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and practice to enhance the different learning styles of today’s students and turn
their motivation and natural interest in technology into an additional support for
meaningful mathematics learning. The series provides the opportunity for the
dissemination of findings that address the effects of digital technologies on learning
outcomes and their integration into effective teaching practices; the potential of
mathematics educational software for the transformation of instruction and
curricula; and the power of the e-learning of mathematics, as inclusive and
community-based, yet personalized and hands-on.
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Introduction

The eight intervening years between this second edition of The Mathematics Teacher
in the Digital Era and the first edition have seen increased attention on the role of
the teacher within technology-enhanced educational contexts, leading to a more
developed understanding of the components of related teacher education pro-
grammes and initiatives for both pre- and in-service teachers. The shock to the edu-
cation system caused by the global coronavirus pandemic simultaneously highlighted
the key role that teachers and lecturers play in the nurturing of generations of learn-
ers, alongside increased global attention to the role that (educational) technology
plays as a mediator of teaching and learning. Studies that have taken place during
the pandemic have provided insights into how teachers’ practices have had to
evolve, whilst also highlighting theoretical and methodological gaps in our under-
standing of the relatively new phenomena of “hybrid”, “at distance” or “remote”
teaching in school and university settings (Bretscher et al., 2021; Clark-Wilson
et al., 2021; Crisan et al., 2021; Drijvers et al., 2021; Maciejewski, 2021).

As we reflect on the academic impacts of the first edition of the book, the chap-
ters within have offered theoretical constructs and methodological approaches,
which have provided other researchers in the field with research tools that are con-
tinuing to advance our collective understandings of the field. In this second edition,
we invited all of the authors who had contributed to the first edition to submit new
research that evidenced advances in their experiences, knowledge and practices. We
also invited new authors, whose research had emerged in the intervening years, to
offer new critical perspectives that broaden the international commentary, with con-
tributions from Argentina, Australia, Canada, France, Germany, Hong Kong,
Iceland, Italy, Mexico, Turkey and the United Kingdom.

vii



viii Introduction
A Journey Through the Text

The evolution of the research on technology in mathematics education has enabled
a more nuanced understanding of the teacher’s perspective to take account of their
trajectories of development from pre-service contexts through to in-service prac-
tices over time. Hence, we have chosen to loosely organise the text body in accor-
dance with teachers’ trajectories of experience with technology use. These
experiences concern those within: university undergraduate courses as learners of
mathematics; university-based pre-service teacher education courses; university-
based teacher education courses and research projects with in-service teachers as
participants.

We begin with chapters by Thurm, Ebers and Barzel, and Bozkurt and Koyunkaya
that address more practical considerations regarding the provision of support and
training for both in-service and pre-service teachers of mathematics.

The growth of large-scale, online professional development initiatives aimed at
teachers has resulted in new research that seeks to develop theoretical understand-
ing of the design and impact of such initiatives alongside the development of appro-
priate methodologies to inform both aspects. The chapter by Thurm, Ebers and
Barzel addresses aspects of the design of professional development for mathematics
teachers in Germany with a particular focus on the role of the professional develop-
ment facilitators within a regional professional development programme for 30 par-
ticipants who are all such facilitators. The programme was conducted online (due to
the Covid-19 pandemic) and Thurm and colleagues’ findings focus on the impact of
a module of the programme that supported participants’ understanding (and use) of
video-based case studies of mathematics teaching that embed multi-representational
technology. They use Prediger, Roesken-Winter and Leuders’ Three-Tetrahedron
Model as a framework to highlight the complexities of PD design that has a class-
room level, teacher PD level and facilitators’ PD level (Prediger et al., 2019). Their
findings, which highlight aspects of facilitators’ noticing, emphasise the need for
carefully structured prompts to support the analysis of video-based activities that
serve the dual needs of the facilitators and the teachers with whom they are working.

A pre-service teacher education context in Turkey is the subject of the qualitative
action research reported by Bozkurt and Koyunkaya in which they study the impacts
of aredesigned practicum course informed by the Instrumental Orchestration model
(Drijvers et al., 2010; Trouche, 2004). The course design emphasises the pre-service
mathematics teachers’ (PSTs, n=4) developing use of a dynamic mathematics soft-
ware (GeoGebra) from the university setting (through micro teaching to their peers)
as their practices move to school classrooms. Their study adopts a cyclical research
method that draws on data from the PSTs’ lesson plans, supported by analyses of
their teaching and associated interviews. The research findings offer insights into
how the PSTs initially overlooked the exploitation modes for the technology in their
planning but became more systematic in their approach through both the processes
of micro teaching and during the practicum itself. Given that many pre-service pro-
grammes stop short of requiring PSTs to apply their learning about mathematical
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technologies within authentic teaching situations, this chapter provides valuable
insights on the design decisions taken by the teacher educators to develop such an
approach.

The majority of the remaining chapters in the book report studies that involve
in-service teachers as participants within a range of research settings, each with a
different focus. We order these chapters according to teachers’ trajectories of devel-
opment with novel to them technologies. We adopt this phrase from Ng and Leung
(Chap. 10) as it better reflects our experience and expectation that it is not possible
for all teachers to be cognisant of all available (and educationally relevant) tech-
nologies at any point in time, irrespective of how mature the wider community
considers these technologies to be.

The study by Bakos explores how a novel multi-touch tablet technology,
TouchTimes, is used by two primary teachers in British Columbia, Canada, through
a lens that considers the teacher, the tool and the mathematical concept as an ensem-
ble. Rooted in the instrumental approach, and in particular Haspekian’s elaboration
of double instrumental genesis (2011, 2014), Bakos uses her case studies to reveal
three new orchestration types alongside sharing insights on how the agency exerted
by the tool extends our existing understandings of the nature of multiplication, and
the role of haptic devices within young children’s development.

Ng, Liang and Leung’s study also focuses on a more novel technology, 3D pens,
which enable 3-dimensional models to be drawn as physical objects. The 3D pen
warms and extrudes a plastic filament to produce a model that then hardens as it
cools. Ng, Liang and Leung’s method adopts the use of video-aided reflection with
a group of four in-service secondary school teachers in Hong Kong to support their
realisations of the affordances of such technologies as a potential teaching tool. In
their findings, Ng, Liang and Leung provide evidence for how the videos operate as
a boundary object between the teachers and researchers in the study (Robutti
et al., 2019).

Although the concept of silent animated films to show mathematical concepts
dates back to the early twentieth century and was further developed in the 1950s by
Nicolet, the design-based research developed by Kristinsd6ttir examines aspects of
their design and use in her case study in an upper secondary mathematics classroom
in Iceland. Kristinsdéttir describes silent videos as short (< 2 min) videos that do not
pose a mathematical problem to be solved but rather invite the viewer to wonder, to
experience dynamically changing mathematical objects such that they might dis-
cover something new or consolidate previous thoughts about the mathematics
shown in the video. Each associated silent video task invites students to work in
pairs to prepare and record a voice-over for the video clip, which is then shared with
the class during a whole-class discussion that is led by the teacher. Framed by a lens
that focuses on the formative assessment dimension of such discussions,
Kristinsdéttir adapted Schoenfeld’s Teaching for Robust Understanding framework
(2018) to identify opportunities and challenges associated with such discussions.

McAlindon, Ball and Chang’s study also explores an innovative technology-
enhanced pedagogic approach, the flipped classroom, through a case study involving
an experienced teacher in an Australian secondary school. Defining the flipped
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classroom as one in which the activities that would normally be conducted in the
classroom are flipped with those that would normally be conducted as homework,
they explore their case study teacher’s experiences and perceptions of a first imple-
mentation for the teaching of linear equations. This exploratory study, which involves
the teacher making qualitative comparisons with a parallel class that she taught using
her traditional approach, concludes positive outcomes such as improved student
engagement and improved formative assessment practices. Although the design pro-
cess for the teacher requires new technology skills and is time consuming, the authors
offer some guidelines to inform professional development initiatives that have the
goal to support mathematics teachers’ flipped classroom pedagogies.

Gueudet, Besnier, Bueno-Ravel and Poisard extend earlier research that featured
in the first edition of the book, which shone a theoretical lens on teachers’ classroom
practices at the kindergarten level from a Documentational Approach to Didactics
perspective (Gueudet et al., 2014). In the intervening years, evolutions of this theory
and its associated research methods have enabled the authors to consider a kinder-
garten teacher’s development as evidenced by both one of her documents (a micro
view) and the encompassing resource system (a macro view). The authors conclude
that both the micro and macro views are necessary to fully appreciate a teacher’s
design capacity within the context of long-term professional development concern-
ing digital technologies for education.

Staying in France, Abboud-Blanchard and Vanderbrouck report findings from a
study in France that explores the implementation of tablet computers in the French
primary school setting. Although tablets are no longer widely considered a new
technology, the authors’ contribution extends ideas reported in the first edition of
the book, which concludes three axes (cognitive, pragmatic and temporal) through
which to consider teachers’ adoption of new technologies within their mathematics
classrooms (Abboud-Blanchard, 2014). Abboud-Blanchard and Vanderbrouck
introduce the additional constructs of fensions and proximities, which they argue
align more specifically to classroom uses of tablet computers. In their chapter, the
authors articulate how these two new constructs evolve from Activity Theory, and
elaborations of Vygotsky’s and Valsiner’s respective Zone Theories.

Sandoval and Trigueros’ chapter is also situated in a primary school setting, this
time in Mexico. They offer new perspectives on the teaching of mathematics in
primary schools, with an emphasis on how two teachers integrate digital technolo-
gies to particularly meet the needs of learners from challenging socio-economic
contexts. In common with their contribution to the first edition of the book (Trigueros
etal., 2014), they adopt an enactivist approach to characterise teachers’ actions and
the resulting student activities that reveal high levels of participation in immersive
environments for learners who are commonly disenfranchised by education systems.

We move from primary school contexts to the secondary phase in the next two
chapters, which both follow teachers over a period of time with the aim to identify
aspects of their evolving practices. The first, by Simsek, Bretscher, Clark-Wilson
and Hoyles, is situated in England and focuses on three in-service teachers’ evolv-
ing use of a dynamic mathematical technology (Cornerstone Maths) for the teach-
ing of geometric similarity to 11-14 year olds over a period of months. The chapter
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extends the understanding of Ruthven and colleagues’ notion of curriculum script,
which is one of the five Structuring Features of Classroom Practice that was
described and critiqued in the first edition of the book (Ruthven, 2014). Simsek and
colleagues’ chapter contributes a case example of such a curriculum script for the
teaching of a specific mathematics topic, highlighting aspects of more productive
teaching practices which are often difficult to notice.

Villareal’s chapter, in which she describes research in Argentina, follows a sec-
ondary school mathematics teacher from her pre-service teacher education pro-
gramme into her role as a novice in-service teacher. The research dually categorises
the teacher’s evolving relationships with technology, which adopts Goos’ taxonomy
of sophistication (master, servant, partner and extension of self (Goos, 2000), along-
side Ruthven’s five Structuring Features of Classroom Practice (Ruthven et al.,
2009). These two frameworks offer an interesting and novel perspective for cate-
gorising the evolution of teachers’ classroom practices that have implications for
the design of teacher education programmes and initiatives.

A university in Canada is the setting for the research reported by Buteau, Muller,
Santacruz Rodriguez, Mgombelo, Sacristan and Gueudet, which expands research
understanding on the long-term development for a faculty-wide integration of pro-
gramming technologies within undergraduate-level courses for both mathematics
students and future mathematics teachers. Situated in the same context as the earlier
study by Buteau and Muller (2014), the instrumental orchestration framework is
used to examine the 20-year trajectory of this integration from the perspective of the
faculty members. The authors’ analysis of the course instructors’ and selected stu-
dents’ schemes concludes an orchestration and genesis alignment model that high-
lights the complexities of the instructor’s role as both policy maker and teacher with
responsibility for orchestrating the students’ instrumental geneses.

The Covid-19 pandemic provides the context for the research study that features in
the chapter by Sanchez Aguilar, Esparza Puga and Lezama. Set in South America, the
authors conducted a survey (n = 179) across five Latin American Countries (Argentina,
Chile, Colombia, Mexico and Uruguay) that aimed to elicit teachers’ perceptions of
the abrupt integration of digital technologies into their practices, triggered by wide-
spread and mandatory school closures in the first six months of 2020. This was framed
within a methodology that aims to capture the lived experience of teachers by giving
them a voice to express the obstacles that they faced. The study captures the broad
range of technologies in play, extending beyond solely mathematical technologies
(i.e., calculators, dynamic geometry software or spreadsheets) to include more general
technologies such as videoconferencing software and learning management plat-
forms. The findings revealed six categories of obstacles that capture both what they
did and how they felt as they worked to overcome the challenges that they faced.

The penultimate two chapters of the book offer theoretical contributions.

In the first edition of the book, the chapter by Arzarello, Robutti, Sabena, Cusi,
Garuti, Malara and Martignone introduced a new theoretical model, Meta-Didactical
Transposition (MDT), which was developed to respond to the need to consider the
complexity of teacher education with respect to the institutions in which teaching
operates, alongside the relationships that teachers must have with these institutions
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(Arzarello et al., 2014). The original MDT model (now referred to as MDT.1), an
extension of Chevallard’s Anthropological Theory of Didactics (1985, 1992, 1999),
describes the evolution of teachers’ education over time by analysing the different
variables involved: components that change from external to internal (internalisa-
tion); brokers who support teachers interacting with them; and dialectic interactions
between the community of teachers and researchers. The chapter by Cusi, Robutti,
Panero, Taranto and Aldon presents an evolution of MDT, namely, Meta-Didactical
Transposition.2 (MDT.2), which offers a deeper insight into the process of inter-
nalisation that captures the way in which the actors within the teachers education
programme develop shared praxeologies over time through the introduction of the
external (and, in some cases digital) components.

The final chapter, by Sinclair, Haspekian, Robutti and Clark-Wilson, charts the
development of theories that frame research on teaching mathematics with technol-
ogy from both a historical perspective and an epistemological one. Building directly
on Ken Ruthven’s chapter in the first edition of this book, it aims to highlight the
evolution of the relevant theories since 2014 and highlights trends in the ways that
these have been operationalised in recent studies. Furthermore, the authors seek to
make explicit the philosophical roots of the commonly adopted theories to provoke
the reader to consider what each might reveal—or conceal—concerning aspects of
teaching mathematics with digital technologies.

Alison Clark-Wilson
Ornella Robutti
Nathalie Sinclair
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Content-Activity-Technology-Model (CAT-Model) that helps to capture in graphic
form the students’ learning processes when working with technology. This provides
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1 Introduction

Nowadays, in many high-income countries, the use of digital technology for teach-
ing and learning mathematics is well-established in the mathematics curriculum
(Clark-Wilson et al., 2020; Thurm et al., 2023). In addition to great progress in the
development of teaching ideas and theoretical lenses, research has highlighted the
important role of the teacher (Clark-Wilson et al.,, 2014; Thurm &
Barzel, 2020, 2021; Drijvers et al., 2010; Thurm et al., 2023). Teachers contribute
decisively to the extent to which the potential of technology is exploited in the class-
room. In light of this, PD programs are regarded as important for supporting teach-
ers to integrate technology in their mathematics classrooms in meaningful ways. PD
programs can help to equip teachers with the special knowledge they need for teach-
ing with technology (for example, pedagogical technological knowledge; Thomas
& Palmer, 2014) and to support them to manage the complex task of orchestrating
technology-enhanced mathematics classrooms (Thurm et al., 2023; Drijvers et al.,
2010). Focusing on the design of teacher PD programs, research has identified sev-
eral characteristics that constitute high-quality teacher PD (Ertmer & Ottenbreit-
Leftwich, 2010; Grugeon et al., 2010; Ratnayake et al., 2020; Thurm et al.,
2023; Thurm & Barzel, 2020). These characteristics (or design principles) include,
for example, a focus on teachers’ technological pedagogical content knowledge,
fostering reflection of technology use, and a focus on helping teachers to understand
(and notice) how students might benefit from learning mathematics with technology
(Clark-Wilson & Hoyles, 2019; Ertmer & Ottenbreit-Leftwich, 2010; Thurm &
Barzel, 2020). Furthermore, professionalising teachers should be case-related,
which means relating PD activities to practical aspects such as specific student out-
comes, video-cases or other representations of practice (ibid.).

However, designing high-quality PD programs alone is not enough to ensure a
high-quality PD experience for teachers. Just as the teacher’s role has been found to
be critical at the classroom level, so research has pointed out the importance of PD
facilitators at the PD level. Facilitators are responsible for the design, adapt, and
implement PD programs for teachers: “Facilitators play a crucial role when scaling
up continuous professional development (CPD). They have to design and conduct
programs to initiate the process of teachers’ professionalization” (Peters-Dasdemir
et al., 2020, p. 457). Yet, despite this important role, little is known about how to
professionalise facilitators (Lesseig et al., 2017; Peters-Dasdemir et al., 2020;
Prediger et al., 2019; Roesken-Winter et al., 2015; Thurm et al., 2023). In particular
more research is needed to identify appropriate design principles that guide the
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design of PD for facilitators and to investigate associated challenges (ibid). This
chapter makes a first step towards addressing this gap by focusing on teacher and
facilitator noticing as a key concept of their competencies (Lesseig et al., 2017,
Schueler & Roesken-Winter, 2018; Stahnke et al., 2016). Sherin, Russ, and
Colestock (2011b) define the concept of noticing as “professional vision in which
teachers selectively attend to events that take place and then draw on their existing
knowledge to interpret these noticed events” (Sherin, Russ, & Colestock, 2011b,
p- 80). Clearly, teacher noticing is highly relevant for teaching mathematics with
technology. Teachers will only use technology if they notice how technology
impacts positively on students’ learning. In addition, teachers noticing of students’
learning is a prerequisite to be able to scaffold students’ learning. Similarly, facilita-
tors noticing of teacher learning is also important. For example, facilitators need to
notice what teachers notice with respect to student learning in order to support
teachers in the PD program. In this paper we describe a video-case-based way to
foster teacher and facilitator noticing. The methodological basis for our design and
research endeavor is based on the Three-Tetrahedron-Model (3 T-Model) for
content-related PD research which highlights strategies for connecting class-
room level, teacher PD level and facilitator PD level (Prediger et al., 2019).

2 Theory

2.1 Teaching Mathematics with Multi-representational Tools

While the scope of available technologies has increased massively, commonly used
technology in the mathematics classroom are multi-representational-tools (MRT)
(also called “mathematics analysis software”; Pierce & Stacey, 2010) which com-
bine the capabilities of scientific calculators, function plotters, spreadsheets, statis-
tics and geometry applications, and computer algebra systems. In this chapter,
unless stated otherwise, the term “technology” is used to refer to such MRT. MRT
can support student learning by providing easy access to different forms of repre-
sentations, such as numerical and graphical representations and allowing dynamic
linking of different forms of representations (Drijvers et al., 2016; Heid & Blume,
2008). In particular, students can work simultaneously with the different mathemat-
ical representations and can explore relations between these. This is especially
important since research has highlighted that transforming, linking, and carrying
out translations between different mathematical representations is crucial for devel-
oping an understanding of mathematical concepts (Duval, 2006). In addition, the
easy access to different forms of representations can support more student-centered
teaching approaches such as discovery learning (Barzel & Moller, 2001; Pierce &
Stacey, 2010; Thurm, 2020). In the following we exemplify the affordances of MRT
with respect to a particular task, which is shown in Fig. 1. This task was used in the
research study as a basis to support teacher and facilitator noticing and we will refer
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If you multiply two linear functions with each other, you get a quadratic function.
Change the linear functions so that...

=T 7 * ...the opening of the parabola is reversed.
|| /nW=as| o the parabola touches the x-axis.
\ /o » ..the vertex of the parabola has the same x-
3 coordinate as the intersection point of the
. linear functions.
7N » Are there parabolas that can't be obtained by
Bl=f1(x)- 2(x) multiplying two linear functions?

Fig. 1 MRT-task adapted from Drijvers (1994)

to it as the “MRT-task” throughout the chapter. In the MRT-task students are
prompted to amend the two given linear functions in such a way that the product
function satisfies certain mathematical conditions. In addition, students are asked to
write a conjecture about the types of parabolas that cannot be obtained by multiply-
ing two linear functions. In this task, various affordances of MRT become apparent.
Firstly, the MRT can support students in generating many pairs of graphs of differ-
ent linear functions and the respective product functions. Without MRT students
would have to engage in the tedious and repetitive work of drawing many functions
by hand. This would take much time and would constrain learners from focusing
their attention on the relationships between the linear functions and the respec-
tive product function. Furthermore, MRT make it possible to dynamically change
the slope of the linear function, for example, by dragging. At the same time MRT
offer simultaneous access to the symbolic and graphical representations, which sup-
ports students observing and investigating the links between these two forms of
representation. To summarise, using MRT with this task allows students to explore,
test and discover mathematical relationships between linear and quadratic functions.

2.2 Facilitators

In the research literature many terms are used to describe the group of people who
initiate and lead processes to professionalise teachers, for example, “facilitators”,
“teacher trainers”, “multipliers”, “coaches”, “didacticians” and “teacher educators”
(Peters-Dasdemir et al., 2020). In this chapter we use the term “facilitator” which
highlights that the process of facilitating PD for teachers is rather a “give-and-take
than a one-sided teacher-pupil relationship” (Peters-Dasdemir et al., 2020, p. 457).

Research related to PD facilitators is an emerging field of study (Lesseig et al.,
2017; Poehler, 2020; Prediger et al., 2019; Thurm et al., 2023). In the last decade
pioneering research studies have focused on identifying the required skills and

knowledge for them to be effective (Borko et al., 2014; Elliott et al., 2009; Lesseig
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et al., 2017; Peters-Dasdemir et al., 2020). Clearly, facilitators require “competen-
cies about adult learning and the specific knowledge and needs of mathematics’
teachers, which are much broader than teachers’ competencies.” (Peters-Dasdemir
et al., 2020, p. 457). This is, for example, illustrated by the competency model for
facilitators developed by Peters-Dasdemir et al. (2020). The model conceptualises
facilitators’ knowledge as an extension of the knowledge needed for teaching and
it adapts the well-established specifications of content knowledge (CK), pedagogi-
cal knowledge (PK) and pedagogical content knowledge (PCK) from the classroom
level to the PD level. In particular, pedagogical content knowledge on the PD level
(PCK-PD) concerns the knowledge needed “fo engage teachers in purposeful activ-
ities and conversations about those mathematical concepts, relationships and to
help teachers gain a better understanding of how students are likely to approach
related tasks” (Jacobs et al., 2017, p. 3). Moreover, research has generated first
insights about the effective design of facilitators’ preparation programs (e.g., Kuzle
& Biehler, 2015; Lesseig et al., 2017; Roesken-Winter et al., 2015). For example,
Lesseig et al. (2017), propose a set of design principles, which include focusing on
teacher learning goals, providing opportunities for facilitators to expand their spe-
cialised content knowledge, and using video-cases as representations of practice to
generate in-depth discussion and reflection of facilitators’ practices and beliefs.
Despite these results “research on preparing and supporting facilitators of math-
ematics PD is still at a very early stage [...].” (Jacobs et al., 2017, p. 12), which
holds particularly true with respect to facilitators in the context of teaching mathe-
matics with technology (Thurm et al., 2023). This can be illustrated, for example,
by the fact, that neither the previous edition of this book (Clark-Wilson et al., 2014)
nor the ICMI study of Hoyles and Lagrange (2010), nor the ICME-13 monograph
on uses of technology in primary and secondary mathematics education (Ball et al.,
2018), nor the ICME-13 topical surveys by Drijvers et al. (2016) and Hegedus et al.
(2017), nor the last two proceedings of the International Conference on Technology
in Mathematics Teaching (ICTMT, Barzel et al., 2020; Aldon & Trgalovd, 2017),
nor the recently published ZDM special issue on teaching with technology (Clark-
Wilson et al., 2020), have contributions or sections particularly addressing PD for
facilitators. However, research activity in this field is slowly burgeoning. For exam-
ple, Psycharis and Kalogeria (2018) and the recent ICME2S5 proceedings (Borko &
Potari, 2020) provide some elements on this theme. Placing a greater focus on facil-
itators’ professional development is particularly important, since in many countries
facilitators are not required to complete any specific PD programme or accreditation
to prepare them to offer courses for teachers (Lesseig et al., 2017; Roesken-Winter
et al., 2015). Rather “formalized professional development opportunities for lead-
ers are exceptions rather than the norm” (Lesseig et al., 2017). In addition, profes-
sionalising facilitators in formal ways becomes increasingly important due to the
emergence of PD institutions such as the “National Centre for Excellence in the
Teaching of Mathematics” (NCETM) in England, the “National Center for
Mathematics Education” (NCM) in Sweden, the “Institut fiir Unterrichts- und
Schulentwicklung” (IUS) in Austria or the “German Centre for Mathematics
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Teacher Education” (DZLM) in Germany, which aim to provide high-quality PD on
a larger scale which brings to the forefront the question of how to professionalise
facilitators.

While it is clear that more research with respect to facilitators is needed, con-
ducting such research is not an easy endeavor. For example, Borko (2004) high-
lighted that facilitators, the PD program, the participating teachers and the context
are inevitably intertwined through interactive and reciprocal relationships. Recently
Prediger et al. (2019) have started to further unpack this complexity and proposed
the Three-Tetrahedron Model (3 T-Model) for PD research and design, which cap-
tures the complexity of learning and teaching at the classroom, teacher PD, and
facilitator PD level. This model will be explained in detail in the next section.

2.3 The Three-Tetrahedron Model for Design
and Research on PD

The Three-Tetrahedron Model (3 T-Model) of Prediger et al. (2019) provides a
framework for the design of and research on teacher and facilitator PD programs. Its
goal is to capture “the complexity of learning and teaching at the classroom, teacher,
and facilitator level that is needed to inform design and research into PD” (Prediger
etal., 2019, p. 407). Extending the idea of the commonplace didactic triangle, which
relates teachers, learners and the content to be learned, the 3 T-Model takes the
format of a series of tetrahedrons which are considered at the classroom, teacher PD
and facilitator PD levels (see Fig. 2). The classroom level tetrahedron comprises

Facilitator educators

Facilitator PO *T—F————

resources Facilitators
&

Facilitator PD
content
Teacher PD level

Teacher PD
o, .

resources
\ / Teachers

Teacher PD
content

L]
Classroom level /
Classroom .

resources \ /

Classroom ®
mathematical content

e Students

Fig. 2 The three-Tetrahedron Model (3 T-Model) for content-related PD research (Prediger
et al., 2019)
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relations between students, content, classroom resources and the teacher. This struc-
ture can now be transferred to the teacher PD level. Here the teacher takes the posi-
tion of the learner and the facilitator takes the role of the teacher. At the teacher PD
level (TPD), learning is supported by teacher PD resources and the content on the
classroom level is replaced by the teacher PD content. Finally, this structure can also
be transferred to the facilitator PD level (FPD). This model has been used in a vari-
ety of contexts. For example, it has been used to investigate facilitators’ practices
(Leufer et al., 2019), for describing implementation strategies on different levels
(Roesken-Winter et al., 2021) and to gain insights about effective strategies for sup-
porting PD facilitators to incorporate content and skills introduced in facilitator PD
sessions into their own practice (Borko et al., 2021).

Prediger et al. (2019) describe three general strategies (lifting, nesting, unpack-
ing) for design and research on PD which take into account the multi-level structure
of PD displayed in Fig. 2. In the following we elaborate on the lifting and nesting
strategy which we used in the design and research that we report here.

The lifting strategy (Fig. 3, left) comprises lifting design and research approaches
from one level to the next. For example, lifting a design approach “means that
design principles or design elements developed for the classroom level are implic-
itly or explicitly transferred (and adapted) to the TPD level (or from the TPD to
FPD level)” (Prediger et al., 2019, p. 412). Similarly, lifting a research practice
entails that research questions and/or methods from the classroom level “are implic-
itly or explicitly transferred (and adapted) to the TPD level (or from the TPD to
FPD level) and applied in an analogous way.” (Prediger et al., 2019, p. 413). For
example, design approaches that employ video-case-based learning to support
teacher noticing of student learning can be lifted from the teacher PD level to the
facilitator PD level, to support facilitator noticing of teacher learning. A further

¢ e —
.\.1'/. .\;/;———:-—_..___

— N\ _—

1 1 [\
/1 \ X[\
\\\ .ff !r \.

Fig.3 Lifting strategy (left) and nesting strategy (right) in the Three-Tetrahedron Model (Prediger
etal., 2019)
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example would be, if research approaches for investigating students’ thinking and
learning pathways are lifted to the teacher PD level by investigating teachers’ think-
ing and teacher learning pathways.

The nesting strategy (Fig. 3, right) accounts for the fact that teacher PD content
is usually more complex than classroom content, and that facilitator PD content is
usually more complex than teacher PD content (Prediger et al., 2019). Therefore,
the nesting strategy considers that aspects of the complete classroom tetrahedron
should be nested in the teacher PD content and that aspects of the complete teacher
PD tetrahedron should be nested in the facilitator PD content. Hence the nesting
strategy “builds the PD design upon the idea of structuring the TPD/FPD content
in a self-similar nested structure, taking into account the complexities of the tetra-
hedrons below.” (Prediger et al., 2019, p. 413).

In our research project the 3 T-Model was used to guide the design of the PD
activities and to situate the different aspects of our project along the different levels
of professional learning, while accounting for the complexity resulting from the
inherent connections between the different levels. However, while the 3 T-Model is
well suited to provide a macro-view on design and research for PD it is often helpful
to combine the use of the 3 T-Model with other additional models. For example,
Borko et al. (2021) integrate the Learning to Lead Cycle with the 3 T-Model in order
to facilitate research about the leadership capacity of experienced teachers.

2.4 Teacher Noticing and Video-Case-Based-Learning

In our research endeavor we used the 3 T-Model to design a PD activity that focused
on teacher and facilitator noticing, a construct which we now explain in more detail.
Teacher noticing builds on the notion of professional vision which was introduced
by Goodwin (1994) as “socially organized ways of seeing and understanding events
that are answerable to the distinctive interests of a particular social group”
(Goodwin, 1994, p. 606). In line with the conceptualisation of Sherin (2007) we
understand noticing to be both the perception of aspects in teaching situations that
are relevant for teaching quality (selective attention) and the interpretation of these
aspects based on appropriate professional knowledge (knowledge-based reasoning).
Clearly, if teachers observe a classroom situation they might attend to very different
aspects and interpret these in different ways. In particular teacher noticing is impor-
tant for paying attention to, and interpreting students’ mathematical thinking, and to
recognise developing mathematical understanding of students (Sherin, Jacobs, &
Philipp, 2011a, p. 3). This is particularly true since “effective instruction requires
teachers to notice, pay attention to, and respond to students’ ideas” (Beattie et al.,
2017, p. 323; Kilic, 2018). However, noticing is not only crucial for teachers but
also for PD facilitators (Lesseig et al., 2017). Facilitator noticing with respect to
teachers’ learning is important in order to facilitate robust opportunities for teach-
ers’ learning, for example, by appropriate facilitation moves (Lesseig et al., 2017;
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Schueler & Roesken-Winter, 2018). In literature, different levels of noticing have
been described, which capture the depth of noticing starting from general noticing
to more specific noticing (Lee & Choy, 2017; van Es, 2011). General noticing
focuses, for example, on superficial features that are not directly associated with
students learning (classroom level) or teacher learning (teacher PD level) and results
in a very general impression of what has occurred. In contrast, specific noticing
focuses on relationships between content, teachers, classroom resources and details
of student or teacher learning and thinking. Furthermore, specific noticing com-
prises specificity in recalling details, supporting statements with evidence and pro-
viding explanations (van Es, 2011). In this study we use an adapted framework
based on the work of van Es (2011), who proposed a model that distinguishes
between four levels of noticing, where teachers increasingly attend to more details
of students’ mathematical thinking (see Table 1).

Given the high importance of teacher and facilitator noticing, the question arises
how to support their noticing competencies. In this respect, research has highlighted
the potential of the use of video-cases because they can capture the high complexity
inherent in classroom teaching or PD without requiring immediate actions, as in a
real classroom or PD situation (Koc et al., 2009; Lesseig et al., 2017; Schueler &

Table 1 Framework for levels of noticing adapted from van Es (2011, p. 139)

Level What teachers notice How teachers notice
Level 1 Attend to generic aspects of teaching and | Provide general descriptive or
Baseline learning, e.g., seating arrangement, student | evaluative comments with little or no
Noticing behavior, etc. evidence from observations
Level 2 Begin to attend to particular instances of | Form general impressions and
Mixed students’ mathematical thinking and highlight noteworthy events or details
Noticing behaviors Provide primarily evaluative with
some interpretive comments
Begin to refer to specific events and
interactions as evidence
Level 3 Attend to particular students’ Provide interpretive comments
Focused mathematical thinking Refer to specific students’ difficulties,
Noticing events and interactions as evidence
Elaborate on specific students’
difficulties, events and interactions
Level 4 Attend to the relations between particular | Provide interpretive comments
Extended | students’ mathematical thinking, Refer to specific events and
Noticing technology use and mathematical interactions as evidence
activities. Elaborate on specific events, and
interactions
Make connections between events
and principles of teaching and
learning
On the basis of interpretations,
propose alternative pedagogical
solutions
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Roesken-Winter, 2018; Sherin, 2007): “While video captures much of the richness
of the classroom environment, it does not require an immediate response from a
teacher and can instead promote sustained teacher reflection (Sherin, 2004).
Moreover, because video provides a permanent record of classroom interactions, it
can be viewed repeatedly and with different lenses in mind, promoting new ways for
teachers to ‘see’ what is taking place.” (Sherin & Russ, 2015, p. 3). Hence, video-
cases allow a case-related approach to PD, where PD activities are centered around
authentic representations of practice, which is regarded as an important design prin-
ciple for PD for teachers as well as for facilitators (Kuzle & Biehler, 2015; Roesken-
Winter et al., 2015). However, video-cases are not by themselves sufficient to foster
teacher and facilitator noticing: “[...] using cases alone does not ensure learning,
[...] adequate instructional support is needed” (Goeze et al., 2014, p. 97; Kirschner
et al., 2006). Video-cases have to be carefully embedded in PD programs. Research
findings suggest that it is helpful if video-cases are combined with appropriate
prompts that set a focus in order to guide teacher or facilitator noticing (Lesseig
et al., 2017).

Noticing with Respect to Learning Mathematics with Technology

A nuanced and specific type of noticing is important for teaching with technology.
Learning mathematics with technology comprises a subtle interplay between the
mathematics, the technology and the learner (Trouche & Drijvers, 2010) and teach-
ers will only integrate technology into their teaching in the long term, if they notice
this subtle interplay and the potential of learning mathematics with technology.
Furthermore, discovery learning tasks, such as the MRT-task introduced earlier
(Fig. 1), require teachers to notice different ideas and individual approaches of
learners, in order to adequately guide their learning. Moreover, the specific noticing
of students’ mathematical learning when working with technology is a prerequisite
for offering adequate support for students, for example, by providing prompts, hints
or questions during the teaching process (Sherman, 2012). For facilitators, specific
noticing is not only needed with respect to student learning but also with respect to
teacher learning. In particular, facilitators must support teachers to develop deep
noticing of relevant aspects of teaching and learning mathematics with technology.
For this, facilitators need to elaborately notice what teachers notice with respect to
learning mathematics with technology.

A theoretical approach to describe the subtle processes of learning mathematics
with technology is the theory of instrumental genesis (Guin & Trouche, 1999).
Instrumental genesis describes the process of an artefact (e.g., a specific technol-
ogy) becoming an instrument for doing and learning mathematics. However, the
theory of instrumental genesis is an explanatory theory. It is not geared towards
suggesting how to develop approaches to foster teacher noticing related to teaching
mathematics with technology. In particular, the framework does not help to illumi-
nate learning pathways or make the interplay of technology and the learning of
mathematics easily accessible for teachers or PD facilitators. Therefore, we devel-
oped a framework that builds on the instrumental approach, but is explicitly suitable
to analyze, depict and notice learning pathways when learning mathematics with
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technology within both teacher and facilitator PD programs. Our framework builds
on that of Prediger (2019), which was developed in the context of analysing and
describing learning pathways with respect to language responsive teaching. The
model of Prediger (2019) highlights different categories for teachers’ thinking and
noticing (content goals, learners discourse practices, lexical means) and their inter-
play and distinctions. We adapted this framework in order to highlight connections
between content goals, mathematical activities and technology use. The resulting
Content-Activity-Technology-Model (CAT-Model) is depicted in Fig. 4.

Content goals refer to normative content goals that can be inferred from stu-
dents’ behavior. These content goals are often distinguished as conceptual and pro-
cedural knowledge, both regarded as an integral part of mathematical competence:
“Mathematical competence rests on developing both conceptual and procedural
knowledge.” (Rittle-Johnson et al., 2015, p. 594). In the CAT-Model we acknowl-
edge that conceptual and procedural knowledge cannot always be separated (Rittle-
Johnson & Schneider, 2015) by conceptualising content goals on a continuum
ranging from procedural knowledge to conceptual knowledge. The achieved con-
tent goals inferred from student’s behavior in a specific situation might not neces-
sarily reflect the anticipated or intended content goal. For example, students working
on the MRT-task (Fig. 1) might not display any behavior that is indicative of con-
ceptual knowledge even though the goal of the task is to activate and promote this
type of knowledge.

Mathematical activities, refer to observable actions that allow inferences about
the cognitive processes. These activities can be located on a continuum reflecting
different levels of engagement (Anderson & Krathwohl, 2001; Biggs, 2003).
Procedural activities relate to lower order activities, for example, if students mainly
communicate on a phenomenological level, if students talk about what they are
doing, or what they observe. Conceptual activities refer to higher order activities
like students trying to explain mathematical concepts (where explanations do not
necessarily have to be correct), argue about mathematical concepts, or formulate an
hypothesis. Again, students might not display procedural or conceptual activities

Learning mathematics with technology

Mathematical

Content Goals — ' +—————  Technology use
Activities
Procedural knowledge Procedural activities Undirected use
Conceptual knowledge Conceptual activities Directed use

Fig. 4 The categories of the CAT-Model, their interplay («) and distinctions ()
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even though the task or context was intended to do so. In addition, an activity/a task
might provoke unintended mathematical activities.

Technology use is differentiated as undirected and directed use. Undirected use
refers to students using the technology without a specific purpose, for example, if
students apply an undirected trial and error approach or randomly drag a parameter
slider. In contrast, directed use of technology refers to students deliberately using
technology in their learning. This comprises, for example, the use of technology to
test hypotheses or to systematically vary parameters to explore mathematical rela-
tionships. Hence directed and undirected use echoes a similar use of technology
identified by Arzarello et al. (2002) with respect to dragging practices in a dynami-
cal geometry environment.

We want to stress that the categories of the CAT-Model (Fig. 4) reflect a contin-
uum (e.g., from procedural to conceptual knowledge or from procedural to concep-
tual activities). For example, a mathematical activity might not clearly be either a
procedural activity (e.g., calculating a sum) or a conceptual activity (e.g., explaining
a concept) but could also be an amalgam of both types of activities located some-
where in-between the two endpoints of the continuum.

The CAT-Model will be used in this paper for two purposes. On the one hand we
use the CAT-Model to analyse and describe the learning pathways of a pair of stu-
dents working with the MRT-task to show how the pair of students’ progress from
unaimed use through mathematical activities to conceptual understanding (Fig. 7).
On the other hand, we use the CAT-Model to analyse what aspects (content goals,
mathematical activities, technology use) teachers notice when they observe students
working with the MRT-task.

3 Research Questions and Methodology

The outlined theoretical framework enables us to clarify the goals and questions that
were informally presented in the introduction. In our study we focus on the constructs
of teacher and facilitator noticing with respect to teaching mathematics with technol-
ogy. The goal of our work was to develop video-case-based activities for teacher PD
and facilitator PD that fosters teacher and facilitator noticing and explicitly take into
account the connections between the classroom, teacher PD and facilitator PD levels.
For design and research across the levels we used the 3 T-Model and the nesting and
lifting strategy (see Sect. 2.3). We began the design at the classroom level and subse-
quently extended it to the teacher PD and facilitator PD level. In the following we
detail the considerations regarding design and methodology and outline research
questions and goals that were the focus at teacher PD and facilitator PD level. The
complete design process and implementation of the teacher PD and facilitator PD
program was situated within the German Center for Mathematics Teacher Education
(DZLM), which is a nationwide university-based institute for developing and imple-
menting high-quality PD for teachers and facilitators while attending to state-of-the-
art design principles identified in the literature (e.g., Goldsmith et al., 2014).
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Classroom Level

At the classroom level, we set out to identify a suitable video-case of students work-
ing with the MRT-task (Fig. 1). For this, six pairs of students were videod when
solving the MRT-task (see Sect. 2.1, Fig. 1). Using the CAT-Model described in
Sect. 2.4 (Fig. 4) we identified a student-video-case in which students proceed from
unaimed use of technology to conceptual understanding. Details are outlined in
Sect. 4.1.

Teacher PD Level

Design: At the teacher PD level our goal was to support teacher noticing with respect
to students’ learning processes when working with MRT. For this the classroom
level tetrahedron consisting of students, classroom content (relationships between
linear and quadratic functions) and classroom resources (MRT, MRT-Task) became
the content of the teacher PD program (teaching with MRT, see Fig. 2). In the
teacher PD program teachers first solved the MRT-task individually. Subsequently
teachers watched the student-video-case (recorded at the classroom level, see above)
and analysed it with respect to the learning processes of the students. Afterwards, a
whole group discussion was held (moderated by a PD facilitator) to discuss what the
teachers had noticed in the video-case. Details are outlined in Sect. 4.2. We video-
graphed the whole group discussion and analysed it with respect to the following
research questions (Details are outlined in Sect. 4.2):

Research questions:

*  What do teachers notice in the student-video-case?
* What challenges can be identified on the teacher PD level?

Facilitator PD Level

Design: At the facilitator PD level the goal was to enable facilitators to support
teacher noticing with respect to teaching mathematics with technology. For this the
TPD level, which consists of teachers, teacher PD content (teaching with MRT) and
teacher PD resources (MRT-task, MRT, student-video-case), became the content of
the facilitator PD program (facilitating teaching with PD, see Fig. 2). In the facilita-
tor PD program facilitators first solved the MRT-task individually and subsequently
watched the student-video-case and analyzed it with respect to the learning pro-
cesses that they notice. Afterwards a whole group discussion was held to discuss the
what the facilitators had noticed. Hence, up to this point, the facilitators PD activi-
ties were identical to the activities of the teachers at the teacher PD level. Facilitators
were then split up in groups of 4-5 persons and analyzed the teacher-video-case,
which consisted of the teachers whole group discussion recorded at the teacher PD
level (see above), with respect to what teachers had noticed. We recorded the facili-
tators during their small group discussions and analyzed the recordings with respect
to the following research questions (Details are outlined in Sect. 4.3):

Research questions:

e What do facilitators notice in the teacher-video-case?
* What challenges can be identified on the facilitator PD level?



14 D. Thurm et al.

Facilitator educators

MRT, MRT-Task, student-video- Facilitator PD " T FT———
case, teacher-video-case resources Facilitators

Facilitating teaching with MRT | Facilitator PD

content
Teacher PD level
student-video-case | resources /

Teaching with MRT Teacher PD &Y
content

/ \
MRT, Classroom - )

Teachers

MRT-Task | resources

Relationships between linear & Classroom.(:ontent
quadratic functions

Fig. 5 Nesting of PD content in the 3 T-Model across the different levels

Lifting and Nesting Across Classroom, Teacher PD and Facilitator PD Level
Figure 5 gives an overview of the nested design. Aspects of the lower level tetrahe-
drons are nested as content within the higher level tetrahedrons. With respect to
lifting, several design and research approaches are lifted. On one hand, solving the
MRT-task was lifted from classroom level to both the teacher and facilitator PD
level. In addition, the use of video-cases as means to support teacher noticing was
lifted from the teacher to the facilitator PD level. In addition, the CAT-Model was
lifted as a tool to support data analysis from the classroom level to teacher PD level.
Moreover, the learning goals and the research question were lifted from the teacher
to the facilitator PD level:

Learning Goals:

e Classroom Level: Support students to discover connections between linear and
quadratic functions using MRT.

e Teacher PD level: Support teacher noticing with respect to the learning processes
of students when working with MRT.

 Facilitator PD level: Support facilitators to be able to notice and support the notic-
ing of teachers.

Participants and the PD Context

The teacher PD program was conducted in the German federal state “Schleswig-
Holstein”. The PD program comprised of eight one-day modules over a period of 18
months. Four of the modules were taught face-to-face and the remaining four were
taught online. The PD program focused on supporting teaching mathematics with
technology. Each module addressed a different type of technology (e.g., MRT,
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videos, apps, audience response systems, learning management systems). Practical
try-outs and reflection phases followed each module (a so-called “sandwich-model”,
Roesken-Winter et al. (2015)). In total 23 teachers from lower and upper secondary
school participated in the PD program. In this paper we draw on data from the first
module (taught face-to-face) which focused on teaching mathematics with MRT.

The facilitator PD program took place in the federal state of Hamburg. The pro-
gram spanned approximately 1 year and was taught entirely online due to the
COVID-pandemic. The program comprised three whole-day-sessions and approxi-
mately 1 week after each whole-day-session, an additional 2-h-session. In total 30
facilitators participated in the PD program. In this paper we draw on data from the
first module that focused on supporting facilitators to conduct high-quality PD ses-
sions for teaching mathematics with MRT. In this session the facilitators were first
taught about basic design principles for high-quality PD programs (Roesken-Winter
et al., 2015) and fundamentals about basic dimensions of high-quality teaching
(Praetorius et al., 2017). Afterwards the facilitators engaged in several activities that
centered around the video-case as described in Sect. 4.3.

Both the teacher and facilitator PD program were designed and delivered by the
German Center for Mathematics Teacher Education (DZLM).

4 Research-Based Design of the Video-Case-Based
Activity and Related Findings

In this section we detail the design and research process outlined in the previous
section and provide the results of the analysis conducted at each level. The section
first addresses the classroom level in Sect. 4.1 and continues with the teacher and
facilitator PD level in Sects. 4.2 and 4.3.

4.1 Classroom Level

Six pairs of students were videorecorded when working on the MRT-task. Based on
these recordings we set out to identify an excerpt of the videos to be used in the
teacher and facilitator PD program that was not too long (less than 5 min) (Krammer
et al., 2008) and had a clear focus on mathematical learning of the students. This
meant that the student-video-case should show a noticeable learning process related
to the mathematics under focus. In an initial screening of the recordings, a set of
potentially suitable video-cases were identified. Expert ratings were then used to
evaluate the potential of these video-cases for the use in PD programs. In particular
interviews were conducted with experts in relation to what they notice about the
interplay of student learning and technology use. Two video-cases that fitted best
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were subsequently analyzed in depth using the CAT-Model (see Fig. 4). As an often-
voiced apprehension of teachers is that technology use in the mathematics class-
room does not go beyond undirected use (Mackey, 1999; Thurm, 2017; Thurm &
Barzel, 2020), we selected a video-case that showed how students had progressed
from undirected use to that which concerned conceptual knowledge. In the follow-
ing we give a description of the learning pathway of the students that featured in this
video-case, which is also depicted in Fig. 7 through the lens of the CAT-Model.

