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Chapter 1
Introduction to the CIME Series Volume

Applied Mathematical Problems in Geophysics

Massimo Chiappini and Vincenzo Vespri

Abstract The present volume takes its title from the CIME-EMS Summer School
“Applied Mathematical Problems in Geophysics” held in July 2019 at Cetraro (CS)
in Southern Italy. This meeting was convened 2 years after the founding of the SIES
(Strategic Initiatives for the Environment and Security) initiative, a project funded
by the Italian Ministry of University and Research (MIUR) and carried out jointly
by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) and Istituto Nazionale
di Alta Matematica (INDAM). The Summer School gathered all scientists including
postdoc fellows who had been involved in this research.

Featuring selected contributions based on lectures given at the CIME-EMS Summer
School “Applied Mathematical Problems in Geophysics”, this book will provide a
sound foundation for readers who intend to approach similar geophysical problems
in a multidisciplinary manner.

The contributions focus on five major topics identified by the SIES as having
significant societal impact: optimal control in waste management, in particular the
degradation of organic waste by an aerobic biomass, by means of a mathematical
model; recent developments in the mathematical analysis of subwave resonators;
conservation laws in continuum mechanics, including an elaboration on the notion
of weak solutions and issues related to entropy criteria; the applications of vari-
ational methods to 1-dimensional boundary value problems, in particular to light
ray-tracing in ionospheric physics; and the mathematical modelling of potential
electromagnetic co-seismic events associated to large earthquakes.

M. Chiappini (�)
Geomagnetism, Aeronomy and Environmental Geophysics, Istituto Nazionale di Geofisica e
Vulcanologia, Roma, Italy
e-mail: massimo.chiappini@ingv.it

V. Vespri
Università di Firenze, Florence, Italy
e-mail: vincenzo.vespri@unifi.it
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The challenges continuously faced by the scientific community are quite intrigu-
ing, both in the basic and applied sciences. The paradigm behind the SIES is to
adopt a synergistic and multidisciplinary approach, yielding an efficient way to
identify solutions and put in place the proper actions needed to deal with the
problems. It aims to resolve a series of issues related to environmental hazards
and security, with the objective of realizing simulation tools based upon innovative
mathematical methods and models. This initiative is inspired by the excellent results
and achievements obtained by the already existing infrastructures funded by other
means (PON, POR, FESR), which deal with still open problems that are not easily
solved solely with the competences present at INGV. The close cooperation with
INDAM is the key to bridging the gaps represented by the deep knowledge of
mathematical tools needed to obtain the solutions of complex problems.

The SIES adopts a modular structure to target environmental, industrial and civil
issues. The five modules are as follows:

1. The study of the evolution of a bio-reactor through models of production of
leachate during waste decomposition.

2. The prediction of the direction of waves due to sea conditions, to be validated
with radar techniques.

3. The multidimensional characterization of elastic wave propagation in the ground
when using metamaterials.

4. The characterization of the electromagnetic sources inside the Earth based upon
techniques of tensor gradiometry and the properties of characteristic tensors.

5. The analytical formulation of ray-tracing of electromagnetic waves in an ionized
environment aimed at the protection of national borders.

Module No. 1 has applications with a significant industrial and environmental
impact, including the generation of secure, clean and efficient energy. The outcome
of processing organic waste to produce energy is enormous, with great potential for
funding opportunities in applied science programs issued by national and European
agencies.

Module No. 2 offers the possibility of applications in the field of harbor security
(La Spezia Harbor is currently adopting a technological solution designed by
INGV), as well as opportunities related to renewable energy sources (tidal energy).

Module No. 3 represents the topic with the highest potential. New trends in
the study of metamaterials aimed at isolating infrastructures from vibrations are
affecting both industrial and social sectors. Enhancing the expertise on cloaking
in Italy improves the know-how of a sector with a growing strategic importance.
Applications in this field would attract various dual users, from civilian to military.
Potential stakeholders are, inter alia, the Department of Civil Protection of the Office
of the Prime Minister, and the Ministry of Defense.

While modules 1 to 3 are based upon applied research, modules No. 4 and 5
are more oriented toward basic research. In module No. 4, studying electromagnetic
signals as events associated to the preparatory phases of a large earthquake is consid-
ered a national duty for a developed country. The identification and characterization
of these signals can save lives in the future, allowing the development of appropriate
early warning systems.
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Module No. 5 deals with a detailed 3D characterization of the Earth’s ionosphere.
A deep knowledge of the structural properties of Maxwell, Navier–Stokes, and
Fermat equations is required. The capability to analytically formulate the ray-tracing
of electromagnetic waves in an ionized environment has a number of advantages,
with applications both in the military framework and in the field of homeland
security.

The SIES effort has an additional academic impact: it promotes industrial
mathematics as a sector not yet fully developed in Italy, with a high potential for
employment of young mathematicians and geophysicists.

The content of this book reflects the above modules. Readers will be able to get a
broader perspective of the various topics by consulting the bibliographies provided
at the end of each lecture.

The editors of the present volume wish to acknowledge the Istituto Nazionale di
Alta Matematica (INDAM) and the Istituto Nazionale di Geofisica e Vulcanologia
(INGV) for their valuable support provided during the conduct of the research. The
CIME Foundation provided the unique opportunity to hold the Summer School in
an excellent location where senior and young scientists had the chance to fruitfully
interact, and also funded the work that led to the publication of the present book.



Chapter 2
Optimal Control Strategies for
Composting Processes in Biocells with
L1−Type and L2−Type Cost Objectives

Giorgio Martalò, Cesidio Bianchi, Bruno Buonomo, Massimo Chiappini,
and Vincenzo Vespri

Abstract We present a finite horizon optimal control problem for composting
in biocell. The problem is based on a mathematical model, which describes the
degradation of organic waste by an aerobic biomass. Solubilization of insoluble
substrate and biomass decay phenomena are also taken into account. The degrada-
tion is controlled by monitoring the effects of oxygen concentration in the cell.
The optimal strategy is determined by minimizing the total costs given by the
final size of soluble substrate and the operating cost. We consider two different
cases, where the operating cost is modeled by linear and quadratic function of
the effort, respectively. It is shown that the total costs over the considered time
interval are higher in the linear case than in the quadratic case. Moreover, when
compared to the quadratic case, the linear case results in a higher reduction of
soluble substrate concentration but it requires also a higher effort to control the
degradation.
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2.1 Introduction

Waste management is a current issue of great interest, especially for the identi-
fication of suitable intervention policies that allow to overcome some criticisms,
like the increasing requirement of new stocking sites, the risk of soil and aquifers
contamination, air pollution, formation and diffusion of leachate [8, 13, 21].

For such reason, nowadays a landfill is conceived as a biological active environ-
ment, called bioreactor [20], where the control of the biodegradation phenomenon
allows to improve the plant performance, in terms of reduced waste amount and of
compost and biogas production [9, 13].

In this framework, mathematical models for anaerobic [14, 27] and aerobic [12,
16, 25, 26] digestion processes and some related control problems [4, 6, 17, 18,
24] provide an useful tool to suggest suitable intervention policies to be adopted
and prevent the use of poorly efficient strategies. Moreover, the purely theoretical
approach allows to face and discuss many different scenarios, choosing from time
to time new processes to be controlled and goals to be achieved.

As regards the anaerobic digestion, in [4] the biogas production in a continuous
filled bioreactor is maximized by controlling the feeding process, while in [6]
and [24] the optimal leachate recirculation strategy is determined to control the
operating costs in a given time range and to reduce the total amount of substrate
in minimal time, respectively.

As concerns the aerobic process, some optimal control problems for composting
in biocells have been recently proposed [17, 18]. The main purpose of such control
problems is to provide some qualitative indications about aeration strategies that
allow to maintain appropriate levels of oxygen in the cell (and hence the aerobic
feature of the process), in addition to the maximization of compost production.
Moreover, some realistic features, like the inhibition effects due to over-aeration and
the economic cost of the aeration operating, have been taken into account and their
influence on the optimal strategy has been discussed, also in a real world scenario
[18].

A different model has been proposed in [19] to describe the composting process
in a biocell. Moreover, in [19] a time optimal control problem for the reduction
of solid waste in minimal time has been discussed. Such model preserves some
distinctive features, as already pointed out in [17, 18], like a two component (soluble
and insoluble) structure of the substrate and the main transformation phenomena:
(i) degradation of the soluble substrate by an aerobic bacterial population; (ii)
hydrolysis, i.e. solubilization of the insoluble component; (iii) biomass decay, that
produces new insoluble substrate.

We stress that in these modeling approaches the control is described through the
effects of oxygen on the degradation term, where the oxygen level (and hence its
effects) can be regulated by a suitable injection/aspiration system [23].

As further contribution to the analysis given in [19], here we propose an optimal
control problem on a finite horizon. The main aim is to minimize in a fixed
time range an optimality criterion, which averages the reduction of the soluble
component at the final time and the economic cost of the control operating. The
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first term can be used as a maturation index in composting, as suggested in [5, 7].
The second term is described first by a linear function of the effort and then by a
quadratic function. As it has been pointed out many times [3, 6, 15], there is not a
shared standard form of objective to be preferred, also because of the different cost
sources to be modeled [1, 10]. The main advantage of a quadratic function lies in
its mathematical simplicity and in the convexity of the corresponding Hamiltonian,
which guarantees the uniqueness of the minimum. Alternatively, the linear term is
easier to justify from a modeling point of view but it may lead to a more complicated
analysis, often due to the occurrence of bang-bang controls.

The paper is organized as follows: after recalling the mathematical model, we
state the optimal control problem and reformulate it by means of Pontryagin’s theory
[22] in Sect. 2.2; in Sect. 2.3 the optimal time profiles are obtained numerically and
the results obtained by using strategies with linear and quadratic cost, respectively,
are compared. Concluding remarks are given in Sect. 2.4.

2.2 The Optimal Control Problem

2.2.1 Formulation of the Problem

We set an optimal control problem on a fixed time range [0, T ] to improve the
performance of a composting biocell, i.e. a closed system for waste degradation
where no ingoing or outgoing flow of material is taken into account. The main
aim of the control problem is to minimize the total costs due to soluble substrate
concentration at final time T and the time averaged operating cost. This latter is
due to aeration and aspiration, which allow to regulate the level of oxygen in the
biocell atmosphere. The effect of the oxygen on the degradation of soluble substrate
(say, s) is described by the control variable u. The cost is modeled as a linear or
quadratic function of the control variable u. We consider also the hydrolytic process
of solubilization of the insoluble component of the substrate (say, i) and the decay
phenomenon of the bacterial biomass (say, x), that degrades the soluble substrate.

Our goal is to determine the optimal control u(t), t ∈ [0, T ], in the admissible
control set

U = {ν : [0, T ] −→ [umin, umax] , ν Lesbesgue measurable} , (2.1)

minimizing the objective functional

Jk[u] =
(
s(T )

m

)2

+ α

T

∫ T

0
uk(τ )dτ , (2.2)

where k = 1, 2, the quantity m > 0 is the constant total mass in the cell and
the parameter α > 0 averages the two contributions in the optimality criterion.
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We consider a quadratic term for soluble substrate concentration at final time T
in order to emphasize/demphasize large/small deviations with respect to the total
consumption, that represents the most desirable scenario.

Linear and quadratic cases are reproduced when k = 1 and k = 2, respectively
(they will be indicated sometimes as L1 and L2, respectively). The optimal strategy
to be adopted depends mainly on the minimization of the final soluble substrate
when α is small, while it is mainly determined by the minimization of the operating
cost for large values of α.

The time evolution of the variables s, i and x is governed, under perfect mixing
conditions, by the following system of ordinary differential equations [19]

ds

dt
= −μ s

s + cs ux + chi (2.3)

di

dt
= −chi + bx (2.4)

dx

dt
= −bx + μ s

s + cs ux , (2.5)

where t is the time variable, μ > 0 is the maximal growth rate, cs > 0 is the half-
saturation constant, ch > 0 is the hydrolytic coefficient and b > 0 is the biomass
decay constant.

The control variable u is supposed to be non-negative and takes values in a given
range [umin, umax] (0 ≤ umin < umax). The optimal operational concentration of the
oxygen in the cell atmosphere, ω, is around 10% and a range around this value, say
5% = ωmin ≤ ω ≤ ωmax = 15%, guarantees the aerobic feature of the degradation
[9]. We model the effects of oxygen on the degradation term by a Monod response
function of the oxygen variable ω as follows

f (ω) = ω

ω + cω , (2.6)

where the half saturation constant cω is set equal to 2% [26].
From relation (2.6), it follows that the operational range [ωmin, ωmax] corre-

sponds to the set of admissible values of the control

[umin, umax] = [5/7, 15/17] � [0.714, 0.882] . (2.7)

It can be easily checked that the conservation of total mass holds

M(t) = s(t)+ i(t)+ x(t) = s(0)+ i(0)+ x(0) = M(0) =: m , (2.8)
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and therefore the system (2.5) reduces to

ds

dt
= −μ s

s + cs u(m− s − i)+ chi (2.9)

di

dt
= −chi + b(m− s − i) , (2.10)

where the variable x(t) is replaced by m− s(t)− i(t).
The minimization problem can be investigated in the positively invariant set

F = {(s, i) ∈ [0,m] × [0,m] such that s + i ≤ m} , (2.11)

since any solution of (2.9)-(2.10) with initial condition in F remains in F for any
positive time.

2.2.2 Analysis of the OC Problem

We reformulate the problem by means of Pontryagin’s minimum principle [22].
We introduce the Hamiltonian function

Hk(s, i, λs , λi, u, t) = α

T
uk(t)+ (m− s − i)

(
bλi − μ s

s + cs uλs
)
chi(λs − λi) ,

(2.12)

where k = 1, 2, and the time dependent adjoint variables (λs, λi) solve the adjoint
system of ordinary differential equations

λ̇s = −∂Hk

∂s
= μ

(s + cs)2 [cs(m− s − i)− s(s + cs)]uλs + bλi (2.13)

λ̇i = −∂Hk

∂i
= −

(
μ

s

s + cs u+ ch
)
λs + (b + ch)λi , (2.14)

with given transversality condition at final time T

(λs(T ), λi(T )) = (2s(T )/m2, 0) . (2.15)

We introduce the function

φk = ∂Hk

∂u
= α

T
uk−1 − μ s

s + cs (m− s − i)λs , k = 1, 2 , (2.16)
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that provides the following characterization of the optimal control

u

⎧⎪⎪⎨
⎪⎪⎩

= umin

∈ (umin, umax)

= umax

if φk

⎧⎪⎪⎨
⎪⎪⎩
> 0

= 0

< 0

. (2.17)

As it is well known [11], if φk(t) = 0 for any t ∈ [t1, t2] ⊂ [0, T ] (t1 < t2), then the
control is called singular and assumes values between umin and umax. If the optimal
control is not singular, then it must be constant or piecewise constant and is called
bang or bang-bang, respectively.

We observe also that a possible singular optimal control can be formulated in
terms of the state and adjoint variables when the cost term is a quadratic function,
since the condition φ2 = 0 gives

u = μ
T

2α

s

s + cs (m− s − i)λs(t) . (2.18)

We discuss now the presence of a minimizing singular control when the cost term is
linear (k = 1).

Let u(t) be a singular control for t ∈ [t1, t2] ⊂ [0, T ] and (s(t), i(t)) be the
corresponding solution in such interval; the problem order is the smallest number q
such that the 2q−th derivative

d2q

dt2q

∂H1

∂u
(s, i, λs , λi , u, t) = d2q

dt2q
φ1(s, i, λs , λi , u, t) (2.19)

explicitly contains the control variable u (if no derivative satisfies this condition then
q = ∞).

In our analysis, from (2.16) with k = 1, it follows that

φ1 = α

T
− μ s

s + cs (m− s − i)λs , (2.20)

and its second order derivative

φ̈1 =
{
λsb

s2

(s + cs)2 + λschi
[
−2

scs

(s + cs)4 − c2s

(s + cs)4
]
(m− s − i) (2.21)

λib
s

s + cs
[

cs

(s + cs)2 (m− s − i)− s

s + cs
] }
μ2(m− s − i)u (2.22)

+R(s, i, λs, λi ) (2.23)
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explicitly contains u. The quantity R is a collection of terms, which do not contain
u explicitly. It follows that our problem is of order 1.

A sufficient condition for a singular control to be minimizer is provided by the
Legendre-Clebsch condition [11], that reads as

L(s, i, λs , λi) = ∂

∂u

d2

dt2

∂H1

∂u
= ∂

∂u
φ̈1 ≤ 0 (2.24)

for problems of order 1.
In our case such derivative is given by

L(s, i, λs , λi) (2.25)

=
{
λsb

s2

(s + cs)2 + λschi
[
−2

scs

(s + cs)4 − c2
s

(s + cs)4
]
(m− s − i) (2.26)

λib
s

s + cs
[

cs

(s + cs)2 (m− s − i)− s

s + cs
]}
μ2(m− s − i) (2.27)

In presence of a singular control, the function given in (2.20) is such that

φ1 = φ̇1 = 0 , (2.28)

where

φ̇1 = μ(m− s − i)
[
b

s

s + cs (λs − λi)− cs

(s + cs)2 chiλs
]

; (2.29)

therefore, for any configuration in the interior of F, the derivative in (2.27) can be
rewritten as

L(s, i, λs , λi) = 2
α

T

cs

(s + cs)2 [bs(m− s − i)− chi(2m− 3s − 2i)] . (2.30)

We observe that the Legendre-Clebsch condition (2.24) is fulfilled in the subset

F− = {(s, i) ∈ F such that bs(m−s−i)−chi(2m−3s−2i) < 0} ⊂ F , (2.31)

and hence any singular control involving states in F− is guaranteed to be a
minimizer.
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2.3 Numerical Results

In this section we solve the minimization problem for linear and quadratic cost
functionals, by using a numerical technique based on a gradient descent method
[2].

We consider the thermophilic phase of composting [9], lasting about 3 days
(72 h); in this phase, the temperature is supposed to be maintained at around 55 ◦C.

We consider the following parameters given in [16]:

μ = 0.36 h−1 , cs = 0.0772Kg , (2.32)

ch = 1.764 × 10−3h−1 , b = 0.1915 h−1 . (2.33)

Such values correspond to a cell temperature of 55 ◦C.
For illustrative purposes we consider the following initial conditions

s(0) = 2200Kg , i(0) = 3600Kg , x(0) = 2Kg . (2.34)

2.3.1 Comparison of Strategies for Linear and Quadratic Cost
Terms

We first compare the optimal strategies for linear and quadratic cost terms, when the
two contributions in the objective functional have the same weight in the adopted
strategy (α = 1).

We observe (see Fig. 2.1d) that the optimal control in the linear case is given by

u1 =

⎧⎪⎪⎨
⎪⎪⎩
umax when 0 ≤ t ≤ t0
singular when t0 < t < t1

umin when t1 ≤ t ≤ T ,
(2.35)

where t0 � 16.18 and t1 � 17.23, while in the quadratic case the optimal control is

u2 =
{

singular when 0 < t < t2

umin when t2 ≤ t ≤ T , (2.36)

where t2 � 44.57.
In both cases the control is singular on a suitable subset of [0, T ], even if the

control trend in the linear case seems very close to a bang-bang profile. Moreover,
in any case, the optimal control in the very last time range is given by the constant
control umin and the main difference between the two cases is that the first time
instant at which the control takes its minimal value. This means that starting from
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Fig. 2.1 State variables profiles (first three panels) and optimal control (last panel) for the test case
(2.32)–(2.34) and α = 1, when the cost is modeled by a linear or quadratic function

a given time it is optimal to consider the minimal control guaranteeing the aerobic
feature of the process and no additional effort is required.

As concerns the state variables, we notice that they present a similar behavior in
both cases (see Fig. 2.1a–c). In particular, soluble substrate slightly increases at the
beginning, since the action of a small concentration of bacteria is not sufficient to
balance the effects of hydrolysis. As soon as the bacterial concentration increases,
the soluble substrate concentration reduces and reaches a very small value at the
final time T . The opposite trend governs the insoluble component, while the biomass
concentration strictly increases at any time.

The decrease of soluble concentration is compatible with the biological assump-
tions stated above, since a significant reduction of such component of substrate is
expected in the thermophilic phase. The increase of the other variables follows from
the conservation of total mass (2.8).

Although the time profiles of the variables are qualitatively comparable for
linear and quadratic cases, the corresponding state configurations at final time T
are significantly different from a quantitative point of view. In fact, as shown in
Table 2.1, the optimal control in the linear case leads to a higher reduction of soluble
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Table 2.1 Percentages of soluble substrate reduction, insoluble component increase and addi-
tional required effort for L1 and L2 cost terms in the test case (2.32)–(2.34) and α = 1

s(T )− s(0)
s(0)

i(T )− i(0)
i(0)

I1 − Imin
1

Imin
1

Linear cost term −87.3% +36.3% +5.46%

Quadratic cost term −78.3% +32.0% +5.04%
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Fig. 2.2 State variables profiles (first three panels) and optimal control (last panel) for the test case
(2.32)–(2.34) and α = 1.5 and linear and quadratic cost terms

substrate than the one obtained in the quadratic case. Moreover, in the quadratic case
the mean effort, given by

I1 = 1

T

∫ T

0
u(τ)dτ , (2.37)

takes a lower value than in the linear case. As a consequence, the same happens to
the difference between the mean effort and the minimal effort Imin

1 = I1(u = umin).
The qualitative and quantitative features discussed above are emphasized for

increasing values of α, as shown in Fig. 2.2 and Table 2.2 where α = 1.5.
The optimal time profiles of the control in both the L1 and L2 cases are the same

as (2.35) and (2.36), but here t0 = 14.95, t1 = 15.93 and t2 = 42.19. As expected,
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Table 2.2 Percentages of soluble substrate reduction, insoluble component increase and addi-
tional required effort for L1 and L2 cost terms in the test case (2.32)–(2.34) and α = 1.5.

s(T )− s(0)
s(0)

i(T )− i(0)
i(0)

I1 − Imin
1

Imin
1

Linear cost term −79.5% +32.8% +5.04%

Quadratic cost term −61.1% +24.4% +3.98%

the percentage of soluble substrate reduction and additional effort are lower than the
case α = 1, since now the minimization of the operating cost term has a dominant
role in determining the decision policy to be adopted. We observe also a higher
quantitative discrepancy between linear and quadratic cases than the one observed
in the test case with α = 1.

2.3.2 Analysis for Varying Balance Between Costs

As shown in the previous subsection, some differences between optimal profiles in
L1 and L2 cases are emphasized for different choices of the parameter α.

We remind here that such parameter averages the role of the two contributions in
the objective functional. More precisely, the optimal strategy is mainly determined
by the minimization of soluble substrate at time T when α is small; the minimization
of the (linear or quadratic) operating cost term is the key factor in the individuation
of the optimal control when α is large.

We discuss in this subsection the main differences between L1 and L2 cases for
varying α, by investigating the trend of some performance indices. In particular, we
consider

– the value, denoted by I0, of the corresponding objective functional Jk[u], k =
1, 2, given in (2.2);

– the mean effort I1 introduced in (2.37);
– the soluble substrate concentration at final time T : I2 = s(T )/m;
– the first time instant at which the control assumes its minimal value constantly:
I3 = {min τ such that τ ∈ [0, T ] and u(τ) = umin}.

We observe that the value I0 of the objective functional increases monotonically
in both the linear and quadratic case (see Fig. 2.3a). The total costs in presence
of a linear operating cost term are higher than the ones obtained with a quadratic
function.

The discrepancy between the two cases is quantified by

i0 = I0(k = 1)− I0(k = 2)

I0(k = 2)
, (2.38)
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Fig. 2.3 Trend of the performance index I0 for L1 and L2 cases for the test scenario (2.32)–(2.34)
and parameter α varying in the range 10−4–104 (left panel) and the percentage difference i0 in
(2.38) (right panel)

corresponding to the percentage difference between the two cases. We observe that
the total costs in the linear case are 30–40% higher than those of the quadratic case
(see Fig. 2.3b).

The role of each term in the objective functional in such difference is discussed
by means of indices I1 and I2, whose trends are reported in Figs. 2.4 and 2.5,
respectively. It is shown that, although the strategies corresponding to linear and
quadratic cost terms are deeply different, they both lead to similar results when the
parameter α is sufficiently small or it is sufficiently large. In fact, when α is small the
minimization of the operating cost term has a negligible role and in both cases the
strategies to be adopted have the aim to reduce the soluble substrate concentration,
regardless of limiting the operating costs. On the contrary, when α is large, the
minimization of the costs is the key factor in determining the optimal control and,
from a certain value of α on, any control operating is considered too expensive to
be taken into account. Therefore, in both cases, it is optimal to consider a constant
control with minimal value umin.
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Fig. 2.4 Trend of the performance index I1 for L1 and L2 cases for the test scenario (2.32)–(2.34)
and parameter α varying in the range 10−4–104 (left panel) and in the interval 0.1−2.5 (right panel)

The range of interest for parameter α is 0.1 ≤ α ≤ 2.5, where the differences
between linear and quadratic cases are appreciable (see panels (b) in Figs. 2.4 and
2.5).

As already observed in the previous subsection, the strategy minimizing the
linear cost leads to a larger reduction of soluble substrate compared to the
quadratic case (see Fig. 2.5b). Moreover, when the cost term is quadratic, the
effort required to control the system and optimize the objective functional is
lower when compared to the linear case (see Fig. 2.4b). The differences between
L1 and L2 cases are more and more significant for increasing values of the
parameter α.

As last remark, we notice also that the first value of α at which the control
assumes the minimal value constantly is not the same for linear and quadratic cost
objectives (see Fig. 2.6) and the constant control strategy, u(t) = umin for any
t ∈ [0, T ], occurs “later” in the linear case (see Fig. 2.6b).
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2.4 Conclusions

We have proposed and discussed a finite horizon optimal control problem for a
biological system, in which an aerobic bacterial population degrades the soluble
component of the substrate. The solubilization of the insoluble component and a
biomass decay phenomenon are also taken into account.

The objective functional expresses the total costs due to the minimization of the
soluble substrate component at final time and to the minimization of operating costs.
This latter term has been modeled with a linear and quadratic function of the control
variable.

We have observed that the optimal profiles of the state variables for the linear
and the quadratic cases are qualitatively similar. The two cases significantly differ
from a quantitative point of view. Such discrepancy is evident in the value of the
objective function, since total costs in the linear case are 30–40% higher than ones
of the quadratic case. Moreover, in the linear case, we observe a major reduction of
soluble substrate and a higher effort is required to control the system.
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Such quantitative differences are more and more evident for increasing values
of the parameter α, when the operating cost minimization plays a more and more
influential role in determining the optimal strategy. An analysis for varying α has
confirmed such remark, up to a certain value of α. From this threshold on, any
operating is considered too expensive to be adopted in both cases, and the optimal
control is constantly equal to the minimal admissible value, guaranteeing the aerobic
feature of the degradation.

In view of the uncertainty concerning the suitable way to describe the operating
cost for composting in biocell, we believe that this theoretical approach could
be incorporated in future practice to provide insight into possible composting
strategies.
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Chapter 3
Wave Interaction with Subwavelength
Resonators

Habib Ammari, Bryn Davies, Erik Orvehed Hiltunen, Hyundae Lee,
and Sanghyeon Yu

Abstract The aim of this review is to cover recent developments in the mathemat-
ical analysis of subwavelength resonators. The use of sophisticated mathematics in
the field of metamaterials is reported, which provides a mathematical framework for
focusing, trapping, and guiding of waves at subwavelength scales. Throughout this
review, the power of layer potential techniques combined with asymptotic analysis
for solving challenging wave propagation problems at subwavelength scales is
demonstrated.

3.1 Introduction

The ability to focus, trap, and guide the propagation of waves on subwavelength
scales is of fundamental importance in physics. Systems of subwavelength res-
onators have, in particular, been shown to have desirable and sometimes remarkable
properties thanks to their tendency to interact very strongly with waves on small
length scales [26, 31, 33]. A subwavelength resonator is a cavity with material
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parameters that are greatly different from the background medium and which
experiences resonance in response to wavelengths much greater than its size. The
large material contrast is an essential prerequisite for the subwavelength resonant
response.

In this review, we consider wave interaction with systems of subwavelength
resonators. At particular low frequencies, known as subwavelength resonances,
subwavelength resonators behave as strong wave scatterers. Using layer potential
techniques and Gohberg-Sigal theory, we first derive a formula for the resonances
of a system of resonators of arbitrary shapes. Then, we derive an effective medium
theory for wave propagation in systems of resonators. We start with a multiple
scattering formulation of the scattering problem in which an incident wave impinges
on a large number of small, identical resonators in a homogeneous medium. Under
certain conditions on the configuration of the resonator distribution, the point
interaction approximation holds and yields an effective medium theory for the
system of resonators as the number of resonators tends to infinity. As a consequence,
below the resonant frequency of a single resonator, the obtained effective media
may be highly refractive, making the focusing of waves at subwavelength scales
achievable.

Then, we provide a mathematical theory for understanding the mechanism
behind the double-negative refractive index phenomenon in systems of subwave-
length resonators. The design of double-negative metamaterials generally requires
the use of two different kinds of subwavelength resonators, which may limit
the applicability of double-negative metamaterials. Herein we rely on media that
consists of only a single type of resonant element, and show how to turn the
metamaterial with a single negative effective property into a negative refractive
index metamaterial, which acts as a superlens. Using dimers made of two identical
resonators, we show that both effective material parameters can be negative near the
anti-resonance of the two hybridized resonances for a single constituent dimer of
subwavelength resonators.

Furthermore, we consider periodic structures of subwavelength resonators where
subwavelength band gap opening typically occurs. This can induce rich physics
on the subwavelength scale which cannot be understood by the standard homog-
enization theory. To demonstrate the opening of a subwavelength band gap, we
exploit the strong interactions produced by subwavelength resonators among the
cells in a periodic structure. We derive an approximate formula in terms of the
contrast for the quasi-periodic subwavelength resonant frequencies of an arbitrarily
shaped subwavelength resonator. Then, we consider the behavior of the first Bloch
eigenfunction near the critical frequency where a subwavelength band gap of the
periodic structure opens. For a square lattice, we show that the critical frequency
occurs at the corner of the Brillouin zone where the Bloch eigenfunctions are
antiperiodic. We develop a high-frequency homogenization technique to describe
the rapid variations of the Bloch eigenfunctions on the microscale (the scale of
the elementary crystal cell). Compared to the effective medium theory, an effective
equation can be derived only for the envelope of this first Bloch eigenfunction.

Defect modes and guided modes can be shown to exist in perturbed subwave-
length resonator crystals. We use the subwavelength band gap to demonstrate
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cavities and waveguides of subwavelength dimensions. First, by perturbing the size
of a single resonator inside the crystal, we show that this crystal has a localized
eigenmode close to the defect resonator. Further, by modifying the sizes of the
subwavelength resonators along a line in a crystal, we show that the line defect
acts as a waveguide; waves of certain frequencies will be localized to, and guided
along, the line defect.

Topological properties of periodic lattices of subwavelength resonators are also
considered, and we investigate the existence of Dirac cones in honeycomb lattices
and topologically protected edge modes in chains of subwavelength resonators.
We first show the existence of a Dirac dispersion cone in a honeycomb crystal
comprised of subwavelength resonators of arbitrary shape. The high-frequency
homogenization technique shows that, near the Dirac points, the Bloch eigenfunc-
tion is the sum of two eigenmodes. Each eigenmode can be decomposed into two
components: one which is slowly varying and satisfies a homogenized equation,
while the other is periodic and highly oscillating. The slowly oscillating components
of the eigenmodes satisfy a system of Dirac equations. This yields a near-zero
effective refractive index near the Dirac points for the plane-wave envelopes of the
Bloch eigenfunctions in a subwavelength metamaterial. The opening of a Dirac
cone can create topologically protected edge modes, which are stable against
geometric errors of the structure. We study a crystal which consists of a chain
of subwavelength resonators arranged as dimers (often known as an SSH chain)
and show that it exhibits a topologically non-trivial band gap, leading to robust
localization properties at subwavelength scales.

Finally, we present a bio-inspired system of subwavelength resonators designed
to mimic the cochlea. The system is inspired by the graded properties of the
cochlear membranes, which are able to perform spatial frequency separation. Using
layer potential techniques, the resonant modes of the system are computed and the
model’s ability to decompose incoming signals is explored.

This review is organized as follows. In Sect. 3.2, after stating the subwavelength
resonance problem and introducing some preliminaries on the layer potential
techniques and Gohberg-Sigal theory, we prove the existence of subwavelength
resonances for systems of resonators and show a modal decomposition for the
associated eigenmodes. Then, we study in Sect. 3.3 the behavior of the coupled
subwavelength resonant modes when the subwavelength resonators are brought
close together. In Sect. 3.4 we derive an effective medium theory for dilute systems
of subwavelength resonators. Section 3.5 is devoted to the spectral analysis of
periodic structures of subwavelength resonators. After recalling some preliminaries
on the Floquet theory and quasi-periodic layer potentials, we prove the occurrence of
subwavelength band gap opening in square lattices of subwavelength resonators and
characterize the behavior of the first Bloch eigenfunction near the critical frequency
where a subwavelength band gap of the periodic structure opens. In Sect. 3.6, we
consider honeycomb lattices of subwavelength resonators and prove the existence
of Dirac cones. We also study a chain of subwavelength resonators which exhibit a
topologically non-trivial band gap. Finally, in Sect. 3.7, we present a graded array
of subwavelength resonators which is designed to mimic the frequency separation
proprieties of the cochlea. The review ends with some concluding remarks.
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3.2 Subwavelength Resonances

We begin by describing the resonance problem and the main mathematical tools we
will use to study a finite collection of subwavelength resonators.

3.2.1 Problem Setting

We are interested in studying wave propagation in a homogeneous background
medium with N ∈ N disjoint bounded inclusions, which we label as

D1,D2, . . . ,DN ⊂ R
3.

We assume that the boundaries are all of class C1,η with 0 < η < 1 and write
D = D1 ∪ · · · ∪DN .

We denote the material parameters within the bounded regions D by ρb and κb,
respectively. The corresponding parameters for the background medium are ρ and
κ and the wave speeds in D and R

3 \D are given by vb = √
κb/ρb and v = √

κ/ρ.
We define the wave numbers as

k = ω

v
, kb = ω

vb
. (3.1)

We also define the dimensionless contrast parameter

δ = ρb

ρ
. (3.2)

We assume that

δ � 1 while vb = O(1) and v = O(1). (3.3)

This high-contrast assumption will give the desired subwavelength behaviour, which
we will study through an asymptotic analysis in terms of δ.

For ω ∈ C, we study the scattering problem
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δu+ k2u = 0 in R
3 \D,

Δu+ k2
bu = 0 in D,

u|+ − u|− = 0 on ∂D,

δ
∂u

∂ν

∣∣∣∣+ − ∂u

∂ν

∣∣∣∣− = 0 on ∂D,

u(x)− uin(x) satisfies the Sommerfeld radiation
condition as |x| → ∞,

(3.4)
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where |+ and |− denote the limits from the outside and inside of D. Here, uin is the
incident field which we assume satisfies Δuin + k2uin = 0 in R

3 and ∇uin∣∣
D

=
O(ω). We restrict to frequencies such that Re(k) > 0, whereby the Sommerfeld
radiation condition is given by

lim|x|→∞ |x|
(
∂

∂|x| − ik

)
u = 0, (3.5)

which corresponds to the case where u radiates energy outwards (and not inwards).

Definition 3.2.1 (Subwavelength Resonant Frequency) We define a subwave-
length resonant frequency to be ω = ω(δ) such that Re(ω) > 0 and:

(i) there exists a non-trivial solution to (3.4) when uin = 0,
(ii) ω depends continuously on δ and is such that ω(δ) → 0 as δ → 0.

The scattering problem (3.4) is a model problem for subwavelength resonators with
high-contrast materials. It can be effectively studied using representations in terms
of integral operators.

3.2.2 Layer Potential Theory on Bounded Domains and
Gohberg-Sigal Theory

The layer potential operators are the main mathematical tools used in the study
of the resonance problem described above. These are operator-valued holomorphic
functions, and can be studied using Gohberg-Sigal theory.

Layer Potential Operators

Let SkD be the single layer potential, defined by

SkD[φ](x) :=
∫
∂D

Gk(x − y)φ(y) dσ(y), x ∈ R
3, (3.6)

whereGk(x) is the outgoing Helmholtz Green’s function, given by

Gk(x) := − e
ik|x|

4π |x| , x ∈ R
3, Re(k) ≥ 0.

Here, “outgoing” refers to the fact that Gk satisfies the Sommerfeld radiation
condition (3.5). For k = 0 we omit the superscript and write the fundamental
solution to the Laplacian as G.
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For the single layer potential corresponding to the Laplace equation, S0
D , we

also omit the superscript and write SD . It is well known that the trace operator
SD : L2(∂D) → H 1(∂D) is invertible, where H 1(∂D) is the space of functions
that are square integrable on ∂D and have a weak first derivative that is also square
integrable. We denote by L(L2(∂D),H 1(∂D)) the set of bounded linear operators
from L2(∂D) into H 1(∂D).

The Neumann-Poincaré operator Kk,∗D : L2(∂D) → L2(∂D) is defined by

Kk,∗D [φ](x) :=
∫
∂D

∂

∂νx
Gk(x − y)φ(y) dσ(y), x ∈ ∂D,

where ∂/∂νx denotes the outward normal derivative at x ∈ ∂D. For k = 0 we omit
the superscript and write K∗

D .
The behaviour of SkD on the boundary ∂D is described by the following relations,

often known as jump relations,

SkD[φ]∣∣+ = SkD[φ]∣∣−, (3.7)

and

∂

∂ν
SkD[φ]

∣∣∣± =
(
±1

2
I + Kk,∗D

)
[φ]. (3.8)

When k is small, the single layer potential satisfies

SkD = SD + kSD,1 + k2SD,2 + k3SD,3 + O(k4), (3.9)

where the error term is with respect to the operator norm ‖.‖L(L2(∂D),H 1(∂D)), and
the operators SD,n : L2(∂D) → H 1(∂D) for n = 1, 2, 3 are given by

SD,n[φ](x) = − in

4πn!
∫
∂D

|x − y|n−1φ(y) dσ(y) x ∈ ∂D.

Moreover, we have

Kk,∗D = K0,∗
D + k2KD,2 + k3KD,3 + O(k4), (3.10)

where the error term is with respect to the operator norm ‖.‖L(L2(∂D),L2(∂D)) and
where

KD,2[φ](x) = 1

8π

∫
∂D

(x − y) · νx
|x − y| φ(y) dσ(y),
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and

KD,3[φ](x) = i

12π

∫
∂D

(x − y) · νxφ(y) dσ(y),

for x ∈ ∂D. We have the following lemma from [11].

Lemma 3.2.1 Let N = 2. For any ϕ ∈ L2(∂D) we have, for i = 1, 2,

∫
∂Di

(
−1

2
I + K∗

D

)
[ϕ] dσ = 0,

∫
∂Di

(
1

2
I + K∗

D

)
[ϕ] dσ =

∫
∂Di

ϕ dσ,

∫
∂Di

KD,2[ϕ] dσ = −
∫
Di

SD[ϕ] dx,
∫
∂Di

KD,3[ϕ] dσ = i|Di |
4π

∫
∂D
ϕ dσ.

(3.11)

A thorough presentation of other properties of the layer potential operators and
their use in wave-scattering problems can be found in e.g. [10].

Generalized Argument Principle and Generalized Rouché’s Theorem

The Gohberg-Sigal theory refers to the generalization to operator-valued functions
of two classical results in complex analysis, the argument principle and Rouché’s
theorem [10, 23, 24].

Let B and B′ be two Banach spaces and denote by L(B,B′) the space of bounded
linear operators from B into B′. A point z0 is called a characteristic value of the
operator-valued function z �→ A(z) ∈ L(B,B′) if A(z) is holomorphic in some
neighborhood of z0, except possibly at z0 and there exists a vector-valued function
φ(z) with values in B such that

(i) φ(z) is holomorphic at z0 and φ(z0) �= 0,
(ii) A(z)φ(z) is holomorphic at z0 and vanishes at this point.

Let V be a simply connected bounded domain with rectifiable boundary ∂V .
An operator-valued function A(z) is normal with respect to ∂V if it is finitely
meromorphic and of Fredholm type in V , continuous on ∂V , and invertible for all
z ∈ ∂V .

If A(z) is normal with respect to the contour ∂V and zj , j = 1, . . . , σ , are all
its characteristic values and poles lying in V , the full multiplicity M(A; ∂V ) of
A(z) for z ∈ V is the number of characteristic values of A(z) for z ∈ V , counted
with their multiplicities, minus the number of poles of A(z) in V , counted with their
multiplicities:

M(A; ∂V ) :=
σ∑
j=1

M(A(zj )),
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withM(A(zj )) being the multiplicity of zj ; see [10, Chap. 1].
The following results are from [24].

Theorem 3.2.2 (Generalized Argument Principle) Suppose that A(z) is an
operator-valued function which is normal with respect to ∂V . Let f (z) be a scalar
function which is holomorphic in V and continuous in V . Then

1

2π i
tr
∫
∂V

f (z)A(z)−1 d

dz
A(z)dz =

σ∑
j=1

M(A(zj ))f (zj ),

where zj , j = 1, . . . , σ , are all the points in V which are either poles or
characteristic values of A(z).

A generalization of Rouché’s theorem to operator-valued functions is stated
below.

Theorem 3.2.3 (Generalized Rouché’s Theorem) Let A(z) be an operator-
valued function which is normal with respect to ∂V . If an operator-valued function
S(z) which is finitely meromorphic in V and continuous on ∂V satisfies the
condition

‖A(z)−1S(z)‖L(B,B) < 1, z ∈ ∂V,

then A+ S is also normal with respect to ∂V and

M(A; ∂V ) = M(A+ S; ∂V ).

3.2.3 Capacitance Matrix Analysis

The existence of subwavelength resonant frequencies is stated in the following
theorem, which was proved in [1, 8] using Theorem 3.2.3.

Theorem 3.2.4 A system ofN subwavelength resonators exhibitsN subwavelength
resonant frequencies with positive real parts, up to multiplicity.

Proof The solution u to the scattering problem (3.4) can be represented as

u(x) =
{
uin + SkD[ψ](x), x ∈ R

3 \D,
SkbD [φ](x), x ∈ D, (3.12)

for some surface potentials (φ,ψ) ∈ L2(∂D) × L2(∂D), which must be chosen
so that u satisfies the transmission conditions across ∂D. Using the jump relation
between SkD and Kk,∗D , we see that in order to satisfy the transmission conditions on
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∂D the densities φ and ψ must satisfy, for x ∈ ∂D,

⎧⎨
⎩
SkbD [φ](x)− SkD[ψ](x) = uin(x),(
− 1

2 I + Kkb,∗D

)
[φ](x)− δ

(
1
2 I + Kk,∗D

)
[ψ](x) = δ ∂uin

∂ν
(x).

