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Abstract In this brief note, we survey a sample of the deep and influential contribu-
tions of Jean Bourgain to the field of nonlinear dispersive equations. Bourgain also
made many fundamental contributions to other areas of partial differential equations
and mathematical physics (as well as to a myriad of other areas in analysis, number
theory, combinatorics, theoretical computer science, and more). Quoting the citation
of the American Mathematical Society L. P. Steele Prize for Lifetime Achievement
awarded to Bourgain in 2018, “Jean Bourgain is a giant in the field of mathematical
analysis, which he has applied broadly and to great effect.”

Jean Bourgain’s contributions to mathematics will be remembered forever. Those
of us who knew him will also remember his warmth, generosity, and graciousness.

1 Introduction

In this brief note, we survey a sample of the deep and influential contributions of
Jean Bourgain to the field of nonlinear dispersive equations. Bourgain also made
many fundamental contributions to other areas of partial differential equations and
mathematical physics (as well as to a myriad other areas in analysis, number theory,
combinatorics, theoretical computer science, and more). Quoting the citation of the
AMS L. P. Steele Prize for Lifetime Achievement, awarded to Bourgain in 2018,
“Jean Bourgain is a giant in the field of mathematical analysis, which he has applied
broadly and to great effect.”
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Jean Bourgain’s contributions to mathematics will be remembered forever. Those
of us who knew him will also remember his warmth, generosity, and graciousness.

2 Nonlinear Dispersive Equations: The Well-Posedness
Theory Before Bourgain

The theory of nonlinear dispersive equation goes back to the nineteenth century, in
connection with water waves in shallow water. The Korteweg-de Vries equation,
which governs this phenomenon, was proposed by Boussinesq and by Korteweg-de
Vries, in the late nineteenth century, as a way of explaining the discovery by Scott
Russell (1835) of traveling waves. The generalized KdV equations (gKdV)k (k = 1
being the Korteweg-de Vries equation) are

(gKdV )k

{
∂tu + ∂3xu + uk∂xu = 0, x ∈ R, or x ∈ T, t ∈ R

u|t=0 = u0(x)

(here, T and T
d are the 1-dimensional ( d-dimensional) torus). Another example of

nonlinear dispersive equations is the nonlinear Schrödinger equations (NLS),

(NLS)

{
i∂tu + �u ± |u|p−1u = 0, x ∈ R

d , or x ∈ T
d

u|t=0 = u0(x)

When d = 1, p = 3, these equations model the propagation of wave packets in
the theory of water waves. The equations also appear in non-linear optics and in
quantum field theory. These equations have a Hamiltonian structure and preserve
mass and energy (although the energy maybe negative). For both equations, the
conserved mass is

∫ |u0|2, where the integral is over Rd or Td . For (gKdV)k , the
conserved energy is E(u0) = ∫ [(∂xu0)

2 − cku
k+1
0 ]dx, and for (NLS), it is E(u0) =∫ [(∇xu0)

2 ∓ cp|u0|p+1]dx, where the integrals are over Rd or Td .

These equations are called dispersive because their linear parts are dispersive.
Heuristically, the linear equations, when defined for x ∈ R

d , are called dispersive,
because the initial data gets “spread out” or “dispersed” by the evolution. (The linear
equations can be solved by using Fourier’s method). Since the mass of the solution
is constant (the L2 norm is conserved), this requires the size of the linear solution to
become small for large t , the so called “dispersive effect.” Note that this is a feature
of linear dispersive equations, the traveling wave solutions discovered by Russell
do not have this property, and they are purely nonlinear objects. Moreover, when
x ∈ T

d , there is no room for the solution to “spread out,” and the “dispersive effect”
disappears.

Even though these equations were introduced in the nineteenth century/early
twentieth century, their systematic study started much later. One of the first things
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to understand for such equations is the “well-posedness.” An equation like (gKdV)k
or (NLS) is said to be locally well-posed (LWP) in a space B (with u0 ∈ B),
if the equation has a unique solution u (in a suitable sense) for u0 ∈ B, for
some T = T (u0), 0 ≤ t ≤ T , u ∈ C([0, T ];B), and the mapping u0 ∈
B → u ∈ C([0, T ];B) is continuous. (That is to say, in analogy with ODE,
we have existence, uniqueness, and continuous dependence on the initial data). If
we can take T = +∞, we say that the problem is globally well-posed (GWP).
Since dispersive equations are (essentially) time reversible, we can replace [0, T ]
by [−T , T ]. Usually in this subject, the space B is taken to be an L2−based
Sobolev space, (or sometimes a weighted L2−based Sobolev space, with power
weights, in case we are working in R

d ). The reason for using L2-based spaces as
opposed to Lp-based spaces is the failure of estimates for u0 ∈ Lp, p �= 2, in
the associated linear problems. The first (LWP) results used the analogy of these
problems to classical hyperbolic ones, which led (by the classical energy method
and its refinements and compactness arguments [5, 6])to the (LWP) of (gKdV)k in
Hs(R), for s > 3

