
Chapter 5
Formal Methods for Quantum Software
Engineering

Carmelo R. Cartiere

5.1 Introduction

Although quantum computing (QC) is the future of computing systems, the tools for
reasoning about the quantum model of computation, in which the laws obeyed are
those on the quantum mechanical scale, are still a mix of linear algebra and Dirac
notation—two subjects more suitable for physicists rather than computer scientists
and software engineers [17, 18]. On this ground, we believe it is possible to provide a
more intuitive but still high-integrity approach to thinking and writing about quan-
tum computing systems, not only to foster the design of quantum algorithms but also
to simplify the development of quantum software. Here, we move the first step in
such a direction, introducing the Zed (Z) specification language as the means to
represent the operations of a quantum computer via axiomatic definitions, also hiring
the same symbolisms, semantics, and reasoning principles to which classical soft-
ware engineers are already used to. We name this novel branch formal quantum
software engineering (F-QSE) [1].

5.2 Overture to Formal Methods

Formal methods (FM) are a tool of classical software engineering, the distinguishing
feature of which is the ability to model and work with complex systems by
considering them as mathematical entities.

C. R. Cartiere (*)
Kellogg College, University of Oxford, Oxford, UK
e-mail: carmelo.cartiere@oxon.org

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. A. Serrano et al. (eds.), Quantum Software Engineering,
https://doi.org/10.1007/978-3-031-05324-5_5

85

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05324-5_5&domain=pdf
mailto:carmelo.cartiere@oxon.org
https://doi.org/10.1007/978-3-031-05324-5_5#DOI

86 C. R. Cartiere

With FM, systems are represented with a rigorous mathematical model, which
has not only the advantage of having its properties thoroughly verified but also of
having its behavior tested via mathematical proof.

Indeed, the use of formal methods in a QC setting can help those who roam the
world of computing to both (a) better “understanding and reasoning about the
properties of quantum systems” with the adoption of a classical tool of software
engineering [2] and (b) describe quantum structures and design quantum algorithms
in a more spontaneous way while still adopting a particular form of a mathematically
rigorous system [3].

Plus, if we design a QC system using formal specifications (FS), we are devel-
oping a set of theorems about that system which, by being proved correct, shall
ensure the correct behavior of the system [20].

This is because the trait of FS is to adopt mathematical notations to accurately
describe the characteristic properties of a system, without overly limiting how these
properties are met, as well as describing the system’s behavior, but without dictating
how it should do it.

And FSs are helpful during the development process of a system for the reason
that they allow to confidently answer the key questions regarding the functions of the
system, without neither having to decipher any kind of information by immense
amounts of code nor having to investigate the meaning of more or less detailed
comments scattered across either the documentation or the code itself.

Since it is detached from the programming code, the guidelines of a FS can
already be fulfilled at the early stages of development. Nevertheless, there may be a
need to modify it along the way with any design change or addition, as well as when
customer requests are changed. But, beyond everything, it is a valuable tool to
promote a shared understanding of the system among all people involved in the
project.

To say it with Jacky’s words, “Using formal methods can be more difficult than
programming in the usual way—because formal methods aim higher. Describing
exactly what your program does is more difficult than letting testers or users figure it
out for themselves. Making your program do the right thing in every situation is
more difficult than just handling some typical cases. Any method that can handle
hard problems will sometimes be hard to carry out; only superficial methods can be
easy all the time. [. . .]. Formal methods make us confront the hard problems early.
The difficulties cannot be escaped, only deferred. Superficial methods put off the
hard parts until coding and testing—but then they appear with a vengeance. News
stories about stressful projects tell of programmers who work eighty-hour weeks,
sleep under their desks, punch holes in walls, have nervous breakdowns, and commit
suicide [Markoff, 1993; Zachary, 1994]. Compared to that, formal methods don’t
seem so difficult after all. By making difficult issues more visible, formal methods
encourage us to seek a more thorough understanding of the problem we are trying to
solve. They require us to express our intentions with exceptional simplicity and
clarity. They help us resist the usual tendency in programming to make things too
complicated and therefore error-prone and difficult to use” [4].

