
On the Origins, Nature, and Impact of
Bourgain’s Discretized Sum-Product
Theorem

Alexander Gamburd

Abstract We discuss the origins, nature, and development of the discretized sum-
product theorem, a result which Jean Bourgain viewed as one of his most significant.

There are two labyrinths of the human mind: one concerns the composition of the
continuum, and the other the nature of freedom, and both spring from the same source –
the infinite.

Baron von Leibniz

During World War II, when von Neumann was working on the design of nuclear weapons,
he came to the conclusion that analytical methods were inadequate to the task, and that the
only way to deal with equations of continuum mechanics is to discretize them. . . . It is to
this task that von Neumann devoted his energies after the war.

Peter Lax

1 Overture

Baron Bourgain, the IBM von Neumann Professor in the School of Mathematics
at the Institute for Advanced Study (IAS), is one of the most original, penetrating,

This essay, dedicated to the memory of Jean Bourgain, is an augmented and expanded version of
Singular Adventures of Baron Bourgain in the Labyrinth of the Continuum, which appeared in the
Notices of the AMS, 67, 2020, 1716–1733. The opening image is coat of arms of Jean Bourgain,
who was bestowed the title of Baron by King Philippe of Belgium in July 2015.
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60 A. Gamburd

and versatile analytical minds of our troubled times, justly celebrated1 and revered
without reservations.

While he rejected outright the suggestion of a sixtieth birthday conference, a
proposal to have a gathering occasioned by the publication of his 500th paper was

1 An excerpt from Bourgain’s interview upon receiving the 2017 Breakthrough Prize in Mathemat-
ical Sciences concludes this essay.

The following quote is from The Work of Jean Bourgain by Luis Caffarelli, Proceedings of
ICM, 1994 [23] (the year Bourgain was awarded the Fields Medal): “Bourgain’s work touches on
several central topics of mathematical analysis: the geometry of Banach spaces, convexity in high
dimensions, harmonic analysis, ergodic theory, and, finally, nonlinear partial differential equations
from mathematical physics. In all of these areas, he made spectacular inroads into questions
where progress has been blocked for a long time. This he did by simultaneously bringing into
play different areas of mathematics: number theory, combinatorics, probability, and showing their
relevance to the problem in the previously unforeseen fashion. . . . Some of the outstanding qualities
of Bourgain are his power to use whatever it takes—number theory, probabilistic methods, covering
techniques, sharp decompositions – to understand the problem at hand, and his versatility, which
allowed him to deeply touch so many areas in such a short period of time.”
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Fig. 1 Two of Jean
Bourgain’s signature results

not immediately dismissed—the conference Analysis and Beyond: Celebrating Jean
Bourgain’s Work and Impact took place at the IAS in Princeton on May 21–24,
2016. The conference talks (all of which were videotaped) are a tribute to the depth
and breadth of Bourgain’s work and its singular and transcendent impact on the
whole of our discipline. The beauty and power of the first result highlighted by
Jean’s hand (Fig. 1) on the conference poster ‖eit�ϕ‖p � Nε‖ϕ‖q is apparent
from reading the splendid paper by Andrea Nahmod in the Bulletin of the American
Mathematical Society (BAMS), [71]. The brief of this paper is to explicate the
origins, nature, and development of the second result, the discretized sum-product
inequality

N (A + A, δ) + N (A · A, δ) > N (A, δ)1+τ , (1)

in analysis and beyond.

***

The three great branches of mathematics are, in historical order, Geometry, Algebra and
Analysis. Geometry we owe essentially to Greek civilization, Algebra is of Indo-Arab origin
and Analysis (or Calculus) was the creation of Newton and Leibniz, ushering in the modern
era.

Sir Michael Atiyah [1]

Von Zahlen und Figuren—“On Numbers and Shapes”2 is the title of one of the
most successful expositions of mathematics aimed at a broad audience, reflecting a
common perception of our discipline as a marriage between Algebra and Geometry.
This happy marriage, notwithstanding Count Tolstoy’s contention (“All happy
marriages are alike; each unhappy marriage is unhappy in its own way.”), is not
without tensions (as, perhaps, each happy marriage—including, possibly, bicameral
mind—is in its own way). “In these days the angel of topology and the devil of
abstract algebra fight for the soul of each individual mathematical domain” is the

2 The book was written in 1933 by Hans Rademacher and Otto Toeplitz, two outstanding analysts
of the past century, who made a deliberate decision not to refer in their exposition to the analysis
(or Calculus) of Leibniz and Newton. The English translation is entitled “The Enjoyment of Math.”
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way Hermann Weyl3 put it; three score and seven years later, in conversation at
Google with the company’s CEO, a somewhat divergent sentiment was expressed:
“When you form your ideas on the basis of words, you build from concepts, which
to be meaningful depend on relation to other concepts. When you form your ideas on
the basis of pictures, you form your views on the basis of impressions and of moods,
that cannot even be recreated very easily, so you cannot look back and check what
it was that impressed you so much.”4

This tension is embodied in the system of real numbers, the soil in which the
functions of Analysis grow, resembling Janus’s head facing in two directions: on the
one hand, it is the field closed under the operations of addition and multiplication;
on the other hand, it is a continuous manifold the parts of which are so connected
as to defy exact isolation from each other. The one is algebraic; the other is the
geometric face of real numbers. Continued fractions are much more intrinsic and
geometric forms of discretizing the continuum; the lack of a practical algorithm for
their addition and multiplication leads to the regnancy of the discretization based on
the ordinary (digital or decimal, i.e., base 10) fractions.

Whereas Newton, in his development of Calculus, was primarily motivated by
“dynamics” (force, acceleration), as exemplified by the falling of the apple on his
head, Leibniz, it appears, was more intrigued by what would now be described
by the appellation “fractal geometry of nature.” “Imagine a circle; inscribe within
it three other circles congruent to each other and of maximum radius; proceed
similarly within each of these circles and within each interval between them, and
imagine that the process continues ad infinitum,”wrote Leibniz referencing config-
uration akin to the four mutually tangent circles appearing on Baron Bourgain’s
coat of arms. Leibniz’s definition of the straight line as a ‘curve, any part of which
is similar to the whole, and it alone has this property, not only among curves but
among sets’ is a reflection of the fractal nature of the continuum: the Cantor set
would satisfy Leibniz’s definition.5

Dynamics, broadly conceived, is perceived as a study of change, which in its
primordial (physical) context takes place within time. The Cantor set (and R) is,
so to speak, timeless, i.e., static in time, but there is “a condition of possibility”
of (almost) “equiprimordial” change “in the eye of the beholder,” taking form in
changing the degree of magnification scale and “zooming in.” This is reflected in
the “multi-scale” nature of Bourgain’s proof(s) of (1).

3 In Invariants, Duke Mathematics Journal 5 1939, anticipating by 4 years an even more sweeping
assertion, due to Jean-Paul Sartre: “L’enfer, c’est les autres.”
4 Henry Kissinger.
5 Leibniz also wrote the first textbook on combinatorics Dissertatio de arte combinatoria and
invented the binary notation, which made possible modern computers and will play an important
role in navigating the labyrinth of Bourgain’s argument.

The first collection of Leibniz’s works was published in 1735 by Rudolf Erich Raspe, better
known today for his authorship of Singular Adventures of Baron Munchausen.
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To bring this opening section to a close, let us in passing note that both results
chosen by Jean are not equalities (inequalities, rather), commenting thus:

If Algebra is generally perceived as the study of equations, what perhaps lies
at the heart of Analysis are inequalities, or estimates, which compare the size of
two quantities or expressions. Einstein’s discovery that nothing travels faster than
light is an example of an inequality. The inequality 2X is considerably larger than
X arguably neatly encapsulates both the P vs NP problem (properly stated for
finite X) and Cantor’s continuum problem (when X is the first infinite ordinal). An
elementary inequality, taught in the middle school, asserts that the arithmetic mean
of two positive numbers is never less than their geometric mean. In between these
two extremes there is a vast range of estimates of great variety and importance. Such
estimates, reflecting and quantifying some subtle aspect of the underlying problem,
are often exceedingly difficult to prove. It will be seen that for the inequality (1),
with which we are about to get intimate, the underlying issue lies at the heart of
the tension between the algebraic and (fractal)-geometric nature of the continuum.
Fractal derives from Latin fractus, meaning broken apart; algebra derives from the
Arabic al-jabr, meaning the reunion of broken parts.

2 Origins: Kakeya-Besicovitch Problem+
It is difficult and often impossible to judge the value of a problem correctly in advance; for
the final award depends upon the gain which science obtains from the problem. Nevertheless
we can ask whether there are general criteria which mark a good mathematical problem. An
old French mathematician said: ‘A mathematical theory is not to be considered complete
until you have made it so clear that you can explain it to the first man whom you meet on
the street.’ This clearness and ease of comprehension, here insisted on for a mathematical
theory, I should still more demand for a mathematical problem if it is to be perfect; for what
is clear and easily comprehended attracts, the complicated repels us.

David Hilbert, Problems of Mathematics, 1900

In Hilbert’s6 democratic dictum, if followed by Sōichi Kakeya (writing the paper
on an island nation in 1917, at the height of the Great War), the explanation of
the problem now bearing his name to almost every person at just about any street
in Eastern Eurasia might have run as follows: Entrusted with defending an island,
possessing a huge hill, cragged and steep, your task is to purchase at the least cost to
the nation’s treasury, a plot of land on the flat hilltop with the following property—a
cannon of length one must be capable of pointing in any direction.

Kakeya improved by a factor of one-half the obvious solution (a circle of
diameter one, having area π

4 ); his proposed shape (three-cusped hypocycloid

6 Hilbert’s paper on Dirichlet’s Principle is one of the two referenced by Kakeya [48]; the second
one (also on Dirichlet’s principle) is by Caratheodory, a student of Hilbert. In his magnificent book
Geometry and Imagination, Hilbert refers to Besicovitch’s result (described below) as “showing
that this [Kakeya] problem has no solution.”
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Fig. 2 Analysis and beyond

inscribed in the circle of radius 1) is alluded to in the rendering of A in the conference
poster (Fig. 2). In the same year, working in Perm,7 while the October/November
Russian/Soviet Revolution was unfolding, A. S. Besicovitch reduced the minimal
necessary sum to virtually8 nothing.