(3.13)

Therefore, φ and ψ satisfy the following system of boundary integral equations:

A(ω, δ)[Ψ ] = F, (3.14)

where

A(ω, δ) =
(

SkbD −SkD
− 1

2I + (KkbD )∗ −δ( 1
2 I + (KkD)∗)

)
, Ψ =

(
φ

ψ

)
, F =

(
uin

δ ∂u
in

∂ν

)
.

(3.15)

One can show that the scattering problem (3.4) is equivalent to the system of
boundary integral equations (3.14). It is clear that A(ω, δ) is a bounded linear
operator from H := L2(∂D) × L2(∂D) to H1 := H 1(∂D) × L2(∂D). As defined
in Theorem 3.2.1, the resonant frequencies to the scattering problem (3.4) are the
complex numbers ω with positive imaginary part such that there exists a nontrivial
solution to the following equation:

A(ω, δ)[Ψ ] = 0. (3.16)

These can be viewed as the characteristic values of the holomorphic operator-valued
function (with respect to ω) A(ω, δ). The subwavelength resonant frequencies lie in
the right half of a small neighborhood of the origin in the complex plane. In what
follows, we apply the Gohberg-Sigal theory to find these frequencies.

We first look at the limiting case when δ = ω = 0. It is clear that

A0 := A(0, 0) =
( SD −SD
− 1

2I + K∗
D 0

)
, (3.17)

where SD and K∗
D are respectively the single layer potential and the Neumann–

Poincaré operator on ∂D associated with the Laplacian.
Since SD : L2(∂D) → H 1(∂D) is invertible in dimension three and Ker(− 1

2I +
K∗
D) has dimension equal to the number of connected components of D, it follows

that Ker(A0) is of dimension N . This shows that ω = 0 is a characteristic value for
the holomorphic operator-valued function A(ω, 0) of full multiplicity 2N . By the
generalized Rouché’s theorem, we can conclude that for any δ, sufficiently small,
there exist 2N characteristic values to the holomorphic operator-valued function
A(ω, δ) such that ωn(0) = 0 and ωn depends on δ continuously. N of these
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characteristic values, ωn = ωn(δ), n = 1, . . . , N, have positive real parts, and
these are precisely the subwavelength resonant frequencies of the scattering problem
(3.4). ��

Our approach to approximate the subwavelength resonant frequencies is to study
the (weighted) capacitance matrix, which offers a rigorous discrete approximation
to the differential problem. The eigenstates of this N × N-matrix characterise, at
leading order in δ, the subwavelength resonant modes of the system ofN resonators.

In order to introduce the notion of capacitance, we define the functions ψj , for
j = 1, . . . , N , as

ψj := S−1
D [χ∂Dj ], (3.18)

where χA : R3 → {0, 1} is used to denote the characteristic function of a set A ⊂
R

3. The capacitance matrix C = (Cij ) is defined, for i, j = 1, . . . , N , as

Cij := −
∫
∂Di

ψj dσ. (3.19)

In order to capture the behaviour of an asymmetric array of resonators we need to
introduce the weighted capacitance matrix Cvol = (Cvol

ij ), given by

Cvol
ij := 1

|Di |Cij , (3.20)

which accounts for the differently sized resonators (see e.g. [11, 16, 17] for other
variants in different settings).

We define the functions Sωn , for n = 1 . . . , N , as

Sωn (x) :=
{
SkD[ψn](x), x ∈ R

3 \D,
SkbD [ψn](x), x ∈ D.

Lemma 3.2.2 The solution to the scattering problem can be written, for x ∈ R
3, as

u(x)− uin(x) =
N∑
n=1

qnS
ω
n (x)− SkD

[
S−1
D [uin]

]
(x)+ O(ω),

for coefficients q = (q1, . . . , qN) which satisfy, up to an error of order O(δω+ω3),

(
ω2 − v2

bδ C
vol

)
q = v2

bδ

⎛
⎜⎜⎝

1
|D1|

∫
∂D1

S−1
D [uin] dσ
...

1
|DN |

∫
∂DN

S−1
D [uin] dσ

⎞
⎟⎟⎠ .
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Proof Using the asymptotic expansions (3.9) and (3.10) for SkD and Kk,∗D in (3.13),
we can see that

ψ = φ − S−1
D [uin] + O(ω),

and, further, that

(
−1

2
I + K∗

D + ω2

v2
b

KD,2 − δ
(

1

2
I + K∗

D

))
[φ] =

− δ
(

1

2
I + K∗

D

)
S−1
D [uin] + O(δω + ω3). (3.21)

At leading order, (3.21) says that
(
− 1

2I + K∗
D

)
[φ] = 0 so, in light of the fact that

{ψ1, . . . , ψN } forms a basis for Ker
(
− 1

2I + K∗
D

)
, the solution can be written as

φ =
N∑
n=1

qnψn + O(ω2 + δ), (3.22)

for coefficients q = (q1, . . . , qN).
Finally, integrating (3.21) over ∂Di , for 1 ≤ i ≤ N , gives us that

−ω2
∫
Di

SD[φ] dx − v2
bδ

∫
∂Di

φ dσ = −v2
bδ

∫
∂Di

S−1
D [uin] dσ,

up to an error of order O(δω + ω3). Substituting the expression (3.22) gives the
desired result. ��
Theorem 3.2.5 As δ → 0, the subwavelength resonant frequencies satisfy the
asymptotic formula

ωn =
√
v2
bλnδ − iτnδ + O(δ3/2),

for n = 1, . . . , N , where λn are the eigenvalues of the weighted capacitance matrix
Cvol and τn are non-negative real numbers that depend on C, v and vb .

Proof If uin = 0, we find from Lemma 3.2.2 that there is a non-zero solution to the
resonance problem when ω2/v2

bδ is an eigenvalue of Cvol, at leading order.
To find the imaginary part, we adopt the ansatz

ωn =
√
v2
bλnδ − iτnδ + O(δ3/2). (3.23)
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Using a few extra terms in the asymptotic expansions for SkD and Kk,∗D , we have that

ψ = φ + kb − k
4π i

(
N∑
n=1

ψn

)∫
∂D

φ dσ + O(ω2),

and, hence, that

(
−1

2
I + K∗

D + k2
bKD,2 + k3

bKD,3 − δ
(

1

2
I + K∗

D

))
[φ]

− δ(kb − k)
4π i

(
N∑
n=1

ψn

)∫
∂D

φ dσ = O(δω2 + ω4).

We then substitute the decomposition (3.22) and integrate over ∂Di , for i =
1, . . . , N , to find that, up to an error of order O(δω2 + ω4), it holds that

(
− ω2

v2
b

− ω3i

4πv3
b

JC + δCvol + δωi

4π

(
1

vb
− 1

v

)
CvolJC

)
q = 0,

where J is the N × N matrix of ones (i.e. Jij = 1 for all i, j = 1, . . . , N). Then,
using the ansatz (3.23) for ωn we see that, if vn is the eigenvector corresponding to
λn, it holds that

τn = v2
b

8πv

vn · CJCvn
‖vn‖2

D

, (3.24)

where we use the norm ‖x‖D := (∑N
i=1 |Di |x2

i

)1/2
for x ∈ R

N . Since C is
symmetric, we can see that τn ≥ 0. ��

It is more illustrative to rephrase Lemma 3.2.2 in terms of basis functions that
are associated with the resonant frequencies. Denote by vn = (v1,n, . . . , vN,n) the
eigenvector of Cvol with eigenvalue λn. Then, we have a modal decomposition with
coefficients that depend on the matrix V = (vi,j ), assuming the system is such that
V is invertible. The following result follows from Lemma 3.2.2 by diagonalising the
matrix Cvol.

Lemma 3.2.3 Suppose that the resonators’ geometry is such that the matrix of
eigenvectors V is invertible. We define the functions

un(x) =
N∑
i=1

vi,n SD[ψi ](x), (3.25)
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for n = 1, . . . , N . Then if ω = O(√δ) the solution to the scattering problem can be
written, for x ∈ R

3, as

us(x) := u(x)− uin(x) =
N∑
n=1

anun(x)− SD
[
S−1
D [uin]

]
(x)+ O(ω),

for coefficients which satisfy, up to an error of order O(ω3),

an(ω
2 − ω2

n) = −Aνn Re(ωn)
2,

where νn = ∑N
j=1[V−1]n,j , i.e. the sum of the nth row of V −1.

Remark 3.2.1 WhenN = 1, the subwavelength resonant frequency ω1 is called the
Minnaert resonance. By writing an asymptotic expansion of A(ω, δ) in terms of δ
and applying the generalized argument principle (Theorem 3.2.2), one can prove
that ω1 satisfies as δ goes to zero the asymptotic formula [8]

ω1 =
√

CapD
|D| vb

√
δ

︸ ︷︷ ︸
:=ωM

−i

(
Cap2

Dv
2
b

8πv|D| δ
)

︸ ︷︷ ︸
:=τM

+O(δ 3
2 ), (3.26)

where

CapD := −
∫
∂D

S−1
D [χ∂D] dσ (3.27)

is the capacity of ∂D. Moreover, the following monopole approximation of the
scattered field for ω near ωM holds [8]:

us(x) = g(ω, δ,D)(1 + o(1))uin(0)Gk(x), (3.28)

with the origin 0 ∈ D and the scattering coefficient g being given by

g(ω, δ,D) = CapD
1 − (ωM

ω
)2 + iγM

, (3.29)

where the damping constant γM is given by

γM := (v + vb)CapDω

8πvvb
− (v − vb)

v

vbCap2
Dδ

8π |D|ω .

This shows the scattering enhancement near ωM .
When N = 2, there are two subwavelength resonances with positive real part for

the resonator dimer D. Assume that D1 and D2 are symmetric with respect to the
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origin 0 and let Cij , for i, j = 1, 2, be defined by (3.19). Then, as δ → 0, by using
Lemma 3.2.1 it follows that [11]

ω1 = √
(C11 + C12)vb

√
δ︸ ︷︷ ︸

:=ωM,1
−iτ1δ + O(δ3/2), (3.30)

ω2 = √
(C11 − C12)vb

√
δ︸ ︷︷ ︸

:=ωM,2
+δ3/2η̂1 + iδ2η̂2 + O(δ5/2), (3.31)

where η̂1 and η̂2 are real numbers determined byD, v, and vb and

τ1 = v2
b

4πv
(C11 + C12)

2.

The resonances ω1 and ω2 are called the hybridized resonances of the resonator
dimmerD.

On the other hand, the resonator dimer can be approximated as a point scatterer
with resonant monopole and resonant dipole modes. Assume that D1 and D2 are
symmetric with respect to the origin. Then for ω = O(δ1/2) and δ → 0, and |x|
being sufficiently large, we have [11]

us(x) = g0(ω)uin(0)Gk(x)︸ ︷︷ ︸
monopole

+∇uin(0) · g1(ω)∇Gk(x)︸ ︷︷ ︸
dipole

+O(δ|x|−1),
(3.32)

where the scattering coefficients g0(ω) and g1(ω) = (g1
ij (ω)) are given by

g0(ω) = C(1, 1)

1 − ω2
1/ω

2
(1 + O(δ1/2)), C(1, 1) := C11 + C12 + C21 + C22,

(3.33)

g1
ij (ω) =

∫
∂D

S−1
D [xi](y)yj − δv2

b

ω2|D|(1 − ω2
2/ω

2)
P 2δi1δj1, (3.34)

with

P :=
∫
∂D

y1(ψ1 − ψ2)(y) dσ(y), (3.35)

ψi , for i = 1, 2, being defined by (3.18), and δi1 and δj1 being the Kronecker delta.
As shown in (3.28)–(3.29), around ωM , a single resonator in free-space scatters

waves with a greatly enhanced amplitude. If a second resonator is introduced,
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coupling interactions will occur giving according to (3.32) a system that has both
monopole and dipole resonant modes. This pattern continues for larger number N
of resonators [1].

Remark 3.2.2 The invertibility of V is a subtle issue and depends only on the
geometry of the inclusions D = D1 ∪ · · · ∪ DN . In the case that the resonators
are all identical, V is clearly invertible since Cvol is symmetric.

Remark 3.2.3 In many cases τn = 0 for some n (see for instance formula (3.31)),
meaning the imaginary parts exhibit higher-order behaviour in δ. For example, the
second (dipole) frequency for a pair of identical resonators is known to be O(δ2)

[11]. In any case, the resonant frequencies will have negative imaginary parts, due
to the radiation losses.

3.3 Close-to-Touching Subwavelength Resonators

In this section, we study the behaviour of the coupled subwavelength resonant
modes when two subwavelength resonators are brought close together. We consider
the case of a pair of spherical resonators and use bispherical coordinates to
derive explicit representations for the capacitance coefficients which, as shown in
Theorem 3.2.5, capture the system’s resonant behaviour at leading order. We derive
estimates for the rate at which the gradient of the scattered wave blows up as the
resonators are brought together.

For simplicity, we study the effect of scattering by a pair of spherical inclusions,
D1 and D2, with the same radius, which we denote by r , and separation distance
ε (so that their centres are separated by 2r + ε). We refer to [17] for the case of
arbitrary sized spheres.

We choose the separation distance ε as a function of δ and will perform an
asymptotic analysis in terms of δ. We choose ε to be such that, for some 0 < β < 1,

ε ∼ e−1/δ1−β
as δ → 0. (3.36)

As we will see shortly, with ε chosen to be in this regime the subwavelength resonant
frequencies are both well behaved (i.e. ω = ω(δ) → 0 as δ → 0) and we can
compute asymptotic expansions in terms of δ.

From Theorem 3.2.5 (see also Remark 3.2.1), there exist two subwavelength
resonant modes, u1 and u2, with associated resonant frequencies ω1 and ω2 with
positive real part, labelled such that Re(ω1) < Re(ω2).
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3.3.1 Coordinate System

The Helmholtz problem (3.4) is invariant under translations and rotations so we are
free to choose the coordinate axes. Let Rj be the reflection with respect to ∂Dj
and let p1 and p2 be the unique fixed points of the combined reflections R1 ◦ R2
and R2 ◦ R1, respectively. Let n be the unit vector in the direction of p2 − p1. We
will make use of the Cartesian coordinate system (x1, x2, x3) defined to be such that
p = (p1 + p2)/2 is the origin and the x3-axis is parallel to the unit vector n. Then
one can see that [27]

p1 = (0, 0,−α) and p2 = (0, 0, α), (3.37)

where

α :=
√
ε(4r + ε)

2
. (3.38)

Moreover, the sphere Di is centered at (0, 0, ci) where

ci = (−1)i
√
r2 + α2. (3.39)

We then introduce a bispherical coordinate system (ξ, θ, ϕ) which is related to
the Cartesian coordinate system (x1, x2, x3) by

x1 = α sin θ cosϕ

cosh ξ − cos θ
, x2 = α sin θ sin ϕ

cosh ξ − cos θ
, x3 = α sinh ξ

cosh ξ − cos θ
, (3.40)

and is chosen to satisfy −∞ < ξ < ∞, 0 ≤ θ < π and 0 ≤ ϕ < 2π . The reason
for this choice of coordinate system is that ∂D1 and ∂D2 are given by the level sets

∂D1 = {
ξ = − sinh−1

(α
r

) }
, ∂D2 = {

ξ = sinh−1
(α
r

) }
. (3.41)

This is depicted in Fig. 3.1 (for arbitrary sized spheres). The Cartesian coordinate
system is chosen so that we can define a bispherical coordinate system (3.40) such
that the boundaries of the two resonators are convenient level sets.

Fig. 3.1 Two
close-to-touching spheres,
annotated with the bispherical
coordinate system outlined in
Sect. 3.3.1 r1 r2

(0, 0, 0)

(0, 0, c1)

(0, 0, c2)

n

ε
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3.3.2 Resonant Frequency Hybridization and Gradient
Blow-Up

Firstly, the resonant frequencies are given, in terms of the capacitance coefficients,
by (see (3.30) and (3.31))

ω1 =
√
δ

3v2
b

4πr3 (C11 + C12)+ O(δ),

ω2 =
√
δ

3v2
b

4πr3 (C11 − C12)+ O(δ).

(3.42)

Further to this, the capacitance coefficients are given by

C11 = C22 = 8πα̃
∞∑
n=0

e(2n+1)ξ0

e2(2n+1)ξ0 − 1
,

C12 = C21 = −8πα̃
∞∑
n=0

1

e2(2n+1)ξ0 − 1
,

(3.43)

where

α̃ := √
ε(r + ε/4), ξ0 := sinh−1

(
α̃

r

)
.

From [30], we know the asymptotic behaviour of the series in (3.43) as ξ0 → 0,
from which we can see that as ε → 0,

C11 = 2π
α̃

ξ0

[
γ + 2 ln 2 + ln

(√
r
) − ln

(√
ε
)] + O(ε),

C12 = −2π
α̃

ξ0

[
γ + ln

(√
r
) − ln

(√
ε
)] + O(ε),

(3.44)

where γ ≈ 0.5772 . . . is the Euler–Mascheroni constant.
Combining (3.42) and (3.44) we reach the fact that the resonant frequencies are

given, as δ → 0, by

ω1 =
√
δ

3v2
b ln 2

r2 + O (δ) ,

ω2 =
√
δ

3v2
b

2r2

(
ln

( r
ε

)
+ 2γ + 2 ln 2

)
+ O

(√
δ
)
.

(3.45)
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Thus, the choice of ε ∼ e−1/δ1−β
, where 0 < β < 1, means that as δ → 0 we have

that ω1 ∼ √
δ and ω2 ∼ δβ/2.

The two resonant modes, u1 and u2, correspond to the two resonators oscillating
in phase and in antiphase with one another, respectively. Since the eigenmode u2
has different signs on the two resonators, ∇u2 will blow up as the two resonators
are brought together. Conversely, u1 takes the same value on the two resonators
so there will not be a singularity in the gradient. In particular, if we normalise the
eigenmodes so that for any x ∈ ∂D

lim
δ→0

|u1(x)| ∼ 1, lim
δ→0

|u2(x)| ∼ 1, (3.46)

then the choice of ε to satisfy the regime ε ∼ e−1/δ1−β
means that the maximal

gradient of each eigenmode has the asymptotic behaviour, as δ → 0,

max
x∈R3\D

|∇u1(x)| ∼ 1, max
x∈R3\D

|∇u2(x)| ∼ 1

ε
. (3.47)

By decomposing the scattered field into the two resonant modes, we can use (3.47)
to understand the singular behaviour exhibited by the acoustic pressure. The solution
u to the scattering problem (3.4) with incoming plane wave uin with frequency
ω = O(δ1/2) is given, for x ∈ R

3 \D, by

u(x) = uin(x)+ au1(x)+ bu2(x), (3.48)

where the coefficients a and b satisfy, as δ → 0, the equations

a(ω2 − ω2
1) =

δv2
b

|D|
∫
∂D

S−1
D [uin] dσ + O(δβ̂ ),

b(ω2 − ω2
2) = −δv

2
b

|D|
(∫

∂D1

S−1
D [uin] dσ − |D1|

|D2|
∫
∂D2

S−1
D [uin] dσ

)
+ O(δβ̂ ),

with β̂ := min(2 − β, 3/2) and |D| being the volume ofD = D1 ∪D2.

3.4 Effective Medium Theory for Subwavelength Resonators

3.4.1 High Refractive Index Effective Media

We consider a domain Ω which contains a large number of small, identical
resonators. If D0 is a fixed domain, then for some r > 0 the N resonators are
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given, for 1 ≤ j ≤ N , by

D
r,N
0,j = rD0 + zNj ,

for positions zNj . We always assume that r is sufficiently small such that the

resonators are not overlapping and that Dr,N0 = ⋃N
j=1D

r,N
0,j � Ω .

We find the effective equation in the specific case that the frequency ω = O(1)
and satisfies

1 − (ωM
ω
)2 = β0r

ε0, (3.49)

for some fixed 0 < ε0 < 1 and constant β0. We note that there are two cases
depending on whether ω > ωM or ω < ωM . In the former case, β0 > 0 while in the
latter case we have β0 < 0.

Moreover, we assume that there exists some positive number Λ independent of
N such that

r1−ε0N = Λ and Λ is large. (3.50)

Since the resonators are small, we can use the point-scatter approximation from
(3.28) to describe how they interact with incoming waves. To do so, we must make
some extra assumptions on the regularity of the distribution {zNj : 1 ≤ j ≤ N}
so that the system is well behaved as N → ∞ (under the assumption (3.50)). In
particular, we assume that there exists some constant η such that for any N it holds
that

min
i �=j |zNi − zNj | ≥ η

N1/3
, (3.51)

and, further, there exists some 0 < ε1 < 1 and constants C1, C2 > 0 such that for
all h ≥ 2ηN−1/3,

∑
|x−zNj |≥h

1

|x − yNj |2 ≤ C1N |h|−ε1 , uniformly for all x ∈ Ω, (3.52)

∑
2ηN−1/3≤|x−zNj |≤3h

1

|x − yNj | ≤ C2N |h|, uniformly for all x ∈ Ω. (3.53)

Finally, we also need that

ε2 := ε0

1 − ε0
− ε1

3
> 0. (3.54)
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If we represent the field that is scattered by the collection of resonators

D
r,N
0 =

N⋃
j=1

D
r,N
0,j

as

uN(x) =

⎧⎪⎨
⎪⎩
uin(x)+ Sk

D
r,N
0

[ψN ](x), x ∈ R
3 \Dr,N0 ,

Sk0

D
r,N
0

[φN ](x), x ∈ Dr,N0 ,

for some ψN, φN ∈ L2(∂D
r,N
0 ), then we have the following lemma, which follows

from [6, Proposition 3.1]. This justifies using a point-scatter approximation to
describe the total incident field acting on the resonator Dr,N0,j and the scattered field

due to Dr,N0,j , defined respectively as

u
in,N
j = uin +

∑
i �=j

Sk
D
r,N
0,i

[ψN ] and u
s,N
j = Sk

D
r,N
0,j

[ψN ].

Lemma 3.4.1 Under the assumptions (3.49)–(3.54), it holds that the total incident
field acting on the resonatorDr,N0,j is given, at zNj , by

u
in,N
j (zNj ) = uin(zNj )+

∑
i �=j

rCapD0

1 − (ωM
ω
)2
Gk(zNj − zNi )uin(zNj ),

up to an error of order O(N−ε2). Similarly, it holds that the scattered field due to
the resonatorDr,N0,j is given, at x such that |x − zNj | � r , by

u
s,N
j (x) = rCapD0

1 − (ωM
ω
)2
Gk(x − zNj )uin,Nj (zNj ),

up to an error of order O(N−ε2 + r|x − zNj |−1).

In order for the sums in Lemma 3.4.1 to be well behaved as N → ∞, we make
one additional assumption on the regularity of the distribution: that there exists a
real-valued function Ṽ ∈ C1(Ω) such that for any f ∈ C0,α(Ω), with 0 < α ≤ 1,
there is a constant C3 such that

max1≤j≤N
∣∣∣ 1
N

∑
i �=j Gk(zNj − zNi )f (zNi )−

∫
Ω G

k(zNj − y)Ṽ (y)f (y) dy
∣∣∣

≤ C3
1

Nα/3
‖f ‖C0,α(Ω).

(3.55)
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Remark 3.4.1 It holds that Ṽ ≥ 0. If the resonators’ centres {zNj : j = 1, . . . , N}
are uniformly distributed, then Ṽ will be a positive constant, Ṽ = 1/|Ω |.

Under all these assumptions, we are able to derive effective equations for the
system with an arbitrarily large number of small resonators. If we let ε3 ∈ (0, 1

3 ),
then we will seek effective equations on the set given by

YNε3
:=

{
x ∈ R

3 : |x − zNj | ≥ Nε3−1 for all 1 ≤ j ≤ N
}
, (3.56)

which is the set of points that are sufficiently far from the resonators, avoiding the
singularities of the Green’s function. The following result from [6] holds.

Theorem 3.4.1 Letω < ωM . Under the assumptions (3.50)–(3.55), the solution uN

to the scattering problem (3.4) with the system of resonators Dr,N0 = ⋃N
j=1D

r,N
0,j

converges to the solution of

⎧⎪⎪⎨
⎪⎪⎩

(
Δ+ k2 − ΛCapD0

β0
Ṽ (x)

)
u(x) = 0, x ∈ Ω,(

Δ+ k2
)
u(x) = 0, x ∈ R

3 \Ω,
u|+ = u|− on ∂Ω,

as N → ∞, together with a radiation condition governing the behaviour in the far
field, which says that uniformly for all x ∈ YNε3

it holds that

|uN(x)− u(x)| ≤ CN− min
{

1−ε0
6 ,ε2,ε3,

1−ε3
3

}
.

By our assumption, k = O(1), Ṽ = O(1), and β0 < 0. When

−ΛCapD0
/β0 � 1,

we see that we have an effective high refractive index medium. As a consequence,
this together with [5] gives a rigorous mathematical theory for the super-focusing
experiment in [29]. Similarly to Theorem 3.4.1, if ω > ωM , to the scattering
problem (3.4) with the system of resonators Dr,N0 converges to the solution of the
following dissipative equation

⎧⎪⎪⎨
⎪⎪⎩

(
Δ+ k2 − ΛCapD0

β0
Ṽ (x)

)
u(x) = 0, x ∈ Ω,(

Δ+ k2
)
u(x) = 0, x ∈ R

3 \Ω,
u|+ = u|− on ∂Ω,
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x asN → ∞, together with a radiation condition governing the behaviour in the far
field, which says that uniformly for all x ∈ YNε3

it holds that

|uN(x)− u(x)| ≤ CN− min
{

1−ε0
6 ,ε2,ε3,

1−ε3
3

}
.

Remark 3.4.2 At the resonant frequency ω = ωM , the scattering coefficient g
defined by (3.29) is of order one. Thus each scatterer is a point source with
magnitude one. As a consequence, the addition or removal of one resonator from
the medium affects the total field by a magnitude of the same order as the incident
field. Therefore, we cannot expect any effective medium theory for the medium at
this resonant frequency.

3.4.2 Double-Negative Metamaterials

In this subsection, we show that, using dimers of identical subwavelength res-
onators, the effective material parameters of dilute system of dimers can both be
negative over a non empty range of frequencies [11]. As shown in (3.32), a dimer
of identical subwavelength resonators can be approximated as a point scatterer
with monopole and dipole modes. As seen before, it features two slightly differ-
ent subwavelength resonances, called the hybridized resonances. The hybridized
resonances are fundamentally different modes. The first mode is, as in the case of
a single resonator, a monopole mode, while the second mode is a dipole mode.
The resonance associated with the dipole mode is usually referred to as the anti-
resonance.

For an appropriate volume fraction, when the excitation frequency is close to the
anti-resonance, a double-negative effective ρ and κ for media consisting of a large
number of dimers with certain conditions on their distribution can be obtained. The
dipole modes in the background medium contribute to the effective ρ while the
monopole modes contribute to the effective κ .

Here we consider the scattering of an incident plane wave uin by N identical
dimers with different orientations distributed in a homogeneous medium in R

3. The
N identical dimers are generated by scaling the normalized dimer D by a factor
r , and then rotating the orientation and translating the center. More precisely, the
dimers occupy the domain

DN := ∪1≤j≤NDNj ,

where DNj = zNj + rRdNj D for 1 ≤ j ≤ N , with zNj being the center of the dimer

DNj , r being the characteristic size, and RdNj
being the rotation in R

3 which aligns

the dimer DNj in the direction dNj . Here, dNj is a vector of unit length in R
3. For

simplicity, we suppose thatD is made of two identical spherical resonators. We also
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Ω

Fig. 3.2 Illustration of the dilute system of subwavelength dimers

assume that 0 < r � 1, N � 1 and that {zNj : 1 ≤ j ≤ N} ⊂ Ω where Ω is a
bounded domain. See Fig. 3.2.

The scattering of waves by the dimers can be modeled by the following system
of equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ · 1

ρ
∇uN + ω2

κ
uN = 0 in R

3\DN,

∇ · 1

ρb
∇uN + ω2

κb
uN = 0 in DN,

uN+ − uN− = 0 on ∂DN,
1

ρ

∂uN

∂ν

∣∣∣∣+ − 1

ρb

∂uN

∂ν

∣∣∣∣− = 0 on ∂DN,

uN − uin satisfies the Sommerfeld radiation condition,

(3.57)

where uN is the total field.
We make the following assumptions:

(i) δ = μ2r2 for some positive number μ > 0;
(ii) ω = ωM,2 + ar2 for some real number a < μ3η̂1, where ωM,2 is defined in

(3.31);
(iii) rN = Λ for some positive numberΛ > 0;



46 H. Ammari et al.

(iv) The dimers are regularly distributed in the sense that

min
i �=j |zNi − zNj | ≥ ηN− 1

3 ,

for some constant η independent of N ;
(v) There exists a function Ṽ ∈ C1(Ω̄) such that for any f ∈ C0,α(Ω) with

0 < α ≤ 1, (3.55) holds for some constant C independent of N ;
(vi) There exists a matrix valued function B̃ ∈ C1(Ω̄) such that for f ∈

(C0,α(Ω))3 with 0 < α ≤ 1,

max
1≤j≤N | 1

N

∑
i �=j
(f (zNi ) · dNi )(dNi · ∇Gk(zNi − zNj ))−

∫
Ω

f (y)B̃∇yGk(y − zNj ) dy|

≤ C 1

N
α
3
‖f ‖C0,α(Ω)

for some constant C independent of N ;
(vii) There exists a constant C > 0 such that

max
1≤j≤N

1

N

∑
i �=j

1

|zNj − zNi | ≤ C, max
1≤j≤N

1

N

∑
i �=j

1

|zNj − zNi |2 ≤ C,

for all 1 ≤ j ≤ N .

We introduce the two constants

g̃0 = 2(C11 + C12)

1 − ω2
M,1/ω

2
M,2

, g̃1 = μ2v2
b

2|D|ωM,2(μ3η̂1 − a)P
2,

whereP is defined by (3.35),ωM,1 andωM,2 are the leading orders in the asymptotic
expansions (3.30) and (3.31) of the hybridized resonant frequencies as δ → 0, and
the two functions

M1 =
{
I in R

3 \Ω,
I −Λg̃1B̃ in Ω,

and

M2 =
{
k2 in R

3 \Ω,
k2 −Λg̃0Ṽ in Ω.

The following result from [11] holds.
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Fig. 3.3 Effective properties of the homogenized medium

Theorem 3.4.2 Suppose that there exists a unique solution u to

∇ ·M1(x)∇u(x)+M2(x)u(x) = 0 in R
3, (3.58)

such that u − uin satisfies the Sommerfeld radiation condition at infinity. Then,
under assumptions (i)–(vii), we have uN(x)→ u(x) uniformly for x ∈ R

3 such that
|x − zNj | � N−1 for all 1 ≤ j ≤ N .

Note that from (3.43), it follows that ωM,2 > ωM,1. Therefore, for large Λ, both
the matrixM1 and the scalar functionM2 are negative inΩ . See Fig. 3.3.

3.5 Periodic Structures of Subwavelength Resonators

In this section we investigate whether there is a possibility of subwavelength band
gap opening in subwavelength resonator crystals. We first formulate the spectral
problem for a subwavelength resonator crystal. Then we derive an asymptotic for-
mula for the quasi-periodic resonances in terms of the contrast between the densities
outside and inside the resonators. We prove the existence of a subwavelength band
gap and estimate its width.
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3.5.1 Floquet Theory

Let f (x) for x ∈ R
d, d = 1, 2, 3, be a function decaying sufficiently fast. We let

l1, . . . , ld be linearly independent lattice vectors, and define the unit cell Y and the
lattice Λ as

Y =
{
d∑
n=1

snln

∣∣∣ 0 < sn < 1

}
, Λ =

{
d∑
n=1

qnln

∣∣∣ qn ∈ N

}
.

The Floquet transform of f is defined as:

U[f ](x, α) =
∑
n∈Λ

f (x − n)eiα·n. (3.59)

This transform is an analogue of the Fourier transform for the periodic case. The
parameter α is called the quasi-periodicity, and it is an analogue of the dual variable
in the Fourier transform. If we shift x by a period m ∈ Λ, we get the Floquet
condition (or quasi-periodic condition)

U[f ](x +m,α) = eiα·mU[f ](x, α), (3.60)

which shows that it suffices to know the function U[f ](x, α) on the unit cell Y in
order to recover it completely as a function of the x-variable. Moreover, U[f ](x, α)
is periodic with respect to α:

U[f ](x, α + q) = U[f ](x, α), q ∈ Λ∗. (3.61)

Here,Λ∗ is the dual lattice, generated by the dual lattice vectors α1, . . . , αd defined
through the relation

liαj = 2πδij , 0 ≤ i, j ≤ d.

Therefore, α can be considered as an element of the torus Rd/Λ∗. Another way of
saying this is that all information about U[f ](x, α) is contained in its values for α
in the fundamental domain Y ∗ of the dual lattice Λ∗. This domain is referred to as
the Brillouin zone and is depicted in Fig. 3.4 for a square lattice in two dimensions.

The following result is an analogue of the Plancherel theorem when one uses
the Fourier transform. Suppose that the measures dα and the Brillouin zone Y ∗ are
normalized.

The following theorem holds [28].

Theorem 3.5.1 (Plancherel-Type Theorem) The transform

U : L2(Rd)→ L2(Y ∗, L2(Y ))
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Fig. 3.4 (First) Brillouin
zone for a square lattice in
two dimensions, with the
symmetry points Γ,X and
M . The highlighted triangle is
known as the reduced
Brillouin zone

is isometric. Its inverse is given by

U−1[g](x) =
∫
Y ∗
g(x, α) dα,

where the function g(x, α) ∈ L2(Y×Y ∗) is extended from Y to all x ∈ R
d according

to the Floquet condition (3.60).

Consider now a linear partial differential operator L(x, ∂x), whose coefficients
are periodic with respect to Λ. Due to periodicity, the operator commutes with the
Floquet transform

U[Lf ](x, α) = L(x, ∂x)U[f ](x, α).

For each α, the operatorL(x, ∂x) now acts on functions satisfying the corresponding
Floquet condition (3.60). Denoting this operator by L(α), we see that the Floquet
transform U expands the periodic partial differential operator L in L2(Rd) into the
direct integral of operators

∫ ⊕

Y ∗
L(α) dα. (3.62)

If L is a self-adjoint operator, one can prove the main spectral result:

σ(L) =
⋃
α∈Y ∗

σ(L(α)), (3.63)
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where σ denotes the spectrum.
If L is elliptic, the operators L(α) have compact resolvents and hence discrete

spectra. If L is bounded from below, the spectrum of L(α) accumulates only at +∞.
Denote by μn(α) the nth eigenvalue of L(α) (counted in increasing order with their
multiplicity). The function α �→ μn(α) is continuous in Y ∗. It is one branch of the
dispersion relations and is called a band function. We conclude that the spectrum
σ(L) consists of the closed intervals (called the spectral bands)

[
min
α
μn(α),max

α
μn(α)

]
,

where minα μn(α)→ +∞ when n→ +∞.

3.5.2 Quasi-Periodic Layer Potentials

We introduce a quasi-periodic version of the layer potentials. Again, we let Y and
Y ∗ be the unit cell and dual unit cell, respectively. Let δ be the Dirac delta function.
For α ∈ Y ∗, the functionGα,k is defined to satisfy

(Δx + k2)Gα,k(x, y) =
∑
m∈Λ

δ(x − y − n)eim·α,

where Gα,k is α-quasi-periodic, i.e., e−iα·xGα,k(x, y) is periodic in x with respect
to Y . It is known thatGα,k can be written as

Gα,k(x, y) =
∑
q∈Λ∗

ei(α+q)·(x−y)

k2 − |α + q|2 ,

if k �= |α + q| for any q ∈ Y ∗. We remark that

Gα,k(x, y) = Gα,0(x, y) −Gα,#l (x − y) := Gα,0(x, y) −
∞∑
l=1

k2l
∑
q∈Λ∗

ei(α+q)·(x−y)

|α + q|2(l+1)

(3.64)

when α �= 0, and k → 0.
We let D be as in Sect. 3.5.4 and additionally assume D � Y . Then the quasi-

periodic single layer potential Sα,kD is defined by

Sα,kD [φ](x) =
∫
∂D

Gα,k(x, y)φ(y) dσ(y), x ∈ R
3. (3.65)
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It satisfies the following jump formulas:

Sα,kD [φ]∣∣+ = Sα,kD [φ]∣∣−,
and

∂

∂ν
Sα,kD [φ]

∣∣∣± =
(
±1

2
I + (K−α,k

D )∗
)

[φ] on ∂D,

where (K−α,k
D )∗ is the operator given by

(K−α,k
D )∗[φ](x) =

∫
∂D

∂

∂νx
Gα,k(x, y)φ(y) dσ(y).

We remark that Sα,0D : L2(∂D) → H 1(∂D) is invertible for α �= 0 [10]. Moreover,

the following decomposition holds for the layer potential Sα,kD :

Sα,kD = Sα,0D + k2SαD,1 + O(k4) with SαD,1[ψ] :=
∫
∂D

G
α,#
1 (x − y)ψ(y) dσ(y),

(3.66)

where the error term is with respect to the operator norm ‖.‖L(L2(∂D),H 1(∂D)).
Furthermore, analogously to (3.10), we have

(K−α,k
D )∗ = (K−α,k

D )∗ + k2KαD,1 + O(k3), (3.67)

where the error term is with respect to the operator norm ‖.‖L(L2(∂D),L2(∂D)).
Finally, we introduce the α-quasi capacity of D, denoted by CapD,α ,

CapD,α :=
∫
Y\D

|∇u|2 dy,

where u is the α-quasi-periodic harmonic function in Y \D with u = 1 on ∂D. For

α �= 0, we have u(x) = Sα,0D
(
Sα,0D

)−1 [χ∂D](x) for x ∈ Y \D and

CapD,α := −
∫
∂D

(
Sα,0D

)−1 [χ∂D](y) dσ(y). (3.68)

Moreover, we have a variational definition of CapD,α. Indeed, let C∞
α (Y ) be the set

of C∞ functions in Y which can be extended to C∞ α-quasi-periodic functions in
R

3. Let Hα be the closure of the set C∞
α (Y ) in H 1(Y ), and let Vα := {v ∈ Hα : v =
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1 on ∂D}. Then we can show that

CapD,α = min
v∈Vα

∫
Y\D

|∇v|2 dy. (3.69)

3.5.3 Square Lattice Subwavelength Resonator Crystal

We first describe the crystal under consideration. Assume that the resonators occupy
∪n∈Zd (D+ n) for a bounded and simply connected domainD � Y with ∂D ∈ C1,η

with 0 < η < 1. See Fig. 3.5. As before, we denote by ρb and κb the material
parameters inside the resonators and by ρ and κ the corresponding parameters for
the background media and let v, vb, k, and kb be defined by (3.1). We also let the
dimensionless contrast parameter δ be defined by (3.2) and assume for simplicity
that vb/v = 1.

To investigate the phononic gap of the crystal we consider the following
α−quasi-periodic equation in the unit cell Y = [−1/2, 1/2)3:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ · 1

ρ
∇u+ ω2

κ
u = 0 in Y\D,

∇ · 1

ρb
∇u+ ω2

κb
u = 0 in D,

u|+ − u|− = 0 on ∂D,

1

ρ

∂u

∂ν

∣∣∣∣+ − 1

ρb

∂u

∂ν

∣∣∣∣− = 0 on ∂D,

e−iα·xu is periodic.

(3.70)

By choosing proper physical units, we may assume that the resonator size is of
order one. We assume that the wave speeds outside and inside the resonators are
comparable to each other and that condition (3.3) holds.

D

Y

Fig. 3.5 Illustration of the square lattice crystal and quantities in Y
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3.5.4 Subwavelength Band Gaps and Bloch Modes

As described in Sect. 3.5.1, the problem (3.70) has nontrivial solutions for discrete
values of ω such as

0 ≤ ωα1 ≤ ωα2 ≤ · · ·

and we have the following band structure of propagating frequencies for the given
periodic structure:

[0,max
α
ωα1 ] ∪ [min

α
ωα2 ,max

α
ωα2 ] ∪ [min

α
ωα3 ,max

α
ωα3 ] ∪ · · · .

A non-trivial solution to this problem and its corresponding frequency is called
a Bloch eigenfunction and a Bloch eigenfrequency. The Bloch eigenfrequencies
ωαi , i = 1, 2, . . . with positive real part, seen as functions of α, are the band
functions.

We use the quasi-periodic single layer potential introduced in (3.65) to represent
the solution to the scattering problem (3.70) in Y \ D. We look for a solution u
of (3.70) of the form:

u =
{
Sα,kD [ψ] in Y \D,
SkbD [ψb] in D,

(3.71)

for some surface potentialsψ,ψb ∈ L2(∂D). Using the jump relations for the single
layer potentials, one can show that (3.70) is equivalent to the boundary integral
equation

A(ω, δ)[Ψ ] = 0, (3.72)

where

A(ω, δ) =
(

SkbD −Sα,kD
− 1

2I + Kkb,∗D −δ( 1
2I + (K−α,k

D )∗)

)
, Ψ =

(
ψb

ψ

)
.

As before, we denote by

H = L2(∂D)× L2(∂D) and H1 = H 1(∂D)× L2(∂D).

It is clear that A(ω, δ) is a bounded linear operator from H to H1, i.e. A(ω, δ) ∈
L(H,H1). We first look at the limiting case when δ = 0. The operator A(ω, δ) is a
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perturbation of

A(ω, 0) =
(

SkbD −Sα,kD
− 1

2 I + Kkb,∗D 0

)
. (3.73)

We see that ω0 is a characteristic value of A(ω, 0) if and only if (ω0v
−1
b )

2

is a Neumann eigenvalue of D or (ω0v
−1)2 is a Dirichlet eigenvalue of Y\D

with α-quasi-periodicity on ∂Y . Since zero is a Neumann eigenvalue of D, 0 is
a characteristic value for the holomorphic operator-valued function A(ω, 0). By
noting that there is a positive lower bound for the other Neumann eigenvalues of D
and all the Dirichlet eigenvalues of Y\D with α-quasi-periodicity on ∂Y , we can
conclude the following result by the Gohberg-Sigal theory.

Lemma 3.5.1 For any δ sufficiently small, there exists one and only one charac-
teristic value ω0 = ω0(δ) in a neighborhood of the origin in the complex plane to
the holomorphic operator-valued function A(ω, δ). Moreover, ω0(0) = 0 and ω0
depends on δ continuously.

Asymptotic Behavior of the First Bloch Eigenfrequency ωα
1

In this section we assume α �= 0. We define

A0 := A(0, 0) =
( SD −Sα,0D
− 1

2I + K∗
D 0

)
, (3.74)

and let A∗
0 : H1 → H be the adjoint of A0. We choose an element ψ0 ∈ L2(∂D)

such that

( − 1

2
I + K∗

D

)[ψ0] = 0,
∫
∂D

ψ0 = 1.