5 Formal Methods for Quantum Software Engineering 87

5.3 The Z Specification Language

In our work, we adopted Z as the FS language of choice: not only because it is
already the most (or one of the most) widely used formal languages for describing
and modeling the classical computing systems1 but also because, as Jacky
pointed out: “Fortunately, most of the mathematics we need for formal methods is
not terribly difficult. The discrete mathematics used in most practical applications of
formal methods is easier than much of the calculus that students in the sciences and
engineering must study” [4].

The Z specification language permits to build detailed and unambiguous specifi-
cations of the behavior of a system. Based on type theory, a branch of symbolic logic
that not only formalizes mathematical entities like variables, functions, and opera-
tions on them but also formalizes the idea that each entity is of some definite type
(e.g., the type ℕ of natural numbers), it allows to reasoning over the properties of a
system (e.g., inputs, transformations, outputs, boundaries) by adopting a detailed
mathematical notation based on well-defined data structures (e.g., sets, relations,
functions) and logical expressions written in first-order predicate logic.

It was Jean-Raymond Abrial that in 1977 originally proposed the Z specification
language. And when in the 1980s Abrial started working with the Programming
Research Group at the University of Oxford, the language was more substantially
developed.

Abrial alleged that Z is so named because “it is the ultimate language,” but we can
also assume that the Z specification language is so-called because it is based on a
minimal-typed version of Zermelo-Fraenkel’s set theory.

In our description of the F-QSE tools, we shall mainly use Z’s axiomatic
definitions, which are a formal description of the behavior of the system, or part of
it, by the means of declarations and predicates [19].

An axiomatic definition is drafted in the following form:

∶

In it, we can distinguish the two parts: the declaration, made up of the variable x
and basic type S, and the predicate p.

The declaration (or signature) is the simplest way to define an object and can be
expressed in two ways: if the object corresponds to an original set of elements, or
basic type, then either we will write its name in brackets or, if the object is a variable
of an already defined set, we shall give it the name of the set that it comes from (with
no brackets). For example, the declaration [Type] establishes an original basic type

1The most widely used notations for developing model-based languages are Vienna Development
Method (VDM), Zed (Z), and Bi (B) [5].

8 2

Observable

called Type. The other way is the declaration x:A, which establishes a new variable x
drawn from the set A (but with the limitation that if this set is not the set ℤ—i.e., the
set of integers—then, in that case, the set must be defined somewhere in the

88 C. R. Cartiere

specification) [2].
The predicate describes the behavior of the system: it takes as input one or more

entities from the domain in question and returns an output that is either True or False
[2]. In it, we can find the following logic symbols: (for all), ∃ (exists), (belongs
to), ● (such as), ^ (and), _ (or), ⟺ (if . . . and only if . . .), and) (if . . . then . . .).

It is worth mentioning that the basic type S shall identify the maximal set of the
system, that is, a set as much complete as possible within the boundaries of the given
specification. This has the effect of making sure that any given value x in the
specification shall be associated with exactly one type, that is, the largest set S for
which x 2 S [2].

So, the adoption of Z for modeling a system requires the formalization of the
building blocks of that system, which, in the case of a QC system, are the observable
and the observable operators.

For the sake of simplicity, you can think about the observable as the data type that
we shall use to declare qubits and about the observable operators as the operations
that can be performed on qubits.

Once that the observable and the observable operators have been formalized, it is
possible to proceed with the design and implementation of any QC model, i.e., the
abstract representation of a QC system, and with its formal verification (FV), through
a sequence of four rigorous yet intuitive steps: (a) the specification, which is the
narrative of the QC system and describes what the system should do; (b) the
refinement, which is an iterative fine-tuning of the FS and produces the polished
QC system; (c) the proof, which walks us through the process to prove, or disprove,
the properties of the QC system against its FS and demonstrate that the candidate
system’s design is correct; and, finally, (d) the implementation, which is the con-
version of the specification into working code.2

5.4 An Introduction to the Quantum Computing

Observables (or basis) can be considered the most significant entities of QM. Given
that a quantum object (QO) holds many attributes (e.g., position, momentum,
energy), one observable completely describes one attribute by conserving all of
that attribute’s possible states, or eigenstates, in a superposed configuration. In QC
systems, QOs have only one observable, the qubit, which superposed configuration
is the linear combination of its two possible eigenstates. Its quantum state vector,

