd Labeling

Sushil Kumar, Meera Sharma, S. K. Muttoo, and V. B. Singh

Abstract Defect categorization is an important task which helps in software main-
tenance. It also helps in prioritizing the defects, resource allocation, etc. Standard
machine learning techniques can be used to automate the categorization of defects.
Labeled data is needed for learning models. The expert is required for obtaining the
labeled data. Sometimes, it is costly or expert is not available. So, to overcome this
dependency, crowd labeled data is used to train a model. Crowd (a set of novices)
is asked to assign a category as defined by IBM’s Orthogonal Defect Classification
(ODC) to the defect reports. Obtaining categories through crowd can be inaccurate
or noisy. Inferencing ground truth is a challenge in crowd labeling. Support Vector
Machine, k Nearest Neighbor and Gaussian Naive Bayes classifier, are learnt effec-
tively using new methodology from data labeled by a set of novices. In this chapter,
we have proposed a learning model which learns effectively to predict the impact
category of software defects using the expectation maximization algorithm and shows
the better performance according to the various types of metrics by improving the
existing technique by 8% and 11% accuracy for Compendium and Mozilla datasets
respectively.

Keywords Crowd labeling · Naive Bayes classifier · Categorization · Expectation
maximization

S. Kumar
Department of Computer Science, Shyam Lal College, University of Delhi, Delhi, India

M. Sharma
Department of Computer Science, Swami Shraddhanand College, University of Delhi, Delhi,
India
e-mail: meerasharma@ss.du.ac.in

S. K. Muttoo
Department of Computer Science, University of Delhi, Delhi, India
e-mail: skmuttoo@cs.du.ac.in

V. B. Singh (B)
School of Computer and Systems Sciences, Jawaharlal Nehru University, Delhi, India
e-mail: vbsingh@mail.jnu.ac.in

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Kumar and H. Pham (eds.), Predictive Analytics in System Reliability,
Springer Series in Reliability Engineering,
https://doi.org/10.1007/978-3-031-05347-4_14

213

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05347-4_14&domain=pdf
mailto:meerasharma@ss.du.ac.in
mailto:skmuttoo@cs.du.ac.in
mailto:vbsingh@mail.jnu.ac.in
https://doi.org/10.1007/978-3-031-05347-4_14

214 S. Kumar et al.

1 Introduction

Defect categorization is an important task that improves the efforts needed for soft-
ware maintenance during software development process [1]. Defect categorization is
a time consuming task which is done manually by the experts and involves high cost.
Machine learning techniques like Supervised learning algorithms [2] can be used to
categorize the defects as these algorithms need labeled dataset to train a classifier.
To get the labelled dataset in case of unavailability of experts is a very challenging
task. Crowd labeling can be used to obtain the labeled data. It is a process to get
the data labeled by a set of novices or nonexperts. It is possible to learn to classify
from this type of labeled data [3]. The number and quality of these novices influ-
ence the learning of classifier from this data set. The major concern of learning form
crowd labeled data is the reliability. This chapter addresses the realiability issue of
non-experts through expectation maximization algorithm.

Data set contains the category that is defined by the Orthogonal Defect Clas-
sification (ODC). The ODC was initially specified in [4] for defect classification
to improve software development process. The main motive behind ODC was to
extract defect information and to know the relation between cause and effect. The
ODC permits software developers to distinguish defects based on their impact on
customer. Categorization of software defects provides valuable information which
is very useful to prioritize and fix the defects. It can also be helpful in prediction of
defects and assigning defects to software developers.

This chapter explores the possibility and proposes a methodology to learn an accu-
rate classifier for predicting the impact of software defects from the crowd labeled
data using expectation maximization algorithm. The process of defect categorization
is shown in Fig. 1. A methodology similar to [21] is used to integrate the labels to find
the ground truth to train three classifiers, namely Naïve Bayes, k Nearest Neighbor
and Support Vector machine.

The main contribution of this chapter is defect categorization from unstructured
text from summary and description and analysis of subjective labeling assigned to the
defect report by non-experts using Expectation–Maximization algorithm. Training of
classifier has been done by taking into account the reliability of each non-expert. The
performance has analysed based on majority voting and Expectation–Maximization
algorithm.

This chapter is organized in following sections. Section 2 discusses the related
work, ODC and Crowdsourcing. Datasets, Classifier and Expectation Maximization
are explained in Sect. 3. Section 4 explains the methodology. The experimental work
and metrics are explained in Sect. 5. Results are presented and discussed in Sect. 6.

Labeled Data
(Summary, description,
labels)

Data Cleaning TFIDF & EM Classification Results

Fig. 1 Process of defect categorization

Machine Learning Based Software Defect Categorization … 215

Section 7 discusses the threats to validity. Section 8 concludes the chapter with future
work.

2 Related Work

Learning from crowd (a set of non-experts) is a new Supervised learning paradigm
in which the real or true labels of examples or instances are unavailable. However,
each instance is provided with a set of noisy class labels, each indicating the class-
membership of the instance according to the subjective opinion of an annotator.
Many research works have been carried out in recent years. Most of them focus on
labeling techniques and on the quality of the labels. Snow et al. [5] evaluated that
the knowledge of four annotators is equal to the one expert. Sheng et al. [6] in his
study proposed the idea of relabeling and also compared advantages of it. The idea of
weak labeling was proposed by Benaran-Munoz et al. [7] in which every annotator
provides more than one label for each instance. GLAD Whitehill et al. [8] proposes
different levels of expertise and difficulty of examples. Donmez et al. [9] proposes a
novel method of repeated trials to get the knowledge about a label and as well as about
a labeller. Welinder and Perona [10] distinguished between a reliable and unreliable
labeller. In case of unreliable labeler, more labels need to be asked. On the other
hand for a reliable labeler, acquired label is a true label. The probability of getting
true category/label follows a Bernoulli distribution by Yan et al. [11]. Gonzalez et al.
[12] proposes to learn a classifier using five novices with k Means clustering and EM
method. Dermartini et al. [13] proposed the method based on probabilistic reasoning
and crowdsourcing. Furthermore, severity prediction of defect reports based on the
textual description of defects using machine learning algorithms has been performed.
Chaturvedi and Singh [14], proposed a severity prediction method which classifies
the severity of the defect reports using supervised machine learning algortihms,
namely Multinonmial Naïve Bayes, Support Vector Machine, k-Nearest Neighbor,
Naïve Bayes, J48 and RIPPER. To carry out the experimental work, the authors
collected the two bug reports data sets from NASA and PROMISE repository. Text
mining techniques are applied on bug description to extract the relevant features.
Liu et al. [15] present a ranking-based technique to improve the feature selection
algorithms and also propose an ensemble feature selection algorithm. To evaluate
the performace, the authors collect bug reports from two projects, namely Eclipse
and Mozilla. They improve the existing methods by 54.76% in terms of f-measure.
In [16], authors present a severity prediction technique using textual features of bug
reports from three projects Eclipse, Mozilla and Gnome. They were able to achieve
67% accuracy using adaboost classifer. Yang et al. [17] present a severity prediction
approach based on emotion similarity of the reporter by calculating the emotion
similarity probability. To validate the proposed approach, they collected the bug
reports from five projects: GNU, JBoss, Mozilla, Eclipse and Wireshark.

216 S. Kumar et al.

Table 1 Defect impact category and their definition

Impact Definition

Capability The ability of the product/system to perform its intended functions and
satisfy the customer’s functional requirements

Usability The ability to use and utilize functions of a system by the user

Performance The speed and responsiveness of the product/system as perceived by the
customer

Reliability The ability of the product/system to consistently perform its intended
functions without unplanned interruption

Installability The ability to easily install a product

Maintainability The ease with which a failure can be diagnosed and the product/system can
be upgraded to apply corrective fixes without impacting the customer’s data
and operations

Documentation The ability of a system to provide user manuals and documentation to its
user to understand a system easily

Migration The ease and degree to which the product/system can be upgraded to the
newer release without impacting the customer’s data and/or operations

Standards The degree to which the product/system conforms to established pertinent
standards

Integrity/security The degree to which the product/system is protected from inadvertent or
malicious destruction, modification, or disclosure

Capacity The loss of capability when configured at full capacity

Serviceability The capacity to diagnose faults and failures easily

2.1 Orthogonal Defect Classification (ODC)

Orthogonal Defect Classification (ODC) is a precise system for Software Defect
Classification created by IBM in the mid of 1990s [4]. ODC empowers in-process
input to designers by separating marks on the improvement procedure from defects.
The 13-classification ODC enables engineers to isolate absconds relying upon their
effect. It is especially appropriate for open-source ventures. The impact category and
the definition are provided in Table 1. The program structure involved in defect can
be indicated by ODC [18].

2.2 Crowdsourcing and Learning from Crowd

The author distributed an article in the wired magazine in 2006 [19]. In this article,
He profoundly broke down the effect of a rising miniaturized scale outsourcing
through Internet on current business conditions and the term crowdsourcing was first
presented. Crowdsourcing has become an important strategy to manage issues at any
phase of Software Development Life Cycle (SDLC) from software requirements to

Machine Learning Based Software Defect Categorization … 217

maintenance [20, 21]. It is a way of solving a problem with collective efforts [22,
23]. There are various online platforms such as Amazon’s MTurk and crowdFlower
where a problem can be posted. Crowdsourcing is very helpful in decision making to
a software development team. The enthusiasm for the learning from crowd is because
of getting large amount of data labeled at very cheap cost through web.

Learning form labeled data by crowd is challenging as each instance of a dataset is
assigned a category by non-expert. These non-experts are of obscure trustfulness. The
low reliability of these non-experts is another challenge. There are various strategies
proposed in past literature. However, in such cases where there is no ground truth and
trustworthiness of each non-expert is doubtful, a classifier can be learnt by combining
the opinion of each non-expert. Snow et al. [5] estimated the contribution of the non-
expert annotators: they recommend that the blend of four non-expert explanations
coordinates the information of domain expert.

The following research question has been addressed in this chapter:
Research question: Can we predict more accurately the impact of software defect

by estimating the reliability of each non-expert?
The chapter in address to the above question, studied the two datasets

Compendium and Mozilla that covers the entire product in both the datasets. To
do further analysis, three classifiers Naïve Bayes, Support Vector Machine and k
Nearest Neighbor are trained. EM based technique similar to [24, 25] are used.
The technique uses the subjective opinion of all the non-expert and estimates the
reliability of each non-expert.

3 Datasets and Methods

3.1 Datasets

Two datasets Compendium and Mozilla have been used directly from [12]. The
Compendium dataset is taken from http://compendium.open.ac.uk/bugzilla/ which
is a software tool. All issues reported in August 2014 are considered. Total 846
defects were obtained. Another dataset Mozilla has 598 defects. Mozilla is an open
source application. For both the datasets, two fields summary and description are
considered. Figures 2 and 3 show the number of labels assigned by the non-experts
(labelers) according to the impact categories defined by ODC for the Compendium
and mozilla datasets respectively. Usability, requirement and Capability are the most
assigned categories for Compendium dataset.

http://compendium.open.ac.uk/bugzilla/

218 S. Kumar et al.

0 100 200 300 400 500

capability
Installability

Requirement
Documentation

Usability
Migration

Performance
Reliability
Standard

Integrity/Security

L5

L4

L3

L2

L1

Fig. 2 Number of labels assigned by five labellers for Compendium dataset

0 50 100 150 200 250 300 350 400

capability

Installability

Requirement

Documentation

Usability

Migration

Performance

Reliability

Integrity/Security

Maintenance

L5

L4

L3

L2

L1

Fig. 3 Number of labels assigned by five labellers for moziila dataset

3.2 Expectation–Maximization

Expectation Maximization algorithm has been widely used [8, 10, 23–25]. The
Methods based on expectation maximization is not new in crowd learning methods.
The EM based technique proposed similar to [25] for multidimensional learning
from crowd labeling is used to categorize the software defects.

Let N be the number of defect reports (instance or examples) in a dataset. Let nl d
be the number of times, a defect instance d is labeled with label l. Let a function
bl i is defined as, b

l
i = 1, if the assigned label is same as the true label (i.e. l =

l ') and 0 otherwise. We assume that the labels are assigned independently by the
labelers (non-experts). By the definition of multinomial distribution we can define
the probability of a observed (assigned) label while the true label l ' (most voted label)
is known using Eq. (1) as

Machine Learning Based Software Defect Categorization … 219

p
(
l|l '

, d
)

∝
L∏

l=1

p(l
' |l) n

l
d (1)

Let each defect example ‘d’ of a dataset D is labeled independently, then we can
rewrite the above equation as (2) for each category ‘c’ for all the defect examples.

p(l, l
'
d) ∝

N∏

d=1

C∏

c=1

(p(l)
L∏

l=1

p
(
l

' |l
)nl d

)B
l
i (2)

Algorithm: EM (D, n, ∈)
• D =< (di , li) > where 1 ≤ i ≤ n
• D = < (d1,l1),(d2,l2),…,(dn,ln) >

1. Initialization

Calculate E
[
bl i

] =
nl d∑
l n

l
d

(3)

2. M step: Select the value for (4) and (5)

p
(
l '|l) =

∑
i b

l
i · nl d∑C

1

∑
i b

l
i · nl d

(4)

and p(l) =
1

N

∑
bl i (5)

to maximize the likelihood.

3. E step: Estimate the reliability of each non-expert as

E[bl i |D] = p(bl i = 1|D) =
∏C

1
p
(
l '|l)nl d · p(l) (6)

Repeat Steps (2) and (3) until i reaches to Maximum Iteration N or
differnces between iterations<0.001.

The EM system enables us to consolidate the estimation of each non-expert that
display the dependability of every labeler and the learning of the model utilizing the
labels assigned by these non-experts. The initial value is calculated using Eq. (1) as
the ratio by counting the frequency of a specific label to the total number of labels
assigned. In our technique, the Expectation step calculates the expectation for each
non-expert to estimate the reliability using Eq. (6), by integerating the probability
of a label with the probability of true label when observed label is given for each
category and thus calculate the estimated posterior probabilities.The Maximization

220 S. Kumar et al.

step, the model parameters are re-evaluated with the end goal that the probability is
augmented given the information and the loads assessed in the Maximization step
using Eqs. (4) and (5) which are the maximum likelihood estimators of p

(
l '|l) and

p(l). p
(
l '|l) is the likelihood of true label when observed label is given and p(l)

is the probability of observed label. Iteratively, the steps 2 and 3 are rehashed until
the likelihood converges to a local maxima or the maximum number of iterations is
reached.

3.3 Classification Model

The model uses the summary and description field to predict the impact category of
a defects reported in the two datasets of Compendium and Mozilla. The Naïve Bayes
(NB), Support Vector Machine (SVM) and k-Nearest Neighbor (k-NN) classification
algorithms are used to categories the defects. Naive Bayes classifier [26] is one of the
most effective classifier because of its performance with other competitive classifiers.
It learns by computing the probability of an attribute xi given the class yi where
(xi , yi) ∈ D i.e. training data. Naïve Bayes classifier makes strong assumption that
all the attributes xi are independent.

Support Vector Machine (SVM) [27] is a supervised learning technique which is
initially used for dividing hyperplane. Its capability to generalize and better perfor-
mance for multiclass problem makes it suitable for categorizing software defects.
k Nearest Neighbor (k-NN) is a very simple supervised technique. It is suitable for
large datasets and assigns a category to new object by finding its nearest neighbor.

4 Methodology

As specified by [12] a group of five non-experts are asked to provide category to each
example of the defect reports of compendium and mozilla. The categories assigned
by each non-experts were processed along with the summary and description fields
as in Fig. 4.

The graphical representation of the whole learning process is shown in Fig. 5.
The text provided in summary and description field are combined as summary and

pre-processed using Natural Language Processing Tool Kit (NLTK) implemented in
python. Figure 6 depicts all the steps of data processing. The relevant and important
words from the summary field were extracted so that it can be easily used by machine
learning techniques [28, 29]. Stop words were removed by downloading the stop
words from nltk and by importing nltk.corpus.reader package written in python.
The Text in summary field was converted to lowercase using the in-built lower ()
function. Porter stemmer [28] was used for stemming the words and also the tokens
were formed. A bag of words was created by extracting features and countVectorizer
is improted to count the frequency of a word. The value for max-features parameter of

Machine Learning Based Software Defect Categorization … 221

Fig. 4 Defect report of Compendium and labeled assigned by five non-experts

Fig. 5 Graphical representation of the process

Fig. 6 Steps involved in Data Processing

countVectorizer function was set to 900. Term frequency inverse document frequency
(TF-IDF) was calculated for every word. The value for parameter in EM based
technique was set to 0.001. The number of iteration was set to 400. This helps to
learn a classifier more accurately by using the crowd learning approaches. We have
used tenfold cross validation to split the datasets. All the classifiers learn from the
same dataset.

5 Experimental Framework

The various experiments on two datasets have been performed. The capabilities of
EM based techniques have been explored. The different metrics are used to check the

222 S. Kumar et al.

Table 2 Different Metrics used to measure the performance of classifiers

accuracy = #instances correctly classified total#instances Precision = #instances correctly classified as class A total#instances as class A

recall = #instances correctly classified as Class A total#instances labelled as class A f measure = 2∗precision∗recall
precision+recall

Max recall = max(recall) min recall = min(recall)

Table 3 Results of three classifiers learnt from compendium dataset and different metric based on
EM

Classifier Accuracy Precision Recall F measure Max recall Min recall Majority
voting

NB 0.6212 0.5412 0.5310 0.4880 0.5310 0.3201 0.4016

SVM 0.5819 0.5762 0.3901 0.4645 0.4932

kNN 0.3941 0.3209 0.3821 0.4248 0.4417

Table 4 Results of three classifiers learnt from mozilla dataset and different metric based on EM

Classifier Accuracy Precision Recall F measure Max recall Min recall Majority
voting

NB 0.6541 0.6216 0.6152 0.4914 0.6152 0.3170 0.3754

SVM 0.5991 0.5804 0.5770 0.4032 0.3762

kNN 0.5946 0.5709 0.5610 0.4566 0.3912

capabilities of our proposed approach. The metrics used to measure the performance
of classifier are shown in Table 2.