In fact, Besicovitch was working on the following question: if f is a Riemann
integrable function defined on the plane, is it always possible to find a pair of
orthogonal coordinate axis with respect to which

∫
f (x, y)dx exists as a Riemann

integral for all y, and with resulting function of y also Riemann integrable?
Besicovitch noticed that if he could construct a compact set F of plane Lebesgue
measure zero containing a line segment in every direction, this would lead to a
counterexample as follows. Assume (by translating F if necessary) that F contains
no segment parallel to and of rational distance from either of a fixed pair of axes. Let
f be the characteristic function of the set Fr consisting of those points of F with at
least one rational coordinate. As F contains a segment in every direction on which
both Fr and its complement are dense, there is a segment in each direction in which
f is not Riemann integrable. On the other hand, the set of points of discontinuity
of F is of plane measure zero, so f is Riemann integrable over the plane by the
well-known criterion of Lebesgue.

The basic idea underlying the original construction of Besicovitch [5] is to
form a figure obtained by splitting an equilateral triangle of unit height into many
smaller triangles of the same height by dividing up the base and then sliding these
elementary triangles varying distances along the base line. In 1964 Besicovitch
developed a completely different approach [6], using the projection theorem due
to Marstrand.

7 Subsequently Molotov (1940–1957); currently Perm.
8 The virtual collapse of the Russian currency appears to have had nothing to do with it. In 1924,
together with Tamarkin, Besicovitch crossed the Soviet border with Norway on foot and made his
way to Copenhagen to work with H. Bohr, eventually settling in Cambridge in 1927, where, in due
course, he became the Rouse Ball Chair. Besicovitch’s command of English remained stationary
from his early days in Cambridge (“It’s a story. . . ”); for him, for example, the definite article
was superfluous. A story is told that during one of his lectures, an undergraduate tittered at some
distortion of English idiom. “Gentlemen,’ said Besicovitch, “there are 50 million Englishmen speak
English you speak; there are 500 million Russians speak English I speak.” [22]
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2.1 Some Fundamental Properties of Plane Sets of Fractional
Dimension

In this 1954 paper [67], which was essentially the work for his doctoral thesis
at Oxford and was heavily influenced by Besicovitch, John Marstrand proved the
following fundamental result.

Theorem 1 (Marstrand’s Projection Theorem) Denote the projection in the
direction θ by πθ . If X ∈ R

2 is a Borel subset of Hausdorff dimension s, then
dimH (πθX) = min(s, 1) for almost every θ .

Concerning the finer information about the set of exceptional θ in Theorem 1,
Kaufman proved [51] that if dim X ≥ t , B ⊂ S1 with dim B > t , then there exists
θ ∈ B such that dim(πθ (X) ≥ t . Using crucially (1), in The Discretized Sum-
product and Projection Theorems [14], Bourgain established the following, sharper
result:

Theorem 2 Given 0 < α < 2 and κ > 0, there is η > α
2 such that if X ⊂ R

2 is of
Hausdorff dimension greater than α, then dimH (πθ (X)) ≥ η for all θ ∈ S1 except
in an exceptional set E satisfying dimH (E) ≤ κ .

2.2 Besicovitch Type Maximal Operators and Applications to
Fourier Analysis

We must admit with humility that, while number is purely a product of our mind, space has
a reality outside of our mind, so that we cannot prescribe its laws a priori.

Gauss, Letter to Bessel, 1830

The Kakeya problem in R
n is to estimate the fractal dimension of the Besicovitch

set E ⊂ R
n, i.e., a set containing line segments of length one in all directions.

Conjecture 1 Let E be a Besicovitch set in R
n. Then β(n) = dim(E) = n.

There are several relevant notions of “fractal dimension,” the simplest being the
Minkowski dimension, defined as follows. Let A be a closed subset of a metric space
X. Fix some radius δ. Let N (A, δ) be the least number of balls of radius δ needed to
cover A. If A is a rectifiable curve in R

n, it is easy to see that N (A, δ) is of order δ−1.
If A is a surface, N (A, δ) is approximately δ−2. This suggests the idea of defining
the dimension of an arbitrary set as the number d for which N (A, δ) ∼ δ−d . The
limit

lim
δ→0

logN (A, δ)

log(δ−1)
,

if it exists, is called Minkowski dimension, dimM(A).
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The basic result proved by Davies [27] in 1971 is that β(2) = 2. The same
year C. Fefferman [37] discovered the intimate connection between the Kakeya
problem and the multiplier problem for the ball, proving that for d ≥ 2 the map
f → ∫

|ξ |≤1 f̂ (ξ)eixξ dξ defines only for p = 2 a bounded operator on Lp(Rd). This
seminal result made apparent the fundamental connection between Kakeya-type
questions and the higher-dimensional Fourier analysis, in particular in the theory
of oscillatory integral operators.9

In the 1980s, Drury [31] showed that

β(n) ≥ n + 1

2
(2)

(see also Christ et al. [25]). The argument consists of intersecting the line segment
Lξ ⊂ E, Lξ parallel to ξ in Sd−1 by a pair of parallel hyperplanes H1,H2 in R

d

and observing that for all δ > 0

(
1

δ

)d−1

� N (H1 ∩ E, δ)N (H2 ∩ E, δ). (3)

The estimate (2) was first improved by Bourgain in 1991, in the paper eponymous
with the title of this subsection [8], to n+1

2 +εn with εn given by a recursive argument
(for n = 3, this yields bound 7

3 ) by using a “bush” argument. A more efficient
geometric argument, using “hairbrushes,” was given several years later by T. Wolff,
leading to

dimH (E) ≥ n

2
+ 1. (4)

The space constraints prevent me from going into the details of these arguments;
referring the reader to beautiful surveys by Izabella Łaba [55], Terence Tao [89],
and Thomas Wolff [95], I will restrict myself to two remarks.

The first remark is that these developments made apparent the connection
between Kakeya-type problems and results in combinatorial geometry, such as the
Szemerédi-Trotter Theorem [88], which will be briefly discussed in Sect. 3.2.

9 A recent triumph in this area is the resolution of the Vinogradov’s conjecture by Bourgain,
Demeter, and Guth [15], establishing near-optimal bounds on the mean values of exponential sums
such as

N∑

n=1

e2πi(α1n+α2n2+...αkn
k)

as one varies the frequencies α1, . . . αk ; these are of fundamental importance in analytic number
theory.
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The second remark is that Bourgain’s interest in Kakeya problem was stimulated
by his discovery [9] of it being implied by the following version of Montgomery’s
conjecture10 for Dirichlet polynomials:

Conjecture 2 Let S(s) = ∑N
n=1 ann

s with |an| ≤ 1 and F be a set of 1-separated
reals in the interval [0, T ], T > N . Then

∑

t∈F
|S(it)|2 � T ε(N + |F |)N( max

1≤n≤N
|an|2). (6)

Regrettably skipping thus over many important and pertinent developments that
took place in the last decade of the past century, let us note, looking forward,
that in its closing year (1999), Bourgain unveiled the connection between Kakeya
problem and one of the most consequential and far-reaching results in arithmetic
combinatorics, obtained by Gowers in his groundbreaking A New Proof of Sze-
merédi’s Theorem for Arithmetic Progressions of Length Four [40]. This result,
Balog-Szemerédi Gowers Lemma, will play a crucial role in many a subsequent
development, of which some are discussed in this essay.

2.3 Balog-Szemerédi-Gowers Lemma

Either this universe is a mere confused mass, and an intricate context of things, which shall
in time be scattered and dispersed again; or it is a union consisting of order and administered
by Providence.

Marcus Aurelius “Meditations” 6, VIII

Complete disorder is impossible.
T.S. Motzkin

The Balog-Szemerédi-Gowers lemma is ostensibly a statement about group
structure, but the main tool in its proof is a remarkable (and remarkably useful)
graph-theoretic result best viewed in the context of Ramsey theory. Ramsey theory is
a systematic study of the following general phenomenon. Surprisingly often, a large
structure of a certain kind has to contain a fairly large highly organized substructure,
even if the structure itself is completely arbitrary and apparently chaotic. It can be
viewed as a vast generalization of the pigeonhole principle, which states that if a
set X of n objects is colored with S colors, then there must be a subset of X of

10 One of the consequences of Montgomery’s conjecture is the density hypothesis for the Riemann
zeta function

N(σ, T ) � T 2(1−σ)+ε. (5)

Here 1
2 < σ < 1, T > 0 and N(σ, T ) is the number of zeros ρ = β + iγ of ζ(s) satisfying

β > σ , |γ | < T .
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size at least n
s

that uses just one color. Such a subset is called monochromatic. The
situation becomes more interesting if the set X has some additional structure. It
then becomes natural to ask for a monochromatic subset that keeps some of the
structure X. However it also becomes much less obvious if such a subset exists.
Frank Plumpton Ramsey in 1930 [76] took as his set X the set of all the edges in a
complete graph and the monochromatic subset he obtained consisted of all the edges
of some complete graph. One version of his theorem is as follows. For every positive
integer k, there is a positive integer N such that if the edges of the complete graph are
all colored either red or blue, then there must be k vertices such that all edges joining
them have the same color. That is, a sufficiently large complete graph colored with
two colors contains a complete subgraph of size k which is monochromatic. The
least integer N that works is known as R(k) and is known that

2
k
2 ≤ R(k) ≤ 22k. (7)

There were several results in Ramsey theory predating Ramsey’s theorem; in
particular, van der Waerden [93] proved that if you color the integers with some
finite number r of colors, there must be some color that contains arithmetic
progressions of every length. In 1935 Erdös and Turán conjectured that this holds
for “the most popular” color class. More precisely, they conjectured that for any
positive integer k and any real number ε > 0, there is a positive integer n0 such that
if n > n0, any set of at least εn positive integers between 1 and n contains k-term
arithmetic progression. This conjecture was proved by Szemerédi in 1975 using,
among other things, his celebrated regularity lemma [87], which can be very roughly
described as a statement that even the most “chaotic” systems can be decomposed
into a “relatively” small number of “approximately regular” subsystems.