2
“The trick of using formal methods effectively is to know when proofs are worth doing and when
they are not” [2].

j i j i

¼j iþ j i

¼ j i þ j i

1. It must be a complex square matrix of order n:

[]; i.e.:3

4

j

�

commonly expressed in Dirac’s bra-ket notation [6], is, therefore, the linear combi-
nation of the two eigenstates’ associated eigenvectors 0 , 1 ket, which

5 Formal Methods for Quantum Software Engineering 89

corresponding measurable eigenvalues (the scalars) are 0, 1:

ψ
! 0 1

As per its QM counterpart, measuring an observable in a QC system will collapse
that observable into one of its eigenstates that for a qubit are those corresponding to
either |0i or |1i, with probabilities c0, c1

3 [7]:
An easy way to illustrate the concept of an unknown state of an observable (i.e.,

when the basis’ states are in superposition) is by describing Schrödinger’s cat: if we
receive a cat in a closed box, it can be both dead and alive, with given probabilities,
until we open the box (i.e., we observe it). In bra-ket notation, it is simply written:

cat
�!

c0 alive c1 dead

5.4.1 Formalizing the Observable

By the third postulate of QM, an observable that has a finite number of quantum
As such, the three requirements

that it must have can be described, with a sound formalism, by adopting strongly
typed data and first-order logic

states can be represented via a Hermitian matrix.

n : ℂn�n

3The probability for an observable to collapse into any of its states is the squared modulus of the
states’ corresponding probability amplitudes, which are complex numbers that weight each eigen-
vector and such that it is |c0|

2 + ... + |cn|
2 1.¼

4But if the Hilbert space H is infinite-dimensional, the observable is described by a symmetric
operator, which is represented as a map f between two domains of basis’ states D and D� dense in H ,
such that 8x : D, y : D� ∃ f : D � D� • h f(x), y i ¼ h x, f(y) i. This is a bijective function (injective-
surjective), in the sense that it cannot map two distinct states of the domain D onto the same state of
the co-domain D�, thus preserving its unitary quality. However, because an infinite-dimensional
space is unbounded, also the operator is unbounded; therefore, it does not have a largest eigenvalue,
leaving us with the conclusion that it might not be defined everywhere and, as such, classifying it as a
partial bijective function, which implies graph inclusion: D D�.

n

90 C. R. Cartiere

2. It must be equivalent to its conjugate transpose:

8c : n ∃1 c
0 : nT ● cij ¼ c0ij

� �

3. For every eigenvector (or column) of the matrix, the eigenvalue must be a real
umber; and such that it is the element on the main diagonal of the matrix:

8Vn�1 : ℙn ∃1 λ : ℝ ●λ ¼ cjjEn

In Z, all three requirements can be summarized with the following axiomatic
definition satisfying the principle of soundness promoted by FM [2]:

5.4.2 The Observable Operators

After having introduced the new type n, it is now possible to define the observable
operators. They are elementary quantum gates that perform unitary transformations
Uf (i.e., reversible computations) and that, applied to an observable, make it possible
to write quantum programs.

As we will see, most of quantum gates only need to perform one operation during
a transformation, for example, when they make a classical state into a superposition
state, while only two operations are needed to form an entanglement between two
qubits.

In the following paragraphs, we introduce the axiomatic definition of the most
common quantum gates: Identity, Pauli-X, Phase Shift, Pauli-Z, Hadamard, and
C-Not. In this way, we shall have the necessary mathematical toolkit to design
quantum software in Z.