2 , for k = 1, 2, . . . , with the same result holding in Hs(T), and
to the (LWP) of (NLS) in Hs(Rd), for s > d

2 , with the same result holding in
Hs(Td). (In the case of (NLS), some restrictions on p arise also, coming from the
possible lack of “smoothness” of α → |α|p−1α). Here, for f defined on R

d , we
set f̂ (ξ) = ∫

Rd e2πix·ξ f (x)dx, Hs(Rd) = {f : ∫
(1 + |ξ |2)s |f̂ (ξ)|2dξ < ∞}

and for f defined on T
d , we set f̂ (n) = ∫

Td e2πix·nf (x)dx, n ∈ Z
d , and

Hs(Td) = {f : ∑
n∈Zd |f̂ (n)|2(1 + |n|2)s < ∞}. An inspection of these proofs

shows that “dispersive properties” of (∂t + ∂3x ) or of (i∂t + �) are not used at all
in the case of Rd , and hence they remain valid for the case of Td . Particular cases
of (gKdV)k and (NLS) are closely connected to complete integrability, a theory
which was first developed largely in this regard [1]. These are the cases k = 1, 2
in (gKdV)k and p = 3, d = 1 in (NLS). The applicability of this method initially
required high order of differentiability of the data u0, and, in the case x ∈ R, fast
decay of u0. More recently, this has been greatly improved (see [41, 42, 53]) but still
only applies to a few specific cases.

In the late 1970s and early 1980s, the pioneering works of Ginibre-Velo [32–34],
and Kato [45], through the use of important new advances in harmonic analysis
[83, 86], led to “low regularity” (LWP) and (GWP) results for (NLS) in R

d ,
culminating with the definitive results of Tsutsumi [85]and Cazenave-Weissler [22].
This approach exploited the “dispersive properties” of (i∂t +�) and the connection
with the “restriction problem” for the Fourier transform (discovered and formulated
in the visionary work of E.M. Stein (see [81]) uncovered by Segal [78] and Strichartz
[83]).

More precisely, the solution of the initial value problem

(LS)

{
i∂tu + �u = 0, x ∈ R

d , t ∈ R

u|t=0 = u0(x)



236 C. E. Kenig

is given by û(ξ, t) = eit |ξ |2 û0(ξ) = (eit�u0)(̂ξ ) or, u(x, t) = cd

|t | d
2

∫
Rn ei|x−y|2/4t

u0(y)dy.

The second formula gives that, for u solving (LS),

|u(x, t)| ≤ cd

|t | d
2

‖u0‖L1 , (1)

which clearly shows the “dispersive effect” mentioned earlier. The relevant “restric-
tion problem” here is the one to the paraboloid = {(ξ, |ξ |2) : ξ ∈ R

d} ⊂ R
d+1. In

this case, we have the “restriction” inequality (for f ∈ S (Rd+1))

( ∫
|f̂ (ξ, |ξ |2)|2dξ

) 1
2 � ‖f ‖

L
2(d+2)
d+4 (Rd+1)

(2)

(see [83, 86]). The connection with (LS) is that the dual inequality to (2) is the
“extension inequality,” which gives, from the first formula for the solution u of (LS),
the estimate

‖u‖
L

2(d+2)
d (Rd+1)

� ‖u0‖L2(Rd ). (3)

Now, to solve (NLS), one needs to solve (by Duhamel’s principle) the equation (with
the notation eit�u0 = S(t)u0))

u(t) = S(t)u0 ±
∫ t

0
S(t − t ′)|u|p−1u(t ′)dt ′. (4)

This is solved by using the contraction mapping principle on spaces constructed
exploiting the estimate (2) and related ones [32–34, 45].

The result of Cazenave-Weissler [22] is

Theorem 2.1 Assume that u0 ∈ Hs(Rd), s ≥ 0, s ≥ s0, where p − 1 = 4
d−2s0

.

Assume also that p − 1 > [s] + 1 if p − 1 /∈ 2Z�, where [s] is the greatest integer
smaller than s. Then (NLS) is locally well-posed for t ∈ [−T , T ]. In the subcritical
case s > s0, we can take T = T (‖u0‖Hs ), in the critical case s = s0, T = T (u0).

This approach, relying on the estimates (1) and (3), uses crucially the “dispersive
properties”’ of (i∂t + �) in R

d , and hence it does not apply to T
d . On the other

hand, on R
d it yields essentially optimal results in terms of the values of s when

B = Hs(Rd), which greatly improve the results obtained by the energy method
described earlier.