Using the Szemerédi regularity lemma, the following result was established
by Balog and Szemerédi in 1994 [2], resulting in tower-like exponential-type
dependence (cf. (7)). Gowers achievement of the polynomial bounds KO(1) in the
statement below is crucial in the ensuing applications.

Theorem 3 (Balog-Szemerédi-Gowers Lemma) Let G(A,B,E) be a finite bipar-
tite graph, that is, a graph whose vertices can be partitioned into two disjoint
sets, with |E| ≥ |A||B|

K
. Then there exist subsets A′ ⊂ A and B ′ ⊂ B with

|A′| � K−O(1)|A| and |B ′| � K−O(1)|B| such that for every a ∈ A and b ∈ B, a

and b are joined by � K−O(1)|A|B| paths of length three.

The fact that the following corollary is valid for non-commutative groups was
established by Tao [90].

Corollary 4 Let A,B be finite nonempty subsets of a group G and suppose

‖1A � 1B‖l2(G) ≥ |A| 3
4 |B| 3

4

K
(8)
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for some11 K ≥ 1 . Then there exist subsets A′ ⊂ A and B ′ ⊂ B with |A′| �
K−O(1)|A| and |B ′| � K−O(1)|B| with |A′ ·B ′| � KO(1)|A||B| and |A′ · (A′)1| �
KO(1)|A|.

The quantity ‖1A � 1B‖l2(G) counts the number of solutions to the equation a1 ·
b1 = a2 · b2 with a1, a2 ∈ A, and b1, b2 ∈ B (multiplicative or additive quadruples)
and is also known as the multiplicative energy of A and B.

2.4 On the Dimension of Kakeya Sets and Related Maximal
Inequalities

The main result in this 1999 paper of Bourgain [10] is the following improvement
of (4) for large n

dimH (E) ≥ 1

25
(13n + 12). (9)

The heart of the argument consists in applying Balog-Szemerédi-Gowers lemma
to show that Kakeya set E satisfies Nδ ≥ δ−α(n−1) with α > 1

2 as follows. Let L be
the lattice δZn ⊂ R

n, and for each of the segments {x + te : |t | ≤ 1
2 } with e ∈ Sn−1

in the definition of Kakeya set. Let x+ and x− be the elements of L closest to x+ 1
2e

and x − 1
2e, respectively. Let A be the set whose elements are the various x+ and x−

and define G ⊂ A × A to be the set of pairs (x+, x−); then let S be the set of sums
x+ + x−. Clearly |A| � Nδ(E), and in addition |S| � Nδ(E), since the midpoint
1
2 (x+ + x−) is within Cδ of x ∈ E. But it is equally clear that point of Pn−1 is
within Cδ of some difference x+ − x−. Thus δ−(n−1) � Nδ(E)2−ε, as claimed.

This paper marked the first application in Harmonic Analysis of Additive
Combinatorics.12

11 Here � denotes the convolution operation: f �g = ∫
G

f (y)g(y−1x)dμ(y). Note that by Young’s

inequality, ‖1A � 1B‖l2(G) ≤ |A| 3
4 |B| 3

4 .
12 “Bourgain’s argument was, to this author’s knowledge, the first application of additive number
theory to Euclidean harmonic analysis. It was significant, not only because it improved Kakeya
bounds, but perhaps even more so because it introduced many harmonic analysts to additive
number theory, including Tao, who contributed so much to the subject later on, and jump-started
interaction and communication between the two communities. The Green-Tao (Fig. 3) theorem and
many other developments might never have happened were it not for Bourgain’s brilliant leap of
thought in 1998.” Izabella Łaba, BAMS, 2008 [55].
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Fig. 3 Jean Bourgain and Ben Green

3 Sum-Product Phenomena and the Labyrinth of the
Continuum

Additive combinatorics grew out of the classical additive number theory. Though
few isolated results existed before, the turning point was Schnirelmann’s approach
[80] to Goldbach’s conjecture asserting that any integer greater than three can be
expressed as a sum of two or three primes, depending on parity. Schnirelmann
proved the weaker result that there is a bound k so that every integer is a sum of at
most k primes, or, in other words, the primes form an additive basis. Schnirelmann’s
approach, notwithstanding it being soon superseded for the Goldbach’s problem
by Vinogradov’s method of exponential sums, kindled the interest in addition of
general sets; a result of fundamental and lasting importance in this subject is due to
Gregory Abelevich Freiman [38], a student of Gelfond, who was a close friend and
collaborator of Schnirelmann.13

3.1 Freiman’s Theorem and Ruzsa’s Calculus

Freiman’s Theorem gives characterization of sets with small doubling in terms
of generalized arithmetic progression. A d-dimensional generalized arithmetic
progression (GAP) is a set P of the form

{a + x1qq + · · · + xdqd : 0 ≤ xi ≤ li}, (10)

13 Schnirelmann committed suicide on 24 September 1938, fearing imminent persecution by
NKVD (subsequently KGB; currently FSB).
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where l1, . . . ld are positive integers. We call d the dimension of P ; by the size of
P , we mean ‖P ‖ = ∏d

i=1(li + 1), which is the same as the number of elements if
all sums in (10) are distinct (in which case we say that P is proper). Note that

|P + P | < 2d |P | ≤ 2d‖P ‖. (11)

Theorem 5 (Freiman’s Theorem) If A ⊂ Z, |A| = n, |A + A| ≤ αn, then A is
contained in a generalized arithmetic progression of dimension at most d(α) and
size at most s(α)n.

The quantitative bound in Freiman’s theorem, used by Bourgain in his first proof of
(1), is due to Mei-Chu Chang (Fig. 4) [24]: d < α (the best possible14) and s ≤ eαc

.

Fig. 4 Jean Bourgain and Mei-Chu Chang

14 It is known that a bound for s must be � 2α ; very likely the proper order is ecα . A beautiful
survey by T. Sanders in BAMS [82] covers the recent developments.
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Freiman’s proof was considerably simplified by Ruzsa [77] (building on the
earlier work of Plünnecke [74]). One of the fundamental notions introduced by
Ruzsa is that of Ruzsa distance between two sets X and Y in a group, ρ(X, Y ) =
log |X−Y |√|X||Y | , allowing us to rewrite an elementary inequality for A, Y,Z finite sets in
a group (which, as observed by Tao, is not necessarily commutative) |A||Y − Z| ≤
|A − Y ||A − Z| as

ρ(Y,Z) ≤ ρ(Y,A) + ρ(A,Z), (12)

a triangle inequality-like property; ρ is also symmetric (but ρ(X,X) is typically
positive). The following result of Plünnecke and Ruzsa was used in Bourgain’s 2+
proof in place of Freiman’s theorem.

Theorem 6 Let A,B be finite sets in a group and write |A| = m, |A + B| = αm.
For arbitrary nonnegative integers k, l we have

|kB − lB| ≤ αk+lm.

3.2 Sum-Product Phenomena and Incidence Geometry

Freiman’s theorem is an example of an “inverse” result: knowing that the set has
small doubling, we can characterize its structure in terms of GAPs. One of the
basic “direct” results, applicable to arbitrary sets, is the “sum-product phenomenon,”
whose elementary and elemental nature might be described as follows. When
studying addition and multiplication tables for numbers from one to nine, one might
notice that there are many more numbers in the multiplication table. This basically
has to do with the fact that the numbers from one to nine form an arithmetic
progression. If you take a set forming an arithmetic progression (or a subset of it)
and add it to itself, it will not grow much; if you take a set forming a geometric
progression (or a subset of it) and multiply it by itself, it will also not grow
much. However a subset of integers cannot be both an arithmetic and a geometric
progression, and so it will grow either when multiplied or added with itself.

In 1983 Erdös and Szemerédi proved [35] that for any finite set of integers A

|A + A| + |A · A| ≥ C|A|1+ε (13)

for absolute constants C, ε and conjectured that in fact for any ε > 0 there is Cε

such that

|A + A| + |A · A| ≥ Cε|A|2−ε. (14)

We will give a beautiful proof (due to Elekes [33] and Székeley [86]) of (14)
with ε = 3

4 using Szemerédi-Trotter theorem in incidence geometry, mentioned
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in Sect. 2.2, which in turn will follow from crossing number inequality obtained,
ultimately, from a purely topological result: Euler’s formula.

Crossing Number Inequality

During World War II, Turán worked as forced labor, moving wagons filled with
bricks from kilns to storage places. According to his recollections, it was not a very
tough job, except that they had to push much harder at the crossings. This led him to
consider the following problem: for a non-planar graph G, find a drawing for which
the number of crossings is minimal. The minimal number of crossings in a drawing
is called crossing number of a graph Cr(G). Another practical application of this
problem appeared in the early 1980s, when it turned out that the chip area required
for the realization of an electrical circuit (VLSI layout) is closely related to crossing
number of underlying graph. The basic result, due to Leighton [57], is as follows:

Cr(G) ≥ 1

64

|E|3
|V |2 − |V |. (15)

Here |V | and E denote, respectively, the number of vertices and edges in the graph.
The proof starts by observing that Euler’s formula implies that if Cr(G) = 0, then
|V |−|E|+|F | = 2. This readily implies that crossing number of any graph satisfies

Cr(G) ≥ |E| − 3|V | + 6.

The proof is concluded by considering a planar embedding of G with least crossing
number and choosing each vertex of G at random with probability p. Taking the
expectations of the relevant quantities gives

p4Cr(G) ≥ p2|E| − 3p|V | + 6;

letting p = 4|E|
|V | yields the desired inequality (15).