The performance of classifiers using the different metrics described in Table 2 is
shown in Tables 3 and 4. Table 3 shows the accuracy, precision, recall and F measure
for Naïve Bayes, SVM and kNN classifiers on the Compendium dataset. whereas the
performance of these classifiers are shown in Table 4 on the Mozilla dataset.

6 Results and Discussion

The labels assigned by different non-experts are compared for both compendium
and mozilaa dataset. We have used the same datasets as of [12]. For compendium
datasets, we considered installability, Requirement, Usability and other. Other is a
new label which is assigned to rest of the labels. The classfiers Naïve Bayes, SVM
and kNN are learnt using these four categories. For Mozilla dataset, installability,
maintenance, reliability and other (new label) are used to train a classifier.

So as to give a total overview of the performance of classifiers, namely Naïve
Bayes, SVM and kNN, the results are presented in Tables 3 and 4. The performance
of the classifiers learnt using Compendium dataset are shown in Table 3. Table 4

Machine Learning Based Software Defect Categorization … 223

Table 5 Comparison of
proposed approach to the
Hernanedez Gonzalez [12] in
terms of accuracy based on
EM algorithm

Dataset Approch Accuracy (%)

Compendium Reference [12] 54

Proposed 62

Mozilla Reference [12] 54

Proposed 65

presents the result of classifiers learnt using Mozilla dataset. The results provide in
Tables 3 and 4 measure the performance of classifiers using the same metric for both
the dataset. The metrics accuracy, precision, recall, F measure and maximum and
minimum recall are used in this chapter. The definition of metrics to evaluate the
performance of classifiers is provided in Table 2.

Columns of Tables 3 and 4 show the majority voting, EM based method and
different metrics accuracy, precision, recall, F measure, maximum and minimum
recall. Whereas row represents the experiment values for each classifier. The best
value for each classifier is represented in bold. The differences between minimum
and maximum recall values are related to the accuracy and f measure. The high
difference indicates the large values of accuracy while low difference contributes to
high f measure values. Hence the performance of the classifiers can be assessed from
these values across all labels.

We have also compared our results on the same dataset compendium and mozilla
used by Hernández- Gonzalez’s et al. [12]. They have classified their dataset by using
naïve bayes, 2DB (Dependence Bayesian) and TAN (Tree Augmented Naïve Bayes).
By analyzing the results, we can observe that maximum 62% accuracy is achieved
in case of compendium dataset when naïve bayes classifier is learnt. An accuracy of
65% is achieved when navie bayes classifer is learnt using Mozilla dataset as shown
in Table 5.

Figures 7 and 8 shows the comparision of accuracy for Compendium and Mozilla
respectively.

The results comparision with the previous approaches are shown in Table 6.

Hernadez
Gonzalez(2018), 0.54

Proposed Approach,
0.62

0.5

0.55

0.6

0.65

Comparision based on accuracy

Fig. 7 Comparision based on accuracy between two approaches for compendium dataset

224 S. Kumar et al.

H. Gonzalez(2018),
0.54

Proposed Approach,
0.65

0

0.2

0.4

0.6

0.8

Comparision based on accuracy

Fig. 8 Comparision based on accuracy between two approaches for mozilla dataset

Table 6 Comparision with other approaches

Approach Accuracy (%) Precision (%) Categories # Defect reports

Thung et al. [2] 77.8 69 Control and data flow,
structural and
non-functional

500

Thung et al. [31] - 65.1 Control and data flow,
structural and
non-functional

500

Liu et al. [32] 79 75 Data, computational,
interface, control/logic

1174

Hunag et al. [33] 80.7–82.9 – ODC impact attributes 1653

Gonzalez et al. [12] 62–64 – ODC impact attributes 1444

7 Threats to Validity

In this section we have discussed various threats to validity to our study.

7.1 Threats to Construct Validity

Threats to construct validity refer to the selection of measures and measurement
tools. We have used four measures to evaluate the performance of our proposed
model. These four measures are accuracy, precision, recall and f-measure. These
measures are commonly used. So we can believe that there is minimal threat to
construct validity.

Machine Learning Based Software Defect Categorization … 225

7.2 Threats to Internal Validity

Threats to internal validity refer to the biasness of the experimenter. These defect
reports are labeled manually by five people having no expertise. The distribution of
classes/labels for both the datasets is not uniform. The performance of classifiers
are different for both the datasets. It can due to the text describing the defects and
preprocessing the textual description. As we are only using the unstructured textual
defect reports, it can influence the result of the categorization.

7.3 Threats to External Validity

We have used 1444 defect reports from two projects. The number of defect reports
may not be enough to generalize the results. Manual labeling of defect reports
according to one of the ODC attributes is a difficult and lengthy task and the limi-
tation to obtain a large dataset. Generalizability of the result is one of the threats to
external validity.

8 Conclusion and Future Work

The chapter proposed a defect categorization approach based on EM algorithm
through crowd labeled data. Two datasets from compendium and mozilla have been
used to test the proposed methodology. EM method applied to learn three classifiers
naive Bayes, support vector machine and k-NN. The experiment results show the
performance of these classifiers. The EM-based method calculates the reliability of
each non-expert. It models the problem of multiclass using multinomial distribution
and maximum likelihood. Thus classifiers are learnt from the best possible configu-
ration. The proposed approach shows the better performance as compare to exiting
approach by 8 and 11% accuracy. There are various issues which can be fixed in
future. To combine the knowledge of each non-experts, retrieving ground truth from
crowd labeled data are such issues which must be addressed.

References

1. Boehm B, Basili VR (2005) Software defect reduction top 10 list. In: Boehm B, Rombach HD,
Zelkowitz MV (eds) Foundations of empirical software engineering: the legacy of Victor R.
Springer, Basili, pp 426–431

2. Thung F, Lo D, Jiang L (2012) Automatic defect categorization. In: Proceedings of 19th working
conference on reverse engineering, pp 205–214

3. Hernández-González J, Inza I, Lozano JA (2015) Multidimensional learning fromcrowds:
usefulness and application of expertise detection. Int J Intell Syst 30(3):326–354

226 S. Kumar et al.

4. Chillarege R, Bhandari I, Chaar J, Halliday M, Moebus D, Ray B, Wong M-Y (1992) Orthog-
onal defect classification—a concept for in-process measurements. IEEE Trans Softw Eng
18(11):943–956

5. Snow R, O’Connor B, Jurafsky D, Ng AY (2008) Cheap and fast—but is it good? Evaluating
non-expert annotations for natural language tasks. In: Proceedings of conference on empirical
methods in NLP; Honolulu, Hawaii, USA, pp 254–263

6. Sheng VS, Provost FJ, Ipeirotis PG (2008) Get another label? Improving data quality and
data mining using multiple, noisy labelers. In: Proceedings of 14th international conference on
knowledge discovery and data mining (ACM SIGKDD), Las Vegas, Nevada, USA, pp 614–622

7. Beñaran-Muñoz I, Hernández-González J, Pérez A (2018) Weak labeling for crowd learning
8. Whitehill J, Ruvolo P, Wu T, Bergsma J, Movellan JR (2009) Whose vote should count more:

optimal integration of labels from labelers of unknown expertise. In: Proceedings of advances
neural information processing systems 22 (NIPS), Vancouver, Canada, pp 2035–2043

9. Donmez P, Carbonell JG, Schneider J (2009) Efficiently learning the accuracy of labeling
sources for selective sampling. In: Proceedings of the 15th international conference on
knowledge discovery and data mining (KDD), pp 259–268

10. Welinder P, Branson S, Belongie S, Perona P (2010) The multidimensional wisdom of crowds.
In: Proceedings of advances neural information processing systems 23 (NIPS), Vancouver,
Canada, pp 2424–2432

11. Yan T, Kumar V, Ganesan D (2010a) Crowdsearch: exploiting crowds for accurate real-time
image search on mobile phones. In: Proceedings of the 8th international conference on mobile
systems, applications, and services. ACM, pp 77–90

12. Hernández-González J, Rodriguez D, Inza I, Harrison R, Lozano JA (2018) Learning to classify
software defects from crowds: a novel approach. Appl Soft Comput 62:579–591

13. Dermatini G (2012) ZenCrowd: leveraging probabilistic reasoning and crowdsourcing tech-
niques for large-scale entity linking

14. Chaturvedi KK, Singh VB (2012) Determining bug severity using machine learning techniques.
In: 2012 CSI sixth international conference on software engineering (CONSEG) 2012 Sep 5,
pp 1–6. IEEE

15. Liu W, Wang S, Chen X, Jiang H (2018) Predicting the severity of bug reports based on feature
selection. Int J Softw Eng Knowl Eng 28(04):537–558

16. Otoom AF, Al-Shdaifat D, Hammad M, Abdallah EE, Aljammal A (2019) Automated labelling
and severity prediction of software bug reports. Int J Comput Sci Eng 19(3):334–342

17. Yang G, Zhang T, Lee B (2018) An emotion similarity based severity prediction of software
bugs: a case study of open source projects. IEICE Trans Inf Syst 101(8):2015–2026

18. Catolino G et al (2019) Not all bugs are the same: understanding, characterizing, and classifying
bug types. J Syst Softw

19. Howe J (2006) The rise of crowdsourcing. Wired Mag 15(6):1–4
20. Mao K et al (2017) A survey of the use of crowdsourcing in software engineering. J Syst Softw

126:57–84
21. Sarı A, Tosun A, Alptekin GI (2019) A systematic literature review on crowdsourcing in

software engineering. J Syst Softw 153(2019):200–221
22. Rodrigo EG, Aledo JA, Gámez JA (2019) Machine learning from crowds: a systematic review

of its applications. Wiley Interdisc Rev: Data Min Knowl Discov 9(2):e1288
23. Raykar VC, Yu S, Zhao LH, Valadez GH, Florin C, Bogoni L, Moy L (2010) Learning from

crowds. J Mach Learn Res 11:1297–1322
24. Dawid AP, Skene AM (1979) Maximum likelihood estimation of observer error-rates using the

EM algorithm J. R Stat Soc Ser C: Appl Stat 28(1):20–28
25. Smyth P, Fayyad U, Burl M, Perona P, Baldi P (1994) Inferring ground truth from subjec-

tive labelling of venus images. In: Proceedings of advances in neural information processing
systems (NIPS); Denver, Colorado, USA, pp 1085–1092

26. Friedmen N, Gieger D, Goldszmidt M (1997) Bayesian network classifier. Mach Learn 29:131–
163

Machine Learning Based Software Defect Categorization … 227

27. Hsu C-W, Lin C-J (2002) A comparison of methods for multiclass support vector machines.
IEEE Trans Neural Netw 13(2):415–425

28. Vedula RMS, Bhadoria RS, Dixit M (2021) Integrating blockchain with AI. In: Multi-
disciplinary functions of blockchain technology in AI and IoT applications, pp 1–25. IGI
Global

29. Samanta S, Pal M, Mahapatra R, Das K, Bhadoria RS (2021) A study on semi-directed graphs
for social media networks. Int J Comput Intell Syst 14(1):1034–1041

30. van Rijsbergen CJ, Robertson SE, Porter MF (1980) New models in probabilistic information
retrieval. British Library, London

31. Thung F, Le XBD, Lo D (2015) Active semi-supervised defect categorization. In: 2015 IEEE
23rd international conference on program comprehension. IEEE

32. Liu et al (2015) An ast-based approach to classifying defects. In: 2015 IEEE international
conference on software quality, reliability and security-companion. IEEE

33. Huang et al (2015) AutoODC: automated generation of orthogonal defect classifications.
Autom Softw Eng 22(1):3–46

Development of an Algorithm Using
the Vikor Method to Increase Software
Reliability

Shafagat Mahmudova

Abstract Software efficiency indicators play a key role in its optimization. Various
ways are available to ensure software optimization. One of the key indicators of soft-
ware is its reliability. Software reliability refers to the program features to perform
certain functions and they are kept within certain limits under specified conditions.
Software reliability is determined by its non-denial and recoverability. Software
reliability is considered an important quality factor. The article uses the VIKOR
(VIsekriterijumska optimizacija i KOmpromisno Resenje) method for the develop-
ment of an algorithm to increase software reliability. The VIKOR method is used for
different areas. Some sources provide information on the application of the VIKOR
method. It refers to a multi-criteria decision method or multi-criteria decision anal-
ysis method. The alternatives here are ranked and the one closest to the ideal so-called
compromise is determined. As a result of the author’s research, six important criteria
for software reliability are identified and alternatives are used. The fuzzy VIKOR
method is used for multi-criteria evaluation of software. The work done is considered
to be novel, and the advantage is that the selected criteria have not yet been used
for this type of task, this positively changes its efficiency. The experiments perform
positive results.

Keywords Software · Efficiency characteristics · Optimization · VIKOR ·
Multi-criteria method

1 Introduction

To develop high quality software systems, various technologies and methods are
used. Optimal software is created through different possible ways. In previous arti-
cles [1] offered an algorithm to select the best software using the TOPSIS (Technique
for Order of Preference by Similarity to Ideal Solution) method. AHP (Analytic
Hierarchy Process) method Mahmudova and Jabrailova [2] offered optimizing the

S. Mahmudova (B)
Institute of Information Technology of ANAS, Baku, Azerbaijan
e-mail: shafagat_57@mail.ru

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Kumar and H. Pham (eds.), Predictive Analytics in System Reliability,
Springer Series in Reliability Engineering,
https://doi.org/10.1007/978-3-031-05347-4_15

229

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05347-4_15&domain=pdf
http://orcid.org/0000-0003-1817-0756
mailto:shafagat_57@mail.ru
https://doi.org/10.1007/978-3-031-05347-4_15

230 S. Mahmudova

software, and good outcomes are obtained as a result of experiments. The TOPSIS
method is applied to rise the efficiency of software through its efficiency character-
istics and making critical decisions in problem solutions. It refers to a multi-criteria
decision-making analysis method offered by Hwang and Yoon [3], and includes
superior features compared to others.

The best alternative based on compromise solution is identified through TOPSIS.
Its chief concept is that the chosen alternative should be at the shortest Euclidean
distance from the positive ideal solution and at the farthest Euclidean distance from
the negative ideal solution. The negative ideal solution maximizes the loss criterion
and minimizes the profitability criterion. And the positive ideal solution maximizes
the profitability criterion and minimizes the loss criterion. The method defines an
index close to the positive ideal solution and far from the negative ideal solution.
In conclusion, the closest alternative to the positive ideal solution is selected. The
compromise solution can be considered the selection of a solution at the farthest
Euclidean distance from the negative ideal solution and at the shortest Euclidean
distance from the positive ideal solution.

Software efficiency (SE) (ISO/IEC standard 25010: 2011 (state standard R
ISO/MEK 25010–2015) determines the product quality model, since it has eight
top-level characteristics.

The efficiency characteristics of software are:

1. Functionality;
2. Productivity;
3. Compliance;
4. Ease of use;
5. Reliability;
6. Security;
7. Accompanying;
8. Mobility.

As noted, reliability is one of the key performance characteristics of software.
Software reliability refers to the features of a program to perform certain functions,

and they are kept within certain limits under specified conditions. In other words,
the reliability of a program is the probability that software will work without any
failure for a certain period of time. Opricovic and Tzeng [4] proposed the software
reliability determined by its non-denial and recoverability. There may be important
factors that affect the reliability of software. The reliability of software is its ability to
maintain its functioning in the course of data processing on computer. The reliability
of software can be assessed by the probability that it will operate without malfunction
under certain environmental conditions during the observation period.

Different models have been developed based on different sets of assumptions.
Several models have been developed under practical conditions considering testing
effort, test coverage, time delay error correction, and error reduction factor [5].

Software accuracy refers to its compliance with the specifications. One of the
important features of software reliability is that it can be restored due to errors and
consequences in the program. Recovery after a software failure is the ability to correct

Development of an Algorithm Using the Vikor Method to Increase … 231

the program text, correct the data, and make changes to the organization of the compu-
tation process. The recovery capability of software can be assessed by the average
time it takes to troubleshoot a program and restore it to working condition. Software
recovery depends on several factors: the complexity of the software structure, the
algorithmic language in which software is developed, the style of programming, the
quality of software documents, and so on. Causes of software failure and the main
causes of direct software failure lie in tie followings.

Software reliability is considered an important quality factor. “Software reliability
refers to the failure-free operation of software over a specified period of time and in
a specified environment” [6].

One of the important features of software reliability is that it can be restored due
to errors and consequences in the program.

1. errors hidden in software itself;
2. falsification of used input data;
3. user error;
4. device failure on which the computing process is performed.

The American National Standards Institute (ANSI) defines the reliability of soft-
ware as: the probability that a program will run flawlessly over a period of time in
a given environment. It is difficult to get the reliability of the program, because the
high complexity of the program does not allow it.

The following information should be considered to improve the reliability of
software:

• Computer’s configuration;
• Performance and reliability, for example, how software responses when a button

is pressed, how many problems it encounters while software is running, how fast
the data is sent over the network;

• Most commonly used tools in software program.

The development of an algorithm for software reliability is one of the foremost
issues.

An algorithm is a sequence of operations to be performed to solve a task. There
are three main types of algorithms used to solve different types of problems on a
computer:

• Linear algorithms;
• Branching algorithms;
• Periodic algorithms.

Linear algorithms consist of a series of operations that represent a simple
computational process, and they are performed in the sequence in which they are
written.

Branching algorithms contain one or more logic steps. At this stage, it is checked
whether certain quantities meet any conditions, and the direction of the next step is
selected accordingly. That is, if intended condition is met, it moves in one direction,
if not, it moves on another direction. Thus, branching occurs in the algorithm.

232 S. Mahmudova

Periodic algorithm. Programming often requires a large number of repetitions of
the same group of operations. In this case, the cyclic algorithm is used. Cycles may be
simple and complex. A simple cyclic algorithm includes one cycle. If any algorithm
involves several internal cycles, then such cycles are called complex.

Proper construction of algorithm is one of the main conditions for solving any
problem.

One of the important issues is to get software backup.
Handy Backup ™ is used to back up data and programs. Advantages of Handy

Backup ™ includes:

• Backup in original format;
• Simple and convenient interface:
• Availability of different backup methods;
• Cloud support;
• Work in advanced mode.

2 Software Reliability Models

Software reliability models show the form of a random process, as it periodically
determines the behavior of software failures. Models of software reliability appeared
when people tried to understand its features, such as why the software is faulty and
so on. Neufelder [7] proposed that people have tried to quantify the reliability of
software.