Identity Gate. It is the simplest, single qubit, quantum operator that maps the
input to the output unchanged. It is required by any operation where the same qubits
that are passed as arguments must be returned:

5 Formal Methods for Quantum Software Engineering 91

Pauli-X (or Bit-Flip) Gate. It is the quantum equivalent of the classical NOT gate:

Phase Shift Gate. It represents a family of gates that rotate the basis’ state |1i of
any arbitrary angle ϕ:

Pauli-Z (or π Phase Shift) Gate. It is a special case of the Phase Shift gate that
rotates the basis’ state |1i a π angle:

Hadamard Gate. It is perhaps the most useful quantum operator because it maps
any basis’ state to one qubit with balanced superposition and vice versa:

C-Not Gate. The Controlled Not gate is the most popular two-qubit operator
because it puts two qubits in a separable state, where a tensor product pairs the first

fi

92 C. R. Cartiere

qubit with the result of an addition modulo-2 between both. As such, it is used to
entangle two qubits or disentangle the EPR pair:

Similar to what happens in any conventional computation, quantum computations
are just a sequence of gates applied in a particular order: each gate takes an input and,
after having performed its operation on that input, returns an output. However, in
QC, the single use of an operator simultaneously applies to all basis’ states [8].

5.5 A Practical Example of F-QSE: Programming
the Deutsch Algorithm from Specifications

By using FM, it is possible to describing and implementing quantum algorithms
despite their complexity.

The Deutsch algorithm, the foundation model of QC [9, 10, 16], proves if a
quantum oracle, i.e., a black box that performs a unitary transformationUf on a qubit,
is either constant (always maximizing the same state) or balanced (returning each
state half of the time). It exploits the quantum entanglement principle [9] and
requires the use of two quantum operators: a Hadamard gate, for preparing two
qubits in balanced superposition, and a C-Not gate, for entangling the two qubits.

In Dirac notation, it is represented as a ket taking a pair of qubits, prepared from
wo different basis’ states (x and y), and mapping them to an entangled pair where the
econd qubit performs as the register storing the state (solution) that will be set on the
rst qubit by the quantum oracle. The observation (measurement) of the first qubit
hall, therefore, make it collapse into the state (|0i for constant, |1i for balanced) that
s held by the second qubit, to which it is entangled:

t
s

s
i

j x, yi !U f j x, f xð Þ⨁yi

With the Z notation, the algorithm can be described through axiomatic defini-
tions, either by importing within the constraining predicate the conventional Dirac
representation (which is sound but doesn’t add much in a SE perspective) (Fig. 5.1):

or by taking advantage of the axiomatic definitions already shaped for the
observable operators, writing:

rather than:

Indeed, with the last two definitions, by describing the algorithm through a
sequence of formal operators, we offer guidance for coding it by directly following
the stepwise logic represented.

Of course, the coding part can be done in any quantum programming language.
For our case, to match the formal definitions introduced, we worked out an instruc-
tions’ set in Haskell that leans on Green’s QIO library [].11

The Deutsch algorithm can now be, straightforwardly, translated into the follow-
ing QC program:

deutsch ∷ (Bool ⟶ Bool) ⟶ QIO (Bool)
deutsch f ¼ do
x ⟵ qb("H| 0i")

5 Formal Methods for Quantum Software Engineering 93

Fig. 5.1 The quantum
circuit for the Deutsch
algorithm

h i ¼

94 C. R. Cartiere

y ⟵ qb("H| 1i")
qN(f) x y
qH(x)
mq(x)

5.6 Another Practical Example of F-QSE: The Quantum
Teleportation Protocol

The Quantum Teleportation Protocol (QTP) is an algorithm that was firstly
published by Bennett et al. in 1993 and which can be used to transfer a quantum
state between two remote endpoints A and B (say, Alice and Bob).

The QTP is at the base of the so-called superdense coding; that is, you commu-
nicate two bits of classical information by only sending out one single qubit.

The foundation of the QTP is the entanglement principle (EP): when two remote
and not physically connected objects have in the past interacted within the same local
system, they remain linked forever; and each modification of the state of one of them
induces a modification into the state of the other one.

One practical use of the QTP is the possibility to carry out secure communications
in such a way that the cryptographic key does not need to be transferred between the
two endpoints but can just be teleported. By doing this, any risk of eavesdropping is
completely cancelled.

Now, with the help of a short storytelling, we will show a handy example of how
to implement the QTP with the use of FM.