Student-Video-Case of Lara and Rose
The video-case shows two students, named Lara and Rose, working on the first part
of the MRT-Task (see Fig. 1, first bullet). They begin by using the MRT’s drag mode
to change the slope of the linear function fl. They start to randomly change the
slope, and by this they manage to invert the opening of the parabola, however they
did not notice this as the MRT viewing window only shows a part of the graph. They
only see a part of the inverted parabola that looks similar to a slightly curved line
(see Fig. 6, left). Next, they start to change the slope of the function f2 using the
drag mode. Finally, they try to adjust the viewing window to get a better view, but
they do not manage to achieve this. They return to the starting situation by changing
the parameters back to the original values. Subsequently they develop the hypothe-
sis that the two linear functions have to be mirrored by the x-axis, so that the result-
ing parabola is also mirrored at the x-axis. They start to enter two new functions f4
and f5 which are the mirrored functions of f1 and f2. Then they enter a new function
f6 = f4.f5. Now they realise that their function f5 is the same as the function
f3 =f1.f2 (see Fig. 6, right). They are surprised and suddenly realise the reason for
this. They argue algebraically that if they multiply both functions by (—1) the result
is positive. The video-case has an open ending in which the students propose a new
idea. They hypothesise that mirroring the two linear functions at the first bisector
will lead to an inverted parabola.

Although the students do not find a solution to the original problem (to reverse
the opening of the parabola) during this video-case, the sequence shows the learning
process begins with an undirected use of technology, followed by setting up an

fAlx)=2: x4

| +
Bix)=—-1+3 _
R2{g=—:x-3

3 (x)=f1(x) f2lx)

Fig. 6 Screenshots of Lara and Rose’s screen when working with the MRT-task
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Learning mathematics with technology

Mathematical
Content Goals — - Technology use
Activities /) Lara: Ok so, we can move them,
W the things, right?
@ I'imP:_)what. how, what do yt:u Rose: Yes, they have to
want? Can you rotate them? Lara: We can see after trying.

Procedural knowledge Procedural activities — Undirected use

Fose: We have to change it
in a way, so that itis

?
completely turned around? Lara: Mow, ok (...} but there it
only changes, stretches itself
Lara: Yes, probably they and [..} [...] moves.

both have to have a
negative slope, or not?

@ Conceptual knowledge | Conceptual activities @l Directed use

Lara: Mhm (85) it"s the same now Lara: Then let’s do new functions now,

Rose: | don't -+ Rose: | see, yes ok, then, | would have thought (..}

Lara: Right? minus two x, what was it then, plus four, right? [...]
Rose: Yes, why? Rose: Yes, good, is correct, like | thought. | just don't
Lara: Because it is with the sign, | think uhm know if it will work now. Then uhm it would be minus a
Rose: | see. half now uhm let's see if it reacts now, yes, minus a half
Lara: Because we have to turn around everything, you know? ® plus three, correct?

Rose: Yes, because then it is positive again.

Fig. 7 Learning pathway of Lara and Rose analyzed with the CAT-Model

hypothesis with is subsequently falsified while gaining conceptual insights. This is
an example of a process of student instrumental genesis as an interplay between
mathematical activities, the use of technology and mathematical thinking. Therefore,
it offers the potential to be used in order to specify, capture and reflect on teacher
noticing.

4.2 Teacher PD Level

The student-video-case is an authentic case, which shows how even an initially
unaimed use of technology can lead to the development of conceptual knowledge.
However, to use any student-video-case in teacher PD programs, the design of
prompts that can guide teacher noticing is crucial (see Sect. 2.4).
Therefore, crafted suitable discussion prompts to support the student-video-case.
The preliminary work of Ebers (2020b) has shown that discussion prompt such as
“Discuss the scene with respect to the interaction between cognitive activation of
the students and using the MRT.” is too general and can be further enhanced by
more detailed prompts. Therefore, we explicitly focused the discussion prompts in
the following way:

Discuss the scene with respect to the interaction between cognitive activation of the stu-
dents and using the MRT. The following question might help you:

1. What are the solution approaches of the students? Do they reflect or alter their thinking?
Which visual prompts do you notice that result from students interacting with the MRT?
Which prompts are used and which prompts are not used by the students? What are pos-
sible reasons for not using?

3. Which obstacles do you notice?
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In the teacher PD program, the teachers first solved the MRT task on their own and
subsequently analysed the student-video-case in small groups. After finishing the
small group work, a whole group discussion, which was moderated by a PD facilita-
tor, was held to summarise the teachers’ findings. The whole group discussion had
a duration of 6:45 min. In total 7 statements were made by 6 teachers. Two state-
ments that were made by the same teacher were subsequently grouped together as
one unit of analysis. We transcribed the group discussion and analyzed the state-
ments of the teachers according to levels and categories of noticing. Levels of notic-
ing were analyzed using the adapted framework based on the work of van Es (2011)
(see Sect. 2.4). Categories of noticing (capturing what teachers focused on) were
analyzed using the CAT-Model described in Sect. 2.4 (Fig. 4). The analysis of the
statements was carried out by 10 mathematics education researchers. At first the
researchers individually coded each teacher statement. Afterwards the researchers
paired up to discuss differences in their coding. However, there was mostly agree-
ment among the raters. Each pair of researchers then generated a joint coding of the
video-case. The resulting coding were then checked for differences and combined
to produce a joint coding.

With respect to levels of noticing, the analysis revealed that teachers showed
quite different levels of noticing (see Table 2). Three teachers showed baseline
noticing (level 1). With respect to categories of noticing two of these teachers
focused only on the undirected use of technology while one teacher focused very
generally on mathematical activities without paying attention to particular aspects.
One teacher showed mixed noticing (level 2). This teacher started to attend to par-
ticular aspects of the students’ learning but focused strongly on the part where stu-
dents did not manage to change the viewing window. Finally, two teachers showed
focused noticing (level 3). Table 2 gives examples of the results for four of the
teachers.

4.3 Facilitator PD Level

At the facilitator PD level, we used the teacher-video-case (i.e., the group discussion
that was recorded at the teacher PD level, see Sect. 4.2) as means to support facilita-
tor noticing. Clearly facilitators need to be able to notice and deal with the previ-
ously identified heterogenity of levels and categories of teacher noticing. In order to
focus facilitator noticing when working with the teacher-video-case we generated
specific prompts. An important distinction between the student-video-case and the
teacher-video-case is that the student-video-case did not show the teacher, but the
teacher-video-case shows the actions of the facilitator that moderates the group dis-
cussion of the teachers. Hence the teacher-video-case can be used in two ways. On
one hand the teacher-video-case can be used to support the noticing of facilitators
with respect to the different levels and categories of teacher noticing in the video.
On the other hand, the teacher-video-case can also be used to help facilitators anal-
yse the facilitator moves and how these moves support or hinder teacher learning
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(Schueler & Roesken-Winter, 2018). Therefore, we deliberately distinguished the
prompts for the facilitators in two parts. The first discussion prompt asked facilita-
tors to pay attention to the teachers in the teacher-video-case. The second discussion
prompt asked facilitators to pay attention to the facilitator in the
teacher-video-case.

In the facilitator PD program, the facilitators first solved the MRT task on their
own and then analysed the student-video-case of Lara and Rose in the same way as
the teachers within the PD level. In the next PD meeting, which was one week later,
the facilitators worked in small groups and analysed the teacher-video-case with
respect to the two discussion prompts. Two small group discussions of the facilita-
tors were transcribed. Each of the facilitators’ statements was coded by using focus
codes and stance codes following Sherin and van Es (2009) and Lesseig et al. (2017).

Focus Codes

Focus codes captured the facilitators’ attentions when watching the teacher-video-
case. For this we extended the categories of Sherin and van Es (2009) and Lesseig
et al. (2017) to account for the nested structure of our PD design. While Sherin and
van Es (2009) distinguish between “student”, “teacher” and “other” as possible foci
with respect to student-video-cases, Lesseig et al. (2017) distinguished between
“video-case teachers” “video-case facilitators” and generic codes like “PD in gen-
eral” or “Self”. Since our design has a nested structure, we structured the focus
codes according to the TPD and classroom levels. Table 3 gives an overview of the
focus codes used to code the teacher-video-case. Each of the facilitators’ state-
ments was rated with one main-focus-code, which captured what the facilitators
mainly focused on in a statement. In addition, each statement could have multiple
sub-focus-codes which captured which aspects facilitators made connections to in
their statement.

Stance Codes

Following Lesseig et al. (2017), stance codes captured whether facilitators
described, approved, disapproved, interpreted, speculated (framed comments as
wonderings rather than declarative statements) or extended (considered other set-
tings or alternatives).

The coding of the transcripts was carried out by two of the authors. First, the
researchers individually coded each transcript. Then, they worked in pairs to discuss
differences in their coding. Table 4 shows how often each focus-code was a main-
focus, or a sub-focus of the facilitators’ discussion. Table 5 shows the distribution of

Table 3 Overview of focus codes

Teacher PD level focus Classroom level focus Generic focus

Focus on the teachers Focus on the task Students in general

Focus on the facilitator Focus on the students Teachers in general
Focus on the technology Facilitators in general

PD in general
Technology in general
Self
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Table 5 Distribution of stance codes

Describe Approve Disapprove Interpret Speculate Extend
12 8 8 11 5 9

stance codes across all statements. Clearly, facilitators most of the times focused on
the teacher-video-case facilitator, while they rarely focused on the teacher-video-
case teachers or on aspects of the classroom level. With respect to the sub-focus,
facilitators most often referred to teacher-video-case teachers in their statements.
The distribution of stance codes reveals that facilitators often described (29%) and
evaluated (28%), while interpreting (19%), speculating (8%) and extending (16%)
occurred less often. Since interpreting and imagining alternatives are indicators of
more productive noticing compared to simply describing or evaluating (approving,
disapproving) (Lesseig et al., 2017) it can be concluded that facilitators’ noticing
could be further improved.

As mentioned, the facilitators put their main focus on the teacher PD level, in
particular on the facilitator who led the teacher-PD-discussion. In order to better
understand the topics of the facilitators’ discussions, we briefly summarise this for
the two most frequently addressed main-focus-codes, namely, teacher-video-case
facilitator and teacher-video-case teachers.

Discussion focused on Teacher-Video-Case Facilitator

In the teacher-video-case the facilitator leading the discussion makes two state-
ments during the whole video-case. These statements were both made in response
to statements made by the teachers that criticised the unaimed technology use by the
students in the student-video-case (level 1 teacher noticing, see Sect. 4.2). The
teacher-video-case began with a teacher heavily criticising the unaimed technology
use, to which the teacher-video-case facilitator replies: “I would like to discuss this.
To say it carefully that is not completely my opinion. It is a big fear that one can
have and we can discuss this a bit”. This is followed by other teacher-video-case
teachers replying with higher-level noticing comments (level 2 and 3, see Sect.
4.2) before another teacher supports the critique concerning the unaimed technol-
ogy use of the students. This leads to the following reaction of the teacher-video-
case facilitator: “But they didn’t just push around, we have heard this from different
sides now”. Facilitators in the PD program heavily discussed whether this interven-
tion of the teacher-video-case facilitator was appropriate or not. Some facilitators
argued that a facilitator should generally not judge in this way. Others highlighted
explicitly the necessity of such judgements: “If the first comment is already so dev-
astating, it could then escalate and then it becomes difficult to get it [the discus-
sion] back and she [the facilitator] gets out of this situation right away.”

Discussion focused on Teacher-Video-Case Teachers

During the limited times where the teacher-video-case teachers were the main
focus for teacher noticing, facilitators in the PD program mostly described state-
ments of the teachers and superficially related them to the student-video-case-
students and student-video-case technology use. Sometimes there was an evaluation
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of the teacher-video-case teachers’ statements, but this did not lead to a deeper
discussion among the facilitators.

5 Discussion

In this paper we set out to design a research-based PD activity for teachers and
facilitators in a way that accounts for and takes advantage of the connections
between the classroom, teacher PD and facilitator PD levels. In the following we
discuss the main findings across these three levels.

Classroom and Teacher PD Level

The developed CAT-Model proved very suitable for identifying potential student-
video-cases to be used in the teacher and facilitator PD program. In addition, the
CAT-Model served as a helpful lens through which teacher noticing could be anal-
ysed. The analysis of teacher noticing showed that the student-video-case was well
suited to distinguish the different levels and categories. Crucial to this was the
student-video-case which showed a complex learning pathway for a pair of students
that moved from unaimed use across different levels of mathematical activities to
directed use and conceptual understanding. Furthermore we hypothesise that the
high heterogeneity of noticing that was found at the teacher PD level is likely to
occur frequently in PD programs for teaching mathematics with technology and
provides a challenge for PD facilitators. Facilitators must be aware of this possible
heterogeneity and the results displayed in Table 2 illustrate the many different levels
and categories of teacher noticing. These could be integrated into the design of
future facilitator PD programs to inform facilitators about the different starting
points of teachers with respect to noticing. In addition, the heterogeneity of teacher
noticing shows that even focused discussion prompts do not necessarily trigger all
teachers to notice students learning on a deeper level. We doubt that further refine-
ment of the discussion prompts will substantially enhance the depth of teachers
noticing. Rather we hypothesise that teachers need more specific tools to scaffold
their noticing. One such way could be to ask teachers to analyse the student-video-case
using the CAT-Model. If the categories of the model are explained beforehand,
teachers could be invited to reconstruct the learning pathways of the students using
the CAT-Model.

Facilitator PD Level

At the facilitator PD level our analysis revealed that facilitator noticing centered
mainly on the facilitation moves of the teacher-video-case facilitator. We did not
expect such a strong focus on the teacher-video-case facilitator, as in the teacher-
video-case she only makes two very brief statements. The strong focus on the
teacher-video-case facilitator limited an in-depth discussion about the teacher notic-
ing in the teacher-video-case. The strong focus on the facilitator in the teacher-
video-case may be due to a high identification of the facilitators with their own role.
Another explanation is that focusing on their peers is more familiar to facilitators
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than focusing on teachers’ learning. Such a phenomenon of a one-sided focus has
been previously described in the literature with respect to student-video-cases used
in teacher PD courses (Goeze et al., 2014; Hogan et al., 2003). Hence, our results
suggest that this problem is lifted to the facilitator PD level. Facilitators did not
explicitly discuss different levels of teacher-video-case teacher noticing and how it
is related to student-video-case students’ learning, despite the fact that the first dis-
cussion prompt for the facilitators was explicitly focusing on this aspect. Spoken
with the language of the 3 T-Model, facilitators did not manage to focus on lower
level tetrahedrons but rather took the perspective that is nearest to their own role, the
PD facilitator. From this we conclude that the design of the facilitator PD video-case
might be refined in two ways:

e In the implemented design we administered the discussion prompts focusing on
teacher-video-case teacher and teacher-video-case facilitator at the same time. It
might be beneficial to solely provide the discussion prompt focusing on the
teacher-video-case teachers first while explicitly stressing that facilitators should
ignore the teacher-video-case facilitator.

* Another possibility would be to generate a teacher-video-case which does not
include a facilitator. A drawback of this approach would be that different teacher-
video-cases would be needed to discuss teacher-video-case teacher noticing and
teacher-video-case facilitator moves.

In the few instances where the facilitators did actually focus on the teacher-video-
case teachers, our findings suggest that the facilitators did not achieve elaborate
levels of noticing. Hence facilitators are also likely to need specific tools that scaf-
fold their noticing. One way to scaffold facilitator noticing when working with
teacher-video-cases could be to ask facilitators to analyse the teacher-video-case
according to the levels and categories of noticing using the CAT-Model and the
table that operationalises the different levels of noticing (see Table 1), in the same
way that we did.

Finally, our study brings to the fore the role of PCK-PD. Just as teachers’ PCK is
related to teacher noticing (Schoenfeld, 2011), so facilitator noticing is related to
facilitators’ PCK-PD (Peters-Dasdemir et al., 2020). Hence, it is necessary to
improve PCK-PD, for example, by making different levels of teacher noticing with
respect to teaching with technology (Table 2) an explicit content of facilitator PD.

Taking the aforementioned points together, we highlight the following two tenta-
tive design-principles for the design of PD programs for facilitators in the context of
teaching mathematics with technology:

— Provide information to facilitators about various levels and aspects of teacher
noticing. In particular, the CAT-Model and the examples given in Table 2 can be
used to inform PD facilitators about different aspects of teacher noticing and
help facilitators to analyse such teacher noticing.

— Video-cases for facilitators should stimulate facilitators to notice relevant aspects
at different levels (facilitator level, teacher level, classroom level). Tools such as
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the CAT-Model should be used in PD programs for facilitators in order to help
them understand and notice different levels of teacher noticing.

6 Conclusion

Research on the design and implementation of PD for facilitators is still limited
(Thurm et al., 2023). In this chapter we detail an approach for designing a video-
case-based strategy to support both teacher and facilitator noticing. The design and
research across the different levels of PD (classroom level, teacher PD level, facili-
tator PD level) highlights the subtle issues that have to be considered at each level,
and how research and design decisions on one level impact the other levels. We have
identified different levels and categories of teacher noticing with respect to teaching
mathematics with technology. We also found that facilitator noticing when working
with teacher-video-cases may only be limited to a focus on the facilitator in the
teacher-video-case and may not extend to the classroom and teacher PD levels. In
addition, we found that even carefully crafted discussion prompts may not be suf-
ficient to focus teacher and facilitator noticing on relevant aspects. Rather we sug-
gest to use the CAT-Model and the taxonomy of levels and categories of noticing not
only as research tools (as we exemplify in this paper) but also as “PD-tools” that can
help to scaffold teacher and facilitator noticing when working with video-cases. In
this sense we argue that facilitators might need to take more of a research stance by
adopting similar analytic tools as researchers. A prerequisite for this is that such
tools are complex enough to capture the relevant aspects from the research perspec-
tive, but at the same time be accessible and usable not only for researchers but also
for a wide range of teachers and facilitators.

We are aware that the work reported in this paper is only the first step to extend
the knowledge about design and research on adequate facilitator PD programs in the
area of teaching with technology. The complexity lies in the fact that classroom
level, teacher PD level and facilitator PD level are inevitably intertwined and
tools and theories are needed to adequately address this complexity both at the
research and the design level.
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Abstract Preparing prospective mathematics teachers (PMTs) to teach with tech-
nology has become one of the important concerns facing teacher education pro-
grammes. Accordingly, how such programmes can be structured to develop PMTs’
skills and knowledge of technology integration into their instruction is arising as a
key question. This chapter details a restructured Practicum course at a Turkish
University aiming to orient PMTs’ technology incorporation in mathematics teach-
ing. Specifically, we integrated the Instrumental Orchestration model as a means to
identify and analyse the development of PMTSs’ teaching practices with the use of
the dynamic mathematics software, GeoGebra. The participants were enrolled in a
4-year secondary mathematics education programme at a state university in Turkey.
In this study, we employed an action research method that involved the PMTs in a
cyclical process of designing technology-based lesson plans through planning,
implementing and reflecting. The findings indicated that in the planning process the
PMTs’ focus was on setting their objectives and general structure for a plan of
action, in which they overlooked exploitation modes of their classroom orchestra-
tions. Through micro-teaching, they started noticing the complexity of using the
features of dynamic technology in line with their objectives, requiring them to orga-
nise their tasks in a more systematic way that considered lesson objectives, techno-
logical actions, prompts and potential students’ responses.
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1 Introduction

Curriculums and standards in many countries have particularly emphasised the sig-
nificance of the use of digital technologies to improve teaching and learning in
mathematics (e.g., Common Core State Standards for Mathematics, 2010; Ministry
of National Education, 2018; National Center for Excellence in the Teaching of
Mathematics, 2014). For instance, the use of dynamic geometry software/applica-
tions is generally suggested to teach geometry in secondary education, however, it
does not necessarily provide specific guidance or materials regarding how to do so.
Hence, such emphasis for a changing curriculum integrating technology presents
significant concern for the preparation of mathematics teachers. In this sense, initial
teacher education programmes are expected to promote prospective mathematics
teachers’ (PMTs) technology adoption (Hofer & Grandgenett, 2012; Niess, 2005;
Yeh et al., 2014). Although since the 1990s such programmes included technology-
related courses, they have not provided much evidence regarding PMTs’ successful
use of technology integration in their teaching (McCulloch et al., 2019). Initial criti-
cism is generally made on the grounds that such courses mostly focused on the use
of technology considering only the affordances and technical procedures of the
technology for teaching school mathematics (e.g., Powers & Blubaugh, 2005). In
recent years, therefore, teacher educators/researchers have turned their attention to
content and effective instructional practices with technology in initial teacher edu-
cation courses (e.g., Bowers & Stephens, 2011; Lee & Hollebrands, 2008;
McCulloch et al., 2020).

Research has also highlighted the importance of field experiences to support
PMTSs’ incorporation of technology-based tasks into mathematics lessons (e.g.,
Darling-Hammond et al., 2009; Strutchens et al., 2016). In this sense, practicum
courses where PMTs are directly required to teach mathematical content to stu-
dents through the use of digital technologies play a crucial role in the develop-
ment of PMTs’ knowledge and skills regarding technology adoption (Grugeon
etal., 2009; Meagher et al., 2011; Niess, 2005, 2012; Zbiek & Hollebrands, 2008).
Hence, researchers suggested that teacher educators should rethink ways in which
they can connect the formal training with the field experiences to enhance PMTs’
professional knowledge and learning of teaching with appropriate technologies
(McCulloch et al., 2020; Niess, 2012; Strutchens et al., 2016). For example, those
in which PMTs could “plan, organize, critique, and abstract the ideas for specific
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content, specific student needs, and specific classroom situations while concur-
rently considering the affordances and constraints of the digital technologies”
(Niess, 2012, p. 332). Although there have been some studies rethinking ways to
offer a link between teacher education courses and PMTs field experiences (e.g.,
McCulloch et al., 2020), this issue is still considered from an international per-
spective as “an important endeavor and an emerging research area in need of
systematic studies and a global effort to develop a cohesive body of literature”
(Huang & Zbiek, 2017, p. 23).

In the light of the above discussion, we (as researchers and teacher educators,
the authors of this chapter) aimed at preparing PMTs to design and teach
technology-based lessons using a cyclical process in the context of a practicum
course at a Turkish University. In working with PMTs, our goal was to focus on
the development of their professional knowledge and experiences regarding the
successful integration of digital technologies. Hence, we restructured the practi-
cum course by systematically focusing on developing PMTs’ integration of digital
technologies to their teaching practices with the explicit aim of evaluating their
technology-based lesson plans, examining their field experiences, and impact of
such experiences on their development of the craft of teaching. To orient and con-
ceptualise the PMTs’ lesson planning and classroom practices in the course and
enable them to make connection between planning and implementing, we
employed a theoretical perspective, Instrumental Orchestration model (Drijvers
et al., 2010; Trouche, 2004), that was particularly developed to address technol-
ogy integration in classroom teaching and learning. In the first edition of this book
(Clark-Wilson et al., 2014), researchers (Drijvers et al., 2014; Gueudet et al.,
2014) reflected on different classroom orchestrations of practicing teachers when
using digital technology. As a next step, we were interested in how findings from
those studies could be valuable when used in teacher education programmes “for
purposes of structuring and scaffolding the reflexive appropriation and develop-
ment by teachers of the expertise that has been identified” (Ruthven, 2014, p. 390).
Hence, our focus was on PMTs who were novices in teaching and in using
dynamic mathematics software, particularly GeoGebra, in mathematics teaching.
We aimed to answer the following questions:

e How do the PMTs engage with the instrumental orchestration model while pre-
paring a technology-based task?

* How do the PMTs orchestrate their tasks in classrooms?

e What changes or development in the PMTs’ orchestrations occur while involved
in the practicum course?

In the next section, we will discuss the notion of instrumental orchestration and in
particular, the identified classroom orchestrations, which we operationalised in
this study.
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2 Instrumental Orchestration

The instrumental orchestration model (Drijvers et al., 2010; Trouche, 2004) was
based on the instrumental approach (Verillon & Rabardel, 1995), which focuses on
learning processes involving tools in which the crucial difference between an arte-
fact and an instrument in a psychological sense has been emphasised. As Verillon
and Rabardel (1995) stated that “the instrument does not exist in itself, it becomes
an instrument when the subject has been able to appropriate it for himself and has
integrated it” (p. 84). Following the instrumental approach, Trouche (2004) used the
metaphor of orchestration to model the essential role of teachers in directing stu-
dents’ learning processes with the use of tools. As Trouche (2020) stated,

Designing an orchestration needs to carefully choose a mathematical problem, according to
the didactical goals, to anticipate the possible contribution of the artifacts to the problem
solving, to anticipate, in this context, the possible instrumentation of students by these
artifacts (p. 410).

While defining the instrumental orchestration notion, Trouche (2004) used two con-
structs: a didactical configuration and an exploitation mode. A didactical configura-
tion is essentially an arrangement of technological tools in the environment. An
exploitation mode is concerned with how teachers plan to take advantage of tech-
nology in order to achieve their lesson aims. Drijvers et al. (2010) made use of and
developed this notion, by adding another construct, didactical performance as a
necessary component of teachers’ instrumental orchestrations “to highlight that an
instrumental orchestration is a living entity rather than something a teacher prepares
beforehand” (Drijvers et al., 2020, p. 1457). A didactical performance emphasises
teachers’ ad hoc strategy when an unexpected aspect of the mathematical task or the
technological tool occurs in classroom teaching, with regard to the chosen didacti-
cal configuration and exploitation mode.

In this study, we mainly focused on the orchestrations for whole-class teaching
due to the configuration of Turkish ordinary classrooms, hence we reviewed the
studies on already identified whole-class orchestrations in the existing literature.
The instrumental orchestration model was originally used to illuminate observed
teaching practices of the function concept involving the use of applets (small appli-
cations) in the Netherlands secondary school context (Drijvers, 2012; Drijvers et al.,
2010). The researchers identified six orchestrations for whole-class teaching, which
were Technical-demo, Link-screen-board, Discuss-the-screen, Explain-the-screen,
Spot-and-show and Sherpa-at-work. Such whole-class orchestrations did not create
many organisational issues and only required classroom access to the dynamic soft-
ware and equipment to project the computer screen and a classroom arrangement
for students to see the screen for demonstrations. The Technical-demo was used to
demonstrate the techniques of a new tool, such as what was possible with the tool
and how to use it. The Explain-the-screen orchestration was used to explain what
happened on the computer screen to the whole class and sometimes used to provide
students with a good starting point for new tasks. The Discuss-the-screen created
a classroom interaction where a teacher and students discuss a problem on the
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screen. All of these orchestrations illustrate technological alternatives of a regular
teaching practice, for instance, Discuss-the-screen can be considered as Discuss-
the-board in non-technology-based lessons.

Additionally, Link-screen-board was used with the intention of showing students
the relationship between the use in a technological environment and a paper and
pencil environment. Spot-and-show was used to deliberately bring up student work
for a classroom discussion, which was identified by the teacher as relevant for further
discussion. Sherpa-at-work was about a so-called Sherpa-student using the technol-
ogy to present his or her work, or to carry out actions the teacher requests. These
orchestrations seem to be more specific to technology-use. Link-screen-board is per-
haps the most obvious example of this kind. Drijvers et al.’s (2013) study identified
more whole-class orchestrations of Guide-and-explain and Board-instruction. For
the former, the teacher provided a closed explanation based on what was on the
screen and often asked closed questions for students, resulting in limited interaction,
and for the latter, the teacher used the board for writing as a regular teaching for the
whole-class without any connections to the use of digital technology. Also, as a
whole-class orchestration, we used Predict-and-test (Bozkurt & Ruthven, 2018;
Ruthven et al., 2009) that was achieved where the teacher was leading the activity
through the whole-class exposition and questioning format and testing students’
ideas on the computer rather than teacher validating or invalidating their conjecture.

After the notion of instrumental orchestration was introduced (Trouche, 2004)
and developed (Drijvers et al., 2010), it has been used and extended by a number
of researchers in different educational contexts (e.g., Bozkurt & Ruthven, 2018;
Erfjord, 2011; Ndlovu et al., 2013; Powell et al., 2017; Tabach, 2011; Tabach et al.,
2013). These studies have aimed to illustrate teachers’ teaching practices with tech-
nology and all have concluded the importance of both teachers’ preparation before
teaching regarding how to exploit technology, followed by their reflections after
teaching. In this sense, these studies provided evidence regarding the usability and
usefulness of the IO framework as a means for analysing technology-mediated
teaching. Additionally, some of the studies (e.g., Tabach, 2011; Tabach et al., 2013)
also contributed to extending potential orchestration types. However, as Drijvers
et al. (2020) pointed out in their literature review “the focus seems to be on a grow-
ing repertoire of didactical configurations and exploitation modes, whereas didacti-
cal performance is hardly addressed” (p. 1462). In this study, by attempting to use
the notion of instrumental orchestration in the context of the design and implemen-
tation of a practicum course in initial teacher education, we particularly aimed to
examine and focus on PMTs’ didactical performances through both micro-teaching
and actual classroom-teaching in school placements. We aimed to encourage the
PMTs to reflect on their teaching and improve their planning based on what could
happen in classrooms. In this sense, we believe this study has a potential to contrib-
ute to the field by operationalising the IO model in initial teacher education and
allowing PMTs to consider the repertoire of instrumental orchestrations, which ulti-
mately could help them in developing practical strategies for the organisation of
their technology-based lessons.



36 G. Bozkurt and M. Y. Koyunkaya

3 Methods

The study was designed as action research, which is generally considered as a form
of systematic educational research by a practitioner into their own practice to under-
stand and improve such practice (Cochran-Smith & Lytle, 1990; Sagor, 1992;
Shagoury & Power, 2012). However, in the context of initial teacher education, pre-
service teachers should be encouraged and supported to become “active learners
shaping their professional growth through reflective participation in both programs
and practice” (Clarke & Hollingsworth, 2002, p. 984). As research pointed out, pre-
service teachers have more opportunities for their professional learning and become
more critical and reflective regarding their own teaching in classrooms when teacher
educators are involved in conducting action research with them (Darling-Hammond,
2006; Shank, 2006; Snow-Gerono, 2005; Stark, 2006). In this sense, we as teacher
educators decided to work collaboratively with PMTs in this action research since
“collaborative action research processes strengthen the opportunities for the results
of research on practice to be fed back into educational systems in a more substantial
and critical way” (Burns, 1999, p. 13).

We, as teacher educators, were the facilitators of the process in order to “develop
the methodological protocols necessary for the action research process” (O’Leary,
2004, p. 98). We participated in the planning and evaluation of lesson plans and
teaching practices, were responsible for analysing their technology-based tasks, and
were observers during the implementation of their plans. In particular, we encour-
aged them to consider the role of the technology and the use of the instrumental
orchestration model in designing and teaching mathematical tasks by reflecting our
analysis, thoughts and experiences through asking probing questions. PMTs partici-
pated in the planning, implementation, and evaluation of their technology-based
lesson plans.

3.1 Research Context

The research was conducted in the context of a compulsory university-based practi-
cum course in a 4-year mathematics teacher education programme at a state univer-
sity located in the west part of Tiirkiye (Bozkurt & Yigit Koyunkaya, 2020a, b,
2022). In this practice-based course, PMTs were required to observe the assigned
mentor teacher in school placements and to teach at least 6 hours of mathematics
lessons in classrooms over a 14-week term. However, there was no requirement for
PMTs to integrate digital technologies into their lessons. During the regular practi-
cum course, PMTs prepare and practise lesson plans using any teaching materials or
methods that they have learned in their programme without any requirement to con-
duct a micro-teaching session. During the preparation and implementation of their
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lessons, both the university course instructor and the assigned school place-
ment mentor teacher gave suggestions and feedback to improve their teaching.
Based on our aims, we restructured the course in two aspects. Firstly, we specifically
focused on preparing and developing technology use in PMTs’ teaching practices.
Secondly, we conducted the course in three steps including seminars about using
digital technology in teaching, micro-teaching to other PMTs in the university set-
ting and actual teaching in school placements. In each step, we conducted individual
and group interviews providing opportunities for them to describe and reflect on
their planning and practices. Additionally, we incorporated two technology specific
models (namely, Dynamic Geometry Task Analysis (Trocki & Hollebrands, 2018)
and Instrumental Orchestration) to support PMTs to design and teach technology-
based tasks over three distinct cycles (Bozkurt & Yigit Koyunkaya, 2020a, b, 2022).
This chapter specifically focuses on the use of the instrumental orchestration model
for PMTSs’ planning and teaching technology-based mathematical tasks.

3.2 Participants

The participants of the study were four PMTs (two female and two male) selected
from eight PMTs taking the practicum course based on a purposive sampling method
(Merriam & Tisdell, 2016). Among the eight PMTs in the course, we chose the four
who were already familiar with several digital technologies in mathematics educa-
tion as they took several technology courses and whose general academic achieve-
ments were relatively higher amongst the eight PMTs in the class. In this sense, the
selection criterion was mainly about their existing knowledge and skills relating to
the use of digital technologies in mathematics education. The selection pro-
cess drew on the second author’s decision (also the instructor of the course) as she
had previously taught both mathematics education and technology-based courses to
the PMTs. This selection criterion was particularly important in our research since
our focus was on how they planned and implemented the use of digital technologies
into mathematics instruction rather than educating them about such technologies
from scratch. Additionally, these four PMTs had worked well together in previ-
ous group work and had established a good rapport between each other and their
instructors. We believe such a rapport between the PMTs as well as between the
participants and the instructor was of crucial importance in strengthening the col-
laboration in the research.

In addition, they had observed the ordinary classroom environments for a term in
the context of a School Experience course. While presenting the results, we assigned
numbers to the PMTs as PMTI, PMT2, PMT3 and PMT4 considering their
confidentiality.
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3.3 Procedure

We conducted this research in three different cycles and each cycle consisted of
planning, acting, observing, and reflecting (Kemmis & McTaggart, 2005). In the
first cycle, the instructor of the course gave seminars about selecting and using vari-
ous digital technologies when designing mathematical tasks. Particularly, she dis-
cussed the affordances of using dynamic geometry software (i.e., GeoGebra and the
Geometer’s Sketchpad) by pointing out teachers’ roles in the design and implemen-
tation process of the technology-based tasks. In addition, she introduced interactive
applications such as Desmos and NCTM Illuminations, and video-based web sites
such as Khan Academy. The following week, she provided a theoretical introduc-
tion of the instrumental orchestration model and an examination of different class-
room orchestrations through a video discussion on a mathematics teacher’s teaching
with the use of GeoGebra (the teacher was leading the lesson on angle bisector
construction). After the video discussion, the instructor also required the PMTs to
write a reflection regarding the model. During the discussion, the instructor inten-
tionally stopped the video in particular moments and asked the PMTs about the
teacher’s orchestrations, as he integrated the technology into his teaching. In these
moments, it became apparent that initially, the PMTs were not able to discuss his
didactical performance in detail. Instead, they were indicating his general classroom
management skills and they were only able to name the observed orchestration
types supported by small descriptions. Hence, the instructor specifically focused on
the teacher’s particular actions and tried to stimulate their discussion by asking
questions such as “If you were the teacher in the video, how did you use the Sherpa
student? or how did you guide the discussion?”. Introducing the relatively difficult
vocabulary of the instrumental orchestration model theoretically and with connec-
tion to the classroom practices of a teacher aimed to guide and better support the
PMTSs’ preparation of lesson plans in terms of their planned classroom orchestra-
tions. In particular, we believed that this way of presenting the model could promote
their understanding and awareness of the need for deliberate organisation in their
didactical configurations and exploitation modes for successful didactical
performances.

At the end of this cycle, which lasted 7 weeks of the course, we asked the PMTs
to design their technology-based lesson plans on their chosen topics. Then, we con-
ducted individual interviews about their plans and gave feedback to help improve
their designing and planning of the technology-based tasks. In the second cycle, the
PMTs revised their plans based on these interviews and practised their micro-teach-
ing sessions. Micro-teaching in this study was conducted with the fellow PMTs
acting as secondary school students, but conducted in the university setting. In this
way, we aimed to provide an opportunity for the PMTs to practise teaching with
technology before implementing their plans in their school placement and to collect
feedback and suggestions from their peers and instructors to improve their own
teaching. We must state that micro-teaching between PMTs in the university setting
is typically preferred and used in the local institution since working with real stu-
dents requires more practical and ethical considerations.
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The micro-teaching sessions were done in a classroom at the university, with an
interactive whiteboard next to a traditional board and a laptop computer available to
each PMT, similar to the classroom in schools. There were 8 participants acting as
students during the micro-teaching sessions, including two researchers, three PMTs
from the study while one of them performing the micro-teaching and other two
PMTs who were not in the study. After each PMT’s micro-teaching session, we
conducted post-lesson group discussions to provide feedback/suggestions as well as
individual interviews with the PMTs. Our main purpose in this 2-week cycle was to
provide the PMTs with an opportunity to practise their tasks before teaching in
actual classrooms. In the last cycle (lasting 5 weeks), the PMTs again revised their
lesson plans based on their experiences and feedback in the second cycle, and
accordingly they implemented their revised plans in actual classrooms during their
school placements. The Turkish ordinary classrooms included a configuration that
was similar to the micro-teaching setting in terms of the place of interactive white-
board, traditional board and computer. Generally, there were around 25-30 students
in each classroom. While the PMTs mainly were using the boards and computer in
the whole-class teaching, the students sat on the tables and discussed and responded
to the PMTs’ questions, without access to any technology. Following the PMTs
classroom practices, we conducted post-lesson individual and group interviews. As
a final task the PMTs produced a revision of their technology-based lessons plans.
Through each cycle, we examined and revised our research plan considering PMTs
development and actions, as revealed while planning, designing or implementing
their technology-based tasks.

3.4 Data Collection

In this chapter, we focus on one main technology-based task from each PMT’s les-
son plan. In detail, data included in the study consisted of the PMTs’ technology-
based tasks, video records of their micro-teaching and actual classroom teaching
sessions, and post-lesson individual and group interviews/discussions (see Table 1).

Table 1 The data sources of the study

Cycles The collected data

Cycle 1 Video recordings of seminar in which instrumental orchestration model was
(Weeks 1-7) | introduced

Video recordings of interviews

Lesson plans

Cycle 2 Video recordings of micro-teaching sessions

(Weeks 8-9) | Video recordings of post-teaching discussions

Revised lesson plans

Cycle 3 Video recordings of classroom teaching
(Weeks Video recordings of post-lesson individual interviews
9-14) Video recordings of post-lesson and final focus group interviews

Revised lesson plans
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In terms of the topics of the PMTs’ lesson plans, they made their decisions based
on the syllabus and timetables of the classroom teacher in school placements and
designed their tasks accordingly (see Table 2). PMT1 designed a lesson plan to
teach trigonometric ratios in the 9th grade and her main technology-based task
focused on a unit circle. PMT?2 designed a lesson plan to teach the area formula of

Table 2 Summary of the PMTs’ technology-based tasks

Name of the
task Image The goal of the designed task

Unit circle PMT]1 designed a unit circle task to
indicate how the changes in one of the
angles in a right triangle affects the
trigonometric ratios related to this
angle. She aimed for students to
observe the variants and invariants on
the sketch and to reach a
generalisation regarding the
relationships between angles and
trigonometric ratios.

The area
formula of
the circle

PMT?2 designed a task including a
regular polygon whose number of
sides could be changing with the
slider to conclude the area formula of
the circle. Particularly, he aimed for
students to explore that the polygon
tends to a circle when the number of
the sides is maximised. With this
approach, he planned to use the areas
of the n-sided polygons by dividing it
into the isosceles triangles to guide
students to reach the area formula of
the circle.

" | PMT3 designed a task to conclude the
fact that the area of the triangle BEC
is equal to the area of the triangle
ABE and the area of the triangle ECD
(S3=S1+S2). He planned to drag the
point E on the line segment AD for
students to generalise the equality.
PMT4 designed a task to teach the
base area and volume of a shape
formed by rotating a rectangle at
different angles such as 360°, 180° and
120° using two sliders representing the
angle and the radius of the base circle.
From this point of view, she aimed for
students to reach a general formula of
the base area and volume of the shape
dependent on the rotated angle.

The area of
the triangle

Volume and
base area of
the cylinder
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acircle in the 11th grade and his main technology-based task used inscribed n-sided
polygons. PMT3 designed a lesson plan to teach the area formula of a triangle in the
9th grade and his technology-based task involved dividing the rectangle into trian-
gles. PMT4’s main technology-based task was related to teaching the volume and
base area of a shape in the 11th grade formed by rotating a rectangle through differ-
ent angles.

3.5 Data Analysis

Qualitative data analysis was guided by instrumental orchestration concepts. In the
analysis of the design and teaching process of each task, we compared and con-
trasted the PMTs’ aims and plans of orchestrations and how they orchestrated their
tasks in micro-teaching and classroom teaching sessions. Particularly, we identified
the changes or development in their orchestrations and considered the reasons for
those changes.

We began with a document analysis (Bowen, 2006) to examine the PMTs’ objec-
tives and exploitation modes of their tasks in their plans and identify their planned
orchestration types. Adopting the video analysis method (Erickson, 2006), we
watched all of the video recordings of the teaching sessions for each PMT to anal-
yse their orchestrations in both the micro-teaching and classroom teaching sessions.
For each participant, we initially watched the whole video without stopping and
took notes. Then, we watched the video and paused to identify notable events that
evidenced their orchestration skills and transcribed these video clips.

In the transcribed clips, we particularly focused on the critical events related to
the pedagogical purposes of their orchestrations. Additionally, we used the data
from individual and group interviews/discussions to support the identified critical
events. By triangulating their teaching with post-lesson individual and group inter-
views/discussions, we compared and contrasted how their orchestrations in the
identified critical events changed or developed. To provide a specific example, in
PMT?2’s case, we identified one of the critical events as his plan to employ link-
screen-board orchestration. In his plan, he aimed to direct his students to construct
arelationship between the area formulas of the inscribed polygons on the traditional
board and changes on the screen by animating the slider. In his first micro-teaching,
he could not manage to conduct this part of the lesson, as he failed to direct the
students to develop a pattern to find the area of inscribed regular polygons and he
requested to end the session. As seen in Table 3, we considered the exploitation of
his technological actions and didactical performance in terms of the identified event.
We used his direct quote from the post-lesson discussion as supportive data to anal-
yse his failure in his didactical performance and from his statements, we deduced
that his unplanned discussion of the sketch prevented him from focusing on the
inscribed polygon to reach the area formula of the circle. However, in his second
micro-teaching, it became evident he had further articulated his exploitation mode
and successfully guided the students to link what they saw on the screen by
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Table 3 An example of data analysis relating to PMT?2’s first micro-teaching

Exploitation of Didactical Post-micro teaching | Orchestration

technological action performance interview types
Micro- He moved the slider to | PMT?2 did not I think I lost my Discuss-the-
teaching 1 | 3,4 and 5 in order to reach this step. He | control at the Screen

construct the equilateral | could not direct beginning and then I

triangle, square and students to could not get over the

pentagon. However, he | construct a discussion. From a

lost his direction relationship (pointing out one side

without moving the between the of the triangle) * h

slider to the n-sided formulas on the (pointing out the blue

polygon and so on to board and changes | segment) /2, |

discuss the relationship. | in the screen. planned to reach

(3*a*h)/2. I mean 1
planned to construct
perimeter multiply by
height, perimeter
multiply by height,
perimeter multiply by
height. ... When
students represented
both line segments
using the same value
a, I could not get
around and I had to
stop on pentagon.

animating the slider (in which the polygon approached the circle) and the text on the
traditional board (the area formula for each inscribed polygon).

Triangulation was used to ensure the trustworthiness of the research findings. We
triangulated the PMTSs’ written objectives and accounts with the video recordings of
teaching sessions and post-lesson interviews/discussions to support each part of our
analysis. In addition, considering the role of collaboration in the participatory action
research, we gave assurance to the participants about the right of withdrawal at any
time without any consequences as well as informed them about their confidentiality
and anonymity throughout the research.

4 Results

In this section, we present the results of four PMTs’ technology-based classroom
orchestrations during micro-teaching and actual classroom teaching. Our particular
focus is on the evolution of the instrumental orchestrations of their dynamic mathe-
matical tasks. Results are presented in two sections: (1) a general perspective of
the four PMTSs’ orchestrations in micro-teaching and classroom teaching sessions;
(2) detailed information about PMT?2’s orchestration of a dynamic mathematical task.
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We specifically extended the PMT2’s case since he provided significant evidence
of development of particular orchestration types through his teaching sessions. As
he stated in the final individual interview:

My first micro-teaching changed almost everything for me about my orchestration of the
class. In particular, it affected how I started my task, what questions I needed to ask while
using technology, how to calculate the areas of inscribed polygons etc. I mean it really
changed everything.

4.1 General Perspective of the PMTs’ Orchestrations
in Micro-teaching and Classroom Practices

In the planning process, all PMTs’ focus was on setting their objectives and general
structure for a plan of action, in which they all seemed to overlook the exploitation
modes of their didactical configurations. In their plans, it became evident that the
main orchestration type that all PMTs aimed to use was Discuss-the-screen.
Additionally, they also stated several other orchestrations such as Explain-the-
screen, Predict-and-test, Sherpa-at-work, and Link-screen-board without detailing
these exploitation modes. It became apparent during micro-teaching that they had
difficulties in orchestrating their tasks in effective ways. In particular they struggled
to instrument their tasks with the use of dynamic technology or used the technology
limitedly without an apparent intention. Hence, they mostly ended up either with
Guide-and-explain or Board-instruction.

For example, considering the use of Discuss-the-screen, PMT1 aimed to teach
about the Unit Circle and had indicated the dynamic use of Discuss-the-screen in
her plan to enable students to observe the invariants/variants on the screen. Through
micro-teaching, she realised that the way she conducted dragging on the screen or
how she gave her prompts while coordinating her technological actions were of
crucial importance to achieve her goal. One of the aims in her plan was to guide
students to explore the relationships between the sine and cosine values of the
related angle and the coordinates of point B, by using the line segments in the unit
circle. During micro-teaching, PMT]1 tried to guide students to observe the trigono-
metric ratios for different angles by moving the point B on the circle but her use of
dragging was random (i.e., dragging the point B on the unit circle back and forth in
the first, second, third and fourth quadrants), which is considered as wandering
dragging in the wider literature (Arzarello et al., 2002). Then, she measured the
length of the line segments and showed the coordinates of the point B in the algebra
window. During this process, she dragged point B again and asked students to
simultaneously observe point B on the circle in the graphic window and its corre-
sponding value in the algebra window. In order to construct the relationship, she
proposed the following question “If I try to say something like sin 50 is equal to
something connected to point B? What could it be? Can I generalise this, can I con-
clude something if I try to say something related to B?”. However, students stated
that they did not understand what she wanted to ask. Then, she continued her
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teaching completely on the traditional board to explain and show the relationship
between the trigonometric ratios and coordinates of the point (see Fig. 1).