We recall the definition (3.27) of the capacity of the setD, CapD , which is equivalent
to

SD[ψ0] = − 1

CapD
on ∂D. (3.75)

Then we can easily check that Ker(A0) and Ker(A∗
0) are spanned respectively by

Ψ0 =
(
ψ0

ψ̃0

)
and Φ0 =

(
0
1

)
,



3 Wave Interaction with Subwavelength Resonators 55

where ψ̃0 = (Sα,0D )−1SD[ψ0]. We now perturb A0 by a rank-one operator P0 from
H to H1 given by P0[Ψ ] := (Ψ,Ψ0)Φ0, and denote it by Ã0 = A0 + P0. Then the
followings hold:

(i) Ã0[Ψ0] = ‖Ψ0‖2Φ0, Ã0
∗[Φ0] = ‖Φ0‖2Ψ0;

(ii) The operator Ã0 and its adjoint Ã0
∗

are invertible in L(H,H1) and L(H1,H),
respectively.

Using (3.9), (3.10), (3.66), and (3.67), we can expand A(ω, δ) as

A(ω, δ) := A0 + B(ω, δ) = A0 + ωA1,0 + ω2A2,0 + ω3A3,0 + δA0,1 + δω2A2,1

+O(|ω|4 + |δω3|),
(3.76)

where

A1,0 =
(
v−1
b SD,1 0

0 0

)
, A2,0 =

(
v−2
b SD,2 −v−2SαD,1
v−2
b KD,2 0

)
, A3,0 =

(
v−3
b SD,3 0
v−3
b KD,3 0

)
,

A0,1 =
(

0 0
0 −( 1

2 + (K−α,0
D )∗)

)
, A2,1 =

(
0 0
0 −v−2KαD,1

)
.

From the above expansion, it follows that

A(ω, δ) = −ω2 v
−2
b |D|
CapD

− ω3v−3
b

ic1|D|
4π

+ c2δ + ωδ ic1c2v
−1
b CapD
4π

+O(|ω|4 + |δ| |ω|2 + |δ|2),
(3.77)

where

c1 := ‖ψ0‖2

‖ψ0‖2 + ‖ψ̃0‖2
, (3.78)

and

c2 :=
∫
∂D

ψ̃0
(
1/2 + K−α,0

D

)[χ∂D] dσ. (3.79)

We now solve A(ω, δ) = 0. It is clear that δ = O(ω2) and thus ω0(δ) = O(√δ).
We write

ω0(δ) = a1δ
1
2 + a2δ + O(δ 3

2 ),
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and get

− v−2
b |D|
CapD

(
a1δ

1
2 + a2δ + O(δ 3

2 )
)2 − ic1v

−3
b |D|
4π

(
a1δ

1
2 + a2δ + O(δ 3

2 )
)3

+ c2δ + ic1c2v
−1
b CapD
4π

(
a1δ

3
2 + a2δ

2 + O(δ 5
2 )

)
+ O(δ2) = 0.

From the coefficients of the δ and δ
3
2 terms, we obtain

−a2
1
v−2
b |D|
CapD

+ c2 = 0

and

2a1a2
−v−2

b |D|
CapD

− a3
1

ic1v
−3
b |D|
4π

+ a1
ic1c2v

−1
b CapD
4π

= 0,

which yields

a1 = ±
√
c2CapD

|D| vb and a2 = 0.

From the definition (3.68) of the α-quasi-periodic capacity, it follows that

c2 = CapD,α
CapD

.

Therefore, the following result from [7] holds.

Theorem 3.5.2 For α �= 0 and sufficiently small δ, we have

ωα1 = ωM
√

CapD,α
CapD

+ O(δ3/2), (3.80)

where ωM is defined in (3.26) by

ωM =
√
δCapD
|D| vb.
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Now from (3.80), we can see that

ωM,α := ωM
√

CapD,α
CapD

→ 0

as α → 0 because

(
(1/2)I + (K−α,0

D )∗
)
(Sα,0D )−1[χ∂D] → 0,

and so CapD,α → 0 as α → 0. Moreover, it is clear that ωM,α lies in a small
neighborhood of zero.

We define ω1∗ := maxα ωM,α . Then we deduce the following result regarding a
subwavelength band gap opening.

Theorem 3.5.3 For every ε > 0, there exists δ0 > 0 and ω̃ > ω1∗ + ε such that

[ω1∗ + ε, ω̃] ⊂ [max
α
ωα1 ,min

α
ωα2 ] (3.81)

for δ < δ0.

Proof Using ω0
1 = 0 and the continuity of ωα1 in α and δ, we get α0 and δ1 such

that ωα1 < ω1∗ for every |α| < α0 and δ < δ1. Following the derivation of (3.80),
we can check that it is valid uniformly in α as far as |α| ≥ α0. Thus there exists
δ0 < δ1 such ωα1 ≤ ω1∗ + ε for |α| ≥ α0. We have shown that maxα ωα1 ≤ ω1∗ + ε for
sufficiently small δ. To have minα ωα2 > ω

1∗ + ε for small δ, it is enough to check
that A(ω, δ) has no small characteristic value other than ωα1 . For α away from 0, we
can see that it is true following the proof of Theorem 3.5.2. If α = 0, we have

A(ω, δ) = A(ω, 0)+ O(δ), (3.82)

near ω0
2 with δ = 0. Since ω0

2 �= 0, we have ω0
2(δ) > ω

1∗ + ε for sufficiently small
δ. Finally, using the continuity of ωα2 in α, we obtain minα ωα2 > ω

1∗ + ε for small
δ. This completes the proof. ��

As shown in [12], the first Bloch eigenvalue ωα1 attains its maximum ω1∗ at α∗ =
(π, π, π) (i.e. the cornerM of the Brillouin zone). The proof relies on the variational
characterization (3.69) of the quasi-periodic capacity.

Theorem 3.5.4 Assume that D is symmetric with respect to {xj = 0} for j =
1, 2, 3. Then both CapD,α and ωα1 attain their maxima at α∗ = (π, π, π).

The results of Theorems 3.5.3 and 3.5.4 are illustrated in Fig. 3.6.
Next, we consider the behavior of the first Bloch eigenfunction. In [12] a

high-frequency homogenization approach for subwavelength resonators has been
developed. An asymptotic expansion of the Bloch eigenfunction near the critical
frequency has been computed. It is proved that the eigenfunction can be decomposed
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Fig. 3.6 Subwavelength band gap opening

into two parts: one is slowly varying and satisfies a homogenized equation, while the
other is periodic and varying at the microscopic scale. The microscopic oscillations
explain why these structures can be used to achieve super-focusing, while the
exponential decay of the slowly varying part proves the band gap opening above
the critical frequency.

We need the following lemma from [12].

Lemma 3.5.2 For ε > 0 small enough,

CapD,α∗+εα̃ = CapD,α∗ + ε2Λα̃D + O(ε4),

where Λα̃D is a negative semi-definite quadratic function of α̃:

v2
b

|D|Λ
α̃
D = −

∑
1≤i,j≤3

λij α̃i α̃j

with (λij ) being symmetric and positive semi-definite.

Assume that the resonators are arranged with period r > 0 and δ = O(r2). Then,
by a scaling argument, the critical frequency ωr∗ = (1/r)ω1∗ = O(1) as r → 0.
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Theorem 3.5.5 For ω near the critical frequency ωr∗: (ωr∗)2 − ω2 = O(r2), the

following asymptotic of the first Bloch eigenfunction uα∗/r+α̃
1,r holds:

u
α∗/r+α̃
1,r (x) = eĩα·x︸︷︷︸

macroscopic behavior

S
(x
r

)
︸ ︷︷ ︸

microscopic behavior

+ O(r).

The macroscopic plane wave eĩα·x satisfies:

∑
1≤i,j≤3

λij ∂i∂j ũ(x)+ (ωr∗)2 − ω2

δ
ũ(x) = 0.

If we write (ωr∗)2 − ω2 = βδ, then

∑
1≤i,j≤3

λij α̃i α̃j = β + O(r2).

Moreover, for β > 0, the plane wave Bloch eigenfunction satisfies the homogenized
equation for the crystal while the microscopic field is periodic and varies on the
scale of r . If β < 0, then the Bloch eigenfunction is exponentially growing or
decaying which is another way to see that a band gap opening occurs above the
critical frequency.

Theorem 3.5.5 shows that the super-focusing property at subwavelength scales
near the critical frequencyωr∗ holds true. Here, the mechanism is not due to effective
(high-contrast below ωr∗ and negative above ωr∗) properties of the medium. The
effective medium theory described in Sect. 3.4 is no longer valid in the nondilute
case.

Figure 3.7 shows a one-dimensional plot along the x1-axis of the real part of the
Bloch eigenfunction of the square lattice over many unit cells.

3.6 Topological Metamaterials

We begin this section by studying existence and consequences of a Dirac cone
singularity in a honeycomb structure. Dirac singularities are intimately connected
with topologically protected edge modes, and we then study such modes in an array
of subwavelength resonators.
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Fig. 3.7 Real part of the Bloch eigenfunction of the square lattice shown over many unit cells

3.6.1 Dirac Singularity

The classical example of a structure with a Dirac singularity is graphene, where this
singularity is responsible for many peculiar electronic properties. Graphene consists
of a single layer of carbon atoms in a honeycomb lattice, and in this section we study
a similar structure with subwavelength resonators.

In the homogenization theory of metamaterials, the goal is to map the meta-
material to a homogeneous material with some effective parameters. It has been
demonstrated in the previous section that this approach does not apply in the case
of crystals at “high” frequencies, i.e., away from the centre Γ (corresponding to
α = (0, 0, 0)) of the Brillouin zone. In Theorem 3.5.5, it is shown that around the
symmetry point M (corresponding to α = (π, π, π)) in the Brillouin zone of a
crystal with a square lattice, the Bloch eigenmodes display oscillatory behaviour on
two distinct scales: small scale oscillations on the order of the size of individual
resonators, while simultaneously the plane-wave envelope oscillates at a much
larger scale and satisfies a homogenized equation.

In this section we prove the near-zero effective index property in a honeycomb
crystal at the deep subwavelength scale. We develop a homogenization theory that
captures both the macroscopic behaviour of the eigenmodes and the oscillations in
the microscopic scale. The near-zero effective refractive index at the macroscale is
a consequence of the existence of a Dirac dispersion cone.

We consider a two-dimensional infinite honeycomb crystal in two dimensions
depicted in Fig. 3.8. Define the lattice Λ generated by the lattice vectors

l1 = L
(√

3

2
,

1

2

)
, l2 = L

(√
3

2
,−1

2

)
,
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D2D1

Yl1

l2

x1

x0 x2

p

Fig. 3.8 Illustration of the honeycomb crystal and quantities in Y

where L is the lattice constant. Denote by Y a fundamental domain of the given
lattice. Here, we take

Y := {sl1 + tl2 | 0 ≤ s, t ≤ 1} .

Define the three points x0, x1, and x2 as

x0 = l1 + l2
2

, x1 = l1 + l2
3

, x2 = 2(l1 + l2)
3

.

We will consider a general shape of the subwavelength resonators, under certain
symmetry assumptions. Let R0 be the rotation around x0 by π , and let R1 and R2 be
the rotations by − 2π

3 around x1 and x2, respectively. These rotations can be written
as

R1x = Rx + l1, R2x = Rx + 2l1, R0x = 2x0 − x,

whereR is the rotation by − 2π
3 around the origin. Moreover, let R3 be the reflection

across the line p = x0+Re2, where e2 is the second standard basis element. Assume
that the unit cell contains two subwavelength resonatorsDj , j = 1, 2, each centred
at xj such that

R0D1 = D2, R1D1 = D1, R2D2 = D2, R3D1 = D2.

We denote the pair of subwavelength resonators by D = D1 ∪D2. The dual lattice
of Λ, denotedΛ∗, is generated by α1 and α2 given by

α1 = 2π

L

(
1√
3
, 1

)
, α2 = 2π

L

(
1√
3
,−1

)
.
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Fig. 3.9 Illustration of the
dual lattice and the Brillouin
zone Y ∗

α1

α2

Y ∗

α∗
1

α∗
2

Γ

Y ∗
1YY

The Brillouin zone Y ∗ := R
2/Λ∗ can be represented either as

Y ∗ � {sα1 + tα2 | 0 ≤ s, t ≤ 1} ,

or as the first Brillouin zone Y ∗
1 , which is a hexagon illustrated in Fig. 3.9. The points

α∗
1 = 2α1 + α2

3
, α∗

2 = α1 + 2α2

3
,

in the Brillouin zone are called Dirac points. For simplicity, we only consider
the analysis around the Dirac point α∗ := α∗

1 , the main difference around α∗
2 is

summarized in Remark 3.6.1.
Wave propagation in the honeycomb lattices of subwavelength resonators is

described by the following α-quasi-periodic Helmholtz problem in Y :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ · 1

ρ
∇u+ ω2

κ
u = 0 in Y\D,

∇ · 1

ρb
∇u+ ω2

κb
u = 0 in D,

u|+ − u|− = 0 on ∂D,
1

ρ

∂u

∂ν

∣∣∣∣+ − 1

ρb

∂u

∂ν

∣∣∣∣− = 0 on ∂D,

u(x + l) = eiα·lu(x) for all l ∈ Λ.

(3.83)

Let ψαj ∈ L2(∂D) be given by

Sα,0D [ψαj ] = χ∂Dj on ∂D, j = 1, 2. (3.84)
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Define the capacitance matrix Cα = (Cαij ) by

Cαij := −
∫
∂Di

ψαj dσ, i, j = 1, 2. (3.85)

Using the symmetry of the honeycomb structure, it can be shown that the capaci-
tance coefficients satisfy [18]

cα1 := Cα11 = Cα22, cα2 := Cα12 = Cα21,

and

∇αcα1
∣∣∣
α=α∗ = 0, ∇αcα2

∣∣∣
α=α∗ = c

(
1
−i

)
, (3.86)

where we denote

c := ∂cα2

∂α1

∣∣∣
α=α∗ �= 0,

as proved in [18, Lemma 3.4].
It is shown in [18] that the first two band functions ωα1 and ωα2 form a conical

dispersion relation near the Dirac point α∗. Such a conical dispersion is referred
to as a Dirac cone. More specifically, the following results which hold in the
subwavelength regime are proved in [18].

Theorem 3.6.1 For small δ, the first two band functions ωαj , j = 1, 2, satisfy

ωαj =
√
δλαj

|D1|vb + O(δ), (3.87)

uniformly for α in a neighbourhood of α∗, where λαj , j = 1, 2, are the two
eigenvalues ofCα and |D1| denotes the area of one of the subwavelength resonators.
Moreover, for α close to α∗ and δ small enough, the first two band functions form a
Dirac cone, i.e.,

ωα1 = ω∗ − λ|α − α∗|
[
1 + O(|α − α∗|)

]
,

ωα2 = ω∗ + λ|α − α∗|
[
1 + O(|α − α∗|)

]
,

(3.88)

where ω∗ and λ are independent of α and satisfy

ω∗ =
√
δc
α∗
1

|D1|vb + O(δ) and λ = |c|√δλ0 + O(δ), λ0 = 1

2

√
v2
b

|D1|cα∗
1
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Fig. 3.10 Band gap structure upon zooming in the subwavelength region for a honeycomb lattice
of subwavelength resonators
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Fig. 3.11 The band gap structure upon zooming in the subwavelength region for a rectangular
array of subwavelength dimers

as δ → 0. Moreover, the error term O(|α − α∗|) in (3.88) is uniform in δ.

The results in Theorem 3.6.1 are illustrated in Fig. 3.10. The figure shows the
first three bands. Observe that the first two bands cross at the symmetry point
K (corresponding to α∗) such that the dispersion relation is linear. Figure 3.11
shows the band gap structure in the subwavelength region for a rectangular array
of subwavelength dimers. For such arrays, the two first bands cannot cross each
other.

Next we investigate the asymptotic behaviour of the Bloch eigenfunctions near
the Dirac points. Then we show that the envelopes of the Bloch eigenfunctions
satisfy a Helmholtz equation with near-zero effective refractive index and derive
a two-dimensional homogenized equation of Dirac-type for the honeycomb crystal.
These results are from [19].

We consider the rescaled honeycomb crystal by replacing the lattice constant L
with rL where r > 0 is a small positive parameter. Let ωαj , j = 1, 2, be the first
two eigenvalues and uαj be the associated Bloch eigenfunctions for the honeycomb
crystal with lattice constant L. Then, by a scaling argument, the honeycomb crystal
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with lattice constant rL has the first two Bloch eigenvalues

ω
α/r
±,r = 1

r
ωα±,

and the corresponding eigenfunctions are

u
α/r
±,r (x) = uα±

(x
r

)
.

This shows that the Dirac cone is located at the point α∗/r . We denote the Dirac
frequency by

ωr∗ = 1

r
ω∗.

We have the following result for the Bloch eigenfunctions uα/rj,r , j = 1, 2, for
α/r near the Dirac points α∗/r [19].

Lemma 3.6.1 We have

u
α∗/r+α̃±,r (x) = A±eĩα·xS1

(x
r

)
+ B±eĩα·xS2

(x
r

)
+ O(δ + r),

where

Sj (x) = Sα∗,0
D [ψα∗

j ](x), j = 1, 2.

The functions S1 and S2 describe the microscopic behaviour of the Bloch eigenfunc-
tion uα∗/r+α̃±,r while A±eĩα·x and B±eiα̃·x describe the macroscopic behaviour.

Now, we derive a homogenized equation near the Dirac frequencyωr∗. Recall that
the Dirac frequency of the unscaled honeycomb crystal satisfies ω∗ = O(√δ). As
in Theorem 3.5.4, in order to make the order of ωr∗ fixed when r tends to zero, we
assume that δ = μr2 for some fixed μ > 0. Then we have

ωr∗ = 1

r
ω∗ = O(1) as r → 0.

So, in what follows, we omit the subscript r in ωr∗, namely, ω∗ := ωr∗. Suppose the
frequency ω is close to ω∗, i.e.,

ω − ω∗ = β√δ for some constant β.

We need to find the Bloch eigenfunctions or α̃ such that

ω = ωα∗/r+α̃±,r .
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We have that the corresponding α̃ satisfies

λ0

[
0 c(̃α1 − ĩα2)

c(̃α1 + ĩα2) 0

] [
A±
B±

]
= β

[
A±
B±

]
+ O(s).

So, it is immediate to see that the macroscopic field

[ũ1, ũ2]T := [A±eiα̃·x, B±eiα̃·x]T

satisfies the system of Dirac equations as follows:

λ0

[
0 (−ci)(∂1 − i∂2)

(−ci)(∂1 + i∂2) 0

] [
ũ1

ũ2

]
= β

[
ũ1

ũ2

]
.

Here, the superscript T denotes the transpose and ∂i is the partial derivative with
respect to the ith variable. Note that the each component ũj , j = 1, 2, of the
macroscopic field satisfies the Helmholtz equation

Δũj + β2

|c|2λ2
0

ũj = 0. (3.89)

Observe, in particular, that (3.89) describes a near-zero refractive index when β is
small.

The following is the main result on the homogenization theory for honeycomb
lattices of subwavelength resonators [19].

Theorem 3.6.2 For frequencies ω close to the Dirac frequency ω∗, namely, ω −
ω∗ = β√δ, the following asymptotic behaviour of the Bloch eigenfunction uα∗/r+α̃

r

holds:

u
α∗/r+α̃
r (x) = Aeiα̃·xS1

(x
s

)
+ Beiα̃·xS2

(x
s

)
+ O(s),

where the macroscopic field

[ũ1, ũ2]T := [Aeiα̃·x, Beiα̃·x]T

satisfies the two-dimensional Dirac equation

λ0

[
0 (−ci)(∂1 − i∂2)

(−ci)(∂1 + i∂2) 0

] [
ũ1

ũ2

]
= ω − ω∗√

δ

[
ũ1

ũ2

]
,

which can be considered as a homogenized equation for the honeycomb lattice of
subwavelength resonators while the microscopic fields S1 and S2 vary on the scale
of r .
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Fig. 3.12 Real part of the first Bloch eigenfunction of the honeycomb lattice shown over many
unit cells

Figure 3.12 shows a one-dimensional plot along the x1−axis of the real part of
the Bloch eigenfunction of the honeycomb lattice shown over many unit cells.

Remark 3.6.1 Theorem 3.6.2 is valid around the Dirac point α∗ = α∗
1 . Around the

other Dirac point, analogous arguments show that Theorem 3.6.2 is valid with all
quantities instead defined using α∗ = α∗

2 and the macroscopic field now satisfying

λ0

[
0 (−ci)(∂1 + i∂2)

(−ci)(∂1 − i∂2) 0

] [
ũ1

ũ2

]
= ω − ω∗√

δ

[
ũ1

ũ2

]
.

3.6.2 Topologically Protected Edge Modes

A typical way to enable localized modes is to create a cavity inside a band gap
structure. The idea is to make the frequency of the cavity mode fall within the band
gap, whereby the mode will be localized to the cavity. However, localized modes
created this way are highly sensitive to imperfections of the structure.

The principle that underpins the design of robust structures is that one is
able to define topological invariants which capture the crystal’s wave propagation
properties. Then, if part of a crystalline structure is replaced with an arrangement
that is associated with a different value of this invariant, not only will certain
frequencies be localized to the interface but this behaviour will be stable with respect
to imperfections. These eigenmodes are known as edge modes and we say that they
are topologically protected to refer to their robustness.
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Fig. 3.13 Illustration of the defect crystal and the defect mode

Sensitivity to Geometric Imperfections

Subwavelength metamaterials can be used to achieve cavities of subwavelength
dimensions. The key idea is to perturb the size of a single subwavelength resonator
inside the crystal, thus creating a defect mode. Observe that if we remove one
resonator inside the crystal, we cannot create a defect mode. The defect created
in this fashion is actually too small to support a resonant mode. In [9], it is
proved that by perturbing the radius of one resonator (see Fig. 3.13 where Dε is
the defect resonator) we create a detuned resonator with a resonant frequency that
fall within the subwavelength band gap. Moreover, it is shown that the way to shift
the frequency into the band gap depends on the crystal: in the dilute regime we
have to decrease the defect resonator size while in the non-dilute regime we have to
increase the size.

In [20], a waveguide is created by modifying the sizes of the resonators along a
line in a dilute two-dimensional crystal, thereby creating a line defect. It is proved
that the line defect indeed acts as a waveguide; waves of certain frequencies will be
localized to, and guided along, the line defect. This is depicted in Fig. 3.14.

In wave localization due to a point defect, if the defect size is small the band
structure of the defect problem will be a small perturbation of the band structure of
the original problem. This way, it is possible to shift the defect band upwards, and a
part of the defect band will fall into the subwavelength band gap. In [20] it is shown
that for arbitrarily small defects, a part of the defect band will lie inside the band
gap. Moreover, it is shown that for suitably large perturbation sizes, the entire defect
band will fall into the band gap, and the size of the perturbation needed in order to
achieve this can be explicitly quantified. In order to have guided waves along the line
defect, the defect mode must not only be localized to the line, but also propagating
along the line. In other words, we must exclude the case of standing waves in the
line defect, i.e., modes which are localized in the direction of the line. Such modes
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· · ·· · ·
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Fig. 3.14 Illustration of the line defect and the guided mode
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Fig. 3.15 Frequencies of the defect modes and guided waves

are associated to a point spectrum of the perturbed operator which appears as a flat
band in the dispersion relation. In [20], it is shown that the defect band is nowhere
flat, and hence does not correspond to bound modes in the direction of the line.

One fundamental limitation of the above designs of subwavelength cavities and
waveguides is that their properties are often very sensitive to imperfections in
the crystal’s structure. This is due, as illustrated in Fig. 3.15, to the fact that the
frequencies of the defect modes and guided waves are very close to the original
band. In order to be able to feasibly manufacture wave-guiding devices, it is
important that we are able to design subwavelength crystals that exhibit stability
with respect to geometric errors.

Robustness Properties of One-Dimensional Chains of Subwavelength
Resonators with Respect to Imperfections

In the case of one-dimensional crystals such as a chain of subwavelength resonators,
the natural choice of topological invariant is the Zak phase [35]. Qualitatively, a non-
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Interface

Fig. 3.16 When two crystals with different values of the topological invariant are joined together,
a topologically protected edge mode exists at the interface

zero Zak phase means that the crystal has undergone band inversion, meaning that
at some point in the Brillouin zone the monopole/dipole nature of the first/second
Bloch eigenmodes has swapped. In this way, the Zak phase captures the crystal’s
wave propagation properties. If one takes two chains of subwavelength resonators
with different Zak phases and joins half of one chain to half of the other to form
a new crystal, this crystal will exhibit a topologically protected edge mode at the
interface, as illustrated in Fig. 3.16.

In [15], the bulk properties of an infinitely periodic chain of subwavelength res-
onator dimers are studied. Using Floquet-Bloch theory, the resonant frequencies and
associated eigenmodes of this crystal are derived, and further a non-trivial band gap
is proved. The analogous Zak phase takes different values for different geometries
and in the dilute regime (that is, when the distance between the resonators is an
order of magnitude greater than their size) explicit expressions for its value are
given. Guided by this knowledge of how the infinite (bulk) chains behave, a finite
chain of resonator dimers that has a topologically protected edge mode is designed.
This configuration takes inspiration from the bulk-boundary correspondence in the
well-known Su-Schrieffer-Heeger (SSH) model [34] by introducing an interface, on
either side of which the resonator dimers can be associated with different Zak phases
thus creating a topologically protected edge mode.

In order to present the main results obtained in [15], we first briefly review the
topological nature of the Bloch eigenbundle. Observe that the Brillouin zone Y ∗ has
the topology of a circle. A natural question to ask, when considering the topological
properties of a crystal, is whether properties are preserved after parallel transport
around Y ∗. In particular, a powerful quantity to study is the Berry-Simon connection
An, defined as

An(α) := i
∫
D

uαn
∂

∂α
uαn dx.

For any α1, α2 ∈ Y ∗, the parallel transport from α1 to α2 is uα1
n �→ eiθu

α2
n , where θ

is given by

θ =
∫ α2

α1

An(α) dα.

Thus, it is enlightening to introduce the so-called Zak phase, ϕzn, defined as
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ϕzn := i
∫
Y ∗

∫
D

uαn
∂

∂α
uαn dx dα,

which corresponds to parallel transport around the whole of Y ∗. When ϕzn takes a
value that is not a multiple of 2π , we see that the eigenmode has gained a non-
zero phase after parallel transport around the circular domain Y ∗. In this way, the
Zak phase captures topological properties of the crystal. For crystals with inversion
symmetry, the Zak phase is known to only attain the values 0 or π [35].

Next, we study a periodic arrangement of subwavelength resonator dimers. This
is an analogue of the SSH model. The goal is to derive a topological invariant
which characterises the crystal’s wave propagation properties and indicates when
it supports topologically protected edge modes.

Assume we have a one-dimensional crystal in R
3 with repeating unit cell Y :=

[−L
2 ,
L
2 ] × R

2. Each unit cell contains a dimer surrounded by some background
medium. Suppose the resonators together occupy the domain D := D1 ∪ D2. We
need two assumptions of symmetry for the analysis that follows. The first is that
each individual resonator is symmetric in the sense that there exists some x1 ∈ R

such that

R1D1 = D1, R2D2 = D2, (3.90)

where R1 and R2 are the reflections in the planes p1 = {−x1} × R
2 and p2 =

{x1} × R
2, respectively. We also assume that the dimer is symmetric in the sense

that

D = −D. (3.91)

Denote the full crystal by C, that is,

C :=
⋃
m∈Z

(D + (mL, 0, 0)) . (3.92)

We denote the separation of the resonators within each unit cell, along the first
coordinate axis, by d := 2x1 and the separation across the boundary of the unit cell
by d ′ := L− d . See Fig. 3.17.

Wave propagation inside the infinite periodic structure is modelled by the
Helmholtz problem

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Δu+ ω2u = 0 in R
3 \ ∂C,

u|+ − u|− = 0 on ∂C,
δ
∂u

∂ν

∣∣∣∣+ − ∂u

∂ν

∣∣∣∣− = 0 on ∂C,

u(x1, x2, x3) satisfies the outgoing radiation condition as
√
x2

2 + x2
3 → ∞.

(3.93)
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Y

Fig. 3.17 Example of a two-dimensional cross-section of a chain of subwavelength resonators
satisfying the symmetry assumptions (3.90) and (3.91). The repeating unit cell Y contains the
dimer D1 ∪D2

By applying the Floquet transform, the Bloch eigenmode uα(x) := U[u](x, α) is
the solution to the Helmholtz problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δuα + ω2uα = 0 in R
3 \ ∂C,

uα |+ − uα |− = 0 on ∂C,
δ
∂uα

∂ν

∣∣∣∣+ − ∂uα

∂ν

∣∣∣∣− = 0 on ∂C,
e−iα1x1uα(x1, x2, x3) is periodic in x1,

uα(x1, x2, x3) satisfies the α-quasi-periodic outgoing radiation condition

as
√
x2

2 + x2
3 → ∞.

(3.94)

We formulate the quasi-periodic resonance problem as an integral equation. Let
Sα,ωD be the single layer potential associated to the three-dimensional Green’s
function which is quasi-periodic in one dimension,

Gα,k(x, y) := −
∑
m∈Z

eik|x−y−(Lm,0,0)|

4π |x − y − (Lm, 0, 0)|e
iαLm.

The solution uα of (3.94) can be represented as

uα = Sα,ωD [Ψ α],

for some density Ψ α ∈ L2(∂D). Then, using the jump relations, it can be shown
that (3.94) is equivalent to the boundary integral equation

Aα(ω, δ)[Ψ α] = 0, (3.95)
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where

Aα(ω, δ) := −λI +
(
K−α,ω
D

)∗
, λ := 1 + δ

2(1 − δ) . (3.96)

Let V αj be the solution to

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ΔV αj = 0 in Y \D,
V αj = δij on ∂Di,

V αj (x + (mL, 0, 0)) = eiαmV αj (x) ∀m ∈ Z,

V αj (x1, x2, x3) = O
(

1√
x2

2+x2
3

)
as

√
x2

2 + x2
2 → ∞, uniformly in x1,

(3.97)

where δij is the Kronecker delta. Analogously to (3.85), we then define the quasi-
periodic capacitance matrix Cα = (Cαij ) by

Cαij :=
∫
Y\D

∇V αi · ∇V αj dx, i, j = 1, 2. (3.98)

Finding the eigenpairs of this matrix represents a leading order approximation to the
differential problem (3.94). The following properties of Cα are useful.

Lemma 3.6.2 The matrix Cα is Hermitian with constant diagonal, i.e.,

Cα11 = Cα22 ∈ R, Cα12 = Cα21 ∈ C.

Since Cα is Hermitian, the following lemma follows directly.

Lemma 3.6.3 The eigenvalues and corresponding eigenvectors of the quasi-
periodic capacitance matrix are given by

λα1 = Cα11 − ∣∣Cα12

∣∣ ,
(
a1

b1

)
= 1√

2

(−eiθα

1

)
,

λα2 = Cα11 + ∣∣Cα12

∣∣ ,
(
a2

b2

)
= 1√

2

(
eiθα

1

)
,

where, for α such that Cα12 �= 0, θα ∈ [0, 2π) is defined to be such that

eiθα = Cα12

|Cα12|
. (3.99)

In the dilute regime, we are able to compute asymptotic expansions for the band
structure and topological properties. In this regime, we assume that the resonators
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can be obtained by rescaling fixed domains B1, B2 as follows:

D1 = εB1 −
(
d

2
, 0, 0

)
, D2 = εB2 +

(
d

2
, 0, 0

)
, (3.100)

for some small parameter ε > 0.
Let CapB denote the capacity of B = Bi for i = 1 or i = 2 (see (3.27) for the

definition of the capacity). Due to symmetry, the capacitance is the same for the two
choices i = 1, 2. It is easy to see that, by a scaling argument,

CapεB = εCapB. (3.101)

Lemma 3.6.4 We assume that the resonators are in the dilute regime specified by
(3.100). We also assume that α �= 0 is fixed. Then we have the following asymptotics
of the capacitance matrix Cαij as ε → 0:

Cα11 = εCapB − (εCapB)
2

4π

∑
m�=0

eimαL

|mL| + O(ε3), (3.102)

Cα12 = − (εCapB)
2

4π

∞∑
m=−∞

eimαL

|mL+ d| + O(ε3). (3.103)

Taking the imaginary part of (3.103), the corresponding asymptotic formula holds
uniformly in α ∈ Y ∗.

Define normalized extensions of V αj as

Sαj (x) :=
⎧⎨
⎩

1√|D1|δij x ∈ Di, i = 1, 2,
1√|D1|V

α
j (x) x ∈ Y \D,

where |D1| is the volume of one of the resonators (|D1| = |D2| thanks to the dimer’s
symmetry (3.91)). The following two approximation results hold.

Theorem 3.6.3 The characteristic values ωαj = ωαj (δ), j = 1, 2, of the operator
Aα(ω, δ), defined in (3.96), can be approximated as

ωαj =
√
δλαj

|D1| + O(δ),

where λαj , j = 1, 2, are eigenvalues of the quasi-periodic capacitance matrix Cα .
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Fig. 3.18 Reflections taking D toD′

Theorem 3.6.4 The Bloch eigenmodes uαj , j = 1, 2, corresponding to the
resonances ωαj , can be approximated as

uαj (x) = ajSα1 (x)+ bjSα2 (x)+ O(δ),

where
(
aj
bj

)
, j = 1, 2, are the eigenvectors of the quasi-periodic capacitance

matrix Cα , as given by Lemma 3.6.3.

Theorems 3.6.3 and 3.6.4 show that the capacitance matrix can be considered to
be a discrete approximation of the differential problem (3.94), since its eigenpairs
directly determine the resonant frequencies and the Bloch eigenmodes (at leading
order in δ).

We now introduce notation which, thanks to the assumed symmetry of the
resonators, will allow us to prove topological properties of the chain. Divide Y into
two subsets Y = Y1 ∪ Y2, where Y1 := [−L

2 , 0] × R
2 and let Y2 := [0, L2 ] × R

2,
as depicted in Fig. 3.18. Define q1 and q2 to be the central planes of Y1 and Y2, that
is, the planes q1 := {−L

4 } × R
2 and q2 := {L4 } × R

2. Let R1 and R2 be reflections
in the respective planes. Observe that, thanks to the assumed symmetry of each
resonator (3.90), the “complementary” dimer D′ = D′

1 ∪ D′
2, given by swapping

d and d ′, satisfies D′
i = RiDi for i = 1, 2. Define the operator Tα on the set of

α-quasi-periodic functions f on Y as

Tαf (x) :=
{
e−iαLf (R1x), x ∈ Y1,

f (R2x), x ∈ Y2,

where the factor e−iαL is chosen so that the image of a continuous (α-quasi-
periodic) function is continuous.

We now proceed to use Tα to analyse the different topological properties of the
two dimer configurations. Define the quantity Cα12

′ analogously to Cα12 but on the
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dimer D′, that is, to be the top-right element of the corresponding quasi-periodic
capacitance matrix, defined in (3.98).

Lemma 3.6.5 We have

Cα12
′ = e−iαLCα12.

Consequently, if d = d ′ = L
2 then Cπ/L12 = 0.

Lemma 3.6.6 We assume that D is in the dilute regime specified by (3.100). Then,
for ε small enough,

(i) Im Cα12 > 0 for 0 < α < π/L and Im Cα12 < 0 for −π/L < α < 0. In
particular, Im Cα12 is zero if and only if α ∈ {0, π/L}.

(ii) Cα12 is zero if and only if both d = d ′ and α = π/L.

(iii) Cπ/L12 < 0 when d < d ′ and Cπ/L12 > 0 when d > d ′. In both cases we have
C0

12 < 0.

This lemma describes the crucial properties of the behaviour of the curve {Cα12 :
α ∈ Y ∗} in the complex plane. The periodic nature of Y ∗ means that this is a closed
curve. Part (i) tells us that this curve crosses the real axis in precisely two points.
Taken together with (iii), we know that this curve winds around the origin in the
case d > d ′, but not in the case d < d ′. The following band gap result is from [13].

Theorem 3.6.5 If d �= d ′, the first and second bands form a band gap:

max
α∈Y ∗ ω

α
1 < min

α∈Y ∗ ω
α
2 ,

for small enough ε and δ.

Combining the above results, we obtain the following result concerning the band
inversion that takes place between the two geometric regimes d < d ′ and d > d ′ as
illustrated in Fig. 3.19.

Proposition 3.6.1 For ε small enough, the band structure at α = π/L is inverted
between the d < d ′ and d > d ′ regimes. In other words, the eigenfunctions
associated with the first and second bands at α = π/L are given, respectively,
by

u
π/L

1 (x) = Sπ/L1 (x)+ Sπ/L2 (x) + O(δ), u
π/L

2 (x) = Sπ/L1 (x) − Sπ/L2 (x) + O(δ),

when d < d ′ and by

u
π/L

1 (x) = Sπ/L1 (x)− Sπ/L2 (x) + O(δ), u
π/L

2 (x) = Sπ/L1 (x) + Sπ/L2 (x) + O(δ),

when d > d ′.
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Fig. 3.19 Band inversion: the monopole/dipole natures of the 1st and 2nd eigenmodes have
swapped between the d < d ′ and d > d ′ regimes

The eigenmode Sπ/L1 (x) + S
π/L

2 (x) is constant and attains the same value on

both resonators, while the eigenmode Sπ/L1 (x) − S
π/L

2 (x) has values of opposite
sign on the two resonators. They therefore correspond, respectively, to monopole
and dipole modes, and Proposition 3.6.1 shows that the monopole/dipole nature
of the first two Bloch eigenmodes are swapped between the two regimes. We will
now proceed to define a topological invariant which we will use to characterise the
topology of a chain and prove how its value depends on the relative sizes of d and
d ′. This invariant is intimately connected with the band inversion phenomenon and
is non-trivial only if d > d ′ [15].

Theorem 3.6.6 We assume thatD is in the dilute regime specified by (3.100). Then
the Zak phase ϕzj , j = 1, 2, defined by

ϕzj := i
∫
Y ∗

∫
D

uαj
∂

∂α
uαj dx dα,

satisfies

ϕzj =
{

0, if d < d ′,
π, if d > d ′,

for ε and δ small enough.

Theorem 3.6.6 shows that the Zak phase of the crystal is non-zero precisely when
d > d ′. The bulk-boundary correspondence suggests that we can create topolog-
ically protected subwavelength edge modes by joining half-space subwavelength
crystals, one with ϕzj = 0 and the other with ϕzj = π .

Remark 3.6.2 A second approach to creating chains with robust subwavelength
localized modes is to start with a one-dimensional array of pairs of subwavelength
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resonators that exhibits a subwavelength band gap. We then introduce a defect by
adding a dislocation within one of the resonator pairs. As shown in [13], as a result
of this dislocation, mid-gap frequencies enter the band gap from either side and
converge to a single frequency, within the band gap, as the dislocation becomes
arbitrarily large. Such frequency can place localized modes at any point within the
band gap and corresponds to a robust edge modes.

3.7 Mimicking the Cochlea with an Array of Graded
Subwavelength Resonators

In [1] an array of subwavelength resonators is used to design a to-scale artificial
cochlea that mimics the first stage of human auditory processing and present
a rigorous analysis of its properties. In order to replicate the spatial frequency
separation of the cochlea, the array should have a size gradient, meaning each
resonator is slightly larger than the previous, as depicted in Fig. 3.20. The size
gradient is chosen so that the resonator array mimics the spatial frequency separation
performed by the cochlea. In particular, the structure can reproduce the well-known
(tonotopic) relationship between incident frequency and position of maximum
excitation in the cochlea. This is a consequence of the asymmetry of the eigenmodes
un(x), see [1] and [3] for details.

Such graded arrays of subwavelength resonators can mimic the biomechan-
ical properties of the cochlea, at the same scale. In [2], a modal time-domain
expansion for the scattered pressure field due to such a structure is derived
from first principles. It is proposed there that these modes should form the
basis of a signal processing architecture. The properties of such an approach
is investigated and it is shown that higher-order gammatone filters appear by
cascading. Further, an approach for extracting meaningful global properties from
the coefficients, tailored to the statistical properties of so-called natural sounds is
proposed.

The subwavelength resonant frequencies of an array of N = 22 resonators
computed by using the formulation (3.14)–(3.15) are shown in Fig. 3.21. This array
measures 35 mm, has material parameters corresponding to air-filled resonators
surrounded by water and has subwavelength resonant frequencies within the range

� wavelength

ρ, κ
ρb, κb

sound
wave

Fig. 3.20 A graded array of subwavelength resonators mimics the biomechanical properties of the
cochlea in response to a sound wave
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Fig. 3.21 The resonant frequencies {ωn : n = 1, . . . , N} ⊂ C lie in the right-hand complex
plane, shown for an array of N = 22 subwavelength resonators. The Helmholtz problem also has
singularities in the left-hand plane, which are symmetric in the imaginary axis. The imaginary parts
are all negative, due to energy losses

500 Hz–10 kHz. Thus, this structure has similar dimensions to the human cochlea, is
made from realistic materials and experiences subwavelength resonance in response
to frequencies that are audible to humans.

This analysis is useful not only for designing cochlea-like devices, but is also
used in [2] as the basis for a machine hearing procedure which mimics neural
processing in the auditory system. Consider the scattering of a signal, s : [0, T ] →
R, whose frequency support is wider than a single frequency and whose Fourier
transform exists. Consider the Fourier transform of the incoming pressure wave,
given for ω ∈ C and x ∈ R

3 by

uin(x, ω) =
∫ ∞

−∞
s(x1/v − t)eiωt dt

= eiωx1/vŝ(ω) = ŝ(ω)+ O(ω),

where ŝ(ω) := ∫ ∞
−∞ s(−u)eiωu du. In Theorem 3.2.1, we defined resonant

frequencies as having positive real parts. However, the scattering problem (3.4) is
known to be symmetric in the sense that if it has a pole at ω ∈ C then it has a
pole with the same multiplicity at −ω [21]. As depicted in Fig. 3.21, this means the
resonant spectrum is symmetric in the imaginary axis.

Suppose that the scattered acoustic pressure field u in response to the Fourier
transformed signal ŝ can, for x ∈ ∂D, be decomposed as

u(x, ω) =
N∑
n=1

−ŝ(ω)νn Re(ω+
n )

2

(ω − ωn)(ω + ωn)un(x)+ r(x, ω), (3.104)
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for some remainder r . We are interested in signals whose energy is mostly
concentrated within the subwavelength regime. In particular, we want that

sup
x∈R3

∫ ∞

−∞
|r(x, ω)| dω = O(δ). (3.105)

Then, under the assumptions (3.104) and (3.105), we can apply the inverse Fourier
transform [2] to find that the scattered pressure field satisfies, for x ∈ ∂D and t ∈ R,

p(x, t) =
N∑
n=1

an[s](t)un(x)+ O(δ), (3.106)

where the coefficients are given by the convolutions an[s](t) = (s ∗ hn) (t) with the
kernels

hn(t) =
{

0, t < 0,

cne
Im(ωn)t sin(Re(ωn)t), t ≥ 0,

(3.107)

for cn = νn Re(ωn).

Remark 3.7.1 The assumption (3.105) is a little difficult to interpret physically. For
the purposes of informing signal processing approaches, however, it is sufficient.