More than 200 software reliability models have been developed since the early
1970s, but the question of how to assess the reliability of software remains unresolved.

A list of software reliability models is shown in Table 1.
Reliability determines the end result of software. During fierce competition, any

software should not only provide the necessary functionality, but also provide some
additional benefits to end users. Developing software is a tedious and time-consuming
process, like an experiment. Thus, ensuring the reliability of software should be
the primary goal of the appropriate model specified, adopted, and selected by the
organization listed above.

3 About the VIKOR Method

Different methods are used to determine the reliability of software. One of them is
the VIKOR method. Brief information about this method is given below.

The VIKOR method refers to a multi-criteria decision (MCD) or multi-criteria
decision analysis method. The VIKOR method was developed for multi-criteria
optimization of complex systems. It determines compromise ranking list and the
compromise solution obtained with the initial (given) weights. This method focuses
on ranking and selecting from a set of alternatives in the presence of conflicting

Development of an Algorithm Using the Vikor Method to Increase … 233

Table 1 Software reliability models

Model Number of
inputs

Industry
supported

Effort
required to
use the
model

Relative
accuracy

Year
developed/last
updated

Industry tables 1 Several Quick Varies 1992, 2015

CMMI® tables 1 Any Quick Low at low
CMMi®

1997, 2012

Shortcut model 23 Any Moderate Medium 1993, 2012

Full-scale model 94–299 Any Detailed Medium–High 1993, 2012

Metric based
models

Varies Any Varies Varies NA

Historical data A minimum
of 2

Any Detailed High NA

Rayleigh model 3 Any Moderate Medium NA

RADC
TR-92-52

43–222 Aircraft Detailed Obsolete 1978, 1992

Neufelder model 156 Any Detailed Medium to high 2015

criteria. Chang et al. [8] proposed multiple criteria decision-making (MCDM) is
a subdiscipline of operations research that explicitly considers multiple criteria in
decision-making environments. VIKOR ranks the alternatives and determines the
one closest to the so-called compromise ideal. Yen-Chu Chen and Po-Lung Yu first
offered the idea of a compromise solution in 2012 [9]. MCDM (Multiple criteria
decision-making) is a subdiscipline of operations research that explicitly considers
multiple criteria in decision-making environments.

It was stated that a compromise was acceptable, originally developed by Seraphim
Oprikovic to resolve conflict resolution problems and diverse (different sections)
criteria, that the decision-maker wanted the solution closest to the ideal and eval-
uated all alternatives based on established criteria. Opricovic and Gwo-Hshiung
[10] propose VIKOR method to evaluate alternatives and identifies a solution called
compromise, which means the closest to the ideal.

Cochrane JL. and Milan Zeleny first presented the idea of a compromise solution
in the MCD in 1973 [11].

Lucien and Opricovic [12] developed the main ideas about VIKOR in his disser-
tation in 1979, and information on its application was published in 1980. The name
VIKOR originated from the Serbian language in 1990: Multi-value and Optimization
of Compromise solution (VIseKriterijumska Optimizacija I Kompromisno Resenje,
VIKOR). In 1998, real expressions were introduced. Sayadi et al. [13] proposed the
document adopted in 2004 contributed to the international recognition of the VIKOR
method [14].

Vahdani and Mousavi [15] is proposed methodology as a compromised method to
solve the Multi-Objective Large-Scale Nonlinear Programming problems with block
angular structure involving fuzzy coefficients.

234 S. Mahmudova

4 Literature Review

Some tasks in which the VIKOR method is applied are reviewed below.

1. Hajiagha et al. [16] proposed VIKOR method used in linear programming
task. Real decision-making problems often involve the consideration of many
opposing goals. MCD is an experimental basis in relevant fields. The problem of
fuzzy MCD, in which all parameters are fuzzy, is examined, and a solution using
the multi-criterion VIKOR method is offered. The proposed method seeks to
find a fuzzy effective solution to the problem by minimizing the distance from
ideal and anti-ideal solutions. Applying this method can reveal the effective
boundary of the problem. The applicability of the proposed method is shown
in the example and the application is generalized to the investment problem.
Both examples show the usefulness of the proposed method.

2. Mary et al. [17] proposed a method based on the VIKOR method as a
compromise method for solving large-scale nonlinear programming tasks. The
proposed method was first introduced to solve large-scale nonlinear program-
ming in a fuzzy environment. The problem involves fuzzy ratios in both
objective functions and constraints. In this method, the aggregate function
based on the LP metric approaches the “ideal” solution based on a special
“proximity” dimension. The solution process consists of two stages. The first
uses the decomposition algorithm to reduce the q-dimensional space to a
one-dimensional space. Then, to solve the problem, multi-purpose identical
nonlinear programming is obtained from each fuzzy nonlinear model. The
second one solves the problem of large-scale single-purpose nonlinear program-
ming to find the final solution. An illustrative example is provided to substantiate
the proposed method.

3. Heydari et al. [18] proposes the VIKOR method as a Multi-Attribute Decision
Making (MADM) method to solve decision-making problems with separate and
conflicting criteria. This method seeks to list and select a number of alternatives
based on a certain “proximity” metric to an “ideal” solution. A multi-criteria
method for compromise sorting is developed based on the l-p metric used in the
compromise programming method as an aggregate function. In this paper, the
VIKOR method is extended to solve large-scale non-linear programming tasks
with block-angle structure. The proposed approach applies the Dantzig-Wolfe
fragmentation algorithm along with the Y-dimensional target area reduced to
a one-dimensional area by expanding the concepts of the VIKOR method to
make decisions in a sustainable environment. Finally, the paper presents an
example to illustrate and clarify the main results obtained in this study.

4. Opricovic [19] proposed the VIKOR and TOPSIS multi-criteria decision
methods based on a set of aggregate functions that represent the “ideal proxim-
ity” arising from compromise programming. The VIKOR uses linear normal-
ization, while the TOPSIS uses vector normalization in order to exclude
criteria function units. VIKOR’s compromise ranking method determines the
maximum “group benefit” for the “majority” and a compromise solution for

Development of an Algorithm Using the Vikor Method to Increase … 235

the “competitor”. The TOPSIS method determines the solution at the shortest
distance to the ideal solution and the longest distance to the negative ideal solu-
tion, but does not take into account the relative importance of these distances. A
comparative analysis of these two methods is illustrated by an example showing
similarities and some differences.

5. The issue of emissions has forced energy systems to use cleaner energy sources
such as renewable and hydroelectric technologies. However, in recent decades,
the optimal use of the reservoir has been highlighted due to water insufficiency
in many areas. In this regard, Simab et al. [20] proposed a multi-purpose model
for the short-term hydrothermal planning problem when pumped storage tech-
nology is available. It uses VIKOR method to solve the task. The effectiveness
of the proposed model is tested by comparing the results obtained with four
sample studies using different methods.

6. The linguistic ambiguity of a particular fuzzy set derived from linguistic terms
may represent the qualitative preferences of decision-makers, as well as their
uncertainties and hesitations. In this study, a new VIKOR method is used
to solve multi-criterion decision tasks. Dong et al. [21] propose an evalua-
tion sample of a smart transport system to demonstrate the effectiveness and
expediency of the proposed method.

7. Digital control machines are used for high-precision, repetitive, complex and
dangerous production operations. However, there are several decision-making
criteria to be considered when choosing the right one. In this study, a multi-
criteria group decision-making method based on the fuzzy VIKOR is devel-
oped to solve the problem. Language variables represented by triangular fuzzy
numbers are used to replicate decision-makers’ preferences related to the
weights of criterion significance and the evaluation of their effectiveness. This
study develops two algorithms based on a fuzzy linguistic approach. Wu et al.
[22] proposed a common method based on these two algorithms and the VIKOR
method.

8. Alguliyev et al. [23] proposed a modified fuzzy VIKOR method for multi-
criteria assessment of information culture of individuals. The VIKOR method is
considered to be more appropriate for solving the individual selection problem.
The paper proposes a modified fuzzy VIKOR method to rank the alternatives. It
presents comparative analysis of the results of fuzzy and modified fuzzy VIKOR
methods. Experience shows that the proposed modified fuzzy VIKOR method
has a number of advantages over the conventional fuzzy VIKOR method. The
presented model is efficient in terms of computational complexity.

5 Application of the Vikor Method

Opricovic [19] proposed the VIKOR procedure includes the following steps:
Step 1. For all criterion functions, i = 1, 2..., n; the best value f ∗

i and the worst
value f ∧

i are set,

236 S. Mahmudova

f ∗
i = max

(
fi j , j = 1, ..., J

)
, f ∧

i = min
(
fi j , j = 1, ..., J

)
,

if the i-th functions is benefit;

f ∗
i = min

(
fi j , j = 1, ..., J

)
, f ∧

i = max
(
fi j , j = 1, ..., J

)
,

if the i-th functions is cost.
Step 2. The values of Sj and Rj, j = 1,2 ..., J are calculated according to their

relationship:
Sj = sum [wi(f∗

i − fij)/(f∗
i − f∧

i), i = 1... n], weighted and normalized
Manhattan distance;

Rj = max [wi(f∗
i − fij)/(f∗

i − f∧
i), i = 1... n], weighted and normalized

Chebyshev distance;

where wi are the weights of criteria, expressing the choice of DM as the relative
importance of the criteria.

Step 3. The values of Qj, j = 1,2, ..., J are calculated in proportion

Qj = v(Sj − S∗)/(S∧ − S∗) + (1 − v)(Rj − R∗)/(R∧ − R∗),

where

S∗ = min (Sj, j = 1..., J), S∧ = max(Sj, j = 1, ..., J),
R∗ = min (Rj, j = 1..., J), R∧ = max (Rj, j = 1, ..., J);

and is presented as a weight for the maximum beneficial strategy of the group, while
1 − v is the weight of the individual strategy. These strategies can be compromised
if v = 0.5,

where

v = (n + 1)/2xnx (v + 0.5(n − 1)/n)

is varied, because the criterion (from 1 of n) is related to R and is included to S.
Step 4. Alternatives shall be ranked from the minimum value of S, R and Q to the

maximum value. The result presents three rating lists.
Step 5. An alternative A (1) with the size Q (minimum) is offered as a compromise

solution if the following two conditions are met.
As a compromise solution, the best-rated alternative A (1) with the size Q

(minimum) is offered if the following two conditions are met:
“Acceptable advantage”: Q (A (2) − Q (A (1)) >= DQ

where: A (2) is the alternative with second position in the ranking list by Q;
DQ = 1/(J − 1) C2 “Acceptable stability when making decisions”: The alterna-

tive must have the best rating by A (1), S and/or R. This compromise solution is stable
throughout the decision-making process, and it can be a strategy of maximum group

Development of an Algorithm Using the Vikor Method to Increase … 237

utility (v > 0.5 if necessary) or (v is approximately 0.5 “by consensus” or v < 0.5 “by
veto”). If one of the conditions is not satisfied, a number of compromise solutions
are proposed, which are: – Alternatives A (1) and A (2) only if conditions C2 is not
satisfied; – Alternatives A (1), A (2), …, A (M), if condition C1 is not satisfied; A
(M) is determined by the relation Q (A (M)) – Q (A (1)) < DQ for maximum M.

Alternative A (1) shall be rated best by S or and R. This compromise solution is
stable within the decision-making process, it can be the group’s maximum beneficial
strategy (v > 0.5 if necessary) or v is approximately 0, 5 “by consensus” or v < 0.5
“by veto”.

As a result, a compromise solution can be provided by the decision makers, thus
ensuring the maximum benefit of the majority (denoted by min S) and the minimum
failure of the opponent (denoted by min R). The metrics S and R are integrated into
Q for a compromise solution based on an agreement with mutual concessions.

6 Problem Statement and Experiments

A list of alternatives is presented below:

1. Very weak;
2. Weak;
3. Less weak;
4. Unsatisfactory;
5. Not good;
6. Good;
7. Excellent.

In this case, six criteria for software reliability and seven alternatives are used with
the VIKOR method to determine the indicator that is closest to the ideal compromise.
Here, the reliability criteria of three software are used.

The problem is expressed as follows: Determine the best (compromise) solution
as multicriteria A1, A2, …, Am out of a set of possible alternatives A evaluated
according to the function of criteria N. Input data is the elements of the solution
matrix fi j , in which fi j is the value of the i-th criterion function for alternative Ai .

Step 1. For all criterion functions, i = 1, 2 …, 6; the best is set to fi* and the worst
is set to fiˆ. Here, the criteria of reliability include the criteria functions. j = 1 … 6.

F = (fi j)mxn

Here, m shows the number of alternatives, and n denotes the number of criteria.

238 S. Mahmudova

Table 2 Values of alternatives and criteria

Alternatives fi1 fi2 fi3 fi4 fi5 fi6

A1 (very weak) 0.15 0.22 0.13 0.14 0.15 0.16

A2 (weak) 0.21 0.12 0.23 0.24 0.25 0.26

A3 (less weak) 0.31 0.32 0.33 0.34 0.35 0.36

A4 (unsatisfactory) 0.11 0.12 0.11 0.11 0.11 0.13

A5 (not good) 0.41 0.42 0.43 0.44 0.45 0.46

A6 (good) 1.41 1.42 1.43 1.44 1.45 1.46

A7 (excellent) 2.41 2.42 2.43 2.44 2.45 2.46

Max 2.41 2.42 2.43 2.44 2.45 2.46

Min 0.11 0.12 0.11 0.11 0.11 0.13

F =

⎡

⎢⎢⎢
⎣

f11 f21... f1n
f21 f22... f

21

fm1 fm2 . . . fmn

⎤

⎥⎥⎥
⎦

(1)

A positive ideal candidate and a negative ideal solution are anti-ideal candidates:
f ∗
i = max

(
fi j , j = 1, ..., 7

)
, f ∧

i = min
(
fi j , j = 1, ..., 7

)
, if the i-th functions

is benefit;
f ∗
i = min

(
fi j , j = 1, ..., 7

)
, f ∧

i = max
(
fi j , j = 1, ..., 7

)
, if the i-th functions

is cost.
The values of alternatives and criteria are shown in Table 2.

max(f∗
i) = 2.46; min(f∧

i) = 0.11

min(f∗
i) = 0.11; max(f∧

i) = 2.46

Step 2. Sj j = 1,2 ..., 7 values are calculated according to the ratio of ions:
Sj = sum [wi(f∗

i − fij)/(f∗
i − f∧

i), i = 1... n is the weighted and normalized
Manhattan distance.

Here, wi are the relative weights (Table 3), determined by the decision maker, the
sum equals to 1.

Alternatives and normalized Manhattan distances are shown in Table 4.
Alternatives and normalized Manhattan distance values are shown in Table 5.

Rj = max [wi(f
∗
i − fij)/(f∗

i − f∧
i), i = 1... n], j = 1, ..., m (2)

weighted and normalized Chebyshev distance;

Development of an Algorithm Using the Vikor Method to Increase … 239

Table 3 Values of relatively
important weights

No wi

1 0.1

2 0.2

3 0.1

4 0.2

5 0.2

6 0.1

7 0.1

Total = 1

where, wi is the weight of the criterion, expressing the choice of DM as the relative
importance of the criteria.

Table 6 shows the alternatives and the values of the normalized Chebyshev
distance calculated according to formula (2).

Step 3. The values of Qj, j = 1,2, ..., J calculate according to the following
relationship:

Qj = 0.5(Sj − S∗)/(S∧ − S∗) + (1 − 0.5)(Rj − R∗)/(R∧ − R∗ (3)

Here,

S∗ = min (Sj, j = 1..., 7), S∧ = max(Sj, j = 1, ..., 7),
R∗ = min (Rj, j = 1..., 7), R∧ = max (Rj j = 1, ..., 7); (4)

and is presented as a weight for the maximum beneficial strategy of the group, and
1 – v is the weight of the individual strategy. These strategies can be compromised
when v = 0.5, where v = (n + 1) / 2n (v + 0.5 (n – 1) / n = 1) is varied, because the
criterion (from 1 to n) is related to R and included to S.