Szemerédi-Trotter Theorem

This is an assertion that given n points and m lines in the plane the number of
incidences

I (m, n) � m
2
3 n

2
3 + m + n, (16)

(and this is sharp). Consider a set P of m points and a set L of n lines in the plane,
realizing the maximal number of incidences I (m, n). Define a drawing of a graph
G(V ,E) in the plane: each point p ∈ P becomes a vertex of G, and two points
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p, q ∈ P are connected by an edge if they lie on a common line l ∈ L next to one
another. If a line l ∈ L contains k ≥ 1 points of P , then it contributes k − 1 edges to
P and hence I (m, n) = |E| + n. Since the edges are parts of the lines, at most

(
n
2

)

pairs may cross: Cr(G) ≤ (
n
2

)
. By the crossing number theorem, Cr(G) ≥ 1

64
|E|3|
m2 −

n, so 1
64

|E|3|
m2 − n ≤ Cr(G) ≤ (

n
2

)
, and a calculation gives |E| = O(m

2
3 n

2
3 + m),

proving (16).

Proof of Sum-Product Inequality

We are ready to prove (13) with ε = 1
4 . Let P = {(a, b)|a ∈ A + A, b ∈ A · A};

P is a subset of the plane and has cardinality |A + A||A · A|. Consider the set of
lines of the form {(x, y) : y = a(x − b)} where a, b are elements of A. Clearly
L has |A|2 elements. Moreover, each such line contains at least |A| points in P ,
namely, the points (b + c, ac) with c ∈ P . Thus I (P,L) ≥ |A|3. Applying the
Szemerédi-Trotter theorem and elementary linear algebra, we conclude

|A + A| + |A · A| = �(|A| 5
4 ). (17)

Before turning to the discussion of Erdös-Volkmann and Katz-Tao discretized
ring conjectures, let us note that if the set A is δ-separated, by carefully adapting the
preceding proofs, we obtain an inequality of the form

N (A + A, δ2) + N (A · A, δ2) > N (A, δ)1+τ , (18)

to be contrasted with Bourgain’s result (1).

3.3 On the Erdös-Volkmann and Katz-Tao Discretized Ring
Conjectures

Erdös-Volkmann Problem

With Volkmann we proved that for every 0 ≤ α ≤ 1 there is a group of real numbers of
dimH = α. All our efforts so far failed in proving the existence of ring or field of Hausdorff
dimension α.

P. Erdös,15 1979

15 Erdös expressed a similar sentiment in a letter to K. Falconer (reproduced with his kind
permission (Fig. 5)). We remark that in 2016 P. Mauldin showed [69] that assuming continuum
hypothesis, there exists subrings (and even subfields) of R of arbitrary Hausdorff dimension, which
are not however Borel subsets.
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Fig. 5 From a letter from P. Erdös to K. Falconer dated 18 June 1983

In 1966 Erdös and Volkmann proved [34] that for each α in (0, 1), there is an
additive Borel subgroup of the reals with Hausdorff dimension α. Several proofs
of this fact have now been given, all involving some sets of numbers which are
well approximated by rationals. It is a well-known result that there exist infinitely
many rational approximations m

n
to any real number r with an error less than n−2.

If α > 2, let E be the set of real numbers r that can be “well approximated” by
rational numbers in the sense that there are infinitely many rational numbers m

n
with

|r− m
n
| < 1

nα . Jarník proved16 in 1931 that dimH (E) = 2
α

. Falconer’s construction17

of an additive Borel subset with Hausdorff dimension α builds on Jarník’s Theorem:
take nk a sequence of positive integers which increases sufficiently rapidly, for
example, nk+1 > nk

k . Define the set Gα to consist of those real numbers for which

there exists M such for any k there is an integer p such that |x − p
nk

| < Mn
− 1

α

k .
Clearly Gα is an additive subgroup, and it is not difficult to show, using Jarník’s
theorem, that its Hausdorff dimension is equal to α.

Katz-Tao Discretized Ring Conjecture

It was shown by Falconer [36] that a Borel subring R of R cannot have Hausdorff
dimension exceeding 1

2 (by considerations of the distance set {|a − b|; a, b,∈ R ×
R} ⊂ √

R).

16 In fact, Jarník also proved [47] a two-dimensional version of this theorem, yielding a set in R
2

which, as was shown by Kaufmann [52], has the maximal possible set of exceptional projections
discussed in Sect. 2.1.
17 Erdös and Volkmann based their construction of Gα on the following beautiful characterization
of (ir)rationals given by Cantor(1869): let x = [x] + ∑∞

k=2
ak(x)

k! with the integers ak(x) satisfying
0 ≤ ak(x) ≤ k − 1. Then x is irrational iff ak(x) > 0 for infinitely many k and ak(x) ≤ k − 1
for infinitely many k. For fixed α their Gα consists of those x which satisfy ak(x) ≤ κ(x)kα or
ak(x) ≥ k − κ(x)kα for all k ≥ k0(x) and κ(x) positive constant.
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In the 2001 paper “Some connections between Falconer’s distance set conjecture
and sets of Furstenberg type” [50], motivated, in part, by connections with the
Kakeya problem, Nets Katz and Terence Tao formulated a quantitative version of
Erdös-Volkmann problem (discretized ring conjecture). A bounded subset A of R is
called a (δ, σ )1 set provided A is a union of δ-intervals and satisfies

|A ∩ I | < (
r

δ
)1−σ δ1−ε (19)

whenever I ⊂ R is an arbitrary interval of size δ ≤ r ≤ 1 (0 < ε � 1 in (19) is a
small parameter).

Katz and Tao conjectured that if A is a (δ, 1
2 )1 set satisfying |A| > δ

1
2 +ε, then

necessarily |A + A| + |A · A| > δ
1
2 −c, with c > 0 an absolute constant. This was

proved by Bourgain in the paper eponymous with the title of this section. More
generally, he proved the following result (which is the precise formulation of (1)).

Theorem 7 If A is a (δ, σ )1 set, 0 < σ < 1, satisfying |A| > δσ+ε, then
necessarily |A + A| + |A · A| > δσ−c, with an absolute constant c = c(σ ) > 0.

Labyrinth of the Continuum

The title of this subsection is described by Bourgain in the introduction to his paper
[11] in the sentence underlined below.

The statement in Theorem 7 is thus a purely combinatorial fact. We proceed by contradic-
tion, assuming

|A + A| + |A · A| < δσ−c. (20)

The initial stages of the argument use only the additive information, thus |A+A| < δσ−c. It
is processed through multi-scale construction, based on Ruzsa’s sumset estimates, and, most
importantly, quantitative versions of Freiman’s famous theorem on finite sets of reals with
small doubling set. . . . The final product is a subset C of A with a tree structure which
exhibits a “multi-scale porosity property.” At this point, we start using multiplicative
structure and prove the existence of elements x1, x2 ∈ A−A such that |x1C+x2C| > δσ−κ .

The key difficulty comes from the fact that Freiman’s theorem describes the
structure of sets of small doubling |A+A| < C|A| with a fixed constant C, whereas
the assumption (20) deals with the situation where the constant C grows with A, as
A itself increases in size: the heart of Bourgain’s argument is the structure theorem
characterizing sets satisfying (20). The additive subgroups Gα described in Sect. 3.3
satisfy this assumption; let us look at their structure more closely, concentrating for
concreteness on the case α = 1

2 and giving an alternative description of it as a subset
of the binary tree representing the continuum (Fig. 6).

Let Pn = {0, . . . , n − 1}, and let
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Fig. 6 Labyrinth of the
continuum

An =
n∑

i=1

1

2i2 P2i =
{

n∑

i=1

ai2
−i2 : 1 ≤ ai ≤ 2i

}

.

It is easy to see that the distance between distinct points x, x′ ⊂ An is at least 1
4n2 ,

such that x has a unique representation as a sum
∑n

i=1 ai4−i2
with 1 ≤ ai ≤ 2i .

Each term of the sum
∑n

i=1 ai2−i2
determines a distinct block of binary digits; it is

seen to be GAP (defined in Sect. 3.1) as the image of P2 ×P4 · · ·×P2n → An given
by (x1, . . . xn) → ∑n

i=1 xi2−i2
. The rank of this GAP is n so |An + An| ≤ 2n|An|

and |An| = ∏n
i=1 |P2i | = 2

n(n+1)
2 . So we have |An + An| = |An|1+o(1).

Now we pass to the limit, akin to the way used in constructing the Cantor set: at

stage n, we have a collection of 2
n(n+1)

2 intervals of length 2−n2
; from each of these

intervals, we keep 2n+1 subintervals of length 2−(n+1)2
separated by gaps of length

2−n2−(n+1). It is easy to see that the resulting fractal set coincides with G 1
2
.

A full binary tree of height h can be identified with a set of 0, 1 valued sequences
of length ≤ h. Let us say that the tree T has full branching for m generations at the
vertex σ if σ has all 2m possible descendants m generations below it, that is, ση ∈ T

for all η ∈ {0, 1}m. The tree is fully concentrated for m generations at σ if σ has a
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single descendant m generations down, that is, there is a unique η ∈ {0, 1}m with
ση ∈ T . The sets An are represented by trees Tn of height n2. For every i < n, every
node at level i2 has full branching for i generations and every node at level i2 + i is
fully concentrated for i + 1 generations. Consequently, for every j ∈ [i2, i2 + 1),
every node at level j has full branching for one generation; for j ∈ [i2 + i, (i +1)2),
every node at level j is fully concentrated for one generation. Moreover, it is not
difficult to see that for every m, we can partition the levels 0, 1, . . . , n2 into three
sets U,V,W such that:

a. For every i ∈ U , every level i node has full branching for m generations.
b. For every j ∈ V , every level j node is fully concentrated for m generations.
c. The set W constitutes a negligible fraction of the levels: |W |

n2 = o(1) as n → ∞
(with m fixed).