There are several motivations for hoping to have “low regularity” well-posedness
results for (gKdV)k and (NLS). The first one is that, if one can obtain (LWP) at
the regularity level given by the conserved mass, or the conserved energy, with
time of existence T = T (‖u0‖)L2 , or T = T (‖u0‖H 1), one can use the a priori
control given by the conserved quantity, to obtain global well-posedness, simply
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iterating the local result. Another one is the belief that, since for the associated
linear problem we have well-posedness in Hs , for any s, the threshold s for the non-
linear problem gives information on the nonlinear effects present in the problem.
We will see later another motivation, at very low regularity levels, stemming from
the connection with quantum field theory and giving global well-posedness for
“generic” data. Turning to the “low regularity” local well-posedness theory for
(gKdV)k , the new difficulty is the fact that the nonlinear term contains a derivative,
which needs to be “recovered.” One might think that the fact that (∂t + ∂3x ) has a
“stronger dispersive effect” (we have for instance the bound |u(x, t)| � 1

t1/3
‖u0‖L1

for the linear solution, which is stronger for small t than the 1
t1/2

we get for (LS),
d = 1) would compensate for the derivative in the nonlinearity, but this is not
obviously the case. Kato [43, 44] found a “local smoothing” effect for solutions
of (gKdV)k which allowed, when x ∈ R, to control “a priori,” with u0 ∈ L2(R)

quantities like
∫ j+1
j

∫ 1
0

(
∂xu(x, t)

)2
dxdt, j ∈ Z, uniformly in j , but this only gave

rise to “weak solutions” with L2 data, but did not give uniqueness or continuous
dependence on the data. This was also restricted to x ∈ R, since such an estimate
in T would contradict time reversibility and conservation of mass. In the 1980s
and early 1990s, in a joint project with G. Ponce and L. Vega, we developed a
new approach to the “low regularity” local and global well-posedness theory (for
x ∈ R) for (gKdV)k , which in the case k ≥ 4 gave essentially optimal (in some
sense) results [4, 51]. This was also based on the contraction mapping theorem
and used tools from harmonic analysis. In addition to the analogs of the “extension
inequality” (3), (with (ξ, |ξ |2) being replaced by (ξ, ξ3)), we used a sharp form (for
linear equations) of the Kato“local smoothing” estimate, introduced in [30, 82, 87],
as well as an analog of the “maximal function” estimate introduced in [21] and
motivated by statistical mechanics (see also [31, 87]). The combination of these
two estimates allowed us to control well the nonlinear term uk∂xu. In addition, we
also applied the multilinear harmonic analysis tools developed by Coifman-Meyer
[23, 24]. This was all completely tied to dispersion and was totally dependent or the
fact that x ∈ R. A sample result obtained, for KdV (k = 1), was

Theorem 2.2 ([49]) Let s > 3
4 , u0 ∈ Hs(R). Then, ∃T = T (‖u0‖Hs ), and a

space Xs
T ⊂ C([−T , T ];Hs), such that KdV has a unique solution u ∈ Xs

T , which
depends continuously on u0.

The space Xs
T is constructed by using the estimates mentioned earlier, namely the

sharp “local smoothing” estimate, the “maximal function” estimate, and the variants
of the “extension estimate.” One then proves the result by the contraction mapping
principle in the space Xs

T , T = T (‖u0‖Hs ), showing that the mapping �u0(u) =
W(t)u0 + ∫ t

0 W(t − t ′)(u∂xu)(t ′)dt ′ has a fixed point in Xs
T , where Ŵ (t)f (ξ) =

eitξ3 f̂ (ξ).
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Remark 1 The approach was, in a certain sense, sharp: if we have a space Xs
T such

that ∀u0 ∈ Hs(R), the linear solution W(t)u0 belongs to Xs
T and such that, for all

v,w ∈ Xs
T , we have v∂xw ∈ L1

loc(R) and then s ≥ 3
4 .

At this point, we had no idea on how to improve the results for k = 1, 3 (the k = 2
result in [49] was also “optimal,” as was shown in [51]), or how to do anything other
than the s > 3

2 result given by the energy method in the case x ∈ T.

3 Bourgain’s Transformative Work on the Well-Posedness
Theory of Dispersive Equations

In the spring of 1990, I gave a lecture on the work (then in progress) in [49], and E.
Speer was in the audience. He asked me the following question: consider the quintic
(NLS) on T:

{
i∂tu + �u ± |u|4u = 0, x ∈ T, t ∈ R

u|t=0 = u0(x) ∈ Hs(T).
(5)

Is this problem well-posed for s < 1
2?

