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Introduction

The eight intervening years between this second edition of The Mathematics Teacher 
in the Digital Era and the first edition have seen increased attention on the role of 
the teacher within technology-enhanced educational contexts, leading to a more 
developed understanding of the components of related teacher education pro-
grammes and initiatives for both pre- and in-service teachers. The shock to the edu-
cation system caused by the global coronavirus pandemic simultaneously highlighted 
the key role that teachers and lecturers play in the nurturing of generations of learn-
ers, alongside increased global attention to the role that (educational) technology 
plays as a mediator of teaching and learning. Studies that have taken place during 
the pandemic have provided insights into how teachers’ practices have had to 
evolve, whilst also highlighting theoretical and methodological gaps in our under-
standing of the relatively new phenomena of “hybrid”, “at distance” or “remote” 
teaching in school and university settings (Bretscher et  al., 2021; Clark-Wilson 
et al., 2021; Crisan et al., 2021; Drijvers et al., 2021; Maciejewski, 2021).

As we reflect on the academic impacts of the first edition of the book, the chap-
ters within have offered theoretical constructs and methodological approaches, 
which have provided other researchers in the field with research tools that are con-
tinuing to advance our collective understandings of the field. In this second edition, 
we invited all of the authors who had contributed to the first edition to submit new 
research that evidenced advances in their experiences, knowledge and practices. We 
also invited new authors, whose research had emerged in the intervening years, to 
offer new critical perspectives that broaden the international commentary, with con-
tributions from Argentina, Australia, Canada, France, Germany, Hong Kong, 
Iceland, Italy, Mexico, Turkey and the United Kingdom.
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 A Journey Through the Text

The evolution of the research on technology in mathematics education has enabled 
a more nuanced understanding of the teacher’s perspective to take account of their 
trajectories of development from pre-service contexts through to in-service prac-
tices over time. Hence, we have chosen to loosely organise the text body in accor-
dance with teachers’ trajectories of experience with technology use. These 
experiences concern those within: university undergraduate courses as learners of 
mathematics; university-based pre-service teacher education courses; university- 
based teacher education courses and research projects with in-service teachers as 
participants.

We begin with chapters by Thurm, Ebers and Barzel, and Bozkurt and Koyunkaya 
that address more practical considerations regarding the provision of support and 
training for both in-service and pre-service teachers of mathematics.

The growth of large-scale, online professional development initiatives aimed at 
teachers has resulted in new research that seeks to develop theoretical understand-
ing of the design and impact of such initiatives alongside the development of appro-
priate methodologies to inform both aspects. The chapter by Thurm, Ebers and 
Barzel addresses aspects of the design of professional development for mathematics 
teachers in Germany with a particular focus on the role of the professional develop-
ment facilitators within a regional professional development programme for 30 par-
ticipants who are all such facilitators. The programme was conducted online (due to 
the Covid-19 pandemic) and Thurm and colleagues’ findings focus on the impact of 
a module of the programme that supported participants’ understanding (and use) of 
video-based case studies of mathematics teaching that embed multi-representational 
technology. They use Prediger, Roesken-Winter and Leuders’ Three-Tetrahedron 
Model as a framework to highlight the complexities of PD design that has a class-
room level, teacher PD level and facilitators’ PD level (Prediger et al., 2019). Their 
findings, which highlight aspects of facilitators’ noticing, emphasise the need for 
carefully structured prompts to support the analysis of video-based activities that 
serve the dual needs of the facilitators and the teachers with whom they are working.

A pre-service teacher education context in Turkey is the subject of the qualitative 
action research reported by Bozkurt and Koyunkaya in which they study the impacts 
of a redesigned practicum course informed by the Instrumental Orchestration model 
(Drijvers et al., 2010; Trouche, 2004). The course design emphasises the pre-service 
mathematics teachers’ (PSTs, n=4) developing use of a dynamic mathematics soft-
ware (GeoGebra) from the university setting (through micro teaching to their peers) 
as their practices move to school classrooms. Their study adopts a cyclical research 
method that draws on data from the PSTs’ lesson plans, supported by analyses of 
their teaching and associated interviews. The research findings offer insights into 
how the PSTs initially overlooked the exploitation modes for the technology in their 
planning but became more systematic in their approach through both the processes 
of micro teaching and during the practicum itself. Given that many pre-service pro-
grammes stop short of requiring PSTs to apply their learning about mathematical 
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technologies within authentic teaching situations, this chapter provides valuable 
insights on the design decisions taken by the teacher educators to develop such an 
approach.

The majority of the remaining chapters in the book report studies that involve 
in-service teachers as participants within a range of research settings, each with a 
different focus. We order these chapters according to teachers’ trajectories of devel-
opment with novel to them technologies. We adopt this phrase from Ng and Leung 
(Chap. 10) as it better reflects our experience and expectation that it is not possible 
for all teachers to be cognisant of all available (and educationally relevant) tech-
nologies at any point in time, irrespective of how mature the wider community 
considers these technologies to be.

The study by Bakos explores how a novel multi-touch tablet technology, 
TouchTimes, is used by two primary teachers in British Columbia, Canada, through 
a lens that considers the teacher, the tool and the mathematical concept as an ensem-
ble. Rooted in the instrumental approach, and in particular Haspekian’s elaboration 
of double instrumental genesis (2011, 2014), Bakos uses her case studies to reveal 
three new orchestration types alongside sharing insights on how the agency exerted 
by the tool extends our existing understandings of the nature of multiplication, and 
the role of haptic devices within young children’s development.

Ng, Liang and Leung’s study also focuses on a more novel technology, 3D pens, 
which enable 3-dimensional models to be drawn as physical objects. The 3D pen 
warms and extrudes a plastic filament to produce a model that then hardens as it 
cools. Ng, Liang and Leung’s method adopts the use of video-aided reflection with 
a group of four in-service secondary school teachers in Hong Kong to support their 
realisations of the affordances of such technologies as a potential teaching tool. In 
their findings, Ng, Liang and Leung provide evidence for how the videos operate as 
a boundary object between the teachers and researchers in the study (Robutti 
et al., 2019).

Although the concept of silent animated films to show mathematical concepts 
dates back to the early twentieth century and was further developed in the 1950s by 
Nicolet, the design-based research developed by Kristinsdóttir examines aspects of 
their design and use in her case study in an upper secondary mathematics classroom 
in Iceland. Kristinsdóttir describes silent videos as short (< 2 min) videos that do not 
pose a mathematical problem to be solved but rather invite the viewer to wonder, to 
experience dynamically changing mathematical objects such that they might dis-
cover something new or consolidate previous thoughts about the mathematics 
shown in the video. Each associated silent video task invites students to work in 
pairs to prepare and record a voice-over for the video clip, which is then shared with 
the class during a whole-class discussion that is led by the teacher. Framed by a lens 
that focuses on the formative assessment dimension of such discussions, 
Kristinsdóttir adapted Schoenfeld’s Teaching for Robust Understanding framework 
(2018) to identify opportunities and challenges associated with such discussions.