In Table 7, the values of S*, Sˆ, R*, R ̂ are calculated according to formula (4).

v = (1 + 1)/2x1x(0.5 + 0.5(1 − 1)/1)

Table 8 shows the values of Q j, j = 1, 2, ..., 6 calculated by formula (3).
Table 9 shows the ranked values of Sj, Table 10 shows the ranked values of Rj,

and Table 11 and Fig. 1 shows the ranked values of Qj.
Alternatives are denoted as A (J) j = 1, …, 7.
Here: A (2) is an alternative ranked second in the ranking list with Q;

DQ = 1/(J − 1). J = 7

DQ = 0.16667

240 S. Mahmudova

Ta
bl
e
4

A
lte

rn
at
iv
es
 a
nd

 n
or
m
al
iz
ed
 M

an
ha
tta

n
di
st
an
ce

A
lte

rn
at
iv
es

f i1
f i2

f i3
f i4

f i5
f i6

A
1
(v
er
y
w
ea
k)

0.
01

*(
5.
46

–0
.1
1)
/(
5.
46

–0
.0
1)

0.
01

*(
5.
46

–0
.1
2)
/(
5.
46

–0
.0
1)

0.
01

*(
5.
46

–0
.1
3)
/(
5.
46

–0
.0
1)

0.
01

*(
5.
46

–0
.1
4)
/(
5.
46

–0
.0
1)

0.
01

*(
5.
46

–0
.1
5)
/(
5.
46

–0
.0
1)

0.
01

*(
5.
46

–0
.1
6)
/(
5.
46

–0
.0
1)

A
2
(w

ea
k)

0.
02

*(
5.
46

–0
.2
1)
/(
5.
46

–0
.0
1)

00
1*
(5
.4
6–
0.
22
)/
(5
.4
6–
0.
01
)

0.
01

*(
5.
46

–0
.2
3)
/(
5.
46

–0
.0
1)

0.
01

*(
5.
46

–0
.2
4)
/(
5.
46

–0
.0
1)

0.
01

*(
5.
46

–0
.2
5)
/(
5.
46

–0
.0
1)

0.
01

*(
5.
46

–0
.2
6)
/(
5.
46

–0
.0
1)

A
3
(l
es
s
w
ea
k)

0.
01

*(
5.
46

–0
.3
1)
/(
5.
46

–0
.0
1)

0.
01

*(
5.
46

–0
.3
2)
/(
5.
46

–0
.0
1)

0.
01

*(
5.
46

–0
.3
3)
/(
5.
46

–0
.0
1)

0.
01

*(
5.
46

–0
.3
4)
/(
5.
46

–0
.0
1)

0.
01

*(
5.
46

–0
.3
5)
/(
5.
46

–0
.0
1)

0.
01

*(
5.
46

–0
.3
6)
/(
5.
46

–0
.0
1)

A
4
(u
ns
at
is
fa
ct
or
y)

0.
02

*(
5.
46

–0
.0
1)
/(
5.
46

–0
.0
1)

0.
02

*(
5.
46

–0
.0
2)
/(
5.
46

–0
.0
1)

0.
02

*(
5.
46

–0
.0
3)
/(
5.
46

–0
.0
1)

0.
02

*(
5.
46

–0
.0
4)
/(
5.
46

–0
.0
1)

0.
02

*(
5.
46

–0
.0
5)
/(
5.
46

–0
.0
1)

0.
02

*(
5.
46

–0
.0
6)
/(
5.
46

–0
.0
1)

A
5
(n
ot
 g
oo
d)

0.
02

*(
5.
46

–0
.4
1)
/(
5.
46

–0
.0
1)

0.
02

*(
5.
46

–0
.4
2)
/(
5.
46

–0
.0
1)

0.
02

*(
5.
46

–0
.4
3)
/(
5.
46

–0
.0
1)

0.
02

*(
5.
46

–0
.4
4)
/(
5.
46

–0
.0
1)

0.
02

*(
5.
46

–0
.4
5)
/(
5.
46

–0
.0
1)

0.
02

*(
5.
46

–0
.4
6)
/(
5.
46

–0
.0
1)

A
6
(g
oo
d)

0.
02

*(
5.
46

–3
.4
1)
/(
5.
46

–0
.0
1)

0.
02

*(
5.
46

–3
.4
2)
/(
5.
46

–0
.0
1)

0.
02

*(
5.
46

–3
.4
3)
/(
5.
46

–0
.0
1)

0.
02

*(
5.
46

–3
.4
4)
/(
5.
46

–0
.0
1)

0.
02

*(
5.
46

–3
.4
5)
/(
5.
46

–0
.0
1)

0.
02

*(
5.
46

–3
.4
6)
/(
5.
46

–0
.0
1)

A
7
(e
xc
el
le
nt
)

0.
02

*(
5.
46

–5
.4
1)
/(
5.
46

–0
.0
1)

0.
02

*(
5.
46

–5
.4
2)
/(
5.
46

–0
.0
1)

0.
02

*(
5.
46

–5
.4
3)
/(
5.
46

–0
.0
1)

0.
02

*(
5.
46

–5
.4
4)
/(
5.
46

–0
.0
1)

0.
02

*(
5.
46

–5
.4
5)
/(
5.
46

–0
.0
1)

0.
02

*(
5.
46

–5
.4
6)
/(
5.
46

–0
.0
1)

Development of an Algorithm Using the Vikor Method to Increase … 241

Ta
bl
e
5

A
lte

rn
at
iv
es
 a
nd

 n
or
m
al
iz
ed
 M

an
ha
tta

n
di
st
an
ce
 v
al
ue
s

A
lte

rn
at
iv
es

f i1
f i2

f i3
f i4

f i5
f i6

S j
S*

Sˆ

A
1
(v
er
y
w
ea
k)

0.
09
83
0

0.
23
66
4

0.
09
91
5

0.
09
87
2

0.
08
29
0

0.
09
78
7

0.
09
83
0

0.
08
29
0

0.
23
66
4

A
2
(w

ea
k)

0.
19
14
9

0.
19
91
5

0.
18
97
9

0.
18
89
4

0.
19
66
0

0.
18
72
3

0,
19
,1
49

0.
18
72
3

0.
19
91
5

A
3
(l
es
s
w
ea
k)

0.
09
14
9

0.
09
10
6

0.
09
06
4

0.
09
02
1

0.
08
97
9

0.
08
93
6

0.
09
14
9

0.
08
93
6

0.
09
14
9

A
4
(u
ns
at
is
fa
ct
or
y)

0.
20
00
0

0.
19
91
5

0.
20
00
0

0.
20
00
0

0.
20
00
0

0.
19
83
0

0.
20
00
0

0.
19
83
0

0.
20
00
0

A
5
(n
ot
 g
oo
d)

0.
17
44
7

0.
17
36
2

0.
17
27
7

0.
17
19
1

0.
17
10
6

0.
17
02
1

0.
17
44
7

0.
17
02
1

0.
17
44
7

A
6
(g
oo
d)

0.
08
93
6

0.
08
85
1

0.
08
76
6

0.
08
68
1

0.
08
59
6

0.
08
51
1

0.
08
93
6

0.
08
51
1

0.
08
93
6

A
7
(e
xc
el
le
nt
)

0.
00
42
6

0.
00
34
0

0.
00
25
5

0.
00
17
0

0.
00
08
5

0.
00
00
0

0.
00
42
6

0.
00
00
0

0.
00
42
6

Su
m
(S

j)

=
5.
17
69
9

M
in
(S

*
)

=
0.
00
00
0

M
ax
(S

ˆ)

=
0.
23
66
4

242 S. Mahmudova

Ta
bl
e
6

A
lte

rn
at
iv
es
 a
nd

 th
e
va
lu
es
 o
f
th
e
no

rm
al
iz
ed
 C
he
by

sh
ev
 d
is
ta
nc
e

A
lte

rn
at
iv
es

f i1
f i2

f i3
f i4

f i5
f i6

R
j

R
*

R
ˆ

A
1
(v
er
y
w
ea
k)

0.
09
83
0

0.
23
66
4

0.
09
91
5

0.
09
87
2

0.
08
29
0

0.
09
72
5

0.
09
83
0

0.
08
29
0

0.
23
66
4

A
2
(w

ea
k)

0.
19
14
9

0.
19
91
5

0.
18
97
9

0.
18
89
4

0.
19
66
0

0.
18
72
3

0.
19
14
9

0.
18
72
3

0.
19
91
5

A
3
(l
es
s
w
ea
k)

0.
09
14
9

0.
09
10
6

0.
09
06
4

0.
09
02
1

0.
08
97
9

0.
08
93
6

0.
09
14
9

0.
08
93
6

0.
09
14
9

A
4
(u
ns
at
is
fa
ct
or
y)

0.
20
00
0

0.
19
91
5

0.
20
00
0

0.
20
00
0

0.
20
00
0

0.
19
83
0

0.
20
00
0

0.
19
83
0

0.
20
00
0

A
5
(n
ot
 g
oo
d)

0.
17
44
7

0.
17
36
2

0.
17
27
7

0.
17
19
1

0.
17
10
6

0.
17
02
1

0.
17
44
7

0.
17
02
1

0.
17
44
7

A
6
(g
oo
d)

0.
08
93
6

0.
08
85
1

0.
08
76
6

0.
08
68
1

0.
08
59
6

0.
08
51
1

0.
08
93
6

0.
08
51
1

0.
08
93
6

A
7
(e
xc
el
le
nt
)

0.
00
42
6

0.
00
34
0

0.
00
25
5

0.
00
17
0

0.
00
08
5

0.
00
00
0

0.
00
42
6

0.
00
00
0

0.
00
42
6

M
ax
(R

j)
 =

 0
.2
36
64

M
in
(R

*
)
=

0.
00
00
0

M
ax
(R

ˆ)

=
0.
23
66
4

Development of an Algorithm Using the Vikor Method to Increase … 243

Table 7 Values of S*, Sˆ,
R*, R ̂

S* Sˆ R* Rˆ

0.00000 0.23664 0.00000 0.23664

Table 8 Values of Q j Alternatives Sj Rj Qj

A1 (very weak) 0.71358 0.08290 1.68291

A2 (weak) 1.15319 0.18723 2.83220

A3 (less weak) 0.54255 0.08936 1.33518

A4 (unsatisfactory) 1.19745 0.19830 2.94909

A5 (not good) 1.03404 0.17021 2.54449

A6 (good) 0.52340 0.08511 1.28573

A7 (excellent) 0.01277 0.00000 0.02697

Table 9 Ranked values of Sj Alternatives Sj

A(1) 0.01277

A(2) 0.52340

A(3) 0.54255

A(4) 0.71358

A(5) 1.03404

A(6) 1.15319

A(7) 1.19745

Table 10 Ranked values of
Rj

Alternatives Rj

A(1) 0.00000

A(2) 0.08290

A(3) 0.08511

A(4) 0.08936

A(5) 0.17021

A(6) 0.18723

A(7) 0.19830

Table 11 Ranked values of
Qj

Alternatives Qj

A(1) 0.02697

A(2) 1.28573

A(3) 1.33518

A(4) 1.68291

A(5) 2.54449

A(6) 2.83220

A(7) 2.94909

244 S. Mahmudova

0.02697

1.28573 1.33518

1.68291

2.54449
2.8322 2.94909

0

0.5

1

1.5

2

2.5

3

3.5

A(1) A(2) A(3) A(4) A(5) A(6) A(7)

Fig. 1 Ranked values of Qj

(Q (A(2) − Q (A1)) = 1.25876

If the values A (2) and A (1) are placed in the formula (Q (A(2) − Q (A(1)) >=
DQ, then 1.25876 >= 0.16667 for C (1). If one of the conditions is not met, a number
of compromise solutions are proposed, which are: – Alternatives A (1) and A (2) if
only conditions C2 are not met, or alternatives A (1), A (2), …, A (M), if condition
C1 is not met; A (M), determined by the relation Q (A(M)) − Q(A(1)) < DQ for
maximum M.

Q (A (M)) – Q (A (1)) = 2.92212.
2.92212 >= 0.16667 meets the condition.
As a result, a compromise solution can be provided by those who make decisions,

as it provides the maximum utility of the majority (represented by min S) and the
minimum failure of the individual competitor (represented by min R). Measures S
and R are integrated into Q for a compromise solution, which is the basis of an
agreement established by mutual concessions.

7 Conclusion

The fuzzy VIKOR method is designed to solve the problem in a fuzzy environment,
where both criteria and weights may be fuzzy. Triangular fuzzy numbers are used
to control uncertain numerical quantities. Fuzzy VIKOR is based on fuzzy work
that represents and combines the distance of an ideal solution alternative. Fuzzy
operations and fuzzy ranking procedures play a key role in the development of fuzzy

Development of an Algorithm Using the Vikor Method to Increase … 245

VIKOR algorithm. Applying this method, the reliability of software can be achieved.
The given algorithm can be applied to any software.

References

1. Mahmudova Sh (2020) Application of the TOPSIS method to improve software efficiency and
to optimize its management. Soft Comput (SI 24(1)):697–708. https://doi.org/10.1007/s00500-
019-04549-4

2. Mahmudova Sh, Jabrailova Z (2020) Development of an algorithm using the AHP method for
selecting software according to its functionality. Soft Comput (SI 24(11)):8495–8502. https://
doi.org/10.1007/s00500-020-04902-y

3. Hwang CL, Yoon K (1981) Multiple attribute decision making. Springer, New York, pp 58–191.
https://doi.org/10.1007/978-3-642-48318-9

4. Opricovic S, Tzeng GH (2004) Compromise solution by MCDM methods: a comparative
analysis of VIKOR and TOPSIS. Eur J Oper Res (SI 156(2)):445–455. https://doi.org/10.
1016/S0377-2217(03)00020-1

5. Kumar V, Saxena P, Garg H (2021) Selection of optimal software reliability growth models
using an integrated entropy–technique for order preference by similarity to an ideal solution
(TOPSIS) approach. Math Methods Appl Sci. https://doi.org/10.1002/mma.7445

6. Saxena P, Kumar V, Ram M (2021) Ranking of software reliability growth models: a entropy-
ELECTRE hybrid approach. Reliab: Theory Appl (SI 2(64)):95–113

7. Neufelder A (2017) Cold hard truth about reliable software—version 6g, 77
8. Chang CT, Tan KH, Lu HC (2014) Multiple criteria decision making theory, methods, and

applications in engineering. Math Problems Eng (SI 2014):1–3. https://doi.org/10.1155/2014/
431037

9. Chen Y-C, Huang H-S, Yu PL (2012) Empower MCDM by habitual domains to solve chal-
lenging problems in changeable spaces. Int J Inf Technol Decis Making (SI 11(02)):457–490.
https://doi.org/10.1142/S0219622012400111

10. Opricovic S, Gwo-Hshiung T (2007) Extended VIKOR method in comparison with outranking
methods. Eur J Oper Res (SI 178(2)):514–529. https://doi.org/10.1016/j.ejor.2006.01.020

11. Cochrane JL, Zeleny M (1973) Multiple criteria decision making. University of South Carolina
Press, Columbia

12. Lucien D, Opricovic S (1980) Multiobjective optimization in river basin development. Water
Resour Res (SI 16(1)):14–20

13. Sayadi MK, Heydari M, Shahanaghi K (2009) Extension of VIKOR method for decision making
problem with interval numbers. Appl Math Model (SI 33(5)):2257–2262. https://doi.org/10.
1016/j.apm.2008.06.002

14. Opricovic S, Gwo-Hshiung T (2004) The compromise solution by MCDM methods: a
comparative analysis of VIKOR and TOPSIS. Eur J Oper Res (SI 156(2)):445–455

15. Vahdani B, Salimi M, Mousavi SM (2015) A compromise decision-making model based on
VIKOR or multi-objective large-scale nonlinear programming problems with a block angular
structure under uncertainty. Trans E: Ind Eng (SI 22(6)):2571–2584

16. Hajiagha SHR, Mahdiraji HA, Zavadskas EK, Hashemi SS (2014) Fuzzy multi-objective linear
programming based on compromise VIKOR method. Int J Inf Technol Decis Making (SI
13):679–698. https://doi.org/10.1142/S0219622014500667

17. Mary V, Michele H, Neel S, JoAnn J (2016) Quality improvement initiatives lead to reduction
in nulliparous term singleton vertex cesarean delivery rate. Joint Comm J Qual Patient Saf/Joint
Comm Resour (SI 43(2)). https://doi.org/10.1016/j.jcjq.2016.11.008

18. Heydari M, Sayadi MK, Shahanaghi K (2010) Extended VIKOR as a new method for
solving multiple objective large-scale nonlinear programming problems. Rairo-Oper Res (SI
44(2)):139–152. https://doi.org/10.1051/ro/2010011

https://doi.org/10.1007/s00500-019-04549-4
https://doi.org/10.1007/s00500-019-04549-4
https://doi.org/10.1007/s00500-020-04902-y
https://doi.org/10.1007/s00500-020-04902-y
https://doi.org/10.1007/978-3-642-48318-9
https://doi.org/10.1016/S0377-2217(03)00020-1
https://doi.org/10.1016/S0377-2217(03)00020-1
https://doi.org/10.1002/mma.7445
https://doi.org/10.1155/2014/431037
https://doi.org/10.1155/2014/431037
https://doi.org/10.1142/S0219622012400111
https://doi.org/10.1016/j.ejor.2006.01.020
https://doi.org/10.1016/j.apm.2008.06.002
https://doi.org/10.1016/j.apm.2008.06.002
https://doi.org/10.1142/S0219622014500667
https://doi.org/10.1016/j.jcjq.2016.11.008
https://doi.org/10.1051/ro/2010011

246 S. Mahmudova

19. Opricovic S (2011) Fuzzy VIKOR with an application to water resources planning. Expert Syst
Appl (SI 38):12983–12990. https://doi.org/10.1016/j.eswa.2011.04.097

20. Simab M, Javadi MS, Nezhad AE (2018) Multi-objective programming of pumped-hydro-
thermal scheduling problem using normal boundary intersection and VIKOR. Energy (SI
143):854–866. https://doi.org/10.1016/j.energy.2017.09.144

21. Dong JY, Yuan FF, Wan SP (2017) Extended VIKOR method for multiple criteria decision-
making with linguistic hesitant fuzzy information. Comput Ind Eng (SI 112):305–319. https://
doi.org/10.1016/j.cie.2017.07.025

22. Wu ZB, Ahmad J, Xu JP (2016) A group decision making framework based on fuzzy VIKOR
approach for machine tool selection with linguistic information. Appl Soft Comput (SI 42):314–
324. https://doi.org/10.1016/j.asoc.2016.02.007

23. Alguliyev RM, Aliguliyev RM, Mahmudova RS (2015) Multicriteria personnel selection by
the modified fuzzy VIKOR method. Sci World J (SI 2015) 1–17. https://doi.org/10.1155/2015/
612767

https://doi.org/10.1016/j.eswa.2011.04.097
https://doi.org/10.1016/j.energy.2017.09.144
https://doi.org/10.1016/j.cie.2017.07.025
https://doi.org/10.1016/j.cie.2017.07.025
https://doi.org/10.1016/j.asoc.2016.02.007
https://doi.org/10.1155/2015/612767
https://doi.org/10.1155/2015/612767

Mathematical Modeling for Evaluation
Reliability of a Bleaching System

Subhi Tyagi, Akshay Kumar, Nupur Goyal, and Mangey Ram

Abstract The current research deals with the various reliability measures anal-
ysis for a complex bleaching system. The system has a complex structure with three
subsystems A, B and C associated to each other in series arrangement. The subsystem
A has only one unit and subsystem B and C have two identical units which are
connected in parallel configuration with each other. In both the cases (B and C),
second unit is in standby. The assumed bleaching framework has three type of states
i.e., working, partially working and failed. The framework is assumed to be repaired
from the degraded and failed states. Mathematical model of the designed frame-
work is solved by means of supplementary variable technique and Markov process.
Laplace transform of numerous differential equations is obtained. Various reliability
measures such as reliability, availability, mean time to failure and expected cost are
evaluated, graphical depiction of the reliability characteristics are also illustrated for
the considered system.