Based on her experiences, in the actual classroom, PMT1 added a slider attached
to point B in her task and animated it during her teaching, which enabled her to
focus on posing questions considering the movement on the screen and improved
her Discuss-the-screen orchestration. During the animation of point B around the
unit circle, she initially asked students to spot the variants and invariants on the unit
circle. Then, she indicated that the red and blue line segments (red line segment
refers to the line segment AF and blue line segment refers to the line segment AE)
simultaneously change when point B changes and asked students whether the line
segments are related to point B. During the discussion, she also measured the line
segments to support students to construct the relationship. Based on her didactical
performance in micro-teaching, she intentionally added a dynamic text representing
point B to make students realise the relationship between the red and blue line seg-
ments and the coordinates of point B (see Fig. 2). By animating or dragging the
slider, she allowed students to observe the changes in the line segments and point B
simultaneously.

Fig. 2 Unit circle task with the dynamic text representing point B and slider
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Similarly, in his first micro-teaching, PMT3 also noticed his lack of use of the
software tools to discuss the areas of the triangles in a rectangle as he only dragged
the figure once and then measured the area of the triangles. Since he was quite hesi-
tant and nervous in his first teaching experience, he wanted to conduct another micro-
teaching of his task before the actual classroom teaching. In his second micro-teaching,
he improved his approach by using different technological actions. For instance, hav-
ing asked students to compare the areas S1, S2 and S3, he guided them to divide the
rectangle into triangles by proposing the question “If I want to divide the shape,
I mean if I want to represent the triangle S3 by using S1 and S2, how could I do
that?”. One of the students proposed to draw a perpendicular line from point A to line
segment BC. After drawing the perpendicular line and allowing students to compare
the areas, he measured the areas of each triangle (see Fig. 3) and verified how the
areas S1 and S2 constituted the area S3 by dragging the point E on the rectangle. In
this sense, he employed the dragging tool in a more purposeful way and used the
tools to verify the equality of areas between the pairs of triangles.

In the actual classroom, PMT3 performed a similar didactical performance as his
second micro-teaching experience. Also, he seemed more confident in front of the
class both in proposing questions to students and in using the different technologi-
cal tools.

It also became evident that the PMTs started to comprehend the use of Sherpa-
at-work orchestration through micro-teaching. For instance, during the micro-
teaching, after PMT4 had discussed the base areas of the shape formed by rotating
360°, 180° and 120°, she asked students how the changes in height affected the ratio
between the volumes of the shapes. She initiated the discussion by asking for stu-
dents’ predictions about the changes in ratio in relation to the change in heights.
However, during this process, it became evident that she did not include any student
input, and instead she mostly explained the answers to her own questions. Even
though PMT4 chose a Sherpa student to drive the technology at the front of the

Area of ECD = 4.84

Area of EBH = 5.66 Area of EHC = 4.84

S3

Fig. 3 PMT3’s task including the perpendicular line and measured areas
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Fig. 4 Different examples of cylinder figures occurred based on the dragging

classroom, she only asked the student to move the height slider without providing
any specific directions. The student dragged the slider up and down to change the
height for six seconds (see Fig. 4), however PMT4 did not coordinate her question
with such movement nor guide the class (or the Sherpa) to make observations nor
discuss the changes on the screen. Instead she only explained the ratios using the
related formulas on the traditional board.

Some of the PMTs indicated that they understood the real meaning of the Sherpa-
at-work orchestration through post-micro-teaching discussion sessions when they
reflected on each other’s uses of the different orchestrations. As a result, some of
them decided not to choose a Sherpa student to use the technology in actual class-
room teaching, since students within the school placements would not have previ-
ously used GeoGebra. Choosing a Sherpa to help with the use of technology might
have ended up focusing on and guiding that student in a technical way, which might
hinder the flow of discussion.

Based on the didactical performances and suggestions given in micro-teaching
sessions, it became clear that most of the PMTs began to notice the complexity
imvolved in using the features of dynamic technology in line with their objectives.
There was a realistion that they needed to organise their tasks in a more systematic
way that considered lesson objectives, technological actions, questions and poten-
tial students’ responses. The PMTs also realised the effects of using technology to
test students’ predictions, organise the discussion and reach their intended goals.
Particularly, they realised the meaning, and role, of particular orchestration
types such as Discuss-the-screen, Sherpa-at-work and Predict-and-test. To con-
clude, after introducing and discussing orchestrations of technology-based tasks dur-
ing the planning stage of their tasks, a general reflection emerged that orchestrating
the tasks was not an issue for the PMTs. They tended to believe that they would not
need to detail the exploitation modes of their tasks step by step. Then, through the
experiences of their teaching practices, they noticed that structuring and planning in
advance was of crucial importance for a successful implementation of their tasks
that addressed their general lesson objectives. In the final group discussion, PMT3
reflected on this issue by stating:

At the beginning of this study, I was designing the tasks and then I was looking for the
orchestration by considering what orchestration types does this task include? But now,
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I think about what I can do here, does it get better if I manipulate the sketch dynamically?
I am considering what happens if I measure this, or should I draw something on it? Is it
possible to reach a generalisation if I follow these steps? So, I am thinking about the orches-
tration of the task by considering all these issues while designing my task. That is what
has changed in my mind.

4.2 Extended Results of PMT2

In this section, we share the detailed analysis of PMT2’s classroom orchestrations
through the processes of planning, micro-teaching and classroom teaching to indi-
cate the evolution of pedagogical purposes of his classroom orchestrations.

4.2.1 What Did He Plan?

After the seminars in which instrumental orchestration model was introduced,
PMT?2 reflected on this by saying:

I really like the conductor of the orchestra metaphor for teachers in the classroom. I think
orchestration types provide a really useful language for us to describe what we do in the
classroom. In my plan, I think I will often use technical-demo, explain-the-screen and link-
screen-board. I would also use the other ones depending on the task.

Then, PMT2 prepared a technology-based task to teach the formula for the area of
a circle. With the use of a slider attached to the number of sides of inscribed regular
polygon, his main purpose was to use more sides of the regular polygon to become
closer to the overall shape, which constitutes a circle itself (see Fig. 5).

In his plan, he aimed to use Explain-the-screen, Discuss-the-screen and Link-
screen-board orchestrations without detailing the exploitation modes of his orches-
tration. For instance, his statement for the use of Link-screen-board was the
following:

I planned to use a link-screen-board orchestration to encourage students to find the area
formula of the circle by considering the changes in the number of sides of the polygon and
constructing a relationship between the formulas on the traditional board and changes on
the screen.

The above quotation indicated that he did not consider a particular moment to con-
figure the teaching setting or the tools of GeoGebra he planned to use, whilst select-
ing the use of the link-screen-board orchestration. The didactical configuration of
his whole-class orchestration included access to the dynamic technology and IWB
in a whole class setting in which all students were able to see the screen. It became
evident that his main orchestration to use was Discuss-the-screen for a whole-class
discussion about what is visible on the computer screen. In detail, his objective was
to stimulate a discussion in which students could calculate the areas of inscribed
regular polygons starting from an equilateral triangle, square... to an n-sided regular
polygon and conclude the area formula of the circle. He particularly wanted to guide
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n=56

Fig. 5 PMT2’s task including the slider

his students through the dynamic file in which each polygon was divided into equal
isosceles triangles and by using the height (as blue slegment a) the area of each

triangle should be calculated by using the formula * 5 *base*height’ (see Fig. 6). By
using this formula, he aimed to reach the formula of polygon as ‘ — *(the number of

the triangles) *base*height’ considering ‘(the number of the triangles)*base’ rep-
resents the perimeter of the polygon. Based on this, he wanted students to reach the

formula of the area of the polygon as * 3 *perimeter of the polygon*height’.

4.2.2 Micro-teaching 1

In his first micro-teaching, PMT?2 only managed to allow students to calculate the
areas of inscribed equilateral triangle and square in which the students’” way of cal-
culations did not match PMT2’s actual plan. The difference in the way of calcula-
tions hindered PMT?2 to enable students to develop the intended pattern. Then for
the inscribed pentagon, he lost his direction and ended the session at his own request
before reaching his aims. Table 4 shows how PMT?2 guided a discussion with the
use of technological actions.
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Fig. 6 The case of an equilateral triangle that shows the isosceles triangles, when n=3

The above classroom dialogue shows that the teacher’s intentional guiding and
the students’ actions were different, which created a confusion for him. While
PMT?2 planned for students to calculate the areas of the regular polygon by using the
idea of ‘the number of polygon sides * the area of the isosceles triangle’ that was
constructed inside the polygon, students used the height of the isosceles triangle
representing the same value as a (the blue segment in the figure) for different regular
polygons. At this point, PMT2 became confused and was not able to direct the stu-
dents to his planned actions. As he reflected on this during the post micro-teaching
interview:

I think I lost my control at the beginning and then I could not get over the discussion. From
a (pointing out one side of the triangle) * h (pointing out the blue segment) / 2, I planned to
reach (3*a*h)/2. I mean I planned to construct perimeter multiply by height, perimeter
multiply by height, perimeter multiply by height. ... When students represented both line
segments using the same value a, I could not get around and I had to stop on pentagon.

When he stopped his teaching, during the post-lesson discussion, researchers and
other PMTs present during the micro-teaching made several suggestions regarding
his teaching. One of them was to represent the one side of the polygon as nl, n2, n3
and so on as well as represent the height using different values such as hl, h2, h3
and so on. Additionally, they stated that his aim was not clear within the questions
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Table 4 A detailed description of how PMT2 guided the discussion

micro-teaching experience

G. Bozkurt and M. Y. Koyunkaya

in the first

Exploitation of technological
action

Didactical performance

Using the slider to move to
n=3 to construct an
equilateral triangle inscribed
in the circle

Students offered a solution where they used the general formula

(one side)2 \/g

of area of equilateral triangle

Then they calculated one side of the equilateral triangle by using
the height (the blue segment a) of the isosceles triangle in the
figure.

ay/3 *

The height (one side of the isosceles triangle ABC) = a

Radius = 2a

Other side of the isosceles triangle = a \/3

One side of equilateral triangle = 2a 3

At this point, PMT2 followed their directions and wrote these on
the traditional board without considering his plan.

Using the slider to move to 4
to construct a square in the
circle

Students guided PMT2 to represent one side of the square similar to
the equilateral triangle in terms of the height (the blue segment a).

The height (one side of the isosceles triangle ABC) = a
One side of the square = 2a
Radius = a2
During the teaching, PMT?2 tried to direct the students to use the
isosceles triangles inside the square (See verbatim transcript).
T: We calculated the area of the equilateral triangle using the
general formula of it. What do you see here (showing the square on
the screen)? What is in the square? Here, the square is divided into
four equal isosceles triangles.
S: Can we find the area of one isosceles triangle and multiply it b
y 4.
T: Yes. We could use the same method for the equilateral triangle.
The equilateral triangle consisted of three isosceles triangles (ke
moved the slider to 3). We multiply this (showing the isosceles
triangle) by 3.
T: Now, in the square, what is the radius here (he was on the
traditional board)?
S:r
T: How could you write it in terms of a?
S.a \/5
T: What is the height?
S:a
T: Here, what is the area of one isosceles triangle?

2
S: 2% multiply by 4.
T: I am writing like this. Area of one of the triangles is square a, so
the area of the square is multiplication of it by 4. [He was watching
the traditional board for a while and then moved the slider to 5].

(continued)
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Table 4 (continued)

Exploitation of technological

action Didactical performance

Using the slider to move to 5 | He was not able to calculate the area of the pentagon; he

to construct a regular encountered the situation that he did not manage to guide the
pentagon in the circle students.

T: [by dragging the slider to 5] How can we calculate this based on
the previous one?

S: This is a bit difficult to calculate. We should first find the angles.
[while students were discussing the angles, PMT2 drew an
inscribed pentagon on the traditional board and seemed puzzled.
By moving away from the board, he looked at the figure]

T: Now what do I know? I know the radius is r.

S: OK, we found 54° so the other two angles should be 36° [at this
point the PMT was still thinking by looking at the figure from afar].
The PMT could not continue the discussion and he voluntarily gave
up the instruction.

nor his guidance, so they did not really understand the lesson goals. Therefore, one
of the suggestions to him was that before the activity students could be prepared
regarding the mathematical context of the activity. Also, in order for him to effec-
tively link the screen to the board, they suggested that he should write the formulas
on the board in a systematic way and highlight the perimeter in the formulas (i.e.,
3* length of one side=perimeter of equilateral triangle).

4.2.3 Micro-teaching 2

In the second micro-teaching experience, PMT?2 orchestrated his class in a more
successful way. In particular, he demonstrated an effective use of a slider tool and
the zoom tool within GeoGebra. When compared to his first micro-teaching, he
had planned his exploitation mode for his Discuss-the-screen orchestration and was
better prepared for the questions to ask and how to utilise technology to stimulate a
successful classroom discussion in order to fulfil his lesson objectives. Although
Discuss-the-screen remained the most apparent orchestration, while discussing the
screen, he employed more specific orchestrations such as Predict-and-test and
Link-screen-board.

He began the classroom discussion by asking a question “How can you approxi-
mate the area of a circle?” and he allowed students to make predictions. By using
the dynamic technology, he tested their predictions. For instance, one of the stu-
dents said that they could find the area by using a square, and the other said an
8-sided polygon. Starting from the students’ ideas, PMT2 opened his prepared
GeoGebra file (see Fig. 7) and asked the following question “Let’s start with the
smallest polygon that we know. How can I find the area of this triangle?”
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Fig. 7 The GeoGebra file in which he hid the isosceles triangles and the height segment

As seen in the GeoGebra file, he intentionally hid the sides of the isosceles tri-
angles and the blue segment (which showed the height of the isosceles triangle) for
the area of regular polygons calculations which led to the failure of his first micro-
teaching. In his final post-lesson interview, he said:

Students could calculate the area of the equilateral triangle by using the isosceles triangles

within it. Therefore, I intentionally gave the equilateral triangle without dividing it into the

isosceles triangle, and asked students directly how to calculate the area of this equilateral
triangle.

Also, he purposefully guided the students to consider different ways to find the
area of the equilateral triangle to exploit the steps within his planning. The transcript
of this episode was:
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S1: If I know one side...

Y: Yes, you can find the area. What else?

1

S2: We can also use 2 *base*height.

Y: Which height do you mean? The height of the big triangle? [he shows with
his hand on the screen]

S2: Yes

T: OK, that is another way. What else?

S3: Can we find it by dividing the big triangle into small triangles?

T: Do you mean this? [he shows the file in the below figure]

S3: Yes

T: How can I find the area of these triangles? [he shows one of the isosceles
triangles|

S1: So, the whole area is a small triangle x 3.

T: Ok, how about the area of those small triangles?

S1: base is r\/g,then, % .

T: [He shows the blue segment in the figure] OK, now we see the length of AC
[Then he goes up to the normal board and writes what the student says].

T: Could you repeat it please? Here, let’s label one of the sides of the equilat-
eral triangle as n3 and its height as h3 [He drew the figure on the tradi-
tional board].

n3*h3

S1: OK, then — 5 3.

[PMT2 revoice and writes the formula that S1 said on the traditional board)
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Similarly, by increasing the slider step by step, he enabled the students to discuss
and calculate the areas of 4 and 5-sided regular polygons to support them to develop
a pattern. Then, by dragging the slider to 20, 50 and 100 respectively, he stimulated
the discussion on how the area of the polygon changed and also how the area of the
inscribed polygon compared to the area of the circle as the number of sides was
increased. At this stage, he effectively proposed questions requiring the students to
predict what would happen when the number of sides increased and tested their
ideas (verify or falsify) with the use of technology and progressed through seeking
validation from the dynamic technology. In particular, to develop the approaching
idea, he particularly utilised the zoom tool and zoomed in on the screen (see Fig. 8)
to discuss the fact that although the overall shape of the polygon resembled the
circle, there was still a gap between the polygon and the circle (see Fig. 8).

In the last stage of the discussion, he wanted the students to link the screen and
board, in which he animated the slider, and asked students to consider the traditional
board, where he wrote the area formula of each polygon (see Fig. 9). He encouraged

Fig. 8 A screenshot from PMT2’s teaching when showing the gap between the circle and polygon
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Fig. 9 A re-drawn writing of PMT?2 on the traditional board
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students to explicitly link what they saw on the screen and what was written on the
traditional board.

While on the traditional board, he asked the question “How can I write the area
formula for a 100-sided polygon area?’. Then he went to the screen and guided
students to focus on and interpret the height. By increasing the number of sides with
the use of the slider, he asked the students to observe where the sides and height of
small triangles inside the polygon were approaching. He was standing in the middle
of the IWB and the traditional board and by using his gestures he pointed to the
sides and height on the screen (see Fig. 10).

On the traditional board, he asked the students to form the formula of the area of
a circle by linking the relationships they had observed on the screen. To ease their
observations, he dragged the slider effectively and prompted them with respect to
the formula in the following dialogue.

T: OK, if the polygon approaches the circle, how can we calculate the area of a
regular circumscribed n-gon where n is very large? Concerning the congruent
triangles inside the n-gon, their sides would approach the radius. What is the
circumference formula?

2 2%pi kT

: Yes, 2 = pi = r. How about the height? Where is it approaching?

: Radius, as well.

: That is also approaching the radius. OK, then, what is the formula?

2%pixrxr/2

: Which means pi multiplied by °.

R B B

Concerning the fact that the polygon approaches the circle, one of the students sug-
gested that “It (the polygon) goes to infinity, but it never becomes a circle”. PMT2
tried to answer the question using the task by indicating that the height of the isos-
celes triangle (the blue segment) approaches the radius of the circle. Specifically, he
stated that “even if it is very tiny, there is still a gap between them”, but the students
did not seem to be convinced with his response. In the post-lesson discussion, the

Fig. 10 A screenshot from PMT2’s teaching in the position of linking the screen and tradi-
tional board
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researchers and other PMTs suggested PMT2 to mention the concept of limit to
explain this phenomenon.

In the post-lesson discussions, the researchers and other PMTs mentioned the
successful points of his teaching. Particularly, they indicated that presenting many
examples using the slider and testing students’ predictions on the sketch were cru-
cially important to the success of his didactical configuration. However, they sug-
gested moving the slider more slowly to provide an opportunity for students to
explore the changes on the screen instead of explaining himself and discussing the
screen in a more effective way. Suggestions regarding his second micro-teaching
were not related to the mathematical context of the task. Instead, the researchers and
PMTs directed him to consider the features and role of the technology in a more
detailed way.

4.2.4 Actual Classroom Teaching

In PMT2’s classroom teaching, there was a similar didactical configuration to the
micro-teaching, in which the teacher used GeoGebra on one central screen along-
side the traditional board. While the teacher controlled the manipulation of the
dynamic technology and provided the prompts to stimulate a classroom discussion,
students were observing and actively involving in the discussion. As PMT2 planned
his exploitation mode of the task, informed by the two previous didactical perfor-
mances during the micro-teaching, he seemed more confident to orchestrate his
activity within the class. He was particularly successful in constructing a link
between screen and board by considering the questions to ask alongside how to
utilise the technology to stimulate a successful classroom discussion. He also
strengthened his orchestration with an effective use of gestures such as his fingers
and the movement of his body between the screen and board.

His orchestration of the task showed similarities with that of PMT2 during the
second micro-teaching. Additionally, in classroom teaching, it became evident that
PMT2 managed to pose more structured questions and he guided his planned dis-
cussion with the high school students who were not familiar with the task, technol-
ogy or context. In this light, during the process of generalising the formula, he
conducted an effective discussion by linking the screen to the board, which seemed
more structured and indicated more involvement from students.

For example, during the second micro-teaching, the participants were already
familiar with PMT2’s objectives and the task itself, hence, they seemed to reach
intended results relatively easily such as noticing the perimeter in the formulas or
the approaching idea of height. However, during the classroom teaching, PMT2
guided the students step-by-step to help them realise the use of perimeter within the
formula, and also how the height of the isosceles triangle approaches the radius. In
this process, he effectively discussed the context using the task and indicating the
concept of limit (see the below text frame including verbatim transcript).
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T: OK, please have a look at the screen. What does 3=n3 indicate?

S: 3 sides.

T: I am asking 3*n3.

S: Perimeter.

T: Yes, perimeter of the triangle. Perimeter of the equilateral triangle. [He
shows this on the traditional board and then goes to the screen and moves the
slider to 3 and continues on the screen]. OK, we labeled one side as n3 and
we have three of it.

T: How about 4+n4?

S: Perimeter

T: Whose perimeter is it?

S: Perimeter of the square

[He discussed the similar operations for the pentagon, 12-sided and 100-
sided polygons by dragging the slider and linking the screen and the board)

T: Where does it go?
S: Infinity h3 h4 k100

T: Yes, it goes to infinity. How about this .2
S: Half of the radius.

T: Why is it radius over 2?

S: There is a triangle, its height will be radius.

T: Would it become radius in the end?

S: No, it would not. The shape approaches a circle.

272 2
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T: Yes, it approaches the circle... But there will always be a gap between these
two points, so there is always another point in between. Infinite points con-
struct the circle, and we say it approaches... This is about a concept called
limit, which you will learn next year. So, the height will approach r.

S: But it will never be radius...

T: Yes, it will never be radius. Also, the perimeter of the n-sided polygon will
never reach the circumference.

T: There will be a gap all the time. I already showed you for 100-gon and now
[zooms in] for 1000-gon there is a smaller gap, you see. But, when we learn
the limit concept in the twelfth grade, we will ignore this gap. I mean we will
not ignore it, but we will take the approximate value of it.

At the end of the lesson, he considered the whole process to reach the area for-
mula of the circle by using the fact about the infinitely-sided polygon.

To conclude, based on his experiences throughout the whole process, his exploi-
tation modes and didactical performances of his instrumental orchestrations evolved
(see Fig. 11), PMT2 managed to successfully orchestrate his task to achieve his
mathematical goals. In his final individual interview, he reflected across all of the
research cycles thus:

The first micro-teaching changed everything for me. I think it was an indispensable part in
my development because I made all the mistakes that I could have done ... Then for the
second micro-teaching I revised my plan carefully and considered all the suggestions for a
successful organisation of my task. Therefore, the second micro was also quite important
for me to think deeply about how to use technology and what kind of questions to ask to
guide students. But I think the actual teaching was the most useful experience for me as a
teacher. [ was more nervous to teach in the real context with the students. ... answering their
questions, using technology to show the approaching idea, actualising my plan in the class-
room... It was a great experience!
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Fig. 11 PMT2’s evolution of instrumental orchestration through the cycles

5 Conclusions and Discussion

This chapter focused on a restructured practicum course at a Turkish University in
the secondary school context which aimed to develop PMTs’ skills to design and
teach lessons with the use of dynamic mathematics software focusing on the instru-
mental orchestration model. Our research questions concerned how the PMTs
engaged with the instrumental orchestration model whilst planning their technology-
based tasks, and then how they orchestrated these tasks in classrooms. Particularly,
we examined what changes or development occurred in the PMTs’ instrumental
orchestrations through different cycles of the practicum course.

The findings indicated that although the PMTs began to consider orchestration
types in their initial plans, they only came to realise the importance of detailing the
exploitation modes of their didactical configurations whilst in the process of micro-
teaching. They started noticing the complexity of using the features of dynamic
technology in line with their objectives and the need to organise their tasks in a more
systematic way that considers lesson objectives, technological actions, prompts and
potential students’ responses. Before practising their tasks, it became apparent they
overlooked the pedagogical purposes for instrumental orchestrations. For instance,
although most of them designed their tasks around Discuss-the-screen and Link-
screen-board orchestrations, they ended up orchestrating mostly with Board-
instruction as they either failed to use dynamic features of technology as planned or
to coordinate appropriate prompting with their technological actions. For
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Link-screen-board, they tended to stay at the traditional board and ignored the tech-
nology. As PMTT1 reflected, “I realised when I was doing something on the tradi-
tional board, I forgot to drag the point B on the screen, which I needed to move
simultaneously. So, I continued here on the board, but the screen stayed in the previ-
ous position”. In this sense, the insights and results learned from micro-teaching
became an intermediate step and served as crucial inputs for the PMTs to reconsider
their classroom orchestrations and elaborate their plans for their actual classroom
teaching (Agyei & Voogt, 2011; Zbiek & Hollebrands, 2008). As a result, their
actual classroom practices and reflections on such practices showed that they were
more prepared regarding their teaching trajectory indicating their professional
learning regarding technology integration (Goos, 2005; Rocha, 2020; Ruthven,
2014; Trgalova et al., 2018). In particular, they tended to expand and structure their
questions as well as their technological actions with an explicit aim to successfully
orchestrate their tasks.

This study also provided evidence regarding how a practicum course could be
restructured with a specific focus on technology integration (Niess, 2012). This is of
essential importance in particular for the education contexts where there is no cur-
rent requirement for PMTs to incorporate digital technologies into their teaching in
school placements. In the restructuring process, two aspects were important:
the theoretical model and the methodological approach. For the former, the integra-
tion of the instrumental orchestration model into the course in general provided a
useful lens both for the PMTs and the researchers. Hence, this study provides evi-
dence for the usability and usefulness of the instrumental orchestration model to
help prospective teachers and teacher educators benefit from the practical knowl-
edge about technology integration. However, with the use of already identified
whole-class orchestrations, at the first stage the PMTs structured their plans of
actions without deeply understanding the concepts of the model. With the classroom
practices, they started making sense of the details and systematic orchestrations of
their activities in the classroom. In this light, we believe that introducing and dis-
cussing a theoretical model only in the planning stage (Bowers & Stephens, 2011)
would not result in a successful orchestration in classrooms, in particular for PMTs
to comprehend the exploitation modes of their didactical configurations. Hence, we
argue that such practicum courses should involve a cyclical process through modi-
fication, implementation, and reflection. Also, involvement in participatory action
research promoted the process of collaborative learning in two aspects. First, col-
laboration supported the PMTs’ development relating to the instrumental orchestra-
tion model and their teaching practices through our feedback and suggestions.
Second, it supported us to revise our plan of actions by considering PMTs’ develop-
ment of the processes of designing and teaching tasks using the technology.
Although conducting a course such intense collaboration in three cycles might not
be feasible for a larger size group of PMTs with only the instructor of the course, we
believe this study provided and discussed PMTs’ potential hiccups (Clark-Wilson,
2010) and pivotal teaching moments (Stockero & Van Zoest, 2013), which can be
used in training PMTs to improve their technology-based teaching in school place-
ments. Also, this study is of value in bridging “acknowledged gap between research
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and practice” (Mclntyre, 2005, p. 357) by making research-based concepts acces-
sible to the future teachers and to encourage them to think about those concepts.
Mclntyre (2005) argued that members of the academic community must take
responsibility to bridge that gap by seeking out and working with the professional
knowledge of teachers and should not simply expect practitioners to engage with
research knowledge.

Nevertheless, we cannot claim that the professional development arrangement
fully developed the PMTs’ pedagogical functioning and dynamic use of instrumen-
tal orchestrations. In particular, further opportunities to experience learning about
the instrumentation of the slider tool as a teaching instrument are necessary for the
PMTs to design tasks that aim to allow students to generalise mathematical con-
cepts, processes or relationships and to explore different topics and concepts in their
mathematics curriculum. Also, further research could examine PMTSs’ instrumental
orchestrations where students actively work at computers themselves to encourage
the PMTs to promote independent learning with the use of digital technologies.
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1 Introduction

With the increasing prevalence of digital technology in schools, mathematics
education researchers have a continued interest in how teachers choose to imple-
ment these resources for the teaching of mathematics (e.g., Monaghan, 2004;
Thomas & Palmer, 2016) and their effect on student learning (e.g., Calder &
Murphy, 2018; Sinclair & Baccaglini-Frank, 2015). The emergence of touch-
screen devices and their ease of use for younger students are providing new
means for primary school teachers to support mathematics learning, though
Larkin and Milford (2018) have found that many of the apps downloaded onto
these devices for classroom use are chosen, “without a strong conceptual, peda-
gogical, or methodological underpinning” (p. 12). Integrating technology
remains a complex undertaking (Monaghan, 2004) and, despite some aspects of
technology becoming more user-friendly, many teachers find it challenging to
exploit skillfully the opportunities that technology can offer for learning
(Trigueros et al., 2014), and this is also true in particular of TouchTimes (Sinclair
et al., 2020).

While much of the early research on the use of digital technology in the mathe-
matics classroom focused on student learning (e.g., Behr & Wheeler, 1981; Noss,
1987), often in classrooms where researchers were closely involved (sometimes
even as teachers themselves), there has been a shift towards studying the phenom-
enon of teaching with technology (Artigue, 2010). Several theories that have
emerged to account for the impact of digital technology integration on mathematics
teaching practice include the notion of double instrumental genesis, which exam-
ines teachers’ personal and professional instrumental genesis (Haspekian, 2011),
and the construct of instrumental orchestration (Trouche, 2004).

In this chapter, I am specifically interested in the double instrumental genesis of
the teacher in relation to TouchTimes (TT), as well as the instrumental orchestra-
tions (a notion coined by Trouche and enhanced/expanded by Drijvers et al., 2010,
2013) initiated or led by the teacher. However, while the instrumental orchestration
approach has provided important insights into the ways that teachers have organised
classroom activity to make use of digital tools, it prioritised the human over the tool
(Carlsen et al., 2016). There is also a need to examine the ways in which the func-
tioning of the tool itself impacts the teacher, especially in terms of shaping mathe-
matical concepts. This is relevant to this study because the design of TT promotes
an approach to multiplication that is different from—and indeed, sometimes con-
trary to—existing practices in primary schools in British Columbia (and beyond), a
theme that will be explored further in the next section. Therefore, the teachers
involved in this study were not only adopting a new digital tool into their instruc-
tional repertoire, they were also integrating an entirely different way of thinking
about and teaching multiplication based on this application. Clark-Wilson (2010)
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found that teachers” mathematical ideas shaped how they used digital tools, but that
their teaching was also shaped by their increasing familiarity with the tool itself.
Indeed, as Noss and Hoyles (1996) point out, “tools wrap up some of the mathemat-
ical ontology of the environment and form part of the web of ideas and actions
embedded in it” (p. 227).

Prioritising the teacher as the sole intentional agent in the classroom may fail to
account for the effects of the tool itself or the mathematics—overly ascribing both
responsibility and intentionality to the teacher, while under-appreciating the multi-
ple roles that a teacher performs in a classroom, not all of them strictly didactical.
By shifting the subject—object framing towards an ensemble approach, in which the
teacher—tool-mathematical concept is viewed as a whole, rather than individually,
I was better able to notice the emergence of new classroom phenomena that did not
fall into intentional teacher choices, but arose from unexpected, spontaneous
occurrences.

The next section of this chapter provides some context related to multiplication
and, in subsequent sections, I will situate the theoretical foundation and introduce
the construct and theory used. This will then be followed by two sections that focus
specifically on the project: its methods, which include a brief description of TT, as
well as the study context and participants. I will then detail the case studies of two
primary teachers who were integrating TT into their classroom practice. Finally,
I close with a discussion focused on some of the issues that emerged which are
directly linked to the mathematics as it is presented by TT and then on the types of
orchestrations used with touchscreen technology in primary classrooms. Though
I will articulate my research question after elaborating a theoretical framing, my
aim is to study the teacher—tool-mathematics ensemble in a primary school class-
room (within the context of this chapter, a grade 3 and a 3—4 classroom), as it is
perturbed by teacher—TouchTimes in concert.

2  Multiplication

In the early primary grades, skip counting, equal grouping and repeated addition
are commonly used methods for introducing and working with multiplication
(Davis & Renert, 2013; Greer, 1992), even though research indicates that char-
acterising multiplication as repeated addition has limitations (Askew, 2018;
Boulet, 1998; Davydov, 1992). Askew (2018) noted that the practice of repeated
addition is encouraged by curriculum developers and remains a persistent per-
ception of multiplicative situations for primary teachers and their students. This
is also true in British Columbia, where multiplication first appears in the provin-
cially mandated third grade (8-9-year-olds) mathematics curriculum and the
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examples given are: groups-of, repeated addition and arrays (Province of British
Columbia, 2016). Fischbein et al. (1985) claimed that repeated addition is a
primitive model that, “tacitly affects the meaning and use of multiplication,
even in persons with considerable training in mathematics” (p. 6) and that it
“reflects the way in which the corresponding concept or operation was initially
taught in school” (p. 15).

The benefits of visual representations and the use of different models as math-
ematical tools for teaching and learning multiplication have been highlighted by
researchers (Anghileri, 1989; Kosko, 2018; Maffia & Mariotti, 2018). Though
Davis & Renert (2013) outlined multiple models of multiplication, such as
number-line hopping, making a grid or rectangular array, area generation, branch-
ing, scaling and linear function, they suggested that multiplication as repeated
addition is so well rehearsed, that it may eliminate other interpretive possibilities
for multiplication. Referring to the work of Bolden et al. (2015) and Davydov
(1991), Kosko (2018) noted the importance of how plural aspects of units are
conveyed in multiplication and that, “students’ interactions with visual represen-
tations may involve attending to the multiplicative nature conveyed by the visual,
or may involve counting all units by ones” (pp. 262-263). In the Davydovian
approach (Davydov, 1992), the first unitising occurs when the multiplicand is
established (e.g., number of tires on a car), followed by the second unitisation,
which is the number of units (e.g., how many cars). In order to be considered
multiplicative, Steffe (1992) described the necessity of co-ordinating at least two
composite units “in such a way that one of the composite units is distributed over
the elements of the other composite unit” (p. 264). Jacob and Willis (2003) con-
cluded that it is the “identification or construction of the multiplicand and the
multiplier within a situation, and the simultaneous coordination of these factors,
that signified a multiplicative response” (p. 460).

When discussing methods for teaching multiplication, while participating in an
a priori study (see Sinclair et al., 2020), the two primary teachers who are part of
this study (Leah and Rachel, pseudonyms) referred to the curriculum requirements
and the strategies presented in the textbook as resources that guide their teaching.
Leah even pulled out a third-grade textbook, stating, “It’s all groups-of. Groups-of
is the first thing, okay repeated addition... Groups-of. Two groups-of five, so this
would be two times that [pointing at a picture showing two groups-of five with the
associated number sentence, 2 x 5] whereas this [pointing at the iPad with TT on it],
shows it the other way”. The primary resources that these teachers rely on do not
include other approaches, such as the use of double number lines (as described in
Askew, 2018) or the Davydovian approach based on a double unitisation. This lack
of awareness also contributes to these primary teachers’ heavy reliance on equal
grouping, skip counting and repeated addition.
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3 Situating the Theoretical Foundation

I begin by outlining some theoretical elements of the instrumental approach
(Artigue, 2002; Guin et al., 2005) and introduce double instrumental genesis
(Haspekian, 2011). I will then detail the construct of instrumental orchestration
(Trouche, 2004), highlighting some of its conceptual tools and results, with a par-
ticular focus on its relation to the study of technology integration in the context of
primary school mathematics.

3.1 The Instrumental Approach

Extending Rabardel’s (1995) theory of instrumentation on the human use of tools,
the instrumental approach was developed for the analysis of technology-mediated
teaching and learning in mathematics (Artigue, 2002; Guin et al., 2005). Two ideas
used by the instrumental approach that are part of the theory of instrumentation are
the characterisation of artefact/instrument and the acknowledgement that tool use is
a two-way process. Vérillon and Rabardel (1995) distinguished an artefact as a
physical object or tool that, through human use, becomes an instrument. This inter-
action between artefact and humans builds an instrument, using a two-way process
called instrumental genesis, where the user adapts to the tool (instrumentalisation),
and the tool shapes the user’s actions or thinking (instrumentation). Before using a
digital tool in a classroom context, teachers must first engage in a personal instru-
mental genesis, similar to all learners, where the artefact becomes an instrument for
mathematical activity. In addition to this, teachers must also engage in a profes-
sional instrumental genesis, in order to construct and appropriate the artefact into a
didactical instrument for teaching mathematics. “The teacher’s professional genesis
with the tool is much more complicated as it includes the pupils’ instrumental gen-
esis” (Haspekian, 2014, p. 254). This dual process has been termed a double instru-
mental genesis by Haspekian (2011). Researchers have also studied how it is that
teachers plan for and make decisions within an instrumentalised classroom, which
I will discuss in the next sub-section.

3.2 The Construct of Instrumental Orchestration

First used by Trouche (2004), instrumental orchestration involves, “the teacher’s
intentional and systematic organisation and use of the various artefacts available in
a—in this case computerised—Ilearning environment in a given mathematical task
situation” (Drijvers et al., 2010, pp. 214-215). This may guide the instrumental
genesis of individual learners or encourage whole-class, collective instrumental
genesis.
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Table 1 A summary of whole-class and individual orchestrations
Whole-
Orchestration type | Didactical intention class Individual
Technical-demo Techniques for tool use are demonstrated by the v v
teacher
Guide-and-explain | The teacher explains or asks closed-type questions | v v
based on what is on the screen
Explain-the-screen | The teacher explains the mathematical content v
related to the digital technology
Link-screen-board | The teacher connects the mathematical ideas or v v
or link-screen-paper | representations from the technological device to the
way this mathematics is commonly recorded
Discuss-the-screen | Class discussion about what is happening on the v v
screen
Spot-and-show Student work samples are used for class discussion | ¢
and/or teaching
Sherpa-at-work A student uses the technology to present work and/ | v
or carries out teacher-directed actions
Board-instruction Teaching in front of the board with no real-time v
reference to, or use of, technology
Technical-support | Providing technical support v

Drijvers et al. (2013)

Eight instrumental orchestration types for teacher-led, whole-class instruction
and five further orchestration types used for individual students while working inde-
pendently (see Table 1) have been identified (Drijvers et al., 2010; Drijvers et al.,
2013). The teacher may decide to use teacher-centred orchestrations or ones that
explicitly invite student participation. Such decisions are part of the exploitation
modes used by teachers to benefit their teaching goals. This may include ways that
tools or tasks are introduced and engaged with, forms of user interaction (e.g., part-
ner work) or techniques developed by the students. Didactical performance, how
teachers adapt plans ‘on the fly’ while teaching, is of particular importance when
engaging in student-centred orchestrations. Things such as how to address student
input, what questions to ask and when to ask them, and solving unanticipated issues,
which Clark-Wilson (2010) terms ‘hiccups’, related to the technological tool, the
mathematical task or the students themselves are all part of the intertwined nature
of teacher—tool-mathematics ensemble.

Tabach (2011) argued that, if a lesson includes technology that is available, but
the teacher intentionally chooses not to use it, then this too is an orchestration type,
which she terms a Not-use-technology orchestration. Though Tabach (2013) noted
that Drijvers (2012) used the term Work-and-walk-by for individual orchestrations
where the students work independently, while the teacher monitors student progress
and assists as needed, she preferred the term Monitor-and-guide, an orchestration
type where students are working independently while the teacher monitors and
guides progress, either in person or through electronic feedback. Also emerging
from this research in fifth- and sixth-grade classrooms were instances where the
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teacher discussed the use of technology, but did so without the technology present.
It is termed Discuss-tech-without-it orchestration.

When applying the construct of orchestrations in a kindergarten setting in France,
Gueudet et al. (2014) identified two new orchestration types: Autonomous-use,
when children are able to use the technology independently with the teacher moni-
toring from a distance, and Supported-use, when individual children require teacher
assistance to engage either with the technology or with the mathematics itself. Both
of these orchestrations were used as ways to manage class heterogeneity and dif-
ferentiate instruction to meet individual learner needs. Also emerging from the
French kindergarten context was a variation of the Link-screen-board orchestration,
which Besnier (2018) termed a Manipulatives-and-software-duo orchestration.
Here, the teacher creates concrete manipulatives reflective of the digital technology,
which are displayed and can be manipulated to demonstrate or explain experiences
with the software.

Much of the research focused on instrumental orchestration has been situated
either at the secondary-school level (Trouche, 2004; Drijvers, 2012) or at the kin-
dergarten level (Besnier, 2018; Gueudet et al., 2014). In fact, at a digital technology
conference in mathematics education with ‘orchestrating learning’ as the central
theme, Joubert (2013) noted that there were only five out of over one hundred sub-
mitted papers about technology use related to primary schools. In addition, prior
instrumental orchestration research has typically involved either desktop software
or interactive whiteboards, rather than touchscreen technology.

I was curious about how the age of the students and the nature of the technology
influence the orchestrations used by the teacher. For example, in the two classes
I observed, there were multiple iPads available, thus allowing individual or pairs of
children to work simultaneously on their own devices, rather than needing to
observe a single, shared, digital device, such as a stationary computer connected to
a projector or a single interactive whiteboard. Additionally, the dexterity involved in
using a computer mouse productively can prove physically difficult for young chil-
dren, whereas the touchscreen affordances of an iPad make it a more easily acces-
sible form of technology for primary students.

Within the construct of instrumental orchestration, the teacher is usually posi-
tioned as the main agent in organising, arranging, adapting and managing the task,
the tool and classroom interactions. There is an underlying assumption that the pres-
ence of the tool has prompted didactic configurations and exploitations, in addition
to shaping didactic performance. However, until recently, little attention has been
paid to the agential role of the tool itself. For example, Gueudet et al. (2014) briefly
noted that their data clearly demonstrated that several of the software’s features did
influence the orchestration choices made by the kindergarten teachers, though their
research focus stated that, “Orchestrations can be considered as the choices made by
the teachers about the use of technology in their classrooms” (p. 215).

In a second example, Carlsen et al. (2016) drew on Pickering (1995) to position
the teacher, the learner, the digital tool and the mathematics (as agents) interacting
in what they termed “distributed agency”. They argued that the phrase feachers’
choices, used by Drijvers et al. (2010), “obscures the influence/agency of digital
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tools in understanding teachers’ use of digital technology in mathematics class-
rooms” (p. 15). This prompted me to pay attention to when non-intentional actions
on the part of the teacher may be driven or influenced by the tool.

The following three research questions are considered in this chapter:

1. What orchestrations, or sequences of orchestrations, does a primary school
teacher employ when using touchscreen technology (TT specifically) in teaching
mathematics?

2. How does the way in which TT materialises the mathematical concept of multi-
plication impact the pedagogical choices of a teacher?

3. How does a teacher’s professional instrumental genesis evolve while using TT as
a teaching tool?

In order to respond to these questions, I draw on the data gathered during the broader
research project described in the method section that follows.

4 On Method

As a member of the initial TouchTimes research team, I am aware of some of the
intentional choices related to TT’s design and its potential to support the teaching and
learning of mathematics. I will situate some of the research-informed design choices
within the research literature on the teaching and learning of multiplication.

4.1 TouchTimes as a Multiplying Machine

Designed to enable young children’s experiences with multiplication that are multi-
plicative rather than additive, TT (Jackiw & Sinclair, 2019) is a multi-touch, iPad
application. Children receive direct visual, symbolic and haptic feedback as they
create and transform pictorial representations of multiplicative situations on the TT
screen through their fingertips. There are two microworlds in TT, Grasplify and
Zaplify, and I will briefly describe the one relevant to this chapter, namely, Grasplify.!
Embodying the co-ordination of units in a visually singular form, in this world each
of the user’s hands becomes either the multiplicand or the multiplier. In order to
more easily visualise and better understand how the mathematics in Grasplify func-
tions in response to a user’s fingertips, this short, 2-min video demonstration, and
brief explanation of some Grasplify basics may be helpful (see video Fig. 1).
Grasplify opens with a blank screen, split in half by a vertical line (Fig. 2a).
Designed to be symmetric, coloured dots (called ‘pips’) appear on whichever side
of the screen is touched first, and remain present while the user’s fingertips are still

"For a more detailed description of Grasplify, see Bakos and Pimm (2020), pp. 148-150.
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a b

Fig. 2 (a) Initial screen; (b) pip creation

in contact with the screen (in this instance, the left side in Fig. 2b). Enclosed bun-
dles of pips (named ‘pods’) are then created by finger taps (either singly or collec-
tively) on the opposite side of the screen from where the pips are held (Fig. 3a).
Unlike pips, which require continuous finger-screen contact to remain present, pods
remain visible on the screen even after finger contact has been removed, and are
visual duplicates, both in colour and in spatial orientation, to their corresponding
pip configuration. The composition and shape of the pods adjust instantly to the
addition or removal of pip-creating fingers from the screen, unless all pip-fingers are
removed, which resets the screen (effectively multiplying by zero). The numerical
expression at the top of the screen symbolically represents the multiplier, the
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Fig. 3 (a) Post-pod creation; (b) two composite units showing what would be projected on
the screen

multiplicand and the corresponding product (Fig. 3b), and is produced in time, ele-
ment by element, and adjusts automatically as pips and pods are created or removed.

The functional and relational aspects of TT’s design were inspired by Vergnaud’s
(1983) work on the conceptual field of multiplication, which focuses on doubling,
tripling, etc., rather than repeated addition. Grasplify also embodies the co-
ordination of Davydov’s (1992) double change-in-unit process, as a unit (the multi-
plicand, represented by the pips) must first be created, before a unit of units (the
multiplier, represented by the pods) can be made. This ordering of multiplicand x
multiplier is the opposite of what British Columbian teachers (among others) usu-
ally encounter in textbooks. However, this ordering is intentional in TT and is
grounded in approaches to early mathematics based on measurement and ratio,
where the unit quantity is identified prior to the number of units. The order of factors
in TT, in which the multiplicand precedes the multiplier, is consistent with the
Davydovian approach to multiplication, where one wants to identify the unit quan-
tity before asking ‘how many units?” This approach is therefore asymmetric, in that
the chronological order of the two factors’ appearance is important. But this order
is the opposite of what is found in most of the textbooks and resources used in
Canada, where multiplication is primarily introduced through repeated addition and
where the multiplier always precedes the multiplicand in terms of the notation. The
TT design embodies alternative models of multiplication, while making the func-
tional and the change-in-unit approaches accessible to young children.

4.2 Study Context and Participants

The episodes described in this chapter took place in two primary classrooms, in dif-
ferent schools in British Columbia, Canada, during the 2019-2020 school year.
Both of the teachers involved are experienced Canadian primary teachers, with
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master’s degrees, who teach French Immersion in grade 3 or 3—4. The teachers had
volunteered to be part of a larger, multi-phase project involving the integration of
TT and the collaborative development of tasks to be used with it.

The data used in this chapter comes from phase two of the project, when the
research team (two professors and two doctoral students, including the author) were
invited by both teachers into their classrooms to observe mathematics lessons where
TT was being used. Members of the team (between two and four depending on
availability) observed and video-recorded a total of seven 60- to 90-min mathemat-
ics lessons in the two classrooms. These observations began with three visits to
Leah’s third-grade classroom in October—-November 2019. There were then two
classroom visits in Rachel’s grade 3—4 classroom in December 2019 and another
two in March 2020.

There was one video camera set up either in the corner or in the centre of the
classroom, in order best to capture the teacher-led, whole-class aspects of the les-
son. An additional camera was used by one member of the research team to record
what individual students or pairs of students were doing on their iPad while explor-
ing their assigned tasks. Field notes taken during these visits, as well as the digital
recordings of the whole-class lessons and partner work, were examined and the
episodes shared here have been chosen to illustrate each teacher’s orchestrating of
TT in their classroom and to highlight how TT has impacted these teachers.