McAlindon, Ball and Chang’s study also explores an innovative technology- 
enhanced pedagogic approach, the flipped classroom, through a case study involving 
an experienced teacher in an Australian secondary school. Defining the flipped 
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classroom as one in which the activities that would normally be conducted in the 
classroom are flipped with those that would normally be conducted as homework, 
they explore their case study teacher’s experiences and perceptions of a first imple-
mentation for the teaching of linear equations. This exploratory study, which involves 
the teacher making qualitative comparisons with a parallel class that she taught using 
her traditional approach, concludes positive outcomes such as improved student 
engagement and improved formative assessment practices. Although the design pro-
cess for the teacher requires new technology skills and is time consuming, the authors 
offer some guidelines to inform professional development initiatives that have the 
goal to support mathematics teachers’ flipped classroom pedagogies.

Gueudet, Besnier, Bueno-Ravel and Poisard extend earlier research that featured 
in the first edition of the book, which shone a theoretical lens on teachers’ classroom 
practices at the kindergarten level from a Documentational Approach to Didactics 
perspective (Gueudet et al., 2014). In the intervening years, evolutions of this theory 
and its associated research methods have enabled the authors to consider a kinder-
garten teacher’s development as evidenced by both one of her documents (a micro 
view) and the encompassing resource system (a macro view). The authors conclude 
that both the micro and macro views are necessary to fully appreciate a teacher’s 
design capacity within the context of long-term professional development concern-
ing digital technologies for education.

Staying in France, Abboud-Blanchard and Vanderbrouck report findings from a 
study in France that explores the implementation of tablet computers in the French 
primary school setting. Although tablets are no longer widely  considered a new 
technology, the authors’ contribution extends ideas reported in the first edition of 
the book, which concludes three axes (cognitive, pragmatic and temporal) through 
which to consider teachers’ adoption of new technologies within their mathematics 
classrooms (Abboud-Blanchard, 2014). Abboud-Blanchard and Vanderbrouck 
introduce the additional constructs of tensions and proximities, which they argue 
align more specifically to classroom uses of tablet computers. In their chapter, the 
authors articulate how these two new constructs evolve from Activity Theory, and 
elaborations of Vygotsky’s and Valsiner’s respective Zone Theories.

Sandoval and Trigueros’ chapter is also situated in a primary school setting, this 
time in Mexico. They offer new perspectives on the teaching of mathematics in 
primary schools, with an emphasis on how two teachers integrate digital technolo-
gies to particularly meet the needs of learners from challenging socio-economic 
contexts. In common with their contribution to the first edition of the book (Trigueros 
et al., 2014), they adopt an enactivist approach to characterise teachers’ actions and 
the resulting student activities that reveal high levels of participation in immersive 
environments for learners who are commonly disenfranchised by education systems.

We move from primary school contexts to the secondary phase in the next two 
chapters, which both follow teachers over a period of time with the aim to identify 
aspects of their evolving practices. The first, by Simsek, Bretscher, Clark-Wilson 
and Hoyles, is situated in England and focuses on three in-service teachers’ evolv-
ing use of a dynamic mathematical technology (Cornerstone Maths) for the teach-
ing of geometric similarity to 11–14 year olds over a period of months. The chapter 
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extends the understanding of Ruthven and colleagues’ notion of curriculum script, 
which is one of the five Structuring Features of Classroom Practice that was 
described and critiqued in the first edition of the book (Ruthven, 2014). Simsek and 
colleagues’ chapter contributes a case example of such a curriculum script for the 
teaching of a specific mathematics topic, highlighting aspects of more productive 
teaching practices which are often difficult to notice.

Villareal’s chapter, in which she describes research in Argentina, follows a sec-
ondary school mathematics teacher from her pre-service teacher education pro-
gramme into her role as a novice in-service teacher. The research dually categorises 
the teacher’s evolving relationships with technology, which adopts Goos’ taxonomy 
of sophistication (master, servant, partner and extension of self (Goos, 2000), along-
side Ruthven’s five Structuring Features of Classroom Practice (Ruthven et  al., 
2009). These two frameworks offer an interesting and novel perspective for cate-
gorising the evolution of teachers’ classroom practices that have implications for 
the design of teacher education programmes and initiatives.

A university in Canada is the setting for the research reported by Buteau, Muller, 
Santacruz Rodriguez, Mgombelo, Sacristan and Gueudet, which expands research 
understanding on the long-term development for a faculty-wide integration of pro-
gramming technologies within undergraduate-level courses for both mathematics 
students and future mathematics teachers. Situated in the same context as the earlier 
study by Buteau and Muller (2014), the instrumental orchestration framework is 
used to examine the 20-year trajectory of this integration from the perspective of the 
faculty members. The authors’ analysis of the course instructors’ and selected stu-
dents’ schemes concludes an orchestration and genesis alignment model that high-
lights the complexities of the instructor’s role as both policy maker and teacher with 
responsibility for orchestrating the students’ instrumental geneses.

The Covid-19 pandemic provides the context for the research study that features in 
the chapter by Sánchez Aguilar, Esparza Puga and Lezama. Set in South America, the 
authors conducted a survey (n = 179) across five Latin American Countries (Argentina, 
Chile, Colombia, Mexico and Uruguay) that aimed to elicit teachers’ perceptions of 
the abrupt integration of digital technologies into their practices, triggered by wide-
spread and mandatory school closures in the first six months of 2020. This was framed 
within a methodology that aims to capture the lived experience of teachers by giving 
them a voice to express the obstacles that they faced. The study captures the broad 
range of technologies in play, extending beyond solely mathematical technologies 
(i.e., calculators, dynamic geometry software or spreadsheets) to include more general 
technologies such as videoconferencing software and learning management plat-
forms. The findings revealed six categories of obstacles that capture both what they 
did and how they felt as they worked to overcome the challenges that they faced.

The penultimate two chapters of the book offer theoretical contributions.
In the first edition of the book, the chapter by Arzarello, Robutti, Sabena, Cusi, 

Garuti, Malara and Martignone introduced a new theoretical model, Meta-Didactical 
Transposition (MDT), which was developed to respond to the need to consider the 
complexity of teacher education with respect to the institutions in which teaching 
operates, alongside the relationships that teachers must have with these institutions 
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(Arzarello et al., 2014). The original MDT model (now referred to as MDT.1), an 
extension of Chevallard’s Anthropological Theory of Didactics (1985, 1992, 1999), 
describes the evolution of teachers’ education over time by analysing the different 
variables involved: components that change from external to internal (internalisa-
tion); brokers who support teachers interacting with them; and dialectic interactions 
between the community of teachers and researchers. The chapter by Cusi, Robutti, 
Panero, Taranto and Aldon presents an evolution of MDT, namely, Meta-Didactical 
Transposition.2 (MDT.2), which offers a deeper insight into the process of inter-
nalisation that captures the way in which the actors within the teachers education 
programme develop shared praxeologies over time through the introduction of the 
external (and, in some cases digital) components.