In the above description, U = ⋃
i>m[i2, i2 + i − m), V = ⋃

i>m[i2 + 1, (i +
1)2 − m), and W is the set of remaining levels.

Bourgain’s structure theorem for sets satisfying (20) can now be informally stated
as follows. Suppose |A+A| ∼ |A|1+τ . If b ≥ 2 is a base (say b = 2), we can identify
A with a subset of the full b-ary tree of height m: the vertices at distance j from the
root are the intervals [kbm−j , (k + 1)bm−j ) which intersect A. Given ε there are
τ > 0 and b ≥ 2 (which can be taken arbitrarily large) such that the following
holds if m is large enough. Suppose A ⊂ {0, 1, . . . , bm−1} and |A + A| ≤ bτm|A|
(which is the case if |A + A| ∼ |A|1+τ ). Then there is a subset A′ of A satisfying
the following properties:

1. |A′| ≥ bεm|A|, that is to say A′ is a fairly dense subset of A.
2. The b-ary tree associated with A′ is regularized in the sense that any vertex at

level j has the same number Nj of children
3. Either Nj = 1 or Nj ≥ b1−ε, so at each level the tree has either no branching or

close to full branching uniformly over all the vertices at that level.

From Theorem 7 Bourgain deduced that the answer to Erdös-Volkmann problem
was negative, which was proved independently at about the same time by Edgar and
Miller [32] who gave a simple and elegant proof using crucially Marstrand’s pro-
jection theorem 1. The essential idea of their argument served as the starting point
and inspiration for the celebrated paper by Bourgain, Katz, and Tao establishing the
sum-product theorem in Fp.

3.4 A Sum-Product Estimate in Finite Fields and Applications

The main result of this paper [19] is the following:

Theorem 8 Let A be a subset of Fp such that for some δ > 0

pδ < |A| < p1−δ. (21)
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Fig. 7 Jean Bourgain and Terence Tao

Then

|A + A| + |A · A| ≥ c(δ)|A|1+ε (22)

for some ε = ε(δ) > 0.

Here is Terence Tao’s (Fig. 7) recollection:

Regarding the prehistory of my paper with Jean Bourgain and Nets Katz, it all started
with a question of Tom Wolff back in 2000, shortly before his unfortunate death. Tom
had formulated the finite field version of the Kakeya conjecture (now solved by Dvir), and
had observed that there appeared to be a connection between that conjecture (at least in
the 3D case) and what is now the sum-product theorem. (Roughly speaking, if the sum-
product phenomenon failed, then one could construct ‘Heisenberg group-like’ examples
that almost behaved like Kakeya sets.) So he posed the question to me (as a private
communication) as to whether the sum-product phenomenon was true. Nets and I chewed
on this problem for a while, and found connections to some other problems (the Falconer
distance problem, and the Szemeredi-Trotter theorem, over finite fields), but couldn’t settle
things one way or another. We then turned to Euclidean analogues, and formulated the
discretized ring conjecture and showed that this was equivalent to a non-trivial improvement
on the Falconer distance conjecture and on a conjecture of Wolff relating to some sets
studied by Furstenberg.

After chasing some dead ends on both the finite field sum-product problem and the
discretized ring problem, we gave both problems to Jean, noting that the sum-product
problem would likely have applications to various finite field incidence geometry questions,
including Kakeya in Fp

3. Jean managed to solve the discretized ring problem using some
multi-scale methods, as well as some advanced Freiman theorem type technology based on
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earlier work of Jean and Mei-Chu Chang. About the same time, Edgar and Miller solved
the qualitative version of the discretized ring problem (i.e. the Erdos ring conjecture).

This left the finite field sum-product problem. All the methods in our collective
toolboxes were insensitive to the presence of subfields (except perhaps for Freiman’s
theorem, but the bounds were (and still are) too weak to get the polynomial expansion;
the multi-scale amplification trick that worked in the discretized ring conjecture was
unavailable here) and so were insufficient to solve the problem. We knew that it would
suffice to show that some polynomial combination of A with itself exhibited expansion, but
we were all stuck on how to do this for about a year, until Jean realized that the Edgar-
Miller argument (based on the linear algebra dichotomy between having a maximally large
span, and having a collision between generators) could be adapted for this purpose. (I still
remember vividly the two-page fax from Jean conveying this point. After this breakthrough
the paper got finished up quite rapidly. Of course nowadays there are many simple proofs
and strengthenings of this theorem, but it was certainly a very psychologically imposing
problem for us before we found the solution.

In 2006 Bourgain, Glibichuk, and Konyagin [18] proved (22) under the weaker
assumption that |A| < p1−δ and, combining this result with Balog-Szemerédi-
Gowers lemma, made remarkable progress towards the Montgomery-Vaughan-
Wooley conjecture. This asserts that multiplicative subgroups of Fp

∗ have “neg-
ligible additive structure” as soon as |H |

log p
→ ∞. This was established for H

satisfying |H | ≥ p
1
4 +δ by Konyagin in 2002; Bourgain, Glibichuk, and Konyagin

proved that the result holds as soon as |H | > pε for any ε. Subsequently, Bourgain
refined and extended this approach [12] to obtain hitherto untouchable estimates
for exponential sums pertaining to Diffie-Hellman key exchange [13], a result of
fundamental significance in cryptographic applications.

4 Discrete and Continuous Variations on the Expanding
Theme

4.1 Bemerkung über den Inhalt von Punktmengen

The types of creatures on the earth are countless, and on an individual level their self-
preservation instinct as well as longing for procreation is always unlimited; however the
space on which this entire life process plays itself out is limited. It is the surface area of a
precisely measured sphere.

Hitlers Zweites Buch, 1928

It is a pity the demented housepainter was not briefed about the Hausdorff-
Banach-Tarski constructive solution of Lebensraum problem.18 Building on Haus-

18 When, as part of the “Final Solution,” Hausdorff, his wife Charlotte, and a sister of hers were
ordered to leave their house for local internment camp in January 1942, they opted for suicide.
During the night of July 3, 1941, 40 distinguished representatives of Lvov intelligentsia, including
S. Ruziewicz, perished at the hands of the S. S. “Nachtigall” battalion. Banach was saved by Rudolf
Weigel, the inventor of typhus vaccine, who employed him as a feeder of lice.
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Fig. 8 Banach-Tarski hedgefund

dorff’s 1914 construction [44], detailed below, Banach and Tarski, in 1924, proved
[4] that there is a way of decomposing a three-dimensional ball (“precisely measured
sphere”) into a finite number of disjoint pieces and then reassembling the pieces to
form two balls of the same radius, where “reassembling” means that the pieces are
translated and rotated and that they end up still disjoint.

The construction, perhaps one of the most strikingly paradoxical in Mathematics
(Fig. 8), has its origins in the question posed by Lebesgue in 1904, in the first
textbook on integration bearing his name [56]. One of the properties of his integral
is the monotone convergence theorem (MCT); is this property really fundamental
or follows from more familiar integral axioms? Now MCT is essentially equivalent
to countable additivity so the question is concerned with the existence of a positive,
finitely (but not countably) additive measure on the reals assigning measure one to
the unit interval.

In more detail, the problem is to assign a non-negative real number f (A) to each
bounded subset A ∈ R

n in such a way that:

(1) f (E) = 1 if E is the closed unit cube in R
n

(2) f (A) = f (B) if A and B are congruent
(3) f (A ∪ B) = f (A) + f (B) if A and B are disjoint
(4) f (A1 ∪ A2 ∪ . . . ) = f (A1) + f (A2) + . . . if A1, A2, . . . is any denumerable

sequence of mutually disjoint sets whose union is bounded

The congruence condition in 4.1 is as follows: A and B are congruent if there
exists an element g in the Euclidean group of distance preserving transformations
in R

n such that g(A) = g(B). The problem of existence of such an f is the σ -
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additive measure problem; the problem of existence of f verifying only the first
three properties is the finitely additive measure problem.

Lebesgue had left the countably additive measure problem in R
n unresolved; his

construction had proved the existence of f (A) for Lebesgue-measurable bounded
subsets and had left the existence of non-measurable subsets as an open question.
This was settled by Vitali on 1905 [92], whose construction is a forerunner of the
Hausdorff-Banach-Tarski. Let lθ be a line segment in R

2 given by lθ = {(r, θ) :
0 ≤ r ≤ 1} in polar coordinates. Consider

⋃
θ lθ = D′ a unit disc with the origin

removed. The line segments lθ and lφ belong to the same equivalence class if θ − φ

is a rational multiple of π . Consider a set E that is a union of a set of lθ containing
exactly one representative from each equivalence class. Rationals are countable:
Q ∩ [0, 1] = x1, x2, . . . . Write En = {lθ+2πxn : lθ ∈ E}. Then each En is obtained
from E by rotation around the origin (by angle 2πxn); the sets En are disjoint (since
E contains representative from each equivalence class),

⋃
n En = D′. Now take D′

and split it into the set F consisting of the union of the sets E2n and the set G

consisting of the sets E2n+1. Each E2n can be rotated to En, and the union of the
En gives us D′. Similarly, each E2n+1 can be rotated to En, and the union of the En

gives us D′ again. Thus the punctured unit disc can be split into a countable set of
disjoint pieces (all obtained by rotation of one particular set) and translated to form
disjoint sets whose union is two copies of D′.19

Hausdorff begins his 1914 paper Bemerkung über den Inhalt von Punktmengen
[44]by using the subgroup Gδ = {nδ , n ∈ Z} (where δ is a fixed irrational number)
to show that the σ -additive problem in R

n has no solution for any n ≥ 1. Both
Vitali and Hausdorff use a denumerably dense subgroup of the additive group (in
Hausdorff’s case the dense group is G = Gδ + Z).

He then proceeds to show that the finitely additive measure problem in R
n has

no solution if n ≥ 3 by reducing the problem to the unit sphere K = S2 in R
3 and

then producing the so-called Hausdorff paradoxical decomposition

K = A ∪ B ∪ C ∪ Q (23)

where A,B,C,Q are four disjoint subsets of K , Q being denumerable and A ∼
B ∼ C ∼ B ∪ C, the congruence here being under the group of rotations SO(3).