The next sub-section draws on the data outlined above to present case studies of
these two primary teachers and the episodes have been chosen to develop a picture
of each teacher’s orchestrating of TT and to highlight the influence of the digital
technology and its presentation of mathematical ideas on the teachers.

4.3 Data Analysis

The data was analysed with two specific aims. The first was related to orchestrations
and the second concerned double instrumental genesis. Initially, I identified the
orchestration types used by each teacher and then looked for sequences of orches-
tration that were commonly used by both. Additionally, I wanted to understand how
each teacher’s professional instrumental genesis evolved while using TT as a teach-
ing tool.

I was conscious of three factors essential to my research: (1) the primary school
context; (2) the touchscreen nature of the digital technology; (3) the novelty of the
TT model of multiplication (both for teachers and for students). When examining
these sequences of orchestrations, I was also looking for lesson ‘hiccups’ (Clark-
Wilson, 2010) arising from the teacher—tool-mathematics ensemble: “the perturba-
tions experienced by the teachers during the lesson, triggered by the use of the
technology that seemed to illuminate discontinuities in their knowledge and offer
opportunities for the teachers’ epistemological development within the domain of
the study” (p. 138).
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Research based on double instrumental genesis (Haspekian, 2011, 2014) has
been carried out in the context of teaching with spreadsheets at the secondary-
school level. Unlike spreadsheets, TT is a digital tool specifically developed for
teaching mathematics with primary students. However, as discussed earlier in this
chapter, TT’s functional and change-in-unit approaches to multiplication are very
different from those with which British Columbian primary teachers are familiar.

5 Case Studies of Instrumental Orchestrations

I begin with some general-level observations about the orchestration types and con-
figurations across both classrooms. As I illustrate them, I also point out instances of
the teacher—tool-mathematics ensemble, the development of teacher professional
genesis and the impact of a lesson ‘hiccup’ in the creation of a new orchestration.

5.1 Sequences of Orchestrations

Both Leah and Rachel had access to sufficient iPads with TT downloaded onto them
for individual or pairs of students to use and were able to plug an iPad into a projec-
tor, which presented an enlarged screen image of TT on the wall for all students to
see. Rachel sometimes used an Elmo device, so that the projected image also showed
the user’s fingers maneuvering on the iPad screen.

During our team presence in both classrooms, a similar sequence of orchestra-
tions was used by the teachers when introducing a new task using TT. For example,
Leah made 1 x 2 = 2 on an iPad (a Technical-demo) that was projected onto the
screen for all to see (Fig. 4a) and asked, “What is the product?”, thereby introducing
unfamiliar mathematical vocabulary (an element of the mathematics register) to her

Fig. 4 (a) Leah’s Technical-demo projection; (b) Rachel’s Technical-demo
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third-grade students. Invoking the teacher-centred Explain-the-screen orchestration,
Leah then physically pointed out the product on the screen.

Rachel preferred to begin her lesson by gathering students on the carpet in a
group, often holding an iPad up for students to view, while demonstrating (Technical-
demo) what she wanted students to do (Fig. 4b). On occasion, she also verbally
explained the TT task using a Board-instruction orchestration where, for example,
she wrote the target products that students were to produce using TT (such as mul-
tiples of 3).

I now provide a full elaboration of the second lesson observed in Rachel’s grade
3—4 classroom, which illustrates the use of follow-up orchestrations. All students
were seated on the carpet in front of Rachel, and she began by asking them what
colour the product is. When she asked this question, she did not have an iPad in her
hands, nor one projected for students to see. Despite this, one of the students imme-
diately answered, “Blanc [white]”. Though the technology was not physically pres-
ent, Rachel drew upon student mental images of TT through this Explain-the-screen
orchestration, linking mathematical vocabulary with the colour of the product sym-
bol displayed by TT. She then explained that students were to use TT to make the
product go up by twos. A short (84-second) visual demonstration and explanation of
how to skip count using Grasplify by creating additional pods and how to skip count
by placing more pip-creating fingers on the screen can be viewed in video Fig. 5.
A brief description of the mathematical differences in these two ways of skip
counting is also included.

As students worked on the task in pairs, Rachel engaged in a Monitor-and-guide
orchestration, moving throughout the room, monitoring student progress, answer-
ing questions and providing differentiated instruction, as necessary. Once most
pairs had successfully completed the task, Rachel brought the class back together
and, using a Spot-and-show orchestration, asked a pair of students to share. The pair
chosen came to the front of the group, becoming Sherpas-at-work (Fig. 6), holding
up an iPad for their classmates to see, while demonstrating and explaining how they
had completed the assigned task.

Skip
Counting by

Pips

Fig. 5 Video demonstration of skip counting by pips (P> https://doi.org/10.1007/000-8ws)
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Fig. 6 Sherpas-at-work

While engaging the pairs in the Explain-the-screen orchestration, Rachel also
simultaneously interacted with the pair (and sometimes with the whole class) in a
Discuss-the-screen orchestration, drawing attention to the mathematics. [The tran-
script below was translated from French.]

Rachel:

Student 2:

Rachel:

Student 2:

Rachel:

Student 2:

Rachel:

Student 2:

Rachel:

Student 2:

Show us one way to count by two. [Student 1 places two pip-creating
fingers on the screen. Then student 2 creates two pods.] Wait, describe
what you’re doing. [Students remove fingers and start again.]

So, go up two. [Student 1 creates two pips.]

Those are two pips. [Points to left screen where the pips are being
created. ]

Pips.

Pips. [Nodding.]

And then we’re going to add pods here. [Student 2 adds two pods to
create 2 x 2 =4.]

Pods. [Nodding.]

We just add one and then... [Student 1 places another pip-finger on the
screen, creating 3 x 2 = 6. Then sequentially adds one, two, three more
pip-fingers from her other hand; 4 x2=8,5x2=10,6 x2=12.]
You’re adding to the pips or the pods? [Student 2 adds one, two, three
more pips; 7x2=14,8x2=16,9x2=18.]

Pips. And it makes it go by two. [Rachel assists by placing two pip-
creating fingers on the screen. 10 x 2 =20, 11 x 2 =22.]
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Rachel: So, how many pods are there?

Student 2:  Two.

Rachel: And how many pips in each pod? How many?
Student 2:  Eleven.

Rachel: Have we seen what the girls did?

Students:  [Some respond yes, and others respond no].

Rachel: Where do you add? Did you add to the pods or to the pips?

Student 2:  The pips.

Rachel: The pips. Okay, thanks. Who found another way to make the product
go up by two?

As the pair explained their method of skip counting, Rachel assisted by provid-
ing more pip-creating fingers, while simultaneously engaging in a Discuss-the-
screen orchestration, clarifying how many pips and how many pods there were. She
also specifically asked how many pips were in the pods and whether they adjusted
the number of pips or pods when making the product go up by two. In so doing,
Rachel led the pair beyond the technique used with the technology, towards a more
explicit explanation involving mathematical language related to multiplication,
while also building collective instrumental genesis by highlighting that the pair had
counted up by twos by changing the number of pips each time.

In this moment, the teacher—tool-mathematics ensemble was working in concert
and the elements were mutually influencing each other. This can be seen as Rachel
spoke to the children in terms of pips and pods, directly using the language of TT in
her instruction and merging it with the language of skip counting. It can also be seen
in the way fingers became part of the multiplicative expression. Later in the lesson,
students skip counted backwards from twenty. Rachel asked a pair who had created
5 x4 =20 on their TT screen, “Can you explain why you can count down by five or
four? If you take away one finger right now, will it count down by five or by four?”
In this instance of the tool-mathematics merger, it is unclear where the tool stops,
and the mathematics begins.

Though Rachel had taught skip counting before, during her implementation of
TT, skip counting had become a new mathematical concept, more nuanced and
complex. The concept, and therefore her pedagogical strategies (of doing it in dif-
ferent ways), have both changed. Her teacher pedagogy now includes the TT-inflect
concept. The design of TT and the manner in which additional finger touches affect
the multiplication model displayed on the screen have mathematical implications
that influence the didactical performance of the teacher. TT’s design allows for the
product to increase by two in different ways, thus providing a pedagogical opportu-
nity for Rachel, which will be discussed in more detail in the sub-section that fol-
lows. Her ability to recognise and exploit this situation, in order to support students’
instrumental genesis and mathematical learning, is indicative of her professional
genesis of TT as a teaching tool.
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5.2 New Orchestrations

In this sub-section, I highlight three new instrumental orchestrations identified in
the two classrooms. The first one can be exemplified by continuing the lesson from
Rachel’s classroom discussed above. We pick up where a new pair had just shown
another way of counting by twos, by adding successive pods.

Rachel How many pods are there now? [Points toward the right side of the
screen where the pods are. 2 x 12 = 24.]
Student 3 Twelve.

Rachel Yes, twelve. And how many pips are there?
Student4  Two.
Rachel Look at this image. [2 x 12 = 24.] How is their image different from

the image of the first pair [12 x 2 = 24.]? How is this image different?
Student 5  Because they add the pods and not the pips.

As the two students used their iPad to demonstrate and explain their method for
counting up by twos, Rachel once again engaged in a Discuss-the-screen orchestra-
tion by asking how many pips and how many pods were on the final screen. She then
pointed to the screen (Fig. 7), asking the class to look at the current image and
identify how it is different from the first one. In this instance, Rachel was engaging
in a variation of the Discuss-the-screen orchestration by referring to the visible tech-
nology and to a mental image of the previous screen shared by the first pair, which
required students to make a sequential comparison. This orchestration was used by
both teachers several times to compare different strategies and I shall refer to it as a
Compare-successive-screens orchestration.

Fig. 7 Discuss-the-screen
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This orchestration was also observed and used in whole-class orchestrations in
Leah’s classroom, though in a slightly different way. Often, with a particular con-
figuration on the screen, Leah would ask the class prediction questions such as, “If
I put one more pip-finger down, make a prediction about how the sentence at the
top will change. What is that going to look like? What are the numbers at the top
going to say?” This involves a Link-screen-board orchestration, by having stu-
dents notice the interaction among the pips and pods and the mathematical sen-
tence displayed by TT. However, it also involves a Compare-successive-screens
orchestration, where the focus is on comparing the present screen state with an
imagined future one.

In drawing students’ attention to how the pips (the multiplicand) influence the
pods (the multiplier), the Compare-successive-screens orchestration is an exploita-
tion mode used by the teacher, that once again exemplifies the emergence of the
teacher—tool-mathematics ensemble. Rachel was drawing students’ attention to the
two different ways in which multiplication was occurring in TT. In order to skip
count by twos and achieve 2 x 12 = 24 in TT, students started with two pips and
sequentially created additional pods, a strategy reminiscent of repeated addition,
whereas 12 x 2 = 24 required students to begin with a single pip and two pods.
Students then sequentially placed a second, third, fourth, etc. pip-finger on the
screen. By so doing, each additional pip ‘spreads’ across all pods (two pods results
in an increase of two with each new pip). By using Comparing-successive-screens,
both Rachel and Leah (with her predictive questions) could focus attention on the
effects of additional finger placements on the product. Rachel also chose to high-
light the different ways of skip counting by twos through the use of this orchestra-
tion. The Comparing-successive-screens orchestration occurred during both
teachers’ didactical performances, evidence of the co-implication of TT in their
ways of thinking about and teaching multiplication. TT had become a mathemat-
ics—teaching instrument.

In the following example, Leah used a specific orchestration that is related to
Link-screen-paper, where students are requested to draw a particular screen con-
figuration. Starting from the initial configuration of one pip and three pods, students
were asked to show how they could double three using TT. After students shared
their strategies for doing this, they were asked to use their mini-whiteboards to draw
what the TT screen would look like after doubling three. I see this as an important
and distinct orchestration that I will call Document-screen-on-paper; as it requires
students to reproduce various elements of the screen, as can be seen in examples
Fig. 8a, b, which included the vertical line dividing TT into two, the use of different
colours for the pips and the reproduction of those colours in the pods, and the mul-
tiplication equations, as well as some of the screen icons.

The dynamic nature of TT allows children an opportunity to create, see and feel
through their fingertips an entirely different experience of multiplication from that
produced through static images on worksheets. Once their fingers are removed from
the TT screen, however, the images vanish. Drawing is commonly used in primary
classrooms as a way of capturing and expressing ideas, and the Document-screen-
on-paper orchestration encourages students to examine more carefully the screen
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How would you use Touch Times to salve this problem?

A bunch of buttons fell on the floor. Nick
gathered them in heaps of 8 buttons. He made
5 heaps. How many buttons are there?

BA5=ko

Fig. 8 (a) Document-screen-on-paper on a mini-whiteboard; (b) Document-screen-on-
paper drawing

images that are modeling multiplication, and to replicate these in their drawings.
The shape, colour and composition of the pods (multiplier) are all important in rela-
tion to the pips (multiplicand).

A final new orchestration observed, which is specific to the touchscreen nature of
TT, arose during the whole-class orchestrations and was a result of a lesson ‘hic-
cup’. Although the iPad screen was projected, students were unable to see what the
user’s fingers were doing on the screen. This was problematic, as students could see
the results of the finger manipulations on the projected screen image, but could not
see how the fingers themselves were producing this. Leah was in the early stages of
her professional genesis, and this was an unforeseen problem. Therefore, she had to
address the students’ need to see the actions of the user’s fingers on the screen in
other ways. This sometimes involved pointing to the screen herself (Fig. 9a), asking
a child to point at the screen (Figs. 9b and 10a) and occasionally holding up an iPad
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Fig. 9 (a) Pointing to the product; (b) pointing to the array button

a
i (@ I'érain w
she W l ! Y @:: chek du !
] SR L
.

i

Fig. 10 (a) Pointing to a yellow pip within a pod; (b) Sherpa-at-work on an iPad

vertically for students to explain and demonstrate on the screen for their classmates
(Fig. 10b), in what I call a Discuss-the-finger-and-screen orchestration.

TT requires finger-screen contact to function and, as a result, there is a natural
emergence of an orchestration for Discuss-the-finger-and-screen. The mathematics
accessed through TT can only be materialised through finger—screen contact. The
importance of the fingers and the necessity for seeing them manipulating TT is an
instance of the tool’s influence on a teacher’s actions. Moreover, fingers newly
become part of how to express multiplication and how to attend to the process of
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producing a multiplicative expression, rather than just considering the result (as the
static image shows, for example, in Fig. 10a). Again, we can see the emergence of
an ensemble that performs in a way that is pedagogically, mathematically and tech-
nologically very distinct from normal practice.

5.3 Exploring the Tool-Teacher Relation

In the previous sub-sections, I have focused on documenting the sequences of
orchestrations used and identifying new ones, while highlighting that TouchTimes,
the mathematics and the teacher are not independent, but rather are co-implicated.
In this sub-section, I focus on episodes where the tool had a strong agential role.

In the first lesson, Leah introduced TT to her students by engaging in a teacher-
centred, Technical-demo to show students which button to push to enter the Grasplify
world. In the video-recording, a student is overheard asking, “the light blue?” in
reference to the colour of the Grasplify button. Leah then asked, “What do you
notice happens on this side? [Fig. 11a] What do you notice happens on that side?
[Fig. 11b]”. She demonstrated few features of the technology, only showing how to
create a pip and pods. Though the images on the iPad screen were projected, stu-
dents were unable to see what Leah’s fingers were doing (Fig. 11c). Her instructions
were to play with and explore the technology, and to pay attention to what happens
at the top of the screen when lifting, moving or adding a finger.

Students began their individual explorations on their iPads. Early in the explora-
tion, a student asked a question. Leah stopped the class and asked the student to
share her question, which was: “I was wondering if you can do... because there’s
always like, one times something, but I was wondering if you can do zero times
something?” Rather than answer the question, Leah used it as an example of a ‘won-
dering’ that could emerge while playing with TT, and requested that students record
their ‘wonderings’ on their mini-whiteboards.

In this excerpt, I see a coming together of disparate elements that occasioned the
taking up of this particular student ‘wondering’. Leah’s purpose for the lesson was
clear: “I want you to play with what happens when”. She did not intend to discuss

Fig. 11 (a) Creating a pip; (b) creating a pod; (¢) screen projection
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the issue of multiplication by zero and was likely surprised when a student won-
dered if it was possible to obtain O on the pip-making side of the screen. This
instance of a lesson ‘hiccup’ was prompted by TT.

The multiplication symbols, in which a and b in the expression a x b both can be
any numbers, brush up against the physicality of TT, in which there is no possible
unit of 0, since one cannot touch the screen zero times. Though this ‘hiccup’ pro-
vided an opportunity to discuss multiplying by zero, which is generally not addressed
in teaching approaches that rely on repeated addition, Leah chose to stay with her
original lesson purpose, which was to familiarise students with the technology. The
question was used as an opportunity to validate the act of ‘wondering’, positioning
her as a teacher who invites open questions. It also concretised TT as a whole-
number multiplying machine and provided a clear moment in which the character-
istics of the tool destabilised the teacher.

5.4 The Order Matters, So Language Matters Too

During her professional instrumental genesis, Leah was engaging in a process of
instrumentalisation where she “instrumentalised the tool in order to service didactic
objectives” (Haspekian, 2014, p. 253). As she became more familiar with TT and its
design, her thinking about multiplication and the language she used in reference to
multiplicative notions began to transform.

When first introduced to TT as part of the research project in 2018, Leah
described the app as “backwards”, explaining, “because when I'm teaching it, [...]
always the multiplication is the groups-of, not this five times. For instance, if I am
doing three times four, I would expect three groups-of four to show up (Fig. 12a),
but four groups-of three is showing up for three times four” (Fig. 12b). Although not
experienced during a lesson, this ‘hiccup’ was clearly triggered by the design of TT
and throughout the first year of the project, Leah returned to this idea multiple
times. She described showing TT to other teachers, who agreed that, “It’s [...] the
opposite way that the app is looking at it than some of us are used to teaching it”” and
she referenced the textbook where, “the multiplication is always groups-of. But the
app is [...] the opposite.” Leah’s discomfort with the order of the multiplier and the

Fig. 12 (a) TouchTimes model of 3 x 4; (b) ‘groups-of” model of 3 x 4
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multiplicand in TT was prompted by the technology and, when using TT, she had to
think about and understand multiplication differently herself.

A year later, during one of our observational visits in Leah’s classroom, this issue
spontaneously arose during her teaching while TT was projected onto a screen.

Leah If we think of a pod of whales, is there more than one? It’s a group,
right? So, the pods, if you think of a pea, with a pod, a pod of peas
with all the pods. There’s more than one in it, it’s a group of things.
Oh, I don’t want to use that word. [Laughs and looks towards the
research team. ]

Researcher  It’s okay.

Leah It’s a collection of things. It’s more than one. Right?
Student Why don’t you want to say [...] groups-of?
Leah [Leah looks to the research team.] Before Madame started

TouchTimes, I was stuck on calling multiplication as being groups-of.
But we don’t always want to be thinking about multiplication that
way. And TouchTimes helps us start thinking about it in a different
way, so I'm trying to avoid that language that I'm using and change
the way we look at it. I'm learning that as I go along.

This illustrates how TT influenced her thinking about multiplication and offers
an example of Leah’s personal genesis interfering with her professional genesis.
Initially, it was the multiplicand followed by the multiplier in the expression dis-
played at the top of the screen by TT that drew her attention towards how she
thought about and taught multiplication to her third-grade students. Multiplication
was no longer solely about ‘groups-of’ the way it previously had been for Leah.
In reconciling her thinking about this mathematics, it also changed the language that
she was using in reference to multiplication with her students.

In interviewing Leah in early March 2020, she shared her curiosity about student
thinking in relation to the ordering in TT and whether the order mattered to them.

Leah Yeah, and then I said, “Is seven times one the same thing on
TouchTimes?” [Fig. 13a] And of course, because of com... how
I always say it in French, commutative... commutative property. They
all said, well it’s the same thing. And I said, “But does it look the
same thing?” So, then I put, okay, one times seven on the board. [Fig.
13b] “Make that on your TouchTimes. What does that mean on
TouchTimes? Talk to me in TouchTimes language.” It was funny how
a lot of kids went, “Well, it’s one group of seven”. Finally, one kid
pipes up, “No, it’s not. It’s one, seven times.” So, it was so fascinating
because it made them LOOK at that. [...] Some of them got confused
by that, but we changed it with two. If you change it with that you’ll
see. There you go. There’s two, seven times [Fig. 13c].

During one of our classroom observations, Leah could be overheard in the video-
recording, explaining to a research team member that her students were, “okay with
the order”. Curious to know more about her thoughts relating to this comment, in
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Fig. 13 (a) 7 x 1;(b) 1 x7; (c) 2, 7 times

my interview with her I shared the video clip containing this comment and asked her
to elaborate further.

Leah That’s not the old-fashioned group-of. [...] Do you want to know
what I meant by that? Was... I’'m still trying to go, this whole groups-
of thing, the way the order of the sentence is. Which still, people I've
showed it to can’t get past it. But the kids are okay with it. It’s work-
ing for them, this five times. So why are we so stuck on it? Right?
That’s what I meant by it. See the kids are okay with this, they’re
learning, they’re understanding it.

Sandy Okay and so what prompted the comment?

Leah Because I was amazed that that child did it exactly how TouchTimes
would do it, without even a flinch.

Leah’s prior way of thinking about and teaching multiplication was primarily
based on thinking of 7 x 2, in terms of repeated addition, that is as seven groups-of
two. In TT, multiplication involves units of units, and therefore here it is a unit of
seven, taken two times. Given the intertwined nature of teacher—tool-mathematics,
the multiplicand x multiplier model used by TT created a ‘hiccup’ for Leah. Not in
her lesson per se, but in her own understanding of multiplication. This significantly
affected her personal genesis of TT, though it did not prove to be a barrier to her
professional genesis (nor to the students’ explorations themselves). It is striking that
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Leah was able to instrumentalise TT to serve her didactic objectives and proceeded
to integrate TT into her pedagogical repertoire as a way of teaching multiplication,
in spite of her own difficulty with the multiplicand x multiplier design of TT being
the opposite of repeated addition approaches.

When sharing her continued difficulty with this ordering, Leah brought up com-
mutativity, though repeated addition as a model does not offer a way of understand-
ing commutativity. In trying to reconcile, for herself, that the order of TT should not
matter, Leah drew upon her knowledge of the commutative property. Though the
product will be the same for a x b and b x a, in Grasplify the emphasis is not on the
product itself: rather, it is on the creation of the pip(s) and the ‘spreading’ of the pips
throughout the pod-units. In this context, the multiplicand is not interchangeable
with the multiplier — they have differing roles — and therefore commutativity did not
assist Leah’s personal genesis of TT. What was compelling for her, however, was
the successful instrumental orchestration of TT by her students. Unhampered by a
deeply entrenched view of multiplication as repeated addition, her students easily
used the language of ‘three, five times’ or ‘five groups-of three’ for 3 x 5.

It is worth questioning whether or not Leah’s personal and professional geneses
would have evolved if she had not been part of our research project. When con-
fronted with a tool that did not conform to her accepted model and ways of thinking
and speaking about multiplication, would she have persisted with her use of TT? If
the tool and the mathematical concept both create dissonance for the teacher, does
this thwart the development of the teacher—tool-mathematics ensemble?

6 Discussion

In this section, I draw on the case studies in returning to the purpose of this work,
which was to gain a better understanding of the teacher—tool-mathematics ensem-
ble. To this aim, the previous sections have introduced some important elements and
exemplified the manner in which TT modulated the classroom practice in the case
studies examined, which I will discuss here. The scope of my study remains limited,
as I observed only two teachers who were both voluntarily part of a research project
involving the integration of TT. Nevertheless, some of my comments are not limited
to these specific cases. I first present issues that are directly linked to the mathemat-
ics as presented by TT and then discuss the types of orchestrations that emerged
from these primary classrooms through the use of touchscreen technology.

6.1 The Mathematics, the Teacher and the Tool

It is common practice for many primary school teachers to introduce multiplication
through repeated addition, and many teachers, like Leah, become firmly rooted in
teaching multiplication using a ‘groups-of” approach. The design of TT, which
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requires the multiplicand to be created by the user before the multiplier, and there-
fore the numerical expression at the top of the screen which reflects the number of
pips and pods created by the user does not match this ‘groups-of” idea. In this
instance, the digital technology itself, as well as its manner of presenting the math-
ematics, shapes how a teacher discusses multiplication with her students, as when
she refers to ‘pips’ and ‘pods’.

Leah became very conscious of using language such as ‘two, seven times’, which
matched what was visible on the iPad screen. This new way of talking about multi-
plication is significantly related to the mathematics and exemplifies the mutual
influence within the teacher—tool-mathematics ensemble. The manner in which
Leah talked about multiplication sounded one way when using TT with her stu-
dents, but it might sound entirely different when teaching multiplication without the
presence of TT. This has not been evoked in the literature (e.g., Anghileri, 1989;
Kosko, 2018; Davis & Renert, 2013) on using different representations of multipli-
cation, which are shown visually, but are not accompanied by particular language
expressions.

Additionally, both teachers used whole-class orchestrations to focus student atten-
tion on the effects of adding or removing pip-fingers to the configuration of the pods,
and linking these unitisations to the product displayed in the numerical expression.
In doing this, new orchestrations such as Compare-successive-screens, Document-
screen-on-paper and Discuss-the-finger-and-screen occurred. Though these orches-
trations could also be used at a secondary-school level, they initially emerged from a
primary-school context. The Compare-successive screens and Discuss-the-finger-
and-screen orchestrations appeared spontaneously as the teachers interacted with the
children and the ideas being shared during whole-class discussion. The Compare-
successive-screens orchestration was linked to the importance of highlighting math-
ematical ideas that emerged from TT, such as what happens when the unit is changed,
a new idea for teachers when teaching multiplication.

Having children draw mathematical ideas and images in their notebooks is also
a common pedagogical practice in many Canadian primary classrooms, and there-
fore the Document-screen-on-paper allows children to re-present the mathematics
created with their fingers using TT into their notebooks for future reference. This
directs attention to the relationship between the pip-side and the pod-side of the
screen, which is helpful for students to appreciate the co-variation that is manifested
through the colour and shape of the pips and pods. The Discuss-the-finger-and-
screen orchestration is very specific to the touchscreen nature of the technology,
where the action of the fingers is not solely instrumental (to push buttons), but is
conceptual (to express relations).

Leah and Rachel both engaged in a style of teaching where students were given
a mathematical task, provided time to explore that task (often in pairs) and then the
whole class was brought together for sharing and discussion. This is not an uncom-
mon method of teaching in Canadian primary schools. What is interesting, and
appears to be more prevalent in the primary context, is the manner in which whole-
class orchestrations occur during whole-class discussion. Rather than being domi-
nated by their teacher, primary students are situated in lead roles, sharing,
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demonstrating and discussing their findings with their peers, and the teacher assumes
a coaching role to assist in drawing out student thinking and highlighting or extend-
ing the mathematical ideas. The didactical performance of the teacher is complex
and responsive to the ideas presented by the children, the mathematical ideas that
are the focus of the lesson and the opportunities that emerge from TT and the
task given.

This also differs from the approach that was used by the kindergarten teachers in
Carlsen et al.’s (2016) study where the teachers assumed assistant, mediator or
teacher roles. In the case study excerpts provided, the situations were very much
teacher-led, with the teacher mediating basic child—technology interactions between
the interactive whiteboard and the children’s eyes and hands, as well as between the
technical and mathematical aspects of the digital tool. Though Besnier (2018) men-
tions the kindergarten teacher’s emphasis “on verbalisation in mathematics and the
idea that peer-to-peer exchanges promote learning” (p. 261), which is similar to
what I observed in third and fourth grades, the focus of Besnier’s paper is on the
kindergarten teacher’s creation of labels used on the board for children to manipu-
late and mimic the actions of the software, in the Manipulatives-and-software-duo
orchestration. Besnier does not elaborate on the interactions between the teacher
and students during this process.

One way in which the agency of TT was observed occurred through an unex-
pected student question related to multiplying by zero. This situation unfolded in a
non-intentional way, where TT seemed to prompt a novel set of actions. This is
noteworthy in that it was clearly an instance in which features of the tool had unin-
tended influence (agency) on the practice of the teacher. There was synergistic
movement amongst and between the three components of teacher, technology (TT)
and mathematics (multiplication). Although this movement sometimes arises out of
teacher choice, it is also at times energised by TT itself. There are the classroom
orchestrations that the teacher initiates because of the presence of TT. The design of
TT occasions certain ways of seeing/feeling multiplication, which also affects how
the teacher speaks about multiplication and the body (finger)-TT interaction also
prompts new orchestrations.

6.2 Types of Orchestrations in Primary Classrooms

From the outset, I expected there to be some differences between the orchestrations
used with touchscreen technology and the orchestrations previously reported using
computers or interactive whiteboards (e.g., Carlsen et al., 2016; Drijvers, 2010;
Gueudet et al., 2014). Some differences are linked to the availability of iPads, which
allows for individuals or pairs to access TT simultaneously, while others are related
to the ways in which the TT screen was shared with students during class discus-
sion. When Leah was projecting the image of the TT screen for all to see, students
were able to view the digital screen, but were unable to view the movements of the
user’s fingers on the screen (which was also significant). In order to address this
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issue, Leah sometimes had students Document-screen-on-paper, which could be
held up and shared by students during class discussion.

The Discuss-the-finger-and-screen orchestration relates both to the touchscreen
aspect of the digital technology and also to the difficulty in projecting the user’s
fingers and their effects on the TT screen. This orchestration seemed to arise spon-
taneously in Leah’s didactical performance when she specifically wanted to draw
attention to the fingers themselves, as well as the effects of adding or removing pip-
fingers related to the configuration of the pods. Given the age of the students, both
teachers sometimes brought the class together for discussion by having the students
seated on the carpet in front of them. In this way, students could hold up their iPads
for demonstration, or an iPad could be placed upright along the whiteboard ledge
for all to see.

Students both in Leah’s and in Rachel’s classrooms were observed using mini-
whiteboards to document the images on their screens. Both teachers wanted to con-
nect the finger actions on the screen when using TT with written or drawn hand
actions that brought attention to the mathematics. The difficulties with unseen fin-
gers on the projection screen and mathematical ideas vanishing with the removal of
fingers from TT are both problems that are entangled in the teacher—tool-mathemat-
ics ensemble. The solutions that emerged for these problems, however, indicate the
growing professional genesis of the teachers in their implementation of TT as a
teaching tool.

7 Conclusion

This chapter has used an ensemble approach to examine the ways in which the
teacher—tool-mathematical components mutually influence each other while pri-
mary teachers are using TT to teach multiplication. Research on double instrumen-
tal genesis and instrumental orchestrations used by primary school teachers and/or
the instrumental orchestrations used with touchscreen technology is scarce and this
chapter contributes to this area. Many of the orchestrations noted by Drijvers et al.
(2010, 2013) were also observed in these primary mathematics lessons.

Though I observed three new orchestrations (Compare-successive screens,
Document-screen-on-paper and Discuss-the-finger-and-screen) that emerged dur-
ing the use of this particular touchscreen technology in the primary school context,
I also observed ways in which the TouchTimes tool exerted agency in the classroom,
especially in relation to new ways of speaking about multiplication and paying new
attention to fingers as means to express and engage physically with multiplicative
relations. This therefore underlines the importance of studying the use of different
digital technologies, as they too may lead to specific orchestrations.
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1 Introduction

The effective integration of technology into the mathematics classroom to improve
learning poses various challenges—most notably being teachers’ participation and
expertise (Roschelle, 2006). In other words, what underpins the successful integra-
tion of technology is not only the design of the technology, but also the teachers’
levels of adaptive expertise (i.e., becoming more adaptive and more expert in help-
ing their students learn). For example, the last decade has seen an increase in teach-
ers’ adaptive expertise in using multi-representational and classroom networking
technologies for teaching mathematics (e.g., Bellman et al., 2014; Clark-Wilson,
2014); here, teachers were appropriating what were then novel technologies in their
practice and transforming their pedagogies to take advantage of multiple represen-
tations and connected classrooms to help students learn mathematics. With new
forms of technology becoming increasingly adopted in education, more research is
needed to address teachers’ personal and professional development when adapting
a technology—one that is novel to them—in subject teaching (Haspekian, 2014), as
well as to explore professional development approaches for supporting teachers’
exploitation of technology affordances in classroom practices (Drijvers et al., 2016).
Specifically, there is a need to understand how to support teachers’ realisation of the
opportunities provided by new forms of technology for teaching and learning, which
we aim to address in this chapter.

In recent years, teacher noticing has featured prominently in practice and research
for developing mathematics teachers’ capacity to interpret complex classroom situ-
ations and events (e.g., Jacobs et al., 2010; van Es & Sherin, 2002). The term,
teacher noticing, has been greatly influenced by Mason (2002)‘s work on the disci-
pline of noticing, which encompasses becoming aware of one’s practice and keep-
ing such noticing productive through interpretations and enquiry. In particular,
video-based approaches to teacher noticing can help capture the complexity of
classroom events that could otherwise be easily overlooked or unattended to, such
as critical moments of teaching and learning (Stockero & Zoest, 2013). Video-based
discussions occasion teachers to observe and interpret what was watched and allow
them to re-think their own teaching practices (Coles, 2019). When watching videos
of someone else’s teaching, teachers may realise they have experienced much of
what was happening in the videos themselves (Borko et al., 2008). In addition, the
use of videos may help teachers anticipate what they might experience in an
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unfamiliar situation, such as when teaching in technology-rich environments. As
Mason (2014) suggested, certain affordances of technology may or may not be
manifested in the classroom; aligning teacher and student attention will improve
communication of technology-in-use, and the use of videos can support teachers in
anticipating the kinds of classroom communication and activities that may be mani-
fested. Video recording of someone else’s lesson can be conceptualised as a “bound-
ary object”, which lies at the intersection of different worlds or communities, here
with the potential to be interpreted and conveyed in various ways by different view-
ers (Robutti et al., 2019). For example, Baccaglini-Frank et al. (2018) used videos
as the boundary “between the single (real) classroom communities and future,
potential classroom communities in which the activities would be realised again”
(p- 102). In line with this, one area of future research is to establish empirical evi-
dence of how to effectively engage teachers in video-aided reflections, particularly
when it comes to the kinds of noticing tasks that are facilitated in video-based pro-
fessional development (Coles, 2019; Tripp & Rich, 2012).

This study seeks to inform the processes through which teachers become aware
of, and begin to reflect on, the use of a novel-to-them technology in mathematics
classrooms. Of significance is that the teacher participants have just learned to use
the technology for themselves, but not yet in their classroom teaching; in this way,
we are interested in the participating teachers’ initial encounters with the target
technology and whether they decide to (and how they) adopt it for their future teach-
ing. In the current study, we use video-aided reflection to facilitate a noticing expe-
rience for in-service mathematics teachers to consider the potential for the
technology of “3D Pens” (Fig. 1), which enables one to draw in three dimensions,
thereby enhancing the teaching and learning of geometry topics at the primary and
secondary school level (Ng et al., 2018; Ng & Ferrara, 2020). The choice of 3D Pens
is suitable for our investigation because it is a novel technology not only for the

Fig. 1 Drawing in the third dimension with a 3D Pen
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current study’s participating teachers, but also in the mathematics education com-
munity at large. Therefore, we are interested in how the teacher participants inter-
preted what they noticed from watching the video episodes of a mathematics lesson
involving the use of 3D Pens. Previous research has shown that video-aided teacher
reflection promotes genuine engagement with students’ mathematical thinking, thus
enriching teachers’ pedagogical content knowledge (Jacobs et al., 2010). In the
present study, we extend video-aided reflections to the context of technology-rich
classrooms by taking videos of authentic 3D Pen-enabled classroom episodes as a
tool for providing rich opportunities for teachers to develop their pedagogical
knowledge; this can help hypothesise and reflect on student thinking within 3D Pen
learning activities.

Our second research goal is to provide a fine-grained characterisation of the
teachers’ mathematical and pedagogical learning in the moment of their reflection.
Extant theoretical framing and empirical work on teacher noticing have focused on
the features and actions of teacher noticing (e.g., what teachers notice, how teachers
notice) (Sherin & Star, 2011). There is lack of research that unpacks the cognitive
processes underlying teachers’ noticing activities. In the present study, we aim to
address this research gap by gaining insights into how teachers’ knowledge interacts
during noticing at a mental level. Instead of taking a possessive view of teacher
knowledge, we conceptualise teachers’ knowledge construction as a dynamic, con-
structive, and adaptive process (Fennema & Franke, 1992; Liang, 2021). Engaging
teachers in viewing and discussing lesson episodes provides a rich opportunity for
teachers to construct knowledge of student thinking and adapt their personal math-
ematical knowledge. In the following section, we discuss the theoretical perspec-
tives and constructs that enable our inquiry into teachers’ mental activities during
noticing.

2 Theoretical Framework

We adopt an epistemological perspective of constructivism that personal knowl-
edge, as the product of experiential knowing, is not a representation of objective
truth—rather, it functions and organises viably within a knower’s experience and is
idiosyncratic to the knower (von Glasersfeld, 1995). Therefore, each individual
does not have direct access to other’s knowledge but can only construct hypothetical
mental models (or interpretations) of the other’s knowledge as an observer.
Regarding the context of teachers attempting to understand students’ mathematical
thinking, because teachers do not have access to students’ knowledge, they can only
construct models of the students’ thinking. In what follows, we elaborate on the
notions of decentering and first- and second-order models that align with the central
tenets of our theoretical framework.
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2.1 Decentering

The notion of decentering can be traced back to Piaget’s work on children’s egocen-
trism and decentration, including his work on children’s socialisation and speech
development (Piaget, 1926/1959), children’s construction of space (Piaget &
Inhelder, 1948/1967), and children’s ability to separate themselves from the envi-
ronment or other objects (Piaget, 1947/2001; 1954/2013). For example, it is non-
trivial for an infant to model properties of other objects until they can decenter from
the self and conceive of the objects existing independently. Before children’s
achievement of object permanence, they believe an object does not exist until it is
perceptually available.

Building on Piaget’s work on decentration, mathematics education researchers
have adopted this construct to conceptualise decentering in the context of teaching
(Confrey, 1990; Silverman & Thompson, 2008; Steffe & Thompson, 2000a). They
defined teacher decentering as the mental action of an observer setting aside their
own thinking and attempting to understand the perspective of others. Teachers’ con-
struction of knowledge of students’ mathematical thinking requires teachers to
decenter from their personal mathematical knowledge to understand the knowledge
of the students. A decentering teacher does not assume that their students would
share the same mathematical thinking with the teacher themselves; instead, the
teacher actively constructs interpretations of the students’ thinking through interac-
tions with students and reflection on the students’ mathematical activities (Bas-
Ader & Carlson, 2021; Teuscher et al., 2016).

Moreover, engaging in decentering to understand students’ mathematical think-
ing requires the teacher to truly believe that students’ mathematical experiences,
although potentially distinct from that of the adults’, is legitimate, rational, and
valuable (Steffe & Thompson, 2000b). As Confrey (1990) stated:

Decentering, the ability to see a situation as perceived by another human being, is attempted
with the assumption that the constructions of others, especially those held most firmly, have
integrity and sensibility within another’s framework. (p. 108)

In the context of mathematics teaching and learning, this means mathematics teach-
ers need to respect students’ mathematical thinking, and here, one of the teachers’
tasks is to gain insights into the students’ mathematical realities, including how
their thinking is rational and internally viable within the students’ frameworks.

2.2 First- and Second-Order Models

It may be asked how the notion of decentering can provide analytical power for
researchers to investigate teachers’ construction of students’ mathematics. We find
Teuscher et al.’s (2016) framing of decentering through the lenses of first- and
second-order models helpful in answering this question. Steffe et al. (1983) defined
first-order models (FOMs) as “[hypothetical models] the observed subject
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constructs to order, comprehend, and control his or her experience” (p. xvi). A stu-
dent’s (or a teacher’s) first-order mathematics consists of the student’s (or the teach-
er’s) mental actions that govern their mathematical activities. Teachers do not have
access to their students’ first-order mathematics, in the same way that researchers
do not have access to the observed teachers’ first-order mathematics. However, teach-
ers (or researchers) can make inferences or interpretations of the observed students’
(or teachers’) knowledge, which can help explain the observable actions of the stu-
dents (or teachers). Such inferences or interpretations are called second-order mod-
els (SOMs)—"[the hypothetical models] observers may construct of the subject’s
knowledge in order to explain their observations (i.e., their experience) of the sub-
ject’s states and activities” (Steffe et al., 1983, p. xvi).

To recap, a teacher’s construction of SOMs requires the teacher to decenter. In
other words, a decentering teacher engages in second-order modeling to generate
hypotheses of their students’ thinking to the extent that if the teacher imagined
themselves reasoning with the mathematics in those hypothetical ways, they would
act in a similar way as the students. In contrast, a teacher who is constrained to their
FOMs operates entirely from their own perspectives (i.e., not decentering) and may
assume their students’ understandings are identical to their own or do not attempt to
discern differences in the students’ thinking.

2.3 Pedagogical Consequences of Second-Order Modeling

Upon building the SOMs of students’ mathematics, a teacher is poised to compare
the mental actions constituting their FOMs and SOMs to reflect on how students’
thinking is different, similar, or related to their own thinking. The teacher can also
compare the SOMs of different students to discern differences in those students’
thinking. These interactions and reorganisations between multiple mathematical
meanings have important pedagogical implications (see Silverman & Thompson,
2008; Simon, 1995, 2014), including task design, questioning, and responding.
Simon (2014) highlighted “the need for pedagogical theory to connect the work on
second-order models with effective pedagogical design and interventions” (p. 350).
He stated, “[p]edagogy requires knowing where one is starting, where one is going,
and how to get there” (Simon, 2014, p. 349). Knowing where one is starting, and
where one is going, necessarily implies simultaneous constructions of SOMs and
operations on FOMs. A teacher’s ability to discern nuances in the SOMs of different
students is also important when considering how to orchestrate meaningful mathe-
matical conversations in their classrooms and provide equitable learning experi-
ences for diverse students. In this book chapter, we provide empirical evidence that
teachers’ SOMs and FOMs are indeed necessary, and meaningful, to motivate peda-
gogical considerations sensitive to student thinking.
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3 Methods

3.1 Participants and Study Context

The qualitative and in-depth nature of our research necessitated that we only recruit
four (three male and one female) teachers to participate in the study. The partici-
pants were four in-service secondary school mathematics teachers—Denny, Sam,
Denise, and Michael (pseudonyms)—whose teaching experience at the time of the
study was one, four, seven, and 10 years, respectively. They were selected due to the
range of teaching experience they represented, and they had provided consent to
take part in the study upon a call for participation from the first author’s networks of
in-service mathematics teachers in Hong Kong.

The current study is situated within a larger, design-based research project which
explored the technology-rich teaching and learning concerning a specific form of
emergent technology: a handheld 3D Pen. It features a collaboration between the
first author and the four participants that concerns pedagogical innovations for con-
structionist learning (Ng, 2020; Papert, 1980), with 3D Pens as the technological
media. Given the ability to construct a 3D diagram and manipulate the constructed
3D model, we anticipated that the 3D Pens might be useful in the learning of school
mathematics, where many topics involve perception of space and the visualisation
and manipulation of shapes. Hence, the larger design-based research intended for
the teacher participants, in collaboration with researchers, to create a series of math-
ematics lesson plans integrating 3D Pens, to be implemented by the participants in
their classrooms. We achieved this in four monthly project meetings, during which
the participants tried out the use of 3D Pens and discussed suitable topics that com-
plemented their use in mathematics classrooms (Project Meetings 1 and 2); watched
videos of a lesson with 3D Pens “in action” and discussed refinements of the
watched lesson (Project Meeting 3); and designed 12 secondary mathematics lesson
plans that integrated 3D Pens for future implementations (Project Meeting 4). To
date, two of the four teachers have implemented their designed lesson plans in their
classrooms upon the four project meetings. As aligned with the research goal to
analyse the teachers’ emerging knowledge of utilising the 3D Pens for their class-
room teaching via constructing first- and second- models of students’ mathematics,
the data source analysed in this chapter was derived from Project Meeting 3, in
which the participants engaged in the designed video-based noticing activity.

3.2 The Video

The participants watched a video of a Primary 5 (ages 11-12) mathematics lesson
featuring the use of 3D Pens in the learning activities. We considered the video for-
mat to be suitable because watching videos of someone else’s teaching has
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been found to be effective for teacher participants to evaluate aspects of the videos
(Nickerson et al., 2017). Moreover, the choice of a Primary 5 lesson was to enable
the participants to relate to their own context of secondary mathematics, without
having explicit impressions of what their own lessons might look like. Indeed, there
were numerous secondary mathematics topics that required strong visualisation of
3D shapes and space, such as those captured in the video. The selected video high-
lights the integration of 3D Pens for teaching and learning the “properties of prisms”
(Hong Kong Curriculum Development Council [HKCDC], 2015), namely, the num-
ber of bases, lateral faces, and the total number of faces in a prism. In the local
context of Hong Kong, this topic has been approached with or without (virtual)
manipulatives by teachers and has been emphasised numerically (i.e., how many)
rather than relationally (i.e., what are the properties). The video captured a Primary
5 lesson taught by an experienced classroom teacher who had jointly prepared the
lesson plan with the first author. Hereafter, we refer to this teacher in the video as
the instructor to differentiate him from the participating teachers.

The main learning activity in the lesson was using the 3D Pens to work in pairs
to construct two rectangular prisms and two triangular prisms, one of each by each
student in the pair (see Fig. 2a). Finally, the classroom teacher led a whole-class
discussion about the target properties once the students had constructed the 3D sol-
ids (see Fig. 2b,c). Table 1 outlines the nine video episodes compiled into a 13:54
video segment, as well as the camera focus of the episodes. We chose these nine
episodes because they chronologically captured key moments of the lesson, namely,
the introduction, the learning activity with the 3D Pens, debriefing about the activity
and the conclusion. They were taken from different camera foci (whole class and
individual students) in order to capture teaching and learning from both general and
fine-grained perspectives.