The final chapter, by Sinclair, Haspekian, Robutti and Clark-Wilson, charts the 
development of theories that frame research on teaching mathematics with technol-
ogy from both a historical perspective and an epistemological one. Building directly 
on Ken Ruthven’s chapter in the first edition of this book, it aims to highlight the 
evolution of the relevant theories since 2014 and highlights trends in the ways that 
these have been operationalised in recent studies. Furthermore, the authors seek to 
make explicit the philosophical roots of the commonly adopted theories to provoke 
the reader to consider what each might reveal—or conceal—concerning aspects of 
teaching mathematics with digital technologies.

 Alison Clark-Wilson
  Ornella Robutti
  Nathalie Sinclair 
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Professional Development for Teaching 
Mathematics with Technology: Fostering 
Teacher and Facilitator Noticing

Daniel Thurm, Patrick Ebers, and Bärbel Barzel

Abstract Professional development of facilitators has been highlighted as a deci-
sive factor for scaling-up professional development (PD) efforts. However, research 
on facilitators is still burgeoning and, for many areas like teaching mathematics 
with technology, little research is available on how to professionalise facilitators. In 
this paper we question how to prepare facilitators to support teachers for teaching 
mathematics with multi-representational-tools (MRT). Teaching mathematics with 
MRT requires a teacher to notice the subtle ways in which technology supports 
students learning and the challenge for facilitators is to support such a nuanced 
teacher noticing. Therefore, we focus on the constructs of teacher and facilitator 
noticing when teaching with MRT, and describe the design and implementation of a 
video- case- based strategy to professionalise PD facilitators to support teachers 
noticing of students learning when working with MRT. For this we developed the 
Content- Activity- Technology-Model (CAT-Model) that helps to capture in graphic 
form the students’ learning processes when working with technology. This provides 
a more accessible format  for teachers and facilitators, which can also be used  to 
reconstruct teacher and facilitator noticing. Our analyses across the three levels of 
the CAT-Model leads us to identify the potential and challenges for this method and 
outline how the multi-level video-based design can be further improved.
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1  Introduction

Nowadays, in many high-income countries, the use of digital technology for teach-
ing and learning mathematics is well-established in  the mathematics curriculum 
(Clark-Wilson et al., 2020; Thurm et al., 2023). In addition to great progress in the 
development of teaching ideas and theoretical lenses, research has highlighted the 
important role of the teacher (Clark-Wilson et  al., 2014; Thurm & 
Barzel, 2020, 2021; Drijvers et al., 2010; Thurm et al., 2023). Teachers contribute 
decisively to the extent to which the potential of technology is exploited in the class-
room. In light of this, PD programs are regarded as important for supporting teach-
ers to integrate technology in their mathematics classrooms in meaningful ways. PD 
programs can help to equip teachers with the special knowledge they need for teach-
ing with technology (for example, pedagogical technological knowledge; Thomas 
& Palmer, 2014) and to support them to manage the complex task of orchestrating 
technology-enhanced mathematics classrooms (Thurm et al., 2023; Drijvers et al., 
2010). Focusing on the design of teacher PD programs, research has identified sev-
eral characteristics that constitute high-quality teacher PD (Ertmer & Ottenbreit- 
Leftwich, 2010; Grugeon et  al., 2010; Ratnayake et  al., 2020; Thurm et  al., 
2023; Thurm & Barzel, 2020). These characteristics (or design principles) include, 
for example, a focus on teachers’ technological pedagogical content knowledge, 
fostering reflection of technology use, and a focus on helping teachers to understand 
(and notice) how students might benefit from learning mathematics with technology 
(Clark-Wilson & Hoyles, 2019; Ertmer & Ottenbreit-Leftwich, 2010; Thurm & 
Barzel, 2020). Furthermore, professionalising teachers should be case-related, 
which means relating PD activities to practical aspects such as specific student out-
comes, video-cases or other representations of practice (ibid.).

However, designing high-quality PD programs alone is not enough to ensure a 
high-quality PD experience for teachers. Just as the teacher’s role has been found to 
be critical at the classroom level, so research has pointed out the importance of PD 
facilitators at the PD level. Facilitators are responsible for the design, adapt, and 
implement PD programs for teachers: “Facilitators play a crucial role when scaling 
up continuous professional development (CPD). They have to design and conduct 
programs to initiate the process of teachers’ professionalization” (Peters-Dasdemir 
et al., 2020, p. 457). Yet, despite this important role, little is known about how to 
professionalise facilitators (Lesseig et  al., 2017; Peters-Dasdemir et  al., 2020; 
Prediger et al., 2019; Roesken-Winter et al., 2015; Thurm et al., 2023). In particular 
more research is needed to identify appropriate design principles that guide the 
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design of PD for facilitators and to investigate associated challenges (ibid). This 
chapter makes a first step towards addressing this gap by focusing on teacher and 
facilitator noticing as a key concept of their  competencies (Lesseig et  al., 2017; 
Schueler & Roesken-Winter, 2018; Stahnke et  al., 2016). Sherin, Russ, and 
Colestock (2011b) define the concept of noticing as “professional vision in which 
teachers selectively attend to events that take place and then draw on their existing 
knowledge to interpret these noticed events” (Sherin, Russ, & Colestock, 2011b, 
p. 80). Clearly, teacher noticing is highly relevant for teaching mathematics with 
technology. Teachers will only use technology if they  notice how technology 
impacts positively on students’ learning. In addition, teachers noticing of students’ 
learning is a prerequisite to be able to scaffold students’ learning. Similarly, facilita-
tors noticing of teacher learning is also important. For example, facilitators need to 
notice what teachers notice with respect to student learning  in order to support 
teachers in the PD program. In this paper we describe a video-case-based way to 
foster teacher and facilitator noticing. The methodological basis for our design and 
research endeavor is based on the Three-Tetrahedron-Model (3  T-Model) for 
content- related PD research which highlights strategies for connecting class-
room level, teacher PD level and facilitator PD level (Prediger et al., 2019).