On the one hand, note that the fact that hn(t) = 0 for t < 0 ensures the
causality of the modal expansion in (3.106). Moreover, as shown in Fig. 3.22, hn
is a windowed oscillatory mode that acts as a band-pass filter centred at Re(ωn).
On the other hand, the asymmetry of the spatial eigenmodes un(x) means that the
decomposition from (3.106) replicates the cochlea’s travelling wave behaviour. That
is, in response to an impulse the position of maximum amplitude moves slowly from
left to right in the array, see [1] for details. In [2], a signal processing architecture

Fig. 3.22 The frequency support of the band-pass filters hn created by an array of 22 subwave-
length resonators
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is developed, based on the convolutional structure of (3.106). This further mimics
the action of biological auditory processing by extracting global properties of
behaviourally significant sounds, to which human hearing is known to be adapted.

Finally, it is worth mentioning that biological hearing is an inherently nonlinear
process. In [3] nonlinear amplification is introduced to the model in order to
replicate the behaviour of the cochlear amplifier. This active structure takes the
form of a fluid-coupled array of Hopf resonators. Clarifying the details of the
nonlinearities that underpin cochlear function remains the largest open question in
understanding biological hearing. One of the motivations for developing devices
such as the one analysed here is that it will allow for the investigation of these
mechanisms, which is particularly difficult to do on biological cochleas.

3.8 Concluding Remarks

In this review, recent mathematical results on focusing, trapping, and guiding waves
at subwavelength scales have been described in the Hermitian case. Systems of sub-
wavelength resonators that exhibit topologically protected edge modes or that can
mimic the biomechanical properties of the cochlea have been designed. A variety of
mathematical tools for solving wave propagation problems at subwavelength scales
have been introduced.

When sources of energy gain and loss are introduced to a wave-scattering system,
the underlying mathematical formulation will be non-Hermitian. This paves the way
for new ways to control waves at subwavelength scales [22, 25, 32]. In [14, 16],
the existence of asymptotic exceptional points, where eigenvalues coincide and
eigenmodes are linearly dependent at leading order, in a parity–time-symmetric pair
of subwavelength resonators is proved. Systems exhibiting exceptional points can be
used for sensitivity enhancement. Moreover, a structure which exhibits asymptotic
unidirectional reflectionless transmission at certain frequencies is designed. In [4],
the phenomenon of topologically protected edge states in systems of subwavelength
resonators with gain and loss is studied. It is demonstrated that localized edge
modes appear in a periodic structure of subwavelength resonators with a defect
in the gain/loss distribution, and the corresponding frequencies and decay lengths
are explicitly computed. Similarly to the Hermitian case, these edge modes can
be attributed to the winding of the eigenmodes. In the non-Hermitian case the
topological invariants fail to be quantized, but can nevertheless predict the existence
of localized edge modes.

The codes used for the numerical illustrations of the results described in this
review can be downloaded at https://people.math.ethz.ch/~hammari/SWR.zip.

https://people.math.ethz.ch/~hammari/SWR.zip
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Chapter 4
Variational Methods with Application
to One-Dimensional Boundary Value
Problems and Numerical Evaluations

Marco Degiovanni

Abstract A Lagrangian system is considered, under one-sided growth conditions
on the Lagrangian function. The existence of a critical point of mountain pass type
is proved. An application to light rays is shown, with some numerical evaluations.

4.1 Introduction

After the intuitions of Gauss, Lord Kelvin, Dirichlet and Riemann in the nineteenth
century and the first rigorous results, about the turn of the century, by Hilbert and
Lebesgue, the direct methods of the calculus of variations took their modern form
in the twentieth century with the work of Tonelli. The first purpose was to prove that
a functional of the form

f (u) =
∫ s1

s0

L(s, u(s), u′(s)) ds

admits a global minimum ugm when u varies in a suitable set of functions. If we
suppose that

L : [s0, s1] × R
N × R

N → R

is continuous and that {ξ �→ L(s, x, ξ)} is convex, then the usual growth condition
to obtain such a result is one-sided, typically a suitable lower estimate ofL. We refer
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the reader to [5] for an exhaustive presentation of the problems and the techniques
involved in the study of global minima of the functional f .

A related question, when L is, say, of class C1, is to prove that each minimum u
of f satisfies the associated Euler-Lagrange equation

− [∇ξL(s, u, u′)
]′ + ∇xL(s, u, u′) = 0 in [s0, s1] .

This is an easy task, under suitable assumptions on ∇xL and ∇ξL, but in general it
is a hard question, also related to the regularity properties of u. We refer the reader
to [10] for this aspect of the problem.

The study of critical points of f , not only local minima, also started in the twenti-
eth century with the work of Birkhoff and was first developed by Morse, Ljusternik
and Schnirelman. Concerning this topic, we refer the reader e.g. to [23, 26, 27].
However, when critical points are involved, the typical growth conditions on L are
two-sided. This is due to the fact that, in the study of minima, f is usually assumed
to be lower semicontinuous while, in the study of critical points, f is supposed to
be of class C1. For this reason, the classic study of critical points does not appear as
a generalization of the study of minima.

In this exposition we will impose only one-sided growth conditions onL, exploit-
ing some ideas from [17], and the functional f will be only lower semicontinuous.
The structural assumptions will be described in Sect. 4.2. Nevertheless, we will
obtain results in the line of critical point theory, taking advantage of the metric
critical point theory developed independently in [13, 15] and in [20, 22], which will
be recalled in Sect. 4.3. In Sect. 4.4 we will adapt to our setting some basic result
from [5]. The main results of this exposition will be proved in Sect. 4.5, where we
will show how the metric critical point theory can be actually applied to the setting
described in Sect. 4.2.

A possible application concerns the variational approach to the study of light
rays, according to Fermat’s principle. In such a case the functional f is naturally
coercive, but it may admit more local minima, which raises the question of the
existence of further critical points, for instance of mountain pass type. For this
reason, in Sect. 4.6 we will focus on a coercive case and prove Theorem 4.6.3, which
is related to a result obtained in [19, 25] when the functional f is differentiable.
Finally, in Sect. 4.7 we will consider a simple example, concerning the propagation
of light in a nonhomogeneous medium, and we will provide some numerical
evaluations.

4.2 Setting of the Problem

Let N ≥ 1 and assume that

L : [s0, s1] × R
N × R

N → R
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satisfies:

(L1) for every s ∈ [s0, s1], the function {(x, ξ) �→ L(s, x, ξ)} is of class C1 and
the functions

L : [s0, s1] ×R
N ×R

N → R ,

∇xL , ∇ξL : [s0, s1] ×R
N × R

N → R
N

are continuous;
moreover, for every (s, x) ∈ [s0, s1] × R

N , the function {ξ �→ L(s, x, ξ)} is
strictly convex;

(L2) for every R,M > 0, there exists CR,M ≥ 0 such that

L(s, x, ξ) ≥ M|ξ | − CR,M
for all s ∈ [s0, s1] and x, ξ ∈ R

N with |x| ≤ R;
(L3) for every R, ε > 0, there exists δR,ε > 0 such that

L(s, x0 + t (x1 − x0), ξ0 + t (ξ1 − ξ0)) ≤ L(s, x0, ξ0)

+ t [L(s, x1, ξ1)− L(s, x0, ξ0)]

+ ε t [1 + |L(s, x0, ξ0)| + |L(s, x1, ξ1)|]

for all t ∈ [
0, δR,ε

]
, s ∈ [s0, s1] and x0, x1, ξ0, ξ1 ∈ R

N with |x0| ≤ R,
|x1| ≤ R and |x1 − x0| ≤ δR,ε.

In Proposition 4.5.1 we will provide a sufficient condition to guarantee assump-
tion (L3).

Given u0, u1 ∈ R
N , we are interested in the solutions u of the problem

⎧⎪⎪⎨
⎪⎪⎩
u ∈ C1([s0, s1];RN) , ∇ξL(s, u, u′) ∈ C1([s0, s1];RN) ,
− [∇ξL(s, u, u′)

]′ + ∇xL(s, u, u′) = 0 in [s0, s1] ,
u(s0) = u0 , u(s1) = u1 .

(P )

Problem (P ) has a variational structure. Consider the Banach space C([s0, s1];RN)
endowed with the sup norm ‖·‖∞. Taking into account (L1) and (L2), we can define
a functional

f : C([s0, s1];RN)→] − ∞,+∞]
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by

f (u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ s1

s0

L(s, u(s), u′(s)) ds if u ∈ W 1,1,(s0, s1;RN), u(s0) = u0

and u(s1) = u1 ,

+∞ otherwise .

We will see in Sect. 4.5 how to obtain solutions u of (P ) as “critical points” of f .

Remark 4.2.1 In the variational methods, also for nonsmooth functionals, each
minimum is considered as a “critical point”. Therefore, in order to obtain solutions
of (P ) by variational methods, it is reasonable to assume hypotheses that ensure that
each minimum u of f is a solution of (P ), at least in some weak sense.

Let us point out that assumptions (L1) and (L2) are not sufficient to guarantee
that each minimum u of f satisfies the equation in (P ) in the usual distributional
sense, namely

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∇ξL(s, u, u′) ∈ L1
loc(]s0, s1[;RN) , ∇xL(s, u, u′) ∈ L1

loc(]s0, s1[;RN) ,∫ s1

s0

[∇ξL(s, u, u′) ·w′ + ∇xL(s, u, u′) · w]
ds = 0

for all w ∈ C1
c (]s0, s1[;RN) .

(4.1)

Actually, let

L : [−1, 1] ×R ×R → R

be defined as

L(s, x, ξ) = (s4 − x6)2 ξ28 + ε ξ2

and let u0 = −1, u1 = 1.
According to [3, Theorem 5.1], if ε > 0 is small enough, then the functional f

admits minima and each minimum u satisfies

DξL(s, u, u
′) �∈ L∞

loc(] − 1, 1[) ,

so that u is not a solution of (4.1).
It is easily seen that L satisfies assumptions (L1) and (L2), while assump-

tion (L3) is not satisfied, as Corollary 4.5.4 guarantees that each minimum u of
f is a solution of (P ).
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4.3 Nonsmooth Critical Point Theory

In this section we recall some useful tools. We refer the reader to [6, 12, 13, 15, 20,
22] for proofs and more details.

Let X be a metric space endowed with the distance d . We denote by Bδ (u) the
open ball of center u and radius δ. We will also consider the set X × R endowed
with the distance

d((u, λ), (v, η)) =
(
d(u, v)2 + (λ− η)2

)1/2
.

Let f : X → [−∞,+∞] be a function and let

epi (f ) = {(u, λ) ∈ X × R : f (u) ≤ λ} .

Definition 4.3.1 A point u ∈ X is said to be a local minimum of f , if there exists a
neighborhoodU of u such that

f (w) ≥ f (u) for all w ∈ U .

The next notion has been independently introduced in [13, 15] and in [22], while
a variant has been developed in [20]. Here we follow the equivalent approach of [6].

Definition 4.3.2 For every u ∈ X with f (u) ∈ R, we denote by |df | (u) the
supremum of the σ ’s in [0,+∞[ such that there exist δ > 0 and a continuous
map

H : (Bδ (u, f (u)) ∩ epi (f ))× [0, δ] → X

satisfying

d(H((w, λ), t), w) ≤ t , f (H((w, λ), t)) ≤ λ− σ t ,

whenever (w, λ) ∈ Bδ (u, f (u)) ∩ epi (f ) and t ∈ [0, δ].
The extended real number |df | (u) is called the weak slope of f at u.

Remark 4.3.3 Let u ∈ X be a local minimum of f , with f (u) ∈ R. Then |df | (u) =
0.

Remark 4.3.4 LetX be an open subset of a normed space and let f : X → R be of
class C1. Then we have |df | (u) = ‖f ′(u)‖ for all u ∈ X.

Remark 4.3.5 Let u ∈ X with f (u) ∈ R and let (uk) be a sequence inX converging
to u with (f (uk)) converging to f (u).
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Then we have

lim inf
k

|df | (uk) ≥ |df | (u) .

Definition 4.3.6 We say that u ∈ X is a (lower) critical point of f if f (u) ∈ R and
|df | (u) = 0. We say that c ∈ R is a (lower) critical value of f if there exists u ∈ X
such that f (u) = c and |df | (u) = 0.

Definition 4.3.7 Let c ∈ R. A sequence (uk) in X is said to be a Palais-Smale
sequence at level c ((PS)c-sequence, for short) for f , if

lim
k
f (uk) = c , lim

k
|df | (uk) = 0 .

We say that f satisfies the Palais-Smale condition at level c ((PS)c, for short), if
every (PS)c-sequence for f admits a convergent subsequence in X.

The next concept was first introduced in [7], when f is smooth, and then analyzed
in detail in [12], in the general case.

Definition 4.3.8 Let u ∈ X and c ∈ R. A sequence (uk) in X is said to be a
Cerami-Palais-Smale sequence at level c ((CPS)c-sequence, for short) for f , if

lim
k
f (uk) = c , lim

k

[
1 + d(uk, u)

] |df | (uk) = 0 .

We say that f satisfies the Cerami-Palais-Smale condition at level c ((CPS)c, for
short), if every (CPS)c-sequence for f admits a convergent subsequence in X.

Since

[
1 + d(uk, û)

] |df | (uk) ≤ [
1 + d(u, û)][1 + d(uk, u)

] |df | (uk) ,

it is easily seen that condition (CPS)c is independent of the choice of the point u.
Of course, every (CPS)c-sequence is a (PS)c-sequence and so condition (PS)c

implies (CPS)c .
Several results of critical point theory can be extended to the case in which f is

real valued and continuous, by means of such concepts. In view of our purposes, let
us mention an extension of the celebrated mountain pass theorem (see [1, 19, 25, 26]
when f is smooth).

Theorem 4.3.9 Let X be a complete metric space and let f : X → R be a
continuous function. Let ulm ∈ X be a local minimum of f , let v ∈ X with v �= ulm
and f (v) ≤ f (ulm) and set

� = {ϕ ∈ C([0, 1];X) : ϕ(0) = ulm , ϕ(1) = v} .
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Assume that � �= ∅ and that f satisfies (CPS)c at the level

c = inf
ϕ∈� sup

0≤t≤1
f (ϕ(t)) .

Then there exists a critical point u of f with u �= ulm, u �= v and f (u) = c.
Proof Mountain pass theorems when f is continuous were first proved in [13, 15]
and in [22]. For this formulation, see [16, Theorem 2.9]. ��
Example 4.3.10 Consider the function f : R2 → R defined by

f (x, y) = 3x4 − 4x3 − 12x2 + 33 + 12y2 .

It turns out that f has a local minimum at ulm = (−1, 0) with f (ulm) = 28 and
a global minimum at ugm = (2, 0) with f (ugm) = 1. According to Theorem 4.3.9,
there is a further critical point u, actually a “mountain pass point”, which is u =
(0, 0) with f (u) = 33 (Figs. 4.1 and 4.2).

While [20, 22] were devoted to the case in which f is continuous, in [13, 15] also
the general case was considered, taking advantage of the function Gf introduced
in [14].
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Fig. 4.1 The graph of the function f
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Fig. 4.2 The level lines corresponding to f = 25, f = 29, f = 33 and f = 37

For a general f : X → [−∞,+∞], define a function

Gf : X × R →] − ∞,+∞]

by

Gf (u, λ) =
{
λ if (u, λ) ∈ epi (f ) ,

+∞ otherwise .

Then denote by Gf the restriction of Gf to epi (f ), which is Lipschitz continuous of
constant 1, so that we have

∣∣dGf ∣∣ (u, λ) = ∣∣dGf ∣∣ (u, λ) ≤ 1 for all (u, λ) ∈ epi (f ).

Proposition 4.3.11 For every u ∈ X with f (u) ∈ R, we have

|df | (u) =

⎧⎪⎪⎨
⎪⎪⎩

∣∣dGf ∣∣ (u, f (u))√
1 − ∣∣dGf ∣∣ (u, f (u))2

if
∣∣dGf ∣∣ (u, f (u)) < 1 ,

+∞ if
∣∣dGf ∣∣ (u, f (u)) = 1 .

Proof See [6, Proposition 2.3]. ��
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By means of the previous result, the study of a general f can be reduced, to some
extent, to that of the continuous function Gf . In view of the natural correspondence
u ↔ (u, f (u)), a key point is to have a control on pairs (u, λ) ∈ epi (f ) with
f (u) < λ.

Definition 4.3.12 Let u ∈ X with f (u) ∈ R and let c ∈ R. We say that f satisfies
condition (epi)c, if there exists ε > 0 such that

inf

{
[1 + d((u, λ), (u, f (u)))] ∣∣dGf ∣∣ (u, λ) :

(u, λ) ∈ epi (f ) , f (u) < λ , |λ− c| < ε
}
> 0 .

Again, it is easily seen that condition (epi)c is independent of the choice of u.

Remark 4.3.13 If f : X → R is continuous, then
∣∣dGf ∣∣ (u, λ) = 1 whenever

f (u) < λ.

Proof See [15, Proposition 2.3], where f is supposed to be lower semicontinious,
but the assumption is not used. ��
Proposition 4.3.14 For every c ∈ R, the following facts hold:

(a) if Gf satisfies (CPS)c , then f satisfies (CPS)c;
(b) if f is lower semicontinuous and satisfies (CPS)c and (epi)c, then Gf satisfies

(CPS)c .

Proof Let u ∈ X with f (u) ∈ R. To prove assertion (a), consider a (CPS)c-
sequence (uk) for f . We have that

lim
k

Gf (uk, f (uk)) = lim
k
f (uk) = c ,

lim
k

[1 + d(uk, u)] |df | (uk) = 0 .

Since

lim sup
k

1 + d((uk, f (uk)), (u, f (u)))
1 + d(uk, u) < +∞ ,

from Proposition 4.3.11 we infer that

lim
k

[1 + d((uk, f (uk)), (u, f (u)))]
∣∣dGf ∣∣ (uk, f (uk))

= lim
k

[1 + d((uk, f (uk)), (u, f (u)))] |df | (uk)√
1 + |df | (uk)2

= 0 .
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Therefore, (uk, f (uk)) is a (CPS)c-sequence for Gf . Since Gf satisfies (CPS)c , it
follows that (uk, f (uk)) admits a convergent subsequence in epi (f ), so that (uk)
also admits a convergent subsequence in X.

To prove assertion (b), consider a (CPS)c-sequence (uk, λk) for Gf . We have
that

lim
k
λk = lim

k
Gf (uk, λk) = c ,

lim
k

[1 + d((uk, λk), (u, f (u)))]
∣∣dGf ∣∣ (uk, λk) = 0 .

From condition (epi)c we infer that f (uk) = λk eventually as k → ∞, so that

lim
k
f (uk) = lim

k
λk = c .

On the other hand, by Proposition 4.3.11 it follows that

[1 + d(uk, u)] |df | (uk) ≤ [1 + d((uk, f (uk)), (u, f (u)))] |df | (uk)

= [1 + d((uk, f (uk)), (u, f (u)))]
∣∣dGf ∣∣ (uk, f (uk))√

1 − ∣∣dGf ∣∣ (uk, f (uk))2
,

whence

lim
k

[1 + d(uk, u)] |df | (uk) = 0 ,

namely (uk) is a (CPS)c-sequence for f . Since f satisfies (CPS)c , we infer that
(uk) admits a subsequence (ukj ) converging to some u in X, while (λk) is already
convergent to c. Moreover, we have f (u) ≤ c, as f is lower semicontinuous.
Therefore (ukj , λkj ) is convergent to (u, c) in epi (f ) and Gf satisfies (CPS)c .

By the way, from Remark 4.3.5 it follows that
∣∣dGf ∣∣ (u, c) = 0, hence that

f (u) = c by condition (epi)c. ��
Theorem 4.3.15 Let X be a complete metric space and let f : X →] − ∞,+∞]
be a lower semicontinuous function. Let ulm ∈ X be a local minimum of f with
f (ulm) < +∞, let v ∈ X with v �= ulm and f (v) ≤ f (ulm) and set

� = {ϕ ∈ C([0, 1];X) : ϕ(0) = ulm, ϕ(1) = v and f ◦ ϕ is bounded} .

Assume that � �= ∅ and that f satisfies (CPS)c and (epi)c at the level

c = inf
ϕ∈� sup

0≤t≤1
f (ϕ(t)) .

Then there exists a critical point u of f with u �= ulm, u �= v and f (u) = c.
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Proof Consider the complete metric space X̂ = epi (f ). We aim to apply
Theorem 4.3.9 to the continuous function Gf : X̂ → R. We set

ûlm = (ulm, f (ulm)) , v̂ = (v, f (v)) ,
�̂ = {

ϕ̂ ∈ C([0, 1]; X̂) : ϕ̂(0) = ûlm, ϕ̂(1) = v̂
}
,

so that ûlm is a local minimum of Gf and

Gf (v̂) = f (v) ≤ f (ulm) = Gf (ûlm) .

If ϕ ∈ � and

b = sup
0≤t≤1

f (ϕ(t)) ,

we can define ϕ̂ ∈ �̂ by

ϕ̂(t) =

⎧⎪⎪⎨
⎪⎪⎩
(ulm, (1 − 3t)f (ulm)+ 3tb) if 0 ≤ t ≤ 1/3 ,

(ϕ(3t − 1), b) if 1/3 ≤ t ≤ 2/3 ,

(v, (3 − 3t)b + (3t − 2)f (v)) if 2/3 ≤ t ≤ 1 .

Since

sup
0≤t≤1

Gf (ϕ̂(t)) = b = sup
0≤t≤1

f (ϕ(t)) ,

it follows that

inf
ϕ̂∈�̂

sup
0≤t≤1

Gf (ϕ̂(t)) ≤ c .

On the other hand, if ϕ̂ ∈ �̂ and ϕ̂ = (ϕ̂1, ϕ̂2), we have

f (ϕ̂1(t)) ≤ ϕ̂2(t) = Gf (ϕ̂(t)) ,

so that f ◦ ϕ̂1 is bounded, ϕ̂1 ∈ � and

sup
0≤t≤1

f (ϕ̂1(t)) ≤ sup
0≤t≤1

Gf (ϕ̂(t)) ,

whence

c ≤ inf
ϕ̂∈�̂

sup
0≤t≤1

Gf (ϕ̂(t)) .
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Therefore, we have

c = inf
ϕ̂∈�̂

sup
0≤t≤1

Gf (ϕ̂(t)) .

From Proposition 4.3.14 we infer that Gf satisfies (CPS)c . Then, from Theo-
rem 4.3.9 we deduce that there exists a critical point (u, c) ∈ epi (f ) of Gf with
(u, c) �= (ulm, f (ulm)) and (u, c) �= (v, f (v)). Again from (epi)c we infer that
f (u) = c, so that u �= ulm and u �= v. By Proposition 4.3.11, u is a critical point of
f . ��

When dealing with the weak slope |df | (u), an auxiliary concept is sometimes
useful. From now on in this section, we assume that X is a normed space over R
and f : X → [−∞,+∞] is a function.

The next notion has been introduced in [6].

Definition 4.3.16 For every u ∈ X with f (u) ∈ R, v ∈ X and ε > 0, let f 0
ε (u; v)

be the infimum of r’s in R such that there exist δ > 0 and a continuous map

V : (Bδ (u, f (u)) ∩ epi (f ))×]0, δ] → Bε (v)

satisfying

f (w + tV((w, λ), t)) ≤ λ+ rt

whenever (w, λ) ∈ Bδ(u, f (u)) ∩ epi (f ) and t ∈]0, δ].
Then let

f 0 (u; v) = sup
ε>0

f 0
ε (u; v) = lim

ε→0
f 0
ε (u; v) .

Let us recall that the function f 0 (u; ·) : X → [−∞,+∞] is convex, lower
semicontinuous and positively homogeneous of degree 1. Moreover f 0 (u; 0) ∈
{0,−∞}.
Definition 4.3.17 For every u ∈ X with f (u) ∈ R, we set

∂f (u) =
{
μ ∈ X′ : 〈μ, v〉 ≤ f 0 (u; v) for all v ∈ X

}
.

It is easily seen that ∂f (u) is convex and weak∗ closed in X′.

Remark 4.3.18 If f is convex, then ∂f agrees with the subdifferential of convex
analysis. If f is locally Lipschitz, then f 0 and ∂f agree with Clarke’s notions [9],
while in general ∂Cf (u) ⊆ ∂f (u), where ∂Cf (u) denotes Clarke’s subdifferential.



4 Variational Methods with Application to Boundary Value Problems 97

Fig. 4.3 The graph of f

Consider, for instance, the continuous function f : R → R defined by

f (u) = 1

2
u2 − 5u− 9

3
√
u2 .

It is easily seen that the assumptions of Theorem 4.3.9 are satisfied with ulm =
−1 and v = 8. By the way, v = 8 is the global minimum of f . The further critical
point is u = 0 and in fact |df | (0) = 0. It follows that 0 ∈ ∂f (0), according to the
next Theorem 4.3.19, while ∂Cf (0) = ∅ (Fig. 4.3).

Theorem 4.3.19 For every u ∈ X with f (u) ∈ R, the following facts hold:

(a) |df | (u) < +∞ ⇐⇒ ∂f (u) �= ∅;
(b) |df | (u) < +∞ &⇒ |df | (u) ≥ min{‖μ‖ : μ ∈ ∂f (u)}.
Proof See [6, Theorem 4.13]. ��

When f is continuous where it is finite, the Definition 4.3.16 can be simplified.

Proposition 4.3.20 Assume there exists D ⊆ X such that f
∣∣
D

is real valued and
continuous, while f = +∞ on X \D.

Then, for every u ∈ D, v ∈ X and ε > 0, we have that f 0
ε (u; v) is the infimum

of r’s in R such that there exist δ > 0 and a continuous map

V : (Bδ (u) ∩D)×]0, δ] → Bε (v)
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satisfying

f (w + tV(w, t)) ≤ f (w)+ rt

whenever w ∈ Bδ (u) ∩D and t ∈]0, δ].
Proof See [6, Proposition 4.4]. ��

4.4 Compactness and Lower Semicontinuity

Throughout this section, we assume that L satisfies assumptions (L1) and (L2).

Theorem 4.4.1 Let (vk) be a sequence inW 1,1(s0, s1;RN) such that

sup
k

‖vk‖∞ < +∞ , sup
k

f (vk) < +∞ .

Then there exist u ∈ W 1,1(s0, s1;RN) and a subsequence (vkj ) weakly converg-
ing to u inW 1,1(s0, s1;RN) with

lim
j

‖vkj − u‖∞ = 0 , lim inf
j

f (vkj ) ≥ f (u) .

Proof Let R > 0 be such that

R ≥ sup
k

‖vk‖∞ , R ≥ sup
k

f (vk) .

By replacing L(s, x, ξ) with L(s, x, ξ) + CR,1, where CR,1 is given by (L2), we
may assume that L(s, x, ξ) ≥ |ξ | whenever |x| ≤ R. We infer that (vk) is bounded
inW 1,1(s0, s1;RN), hence convergent, up to a subsequence we still denote by (vk),
to some u in L1(s0, s1;RN).

Again by (L2), for every ε > 0 there exists ĈR,ε ≥ 0 such that

L(s, x, ξ) ≥ 2R

ε
|ξ | − ĈR,ε whenever |x| ≤ R .

In particular, if c satisfies Rc ≥ εĈR,ε , we have

L(s, x, ξ) ≥ R

ε
|ξ | whenever |x| ≤ R and |ξ | ≥ c .
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It follows that

R ≥
∫ s1

s0

L(s, vk, v
′
k) ds

≥
∫
{|v′k |≥c}

L(s, vk, v
′
k) ds

≥ R

ε

∫
{|v′k |≥c}

|v′k| ds ,

whence
∫
{|v′k |≥c}

|v′k| ds ≤ ε whenever Rc ≥ εĈR,ε and k ∈ N .

According to [5, Theorem 2.12], we have that u ∈ W 1,1(s0, s1;RN) and that (vk)
is weakly convergent to u in W 1,1(s0, s1;RN), so that u(s0) = u0 and u(s1) = u1.
From [5, Theorem 3.6] we also infer that

lim inf
k

∫ s1

s0

L(s, vk, v
′
k) ds ≥

∫ s1

s0

L(s, u, u′) ds ,

whence

lim inf
k

f (vk) ≥ f (u) .

Moreover, if (σk) is convergent to σ in [s0, s1], then

|vk(σk)− u(σk)| =
∣∣∣∣
∫ σ

s0

(v′k − u′) ds +
∫ σk

σ

(v′k − u′) ds
∣∣∣∣

≤
∣∣∣∣
∫ s1

s0

χ]s0,σ [ (v′k − u′) ds
∣∣∣∣ +

∣∣∣∣
∫ σk

σ

(|v′k| + |u′|) ds
∣∣∣∣ .

Again from [5, Theorem 2.12] it follows that

lim
k

|vk(σk)− u(σk)| = 0 ,

whence

lim
k

‖vk − u‖∞ = 0 .

��
Let us point out two obvious consequences.
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Corollary 4.4.2 The functional

f : C([s0, s1];RN)→] − ∞,+∞]

is lower semicontinuous.

Corollary 4.4.3 Let c ∈ R and let (vk) be a (PS)c-sequence for f such that

sup
k

‖vk‖∞ < +∞ .

Then there exist u ∈ W 1,1(s0, s1;RN) with f (u) ≤ c and a subsequence (vkj )
such that

lim
j

‖vkj − u‖∞ = 0 .

Theorem 4.4.4 Let u ∈ W 1,1(s0, s1;RN) and let (vk) be a sequence in
W 1,1(s0, s1;RN) such that

lim
k

‖vk − u‖∞ = 0 , lim sup
k

f (vk) ≤ f (u) < +∞ .

Then (vk) is strongly convergent to u in W 1,1(s0, s1;RN) and (L(s, vk, v′k)) is
strongly convergent to L(s, u, u′) in L1(s0, s1).

Proof By Theorem 4.4.1 we have that (vk) is weakly convergent to u in
W 1,1(s0, s1;RN). First of all, we aim to show that (v′k) is convergent to u′ in
measure, following an argument similar to that of [4, 28].

Let

R ≥ sup
k

‖vk‖∞ .

Arguing as before, we may assume that L(s, x, ξ) ≥ 0 whenever |x| ≤ R.
We claim that, for every ε > 0, there exists Cε ≥ 1/ε such that

lim sup
k

∫
{|u′ |≤Cε}

[
1

2
L(s, vk, v

′
k)+

1

2
L(s, vk, u

′)− L
(
s, vk,

1

2
v′k + 1

2
u′

)]
ds < ε .

(4.2)

Actually, for every ε > 0, there exists Cε ≥ 1/ε such that

∫ s1

s0

L(s, u, u′) ds <
∫
{|u′|≤Cε}

L(s, u, u′) ds + ε .
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Since L(s, vk, v′k) ≥ 0, it follows

lim sup
k

∫
{|u′|≤Cε}

L(s, vk, v
′
k) ds ≤ lim sup

k

∫ s1

s0

L(s, vk, v
′
k) ds

≤
∫ s1

s0

L(s, u, u′) ds

<

∫
{|u′|≤Cε}

L(s, u, u′) ds + ε ,

while it is easily seen that

lim
k

∫
{|u′|≤Cε}

L(s, vk, u
′) ds =

∫
{|u′|≤Cε}

L(s, u, u′) ds .

Taking into account [5, Theorem 3.6], we also have

lim inf
k

∫
{|u′|≤Cε}

L

(
s, vk,

1

2
v′k + 1

2
u′

)
ds ≥

∫
{|u′|≤Cε}

L(s, u, u′) ds

and (4.2) follows.
Now we claim that

lim
k

[
1

2
L(s, vk, v

′
k)+

1

2
L(s, vk, u

′)− L
(
s, vk,

1

2
v′k + 1

2
u′

)]
= 0 in measure .

(4.3)

Actually, from (4.2) we infer that, for everym ≥ 1, there exists Cm ≥ m such that

lim sup
k

∫
{|u′|≤Cm}

[
1

2
L(s, vk, v

′
k)+

1

2
L(s, vk, u

′)− L
(
s, vk,

1

2
v′k + 1

2
u′

)]
ds <

1

m
.

Then there exists km ≥ m such that

∫
{|u′|≤Cm}

[
1

2
L(s, vkm , v

′
km
)+ 1

2
L(s, vkm, u

′)− L
(
s, vkm ,

1

2
v′km + 1

2
u′

)]
ds <

1

m
,

whence

lim
m

{
χ{|u′|≤Cm}

[
1

2
L(s, vkm, v

′
km
)+ 1

2
L(s, vkm , u

′)− L
(
s, vkm ,

1

2
v′km + 1

2
u′

)]}
= 0
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in L1(s0, s1). It follows that

lim
m

{
χ{|u′|≤Cm}

[
1

2
L(s, vkm, v

′
km
)+ 1

2
L(s, vkm , u

′)− L
(
s, vkm ,

1

2
v′km + 1

2
u′

)]}
= 0

in measure, whence

lim
m

[
1

2
L(s, vkm , v

′
km
)+ 1

2
L(s, vkm , u

′)− L
(
s, vkm ,

1

2
v′km + 1

2
u′

)]
= 0

in measure and (4.3) follows.
Now let σ > 0. By the boundedness of (v′k) in L1(s0, s1;RN), for every ε > 0

there exists c > 0 such that

L1 ({|u′| > c}) ≤ ε

3
, L1 ({|v′k| > c}) ≤ ε

3
for all k ∈ N . (4.4)

On the other hand, by the strict convexity of {ξ �→ L(s, x, ξ)}, there exists δ > 0
such that

1

2
L(s, x, ξ0)+ 1

2
L(s, x, ξ1)− L

(
s, x,

1

2
ξ0 + 1

2
ξ1

)
≥ δ

whenever |x| ≤ R, |ξ0| ≤ c, |ξ1| ≤ c and |ξ0 − ξ1| ≥ σ .

From (4.3) we infer that

L1
({

1

2
L(s, vk, v

′
k)+

1

2
L(s, vk, u

′)− L
(
s, vk,

1

2
v′k + 1

2
u′

)
≥ δ

})
≤ ε

3

eventually as k → ∞, whence

L1 ({|v′k| ≤ c , |u′| ≤ c , |v′k − u′| ≥ σ }) ≤ ε

3

eventually as k → ∞. Combining this fact with (4.4), we infer that

L1 ({|v′k − u′| ≥ σ }) ≤ ε

eventually as k → ∞, whence the convergence in measure of (v′k) to u′.
By [18, Theorem IV.8.12] we have that (v′k) is strongly convergent to u′ in

L1(s0, s1;RN). Since

|L(s, vk, v′k)− L(s, u, u′)| ≤ L(s, vk, v′k)+ L(s, u, u′) ,
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from the (generalized) Lebesgue theorem we conclude that (L(s, vk, v′k)) is strongly
convergent to L(s, u, u′) in L1(s0, s1). ��
Proposition 4.4.5 Let u ∈ W 1,1(s0, s1;RN) with

∇ξL(s, u, u′) ∈ L1(s0, s1;RN) , ∇xL(s, u, u′) ∈ L1(s0, s1;RN) .

Then the following facts hold:

(a) if μ belongs to the dual space of (C([s0, s1];RN), ‖ ‖∞) and

∫ s1

s0

[∇ξL(s, u, u′) · w′ + ∇xL(s, u, u′) ·w]
ds = 〈μ,w〉

for all w ∈ C1
c (]s0, s1[;RN) ,

then we have u ∈ W 1,∞(s0, s1;RN), ∇ξL(s, u, u′) ∈ BV (s0, s1;RN) and

∫ s1

s0

[∇ξL(s, u, u′) · w′ + ∇xL(s, u, u′) ·w]
ds = 〈μ,w〉

for all w ∈ W 1,1
0 (s0, s1;RN) ;

(b) if z ∈ C([s0, s1];RN) and

∫ s1

s0

[∇ξL(s, u, u′) · w′ + ∇xL(s, u, u′) ·w]
ds =

∫ s1

s0

w · z ds

for all w ∈ C1
c (]s0, s1[;RN) ,

then we have

{
u ∈ C1([s0, s1];RN) , ∇ξL(s, u, u′) ∈ C1([s0, s1];RN) ,
− [∇ξL(s, u, u′)

]′ + ∇xL(s, u, u′) = z in [s0, s1] ;

if, furthermore, L is of class C1 on [s0, s1] ×R
N ×R

N , then we also have

{[
L(s, u, u′)− u′ · ∇ξL(s, u, u′)

] ∈ C1([s0, s1]) ,[
L(s, u, u′)− u′ · ∇ξL(s, u, u′)

]′ = DsL(s, u, u′)+ u′ · z in [s0, s1] .
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Proof To prove (a), observe that of course ∇ξL(s, u, u′) ∈ BV (s0, s1;RN) and

∫ s1

s0

[∇ξL(s, u, u′) ·w′ + ∇xL(s, u, u′) · w]
ds = 〈μ,w〉

for all w ∈ W 1,1
0 (s0, s1;RN) .

In particular, there existsK ≥ ‖u‖∞ such that |∇ξL(s, u, u′)| ≤ K/2 a.e. in ]s0, s1[.
According to assumption (L2), there exists CK ≥ 0 such that

K

2
|u′| ≥ ∇ξL(s, u, u′) · u′ ≥ L(s, u, u′)− L(s, u, 0) ≥ K|u′| − CK − L(s, u, 0) ,

whence u′ ∈ L∞(s0, s1;RN) and assertion (a) follows.
To prove (b), observe that now ∇ξL(s, u, u′) ∈ W 1,∞(s0, s1;RN). Then there

exist a continuous map V : [s0, s1] → R
N , K > 0 and a subset E of ]s0, s1[ such

that

L1(]s0, s1[\E) = 0 , ∇ξL(s, u(s), u′(s)) = V (s) , |u′(s)| ≤ K for all s ∈ E .

If (sk), (σk) are to sequences in E with (sk − σk) → 0, then up to subsequences
we have sk → s and σk → s in [s0, s1] and u′(sk) → ξ and u′(σk) → η in R

N . It
follows

∇ξL(s, u(s), ξ) = V (s) = ∇ξL(s, u(s), η) ,

whence ξ = η, namely (u′(sk) − u′(σk)) → 0, by the strict convexity of L(s, x, ·).
Therefore the restriction of u′ to E is uniformly continuous. We infer that u′ agrees
a.e. with a continuous map on [s0, s1], hence that u ∈ C1([s0, s1];RN). It follows
that ∇xL(s, u, u′) ∈ C([s0, s1];RN), ∇ξL(s, u, u′) ∈ C1([s0, s1];RN) and

− [∇ξL(s, u, u′)
]′ + ∇xL(s, u, u′) = z in [s0, s1] .

Assume now that L is of class C1 on [s0, s1] × R
N × R

N . We consider first
the case in which L(s, x, ξ) is independent of x and z = 0. Then we have that
∇ξL(s, u′) is constant and, for every v ∈ C1([s0, s1];RN) with v(s0) = u0 and
v(s1) = u1, we have

∫ s1

s0

L(s, v′) ds ≥
∫ s1

s0

L(s, u′) ds +
∫ s1

s0

∇ξL(s, u′) · (v′ − u′) ds =
∫ s1

s0

L(s, u′) ds .

Letw ∈ C∞
c (]s0, s1[) and let δ > 0 be such that δ‖w′‖∞ < 1. Then there exists one

and only one smooth function

η : [s0, s1] × [−δ, δ] → [s0, s1]
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such that

σ = η(σ, t) − tw(η(σ, t)) whenever (σ, t) ∈ [s0, s1] × [−δ, δ] ,

whence

η(σ, 0) = σ , Dtη(σ, 0) = w(σ) whenever σ ∈ [s0, s1] .

If we set v(s) = u(s − tw(s)), it follows

∫ s1

s0

L(s, (1 − tw′(s))u′(s − tw(s))) ds =
∫ s1

s0

L(s, v′(s)) ds ≥
∫ s1

s0

L(s, u′(s)) ds .

On the other hand, we have

∫ s1

s0

L(s, v′(s)) ds =
∫ s1

s0

L(s, (1 − tw′(s))u′(s − tw(s)))
1 − tw′(s)

· (1 − tw′(s)) ds

=
∫ s1

s0

L(η(σ, t), (1 − tw′(η(σ, t)))u′(σ ))
1 − tw′(η(σ, t))

dσ .

If we set

I (t) =
∫ s1

s0

L(η(σ, t), (1 − tw′(η(σ, t)))u′(σ ))
1 − tw′(η(σ, t))

dσ ,

then I is differentiable and t = 0 is a minimum point for I . On the other hand, we
have

I ′(0) =
∫ s1

s0

[
DsL(η(σ, 0), u

′(σ ))Dt η(σ, 0)

−∇ξL(η(σ, 0), u′(σ )) · (w′(η(σ, 0))u′(σ ))

+L(η(σ, 0), u′(σ ))w′(η(σ, 0))
]
dσ

=
∫ s1

s0

[
DsL(σ, u

′(σ ))w(σ )− ∇ξ L(σ, u′(σ )) · (w′(σ )u′(σ )) + L(σ, u′(σ ))w′(σ )
]
dσ ,

whence

∫ s1

s0

[(
L(s, u′)− u′ · ∇ξL(s, u′)

)
w′ +DsL(s, u′) w

]
ds = 0

for all w ∈ C∞
c (]s0, s1[) .
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Since DsL(s, u′) ∈ C([s0, s1]), we have that
(
L(s, u′) − u′ · ∇ξL(s, u′)

) ∈
C1([s0, s1]) and

(
L(s, u′)− u′ · ∇ξL(s, u′)

)′ = DsL(s, u′) in [s0, s1] .

In the general case, let V ∈ C1([s0, s1];RN) be such that

V ′ = ∇xL(s, u, u′)− z

and let

L̃(s, ξ) = L(s, u(s), ξ) − ξ · V (s) .

Then we have

∇ξ L̃(s, ξ) = ∇ξL(s, u(s), ξ) − V (s) ,

whence

[∇ξ L̃(s, u′(s))
]′ = [∇ξL(s, u(s), u′(s))

]′ − (∇xL(s, u, u′)− z) = 0 .

Since

DsL̃(s, ξ) = DsL(s, u(s), ξ)+ ∇xL(s, u(s), ξ) · u′(s)− ξ · (∇xL(s, u(s), u′(s))− z(s)) ,
from the previous step we infer that

L̃(s, u′)− u′ · ∇ξ L̃(s, u′) = L(s, u, u′)− u′ · V − u′ · (∇ξL(s, u, u′)− V )
= L(s, u, u′)− u′ · ∇ξL(s, u, u′)

belongs to C1([s0, s1]) and that

[
L(s, u, u′)− u′ · ∇ξL(s, u, u′)

]′ = [
L̃(s, u′)− u′ · ∇ξ L̃(s, u′)

]′
= DsL̃(s, u′)

= DsL(s, u, u′)+ ∇xL(s, u, u′) · u′

− u′ · (∇xL(s, u, u′)− z)
= DsL(s, u, u′)+ u′ · z ,

so that the proof of assertion (b) is complete. ��
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4.5 The Variational Approach

In this section we will see how to apply the general concepts of Sect. 4.3 to the
setting described in Sect. 4.2. Here the assumption (L3) will play a crucial role. Let
us first provide a sufficient condition to guarantee such a hypothesis.