I knew that the energy method gave s > 1
2 , that complete integrability did not

apply, and that the methods we developed with Ponce and Vega, which relied on
dispersion, did not apply. Speer explained the reason for the question, which was in
connection with the work [56] of Lebowitz, Rose, and Speer, in which they had
constructed a Gibbs measure associated to the problem (5). The points that the
authors of [56] were concerned with were that the measure they constructed used
the periodic setting crucially and that the support of the measure was contained in
very low regularity spaces. So, they wanted to have a flow for (5), in the support of
the Gibbs measure, which kept the Gibbs measure invariant. If so, a by-product
of all this would be that, for data in the support of the measure, local in time
existence could be globalized in time, similarly to the arguments in the presence
of conserved quantities that we saw before. I told Speer that I felt that the question
was very hard and that I thought that the person who could make progress in it, and
would probably be interested in the problem, was Jean Bourgain! Bourgain did get
interested and resolved completely the Lebowitz-Rose-Speer questions [7, 8, 10].
In doing so, he transformed the theory of nonlinear dispersive equations, starting
with his papers [7–9]. Moreover, he continued making fundamental contributions to
all aspects of this theory and transformed not only the well-posedness theory and
created the probabilistic theory suggested by [10, 11], and [56] but also many other
central areas in the field. Let me now turn to Bourgain’s papers [7, 8], in which
he made his first groundbreaking contributions to the well-posedness theory. These
works address the following two fundamental questions:
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1. How to prove low regularity well-posedness results for (NLS) and (gKdV)k , for
x ∈ T

d?
2. How to improve the well-posedness results on (KdV) on R?

It turns out that, in solving the first question, Bourgain also found the path to
solving the second one. Also, once the first question was solved, Bourgain turned to
the Gibbs measure questions from [56], in [10, 11], settling them and extending their
scope, as we shall see below. We thus turn to (NLS) on Td , and we will concentrate
on Bourgain’s results for d = 1, 2, which are the most relevant to our exposition.

Theorem 3.1 ([7])

(i) (NLS) is locally well-posed in Hs(T), for s ≥ 0, p − 1 < 4
1−2s . Thus, for

p − 1 = 4, (NLS) is (LWP) in Hs(T) for all s > 0.
(ii) (NLS) is locally well-posed in Hs(T2), for p − 1 = 2, s > 0.

Compared with corresponding results in R,R2, that we discussed earlier, one key
difficulty is the lack of a “dispersive effect.” Another difficulty is that, in the periodic
case, the Fourier transform, in the solution of the associated linear problem, is
replaced by Fourier series, leading to “exponential sums” that are much more
difficult to estimate than integrals. For instance, the operator eit�u0 = S(t)u0, now
takes the form

S(t)u0(x) =
∑
n∈Zd

ei(xn+t |n|2)û0(n).

The proof the Theorem 3.1 proceeds by using the contraction mapping principle.
The first step is to find estimates that replace the inequality (3), crucial in the case
of Rd , which is proved using oscillatory integral estimates. Bourgain achieved this
by using analytic number theory, and the results that he obtained in doing this have
independent interest in analytic number theory. As a sample, let me mention two
such estimates:

(a)

‖
∑

n∈Z,|n|≤N

ane
i(nx+n2t)‖L6(T2) � Nε

( ∑
|an|2) 1

2 ,∀ε > 0,

which is used in Theorem 3.1(i).
and

(b)

‖
∑

n∈Z2,|n1|≤N,|n2|≤N

ane
i(nx+|n|2t)‖L4(T3) � Nε

( ∑
n∈Z2

|an|2
) 1

2
,∀ε > 0,

which is used in Theorem 3.1(ii).
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Their proof uses the argument of Tomas [86] in the proof of the “restriction
inequality,” combined with the “major arc” description of exponential sums (due to
Vinogradov) and number theoretic arguments inspired by Weyl type lemmas [88].
The second main contribution of Bourgain here is the introduction of new function
spaces in which to apply the contraction mapping principle.

For K,N positive integers, consider �K,N = {ζ = (ξ, λ) ∈ Z
d ×R : N ≤ |ξ | ≤

2N and K ≤ |λ − |ξ |2| ≤ 2K}. For a function u in L2(Td × R), let

u(x, t) =
∑
ξ∈Zd

∫
û(ζ )e2πi(ξx+tλ)dλ,

and define |||u|||s = supK,N(K + 1)
1
2 (N + 1)s

( ∫
�K,N

|̂u(ζ )|2dζ
) 1

2
.