2  Theory

2.1  Teaching Mathematics with Multi-representational Tools

While the scope of available technologies has increased massively, commonly used 
technology in the mathematics classroom are multi-representational-tools (MRT) 
(also called “mathematics analysis software”; Pierce & Stacey, 2010) which com-
bine the capabilities of scientific calculators, function plotters, spreadsheets, statis-
tics and geometry applications, and computer algebra systems. In this chapter, 
unless stated otherwise, the term “technology” is used to refer to such MRT. MRT 
can support student learning by providing easy access to different forms of repre-
sentations, such as numerical and graphical representations and allowing dynamic 
linking of different forms of representations (Drijvers et al., 2016; Heid & Blume, 
2008). In particular, students can work simultaneously with the different mathemat-
ical representations and can explore relations between these. This is especially 
important since research has highlighted that transforming, linking, and carrying 
out translations between different mathematical representations is crucial for devel-
oping an understanding of mathematical concepts (Duval, 2006). In addition, the 
easy access to different forms of representations can support more student- centered 
teaching approaches such as discovery learning (Barzel & Möller, 2001; Pierce & 
Stacey, 2010; Thurm, 2020). In the following we exemplify the affordances of MRT 
with respect to a particular task, which is shown in Fig. 1. This task was used in the 
research study as a basis to support teacher and facilitator noticing and we will refer 
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Fig. 1 MRT-task adapted from Drijvers (1994)

to it  as the “MRT-task”  throughout the chapter. In the MRT-task students are 
prompted to amend the two given linear functions in such a way that the product 
function satisfies certain mathematical conditions. In addition, students are asked to 
write a conjecture about the types of parabolas that cannot be obtained by multiply-
ing two linear functions. In this task, various affordances of MRT become apparent. 
Firstly, the MRT can support students in generating many pairs of graphs of differ-
ent linear functions and the respective product functions. Without MRT students 
would have to engage in the tedious and repetitive work of drawing many functions 
by hand. This would take much time and would constrain learners from focusing 
their attention on the relationships between the linear functions and the respec-
tive product function. Furthermore, MRT make it possible to dynamically change 
the slope of the linear function, for example, by dragging. At the same time MRT 
offer simultaneous access to the symbolic and graphical representations, which sup-
ports students observing and investigating the links between these two forms of 
representation. To summarise, using MRT with this task allows students to explore, 
test and discover mathematical relationships between linear and quadratic functions.

2.2  Facilitators

In the research literature many terms are used to describe the group of people who 
initiate and lead processes to professionalise teachers, for example, “facilitators”, 
“teacher trainers”, “multipliers”, “coaches”, “didacticians” and “teacher educators” 
(Peters-Dasdemir et al., 2020). In this chapter we use the term “facilitator” which 
highlights that the process of facilitating PD for teachers is rather a “give-and-take 
than a one-sided teacher-pupil relationship” (Peters-Dasdemir et al., 2020, p. 457).

Research related to PD facilitators is an emerging field of study (Lesseig et al., 
2017; Poehler, 2020; Prediger et al., 2019; Thurm et al., 2023). In the last decade 
pioneering research studies have focused on identifying the required  skills and 
knowledge for them to be effective (Borko et al., 2014; Elliott et al., 2009; Lesseig 
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et al., 2017; Peters-Dasdemir et al., 2020). Clearly, facilitators require “competen-
cies about adult learning and the specific knowledge and needs of mathematics’ 
teachers, which are much broader than teachers’ competencies.” (Peters-Dasdemir 
et al., 2020, p. 457). This is, for example, illustrated by the competency model for 
facilitators developed by Peters-Dasdemir et al. (2020). The model conceptualises 
facilitators’ knowledge as an extension of the knowledge needed for teaching and 
it adapts the well-established specifications of content knowledge (CK), pedagogi-
cal knowledge (PK) and pedagogical content knowledge (PCK) from the classroom 
level to the PD level. In particular, pedagogical content knowledge on the PD level 
(PCK-PD) concerns the knowledge needed “to engage teachers in purposeful activ-
ities and conversations about those mathematical concepts, relationships and to 
help teachers gain a better understanding of how students are likely to approach 
related tasks” (Jacobs et  al., 2017, p.  3). Moreover, research has  generated first 
insights about the effective design of facilitators’ preparation programs (e.g., Kuzle 
& Biehler, 2015; Lesseig et al., 2017; Roesken-Winter et al., 2015). For example, 
Lesseig et al. (2017), propose a set of design principles, which include focusing on 
teacher learning goals, providing opportunities for facilitators to expand their spe-
cialised content knowledge, and using video-cases as representations of practice to 
generate in-depth discussion and reflection of facilitators’ practices and beliefs.

Despite these results “research on preparing and supporting facilitators of math-
ematics PD is still at a very early stage [...].” (Jacobs et al., 2017, p. 12), which 
holds particularly true with respect to facilitators in the context of teaching mathe-
matics with technology (Thurm et al., 2023). This can be illustrated, for example, 
by the fact, that neither the previous edition of this book (Clark-Wilson et al., 2014) 
nor the ICMI study of Hoyles and Lagrange (2010), nor the ICME-13 monograph 
on uses of technology in primary and secondary mathematics education (Ball et al., 
2018), nor the ICME-13 topical surveys by Drijvers et al. (2016) and Hegedus et al. 
(2017), nor the last two proceedings of the International Conference on Technology 
in Mathematics Teaching (ICTMT, Barzel et al., 2020; Aldon & Trgalová, 2017), 
nor the recently published ZDM special issue on teaching with technology (Clark- 
Wilson et al., 2020), have contributions or sections particularly addressing PD for 
facilitators. However, research activity in this field is slowly burgeoning. For exam-
ple, Psycharis and Kalogeria (2018) and the recent ICME25 proceedings (Borko & 
Potari, 2020) provide some elements on this theme. Placing a greater focus on facil-
itators’ professional development is particularly important, since in many countries 
facilitators are not required to complete any specific PD programme or accreditation 
to prepare them to offer courses for teachers (Lesseig et al., 2017; Roesken-Winter 
et al., 2015). Rather “formalized professional development opportunities for lead-
ers are exceptions rather than the norm” (Lesseig et al., 2017). In addition, profes-
sionalising facilitators in formal ways becomes increasingly important due to the 
emergence of PD institutions such as the “National Centre for Excellence in the 
Teaching of Mathematics” (NCETM) in England, the “National Center for 
Mathematics Education” (NCM) in Sweden, the “Institut für Unterrichts- und 
Schulentwicklung” (IUS) in Austria or the “German Centre for Mathematics 
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Teacher Education” (DZLM) in Germany, which aim to provide high-quality PD on 
a larger scale which brings to the forefront the question of how to professionalise 
facilitators.

While it is clear that more research with respect to facilitators is needed, con-
ducting such research is not an easy endeavor. For example, Borko (2004) high-
lighted that facilitators, the PD program, the participating teachers and the context 
are inevitably intertwined through interactive and reciprocal relationships. Recently 
Prediger et al. (2019) have started to further unpack this complexity and proposed 
the Three-Tetrahedron Model (3 T-Model) for PD research and design, which cap-
tures the complexity of learning and teaching at the classroom, teacher PD, and 
facilitator PD level. This model will be explained in detail in the next section.