Alice and Bob are two secret agents who met a long time ago but now live far
apart. During the time spent together, they generated an EPR (Einstein-Podolsky-
Rosen) pair or Bell state5 [13]:

j β00i ¼ 1ffiffiffi
2
p j 00i þ 1ffiffiffi

2
p j 11i

The simplest way to do it is to set one qubit in superposition with the use of a
Hadamard gate and, applying a C-Not gate, entangle it with a second qubit of known
state:

5Bell states represent the simplest example of quantum entanglement and are a form of two
maximally entangled basis’ state vectors (qubits) which are pure (cannot be represented as a
combination of other basis’ states) and normalized (the overall probability of the particle to be in
one of the two basis’ states is 1): Φ|Φ 1.

mission is to deliver a message to Bob (). This must be done by both preventing

5 Formal Methods for Quantum Software Engineering 95

Fig. 5.2 The quantum teleportation circuit proposed by Bennett et al. [12]

j βxyi !
U f j xi⨁y

As already seen in Deutsch’s algorithm, thanks to the use of Zed’s axiomatic
definition, we can express the constraining predicate with the conventional Dirac
form as:

However, our aim is to provide a clearer definition of the algorithm for SE:
something that can help the classically trained base of software engineers to go from
zero (the definition) to hero (the code). And it can be easily done by recruiting the
observable operators already defined, as:

rather than as:

When Alice and Bob had to part away, each of them took one piece of the EPR
pair (qa and qb). At some point in his life, Bob has to hide himself, and Alice’s

qdata
that the message can be eavesdropped and that anybody can use the transmission to
track down Bob’s location.

Alice does pair qa and qdata, performs a joint measurement with the intention of
detecting on which of the four Bell states they have been projected, and sends
(somewhere) to Bob the two classical bits obtained (cdata):

ð Þj i00 þ j i11 =
ffiffi
2
ffi i � jβ00

p i
ð Þj i01 þ j i10 =

ffiffi
2
ffi i � jβ01

p i
ð Þj i00 � j i11 =

ffiffi
2
ffi i � jβ10

p i
ð Þj i01 � j i10 =

ffiffi
2
ffi i � jβ11

p i

96 C. R. Cartiere

Table 5.1 The cdata map In Out

00

01

10

11

Fig. 5.3 The unitary operations that Bob must perform, controlled by cdata

For his part, Bob, who possesses a qubit of the EPR pair, that is now collapsed
due to the measurement performed by Alice, receives the two classical bits that will
let him to conditionally apply any of four given quantum gates to his part of the
(collapsed) EPR pair, obtaining in return the original message (Table 5.1).

The Quantum Teleportation Protocol is now completely described, and we can
translate it into an axiomatic definition and a corresponding QC program:6

6This program will not break the no-cloning theorem, because the state of the original qubit shall be
lost during the process.

∷ !

5 Formal Methods for Quantum Software Engineering 97

qtp Qbit QIO (Qbit)
qtp qdata ¼ do
(qa, qb) bell (b0)
cdata alice (qa) qdata
tdata bob (qb) cdata
return (tdata)

From the point of view of a classical software engineer, the QTP circuit is
intrinsically complex in order to be used as a guide for coding, but even by following
the verbal description of the QTP, it is not easy to interpret and transform the
algorithm into code.

Therefore, we cannot fail to appreciate both the clarity of the axiomatic definition
to describe the QTP and the guidance it offers to write the code needed to perform
such a powerful quantum function. And, with it, we also have the advantage of
eliminating (or, at least, minimizing) the risk of introducing either conceptual errors
during the drafting of the algorithm or coding errors during the transformation of the
algorithm into a working program.

Finally, the formalization of the algorithm produced by Z can help to reason
beyond its primitive use, with the possibility to extend the same logical structure for
identifying use cases that go beyond the particular instance, as, for example, in the
QTP paradigm, to describe the operations required to teleport matter and energy
[21]. But this is a topic for another study.

5.7 Conclusions and Outlooks

The diffusion of QC cannot be forever relegated within a narrow circle of experts,
but many computer scientists and software engineers entering the field of QC are
quickly put off by the existing conceptual and notational barriers [14]. This is not
only due to the intrinsic difficulty of the subject but also because it can only be seen
through a dark glass (as the complete knowledge of the state of a quantum system is
forbidden) [15].

Not only does QC require a completely different mindset, but in order to make
quantum computers available to everyone, we need to prepare a QC-ready workforce
capable of translating old and new challenges into problems that quantum computers
can understand.