Fixing an interval of t in [−δ, δ], one considers the restriction norm

|||u|||Xs = inf|||ũ|||s , (6)

where the infimum is taken over all ũ coinciding with u in [−δ, δ] and shows that
the integral equation has a solution in Xs, for small δ, by (4), now on T

d , using
the contraction mapping theorem. This applies to (i) and (ii) and uses crucially the
bounds (a) and (b).

It is difficult to overestimate the impact of this work in the well-posedness theory.
It was simply a complete game changer. While versions of the spaces just described
were in the literature before, in earlier works of Rauch and Reed [76] and M.
Beals [3] dealing with propagation of singularities for solutions of semilinear wave
equations, and also implicit in the contemporary work of Klainerman-Machedon
[55] on the local well-posedness of semilinear wave equations, the flexibility and
universality of Bourgain’s formulation of these spaces contributed decisively to their
wide applicability in solving a large number of previously intractable problems, in
the work of many researchers.

We now turn to the work in [8], on (gKdV )k , on T. We will restrict ourselves to
commenting on the results for k = 1.

Theorem 3.2 ([8]) (KdV) is locally well-posed on L2(T), with time of existence
depending on ‖u0‖L2 , and hence by conservation of the L2 norm, it is globally
well-posed in L2(T).

The proof also proceeds by a contraction mapping argument, in spaces related to
the ones given by (6) but adapted to the linear operator ∂t + ∂3x . A first reduction is
to the case of data of integral 0, that is, whose zero Fourier coefficient vanishes. The
space Xs now has norm

|||u|||s =
⎧⎨
⎩

∑
n∈Z,n �=0

|n|2s
∫ +∞

−∞
(1 + |λ − n3|)|̂u(n, λ)|2 dλ

⎫⎬
⎭

1/2
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for u defined for (x, t) ∈ T
2, with mean in x equal to 0. The relevant version of

(a), when s = 0, is now

(a’)

‖f ‖L4(T2) �

⎛
⎝ ∑

m,n∈Z
(1 + |n − m3|)2/3|f̂ (m, n)|2

⎞
⎠

1/2

.

A very important difference with (NLS) is the fact that there is a derivative in
the non-linearity, and no linear local smoothing effect, as we mentioned earlier.
Bourgain’s crucial insight here was that there is a nonlinear smoothing effect, best
captured by the function spaces introduced above. This is given in the following
estimates: let w(x, t) = ∂x(u

2)(x, t), where we assume that
∫
T

u(x, t) dx = 0.
Then, for s ≥ 0,

⎛
⎝∑

n �=0

|n|2s
∫ |ŵ(n, λ)|2

(1 + |λ − n3|) dλ

⎞
⎠

1/2

� |||u|||Xs
,

⎛
⎝∑

n �=0

|n|2s
(∫ |ŵ(n, λ)|

(1 + |λ − n3|) dλ

)2
⎞
⎠

1/2

� |||u|||Xs
,

It is through these estimates, controlling ∂x(u
2) by u, that we see this nonlinear

smoothing effect, which is a consequence of the “curvature” of (n, n3).
Finally, also in [8], Bourgain observed that this nonlinear smoothing effect also

carries over to the case x ∈ R, using the function spaces

Xs
b =

{
u(x, t) :

∫∫
(1 + |λ − ξ3|)2b · |1 + |ξ ||2s |̂u(ξ, λ)|2 dξ dλ < ∞, where (ξ, λ) ∈ R

2
}

.

He proved:

Theorem 3.3 ([8]) (KdV) is globally well-posed in L2(R).

Remark 2 By using a nonlinear smoothing effect, and thus replacing v∂xw in
Remark 1 by ∂x(u

2), Bourgain bypassed the objection for improving s > 3
4 , given in

Remark 1. To Ponce, Vega, and myself, this was a shocking observation. Of course,
this was just one of the many shocking observations made by Bourgain over the
years! These works of Bourgain have been and continue to be remarkably influential.

Remark 3 Theorem 3.2 and Theorem 3.3 generated substantial interest in the
question of finding the optimal s for (LWP) in each theorem. In [50], it was shown
that (LWP) for T holds for s > − 1

2 and for R for s > − 3
4 , both by the contraction
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mapping principle. In [12], Bourgain observed that (LWP) cannot be proved by the
contraction mapping principle, for s < − 1

2 on T and for s < − 3
4 on R. In [40] and

[54], it was shown (independently) that (LWP) holds in H− 1
2 (T) and H− 3

4 (R), by
the contraction mapping principle, using a modification of the spaces Xs

b introduced
by Bourgain. That a modification of the spaces was needed was shown by Nakanishi,
Takaoka, and Tsutsumi [72]. Finally, (LWP) was shown in H−1(T) by Kappeler-
Topalov [42] and by Killip-Visan in H−1(R) [53], using inverse scattering. These
are the optimal spaces for (LWP) in the scale of Sobolev spaces, as was shown by
Molinet [69, 70].