2.3  The Three-Tetrahedron Model for Design 
and Research on PD

The Three-Tetrahedron Model (3  T-Model) of Prediger et  al. (2019) provides a 
framework for the design of and research on teacher and facilitator PD programs. Its 
goal is to capture “the complexity of learning and teaching at the classroom, teacher, 
and facilitator level that is needed to inform design and research into PD” (Prediger 
et al., 2019, p. 407). Extending the idea of the commonplace didactic triangle, which 
relates teachers, learners and the content to be learned, the 3  T-Model takes the 
format of a series of tetrahedrons which are considered at the classroom, teacher PD 
and facilitator PD levels (see Fig. 2). The classroom level tetrahedron comprises 

Fig. 2 The three-Tetrahedron Model (3  T-Model) for content-related PD research (Prediger 
et al., 2019)
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relations between students, content, classroom resources and the teacher. This struc-
ture can now be transferred to the teacher PD level. Here the teacher takes the posi-
tion of the learner and the facilitator takes the role of the teacher. At the teacher PD 
level (TPD), learning is supported by teacher PD resources and the content on the 
classroom level is replaced by the teacher PD content. Finally, this structure can also 
be transferred to the facilitator PD level (FPD). This model has been used in a vari-
ety of contexts. For example, it has been used to investigate facilitators’ practices 
(Leufer et al., 2019), for describing implementation strategies on different levels 
(Roesken-Winter et al., 2021) and to gain insights about effective strategies for sup-
porting PD facilitators to incorporate content and skills introduced in facilitator PD 
sessions into their own practice (Borko et al., 2021).

Prediger et al. (2019) describe three general strategies (lifting, nesting, unpack-
ing) for design and research on PD which take into account the multi-level structure 
of PD displayed in Fig. 2. In the following we elaborate on the lifting and nesting 
strategy which we used in the design and research that we report here.

The lifting strategy (Fig. 3, left) comprises lifting design and research approaches 
from one level to the next. For example, lifting a design approach “means that 
design principles or design elements developed for the classroom level are implic-
itly or explicitly transferred (and adapted) to the TPD level (or from the TPD to 
FPD level)” (Prediger et  al., 2019, p. 412). Similarly, lifting a research practice 
entails that research questions and/or methods from the classroom level “are implic-
itly or explicitly transferred (and adapted) to the TPD level (or from the TPD to 
FPD level) and applied in an analogous way.” (Prediger et al., 2019, p. 413). For 
example, design approaches that employ video-case-based learning to support 
teacher noticing of student learning can be lifted from the teacher PD level to the 
facilitator PD level, to support facilitator noticing of teacher learning. A further 

Fig. 3 Lifting strategy (left) and nesting strategy (right) in the Three-Tetrahedron Model (Prediger 
et al., 2019)
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example would be, if research approaches for investigating students’ thinking and 
learning pathways are lifted to the teacher PD level by investigating teachers’ think-
ing and teacher learning pathways.

The nesting strategy (Fig. 3, right) accounts for the fact that teacher PD content 
is usually more complex than classroom content, and that facilitator PD content is 
usually more complex than teacher PD content (Prediger et al., 2019). Therefore, 
the nesting strategy considers that aspects of the complete classroom tetrahedron 
should be nested in the teacher PD content and that aspects of the complete teacher 
PD tetrahedron should be nested in the facilitator PD content. Hence the nesting 
strategy “builds the PD design upon the idea of structuring the TPD/FPD content 
in a self-similar nested structure, taking into account the complexities of the tetra-
hedrons below.” (Prediger et al., 2019, p. 413).

In our research project the 3 T-Model was used to guide the design of the PD 
activities and to situate the different aspects of our project along the different levels 
of professional learning, while accounting for the complexity resulting from the 
inherent connections between the different levels. However, while the 3 T-Model is 
well suited to provide a macro-view on design and research for PD it is often helpful 
to combine the use of the 3 T-Model with other additional models. For example, 
Borko et al. (2021) integrate the Learning to Lead Cycle with the 3 T-Model in order 
to facilitate research about the leadership capacity of experienced teachers.

2.4  Teacher Noticing and Video-Case-Based-Learning

In our research endeavor we used the 3 T-Model to design a PD activity that focused 
on teacher and facilitator noticing,  a construct which we now explain in more detail. 
Teacher noticing builds on the notion of professional vision which was introduced 
by Goodwin (1994) as “socially organized ways of seeing and understanding events 
that are answerable to the distinctive interests of a particular social group” 
(Goodwin, 1994, p. 606). In line with the conceptualisation of Sherin (2007) we 
understand noticing to be both the perception of aspects in teaching situations that 
are relevant for teaching quality (selective attention) and the interpretation of these 
aspects based on appropriate professional knowledge (knowledge-based reasoning). 
Clearly, if teachers observe a classroom situation they might attend to very different 
aspects and interpret these in different ways. In particular teacher noticing is impor-
tant for paying attention to, and interpreting students’ mathematical thinking, and to 
recognise developing mathematical understanding of students (Sherin, Jacobs, & 
Philipp, 2011a, p. 3). This is particularly true since “effective instruction requires 
teachers to notice, pay attention to, and respond to students’ ideas” (Beattie et al., 
2017, p. 323; Kilic, 2018). However, noticing is not only crucial for teachers but 
also for PD facilitators (Lesseig et al., 2017). Facilitator noticing with respect to 
teachers’ learning is important in order to facilitate robust opportunities for teach-
ers’ learning, for example, by appropriate facilitation moves (Lesseig et al., 2017; 
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Schueler & Roesken-Winter, 2018). In literature, different levels of noticing have 
been described, which capture the depth of noticing starting from general noticing 
to more specific noticing (Lee & Choy, 2017; van Es, 2011). General noticing 
focuses, for example, on superficial features that are not directly associated with 
students learning (classroom level) or teacher learning (teacher PD level) and results 
in a very general impression of what has occurred. In contrast, specific noticing 
focuses on relationships between content, teachers, classroom resources and details 
of student or teacher learning and thinking. Furthermore, specific  noticing com-
prises specificity in recalling details, supporting statements with evidence and pro-
viding explanations (van Es, 2011). In this study we use an adapted framework 
based on the work of van Es (2011), who proposed a model that distinguishes 
between four levels of noticing, where teachers increasingly attend to more details 
of students’ mathematical thinking (see Table 1).

Given the high importance of teacher and facilitator noticing, the question arises 
how to support their noticing competencies. In this respect, research has highlighted 
the potential of the use of video-cases because they can capture the high complexity 
inherent in classroom teaching or PD without requiring immediate actions, as in a 
real classroom or PD situation (Koc et al., 2009; Lesseig et al., 2017; Schueler & 

Table 1 Framework for levels of noticing adapted from van Es (2011, p. 139)

Level What teachers notice How teachers notice

Level 1
Baseline 
Noticing

Attend to generic aspects of teaching and 
learning, e.g., seating arrangement, student 
behavior, etc.