Proposition 4.5.1 Assume that L satisfies (L1), (L2) and that, for every R > 0,
there exists C̃R ≥ 0 such that

|∇xL(s, x, ξ)| ≤ C̃R (1 + |L(s, x, ξ)|)
for all s ∈ [s0, s1] and x, ξ ∈ R

N with |x| ≤ R .

Then L satisfies assumption (L3).

Proof Let R > 0. According to (L2), we may again assume, without loss of
generality, that L(s, x, ξ) ≥ 0 whenever |x| ≤ R.

Let now x0, x1 ∈ R
N with |x0| ≤ R and |x1| ≤ R. If we set

ϕ(t) = L(s, x0 + t (x1 − x0), ξ0)

whenever 0 ≤ t ≤ 1, we infer that

ϕ′(t) = ∇xL(s, x0 + t (x1 − x0), ξ0) · (x1 − x0) ≤ |∇xL(s, x0 + t (x1 − x0), ξ0)| |x1 − x0|
≤ C̃R |x1 − x0|(1 + L(s, x0 + t (x1 − x0), ξ0)) = C̃R |x1 − x0|(1 + ϕ(t)) ,

whence

L(s, x0 + t (x1 − x0), ξ0) ≤ (L(s, x0, ξ0)+ 1) exp(tC̃R |x1 − x0|)− 1 .

Since

exp(tC̃R |x1 − x0|) ≤ 1 + tC̃R |x1 − x0| exp(2RC̃R) ,

there exists ĈR ≥ 0 such that

L(s, x0 + t (x1 − x0), ξ0) ≤ L(s, x0, ξ0)+ ĈRt|x1 − x0|(1 + L(s, x0, ξ0))

whenever 0 ≤ t ≤ 1 .

Of course, we also have

L(s, x0 + t (x1 − x0), ξ1) = L(s, x1 + (1 − t)(x0 − x1), ξ1)

≤ L(s, x1, ξ1)+ ĈR(1 − t)|x1 − x0|(1 + L(s, x1, ξ1)) ,
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whence

L(s, (1 − t)x0 + tx1,(1 − t)ξ0 + tξ1)
≤ (1 − t)L(s, x0 + t (x1 − x0), ξ0)+ tL(s, x0 + t (x1 − x0), ξ1)

≤ (1 − t)L(s, x0, ξ0)+ tL(s, x1, ξ1)

+ ĈR |x1 − x0| t (1 − t) (2 + L(s, x0, ξ0)+ L(s, x1, ξ1))

and the assertion easily follows. ��
From now on in this section, we assume that L satisfies assumptions (L1)–(L3).

Theorem 4.5.2 For every u ∈ W 1,1(s0, s1;RN) with f (u) < +∞, there exists
� > 0 such that the following facts hold:

(a) we have

[∇ξL(s, u, u′) · (v′ − u′)+ ∇xL(s, u, u′) · (v − u)]+ ∈ L1(s0, s1) ,∫ s1

s0

[∇ξL(s, u, u′) · (v′ − u′)+ ∇xL(s, u, u′) · (v − u)] ds ≥ f 0 (u; v − u) ,

for all v ∈ W1,1(s0, s1;RN) with f (v) < +∞ and ‖v − u‖∞ < � ;

(b) if μ ∈ ∂f (u), then we have

[∇ξ L(s, u, u′) · (v′ − u′)+ ∇xL(s, u, u′) · (v − u)] ∈ L1(s0, s1) ,∫ s1

s0

[∇ξ L(s, u, u′) · (v′ − u′)+ ∇xL(s, u, u′) · (v − u)] ds ≥ 〈μ, v − u〉 ,

for all v ∈ W1,1(s0, s1;RN) with f (v) < +∞ and ‖v − u‖∞ < � ;

moreover, we also have u ∈ W 1,∞(s0, s1;RN), ∇ξL(s, u, u′) ∈ BV (s0, s1;RN)
and

∫ s1

s0

[∇ξL(s, u, u′) · w′ + ∇xL(s, u, u′) ·w]
ds = 〈μ,w〉

for all w ∈ W 1,1
0 (s0, s1;RN) .

Proof Let R ≥ 1 + ‖u‖∞. By (L3) there exists δR > 0 such that

L(s, x0 + t (x1 − x0), ξ0 + t (ξ1 − ξ0))
≤ L(s, x0, ξ0)+ t[L(s, x1, ξ1)− L(s, x0, ξ0)]

+ t [1 + |L(s, x0, ξ0)| + |L(s, x1, ξ1)|] (4.5)
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whenever 0 ≤ t ≤ δR , |x0| ≤ R, |x1| ≤ R and |x1 − x0| ≤ δR, whence

∇ξL(s, x0, ξ0) · (ξ1 − ξ0)+ ∇xL(s, x0, ξ0) · (x1 − x0)

≤ L(s, x1, ξ1)− L(s, x0, ξ0)+ [1 + |L(s, x0, ξ0)| + |L(s, x1, ξ1)|] . (4.6)

Let � = min {δR, 1} and let v ∈ W 1,1(s0, s1;RN) with f (v) < +∞ and ‖v −
u‖∞ < �, whence ‖v‖∞ < R. First of all, since L(s, u, u′) ∈ L1(s0, s1) and
L(s, v, v′) ∈ L1(s0, s1), from (4.6) we infer that

[∇ξL(s, u, u′) · (v′ − u′)+ ∇xL(s, u, u′) · (v − u)]+ ∈ L1(s0, s1) .

Now let

r >

∫ s1

s0

[∇ξL(s, u, u′) · (v′ − u′)+ ∇xL(s, u, u′) · (v − u)] ds .

We claim that there exists σ > 0 such that

∫ s1

s0

L(s, z + t (v − z), z′ + t (v′ − z′))− L(s, z, z′)
t

ds < r

whenever

z ∈ W1,1(s0, s1;RN) , ‖z − u‖∞ ≤ σ , f (z) ≤ f (u)+ σ , 0 < t ≤ σ .

To prove it assume, for a contradiction, that there exist tk → 0+ and zk → u in
C([s0, s1];RN) with lim sup

k

f (zk) ≤ f (u) satisfying

∫ s1

s0

L(s, zk + tk(v − zk), z′k + tk(v′ − z′k))− L(s, zk, z′k)
tk

ds ≥ r .

From Theorem 4.4.4 we infer that (zk) is strongly convergent to u in
W 1,1(s0, s1;RN) and that (L(s, zk, z′k)) is strongly convergent to L(s, u, u′) in
L1(s0, s1). Moreover, we have

L(s, zk + tk(v − zk), z′k + tk(v′ − z′k))− L(s, zk, z′k)
tk

≤ L(s, v, v′)− L(s, zk, z′k)+ [1 + |L(s, zk, z′k)| + |L(s, v, v′)|]
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eventually as k → ∞ by (4.5). From the (generalized) Fatou lemma, we infer that

r ≤ lim sup
k

∫ s1

s0

L(s, zk + tk(v − zk), z′k + tk(v′ − z′k))− L(s, zk, z′k)
tk

ds

≤
∫ s1

s0

[∇ξL(s, u, u′) · (v′ − u′)+ ∇xL(s, u, u′) · (v − u)] ds

and a contradiction follows, proving the claim.
Then we have that

f (z+ t (v − z)) ≤ f (z)+ rt ,

whenever z ∈ C([s0, s1];RN), ‖z − u‖∞ ≤ σ , f (z) ≤ f (u) + σ and 0 ≤ t ≤ σ .
Given ε > 0, we may also assume that σ < ε. Then, if we set

V((z, λ), t) = v − z ,

it follows that ‖V((z, λ), t) − (v − u)‖∞ < ε and

f (z+ tV((z, λ), t)) ≤ f (z)+ rt ≤ λ+ rt ,

whenever (z, λ) ∈ Bσ ((u, f (u))) ∩ epi (f ) and 0 ≤ t ≤ σ . According to
Definition 4.3.16, we have that

f 0
ε (u; v − u) ≤ r

and assertion (a) follows by the arbitrariness of ε and r .
Assume now that μ ∈ ∂f (u). From assertion (a) and Definition 4.3.17 it readily

follows that

∇ξL(s, u, u′) · (v′ − u′)+ ∇xL(s, u, u′) · (v − u) ∈ L1(s0, s1) ,∫ s1

s0

[∇ξL(s, u, u′) · (v′ − u′)+ ∇xL(s, u, u′) · (v − u)] ds ≥ 〈μ, v − u〉 ,

for all v ∈ W 1,1(s0, s1;RN) with f (v) < +∞ and ‖v − u‖∞ < � .

In particular, there exists v0 ∈ C1([s0, s1];RN) such that v0(s0) = u0, v0(s1) = u1
and ‖v0 − u‖∞ < �/2, whence

∇ξL(s, u, u′) · (v′0 − u′)+ ∇xL(s, u, u′) · (v0 − u) ∈ L1(s0, s1) .
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Given w ∈ C1([s0, s1];RN) with ‖w‖∞ ≤ 1, from (4.6) we also infer that

∇ξL(s, u, u′) · ((�/2)w′ + v′0 − u′) + ∇xL(s, u, u′) · ((�/2)w + v0 − u)
≤ L (

s, (�/2)w + v0, (�/2)w
′ + v′0

) − L(s, u, u′)

+ [
1 + |L(s, u, u′)| + ∣∣L (

s, (�/2)w + v0, (�/2)w′ + v′0
)∣∣] ,

whence

[∇ξL(s, u, u′) · w′ + ∇xL(s, u, u′) ·w]+ ∈ L1(s0, s1) .

By the arbitariness of w, it follows that

∇ξL(s, u, u′) ∈ L1(s0, s1;RN) , ∇xL(s, u, u′) ∈ L1(s0, s1;RN) .

If, more specifically, w ∈ C1
c (]s0, s1[;RN) with ‖w‖∞ ≤ 1, then we have

∫ s1

s0

[∇ξL(s, u, u′) · ((�/2)w′ + v′0 − u′)+ ∇xL(s, u, u′) · ((�/2)w + v0 − u)] ds
≥ 〈μ, (�/2)w + v0 − u〉 ,

whence

∫ s1

s0

[∇ξL(s, u, u′) ·w′ + ∇xL(s, u, u′) · w]
ds − 〈μ,w〉

≥ 2

�

{∫ s1

s0

[∇ξL(s, u, u′) · (u′ − v′0)+ ∇xL(s, u, u′) · (u− v0)
]
ds

−〈μ, u− v0〉
}
.

It follows that ∇ξL(s, u, u′) ∈ BV (s0, s1;RN) ⊆ L∞(s0, s1;RN).
Let now (vk) be a sequence in C1([s0, s1];RN) converging to u in

W 1,1(s0, s1;RN) with vk(s0) = u0 and vk(s1) = u1. We have

∫ s1

s0

[∇ξL(s, u, u′) · ((�/2)w′ + v′k − u′)+ ∇xL(s, u, u′) · ((�/2)w + vk − u)] ds
≥ 〈μ, (�/2)w + vk − u〉
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eventually as k → ∞. Going to the limit as k → ∞, we get

∫ s1

s0

[∇ξL(s, u, u′) ·w′ + ∇xL(s, u, u′) · w]
ds ≥ 〈μ,w〉

for all w ∈ C1
c (]s0, s1[;RN) with ‖w‖∞ ≤ 1 ,

whence
∫ s1

s0

[∇ξL(s, u, u′) · w′ + ∇xL(s, u, u′) · w]
ds = 〈μ,w〉 for all w ∈ C1

c (]s0, s1[;RN )

and assertion (b) follows by Proposition 4.4.5. ��
Corollary 4.5.3 Let u ∈ W 1,1(s0, s1;RN) with f (u) < +∞ and 0 ∈ ∂f (u). Then
u is a solution of (P ). If, furthermore, L is of class C1 on [s0, s1] ×R

N ×R
N , then

we also have

{[
L(s, u, u′)− u′ · ∇ξL(s, u, u′)

] ∈ C1([s0, s1]) ,[
L(s, u, u′)− u′ · ∇ξL(s, u, u′)

]′ = DsL(s, u, u′) in [s0, s1] .

Proof It follows from assertion (b) of Theorem 4.5.2 and Proposition 4.4.5. ��
Corollary 4.5.4 Let u ∈ W 1,1(s0, s1;RN) be a local minimum of f . Then f (u) <
+∞ and 0 ∈ ∂f (u). In particular, the assertion of Corollary 4.5.3 holds.

Proof Since f (v) < +∞ whenever v ∈ C1([s0, s1];RN) with v(s0) = u0 and
v(s1) = u1, we have f (u) < +∞. Then the assertion follows from Remark 4.3.3
and Theorem 4.3.19. ��
Theorem 4.5.5 Let (u, λ) ∈ epi (f )with f (u) < λ. Then

(Gf )0
((u, λ); (0,−1)) =

−1. In particular, we have
∣∣dGf ∣∣ (u, λ) = ∣∣dGf ∣∣ (u, λ) = 1 and, for every c ∈ R,

the function f satisfies condition (epi)c.

Proof Since Gf is Lipschitz continuous of constant 1, it is easily seen that

(Gf )0
((u, λ); (0,−1)) ≥ −1 .

To prove the opposite inequality, it is equivalent to show that

(Gf )0
((u, λ); (0, f (u)− λ)) ≤ f (u)− λ , (4.7)

as
(Gf )0

((u, λ); ·) is positively homogeneous of degree 1.
Let R ≥ 1 + ‖u‖∞. As before, we may assume without loss of generality that

L(s, x, ξ) ≥ 0 whenever |x| ≤ R.
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Given ε > 0, let ε′ > 0 be such that

ε′ (2 + λ+ f (u)) ≤ ε

4

and let δR,ε′ be as in assumption (L3). If σ > 0 satisfies

σ ≤ 1 , σ ≤ δR,ε′ , σ ≤ ε

4
,

we have ‖z‖∞ ≤ R and ‖z − u‖∞ ≤ δR,ε′ whenever ‖z − u‖∞ ≤ σ . From
assumption (L3) it follows that

f (z+ t (u− z)) ≤ f (z)+ t (f (u)− f (z))+ ε′ t (1 + f (z)+ f (u))
≤ η + t (f (u)− η)+ ε′ t (1 + η + f (u))
≤ η + t[f (u)− λ+ σ + ε′ (1 + λ+ σ + f (u))]

≤ η + t
[
f (u)− λ+ ε

2

]
,

for all (z, η) ∈ Bσ (u, λ) ∩ epi (f ) and t ∈ [0, σ ].
In particular, if we set

V((z, η), t) =
(
u− z, f (u)− λ+ ε

2

)

for all (z, η) ∈ Bσ (u, λ) ∩ epi (f ) and t ∈]0, σ ], we have

‖V((z, η), t)− (0, f (u)− λ)‖ < ε ,
(z, η)+ tV((z, η), t) ∈ epi (f ) ,

Gf ((z, η)+ tV((z, η), t)) = Gf (z, η)+ t
[
f (u)− λ+ ε

2

]
,

whence by Proposition 4.3.20

(Gf )0ε((u, λ); (0, f (u)− λ)) ≤ f (u)− λ+ ε

2
.

Going to the limit as ε → 0, formula (4.7) follows, whence

(Gf )0
((u, λ); (0,−1)) = −1 .

If μ ∈ ∂Gf (u, λ), we have

−‖μ‖ ≤ 〈μ, (0,−1)〉 ≤ (Gf )0
((u, λ); (0,−1)) = −1 ,

whence ‖μ‖ ≥ 1 for all μ ∈ ∂Gf (u, λ).
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From Theorem 4.3.19 we infer that
∣∣dGf ∣∣ (u, λ) = ∣∣dGf ∣∣ (u, λ) = 1. In

particular, for every c ∈ R, the function f satisfies condition (epi)c. ��

4.6 A Coercive Case

Throughout this section, we assume that L satisfies assumptions (L1) and (L3).
Moreover, instead of (L2), we require a global coercivity, namely that:

(L4) there exist C(0) ≥ 0 and, for everyM > 0, C(1)M ≥ 0 such that

L(s, x, ξ) ≥ M|ξ | − C(1)M − C(0) |x|

for all s ∈ [s0, s1] and x, ξ ∈ R
N .

Of course, assumption (L4) implies (L2).

Proposition 4.6.1 For every c ∈ R, there exists R > 0 such that

‖u‖∞ ≤ R for all u ∈ W 1,1(s0, s1;RN) with f (u) ≤ c .

Proof Let C(0) be as in assumption (L4) and letM > 0 be such that

C(0)
∫ s1

s0

|u| ds ≤ M

2

(
|u0| +

∫ s1

s0

|u′| ds
)

for all u ∈ W 1,1(s0, s1;RN) with u(s0) = u0 and u(s1) = u1 .

If C(1)M is given by assumption (L4), we infer that

f (u) ≥ M
∫ s1

s0

|u′| ds−C(1)M −C(0)
∫ s1

s0

|u| ds ≥ M

2

∫ s1

s0

|u′| ds−C(1)M −M
2

|u0|

for all u ∈ W 1,1(s0, s1;RN) with u(s0) = u0 and u(s1) = u1

and the assertion follows. ��
Theorem 4.6.2 The functional f admits a global minimum ugm ∈ W 1,1(s0, s1;
R
N). In particular, ugm is a solution of (P ).

Proof Since f (v) < +∞ whenever v ∈ C1([s0, s1];RN) with v(s0) = u0 and
v(s1) = u1, there exists c ∈ R such that the set

{
u ∈ W 1,1(s0, s1;RN) : f (u) ≤ c

}

is not empty.
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From Proposition 4.6.1 and Theorem 4.4.1 we infer that f admits a global
minimum ugm ∈ W 1,1(s0, s1;RN). From Corollaries 4.5.4 and 4.5.3 it follows that
ugm is a solution of (P ). ��
Theorem 4.6.3 Let ulm, ugm ∈ W 1,1(s0, s1;RN) be such that ulm is a local
minimum of f , ugm is a global minimum of f and ugm �= ulm.

Then there exists ump ∈ W 1,1(s0, s1;RN) with f (ump) < +∞, 0 ∈ ∂f (ump),
ump �= ulm and ump �= ugm. In particular, ulm, ugm and ump are three distinct
solutions of (P ).

Proof By Corollary 4.4.2 the functional

f : C([s0, s1];RN)→] − ∞,+∞]

is lower semicontinuous and, by Proposition 4.6.1, Corollary 4.4.3 and Theo-
rem 4.5.5, the functional f satisfies (PS)c and (epi)c for all c ∈ R.

Taking into account Corollaries 4.5.4 and 4.5.3, we have that ulm, ugm are two
distinct solutions of (P ) and f (ugm) ≤ f (ulm) < +∞. In particular, we have
ulm, ugm ∈ C1([s0, s1];RN).

If we set

ϕ(t) = (1 − t)ulm + tugm ,

we have that ϕ ∈ C([0, 1];C([s0, s1];RN)) with ϕ(0) = ulm, ϕ(1) = ugm and
f ◦ ϕ bounded.

From Theorem 4.3.15 we infer that there exists ump ∈ W 1,1(s0, s1;RN) with
f (ump) < +∞, |df | (ump) = 0, ump �= ulm and ump �= ugm.

By Theorem 4.3.19 we have 0 ∈ ∂f (ump) and by Corollary 4.5.3 ump is a further
solution of (P ). ��

4.7 Fermat’s Principle and Numerical Evaluations for Light
Rays

Consider R3 as an isotropic, possibly nonhomogeneous, medium whose refractive
index n is described by a function

n : R3 → [1,+∞[

of class C1.
Given u0, u1 ∈ R

3 and t0 ∈ R, a light ray, starting from u0 at the time t0 and
reaching u1, is described by a map (u, τ ) ∈ W 1,1(0, 1;R3) × W 1,1(0, 1) which
makes stationary the time functional

T (u, τ ) = τ (1)− t0
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defined on the space

� =
{
(u, τ ) ∈ W 1,1(0, 1;R3)×W 1,1(0, 1) :

u(0) = u0, u(1) = u1, τ (0) = t0, c τ ′(s) = n(u(s))|u′(s)| for a.a. s ∈]0, 1[
}
,

where c is the speed of light in vacuum (Fermat’s principle, see e.g. [11]).
Because of the expression of �, it is clearly equivalent to make stationary the

optical length functional

L(u) =
∫ 1

0
n(u(s))|u′(s)| ds

on the space

{
u ∈ W 1,1(0, 1;R3) : u(0) = u0 , u(1) = u1

}

and then recover the function τ through the relation

τ (s) = t0 + 1

c

∫ s

0
n(u(σ))|u′(σ )| dσ .

So far, there is no 1 − 1 correspondence between maps (u, τ ) and physical light
rays, because of the invariance of L by change of parametrization. Such a 1 − 1
correspondence can be obtained, as it is well known, by adding the further condition

n(u(s))|u′(s)| is constant for a.a. s ∈]0, 1[ .

At this point it is equivalent, and more comfortable, to make stationary the
functional

E(u) = 1

2

∫ 1

0
[n(u(s))]2 |u′(s)|2 ds

defined on the space

{
u ∈ W 1,2(0, 1;R3) : u(0) = u0 , u(1) = u1

}
,

while the further condition

n(u(s))|u′(s)| is constant for a.a. s ∈]0, 1[
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is automatically satisfied, if u makes E stationary (see also Proposition 4.4.5). In
such a case, we have L(u) = √

2 E(u) and the function τ is recovered as

τ (s) = t0 + L(u)
c
s .

In the end, if L(u) > 0 the light ray is also described by the space-time relation

x(t) = u
(
c(t − t0)
L(u)

)
,

where the time t ranges over the interval
[
t0, t0 + L(u)

c

]
.

To provide a precise mathematical setting in the line of the previous sections, let
us extend E to C([0, 1];R3) by the value +∞. Then, we get the functional

f : C([0, 1];R3)→] − ∞,+∞]

defined by

f (u) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

2

∫ 1

0
[n(u(s))]2 |u′(s)|2 ds if u ∈ W1,2(0, 1;R3), u(0) = u0

and u(1) = u1 ,

+∞ otherwise ,

which is of type we have already considered with

L(s, x, ξ) = 1

2
[n(x)]2 |ξ |2 , ∇ξ L(s, x, ξ) = [n(x)]2 ξ , ∇xL(s, x, ξ) = n(x) |ξ |2 ∇n(x) .

Since n is of class C1, the assumptions (L1), (L3) and (L4) are satisfied (see
also Proposition 4.5.1). A fortiori, condition (L2) holds. In particular, the results
of Sects. 4.5 and 4.6 apply.

If u is a solution of (P ), we have

[n(u)]2 u′ = ∇ξL(s, u, u′) ∈ C1([0, 1];R3)

whence, in this case, u ∈ C2([0, 1];R3) and

[n(u)]2 u′′ + 2n(u) (∇n(u) · u′) u′ =
{
[n(u)]2 u′}′ = n(u) |u′|2 ∇n(u) ,

namely

u′′(s) = −2

(∇n(u(s))
n(u(s))

· u′(s)
)
u′(s)+ |u′(s)|2 ∇n(u(s))

n(u(s))
.
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Moreover, since

L(s, u, u′)− u′ · ∇ξL(s, u, u′) = −1

2
[n(u)]2 |u′|2 ,

from Proposition 4.4.5 we infer that the function

{
s �→ n(u(s))|u′(s)|}

is constant.
As an example, let us consider a two dimensional case. More precisely, letN = 2

and let

n(x) =
(

5

2
− 3

π
arctan

(
50 x(2)

)) 1
2

, x =
(
x(1), x(2)

)
.

This choice of n corresponds to a “regularization” of a discontinuous refractive
index which takes the value 2 where x(2) < 0 and the value 1 where x(2) ≥ 0
(Fig. 4.4). Let us refer the reader to [2, 21] for a study of the discontinuous case on
Riemannian manifolds.

We aim to study the case in which u0 = (−d,−2) and u1 = (d,−2) with d > 0.
Since n(x) is almost constant when x(2) is close to −2, we may expect that the
functional f admits a local minimum ulm with

ulm(s) ≈ (1 − s) u0 + s u1 .

A more precise evaluation of the local minimum ulm can be obtained by a steepest
descent method (see e.g. [8, Section 3]), starting from

(1 − s) u0 + s u1 .

However, for certain values of d , ulm cannot be a global minimum, because one
obtains a lower value of the functional f by means of a trajectory which increases
x(2) to the level where n has a lower value, moves in that area and finally comes
back to the level x(2) = −2.

This is the case, if u0 = (−4,−2), u1 = (4,−2), and again, by a steepest
descent method, one can obtain a numerical evaluation of the global minimum ugm.
An approximate description of ulm and ugm is given by (Fig. 4.5)

u′
lm(0) ≈ (7.999969, 0.019204) f (ulm) ≈ 127.6942 L (ulm) ≈ 15.9809

u′
gm(0) ≈ (3.910207, 6.545254) f

(
ugm

) ≈ 115.9823 L (
ugm

) ≈ 15.2304

According to Theorem 4.6.3, there is a further critical point ump of f , of
mountain pass type, which represents a light ray of total internal reflection. A
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Fig. 4.4 The graph of the refractive index n

numerical evaluation of ump is more complicated, but can be performed using the
technique introduced in [8] (see also [24]).

Let us collect some approximate descriptions (Fig. 4.6):

u0 = (−4,−2) u1 = (4,−2)

u′
lm(0) ≈ (7.999969, 0.019204) f (ulm) ≈ 127.6942 L (ulm) ≈ 15.9809

u′
gm(0) ≈ (3.910207, 6.545254) f

(
ugm

) ≈ 115.9823 L (
ugm

) ≈ 15.2304

u′
mp(0) ≈ (7.903412, 4.062619) f

(
ump

) ≈ 157.5607 L (
ump

) ≈ 17.7517

When d decreases from 4 to 3, so that u0 and u1 approach, for a certain value of
d the local minimum close to

(1 − s) u0 + s u1

becomes global, so that

ugm(s) ≈ (1 − s) u0 + s u1 .
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Fig. 4.5 The images of the local minimum ulm (the lower curve) and of the global minimum ugm
(the upper curve), in the case u0 = (−4,−2) and u1 = (4,−2)

Fig. 4.6 The images of ulm (the lower curve), ump (the middle curve) and ugm (the upper curve),
in the case u0 = (−4,−2) and u1 = (4,−2)

However the old global minimum moves and becomes in fact a local minimum.
Again, there is also a further critical point of mountain pass type.

This is the case if u0 = (−3,−2), u1 = (3,−2). Let us provide some
approximate descriptions (Fig. 4.7):

u0 = (−3,−2) u1 = (3,−2)

u′
gm(0) ≈ (5.999987, 0.010787) f

(
ugm

) ≈ 71.8280 L (
ugm

) ≈ 11.9857

u′
lm(0) ≈ (3.410880, 5.644203) f (ulm) ≈ 86.7746 L (ulm) ≈ 13.1738

u′
mp(0) ≈ (5.912067, 4.047692) f

(
ump

) ≈ 102.4277 L (
ump

) ≈ 14.3128
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Fig. 4.7 The images of ugm (the lower curve), ump (the middle curve) and ulm (the upper curve),
in the case u0 = (−3,−2) and u1 = (3,−2)

When d is still decreasing, the local minimum and the mountain pass point
approach. Let us see the situation when u0 = (−1.7,−2), u1 = (1.7,−2) and
provide some approximate descriptions (Fig. 4.8):

u0 = (−1.7,−2) u1 = (1.7,−2)

u′
gm(0) ≈ (3.399998, 0.003460) f

(
ugm

) ≈ 23.0648 L (
ugm

) ≈ 6.7919

u′
lm(0) ≈ (2.868803, 4.370040) f (ulm) ≈ 54.5242 L (ulm) ≈ 10.4426

u′
mp(0) ≈ (3.239072, 4.112322) f

(
ump

) ≈ 54.6749 L (
ump

) ≈ 10.4570

If d is too small, hence u0 and u1 too close, the global minimum close to

(1 − s) u0 + s u1

is the unique critical point of f .
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Fig. 4.8 The images of ugm (the lower curve), ump (the middle curve) and ulm (the upper curve),
in the case u0 = (−1.7,−2) and u1 = (1.7,−2)
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Chapter 5
Electromagnetic Hypogene Co-seismic
Sources

Giovanni Franzina

Abstract We survey some mathematical models for electro-magnetic emission due
to electro-mechanically generated sources in heterogeneous materials. Because of
the applications in geophysics, we focus our attention on parabolic approxima-
tions of Maxwell’s equations; also, we estimate under various assumptions the
discrepancy with respect to the complete set of classical electrodynamics. Then,
we introduce a related inverse problem.

5.1 Introduction

The task of predicting time, location, and energy, of a seismic event in advance
enough to deliver warnings is a tough task to undertake. Deterministic predictions
are out-of-reach. Some estimation of earthquake probabilities is however possible.
Long-term chances that an earthquake of magnitude larger than a threshold will
(or will not) take place in a given area within a given time period are sometimes
provided by research groups. For example, magnitude and location of the 2004
Parkfield earthquake were correctly predicted [7], without however a precise
prediction of its time of occurrence; the same section of the San Andreas fault is still
the object of long-term probabilistic prediction [20]. Besides the specific example,
in general this kind of prediction usually regards a rather large time window, and
short-term precursors are very difficult to detect.

Instead, the advance notice that a shock is going to hit an area, within several to
tens of seconds, does not only involve inferential statistics, but also physics. Is called
early warning and is sometimes made possibile by the difference in propagation
velocity between primary waves and secondary waves: for instance, seismic wave
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propagation in elastic homogeneous isotropic media is described by a vector-valued
displacement function u obeying the PDEs

�
∂2u

∂t2
= (λ+ 2μ)∇(∇ · u)− μ∇ × ∇ × u ,

where λ, μ are Lamé’s coefficients [23]. Recalling the vector calculus identity

∇(∇ · u)− ∇ × ∇ × u = ∇2u ,

where ∇2 is the componentwise Laplace operator, we deduce that ∇ · u and ∇ × u
solve wave equations with propagation speed respectively given by

√
λ+ 2μ

�
and

√
μ

�
,

whose ratio is
√

2 at least. The earlier arrival of “P-waves”, oscillating parallel
to propagation, can be used to warn in advance of the imminent effect of the “S-
waves”, travelling slightly more slowly along the same direction but shaking in the
orthogonal directions, and being therefore likely to carry a larger energy.

It makes sense to wonder if other “imminent” seismic precursors exist: In
particular, if it makes sense to seek electromagnetic seismicity-related signals that
might provide advance notice of an imminent earthquake: the possibility of links
between subsurface electric currents and earthquake physics have been investigated
for occasionally in the literature. Yet, little is known, nonetheless.

Here, we present an elementary magneto-quasistatic model aiming to study hypo-
gene co-seismic source reconstruction starting from subsurface measurements of
magnetic signals. There is no pretence of originality, nor is this paper supplemented
by data or any specific material.

5.1.1 Magnetic Anomalies of Possible Coseismic Nature

Telluric electric currents, flowing throughout Earth’s crust, can be measured; in
particular, it is sometimes conjectured that those acting as sources for signals
with frequency ranging between 10−3 and 103 Hz may admit some relation to
seismology [19]. Possible meaningful causal explanations are indicated in friction
and piezoelectric effects within rocks, due to the relative movement of fault blocks.

Measurements in experimental seismo-electromagnetic research were carried out
to figure out about evidences of aperiodic changes in electromagnetic fields, with
controversial results; in fact, claims of magnetic anomalies in the low-frequency
band are sometimes asserted. The first instances in literature of papers supporting
with some data these hypothesises seem to be those concerning two seismic events,
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one in Spitak, in Armenia, and another one in Loma Prieta, in California in 1989;
an anomalous electromagnetic emission in the ULF range was measured in both
cases; the instruments were believed to reveal a transient signal for hours before
and after the earthquake [13]. As a matter of fact, other scientists [24] refuse to
acknowledge significance to the findings about Loma Prieta earthquake, suggesting
that they would be due to a sensor malfunction. Also, a recent surge in research
in geophysics in this topic is related to the DEMETER mission; in this case, the
magnetic measurements are taken in orbit rather than at the surface; some authors
related their findings to earthquakes in Sichuan [25] and Haiti [6].

Thenceforth, a number of experts started investigating the matter, with the object
of understanding if the simultaneous occurrence of seismic activity in the crust and
of electromagnetic anomalies in ULF bands does take place, and if this happens
by chance, with no cause-effect relation, or if instead the two phaenomena are
linked by a causal relationship [9, 12, 15, 17]. For instance, in [17] the authors
conjecture a source-generating mechanism based on micro-crack propagation. Their
considerations are based on a simple dimensional analysis. According to findings
based on geometric deep sounding, the macroscopic crustal dielectric permittivity
ε is small relative to the average conductivity σ of rocks: precisely, the ratio ε/σ
is estimated to range between 10−7 s and 10−5 s. Since changes in geomagnetic
fields, geoelectric potentials, and electrokinetic potential on the water-solid contact
are not expected to cause fast ULF variation, a possible stress-induced mechanism
with this time-scale is the opening of cracks with lengthscale between 10−4 and
10−1 m at the seismic velocity of 103 m/s. In this picture, the consequent EM noise
would dissipate within the region interested by the phaenomenon, producing ULF
emission under a cut-off at 1 Hz.

5.1.2 General Electrodynamic Models in Seismology

At the occurrence of a seismic event, and in correspondence with its preparatory
phase, the scalar parameters (azimuth, dip and depth) describing the (affine) fault
plane, the local crustal strain, and the width of the portion of plane interested by
yield stress, cope with ground motion, friction and crack opening. The induced
movement of electrically charged particles generates an electromagnetic signal.
Subsurface charge motions take place along the field lines for a vector field v. By
charge consevation, J = ρ−1v compensates the rate of change in time of the electric
charge distribution in Earth’s crust denoted by ρ(·, t) at time t , so that

∂ρ

∂t
+ ∇ · J = 0 . (5.1)
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By causality, J must be a non-stationary function; this yields a time-varying
magnetic field. Indeed, (5.1) and Gauß’s law ∇ ·D = ρ for the electric displacement
field D imply (up to harmonic fields)

− D + ∇ × H = J . (5.2a)

Also, in view of Faraday’s induction law, a non-stationary magnetic induction field
B induces a non-conservative electric field E satisfying

∂B

∂t
+ ∇ × E = 0 . (5.2b)

In addition to (5.2a) and (5.2b), Maxwell’s equations include Gauss’s law

∇ · D = ρ , (5.2c)

and the constraint of absence of magnetic sources:

∇ · B = 0 . (5.2d)

5.1.3 Constitutive Properties of the Propagation Medium

The medium filling Earth’s crust is described by the constitutive relations

D = εE , B = μH , J = J 0 + σE . (5.3)

where ε is the electric permittivity ε0 = 8.8541878128(13)× 10−12 F·m−1 and μ
is the magnetic permeability μ0 = 4π × 10−7 H·m−1 in vacuum. The last equation
in (5.3) includes a vector field J 0, interpreted as the source, concentrated in region
several to tens of kilometers deep and generating the EM signal, and the induced
volume eddy currents, that depend on the crust stratification according to a linear
Ohm-type law: the electric conductivity σ is a known piecewise scalar function [19],
but anisotropic media can also be considered (in that case σ is tensor-valued).
Inserting the constitutive laws (5.3) in the complete set of Maxwell’s equations (5.2),
we arrive at the system of equations

∇ × H −
(
σE + ε ∂E

∂t

)
= J 0

∇ × E + μ∂H
∂t

= 0 ,

(5.4a)

subject to the differential constraint

∇ · (μH ) = 0 . (5.4b)
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Initial conditions, in this model, must be imposed both on the electric and on the
magnetic field

E(0) = E0ε (5.5a)

H (0) = H 0ε (5.5b)

with E0ε and H 0ε being given, and ∇ · (μH 0ε) = 0.

5.1.4 Grounds for Magneto-Quasistatic Models

In time-harmonic regime, the collection of all bulk terms between round brackets in
the first equation of the system (5.4a) is given by multiplication of the electric field
(in frequency domain) by the complex tensor

σ + iωε .

Assuming smallness of the complex modulus |ω| would be consistent with findings
of magnetic anomalies in ULF band. Also, the smallness of the time-scale ε

σ
(see

Sect. 5.1.1) makes ε negligible, relative to σ . Thus, the interest in ULF magnetic
anomalies in signals due to hypogene sources suggests one to consider the magneto-
quasistatic model

∇ × H − σE = J 0 (5.6a)

∇ × E + μ∂H
∂t

= 0 , (5.6b)

with the constraint

∇ · (μH ) = 0 . (5.6c)

In this case, we may provide an initial condition for the sole magnetic field, requiring
that

H (0) = H 0 , (5.7)

where the vector field H 0 is given and satisfies the compatibility condition ∇ ·
(μH 0) = 0. Some comments on the singular limit as ε → 0+, in passing from
(5.4) to (5.6), are made in Sect. 5.4. The loss of an initial condition may induce a
boundary layer problem in time.
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We point out that the limit problem (5.6) is or parabolic type. Indeed, multiplying
(5.6a) by σ−1 and using the result to cancel the electric field from (5.6b) we arrive
at the equation

μ
∂H

∂t
+ ∇ × (

σ−1∇ × H ) = ∇ × (σ−1J 0) . (5.8)

This equation involves the differential operator H �→ ∇ × (
σ−1∇ × H ), that is of

elliptic type under natural assumptions on the coefficients (see Sect. 5.2.4).

5.1.5 Boundary Conditions

Let  ⊂ R
3 be an open region with smooth boundaries, filled with a medium

having permittivity ε, magnetic permeability μ, and electric conductivity σ , with
appropriate assumptions on μ and σ being in force (we postpone the details to
Sect. 5.2.4). In order to match the degrees of freedom in components of J 0,E,H ,
both (5.4) and (5.6) list a number of equations that lack two scalar conditions. A
convenient choice is to impose the boundary condition

H × n = 0 , on ∂ (5.9)

That, supplemented with these tangential boundary conditions, the magneto-
quasistatic model (5.6) be well-posed is assured by suitable assumptions, that are
discussed in Sect. 5.3.

The choice of limiting ourselves to consider homogeneous tangential boundary
data is a mathematical artifice that causes no real restriction in Sects. 5.3, 5.4, and
5.5.

5.1.6 Parabolic Inverse Source Problems

Notwithstanding, it may be interesting to consider solutions attaining inhomoge-
neous data at the boundary. Those data may model measurements, at least in
some subregion of the boundary surface; in this spirit, we point out that, under
some circumstances, partial measurements are enough to recover the constitutive
properties of the medium [5]. But the relevant inverse problem in this context is
different, because it points to recover the source appearing in Eqs. (5.6), that we
couple with (5.9), from the knowledge of suitable data θ .

In time-harmonic regime [4] there exist non-radiating sources, i.e., non-trivial
right hand sides J 0 in (5.6) that are consistent with the homogeneous conditions
(5.6). Thus, even a complete knowledge of the boundary data H × n = θ would
not be sufficient to determine J 0. Due to this ill-posedness, it is essential to subject
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the inverse source problem to some a priori assumptions on geometric and analytic
structure of the source. Both in hyperbolic and in parabolic setting [1, 4], tangential
boundary measurements uniquely dictate the source if the source is a priori known
to be concentrated along a surface. Uniqueness holds for dipole sources, too. In
Sect. 5.6, we survey this results in the time-dependent model.

Of course source reconstruction from the knowledge of tangential boundary
measurements is not the only inverse source problem that can be considered,
and there are a number of variants of the same idea. Another inverse problem
that we introduce in Sect. 5.6 is that of determining the source in (5.6), under
homogeneous boundary conditions (5.9), by assuming the complete knowledge of
the magnetic field at the endpoints of a time interval [22]. Yet another example is
provided by inverse source reconstruction for (5.6) with (5.9) from boundary normal
measurements: the method of [21] for (5.4) can be adapted verbatim to the parabolic
setting.

5.2 Mathematical Framework

Unless otherwise specified, here and henceforth the spaces of L2 scalar-valued,
vector-valued, and tensor-valued functions will be denoted by L2( ), L2( ;R3),
and L2( ;R3×3), respectively. Also, we shall denote throughout the paper by
(· , ·)L2 and by ‖ · ‖L2 the scalar product and the norm in all these spaces.
Occasionally, we may opt for notation ‖ · ‖L2(f ) when referring to the weighted
L2-norm with the function f as a density.

5.2.1 Energy Space

We recall that

H 1(curl ,  ) = {ψ ∈ L2( ;R3) : ∇ × ψ ∈ L2( ;R3)}

is a Hilbert space with the scalar product defined for all ϕ,ψ by (ϕ , ψ)L2 +
(∇ × ϕ ,∇ × ψ)L2 . For all smooth surfaces!, in particular for all smooth portions
of ∂ , we set

H− 1
2 (divτ ;!) =

{
λ ∈ H− 1

2 (! ; R3) : λ · n = 0 , divτλ = 0
}
. (5.10)

We recall that the Gauss Green-type formula

(ϕ ,∇ × ψ)L2 − (ψ ,∇ × ϕ)L2 =
∫
∂ 

ϕ · (n × ψ) dS , (5.11)
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holds for all ϕ,ψ ∈ C1( ;R3). As a consequence, the tangential trace ψ �−→
n × ψ from C1( ;R3) to C(∂ ;R3) extends to a bounded linear operator from

H 1(curl, ) to the dual spaceH− 1
2 (∂ ;R3) ofH

1
2 (∂ ;R3) (see, e.g, [10]), whose

kernel is denoted by H 1
0 (curl ,  ).

We shall occasionally abbreviate H 1(curl ,  ) to H 1, for ease of notation. We
also set

H 1
0 = {ψ ∈ H 1

0 (curl ,  ) : ∇ · (μψ) = 0} , (5.12)

which defines a closed vector subspace of H 1. In view of assumptions made in
Sect. 5.1.5 the open set supports the so-called Gaffney inequality [8] (a Friedrichs-
Poincaré type functional inequality)

∫
 

|ψ|2 dx ≤ C
∫
 

|∇ × ψ |2 dx , for all ψ ∈ H 1
0 ,

and H 1
0 is a subspace of H 1( ;R3), and with the equivalent norm ψ �→ ‖∇ ×

ψ‖L2 , and H 1
0 is contained in L2( ;R3) with a compact embedding (see, e.g, [14,

§2]). By induction, we also define

H n
0 = {ψ ∈ H n−1

0 : ∇ × ψ ∈ H n−1
0 , ∇ · ψ = 0}

for n ∈ {1, 2, 3}.

5.2.2 Time-Dependent Spaces

We recall that, given p ≥ 1 and a Hilbert space Z , a function φ belongs to
Lp(0, T ;Z) if we have

∫ T

0
‖φ(t)‖pZ dt < +∞

and, in that case, the p-th root of left hand side is denoted by ‖φ‖Lp(0,T ;Z). We also
recall that this defines a complete norm on Lp(0, T ;Z). The same conclusion holds
in the borderline case p = ∞, provided that the p-th root of the integral is replaced
by the essential sup norm.