4 A Quick Sampling of Some of the Other Groundbreaking
Contributions of Bourgain to Nonlinear Dispersive
Equations

4.1 Gibbs Measure Associated to Periodic (NLS)

We again consider the (NLS) equation

{
i∂tu + �u ± |u|p−1u = 0, p > 1, u : Td × R → C

u|t=0 = u0

and recall the two conserved quantities: the mass

M(u) =
∫
Td

|u|2 dx = M(u0)

and the Hamiltonian (the energy)

H(u) = 1

2

∫
Td

|∇u|2 dx ± 1

p + 1

∫
Td

|u|p+1 dx = H(u0).

If we set û(n, t) = an(t) + ibn(t), we see that u solves (NLS) if and only if
ȧn(t) = ∂H

∂bn
and ḃn(t) = − ∂H

∂an
, n ∈ Z

d . Thus, (NLS) can be viewed as an infinite-
dimensional Hamiltonian system. If the Hamiltonian system is finite-dimensional,
say we consider |n| ≤ N , then the Gibbs measure dμ, given by

dμ = 1

ZN

e−H(an,bn)
∏

|n|≤N

dan dbn,

where ZN is a normalization constant, is well-defined and invariant with respect to
the flow. In the paper [56], Lebowitz-Rose-Speer were able to make sense of the
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Gibbs measure associated to (NLS) in T, with p = 5. They considered the formal
expression

“dμ = 1

Z
e−H(an,bn)

∏
n∈Z

dan dbn",

by introducing first the Gaussian measure

dρ = 1

Z̃
e−∑

n(1+n2)(|an|2+|bn|2) ∏
n

dan dbn,

with support in Hs(T), s < 1
2 , and then proved that dμ is absolutely continuous

with respect to dρ. The questions they formulated were as follows:

1. Is (NLS) on T, with p = 5, on Hs(T), 0 < s < 1
2 , well-defined for all times, at

least for data in the support of the measure?
2. Is dμ invariant with respect to the (NLS) flow?

In the paper [10], Bourgain answered both questions in the positive. To treat both
issues, he used the (LWP) result in Hs , 0 < s < 1

2 , given in Theorem 3.1, and then
used the invariance of the measure under the flow to establish global well-posedness
almost surely dμ.

Bourgain then treated in [11] a very challenging question along these lines: Can
one do this for the cubic (NLS) on T2, at least in the defocusing case, that is, for the
equation

i∂tu + �u − |u|2u = 0, x ∈ T
2?

The existence of dμ in this case was due to Glimm-Jaffe [36], but suppμ ⊂ Hs(T2),
s < 0, while Theorem 3.1 gives (LWP) in Hs(T2), s > 0.

Bourgain overcame this difficulty through another shocking breakthrough. He
considered the following random data:

uω
0 =

∑
n∈Z2

gn(ω)

(1 + |n|2) 1
2

einx,

where the {gn} are identically distributed complex Gaussian random variables. Since
uω
0 ∈ Hs(T2), s < 0, uω

0 belongs to the support of the Gibbs measure μ. (We are
going to ignore here the need for “Wick-ordering” the (NLS) equation here; see
[11]). The key observation is that if u is the (NLS) solution, w(t) = u(t) − S(t)uω

0
is (almost surely in ω) well-defined in Hs̄(T2), where s̄ > 0, and one can then
solve for w, to obtain a local in time solution. Finally, the local in time solution
is extended globally in time, using the invariance of the Gibbs measure. This very
influential paper led to the notion of “probabilistic well-posedness” in dispersive
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equations in works of Burq-Tzvelkov [20], T. Oh [73], and many others, including
Bourgain-Bulut [17, 18].

4.2 Bourgain’s “High-Low Decomposition”

In Theorem 2.1, the local in time result can be extended to a global in time one, in
case the Hs norm of the data is small, s ≥ s0. In the mass (L2) subcritical case,
when p − 1 < 4/d, that is when s0 < 0, the problem is locally well-posed in L2

and hence globally well-posed in L2. When p − 1 ≥ 4/d, in the focusing case,
that is when the sign in front of the nonlinearity in (NLS) is negative, and hence
the Hamiltonian does not have a definite sign, sufficiently large smooth solution
may blow-up in finite time (see Glassey [35], Merle [58, 59], Bourgain-Wang [19],
Merle-Raphaël [60–64], Raphaël [74, 75], Merle-Raphaël-Rodnianski [65], etc.).
Also, if the nonlinearity is “defocusing,” that is, the sign in front of the nonlinear
term in (NLS) is negative so that the conserved Hamiltonian

H(u) = 1

2

∫
|∇u|2 + 1

p + 1

∫
|u|p+1,

controls
∫ |∇u|2, and if p − 1 < 4

d−2 (that is s0 < 1) and hence the problem is
energy subcritical, (NLS) is globally well-posed in the energy sphere H 1(Rd), by
iterating the result in Theorem 2.1.