One possible way to overcome this stasis is to tap into the existing broad base of
software engineers, introducing a vocabulary inspired by formal SE tools. In this

Appendix

98 C. R. Cartiere

work, you learned how the main notions of QC can take the form of axiomatic
definitions in Z notation so that they can be used throughout specifications []. The
result is a notational system that, ideally, can open the doors of QC to the wider
audience of players, helping them to understand, describe, and, ultimately, translate
the structure of a quantum algorithm into fully working code, adopting any quantum
programming language that is available.

2

A.1 Coding of Typical Quantum Operators

In the following sections, you will find the complete implementation of the quantum
operators (QO) required to run the code used in the proposed examples.

These QO have been designed based on the QIO Monad, which is a Haskell
library of purely functional interfaces for quantum programming [11].

A.1.1 QO for the Deutsch Algorithm

— return a qubit in a specified state
qb :: [Char] -> QIO (Qbit)
qb qstate
| qstate = = "|0>" = mkQ(False)
| qstate = = "|1>" = mkQ(True)
| qstate = = "|+>" || qstate = = "H|0>" = do

qBit <- qb("|0>")
applyU(uhad(qBit))
return(qBit)

| qstate = = "|->" || qstate = = "H|1>" = do
qBit <- qb("|1>")
applyU(uhad(qBit))
return(qBit)

| otherwise = error "qb: wrong argument"

— apply the C-Not (N) gate to a qubit
qN :: (Bool -> Bool) -> Qbit -> Qbit -> QIO ()
qN f qx qy = applyU(cond (qx) (\ a! if f(a) then unot(qy) else mempty))

— apply the Hadamard (H) gate to a qubit
qH :: Qbit -> QIO ()
qH qbit = applyU(uhad(qbit))

— measure a qubit
mq :: Qbit -> QIO (Bool)
mq qbit = measQ(qbit)

A.1.2 QO for the Quantum Teleportation Protocol

5 Formal Methods for Quantum Software Engineering 99

— return False
b0 :: Bool
b0 = (0==1)

— return True
b1 :: Bool
b1 = (1==1)

— apply the C-Not (N) gate to a qubit
qN :: Qbit -> Qbit -> QIO ()
qN qx qy = applyU(cond (qx) (\ a -> if a then unot(qy) else mempty))

— apply the Hadamard (H) gate to a qubit
qH :: Qbit -> QIO ()
qH qb = applyU(uhad(qb))

— apply the Identity (I) gate to a qubit
qI :: Qbit -> U
qI qb = mempty

— apply the Not (X) gate to a qubit
qX :: Qbit -> U
qX qb = unot(qb)

— apply the Pi Phase Shift (Z) gate to a qubit
qZ :: Qbit -> U
qZ qb = (uphase qb pi)

— apply the ZX sequence of gates to a qubit
qZX :: Qbit -> U
qZX qb = qX(qb) `mappend` qZ(qb)

— create a Bell state by sharing a qubit in superposition with a qubit in given state
bell :: Bool -> QIO (Qbit,Qbit)
bell qf = do

qa <- if not qf then qb(“|+>”) else qb(“|->”)
qb <- qb(“|0>”)
qN qa qb
return (qa,qb)

alice :: Qbit -> Qbit -> QIO (Bool,Bool)
alice qa qdata = do

— Alice applies the C-Not gate to qa, controlled by qdata (the information to be
sent)
qN (qdata) qa

— Alice applies the Hadamard gate to qdata
qH (qdata)

do nothing

— Bob applies the relevant gate to qb, which choice is controlled by the classical
bits received

References

6.