If ∂tφ belongs to Lp(0, T ;Z) then so does φ, and in that case we write φ ∈
W 1,p(0, T ;Z). Assume that Z ⊂ L2( ;R3) ⊂ Z∗, where Z∗ is the dual of Z ,
with continuous inclusions having dense images. Then, we recall Lions-Magenes
Lemma (see [11, §5]): if φ ∈ L2(0, T ;Z) and ∂tφ belongs to the dual space
L2(0, T ;Z∗), then φ ∈ C([0, T ];L2( ;R3)) and the function t �→ ‖φ(t)‖2

L2 is

absolutely continuous, with 1
2
d
dt

‖φ(t)‖2
L2 = 〈φ(t) , ∂tφ(t)〉 for a.e. 0 ≤ t ≤ T ,



5 Electromagnetic Hypogene Co-seismic Sources 133

where 〈· , ·〉 denotes the duality pairing. The same conclusions hold also if φ ∈
W 1,2(0, T ;L2( ;R3)), because of one-dimensional Sobolev embedding.

5.2.3 Regularity of the Boundaries

For all points x ∈ R
3 and for all r > 0, we denote by Br(x) the ball of radius

r centred at x. An open set  in R
3 is said to satisfy a uniform two-sided ball

condition if there exists a positive r > 0 with the property that, for every boundary
point ξ ∈ ∂ , there exist a ball Br(x) contained in  and a ball Br(y) contained
in its complement, such that ξ belongs both to the closure of Br(x) and to that of
Br(y). Throughout this paper, we shall make the following assumptions:

 is a bounded open set in R
3. (5.13a)

 is either convex or it satisfies a uniform two-sided ball condition. (5.13b)

The closure  of  has the same boundary as  . (5.13c)

Incidentally, we point out that, under the assumption (5.13c), condition (5.13b) is
equivalent to a uniform bound on the C1,1 constants of the functions describing
locally  as a subgraph.

5.2.4 Assumptions on the Coefficients

We assume that σ be a bounded measurable function with values in the set of (3×3)-
symmetric matrices with real coefficients such that

σ0|ξ |2 ≤ σ(x)ξ · ξ ≤ σ−1
0 |ξ |2 , for a.e. x ∈  , and for all ξ ∈ R

3, (5.14a)

for an appropriate constant σ0 > 1. Here, for all ξ , η ∈ R
3 we are denoting by

ξ ·η the standard scalar product in R
3. By μ we shall denote a fixed positive smooth

scalar function, satisfying

σ0 ≤ inf{μ(x) , |∇μ(x)} ≤ sup{μ(x) , |∇μ(x)} ≤ σ−1
0 , (5.14b)

for all x ∈  .
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5.2.5 Total Basis and Magnetic Eigenvalues

Assuming (5.13) and (5.14b), the eigenvalue-type boundary value problem

⎧⎪⎪⎨
⎪⎪⎩

∇ × ∇ × ψ = λψ , in  ,

∇ · (μψ) = 0 , in  ,

n × ψ = 0 , on ∂ 

(5.15)

admits non-trivial (weak) solutions for a discrete set of real numbers λ, called
eigenvalues. If λ ≥ 0 is an eigenvalue, any non-trivial (weak) solution of (5.15) is
called an eigenfield. The eigenvalues form an unbounded non-decreasing sequence,
that is completely described by the variational principle

λm = min
ϕ1,...,ϕm∈H 1

0

max

⎧⎪⎪⎨
⎪⎪⎩

∫
 

|∇ × ψ(x)|2 dx
∫
 

|ψ(x)|2 dx
: ψ ∈ Span{ϕ1, . . . ,ϕm} \ {0}

⎫⎪⎪⎬
⎪⎪⎭
.

(5.16)

If is simply connected with a connected boundary ∂ then λ1 > 0. In general,
λj = 0 for all positive integers j smaller than the number of degrees of freedom
behind conditions

∇ × ψ = 0 , ∇ · (μψ) = 0 , n × ψ
∣∣
∂ 

= 0 ,

which is however always finite (it is the second Betti number of  as a Euclidean
manifold).

5.3 Well-Posedness for the Forward Problem

5.3.1 Parabolic Estimates

In this section we provide solutions of the quasi-static Maxwell equations, under-
stood in the following sense.

Definition 5.3.1 Given J 0 ∈ L2(0, T ;L2( ;R3)) and H 0 ∈ L2( ;R3), with ∇ ·
(μH 0) = 0 in  , we say that H ∈ L2(0, T ;H 1

0 ), with ∂tH ∈ L2(0, T ; (H 1
0 )

∗)
and H (0) = H 0, is a weak solution of (5.6) with the boundary conditions (5.9) if
we have

−
∫ T1

T0

(
μH ,

∂φ

∂t

)
L2
dτ +

∫ T1

T0

(
σ−1∇ × H ,∇ × φ

)
L2
dτ =

∫ T1

T0

(
σ−1J 0 ,∇ × φ

)
L2
dτ ,



5 Electromagnetic Hypogene Co-seismic Sources 135

for all φ ∈ C∞( × [0, T ]) with support contained in  × [0, T ], for all 0 < T0 <

T1 < T .

Note that, under the assumptions made in Definition 5.3.1, the initial condition
on weak solutions makes sense because of Lions- Magenes Lemma. If certain better
regularity criteria are met, the weak solutions are solutions in the following stronger
sense.

Definition 5.3.2 Given J 0 ∈ L2(0, T ;L2( ;R3)) and H 0 ∈ H 1
0 , with

∇ · (μH 0) = 0 in  , we say that H ∈ L2(0, T ;H 1
0 ), with ∂tH ∈

L2(0, T ;L2( ;R3)), is a strong solution of (5.6), with boundary conditions (5.9),
if
(
μ
∂H

∂t
(τ ) , ψ

)
L2

+
(
σ−1∇ × H (τ ) ,∇ × ψ

)
L2

=
(
σ−1J 0(τ ) ,∇ × ψ

)
L2
,

(5.17)

for all ψ ∈ H 1
0 and for a.e. 0 ≤ τ ≤ T .

To construct solutions, we follow a specific Galerkin-type method. To do so, for
all m ∈ N, we denote by πm the projection from H 1

0 onto the vector space H 1
0m

generated by the eigenfields associated with the eigenvalues λ1, . . . , λm introduced
in (5.16). Given H 0 ∈ H 1

0 , the standard results for linear systems of ordinary
differential equations imply the existence of a (unique) Hm ∈ C1([0, T ];H 1

0m )

for which
⎧⎨
⎩

∇ × Hm − σEm = πmJ 0

∇ × Em + μ∂Hm

∂t
= 0

(5.18)

for an appropriate Em ∈ C1([0, T ];H 1
0m ), under initial conditions Hm(0) =

πmH 0. Multiplying the first equation in (5.18) by Em and the second one by Hm,
we arrive at the identity

1

2

d

dt
(μHm ,Hm)L2 + (σEm ,Em)L2 = − (πmJ 0 ,Em)L2 . (5.19)

Using Cauchy Schwartz inequality and the first equation in (5.18) again, from (5.19)
we deduce

d

dt
(μHm ,Hm)L2 +

(
σ−1∇ × Hm ,∇ × Hm

)
L2

≤
(
σ−1πmJ 0 , πmJ 0

)
L2
.
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Integrating in time, we get

sup
τ∈[0,T ]

‖√μHm‖2
L2 +

∫ T

0
‖∇ × Hm‖2

L2 dτ ≤ C1(")

(
‖H 0‖2

L2 +
∫ T

0
‖J 0‖2

L2 dτ

)
.

(5.20)

Also, recalling that (5.15) with λ = λi holds for an appropriate ψ i ∈ H 1
0m , we

have

‖∇ × Hm(0)‖2
L2 =

m∑
i,j=1

(
Hm(0) , ψ i

)
L2

(
Hm(0) , ψj

)
L2

(∇ × ψ i ,∇ × ψj
)
L2

=
m∑
i=1

λi |
(
H 0 , ψ i

)
L2 |2 =

∑
i≤m
λi>0

∣∣∣∣
(
∇ × H 0 ,

∇ × ψ i√
λi

)
L2

∣∣∣∣ ≤ ‖∇ × H 0‖2
L2

(5.21)

where in the last passage we also used Bessel’s inequality. We differentiate the first
equation in (5.18) and we multiply the result by Em, then we multiply the second
equation in (5.18) by ∂tHm. Doing so, we arrive at

(
μ
∂Hm

∂t
,
∂Hm

∂t

)
L2

+ 1
2
d
dt
(σEm ,Em)L2 ≤ (σEm ,Em)

1
2
L2

(
σ−1πm

∂J 0

∂t
, πm

∂J 0

∂t

) 1
2

L2

where we also used Cauchy-Schwartz inequality. By a Grönwall-type argument, we
infer that

(σEm ,Em)L2 ≤ 2 (σEm(0) ,Em(0))L2 +T
∫ T

0

(
σ−1πm

∂J 0

∂t
, πm

∂J 0

∂t

)
L2
dτ .

Using the first equation in (5.18) with t = 0 and recalling (5.21), after an integation
in time from the last two inequalities we deduce

∫ T

0

∥∥∥∥√μ∂Hm

∂t

∥∥∥∥
2

L2
dτ + sup

τ∈[0,T ]
‖∇ × Hm‖2

L2 ≤ C2(")

(
‖∇ × H 0‖2

L2 +
∫ T

0

∥∥∥∥ ∂J 0

∂t

∥∥∥∥
2

L2
dτ

)
.

(5.22)

If ∇ × (σ−1∇ × H 0) ∈ L2( ), the system (5.18) at initial time gives

μ∂tHm(0) = −∇ × (σ−1∇ × H 0)+ ∇ × (σ−1J 0(0)) .

By (5.18) we also have

(
μ
∂2

∂t2
Hm , ψ

)
L2

+
(
σ−1∇ × ∂Hm

∂t
,∇ × ψ

)
L2

=
(
σ−1πm

∂J 0

∂t
,∇ × ψ

)
L2
, for all ψ ∈ H 1

0 .
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Then, for ∇× (σ−1∇×H 0) ∈ L2( ), choosing ψ = ∂Hm

∂t
and integrating in time

we arrive at

sup
τ∈[0,T ]

∥∥∥∥∂Hm

∂t
(τ )

∥∥∥∥
2

L2
+

∫ T

0

∥∥∥∥∂(∇ × Hm)

∂t

∥∥∥∥
2

L2
dτ

≤ C3(")

(
‖σ−1∇ × H 0‖H 1

0
+

∫ T

0

∥∥∥∥∂J 0

∂t

∥∥∥∥
2

L2
dτ

)
.

(5.23)

The energy estimates obtained during the procedure imply the following fact.

Theorem 5.3.3 Let  ⊂ R
3 satisfy (5.13), let σ ∈ L∞( ;R3×3) and let

μ ∈ C1(R3) be such that (5.14) holds. Given J 0 ∈ L2(0, T ;L2( ;R3)) and
H 0 ∈ L2( ), with ∇ · (μH 0) = 0 in  , there exists a unique weak solution
H ∈ L2(0, T ;H 1

0 ), with ∂tH ∈ L2(0, T ; (H 1
0 )

∗), and we have

‖H‖L∞(0,T ;L2( )) + ‖H‖L2(0,T ;H 1
0 )

≤ c1
(‖H 0‖L2 + ‖J 0‖L2(0,T ;L2( ))

)
.

(5.24)

If also H 0 ∈ H 1
0 and J 0 ∈ W 1,2(0, T ;L2( ;R3)), then H is a strong solution

and

‖H‖W 1,2(0,T ;L2( )) + ‖H‖L∞(0,T ;H 1
0 )

≤ c2

(
‖H‖H 1

0
+

∥∥∥∥∂J 0

∂t

∥∥∥∥
L2(0,T ;L2( ))

)
.

(5.25)

Eventually, if in addition σ−1∇ × H 0 ∈ H 1
0 then

‖H‖W 1,∞(0,T ;L2( )) + ‖H‖
W 1,2(0,T ;H 1

0 )
≤ c3

(
‖σ−1∇ × H 0‖H 1

0
+

∥∥∥∥ ∂J 0

∂t

∥∥∥∥
L2(0,T ;L2( ))

)
.

(5.26)

In the estimates, the constants c1, c2, c3 depend on σ0, T , and  , only.

Proof Uniqueness follows at once by the estimates. The existence of a field solving
the weak equation, with the first estimate, is a consequence of (5.20) and of a routine
compactness argument. In case H 0 ∈ H 1

0 , we can use (5.22), too: as a consquence,
we obtain the second estimate; also, choosing a test function of the form φ(x, t) =
ψ(x)h(t), with h ∈ C1

0 (0, T ), in the weaker equation and integrating by parts,
we deduce the stronger equation for almost all times t ∈ (0, T ) because of the
arbitrariness of h. Eventually, under the additional assumption that ∇ × (σ−1∇ ×
H 0) ∈ H 1

0 we can use also (5.23) and that implies the last statement. ��
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Remark 5.3.4 If the initial data satisfy the assumption ∇ × (σ−1∇ × H 0) ∈ H 1
0 ,

then by Aubin-Lions Lemma the convergence of the Galerkin method holds, at least,
is in the following sense:

lim
m→∞

∫ T

0
‖Hm(·, t) − H (·, t)‖2

L2 dt = 0

The case of heterogeneous media with conductivities that include discontinuities
is interesting in applications. The following regularity-related result is proved in
[14, Theorem 4.1]. The proof presented there is based on the method introduced in
[2], which combines elliptic Campanato-type estimates and the classical De Giorgi-
Nash regularity with the relevant Helmholtz decompositions.

Theorem 5.3.5 (Regularity) Let  ⊂ R
3 satisfy (5.13), let σ ∈ L∞( ;R3×3)

and let μ ∈ C1(R3) be such that (5.14) holds. Then, there exists α0 ∈ (0, 1
2 ], only

depending on σ0, such that for every α ∈ (0, α0] the following holds: for every
H0 ∈ C0,α( ;R3) and for every J 0 ∈ L2(0, T ;C0,α( ;R3)), if (E,H) is a weak
solution of (5.6), then H ∈ L2(0, T ; C0,α( ; R3)), and we have

‖H‖L2(0,T ;C0,α( ;R3)) ≤C
[
‖H0‖C0,α ( ;R3) + ‖H‖

W 1,2(0,T ;H 1
0 )

+ ‖J 0‖L2(0,T ;C0,α ( ;R3))

]
,

(5.27)

where the constant C depends on σ0, T , and on  , only.

Remark 5.3.6 If the initial data satisfy also the assumption that σ−1∇×H 0 ∈ H 1
0

then

‖H‖L∞(0,T ;C0,α ( ;R3)) ≤C
[
‖H0‖C0,α ( ;R3) + ‖H‖

W 1,∞(0,T ;H 1
0 )

+ ‖J 0‖L∞(0,T ;C0,α ( ;R3))

]
.

The appropriate assumptions on the conductivity coefficients σ do include the
possibility of discontinuities, as said. Nonetheless, it can however be legit to
consider simplified situations in which the singularities are concentrated along
smooth geometric objects.

For example, a relevant situation is that of an heterogeneous isotropic medium
described by a piecewise constant conductivity, jumping across a plane. In this
simpler case, the magneto-quasistatic field solves a system of three scalar heat
equations mildly coupled by the presence in the right hand side of the components
of a given forcing term: in each level set of σ , we have

μσ
∂H

∂t
− ∇2H = ∇ × J 0 . (5.28)
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In (5.28), ∇2 denotes the vector-valued Laplace operator defined componentwise by

∇2ψ =
⎛
⎜⎝
∂2
xxf + ∂2

yyf + ∂2
zzf

∂2
xxg + ∂2

yyg + ∂2
zzg

∂2
xxh+ ∂2

yyh+ ∂2
zzh

⎞
⎟⎠ , for all ψ =

⎛
⎝fg
h

⎞
⎠ .

Theorem 5.3.7 (Transmission Conditions) Let r > 0, let R > 0, and let e ∈ R
3

and let

 = {
x ∈ R

3 : |x · e| ≤ R , |x − (x · e)e| ≤ r} ,
 + = {

x ∈  : x · e > 0
}
, and  − = {

x ∈  : x · e < 0
}
.

Let σ+, σ− > 0, let σ = σ+ · 1 + + σ− · 1 − , and let �·� denote the jump across
! = {x ∈ R

3 : x · e = 0} in the sense of traces. Then, for every H 0 ∈ H 1
0 and

for every J 0 ∈ L2(0, T ;L2( ;R3)), a vector field H is a weak solution of (5.6) if,
and only if, it solves (5.28) in  + ∪ − and the transmission conditions

�H � = 0 (5.29a)

�e × (σ−1∇ × H )� = 0 (5.29b)

hold along ! for a.e. 0 ≤ t ≤ T .

Proof Because H 0 ∈ H 1
0 , a vector field H is a weak solution if and only if it is a

strong one, i.e., (5.17) holds for all ψ ∈ H 1
0 . In that case, choosing first test fields

ψ with support either contained in  + or in  − we see that equations (5.6a) and
(5.6b) hold in  + ∪  − =  \ !. Combining those equations with (5.17) when
the support ψ has non-empty intersection with !, after an integration by parts we
arrive at

∫
!

ψ · e ×
(
μ
∂H

∂t

)
dS = 0 ,

∫
!

ψ · e × (σ−1∇ × H ) dS = 0 .

As ψ can be any element of H 1
0 , we infer that

�

e × ∂H

∂t

�

= 0 , �e × (σ−1∇ × H )� = 0 ,

and (5.29b) is proved. Because, by assumption, H 0 must not jump across !, the
first identity in the latter implies �e × H � = 0. That �e · H � = 0 too, follows from
(5.6c) by divergence theorem. This proves also (5.29a) and concludes the proof. ��
Remark 5.3.8 When in force for solutions, condition (5.29a) is valid not just in the
sense of traces, because H is continuous across ! in view of Theorem 5.3.5. On
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the other hand, condition (5.29b) limits the regularity of H in the scale of Hölder
spaces, and indicates that it must not be continuously differentiable: any jump in the
coefficient σ must be compensated by the curl of H .

5.4 Hyperbolic Estimates and Their Singular Limit

We devote this section to some comments on the asymptotic behaviour of electro-
magnetic fields in media with vanishing dielectricity. This issue, in the case of
homogeneous media, has been already considered in literature, even for quasi-
linear models: we refer the interested reader to [16]. The problem in heterogeneous
media does not give rise to particular additional issues, at least if the conducivity is
described by a smooth function; for sake of simplicity, in the present section we will
limit our attention to this simpler case.

Let Eε , H ε solve the complete set of Maxwell equations (5.4) under the
boundary conditions (5.9). From (5.4a), we arrive at the estimate

∫ T

0
‖Eε‖2

L2(σ )
dt + max

0≤t≤T

[
‖Eε‖2

L2(ε)
+ ‖H ε‖2

L2(μ)

]
≤ C

∫ T

0
‖J 0‖2

L2 dt + 2L2
0ε

(5.30)

where the constant C is independent of ε, and L0ε = ‖E0ε‖L2 + ‖H 0ε‖L2 where
E0ε and H 0ε are the data involved in the initial conditions (5.5).

Differentiating in time equations (5.4a), multiplying the first one by ∂tEε and the
second one by ∂tH ε , integrating by parts, and using (5.9), by a similar argument we
may also get

∫ T

0

∥∥∥∥ ∂Eε∂t
∥∥∥∥

2

L2(σ )

dt + max
0≤t≤T

[∥∥∥∥∂Eε∂t
∥∥∥∥

2

L2(ε)

+
∥∥∥∥ ∂H ε

∂t

∥∥∥∥
2

L2(μ)

]
≤ C

∫ T

0

∥∥∥∥∂J 0

∂t

∥∥∥∥
2

L2
dt + 2M2

0ε ,

(5.31)

with a constant C that is also independent of ε. In this case, the right hand side
involves the quantity M0ε = ‖∂tEε(0)‖L2 + ‖∂tH ε(0)‖L2 , which does not depend
on the data directly, but rather through the solutions.

Note that both L0ε andM0ε depend on ε. When considering the limit as ε → 0+
it is therefore natural to dictate some additional requirement on the initial data so
as to provide uniform bounds for these quantities. In particular, a uniform bound
for L0ε in (5.30) is a minimal requirement. This would be ensured, for example, by
conditions

H 0ε ∈ H n
0 , E0ε ∈ H n

0 (5.32)
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and

A0 := lim sup
ε→0+

(
‖H 0ε‖H n

0
+ ‖E0ε‖H n

0

)
< +∞ . (5.33)

In fact, if (5.32) and (5.33) hold then we further have that

lim inf
ε→0+ ‖H 0ε − H 0‖H n−1

0
= 0 , (5.34)

for a suitable H 0 ∈ H n
0 .

Here and henceforth, we make use of a fixed ρ ∈ C∞
0 (R

3), with 0 ≤ ρ ≤ 1 and∫
ρ(x) dx = 1, assumed to be even and have compact support in the unit ball, and

for every δ ∈ (0, 1) we set ρδ(x) = δ−3ρ (x/δ), for all x ∈ R
3. For every single

δ > 0 and for all (scalar, vector-, or tensor-valued) functions (or distributions) u we
shall denote by

u # ρδ(x) =
∫
ρδ(x − y)u(y) dy , x ∈ R

3 ,

the (componentwise) convolution product of u by the mollifier ρδ . We recall that
u ∗ ρδ ∈ C∞(R3), and that u ∈ H n

0 implies that u # ρδ → u, as δ → 0+, strongly
in H n

0 .

Theorem 5.4.1 (Weak Convergence) Let ⊂ R
3 satisfy (5.13), let σ be a smooth

function, satisfying (5.14a), with ‖σ‖C3( ;R3×3) ≤ σ−1
0 , and let μ be a positive

constant, with μ > σ0. Let n ∈ {1, 2, 3}, let J 0 ∈ W 1,2(0, T ;H n
0 ), and let H 0 ∈

H n
0 . For all ε > 0, let (E0ε,H 0ε) satisfy (5.32) and (5.33), and let (Eε,H ε) be

a solution of Maxwell’s equations (5.4) with boundary conditions (5.9) and initial
conditions (5.5). Then, as ε → 0+,

H ε
∗
⇀ H weakly- ∗ in L∞(0, T ;H n

0 ), (5.35a)

Eε ⇀ E weakly in L2(0, T ;H n
0 ), (5.35b)

∂H ε

∂t
⇀
∂H

∂t
weakly in L2(0, T ;H n−1

0 ), (5.35c)

where (E,H ) is the solution of (5.6) with boundary conditions (5.9) and initial
conditions (5.7).

Proof Let s = (s1, s2, s3) be a multi-index of lentgth |s| = s1 + s2 + s3 ≤ n.
We use notation ∂s = ∂s1

∂x
s1
1

∂s2

∂x
s2
1

∂s3

∂x
s3
1

. Let δ > 0, and let J s = ∂sJ 0 # ρδ . Then

Es = ∂sEε # ρδ and H s = ∂sH ε # ρδ are weak solutions of the system

⎧⎪⎪⎨
⎪⎪⎩

∇ × H s − ε∂tEs − σ0Es = f s in  × (0, T ),
μ
∂H s

∂t
+ ∇ × Es = 0 , in  × (0, T ),

n × H s = 0 , on ∂ × (0, T ),
(5.36)
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with the source being defined by f s = J s − (σ − σ0)ψ s − Rs , where

Rs =
∑
β≤s
β �=s

(
s

β

)
(∂s−βσ∂βψ) # ρδ .

As a consequence of the energy identity

d

dt

(
ε‖Es‖2

L2 + ‖H s‖2
L2

)
+ 2 (σEs ,Es)L2 = 2 (J s + Rs ,Es)L2

after a finite recursion argument we arrive at

∑
|s|≤n

[
d

dt

(
ε‖Es‖2

L2 + ‖H s‖2
L2

)
+ ‖Es‖2

L2

]
≤ c1‖J s‖2

H n
0

where c1 depends on σ0 and on n, only. We recall that for every ψ ∈ H n
0

c−1
2 ‖ψ‖2

H n
0

≤
∑
|α|≤n

‖∂sψ‖2
L2 ≤ c2‖ψ‖2

H n
0

where c2 only depends on n. Hence, in view of (5.33),

∑
|s|≤n

[
sup

0≤t≤T

(
ε‖Es‖2

L2 + ‖H s‖2
L2

)
+

∫ T

0
‖Es‖2

L2 dt

]
≤ 2c1

∫ T

0
‖J‖2

H n
0
dt + 2c2A

2
0 .

where c2 is an absolute constant. Thus, by setting

c3 =
√

2c2

(
c1

∫ T

0
‖J‖2

H n
0
dt + A2

0

)
,

the mapping that takes every pair of fields (ϕ,ψ), with ϕ(0) = Eε and ψ(0) = H ε ,
to the solution of system (5.4), with (5.9), subject to the initial conditions (5.5),
maps the space

{
(ϕ,ψ) ∈ X : ‖√εϕ‖L∞(0,T ;H n

0 )
+ ‖ψ‖L2(0,T ;H n

0 )
+ c1‖ϕ‖L2(0,T ;H n

0 )
≤ c3

}
,

(5.37)

where X = C([0, T ];H n
0 ×H n

0 )∩C1([0, T ];H n−1
0 ×H n−1

0 ), into itself. Also,
it is easily seen that this mapping is a contraction if we equip the vector space (5.37)
with the distance induced by the norm

(ϕ,ψ) �−→ ‖(√εϕ , ψ)‖L∞(0,T ;L2( ;R3×R3)) .
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By uniqueness, we infer the estimate

lim sup
ε→0

[
sup

0≤t≤T

(
ε‖Eε‖2

H n
0

+ ‖H ε‖2
H n

0

)
+

∫ T

0
‖Eε‖2

H n
0
dt

]

≤ 2c1 c2

∫ T

0
‖J‖2

H n
0
dt + 2c2 · A2

0 .

By Banach-Alaouglu theorem, we deduce that (5.35) holds, along a suitable
sequence εj → 0+, for an appropriate limit (E,H ). The fact that the limit solves
(5.6) with (5.9) is a consequence. By uniqueness, (5.35) holds then for any sequence
εj → 0+, as desired. ��
Remark 5.4.2 As a consequence of the proof of Theorem 5.4.1 and of the second
equation in (5.4a), there exists a constant c > 0, depending only σ0, such that the
solution satisfies the estimate

sup
0≤t≤T

(
ε‖Eε‖2

H 3
0

+ ‖H ε‖2
H 3

0

)
+

∫ T

0
‖Eε‖2

H 3
0
dt +

∫ T

0

∥∥∥∥∂H ε

∂t

∥∥∥∥
2

H 2
0

dt ≤ c2

(5.38)

for all ε ∈ (0, c−1), provided that

∫ T

0
‖J‖2

H n
0
dt + A2

0 ≤ c .

The material above suggests one to consider the formal expansion of solutions of
the hyperbolic Maxwell system (5.4)

Eε = E + √
εϕ + o(√ε) , H ε = H + √

εψ + o(√ε) ,

in which the solution of the magneto-quasistatic Maxwell system (5.6) is the first
term. We see that the higher order term (ϕ,ψ) is provided, formally, by equations

⎧⎪⎪⎨
⎪⎪⎩

∇ × ψ − σϕ = √
ε∂tE ,

∇ × ϕ + μ∂ψ
∂t

= 0 ,

n × ψ = 0 .

(5.39)

In particular, by applying the parabolic estimate (5.24) of Theorem 5.3.3 to the
system (5.39), and by combining the result with (5.38), we see that for the hope of
giving rigour to the expansion to be legit it becomes relevant to consider the limit

lim
ε→0+

H 0ε − H 0√
ε

.
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The existence of the limit, with respect to an appropriate topology, may be useful in
order to give an initial value to ψ and solve (5.39). This is related to the following
theorem.

Theorem 5.4.3 (Singular Convergence) Under the assumptions made in Theo-
rem 5.4.1, and under the additional assumption that

‖H 0ε − H 0‖H 1
0

= O(√ε) , as ε → 0+, (5.40)

as ε → 0+ we have

‖H ε − H‖L∞(0,T ;H 1
0 )

= O(√ε) and ‖Eε − E‖L2(0,T ;H 1
0 )

= O(√ε) .

Moreover, for every T0 ∈ (0, T )

sup
t∈[T0,T ]

‖Eε(t)− E(t)‖H 1
0

= O(ε1/4) , as ε → 0+.

Proof In view of Remark 5.4.2, after the limit procedure we know that

E ∈ C(0, T ;H 2
0 ) ∩W 1,2(0, T ;H 1

0 ) , (5.41)

and that

lim sup
ε→0+

sup
t∈[0,T ]

‖Eε(t)‖H 2
0

≤ c1 ,

∫ T

0
‖∂tE(t)‖2

H 1
0
dt ≤ c2 . (5.42)

for appropriate positive constants c1 and c2. Setting ξε = Eε−E and χε = H ε−H ,
we see that ηε = ∇ × ξ ε and ζ ε = ∇ × χε solve the system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∇ × ζ ε − σηε − ε ∂ηε
∂t

= ε∇ × ∂E

∂t
, in  × (0, T ),

μ
∂ζ ε

∂t
+ ∇ × ηε = 0 in  × (0, T ),

n × ζ ε = 0 on ∂ × (0, T ),

whence if follows that

1

2

d

dt

(
ε‖ηε‖2

L2 + μ‖ζ ε‖2
L2

)
+ (σηε, ηε)L2 = −ε

(
∇ × ∂E

∂t
, ηε

)
. (5.43)

Then, thanks to (5.42), from this energy identity we deduce that

sup
t∈[0,T ]

(
ε‖ξ ε‖2

H 1
0
+μ‖χε‖2

H 1
0

)
+σ0

∫ T

0
‖ξε‖H 1

0
dt ≤ c2 ·ε+ε‖ξ ε(0)‖2

H 1
0
+‖χε(0)‖2

H 1
0
.
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Using now (5.40) and recalling the first inequality in (5.42), we infer

sup
t∈[0,T ]

(
ε‖ξ ε‖2

H 1
0

+ ‖χε‖2
H 1

0

)
+

∫ T

0
‖ξ ε‖H 1

0
dt ≤ c4 · (c1 + c2 + c3) · ε

where the constant c4 > 0 is independent of ε, which ends the first part of the proof.
In order to prove the last statement, we use (5.41) and (5.42) to estimate the right

hand side in identity (5.43). By doing so, we find a constant c5 > 0, independent of
ε, such that

εe−
t
ε
d

dt

(
e
t
ε ‖ξ ε(t)‖2

H 1
0

)
+ d

dt
‖χε(t)‖2

H 1
0

= d

dt

(
ε‖ξ ε‖2

H 1
0

+ ‖χ ε‖2
H 1

0

)
+ ‖ξε‖2

H 1
0

≤ c5ε‖∂tE‖H 1
0
.

Integrating in time, by Theorem 5.4.3 we arrive at

et/ε‖ξ ε(t)‖2
H 1

0
≤ ‖ξ ε(0)‖2

H 1
0

+ c5

∫ t

0
eτ/ε‖∂tE(τ )‖H 1

0
dτ .

By (5.42) and Cauchy-Schwartz inequality, the latter implies

et/ε‖ξ ε(t)‖2
H 1

0
≤ ‖ξ ε(0)‖2

H 1
0

+ c5

√
c2
2 · et/ε√ε (5.44)

whence the conclusion. ��
Theorem 5.4.4 (Non-singular Convergence) Under the assumptions of Theo-
rem 5.4.3, and assuming furthermore that

‖∇ × H 0ε − σE0ε − J 0(0)‖H 1
0

= O(√ε) , as ε → 0+, (5.45)

we have

sup
t∈[0,T ]

‖Eε(t)− E(t)‖L2( ;R2) = O(
√
ε) , as ε → 0+.

Proof By triangle inequality, (5.40) and (5.45) imply

‖σE(0)− σE0ε‖H 1
0

= O(ε1/2) , as ε → 0+.

Then, repeating the proof of Theorem 5.4.3 all the way up to (5.44), we finally
obtain

‖Eε(t)− E(t)‖2
H 1

0
≤ C1e

−t/εε + C2ε
1/2 ,

for suitable constants C1, C2 > 0. ��
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5.5 A Forward Model with Singular Sources

We introduce in this section a model that suites the case of sources very concentrated
in limited regions, rather than being spread over a wide area. To this aim, we
consider sources described by vector-valued (current) distributions J 0 ∈ E ′(R3 ×
R)3 with compact support in  × (0, T ). In this case, solutions to the magneto-
quasistatic Maxwell equations (5.6) are understood in the sense of distributions,
viz.
∫ ∫

 

H · ∇ × ∇ × (σ−1ϕ) dx dt −
∫ ∫

 

μH · ∂ϕ
∂t
dx dt = 〈J 0 , ϕ〉 , (5.46)

for all ϕ ∈ C∞
0 ( × (0, T )), where 〈· , ·〉 denotes the distributional duality pairing.

5.5.1 Subsurface Sources

In particular, J 0 may be concentrated along, and tangent to, a given surface !. If
in addition it belongs to the space defined in (5.10), then formally a vector field
H ∈ W 1,2(0, T ;L2( ;R3)) solving Eq. (5.8) is such that

μ
∂H

∂t
+∇×(

σ−1∇×H ) = ∇×(σ−1J 0) , in D′(( \!)×(0, T )) (5.47)

together with the transmission conditions

�n × H � = J 0 across !. (5.48)

To see that (5.48) holds, we introduce the electric field by setting E = σ−1(∇ ×
H − J 0). Then

∫
 

H · ∇ × ϕ dx −
∫
 

σE · ϕ dx =
∫
!

J 0 · ϕ d! (5.49)

for any arbitrary test field ϕ ∈ C∞
0 ( ;R3). Considering a region D ⊂  , with

D ⊂  , that is split into un upper partD+ and a lower oneD− by!, the validity of
the previous equation for all field supported in D \! implies that (5.6a) and (5.6b)
hold locally in D+ and in D−. Thus, we have

∇ × H − σE = 0 , in ( \!)× (0, T ),

μ
∂H

∂t
+ ∇ × E = 0 , in  × (0, T ).

(5.50)
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Therefore, if in (5.49) we choose ϕ with support intersecting !, then integrating by
parts and using the first equation in (5.50) we get

∫
!

ϕ · �H × n� d! =
∫
!

ϕ · J 0 d! ,

and that implies (5.48) because ϕ can have any arbitrary trace along !.

5.5.2 Signals in Free Homogeneous Space

Incidentally, we consider a fictitious model in which signals are free to propagate
in a free space, without boundary conditions, filled with a homogeneous isotropic
medium.

We fix κ > 0 and we recall that the function %κ ∈ C∞(R3 × R) defined by

%κ(x, t) =
⎧⎨
⎩
( κ

4πt

) 3
2
e−

κ
4t (x

2+y2+z2) , if x = (x, y, z) ∈ R
3 and t > 0,

0 if x = (x, y, z) ∈ R
3 and t ≤ 0,

(5.51)
solves

κ
∂

∂t
% − ∇2% = 0 , in R

3 × (0,+∞),

where ∇2 denotes the Laplace operator, with

lim
t→0+

∫
R3
%(x, t)φ(x) dx = φ(0) .

As a consequence, given constants μ > 0 and σ > 0, a particular solution of

μ · σ · ∂
∂t

H − ∇2H σ0 = ∇ × J 0 , in D′(R3 ×R),

is provided us setting H σ0 = %κ # (∇ × J 0), where κ = μ · σ and the vector
valued convolution in space-time is defined for all u ∈ C∞(R3 × R) and for all
T ∈ E ′(R3 × R)3 componentwise, according to the formula

u # T (x, t) =
∫
R

∫
R3
u(x − y, t − s)T (y, s) dy ds .

We make the assumption that the source is concentrated in a region where
the electric conductivity introduced in (5.14a) is isotropic and homogeneous, say
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σ(x) = σ0 at all points x belonging to the support of J 0. Then, by the material
above the auxiliary system

∇ × H κ − σ Eκ = J 0 , in D′(R3 × R),

∇ × Eκ + μ ∂
∂t

H κ = 0 , in D′(R3 × R),

is equipped with a solution (Eκ ,H κ) ∈ C∞((R3 × R) \ supp(J 0)) given by

H κ = %κ # (∇ × J 0) , (5.52a)

Eκ = 1

σ
(∇ × H κ − J 0) . (5.52b)

Eventually, since ∇ · J 0 = 0 we have

∇ × H κ = %κ # (∇ × ∇ × J 0) = %κ # (−∇2J 0) = −(∇2%κ) # J 0 . (5.53)

5.5.3 Renormalised Signals

Now we consider the signals propagating, virtually, in the medium defined by
difference between the real medium and the fictitious one that was introduced in
the previous section.

Given a solution of (5.6) in the sense of distributions, the fields defined by
difference setting u = H − H κ and v = E − Eκ solve a system of the form

∇ × u − σv = f ,

∇ × v + μ ∂
∂t

u = 0 ,
(5.54)

in D′( × (0, T )). Equivalently, the magnetic part u is dictated by the magneto-
quasistatic problem

μ
∂u

∂t
− ∇ × (σ−1∇ × u) = f (5.55)

In both (5.54) and (5.55), we set

f (x) =
⎧⎨
⎩
μ(σ − σ)∂%κ

∂t
# J 0 in {σ �≡ σ0}

0 in {σ ≡ σ0}
(5.56)
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By [3, Appendix A.1], the boundary values u × n = −H κ × n belong to the space

H− 1
2 (divτ ; ∂ ), defined in as in (5.10) with ! = ∂ , because their tangential

divergence equals −∇ · H κ × n and ∇ · H κ = %κ #∇ · (∇ × J 0) = 0. Hence they
extend to a suitable function F κ ∈ L2(0, T ;H 1

0 ). Setting w = u − F κ we then
have

∇ × w − σv = f + ∇ × F κ , in  × (0, T ),

∇ × v + μ∂w
∂t

= 0 , in  × (0, T ),
w × n = 0 , on ∂ × (0, T ).

(5.57)

Equivalently, we have that w ∈ L2(0, T ;H 1
0 ) and

μ
∂w

∂t
+ ∇ × (

σ−1∇ × w
) = ∇ × (

σ−1(f + ∇ × F κ)
)
. (5.58)

Since we are assuming the singular source J 0 to be supported in the level set
{σ(x) = σ }, (5.56) implies f ∈ L∞( × (0, T )), whence it follows that f ∈
L2(0, T ;L2( ;R3)), because is bounded. Hence, by Theorem 5.3.3, there exists
a unique w ∈ W 1,2(0, T ;H 1

0 ) solving (5.58), with w(0) = 0. Then, setting v =
σ−1(∇ × w − f + ∇ × F κ ), we have

∫
 

w · ∇ × ϕ dx −
∫
 

σv · ϕ dx =
∫
 

(f + ∇ × F κ) · ϕ dx
∫
 

v · ∇ × ψ dx +
∫
 

μ
∂

∂t
w · ψ dx = 0 ,

(5.59)

for all ϕ ∈ H 1, for all ψ ∈ H 1
0 , and for a.e. t ∈ (0, T ). We thus have proved the

following.

Theorem 5.5.1 Let  ⊂ R
3 satisfy (5.13), let μ, σ be positive constants and set

κ = μ · σ . Let σ be a piecewise constant positive bounded function, and let H 0 ∈
H 1

0 . Let J ∈ E ′(R3 × R) be a vector-valued distribution with support contained
in the level set {σ(x) = σ }. Then there exist a unique solution (E,H ) of (5.6) in
D′( × (0, T )), that takes the form E = Eκ + v, and

H = H κ + F κ + w , (5.60)

where

(i) (Eκ ,H κ ) is defined as in (5.52),
(ii) F κ is any element of L2(0, T ;H 1

0 ) agreeing with −H κ on ∂ × (0, T ), and
(iii) w is the solution of (5.58), with f being defined by (5.56), under the initial

condition w(0) = 0.
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Theorem 5.5.1 provides a split formula (5.60) that can be used to compute
the values of the magnetic field H due to the singular source J 0. The first two
summands in the right hand side are the result of representation formulas involving
convolution with explicit kernels, see (5.52a). The extra term w is the solution
of the magneto-quasistatic system (5.59), with a diffuse source (also defined by
convolution, see (5.56)), that falls in the theory discussed in Sect. 5.3.

We now report some basic strategy for the methods in numerical approximation
of w. The following material does not make, by any means, any pretence of
completeness. For a modern and comprehensive exposition of the topic, we refer the
interested reader to the book [3]. For an introduction to the more general magneto-
hydrodynamic setting we mention the nice treatise [18].

5.6 Inverse Source Problems

5.6.1 Nonuniqueness of Volume Currents

It is known since the work of Helmholtz that the reconstruction of electric sources
from tangential boundary measurements is generally an ill-posed problem. For the
existence of non-radiating volume source currents in time-harmonic regime, we
refer to [1] in the complete hyperbolic setting and to [4] in the eddy current case.
There are little differences between the problem considered in the literature and the
one surveyed in these pages, but we present however some details on this topic. An
expedient integral identity holds: denoting by &∗ the adjoint mapping to the linear
“Dirichlet-to-Neumann” map

n × H �−→ n × (
σ−1∇ × H

)

we see that the forward parabolic equation (5.8) with initial condition H (0) = 0,
implies the identity

∫ T

0

∫
 

H · P∗(ξ) dx dt +
∫ T

0

〈
σ−1∇ × ξ +&∗(ξ) , n × H

〉
dt =

∫ T

0

∫
 

∇ × (σ−1J 0) · ξ dx dt ,
(5.61)

for all smooth vector fields ξ such that ξ (T ) = 0. We introduced the backward
parabolic operator

P∗(ξ) = −μ∂tξ + ∇ × (
σ−1∇ × ξ

)
. (5.62)

Thus, tangential boundary measurements will be blind to any source that is
orthogonal, in a suitable fractional Sobolev space, to the kernel of the adjoint
operator P∗ with vanishing final data

K( ) = {
ξ ∈ W 1,2(0, T ;H 1

0 ) : P∗(ξ ) = 0 , ξ (T ) = 0
}
.
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For a more precise appreciation of this point, it is convenient to introduce the space
S ( ) of radiating sources, consisting of the closure in L2(0, T ;L2( ;R3)) of the
vector space

{
ξ ∈ K( ) : ξ = ∇ × (σ−1v) for some v ∈ L2(0, T ;L2( ;R3))

}
.

It can be seen that

N ( ) = {g ∈ L2(0, T ;L2( ;R3)) : (g , f )L2 = 0 , for all f ∈ S ( )}

is not a trivial space. N ( ) is said to collect non-radiating sources because of the
following result.

Theorem 5.6.1 Let  ⊂ R
3 satisfy (5.13), let μ > 0, let σ ∈ L∞( ;R3×3), and

assume that (5.14) holds. Let J 0 ∈ L2(0, T ;L2( ;R3)), with ∇ × (σ−1J 0) =
f + g where f ∈ S ( ) and g ∈ N ( ), and let (E,H ) be the solution of (5.6),
with (5.9), subject to the initial condition H (0) = 0. Then

(i) the knowledge of n × H on ∂ × (0, T ) uniquely determines f ;
(ii) if f = 0, then n × H = 0 on ∂ × (0, T ).
Proof If n × H = 0 on ∂ × (0, T ), then by (5.61) we have (f , ξ)L2 = 0 for
all ξ ∈ S ( ) and that implies (i). As for (ii), we note that, for every element η

of the trace space defined by (5.10) with ! = ∂ , the backward-in-time parabolic
problem

⎧⎪⎪⎨
⎪⎪⎩
P∗(ξ ) = 0 in  × (0, T ),
ξ (T ) = 0 in  × {T },
σ−1∇ × ξ +&∗(ξ ) = η on ∂ × (0, T ),

has a unique solution, for which (5.61) implies

∫ T

0
〈η , n × H 〉 = 0 .