A decomposition (23) excludes the possibility of having an SO(3) invariant
finitely additive positive measure set function defined for all subsets of K with
f (K) > 0: indeed for such an f , f (Q) must be zero and f (A) = f (B) =
f (C) = f (B ∪ C) = f (B) + f (C), whence all of these numbers are zero, which
is impossible since 0 < f (K) = f (A) + f (B) + f (C).

The decomposition (23) is obtained by the consideration of a denumerable
subgroup G = G(θ, φ) of SO(3) generated by two rotations θ, φ such that
θ2 = 1 , φ3 = 1, 1 being identity map, and such that θ, φ satisfy no other nontrivial

19 Vitali’s construction makes use of the axiom of choice (because we chose one representative
from each equivalence class), and the same is true of the Banach-Tarski construction.
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relations. As observed by von Neumann,20 the group G(θ, φ) is isomorphic to the
free product of Z2 and Z3 and must necessarily contain F2, the free group on two
generators

This left open the finitely additive problem in R
1 and R

2; Banach begins his 1923
paper21 (giving the title to the next subsection) by showing that in these spaces the
finitely additive measure problem does have infinitely many solutions.

4.2 Sur le problème de la mesure

Banach was not a mathematician of finesse, he was a mathematician of power. Inside
he combined a spark of genius with that amazing inner imperative, which incessantly
whispered to him, as in Verlaine’s verse, ‘Il n’y a que la glorie ardente du mètier’ [There is
only one thing: that intense glory of the craft] – and mathematicians know well that their
craft depends on the same mystery as the craft of poets.

Hugo Steinhaus22

In this seminal paper [3], Banach considers three questions pertaining to the
invariance of finitely additive measures. First, he constructs a finitely additive,
positive, translation-invariant measure μ on the family of bounded subsets of R

such that:

(1) μ(A) < ∞ for every bounded subset of R (so that μ gives rise in an obvious
way to an element μA of l∞(A)).

(2) μ[a,b](f ) = ∫ b

a
f (x)dx for every Riemann integrable function f on an interval

[a, b].
(3) There exists a Lebesgue integrable function g on an interval [c, d] s.t.

μ[c,d](g) �= ∫ d

c
g(x)dx.

20 In his seminal paper Zur allgemeinen Theorie des Masses, which introduced the notion of
amenability [72].
21 The first equality in this paper appears just below its title: Stefan Banach (Léopol = Lwów).

“If I cared to define the single most prominent characteristic feature of Lvov school, I would
mention its interest in the foundation of various theories. What I mean by this is that if one imagines
mathematics as a tree, then the Lvov group was devoted to studying roots and trunks, perhaps even
the main boughs, with less interest in the side branches, leaves and flowers.” S. Ulam (a student of
Banach and co-holder of the patent for hydrogen bomb).
22 H. Steinhaus “discovered” Banach on the park bench of Krakow Planty promenade, discussing
Lebesgue Measure with Otto Marcin Nikodym. (He viewed this as his “greatest discovery.”)
Lebesgue visited Lvov in 1938 to receive an honorary doctorate from Jan Kazimierz University
(where Steinhaus was at that time Dean of the Faculty). Upon being given a menu in Polish at the
celebratory dinner in the famous Scottish Café, Lebesgue looked at the menu for about 30 s with
utmost seriousness and said, Merci, je ne mange que des choses bien définies[Thank you, I eat only
well-defined things] [83].
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The second result, which Banach calls “le probleme large de la mesure,” is to
show that unlike the case of n ≥ 3, studied by Hausdorff, the finitely additive
measure problem in R

n for n = 1, 2 does have infinitely many solutions.
The third question, posed by Ruziewicz in 1921, is whether Lebesgue measure

on the n-sphere is the unique finitely additive rotation invariant measure defined
on Lebesgue subsets. Using Hahn-Banach theorem, Banach showed that that for
n = 1, the answer is negative, using essentially the commutativity of SO(2). He left
the case of n > 2 open.

For n > 3, the affirmative answer was obtained in 1980/1981 by Margulis [65]
and Sullivan [85] who used Kazhdan’s property T [53].

In 1984 Drinfeld established [30] the affirmative answer in the most difficult case
of n = 2 by proving existence of an element in the group ring of SU(2) which has
a spectral gap. As proved by Sarnak (Fig. 9) [78], the affirmative answer for n = 2
implies, via inductive construction, an affirmative answer for n ≥ 2.

Drinfeld method used some sophisticated machinery from the theory of auto-
morphic representations, in particular Deligne’s solution of Ramanujan conjecture
[29]. In 1986 the explicit and optimal construction, appealing to the abovementioned
tools, was obtained by Lubotzky, Phillips, and Sarnak [59, 60], in tandem with
their celebrated construction (independently given by Margulis [66]) of Ramanujan
graphs [61].

Fig. 9 Jean Bourgain and Peter Sarnak
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4.3 Ramanujan-Selberg Conjecture

In 1916 Ramanujan [75] made two deep conjectures about the coefficients of

q

∞∏

n=1

(1 − qn)24 =
∞∑

n=1

τ(n)qn. (24)

The first was the multiplicativity of the coefficients: if (m, n) = 1

τ(mn) = τ(m)τ(n); (25)

the second was an estimate

|τ(n)| ≤ d(n)n
11
2 (26)

where d(n) is the number of divisors of n. In particular,

|τ(p)| ≤ p
11
2 (27)

for primes p.
The first was proved by Mordell in 1917 [70] and marked the beginning of

Hecke’s theory of Hecke operators. The second was proved by Deligne in 1974
[29] and is one of the crowning achievements of twentieth-century mathematics.23

In his seminal 1965 paper On the estimation of Fourier coefficients of modular
forms, Selberg [81] formulated an analogue of Ramanujan conjecture for non-
holomorphic or Maaß forms and showed that it is equivalent to the following
statement about the first positive eigenvalue of the Laplacian (Selberg’s eigenvalue
conjecture24)

λ1(X(p)) ≥ 1

4
, (28)

where X(p) = H\�(p), the quotient of the hyperbolic plane by the congruence
subgroup

�(p) = {γ ∈ SL2(Z) : γ ≡
(

1 0
0 1

)

mod p}.

23 “According to the author of the proof, Pierre Deligne, in order to present this proof, presupposing
everything known by a beginning graduate student in mathematics one would need about two
thousand pages of printed text. This theorem probably holds the record in modern mathematics for
the ratio of the length of its proof to the length of its statement” Y. Manin [63].
24 See the article with eponymous title by P. Sarnak in the Notices [79] for a tantalizing discussion.
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By the variational characterization of the first eigenvalue, we have

λ1(X(p)) = inf∫
X(p) f dμ=0

∫
X(p)

|∇f |2dμ
∫
X(p)

f 2dμ
. (29)

Using Weil’s bound for Kloosterman sums (obtained as a consequence of his proof
of the Riemann hypothesis for curves), Selberg proved the following celebrated
result:

λ1(X(p)) ≥ 3

16
. (30)

This result can be viewed as (implicitly) giving rise to the first family of expander
graphs.

4.4 Expanders

Expanders are highly connected sparse graphs widely used in computer science.
Clearly high connectivity is desirable in any communication network. The necessity
of sparsity is perhaps best seen in the case of the network of neurons in the brain:
since the axons have finite thickness, their total length cannot exceed the quotient
of the average volume of one’s head and the area of axon’s cross section. In fact,
this is the context in which expander graphs first implicitly appeared in the work of
Barzdin and Kolmogorov in 1967 [54].

There are several ways of making the intuitive notions of connectivity and
sparsity precise; the simplest and most widely used is the following.

Given a subset of vertices, its boundary is the set of edges connecting the set to
its complement. The expansion of a subset is a ratio of the size of a boundary to the
size of a set. The expansion of a graph is a minimum over all expansion coefficients
of its subsets. Note that the expansion coefficient is strictly positive if and only if
the graph is connected.

The expansion coefficient captures the notion of being highly connected; the
bigger the expansion coefficient, the more highly connected is the graph. Of course
one can simply connect all the vertices, but in this case, the number of edges grows
as a square of the number of vertices. The problem of constructing expanders is
nontrivial because we put the second constraint: the graphs are to be sparse, i.e.,
the number of edges should grow linearly with the number of vertices. The simplest
way to accomplish this is to demand that the graphs be regular, that is, each vertex
has the same number of neighbors (say 3).

A family of k-regular graphs Gn,k forms a family of expanders if there is a fixed
positive constant c, such that
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lim inf
n→∞ c(Gn,d) ≥ c > 0. (31)

The expansion coefficient is a notion which is very easy to grasp, but it is
difficult to compute numerically or to estimate analytically, as the number of subsets
grows exponentially with the number of vertices. The starting point of most current
work on expanders is that the expansion coefficient has a spectral interpretation:25

to put it sonorously, if you hit a graph with a hammer, you can determine how
highly connected it is by listening to the bass note. In more technical terms, high
connectivity is equivalent to establishing a spectral gap for an averaging (or Laplace)
operator on the graph so that condition (31) has the following alternative expression:

lim inf
n→∞ λ1(�(Gn,k)) ≥ μ > 0, (32)

making apparent the connection with Selberg’s celebrated 3
16 Theorem (30).

In 1973 Pinsker [73] observed that random regular graphs are expanders. In the
same year, Margulis [64] gave the first explicit construction of expanders as Cayley
graphs26 of SL3(Fp) using Kazhdan’s property T [53].