Provide general descriptive or 
evaluative comments with little or no 
evidence from observations

Level 2
Mixed 
Noticing

Begin to attend to particular instances of 
students’ mathematical thinking and 
behaviors

Form general impressions and 
highlight noteworthy events or details
Provide primarily evaluative with 
some interpretive comments
Begin to refer to specific events and 
interactions as evidence

Level 3
Focused 
Noticing

Attend to particular students’ 
mathematical thinking

Provide interpretive comments
Refer to specific students’ difficulties, 
events and interactions as evidence
Elaborate on specific students’ 
difficulties, events and interactions

Level 4
Extended 
Noticing

Attend to the relations between particular 
students’ mathematical thinking, 
technology use and mathematical 
activities.

Provide interpretive comments
Refer to specific events and 
interactions as evidence
Elaborate on specific events, and 
interactions
Make connections between events 
and principles of teaching and 
learning
On the basis of interpretations, 
propose alternative pedagogical 
solutions

Professional Development for Teaching Mathematics with Technology: Fostering…
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Roesken-Winter, 2018; Sherin, 2007): “While video captures much of the richness 
of the classroom environment, it does not require an immediate response from a 
teacher and can instead promote sustained teacher reflection (Sherin, 2004). 
Moreover, because video provides a permanent record of classroom interactions, it 
can be viewed repeatedly and with different lenses in mind, promoting new ways for 
teachers to ‘see’ what is taking place.” (Sherin & Russ, 2015, p. 3). Hence, video- 
cases allow a case-related approach to PD, where PD activities are centered around 
authentic representations of practice, which is regarded as an important design prin-
ciple for PD for teachers as well as for facilitators (Kuzle & Biehler, 2015; Roesken- 
Winter et al., 2015). However, video-cases are not by themselves sufficient to foster 
teacher and facilitator noticing: “[...] using cases alone does not ensure learning, 
[...] adequate instructional support is needed” (Goeze et al., 2014, p. 97; Kirschner 
et al., 2006). Video-cases have to be carefully embedded in PD programs. Research 
findings suggest that  it is helpful if video-cases are combined with appropriate 
prompts that set a focus in order to guide teacher or facilitator noticing (Lesseig 
et al., 2017).

Noticing with Respect to Learning Mathematics with Technology
A nuanced and specific type of noticing is important for teaching with technology. 
Learning mathematics with technology comprises a subtle interplay between the 
mathematics, the technology and the learner (Trouche & Drijvers, 2010) and teach-
ers will only integrate technology into their teaching in the long term, if they notice 
this subtle interplay and the potential of learning mathematics with technology. 
Furthermore,  discovery learning tasks, such as the MRT-task introduced earlier 
(Fig.  1), require teachers to notice different ideas and individual approaches of 
learners, in order to adequately guide their learning. Moreover, the specific noticing 
of students’ mathematical learning when working with technology is a prerequisite 
for offering adequate support for students, for example, by providing prompts, hints 
or questions during the teaching process (Sherman, 2012). For facilitators, specific 
noticing is not only needed with respect to student learning but also with respect to 
teacher learning. In particular,  facilitators must support teachers to develop deep 
noticing of relevant aspects of teaching and learning mathematics with technology. 
For this, facilitators need to elaborately notice what teachers notice with respect to 
learning mathematics with technology.

A theoretical approach to describe the subtle processes of learning mathematics 
with technology is the theory of instrumental genesis (Guin & Trouche, 1999). 
Instrumental genesis describes the process of an artefact (e.g., a specific technol-
ogy) becoming an instrument  for doing and learning mathematics. However, the 
theory of instrumental genesis is an  explanatory theory. It is  not geared towards 
suggesting how to develop approaches to foster teacher noticing related to teaching 
mathematics with technology. In particular, the framework does not help to illumi-
nate learning pathways or make the interplay of technology and the learning of 
mathematics easily accessible for teachers or PD facilitators. Therefore, we devel-
oped a framework that builds on the instrumental approach, but is explicitly suitable 
to analyze, depict and notice learning pathways when learning mathematics with 
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technology within both teacher and facilitator PD programs. Our framework builds 
on that of Prediger (2019), which was developed in the context of analysing and 
describing learning pathways with respect to language responsive teaching. The 
model of Prediger (2019) highlights different categories for teachers’ thinking and 
noticing (content goals, learners discourse practices, lexical means) and their inter-
play and distinctions. We adapted this framework in order to highlight connections 
between content goals, mathematical activities and technology use. The resulting 
Content-Activity-Technology-Model (CAT-Model) is depicted in Fig. 4.

Content goals refer to normative content goals that can be inferred from stu-
dents’ behavior. These content goals are often distinguished as conceptual and pro-
cedural knowledge, both regarded as an integral part of mathematical competence: 
“Mathematical competence rests on developing both conceptual and procedural 
knowledge.” (Rittle-Johnson et al., 2015, p. 594). In the CAT-Model we acknowl-
edge that conceptual and procedural knowledge cannot always be separated (Rittle- 
Johnson & Schneider, 2015) by conceptualising content goals on a continuum 
ranging from procedural knowledge to conceptual knowledge. The achieved con-
tent goals inferred from student’s behavior in a specific situation might not neces-
sarily reflect the anticipated or intended content goal. For example, students working 
on the MRT-task (Fig. 1) might not display any behavior that is indicative of con-
ceptual knowledge even though the goal of the task is to activate and promote this 
type of knowledge. 

Mathematical activities, refer to observable actions that allow inferences about 
the cognitive processes. These activities can be located on a continuum reflecting 
different levels of engagement (Anderson & Krathwohl, 2001; Biggs, 2003). 
Procedural activities relate to lower order activities, for example, if students mainly 
communicate on a phenomenological level, if students talk about what they are 
doing, or what they observe. Conceptual activities refer to higher order activities 
like students trying to explain mathematical concepts (where explanations do not 
necessarily have to be correct), argue about mathematical concepts, or formulate an 
hypothesis. Again, students might not display procedural or conceptual activities 

Fig. 4 The categories of the CAT-Model, their interplay (↔) and distinctions (↕)
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even though the task or context was intended to do so. In addition, an activity/a task 
might provoke unintended mathematical activities.

Technology use is differentiated as undirected and directed use. Undirected use 
refers to students using the technology without a specific purpose, for example, if 
students apply an undirected trial and error approach or randomly drag a parameter 
slider. In contrast, directed use of technology refers to students deliberately using 
technology in their learning. This comprises, for example, the use of technology to 
test hypotheses or to systematically vary parameters to explore mathematical rela-
tionships. Hence directed and undirected use echoes a similar use of technology 
identified by Arzarello et al. (2002) with respect to dragging practices in a dynami-
cal geometry environment.