(@ ®) (©)

Fig. 2 (a) A student drawing a triangular prism with a 3D Pen (captured in Episode 2); (b) a final
product made by the student (captured in Episode 3); and (¢) the instructor leading a class discus-
sion on the properties of the prisms (captured in Episode 8)
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Table 1 The number and length of video episodes as they relate to different parts of the
mathematics lesson with 3D pens and camera focus

Length of selected
Lesson parts in chronological Corresponding episodes (in
order episode number [min:sec]) Camera focus
Whole-class discussion on 1 [00:40] Whole class
naming prisms
Paired students drawing prisms 2-6 [01:20], [01:42], Individual
with 3D Pens (see Fig. 2a) [01:43], [01:13], students at their
[02:06] desks
Whole-class discussion on the 7 [01:44] Whole class
properties of the solids drawn
(see Fig. 2b—c)
‘Whole-class discussion on 8,9 [02:18], [01:08] Whole class
generalising the properties
Total length:
[13:54]

3.3 Video-Based Semi-structured Interviews

The method of video-based semi-structured interviews is suitable for examining
teachers’ mathematical and pedagogical learning during noticing because it enables
teachers to view and reflect on unique instructional moments. During Project
Meeting 3, the four teacher participants and two researchers (the first author and her
collaborator, named R1 and R2 in the transcript, respectively) watched the afore-
mentioned nine video episodes. After each episode was played on a large projected
screen, the two researchers each conducted a semi-structured interview with their
assigned pair of participants. The first author worked with Denise and Michael in
one group, and the other researcher worked with Denny and Sam. The prompts used
in the semi-structured interviews were drawn from Mason (2002), who argued that
two requirements exist for professional noticing. The first requirement is to create
an “account of”” an event, that is, to reconstruct step by step what the participants
saw and briefly but vividly describe some events in the video. The second require-
ment is to “account for”, that is, to offer an interpretation, explanation, value, judge-
ment, justification, or criticism of the accounts. Two video cameras were placed in
the room to capture the teachers’ verbal and nonverbal communication as they
described and reflected on what they noticed from watching the episodes. The
video-based semi-structured interviews lasted for 80 min.

Following the video-based semi-structured interviews, the participants spent
15 min individually refining the lesson that they had just watched by annotating or
making notes on the printed lesson plans the instructor had prepared. Then, the
group of four teacher participants and the two researchers engaged in a 15-min dis-
cussion about the specific details of their lesson refinement and the justifications for
their decisions. The aims of the study reported in this chapter do not warrant a report
on the teachers’ lesson-refining activities in detail. However, we did include some
statements made during the lesson-refining session to support our claims about the
teachers’ FOMs and SOMs.
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3.4 Method of Analysis

The interviews were videotaped, transcribed in full, and analysed according to the
teacher participants’ verbal statements and hand movements, that is, we attended to
the participants’ discourse to infer the areas and processes through which the teach-
ers gained mathematical and pedagogical insights in relation to teaching with 3D
Pens. As an example of our analysis, we iteratively watched the data obtained from
the video-based interviews and lesson-refining sessions to generate and refine
descriptions of the mathematical meanings constituting the participating teachers’
FOMs and SOMs and how these models influence their pedagogical thinking.

In our first pass of the data, we focused on identifying the instances where the
teachers discussed their own mathematical thinking and the observed students’
mathematical thinking. This involved us excluding statements about classroom
management, classroom environment, and communication and tasks that were non-
mathematical. For example, the statements of “[the instructor] did something related
to classroom management...” and “I also think that it is really difficult to engage
two people in one task using one Pen” were considered non-mathematical state-
ments. Our second pass focused on constructing SOMs of the teachers’ thinking.
Regarding each selected instance, we wrote inferential and descriptive memos of
the teachers’ mathematical thinking and the teachers’ interpretations of the stu-
dents’ thinking. We inferred that a teacher was operating on their FOMs when they
discussed how they would act or think regarding a mathematical situation, and we
inferred a teacher was constructing their SOMs when they discussed their interpre-
tations or explanations of the students’ actions. Meanwhile, we inferred and
described the interactions of a teacher’s SOMs and FOMs when the teacher com-
pared their own mathematical thinking to their inferences of students’ thinking, or
when the teacher compared different students’ thinking. We alternatively tested,
refined, and stabilised our inferences as we continued to find supporting or non-
supporting evidence of those inferences. During the final pass, we reviewed the
transcripts following each selected instance and identified additional instances that
captured the teachers’ discussion on pedagogical decisions that were sensitive to
their FOMs and SOMs. These efforts enabled us to re-include some instances that
were excluded in the first pass of the data, affording us insights into the consequen-
tial pedagogical thinking of the teachers in relation to their construction of and
operation on FOMs and SOMs.

4 Results

Our focus on teachers’ second-order modeling and the pedagogical potential of
their modeling activity led us to characterise the four teacher participants’ reflection
in relation to three episodes: Episodes 3, 4, and 6 (in which pairs of students were
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creating prisms with the 3D Pens). Specifically, we discuss the mathematical mean-
ings constituting these teachers’ FOMs and SOMs, along with how these meanings
and their interactions were situated in their viewing of students’ constructions with
3D Pens and were generative to their pedagogical thinking. We illustrate three
vignettes: first, we discuss a teacher’s pedagogical thinking based on his FOMs;
second, we discuss a pair of teachers’ constructions and comparison of SOMs with
respect to two groups of students and conjecture the pedagogical potential of such
constructions; finally, we discuss three teachers’ constructions of SOMs (as well as
the interactions between SOMs and FOMs) and their pedagogical thinking sensitive
to those models. We note that our goal is to illustrate the multiple ways teachers may
engage in video-aided reflection on the teaching and learning with 3D Pen construc-
tion, but not to make any value judgement on those different approaches.

4.1 Vignette 1: 3D Pen Constructions with Varying Sizes

After watching Episode 3, which offered the participants a video clip of the paired
students’ geometric construction with the 3D Pens, Denise and Michael discussed
the size of the drawings created by the students. In this discussion, Michael noticed
that some students’ solids were very tiny. He commented that, “it is better if the
teachers could ask his students to draw a larger solid” since it would make the con-
struction process easier and the properties of the solid more apparent. Following up
on Michael’s comment, Denise suggested that maybe the teacher could indicate in
the worksheet the exact size of the solid the students were supposed to produce.
Michael disagreed and said:

Michael: I don’t think [the size] should be exact. It’s because in terms of the shapes, if the
shapes are different sizes at the end, if you look at them, it shows some kind of mathemati-
cal concept [...] I think to show them to all students, if they are of different sizes, it can help
with the mathematical concept, I think.

In the above quotation, Michael suggested that although it might be helpful to ask
students to draw bigger solids, it was unnecessary to require students to produce
solids of an identical size. On the contrary, allowing students to use the 3D Pens to
produce solids of varying sizes would be helpful for the students to relate to the
“mathematical concept”. We interpreted that by “mathematical concept”, Michael
was likely referring to the general structure and property of the solid, namely, the
variations in the solids’ size could afford students’ discussions on the common
properties held by multiple solids. We acknowledge that we were constrained by our
interactions with Michael and that we could not further confirm our interpretation
of his meaning of “mathematical concept”. Regardless, we claim that Michael was
primarily operating on his FOM instead of SOM when making his statements.
Namely, from his own perspective, he could see the general properties and structure
of solids of varying sizes, and thus, he considered the pedagogical decision of
allowing students to draw in any size as being significant. We do not find evidence
that this pedagogical consideration (including the rationale he provided) had its
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basis in his SOMs of the students’ mathematical activities. However, we do not
intend to suggest that Michael’s reasoning was deficit merely because his pedagogi-
cal reasoning was FOM-based. Rather, he demonstrated a nice example of taking
into account the use of 3D Pens to consider how to leverage the advantage of this
tool to advance students’ mathematical reasoning.

4.2 Vignette 2: Straightening the Edges with 3D Pens

Next, we discuss how Sam and Denny, instead of operating on their FOMs, engaged
in constructing and comparing the SOMs of two groups of students. Episode 6
depicted two groups of students’ activities after completing a triangular prism with
3D Pens. Denny discussed the differences he noticed between the two groups:

Denny: I noticed some students used scissors to cut the extra material [see Fig. 3a]. The first
group of students were very happy after they drew the small triangular prism [see the stu-
dents’ final products in Fig. 3b]. And then the boy in the second group was persistent in
making the lines straight, like making sure that those sides were parallel [see the students’
actions in Fig. 3¢ and their final product in Fig. 3d]. My interpretation is that maybe differ-
ent students had different foci. some may be satisfied by just completing the shape of the
prism without paying attention to whether the lines were parallel.

Fig. 3 (a) A student cutting the extra materials at the vertex upon completion of a prism, (b) the
final products of one group of students, (c) a group of students straightening the edges of a prism,
and (d) their final product
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Sam: I think the student understood that the sides of a prism should be straight and that they
cannot be messy. Otherwise, if the [two bases] were different, it was not a prism. They
might not say this explicitly, but at least they had the concept.

R2: So you think they had the concept?

Sam: Yes. That’s why he knew he should make the lines straight, and the angles had to be
one point, which was a good thing.

In the above transcript, Denny and Sam mentioned that one group of students
made efforts to straighten the edges of their prism and cut away the surplus materi-
als at the vertices. They inferred that these students considered parallel sides and
uniform bases as the critical features of a prism, while the other group of students
might lack such understanding. We consider this to be an evidence of Denny and
Sam constructing SOMs of those students; they considered specific student actions
associated with their 3D Pen construction (e.g., drawing, straightening, and cutting)
as indications of their underlying mathematical thinking. We conjecture that Denny
and Sam’s interpretations of students’ technology-rich learning would have impor-
tant pedagogical potential in their future teaching. For example, we can envision
them reinforcing the ideas of parallel-ness, vertices, and uniform bases when sup-
porting students’ 3D construction of prisms.

4.3 Vignette 3: Two Ways of Constructing and Perceiving
a Triangular Prism

We now turn to providing analyses of how the participating teachers not only shift-
ing from operating on their FOMs to constructing SOMs, but also reasoning peda-
gogically based on their SOMs. We divide our discussion into three subsections.

4.3.1 “Originally I Thought He Was Drawing Something Wrong”

Upon viewing Episode 3, Denise noticed an unexpected event where she interpreted
one group of students drawing a rectangle instead of a triangular prism (see the
students’ activity in Fig. 4). In this case, she said, “Many of them were drawing
triangular prisms, but one group was not.” The researcher then asked, “Is it possible
to draw a rectangle first?” Denise hesitated to respond. We infer from Denise’s
utterances that she considered the students could not have been drawing a triangular
prism by first drawing a rectangle. In comparison, Michael interpreted that the same
pair of students were trying to construct a rectangular prism (as opposed to a rect-
angle) because he noticed them drawing extra edges on top of the rectangle (also see
Fig. 4). Similar to Denise, he concluded that the students were not drawing a trian-
gular prism as instructed by the instructor. We argue that at this point, both Denise
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Fig. 4 Two students initially drew a rectangle during the construction of a triangular prism

Fig.5 Denise’s gestures of (a) drawing a triangle and (b) drawing the triangular prism in a vertical
orientation

and Michel were primarily operating on their FOMs and were interpreting the stu-
dents’ actions as contra-indications of those FOMs.

As the conversation progressed, Denise conjectured that “perhaps he is drawing
arectangle first and then a triangle”. She repeatedly described her imagined process
of drawing one rectangle and then drawing two triangles on opposite sides of the
rectangle (see her gestures in Fig. 5a). Here, we interpreted that Denise started to
construct SOMs of the students’ thinking, namely, she was hypothesising a way of
thinking that could explain the student’s actions of drawing a rectangle. Recall that
initially, she considered these actions to be contra-indications of her own thinking
without decentering, whereas here, she was able to infer the underlying rationality
behind the students’ actions. Having re-enacted the drawing with her hands, Denise
continued to comment with enthusiasm that this way of drawing with 3D Pen was
better because “the triangles would stay sturdy no matter how long the horizontal
edges were” and that if drawn otherwise (see her gesture in Fig. 5b), “it’s going to
fall easily”. A few turns later, she said that “she had never thought we could draw it
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in this way” and that “originally I thought he was drawing something wrong...or
something else”. Denise’s discussion on the affordance of the students’ way of
drawing suggested that she considered it a viable way of drawing that should be
valued despite its novelty. This is evidence of her decentering from her personal
mathematics to truly engage with the students” mathematical thinking as she herself
would think in their position.

4.3.2 “Why Did He Do That, and What Was He Thinking?”’

Following up on Denise’s comments, Michael also conveyed his appreciation and
curiosity for the students’ construction with 3D Pen:

Michael: [The teacher in the video] didn’t teach them how to draw it. [The student] just
discovered [it] himself. (...) I mean I was thinking about it just now; if I draw a triangular
prism, I'd draw a triangle first and then draw this [see Fig. 6a—b]. I"d make sure this and that
are the same, so I’d draw a uniform base first, this thing first [pointing at the diagram; see
Fig. 6¢]. So, thinking in the other way, I found the students” way of drawing very interest-
ing. Why did he do that, and what was he thinking? That’s what I was actually thinking.

Michael described how his personal way of drawing a triangular prism was dif-
ferent from the students’ way of drawing (i.e., drawing a triangle first versus draw-
ing a rectangle first). Here, he was simultaneously operating on his FOM and SOM
and comparing them. It is also noteworthy that such a comparison motivated Michael
to be inquisitive about the students’ intention and thinking (e.g., “Why did he do
that, and what was he thinking?”).

Later, Michael discussed that the students’ unique way of drawing the prism with
the 3D Pen might be underpinned by a different way of perceiving the shape:

Michael: I was thinking that when he was constructing the shape, his concept of the shape
governed his way of construction. (...) If we try to trace back what he was thinking from his
drawing, he was probably visualising the shape in that way. (...) In terms of cognition, he
was thinking differently from other students, but I don’t think we can judge it as being
good or bad.

Fig. 6 (a-b) Michael sketching his way of drawing a triangular prism on paper; (¢) Michael ges-
turing over the shaded region while uttering, “I’d make sure these are the same” and then over the
dotted region when uttering “I’d draw a uniform base first, this first”
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In the above quote, Michael claimed that the student’s actions of constructing the
prism implied how he imagined a triangular prism. That he could look beyond the
students’ physical actions of drawing to infer the students’ perceptions of the solids
was an important benchmark for engaging in second-order modeling. His last state-
ment also indicated that he valued such a novel way of thinking without judging it
as “good or bad”.

To sum up, we argue that both Denise and Michael shifted from primarily operat-
ing on their FOMs and not decentering to constructing SOMs of the students’ math-
ematics through decentering. This shift had important mathematical outcomes for
both teachers. Recall that using 3D Pens to construct geometric shapes was also a
novel experience to these participating teachers. It is not surprising that students
may use 3D Pens to create drawings in diverse ways, and it is understandable that
teachers who lack personal experience of using this tool may not be able to exhaust
different construction approaches solely based on their FOMs. The cases of Denise
and Michael suggested that second-order modeling had served as an avenue to
enrich these teachers’” FOMs as they conceived of the students’ way of constructing
a geometric shape as an additional viable construction approach. In the follow-
ing sub-section, we move to discussing the teachers’ pedagogical reasoning based
on their second-order modeling activity.

4.3.3 “They Might Struggle to Understand.” ““The Instructor
Could Have...”

In our interactions with Denise during the lesson-refining phase, we observed that
she built on her SOMs to make pedagogical decisions. She commented on the
instructor’s inability to address different drawing methods and suggested that a
classroom discussion should be facilitated:

Denise: Some people had drawn the lateral faces first and then the base, and [the instructor]
completely ignored that group as if he didn’t see it. So, I feel that here, the instructor could
have talked a little bit about why the students drew in these ways, and so forth.

Denise commented that the instructor was not sensitive to the students’ diverse
ways of drawing and that he could have built upon the students’ different ways of
thinking instead of ignoring them. She considered it valuable to have a discussion
with, and among students about the different ways of viewing or positioning a trian-
gular prism. Here, we highlight that Denise’s emphasis on responding to the stu-
dents’ ways of thinking was contingent upon her SOMs of the students and valuing
the students’ thinking, as we previously discussed. In contrast, we hypothesise that
it is unlikely that the instructor in the video had engaged in second-order modeling
as had Denise. This instance suggested the pedagogical potential of teachers’
engagement in second-order modeling through the processes of watching, and
reflecting on, teaching videos.

Another teacher participant, Sam, also generated hypotheses to explain the same
group of students’ drawings and commented on the potential consequence of the
students’ thinking:
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() (b)

Fig. 7 Sam’s gestures of (a—b) laying down a solid and (c—d) placing a solid upright

Sam: I noticed they lay down the solid [gesturing from Fig. 7a to Fig. 7b] and drew the
lateral face first. This might be due to the lateral face being bigger, and they treated it as the
base instead [gesturing similarly to Fig. 7b]. (...)

R2: Do you think this method of drawing would influence their conception of the prism?

Sam: I doubt that they had the intention of making the prism stood upright [gesturing a
rotation of 90 degrees with his hand; see Fig. 7c and Fig. 7d]. Consequently, their conception
of the prism might be different because if they treated the lateral face as a base, they might
struggle to understand, very difficult to understand.

From Sam’s words, we interpreted that he was hypothesising how the students
who produced the prism by drawing the rectangular face first would struggle to
perceive the triangle as the base. Specifically, these students would treat the rect-
angle as the base of a prism because location-wise, the rectangle was sitting at the
bottom from their perspectives. This way of positioning and perceiving the prism
was contrasted with his FOM that a prism was constructed upright with a triangular
base. Sam was simultaneously constructing and comparing his SOM of the stu-
dents’ technological activities and his FOM. As such, he was able to anticipate the
potential mathematical consequences of the observed student actions with 3D Pens
given the mismatch between his own thinking and the students’. We consider Sam’s
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reasoning as having important pedagogical potential; if he were to encounter a simi-
lar phenomenon in his instruction, he could enact pedagogical moves to facilitate
students’ discussion on what should be considered a base and lateral face and clarify
the conventional definitions of each.

5 Discussion and Conclusion

5.1 Video-Aided Reflections of Teaching and Learning
with 3D Pens

To restate, the teachers in the current study had never used 3D Pens in a lesson
before; hence, by viewing the videos, they were able to see the authentic teaching
and learning episodes that occurred in the lessons that integrated the 3D Pens.
Unlike prior studies in which the teachers realised that they had experienced much
of what was happening in the videos themselves (Borko et al., 2008), the teachers in
the present study used the videos to anticipate what they might experience in an
unfamiliar situation. The teachers’ discourse has shown to be multimodal, as they
often re-enacted their imagined drawing process with 3D Pens, either through ges-
turing or diagramming on paper. This suggests one affordance of using video-aided
reflections. That is, it enables teachers to experientially construct multimodal FOMs
associated with novel technology use.

Moreover, video-aided reflections support teachers to go beyond operating on
FOMs to become observers of someone else’s activities and constructing SOMs of
others’ thinking (i.e., becoming more decentered from FOMs). As shown in our
findings, the teachers attended to students’ nuanced actions of 3D drawing, ranging
from the hand movements with 3D Pens to the size and orientation of the final prod-
uct. Importantly, the videos captured the process of students’ drawing with 3D Pens
in addition to merely the final product. These dynamic actions of 3D drawing would
not have been accessible to the teachers if only students’ static written work or final
product had been used to facilitate the reflection. Besides, the captured processes
are likely not fully accessible to teachers in the moment of their teaching, consider-
ing a typical teacher-student ratio in mathematics classrooms. With regard to teach-
ing and learning with 3D Pens, having access to students’ construction process is
not only beneficial but also essential for teachers’ constructions of fine-grained and
explanatory SOMs, as students’ reasoning is heavily conveyed by, influenced by,
and embedded within their physical actions. As suggested by the teachers’ discus-
sion on the students’ way of drawing a triangular prism horizontally, we argue that
the temporality of the 3D drawing process enabled the teachers to construct SOMs
as revealed by the students’ acts of 3D drawing.

In today’s era where multimodal and haptic interfaces are becoming an important
design consideration for educational technology, particularly in mathematics educa-
tion (see, for example, a review in Carreira et al., 2017), we imply that more research
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is needed in understanding how mathematics teachers may engage in personal and
professional development when working with these novel forms of technologies. To
this end, we highlight the value of video-based approaches to supporting teachers’
professional development in technology-rich mathematics teaching, for the oppor-
tunities it occasions for teachers to access and build models of student thinking in
technology-rich classroom contexts.

Another affordance of using video-aided reflection is that it engenders teachers’
pedagogical reasoning sensitive to their FOMs, SOMs, and technology-rich con-
texts. The results of this study did not only shed light on what teachers identified as
important and noteworthy in a 3D Pen-enabled lesson but also how they realised
certain pedagogical affordances of the 3D Pens through the course of the video ses-
sion. For example, the teachers described that the 3D Pen afforded the students to
visualise different orientations of a 3D shape and with varied sizes (e.g., Michael
preferred not to restrict the size of the solids drawn and argued that the variation of
sizes could serve to support students’ constructions of some “mathematical con-
cepts”). From this experience, they realised that certain ways of constructing with
3D Pens (and visualising the product) should not be taken as given (e.g., Sam argued
that it might not be trivial to students who constructed a triangular prism horizon-
tally to consider the triangular face as a base). Further, by being open to learning
students’ diverse ways of construction in a 3D Pen environment, they reflected on
their pedagogical moves that responded to individual student thinking for future
lesson enactments (e.g., both Denise and Sam valued a deeper discussion on the
different ways of constructing and perceiving a triangular prism).

To conclude, we suggest that videos can serve as a boundary object (Robutti
etal., 2019), serving purposes from both the teachers’ and the researchers’ perspec-
tives on pedagogies and curricular design with news forms of technology. Through
second-order modeling and associated pedagogical reasoning in the context of
video-aided reflections, teachers can learn to be responsive to students’ diverse
ways of construction with 3D Pens and to facilitate meaningful classroom conversa-
tions with students in their classrooms. Given that the participating teachers had
already used (or planned to use) 3D Pens in their classroom teaching, it would be
worthwhile to examine how they draw on this noticing experience to implement
lessons with 3D Pens as a next stage of the study.

Finally, we draw the reader’s attention to another aspect of our methodology—
the method of interviewing. The interview prompts for the participating teachers’
interpretation (accounting for) and re-collection (made accounts; Mason, 2002) of
what they saw in the video were helpful for triggering teachers’ second-order mod-
eling as well as guided their reflections of their own FOMs. This allowed the teach-
ers to become conscious of the connections they were drawing between specific
classroom episodes and the principles of teaching and learning, as well as to reason
about the observed classroom events (Star & Strickland, 2008). We encourage
future research to consider using video-aided reflections as a means of developing
teachers’ expertise in other target areas, particularly those that are unfamiliar and
not easily accessible to teachers in their everyday teaching.
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5.2 Researching Teachers’ Second-Order Modeling Associated
with Technology-Rich Teaching

Over the past three decades, constructivist researchers have used the notion of
second-order modeling and relevant methodologies to generate findings on indi-
viduals’ mathematical cognition regarding various topical areas and contexts.
However, teacher professional programmes have by and large “not been grounded
in a similarly extensive research based on the nature of teachers’ knowledge and its
development” (Doerr & Lesh, 2003, p. 128). Hence, scholars have called for empiri-
cal work on teachers’ second-order modeling to fill in this research gap (see
Kastberg, 2014; Liang, 2021; Wilson et al., 2011). To this end, our work echoes
Doerr and Lesh’s (2003) proposal of a modeling perspective on teachers’ develop-
ment and Simon and Tzur’s (1999) accounts of teachers’ practices (i.e., explaining
teachers’ perspectives from researchers’ perspectives). That is, we characterised
these teachers’ capabilities of modeling and reflections on student thinking from our
interactions with them. In particular, our work is a novel attempt to answer these
calls by detailing four in-service teachers’ enactment of their first-order mathemat-
ics, constructions of SOMs of students’ mathematical thinking, and the mathemati-
cal affordances of such constructions. As in the cases of Denise and Michael, their
constructions of SOMs served as an important avenue for their development of
FOMs about triangular prisms associated with 3D Pens construction. Additionally,
we identified three different ways that first- and second-order modeling could be
generative to teachers’ pedagogical thinking: directly operating on FOMs (see
Vignette 1), comparing SOMs of different individuals (see Vignette 2), and compar-
ing FOMs and SOMs (Vignette 3). These findings contribute to the literature on
second-order modeling and decentering by specifying the types of reasoning
involved as well as illuminating the pedagogical potential of this reasoning.

We acknowledge that our use of SOMs is loose when compared to constructivist
researchers’ common use of second-order modeling to investigate students’ math-
ematical cognition. First, second-order modeling is often conducted through sus-
tained interactions between the observer and the observed (Steffe & Thompson,
2000b; Ulrich et al., 1995). Second, second-order modeling has been considered an
ongoing, dynamic, and iterative process (Liang, 2021; Steffe & Thompson, 2000b).
An individual’s SOMs of another person are always subject to revision, confirma-
tion, and rejection based on additional observations of the observed individual’s
actions. Therefore, we expect a decentering teacher to continually develop, test, and
refine their SOMs so that these models become more stable, coherent, explanatory,
and even predictive of their students’ mathematical activities.

In the present study, we did not provide our participating teachers with the oppor-
tunity to have direct interactions with students. Instead, their construction of SOMs
occurred in the context of watching videos that captured students’ mathematical
activities in a classroom. Because of our limited interactions with the teachers, we
did not accomplish the goal of capturing the evolution of the teachers’ SOMs either.
However, we highlight that our work is a novel attempt to apply the constructivist
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notion of second-order modeling to analyse teachers’ understandings of students’
mathematical activities in a technology-rich environment. We focus this initial
attempt on the mathematical substance constituting these teachers’ SOMs, the inter-
actions between multiple SOMs and between their SOMs and FOMs, and the teach-
ers’ consequential technology-rich pedagogical thinking. We call for continued
research along this line of inquiry, to include working with other mathematical,
technological, and educational contexts to test, refine, and supplement the findings
we have reported in this chapter.
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Abstract This chapter provides readers with a new perspective on how short, ani-
mated video clips can be used in the mathematics classroom to elicit, attend to,
discuss, interpret, and respond to student thinking. It reports on findings from a case
study conducted over one school term in collaboration with three Icelandic upper
secondary school teachers who implemented silent video tasks in their classrooms
and took active part in developing the tasks’ instructional sequence. By viewing the
tasks’ potential along the five dimensions of powerful mathematics classrooms
defined by the TRU framework (Teaching for Robust Understanding) and compar-
ing them with data from classroom observations and teacher interviews, I aimed to
identify opportunities and challenges that silent video tasks bring to the mathemat-
ics classroom. Special emphasis was put on the formative assessment dimension.
This chapter contributes to the research community’s current knowledge of the role
that short, animated videos can play in teachers’ formative assessment practices.
Results of this study confirm previous research indicating that students’ responses
to silent video tasks can give teachers valuable insights into students” mathematical
understanding and enable teachers to refer to students’ ideas in a new way in class-
room discussion. The biggest challenge created by the silent video tasks was the
delicate task of orchestrating meaningful classroom discussions based on students’
task responses.
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1 Introduction

The use of short films for the teaching and learning of mathematics has become
more common as flipped classroom approaches and resource collections such as
Khan Academy gain more popularity (Cargile & Harkness, 2015). Instructional vid-
eos used in mathematics classes are usually created by teachers, but as access to
technology for video narration and creation becomes more widespread, the roles of
teachers and students can change. For example, students can create a narrative to
accompany a silent animated video (Kristinsdéttir et al. 2020b) or become video
creators (Oechsler & Borba, 2020) and thus take on a more active role in their
learning.

This chapter describes and analyses teachers’ implementations of silent video
tasks (SVTs), in which students are asked to add their own narrative to a silent ani-
mated mathematics video, share it with their teacher and peers, and reflect on each
other’s task responses in a whole class discussion. It draws on data from the final
phase of a multi-phased design-based doctoral study that aimed to design, define,
develop, and implement silent video tasks in collaboration with Icelandic upper
secondary school teachers. From here onwards this particular phase will be referred
to as a case study. Previous research indicated that SVTs might give teachers insight
into students’ current level of understanding, and thus be useful for their formative
assessment practices (Kristinsdéttir et al. 2020a, b). Therefore, the case study
emphasis was on the further development of instructional sequences for SVTs to
support teachers’ technology-mediated formative assessment practices, and to gain
clarity on how and why teachers could, or would, use SVTs in their classrooms as
part of formative assessment practices.

The chapter focuses on the teachers’ role in the integration of video narration
technology for the purpose of assessment in mathematics. Such technology is an
important part of students’ social media culture but has hitherto rarely been utilised
for mathematics teaching and learning. The chapter aims to contribute to the math-
ematics education research community’s current knowledge (e.g., Aldon & Panero,
2020; Bellman et al., 2014; Olsher et al., 2016; Venturini, 2015; Venturini & Sinclair,
2017) related to the use of technology in assessment, with a specific focus on video
narration. The next section gives a short historical overview of the ways in which
silent video clips have been used for mathematics teaching and learning in the past.
It will be followed by a description of the research context and an introduction to the
frameworks used to analyse data.
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2 Background: Silent Video Clips for Mathematics Teaching
and Learning

Silent videos include no text, music, voice-over, recordings of classroom settings, or
human beings. They solely include dynamic representations of mathematical
objects; illustrations that change in time but never fail to stay intact with the defini-
tion and properties of the object. For example, a silent video could show a triangle
inscribed in a circle such that one of its sides is equal to the circle diameter. As the
vertex opposite to the diameter is moved along the circle circumference, its angle
remains 90°. For a student who is unfamiliar with Thales’ theorem, this might be
surprising, evoke curiosity and be worth seeking explanation for.

Despite silent videos not being interactive, in a way, animated silent films show-
ing mathematics dynamically can be seen as a predecessor of digital geometry soft-
ware (DGS), which came about in the 1980s. The use of silent video clips for
mathematics teaching and learning dates back to 1910, when the German mathe-
matics teacher Ludwig Miinch (1852—-1922) produced and screened 30 short, ani-
mated films about geometry and astronomy for his students. Twenty of Miinch’s
films are known to exist in archives, on topics such as the Apollonius circle, but they
are not accessible to the general public (Kitz, 2013).

Better known are the animated geometry films made by the Swiss teacher Jean
Louis Nicolet in the 1930s, as they were widely introduced to teachers by the math-
ematics educator Caleb Gattegno in the 1950s (Tahta, 1981). Later, Gattegno also
introduced films for university teaching made by the UK teacher Trevor Fletcher
between 1952-1979 (Tahta and Fletcher 2004). Gattegno, who was a founding
member of the Association of Teachers of Mathematics (ATM), reconstructed the
Nicolet films in colour with computer animation and underlined that they were not
merely illustrations but tools that teachers could use in many ways both in terms of
explanations and follow-up work to promote mathematics learning in the classroom
(Gattegno, 2007; Tahta, 1981). A recent example of such work is Sinclair’s use of
the Nicolet-Gattegno film Circles in the plane to invoke gestures with her students
as they studied the mathematical concept of circle by watching the film a few times
in a row, each time with a new task to imitate the video: first by talking, then by
moving their hands, and finally by drawing (Sinclair, 2016).

Silent videos differ from the majority of mathematics videos that can be found
via YouTube, Vimeo, and similar sources, in that they are not directly instructional.
Rather, they are intended to be thought-provoking. Silent videos used in SVTs are
usually less than 2 min in length and thus shorter than the Miinch, Nicolet, and
Fletcher films. Despite differences in length, all these films have in common that
they do not pose a mathematical problem to be solved. Rather, they invite viewers
to wonder, experience dynamically changing mathematical objects and think about
characteristics of mathematical phenomena shown such that they might discover
something new or consolidate previous thoughts about the mathematics shown in
the video.
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3 Silent Video Tasks

Silent video tasks (SVTs) involve the screening of a short (less than 2 min long),
silent, animated video clip on a previously studied mathematical topic. The video is
designed to invite description, explanation, and/or narrative with possibilities to
generalise mathematical ideas. Working in pairs, students are invited to prepare and
record their voice-over to the video clip. Students’ responses to the task are then
listened to, and discussed, in a whole class discussion led by the teacher. During the
discussion, teachers can ask and prompt students with the aim to approach common
understanding of mathematical concepts and properties. A vignette might help read-
ers visualise the task implementation:

We enter Anna’s classroom. She shows a one-minute video clip (see video Fig. 1) to her
16-year-old students in a remedial class. The video features a topic that they have been
working on for the past 2 weeks: Different zones of the Cartesian coordinate system (e.g.,
x > 0) are highlighted successively in distinct colours, and four points appear one after the
other. As the class watches the video, a student can be overheard commenting that there is
no sound. Anna acknowledges this observation and explains to students that it will be their
task to add the narration to the video.

“What are we supposed to talk about?”, one student asks, and Anna replies, “Whatever
comes to your mind. Imagine a blind person visiting, how would you narrate, describe or
explain to them what is going on in the video?”. She assigns students randomly into groups
of two and gives them twenty minutes to watch the video as often as they want to, whilst
they work on their recording. Some students try to fish for what Anna “wants them to say”
(without success), but others start recording after a short dialogue. Gathered back in the
classroom, Anna plays one student response after the other, stopping the playback every
now and then to ask for clarification or point students’ attention to something specific: “Did
you understand that? What do you think they wanted to say here?” and “Can you explain
what you mean by...?”

4 Icelandic Context

Throughout the research project, I worked with upper secondary school teachers in
Iceland to develop the instructional sequence of SVTs and determine their value for
teaching and learning in the mathematics classroom. There are 38 upper secondary
schools in Iceland, out of which 30 offer lines of study that prepare students for
further studies in STEM (science, technology, engineering, mathematics) subjects.
The majority of upper secondary schools are state run and those privately owned
also receive state support. Until 2015, most Icelandic upper secondary school pro-
grams were planned for 4 years, but now they are planned for 3 years, during which
learners are generally 17-19 years old. Some vocational programs require longer
periods of study.
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By adding courses to their studies, students in vocational programs have the pos-
sibility to complete the matriculation examination in preparation for entering higher
education. Although not compulsory, emphasis is placed on providing everyone
with the opportunity for upper secondary education, irrespective of their results at
the end of compulsory schooling (primary and lower secondary education are com-
pulsory). All three school levels, pre-primary, compulsory and upper secondary, are
built on the same values as stated in the national curriculum for each level—values
such as respect and care for others, tolerance, and responsibility.

Teaching methods in Icelandic upper secondary mathematics lessons are mainly
teacher centred (Sigurgeirsson et al., 2018) and although some schools use DGS,
often it is the teacher who uses the DGS for demonstration purposes rather than the
learners using it for discovery (Jonsdéttir et al. 2014). Formative assessment and
group discussions are rarely practiced in Icelandic upper secondary school mathe-
matics lessons (Jonsdottir et al., 2014).

In accordance with the Icelandic upper secondary school main curriculum from
2011, mathematics teachers suggest course descriptions to the Icelandic Ministry of
Education Science and Culture, which checks them for acceptance. From 2011
onward, the course descriptions are expected to include course objectives and com-
petencies that learners are expected to achieve. At larger upper secondary schools
where the same course is taught to many groups of learners (e.g., five groups of 30
learners each), each group having one teacher, the teachers collaborate and usually
attempt to follow the same course schedule during each semester. Despite the 2011
National Curriculum Guide’s emphasis on competencies, an ‘undercover’ mathe-
matics course schedule with ‘lists of things to cover’ exists at the majority of upper
secondary schools in Iceland. The same phenomenon was observed after a National
Curriculum change in 1999 (Hardarson, 2010).

5 Teaching for Robust Understanding in Mathematics

It is widely accepted that there is no prescribed ‘best way to teach’. By analysing
mathematically powerful classrooms (classroom environments that support stu-
dents’ mathematical learning) of various kinds with teachers applying a spectrum of
different teaching methods, Schoenfeld and his colleagues attempted to distil the
characteristics of these classrooms into a small number of dimensions that teachers
might be guided towards paying attention to. This was not to claim that one teaching
method was best, but to identify what was important to be aware of. Out of this work
came five dimensions that constitute the TRU framework (Teaching for Robust
Understanding). They are: (i) Mathematics: the richness of the mathematical con-
tent, (ii) Cognitive Demand: the opportunity for students to engage in productive



124 B. Kristinsdottir

struggle, (iii) Equitable Access to Content: that all students are involved in mean-
ingful ways, (iv) Agency, Ownership, and Identity: opportunities for students to
develop a sense of agency, make mathematics their own, and to develop productive
mathematical identities as thinkers and learners, and (v) Formative Assessment: the
degree to which student ideas are made public and responded to in productive ways
(Schoenfeld, 2018). Of course such distillation is problematic in the sense that it
puts more emphasis on some critical aspects of the teaching practice over others.
Intended to help teachers create classrooms from which students emerge as “knowl-
edgeable, flexible, and resourceful thinkers and problem solvers” (Schoenfeld,
2018, p. 494), the TRU framework, however, does not prescribe any specific prac-
tices. It only suggests that teachers become aware of and pay attention to ways (and
there are many such ways possible) in which they can improve their current practice
along the five TRU framework dimensions.

Since the TRU framework is mostly used to guide teachers’ professional devel-
opment, it was not obvious that it could be useful for the study presented in this
chapter. The idea to identify whether silent video tasks offer opportunities to teach-
ers along the dimensions of the TRU framework emerged after the data was col-
lected and in the process of its analysis. This was due to the TRU frameworks’
emphasis on conversations between teachers and students and ongoing reflection,
i.e., building up awareness of and learning from experience. The intentions of the
tasks might align well with the TRU frameworks’ dimensions, but theory and prac-
tice must grow together. Thus, data on teachers’ experiences with using silent video
tasks was analysed through the lens of the TRU framework with the aim to identify
potential challenges. Such challenges are often connected to tensions that arise in
teacher practice when social or sociomathematical norms (in the sense of Yackel &
Cobb, 1996) in the classroom are violated. Regarding the fifth dimension of the
TRU framework, I will connect to key strategies for formative assessment practices
by Wiliam and Thompson (2008) and a list of socio-technical approaches to raising
achievement in mathematics education as presented by Wright et al. (2018).

6 Formative Assessment

Malcolm Swan argued that “technology usage must move away from merely
rehearsing procedural skills (albeit with feedback) toward a usage that mirrors the
outside world; it must become a tool that changes the way we think and reason”
(2017, p. 31). After all, mathematics is about generalisations, and what varies or
remains invariant. By emphasising that, we might improve student learning of math-
ematics. Previous research indicates that SVTs might fit the description of being a
tool that could be utilised to decide about next steps in instruction (Kristinsdottir
et al. 2020a), as mentioned in Wiliam’s (2011) definition of formative assessment:

An assessment functions formatively to the extent that evidence about student achievement
is elicited, interpreted, and used by teachers, learners, or their peers to make decisions
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about the next steps in instruction that are likely to be better, or better founded, than the
decisions they would have made in the absence of that evidence. (p. 43).

For practice, Wiliam and Thompson (2008) further identified the following five key
strategies for formative assessment: (1) Clarifying and sharing learning intentions
and criteria for success, (2) Engineering effective classroom discussions and learn-
ing tasks that elicit evidence of student understanding, (3) Providing feedback that
moves learners forward, (4) Activating students as instructional resources for one
another, and (5) Activating students as owners of their learning.

The focus of this chapter is on the ways in which technology can be used by
teachers to support formative assessment practices. In Table 1, I refer to Wright
etal. (2018, p. 219), whose research defined six technology-based formative assess-
ment strategies that have the potential to support teaching and learning (see Table 1).
Previous results indicated that SVTs addressed all but the final potential listed in
Table 1, because feedback was not immediate but took place later in a follow-up

Table 1 A priori analysis of the ways in which silent video tasks addressed the potential that
technology-based formative assessment strategies might have to support teaching and learning,

framed by Wright et al. (2018, p. 219)

Technology-based formative
assessment strategies that
might support teaching and
learning

Ways in which silent video tasks addressed these potential
before the case study was conducted

Provide immediate feedback

Currently not addressed. Feedback to students is given in a
follow-up lesson 1-3 days after students work on the silent
video task.

Encourage discussion and
developing cooperation

On the basis of some selected or voluntarily played task
responses, students are encouraged to discuss and reflect on the
ways in which they understand the mathematical concepts that
are the topic of the silent video.

Provide an objective and
meaningful way to represent
problems and
misunderstandings

Possible misunderstandings uncovered in student responses can
be directly referred to and discussed as useful steps on students’
path toward understanding.

Provide opportunities for
using preferred strategies in
new ways

Teachers who want to build a culture of discussing and
collaborating in their classroom surely do not only want
students to express their mathematical thoughts in writing.
SVTs offer a way to ask for an audio response to a task, thus
bringing students’ thoughts and ideas to the forefront of the
discussion.

Help raise issues that were
previously implicit and not
transparent for teachers

For example, if students who normally do not speak up in class
(‘live’ format) take the opportunity to speak up via the
voice-over (recorded format), there might be a problem of
distrust (students not considering the classroom as a safe space
for discussion) that needs to be addressed.

Provide different feedback

outcomes

Feedback is provided to the whole class via discussion. When
needed, teachers can prepare and provide individual feedback
after the discussion finds place.
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lesson (Kristinsdoéttir et al. 2020a). However, as will be reported in more detail in
the findings of this chapter, working with teachers who had experience with using
formative assessment (referred to as FA hereafter), they emphasised the importance
of immediate feedback and changed the SVTs instructional sequence such that dis-
cussion based on students’ responses would take place immediately after students
submitted their responses.

The next section introduces the case study presented in this chapter.

7 Method

In the following subsections, I introduce the participants of the study, describe
the data that was collected, and how it was analysed. Challenges in data collection
and ethical considerations are also discussed.

7.1 Participants

As I was interested in further developing SVTs as a tool for FA, I purposefully
selected and contacted three schools that were known for their emphasis on FA to
be involved in the study. Two schools in the urban area agreed, and all teachers who
were interested were invited to join. One teacher at Blackbird (school names are
pseudonyms), a small, 16—19, urban comprehensive school and two teachers from
Mallard, a large, 16—19, urban comprehensive school (see Table 2) took part in the
project. Both schools’ policies expect students to be “active participants in their
studies”, Blackbird explicitly states in its school policy that their studies are “char-
acterised by FA”,! and Mallard emphasises “use of continuous evaluation of stu-
dents’ progress by a variety of assessment methods”. It was also considered helpful
if teachers at the schools encouraged learners’ use of DGS such as GeoGebra and
Desmos and had some familiarity with leading group discussions in mathematics
lessons.

Table 2 Participating teachers in the second implementation phase of the research project and
their teaching experience

Teacher pseudonym (gender) | School pseudonym Use of DGS Teaching experience
Andri (m) Mallard high school | GeoGebra 10 years

Edda (f) Mallard high school | GeoGebra 20 years

Orri (m) Blackbird high school | Desmos, GeoGebra | 2 years

!For participants anonymity, the corresponding school policy paper, which is presented on their
website, cannot be referred to. The quotes given here have been translated from Icelandic to
English.
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Andri, Edda, and Orri (teacher names are pseudonyms, see Table 2) who volun-
teered to participate in the study were all open to trying out new teaching approaches.
Orri was relatively new to teaching and saw both challenge and an opportunity for
collaboration in the research project. He had some previous experience with using
GeoGebra and Desmos activities in his classroom. Andri and Edda each had around
a decade of experience with using GeoGebra at Mallard. Together, they had partici-
pated in various Icelandic, Nordic, Baltic, and European collaboration projects for
professional development.

Among other teaching duties during fall 2019, Andri, Edda, and Orri all worked
with low-achieving 16-year-old students in slow-paced remedial classes of different
class sizes. They explained that these courses’ schedules accommodated flexibility
and thus suggested them as good situations in which to try out SVTs. All three
planned to use two or three SVTs over the period of one semester. It turned out that
Orri (N = 14-16) implemented three SVTs within one term, whereas Andri (N = 22)
and Edda (N = 13) implemented one SVT each. The numbers in brackets denote the
number of students, N, who were present in class during task implementation.

As compensation for their participation, I offered the participating teachers sup-
port meetings in case they were working on any changes in their practice. Orri
accepted the offer and we met six times to discuss ways to build a thinking class-
room (e.g., Liljedahl, 2018) at meetings that were recorded but not transcribed or
analysed.

7.2 Silent Videos Used in This Study

At initial meetings with Andri, Edda, and Orri, we discussed the teachers’ course
curricula and ideated to identify topics that might be visualised in a silent video.
Based on discussion and ideation with Andri and Edda, I sketched drafts and dis-
cussed ideas of three videos on the topics of coordinate geometry and linear equa-
tions. Then, based on feedback from Orri, I created the scenarios in GeoGebra and
screen recording software to finalise the videos. All three videos show the coordi-
nate system with (0,0) at the centre; the x- and y-axis marked with numbers. The
videos were designed intentionally to point students’ attention to details in the defi-
nitions (characteristics) of the mathematical phenomena in focus. The videos were
intended to be used for assessment, but they could also be shown at the start of a
lesson sequence to collect students’ initial ideas about each mathematical topic
within a word cloud.

SVT1 The first video (see Fig. 1) focuses on properties of the coordinate system:
First, zones of the coordinate system appear highlighted in light-blue colour one
after the other: x>0, y > 0, x <0, and y < 0. Next, the quartiles appear highlighted
one after the other and a point appears in each of them: 1st quartile blue with (4,2),
2nd quartile green with (=3,5), 3rd quartile pink with (=2,-2), and 4th quartile
orange with (9,—1).
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Fig. 1 A still from SVTI, a silent video that focuses on properties of the coordinate system
(P https://doi.org/10.1007/000-8ww)

SVT2 The second video (see Fig. 2) focuses on the slope of a line. Two points
marked A and B, with A = (=3, 1) and B = (—1,2), are shown in blue along with a
blue line AB from the start of the video. Point A stays constant while B (and thus the
line along with it) moves following a rectangular shaped path, pausing for a short
while along the path at the following points: (—1, 3), (=2, 3), (=3,3), (—4,3), (=5,3),
(=5,2), and (=5,1). Thus, the movement of point B pauses when the line has the
following sequence of slopes: Y2, 1, 2, undefined, -2, —1, =2, 0.

SVT3 The third video (see Fig. 3) focuses on the graph of a line as a function of x.
One after the other, blue points with integer coordinates along the line y = x show up
from (=7,=7) to (8,8) before the line through the set of points is drawn in blue.
Next, red points on the line y = 2x + 4 show up one after the other from (—5,-6) to
(2,8) before the line appears drawn in red. Then, all the red and blue points move
along their shortest path to the x-axis and back to their lines again. This movement
of the points toward the x-axis and back to their position on the respective lines is
repeated once more before the video ends.
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Fig. 2 A still from SVT2, a silent video that focuses on the slope of a line
(P https://doi.org/10.1007/000-8wv)

These specific SVTs will hereafter be referred to as SVT1, SVT2, and SVT3.
The next section will clarify what data was collected within the frame of the pre-
sented study.

7.3 Collected Data

Data collected included semi-structured interviews with participating teachers, field
notes from classroom observation visits, the students’ responses to SVTs, and stu-
dents’ feedback. For the purposes of this case study, my focus was mainly on the
interviews and field notes. Prior to the study, I had visited Blackbird and Mallard
within the framework of teacher conferences. To get to know the participating
teachers and their working places better, I visited them in their schools in August
2019. I also visited Edda once and Orri three times to observe lessons that did not
include SVTs. Before and after each SVT implementation, I conducted and audio-
recorded semi-structured interviews (Brinkmann & Kvale, 2009) with participating
teachers: two with Andri and Edda together, one with Andri, one with Edda, and five
with Orri (see Fig. 4). These interviews included questions regarding teachers’


https://doi.org/10.1007/000-8wv
https://doi.org/10.1007/000-8wv

130 B. Kristinsdottir

Fig. 3 A still from SVT3, a silent video that focuses on the graph of a line as a function of x
() https://doi.org/10.1007/000-8wx)

expectations of, and experiences with, implementing SVTs in their classrooms. All
interviews took place either in teachers’ classrooms or their schools’ meeting rooms.
For the purpose of this study, I wrote classroom observation field notes on three
visits to Orri’s classroom and one visit to each of Andri and Edda’s classrooms. The
reason for why I collected field notes rather than video recordings from classrooms
is given in the next section.