4.5 Superstrong Approximation

The strong approximation for SLn(Z), asserting that the reduction πq modulo q is
onto, is a consequence of the Chinese remainder theorem; its extension to arithmetic
groups is far less elementary but well understood. If S is a finite symmetric
generating set of SLn(Z), strong approximation is equivalent to the assertion that
the Cayley graphs G(SLn(Z/qZ), πq(S)) are connected. The quantification of this
statement, asserting that they are in fact highly connected, that is to say form a
family of expanders, is what we mean by superstrong approximation. The proof of
the expansion property for SL2(Z) has its roots in Selberg’s celebrated lower bound
(30). The generalization of the expansion property to G(Z) where G is a semi-
simple matrix group defined over Q is also known thanks to developments towards
the general Ramanujan conjectures that have been established; this expansion
property is also referred to as property τ for congruence subgroups.

Let � be a finitely generated subgroup of GLn(Z) and let G = Zcl(�). The
discussion of the previous paragraph applies if � is of finite index in G. However, if
� is thin, that is to say, of infinite index in G(Z), then vol(G(R)\�) = ∞, and the

25 The connection stems from the variational characterization of the first eigenvalue, expressed in
(29).
26 Given a finite group G with a symmetric set of generators S, the Cayley graph G(G, S), is a
graph which has elements of G as vertices and which has an edge from x to y if and only if
x = σy for some σ ∈ S. The Cayley graph of PSL2(F5) with respect to standard generators is a
buckyball, alluded to in the rendering of O on the conference poster (Fig. 2).
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techniques used to prove both of these properties do not apply. It is remarkable that
under suitable natural hypothesis, strong approximation continues to hold in this thin
context, as proved by Matthews, Vasserstein, and Weisfeller in 1984 [68, 94]. That
the expansion property might continue to hold for thin groups was first suggested
by Lubotzky and Weiss in 1993 [62]; for SL2(Z), the issue is neatly encapsulated in
the following 1-2-3 question of Lubotzky [58]. For a prime p ≥ 5 and i = 1, 2, 3,

let us define Si
p = {

1 i
0 1

)
,
(

1 0
i 1

}
. Let Gi

p = G
(

SL2(Z/pZ) , Si
p

)
, a Cayley graph

of SL2(Z/pZ) with respect to Si
p. By Selberg’s theorem, G1

p and G2
p are families

of expander graphs. However, the group 〈( 1 3
0 1

)
,
(

1 0
3 1

)〉 has infinite index and thus
does not come under the purview of Selberg’s theorem.

Following the groundbreaking work of Helfgott [45] (which builds crucially
on sum-product estimate in Fp discussed in Sect. 3.4), Bourgain and Gamburd
[16] gave a complete answer to Lubotzky’s question. The method introduced in
uniform expansion bounds for Cayley graphs of SL2(Z/pZ) and developed in
a series of papers became known as “Bourgain-Gamburd expansion machine”;
thanks to a number of major developments by many people, the general superstrong
approximation for thin groups is now known. The state of the art is summarized
in thin groups and superstrong approximation [21] which contains an expanded
version of most of the invited lectures from the eponymous MSRI ‘Hot Topics’
workshop, in the surveys by Breuillard [20] and Helfgott [46], and in the book by
Tao Expansion in Finite Simple Groups of Lie Type [91].

4.6 On the Spectral Gap for Finitely Generated Subgroups of
SU(d)

There is an Archimedean analogue of the expansion property, intimately related to
the Banach-Ruziewicz problem discussed in Sect. 4.2, defined as follows.

For k ≥ 2, let g1, . . . , gk be a finite set of elements in G = SU(d) (d ≥ 2). We
associate with them an averaging (or Hecke) operator zg1,...,gk

, taking L2(SU(d))

into L2(SU(d)):

zg1,...,gk
f (x) =

k∑

j=1

(f (gjx) + f (g−1
j (x)).

We denote by supp(z) the set {g1, . . . , gk, g
−1
1 , . . . , g−1

k } and by �z the group
generated by supp(z). It is clear that zg1,...,gk

is self-adjoint and that the constant
function is an eigenfunction of z with eigenvalue λ0(z) = 2k. Let λ1(zg1,...,gk

)

denote the supremum of the eigenvalues of z on the orthogonal complement of the
constant functions in L2(SU(d)). We say that z has a spectral gap if λ1(zg1,...,gk

) <

2k. It is common to, alternatively, refer to the situation described above, by asserting
that the spectral gap property holds for �z.
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It is easy to see that affirmative solution of Banach-Ruziewicz follows from
existence of z in SU(2) having a spectral gap. In their 1986 paper, referenced at the
end of Sect. 4.2, Lubotzky, Philips and Sarnak posed a question of whether generic
in measure z in SU(2) has a spectral gap.

In 2008 Bourgain and Gamburd [17] proved (Theorem 9 below) the spectral
gap property for z in SU(2) satisfying the non-commutative diophantine property
(NDP)—in particular for free subgroups generated by elements with algebraic
entries.

The definition of non-commutative diophantine property27 introduced in the
paper “Spectra of elements in the group ring of SU(2)” by Gamburd, Jakobson,
and Sarnak [41] is as follows. We say that zg1,...,gk

satisfies NDP if there is
D = D(g1, . . . , gk) > 0 (the diophantine constant of z) such that for any m ≥ 1
and a word Wm in g1, . . . , gk of length m with Wm �= ±e (where e denotes the
identity in SU(2)) ‖Wm ± e‖ ≥ D−m.

Theorem 9 Let g1, . . . , gk be a set of elements in SU(2) generating a free group
and satisfying NDP (in particular, elements with algebraic entries28). Then zg1,...,gk

has a spectral gap.

Regarding the proof, let me just note that in the adaption of the “expansion
machine” to this Archimedean setting, the crucial role is played by the following
strengthening of Theorem 7.

Theorem 10 Given 0 < δ < 1 and κ > 0, there exists ε0 > 0 and ε1 > 0 such
that if δ > 0 is sufficiently small and A ⊂ [1, 2] is a discrete set consisting of
δ-separated points, satisfying |A| = δ−σ and

|A ∩ I | < ρκ |A| (33)

whenever I is a size ρ interval with δ < ρ < δε0 , then

N(A + A, δ) + N(A · A, δ) > δ−ε1 |A|. (34)

27 Recall that θ ∈ R is called diophantine if there are positive constants C1, C2 s.t. for all (k, l) ∈
Z

2 with k �= 0 we have |kθ − l| ≥ c1k
−c2 . Equivalently, letting g = e2πθ ∈ SO(2), we may

re-express this condition as follows: |gk − 1| ≥ c′
1k

−c′
2 . A classical result asserts that diophantine

numbers are generic in measure in R. Given diophantine θ1, . . . , θk and g1 = e2πθ1 , . . . , gk =
e2πθk in SO(2), for any word W in g1, . . . , gk of length m, we have |Wm − 1| ≥ c1m

−c2 for some
c1, c2. In the case of SO(3), given g1, . . . , gk generating a free subgroup, a pigeonhole argument
shows that for any m ≥ 1 there is always a word W in g1, g

−1
1 , . . . , gk, g

−1
k of length at most m

such that ‖Wm − e‖ ≤ 10(2k − 1)− m
6 , so the exponential behavior in the definition below is the

appropriate one.
28 It was established in [41] that elements with algebraic entries satisfy NDP. A major open
question is whether z generic in measure in SU(2) satisfies NDP. The best known result in this
direction is due to Kaloshin and Rodnianski [49]: for almost every pair (A,B) in SU(2) × SU(2),
there is a constant D > 0 s.t. for any n and any word Wm ‖Wm(A,B) ± e‖ ≥ D−m2

.
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Theorem 9 is of importance in quantum computing [28, 43]. In the context of
quantum computation, elements of a three-dimensional rotation group are viewed as
“quantum gates,” and a set of elements generating a dense subgroup is called “com-
putationally universal” (since any element of rotation group can be approximated
by some word in the generating set to an arbitrary precision). A set of elements
is called “efficiently universal” if any element can be approximated by a word of
length which is logarithmic with respect to the inverse of the chosen precision (this
is the best possible). A consequence of Theorem 9 is that computationally universal
sets with algebraic entries are efficiently universal.

Another application is related to the theory of quasicrystals. Generalizing
Penrose’s two-dimensional aperiodic tiling, John Conway and Charles Radin [26]
constructed a self-similar (hierarchical) tiling of a three-dimensional space with
a single prototile, such that the tiles occur in an infinite number of different
orientations in the tiling. The tile is a prism, which when scaled up by two is
subdivided into eight copies of itself (“daughter tiles”). If one iterates this same
subdivision procedure over and over, one creates in the limit the desired tiling of
three-dimensional space by prisms. Conway and Radin showed that the orientations
of tiles in the tiling are uniformly distributed and posed the question of how fast this
convergence to uniform distribution takes place. This question reduces to the study
of the spectral gap for the averaging operator associated with eight rotations giving
orientations of daughter tiles. A consequence of Theorem 9 is that this convergence
takes place exponentially fast.

5 Coda

The essence of mathematics lies precisely in its freedom.
Georg Cantor

Already history has in a sense ceased to exist, i.e. there is no such thing as a history of
our own times which could be universally accepted, and the exact sciences are endangered
as soon as military necessity ceases to keep people up to the mark. Hitler can say that the
Jews started the war, and if he survives, that will become official history. He can’t say that
two and two are five, because for the purposes of, say, ballistics they have to make four.

George Orwell, letter to N. Wilmett, 18 May 1944

Freedom is the freedom to say that two plus two make four. If that is granted, all else
follows.

George Orwell, Nineteen Eighty-Four, 1949

The difficulties of explaining Bourgain’s work to a broad mathematical audience
turned out to be quite substantial;29 omitting “mathematical” from the appellation
renders them nearly insurmountable.

29 “There is a continuing need to lead new generations along the thorny path which has no
shortcuts. The Ancients said there is no royal road in mathematics. But the vanguard is leaving
the great mass of pilgrims further and further behind, the procession is ever more strung out, and
the leaders are finding themselves alone far out ahead” H. Steinhaus [84].
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Ian Stewart begins his admirable book The Problems of Mathematics (Oxford
University Press, 1987) with an interview with a mathematician conducted by
Seamus Android on behalf of the proverbial man in the street30 invoked in Hilbert’s
celebrated 1900 address Problems of Mathematics, referenced at the beginning of
Sect. 2.