100 C. R. Cartiere

— Alice measures her qubits, collapsing them; and stores the result in two
classical bits
cdata <- mq (qdata,qa)
return (cdata)

bobcond :: (Bool, Bool) -> Qbit -> U

bobcond (False, False) qb = qI qb —

bobcond (False, True) qb = qX qb — apply the X gate (not gate)

bobcond (True , False) qb = qZ qb — apply the Z gate (pi phase shift gate)

bobcond (True , True) qb = qZX qb — apply the ZX sequence of gates

bob :: Qbit -> (Bool, Bool) -> QIO (Qbit)
bob qb cdata = do

applyU (bobcond cdata qb)

— Bob now finally has the result of the manipulation of qb
return (qb)

7

1. Cartiere CR (2020) Formal quantum software engineering: introducing the formal methods of
software engineering to quantum computing. https://doi.org/10.13140/RG.2.2.26157.10725/2

2. Woodcock J, Davies J (1996) Using Z. Specification, refinement, and proof. Prentice Hall
3. Cartiere CR (2013) Quantum software engineering: bringing the classical software engineering

into the quantum domain. Master’s Thesis, University of Oxford, Department of Computer
Science, Software Engineering Programme

4. Jacky J (1996) The way of Z: practical programming with formal methods. Cambridge
University Press

5. Ruhela V (2012) Z formal specification language – an overview. Int J Eng Res Technol (IJERT)
01(06)
Dirac P (1958) The principles of quantum mechanics, 4th edn. Oxford University Press

7. Mateus P, Sernadas A (2004) Reasoning about quantum systems. In: Alferes JJ, Leite J (eds)
Logics in artificial intelligence. JELIA 2004. Lecture Notes in Computer Science, vol 3229.
Springer, Berlin

7The quantum circuits of Figs. 5.2 and 5.3 have been drawn with the help of quirk, the quantum
circuit simulator by Craig Gidney (https://algassert.com/quirk).

https://doi.org/10.13140/RG.2.2.26157.10725/2
https://algassert.com/quirk

9.

11.

12.

13.

15.

17. Simon DR (1997) On the power of quantum computation. SIAM J Comput 26(5):1474–1483
18. Kaye P, Laflamme R, Mosca M (2007) An introduction to quantum computing. Oxford

University Press
19. Spivey JM (1992) The Z notation: a reference manual. Prentice Hall International
20. Saaltink M (1993) Z and EVES. Technical Report TR-91-5449-02
21. Roberts D, Nelms J, Starkey D, Thomas S (2012) Travelling by teleportation. Phys Spl Top

J. University of Leicester

5 Formal Methods for Quantum Software Engineering 101

8. Barenco A (1998) Quantum computation: an introduction. In: Lo H, Popescu S, Spiller T (eds)
Introduction to quantum computation and information. World Scientific
Feynman R (1982) Simulating physics with computers. Int J Theor Phys 21:467–488

10. Deutsch D (1985) Quantum theory, the church-turing principle and the universal quantum
computer. Proc R Soc Lond A 400:97–117
Green AS. The QIO package. Haskell community’s central package archive of open source soft.
https://hackage.haskell.org/package/QIO, v1.3
Bennett CH, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters WK (1993) Teleporting an
unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys Rev
Lett 70:1895
Nielsen M, Chuang I (2010) Quantum computation and quantum information: 10th Anniversary
Edition. Cambridge University Press, Cambridge. https:/ /doi.org/10.1017/
CBO9780511976667

14. Greenwood GW (2001) Finding solutions to NP problems: philosophical difference between
quantum and evolutionary search algorithms. Portland State University, Portland, OR
Gross AM, Stallard J (2007) Implementing Grover’s algorithm using linear transformations in
Haskell. In: Proceedings of the Eighth Symposium on Trends in Functional Programming, vol
8. p XXV

16. Deutsch D, Jozsa R (1992) Rapid solutions of problems by quantum computation. Proc R Soc
Lond A 439:553

https://hackage.haskell.org/package/QIO
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667

	Chapter 5: Formal Methods for Quantum Software Engineering
	5.1 Introduction
	5.2 Overture to Formal Methods
	5.3 The Z Specification Language
	5.4 An Introduction to the Quantum Computing Observable
	5.4.1 Formalizing the Observable
	5.4.2 The Observable Operators

	5.5 A Practical Example of F-QSE: Programming the Deutsch Algorithm from Specifications
	5.6 Another Practical Example of F-QSE: The Quantum Teleportation Protocol
	5.7 Conclusions and Outlooks
	Appendix
	A.1 Coding of Typical Quantum Operators
	A.1.1 QO for the Deutsch Algorithm
	A.1.2 QO for the Quantum Teleportation Protocol

	References