Bourgain [13] developed a very general method to, in such circumstances, obtain
global well-posedness below the energy norm. A sample result is

Theorem 4.1 ([13]) The problem

{
i∂tu + �u − u|u|2 = 0

u|t=0 = u0 ∈ Hs(R2)

is globally well-posed for s > 3
5 . Moreover, the solution u satisfies u(t) − S(t)u0 ∈

H 1(R2) for all t (with a polynomial control in |t | of the H 1 norm).

The general scheme of the method is as follows: first, one has to have a conserved
quantity (say I (u0)), such that I (u0) controls a certain Hs0 norm. Next, one needs a
local well-posedness result (LWP) in Hs1 , for s1 < s0, with the flow map satisfying
I (u(t)−S(t)u0) ≤ F(‖u0‖Hs1 ), where S(t) is the associated linear evolution, acting
unitarily on all Hs spaces. One then expects a global well-posedness result in Hs2 ,
for some s1 < s2 < s0. In the theorem stated, I is the Hamiltonian. One then splits,
for some T large and fixed, u0 = u

(N0)
0,1 + u

(N0)
0,2 , with u

(N)
0,1 = ∫

|ξ |≤N0
û0(ξ)eix·ξ dξ ,

where N0 = N0(T ) is to be chosen.
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It is simple to see that H(u
(N0)
0,1 ) � N

2(1−s)
0 . One then solves the nonlinear

problem with initial data u
(N0)
0,1 , for all times. If we choose the time interval I =

[0, δ], where δ = N
−2(1−s)−ε
0 ,

‖u(N0)
0,1 ‖L4(Rd×I ) = o(1).

If we let u = u
(N0)
1 +v, where u

(N0)
1 is the global solution just mentioned, v satisfies

the difference equation

{
i∂t v + �v − 2|u(N0)

1 |2v − (u
(N0)
1 )2v̄ − (u

(N0)
1 )v2 − 2u(N0)

1 |v|2 − |v|2v = 0

v|t=0 = u
(N0)
0,2 ,

with ‖u(N0)
0,2 ‖L2 � N−s

0 ; ‖u(N0)
0,2 ‖Hs ≤ C. One then gets, after calculations, v =

S(t)(u
(N0)
0,2 ) + w, where w(t) ∈ H 1, ‖w(t)‖L2 � N−s

0 and ‖w(t)‖H 1 � N1−2s+ε
0 .

Then, fixing t1 = δ, we obtain u(t1) = u1 + v1, where u1 = u
(N0)
1 (t1) + w(t1),

v1 = S(t1)(u
(N0)
0,2 ). Using the conservation of H , and the bounds for w, this yields

H(u1) ≤ H(u0) + CN2−3s+ε
0 ,

while v1 has the same properties as u
(N0)
0,2 . Iterating the procedure, to reach time T ,

we need a number of steps:

T

δ
� T · N

2(1−s)+ε
0 .

Thus, we need to ensure that

T · N
2(1−s)+ε
0 · N2−3s+ε

0 < H(u
(N0)
0,1 ) ≈ N

2(1−s)
0 .

This can be achieved for s > 2
3 . A more elaborate argument gives s > 3

5 .
This method, as mentioned before, is very general and has led to many global

well-posedness results, due to many researchers, for instance, in energy subcritical,
defocusing problems. The method also stimulated the “I -team” (Colliander, Keel,
Staffilani, Takaoka and Tao) to develop the “I -method” to treat similar types of
situations. The “I -method” has been extraordinarily successful (see, for instance,
[25–28], etc.).

Besides his interest in global well-posedness for defocusing, energy subcritical
(NLS), Bourgain was very interested in corresponding global in time results
for energy critical and supercritical (NLS). In the next section, we will discuss
Bourgain’s work in the energy critical case. Understanding the global in time,
energy supercritical case was a problem that Bourgain considered very natural and
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intriguing. In [16], Bourgain conjectured the global existence of classical solutions,
with smooth, well-localized data, for defocusing energy supercritical (NLS). For
years, this problem was considered out of reach. Recently, this conjecture was
disproved for d ≥ 5 in the spectacular series of papers by Merle, Raphaël,
Rodnianski, and Szeftel [66, 67], who also were able to obtain corresponding results
for the compressible Euler and Navier-Stokes flows [68].