7.4 Challenges in Data Collection

What goes on in classrooms involves speech, gestures, and mimes, many of which
happen simultaneously in different corners of the classroom or school building.
Even though these actions might seem obvious to the participants involved, they can
be less obvious and require more careful examination for visitors. Therefore, to
grasp what goes on in classrooms in practice, researchers normally aim to collect
video recordings rather than only classroom observation notes.
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Fig. 4 A timeline of the data collection process. Andri and Edda work closely together at Mallard
and thus they were only interviewed separately after the task implementation. Three interviews
with Orri at Blackbird included “think-aloud” exercises. When possible, information was trans-
ferred by the researcher between teachers, shown by arrows that cross the dotted line between the
two schools. The arrows between the three implementations at Blackbird indicate that each imple-
mentation informed the next

At the point of data collection—due to the recent introduction of the General
Data Protection Regulation (GDPR)—school leaders in Iceland were increasingly
aware of complexities regarding data collection in their teachers’ classrooms. They
preferred field notes over video recordings from teachers’ classrooms. To build trust
and positive correspondence needed for research that is done in collaboration with
teachers, I thus decided to take field notes.

7.5 Ethical Considerations

The Icelandic Data Protection Authority was informed about the research project.
Teachers signed an informed consent stating their awareness that they could with-
draw their participation at any point in time. Principals signed informed consent
granting me permission to interview teachers and to visit their classrooms provided
that I would not collect identifiable information about students. They trusted me to
treat collected data in a respectful manner and anonymise names. Students received
written and oral information about the research project and were informed that they
could deny participation, meaning that their voice-over recording would only be
listened to by their teacher and not the researcher. No student refused
participation.
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7.6 Research Design and Data Analysis

By working with teachers—asking them to implement SVTs in their classrooms
and to reflect on their expectations and experiences—I took a hermeneutic (interpre-
tive) phenomenological stance (van Manen, 2016) towards answering the question
of how and why teachers could use SVTs in their mathematics classrooms. I studied
teachers’ actions and reasons given for their actions, and I transferred between par-
ticipants (see Fig. 4) all suggestions related to the development of SVTs instruc-
tional sequence. In the busy setting of the participating teachers’ own classrooms,
I observed their work and interviewed them to hear their personal insights on
whether, and how, they could use this tool for the teaching and learning of mathe-
matics. Furthermore, I reflected on teachers’ insights by writing notes directly after
our meetings, and again as I analysed the transcripts from our interviews. Iterative
cycles of writing notes and reflections contributed to our collective and evolving
understanding of how SVTs could be used in the mathematics classroom.

During my interviews with Orri, I developed a think-aloud exercise, asking him
to think aloud about how he would implement the SVT next time and why. In the
first interview, the purpose of the think-aloud exercise was to hear his ideas and then
in later interviews—after each implementation—the purpose was to re-construct his
experiences and record his reflection, alongside his expectations for the next round
of implementation.

It usually requires training to become aware of, remember and reconstruct our
own interpretations; what we were thinking or making sense of. Despite having no
training, Orri reflected on what he thought about in-the-moment and related it to
planned actions for the next implementation. It was a free-flow and in-the-moment
exercise, meaning that Orri could revise his own thinking on the go. During the
think-aloud exercise I thus normally did not interrupt unless something needed
immediate clarification.

All interviews were transcribed verbatim in Icelandic. When possible, I tran-
scribed directly after the interview took place and thus was able to add some extra
notes in parentheses. Analysis started immediately after the first interview and in
that first familiarisation phase, I focused on the instructional sequence design and
development. After transcribing the last interview, [ underwent a second familiarisa-
tion phase of the data using open coding in Icelandic on anything that I found inter-
esting in the data. Directly after the second familiarisation phase, I read through the
transcripts again, writing detailed notes in English where I summarised and deep-
ened my thoughts. On the basis of the detailed notes, I created a distilled overview
of the five interviews with Orri on a large sheet of paper (630x891mm), gaining an
overview of how Orri’s ideas, experiences, and expectations developed over time.

Regarding opportunities that tasks bring to the mathematics classroom, it comes
down to what we consider important. SVTs were developed to be a socio-constructive
approach to teaching, a tool that teachers might use to support students in
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The Five Dimensions of Mathematically Powerful Classrooms

How do mathematical ideas from this unit/course develop
The Mathematics in this lesson/lesson sequence? How can we create more
meaningful connections?

What opportunities do students have to make their own
Cognitive Demand sense of mathematical ideas? To work through authentic
challenges? How can we create more opportunities?

Who does and does not participate in the mathematical
Equitable Access to Content work of the class, and how? How can we create more
opportunities for each student to participate meaningfully?

What opportunities do students have to see themselves
Agency, Ownership, and Identity and each other as powerful mathematical thinkers? How
can we create more of these opportunities?

Farative Asacoiront What do we know about each student’s current
mathematical thinking? How can we build on it?

Fig. 5 A summary in the form of questions asked within each of five dimensions of mathemati-
cally powerful classrooms according to the Teaching for Robust Understanding (TRU) framework
(Baldinger et al. 2018, p. 2, reprinted with permission)

developing their own understanding of mathematics. Previous research has indi-
cated that SVTs occasioned for teachers a fundamental shift in perspective from
teacher-centred to student-centred instruction (Kristinsdottir et al. 2020b), and
although the TRU framework offers no prescription on how to teach, it also includes
such a fundamental perspective shift (Schoenfeld, 2018). Furthermore, the TRU
framework seemed to provide a language for talking about instruction along dimen-
sions of interest. Therefore, after the phases of familiarisation and analysis, I once
again read through my detailed notes with questions from the TRU framework
(Baldinger, Louie, & the ATSMAP, 2018; Schoenfeld, 2018) in mind. I used these
questions (see Fig. 5) to determine the opportunities and challenges that SVTs can
bring to the mathematics classroom and discussed the findings in a doctoral semi-
nar. The findings are presented in the next section.

8 Findings

This section starts by introducing the teachers’ current assessment practices and
some ways in which they influenced the SVTs instructional sequence. It continues
to describe teachers’ implementations of the SVTs and my use of the TRU frame-
work to summarise the opportunities and challenges that SVTs bring to the mathe-
matics classroom.
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8.1 Teachers’ Existing Assessment Practices
and their Influence on SVTs Instructional Sequence

Topic booklets made by Andri and Edda at Mallard and by colleagues of Orri’s at
Blackbird were the main focus of remedial classes. They were composed of practice
problems that were partly exploratory or designed to be worked on using GeoGebra,
but mostly they included closed question problems. Work on problems from these
booklets counted towards students’ final grade. At Mallard, students had access to
online self-assessment exercises and completed three exams (each covering part of
the material of the course) during the term. A good grade on these three exams could
render the final exam as optional. At Blackbird, assessment was based on students’
observed work in class, participation in Desmos classroom activities, handed-in
work on problems similar to the booklet problems, and participation in final-week
group projects that required knowledge of all topics of the term.

Some emphasis was put on group work at Mallard and Blackbird, but no specific
emphasis on developing students’ verbal communication about mathematics.
Despite the teachers’ awareness of the importance of whole class discussions, these
were seldom practiced and were mostly constrained to teachers asking closed ques-
tions, waiting for a response, and either answering the question themselves or evalu-
ating a received response.

All three teachers were familiar with FA practices and what they entailed. This
was manifested in the first interview with Andri and Edda as they suggested that
feedback via group discussion should take place immediately after students had
submitted their task responses. Thus, they changed the initially suggested SVT
instructional sequence, which was based on previous research (Kristinsdottir et al.
2020b), which had placed the group discussion in a follow-up lesson some days
after students had submitted their task responses, i.e., to provide time for teachers to
prepare themselves by listening to, selecting, and sequencing some task responses
on which to base the follow-up discussion. Andri and Edda explained that they
expected feedback to be less effective/useful if it was not immediate, similar to
Wright et al’s (2018) suggestions. Also, Andri and Edda wanted all student
responses to be listened to in a random order rather than sequencing some selected
responses. Otherwise, students might interpret their actions as if they were judging
students’ responses “from the worst to the best”.

Furthermore, Andri asked if self-assessment and peer-assessment practices
could be used such that students would provide written feedback to each other’s
responses. His idea was brought to Orri before the SVT1 implementation. Orri
prepared an online reflection sheet for students, where each pair would reflect on
three other pairs’ responses and at least two pairs would listen to each response.
In practice, however, Orri experienced students not taking their role as peer-
reviewers seriously. Thus, in the think-aloud exercise before SVT2, he suggested
a different approach where the whole group would listen to all task responses in a
random order.
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8.2 Description of Perceived Classroom Norms

Andri and Edda expressed that they aimed to create a safe and constructive working
environment for students, especially those in remedial classes. They set a clear ethos
resulting in a calm and engaged atmosphere. Before the SVT implementation, they
wanted to make sure that focus would not move from the mathematics to solving
technological issues and therefore prepared, by downloading and testing screen
recording software (laptops) and sound recording software (smart phones) as well
as confirming that the learning management system would suffice to accept stu-
dents’ task responses.

Orri aimed to create a relaxed atmosphere in his classroom. This resulted in a
rather loose ethos, with students frequently arriving late and leaving the class-
room from time to time. He often put in much time to prepare tasks and create
feedback opportunities for students and was repeatedly disappointed by students
not putting effort into their work on prepared tasks and not reading/listening to his
feedback notes/videos. Orri expressed explicitly and indirectly that he wanted
mathematics to be fun, a goal that he expected would lead to students putting in
more effort.

8.3 Description of How SVT2 Was Used by Teachers

Orri aimed to collect students’ initial ideas about the new mathematical topic and so
he showed the video from SVT2 to students at the start of the lesson sequence on
the topic of the linear equations. He asked students to think and write words or con-
cepts that connected to the video and he collected these in a word cloud. Orri
explained that he never would have thought of some of the words that students
wrote (e.g., compass, box, time, and spin) beforehand. Two weeks later, at the end
of the lesson sequence, Orri implemented SVT2.

All participating teachers implemented SVT?2 in a similar way. At the start of the
lesson, they showed the video to the whole class. Its topic (the slope of a line) had
been the course focus of the preceding weeks. After explaining that it would be the
students’ task to add a narrative explanation or description to the video, teachers
randomly assigned students into groups of two to work on their voice-over. Despite
technical preparations, teachers were observed attending to a few students who had
difficulties with either downloading recording software or uploading their voice-
over recording.

Some students in each group immediately opened up the link to the video and
started to work, but others seemed more confused. This made teachers busy reacting
to students who wanted either instructions regarding what to focus on in their
response or a confirmation that their contribution was going in a ‘right’ direction. I
had discussed with the teachers the risk of such stop-thinking situations (see



136 B. Kristinsdottir

Liljedahl, 2018) during preparation and even though they considered it to be chal-
lenging not to answer students’ questions, they—upon entering such situations—
made clear that it was the students’ responsibility to make decisions on what to
focus on in their voice-over. Nevertheless, there was an apparent tension created by
the stop-thinking situations.

Immediately after receiving students’ voice-over recordings, the teacher gath-
ered the group together to listen and react to all of them. Similar to what teachers
had predicted, students seemed to find it important that their own task response
would be played and they were eager to hear their teacher’s and peers’ reaction.
Still, the teachers’ effort to involve students in discussions resulted only in some
short reflections and surface-level discussion; no student-to-student debate was
observed. The questions used by the teachers to facilitate discussion included ask-
ing students to recognise differences and similarities among their responses, and
clarifying questions regarding whether and how students understood what was
being said. At the end of class, Andri and Edda asked students to answer a ques-
tionnaire, on what (if anything) they would have liked to change in their voice-
over, if there was anything that made them wonder, and if they would like to add
any comments or questions regarding the SVT. Orri, on the other hand, asked
students to record a new voice-over, wondering what (if anything) they
would change.

In the next section, the goals for the SVTs will be identified along the five dimen-
sions of the TRU framework. Then, I will present the opportunities and challenges
that were identified based on the classroom observation and interview data from
teachers’ SVT implementations along the dimensions of this framework.

8.4 In Theory: Opportunities and Challenges that SVTs
Might Bring

Within the TRU framework, a Conversation Guide (Baldinger et al. 2018) lists a set
of questions intended for teachers’ planning and reflection. These questions are
organised along the TRU framework’s five dimensions (see Fig. 5). Based on the
intentions behind the way in which SVTs were designed and developed, the ques-
tions are answered in Table 3.

Answering the questions from Fig. 5 offered a way to evaluate whether the
SVTs fulfilled their intended role in theory. Then, to connect with practice, I took
a new look at the interview and classroom observation data to perform a top-down
analysis, collecting instances that evidenced teacher practice along the five dimen-
sions. This top-down analysis was, then, followed up by a bottom-up analysis of
the selected data excerpts with a focus on identifying the opportunities and chal-
lenges that teachers encountered during task implementation. Results of that anal-
ysis are given in the next section, which is organised according to themes that
were identified.
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Table 3 When intentions behind the design of silent video tasks are viewed along the dimensions
of the TRU framework, some alignment can be seen. Here, questions from Fig. 5 are answered
based on assumptions about the ways silent video tasks might support teachers in teaching for
robust understanding

TRU
Dimension What silent video tasks are intended for
The By describing, explaining, or narrating the video, students’ mathematical ideas

mathematics | are explicitly put into words that get heard, reflected on and discussed by the
whole group. By both recording their voice-over and participating in the whole
group discussions, students might develop their mathematical ideas and create
meaningful connections. They might also realise whether, and in what ways,
they understand the mathematics shown in the video.

Cognitive Students might make their own sense of mathematical ideas that arise when

demand watching the silent video and discuss in pairs what to focus on in their
voice-over recording. It can be a challenge for students to decide what to focus
on.

Equitable Students are offered an untraditional way (recorded verbal communication) to

access to participate in the lesson. It might create opportunities for each and every

content student to participate meaningfully in the mathematical communication of the
class.

Agency, Students whose response is listened and reacted to might develop a feeling of

ownership, belonging and gain a new view on their own articulated ideas as these get

and identity | discussed by the whole group. As participants (not only listeners) in the
discussion, students get an opportunity to see themselves and their peers as
mathematical thinkers.

Formative From listening, discussing, and re-listening to students’ responses to the SVT,
assessment teachers gain insight into what students pay attention to when watching the
silent video and thus might gain insight into students’ current conceptual
understanding. Teachers can build on this insight, probing more deeply into
aspects that seem currently unclear to students. Also, it might be possible to
lead students’ discussion towards more abstraction or to generalise and to lead
the group towards some common understanding of the mathematics shown in
the video. Teachers’ work with the current group of learners can also be helpful
the next time teachers work with learners on the same mathematical ideas.

8.5 In Practice: Opportunities and Challenges That
SVTs Brought

This subsection is based on excerpts from observation and interview data that were
identified to be connected with teacher practice along one or more of the five dimen-
sions. Even though each dimension of the TRU framework involves putting on new
glasses that highlight that dimension, some overlap is unavoidable because the cat-
egories discussed in each dimension are not completely distinct. Still, usually one
dimension was identified to be the most prominent one for each excerpt of data.
Labels regarding what dimension each quote or data reference belongs to are not
provided here. Rather, the focus is on introducing the data organised by themes
identified regarding opportunities and challenges that SVTs bring to the mathemat-
ics classroom. After the listing of themes, these results will be discussed.
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8.5.1 Challenge: It Is Hard to Change a Prevailing Socio-Mathematical
Norm (For Example, That There Is a Single Correct Answer)

Andri and Edda were surprised by the students’ responses that did not mention
slope at all and only focused on coordinate points:

Andri:  This was only* about the point coordinates.

Edda:  But they never mention the line slope. And still they say that they would
not change their voice-over if they would do a new recording. [refer-
ring to students’ end-of-class feedback]’?

They were happy to see that students mastered how to list the coordinate points:

Andri:  what surprised me was that almost all of them put the x-coordinate
before the y-coordinate [...] in my experience this is endlessly difficult
for some students

Edda: At least they figured out the coordinate points completely

Nevertheless, Andri and Edda expressed that they would like their students to gain
understanding about linear functions, not only points, even though they read
the coordinates correctly. The teachers found it challenging to change students’
ideas of what mathematical practice entails in regard to sharing information that one
is not yet sure about. If students decided to avoid mentioning the slope, they sug-
gested it might be a coping strategy due to a socio-mathematical norm that is persis-
tent in the Icelandic school system, which is to assume that mathematics is a practice
where only one correct answer exists that matters the most.

8.5.2 Opportunity: Previously Inaccessible Information Revealed by
Students’ Task Responses

Students’ responses made their struggles with the concept of slope graspable and
discussable:

Andri:  For example, it becomes painstakingly clear how they have not yet
realised, you know,* [what the concept of] slope [is/means] somehow,
the minority of them have, at least.

Andri: I actually just feel like I always need to teach them this [slope] anew
[...]. You know, I have shown it to them multiple times, you see, but it
does not seem like [...] it seems like it does not properly arrive.

*Words in the transcript are underlined if interviewees put special emphasis on them

3In a few cases, for clarification purposes, words within square brackets have been added to the
excerpts from interviews.

*Commas have been added around common hesitations (such as “you know” or “you see”) to make
the excerpts from interviews clearer to read.
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Edda: I noticed that they avoided mentioning [the slope when the line was]
horizontal and vertical.

Edda:  One sees that it is the slope and negative slope that is something that is
confusing them [...] they do not realise that when the outcome is nega-
tive then the slope is negative well they see it approximately but they do
not connect it. I find it very interesting

In the last quote, Edda was referring to students’ responses that described the
changing slope of the line as ', 1, 2, 0, 2, 1, %2, and O (instead of %2, 1, 2, undefined,
—2, —1, =Y, and 0). This difficulty hitherto had gone unnoticed but was made vis-
ible by students’ task response and was received by Edda as valuable
information.Similarly, responses to SVT3 revealed a previously unnoticed lack of
precision in word use when it came to describing intercepts of a line with the axes
of the coordinate system. In retrospect, Orri realised that his own level of precision
might be improved:

Orri:  One realises when one assigns such tasks and does, you know, something, which one
finds so obvious that one forgets that it is not obvious at all, you see, one speaks of
intercepts over and over again, you know, it is maybe not always obvious that it is
often, you know, that there are two intercepts, you see, that one needs to take, you
know, that there is not only an intercept that it is a y-intercept and an x-intercept, you
see, you know, we find it completely clear [ ... ] but to them it is maybe something that
one has never properly covered.

Orri’s awareness was thus not only raised regarding students’ mathematical dis-
course, but also his own. Reflecting on how to address students’ precision, Orri
suggested that he could play a random example task response as an audio file (with-
out viewing the video) and draw on the whiteboard according to what he heard.
Then, the students might realise:

Orri: Then one would simply say “ok, cuts the x-axis at negative four and the
y-axis at negative four ok then it goes through these two points” and they
will just say “no we did not mean it in that way” and then I can say “then
how can you say it such that it can be understood?” .

This idea was never tested in action because Orri came up with it after the third
implementation.

8.5.3 Challenge: It Can Be Tempting to Return to Teacher-Centred
Transmission of Knowledge

Upon noticing students’ perception of slope as always being positive, Edda felt it
was something under her responsibility to clarify:

Edda:  [...] they have yet to connect that [slope being negative or positive] so
it is something one needs to go maybe better through and I did that
after showing the last one [student response].
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In other words, although Edda wanted to draw upon students’ responses when con-
cluding the discussion, she could not resist reacting by giving a lecture about slope.
Her return to teacher-centred transmission of knowledge might have been influ-
enced by a part-exam which was planned in the upcoming week. Edda expected her
students to connect to her clarification because of their SVT participation:

Edda:  So I think it is good to do such tasks [SVTs] and then you can go
through the video and explain it better then maybe they will get it better
since they have themselves worded it in their own way already and one
understands what is wrong and what not so in that way it is very posi-
tive so I think it would be exciting to add this task into the [course]
curriculum.

By developing this idea further to make clearer connections to students’ responses,
maybe what Swan (2006) called a conceptual reorganisation might be facilitated
when such inconsistencies or obstacles (based on students’ ideas) were identified.
In that way, students could develop their ideas or build a bridge over the gap.
However, as the next theme shows, this was considered by teachers to be a challeng-
ing task.

8.5.4 Challenge: It Is Challenging to Lead Group Discussions Based
on Students’ Ideas

Leading a group discussion—and especially connecting it to students’ words and
mathematical ideas—revealed itself to be quite a challenge for teachers:

Andri:  Ahhh, you know, it is a little scary to do this, you see, but I have in a
way done similar things before but still not in this way [...] it would
be amazing to do this again.

Orri: I think one needs some training in listening well to this, what they are
saying and trying to figure out why they are thinking things or I feel that
you [the researcher] often hear such things [...] things that I had not
figured out myself, you see.

This was not surprising. After all, the orchestration of classroom discussion in the
mathematics classroom is a challenging task that requires much practice (Stein &
Smith, 2011). Also, the development of awareness of “what students are saying”, that
Orri mentions above, is important for reflecting in the moment and reflecting on the
moment (Pai, 2018, p. 41). Teachers knew that it would be challenging to lead group
discussions based on students’ work, and they also knew how important it was:

Orri: I have to confess that I have not put too much emphasis on that [con-
versations/discussion] one knows that it is absolutely the thing but
somehow one has not dared to dip the toes too much into it.

After three implementations Orri had a feeling of going in the right direction:
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Orri: But it was like last time we did the silent video task [...] I was show-
ing these and [...] felt like it did not go well [ ... ] because then I tried,
you know, then I was through maybe one half [of the responses] and
felt like nobody was following and I did not mention that I just felt
they did not bother at all [...] but now somehow it was easier it got
more fun not fun maybe but interesting when we were all watching

together.

Comparing implementations of SVT2 and SVT3, there was less sense of time pres-
sure in the latter one. Orri was observed gradually activating everyone’s attention
such that the students’ participation in commenting on each other’s responses slowly
increased. Plenty of time had been devoted to reflecting on each students’ response
and this seemed to have a positive effect on students’ participation. There was also
more sense of trust, evidenced by one pair of students showing no sign of embar-
rassment when their peers’ initial response to their voice-over was to start laughing
(followed by discussion). They told each other “we did well” as the next response
was uploaded to play.

The difference between implementations of SVT2 and SVT3 is described further
in the next theme.

8.5.5 Opportunity: SVT Practices Might Support Teachers
to Institutionalise Knowledge

Orri mainly posed clarifying questions during his moderation of the SVT2 whole
group discussion. Even though students did not participate much, he saw potential
for improvement and decided to give it another try in the third SVT implementation.
In his reflection, he wondered about ways to enhance students’ participation in con-
cluding the discussion and finally, he created a plan during the think-aloud exercise:

Orri: Then toward the end I would like to discuss with them the concepts in
general like for instance in this case, you know, slope “What is slope?
Can anyone reflect on that?” and yes somehow in this way it would be
a summary to tie everything together at the end.

Then, in group discussion based on students’ responses to SVT3, Orri carried out
his plan by activating students to participate in summarizing the discussion.
Furthermore, he connected students’ inputs to the topics that the class had been
working on in the preceding weeks. Thus, seemingly attempting to institutionalise
(Brousseau, 1997) knowledge, which is something that Swan (2006) and Aldon
(2014) identify as important but often neglected part of teaching practice.
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8.5.6 Challenge: It Is Hard to Change Prevailing Social Norms
on the Motivation Role of the Final Grade

At both Blackbird and Mallard, teachers expressed frustration when students did
“not show their true potential” or “not put in enough effort™:

Orri: They are not putting in much effort here, [...] and they seem not to have
bothered to make a new recording.

Edda: I couldimagine using such tasks again and then letting it count [toward
the final grade] then they might put in more effort.

All three mentioned the motivation role of grades when it came to enhancing
effort, i.e., that students generally put more effort into tasks that counted towards a
grade. It seemed hard to change this social norm.

8.5.7 Opportunity/Challenge: Providing Access
to the Classroom Discussion

Orri: [...] they might feel uncomfortable that someone is listening to their
voice [...] I think most of them will be fine [ ... ] there just might be some
who feel maybe, yeah, uncomfortable.

Before implementing SVT1, Orri suggested that there might be students who
would not feel comfortable with the task. Students can get isolated due to disabili-
ties such as severe anxiety, autism spectrum disorder or language barriers that
either cause them to be uncomfortable with group work or have a harder time to
communicate. Orri and Andri had one student each on the autism spectrum and
Edda had three Icelandic language learners (ILL) in their classes.Orri described
how his student often rejected working on unconventional tasks. Still, both his and
Andri’s students participated in the SVT. Orri got his student to participate by
offering him to work individually and hand in a written script instead of a record-
ing. Andri’s student surprised him by participating in group work despite some
discomfort:

Andri:  [...] this surprised me a bit namely that she took the lead [in the group
work] and is the one who speaks.

Her response included much detail, listing coordinates of points A and B, and
intercepts with both axes of the coordinate system as they changed in time. It invited
an opportunity to support the student in moving from describing detail towards
generalizing about patterns, but that opportunity was not recognised until later.

Edda explained that no extra support was provided for ILLs or their teachers at
Mallard. When assigning students into random pairs, she strategically made one
exception to make sure that the ILL. who also was not fluent in English would be in
a group of three:
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Edda:  But they were actually it was mainly the two of them doing the task.

Still, Edda’s intention to create access was observed to have the effect that this
student participated in the preparation discussion before the other two recorded the
task response.

9 Discussion Along the Five TRU Dimensions

Comparing the two previous subsections, identifying opportunities and challenges
that SVTs bring, some trends along the five dimensions of the TRU framework can
be seen:

The Mathematics Teachers were observed engaging students in an experience
that contrasted with the prevailing sociomathematical norm about one correct
answer. They gained insight into previously inaccessible information about stu-
dents’ mathematical ideas (including possible misunderstandings), and by repeated
use of SVTs Orri raised his own awareness of the importance of precision when
describing mathematical objects. It thus seems fitting to conclude that with SVT
practices, teachers might support students’ learning by raising their awareness of (a)
various explanations/descriptions existing, (b) common misunderstandings related
to the mathematical topic presented, and (c) why precision is important in mathe-
matical discourse.

Cognitive Demand The teachers were observed attending to students who had a
hard time deciding what to focus on in their task responses. This seemed to be due
to the fact that the classroom environment involved mainly tasks with one right
answer. We cannot be sure if students participating in SVT?2 chose to lower the cog-
nitive demand by only focusing on what they were absolutely sure about or if they
simply did not think of line slope when watching the video. However, it is then the
teachers’ task to gather students’ ideas about slope in the group discussion. In the
discussion they will be given opportunities to make their own sense of mathematical
ideas. Provided that teachers persist in taking on the (clearly identified) challenge of
leading group discussions, they might establish that problems and misunderstand-
ings will be discussed in an objective and meaningful way for the benefit of every
learner in the classroom. In other words, they might create a safe environment for
students to share their thoughts (erroneous or not) with others along the road.

Equitable Access to Content To create opportunities for each and every student to
participate in the mathematical communication of the class, teachers were observed
adjusting their practices to make clear that everyone was invited to participate in the
SVT and that everyone’s voice would be both listened and reacted to. With ILLs the
adjustments were only partly successful and therefore they remain to be developed
further. For example, teachers might invite ILLs to create a task response in any
language in which they are fluent.
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Agency, Ownership, and Identity Students will not see themselves as powerful
mathematical thinkers unless teachers treat them as such. This is connected with
why teachers were asked to refrain from answering stop-thinking questions during
task implementation. Also, it is connected with how problematic (but often tempt-
ing, therein lies the challenge) it is to turn back to teacher-centred practices, giving
a lecture that does not connect to, or meaningfully build on, students’ responses and
ideas. For example, if teachers had prepared and played their own version of a task
response for students, such an act would confirm students’ observed expectation of
a ‘role model’ response.

Formative Assessment By insisting on using immediate feedback, teachers were
observed to put extra strain on themselves in terms of orchestrating a meaningful
classroom discussion based on their reactions to students’ responses in real time.
Still, teachers’ emphases on immediate feedback made sense theoretically, in terms
of Wright et al.’s (2018) list. In practice, one could imagine that lengthening the
time between recording a task response and reflecting on peers’ responses could
make the experience more teacher oriented, as only the teacher would have had time
to prepare. In one case, Orri was observed ‘tying together’ students’ ideas at the end
of class discussion. This happened during his third implementation and underlines
that it takes experience, training, and reflection to develop discussion orchestration
skills. By practicing and putting more emphasis on formative assessment and class-
room discussions, teachers might prevail over the motivation role of the final grade,
because more emphasis would be put on the process of learning than on the
final grade.

10 Conclusion

This chapter described how SVTs can be implemented in the mathematics class-
room and demonstrated how the TRU framework can be used to identify opportuni-
ties and challenges of technology-mediated FA practices for the teaching and
learning of mathematics. Based on what was experienced by Andri, Edda, and Orri
as they implemented SVTs in their classrooms, three opportunities (one of them
also including a challenge) and four challenges were identified by analysing class-
room observation and interview data via the lens of the TRU framework. The oppor-
tunities can be re-phrased as follows:

* SVTs have the potential to make previously unnoticed inconsistencies, or prob-
lems regarding students’ mathematical ideas (understanding), or ways in which
they express their ideas (precision in word use) visible to teachers, thus, allowing
teachers to address them.

e Situations created by SVTs might enable teachers to institutionalise
mathematical knowledge.
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* By offering students a new way of using technology for communicating
(through implementing SVTs), teachers can include more students’ voices in
the class discussion.

The first of these opportunities is important for FA practices since it helps raise
issues that were previously implicit for teachers, which is one of the potential identi-
fied by Wright et al. (2018). The second opportunity connects to three of Wiliam
and Thompson’s (2008) key strategies for FA (regarding providing feedback that
moves learners forward, activating students as instructional resources for one
another, and as owners of their learning) because in a situation of institutionalisa-
tion, students’ ideas are discussed and connected to mathematical objects that have
previously been discussed in the classroom. In other words, students’ ways of
describing mathematics are given status by relating them to the ways that had been
used by the teacher to describe mathematics. It is important to note, that the act of
institutionalising knowledge implies learning as acquisition (of knowledge),
whereas what was intended with the SVTs was learning as participation (Sfard,
1998; Sfard, 2008). However, learning as participation might be achieved by sup-
porting students in the process of reification (Sfard, 2008), i.e., in their transition
from describing processes towards talking about objects—a process that might be
supported via students’ participation in the group discussion.

Since the third in the list of opportunities in some cases demanded that teachers
adapt the task in ways not necessarily obvious to them, it was also considered to be
a challenge. Maybe due to their similarity to students’ popular culture (e.g.,
YouTube, TikTok, SnapChat), the task of adding a voice-over to a silent video was
observed to be easily understood by students. Apart from a few students who needed
technical support with downloading software or uploading their recordings, the use
of technology seemed not to be a great hurdle. What requires practice and support
is mainly the facilitation of a meaningful discussion. Two of the challenges had to
do with socio-mathematical and social norms. They might be country-specific,
although the presented study cannot confirm that. These two challenges can be re-
phrased as follows:

* Due to the prevalent norm in which students assume ‘one correct answer’ to exist, teach-

ers can encounter tensions when implementing open tasks like SVTs.

* It can be cumbersome for teachers to enhance students” motivation in formative assess-

ment practices when students are mainly driven by final summative assessment.

The other two challenges concerned the way in which SVTs require teachers to
shift to working in a socio-constructive way, basing feedback on students’ ideas via
discussion:

e Itis challenging to lead group discussions based on students’ ideas.

e It can be tempting to return to teacher-centred transmission of knowledge

These challenges are significant and important to acknowledge when teachers
shift to technology-mediated FA practices. They connect both to key strategies for
FA and the potential of technology-based FA strategies (Wiliam & Thompson,
2008; Wright et al., 2018). Teacher-centred transmission of knowledge can take the
form of a lecture or a monologue spiced with a few questions such as “What is the
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slope when the line is vertical?” that reinforce students’ perception that questions
always having one right answer in mathematics. Considering the fact that most
teachers are not used to implementing open tasks that require both the use of tech-
nology and the orchestration of classroom discussion, it is an understandable reac-
tion to return to teacher-centred practices. Also, an implication that leading a
discussion based on students’ ideas might have longer-lasting effect on students’
learning could be considered less important than the fact that such discussions often
will require more time. However, if teachers are so restricted by tight time schedules
that they make no time to get their students to think mathematically, something
surely needs to change.

According to Mason (2002, p. 8) it is important for teachers to feel that they have
made an informed decision in a moment of choice and responded professionally
(based on awareness) rather than just reacting. There were indications in this study
that a novice teacher using SVT practices started developing an in-the-moment
awareness of possibilities for classroom discussion within one school term, sup-
ported by the practice of reflection and think-aloud exercises. For him and the expe-
rienced teachers, the orchestration of group discussion was clearly the biggest
challenge involved in SVT practices. Kooloos et al. (2020) described how support
via a professional development course based on the work of Stein and Smith (2011)
can support teachers who want to develop their practice of classroom discussions
based on open tasks. Within four lessons, they supported a teacher to establish a
discourse community in her mathematics classroom. For teachers who aim to
include SVTs and similar practices—developing their ability to elicit, attend to,
discuss, interpret, and respond to student thinking in their work—such professional
development courses with like-minded teachers building a community of practice
would probably be a good next step.
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Abstract This chapter discusses the experiences and perceptions of one secondary
school teacher’s implementation of a technology-enhanced flipped pedagogic
approach over a 4-week period whilst teaching the topic linear equations in a Year 9
mathematics class in Victoria, Australia. The study found significant teacher time
demands during the initial implementation of the flipped pedagogy, primarily due to
the process of establishing teacher technology competence. The use of formative
assessment to monitor students’ progress was found to be helpful to support the
teacher to plan and monitor student participation. Student engagement was increased
in the flipped group, as it seemed to allow more time in class for the teacher to help
individual students, resulting in reduced time pressure on the teacher in class. We
conclude that a number of professional development opportunities should be con-
sidered to support teachers’ implementations of a flipped approach, to include the
development of: teacher technology competence, teacher strategies for monitoring
students’ expectations for learning mathematics and teachers’ abilities to be critical
about aspects of teaching and learning, which might be enhanced through a flipped
classroom approach.
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1 Introduction

The twenty-first century has ushered in an increased reliance on, and access to,
technology for students and teachers alike, both inside and outside physical class-
room spaces (Groff & Mouza, 2008). Increased access to technology has presented
a myriad of opportunities for teachers that foster “fresh thinking about what is
taught, how it is taught and why it is taught” (Moyle, 2010, p. 5). The 2020
COVID-19 pandemic, which has forced remote teaching and learning across much
of Australia and many other areas worldwide, has expedited teacher consideration
of technology-supported practices for teaching and learning in mathematics.

This chapter reports the teacher component of a larger study, which also investi-
gated student understanding, attitude and perspectives to learning how to solve lin-
ear equations in Year 9 mathematics through a flipped approach (McAlindon, 2020).
This chapter responds to the following research question by presenting a case study
of a particular teacher’s experiences as a flipped pedagogic approach was imple-
mented in an Australian mathematics classroom:

What are the teacher experiences and perspectives of implementing a flipped
learning approach for the first time?

Given that most flipped research occurs in higher education settings (Ak¢ayir &
Akcgayir, 2018), our study adds insights from the perspective of secondary school
implementation. In higher education, the flipped approach is reported to improve
upon a traditional lecture through increased engagement (Yeung & O’Malley,
2014). However, there are also challenges for implementation ranging from time
constraints for teachers in the planning and preparation of a new approach to teach-
ing (Critz & Wright, 2013; Hoffman, 2014) to the inability to adequately support or
monitor student participation (Lo et al., 2017). Higher education and secondary
classrooms have students at different ages and stages of education, so there are
likely to be differences in findings related to implementations of a flipped class-
room. This study provides insight into whether identified benefits and challenges
associated with implementations of a flipped approach in higher education are also
evident in the secondary mathematics classroom setting that is reported here.

The research study that this chapter reports involved two parallel classes, one
flipped and one non-flipped. This enabled the teacher to reflect upon the differences
between the flipped classroom and the non-flipped classroom. For these two classes:

¢ the teacher was the same.

 the planned examples were the same.

e the non-flipped group were not given access to the flipped content (i.e., the
teacher videos).
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1.1 Flipped Classroom: Overview of Components &
Implementation

A flipped classroom is defined as an “instructional model, in which some activities
traditionally conducted in the classroom (e.g., content presentation by the teacher)
become home activities, and activities that normally constitute homework now
become classroom activities” (Akgayir & Akgayir, 2018). Content presented by the
teacher generally utilises digital technologies through the video recording of instruc-
tion, or by identifying appropriate existing online videos, for students to view as
homework prior to class (Lo et al., 2017). A flipped classroom where technology is
used for content delivery is termed a technology-enhanced flipped classroom (Lo
et al., 2017). In the mathematics classroom, content presentation might typically
include teacher examples that demonstrate the use of mathematical procedures,
explain concepts, demonstrate concrete materials, or model the use of technol-
ogy, etc.

In general, classroom lessons can be considered as having two main compo-
nents: an out-of-class and an in-class component. These two components typically
differ in the timing and location of the activity, with the out-of-class component
(i.e., problems or tasks) occurring asynchronous to the in-class component (typi-
cally a face-to-face lesson where there is some content presentation by the teacher).
A flipped classroom “flips” this paradigm, with the content presentation by the
teacher given as homework as a pre-class activity (asynchronous out-of-class com-
ponent), and the problems or tasks set by the teacher completed in class.

While appearing a relatively simple concept, the flipped approach is more
nuanced than the ‘invert-the-process’ approach to teaching may suggest, with a
number of possible implementations. There is neither global practice for implemen-
tation nor a mandate that technology must be used (Lo and Hew, 2017; Love et al.,
2014). Lo et al.’s (2017) synthesis of research on flipped pedagogies concluded no
standard approach to flipped implementation in the mathematics education litera-
ture. The pre-class activities reported in the flipped mathematics classrooms, which
included watching videos, reading articles, viewing presentations, and reading a
textbook (Lo et al., 2017; Lo & Hew, 2017), highlight the extent to which pre-class
activities can vary for both teachers and students. Furthermore, numerous in-class
activities have been reported in flipped classrooms, including teachers providing
students with time for independent practice, active-learning activities, textbook
review work, student presentations, small-group work, group discussions, and tar-
geted focused learning on previously identified problems (Lo et al., 2017).

Multiple approaches to teacher implementations have contributed to differing
conclusions about the efficacy of a flipped classroom (Bishop & Verleger, 2013;
Kadry & Hami, 2014; Love et al., 2014; Jensen et al., 2015). Differences in
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pre-class and in-class activities in flipped classroom research make it difficult to
determine efficacy or attribute any successes/drawbacks of flipped implementation
to any one component (pre-class or in-class). Authors claim a “blurry picture” of the
impact of a flipped classroom across multiple subject areas (Lag & Sale, 2019).

Our research therefore sought to examine the impact of altering the pre-class
activity when implementing the flipped approach in a secondary mathematics class
and reported the perspectives of the teacher in doing so.

1.2 Technology, Pedagogy and Flipped Implementation

In the flipped classroom it is important to distinguish between the types of technolo-
gies used. These include technology for recording the teacher content (e.g., video
recording the explanations of examples); technology to support the delivery of
flipped content (e.g., students using their computer to access YouTube clips or play-
ing files provided by the teacher); technology used by the teacher to collect forma-
tive assessment (e.g., use of online platforms); and technology used by the teacher
or students to solve problems, or to assist in explaining a concept or procedure.
Consequently, although the flipped classroom can be supported using technol-
ogy, there are potential barriers for teachers to overcome to effectively implement
technology-enhanced flipped classrooms. Kearney et al. (2018) highlighted chal-
lenges faced by teachers in adopting new technology in their teaching practices,
including access to timely professional development. The complexities of effective
technology integration within pedagogy are highlighted by the Technological
Pedagogical Content Knowledge (TPACK) framework (Mishra & Koehler, 2006)
which outlines the need for teachers to integrate subject content, pedagogical
knowledge, and technological knowledge. The TPACK framework is not directly
linked with flipped classroom research, but exemplifies the demands placed on a
teacher in the implementation of a technology-enhanced flipped classroom. Teachers
must consider how to utilise technology to develop students’ mathematical under-
standing when students are learning new mathematical skills and concepts outside
class, and where this new understanding underpins the subsequent face-to-face class.
An important pedagogical consideration is that students will not be able to ask
questions of the teacher while engaging with the flipped content, so teachers must
consider the nature and extent of the flipped content in order to engage students, but
also to anticipate and ameliorate any expected student difficulties. Mishra and
Koehler (2006) suggest that technology may constrain pedagogical decisions. In the
flipped mathematics classroom this is evident through flipped content presentation
occurring without teacher interaction with students; the teacher cannot monitor or
respond to students’ understanding in real time. Teachers must consider the extent
to which they choose to include reasoning, mathematical solution steps, technology
use (e.g., a CAS calculator to simplify algebraic expressions) or demonstrate con-
crete materials within the context of an inability to respond to students’ questions
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in-the-moment. This impacts the pedagogical choices that teachers make when
planning the pre-class material.

Alongside these pedagogical issues, there are specific technological challenges
that teachers need to overcome, many of which relate to competence with technol-
ogy and the increased workload to develop the new lesson content (Akcayir &
Akgayir, 2018; O’Flaherty & Phillips, 2015).

1.3 Teacher Experiences in Flipped Implementation

A flipped classroom requires teachers to make decisions about both content delivery
for pre-class and in-class activities. There are technology considerations in the prep-
aration of videos, or selection of content, for pre-class work. In addition, teachers
must decide whether students will use technology (for example, dynamic geometry,
computer algebra systems, graphing software, applets, etc) for learning or doing
mathematics during in-class activities. Therefore, the teacher must consider how
and when to utilise technology for both pre- and in-class activities. The focus in this
chapter is on technology use for pre-class activities.

Preparing content for the teaching of mathematical skills and/or concepts in an
asynchronous manner requires planning by teachers. Preparing pre-class content
increased teacher preparation time, even for the most experienced teachers (Akgayir
& Akgayir, 2018; Bergmann & Sams, 2016). Increased preparation time is a chal-
lenge for teachers to overcome and a major criticism of the approach (Lo & Hew,
2017). Previous research has reported 70+ working hours to redesign courses for a
flipped approach (e.g., Adams & Dove, 2016). The increase in time is predomi-
nantly due to time required to create and edit video lectures, in addition to preparing
in-class activities (Ak¢ayir & Akcayir, 2018; Lo et al., 2017).

Johnson and Renner (2012) highlighted the perspective of one teacher, who
found the workload required for planning the flipped classroom cumbersome, with
each lesson requiring two lesson plans (i.e., pre-class and in-class). Similarly,
Wanner and Palmer (2015) noted increased workload as the biggest concern of 47
Australian university academics; one academic noted a six-fold increase in prepara-
tion time. Despite this, increased job satisfaction has been reported by teachers
(e.g., Brunsell & Horejsi, 2013). The flipped classroom has provided opportunities
for teachers to differentiate for students’ needs (Finkel, 2012; Fulton, 2012; Speller
2015), with Saunders (2014) reporting enhanced opportunities for high school
mathematics teachers to enrich learning opportunities for all types of learners.

While some teachers have found a positive trade-off for the increased time com-
mitment (i.e., more targeted in-class activities), others view it as burdensome with
few rewards (Johnson & Renner, 2012). This chapter presents benefits and draw-
backs of flipped implementation through the experiences and perspectives of one
teacher who was able to reflect on the experiences of flipped implementation
through teaching a parallel non-flipped class concurrently.
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2 Methodology

2.1 Methodological Basis

Given the focus of flipped classroom research in higher education and across a
range of subject areas, there was a gap in understanding of the impact of such
approaches on secondary mathematics teachers. It is important to understand teach-
ers’ experiences when implementing a flipped approach (and also their perspectives
on this approach), as teachers play a crucial role in deciding on the teaching
approaches in their lessons. To determine the viability of a flipped approach one
important aspect is to understand potential opportunities and barriers from the per-
spective of the teacher.

In this study the teacher’s experiences and perspectives were gathered through
interviews at three distinct timepoints: before, during and after flipped implementa-
tion. Gathering the teacher’s experience and perspectives at these three stages was
important to ensure adequate understanding of teacher planning (before implemen-
tation), teacher considerations (during implementation) and teacher reflection (after
implementation).

Two Year 9 classes (flipped and non-flipped) were taught by the same teacher,
which focused on the solution of linear equations. The teacher explanations and
examples were planned to be the same for each class, with the delivery of instruc-
tion the only planned difference. The teacher planned to use explicit instruction for
presenting examples to the non-flipped class. Figure 1 provides an example used by
the teacher, showing the procedural steps that would be recorded. Analysis of the

Fig. 1 Teacher procedural

example for an algebraic o= - \+
approach for solving linear
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lesson content and videos is not provided in this paper. The teacher’s explicit
instructions for the same examples were videoed and provided to the flipped class.

Case-study methodology was used as it allows for rich evidence of teacher prac-
tice to inform our understanding (Hamilton & Corbett-Whittier, 2013). In our con-
text, it was used to develop detailed descriptions of the teacher’s experiences and
perspectives based on her natural observations of her two classes. This approach
provided a naturalistic setting for the teacher and the students, with students in their
usual mathematics class with their mathematics teacher.

2.2 Setting of the Study

The study took place in the first-named researcher’s place of employment, a co-
educational secondary school in Victoria, Australia (School A). School A has a 1:1
computer implementation strategy, with each student and teacher issued an Apple
MacBook for use at school and home. Teachers also have access to a range of tech-
nology, including graphics tablets (Wacom Intuos).

School A offers semester-based professional development workshops where
teachers choose professional development to suit their interests. One workshop
series focused on flipped learning pedagogies and was facilitated by the first-named
researcher, who was the professional development coordinator at School A. The
7 x 1.5 h flipped learning workshops covered a general introduction to the flipped
classroom, common deliveries of in-class and pre-class activities, how to upload
videos and this included time to create and upload a video. Teachers were provided
with the following summary of the 10 design principles to support implementation
devised by Lo et al. (2017):

1. Manage the transition to the flipped classroom for students.
2. Manage the transition to the flipped classroom for instructors.
3. Consider presenting introductory materials and providing online support in
video lectures.
4. Enable effective multimedia learning by using instructor-created short videos.
Use online exercises with grades to motivate students’ class preparation.
6. Modify in-class teaching plans based on students’ out-of-class learning
performance.
7. Activate students’ pre-class learning by using a structured formative assess-
ment such as a quiz at the start of face-to-face lessons.
8. Require students to solve varied tasks and real-world problems.
9. Meet the needs of students through instructor feedback and differentiated
instruction.
10. Facilitate peer-assisted learning through small-group learning activities. (Lo
etal., 2017, pp. 62—66)

b
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2.3 Teacher Participant

Teachers from the mathematics faculty who had attended the flipped learning ses-
sions were invited to participate in the study. The first-named researcher explained
the study and provided a rationale that having one teacher teaching two parallel
classes would help minimise variability in teaching approach and support compara-
tive reflections.