Keywords Availability · Reliability · Mean time to failure · Cost analysis ·
Complex bleaching system · Markov process

S. Tyagi · N. Goyal
Department of Mathematics, Graphic Era Deemed to be University, Dehradun, India

A. Kumar (B)
Department of Mathematics, Graphic Era Hill University, Dehradun, India
e-mail: akshaykr1001@gmail.com

M. Ram
Department of Mathematics, Computer Science and Engineering, Graphic Era Deemed to be
University, Dehradun, India

Institute of Advanced Manufacturing Technologies, Peter the Great St. Petersburg Polytechnic
University, 195251 Saint Petersburg, Russia

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Kumar and H. Pham (eds.), Predictive Analytics in System Reliability,
Springer Series in Reliability Engineering,
https://doi.org/10.1007/978-3-031-05347-4_16

247

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05347-4_16&domain=pdf
mailto:akshaykr1001@gmail.com
https://doi.org/10.1007/978-3-031-05347-4_16

248 S. Tyagi et al.

1 Introduction

Reliability has always been a highly concerned topic in every field. Whether in the
field of army for weapons or in the field of engineering systems or in the field of
medical, everywhere reliability is the most important aspect of today’s world. In
case of any machinery or an engineering system, researchers always focussed about
the system’s higher reliability with low maintenance cost. Now a days, systems are
getting compact and complex which leads to the upsurge in the equipment cost. Due
to this, the importance of the system’s maintenance and its desirable work under
fixed time has also increased.

Gupta and Tyagi [1] had investigated a standby complex redundant system. The
system was considered to have the human failure in two states i.e., working and
failed. Availability and MTTF of the presented complex framework were evaluated
by using supplementary variable technique, also for many states Laplace transforma-
tions were obtained. Authors had also used Abel’s theorem to calculate the various
time independent probabilities. A model was presented by Pham et al. [2] where the
components did not fail fully but degraded to several stages and failed due to catas-
trophic failures. The presented model was a k-out-of-n:G type whose reliability and
mean time to failure (MTTF) were determined. Dhillon [3] presented various aspects
of human reliability and errors in the medical systems. Mathematical concepts for
analysing human reliability were discussed. Human errors in medication and anaes-
thesia were also considered and some topics for example medication facts, types and
causes of medication errors, medication errors in hospitals, medical error reduction
etc. were also studied. Oliveira et al. [4] had established a technique to evaluate
the reliability of the system whose component’s failure rate was considered to be
time dependent. Dhillon [5] had covered the reliability, maintainability, and safety
issues for the mining equipment. Author had discussed about that mining equipment
because of the growing complexity and sophistication in the equipment designing.
Liang et al. [6] studied the consecutive k-out-of-n repairable frameworks. Authors
gave some more general results and formula for various measures such as reliability,
rate of existence of failure in the system etc. Lisnianski [7] had discussed about
the limitation of universal generating function (UGF) technique in the evaluation of
reliability. So, author proposed a new discrete state continuous time Markov process
to estimate the reliability of dynamic multi state system (MSS). The proposed tech-
nique is called LZ transformation. Garg et al. [8] analysed the reliability with the
help of vague lambda-tau methodology for industrial system in which the collected
information about the components of the system was uncertain and the nature of
the information was also inaccurate. Also, rather than fuzzy set theory author had
used intuitionistic fuzzy set theory to control the uncertainty in the data. Ram and
Kumar [9] had applied the probabilistic approach on a coal handling component
of a thermal power plant for the analyzation of the reliability and sensitivity. The
coal handling system was considered which had two subsystems allied in series
configuration and each subsystem had two units connected in parallel. Authors had

Mathematical Modeling for Evaluation Reliability … 249

considered the failure and repair rates of the coal handling unit constant and evalu-
ated various reliability measures. Ram et al. [10] considered a standby framework
and estimated the reliability and other measures using Markov process. The consid-
ered standby system contains waiting time repair. Reliability was obtained with the
assistance of Laplace transformation and supplementary variable technique. Ram
and Nagia [11] had examined about the various reliability measures of the satel-
lite communication framework. The system comprised of satellite, earth station and
terrestrial system and failure and repair rates were assumed to be constant. Cases
and graphical representations were also presented. Singh et al. [12] had assumed a
framework having two subsystems 1 and 2, connected in series configuration and
one controller was connected with each subsystem for better functioning. Subsystem
1 was a k-out-of-n:G type and subsystem 2 had two units joined in parallel. Tran-
sitional state probabilities, asymptotic behaviour and few reliability characteristics
were evaluated with the assistance of supplementary variable technique, Laplace
transformation and copula method. Kumar and Ram [13] had considered a system
consisting standby and k-out-of-n redundancies. System had two subsystems A and
B where A contained a standby redundant unit and B was a 2-out-of-3:F type. Both
A and B were connected in series configuration and many reliability measures such
as reliability, availability, MTTF were calculated. Li [14] had discussed two simple
yet main redundancies i.e., active redundancy and standby redundancy for a consid-
ered system. Author had also discussed the pros and cons of the two redundancies.
Markov model technique was applied to calculate the mean time between failure of
the proposed framework and compared the redundancies from the reliability view-
point. Dhillon [15] had discussed about the important topic of transportation safety
and its system’s reliability. The main motive of the author was to eliminate the need
for consultation for many sources for getting the desired information on the topic.
Some transportation history along with system’s reliability and safety measures were
discussed. Author had used Boolean algebra laws, probability distribution, Markov
process, fault tree analysis etc. for reliability, maintainability and safety models. Li
[16] had introduced calculation of the redundancy of a dormant k-out-of-n frame-
work. Due to the character of the failure, dormant failure can’t be detected. So, authors
assumed that failure as a blind point while designing for reliability and maintain-
ability. Also, some case studies were given in the mass transit train reliability and
safety design to apply the designed methodology. Amrutkat and Kamalja [17] had
discussed about various reliability measures and discussed about their importance in
a system. Authors also overviewed some extended importance reliability measures
for few popular systems. Shekhar et al. [18] considered a redundant machining frame-
work which was comprised of various functioning machines and studied the perfor-
mance and reliability characteristics of the system. Authors had also included the
conception of switching failure and geometric reneging. Also, a numerical example
based on the theoretical model was illustrated for the practicability purpose of the
theoretical system. Nakagawa et al. [19] and Zhao et al. [20] determined the replace-
ment policies of minimal repairable elements and also discussed the Barlow Proschan
of generalization models. Jain et al. [21] deals with a module-based software reli-
ability development model. The considered model contained imperfect debugging

250 S. Tyagi et al.

and fault reduction factor together. Authors had considered three stage process i.e.,
isolation, observation, and removal process for each module. Li et al. [22] presented
a system responsibility growth analysis mistreatment actual field failure knowledge,
and first objective of the system responsibility growth was to enhance the accom-
plishment of system responsibility performance throughout system responsibility
demonstration to realize the expected responsibility commitment of the framework.
Gaonkar et al. [23] had computed the travel time reliability for any kind of trans-
portation vehicle under fuzzy type of data and advocates its probabilistic approach.
Dhillon and Misra [24] had taken a redundant system with two units in parallel.
Then authors had presented four mathematical models with critical human fault and
estimated the reliability state probabilities and MTTF for those models. Authors had
also shown the graphs of the evaluated reliability measures.

In this present research, a bleaching system’s reliability characteristics are anal-
ysed by means of supplementary variable technique, Laplace transformation and
Markov process. In this system the repair ability is assumed for the degraded and
failed states. The manuscript is arranged as follows: the mathematical model details
are given in Sect. 2. In Sect. 2.1, the description of the bleaching system is explained
followed by the transition diagram of the system in Sect. 2.2. In Sect. 2.3, assump-
tions and notations are given. In Sect. 3, the mathematical modelling of the consid-
ered bleaching system is discussed. Numerical calculations of the various reliability
measures are evaluated in Sect. 4. In Sect. 4.1, the availability of the system is
analysed briefly, in Sect. 4.2, reliability is analysed followed by its graphical repre-
sentation. In Sect. 4.3, the analysation of MTTF is done in the tabular form as well as
graphical form. In Sect. 4.4, expected profit is evaluated. In Sect. 5, the results related
to the reliability measures of the bleaching framework are discussed and explained.
Lastly, in Sect. 6, the conclusion of the presented research is given.

2 Mathematical Model Details of the Designed System

2.1 System Description

A bleaching system is considered in this research which is a complex series–parallel
structure. The system contains three units A, B and C connected to each other in series
arrangement as given in Fig. 1. Subsystem A has only one unit where subsystem B
have two identical units connected in parallel i.e., second unit of the subsystem B is
of standby manner. When the first unit of subsystem B fails, the second standby unit
will start working in place of the first one. At last subsystem C also have two identical
units connected in parallel arrangement where the second unit of the Subsystem C is
in standby. When the first unit of the subsystem C stops working, the second standby
unit will begin to work in place of the first unit. The considered bleaching system
has three types of states i.e., working, partially working and completely failed. In
good state, the system will work properly. In degraded state, the system is assumed

Mathematical Modeling for Evaluation Reliability … 251

Fig. 1 Block diagram of bleaching system

to work partially. That means in either of the subsystem B or C where two units are
connected in parallel, if one of them fails then the system is in degraded sate. In
failed state, the system will stops working. If both the units of the subsystems B or
C fail, the system will go to the failed state. The subsystem A is assumed to fail with
the rate of λ1 and reached to the state P3. Since, P3 is a failed state, the repair rate
from this state is considered to be ∅(x), the repair rate from all the failed states are
considered as same. The subsystem B have two units connected in parallel, so, on
the failure of first unit with the rate λ2, the system will go in degraded state P1 and
when the second unit fails the system will fail and goes to the state P4. From the
degraded state P1, the system will go under repair with the rate μ and go back to
the good state P0 and also from the failed state P4, the system will go under repair
with the rate ∅(x) and go back to the good state P0. Subsystem C also has the same
condition of failure and degradation as B, on failure of the first unit with rate λ3, it
goes to the degraded state P2 and the repair rate from this state to the state P0 is also
μ. Then after the failure of the second unit of C, the system will fail and goes to the
state P5 and the repair rate from this state to the good state P0 is ∅(x).

2.2 State Transition Diagram of the Bleaching System

State transition diagram of bleaching framework is designed on the basis of its
working and shown in Fig. 2.

2.3 Assumptions and Notations

The considered bleaching framework structured by making the following assump-
tions:

1. The framework is assumed to be in good working condition in initial state.
2. Repair facility is available for both degraded and failed states.
3. After repair, the unit is assumed as good as new.
4. All failure and repair rates are assumed constant.

252 S. Tyagi et al.

Fig. 2 State transition diagram of the bleaching system

These notations (shown in Table 1) have been used for the considered bleaching
system.

3 Mathematical Modelling

3.1 Formulation of the Model

The following differential equations have been drawn from the above state transition
diagram of the bleaching system.

[
d

dt
+ 2λ3 + 2λ2 + λ1

]
P0(t) =

∞ ∫
0

φ(x)[P3(x, t) + P4(x, t) + P5(xt)]dx

+ μ[P1(t) + P2(t)] (1)

[
d

dt
+ λ2 + λ3 + μ

]
P1(t) = 2λ2 P0(t) (2)

Mathematical Modeling for Evaluation Reliability … 253

Table 1 Notations

t Time scale

s Laplace transform variable

x Supplementary variable

λ1/λ2/λ3 Failure rate of unit A/B/C

μ Repair rates of the system from degraded state

P0(t) State probability when the system is in good working condition

P1(t) State probability when the system is functioning with one failed unit of B

P2(t) State probability when the system is functioning with one failed unit of C

P3(t) Probability of the completely failed state because of the failure of subsystem A

P4(t) Probability of the completely failed state because of the failure of the second unit of
subsystem B after the failure of its first unit

P5(t) Probability of the completely failed state because of the failure of the second unit of
subsystem C after the failure of its first unit

φ(x) Repair rate from the failed states

K1, K2 Revenue, service cost per unit time respectively

[
d

dt
+ λ1 + λ2 + λ3 + μ

]
P2(t) = 2λ3 P0(t) (3)

[
∂
∂x

+
∂
∂t

+ φ(x)

]
P3(x, t) = 0 (4)

[
∂
∂x

+
∂
∂t

+ φ(x)

]
P4(x, t) = 0 (5)

[
∂
∂ x

+
∂
∂t

+ φ(x)

]
P5(x, t) = 0 (6)

Boundary conditions

P3(0, t) = λ1[P0(t) + P2(t)] (7)

P4(0, t) = λ2[P1(t) + P2(t)] (8)

P5(0, t) = λ3[P1(t) + P2(t)] (9)

Initial Conditions

P0(0) = 1 (10)

254 S. Tyagi et al.

and all other state probabilities are zero at t = 0.

3.2 Solution of the Model

Solution of the model is given by taking Laplace transformation (which converts the
variable t into s) from Eqs. (1) to (9) using Eq. (10).

[s + 2λ3 + 2λ2 + λ1]P0(s) = 1 + μ
[
P1(s) + P2(s)

] +
∞ ∫
0

φ(x)[P3(x, s) + P4(x, s)

+ P5(x, s)]dx (11)

[s + λ2 + λ3 + μ]P1(s) = 2λ2 P0(s) (12)

[s + λ1 + λ2 + λ3 + μ]P2(s) = 2λ3 P0(s) (13)

[
∂
∂x

P3+ s + φ(x)

]
(x, s) = 0 (14)

[
∂
∂x

+ s + φ(x)

]
P4(x, s) = 0 (15)

[
∂
∂ x

+ s + φ(x)

]
P5(x, s) = 0 (16)

Rewriting (14), (15) and (16) as

[
∂
∂x

+ s + φ(x)

]
Pi (x, s) = 0 (17)

For i = 3, 4, 5.
Boundary condition

P3(0, s) = λ1
[
P0(s) + P2(s)

]
(18)

P4(0, s) = λ2
[
P1(s) + P2(s)

]
(19)

P5(0, s) = λ3
[
P1(s) + P2(s)

]
(20)

P0(s) = 1

D(s)
(21)

Mathematical Modeling for Evaluation Reliability … 255

where

D(s) = λ1 −
(

2λ2

s + λ2 + λ3 + μ
+ 2λ3

s + λ1 + λ2 + λ3 + μ

)(
μ + sφ(s)(λ2 + λ3)

)

+ s + 2λ3 + 2λ2 + −λ1sφ(s)

(
1 + 2λ3

s + λ1 + λ2 + λ3 + μ

)
(22)

From (12)

P1(s) = 2λ2

s + λ2 + λ3 + μ
P0(s) (23)

From (13)

P2(s) = 2λ3

s + λ1 + λ2 + λ3 + μ
P0(s) (24)

From (18) and (23)

P3(s) =
(
1 − sφ(s)

s

)
λ1

(
1 + 2λ3

s + λ1 + λ2 + λ3 + μ

)
P0(s) (25)

P4(s) =
(
1 − sφ(s)

s

)
λ2

(
2λ2

s + λ2 + λ3 + μ
+ 2λ3

s + λ1 + λ2 + λ3 + μ

)
P0(s)

(26)

P5(s) =
(
1 − sφ(s)

s

)
λ3

(
2λ2

s + λ2 + λ3 + μ
+ 2λ3

s + λ1 + λ2 + λ3 + μ

)
P0(s)

(27)

Pup(s) = P0(s) + P1(s) + P2(s) (28)

Pdown(s) = P3(s) + P4(s) + P5(s) (29)

It is noticed that

Pup(s) + Pdown(s) =
1

s
. (30)

256 S. Tyagi et al.

Table 2 Availability of the
system

Time (t) Availability

0 1.00000

1 0.92589

2 0.91192

3 0.90974

4 0.90965

5 0.90979

6 0.90989

7 0.90993

8 0.90995

9 0.90996

10 0.90996

4 Numerical Calculations

In this section, particular cases related to the bleaching system are taken and several
reliability characteristics are analysed with respect to time and other measures as
follows.

4.1 Availability Analysis

Availability function of the framework is generally obtained when the framework
is not in a completely failed state. The probability of the system performing the
necessary function at any instant or during a particular time interval when the system
is operated or installed according to a defined standard can be used to characterize
as its availability. Availability of the bleaching system is

A = 0.10389e(−1.40000∗t) − 0.031579e(−0.95000∗t) + 0.17716e(−1.95000) + 0.90997
(31)

The availability of the assumed bleaching structure is obtained by putting t = 0
to 10 in Eq. (31) and shown in Table 2 and Fig. 3.

4.2 Reliability Analysis

The reliability function of the framework is generally concerned with the amount of
time in which framework will work without failure after it starts working. Reliability
of the system is

Mathematical Modeling for Evaluation Reliability … 257

Fig. 3 Availability versus time

R = 0.36364e(−0.4000∗t) + (0.60000t + 0.636364)e(−0.95000∗t) (32)

Now, putting t = 0 to 10 in Eq. (32) and getting the reliability of the framework
and shown in Table 3 and Fig. 4.

Table 3 Reliability of the
system

Time (t) Reliability

0 1.00000

1 0.72191

2 0.43805

3 0.25045

4 0.14134

5 0.08067

6 0.04716

7 0.02837

8 0.01754

9 0.01110

10 0.00716

258 S. Tyagi et al.

Fig. 4 Reliability versus time

4.3 Analysis of Mean Time to Failure (MTTF)

MTTF is the mean time expected until the first failure of the system occurs. Specif-
ically, MTTF is used for the non-repairable systems. So, by taking all repair rates
equals to zero, one can evaluate mean time to failure as the function of failure rates.

MT T F = lim
s→0

Pup(s)

=
1 + 2λ2

λ2+λ3
+ 2λ3

2λ3+2λ2+λ1

2λ3 + 2λ2 + λ1

After setting the values of failure rates, MTTF of the bleaching system is shown
in Table 4 and Fig. 5.

4.4 Expected Profit

The standard equation of expected profit is given by

E p(t) = K1

t ∫
0
Pup(t)dt − t K2 (33)

Mathematical Modeling for Evaluation Reliability … 259

Table 4 MTTF of the system Variation in failure rates λ1 λ2 λ3

0.1 2.40741 2.24377 4.29752

0.2 2.10000 2.01890 2.93333

0.3 1.85950 1.81069 2.24377

0.4 1.66667 1.63223 1.82231

0.5 1.50888 1.48163 1.53635

0.6 1.37755 1.35437 1.32897

0.7 1.26667 1.24608 1.17142

0.8 1.17188 1.15313 1.04755

0.9 1.08997 1.07266 0.94754

Fig. 5 MTTF as a function of failure rates

Substituting the values of inverse Laplace transform and integrating, we will get
the value of the expected profit as shown in Table 5 and Fig. 6.