We want to stress that the categories of the CAT-Model (Fig. 4) reflect a contin-
uum (e.g., from procedural to conceptual knowledge or from procedural to concep-
tual activities). For example, a mathematical activity might not clearly be either a 
procedural activity (e.g., calculating a sum) or a conceptual activity (e.g., explaining 
a concept) but could also be an amalgam of both types of activities located some-
where in-between the two endpoints of the continuum.

The CAT-Model will be used in this paper for two purposes. On the one hand we 
use the CAT-Model to analyse and describe the learning pathways of a pair of stu-
dents working with the MRT-task to show how the pair of students’ progress from 
unaimed use through mathematical activities to conceptual understanding (Fig. 7). 
On the other hand, we use the CAT-Model to analyse what aspects (content goals, 
mathematical activities, technology use) teachers notice when they observe students 
working with the MRT-task.

3  Research Questions and Methodology

The outlined theoretical framework enables us to clarify the goals and questions that 
were informally presented in the introduction. In our study we focus on the constructs 
of teacher and facilitator noticing with respect to teaching mathematics with technol-
ogy. The goal of our work was to develop video-case-based activities for teacher PD 
and facilitator PD that fosters teacher and facilitator noticing and explicitly take into 
account the connections between the classroom, teacher PD and facilitator PD levels. 
For design and research across the levels we used the 3 T-Model and the nesting and 
lifting strategy (see Sect. 2.3). We began the design at the classroom level and subse-
quently extended it  to the teacher PD and facilitator PD level. In the following we 
detail the considerations regarding design and methodology and outline research 
questions and goals that were the focus at teacher PD and facilitator PD level. The 
complete design process and implementation of the teacher PD and facilitator PD 
program was situated within the German Center for Mathematics Teacher Education 
(DZLM), which is a nationwide university-based institute for developing and imple-
menting high-quality PD for teachers and facilitators while attending to state-of-the-
art design principles identified in the literature (e.g., Goldsmith et al., 2014).

D. Thurm et al.
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Classroom Level
At the classroom level, we set out to identify a suitable video-case of students work-
ing with the MRT-task (Fig. 1). For this, six pairs of students were videod when 
solving the MRT-task (see Sect. 2.1, Fig. 1). Using the CAT-Model described in 
Sect. 2.4 (Fig. 4) we identified a student-video-case in which students proceed from 
unaimed use of technology to conceptual understanding. Details are outlined in 
Sect. 4.1.

Teacher PD Level
Design: At the teacher PD level our goal was to support teacher noticing with respect 
to students’ learning processes when working with MRT. For this the classroom 
level tetrahedron consisting of students, classroom content (relationships between 
linear and quadratic functions) and classroom resources (MRT, MRT-Task) became 
the content of the teacher PD program (teaching with MRT, see Fig.  2). In the 
teacher PD program teachers first solved the MRT-task individually. Subsequently 
teachers watched the student-video-case (recorded at the classroom level, see above) 
and analysed it with respect to the learning processes of the students. Afterwards, a 
whole group discussion was held (moderated by a PD facilitator) to discuss what the 
teachers had noticed in the video-case. Details are outlined in Sect. 4.2. We video-
graphed the whole group discussion and analysed it with respect to the following 
research questions (Details are outlined in Sect. 4.2):

Research questions:

• What do teachers notice in the student-video-case?
• What challenges can be identified on the teacher PD level?

Facilitator PD Level
Design: At the facilitator PD level the goal was to enable facilitators to support 
teacher noticing with respect to teaching mathematics with technology. For this the 
TPD level, which consists of teachers, teacher PD content (teaching with MRT) and 
teacher PD resources (MRT-task, MRT, student-video-case), became the content of 
the facilitator PD program (facilitating teaching with PD, see Fig. 2). In the facilita-
tor PD program facilitators first solved the MRT-task individually and subsequently 
watched the student-video-case and analyzed it with respect to the learning pro-
cesses that they notice. Afterwards a whole group discussion was held to discuss the 
what the facilitators had noticed. Hence, up to this point, the facilitators PD activi-
ties were identical to the activities of the teachers at the teacher PD level. Facilitators 
were then split up in groups of 4-5 persons and analyzed the  teacher-video-case,  
which consisted of the teachers whole group discussion recorded at the teacher PD 
level (see above), with respect to what teachers had noticed. We recorded the facili-
tators during their small group discussions and analyzed the recordings with respect 
to the following research questions (Details are outlined in Sect. 4.3):

Research questions:

• What do facilitators notice in the teacher-video-case?
• What challenges can be identified on the facilitator PD level?

Professional Development for Teaching Mathematics with Technology: Fostering…
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Fig. 5 Nesting of PD content in the 3 T-Model across the different levels

Lifting and Nesting Across Classroom, Teacher PD and Facilitator PD Level
Figure 5 gives an overview of the nested design. Aspects of the lower level tetrahe-
drons are nested as content within the higher level tetrahedrons. With respect to 
lifting, several design and research approaches are lifted. On one hand, solving the 
MRT-task was lifted from classroom level to both the  teacher and facilitator PD 
level. In addition, the use of video-cases as means to support teacher noticing was 
lifted from the teacher to the facilitator PD level. In addition, the CAT-Model was 
lifted as a tool to support data analysis from the classroom level to teacher PD level. 
Moreover, the learning goals and the research question were lifted from the teacher 
to the facilitator PD level:

Learning Goals:
• Classroom Level: Support students to discover connections between linear and 

quadratic functions using MRT.
• Teacher PD level: Support teacher noticing with respect to the learning processes 

of students when working with MRT.
• Facilitator PD level: Support facilitators to be able to notice and support the notic-

ing of teachers.

Participants and the PD Context
The teacher PD program was conducted in the German federal state “Schleswig- 
Holstein”. The PD program comprised of eight one-day modules over a period of 18 
months. Four of the modules were taught face-to-face and the remaining four were 
taught online. The PD program focused on supporting teaching mathematics with 
technology. Each module addressed a different type of technology (e.g., MRT, 

D. Thurm et al.



15

videos, apps, audience response systems, learning management systems). Practical 
try- outs and reflection phases followed each module (a so-called “sandwich-model”, 
Roesken-Winter et al. (2015)). In total 23 teachers from lower and upper secondary 
school participated in the PD program. In this paper we draw on data from the first 
module (taught face-to-face) which focused on teaching mathematics with MRT.

The facilitator PD program took place in the federal state of Hamburg. The pro-
gram spanned  approximately 1  year and was taught entirely online due to the 
COVID-pandemic. The program comprised three whole-day-sessions and approxi-
mately 1 week after each whole-day-session, an additional 2-h-session. In total 30 
facilitators participated in the PD program. In this paper we draw on data from the 
first module that focused on supporting facilitators to conduct high-quality PD ses-
sions for teaching mathematics with MRT. In this session the facilitators were first 
taught about basic design principles for high-quality PD programs (Roesken-Winter 
et  al., 2015) and fundamentals about basic dimensions of high-quality teaching 
(Praetorius et al., 2017). Afterwards the facilitators engaged in several activities that 
centered around the video-case as described in Sect. 4.3.