One teacher, Kate (a pseudonym), who taught two classes at Year 9, volunteered
to participate in the study. Kate had taught mathematics for over 15 years, and had
taught with technology (e.g., MacBook, CAS Calculator) for most of this time. Kate
had not taught using a flipped approach before but had previously taught Year 9
linear equations. Kate nominated one of her classes as an experimental group and
the other as a control group. The experimental group received their instructional
content using a technology-enhanced flipped approach; this class is referred to as
the flipped group. The control group received Kate’s regular approach to teaching
and learning where she presented content and students solved problems during the
lesson, with homework involving solution of topic-related problems; this class is
referred to as the non-flipped group. The school Principal, Kate, her students and
their parents were all provided with a plain language statement outlining the research
and signed a consent form to participate in this study. Students who did not return a
signed consent form still participated in the classroom activities, however their data
was excluded from analysis.

2.4 Research Design

Kate was requested to plan the same explanations and examples for both the flipped
and non-flipped groups for the linear equations topic. This enabled comparison
between the flipped and non-flipped approaches, as the only planned difference for
explanations and examples was the delivery of instruction.

Kate had been provided with the design principles by Lo et al. (2017) during the
professional development sessions but she was not directed to apply these in pro-
ducing the videos. However, as Kate had seen these principles, they may have
impacted her lesson design and subsequent teaching.

For each 50- or 100-min lesson over a four-week period (16 lessons) Kate pre-
pared a video for students to watch as a pre-class activity. Kate made her own deci-
sions about the quantity and quality of the explanations and examples for each
lesson. As a result, Kate created 73 min and 48 s of online content, across 11 videos.

Kate recorded her examples and explanations (i.e., screen captured audio and
video) using a graphics tablet connected to her computer. Recordings were uploaded
to an online platform, Edpuzzle (edpuzzle.com), at the first researcher’s request.
This platform has the functionality to gather student participation data and thus sup-
port monitoring. Kate included some formative assessment items, which she
expected the flipped group students to answer as they watched each video.


http://edpuzzle.com
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Table 1 Categorisation of similar and different aspects in the flipped and non-flipped groups

Group
Category Item Flipped Non-flipped
Pedagogical Teacher Same Same
Instructional content | Same Same
(examples used)
Initial delivery of Completed for homework Explained by teacher
instructional content | via video (not during regular | during scheduled class
class time) time
Student work Practice questions Same Same
requirements assigned to students
Use of scheduled Clarifying concepts from Listening to teacher
class time video explain instructional
Solving problems content
Clarifying concepts
Solving problems
Typical homework | Watching video for the next | Solving problems
routine lesson
Overall time Same Same
commitment

Data on the students’ access to each video (i.e., duration watched) and responses
to the teacher’s formative assessment items enabled Kate to monitor students’ par-
ticipation and understanding. Students accessed the pre-recorded videos for home-
work (Table 1).

2.5 Flipped and Non-flipped Lesson Content and Structure

An overview of the pedagogy and student work expectations for both the flipped
and non-flipped group is summarised in Table 1. Students in both groups were
expected to have the same time commitment for mathematics.

The mathematical content for the lessons, solving linear equations, included col-
lecting like terms, recognising equivalence, solving arithmetical equations (e.g.,
equations of the form Ax + B = C) and non-arithmetical equations (e.g., equations
of the form Ax + B = Cx + D). Kate used procedural examples which involved dem-
onstration of step-by-step routine procedures to solve non-contextual problems
(Fig. 1). The same explanatory notes, examples and problems were used for both the
flipped and non-flipped groups, which enabled her to reflect on the success of the
flipped approach.
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2.6 Semi-Structured Interviews

Semi-structured interviews provide an appropriate and flexible approach for small-
scale research (Drever, 1995), as a set of predetermined questions can have their
order, wording, or structure modified based on the interviewer’s perception of what
seems to be most appropriate at the time (van Teijlingen, 2014). Each semi-
structured interview with Kate had pre-planned questions to gain insight into her
planning, implementation, technological difficulties, perceptions of student prog-
ress and issues with the flipped approach (see Appendices 5.1, 5.2 and 5.3).

Kate participated in three 20-min semi-structured interviews: one before teach-
ing the topic (pre-implementation), a second halfway through teaching the topic
(during-implementation), and the third at the end of the topic (post-implementation).
Interviews were transcribed verbatim and the full transcript was provided to Kate to
check and provide any elaborations or clarifications.

2.7 Data Analysis

Qualitative analysis of each of the three semi-structured interviews was guided by
the nine-stage approach outlined by Ball (2011), involving the use of transcripts to
determine themes (Fig. 2). This process resulted in subthemes (referred to as clus-
ters by Ball, 2011), which were a collection of similar focused comments made by
Kate. Subthemes were grouped into overarching themes that represented similar
sets of related subthemes (Table 2).

Data was continually revisited to determine themes that provided the best expla-
nation of “what’s going on” (Srivastava & Hopwood, 2009). Transcripts were revis-
ited by all authors to establish a representative set of subthemes, and ultimately,
validate a set of themes that captured the content of each interview.

Kate restated or repeated ideas in the same or subsequent interviews, and these
similar ideas were grouped into “subthemes” (Stages 4—6). This was achieved by
highlighting comments and paraphrasing them in the margin of the transcript, with
related paraphrased comments forming a subtheme. An example of the outcomes of
Stages 4 and 5 are depicted in Fig. 3.

The subthemes and themes were determined across the three interviews. Using
the same paraphrased examples as those from Figs. 3 and 4 exemplifies how sub-
themes were formed across multiple interviews. The themes relating to the teacher
experiences and perspectives of flipped implementation are in the following section.
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Stage 4: Highlighted interview comments
relevant to research question

Stage 5: Paraphrased Comments

Umm...Yes, I must say that going into the
flipped class I am less stressed with the fact
that I’m not time constrained with, you know,
oh we need to get through this, this and this.
Umm, so I know, sort of I know what is going
to happen in the flipped class... umm, and how
much time we are going to have to work on it.
Whereas with the other class, because I want to
allow them time to work in class it’s always
sort of a struggle, and then you have the
behavioural issues because they’ve had enough
of hearing you.... so going into a flipped
class...yes, its surprisingly more relaxing...
than going into a non-flipped.. with the...you
know, with the time stress.

Teacher feels less stressed when entering the

flipped classroom.

Teacher has a clearer expectation of what will
happen in each flipped class and how the

lesson will play out.

Teacher finds struggles with time and
subsequent behaviour in the regular class.

Teacher finds more stress in the face-to-face
component regular classroom and finds the
face-to-face flipped class more relaxing.

Fig. 3 Example of paraphrased comments formed from interview transcript

Subtheme Paraphrased Paraphrased Paraphrased
Comments Comments Comments
(Interview 1) (Interview 2) (Interview 3)
Teacher feels less N/A Teacher feels less Less “energy” needed
stress in the face-to- stressed when on the teacher’s
face flipped entering the flipped behalf to run the face-
classroom when classroom. :ﬁ-facc classes during
compared with the € unit.
face-to-face regular Tmh?r finds more
classroom stress in the face-to- | Teacher was
face component of the | continually less
regular classroom and | stressed going into the
finds the face-to-face | flipped class, with a
flipped classroom constant expectation
more relaxing. of how the lesson
Teacher has a clearer would progress.
expectation of what
will happen in each
flipped class and how
the lesson will play
out.
Teacher finds
struggles with time

(regular classroom).

Fig. 4 Example of subthemes from multiple paraphrased comments over multiple interviews
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3 Results and Discussion

Six themes emerged from the interview analysis with Kate, and these have been
organised into the following three broad areas:

e requirements for flipped implementation (Theme 1),
 the processes involved in the implementation (Theme 2), and
* the key perceived outcomes of implementation (Themes 3-6).

The themes, subthemes and frequency of comments that related to each sub-
theme and the interviews in which they were made in are shown in Table 2.

What follows is an explanation of each of these themes with exemplification
from the data.

3.1 Requirements for the Flipped Classroom — Theme 1

This theme categorises the main requirements identified as important for the imple-
mentation of flipped lessons. Two subthemes related to expectations of students and
teacher technology competence.

3.1.1 Clear Expectations of Students’ Participation
in the Flipped Classroom

The need for clear student expectations with regard to the watching of the videos for
homework was evident in all interviews (subtheme 1.1). Before implementation,
Kate raised concerns that students might not watch the videos and may “waste their
time in the class”. To mitigate these concerns, Kate ensured that the students under-
stood that the time gained in class for solving problems should be used effectively,
noting any problems not completed in class “they have to still do, obviously at
home, plus watching the new tutorial [i.e., video] and getting the notes”. Kate dis-
cussed her clear expectations that students were accountable for homework and
classwork in Interviews 1 and 2, highlighting student expectation remained a focus.
In Interview 2 Kate described the expectations provided to her students to complete
the following pre-class activities:

e watch the video tutorial and copy the notes to their workbook; how they watched
the tutorial was left up to the students (i.e., pause or rewind as required);

* highlight difficulties prior to entering the next class so these could be clarified
in class;

e complete the tutorial quiz questions in their workbook.

Edpuzzle enabled Kate to monitor student work completion. Kate noted some
students watched videos at 6 am the morning of class, and subsequently asked all
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students to complete work the night before, as an additional expectation. By
Interview 2, Kate was confident her expectations were being met, and despite “a few
students who did not watch the tutorial the first time round”, her continual follow-up
ensured all students participated in the flipped classroom as intended, noting that by
the mid-point of the topic “all students know what they need to do” and “are quite
prepared” for face-to-face lessons.

The three interviews highlighted a progression in Kate’s flipped implementation.
In Kate’s experience, teacher intervention was required to maximise student partici-
pation. Kate’s communication of expectations assisted appropriate student partici-
pation, consistent with Lo et al.’s (2017) guidelines that teachers must manage the
transition to the flipped classroom for their students. Kate’s expectation that stu-
dents watched the videos (before the next lesson) and wrote summary notes once a
video had been viewed engaged students with the pre-class videos, which meant
they were prepared for the in-class activities where problem solution relied on
knowledge from the videos. Furthermore, the need to monitor student participation
is highlighted; as without this capacity, teacher intervention is more limited.

3.1.2 Teacher Technology Competence

Teacher technology competence (subtheme 1.2) was a consistent subtheme across
the three interviews. In Interview 1, Kate discussed the additional time investment
required to become accustomed to working with new forms of technology (i.e., a
graphics tablet, screencast software, Microsoft OneNote, Edpuzzle). She noted that
it took quite “some time to adjust” to using these technologies. Kate commented
that “the first video probably took me ... 2 hours, umm, because I couldn’t get
everything sort of aligned together, video and pen and everything”, highlighting a
substantial time investment to assimilate aspects of technology. For Kate, preparing
the first video was the most time-consuming task, but over the interviews her com-
ments indicated the time required to produce videos decreased.

In the second interview, and despite growing competency with technology, Kate
noted that aspects of technology continued to remain problematic. These centred
around developing adequate technical expertise in using features within the plat-
form, such as “... learning how to get feedback from Edpuzzle of the student’s
ongoing progress”. This feedback related to student viewing data and responses to
the quiz questions, both crucial aspects in order for Kate to monitor students’
participation.

By Interview 3, no technology issues were evident, however Kate reflected on
the initial start-up considerations for teachers implementing the flipped classroom.
These included developing technical expertise (i.e., use of graphics tablets, screen-
cast software, upload platforms) and coordinating the use of such tools (sometimes,
simultaneously).

Although time consuming, Kate acknowledged, “It’s worth the time spending
preparing for the flipped classroom”. Kate cautioned that not taking the time to
build this competence would result in teachers “... spend[ing] a lot of time



164 A. McAlindon et al.

preparing notes and the students still won’t get it”. Kate’s interview suggested that
while teachers can understand how to use certain aspects of technology, they needed
to be fluent operators and integrate multiple technologies. For example, the graphics
tablet needed to be managed alongside a voiceover, with clear handwriting on the
tablet to ensure students could make sense of the final product.

McGivney-Burelle and Xue (2013) cautioned that “Those new to flipping should
expect many technology glitches especially when creating the first few videos”
(p. 484). By Interview 3, Kate suggested her competency with the technology had
reached a point where it was no longer an issue, and so this technological compe-
tency was built in a matter of weeks. Thus, although there may be an initial increase
in time demands in learning to teach with new technologies, the demands may
decrease.

This theme highlighted the requirements for a flipped classroom are multifac-
eted. Teachers should establish student expectations, even if these are the same as
for non-flipped classrooms (i.e., the completion of assigned homework), and moni-
tor student participation. Additionally, teachers need to develop technological com-
petence to integrate the use of a number of technologies simultaneously.

3.2 Understanding the Process of Flipping
a Classroom — Theme 2

This theme relates to the process of flipping a classroom, such as increased time
demands, the required quality of videos and use of student data to inform planning.

3.2.1 Flipping Lessons Is a Time-Consuming Process

This subtheme highlighted Kate’s concern about the additional time for implement-
ing flipped lessons. In Interview 1, Kate discussed that planning for her regular
mode of teaching would take around 5 min for a 50-min lesson given her experience
in teaching (i.e., over 15 years). Kate pointed out that her planning time for flipped
lessons was “definitely more lengthy than the 5 minutes”. In preparation for record-
ing videos, Kate wrote a plan for her examples and explanations, noting that “pre-
paring the notes ... written ... took for sure about 2 to 3 hours to prepare for a whole
unit”. Talbert (2015) described a ratio of “roughly a 6:1 ratio in time spent scripting
and producing each video to the running time of the video” (p. 624). Kate noted her
first video of approximately 10 min duration took about 2 h to create.

The extended lesson planning time due to the need for a high level of teacher tech-
nology competence was discussed in the previous theme; however, the preparation
of notes and sequencing for each lesson also required Kate to spend more time than
in her regular lesson planning. Kate acknowledged this additional time was a wor-
thy investment, as videos had an immediate impact on students’ engagement and
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her ability to differentiate content (addressed later in themes 4 and 5). Furthermore,
Kate acknowledged the benefits in the reusability of the videos (addressed later in
theme 3).

3.2.2 Video Quality Does Not Need to Be Perfect

When teachers make videos for students, there could be an expectation that videos
should be high quality, with considerable editing and refining. Subtheme 2.2 indi-
cates this was not essential for Kate, and hence need not consume considerable time.

Initially, Kate devoted a large portion of time in her attempts to make perfect
videos (Interview 1), with any imperfections in voiceovers or minor imperfections
in writing causing her to start recordings over. After approximately five lessons
Kate accepted being “less perfect, so if a mistake was done, I would just say no this
is the way it needs to be done, rather than just starting from scratch”. By Interview
2, Kate had sought feedback from students about the videos and received positive
feedback, noting that her students did not expect videos to be perfect:

”» LLIT3

They have been “nah we like them Miss”, “we can understand them”, “there’s enough
examples” and I can tell that because they can then go straight into their work after we’ve
reviewed the quiz questions, umm—so yeah, the feedback was good.

Acceptance of less than perfect video quality by Kate’s students suggests that
teachers may not need to allocate significant time for editing videos. In initial vid-
eos Kate re-recorded videos in order to eradicate “ums” and “ahs” and fix minor
errors, such as use of incorrect notation. While others have suggested self-created
videos to be of preference in flipped implementation (Lo et al., 2017), Kate’s experi-
ence highlights that acceptance of minor errors may be able to save time in video
production, without compromising student satisfaction.

3.2.3 Formative Assessment in the Flipped Classroom Assists Planning
and Preparation

The preparation for face-to-face lessons was enhanced through Kate’s ability to
monitor student progress through the platform, which provided a summary of stu-
dents’ answers to the embedded online questions. In both Interviews 1 and 2 Kate
discussed use of student progress data from these questions to guide discussion in
the next face-to-face class, stating in Interview 2 that she “will show them ... how
many of you got this one incorrect, let’s discuss it on the board”.

Given her extensive experience in the teaching of linear equations, Kate men-
tioned that the student responses to the formative assessment tasks did not reveal
anything she had not already anticipated. However, she still used these responses to
inform the group focus for the in-class lesson:

When we did the transposing of equations, the flipped group—I had to go through the tuto-
rial again with them in class, because they got most of the questions, the quiz questions
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incorrect. And so ... we discussed extra examples on the board, and once I explained it on
the board, then they said “oh now I get it”. (Interview 3)

Bhagat et al. (2016) reported the benefit of targeting teaching for specific groups
of learners based on progress in pre-class activities. Kate used whole class instruc-
tion to clarify any difficulties identified through the quiz questions, rather than
design more targeted interventions for specific groups, which may have limited the
efficacy of this approach.

3.3 Key Perceived Qutcomes: Resources — Theme 3

This theme relates to the reusable nature of the resources created and has only one
subtheme.

3.3.1 Flipped Tutorials Are Reusable

Kate highlighted the ability to reuse tutorials (i.e., videos) year-to-year, or for mul-
tiple classes in 1 year, as advantages of creating video explanations. While these
advantages were discussed in Interview 1, Kate identified an additional advantage
during Interview 2, which was to make the videos available to absent students, com-
menting that the videos “have already been useful for those students who weren’t
there”. This shows a shift in emphasis from thinking about time saving for herself
(i.e., to mitigate the extensive start-up time investment from Themes 1 and 2), to
considering how videos can be used to enhance opportunities for student learning,
opportunities that were not available in a non-flipped approach.

During Interview 3, Kate reemphasised these advantages but returned to the ben-
efits for the teacher from the perspective of being able to use videos with multiple
class groups at the same year level:

When you’ve got the same class, you know you’ve got two or three of the same classes as
well. It is quite efficient to have the tutorials—because to repeat the same things twice or
three times a day—it can be draining.

This subtheme highlights the specific resource outcomes of flipped classroom
implementation. The reusable nature of resources serves to benefit both teachers
and students. While previous themes have elaborated on the substantial time invest-
ment for flipped implementation, this theme begins to acknowledge potential gains.
Kate’s perspectives aligned with McGivney-Burelle and Xue (2013), who claimed
that “Once a polished set of videos and course materials are created the preparation
time will be significantly reduced” (p. 484).

However, there is a caveat to any discussion of these advantages as teachers are
unable to engage with students during the explanation of new mathematical con-
cepts or procedures, nor can students discuss the mathematics with other students,
if necessary. Thus, there is an inability to involve students in building an
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explanation, questioning aspects of an explanation or taking part in discussions
related to the new understanding being developed. This approach of using pre-
recorded videos has some advantages in the mathematics classroom, but teachers
will need to balance this against recognised benefits that arise from the social nature
of learning, for example, through constructing understanding through argumenta-
tion (Yackel, 2002) or promoting knowledge development through discussion of
technology displays (Ball & Barzel, 2018). This particular caveat was also acknowl-
edged as a drawback of the flipped approach by students in their feedback within the
wider study in which this research took place (McAlindon, 2020).

3.4 Key Perceived Outcomes: Student Classroom
Engagement — Theme 4

Theme 4 related to aspects of student classroom engagement, viewed from Kate’s
perspective, that were impacted through the flipped classroom implementation. Two
subthemes related to student behaviours and their in-class interactions.

3.4.1 More Engagement and Less Behavioural Issues After Flipping

The emergence of subtheme 4.1 was supported by 11 comments, all occurring dur-
ing Interviews 2 and 3 (i.e., after implementation of the flipped lessons). Kate noted
student behavioural issues in the face-to-face lessons for the flipped group, and
despite not discussing this as an anticipated benefit in Interview 1, referred specifi-
cally to this group’s improvement in their behaviour in Interview 2:

The behaviour in the flipped group, I think it has improved—you know they work straight
through then they ask for a break, they come back in and then they keep working. Whereas
the other group, there is still that struggle, once you finish off the explanation, they want a
break, because they’ve had, you know, almost enough, and then they still need to start work-
ing. Yeah, so in the flipped group, the behaviour is much better.

The disparity in engagement between the two classes was further reinforced dur-
ing Interview 3, with Kate commenting that during face-to-face classes, “... the
flipped group were more engaged in their work. They were really, you know, heads
down and just completing their work”. She reported that the flipped group had
improved behaviour compared to prior to the study and they seemed more engaged
with the work in class when compared to the non-flipped group. Kate suggested that
the flipped group were actively engaged with the examples and explanations, while
the non-flipped group found the same content tiring, possibly due to the cognitive
demands of learning new procedures and/or concepts in the same lesson as solving
problems.

The flipped group had a novel format for their classes, with students able to view
explanations at their own pace prior to class, with class time devoted to solving
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problems that involved the application of known procedures and concepts. This
resulted in fewer behavioural disruptions and more active participation in the flipped
group. Increased student engagement in the flipped group could be attributed to the
“flow-on” impact of the pre-class activities, rather than any deliberate change to in-
class activities. This contrasts with the findings from Jensen et al. (2015), which
attributed the increased engagement of post-graduate students in a flipped class-
room to be the product of changes to in-class activities, and not the classroom
flip itself.

3.4.2 Increased Collaboration Opportunities in a Flipped Classroom

In Interviews 2 and 3, Kate commented on the impact of the flipped approach on
students’ inclination to help their peers with mathematics. She noted “students are
helping each other more, I noticed, because obviously they’ve watched the video—
they’ve understood it—and then they might be feeling more comfortable helping
out each other”. Kate did not report such observations in her non-flipped classroom.

Increased opportunities for students to interact and collaborate during class in a
flipped approach have been reported to enhance learning through structured peer-
based learning. For example, Lo et al.’s (2017) review of the flipped classroom lit-
erature in mathematics highlighted 33 studies with reported benefits that were
attributed to peer-assisted learning which occurred in a flipped classroom. While
Kate did not explicitly build opportunities for peer-assisted learning into the struc-
ture of her face-to-face lessons, the in-class component of the flipped classroom was
conducive to peer-based learning as it did not focus on the teacher explaining exam-
ples, thus provided more opportunities for interactions.

3.5 Key Perceived Outcomes: Teacher Specific — Theme 5

This theme had two subthemes related to increased teacher support afforded to stu-
dents and reduced teacher stress in the flipped classroom.

3.5.1 Increased Opportunities to Observe and Support Student Progress

Kate noted an increased ability to observe and support students’ learning during in-
class activities for the flipped group. In Interview 1, Kate reflected on the potential
of the flipped classroom, suggesting the non-flipped group would be disadvantaged
as most textbook problems will be completed “when they are at home working by
themselves and the teacher is not there”. By contrast, her flipped group seemed
advantaged by learning at home through video, and “more time to complete class
work ... with my assistance”.
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Kate valued the ability for more dedicated teacher time responding to individual
student’s questions for the flipped group, noting in both Interviews 2 and 3 that the
flipped students had an increased ability to just “put their hand up and there’s my
help”. This notion of enhanced support was due to extra time helping students, with
Kate commenting she could “get a feel more from the flipped group because I'm
seeing them doing their work in front of me”. This was not possible in the non-
flipped group as content explanations consumed considerable class time.

Bhagat et al. (2016), Clark (2015) and Strayer (2012) also reported that freed-up
class time enhancing opportunities to further support students as they actively work
through problems. Even in the absence of specific targeted intervention programs,
the pre-class component of the flipped classroom provided more time for the teacher
to target help to individual students in-class.

3.5.2 Reduced Teacher Stress in a Flipped Classroom

Subtheme 5.2 highlighted reduced teacher stress resulting from the normal time
constraints in-class. After implementation, Kate highlighted that she felt less time
pressure to teach the curriculum with the flipped approach, compared to the non-
flipped approach where finishing the topic was “always sort of a struggle”.

Kate identified difficulties with both time and maintaining student engagement
in her non-flipped group, both of which were not apparent in her flipped group. A
potential of the flipped approach may be reduction of time stress during class, which
can be a worthwhile trade-off against the time in initial planning for flipped imple-
mentation. This, coupled with the reusability of videos discussed in Theme 3, high-
lights a potential advantage of the approach in the longer term.

3.6 Key Perceived Outcomes: Learner Specific — Theme 6

This theme focuses on the potential outcomes of the flipped classroom specific to
the students, as perceived by Kate. Three subthemes related to enhanced capacity
for differentiation within the classroom.

3.6.1 More Time for Student Work in the Face-to-Face Classroom

Kate perceived students in the flipped classroom had more time to work on prob-
lems in-class, noting this as a potential advantage during Interview 1:

So, with the flipped group, I would probably say out of a double period [100 minutes]
we’re, maximum spending, 20 minutes if I see that they had difficulties with the quiz ques-
tions. Um, whereas with the other class having to go through the difficulties from the last
lesson and then through the content and then I would say that maybe they end up with 20
minutes of doing work, so that’s a big difference.



170 A. McAlindon et al.

Kate’s description of the “big difference” for students in the flipped group, with
80% lesson time used to complete problems, in comparison to just 20% for the regu-
lar group highlights a large disparity in time for student to solve problems in class.
This difference is perhaps the explanation for Kate feeling she had more time to
support her students (Sect. 3.5.1), engage with their classwork (Sect. 3.4.1) and
each other (Sect. 3.4.2). This difference resulted from a change in the pre-class
activity, involving students watching a video of approximately 7 min. The ability for
students to capitalise on this (i.e., through watching at their own pace—see Sect.
3.6.3), provides natural flow-on opportunities for the teacher (Sect. 3.5.1) and more
time for students to solve problems in class (Sect. 3.6.1).

3.6.2 The Flipped Classroom Supports Lower Achieving Students

Kate perceived that the flipped approach had enhanced her ability to support low-
achieving students in particular, as it allowed students to better control the pace of
explanations (a finding that is supported by the student data in McAlindon, 2020)
and created subsequent increased time in the classroom, which could be used to
assist those students.

Kate referenced specific students in her class, who would not have otherwise
engaged with previous topic content due to perceived difficulty, now actively engag-
ing with content and completing work. This could highlight that the pre-class com-
ponent of the flipped classroom provided new opportunities for learning for these
students that were perhaps not feasible in a non-flipped class.

3.6.3 The Flipped Classroom Enables Flexible
and Individualised Learning

Following implementation, Kate felt that students were able to achieve better out-
comes “because they could you know, watch the tutorials at their own pace, as many
times as they want”, which then “allowed me to help them more in class”. The fea-
ture of on-demand viewing of videos could explain the perceived efficiency of the
flipped approach as students were able to re-watch explanations as often as they
wished to understand the examples; this contrasted with the non-flipped group
where Kate re-explained ideas in class when students were having difficulties.

Kate suggested she was able to explain the same amount of content that could
otherwise consume 80 min of her 100-min lessons, in a video with an average dura-
tion of 7 min. This was achieved without reduction in content delivered.

What Kate didn’t account for in her interviews was the notion that the examples
and explanations might need to be further elaborated to help students who were hav-
ing difficulty or to deepen students’ understanding. Kate did not discuss the role of
the class discussion in helping students to develop their understanding of solving
linear equations. This could be due to the focus on procedures in the examples and
might differ when promoting reasoning, problem solving or conceptual
understanding.
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4 Implications and Conclusions

This chapter reported the experiences and perspectives of one teacher who imple-
mented a flipped approach for the first time when teaching Year 9 students to solve
linear equations. Overall, the teacher had a positive experience and believed that the
time investment required to implement a flipped classroom was worthwhile. Three
broad conclusions can be drawn from the study, namely, using a flipped approach
requires an initial time commitment by the teacher, there are potential advantages
for both teachers and students in using a flipped approach, and there are consider-
ations for teachers when using a flipped approach in their teaching of mathematics.
These findings, which are discussed below, can inform the design of future profes-
sional development for teachers.

4.1 Advantages for Teachers

Four advantages of flipped implementation were identified by the teacher: the abil-
ity for students to independently view/review content explanations, a reduction in
time pressure in class for the teacher, increased student classroom engagement and
increased opportunities for the teacher to engage with students.

Students’ independent viewing/reviewing of content explanations. This also sup-
ported absent students or those who needed to consolidate content knowledge.
When a teacher develops a suite of lessons it will be possible to target video
explanations to students for revision of previous mathematics concepts or skills
where student difficulties have been identified.

Reduced time pressures and teacher stress in-class. The transfer of content expla-
nations to a pre-class activity reduced teacher stress in the face-to-face class-
room. Kate noted decreased pressure in the flipped classroom, when compared to
her non-flipped classroom, as she did not have to “rush through” explanations.

Increased classroom engagement. Kate noted a more “active” work environment in
the flipped group compared to the non-flipped group. Increased engagement
resulted in fewer behavioural disruptions, increased collaboration between stu-
dents, and more focus on tasks. These differences were also apparent when com-
paring the same flipped group to themselves prior to flipped implementation.

Anderson and Brennan (2015) reported teachers who invested significant time
and effort, yet lacked confidence and direction in their implementation, which ulti-
mately led to poor teacher and student outcomes. The professional development
recommendations presented in Table 3 attempt to ensure appropriate support and
direction in flipped implementation.

Increased Time for the Teacher to Engage with Students. More class time was
available for the flipped group to solve problems in Kate’s classes (80% of lesson
time), compared to the non-flipped group (20%). This afforded extra time in-class
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Table 3 Professional development recommendations and associated rationale

Professional Development
Recommendation

Rationale

Discuss criteria for choice of
content to flip

For content to be appropriate to be flipped, students need to be
able to develop an understanding of the key concepts or skills
independently, without reliance on classroom discussion or
teacher-student interaction. Discussion of criteria for selection
of content will support teachers to identify appropriate content
for a flipped approach.

Discuss the differing level of
time commitment required at
various stages of flipped
implementation

Teacher time commitments have been shown to be substantial
in the initial planning and preparation of flipped
implementation (Sect. 3.2). This is due to a range of factors,
including increased need for teacher competence in
technological pedagogical knowledge

Fewer time pressures in class are then observed, with reduced
teacher stress in-class and better behavioural engagement
outcomes (Sect. 3.4). This along with the reusability of videos
(Sect. 3.3) can be acknowledged as trade-off for the initial
investment

Discuss and model strategies to
capitalise on the additional
in-class time to deepen and
extend students’ understanding

Teachers will have additional time in-class to support students
in developing their mathematical understanding (Sects. 3.5
and 3.6) and will need to consider how to best use this time to
maximise student learning

Provide video excerpts of
flipped tutorials for teachers to
discuss and critique

Critique of video of flipped tutorials will provide teachers
with the opportunity to identify features that contribute to, or
detract from, development of students’ understanding. This
will help teachers make informed choices about the creation
and selection of video content

Discuss and develop students’
participation guidelines in a
flipped approach

To support students to participate in the flipped approach to
develop mathematical understanding, they will need guidance
on how they are expected to engage in the flipped classroom
(Sect. 3.1)

Discuss and model approaches
for monitoring students’
participation and understanding

Student data will inform planning of face-to-face teaching and
provide the teacher with information regarding the efficacy of
the flipped approach

to work with students and observe students as they solved problems enabling
Kate to better monitor students’ understanding.

4.2 Technology Considerations

Teacher competence with technology is a major requirement for the flipped class-
room when videos are created. School-supported professional development will
assist in supporting such teacher competence. Discussion and support on the use of
a variety of technologies for presentation could be included, for example, helping
teachers learn the approach for embedding a dynamic geometry file in a video, or
including links to virtual manipulatives for students to engage with. Initially,
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although Kate attended professional development at the school, the time commit-
ment for technology competence exceeded that provided by the school. Therefore,
appropriate professional development and time release is likely to assist teachers,
but not eliminate the burden of implementation.

4.3 Student Expectations

The need for teachers to discuss expectations for student engagement with the vid-
eos and the ability to use inbuilt features of software to monitor students’ use were
important in Kate’s implementation of the flipped classroom. Teachers will need
strategies for achieving buy-in from students in a remote learning environment and
also for monitoring students’ expectations (i.e., through use of analytics).

4.4 Future Directions for the Flipped Classroom in Secondary
School Mathematics

This study focused on exploring the efficacy of a flipped classroom approach where
the teacher used their regular examples and explanations to teach students how to
solve linear equations. In this case, the teacher demonstrated procedures by writing
on a tablet, which mimicked what would be done on a whiteboard in a face-to-face
classroom. Having the same examples and explanations enabled the efficacy of
flipped class to be contrasted with the teacher’s regular approach. Having demon-
strated positive benefits through flipped implementation, the next consideration for
teachers is investigating the potential for improved student learning through use of
arange of explanations and examples, as well as the inclusion of deliberate changes
to in-class activities.

Further consideration should be given to whether all explanations should be
‘flipped’, or if it should be used to target aspects of explanations or particular types
of examples. As noted earlier, there is considerable research to support argumenta-
tion and communication as essential components of development of students’
understanding, so one possibility is that a teacher provides some introductory mate-
rial for students to engage with as a pre-class activity, and then building on this in
the next class, to extend student understanding through discussion, further explana-
tion and activities. More deliberate changes to activities within the in-class compo-
nent would most certainly contribute to further increases in planning time, however,
may offer further enhancement of the benefits observed within this study.

The time duration of this research was less than one school term, and thus Kate’s
perception could be impacted by the novelty of a new flipped approach. Longer
duration research (e.g., Guerrero et al., 2015; one semester) noted that, for students,
“the novelty of the videos wore off, fatigue and boredom with the same instructional
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approach day after day become a factor” (p. 827). Kate reported positive impacts in
her classroom which could have been due to the short time frame of the flipped
intervention. Further research on the ability of the flipped classroom to maintain
student positive attitudes and engagement, across a range of mathematical topics,
would be beneficial.

This study investigated one teacher’s approach to the implementation of the
flipped classroom for the teaching of linear equations in Year 9. Although the results
from one teacher cannot be generalised, the findings provide a view on some of the
potential barriers and opportunities which might be faced by other teachers. For
schools or systems that are considering widespread implementation of the flipped
classroom, the lived experience of real classroom teachers provides some insight
into potential challenges and opportunities that may be encountered in a secondary
mathematics setting.

If we consider the principles introduced by Lo et al. (2017) for teacher imple-
mentation it appears that Kate utilised the first five of ten listed principles.

Having identified Kate’s perspectives and experiences, the next step in imple-
mentation could be to consider the remaining five principles that were not evident
through interview analysis with Kate, and consider professional development to
support flipped classroom implementation. For example, attention could be pro-
vided to developing activities for in-classroom differentiation or small-group learn-
ing activities that further capitalise on the advantages of the technology-enhanced
flipped classroom.

Therefore, to support these suggested future directions, it is also important to
provide professional development for teachers to support their pedagogical content
knowledge and competence in implementing a flipped approach. Table 3 presents
some key considerations for teacher professional development to achieve this sup-
port when implementing a flipped approach.

In addition to the requirements for professional development to build teachers
pedagogical content knowledge for teaching a flipped approach (Table 3), schools
need to provide an environment where such innovations are possible and supported.
For schools interested in exploring the flipped classroom, this study highlights the
importance of providing assistance and opportunities for teachers to develop their
technological competence, alongside a provision for additional planning time in the
initial flipped implementation.

Therefore, schools need to acknowledge that teachers may be required to upskill
in areas of technology; to create videos, upload to a new platform, monitor progress
remotely and engage in the recommendations as outlined above. At the same time,
schools should also consult teachers when they are acquiring new technological
solutions for flipped classrooms to foster a partnership and identify skill gaps prior
to flipped implementation.

All of these factors may require a substantial time investment from the teacher
and should be supported by embedded opportunities at the school.
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4.5 Capitalising on Lessons from the COVID-19 Pandemic

The COVID-19 pandemic, which forced many schools into remote environments
provides a unique perspective into the flipped classroom. Many teachers who may
not otherwise have had opportunities to create videos found themselves in a position
where this commitment was now required to ensure continuity of learning for their
students. These teachers are well-placed for flipped implementation, as the time
investment already spent in setting up a remote learning environment could place
them ahead of the initial barriers of attaining competence with technology and cre-
ation of video explanations. These teachers could now be considered prime candi-
dates to capitalise on the learning from the COVID-19 pandemic, and in return to
face-to-face learning, look to further utilise these videos to enhance students’
learning.
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Appendix: Semi-structured Interview Questions and Rationale

First Interview: Before Starting the Flipped Classroom
with Students

Question Additional prompt (If required)

Describe your usual preparation for a linear Average time planning for a 50 min lesson

equations lesson, in terms of time and resources Typical resources used (i.e., MacBooks — In
what way?)

Describe your usual teaching practice in the How do you usually ‘teach’ concepts within

mathematics classroom, in terms of whiteboard linear equations?

use and questioning How do you know when students are

understanding what you are teaching?

Discuss your current experiences and comfort with | How does this comfort level usually play
technology out in your mathematics classes?

How does it usually play out in your
preparation of these classes, specifically,
previous linear units?

(continued)



176

A. McAlindon et al.

Question

Additional prompt (If required)

Describe your preparation for the linear lessons
for the flipped classroom group. In doing this,
detail your experience in creating the content
using technology, including the upload of this to

Factors to prompt: did you find anything
particularly easy/straight forward?
Anything particularly difficult? Anything
you ended up abandoning as a result of its

content EdPuzzle

difficulty?

How do you feel the flipped approach
aligns with your usual teaching
methodology? Discuss any similarities and

differences
In your previous experiences, how have you found
students to perform and perceive linear equations
in your usual teaching format?
Do you anticipate any differences with the flipped | Why/why not?

approach, in terms of student understanding or
engagement?

Was there a reason you selected one particular
group to receive the flipped instruction over the
other? If so, can you elaborate further on this in
terms of your expectations?

Second Interview: During (Mid-way) Implementation

of the Flipped Classroom

Question

Additional prompt (If required)

How did you establish the expectations around the flipped
classroom for your flipped students?

‘What have you found students have taken well to with the
flipped classroom?

What have the students struggled with?

Tell me about the differences and similarities between that
you have seen in your flipped and non-flipped classrooms.

Have you had to address any of
these issues with students?

Have you noticed any obvious differences between
engagement or understanding between the flipped and
non-flipped groups as a whole?

Describe the difference.

Any differences between groups of students within each
group?

Describe the difference.

Did the students have any technical difficulties?

What were these?

How do you think the students are finding the flipped
classroom approach to learning linear equations?

Do you check how often students have completed their
work in both classes?

How do you do this for each class?

Do you know when students are accessing the flipped
content?

i.e., Home, train, bus?

(continued)
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Question

Additional prompt (If required)

Has anything been surprising in the student responses to
your EdPuzzle questions?

Describe why this may be of
surprise

Have you adjusted/refined any of your face-to-face content
based on the flipped student responses to your questions in
EdPuzzle?

Why/why not?

Other prompts to ensure reference to any themes that may
have arisen from the first interview

Did you have any technical
difficulties?

Any unexpected benefits or draw
backs?

Anything different in interactions
between student student or student
teacher?

Third Interview: After Completion of the Flipped Classroom

Question

Additional prompt (If required)

Can you describe how you found the implementation of the
flipped classroom compared to your regular approach?

Do you feel any groups of students were able to benefit
more from any one type of approach (i.e., flipped or
non-flipped)?

‘What makes you think this?

Do you feel any groups of students were at any more of a
disadvantage in any of the approaches?

What makes you think this?

You mentioned in the last interview about a student who
you thought wouldn’t get Algebra, can you explain their
journey a little more and how this was turned out different
to your expectations?

Mention student name from
previous interview

What did the flipped students struggle more or less with
when compared to the other class?

Why do you think that?

When you are walking around the classroom, what is your
perception of what is going on?

What gave you those impressions?

What would be an outsider’s perspective on what is
happening if they were to walk into each class?

Did students in the flipped vs non-flipped have different
types of problems?

What were they?

Can you discuss the workload requirements to produce
your flipped lessons, and compare this to your regular
approach?

Do you believe the additional workload is worth the effort
in the long run?

Why or why not?

On balance, how do you see the future of the flipped
classroom in your future mathematics classes?

Consider this in reference to your
usual approach

Why do you think this?

(continued)
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Question Additional prompt (If required)

Are there factors that you would consider (i.e., student Discuss these factors and your

groups, topics taught, classroom setup, year level) as being | opinion on why they would

conducive to a flipped approach? influence the success of a flipped
approach

What advice would you now offer to anyone wanting to
create flipped content for maths?

‘What sort of training and resources do you think teachers Training, resource, timing.
need to be successful in flipped lessons?

‘What advice do you think is pivotal for students to have in
order to get the most from flipped learning?
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Tensions and Proximities in Teaching
and Learning Activities: A Case Study
of a Teacher’s Implementation

of Tablet-Based Lessons

Maha Abboud and Fabrice Vandebrouck

Abstract This chapter presents an example of how mathematics teachers integrate
tablets into their classroom activities. It focuses on mediations and actions in the
teaching-learning situation from both a cognitive and pragmatic lens and extends
our contribution to the first edition of this book by presenting two new theoretical
concepts: tensions and proximities. The first is grounded in Activity Theory, as
developed in the context of French didactic research focused on teachers’ practices
and students’ activities. The second takes a more Vygotskian perspective. It consid-
ers the students’ zone of proximal development (ZPD) as well as Valsiner’s zones of
free movement and promoted action (the ZFM/ZPA complex), which the teacher
designs to support learning. These theoretical elements are illustrated within a case
study of a sixth-grade mathematics teacher who uses tablet-based dynamic geome-
try in a problem-solving situation. We highlight several issues related to the evolu-
tion of the ZFM/ZPA complex when tablets are introduced. We also identify and
characterise the cognitive and pragmatic tensions that emerge from this evolution,
and more specifically, the instrumental nature of these tensions. We identify prox-
imities provided by the teacher, which may fall outside the student’s ZPD, without
the teacher’s full awareness. The chapter concludes with a discussion of the insights
provided by our theoretical tools, and what remains to be learned for a better under-
standing of the uses of tablets in day-to-day mathematics teaching practice.
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1 Introduction

In France, as in many other countries around the world, we can observe that despite
the advent of the digital age, the integration of digital technologies into education is
still a major challenge for educators and researchers. Much of this challenge relates
to teaching practices, notably how to maximise the didactical and pedagogical
potential of these new resources. Schools, like other professional environments,
regularly see the arrival of new technologies such as laptops and the interactive
whiteboard and, more recently, tablets and smartphones. Easy-to-use graphical dis-
plays that are, in some ways, an extension of the human body, have given rise to new
issues. In mathematics teaching, these are mainly related to the representation, visu-
alisation and manipulation of mathematical objects. Much of the institutional texts
and recommendations (at least in France) on the integration of these technologies in
mathematics teaching are based on the optimistic premise that their user-friendliness
and ease-of access supports their integration into teaching and learning tools used in
the classroom.!

Several authors (e.g., Depover et al., 2007; Mullet et al., 2019; Tamin et al.,
2015) argue that tablet technologies such as iPads have great potential to support
learning, and that their use motivates and engages students. They are also claimed
to enhance cooperation, dialogue, and negotiation skills (Ingram et al., 2016).
However, some authors point out that, although attractive, they need to be used with
care for them to have real didactic value in the classroom (Villemonteix &
Khaneboubi, 2013). Teachers, therefore, require a better understanding of how to
make best use of them (Galligan et al., 2010; Karsenti & Fievez, 2013), and research
needs to focus on making sense of the impacts of the resulting learning activities.

Tablets are relatively new to the French classroom. They have been available for
less than 10 years, and their full potential remains to be investigated. Their use has
led some teachers to develop new forms of mathematical work. Villemonteix and
Khaneboubi (2013) indicate some of these forms particularly related to assessment,
reactivation of knowledge, or individual work in classroom settings, for example,
when tablet applications provide interactive or self-assessment exercises. The mul-
timedia context can be exploited to offer students a richer working environment,
while remaining faithful to traditional methods. For instance, students do not need
to access a dedicated computer room to carry out individual research. They can stay
in the classroom setting, but supplement traditional paper-and-pencil activities
using their tablets.

"https://www.education.gouv.fr/repenser-la-forme-scolaire-1-heure-du-numerique-vers-
de-nouvelles-manieres-d-apprendre-et-d-2678
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The wider exploratory project, in which we are involved, aims to study how
teachers and students use tablets (provided by the institution) within their day-to-
day work in the classroom. More specifically, in this chapter we present a case study
of teaching activities focused on learning geometry in a tablet-based lesson.
Compared to the use of desktop dynamic geometry environments, tablets can enrich
the cognitive and mediating aspects of the activity. For example, the touchscreen
can be used to write on, or manipulate geometrical objects directly with the fingers.
While tablets are primarily seen as a way to facilitate mediations and enrich stu-
dents’ activities, they might also be used as an instrument for learning new geo-
metrical concepts.

The overall research question for our wider exploratory project is: to what extent
can tablets and related technologies support effective mathematics learning in sec-
ondary schools? Our work is, therefore, in line with a body of research that seeks to
understand how digital and mobile technology can enhance the teaching and learn-
ing of mathematics (Hoyles & Lagrange, 2010), and examines the implications for
teaching practices and education (Calder et al., 2018; Clark-Wilson et al., 2014).

The research addressed in this chapter aims to observe mediations in the teach-
er’s activity, specifically the instrumental one (Rabardel, 2002) and to examine the
impact of these mediations on students’ learning. Our specific research questions
concern the interactions between teachers, their students, tablet technology, and
mathematical knowledge. The detailed research questions are provided at the end of
the following section. We first begin by introducing the notions of tensions and
proximities in teaching and learning activities to clarify the focus of these research
questions.

2 Theoretical Background and Analytical Tools

Our theoretical point of departure is outlined in the first edition of The Mathematics
Teacher in the Digital Era (Abboud-Blanchard, 2014). This is the general Double
Approach (DA) framework introduced in France by Robert and Rogalski (2002). It
combines didactical and ergonomic perspectives when analysing teachers’ and stu-
dents’ classroom activity and the factors that determine such activity. Rogalski
(2008) argues that activity theory provides the frame of reference for the DA. Activity
theory was first proposed by Leontiev (1978), building on Vygotsky’s sociocultural
theory (1934), and adopted in France in the context of ergonomic psychology
(Leplat, 1997), before being integrated into the teaching and learning of mathemat-
ics (Abboud-Blanchard & Vandebrouck, 2012; Vandebrouck, 2013).

Building on this general framework, our chapter in the first edition (Abboud-
Blanchard, 2014) presented an overall theoretical construct that helps to synthesise
findings on technology-based practices that arise from different research studies;
the original aim was to identify underlying similarities that go beyond factual diver-
sity. The DA construct is structured by three dimensions: cognitive, pragmatic and
temporal (CPT). The cognitive dimension is related to the teacher’s mathematical
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goals, and the tasks students are asked to undertake in order to achieve these goals.
The pragmatic dimension emphasises the open character of the classroom environ-
ment when digital technology is used. It focuses on class management and the spec-
ificities of teacher—student interactions in relation to instrumental issues (Abboud
et al., 2018a). The temporal dimension concerns how teachers manage two types of
time: didactic time and physical (clock) time. It focuses not only on what happens
in the classroom, but also includes the time spent away from the classroom, for
example, when preparing lessons, searching for resources, collaboration with other
teachers, etc.