E p (t) = K1

(
−0.074211e(−1.4000∗t) + 0.03324e(−0.95000∗t) − 0.00908e(−1.95000∗t) + 0.90997t − 0.05006

)
− t K2

(34)

Varying the value of t from 0 to 9, setting different value of K2, we get Table 5
and Fig. 6 which shows the expected profit of the bleaching system.

260 S. Tyagi et al.

Table 5 The values of profit of the bleaching system

t K2 = 0.2 K2 = 0.4 K2 = 0.6 K2 = 0.8
0 −0.10011 −0.10011 −0.10011 −0.10011

1 0.65317 0.45317 0.25317 0.05317

2 1.37015 0.97015 0.57015 0.17015

3 2.08063 1.48063 0.88063 0.28063

4 2.79027 1.99028 1.19028 0.39028

5 3.50000 2.50000 1.50000 0.50000

6 4.20984 3.00984 1.80984 0.60984

7 4.91975 3.51975 2.11975 0.71975

8 5.62969 4.02969 2.42969 0.82969

9 6.33966 4.53966 2.73966 0.93966

Fig. 6 Expected profit of the system

5 Result Discussion

Some reliability measures for example reliability, availability, MTTF and expected
cost are evaluated for the proposed framework by using Markov process. From the
above Tables 2, 3, 4 and 5 and Figs. 3, 4, 5 and 6 the following results can be
concluded. Table 2 provides the values of availability of the proposed framework

Mathematical Modeling for Evaluation Reliability … 261

at different time period (from 0 to 10). Figure 3 is the graphical representation of
Table 2 i.e.; it shows the variation in availability with respect to the increasing time.
Figure 3 depicts that the availability of the proposed system decreases immediately
with time up to 1 and after 3 it almost becomes constant with the increasing time.

Table 3 gives the values of the reliability of the model at different time period
(from 0 to 10), considering some fixed values of all failure and repair rates. Figure 4
concluded the above Table 3 and shows the behaviour of the system’s reliability with
the increasing time period. The graph in Fig. 4 shows that the reliability of the system
decreases exponentially with the passing time.

Table 4 shows the MTTF with respect to variation in failure rates and Fig. 5 is the
depiction of Table 4 in graphical form. Clearly, the value of λ3 is higher than λ2 and
λ1 and the value of λ1 is higher than λ2. The curve of λ3 is falling more steeper than
λ1 and λ2.

Table 5 gives the data about the variation on profit with different values of service
costs and graphical representation of the Table 5 is in Fig. 6. From Fig. 6, it can
be concluded that on increasing service cost expected profit is decreasing. So, the
expected cost is inversely proportional to service cost, the expected profit increases
with increasing time for the proposed system.

6 Conclusion

A bleaching framework of a chapter mill is considered in this research and many relia-
bility measures for example availability, reliability, MTTF, expected profit are evalu-
ated by means of supplementary variable technique, Laplace transform and Markov
process. Reliability measures are calculated for different time duration. From the
availability and reliability graphs, it can be resulted that both the parameters decrease
suddenly with the passage of time and after some time it almost becomes constant. It
is also seen that the expected profit is inversely proportional to service cost. In future,
researchers can extend this work by evaluate the sensitivity of reliability measures
for bleaching system to improve the design and structure of system.

Declaration of Competing Interest There is no conflict of interests associated with this chapter.

References

1. Gupta PP, Tyagi L (1986) MTTF and availability evaluation of a two-unit, two-state, standby
redundant complex system with constant human failure. Microelectron Reliab 26(4):647–650

2. Pham H, Suprasad A, Misra RB (1996) Reliability and MTTF prediction of k-out-of-n complex
systems with components subjected to multiple stages of degradation. Int J Syst Sci 27(10):995–
1000

3. Dhillon BS (2003) Human reliability and error in medical system, vol 2. World Scientific

262 S. Tyagi et al.

4. Oliveira EA, Alvim ACM, e Melo PF (2005) Unavailability analysis of safety systems under
aging by supplementary variables with imperfect repair. Ann Nucl Energy 32(2):241–252

5. Dhillon BS (2008) Mining equipment reliability. Springer, London, pp 57–70
6. Liang X, Xiong Y, Li Z (2010) Exact reliability formula for consecutive k-out-of-n repairable

systems. IEEE Trans Reliab 59(2):313–318
7. Lisnianski A (2012) L z-Transform for a discrete-state continuous-time Markov process and its

applications to multi-state system reliability. In: Recent advances in system reliability. Springer,
London, pp 79–95

8. Garg H, Rani M, Sharma SP (2013) Reliability analysis of the engineering systems using
intuitionistic fuzzy set theory. J Qual Reliab Eng 2013:10. Article ID 943972. https://doi.org/
10.1155/2013/943972

9. Ram M, Kumar A (2013) Reliability measures improvement and sensitivity analysis of a coal
handling unit for thermal power plant. Int J Eng 26(9):1059–1066

10. Ram M, Singh SB, Singh VV (2013) Stochastic analysis of a standby system with waiting
repair strategy. IEEE Trans Syst Man Cybern Syst 43(3):698–707

11. Ram M, Nagia N (2013) Reliability characteristics of a satellite communication system
including earth station and terrestrial system. Int J Perform Eng 9(6):667–676

12. Singh VV, Singh SB, Ram M, Goel CK (2013) Availability, MTTF and cost analysis of a
system having two units in series configuration with controller. Int J Syst Assur Eng Manag
4(4):341–352

13. Kumar A, Ram M (2016) System reliability measures in the presence of common cause failures.
Int J Ind Syst Eng 24(1):44–61

14. Li J (2016) Reliability calculation for dormant k-out-of-n systems with periodic maintenance.
Int J Math Eng Manag Sci 1(2):68–76

15. Dhillon BS (2016) Transportation systems reliability and safety. CRC Press
16. Li J (2016) Reliability comparative evaluation of active redundancy vs. standby redundancy.

Int J Math Eng Manag Sci 1(3):122–129
17. Amrutkar KP, Kamalja KK (2017) An overview of various importance measures of reliability

system. Int J Math Eng Manag Sci 2(3):150–171
18. Shekhar C, Jain M, Raina A, Mishra R (2017) Sensitivity analysis of repairable redundant

system with switching failure and geometric reneging. Decis Sci Lett 6(4):337–350
19. Nakagawa T, Chen M, Zhao X (2018) Note on history of age replacement policies. Int J Math

Eng Manag Sci 3(2):151–166
20. Zhao X, Qian C, Nakamura S, Nakagawa T (2018) A summary of replacement policies with

number of failures. Int J Math Eng Manag Sci 3(2):136–150
21. Jain M, Jain A, Gupta R (2018) Analysis of module-based software reliability growth model

incorporating imperfect debugging and fault reduction factor. In: Quality, IT and business
operations. Springer, Singapore, pp 69–80

22. Li J, Collins G, Govindarajulu R (2019) System reliability growth analysis during warranty.
Int J Math Eng Manag Sci 4(1):85–94

23. Gaonkar RSP, Nigalye AV, Pai SP (2021) Possibilistic approach for travel time reliability
evaluation. Int J Math Eng Manag Sci 6(1):223–243

24. Dhillon BS, Misra RB (1984) Reliability evaluation of systems with critical human error.
Microelectron Reliab 24(4):743–759

https://doi.org/10.1155/2013/943972
https://doi.org/10.1155/2013/943972

An Effort Allocation Model for a Three
Stage Software Reliability Growth Model

Sujit Kumar Pradhan, Anil Kumar, and Vijay Kumar

Abstract This chapter investigates the optimal efforts allocation plan to minimize
the total cost during the testing phase of the software development life cycle using
three stages fault detection, isolation, and removal under a dynamic environment. We
have used three-stage modelling to allocate resources, which incorporates different
efforts, i.e. detection effort, isolation effort, and removal effort. We have used the
optimal control-theoretic approach to find the optimal policies by considering effort
as a control parameter. We also discussed the variations in the future cost of the
model by assuming that the cost of detection, isolation and removal follows the
learning curve phenomenon. The theoretical results and optimal control theory-based
optimized policy is supported by a numerical example.

1 Introduction

Computers and computer-based systems interpenetrate every feature of our daily
lives. It has benefited our society and increased our productivity. The good func-
tioning of any computer system depends upon its software components. Software
plays a vital role in both real life and industrial organizations. It is becoming more
challenging to develop a highly reliable software system. To assure software reliabil-
ity, a lengthy testing process is usually needed before releasing software to market.
Hence, faults are detected and corrected during the software development life cycle
to increase software reliability.

S. K. Pradhan · A. Kumar
Department of Mathematics, BITS Pilani-KK Birla Goa Campus, Zuarinagar 403726, Goa, India
e-mail: p20180407@goa.bits-pilani.ac.in

A. Kumar
e-mail: anilpundir@goa.bits-pilani.ac.in

V. Kumar (B)
Department of Mathematics, Amity Institute of Applied Sciences, Amity University Uttar
Pradesh, Noida 201313, India
e-mail: vijay_parashar@yahoo.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Kumar and H. Pham (eds.), Predictive Analytics in System Reliability,
Springer Series in Reliability Engineering,
https://doi.org/10.1007/978-3-031-05347-4_17

263

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05347-4_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05347-4_17&domain=pdf
mailto:p20180407@goa.bits-pilani.ac.in
mailto:p20180407@goa.bits-pilani.ac.in
mailto:anilpundir@goa.bits-pilani.ac.in
mailto:anilpundir@goa.bits-pilani.ac.in
mailto:vijay_parashar@yahoo.com
mailto:vijay_parashar@yahoo.com
https://doi.org/10.1007/978-3-031-05347-4protect LY1	extunderscore 17
https://doi.org/10.1007/978-3-031-05347-4_17

264 S. K. Pradhan et al.

In the software industries, prediction and estimation of software reliability enable
to meet complexities of software development. It is becoming more challenging for
software managers to develop highly reliable software systems efficiently. To obtain
fault-free software, there is a requirement of the process to track fault content and
reliability. Hence, a mathematical relationship termed a software reliability growth
model (SRGM) describing the process of finding and removing errors to increase
software reliability is introduced.

In the last few years, many software reliability growth models (SRGMs) [1–19]
have been proposed to distinguish the growth of software reliability during the soft-
ware development process. SRGMs are divided into two categories: perfect debug-
ging model and imperfect debugging model. Perfect debugging models are based on
the assumption that faults detected during the testing phase are removed immediately,
and no new faults are introduced into the software [1, 11, 20]. The other category is
imperfect debugging, i.e. at all times, the testing team may not be able to remove the
original fault with certainty, or new faults can be added into the software during the
testing phase [4, 12, 21].

Further, the imperfect debugging model can be classified into two types based
on error generation and imperfect fault removal. Yamada et al. [21] proposed an
imperfect debugging model with exponential or linear fault content function of the
testing time. Pham et al. [15] presented an imperfect debugging SRGM with time-
dependent fault content function. Zhu et al. [16] proposed a two-phase SRGM that
incorporates both software fault dependency and imperfect fault removal.

Software faults are classified based on kind of failures. Software fault classes are
discussed. Firstly, solid faults are known as Bohrbugs, and soft faults are known as
Mandelbugs. Bohrbugs are the faults that can be easily isolated, and Mandelbugs
are the opposite of Bohrbugs [22, 23]. Secondly, software faults can be classified as
independent and related faults. Laprie et al. [24] presented an SRGM in which they
have discussed that software faults are either related or independent.

Software reliability is defined as the probability of failure-free software in a par-
ticular period. For developing reliable software, different factors affect software
reliability. The two main factors, i.e. initial faults and fault detection rate, affect
software reliability. Software reliability can be improved by testing process factors,
i.e. testing effort and imperfect debugging. The most common method to estimate
software reliability is during the testing phase. The testing effort is the total resources
consumed during the testing phase. Generally, testing efforts are measured by human
power, the number of CPU hours, etc. [5, 21, 25]. The software testing effort curve is
described by the traditional Rayleigh, Weibull, Exponential, or S-shaped curve [26].
Huang et al. [10, 27] developed SRGMs where testing effort is incorporated with
logistic function.

Ji et al. [7] developed software by applying optimal control theory. Kumar and
Sahni [28] used FDP and FCP to reduce total cost during the development period
of SRGM under a dynamic environment. Kapur et al. [29] have discussed a model
to allocate the resources and minimize the total cost during the testing process of
SRGM. Kumar and Sahni [30] presented an SRGM to estimate the testing efforts
in a dynamic environment under the condition that debugging costs associated with

An Effort Allocation Model for a Three Stage Software Reliability Growth Model 265

each release follows a learning curve. Kapur et al. [31] developed a model for profit
maximization of SRGM under the influence of promotional effort. Pradhan et al. [32]
have discussed a resource allocation model to minimize the total cost of a two-stage
SRGM incorporating testing effort and imperfect fault removal. Kumar et al. [33]
proposed a model incorporating resource allocation and testing time in a two-stage
process of fault detection and fault correction. Ji et al. [34] presented a model to
enhance the lifetime of software systems by control theory. Saxena et al. [35] have
discussed the ranking of SRGM by an entropy-ELECTRA hybrid approach. Kumar
et al. [36] have discussed a selection of optimal SRGM using an integrated entropy
technique for order preference by similarity to an ideal solution approach.

In the present work, we have incorporated a different fault detection effort, iso-
lation effort and removal effort along with different fault detection rate, isolation
rate and removal rate in the model discussed in Sect. 2. Yamada and Osaki [37] pre-
sented an SRGM to minimize the total cost under static conditions. A problem arises
when the software development process is carried out not under static but dynamic
conditions. We also study the control problem to allocate resources optimally by
examining the behaviour of the model parameters.

The remaining chapter is organized as follows: In Sect. 2, we briefly discussed the
model developed by Kapur et al. [38]. Section 3 deals with the model development,
and we introduced an optimal control problem. In Sect. 4, the optimal policies are
developed, and optimal solutions are given. In Sect. 5, numerical analysis is per-
formed by taking some base value of parameters by varying efforts (detection effort,
isolation effort and removal effort). Section 6 concludes the paper with conclusions
and some possible research on this topic.

Notations

T The complete life cycle of the software.
md (t) The cumulative number of detected faults at time t .
mi (t) The cumulative number of isolated faults at time t .
mr (t) The cumulative number of removed faults at time t .
a The total fault.
b1 The fault detection rate.
b2 The fault isolation rate.
b3 The fault removal rate.
w1(t) The fault detection effort at time t .
w2(t) The fault isolation effort at time t .
w3(t) The fault removal effort at time t .
x1(t) The number of detected faults at any point of time t .
x2(t) The number of isolated faults at any point of time t .
x3(t) The number of removed faults at any point of time t .
c̃1(t) Per unit detection cost at time t .
c̃2(t) Per unit isolation cost at time t .
c̃3(t) Per unit removal cost at time t .

266 S. K. Pradhan et al.

2 Software Reliability Growth Model

Kapur et al. [38] presented a software reliability growth model by assuming the
following assumptions.

1. The error occurrence in SRGM follows the non-homogeneous Poisson process.
2. The SRGM is modelled as a three-stage process, i.e. fault detection, fault isolation,

and fault removal.
3. The time delay between the failure observation and subsequent removal is negli-

gible.
4. No new faults are introduced into the software during the isolation/removal pro-

cess.
5. Failure rate of the software is equally affected by faults remaining in the software.
6. The fault isolation/removal rate concerning testing effort intensity is proportional

to the number of observed failures whose causes are yet to be identified.

Model. Based on the above assumptions, the following SRGM is considered for the
study, which incorporates testing effort, i.e. detection effort, isolation effort, and
removal effort. From the practical point of view, the testing effort is an important
aspect of software reliability. The total number of software faults that cause fail-
ure concerning the testing effort is proportional to the remaining faults and fault
detection/isolation/removal rate. The model is presented below:

dmd (t)
dt

= w1(t)b1 [a − md (t)] , md (0) = 0, 0 ≤ t ≤ T , (1)

dmi (t)
dt

= w2(t)b2 [md (t) − mi (t)] , mi (0) = 0, 0 ≤ t ≤ T , (2)

dmr (t)
dt

= w3(t)b3 [mi (t) − mr (t)] , mr (0) = 0, 0 ≤ t ≤ T . (3)

3 Model Development

The fault detection, isolation, and removal phase aim to detect, isolate and correct
faults respectively and make the software more reliable during the development
process of the software. The resources spent in the three-stage process, illustrated in
Fig. 1, can affect the software’s reliability. So resources should be allocated optimally.
We aim to develop an optimal resource allocation plan to minimize the total cost of
the software during the three-stage process of a software development life cycle
under dynamic conditions. The mathematical expression for the resource over the
interval [0, T] is written as

0 ≤ w j (t) ≤ 1, j = 1, 2, 3. (4)

An Effort Allocation Model for a Three Stage Software Reliability Growth Model 267

Fig. 1 Allocation of total
resources during testing
phase of SDLC

Cost minimization model. The main objective is to minimize the total cost, i.e. detec-
tion, isolation, and removal cost during the software development process. Detection,
isolation, and removal costs are three different cost functions in the detection, isola-
tion, and removal stages. The proposed model incorporates detection, isolation, and
removal effort as a control parameter. Then the model can be represented mathemat-
ically over the interval [0, T] as follows:

min

⎡ ∫ T

0

{
c̃1(t)x1(t) + c̃2(t)x2(t) + c̃3(t)x3(t)

}
dt

⎤
(5)

subject to

x1(t) =
dmd (t)
dt

= w1(t)b1 [a − md (t)] , 0 ≤ t ≤ T , (6)

x2(t) =
dmi (t)
dt

= w2(t)b2 [md (t) − mi (t)] , 0 ≤ t ≤ T , (7)

x3(t) =
dmr (t)
dt

= w3(t)b3 [mi (t) − mr (t)] , 0 ≤ t ≤ T , (8)

mr (T)
a

≥ mrT ⇒ mr (T) ≥ mt (= amrT), (9)

with the conditions md (0) = 0, mi (0) = 0 and mr (0) = 0.

268 S. K. Pradhan et al.

In the above control problem, we have considered the required reliability to be at
least mt when 0 < mr (T)

a < 1. This means that the software development team wants
to reach at least mt at the end of software development within the planning period.