Since η was arbitrary, we obtain that n × H = 0. ��

5.6.2 Uniqueness for Atomic Sources

In view of non-uniqueness of volume currents, when considering the inverse
problem one is lead to postulate a priori assumptions on the structure of the source.
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In particular, we restrict our attention to sources that satisfy precise properties
related to

• the geometry of their support;
• the vector-valued information on their orientation
• the scalar information about their intensity as currents.

The simplest situation is related to a source with a trivial orientation, which
brings one to consider scalar equations, rather than systems. Also, we may assume
a uniform electric current density. Then, we are led to the consider the following
equation

μ0σ0
∂u

∂t
(x, t)− ∇2u(x, t) = 0 , (x, t) ∈ R

3 × (0, T )

u(x, 0) =
N∑
j=1

δ(x − aj ) , in R
3,

(5.63)

where the positive integerN and the points a1, . . . , aN are unknown, and δ is Dirac’s
delta.

TOY PROBLEM Given points x1, x2, x3 ∈ R
2 × {0} in general position, and given

a sequence (tj )j ⊂ (0, T ) determine N and a1, . . . , aN from the knowledge of
u(x, t1), u(x, t2), u(x, t3), etc. assuming that (5.63) holds.

The toy problem is easier to consider if we further assume that N = 1. Then,
given a and b in the horizontal plane, the corresponding solutions of (5.63) are
given by

u(x, t) = %(x − a, μσ0t) , v(x, t) = %(x − b, μσ0t) ,

where % is as in (5.51) with κ = μ0σ0. Then, by assumption, the three points x1,
x2, and x3 are at the same euclidean distance r to a: in particular, as in Fig. 5.1, the
point a belongs to the vertical circle obtained intersecting the spheres of radius r
centred at x1 and x2, respectively. If x3 is not on the line joining x1 and x3, then
the sphere of radius centred at x3 hits the circle exactly at two points, among which
the relevant one is a.

If N ≥ 1 is unknown, we assume that there exist two unordered sets of points
A = {a1, . . . , aN } and B = {b1, . . . , bM} and we denote u, v the signals generated
byA,B, respectively. The limit as t → ∞ in the following identity between analytic
functions

N∑
j=1

e
−μ0σ0

|x1 − aj |2
4t =

M∑
j=1

e
−μ0σ0

|x1 − bj |2
4t (5.64)
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Fig. 5.1 The case N = 1

gives N = M . Before sending t → 0+, we may arrange the points in increasing
distance to, say, the first reference point x1

|a1 − x1| ≤ |a2 − x1| ≤ . . . ≤ |aN − x1|
|b1 − x1| ≤ |b2 − x1| ≤ . . . ≤ |bN − x1|

Denoting by n1 (resp, m1) the maximal integer n (resp. m) for which |an − x1| =
|a1 − x1| =: R1 (resp., for which |bm − x1| = |b1 − x1| =: S1), we have

exp

[
−μ0σ0

R2
1

4t

]
(n1 + o(1)) = exp

[
−μ0σ0

S2
1

4t

]
(m1 + o(1)) , as t → 0+,

whence it follows that R1 = S1 and n1 = m1. Then from (5.64) we have arrived at

N∑
j=n1+1

e−μ0σ0
|x1−aj |2

4t =
N∑

j=n1+1

e−μ0σ0
|x1−bj |2

4t . (5.65)

We can repeat this argument starting, this time, from (5.65) rather than from (5.64).
By a finite descent, we conclude that there exist k ≤ N , k positive integers n1 <

. . . < nk , and k positive numbers R1, . . . , Rk such that all points aj and bj , with
n' < j ≤ n'+1, are at the same distance R' to x1, for ' = 1, . . . , k − 1.
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Also, we can arrive at similar conclusions arguing as done above except for
replacing x1 by either of x2 and x3. Therefore, for every single j ∈ {1, . . . , N}
we have

|x1 − aj | = |x2 − aj | = |x3 − aj | (5.66)

As the points x1, x2, and x3 are in general position by assumption, as seen
previously in the case of a single source (5.66) determines aj . Thus, A = B.

Remark 5.6.2 For the purposes of applications, it would be interesting to consider
the inverse problem under the “dipole assumption” in the case of non-constant
conductivities: we do not consider this issue here.

5.6.3 Uniqueness of Subsurface Currents

It might be relevant to consider sources that are concentrated along surfaces
such as fault planes, and to reconstruct them from boundary measurements. We
mention a result that applies to media described by smooth constitutive coefficients.
Uniqueness in this case results are available for surface currents that are a priori
concentrated on the boundaries of subdomains: the following result, for example,
requires the knowledge of a continuous set of measurements, that holds for sources
of the “separable” form

J 0(x, t) = h(t)f (x) . (5.67)

Theorem 5.6.3 Let  satisfy (5.13), and let μ and σ be smooth positive functions
satisfying (5.14). Let B ⊂  be a connected open set with a Lipschitz regular
boundary!. Assume that J 0 ∈ W 1,2(0, T ;L2( )) is of the form (5.67) and that H

is a solution of (5.6), with (5.9), subject to the initial conditions H (0) = H 0. Then,
the knowledge of

m(t,ψ) =
∫
!

μH × ν · ψ d! (5.68)

for all t ∈ [0, T ] and for all ψ ∈ H 1
0 , uniquely determines J 0.

Proof To replicate the proof done in [21] in hyperbolic setting, one needs the
estimates (5.24), (5.25) for the magnetic field and the higher order estimate

‖H‖W 1,∞(0,T ;H 1
0 )

+ ‖H‖W 1,2(0,T ;H 2
0 )

≤ c(ψ)
(∫ T

0
h2 dt

) 1
2

that holds under the additional assumption that σ is smooth (for, see the proof of
Theorem 5.4.1). ��
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5.6.4 Inverse Source Problems with Controllability

A different class of inverse source problems presuppose the complete knowledge of
the initial and final state of the system, and the full knowledge of the initial value
of the source. For the following result, we refer to [22] (which focus on the electric
field, with unessential changes).

Theorem 5.6.4 Let satisfy (5.13), let μ, σ be positive functions satisfying (5.14),
let H 0 ∈ L2( ), and let J 0 ∈ W 1,2(0, T ;L2( )) and let H ∈ L2(0, T ;H 1

0 ), with
∂tH ∈ L2(0, T , (H 1

0 )
∗), be a weak solution of (5.6) and (5.9), with (5.7). Then,

there exists T0 ∈ (0, T ) such that, for every τ < T0, the knowledge of the final state
H (τ ) and of the initial source J 0(x, 0) determine uniquely J 0.
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Chapter 6
Conservation Laws in Continuum
Mechanics

Giuseppe Maria Coclite and Francesco Maddalena

Abstract A general fundamental mathematical framework at the base of the
conservation laws of continuum mechanics is introduced. The notions of weak
solutions, and the issues related to the entropy criteria are discussed in detail. The
spontaneous creation of singularities, and the occurrence of diffusive limits are
explained in view of their physical implications. A particular emphasis is given to
the applications of hyperbolic conservation laws in the models of gas dynamics,
nonlinear elasticity and traffic flows.

6.1 Introduction

The conceptual structure informing continuum physics rests on two fundamental
pillars: balance laws (or conservation laws) and constitutive laws. While the
constitutive laws, ruling the specific properties of the material in which the physical
phenomenon occurs (e.g. viscous fluids, elastic solids, elastic dielectric, etc. ) are
exposed to a great variety of possible relations (may be escaping any tentative of a
definitive general theory), conservation laws admits a clear mathematical statement
in the format of partial differential equations. In the general multidimensional spatial
setting, an homogeneous hyperbolic conservation law takes the form [3, 19, 21]

∂tu+
d∑
α=1

∂α Fα(u) = 0, (6.1)
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where the state variable u, taking values in R
m depends on the spatial variables

(x1, . . . , xd) and time t , F1, . . . , Fd are smooth maps from R
m to R

m, ∂t denotes
∂/∂t and ∂α denotes ∂/∂xα.
In these notes we shall focus on the one-dimensional spatial case, governed by the
first order partial differential equation

∂tu+ ∂xf (u) = 0, (6.2)

where f ∈ C2(RN ;RN), u : [0,∞) × R → R
N , and N ≥ 1. The function u =

u(t, x) is termed conserved quantity, f = f (u) flux. If N = 1 we say that (6.2) is a
scalar conservation law, if N > 1 we say that (6.2) is a system of conservation laws
and it stays for

⎧⎪⎪⎨
⎪⎪⎩
∂tu1 + ∂xf1(u1, . . . , uN) = 0,

. . . . . .

∂tuN + ∂xfN (u1, . . . , uN) = 0,

where

u = u(t, x) = (u1(t, x), . . . , uN(t, x)),

f = f (u) = (f1(u1, . . . , uN), . . . , fN(u1, . . . , uN)).

In this section we try to answer the following questions:

(Q.1) Why do we use the terms conservation law, conserved quantity, and flux for
(6.2), u, and f , respectively?

(Q.2) Which kind of physical phenomena is (6.2) able to describe?
(Q.3) Which are the mathematical features of the solutions of (6.2)?

Let us answer to (Q.1). If u is a smooth solution of (6.2) and a < b we have that
(see Fig. 6.1)

d

dt

∫ b

a

u(t, x)dx =
∫ b

a

∂tu(t, x)dx

= −
∫ b

a

∂xf (u(t, x))dx = f (u(t, a))− f (u(t, b))

= [inflow at x = a and time t]

− [outflow at x = b and time t] .

Fig. 6.1 Flow trough the end
points [ ]

a b
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In other words, the conserved quantity u is neither created nor destroyed, the amount
of u in the interval [a, b] changes in function only of the flow through the two end
points.

To answer to (Q.2) we proceed by showing some paradigmatic models founded
in continuum mechanics, expressed in terms of conservation laws.

Rarefied Gas The simplest model of gasdynamic in one space dimension considers
a material made of non interacting particles, idealizing a low dense gas. In the
Lagrangian description, we can identify the particles using their initial position y.
Let ϕ(t, y) be the position at time t of the particle that at time t = 0 was in y,
its velocity and acceleration are ∂tϕ and ∂2

t tϕ, respectively. Since the particles do
not interact within themselves, we cannot have two different particles in the same
position at the same time, therefore ϕ(t, ·) is increasing and, in particular, invertible.
Let ψ(t, ·) be the inverse of ϕ(t, ·), i.e.,

y = ψ(t, ϕ(t, y))

and

x = ϕ(t, y)⇐⇒ y = ψ(t, x).

Let u(t, x) be the velocity of the particle at time t is in x, namely

x = ϕ(t, y),
u(t, x) = u(t, ϕ(t, y)) = ∂tϕ(t, y),
u(t, x) = ∂tϕ(t, ψ(t, x)).

The acceleration of the particle that at time t is in x is

∂2
t tϕ(t, y) = ∂t

(
∂tϕ(t, y)

)
= ∂t

(
u(t, ϕ(t, y))

)

= ∂tu(t, ϕ(t, y))+ ∂xu(t, ϕ(t, y))∂tϕ(t, y)
= ∂tu(t, x)+ ∂xu(t, x)u(t, x).

Since the particles do not interact within themselves, there are no forces acting on
them. Then, the balance of linear momentum delivers the equation

∂tu+ ∂x
(
u2

2

)
= 0, (6.3)

that is termed Burgers equation [5, 6, 18].

Traffic Flow 1 We begin with the road fluid-dynamic traffic model introduced by
Lighthill, Whitham, and Richards [15, 17]. We consider a one way one lane infinite
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road. Let ρ = ρ(t, x) be the the density of vehicles at time t in the position x.
Assuming that the vehicles behave as fluid particles we have [8, 9]

∂tρ + ∂x(ρv) = 0, (6.4)

where v is the velocity of the vehicles. The key assumption of Lighthill, Whitham,
and Richards is that the velocity depends only on the density, namely

v = v(ρ), (6.5)

that is somehow reasonable in case of highways. The drivers regulate their velocity
in function of the number of vehicles in front of them. Therefore writing

f (ρ) = ρv(ρ),

(6.4) reads

∂tρ + ∂xf (ρ) = 0. (6.6)

On v = v(ρ) it is reasonable to assume that

v(0) = vmax, v(ρmax) = 0, v is decreasing.

In particular, Lighthill, Whitham, and Richards proposed

v(ρ) = vmax
(

1 − ρ

ρmax

)
.

Compressible Non-viscous Gas The Lighthill-Whitham-Richards traffic model and
the Burgers equation are model expressed in terms of scalar conservation laws, we
continue by showing more models expressed in terms of systems of conservation
laws.

The Euler equations for a non-viscous compressible gas in Lagrangian coordi-
nates are

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tv − ∂xu = 0, (conservation of mass)

∂tu+ ∂xp = 0, (conservation of momentum)

∂t

(
e + u2

2

)
+ ∂x(up) = 0, (conservation of energy)

(6.7)
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where v is the specific volume (i.e., 1/v is the density), u is the velocity, e is the
energy, and p is the pressure of the gas. Since we have three equations in four
unknowns, we need a constitutive equation

p = p(e, v),

which selects the specific gas under consideration.

Nonlinear Elasticity Let us consider a one-dimensional elastic material body whose
configuration in the Lagrangian description is represented by the displacement field
w(x, t). Then the strain measure is given by u = ∂xw and assuming the constitutive
equation σ = f (u) giving the Piola-Kirchhoff stress σ in terms of the strain measure
u, the balance of linear momentum delivers the wave equation of motion [6, 10, 16]

∂2
t tw − ∂xf (u) = 0. (6.8)

Setting v = ∂tw the velocity field, the previous wave equation takes the form of
the following system of conservation laws

{
∂tu− ∂xv = 0,

∂tv − ∂xf (u) = 0.

Shallow Water Equations Let h(x, t) be the depth and u(x, t) the mean velocity
of a fluid moving in a rectangular channel of constant breadth and inclination α
of the surface. Let also Cf be the friction coefficient affecting the friction force
originating by the interaction of the fluid with the bed and g the gravity acceleration.
The equations governing the motion of the fluid are given by

{
∂th+ u∂xh+ h∂xu = 0,

∂tu+ u∂xu+ g cosα∂xh = g sin α − C2
f (u

2/h).

In the shallow water theory, the height of the water surface above the bottom
is assumed to be small with respect to the typical wave lengths and the terms
representing the slope and the friction are neglected giving rise to the simplified
equations [20]

{
∂t c + u∂xc + (c∂xu/2) = 0,

∂tu+ u∂xu+ 2c∂xc = 0,

where c(x, t) = √
gh(x, t).
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x

u

Fig. 6.2 Spontaneous creation of discontinuity in finite time

Traffic Flow 2 Finally, we have the traffic model proposed by Aw and Rascle [1]

⎧⎪⎨
⎪⎩
∂tρ + ∂x

(
y + ργ+1

) = 0,

∂ty + ∂x
(
y2

2
− yργ

)
= 0,

(6.9)

where ρ is the density, y this the generalized momentum of the vehicles, and γ is a
positive constant.

Regarding (Q.3), one of the main features exhibited by hyperbolic of conserva-
tion laws is the possible creation of discontinuities. Indeed, even scalar problems
with analytic flux and initial condition, like

⎧⎪⎪⎨
⎪⎪⎩
∂t + ∂x

(
u2

2

)
= 0, t > 0, x ∈ R,

u(0, x) = 1

1 + x2 , x ∈ R,

(6.10)

experience the creation of discontinuities in finite time [5, 6, 18], see Fig. 6.2.
The next sections are organized as follows. In Sect. 6.2 we introduce weak and

entropy solutions and prove the classical uniqueness result of Kružkov. In Sect. 6.3
we introduce and solve the Riemann problem. In Sect. 6.4 we present one of the
many different approaches to the existence issue: the vanishing viscosity. Finally,
some elementary facts on BV functions are collected in the Appendix.

6.2 Entropy Solutions

We pointed out in Sect. 6.1 that even a Cauchy problem of the type

∂tu+ ∂x
(
u2

2

)
= 0, u(0, x) = 1

1 + x2
,
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with analytic flux (u �→ u2/2) and analytic initial condition (x �→ 1/(1 + x2)) may
experience discontinuities in finite time. It appears evident that additional physical
and mathematical conditions must be required in order to reach a meaningful
concept of solution. As a consequence we develop a wellposedness theory for
conservation laws in the framework of entropy solutions, that are special distri-
butional solutions satisfying suitable additional inequalities (or E-conditions). The
definition is inspired by the Second Law of Thermodynamics, we consider only the
distributional solutions along which the entropies decrease. Note that the physical
entropies are all concave maps, in the mathematical community the entropies are
assumed to be convex, this explain the discrepancy between the usual Second Law
of Thermodynamics and the ones considered here.

6.2.1 Weak Solutions

Consider the scalar conservation law

∂tu+ ∂xf (u) = 0, t > 0, x ∈ R, (6.11)

endowed with the initial condition

u(0, x) = u0(x), x ∈ R, (6.12)

and assume

f ∈ C2(R), u0 ∈ L∞
loc(R). (6.13)

Definition 6.2.1 A function u : [0,∞)× R → R is a weak solution of the Cauchy
problem (6.11) and (6.12), if

(i) u ∈ L∞
loc((0,∞)× R);

(ii) u satisfies (6.11) and (6.12) in the sense of distributions in [0,∞)× R, namely
for every test function ϕ ∈ C∞(R2) with compact support we have

∫ ∞

0

∫
R

(u∂tϕ + f (u)∂xϕ) dtdx +
∫
R

u0(x)ϕ(0, x)dx = 0.

We say that u is a weak solution of the conservation law (6.11) if i) holds and

(iii) u satisfies (6.11) in the sense of distributions in (0,∞)× R, namely for every
test function ϕ ∈ C∞((0,∞)× R) with compact support we have

∫ ∞

0

∫
R

(u∂tϕ + f (u)∂xϕ) dtdx = 0.
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Direct consequence of the Dominate Converge Theorem is the following.

Theorem 6.2.1 Let {uε}ε>0 and u be functions defined on [0,∞)× R with values
in R. If

(i) there exists M > 0 such that ‖uε‖L∞((0,∞)×R) ≤ M for every ε > 0;
(ii) u ∈ L∞((0,∞)× R);

(iii) uε → u in L1
loc((0,∞)× R) as ε → 0;

(iv) every uε is a weak solution of (6.11);

then

u is a weak solution of (6.11).

6.2.2 Rankine-Hugoniot Condition

The introduction of the notion of weak solution opens the possibility to deal
with discontinuous functions which, as above remarked, naturally occur in the
mathematics of conservation laws. Then in this section we analyze the shocks, that
are the simplest discontinuous weak solutions of (6.11).

Let u−, u+, λ ∈ R be given and consider the function

U : [0,∞)× R −→ R, U(t, x) =
{
u−, if x < λt,

u+, if x ≥ λt. (6.14)

Since we are not interested to the trivial case u+ = u− in the following we always
assume

u+ �= u−.

Theorem 6.2.2 (Rankine-Hugoniot Condition) The following statements are
equivalent:

(i) the function U defined in (6.14) is a weak solution of (6.11);
(ii) the following condition named Rankine-Hugoniot condition holds true, i.e.,

f (u+)− f (u−) = λ(u+ − u−). (6.15)

Proof Let ϕ ∈ C∞((0,∞)× R) be a test function with compact support. Consider
the vector field

F = (Uϕ, f (U)ϕ)
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and the domains

 + = {x > λt},  − = {x < λt}.

The definition of U gives

(t, x) ∈  + &⇒
{
F(t, x) = (u+ϕ, f (u+)ϕ),
div(t,x)(F )(t, x) = u+∂tϕ + f (u+)∂xϕ,

(t, x) ∈  − &⇒
{
F(t, x) = (u−ϕ, f (u−)ϕ),
div(t,x)(F )(t, x) = u−∂tϕ + f (u−)∂xϕ.

Since

∂ + = ∂ − = {x = λt},

and the outer normals to  + and  − are (λ,−1) and (−λ, 1) we have

∫ ∞

0

∫
R

(U∂tϕ + f (U)∂xϕ)dtdx

=
∫∫
 +
(u+∂tϕ + f (u+)∂xϕ)dtdx +

∫∫
 −
(u−∂tϕ + f (u−)∂xϕ)dtdx

=
∫∫
 +

div(F )dtdx +
∫∫
 −

div(F )dtdx

=
∫ ∞

0
(u+, f (u+)) · (λ,−1)ϕ(t, λt)dt+

∫ ∞

0
(u−, f (u−)) · (−λ, 1)ϕ(t, λt)dt

= [λ(u+ − u−)− (f (u+)− f (u−))]
∫ ∞

0
ϕ(t, λt)dt.

Therefore
∫ ∞

0

∫
R

(U∂tϕ + f (U)∂xϕ)dtdx = 0, ∀ϕ

(
f (u+)− f (u−) = λ(u+ − u−),

that concludes the proof. ��
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Remark 6.2.1 The Rankine-Hugoniot condition (6.15) is a scalar equation that links
the right and left sates u+, u− and the speed λ of the shock. In particular, if f is
Lipschitz continuous with Lipschitz constant L, (6.15) gives

|λ| = |f (u+)− f (u−)|
|u+ − u−| ≤ L.

In other terms, the speed of propagation of the singularities is finite and varies
between −L and L.

Theorem 6.2.3 Let u : [0,∞)×R → R, τ > 0, ξ ∈ R andU : [0,∞)×R −→ R

as defined in (6.14). If

(i) u ∈ L∞
loc((0,∞)× R);

(ii) u is a weak solution of (6.11);

(iii) lim
ε→0

1

ε2

∫ ε

−ε

∫ ε

−ε
|u(t + τ, x + ξ)− U(t, x)|dtdx = 0;

then (6.15) holds.

Proof For every μ > 0 define

uμ(t, x) = u(μt + τ, μx + ξ), t ≥ − τ
μ
, x ∈ R.

Since u is a weak solution of (6.11), the same does uμ. We claim that

uμ −→ U, f (uμ) −→ f (U), inL1
loc((0,∞)×R), asμ→ 0. (6.16)

Let R > 0 and μ < τ
R

. Since

U(μt, μx) = U(t, x), t > 0, x ∈ R,

we get

∫ R

−R

∫ R

−R
|uμ(t, x)− U(t, x)|dtdx

= 1

μ2

∫ Rμ

−Rμ

∫ Rμ

−Rμ
|u(t + τ, x + ξ)− U(t, x)|dtdx −→ 0,

namely

uμ −→ U, in L1((−R,R)× (−R,R)), as μ→ 0.
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Therefore the Dominated Convergence Theorem gives (6.16). Finally, Theo-
rem 6.2.1 and (6.16) implies that U is a weak solution of (6.11). Then, the claim
follows from Theorem 6.2.2. ��

6.2.3 Nonuniqueness of Weak Solutions

In this section we show with a simple example that the Cauchy problem (6.11)–
(6.12) may admit more than one weak solution.

Let us consider the Riemann problem for the Burgers equation

∂tu+ ∂x
(
u2

2

)
= 0, u(0, x) =

{
0, if x < 0,

1, if x ≥ 0.
(6.17)

Thanks to Theorem 6.2.2 we know that the function

U(t, x) =
{

0, if x < t/2,

1, if x ≥ t/2,

is a weak solution of (6.17).
Consider the function

v(t, x) =

⎧⎪⎪⎨
⎪⎪⎩

0, if x < 0,

x/t, if 0 ≤ x < t,
1, if x ≥ t .

Since for every test function ϕ ∈ C∞(R2) with compact support

∫ ∞

0

∫
R

(
v∂tϕ + v2

2
∂xϕ

)
dtdx +

∫ ∞

0
ϕ(0, x)dx

=
∫ ∞

0

(∫ ∞

x

x

t
∂tϕdt

)
dx +

∫ ∞

0

(∫ t

0

x2

2t2
∂xϕdx

)
dt

+
∫ ∞

0

(∫ x

0
∂tϕdt

)
dx +

∫ ∞

0

(∫ ∞

t

∂xϕdx

)
dt +

∫ ∞

0
ϕ(0, x)dx = 0,

then v is also a weak solution of (6.17).
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6.2.4 Entropy Conditions

We showed in the previous section that the Cauchy problem (6.11)–(6.12) may
admit more than one weak solution. In this section we introduce some additional
conditions that will select the unique “physically meaningful” solution within the
family of the weak solutions. Those conditions are inspired by the Second Law of
Thermodynamics.

Definition 6.2.2 Let η, q : R → R be functions. We say that η is an entropy
associated to (6.11) with flux q if

η, q ∈ C2(R), η′′ ≥ 0, η′f ′ = q ′.

Remark 6.2.2 If u is a smooth solution of (6.11) and η is an entropy with flux q we
have

∂tη(u)+ ∂xq(u) = 0.

Indeed

∂tη(u)+ ∂xq(u) = η′(u)∂tu+ q ′(u)∂xu

= η′(u) (∂tu+ f ′(u)∂xu
)

= η′(u) (∂tu+ ∂xf (u)) = 0.

Definition 6.2.3 A function u : [0,∞) × R → R is an entropy solution of the
Cauchy problem (6.11) and (6.12), if

(i) u ∈ L∞
loc((0,∞)× R);

(ii) for every entropy η with flux q , u satisfies

∂tη(u)+ ∂xq(u) ≤ 0, η(u(0, ·)) = η(u0), (6.18)

in the sense of distributions in [0,∞) × R, namely for every nonnegative test
function ϕ ∈ C∞(R2) with compact support we have

∫ ∞

0

∫
R

(η(u)∂tϕ + q(u)∂xϕ) dtdx +
∫
R

η(u0(x))ϕ(0, x)dx ≥ 0. (6.19)

We say that u is an entropy solution of the conservation law (6.11) if i) holds and

(iii) for every entropy η with flux q , u satisfies

∂tη(u)+ ∂xq(u) ≤ 0 (6.20)
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in the sense of distributions in (0,∞) × R, namely for every nonnegative test
function ϕ ∈ C∞((0,∞)× R) with compact support we have

∫ ∞

0

∫
R

(η(u)∂tϕ + q(u)∂xϕ) dtdx ≥ 0.

The apparent contradiction of the above definitions with the Second Law of
Thermodynamics is soon solved by noticing that the physical entropies are concave
functions while the ones we are using here are convex.

As a direct consequence of the Dominate Converge Theorem we can state the
following result.

Theorem 6.2.4 Let {uε}ε>0 and u be functions defined on [0,∞)× R with values
in R. If

(i) there exists M > 0 such that ‖uε‖L∞((0,∞)×R) ≤ M for every ε > 0;
(ii) u ∈ L∞((0,∞)× R);

(iii) uε → u in L1
loc((0,∞)× R) as ε → 0;

(iv) every uε is a entropy solution of (6.11);

then

u is a entropy solution of (6.11).

A fundamental class of entropies are the ones introduced by Kružkov [12]

η(ξ) = |ξ − c|, q(ξ) = sign (ξ − c) (f (ξ)− f (c)), ξ ∈ R, (6.21)

for every constant c ∈ R.
Since the Kružkov entropies are not C2 the following theorem is needed.

Theorem 6.2.5 Let u : [0,∞)× R → R be a function. If

u ∈ L∞
loc((0,∞)× R),

then the following statements are equivalent

(i) u is an entropy solution of (6.11)–(6.12);
(ii) for every c ∈ R and every nonnegative test function ϕ ∈ C∞(R2) with compact

support

∫ ∞

0

∫
R

(|u− c|∂tϕ + sign (u− c) (f (u)− f (c))∂xϕ) dtdx

+
∫
R

|u0(x)− c|ϕ(0, x)dx ≥ 0.

(6.22)
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Remark 6.2.3 The set of the entropies

{η ∈ C2(R); η convex}

is an infinite dimensional manifold. On the other hand the set of the Kružkov
entropies

{| · −c|; c ∈ R}

is a one-dimensional manifold. Therefore the previous theorem says that if we have
to verify that a function is an entropy solution of (6.11) we can use just the Kružkov
entropies and the “amount” of inequalities to verify is “much lower” than the one
required in Definition 6.2.3.

Proof (of Theorem 6.2.5) Let us start by proving (i) ⇒ (ii). Let c ∈ R and ϕ ∈
C∞(R2) be a nonnegative test function with compact support. For every n ∈ N\{0},
consider the functions

ηn(ξ) =
√
(ξ − c)2 + 1

n
, qn(ξ) =

∫ ξ

c

σ − c√
(σ − c)2 + 1

n

f ′(σ )dσ, ξ ∈ R.

Since

ηn ∈C2(R),

η′n(ξ) = ξ − c√
(ξ − c)2 + 1

n

,

η′′n(ξ) = 1

n
(
(ξ − c)2 + 1

n

) 3
2

≥ 0,

q ′
n = η′nf ′,

we have
∫ ∞

0

∫
R

(ηn(u)∂tϕ + qn(u)∂xϕ) dtdx +
∫
R

ηn(u0(x))ϕ(0, x)dx ≥ 0.

As n→ ∞ thanks to the Dominated Convergence Theorem we get (6.22).
Let us prove ii) ⇒ i). Let η be an entropy with flux q and ϕ ∈ C∞(R2) be a

nonnegative test function with compact support. Define

M = sup
supp(ϕ)

|u|.
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We approximate η′ with piecewise constant functions in [−M,M]. For every n ∈
N \ {0} consider

ηn(ξ) =
∫ ξ

−M
kn(σ)dσ + η(−M),

kn(σ ) =
2n−1∑
j=0

η′
(
M

n
j −M

)
χ[

M
n
j−M,M

n
(j+1)−M

)(σ ),

qn(ξ) =
∫ ξ

−M
f ′(σ )kn(σ )dσ.

We have

kn(σ ) =
n−1∑
j=0

aj
[
sign

(
σ − bj

) + cj
]
χ[

2Mn j−M,2Mn (j+1)−M
](σ ),

where

aj = 1

2

(
η′

(
M

n
(2j + 1)−M

)
− η′

(
M

n
2j −M

))
,

bj = M

n
(2j + 1)−M,

cj = 1

2

(
η′

(
M

n
(2j + 1)−M

)
+ η′

(
M

n
2j −M

))
.

Since η′′ ≥ 0 we have aj ≥ 0 and then

∫ ∞

0

∫
R

(ηn(u)∂tϕ + qn(u)∂xϕ) dtdx +
∫
R

ηn(u0(x))ϕ(0, x)dx ≥ 0.

As n→ ∞ thanks to the Dominated Convergence Theorem we get (6.19). ��
It is clear that a smooth solutions is both an entropy and a weak solution (see

Remark 6.2.2). We conclude this section proving that the entropy solutions are weak
solutions. In the next section we will show that there are weak solutions that are not
entropy ones.

Theorem 6.2.6 Let u : [0,∞)× R → R be a function. If

u ∈ L∞
loc((0,∞)× R)

and u is an entropy solution of (6.11)–(6.12), then u is a weak solution of (6.11)–
(6.12).
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Proof Let ϕ ∈ C2(R2) be a test function with compact support. Define

ϕ+ = max{ϕ, 0}, ϕ− = max{−ϕ, 0},

clearly

ϕ = ϕ+ − ϕ−, ϕ+, ϕ− ≥ 0.

Using a smooth approximation of ϕ± and then passing to the limit we get

∫ ∞

0

∫
R

(|u− c|∂tϕ± + sign (u− c) (f (u)− f (c))∂xϕ±) dtdx

+
∫
R

|u0(x)− c|ϕ±(0, x)dx ≥ 0,

(6.23)

for every c ∈ R.
Define

M = sup
supp(ϕ)

|u|.

Choosing c = M + 1 in (6.23) we get

∫ ∞

0

∫
R

((M + 1 − u)∂tϕ± + (f (M + 1)− f (u))∂xϕ±) dtdx

+
∫
R

(M + 1 − u0(x))ϕ±(0, x)dx ≥ 0,

and integrating by parts (sinceM + 1 is a classical solution of (6.11)) we get

∫ ∞

0

∫
R

(u∂tϕ± + f (u)∂xϕ±) dtdx +
∫
R

u0(x)ϕ±(0, x)dx ≤ 0. (6.24)

On the other hand, if we choose c = −M − 1 in (6.23) we get

∫ ∞

0

∫
R

((u+M + 1)∂tϕ± + (f (u)− f (−M − 1))∂xϕ±) dtdx

+
∫
R

(u0(x)+M + 1)ϕ±(0, x)dx ≥0,
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and integrating by parts (since −M − 1 is a classical solution of (6.11)) we get

∫ ∞

0

∫
R

(u∂tϕ± + f (u)∂xϕ±) dtdx +
∫
R

u0(x)ϕ±(0, x)dx ≥ 0. (6.25)

Adding (6.24) and (6.25) we get (6.19). ��

6.2.5 Entropic Shocks

In Sect. 6.2.2 we introduced the shock U (see (6.14)) and proved that it is a weak
solution of (6.11) if and only if the Rankine-Hugoniot Condition (6.15) holds. In
this section we prove a similar result giving a necessary and sufficient condition for
the shock to be an entropy solution.

Theorem 6.2.7 The following statements are equivalent:

(i) the function U defined in (6.14) is an entropy solution of (6.11);
(ii) the Rankine-Hugoniot Condition holds true, i.e.,

f (u+)− f (u−) = λ(u+ − u−), (6.26)

and

{
f (θu+ + (1 − θ)u−) ≥ θf (u+)+ (1 − θ)f (u−), if u− < u+,
f (θu+ + (1 − θ)u−) ≤ θf (u+)+ (1 − θ)f (u−), if u− > u+,

(6.27)

for every 0 < θ < 1.

The inequalities in (6.27) have a simple geometric interpretation. If u− < u+ the
graph of f has to be above the segment connecting (u−, f (u−)) and (u+, f (u+)),
that is always true if f is concave. On the other hand if u− > u+ the graph of f has
to be below the segment connecting (u+, f (u+)) and (u−, f (u−)), that is always
trues if f is convex. In particular, if f is concave the entropic shocks are upward
and if is convex they are downward.

Moreover, we can rewrite (6.27) in the following way

f (u∗)− f (u−)
u∗ − u−

≥ f (u+)− f (u∗)
u+ − u∗

, (6.28)

for every min{u+, u−} < u∗ < max{u+, u−}.
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Indeed, if u− < u+ (in the case u− > u+ the same argument works) and u∗ =
θu+ + (1 − θ)u− for some 0 < θ < 1 we have

f (u∗)− f (u−)
u∗ − u−

− f (u+)− f (u∗)
u+ − u∗

= f (u∗)(u+ − u−)
(u∗ − u−)(u+ − u∗)

− f (u−)
u∗ − u−

− f (u+)
u+ − u∗

≥ (θf (u+)+ (1 − θ)f (u−))(u+ − u−)
(u∗ − u−)(u+ − u∗)

− f (u−)
u∗ − u−

− f (u+)
u+ − u∗

= f (u+)
θ(u+ − u−)− (u∗ − u−)
(u∗ − u−)(u+ − u∗)

+ f (u−)
(1 − θ)(u+ − u−)− (u+ − u∗)

(u∗ − u−)(u+ − u∗)
= 0.

Let us observe that (6.28) represents a stability condition. Indeed, if u− <

u∗ < u+ we can perturb the shock (u−, u+) and split it in the two shocks
(u−, u∗), (u∗, u+). The two quantities in (6.28) give the speed of these two shocks:
the one on the left is faster than the one on the right. Then the two waves will interact
in finite time and generate again the initial shock (u−, u+) (see Fig. 6.3).

Lemma 6.2.1 The following statements are equivalent:

(i) the function U defined in (6.14) is an entropy solution of (6.11);
(ii) for every entropy η with flux q the following inequlity holds

λ(η(u+)− η(u−)) ≥ q(u+)− q(u−); (6.29)

(iii) for every constant c ∈ R

λ(|u+ − c| − |u− − c|)
≥sign (u+ − c) (f (u+)− f (c))

− sign (u− − c) (f (u−)− f (c)).
(6.30)

x

u

u+

u-
u*

t

x

u+

u-

u*

Fig. 6.3 Shock wave (u−, u+) with u− < u+
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Proof Let ϕ ∈ C∞((0,∞) × R) be a nonnegative test function with compact
support and η be an entropy with flux q . Consider the vector field

G = (η(U)ϕ, q(U)ϕ)

and the domains

 + = {x > λt},  − = {x < λt}.
The definition of U gives

(t, x) ∈  + &⇒
{
G(t, x) = (η(u+)ϕ, q(u+)ϕ),
div(t,x)(G)(t, x) = η(u+)∂tϕ + q(u+)∂xϕ,

(t, x) ∈  − &⇒
{
G(t, x) = (η(u−)ϕ, q(u−)ϕ),
div(t,x)(G)(t, x) = η(u−)∂tϕ + q(u−)∂xϕ.

Since

∂ + = ∂ − = {x = λt},
and the outer normals to  + and  − are (λ,−1) and (−λ, 1) we have

∫ ∞
0

∫
R

(η(U)∂tϕ + q(U)∂xϕ)dtdx

=
∫∫
 +
(η(u+)∂tϕ + q(u+)∂xϕ)dtdx +

∫∫
 −
(η(u−)∂tϕ + q(u−)∂xϕ)dtdx

=
∫∫
 +

div(G)dtdx +
∫∫
 −

div(G)dtdx

=
∫ ∞

0
(η(u+), q(u+)) · (λ,−1)ϕ(t, λt)dt +

∫ ∞
0
(η(u−), q(u−)) · (−λ, 1)ϕ(t, λt)dt

= [
λ(η(u+)− η(u−))− (q(u+)− q(u−))

] ∫ ∞
0
ϕ(t, λt)dt.

Therefore
∫ ∞

0

∫
R

(η(U)∂tϕ + q(U)∂xϕ)dtdx ≥ 0, ∀ϕ

(
λ(η(u+)− η(u−)) ≥ q(u+)− q(u−).

Therefore we have proved that i)⇔ ii). The same argument works for i)⇔ iii).
��
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Proof (of Theorem 6.2.7) We begin by proving that (i) ⇒ (ii). Since U is an
entropy solution of (6.11), Theorem 6.2.2 gives (6.26). We have to prove (6.27). We
distinguish two cases. We assume u− < u+. Let 0 < θ < 1 be fixed. We choose

c = θu+ + (1 − θ)u−.

Since

u− < c < u+,

(6.30) gives

f (u+)+ f (u−)− 2f (c) ≤ λ(u+ + u− − 2c). (6.31)

Using (6.26) and (6.31)

2f (θu+ + (1 − θ)u−) = 2f (c)

≥ f (u+)+ f (u−)− λ(u+ + u− − 2c)

= f (u+)+ f (u−)− λ(u+ + u− − 2(θu+ + (1 − θ)u−))

= f (u+)+ f (u−)− λ(1 − 2θ)(u+ − u−)

= f (u+)+ f (u−)− (1 − 2θ)(f (u+)− f (u−))

= 2(θf (u+)+ (1 − θ)f (u−)).

Since the case u+ < u+ is analogous (6.27) is proved.
We have to prove that (ii) ⇒ (i). If is enough to verify that (6.30) holds for

every c ∈ R. We distinguish four cases.
If

c ≤ min{u+, u−},

(6.26) gives

λ(|u+ − c| − |u− − c|) = λ(u+ − u−)

= f (u+)− f (u−) = (f (u+)− f (c))− (f (u−)− f (c))
= sign (u+ − c) (f (u+)− f (c))− sign (u− − c) (f (u−)− f (c)).

If

c ≥ max{u+, u−},

the same argument applies.
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If

u− < c < u+,

there exists 0 < θ < 1 such that

c = θu+ + (1 − θ)u−.

(6.27) guarantees

f (c) ≥ θf (u+)+ (1 − θ)f (u−),

then using (6.26)

λ(|u+ − c| − |u− − c|) = λ(u+ + −u− − 2c)

= λ(1 − 2θ)(u+ − u−) = (1 − 2θ)(f (u+)− f (u−))

= f (u+)+ f (u−)− 2(θf (u+)+ (1 − θ)f (u−))

≥ f (u+)+ f (u−)− 2f (c)

= sign (u+ − c) (f (u+)− f (c))− sign (u− − c) (f (u−)− f (c)).

Finally, if

u− < c < u+,

the same argument works. Then (6.30) holds for every c ∈ R. ��
Theorem 6.2.8 Let u : [0,∞)× R → R, τ > 0, ξ ∈ R. If

(i) u ∈ L∞
loc((0,∞)× R);

(ii) u is an entropy solution of (6.11);

(iii) lim
ε→0

1

ε2

∫ ε

−ε

∫ ε

−ε
|u(t + τ, x + ξ)− U(t, x)|dtdx = 0;

then (6.26) and (6.27) hold.

Proof For every μ > 0 define

uμ(t, x) = u(μt + τ, μx + ξ), t ≥ − τ
μ
, x ∈ R.

Since u is a weak solution of (6.11), the same does uμ. We claim that

uμ −→ U, f (uμ) −→ f (U), inL1
loc((0,∞)×R), asμ→ 0. (6.32)
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Let R > 0 and μ < τ/R. Since

U(μt, μx) = U(t, x), t > 0, x ∈ R,

we get

∫ R

−R

∫ R

−R
|uμ(t, x)− U(t, x)|dtdx

= 1

μ2

∫ Rμ

−Rμ

∫ Rμ

−Rμ
|u(t + τ, x + ξ)− U(t, x)|dtdx −→ 0,

namely

uμ −→ U, in L1((−R,R)× (−R,R)), as μ→ 0.

Therefore the Dominated Convergence Theorem gives (6.32). Finally, Theo-
rem 6.2.4 and (6.32) implies that U is a entropy solution of (6.11). Then, the
claim follows from Theorem 6.2.7. ��
Example 6.2.1 The function

u(t, x) =
⎧⎨
⎩

− 2
3

(
t + √

3x + t2
)

if 4x + t2 > 0,

0 if 4x + t2 < 0
(6.33)

is an entropy solution of the Cauchy problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut +
(
u2

2

)
x

= 0, t > 0, x ∈ R,

u(0, x) =
{
− 2√

3

√
x if x > 0,

0 if x < 0.

(6.34)

Introduce the notation

u−(t, x) = 0, u+(t, x) = −2

3

(
t +

√
3x + t2

)
, λ(t) = − t

2

4
, f (ξ) = ξ2

2
.

Since

∂xu+(t, x) = − 1√
3x + t2 ,

∂tu+(t, x) = −2

3

(
1 + t√

3x + t2
)
,
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u+(t, x)∂xu+(t, x) = 2

3

(
t√

3x + t2 + 1

)

u− and u+ are a classical solution of the Burgers equation.
We have only to verify that (6.26) and (6.27) hold along the curve x = λ(t).