4.3 Bourgain’s Work on the Defocusing Energy Critical (NLS)

In the remarkable paper [14], Bourgain considered the defocusing, energy critical
(NLS)

{
i∂tu + �u − |u| 4

d−2 u = 0, d ≥ 3

u|t=0 = u0 ∈ H 1(Rd)
(7)

Theorem 4.2 (7) is globally well-posed for u0 radial, when d = 3, 4. Moreover,
higher regularity of u0 is preserved for all times.

Remark 4 The result was proved independently by Grillakis [39], when d = 3. It
was extended to all d ≥ 3, still under u0 radial, by Tao in 2005.

Remark 5 In addition to global well-posedness, Bourgain established scattering,
that is, to say, there exist u±

0 ∈ H 1(Rd), radial such that

lim
t→±∞

∥∥u(t) − S(t)(u±
0 )

∥∥
H 1(Rd )

= 0.

Remark 6 The corresponding result for the defocusing energy critical nonlinear
wave equation

⎧⎪⎪⎨
⎪⎪⎩

∂2t u − �u + |u| 4
d−2 u = 0

u|t=0 = u0 ∈ H 1(Rd)

∂tu|t=0 = u1 ∈ L2(Rd)

was established by Struwe [84] in the radial case and by Grillakis [37, 38] in the non-
radial case (see also [79, 80]), with scattering being obtained in [2]. The key idea was
to use the Morawetz identity [71], which for the wave equation has energy critical
scaling, combined with finite speed of propagation (another important feature of the
wave equation) to prevent “energy concentration.”

For the proof of Theorem 4.2, when d = 3, the starting point is to show that if
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∫ T�

0

∫
R3

|u(x, t)|10 dx dt < ∞, (8)

where T� is the “final time of existence” of u, then T� = ∞ and u scatters. This fact
is now referred to as “the standard finite time blow-up” criterion. In order to achieve
(8), Bourgain’s idea was to do so by induction on the size of the Hamiltonian of u0
and show that

‖u‖L10
x L10[0,T�]

≤ M(H(u0)),

for some function M . It is easy to show, from the proof of the local well-posedness
result (since ‖u0‖H 1 � H(u0)), that this is the case if H(u0) is small. Arguing by
contradiction, one assumes that

‖u‖L10
x L10[0,T�]

> M,

for some M large and that ‖v‖L10
x L10

t
< M1, whenever

{
i∂t v + �v − |v|4v = 0

v|t=0 = v0,

provided H(v0) < H(u0) − η4, for some small η (depending only on H(u0)), and
then one reaches a contradiction for large M .

In order to reach this contradiction, Bourgain introduced a modification of
the Morawetz estimate for the Schrödinger equation, due to Lin-Strauss [57].
Comparing Theorem 4.2 with the earlier work on the wave equation, by Grillakis,
mentioned in Remark 6, key difficulties are the infinite speed of propagation and the
unfavorable scaling of the estimate in [57]. This is addressed in

Proposition 1 Let u be a solution of (7) in the energy space on a time interval I on
which (7) is well-posed in the energy space. Then,

∫
I

∫
|x|<|I |1/2

|u(x, t)|6
|x| dx dt ≤ CH(u0)|I |1/2.

It is in the application of this Proposition (which allows one to handle energy
concentration) that the radial hypothesis is used. The details of the proof are
intricate. The “induction on energy” used in the proof is an audacious idea, which
has been extremely influential. In [29], the “I -team” (Colliander-Keel-Staffilani-
Takaoka-Tao) in a major breakthrough extended the d = 3 result in Theorem 4.2
to the non-radial case. An important ingredient of their proof is the introduction
of an “interaction Morawetz” inequality, a version of Proposition 1, in which the
origin is not a privileged point. This was extended to d = 4 by Ryckman-Visan [77]
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and to d ≥ 5 by Visan [89]. Later on, a new method, dubbed the “concentration-
compactness/rigidity theorem method,” was introduced in [46–48], which is very
flexible and which could also treat focusing problems, under sharp size conditions.
This method also led to many more developments in this type of problems, in the
works of many researchers. For a proof of Theorem 4.2, and its non-radial version
in [29], using this new method, see the work of Killip-Visan [52].

5 Conclusion

The work of Jean Bourgain transformed the field of nonlinear dispersive equations
by settling old conjectures, introducing new methods and ideas, and posing impor-
tant problems. The works briefly described in this note are just a small (hopefully
representative) sample of Bourgain’s influential contributions to this field. They will
continue to inspire researchers for generations to come.

Acknowledgments I am very grateful to Gigliola Staffilani, for sharing with me the slides of her
lecture at the meeting “Honoring the Life and Work of Jean Bourgain” held at IAS, Princeton
on May 31-June 01, 2019. In particular, the presentation in Section 4.1 follows very closely her
exposition.
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