However, while the CPT construct offers a macro-level analysis of teaching and
learning activities, in the context of technology-based lessons, the research pre-
sented in this chapter adopts a micro-level analysis, by taking a more fine-grained
approach. The aim is to improve our understanding of the teaching activity in envi-
ronments where tablets are used and to examine the challenges regarding the
related students’ mathematical activities and learning.

2.1 Defining Tensions

As Abboud and Rogalski (2017b) note, the teacher’s conceptions of the mathemati-
cal domain to be taught, and their students’ relation to it are determinants of their
professional activity. These factors condition the didactical path the teacher wants
their students to follow, i.e., the planned cognitive route, and the management of
processes that unfold during the lesson (Robert & Rogalski, 2005). Although the
teacher is likely to be familiar with the didactic format, the diversity of students’
activities, and the specific classroom context introduce uncertainty. This uncertainty
is exacerbated when students work with a technological tool; the feedback provided
by the tool depends on the student’s manipulation, and the teacher can struggle to
understand their interpretation of this feedback. Thus, in this teaching—learning
environment, teachers are faced with tensions that arise not only from the use of the
tool and its role in students’ activity, but also its interaction with the mathematical
knowledge to be learned.

Abboud and Rogalski (2017a) defined fensions in the teacher’s activity as “mani-
festations of struggle between maintaining the intended cognitive route and adapt-
ing to phenomena linked to the dynamics of the class situation” (p. 2336). Some of
these tensions can be predicted, and the teacher can plan how to manage them.
Others are unexpected. In this case, the teacher must take in sifu decisions that direct
the actions. Tensions relate to various aspects of teacher and students activities, and
they take different forms, depending on the three CPT dimensions.

Tensions related to the cognitive dimension are seen in the gap between the
mathematical knowledge that the teacher anticipates to be used and developed by
students, and what students actually use as they attempt the task. Tensions related to
the pragmatic dimension are specifically linked to the instrumental work environ-
ment created by the teacher. On the one hand, they can be anticipated by taking into
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account potential disruptions that affect the autonomy, commitment and motivation
of students. On the other hand, they relate to the issue of manipulating the technol-
ogy and exploiting (individually or collectively) the feedback it provides. Tensions
that relate to both pragmatic and cognitive dimensions are mainly linked to the illu-
sion that the mathematical objects and operations implemented in the software
closely resemble their counterparts in the paper-and-pencil context. Tensions related
to the temporal dimension are linked to the pace of learning, and the discrepancy
between the predicted duration of students’ activities, and the actual time they need
to complete the task.

Teachers can be aware of such tensions while the lesson is in progress. They can
often manage the situation, either by giving the expected answer directly, or by
manipulating the software themselves. When not identified in situ, un-managed or
poorly-managed tensions can lead to a significant deviation from the planned cogni-
tive route, or even an exit from it. The teacher can be dissatisfied at not having
achieved his or her objectives, or may have to directly supervise students’ activity,
creating an illusion that the objective has been achieved.

2.2 Defining Proximities

Our new understanding of teaching and learning activities in technology-based les-
sons builds on Vygotsky’s zone of proximal development (Vygotsky, 1986), together
with Valsiner’s zone of free movement and zone of promoted action (Valsiner,
1987). We use these zones as a framework to conceptualise teaching and learning
activities when technologies, in particular tablets, are used in mathematics lessons.
Thus, we define proximities as teaching actions that support students’ activities
within these zones. We begin by presenting our understanding of these three zones,
and then outline our analytical construct.

From a learning perspective, the zone of proximal development (ZPD) refers to
a zone that encompasses the area where a learner is able to complete tasks unaided,
and what they are able to learn with assistance from someone who is more knowl-
edgeable than them, e.g., the teacher. It thus represents a set of knowledge develop-
ment possibilities. From a practical perspective, the teacher creates a working
environment that incorporates the use of tablets (and other instruments) to support
the students’ understanding of the mathematical content to be learned. By setting up
the environment, two zones emerge: the zone of free movement (ZFM), which
structures how students access different areas of the environment and interact with
different instruments in these areas, and the zone of promoted action (ZPA), which
seeks to facilitate the acquisition of new learning. The teacher creates an environ-
ment where there is direct access to activities and instruments that support students’
learning. What the teacher provides (in the ZFM), and promotes (in the ZPA), are
interrelated, and usually the two aspects have to be considered simultaneously.
Consequently, many authors refer to the ZFM/ZPA complex to describe what the
teacher provides and how the teacher organises the environment in order to achieve
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the task at hand. It captures the notion of the interactive generation of the environ-
ment in which the learner develops (Blanton et al., 2005).

Moreover, the ZPA must be consistent with the student’s ZPD, and supporting
actions that the individual believes to be feasible within the ZFM (as created by the
teacher) (Goos, 2020). As Galbraith and Goos (2003, p. 3) state, “A link between the
ZFM and ZPA is provided by the ZPD. For learning to be possible the ZPA must be
consistent with an individual’s capacity to learn (ZPD), while for the intended
approach to learning to have a chance of success the ZPA must lie within the effec-
tive ZEM”.

An important observable element relates to teacher—student interactions, which
are analyzed in terms of their assumed influence on students’ activities. Some of the
teacher’s interventions are at the cognitive level and relate to the mathematical con-
tent (assistance, assessments, review of notions, explanations, presentation of
knowledge, etc.), while others are at the pragmatic level and relate to how the stu-
dent interacts with the environment to achieve the task at hand (the format of class-
room work, the available resources, switching from one instrument to another, etc.).
An important focus of our study is, therefore, the proximity of these interventions to
students’ acquired knowledge, i.e., their ZPD.

Our earlier work built on the notion of discursive proximities (Abboud et al.,
2018b). Discursive proximities are explicit elements or fragments of discourse that
the teacher uses to bridge the gap between students’ existing knowledge and the
mathematical content to be learned during activities that relate—directly or indi-
rectly—to this knowledge. Robert and Vandebrouck (2014) describe discursive cog-
nitive proximities, and show how these elements of the teacher’s discourse can
influence students’ understanding as a function of their existing knowledge, and the
activities they undertake. More specifically, the authors develop some of these dis-
cursive proximities and use them to study paper-and-pencil environments.

Here, we extend the previous by defining the notion of pragmatic proximities. In
particular, we associate them with the teacher’s words and actions related to instru-
mental issues observed in technology-based environments. Investigating the ZFM/
ZPA complex in a tablet-based lesson provides an insight into teacher—student—
technology interactions. While cognitive proximities within the ZPD direct atten-
tion to the new mathematical knowledge students can (potentially) learn, pragmatic
proximities tell us about the opportunities teachers give to their students, in the
form of the ZFM/ZPA that is set up to engage them in mathematical learning, with
the help of technology. Following Galbraith and Goos (2003), we consider that
technology may be regarded as a mathematical tool (to increase capacity) or as a
transforming tool (to reorganise thinking). In either case, its presence in the work
environment changes relationships between teachers, students, and the task to be
undertaken.

In the classrooms we observed, two instruments were regularly provided in stu-
dents’ ZFM: paper-and-pencil (and related tools) and tablets (and related software).
The corresponding ZPA that was designed by the teacher aimed to facilitate task
performance. The teacher’s assistance (actions and interventions) takes the form of
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instrumental and inter-instrumental proximities that support students’ development.
Other pragmatic proximities linked to this ZFM/ZPA relate to how the teacher uses
the tablet as a cultural tool. One example is to draw upon real-life scenarios (games,
virtual reality, etc.) that are anchored in the students’ adolescent universe, under the
assumption that this will enhance learning. However, efficient pragmatic (and cog-
nitive) proximities must be consistent with what can, potentially, be learned (i.e., the
ZPD). Hence, the teaching activity should be directed appropriately, and the work
environment should support the intended learning activity.

It is important to distinguish between predicted and effective proximities during
the data analysis process. The former relates to what is intended by the teacher.
These cognitive and pragmatic proximities are (or can be) predicted when setting up
the ZFM/ZPA. For example, the aim may be for students to work independently,
without any intervention by the teacher during the lesson; alternatively, a discursive
or non-discursive intervention can be planned to get as close as possible to students’
ZPD. Effective proximities take two forms: (1) planned actions that are actually car-
ried out and (2) improvised actions that are developed in situ. The latter depend
directly on what the student is doing at the time, and aim to ensure that the actions
supported by the ZPA are possible (or reachable) in the ZPD. In case (1), the teacher
can assume that there is an effective proximity when, in fact, this is not the case; this
contributes to tensions observed in the classroom.

To conclude, we frame our research questions in terms of tensions and proximi-
ties. It is clear that the introduction of tablets within teaching—learning leads to a
change in the ZFM/ZPA complex. Our first question asks what are the cognitive and
pragmatic tensions that result from this change, with a particular focus on instru-
mental tensions that are directly caused by the introduction of the tool? We examine
the extent to which the teacher is aware of these new tensions, and how he or she
deals with them. Secondly, we ask what are the proximities that are developed, or
could be developed, to support students’ learning in this new environment? We seek
to evaluate which of these proximities can be predicted, which are effective, and if
cognitive and pragmatic proximities fall (or not) within students’ ZPD?

3 A Case Study

In this section, we present our theoretical approach and analytical tools through a
case study, and use it to highlight the new results these concepts can generate. First,
we present the context of our study and the methods associated with our theoretical
approach. Secondly, we outline the teacher’s profile. Then we develop an a priori
task analysis of the observed sequence, and students’ expected activity. This analy-
sis identifies potential sources of tensions and predicted proximities in the teach-
ing—learning situation. Finally, we analyse the teaching process from the perspective
of effective proximities, notably instrumental, and their impact on students’ learning.
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3.1 Context and Data

We are currently involved in a long-term project? that studies how teachers and stu-
dents use tablets, provided by academic authorities, in their day-to-day classroom
work. The project is designed to support the production of tablet-based mathemati-
cal resources for secondary school teachers. Ten mathematics teachers, from several
regions of France, are participating in experiments that seek to develop, in a col-
laborative process, tablet-based learning situations and associated resources. These
teachers are already members of the Institutes for Research in Mathematics
Education (IREM) network, and they already use digital technologies in their class-
rooms on a regular basis. They have contributed to a book that is aimed at teachers,
which offers a range of ways to use the dynamic geometry software GeoGebra in
the mathematics classroom.® The teachers’ goals, in engaging in this new project,
are to use tablets in teaching—learning mathematics and to provide other teachers
with new resources. Project funding has enabled them to equip their classrooms
with tablets and financed regular meetings over the past 3 years. The case study we
present here looks at the work of one of these teachers: Roger. He is an experienced
teacher who has been involved in the IREM network for about 10 years. He teaches
at a secondary school in Lille (northern France) with students from grade 6 to grade
9 (aged from 11 to 14).

A sixth grade geometry lesson was observed. Students had access to tablets
equipped with the GeoGebra dynamic geometry software. It should be noted that
the tablets did not belong to the students; they were distributed at the beginning of
lessons in which they were to be used.

Three types of data were collected. The first was a video recording of the lesson,
which was transcribed and the progress of the lesson divided into phases identified
in relation to the succession of the teacher’s actions. The second data set consisted
of responses to a short questionnaire completed by the teacher after the lesson. In
this, the teacher was first asked to explain the goals of the lesson and to describe the
related work environment. Second, he was asked to report on what actually hap-
pened and the extent to which the goals that were initially set was reached. Following
our analysis of the video recording and the questionnaire, the third data set was
collected. This consisted of responses to a post-lesson interview with the teacher
based on elements from the analysis, which served to triangulate some of our inter-
pretations and to remove uncertainty about others. In addition, the post-lesson inter-
view data provided more insights into the teacher’s practice and shed light on some
of the choices he made during the lesson that had impacted how the session
had unfolded.

2http://perseverons.inspe-bordeaux.fr/
3Créer avec GéoGébra: https://tice.univ-irem.fr/lexique/perso/frontLexique GGB/
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3.2 Introducing Roger

Roger has taught mathematics to lower secondary school (students aged 11-14) for
20 years. He began using technologies in his classroom with the arrival of interactive
whiteboards in his school almost 13 years ago. He is very familiar with GeoGebra,
and uses it on a regular basis both for lesson preparation work, and to illustrate math-
ematical concepts and animate geometric figures during classroom sessions.

He teaches at an average suburban school with around 600 students. Students
come from heterogeneous socio-economic backgrounds, including a certain number
of disadvantaged students (e.g., with no access to technology at home). In his
school, other colleagues who teach mathematics use digital technology in the com-
puter room from time-to-time, but not on a regular basis. He is the only member of
staff who is interested in the tablet project, and has been using tablets regularly since
the school acquired them. He tends to share his experience of their integration into
teaching with members of the IREM group, rather than colleagues in his own school.

When interviewed, Roger stated that he sees mathematics teaching as embracing
pleasure, creativity and “practising things”. He added that this is what made him
quickly adopt tablet technology, because it can be manipulated with the fingers
(unlike traditional computers), especially geometric objects, and students can have
fun simulating real-life situations. Hence, in addition to the use of tablets for pre-
defined “traditional tasks”, he also sees it as a tool for creativity and exploration.

The lesson that was observed, and that we analyse below, is with a grade 6 class
(students aged 11). It concerns a learning situation that Roger designed. The first
objective was to use GeoGebra tablet software to revise the concept of the circle (a
topic that was already covered in previous classes). He designed an interaction
between the paper-and-pencil environment and the tablet environment that was
intended to help students to revise their understanding of the centre and radius of a
circle and how to draw circles using a pair of compasses. Second, he aimed to pro-
vide students with an opportunity to explore another definition of the circle, which
we explain in more detail below. Prior to the observed lesson, he had already intro-
duced his students to GeoGebra. However, he declared in the post-lesson interview
that he felt that this initiation to dynamic geometry was too dry. Hence in this lesson
he expressed his desire to expose the students to a more engaging situation using the
software interface and dragging mode in the tablet environment, in a way that lim-
ited access to other GeoGebra menus that might offer alternative ways to accom-
plish the task.

3.3 Task Analysis

We begin with an analysis of the task, and the expected mathematical activities.
This first step is a recurring interest in studies within the DA framework
(Vandebrouck, 2013) as it provides in-depth insight into the mathematical knowl-
edge required to complete the task. It sheds light on how the teacher negotiated the
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inevitable unpredictability of the classroom, when attempting to bring students into
contact with mathematical concepts (Abboud & Coles, 2018). In the post-lesson
investigation, we take into account the deep links between actual student activities
and the task analysis, including its mathematical content (Vandebrouck, 2018).
Wherever possible, we make the link with potential pragmatic/cognitive tensions or
proximities.

The task is designed to require students to draw upon their existing knowledge of
circles. They would have already encountered circles, presented as geometrical
forms (a curved line) and investigated circles by observation and with the use of
instruments. They were expected to revise the two elements of a circle, its centre
and radius, introduced by drawing with pairs of compasses. In the post-lesson ques-
tionnaire, Roger stated that the new challenge was to identify the circle as a geo-
metrical set of points at an equal distance from a point that would be identified as
the centre of the circle, while this distance would be defined as its radius. This defi-
nition requires students to be able to reason and demonstrate their arguments with-
out only using what they could see or their instruments. The paper-and-pencil task
they were given is shown below (Fig. 1).

Crossing the room
Traversée de la pitce & 8
Fiche élive ‘Worksheet

Awiewr : PETIT Raphot! © octobre 2015
Une petite fille vient d"entrer dans une pidoe sombre par la pornte E. Alittle glrl enters an unlit room thl’Ough
La porte se referme violemment (clac 1), door E. The door slams shut behind her! It’s
Elle est verrouillée, impossible de 1'ouvrir | locked, and there’s no way to open it!
Elle se retoume, ses yeux s'habituent i 1"obscurité ...

Ah ! Elle devine 3 monstres qui se réveillent !
As she turns around, her eyes get used to the

darkness.... Oh no! She thinks she can see 3

Vite ! Elle veut rejoindre la porte de sonie quielle apergoit enfinen §

f monsters... and they’re waking up! Quick, do
something! She has to get to the exit, but it’s at
z B S...
E§x
You have to help her cross the room! Draw
F ] a path that she can follow without getting

caught by any of the monsters.

E

Here’s some useful information so that you
can help her:

Atoi de I'aider & traverser la pitce !

Dessine un chemin qu’elle pousra suivre sans se faire atraper.

Quelques informations utiles pour que tu puisses |'aider © — the room is a square, with 8 m SidCS;
-k e Té de obié Bm . :
Spirastin A cnam — the scale of the drawing is 1 cm to 1 m;

+ elbe est représentée & échelle avec 1 em pour | m en réalité © . .
— the first monster is attached to point P by a

+  un monstre est attaché au point P par une chaine de 3.8 m de long ©

- un autre monstre est attaché au point Q par une chaine de 3 m ; 3.8 m chain;
+ un demier monsire est attaché au point R par une chaine de 2,6 m. — the second is attached to point Q by a 3 m
chain;
—  the third is attached to point R by a 2.6 m
chain.

Fig. 1 Task statement (French version and English translation)
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In the first phase, the task is completed in a paper-and-pencil environment and
the students can use artefacts such as a ruler, pairs of compasses and a set square
(the first ZFM). They can tackle the problem in two ways. First, they can draw pos-
sible paths through the room that avoid being captured by the monsters (the first
ZPA). In this case, they have to make measurements, and compare them at several
possible positions, by drawing a path with several checkpoints. These activities are
accessible to all students as they rely upon acquired knowledge about measuring
with a ruler, and do not require specific mathematical knowledge about circles. In
this phase, there is no feedback from the environment. Validation can only come
from the teacher, who can help to identify points on the path where the girl can be
caught (or not) by one of the monsters. There is no possible cognitive proximity
with new knowledge.

Nevertheless, the task involves a major adaptation that students must make in
order to be able to find a path that prevents the girl from being caught by any of the
monsters. They must change their point of view, focusing on the monsters and their
areas of action, rather than the girl and her movements around the room. This sec-
ond approach is only possible for the most advanced students (a maxima activity),
while the first is accessible to all students (a minima activity). If the teacher does not
manage this passage between the first and second approaches, we can reasonably
hypothesise that a cognitive tension arises and lasts throughout the session.

At this stage, the teacher has set up a ZPA in which students have to explore the
monsters’ areas of action, and think about the idea of circles that they can draw with
a compass. This requires them to recognise existing knowledge about circles, their
centre and radius. If this is achieved, they will be able to draw a path that is outside
the three areas. Validation is cognitive: the girl has to remain outside the three cir-
cles, so that she cannot be caught by the monsters. However in order for the ZPA
created by the teacher to be effective, he must provide cognitive proximities to
enable students to develop the new knowledge, even if they only have developed a
minima activity (in other words, even if they did not recognise that the notion of
circle is a way to solve the problem). Some students will easily make the leap, while
it is outside the ZPD of others.

In the second phase, students undertake the same task in the tablet environment.
Here, they have access to GeoGebra dynamic geometry software (the second ZFM).

In this environment (Fig. 2), students can experiment with moving the girl, as in
the paper-and-pencil environment, but they can also move the monsters (the second
ZPA). To prevent pragmatic tensions due to the change in ZFM/ZPA, the design of
the task is the same in both the environments (in fact, the paper-and-pencil version
was a printed copy of the tablet’s screen). However, there is a significant change to
the ZPA. In the tablet environment the monsters can be moved as in real life, with
two outcomes: if the girl enters the monster’s area, she is immediately caught and
the red message “lost” appears (Fig. 3). If she reaches point S without being caught
by a monster, the yellow message “win’” appears (Fig. 4). Students can make several
attempts, with immediate feedback. The adaptation, which represents a change in
the viewpoint, is easier than in the paper-and-pencil environment, because the
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Fig. 2 Tablet environment

monsters can easily be moved. Thus, the tablet environment supports pragmatic and
cognitive proximity, along with new knowledge.

All students have access to these activities in the tablet environment. However,
the task may not require any mathematical knowledge at all, as the students can
move the actors with their fingers and avoid any need to perform measurements and
comparisons directly on the screen. Despite a planned pragmatic instrumental prox-
imity between the two ZFM/ZPA, there are new cognitive and pragmatic/instrumen-
tal tensions that the teacher must manage to situate the activity within the ZPD of
each student. Some students can only develop a minima activities, moving actors
with their fingers; in this case, even without any mathematical knowledge, they can
accomplish the task. The teacher must underline that the task is not just to find one
way to win, but to find a winning strategy using all of the resources provided by the
tablet, with reference to previous work in the paper-and-pencil environment (inter-
instrumental proximities). Other students are able to visualise circular zones around
the monsters, but the teacher may have to intervene to ensure first that these zones
are recognised as (pieces) of circles (i.e., as geometric figures) and, second, that the
three circles are complete (the ropes are stretched), so that the zones of the monsters



Tensions and Proximities in Teaching and Learning Activities: A Case Study... 193

grrrme

@

Fig. 3 Lost outcome

and the safe area for the girl are clearly visualised as regions of the plane. GeoGebra’s
trace (of the monsters) function can help students to visualise disks around the mon-
sters. Let us note here that when asked about this during the post-lesson interview,
Roger stated that he was not aware that the use of this function could have led the
students to visually perceive the disk as the inner area of the circle. So, recognising
circles—with or without the visualisation of the monsters’ zones—remains as a
maxima activity for the best students, and may be even more a more difficult pro-
cess than in the paper-and-pencil environment.

The ZFM/ZPA created in the second phase can, therefore, reinforce the existing
cognitive tension in the teaching activity. This tension lies in the transition from the
first (a minima) approach, where the expected mathematical knowledge is lacking,
and the second (a maxima) approach, where the student is able to recognise circles
as geometrical objects with a centre and radius. Although the tablet introduces prag-
matic and cognitive proximities linked to the change of viewpoint, it can encourage
the first approach (we 're not even doing maths anymore, we're just playing), and the
adaptation that brings into play the targeted knowledge (the concept of the circle is
even less apparent). Moreover, there is a new pragmatic cognitive tension between
the two environments, as recognising circles in the tablet environment can act as an



194 M. Abboud and FE. Vandebrouck

Fig. 4 Win outcome

obstacle to the use of the compasses in the paper-and-pencil environment. In prac-
tice, there is no clear link between moving a monster on the tablet with your fingers,
and the centre and radius of a circle, while the latter does not appear as a global set
of points. The teacher must be aware of these new cognitive tensions in order to
anticipate discursive proximities, while taking into account inter-instrumental
aspects.

3.4 Tensions and Proximities in Teaching
and Learning Activities

The lesson lasted 55 min, and 11 students were present (Fig. 5). Seven phases were
identified. In Phase I the task was presented to students. The teacher explained the
situation: the girl is in an unlit room and the door is locked. She sees the monsters,
and there is only one way to exit the room — through the door marked S. In Phase 2,
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Fig. 5 Global view of the classroom

students worked individually on the problem in a paper-and-pencil environment.
The teacher gave individual explanations and feedback. In Phase 3, students contin-
ued to work on the problem with the tablet and on paper. The teacher briefly intro-
duced the tablet environment on the whiteboard, and showed students how to move
the monsters and the girl with their fingers. Students who completed the task in the
tablet environment were asked to draw their solution on paper. In Phase 4, the
teacher presented the solution to the whole class. He showed on the whiteboard the
monsters’ trace (with GeoGebra) (Fig. 11), but students were not able to do the
same with their tablets (where the trace function is not available). The monsters’
circles were partly drawn but he did not use the word “circle”. In Phase 5, students
once again tackled the problem individually, switching between moving the mon-
sters on their tablets, and the paper-and-pencil environment. The teacher was
expecting students to draw the monsters’ circles on the paper and then find the path
for the girl. In Phase 6, the teacher explained the notion of the circle to the whole
class. Finally, in Phase 7 he asked students to write down how they solved the prob-
lem and explain their mathematical construction.

In Phase 1, Roger presented the task to students. It was a theatrical performance,
with him taking the role of the girl. He turned out the lights, and entered the class-
room by the main door; he noticed the three monsters, and then exited a door at the
back of the classroom (Fig. 6). This presentation was, thus, far more realistic than
the mathematical problem, and was consistent with Roger’s aim that his students
have fun while learning mathematics. However, this created a pragmatic tension
between the simulation and the mathematical problem. This tension would last
throughout the lesson—several students and Roger himself mixed realistic vocabu-
lary and geometrical notions. For example, Roger used centimetres or metres
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Fig. 6 Presentation of the task

interchangeably, and referred to monsters and the girl even when he used centime-
tres. During this phase, the tablet window was shown on the whiteboard, and Roger
only used it to illustrate possible movements of the monsters. Tablets were provided
to the students, but they were told not to use them.

In Phase 2, as underlined by the a priori analysis, a cognitive tension arose
between the a minima activity that was accessible to every student and the a maxima
activity that was only within the reach of the more able students (involving a change
of viewpoint and a recognition of circles). Feedback during the paper-and-pencil
environment was only from the teacher, who validated (or not) the paths proposed
by students. Figures 7 and 8 show the solutions proposed by some students, and the
teacher’s corrections.

In this context, to invalidate a path, the teacher showed points on the path where
the girl could be caught. The students could, in turn, use measurements and com-
parisons to see why their solution does not work. Sometimes the teacher highlighted
several points: “So, she can walk between these two monsters, you're right. But
here? Does that work? (Fig. 8: the teacher was referring to points of the path) You
see? So, it’s very good at this point, but at this point it’s not”.

For most students these interventions were insufficient to develop the expected
activity, and the cognitive tension remained. Some students developed alternative
strategies, such as running fast, but the teacher was able to show, with the tablet
window on the whiteboard, that the monsters ran faster than the girl. As soon as the
girl enters the monster’s zone, it catches her and the message “lose” is displayed. At
the end of Phase 2, none of the students developed the expected a maxima activity.

In Phase 3, the teacher enhanced his students’” ZPM/ZFA by introducing the
tablet environment. Here, the objective was to provide an easy trial-and-error pro-
cess, based on feedback from the device. However, we observed a crucial switch, as,
immediately after telling his students that they could use their tablets, he said: “now
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Fig. 8 Example 2 of students’ solutions in Phase 2

we can move the monsters; we can see where the girl will be safe and where she
cannot go”. This change in viewpoint, which is a major element in the cognitive
tension, was initiated by the teacher, and directly supported by the ZPA. Instrumental
and cognitive proximities, identified in the a priori task analysis, could occur as the
teacher himself stated the targeted strategy. Moreover, there was a new pragmatic
tension (inter-instrumental) as some students may have thought that the strategy
was different because the instruments (within the ZFM) were different. Roger
seemed to be unaware of these tensions, and had to repeat the change of viewpoint
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to most of his students: “I suggest that you move the monsters”; “Lucie, try to find
all the places where each monster can go”; “the objective is to find all the places
they can get to”. A little later, when students were still unable to change their view-
point, Roger had to justify the reason for this new strategy, “Fanny, I said that the
objective is to try to find out where each of the monsters can go, and once you have
understood that, to draw on the sheet of paper all the places the little girl cannot
go”; “try to draw on the paper all the places that one of the monsters can reach, in
other words all the places where the little girl can’t go”, “Try to draw on your sheet
of paper all the places where she can’t go”, etc.

Students who did manage to switch their viewpoint—and who had understood
the reason why—still could not recognise the zones accessed by monsters as circles
(disks). As they could not activate the monsters’ traces within GeoGebra, it was dif-
ficult to visualise circles. The cognitive tension remained, and most students still did
not recognise the mathematical knowledge to be learned. The ZPA did not incorpo-
rate the action of stretching the rope as the monsters move. At this point, Roger
drew upon discursive proximities—he used geometry vocabulary to characterise the
monsters’ areas and to draw them with instruments on paper—thinking that it was
now in most of his students’ ZPD. But these efforts failed for most of the class. We
see the teacher showing and drawing virtual circles with his finger over most of his
students’ screens or sheets of paper. At this point, some of the best students can use
these proximities, stating that they can see the circles, or use their compass to draw
a circle on paper. However, it was a step too far for most of the class. For instance,
Roger asked one student, who had drawn several radii around one monster on paper
(Fig. 9) what the geometrical shape was. But his attempt fails, as the student has
only developed a partial, discrete view of the area, while identifying the area as a
circle requires a global and continuous visualisation.

Fig. 9 A student who completed the task by drawing radii, but was unable to visualise the circle
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Hence, Roger struggled to manage the classes’ cognitive tensions, and most stu-
dents did not benefit from the available ZPA.

Moreover, as noted in the a priori task analysis (and expected activity), there was
a new cognitive pragmatic tension that the teacher seemed not to have anticipated.
Some students could accomplish the task in the tablet environment without switch-
ing their viewpoint, and without any mathematical reasoning (Fig. 10). For instance,
Roger had to guide one student towards the expected solution: “You managed to
win, good, the little girl’s still there so you won, right? But can you work out all the
positions where the green monster can go, the same for the vampire, and for the
mummy...” As predicted in the a priori analysis, the initial cognitive tension
between a minima activity possible for all students and a maxima activity achieved
by using knowledge about circles seemed to be reinforced. In another example, the
teacher tried to stop one student who continued to only move the girl, and always
lose, “I want you to stop playing, I want you to look for the positions that each mon-
ster can reach, but that’s not what you’ve done so far. You've been playing and you

Fig. 10 Winning without visualising any circles
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haven’t understood what’s going on...”. Therefore, it appears that the ZPA set up by
the teacher in the tablet environment was inappropriate with respect to the ZPD of
some students, at this point in the activity.

In phase 4, Roger showed his students the monsters’ paths on the whiteboard
(Fig. 11). As the students could not do the same on their personal tablets, he pro-
vided some new suggestions, “Take a look. If I move my green monster here, he
leaves a slimy trail behind him, like a snail. Okay? (...) I know that these black
marks are all places that the little girl can go — or not? (Students’ responses: No!)
If1 go as far as I can, then I'll get there, okay? (Teacher dragging the green monster)
And then if I go a little further... then I can’t go any further, you see? And there
I can’t go any further either. Now I can go there, but then I'm stuck here. And now
I’m stuck here. Is that alright? Same for this other monster. Now, he’s stuck here, he
can go there, he can go there, but there, no, he’s stuck. Okay? Does it help you if you
know where the limits of all the places they can go are? Does it help you a lot? Does
it? So now I want you to take a look at your notebooks, and see if you can find some-
thing that tells me exactly where the limits are”. During his explanations, the teacher
moved the monsters on the whiteboard, showing several places where they can go

Fig. 11 Monsters’ paths shown on the whiteboard
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or not. We thus observe that the ZPA incorporated now the action of stretching the
rope as the monsters move.

In Phase 5 students’ progress and activities became heterogeneous (as is often
observed in technological environments). Some continued to play with the tablet,
developing a minima activity focused on the girl, or having just switched their view-
point. Some succeeded in moving the monsters from point to point, but failed to
grasp the idea of a global circle. Some students asked to have the monsters’ traces
on their own tablet (as on the whiteboard), but Roger told them it was not possible.
By stretching the rope as they moved the monsters, most students eventually com-
pleted the task; the little girl exited the room, and they saw the “you have won”
message. In these cases, the teacher asked them to go back to their paper-and-pencil,
and draw the girl’s path with their instruments using a geometrical approach.
However, only some seemed to have recognised the monsters’ zones as circles (or
disks), while most did not. For those who had recognised the circle there was a new
task, which was to identify the centre and the radius of each of the three circles,
demonstrating that they knew how to use their compasses. For others, this new
mathematical task did not make any sense.

In Phase 6, Roger highlighted the idea of a circle. We see cognitive proximity,
after one student identified the monsters’ zones as circles, “Well if I go as far as
I can each time, if I keep the rope stretched, and I move my monster, something we
know appears ... what do we see appearing? Use your finger... what do we see
appearing when I keep the rope stretched to the maximum and I move my monster?
Luna? (One student says: a circle) A circle. Exactly...”. When Roger asked this
student to go to the whiteboard to show the limits of the monsters’ zones, we observe
(Fig. 12) that even if the rest of the class seemed to see that the monsters’ area limits

Fig. 12 A student draws a circle by stretching the rope of monster Q and overlapping the zone
occupied by monster P
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as circles, the movement of the student’s arm was not consistent with the idea of a
constant radius between the centre and this limit. At this moment, it is far from evi-
dent that all students could see circles, and that the cognitive proximity was effec-
tive. The fact that, in GeoGebra, it is possible to draw shapes without considering
their geometrical properties reinforces the pragmatic (inter-instrumental) tension
already present. Roger did not seize the opportunity to manage this tension, and
went on to ask every student to write down the mathematical reasoning for their work.

As noted above, the discursive-cognitive proximity between the activity of most
of the students, and the mathematical knowledge to be learned, only fell within the
ZPD of students who had already identified the monsters’ zones as geometrical
objects. For instance, one student, Soren, had successfully identified the need to
draw circles, and had made the link between circles in the tablet environment and
the circles that he was asked to draw with a compass in the paper-and-pencil envi-
ronment. Roger says, “Soren, explain to me what you did? (Well, I made circles)
What? (I made circles to limit where they can go) Yes. Then how did you make the
circles? (Well, I took my ruler with my compass and made the measurements that
were written here) Yes...”.

But for other students, the circle and the compasses remained far beyond their
ZPD; even those who successfully completed the task in the tablet environment
(seeing the winning message) and those who plotted a few points in the monsters’
zones. An interaction from Phase 4 illustrates how difficult it was to recognise a
circle as a global, continuous set of points: “Put a mark at 3.8. Put a mark at 3.8
centimetres. He is 3.8 centimetres from the point P. Is that okay? Can you put
another point at 3.8 centimetres from P? Go ahead and do another one. From point
P. From point P. From point P. Where point P is. Ah, go ahead. Another point 3.8
centimetres from point P (Am I on the same line?) Well no, otherwise you’ll be at the
same point again. Okay. Here’s another one. So, the objective is to plot them all, all
the points that are 3.8 centimetres from point P. There are lots of them, aren’t there?
There’s an infinite number of them, okay? It’s up to you to find them all. Find me a
solution that finds them all”. Another example was observed earlier, at the end of
Phase 3 with a different student. Pointing to several of the limit positions of mon-
sters found by the student (Fig. 9), the teacher asked, “Wouldn’t there be a way, isn’t
there a way? Because this one is OK, this one is OK, this one is OK, but here I don’t
know where it stops... so can you measure it? Yes, but here? All right, I see. And
between those two? And between this one and this one? I don’t see where I can stop.
How long are we going to do this? (Decades) Decades, yes, but isn’t there a quicker
way?”. These examples underline the ongoing cognitive tension between what has
been done in the tablet environment and recognising circles as a geometrical object
defined by a continuous set of points, a centre, and a radius. For these students, the
teacher’s intervention was ineffective due to the lack of proximity between the work
they produced and the mathematical knowledge to be learned. The idea of the circle
was not within their ZPD.

In Phase 7 all students had to draw their solution using paper and pencil, and
write down their mathematical reasoning. However, despite being able to identify
that the monsters’ circles were the key to a winning strategy, in this phase, one
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student still drew three circles around the monsters by hand, again showing that the
circle as a geometrical object was not within his ZPD. Roger said, “Which tool did
you use? What did you use as a tool to draw the limits? The pencil and that’s all.
What can you use to draw a circle? (A pair of compasses) So what? Why don’t you
use your compasses? Well, if you know you have to use compasses, you have to use
it, right?”. Here again, the teacher’s intervention could not be called a proximity,
despite his intentions. He asks the student a question about how he could draw a
circle, whereas the mathematical object associated with the use of the compasses
was not yet within the student’s ZPD.

The only tension of which the teacher seemed to be aware was the pragmatic
tension between the realistic situation and the mathematical problem. He tried to
manage this by repeatedly asking his students to use mathematical terms, “I’ll say it
again, I want you to use geometric terms. Is that all right? Try to be as precise as
possible, as accurate as possible...”. However, there was ongoing confusion in the
students’ and the teacher’s discourses with respect to the two approaches, “When
the monster tries to stretch his rope it’s stretched from point P over there; what'’s the
maximum distance? What’s the maximum distance for that one — the monster —
attached to point P? How long is the rope? (3.8 metres). Okay, so we can actually
go up to 3.8 what? (Metres) It’s not metres here, it’s what? (Centimetres) ...”. Even
at the end of the lesson he used real-world vocabulary to invalidate some of the geo-
metrical objects produced by the class, “Is your drawing precise? I want a precise
drawing, don’t I? Don’t forget that it’s the little girl’s life at stake. We 're not taking
any risks, right? Do you have your compass? Go ahead and take it out”. The session
ended with this confusion between the two approaches. Some students explained
their solution without using mathematical terminology. The last interaction between
the teacher and a student illustrates the confusion in the student’s mind, “Ah, you've
written down your solution, so I'm interested to see, you say: I used the compasses
to draw the limits of the monsters and I managed to get the little girl to escape.
There’s a mathematical term missing, I can’t see it. A mathematical word that
I don’t see (The monsters’ metres?). No, no, no, no, no, no, no, no, no, no, no. What
have you drawn? You say that you’ve drawn the limits with a compass. Do you know
the name of this limit? What’s it called in mathematics? (The circle?) Yes, I would
have liked to see that word. With all the vocabulary we already know, circle, centre,
radius...”.

4 Findings

Our findings can be summarised according to two aspects.

First, the ZFM/ZPA complex evolves significantly—and in several directions—
when the task has to be performed with the tablet instead of paper-and-pencil. The
teacher must be aware of all of these evolutions, as they create new tensions, or
reinforce existing ones, as the activity progresses, making them increasingly diffi-
cult to manage. It seems that the teacher’s efforts have only addressed a few
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predicted pragmatic tensions between the two ZFM/ZPA, for instance by printing
out a copy of the tablet’s screen and using it as the paper-and-pencil sheet. He was
aware that the tablet can provide feedback that is missing in the paper-and-pencil
environment, and that it allows the students to experiment more with potential solu-
tions. However, he seemed to be unaware of other, crucial changes in the ZFM/ZPA
complex. The new ZPA provided by the tablet (students can move the monsters with
their fingers in a natural way, whereas this is not possible using paper-and-pencil)
supports a change of viewpoint, and could help students find the correct solution.
The tablet, therefore, created a natural link with the targeted knowledge (about cir-
cles) and is an instrumental cognitive proximity.

However, in the observed lesson, the teacher himself initiated the change of
viewpoint. He redefined the task and, in doing so, reduced the potential of the initial
task to support students’ learning. Moreover, it caused a new, inter-instrumental ten-
sion, as some students may not have understood why they should adopt this new
strategy (a new task) in this new environment. We observe that the teacher had to
explain this new strategy several times to several students. We argue that although
the teacher deliberately set up the new ZFM, he also, unintentionally, changed the
ZPA. The instruments themselves changed the ZPA, and an effect of technology that
it is important for teachers to be aware. In the tablet environment, some students
were able to “win”, without learning anything more about the underlying mathemat-
ical properties. Freedom of movement was made possible by the feedback provided
in the tablet environment, which is not possible in the paper-and-pencil environ-
ment. Although students were more motivated in the tablet environment, there was
a greater risk of them making less progress than in the paper-and-pencil setting. The
cognitive tension between students’ a minima activity and expected mathematical
understanding is reinforced, while the teacher was unaware of the changes engen-
dered by the new ZFM/ZPA complex. Faced with new pragmatic and cognitive
tensions, Roger had to manage this new complexity as the lesson progresses, and
had to explain more than once the reason for the new strategy in the tablet environ-
ment. Another challenge was that some students continued to play with the tablet,
instead of engaging in the mathematical task.

The second aspect of our findings concerns the difficulty within the tablet envi-
ronment for the teacher to exploit discursive cognitive proximities regarding the
new knowledge, based on students’ activity. As Vandebrouck and Robert (2017)
note, the recognition of mathematical objects is different in technological environ-
ments. Recognition is cognitive in the paper-and-pencil environment, and precedes
students being able to use the compasses to draw the monsters’ zones. It is more
pragmatic in the tablet environment, and is associated with being able to visualise
the monsters’ paths (visible or invisible). In the paper-and-pencil environment, this
path initially appears as a collection of discrete points, and only becomes a continu-
ous shape with cognitive efforts (associated to the use of the compasses). Whereas
the recognition of the shape of the circles in the tablet environment, through the
iconic visualisation of the monsters’ zones, may not be sufficient to identify these
shapes as geometrical figures, nor to draw them using compasses in the paper-and-
pencil environment.
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Moreover, during phase 6, we observed that on the whiteboard the movement of
the student’s arm (Fig. 12) was not consistent with a visualisation of the use of a
compass. More specifically, it did not allow a cognitive and instrumental proximity
with the idea of a constant radius between the centre and the limit of the monster’s
area. By referring to Duval (1999), who distinguished between iconic and non-
iconic visualisation of geometric figures,* we argue here that visualisation in the
tablet environment was mostly iconic, in other words, it did not associate the
observed circular shape with its mathematical attributes (the centre and the radius).
Moreover, this iconic recognition can create a pragmatic-cognitive tension with the
expected, non-iconic recognition. We observed throughout the lesson how difficult
it was for some students to identify circles as global, continuous geometrical objects,
based on a collection of discrete points located around the monsters (Fig. 13).
Furthermore, they found it difficult to transfer their identification of the circle in the
tablet environment to the use of the compass in the paper-and-pencil environment.

As a consequence, it remained challenging for the teacher to exploit discursive and
cognitive proximities, based on his students’ effective activities in the tablet environ-
ment. In Phase 3, we observed that although he did seize opportunities to provide
some discursive proximities, his efforts failed for many of students. He had to give
procedural help by drawing circles with his fingers over students’ screens or over their
sheets of paper. We note here that his belief that he was working in, or close to stu-
dents’ ZPD was an illusion, as the recognition of mathematical objects was only iconic.

Fig. 13 This student identified several points around monster R, but could not draw a circle by
identifying its centre and radius

*Duval introduces two types of visualisations that are associated with representations, namely,
iconic and non-iconic. “Iconic representation refers to a previous perception of the represented
object, from which [we can infer] their concrete character. [...] In mathematics, visualisation does
not work with such iconic representations: to look at them is not enough to see, that is, to notice
and understand what is really represented.” (Duval, 1999, p. 14).
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5 Conclusion

Policymakers have always advocated for the use of technology in schools, and aca-
demic authorities have made financial investments to support its integration into
school practices. The assumption is that it is likely that teaching and learning will
benefit from the incorporation of an increasing number of technological devices,
such as tablets, into classroom activities.> In practice, projects that encourage enthu-
siastic mathematics teachers to engage with emergent technologies may help to
address the challenges students face in conceptualising mathematical ideas.
Institutional projects that provide technologies to classrooms often rely on a small
number of teachers who are recognised for their ability to implement innovative
practices. These collaborative projects also create opportunities for teachers to share
their experiences, and develop resources that can be disseminated to the wider com-
munity. We participated in such a project, as observers and experts in the domain of
digital technology integration. Our focus was on how teachers plan their lessons,
and try to engage students in a variety of activities, in a classroom environment that
is enhanced by the use of tablets.

Our first, global analyses drew upon the analytical tools we had developed in
earlier work, namely, the CPT construct, and the concept of tensions in the teacher’s
activity. Fine-grained, in-class observations led us to develop new tools (still in line
with those developed before) that we considered better-adapted to the use of tablets.
In particular, we explored Vygotsky’s ZPD and Valsiner’s ZFM and ZPA as ways to
interpret our observations. From this, we developed the concept of proximities,
namely, teaching actions (discursive or not) that support students’ activities within
these zones. Proximities provided by the teacher lead to development in the
ZPD. There are two kinds: cognitive proximities are directly related to the knowl-
edge at play within the ZPD, while pragmatic proximities are more closely associ-
ated with actions within the ZFM/ZPA that are related to the working environment.
These analytical tools have helped us gain new insight into teachers’ actions, par-
ticularly when the class (and the teacher) uses a technological environment to learn
(teach) mathematics. In the study presented here, this concerns the tablets that are
used in teaching and learning geometry.

A key finding is that in such environments, the ZFM/ZPA complex becomes
more difficult for the teacher to grasp. This is because the evolution from the paper-
and-pencil environment to the tablet environment brings with it new tensions and
opportunities of proximities, certainly cognitive but mostly pragmatic. Even if the
teacher conceives these proximities as instrumental or inter-instrumental, they have
cognitive aspects that the teacher does not fully realise. This brings us close to find-
ings provided from studies within a semiotic perspective on mathematics teaching/
learning that highlighted the potential synergy that may occur between the use of
different artefacts linked to the same content (Faggiano et al., 2018). At the same

3See the Report of the French Ministry of Education on the use of tablets: https://eduscol.educa-
tion.fr/numerique/dossier/apprendre/tablette-tactile
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time, these studies raise the questions of what happens when a teacher does not
recognise semiotic interferences® and what is needed to recognise and manage them
(Maffia & Maracci, 2019).

Moreover, in our study, discursive proximities became more difficult as the per-
ception of activity (leading to learning) may be an illusion and, thus, there was a
failure to identify the real ZPD (for example, related to the iconic visualisation of
geometric objects). We argue that this situation is an example of what Blanton et al.
(2005) designated as the illusionary zone, in which the teacher believes that oppor-
tunities for action are being provided to students but, in reality, this is not the case.
Nevertheless the use of Valsiner’s zones in Blanton and colleagues’ work is rather to
explore the ZPD of teachers and gain insights into their potential for development.
We plan to examine the illusionary zone concept in more detail in forthcoming work.
Our aim is to study its usefulness in understanding the proximities that the teacher
seeks to develop in order to reach (or build upon) the ZPD of his or her students.

We are aware that this case study of Roger, and the task he designed, is specific
and cannot be generalised. This is not our intention. However, on the one hand, it
allowed us to develop theoretical tools that can be generalised to the study of other
teachers’ practices, and other technological tools. On the other hand, it raises the
issue of the extent to which the practices that are developed by teachers who partici-
pate in funded projects are supported by the educational institution, and to what
extent the learning scenarios that they develop can be disseminated. As experts with
an informed critical perspective on these practices, we have the objective to contrib-
ute to bridging the gap between policymakers’ aspirations and classroom reality
regarding the integration of digital technologies. On a local level, our work with
teachers, in particular, helping them to reflect on their own practices is one way to
bridge this gap. As teacher educators, our research provides resources and methods
that seek to improve their uses of technology. On a global level, teachers’ profes-
sional development can be affected by hoped-for collaborations between the institu-
tion and the research community. As Lerman (2014) stated:

[...] the mathematics education research community is largely identical to the mathematics
educators’ community. This means that as researchers, the tendency is to focus on internal
issues of teaching and learning mathematics; an examination of the research field demon-
strates the relative lack of attention to policy matters.

Our ambition in participating in the tablet project was to play a constructive part in
reflecting on, debating and identifying a realistic vision of how tablets can be inte-
grated into schools. We still have a lot of work ahead of us!

Research Ethics A consent form was signed by the teacher and the students (and their parents)
authorising the use of their images for all research purposes and all oral or written communications
related to the experimental project.

Both teacher and students were anonymised throughout the current paper.

®Maffia and Maracci (2019) define semiotic interference as an enchaining of signs emerging from
the contexts of use of different arte facts, referring one to the other (p. 57).
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