Since

u−(t, λ(t)) = 0,

u+(t, λ(t)) = −t ≤ 0,

f (u+(t, λ(t)))− f (u−(t, λ(t)))− λ′(t)(u+(t, λ(t))− u−(t, λ(t))) = 0,

the Rankine-Hugoniot Condition is satisfied and the jump is downward (note that f
is convex).

6.2.6 Change of Coordinates

One of the features of the weak and entropy solutions is that they are not
invariant under changes of coordinates. These ones transform smooth solutions in
smooth solutions but in general they do not transform weak/entropy solutions in
weak/entropy solutions. Let us consider the following simple example based on the
Burgers equation. We know that the shock

u(t, x) =
{

1, if x < t/2,

0 if x ≥ t/2 (6.35)

provides an entropy solution of the Riemann problem

∂tu+ ∂x
(
u2

2

)
= 0, u(0, x) =

{
1, if x < 0,

0 if x ≥ 0.
(6.36)

Consider the new unknown

v = u3.

(6.35) and (6.36) become

v(t, x) =
{

1, if x < t/2,

0 if x ≥ t/2 (6.37)
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and

∂t v + ∂x
(

3

4
v4/3

)
= 0, v(0, x) =

{
1, if x < 0,

0 if x ≥ 0.
(6.38)

respectively. Since v does not satisfy the Rankine-Hugoniot condition, it does not
provide a weak solution of (6.38).

6.2.7 Uniqueness and Stability of Entropy Solutions

In this section we prove the classical Kružkov theorem [12]. It has three main
consequences: the uniqueness of the entropy solutions, the L1 Lipschitz continuity
with respect to the initial condition of the entropy solutions, and the finite speed of
propagation of the waves generated by conservation laws.

Theorem 6.2.9 (Kružkov [12]) Let u, v : [0,∞) × R → R be two entropy
solutions of (6.11). If

u, v ∈ L∞((0,∞)× R),

then

∫ R

−R
|u(t2, x)− v(t2, x)|dx ≤

∫ R+L(t2−t1)

−R−L(t2−t1)
|u(t1, x)− v(t1, x)|dx, (6.39)

for every R > 0 and almost every 0 ≤ t1 ≤ t2, where

L = sup
(0,∞)×R

(|f ′(u)| + |f ′(v)|).

A fundamental consequence of Kružkov theorem is the following.

Corollary 1 (Uniqueness and Stability of Entropy Solutions) Let u, v :
[0,∞)× R → R be two entropy solutions of (6.11). If

u, v ∈ L∞((0,∞)× R),

u(0, ·)− v(0, ·) ∈ L1(R) (or u(0, ·), v(0, ·) ∈ L1(R)),

then

u(t, ·)− v(t, ·) ∈ L1(R) (or u(t, ·), v(t, ·) ∈ L1(R)),

‖u(t, ·)− v(t, ·)‖L1(R) ≤ ‖u(0, ·)− v(0, ·)‖L1(R) ,
(6.40)
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for almost every t ≥ 0. In particular

u(0, ·) = v(0, ·) &⇒ u = v.

The proof of the Kružkov theorem is based on the following lemma.

Lemma 6.2.2 (Doubling of Variables) Let u, v : [0,∞)×R → R be two entropy
solutions of (6.11). If

u, v ∈ L∞((0,∞)× R),

then

∂t |u− v| + ∂x (sign (u− v) (f (u)− f (v))) ≤ 0 (6.41)

holds in the sense of distributions on (0,∞)× R.

Proof Let ϕ = ϕ(t, s, x, y) be a C∞ nonnegative test function defined on (0,∞)×
(0,∞)× R × R. Since u and v are entropy solutions of (6.11) we have

∫ ∞

0

∫
R

(
|u(t, x)− v(s, y)|∂t ϕ(t, s, x, y)

+ sign (u(t, x)− v(s, y)) (f (u(t, x)) − f (v(s, y)))∂xϕ(t, s, x, y)
)
dtdx ≥ 0,

∫ ∞

0

∫
R

(
|v(s, y) − u(t, x))|∂sϕ(t, s, x, y)

+ sign (v(s, y) − u(t, x)) (f (v(s, y)) − f (u(t, x)))∂yϕ(t, s, x, y)
)
dsdy ≥ 0,

and then
∫ ∞

0

∫ ∞

0

∫
R

∫
R

(
|u(t, x)− v(s, y)|(∂tϕ + ∂sϕ)

+ sign (u(t, x)− v(s, y))×
× (f (u(t, x))− f (v(s, y)))(∂xϕ + ∂yϕ)

)
dtdsdxdy ≥ 0.

(6.42)

Let ψ ∈ C∞((0,∞)×R) be a nonnegative test function and δ ∈ C∞(R) be such
that

δ ≥ 0, ‖δ‖L1(R) = 1, supp(δ) ⊂ [−1, 1].
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Define

δn(x) = nδ(nx),

ϕn(t, s, x, y) = ψ
(
t + s

2
,
x + y

2

)
δn

(
s − t

2

)
δn

(
y − x

2

)
.

(6.43)

We use ϕn as test function in (6.42)

∫ ∞

0

∫ ∞

0

∫
R

∫
R

δn

(
s − t

2

)
δn

(
y − x

2

)(
(|u(t, x)− v(s, y)|∂tψ

(
t + s

2
,
x + y

2

)

+ sign (u(t, x)− v(s, y))×

× (f (u(t, x))− f (v(s, y)))∂xψ
(
t + s

2
,
x + y

2

))
dtdsdxdy ≥ 0.

As n→ ∞ we get

∫ ∞

0

∫
R

(|u− v|∂tψ + sign (u− v) (f (u)− f (v))∂xψ) dtdx ≥ 0,

that gives the claim. ��
Proof (of Theorem 6.2.9) Let R > 0 and 0 ≤ t1 ≤ t2. Define

αn(x) =
∫ x

−∞
δn(y)dy, x ∈ R,

where δn is defined in (6.43). Consider the test function

ϕn(t, x) = (αn(t − t1)− αn(t − t2))
(

1 − αn
(√
x2 + 1

n
− R − L(t2 − t)

))
,

that is a smooth approximant of the characteristic function of the set

{
(t, x) ∈ [0,∞)× R; t1 ≤ t ≤ t2, |x| ≤ R + L(t2 − t)

}
.

Testing (6.41) with ϕn we get

∫ ∞

0

∫
R

|u− v| (δn(t − t1)− δn(t − t2))
(

1 − αn
(√
x2 + 1

n
− R − L(t2 − t)

))
dtdx

− L
∫ ∞

0

∫
R

|u− v| (αn(t − t1)− αn(t − t2)) δn
(√
x2 + 1

n
− R − L(t2 − t)

)
dtdx
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+
∫ ∞

0

∫
R

sign (u− v) (f (u)− f (v)) (αn(t − t1)− αn(t − t2)) ·

· x√
x2 + 1

n

δn

(√
x2 + 1

n
− R − L(t2 − t)

)
dtdx ≥ 0.

Since

|f (u)− f (v)| ≤ |u− v|,
∣∣∣∣∣∣

x√
x2 + 1

n

∣∣∣∣∣∣ ≤ 1

we have

∫ ∞

0

∫
R

|u− v| (δn(t − t1)− δn(t − t2))
(

1 − αn
(√
x2 + 1

n
− R − L(t2 − t)

))
dtdx

≥
∫ ∞

0

∫
R

⎛
⎝L|u− v| − sign (u− v) (f (u)− f (v)) x√

x2 + 1
n

⎞
⎠ ·

· (αn(t − t1)− αn(t − t2)) δn
(√
x2 + 1

n
− R − L(t2 − t)

)
dtdx ≥ 0.

As n → ∞, using the fact that, due to the Lusin Theorem, the map t ≥ 0 �→
u(t, ·)− v(t, ·) ∈ L1

loc(R) is almost everywhere continuous, we get (6.39). ��

6.3 Riemann Problem

In Sect. 6.2.7 we proved the uniqueness and stability of entropy solutions of Cauchy
problems. Here we focus on the existence of entropy solutions. We analyze the
simplest cases: the Riemann problems, that are Cauchy problems with Heaviside
type initial condition

⎧⎪⎪⎨
⎪⎪⎩
∂tu+ ∂xf (u) = 0, t > 0, x ∈ R,

u(0, x) =
{
u+, if x ≥ 0,

u−, if x < 0,

(6.44)

where f ∈ C2(R) and u− �= u+ are constants.
In the following sections we first consider the case in which f is convex. Indeed

the solutions obtained under that assumption are the building blocks of the solutions
of the general case [5, 6, 11].
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6.3.1 Strictly Convex Fluxes

We assume that f is a convex function, the concave case is analogous.
We distinguish two cases. If (see Fig. 6.4)

u+ < u−

then the entropy solution of (6.44) is the shock wave (see Fig. 6.5)

u(t, x) =

⎧⎪⎪⎨
⎪⎪⎩
u+, if x ≥ f (u+)− f (u−)

u+ − u−
t,

u−, if x <
f (u+)− f (u−)
u+ − u−

t .

f

u-u+

Fig. 6.4 Convex flux f

x

u

u+

u-

t

x

u+

u-

Fig. 6.5 Shck wave (u−, u+) with u+ < u−
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If (see Fig. 6.6)

u+ > u−

then the entropy solution of (6.44) is the rarefaction wave (see Fig. 6.7)

u(t, x) =

⎧⎪⎪⎨
⎪⎪⎩
u+, if x ≥ f ′(u+)t,
σ, if x = f ′(σ )t, u− < σ < u+,
u−, if x = f ′(u−)t.

(6.45)

Observe that the definition makes sense because f is convex and then f ′ is
increasing.

f

u- u+

Fig. 6.6 Shock wave (u−, u+) with u+ > u−

x

u

u+

u-

t

x

u+

u-

Fig. 6.7 Rarefaction wave
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We claim that

∂tη(u)+ ∂xq(u) = 0, (6.46)

for every entropy η with flux q , where u is the rarefaction wave defined in (6.45).
Consider the sets

 1 = {(t, x) ∈ (0,∞)× R; x < f ′(u−)t},
 2 = {(t, x) ∈ (0,∞)× R; f ′(u−)t < x < f ′(u+)t},
 3 = {(t, x) ∈ (0,∞)× R; x > f ′(u+)t},

whit outer normals n1, n2, n3, and a nonnegative test function ϕ ∈ C∞((0,∞) ×
R). We have

∫ ∞

0

∫
R

(η(u)∂tϕ + q(u)∂xϕ)dtdx

= −
3∑
i=1

∫∫
 i

(∂tη(u)+ ∂xq(u))︸ ︷︷ ︸
=0 (because u is smooth in each  i)

ϕdtdx

+
3∑
i=1

∫
∂ i

(η(u)ϕ, q(u)ϕ) · nidσ
︸ ︷︷ ︸

=0 (because u is continuous)

= 0.

Therefore (6.46) holds and then (6.45) is the entropy solution of (6.44).
When f is concave we have a completely symmetric case, a shock when u− <

u+ and a rarefaction when u− > u+.

Example 6.3.1 The entropy solution of the Riemann problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut +
(
u2

2

)
x

= 0, t > 0, x ∈ R,

u(0, x) =
{
−1 if x < 0,

1 if x ≥ 0,

is the rarefaction wave

u(t, x) =

⎧⎪⎪⎨
⎪⎪⎩

−1 if x < −t,
σ if x = σ t, −1 < σ ≤ 1,

1 if x > t.
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Example 6.3.2 The entropy solution of the Riemann problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut + (u3)x = 0, t > 0, x ∈ R,

u(0, x) =
{

1 if x < 2,

0 if x ≥ 2,

is the shock

u(t, x) =
{

1 if x < t + 2,

0 if x ≥ t + 2.

Example 6.3.3 The entropy solution of the Riemann problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut + (u3)x = 0, t > 0, x ∈ R,

u(0, x) =
{

0 if x < 2,

1 se x ≥ 2,

is the rarefaction wave

u(t, x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if x < 2,

σ if x = 3σ 2t + 2, 0 < σ ≤ 1,

1 if x > 3t + 2.

Example 6.3.4 The entropy solution of the Riemann problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut + (eu)x = 0, t > 0, x ∈ R,

u(0, x) =
{

2 if x < 0,

0 if x ≥ 0,

is the shock

u(t, x) =
{

2 if x < e2−1
2 t,

0 if x ≥ e2−1
2 t .
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6.3.2 General Fluxes

In the case of convex or concave fluxes the solution of the Riemann problem (6.44)
consists of only one wave, a shock or a rarefaction wave. In the case of fluxes that
are not convex or concave we can have several waves of both types. Moreover, the
waves may also be glued together.

We have to distinguish again two cases. If

u− < u+

we consider the convex hull f∗ of f in the interval [u−, u+], i.e., f∗ is the largest
convex map such that

f∗(ξ) ≤ f (ξ), u− ≤ ξ ≤ u+.

Let consider the points w0, . . . , wn such that (see Fig. 6.8)

u− = w0 < w1 < . . . < wn = u+,

f (wi) = f∗(wi), i = 0, . . . , n,

wi < u < wi+1 ⇒ f∗(u) < f (u) or f∗(u) = f (u), i = 0, . . . , n− 1.

We solve separately the n− 1 Riemann problems obtained in correspondence of
the values (wi,wi+1), i = 0, . . . , n − 1. If f < f∗ in (wi,wi+1) we have a shock
otherwise a rarefaction (see Fig. 6.9). This algorithm provides clearly the entropy
solution of (6.44) because we are gluing entropy solutions.

If

u− > u+

Fig. 6.8 Nonconvex flux f

f

u- u+1 2 3 40
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x

u
u+

u-

t

x
u+u- 00

1
1

22

3

3

4

4

Fig. 6.9 Nonconvex flux with shock (u−, u+) with u− < u+

2

-2 1

Fig. 6.10 f (u) = (u3 − 3u)

we consider the concave hull f ∗ of f in the interval [u−, u+], i.e., f ∗ is the smallest
concave map such that

f (ξ) ≤ f ∗(ξ), u− ≤ ξ ≤ u+,

and we argue in the same way.

Example 6.3.5 Consider the Riemann problem (see Fig. 6.10)

⎧⎪⎪⎨
⎪⎪⎩
∂tu+ ∂x(u3 − 3u) = 0, t > 0, x ∈ R,

u(0, x) =
{

2, if x ≥ 0,

−2, if x < 0,

(6.47)
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x

u

2

-2

t

x

2

-2

1

shock

shock

rarefaction

rarefaction

Fig. 6.11 Solution of (6.47)

The solution of (6.47) is (see Fig. 6.11)

u(0, x) =

⎧⎪⎪⎨
⎪⎪⎩

2, if x ≥ 9t,

σ, if x = (3σ 2 − 3)t, 1 ≤ σ < 2,

−2, if x < 0,

where the shock connecting −2 and 1 is attached to the rarefaction from 1 to 2.
The same feature can be found in

⎧⎪⎪⎨
⎪⎪⎩
∂tu+ ∂x(u3 − 3u) = 0, t > 0, x ∈ R,

u(0, x) =
{
−2, if x ≥ 0,

2, if x < 0.

Example 6.3.6 Let us solve the Cauchy problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut +
(
u2

2

)
x

= 0, t > 0, x ∈ R,

u(0, x) =
{

1 if 0 < x < 1

0 otherwise.

(6.48)

The wave generated at x = 0 is a rarefaction wave with speeds between 0 and 1,
the one generated at x = 1 a shock with speed 1/2, they interact at t = 2, and we
have (see Fig. 6.12)

u(t, x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if x ≤ 0,

σ, if x = σ t, 0 ≤ σ ≤ 1,

1, if t < x ≤ t
2 + 1,

0, if x > t
2 + 1,

0 ≤ t ≤ 2. (6.49)
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u

x x

u

t=0 0<t<2

Fig. 6.12 Solution of (6.48)

u

x x

tt

0 0
1

00t>2

t=2

Fig. 6.13 Solution of (6.48)

For t ≥ 2 we have a structure of the type (see Fig. 6.13)

u(t, x) =

⎧⎪⎪⎨
⎪⎪⎩

0, if x ≤ 0,

σ, if x = σ t, 0 ≤ σ ≤ λ(t),
0, if x > λ(t),

t ≥ 2. (6.50)

We have to determine λ(t). We know that

λ(2) = 2. (6.51)

The Rankine-Hugoniot condition gives

λ′(t) = u(t, λ(t)−)
2

. (6.52)

Finally, from (6.50) we know

u(t, λ(t)−) = λ(t)

t
. (6.53)
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Therefore, (6.51), (6.52), and (6.53) imply that λ(t) is the unique solution of the
ordinary differential problem

λ′(t) = λ(t)

2t
, λ(2) = 2,

namely

λ(t) = √
2t, t ≥ 2.

Example 6.3.7 Let us solve the Cauchy problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut +
(
u2

2

)
x

= 0, t > 0, x ∈ R,

u(0, x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 se x < −1,

0 se − 1 < x < 0

2 se 0 < x < 1

0 se x > 1.

(6.54)

The wave generated at x = −1 is a shock with speed 1/2, the one generated at
x = 0 is a rarefaction wave with speeds between 0 and 2, the one generated at x = 1
a shock with speed 1. The first interaction is between the second and the third wave
at t = 1, and we have (see Fig. 6.14).

u(t, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1, if x ≤ t
2 − 1,

0, if t2 − 1 ≤ x ≤ 0,

σ, if x = σ t, 0 ≤ σ ≤ 2,

2, if 2t < x ≤ t + 1,

0, if x > t + 1,

0 ≤ t ≤ 1. (6.55)

t=0
u

x x

u
0<t<1

Fig. 6.14 Solution of (6.54)
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1<t<2

u

x x

u

2<t<

Fig. 6.15 Solution of (6.54)

t>

u

x

x

t

t=2

t

1

0

2

01

0
t=1

1 0 0

Fig. 6.16 Solution of (6.54)

The second interaction is between the first and the second wave at t = 2, and for
1 ≤ t ≤ 2 and t ≥ 2 we have a structure of the type (see Figs. 6.15 and 6.16)

u(t, x) =

⎧⎪⎪⎨
⎪⎪⎩

1, if x ≤ 0,

σ, if x = σ t, 0 ≤ σ ≤ λ(t),
0, if x > λ(t),

1 ≤ t ≤ 2, (6.56)

u(t, x) =

⎧⎪⎪⎨
⎪⎪⎩

1, if x ≤ γ (t),
σ, if x = σ t, γ (t) ≤ σ ≤ λ(t),
0, if x > λ(t),

t ≥ 2. (6.57)

We have to determine γ (t) and λ(t). We know that

γ (2) = 0, λ(1) = 2. (6.58)
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The Rankine-Hugoniot condition gives

γ ′(t) = 1 + u(t, γ (t)+)
2

, λ′(t) = u(t, λ(t)−)
2

. (6.59)

Finally, from (6.56) we know

u(t, γ (t)+) = γ (t)

t
, u(t, λ(t)−) = λ(t)

t
. (6.60)

Therefore, (6.51), (6.52), and (6.53) imply that γ (t) and λ(t) are the unique solution
of the ordinary differential problems

⎧⎨
⎩
γ ′(t) = 1

2

(
1 + γ (t)

t

)
,

γ (2) = 0,

⎧⎨
⎩
λ′(t) = λ(t)

2t
λ(1) = 2,

namely

γ (t) = t − √
2t, λ(t) = 2

√
t .

Since, γ and λ interact at 9+4
√

2
2 , (6.57) holds only for 2 ≤ t ≤ 9+4

√
2

2 . For t ≥
9+4

√
2

2 we have only a shock connecting 0 and 1 with speed 1
2

u(t, x) =
{

1, if x ≤ t
2 +

√
18 + 8

√
2,

0, if x > t
2 +

√
18 + 8

√
2,

t ≥ 9 + 4
√

2

2
.

6.4 Vanishing Viscosity

In this section we discuss the parabolic approximation

{
∂tuε + ∂xf (uε) = ε∂2

xxuε, t > 0, x ∈ R,

uε(0, x) = u0,ε(x), x ∈ R,
(6.61)

of the scalar hyperbolic conservation law

{
∂tu+ ∂xf (u) = 0, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R.
(6.62)

The mean feature of such an approximation relies in the regularity property of the
solutions. Indeed due to its parabolic structure (6.61) does not experience shocks.
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For the initial data of (6.62) we assume

u0 ∈ L1(R) ∩ BV (R).

On the other hand, for every ε > 0, u0,ε is a smooth approximation to u0 such that

u0,ε ∈ C∞(R) ∩W 2,1(R), ε > 0,

u0,ε −→ u0, in Lp(R), 1 ≤ p <∞, as ε → 0,∥∥u0,ε
∥∥
L∞(R) ≤ ‖u0‖L∞(R) ,

∥∥u0,ε
∥∥
L1(R)

≤ ‖u0‖L1(R) , ε > 0,

∥∥∂xu0,ε
∥∥
L1(R)

≤ T V (u0), ε

∥∥∥∂2
xxu0,ε

∥∥∥
L1(R)

≤ C, ε > 0,

(6.63)

for some constant C > 0 independent on ε. Under these assumptions (6.61) admits
a unique solution uε such that [7, 14]

uε ∈ C∞([0,∞)× R) ∩W 2,p((0,∞);W 1,p(R)), 1 ≤ p <∞.

The main result of this Section is the following [6, 11, 18].

Theorem 6.4.1 If

u0 ∈ L1(R) ∩ BV (R).

then

uε −→ u inLploc((0,∞)×R), 1 ≤ p <∞, and a.e. in (0,∞)×R, (6.64)

where u is the entropy weak solution of (6.62) and uε is the solution of (6.61).
Moreover, the following estimate holds

‖uε(t, ·)− u(t, ·)‖L1(R) ≤ c√εt T V (u0)+
∥∥u0,ε − u0

∥∥
L1(R)

, (6.65)

for every ε > 0 and t ≥ 0, where c is a positive constant independent on ε and t .

The convergence part of this result has been proved in [12] for scalar equations
and in [4] for systems of conservation laws. The error estimates has been proved in
[13].

Let us conclude this introduction with the following observation. In our statement
all the family {uε}ε>0 converges to u and not just a subsequences, this result is due
to the uniqueness of the entropy solutions of (6.62) and to the following equivalence

uε −→ u

(
∀ {uεk}k∈N subsequence ∃ {uεkh }h∈N subsequence s.t. uεkh −→ u.

(6.66)
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6.4.1 A Priori Estimates, Compactness, and Convergence

The aim of this section relies essentially in the proof of (6.64). Let us start with a
technical lemma that will play a key role in the following a priori estimates.

Lemma 6.4.1 ([2, Lemma 2]) Let v : R → R be a function. If

v ∈ C1(R), v′ ∈ L1(R),

then

lim
δ→0+

∫
|v|<δ

|v′|dx = 0.

Proof We write

vδ = |v′|χ{|v|<δ}, δ > 0

and observe that

|vδ| ≤ |v′|, vδ −→ 0 a.e. in R.

Indeed, if |{v = 0}| = 0 we have χ{|v|<δ} → 0 otherwise v′ → 0 on {v = 0}.
Therefore the claim follows from the Dominated Convergence Theorem. ��
Remark 6.4.1 Since the solutions of (6.61) are smooth, the previous lemma allows
us to use the identity

sign (v)′ = δ{v=0}v′ (6.67)

in our computations, where δ{v=0} is the Dirac delta concentrated on the set {v = 0}.
In particular, if v ∈ C2(R) ∩ L∞(R) ∩W 2,1(R),

∫
R

f (v)′′sign
(
v′
)
dx = 0,

∫
R

v′′sign (v) dx ≤ 0, (6.68)

that follow integrating by parts and using (6.67).
Let us give a rigorous proof of them. We have

lim
α→0

∫
R

f (v)′′η′α(v′)dx =
∫
R

f (v)′′sign
(
v′
)
dx,

lim
α→0

∫
R

v′′η′α(v)dx =
∫
R

v′′sign (v) dx,

(6.69)



6 Conservation Laws in Continuum Mechanics 197

where

ηα(ξ) =
√
ξ2 + α2, α ∈ R.

For every α �= 0

ηα ∈ C2(R), η′α(ξ) =
ξ√

ξ2 + α2
, η′′α(ξ) = α2

(ξ2 + α2)3/2
≥ 0.

We have
∣∣∣∣
∫
R

f (v)′′η′α(v′)dx
∣∣∣∣ =

∣∣∣∣
∫
R

f ′(v)v′η′′α(v′)v′′dx
∣∣∣∣

≤L
∫
R

∣∣v′η′′α(v′)v′′∣∣ dx = L
∫
R

∣∣∣∣ α2v′v′′

((v′)2 + α2)3/2

∣∣∣∣ dx

= L
∫
{|v′|<√

α}

∣∣∣∣ α2v′v′′

((v′)2 + α2)3/2

∣∣∣∣ dx

+ L
∫
{|v′|≥√

α}

∣∣∣∣ α2v′v′′

((v′)2 + α2)3/2

∣∣∣∣ dx

≤3

8
L

∫
{|v′|<√

α}
∣∣v′′∣∣ dx

︸ ︷︷ ︸
→0 by Lemma 6.4.1

+ L α

(1 + α)3/2︸ ︷︷ ︸
→0

∫
{|v′|≥√

α}
∣∣v′′∣∣ dx −→ 0,

∫
R

v′′η′α(v)dx = −
∫
R

η′′α(v)(v′)2dx ≤ 0,

where L = sup
|ξ |≤‖v‖L∞(R)

|f ′(ξ)|. Therefore, (6.68) follows from (6.69).

Let us continue with some apriori estimates on uε independent on ε.

Lemma 6.4.2 (L∞ Estimate) We have that

‖uε‖L∞((0,∞)×R) ≤ ‖u0‖L∞(R) , ε > 0.

Proof Due to (6.63) the maps with constant values ‖u0‖L∞(R) and −‖u0‖L∞(R)
provide a super and a sub solution to (6.61), respectively. Therefore, the claim
follows from the comparison principle for parabolic equations. ��
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Lemma 6.4.3 (L1 Estimate) The function

t ≥ 0 �−→ ‖uε(t, ·)‖L1(R)

is nonincreasing. In particular,

‖uε(t, ·)‖L1(R) ≤ ‖u0‖L1(R) , ε > 0, t ≥ 0.

Proof Due to the regularity of uε, we have

d

dt

∫
R

|uε|dx =
∫
R

sign (uε) ∂tuεdx

= ε
∫
R

sign (uε) ∂2
xxuεdx −

∫
R

sign (uε) f ′(uε)∂xuεdx

= −ε
∫
R

δ{uε=0} (∂xuε)2 dx︸ ︷︷ ︸
≤0

−
∫
R

∂x

(∫ uε(t,x)

0
sign (s) f ′(s)ds

)
dx

︸ ︷︷ ︸
=0

≤ 0,

where δ{uε=0} is the Dirac’s delta concentrated on the set {uε = 0}. Finally, an
integration on (0, t) gives (see (6.63))

‖uε(t, ·)‖L1(R) ≤ ∥∥u0,ε
∥∥
L1(R)

≤ ‖u0‖L1(R) .

��
Lemma 6.4.4 (BV Estimate in x) The function

t ≥ 0 �−→ ‖∂xuε(t, ·)‖L1(R)

is nonincreasing. In particular,

‖∂xuε(t, ·)‖L1(R) ≤ T V (u0), ε > 0, t ≥ 0.

Proof Due to the regularity of uε, we have

∂2
txuε + ∂x

(
f ′(uε)∂xuε

) = ε∂3
xxxuε
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and then

d

dt

∫
R

|∂xuε|dx =
∫
R

sign (∂xuε) ∂
2
txuεdx

= ε
∫
R

sign (∂xuε) ∂
3
xxxuεdx −

∫
R

sign (∂xuε) ∂x
(
f ′(uε)∂xuε

)
dx

= −ε
∫
R

δ{∂xuε=0}
(
∂2
xxuε

)2
dx

︸ ︷︷ ︸
≤0

+
∫
R

δ{∂xuε=0}∂2
xxuεf

′(uε)∂xuεdx︸ ︷︷ ︸
=0

≤ 0,

where δ{∂xuε= 0} is the Dirac’s delta concentrated on the set {∂xuε = 0}. Finally, an
integration on (0, t) gives (see (6.63))

‖∂xuε(t, ·)‖L1(R) ≤ ∥∥∂xu0,ε
∥∥
L1(R)

≤ T V (u0).

��
Lemma 6.4.5 (BV Estimate in t) The function

t ≥ 0 �−→ ‖∂tuε(t, ·)‖L1(R)

is nonincreasing. In particular,

‖∂tuε(t, ·)‖L1(R) ≤ T V (u0)L+ C, ε > 0, t ≥ 0,

where C is the constant that appears in (6.63) and

L = ∥∥f ′∥∥
L∞(−‖u0‖L∞(R),‖u0‖L∞(R))

.

Proof Due to the regularity of uε, we have

∂2
t tuε + ∂x

(
f ′(uε)∂tuε

) = ε∂3
txxuε

and then

d

dt

∫
R

|∂tuε|dx

=
∫
R

sign (∂tuε) ∂2
t tuεdx

= ε
∫
R

sign (∂tuε) ∂3
txxuεdx −

∫
R

sign (∂tuε) ∂x
(
f ′(uε)∂tuε

)
dx

= −ε
∫
R

δ{∂t uε=0}
(
∂2
txuε

)2
dx

︸ ︷︷ ︸
≤0

+
∫
R

δ{∂tuε=0}∂2
txuεf

′(uε)∂tuεdx︸ ︷︷ ︸
=0

≤ 0,
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where δ{∂t uε=0} is the Dirac’s delta concentrated on the set {∂tuε = 0}. Finally, an
integration on (0, t), (6.61), (6.63), and Lemma 6.4.2 give

‖∂tuε(t, ·)‖L1(R) ≤‖∂tuε(0, ·)‖L1(R)

=
∥∥∥ε∂2

xxu0,ε − f ′(u0,ε)∂xu0,ε

∥∥∥
L1(R)

≤ε
∥∥∥∂2
xxu0,ε

∥∥∥
L1(R)

+ ∥∥f ′(u0,ε)
∥∥
L∞(R)

∥∥∂xu0,ε
∥∥
L1(R)

≤C + T V (u0)L.

��
Proof (of (6.64)) Let {uεk }k∈N be a subsequence of {uε}ε>0. Since {uεk }k∈N is
bounded in L∞((0,∞)×R)∩BV ((0, T )×R), T > 0, (see Lemmas 6.4.3, 6.4.4,
and 6.4.5), there exists a function u ∈ L∞((0,∞)×R)∩BV ((0, T )×R), T > 0,
and a subsequence {uεkh }h∈N such that

uεkh
−→ u in Lploc((0,∞)× R) and a.e. in (0,∞)× R.

We claim that u is the unique entropy solution of (6.62). Let η ∈ C2(R) be a
convex entropy with flux q defined by q ′ = η′f ′. Multiplying (6.61) by η′(uεkh ) we
get

∂tη(uεkh
)+ ∂xq(uεkh ) = εkh∂2

xxuεkh
η′(uεkh )

= εkh∂2
xxη(uεkh

)−εkhη′′(uεkh )(∂xuεkh )2︸ ︷︷ ︸
≤0

≤ εkh∂2
xxη(uεkh

).

For every nonnegative test function ϕ ∈ C∞(R2) with compact support we have
that ∫ ∞

0

∫
R

(
η(uεkh )∂tϕ + q(uεkh )∂xϕ

)
dtdx+

∫
R

η(u0,εkh
(x))ϕ(0, x)dx

≥ −εkh
∫ ∞

0

∫
R

η(uεkh
)∂2
xxϕdtdx.

As h→ ∞, the Dominated Convergence Theorem gives
∫ ∞

0

∫
R

(η(u)∂tϕ + q(u)∂xϕ) dtdx +
∫
R

η(u0(x))ϕ(0, x)dx ≥ 0,

proving that u is the unique entropy solution of (6.62).
Finally, thanks to (6.66), (6.64) is proved. ��
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6.4.2 Error Estimate

In this section we complete the proof of Theorem 6.4.1 showing (6.65).
Let t, ε > 0. We “double the variables”, using (τ, x) for (6.62) and (s, y) for

(6.61). We have

∂t |u(τ, x)− uε(s, y)|
+ ∂x[sign (u(τ, x)− uε(s, y)) (f (u(τ, x))− f (uε(s, y)))] ≤ 0,

(6.70)

and

∂s |u(τ, x)− uε(s, y)|
+ ∂y [sign (u(τ, x)− uε(s, y)) (f (u(τ, x))− f (uε(s, y)))]

≤ε∂2
yy |u(τ, x)− uε(s, y)|,

(6.71)

in the sense of distributions. Let w ∈ C∞(R) be a nonnegative function with
compact support such that

‖w‖L1(R) = 1.

We define

wα(ξ) = 1

α
w

(
ξ

α

)
, ξ ∈ R, α > 0.

By testing (6.70) with the function

(τ, x) �−→ wβ(τ − s)wα(x − y), α, β > 0,

we get

∫ t

0

∫
R

[
|u(τ, x)− uε(s, y)|w′

β(τ − s)wα(x − y)

+ sign (u(τ, x)− uε(s, y)) (f (u(τ, x))− f (uε(s, y)))×
× wβ(τ − s)w′

α(x − y)
]
dτdx

−
∫
R

|u(t, x)− uε(s, y)|wβ(t − s)wα(x − y)dx

+
∫
R

|u0(x)− uε(s, y)|wβ(−s)wα(x − y)dx ≥ 0,
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that is∫ t

0

∫
R

∫
R

|u(t, x)− uε(s, y)|wβ(t − s)wα(x − y)dsdxdy

≤
∫ t

0

∫
R

∫
R

|u0(x)− uε(s, y)|wβ(−s)wα(x − y)dsdxdy

+
∫ t

0

∫ t

0

∫
R

∫
R

[
|u(τ, x)− uε(s, y)|w′

β(τ − s)wα(x − y)

+ sign (u(τ, x)− uε(s, y)) (f (u(τ, x))− f (uε(s, y)))×
×wβ(τ − s)w′

α(x − y)
]
dsdτdxdy.

(6.72)

By testing (6.71) with the function

(s, y) �−→ wβ(τ − s)wα(x − y), α, β > 0,

we get

−
∫ t

0

∫
R

[
|u(τ, x)− uε(s, y)|w′

β(τ − s)wα(x − y)

+ sign (u(τ, x)− uε(s, y)) (f (u(τ, x))− f (uε(s, y)))×
×wβ(τ − s)w′

α(x − y)
]
dsdy

−
∫
R

|u(τ, x)− uε(t, y)|wβ(τ − t)wα(x − y)dy

+
∫
R

|u(τ, x)− u0,ε(y)|wβ(τ)wα(x − y)dy

≥ − ε
∫ t

0

∫
R

|u(τ, x)− uε(s, y)|wβ(τ − s)w′′
α(x − y)dsdy,

that is∫ t

0

∫
R

∫
R

|u(τ, x)− uε(t, y)|wβ(τ − t)wα(x − y)dτdxdy

≤
∫ t

0

∫
R

∫
R

|u(τ, x)− u0,ε(y)|wβ(τ)wα(x − y)dτdxdy

−
∫ t

0

∫ t

0

∫
R

∫
R

[
|u(τ, x)− uε(s, y)|w′

β(τ − s)wα(x − y)

+ sign (u(τ, x)− uε(s, y)) (f (u(τ, x))− f (uε(s, y)))×
×wβ(τ − s)w′

α(x − y)
]
dsdτdxdy

+ ε
∫ t

0

∫ t

0

∫
R

∫
R

|u(τ, x)− uε(s, y)|wβ(τ − s)w′′
α(x − y)dsdτdxdy.

(6.73)
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We add (6.72) and (6.73)

∫ t

0

∫
R

∫
R

|u(t, x)− uε(s, y)|wβ(t − s)wα(x − y)dsdxdy

+
∫ t

0

∫
R

∫
R

|u(τ, x)− uε(t, y)|wβ(τ − t)wα(x − y)dτdxdy

≤
∫ t

0

∫
R

∫
R

|u0(x)− uε(s, y)|wβ(−s)wα(x − y)dsdxdy

+
∫ t

0

∫
R

∫
R

|u(τ, x)− u0,ε(y)|wβ(τ)wα(x − y)dτdxdy

+ ε
∫ t

0

∫ t

0

∫
R

∫
R

|u(τ, x)− uε(s, y)|wβ(τ − s)w′′
α(x − y)dsdτdxdy

and send β → 0
∫
R

∫
R

|u(t, x)− uε(t, y)|wα(x − y)dxdy
︸ ︷︷ ︸

I1

≤
∫
R

∫
R

|u0(x)− u0,ε(y)|wα(x − y)dxdy
︸ ︷︷ ︸

I2

+ ε

2

∫ t

0

∫
R

∫
R

|u(s, x)− uε(s, y)|w′′
α(x − y)dsdxdy

︸ ︷︷ ︸
I3

.

(6.74)

We estimate I1 and I2 in the following way (see (6.63) and Lemma 6.4.4)

I1 ≥
∫
R

∫
R

(
|u(t, x)− uε(t, x)| − |uε(t, x)− uε(t, y)|

)
wα(x − y)dxdy

=
∫
R

|u(t, x)− uε(t, x)|dx −
∫
R

∫
R

|uε(t, y + ξ)− uε(t, y)|wα(ξ)dξdy

≥‖u(t, ·)− uε(t, ·)‖L1(R) −
∫
R

∣∣∣∣
∫ ξ

0

∫
R

|∂xuε(t, y + σ)|dydσ
∣∣∣∣wα(ξ)dξ

= ‖u(t, ·)− uε(t, ·)‖L1(R) − ‖∂xuε(t, ·)‖L1(R)

∫
R

|ξ |wα(ξ)dξ

≥‖u(t, ·)− uε(t, ·)‖L1(R) − αT V (u0)

∫
R

|ξ |w(ξ)dξ,

I2 ≤
∫
R

∫
R

(
|u0(x)− u0,ε(x)| + |u0,ε(x)− u0,ε(y)|

)
wα(x − y)dxdy
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=
∫
R

|u0(x)− u0,ε(x)|dy +
∫
R

∫
R

|u0,ε(y + ξ)− u0,ε(y)|wα(ξ)dξdy

≤ ∥∥u0 − u0,ε
∥∥
L1(R)

+
∫
R

∣∣∣∣
∫ ξ

0

∫
R

|∂xu0,ε(y + σ)|dydσ
∣∣∣∣wα(ξ)dξ

= ∥∥u0 − u0,ε
∥∥
L1(R)

+ ∥∥∂xu0,ε
∥∥
L1(R)

∫
R

|ξ |wα(ξ)dξ

≤ ∥∥u0 − u0,ε
∥∥
L1(R)

+ αT V (u0)

∫
R

|ξ |w(ξ)dξ.

We have to estimate I3. Thanks to (6.64) we know

I3 = lim
μ→0

I3,μ,

where

I3,μ = ε

2

∫ t

0

∫
R

∫
R

|uμ(s, x)− uε(s, y)|w′′
α(x − y)dsdxdy, μ > 0.

Since (see Lemma 6.4.4)

I3,μ ≤ ε
2

∫ t

0

∫
R

∫
R

(|∂xuμ(s, x)| + |∂yuε(s, y)|
)|w′

α(x − y)|dsdxdy

= ε

2

∫ t

0

∫
R

∫
R

(|∂xuμ(s, y + ξ)| + |∂yuε(s, y)|
)|w′

α(ξ)|dsdξdy

= ε

2

∫ t

0

∫
R

(∥∥∂xuμ(s, ·)∥∥L1(R)
+ ∥∥∂yuε(s, ·)∥∥L1(R)

)
|w′
α(ξ)|dsdξ

≤εtT V (u0)
∥∥w′

α

∥∥
L1(R)

= εt

α
T V (u0)

∥∥w′∥∥
L1(R)

,

we have

I3 ≤ εt

α
T V (u0)

∥∥w′∥∥
L1(R)

.

Using the estimates on I1, I2, and I3 in (6.74) we have

‖u(t, ·)− uε(t, ·)‖L1(R) ≤ ∥∥u0 − u0,ε
∥∥
L1(R)

+
(
α + εt

α

)
T V (u0)

(
2
∫
R

|ξ |w(ξ)dξ + ∥∥w′∥∥
L1(R)

)
.

Since the minimum of the map

α �−→ α + εt

α

is attained in
√
εt , (6.65) is proved.
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Appendix: BV Functions

In this section we collect some elementary facts about functions with bounded
variations since their relevance in the study of conservation laws.

Definition 6.4.1 Let I ⊂ R be an interval and let u : I → R. The total variation of
f over I is defined by

T V (u) = sup
q∑
k=0

|u(tk+1)− u(tk)| (6.75)

where the supremum is taken over all finite sequences t0 < . . . . < tq so that ti ∈
I , for every i. The function u is said to be of bounded variation on I , in symbol
u ∈ BV (I), if T V (u) < ∞. It is easy to verify that the sum of two functions of
bounded variations is also of bounded variation. Before proving the converse, let us
introduce the notation Vu(a; x) to denote the total variation of the function u on the
interval (a, x). Observe that if u is of bounded variation on [a, b] and x ∈ [a, b],
then

|u(x)− u(a)| ≤ Vu(a; x) ≤ Vu(a; b) = T V (u).

Theorem 6.4.2 If u is a function of bounded variation on [a, b], then u can be
written as

u = u1 − u2

where u1 and u2 are nondecreasing functions.

Proof Let x1 < x2 ≤ b and let a = t0 < t1 < . . . < tk = x1. Then

Vu(x2) ≥ |u(x2)− u(x1)| +
k∑
i=1

|u(ti)− u(ti−1)|.

Since by definition

Vu(x1) = sup
k∑
i=1

|u(ti)− u(ti−1)|

over all the sequences a = t0 < t1 < . . . tk = x1, we get

Vu(x2) ≥ |u(x2)− u(x1)| + Vu(x1).

Therefore

Vu(x2)− u(x2) ≥ Vu(x1)− u(x1), Vu(x2)+ u(x2) ≥ Vu(x1)+ u(x1).
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Hence Vu− u and Vu+ u are nondecreasing functions. The claim follows by taking

u1 = 1

2
(Vu + u), u2 = 1

2
(Vu − u).

��
Theorem 6.4.3 Let u be a function of bounded variation on [a, b]. Then u is Borel
measurable and has at most a countable number of discontinuities. Moreover, the
following statements hold true

(i) u′ exists a.e. on [a, b];
(ii) u′ is Lebesgue measurable;

(iii) for a.e. x ∈ [a, b]

|u′(x)| = V ′
u(x);

(iv)

∫ b

a

|u′(x)| dx ≤ Vu(b);

(v) if u is nondecreasing on [a, b], then

∫ b

a

u′(x) dx ≤ u(b)− u(a).

The following theorem due to Helly is a fundamental result in the theory of
bounded variation functions.

Theorem 6.4.4 Let un : [a, b] → R be a sequence of functions satisfying the
condition

sup
n
T V (un) <∞. (6.76)

Then there exists a subsequence, still denoted by un and a function u of bounded
variation such that un(x)→ u(x) as n→ ∞ for every x ∈ [a, b] and

T V (u) ≤ lim inf
n

T V (un). (6.77)
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