4 Optimal Solution

The dynamic optimal control problem in Eq. (5) may be solved by Pontryagin maxi-
mum principle. To apply the Pontryagin maximum principle, first to form the Hamil-
tonian function. The Hamiltonian function is given by

H (md (t), mi (t), mr (t), λ1(t), λ2(t), λ3(t), w1(t), w2(t), w3(t), t)
= −c̃1(t)x1(t) − c̃2(t)x2(t) − c̃3(t)x3(t) + λ1(t)x1(t) + λ2(t)x2(t) + λ3(t)x3(t).

The necessary conditions for an optimal solution are defined similarly. The co-
state variables λ1(t), λ2(t) and λ3(t) is given by the following differential equation

d

dt
λ1(t) = −

∂ H (md (t), mi (t), mr (t), λ1(t), λ2(t), λ3(t), w1(t), w2(t), w3(t), t)
∂md (t)

,

d

dt
λ2(t) = −

∂ H (md (t), mi (t), mr (t), λ1(t), λ2(t), λ3(t), w1(t), w2(t), w3(t), t)
∂mi (t)

,

d

dt
λ3(t) = −

∂ H (md (t), mi (t), mr (t), λ1(t), λ2(t), λ3(t), w1(t), w2(t), w3(t), t)
∂mr (t)

,

with terminal conditions λ1(T) = 0, λ2(T) = 0 and λ3(T) ≤ 0 (= 0 if mr (T) > mt)
and 0 ≤ t ≤ T . This results are demonstrate in the following theorem.

Theorem 1 Consider a free final time and free final state problem with general cost
function [39] which is to minimize the following performance index

J (x j (t), u j (t), t) = S(x j (t f), t f) +
∫ t f

t0

V (x j (t), u j (t), t)dt, (10)

subject to the system equation

ẋ j (t) = f (x j (t), u j (t), t), (11)

along with boundary conditions as x j (t = t0) = x j0, t = t f free, and x j (t f) is free.
Here j = 1, 2, 3. Then
(i) for fixed final time and free final state system, the boundary conditions are

x j (t0) = x j0 and λ j (t f) =
(

∂ S
∂x j

)

t f
,

(ii) for fixed final time and fixed final state system, the boundary conditions are
x j (t0) = x j0 and x j (t f) = x j f .

An Effort Allocation Model for a Three Stage Software Reliability Growth Model 269

Proof The Hamiltonian with respect to the above problem is defined as

H = H (x j (t), u j (t), λ j (t), t)
= V (x j (t), u j (t), t) + λ j (t) f (x j (t), u j (t), t). (12)

For j = 1, 2, 3, we know that the boundary condition for the free final time, and the
free final state system in terms of Hamiltonian is given by

⎡
H +

∂ S
∂t

⎤

t f

δt f +
⎡

∂ S
∂x j

− λ j (t)
⎤

t f

δx j f = 0. (13)

(i) For fixed final time and free final state system, δt f = 0 and δx f /= 0. Then from
Eq. (13) the coefficient of δx f is zero, i.e.

(
∂ S
∂ x j

− λ j (t)
)

t f

= 0,

⇒ λ j (t f) =
(

∂ S
∂ x j

)

t f

.

Hence, for fixed final time and free final state system, the boundary conditions are

x j (t0) = x j0 and λ j (t f) =
(

∂ S
∂ x j

)

t f
.

(i i) For fixed final time and fixed final state system, δt f = 0 and δx j f = 0 in general
boundary condition and there is no extra boundary condition to be used other than
those given in the problem formulation. But if the state system didn’t acquire the
desire value, then from Eq. (13), we get

λ j (t f) ≤ 0 (= 0 if x j (t f) > x j f).

This completes the proof of the theorem. ◻

The co-state variables λ1(t), λ2(t) and λ3(t) represents per unit change in the
objective function for a small change in md (t), mi (t) and mr (t) respectively i.e.
λ1(t), λ2(t) and λ3(t) can be interpreted as marginal cost of faults detected, iso-
lated and removal respectively at time t . Moreover, λ1(t), λ2(t) and λ3(t) stands
for future cost of detection, isolation and removal incurred as one more fault is
detected, isolated and removed at time t respectively. So, the Hamiltonian is the
sum of total current cost c̃1(t)x1(t) + c̃2(t)x2(t) + c̃3(t)x3(t) and the total future
cost λ1(t)x1(t) + λ2(t)x2(t) + λ3(t)x3(t). The necessary conditions for optimality
are given by:

∂ H (t)
∂w1(t)

= 0,
∂ H(t)
∂w2(t)

= 0,
∂ H(t)
∂w3(t)

= 0.

270 S. K. Pradhan et al.

From optimality condition, we get

− c̃1w1 (t)x1(t) − (c̃1(t) − λ1(t))x1w1 (t) = 0, (14)

−c̃2w2 (t)x2(t) − (c̃2(t) − λ2(t))x2w2 (t) = 0, (15)

−c̃3w3 (t)x3(t) − (c̃3(t) − λ3(t))x3w3 (t) = 0. (16)

Now solving the above Eqs. (14), (15) and (16) for the control variable w1(t), w2(t)
and w3(t) respectively, we get

w1(t) =
−(c̃1(t) − λ1(t))

c̃1w1 (t)
,

w2(t) =
−(c̃2(t) − λ2(t))

c̃2w2 (t)
,

w3(t) =
−(c̃3(t) − λ3(t))

c̃3w3 (t)
.

Other optimality conditions are Hw1w1 ≤ 0,
||||Hw1w1 Hw1w2

Hw2w1 Hw2w2

|||| ≥ 0,

and ||||||
Hw1w1 Hw1w2 Hw1w3

Hw2w1 Hw2w2 Hw2w3

Hw3w1 Hw3w2 Hw3w3

|||||| ≤ 0.

where

Hw1w1 = −c̃1w1w1 (t)x1(t) − 2c̃1w1 (t)x1w1 (t) − (c̃1(t) − λ1(t))x1w1w1 (t) ≤ 0,
Hw2w2 = −c̃2w2w2 (t)x2(t) − 2c̃2w2 (t)x2w2 (t) − (c̃2(t) − λ2(t))x2w2w2 (t) ≤ 0,
Hw3w3 = −c̃3w3w3 (t)x3(t) − 2c̃3w3 (t)x3w3 (t) − (c̃3(t) − λ3(t))x3w3w3 (t) ≤ 0,
Hw1w2 = 0, Hw1w3 = 0, Hw2w1 = 0, Hw2w3 = 0, Hw3w1 = 0, Hw3w2 = 0.

Now taking derivative of Eqs. (14), (15) and (16) with respect to t

ẇ1(t) =
(̃c1md (t)x1(t) + c̃1(t)x1md (t) + c̃2(t)x2md (t) − λ1(t)x1md (t))x1w1 (t)
c̃1w1w1 (t)x1(t) + 2c̃1w1 (t)x1w1 (t) + c̃1(t)x1w1w1 (t) − λ1(t)x1w1w1 (t)

,

ẇ2(t) =
(c̃2mi (t)x2(t) + c̃2(t)x2mi (t) + c̃3(t)x3mi (t) − λ2(t)x2mi (t))x2w2 (t)
c̃2w2w2 (t)x2(t) + 2c̃2w2 (t)x2w2 (t) + c̃2(t)x2w2w2 (t) − λ2(t)x2w2w2 (t)

,

ẇ3(t) = (̃c3mr (t)x3(t) + c̃3(t)x3mr (t) − λ3(t)x3mr (t))x3w3 (t)
c̃3w3w3 (t)x3(t) + 2c̃3w3 (t)x3w3 (t) + c̃3(t)x3w3w3 (t) − λ3(t)x3w3w3 (t)

,

An Effort Allocation Model for a Three Stage Software Reliability Growth Model 271

where

c̃1w1 =
∂ ̃c1
∂w1

, c̃1w1w1 =
∂2 c̃1
∂w2

1

, x1w1 =
∂x1
∂w1

, x1w1w1 =
∂2x1
∂w2

1

, c̃2w2 =
∂ ̃c2
∂w2

, c̃2w2w2 =
∂2 c̃2
∂w2

2

,

x2w2 =
∂x2
∂w2

, x2w2w2 =
∂2x2
∂w2

2

, c̃3w3 =
∂ ̃c3
∂w3

, c̃3w3w3 =
∂2 c̃3
∂w2

3

, x3w3 =
∂x3
∂w3

, x3w3w3 =
∂2x3
∂w2

3

.

4.1 Special Cases

The following scenarios are depicted to show the behaviour of the proposed model.
We have taken different functional forms for detection cost, isolation cost, and
removal cost to analyze the behaviour of the control model and related optimal
policies.

Case-1: In this subsection, we have assumed that per unit detection cost associated
with detection efforts w1(t), per unit isolation cost associated with isolation efforts
w2(t) and per unit removal cost associated with removal efforts w3(t) are constant.

i.e c̃1(t) = c1, c̃2(t) = c2 and c̃3(t) = c3.

Then, the objective function can be written as:

min

⎡ ∫ T

0

{
c1x1(t) + c2x2(t) + c3x3(t)

}
dt

⎤
(17)

subject to

x1(t) =
dmd (t)
dt

= w1(t)b1 [a − md (t)] , 0 ≤ t ≤ T, (18)

x2(t) =
dmi (t)
dt

= w2(t)b2 [md (t) − mi (t)] , 0 ≤ t ≤ T , (19)

x3(t) =
dmr (t)
dt

= w3(t)b3 [mi (t) − mr (t)] , 0 ≤ t ≤ T , (20)

with the conditions md (0) = 0, mi (0) = 0 and mr (0) = 0. Then the Hamiltonian
function is given by

272 S. K. Pradhan et al.

H(t) = −c1x1(t) − c2x2(t) − c3x3(t) + λ1(t)x1(t) + λ2(t)x2(t) + λ3(t)x3(t)
= −(c1 − λ1(t))x1(t) − (c2 − λ2(t))x2(t) − (c3 − λ3(t))x3(t)
= −(c1 − λ1(t))w1(t)b1(a − md (t)) − (c2 − λ2(t))w2(t)b2(md (t) − mi (t))

− (c3 − λ3(t))w3(t)b3(mi (t) − mr (t)).

The co-state variable λ1(t), λ2(t) and λ3(t) is defined as

d

dt
λ1(t) = λ̇1(t) = −b1w1(t)(c1 − λ1(t)) + b2w2(t)(c2 − λ2(t)), (21)

d

dt
λ2(t) = λ̇2(t) = −b2w2(t)(c2 − λ2(t)) + b3w3(t)(c3 − λ3(t)), (22)

d

dt
λ3(t) = λ̇3(t) = −b3w3(t)(c3 − λ3(t)), (23)

with the transversality conditions at t = T ∗, H (T ∗) = 0, and λ1(T) = 0, λ2(T) = 0,
and λ3(T ∗) ≤ 0 (= 0 if m∗

r (T
∗) > mt). Solving Eqs. (21), (22) and (23) together with

terminal conditions to get

λ1(t) =
∫ T

0

{
b1w1(t)(c1 − λ1(t)) − b2w2(t)(c2 − λ2(t))

}
dt,

λ2(t) =
∫ T

0

{
b2w2(t)(c2 − λ2(t)) − b3w3(t)(c3 − λ3(t))

}
dt,

λ3(t) = λ3(T) +
∫ T

0

{
b3w3(t)(c3 − λ3(t))

}
dt.

The necessary condition for optimality are ∂ H(t)
∂w1(t) = 0, ∂ H (t)

∂w2(t) = 0 and ∂ H (t)
∂w3(t) = 0. For

optimal policy, let us assume the following:

α1(t) = (λ1(t) − c1)b1(a − md (t)),
α2(t) = (λ2(t) − c2)b2(md (t) − mi (t)),
α3(t) = (λ3(t) − c3)b3(mi (t) − mr (t)).

Then, the Hamiltonian can be written as

H(t) = α1(t)w1(t) + α2(t)w2(t) + α3(t)w3(t).

Since Hamiltonian is linear in control parameters w1(t), w2(t) and w3(t). So, we
have the following optimal policies, given in Table 1, for w1(t), w2(t) and w3(t)
which maximizes the objective function.

The cases presented in Table 1, can be summarized in Fig. 2 and Table 2.

An Effort Allocation Model for a Three Stage Software Reliability Growth Model 273

Table 1 The optimal policy for detection effort, isolation effort and removal effort for various
values of α1, α2 and α3

Subcase Condition on α1, α2 & α3 Optimal controls Characterization

1 α1 = 0, α2 = 0, α3 = 0 w1, w2, w3 not defined Bang-Bang

2 α1 = 0, α2 > 0, α3 > 0 0 ≤ w1 ≤ 1, w2 = 1, w3 = 1 Singular

3 α1 = 0, α2 < 0, α3 < 0 0 ≤ w1 ≤ 1, w2 = 0, w3 = 0 Singular

4 α1 = 0, α2 > 0, α3 < 0 0 ≤ w1 ≤ 1, w2 = 1, w3 = 0 Singular

5 α1 = 0, α2 < 0, α3 > 0 0 ≤ w1 ≤ 1, w2 = 0, w3 = 1 Singular

6 α1 = 0, α2 > 0, α3 = 0 0 ≤ w1 ≤ 1, w2 = 1,
0 ≤ w3 ≤ 1

Singular

7 α1 = 0, α2 = 0, α3 > 0 0 ≤ w1 ≤ 1, 0 ≤ w2 ≤ 1,
w3 = 1

Singular

8 α1 = 0, α2 < 0, α3 = 0 0 ≤ w1 ≤ 1, w2 = 0,
0 ≤ w3 ≤ 1

Singular

9 α1 = 0, α2 = 0, α3 < 0 0 ≤ w1 ≤ 1, 0 ≤ w2 ≤ 1,
w3 = 0

Singular

10 α1 > 0, α2 = 0, α3 = 0 w1 = 1, 0 ≤ w2 ≤ 1,
0 ≤ w3 ≤ 1

Singular

11 α1 > 0, α2 > 0, α3 > 0 w1 = 1, w2 = 1, w3 = 1 Bang-Bang

12 α1 > 0, α2 < 0, α3 < 0 w1 = 1, w2 = 0, w3 = 0 Bang-Bang

13 α1 > 0, α2 > 0, α3 < 0 w1 = 1, w2 = 1, w3 = 0 Bang-Bang

14 α1 > 0, α2 < 0, α3 > 0 w1 = 1, w2 = 0, w3 = 1 Bang-Bang

15 α1 > 0, α2 > 0, α3 = 0 w1 = 1, w2 = 1, 0 ≤ w3 ≤ 1 Singular

16 α1 > 0, α2 = 0, α3 > 0 w1 = 1, 0 ≤ w2 ≤ 1, w3 = 1 Singular

17 α1 > 0, α2 < 0, α3 = 0 w1 = 1, w2 = 0, 0 ≤ w3 ≤ 1 Singular

18 α1 > 0, α2 = 0, α3 < 0 w1 = 1, 0 ≤ w2 ≤ 1, w3 = 0 Singular

19 α1 < 0, α2 = 0, α3 = 0 w1 = 0, 0 ≤ w2 ≤ 1,
0 ≤ w3 ≤ 1

Singular

20 α1 < 0, α2 > 0, α3 > 0 w1 = 0, w2 = 1, w3 = 1 Bang-Bang

21 α1 < 0, α2 < 0, α3 < 0 w1 = 0, w2 = 0, w3 = 0 Bang-Bang

22 α1 < 0, α2 > 0, α3 < 0 w1 = 0, w2 = 1, w3 = 0 Bang-Bang

23 α1 < 0, α2 < 0, α3 > 0 w1 = 0, w2 = 0, w3 = 1 Bang-Bang

24 α1 < 0, α2 > 0, α3 = 0 w1 = 0, w2 = 1, 0 ≤ w3 ≤ 1 Singular

25 α1 < 0, α2 = 0, α3 > 0 w1 = 0, 0 ≤ w2 ≤ 1, w3 = 1 Singular

26 α1 < 0, α2 < 0, α3 = 0 w1 = 0, w2 = 0, 0 ≤ w3 ≤ 1 Singular

27 α1 < 0, α2 = 0, α3 < 0 w1 = 0, 0 ≤ w2 ≤ 1, w3 = 0 Singular

Case-2: Compared with constant fault detection cost, isolation cost, and removal
cost discussed in case-1, we have taken a scenario when the fault detection cost,
isolation cost, and removal cost are dynamic. In this subsection, we have considered
the cost per unit fault detection, isolation, and removal following the learning curve
phenomenon [40]. The fault detection cost, isolation cost, and removal cost are taken

274 S. K. Pradhan et al.

Fig. 2 Graph showing optimal policy of detection effort (w1), isolation effort (w2) and removal
effort (w3) at any time t

Table 2 Optimal policy
shown by co-ordinate points

Co-ordinate points Remarks

(0, 0, 0) Subcase-1

(1, 0, 0) Subcase-12

(1, 1, 0) Subcase-13

(0, 1, 0) Subcase-22

(0, 1, 1) Subcase-20

(0, 0, 1) Subcase-23

(1, 0, 1) Subcase-14

(1, 1, 1) Subcase-11

as a function of detection effort, isolation effort, and removal effort, respectively.

c̃1(t) = b0(w1(t))
md (t) , c̃2(t) = c0(w2(t))

mi (t) , c̃3(t) = d0(w3(t))
mr (t) ,

where b0, c0 and d0 are base detection cost, isolation cost and removal cost respec-
tively. Then the Hamiltonian function can be written as

H (t) = −c̃1(t)x1(t) − c̃2(t)x2(t) − c̃3(t)x3(t) + λ1(t)x1(t) + λ2(t)x2(t) + λ3(t)x3(t).

The co-state variables along with terminal conditions are given below

An Effort Allocation Model for a Three Stage Software Reliability Growth Model 275

λ1(t) =
∫ T

0

{
b1w1(t)(c̃1(t) − λ1(t)) − b2w2(t)(̃c2(t) − λ2(t))

−c̃1md (t)x1(t) log(w1(t))
}
dt,

λ2(t) =
∫ T

0

{
b2w2(t)(c̃2(t) − λ2(t)) − b3w3(t)(̃c3(t) − λ3(t))

−c̃2mi (t)x2(t) log(w2(t))
}
dt,

λ3(t) = λ3(T) +
∫ T

0

{
b3w3(t)(c̃3(t) − λ3(t)) − c̃3mr (t)x3(t) log(w3(t))

}
dt.