Mathematician: It’s one of the most important discoveries of the last decade!
Android: Can you explain it in words ordinary mortals can understand?
Mathematician: Look, buster, if ordinary mortals could understand it, you would not

need mathematicians to do the job for you, right? You can’t get a feeling for what’s going
on without understanding the technical details. How can I talk about manifolds without
mentioning that the theorem only works if the manifolds are finite dimensional paracompact
Hausdorff with empty boundary?

Android: Lie a bit.
Mathematician: Oh, but I could not do that!
Android: Why not? Everybody else does.

Perhaps the most troubling omen of our times is an assault on the very basic
notions of logic and truth, in their most elemental Aristotelian sense, including, in
particular, the law of the excluded middle. Our discipline stands as a mighty fortress
against this assault, and I, for one, believe we should not be overly defensive about
our reluctance to lie a bit just because everybody else does.

***

Of all escapes from reality, mathematics is the most successful ever. It is a fantasy that
becomes all the more addictive because it works back to improve the same reality we
are trying to evade. All other escapes – sex, drugs, hobbies, whatever –are ephemeral by
comparison. The mathematician’s feeling of triumph, as he forces the world to obey the
laws his imagination has freely created, feeds on its own success. The world is permanently
changed by the workings of his mind, and the certainty that his creations will endure renews
his confidence as no other pursuit.

Gian-Carlo Rota, ‘The Lost Cafe’, 1987

The one who writes a poem writes it above all because verse writing is an extraordinary
accelerator of conscience, of thinking, of comprehending the universe. Having experienced
this acceleration once, one is no longer capable of abandoning the chance to repeat this
experience; one falls into dependency on this process, the way others fall into dependency
on drugs or on alcohol. One who finds himself in this sort of dependency on language is, I
guess, what they call a poet.

Joseph Brodsky, ‘Nobel Lecture’, 1987

To paraphrase W. H. Auden (writing In Memory of W. B. Yeats),

[Mathematics]31 makes nothing happen: it survives

30 The proverbial meaning is a function of street’s location in space-time cultural continuum: it is
exceedingly unlikely, I reckon, that Aristotle’s remark in Nicomachean Ethics, IX that “without
friends none would care to live, though having all other things besides” should necessarily be
construed as endorsement of Facebook.
31 Save e.g. hydrogen bomb and computer.
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In the valley of its making, where executives

Would never want to tamper.

In attempting to explain the significance of Bourgain’s remarkable and remark-
ably useful results to a proverbial human-on-line, one may invoke their applica-
tions in mathematical physics, computer science, and cryptography, which are of
immense practical importance in contemporary life, making, in particular, the online
communication possible. Their subtlety, beauty, and depth appear to be much harder
to convey in “plain English.” Here and now, perhaps, we must remind ourselves that
the human-on-line, while attached to a digital device (built by von Neumann), is still
human and sound bite/tweet thus: while dealing with entities seemingly fake/unreal
(e.g., the real line), Bourgain’s singular adventures in the labyrinth of the continuum
represent a magnificent and transcendent achievement of the human spirit.

***

I met Jean in September 2005, 6 months after my daughter (who drew the pictures
for this essay) was born, while visiting IAS for the program “Lie Groups, Represen-
tations and Discrete Mathematics” led by Alex Lubotzky. I do not remember the
precise date but do remember the hour: it was between 2 and 3 am. After changing
my daughter’s diapers, I could not sleep, went to Simonyi Hall, and ran into Jean
walking to the Library. It was in this discombobulated state that I was free of fear to
speak to him. By dawn, the problem which had been resisting my protracted attack
for a decade was vanquished in Jean’s office.32

During this happiest year of my life, in 2005–2006, I stayed on the Lane named
after Hermann Weyl who was of the view that “Mathematics is not the rigid and
uninspiring schematism which the laymen is so apt to see in it; on the contrary, we
stand in mathematics precisely at that point of limitation and freedom which is the
essence of man himself.”

During my second visit to IAS, in 2007–2008, as von Neumann Fellow partic-
ipating in the “Arithmetic Combinatorics” Program led by Jean Bourgain and Van
Vu, I stayed on the Lane named after Erwin Panofsky. His magnificent essay The
History of Art as a Humanistic Discipline, based on The Spencer Trask Princeton
University Lectures for 1937–38, commences thus:

Nine days before his death Immanuel Kant was visited by his physician. Old, ill, and nearly
blind, he rose from his chair and stood trembling with weakness and muttering unintelligible

32 Jean had the following daily routine. He would arrive at the dining hall for lunch within 5
minutes of its closing and, while descending the stairs, would look for whom to join for the meal
(the relevance of the person was determined primarily by their expertise in the problem Jean was
currently working on). After lunch and before the sunset, the door of his office would be half-open.
After getting a bottle or red wine (typically Medoc), Jean would have dinner around 9 pm, followed
by a double espresso (typically in Small World Coffee), return to the office, call his wife and son,
and then go for a brisk walk, encircling the Einstein Drive about 5 times. Between midnight and
the sunrise, the office door would typically be closed. His handwritten notes (like that of Mozart’s
and unlike Beethoven’s) are virtually free of corrections, in part, because during the dinner and the
walk he would think about what would be set to paper upon his return to the office.
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words. Finally his faithful companion realized that he would not sit down until the visitor
has taken a seat. This he did, and Kant then permitted himself to be helped to his chair, and,
after regaining some of his strength, said, ‘Das Gefühl für Humanität hat mich noch nicht
verlassen’ – ‘The sense of humanity has not yet left me’. The two men were moved almost
to tears. For, though the word Humanität had come, in the eighteenth century, to mean little
more than politeness or civility, it had, for Kant, a much deeper significance, which the
circumstances of the moment served to emphasize: man’s proud and tragic consciousness
of self-approved and self-imposed principles, contrasting with his utter subjection to illness,
decay and all that is implied in the word ‘mortality’.

Towards the end of the essay, Panofsky thus (pre-)echoes Orwell: “If the
anthropocratic civilization of the Renaissance is headed, as it seems to be, for a
Middle Ages in reverse –a satanocracy as opposed to the mediaeval theocracy – not
only the humanities but also natural sciences, as we know them, will disappear, and
nothing will be left but what serves the dictates of the sub-human.”

During my third, short visit (Fig. 10), I stayed on von Neumann Drive (the
only other “Drive” at IAS is named after Einstein). The similarities between von
Neumann and Baron Bourgain are subtle and striking.33 In his article The Legend
of John von Neumann [42], Paul Halmos has the following to say: “The heroes of
humanity are of two kinds: the ones who are just like all of us, but very much more
so, and the ones who, apparently, have and extra-human spark. We can all run, and
some of us can run the mile in less than 4 minutes; but there is nothing that most of us
can do that compares with the creation of the Great G-minor Fugue. Von Neumann’s
greatness was the human kind. We can all think clearly, more or less, some of the
time, but von Neumann’s clarity of thought was orders of magnitude greater than
that of most of us, all the time. Both Norbert Wiener and John von Neumann were
great men, and their names will live after them, but for different reasons. Wiener
saw things deeply but intuitively; von Neumann saw things clearly and logically.”
One may agree or disagree with Halmos’s assessment; it is my belief that Bourgain’s
greatness combined these two kinds.

***

The IAS (where Jean did most of the work described in this essay) official seal
(Fig. 11) is imprinted on the Analysis and Beyond conference poster. In a circular
format, the quiet elegant and classical Art Deco composition depicts two graceful
young ladies, one clothed and one otherwise, standing on opposite sides of a leafy
tree that appears to bear abundant fruit. Their poses are complementary, one looking
out towards the spectator and the other looking down, avoiding eye contact. The

33 The following remarks about Johnny are equally applicable to Jean. “It is usually difficult to
sharpen von Neumann’s results. With small concern for expository simplifications or intuitive
motivations, he characteristically went straight to the heart of problems, and had an uncanny ability
to check all the essentially different possibilities, individually and in combination. This ability
gives most of his work an objective finality, and makes later workers begin by trying to simplify
von Neumann’s arguments, or to apply similar techniques to related problems” [7].

“The story used to be told about him in Princeton, that while he was indeed a demi-god, he had
made a detailed study of humans and could imitate them perfectly” [39].
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Fig. 10 Jean Bourgain, Peter Sarnak, Alex Gamburd

figures are named in large sans serif letters, TRUTH to the left and BEAUTY on
the right. Truth holds a mirror that overlaps the circular frame to reflect reality.

Underlying the design of the seal is the evident allusion to the famous final
couplet of “Ode on a Grecian Urn”: “Beauty is truth, truth beauty,” – that is all
Ye know on earth, and all ye need to know by John Keats, who was of the view
that “the excellence of every art is its intensity, capable of making all disagreebles
evaporate from their being in close relationship with Beauty and Truth.”

Having attempted in this essay a snapshot of the excellence of Bourgain’s art,
let me conclude by giving a glimpse of his intensity by quoting from the interview
upon receiving the 2017 Breakthrough Prize in Mathematical Sciences (Fig. 12):
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Fig. 11 The IAS Seal

Fig. 12 Richard Taylor, Jean Bourgain, Terence Tao

If you have a question which is generally perceived as unapproachable, it is often that you
do not even quite know where you have to look to get a solution. From that point of view, we
are rather like Fourier,34 stranded in the desert, hopelessly lost. At the moment you get this
insight, all of a sudden you escape the desert and things open up for you. Then we feel very

34 Jean-Baptiste Joseph Fourier was a member of General Bonaparte’s expedition to Egypt(1798–
1801), important enough for the First Consul to make him, in 1802, the Prefect of the département
at Grenoble, a position which he held until Emperor Napoleon’s fall.
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Fig. 13 Jean baron Bourgain 1954–2018

excited. These are the best moments. They make up for all the suffering with absolutely no
progress worth it.
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