From the necessary condition of optimality ∂ H (t)
∂w1(t) = 0, ∂ H(t)

∂w2(t) = 0 and ∂ H (t)
∂w3(t) = 0, we

get

w1(t) =
{ λ1(t) − c̃1(t)

b0md (t)

} 1
md (t)

,

w2(t) =
{ λ2(t) − c̃2(t)

c0mi (t)

} 1
mi (t)

,

w3(t) =
{ λ3(t) − c̃3(t)

d0mr (t)

} 1
mr (t)

.

5 Numerical Analysis

In this section, we demonstrate the behaviour of the cost minimization model numer-
ically. This study aims to get some view into the result and study the impact of detec-
tion effort, isolation effort, and removal effort on the objective function. We have
conducted several simulations by taking different values of parameters. While doing
simulation, the base value of parameters is as follows.

a = 100, b1 = 0.3, b2 = 0.35, b3 = 0.4, w1 = 0.7, w2 = 0.75, w3 = 0.8, b0 = 1000,
c0 = 1000, d0 = 1000, mt = 90.

In this analysis, the main aim is to check importance of efforts (w1, w2, w3) on
software development life cycle. During sensitive analysis, we have taken four sets of
efforts (w1, w2, w3) and it has been observed that, when the value of efforts (w1, w2,
w3) gradually increases the cumulative detected faults, isolated faults and removed
faults are also increases. The four sets of efforts are: Case-1: w1 = 0.7, w2 = 0.75,
w3 = 0.8; Case-2: w1 = 0.75, w2 = 0.8, w3 = 0.85; Case-3: w1 = 0.8, w2 = 0.85,
w3 = 0.9; Case-4: w1 = 0.85, w2 = 0.9, w3 = 0.95. The behaviour of cumulative

276 S. K. Pradhan et al.

Fig. 3 Number of detected, isolated and removed faults versus time (Case-1)

Fig. 4 Number of detected, isolated and removed faults versus time (Case-2)

number of detected faults, isolated faults and removed faults are depicted in Figs. 3,
4, 5, and 6 for Case-1, Case-2, Case-3, and Case-4 respectively.

The analysis was also done to show how the future cost of detection, isolation
and removal stage for different sets of efforts (w1, w2, w3). The pattern is depicted

An Effort Allocation Model for a Three Stage Software Reliability Growth Model 277

Fig. 5 Number of detected, isolated and removed faults versus time (Case-3)

Fig. 6 Number of detected, isolated and removed faults versus time (Case-4)

278 S. K. Pradhan et al.

Fig. 7 Shadow cost versus time (Case-1)

Fig. 8 Shadow cost versus time (Case-2)

in Figs. 7, 8, 9, and 10 for Case-1, Case-2, Case-3, and Case-4 respectively, which
tells that the co-state variables for detection, isolation, and removal stage decrease
with time and approach zero for different efforts.

An Effort Allocation Model for a Three Stage Software Reliability Growth Model 279

Fig. 9 Shadow cost versus time (Case-3)

Fig. 10 Shadow cost versus time (Case-4)

280 S. K. Pradhan et al.

6 Conclusion

In this paper, we have discussed the changing trend of software fault detection,
isolation, and removal over time. Practically, software faults cannot be removed
completely due to limitations of resources, operating environment, etc. Resources
utilized in the detection, isolation, and removal stage are practical issues in the soft-
ware development process to obtain reliable software. We have proposed the optimal
policy using optimal control theory, and a control-theoretic approach is used to solve
the cost minimization model. During analysis, we have observed from the graph of
the future cost that, as time increases, the future cost tends to zero due to the learning
curve phenomenon. And consequently, shadow cost tends to zero as time increases.

A few limitations in our control problem that suggest future research. The objec-
tive function is proposed by assuming detection, isolation, and removal costs in
terms of detection, isolation, and removal. We may take a different form of detec-
tion, isolation, and removal cost functional form. To present a more realistic SRGM, a
stochastic model can be considered. We can also extend the proposed model by incor-
porating different fault content functions. All these issues will be part of our further
work [17, 18].

References

1. Goel AL, Okumoto K (1979) Time-dependent error-detection rate model for software reliability
and other performance measures. IEEE Trans Reliab 28(3):206–211

2. Ohba M, Yamada S (1984) S-shaped software reliability growth models. International collo-
quium on reliability and maintainability, 4th edn. Tregastel, France, pp 430–436

3. Ohba M (1984) Software reliability analysis models. IBM J Res Dev 28(4):428–443
4. Ohba M, Chou X-M (1989) Does imperfect debugging affect software reliability growth?. In:

Proceedings of the 11th international conference on Software engineering, pp 237–244
5. Musa JD, Iannino A, Okumoto K (1990) Software reliability. Adv Comput 30:85–170
6. Huang C-Y, Lin C-T, Kuo S-Y, Lyu MR, Sue C-C (2004) Software reliability growth models

incorporating fault dependency with various debugging time lags. In: Proceedings of the 28th
annual international computer software and applications conference, 2004. COMPSAC 2004.
IEEE, pp 186–191

7. Ji Y, Mookerjee VS, Sethi SP (2005) Optimal software development: a control theoretic
approach. Inf Syst Res 16(3):292–306

8. Kapur P, Goswami D, Gupta A (2004) A software reliability growth model with testing effort
dependent learning function for distributed systems. Int J Reliab Qual Saf Eng 11(04):365–377

9. Huang C-Y, Kuo S-Y (2002) Analysis of incorporating logistic testing-effort function into
software reliability modeling. IEEE Trans Reliab 51(3):261–270

10. Huang C-Y, Lyu MR, Kuo S-Y (2003) A unified scheme of some nonhomogenous poisson
process models for software reliability estimation. IEEE Trans Softw Eng 29(3):261–269

11. Ohba M (1984) Inflection s-shaped software reliability growth model. In: Stochastic models
in reliability theory. Springer, pp 144–162

12. Pham H (1993) Software reliability assessment: imperfect debugging and multiple fault types
in software development eg&g-raam-10737. Idaho National Laboratory

An Effort Allocation Model for a Three Stage Software Reliability Growth Model 281

13. Pham H (1996) A software cost model with imperfect debugging, random life cycle and penalty
cost. Int J Syst Sci 27(5):455–463

14. Pham H, Zhang X (1997) An nhpp software reliability model and its comparison. Int J Reliab
Qual Saf Eng 4(03):269–282

15. Pham H, Nordmann L, Zhang Z (1999) A general imperfect-software-debugging model with
s-shaped fault-detection rate. IEEE Trans Reliab 48(2):169–175

16. Zhu M, Pham H (2018) A two-phase software reliability modeling involving with software
fault dependency and imperfect fault removal. Comput Lang Syst Struct 53:27–42

17. Chang Y-P (2001) Estimation of parameters for nonhomogeneous poisson process: software
reliability with change-point model. Commun Stat-Simul Comput 30(3):623–635

18. Kapur P, Goswami D, Bardhan A, Singh O (2008) Flexible software reliability growth model
with testing effort dependent learning process. Appl Math Model 32(7):1298–1307

19. Li Q, Pham H (2017) Nhpp software reliability model considering the uncertainty of operating
environments with imperfect debugging and testing coverage. Appl Math Model 51:68–85

20. Yamada S, Ohba M, Osaki S (1983) S-shaped reliability growth modeling for software error
detection. IEEE Trans Reliab 32(5):475–484

21. Yamada S, Tokuno K, Osaki S (1992) Imperfect debugging models with fault introduction rate
for software reliability assessment. Int J Syst Sci 23(12):2241–2252

22. Grottke M, Trivedi KS (2005) A classification of software faults. J Reliab Eng Assoc Jpn
27(7):425–438

23. Grottke M, Trivedi KS (2007) Fighting bugs: remove, retry, replicate, and rejuvenate. Computer
40(2):107–109

24. Laprie J-C, Arlat J, Beounes C, Kanoun K (1990) Definition and analysis of hardware-and
software-fault-tolerant architectures. Computer 23(7):39–51

25. Yamada S, Hishitani J, Osaki S (1993) Software-reliability growth with a weibull test-effort: a
model and application. IEEE Trans Reliab 42(1):100–106

26. Jin C, Jin S-W (2016) Parameter optimization of software reliability growth model with s-
shaped testing-effort function using improved swarm intelligent optimization. Appl Soft Com-
put 40:283–291

27. Huang C-Y, Kuo S-Y, Lyu MR (2007) An assessment of testing-effort dependent software
reliability growth models. IEEE Trans Reliab 56(2):198–211

28. Kumar V, Sahni R (2016) An effort allocation model considering different budgetary constraint
on fault detection process and fault correction process. Decis Sci Lett 5(1):143–156

29. Kapur P, Pham H, Chanda U, Kumar V (2013) Optimal allocation of testing effort during testing
and debugging phases: a control theoretic approach. Int J Syst Sci 44(9):1639–1650

30. Kumar V, Sahni R (2020) Dynamic testing resource allocation modeling for multi-release
software using optimal control theory and genetic algorithm. Int J Qual Reliab Manage

31. Kapur P, Pham H, Kumar V, Anand A (2012) Dynamic optimal control model for profit maxi-
mization of software product under the influence of promotional effort. J High Technol Manage
Res 23(2):122–129

32. Pradhan SK, Kumar A, Kumar V (2021) An optimal resource allocation model considering two-
phase software reliability growth model with testing effort and imperfect debugging. Reliab
Theory Appl SI 2(64):241–255

33. Kumar V, Mathur P, Sahni R, Anand M (2016) Two-dimensional multi-release software reli-
ability modeling for fault detection and fault correction processes. Int J Reliab Qual Saf Eng
23(03):1640002

34. Ji Y, Kumar S, Mookerjee VS, Sethi SP, Yeh D (2011) Optimal enhancement and lifetime of
software systems: a control theoretic analysis. Prod Oper Manage 20(6):889–904

35. Saxena P, Kumar V, Ram M (2021) Ranking of software reliability growth models: a entropy-
electre hybrid approach. Reliab Theory Appl SI 2(64):95–113

36. Kumar V, Saxena P, Garg H (2021) Selection of optimal software reliability growth models
using an integrated entropy–technique for order preference by similarity to an ideal solution
(topsis) approach. In: Mathematical methods in the applied sciences

282 S. K. Pradhan et al.

37. Yamada S, Osaki S (1987) Optimal software release policies with simultaneous cost and reli-
ability requirements. Eur J Oper Res 31(1):46–51

38. Kapur P, Goswami D, Bardhan A (2007) A general software reliability growth model with
testing effort dependent learning process. Int J Model Simulat 27(4):340–346

39. Naidu DS (2002) Optimal control systems. CRC Press
40. Pegels CC (1969) On startup or learning curves: an expanded view. AIIE Trans 1(3):216–222

	Preface
	Contents
	About the Editors
	 Deep Learning Approach Based on Fault Correction Time for Reliability Assessment of Cloud and Edge Open Source Software
	1 Introduction
	2 Estimation of Correction Time of Software Faults Based on Deep Learning
	3 Data for Numerical Illustration Based on Deep Feedforward Neural Network
	4 Comparison Results Based on the Amount of Learning Data
	5 Concluding Remarks
	References

	 System Reliability Models with Random Shocks and Uncertainty: A State-of-the-Art Review
	1 Introduction
	2 System Reliability Models with Random Shocks
	2.1 Shock Model Categorization
	2.2 System Reliability Models with Shock Models

	3 System Reliability Models with Uncertainty
	3.1 System Reliability Models Based on Wiener Process
	3.2 System Reliability Models Based on Gamma Process
	3.3 System Reliability Models Based on Inverse Gaussian Process

	4 Conclusion
	References

	 A Hybrid Approach for Evaluation and Prioritization of Software Vulnerabilities
	1 Introduction
	2 Research Methodology
	2.1 Dataset Description
	2.2 Fuzzy Best Worst Method
	2.3 Two Way Assessment

	3 Data Analysis
	3.1 Prioritizing Vulnerabilities Using FBWM
	3.2 Two-Way Assessment Technique

	4 Conclusion
	References

	 Investigating Bad Smells with Feature Selection and Machine Learning Approaches
	1 Introduction
	2 Motivation and Related Work
	2.1 Feature Selection
	2.2 Involvement of Android Smells
	2.3 Empiricism Tools and Techniques

	3 Empirical Study
	3.1 Data Sets
	3.2 Data Processing
	3.3 Performance Metrics

	4 Result and Discussions
	4.1 Correlation Feature Selection in Code Smells

	5 Conclusion
	References

	 SDE Based SRGM Considering Irregular Fluctuation in Fault Introduction Rate
	1 Introduction
	2 Related Work
	2.1 Basic Assumptions
	2.2 Notations

	3 Model Development
	4 Proposed Methodology
	5 General Framework
	6 Data Analysis and Comparison Criteria
	7 Model Validation
	8 Conclusion
	References

	 Ant Colony Optimization Algorithm with Three Types of Pheromones for the Component Assignment Problem in Linear Consecutive-kk-out-of-nn:F Systems
	1 Introduction
	2 CAP of the Linslash/Conslash k divided by n/k/n:F System
	2.1 Definition of the CAP
	2.2 B-Importance
	2.3 Necessary Condition

	3 Proposal of the ACO Algorithm for Solving the CAP
	3.1 Initializing the Pheromone Values and Generating the Initial Solutions
	3.2 Constructing the Solutions
	3.3 Applying the Local Search
	3.4 Evaluating the Solutions and Updating the Best Solution
	3.5 Updating the Pheromone Values
	3.6 Checking the Termination Condition.

	4 Numerical Experiment
	5 Conclusion
	References

	 Reliability Assessment and Profit Analysis of Automated Teller Machine System Under Copular Repair Policy
	1 Introduction
	2 Notations, Assumptions, and Materials and Methods
	2.1 Notations
	2.2 Assumptions
	2.3 Materials and Methods

	3 Model Formulation
	3.1 Model Solution

	4 Investigation of the System in Various Scenarios
	5 Result Analysis
	6 Conclusion
	References

	 An Efficient Regression Test Cases Selection & Optimization Using Mayfly Optimization Algorithm
	1 Introduction
	2 Related Work
	3 Problem Statement of Regression Test Case Selection
	4 Proposed Mayfly Optimization Algorithm
	4.1 Mathematical Implementation of MA

	5 Experimental Setup
	5.1 Research Objectives
	5.2 Research Hypothesis
	5.3 Subject Programs

	6 Result Discussion
	7 Conclusion & Future Scope
	References

	 Development of Reliability Block Diagram (RBD) Model for Reliability Analysis of a Steam Boiler System
	1 Introduction
	2 Reliability Analysis Model for Boiler System
	3 Reliability Analysis of the Boiler System by RBD
	4 Conclusion
	References

	 Computation Signature Reliability of Computer Numerical Control System Using Universal Generating Function
	1 Introduction
	2 Evaluation of Signature, Tail Signature and Expected Cost
	3 Model Description: Computer Numerical Control
	4 Numerical Example
	5 Conclusion
	References

	 Evaluate and Measure Agile Software Efficiency by the Integrated Strategy of Fuzzy MOORA and AHP
	1 Introduction
	2 Literature Review
	3 Agile
	4 Factors that Affect Agile Software Process
	5 Approach Used to Measure Efficiency of Agile Software
	5.1 Fuzzy Matrix of Decision
	5.2 Fuzzy Decision Matrix’s Normalization
	5.3 Priority Weights Determination for Criteria
	5.4 Weighted Normalized Fuzzy Matrix of Decision
	5.5 Overall Rating for the Non-beneficial and Beneficial Criteria
	5.6 Performance Index for Every Alternative

	6 Discussions
	7 Conclusion
	References

	 Software Reliability Models and Multi-attribute Utility Function Based Strategic Decision for Release Time Optimization
	1 Introduction
	2 Software Reliability Modeling
	2.1 Assumption
	2.2 Fault Detection Rate
	2.3 Software Reliability Growth Models

	3 Numerical Illustration
	4 Optimal Release Policy
	4.1 Cost and Reliability Modeling

	5 Conclusions
	References

	 Reliability Analysis of Centerless Grinding Machine Using Fault Tree Analysis
	1 Introduction
	2 Basics of Fault Tree Analysis (FTA)
	3 Terminology and Symbols
	3.1 Event Symbols
	3.2 Gate Symbols
	3.3 Transfer Symbols and Definitions
	3.4 Fault Tree Construction

	4 A Case Study: Centerless Grinding Machine
	4.1 Construction of Fault Tree
	4.2 Qualitative Evaluation of Fault Tree
	4.3 Quantitative Evaluation of Fault Tree

	5 Discussion and Summary
	References

	 Machine Learning Based Software Defect Categorization Using Crowd Labeling
	1 Introduction
	2 Related Work
	2.1 Orthogonal Defect Classification (ODC)
	2.2 Crowdsourcing and Learning from Crowd

	3 Datasets and Methods
	3.1 Datasets
	3.2 Expectation–Maximization
	3.3 Classification Model

	4 Methodology
	5 Experimental Framework
	6 Results and Discussion
	7 Threats to Validity
	7.1 Threats to Construct Validity
	7.2 Threats to Internal Validity
	7.3 Threats to External Validity

	8 Conclusion and Future Work
	References

	 Development of an Algorithm Using the Vikor Method to Increase Software Reliability
	1 Introduction
	2 Software Reliability Models
	3 About the VIKOR Method
	4 Literature Review
	5 Application of the Vikor Method
	6 Problem Statement and Experiments
	7 Conclusion
	References

	 Mathematical Modeling for Evaluation Reliability of a Bleaching System
	1 Introduction
	2 Mathematical Model Details of the Designed System
	2.1 System Description
	2.2 State Transition Diagram of the Bleaching System
	2.3 Assumptions and Notations

	3 Mathematical Modelling
	3.1 Formulation of the Model
	3.2 Solution of the Model

	4 Numerical Calculations
	4.1 Availability Analysis
	4.2 Reliability Analysis
	4.3 Analysis of Mean Time to Failure (MTTF)
	4.4 Expected Profit

	5 Result Discussion
	6 Conclusion
	References

	 An Effort Allocation Model for a Three Stage Software Reliability Growth Model
	1 Introduction
	2 Software Reliability Growth Model
	3 Model Development
	4 Optimal Solution
	4.1 Special Cases

	5 Numerical Analysis
	6 Conclusion
	References