Both the teacher and facilitator PD program were designed and delivered by the 
German Center for Mathematics Teacher Education (DZLM).

4  Research-Based Design of the Video-Case-Based 
Activity and Related Findings

In this section we detail the design and research process outlined in the previous 
section and provide the results of the analysis conducted at each level. The section 
first addresses the classroom level in Sect. 4.1 and continues with the teacher and 
facilitator PD level in Sects. 4.2 and 4.3.

4.1  Classroom Level

Six pairs of students were videorecorded when working on the MRT-task. Based on 
these recordings we set out to identify an excerpt of the videos to be used in the 
teacher and facilitator PD program that was not too long (less than 5 min) (Krammer 
et al., 2008) and had a clear focus on mathematical learning of the students. This 
meant that the student-video-case should show a noticeable learning process related 
to the mathematics under focus. In an initial screening of the recordings, a set of 
potentially suitable video-cases were identified. Expert ratings were then used to 
evaluate the potential of these video-cases for the use in PD programs. In particular 
interviews were conducted with experts in relation to what they notice about the 
interplay of student learning and technology use. Two video-cases that fitted best 
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were subsequently analyzed in depth using the CAT-Model (see Fig. 4). As an often- 
voiced apprehension of teachers is that technology use in the mathematics class-
room does not go beyond undirected use (Mackey, 1999; Thurm, 2017; Thurm & 
Barzel, 2020), we selected a video-case that showed how students had progressed 
from undirected use to that which concerned conceptual knowledge. In the follow-
ing we give a description of the learning pathway of the students that featured in this 
video-case, which is also depicted in Fig. 7 through the lens of the CAT-Model.

Student-Video-Case of Lara and Rose
The video-case shows two students, named Lara and Rose, working on the first part 
of the MRT-Task (see Fig. 1, first bullet). They begin by using the MRT’s drag mode 
to change the slope of the linear function f1. They start to randomly change the 
slope, and by this they manage to invert the opening of the parabola, however they 
did not notice this as the MRT viewing window only shows a part of the graph. They 
only see a part of the inverted parabola that looks similar to a slightly curved line 
(see Fig. 6, left). Next, they start to change the slope of the function f2 using the 
drag mode. Finally, they try to adjust the viewing window to get a better view, but 
they do not manage to achieve this. They return to the starting situation by changing 
the parameters back to the original values. Subsequently they develop the hypothe-
sis that the two linear functions have to be mirrored by the x-axis, so that the result-
ing parabola is also mirrored at the x-axis. They start to enter two new functions f4 
and f5 which are the mirrored functions of f1 and f2. Then they enter a new function 
f6  =  f4⋅f5. Now they realise that their function f5 is the same as the function 
f3 = f1⋅f2 (see Fig. 6, right). They are surprised and suddenly realise the reason for 
this. They argue algebraically that if they multiply both functions by (−1) the result 
is positive. The video-case has an open ending in which the students propose a new 
idea. They hypothesise that mirroring the two linear functions at the first bisector 
will lead to an inverted parabola.

Although the students do not find a solution to the original problem (to reverse 
the opening of the parabola) during this video-case, the sequence shows the learning 
process begins with an undirected use of technology, followed by setting up an 

Fig. 6 Screenshots of Lara and Rose’s screen when working with the MRT-task
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Fig. 7 Learning pathway of Lara and Rose analyzed with the CAT-Model

hypothesis with is subsequently falsified while gaining conceptual insights. This is 
an example of a process of student instrumental genesis as an interplay between 
mathematical activities, the use of technology and mathematical thinking. Therefore, 
it offers the potential to be used in order to specify, capture and reflect on teacher 
noticing.

4.2  Teacher PD Level

The student-video-case is an authentic case, which shows how even an initially 
unaimed use of technology can lead to the development of conceptual knowledge. 
However, to use any student-video-case in teacher PD programs, the design of 
prompts that  can guide teacher noticing is crucial (see Sect. 2.4). 
Therefore,  crafted  suitable discussion prompts to support the student-video-case. 
The preliminary work of Ebers (2020b) has shown that discussion prompt such as 
“Discuss the scene with respect to the interaction between cognitive activation of 
the students and using the MRT.” is too general and can be further enhanced by 
more detailed prompts. Therefore, we explicitly focused the discussion prompts in 
the following way:

Discuss the scene with respect to the interaction between cognitive activation of the stu-
dents and using the MRT. The following question might help you:

 1. What are the solution approaches of the students? Do they reflect or alter their thinking?
 2. Which visual prompts do you notice that result from students interacting with the MRT? 

Which prompts are used and which prompts are not used by the students? What are pos-
sible reasons for not using?

 3. Which obstacles do you notice?

Professional Development for Teaching Mathematics with Technology: Fostering…
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In the teacher PD program, the teachers first solved the MRT task on their own and 
subsequently analysed the student-video-case in small groups. After finishing the 
small group work, a whole group discussion, which was moderated by a PD facilita-
tor, was held to summarise the teachers’ findings. The whole group discussion had 
a duration of 6:45 min. In total 7 statements were made by 6 teachers. Two state-
ments that were made by the same teacher were subsequently grouped together as 
one unit of analysis. We transcribed the group discussion and analyzed the state-
ments of the teachers according to levels and categories of noticing. Levels of notic-
ing were analyzed using the adapted framework based on the work of van Es (2011) 
(see Sect. 2.4). Categories of noticing (capturing what teachers focused on) were 
analyzed using the CAT-Model described in Sect. 2.4 (Fig. 4). The analysis of the 
statements was carried out by 10 mathematics education researchers. At first the 
researchers individually coded each teacher statement. Afterwards the researchers 
paired up to discuss differences in their coding. However, there was mostly agree-
ment among the raters. Each pair of researchers then generated a joint coding of the 
video-case. The resulting coding were then checked for differences and combined 
to produce a joint coding.

With respect to levels of noticing,  the analysis revealed that teachers showed 
quite different levels of noticing (see Table  2). Three teachers showed baseline 
noticing (level 1). With respect to categories of noticing two of these teachers 
focused only on the undirected use of technology while one teacher focused very 
generally on mathematical activities without paying attention to particular aspects. 
One teacher showed mixed noticing (level 2). This teacher started to attend to par-
ticular aspects of the students’ learning but focused strongly on the part where stu-
dents did not manage to change the viewing window. Finally, two teachers showed 
focused noticing (level 3). Table  2 gives examples  of the results  for four of the 
teachers.

4.3  Facilitator PD Level

At the facilitator PD level, we used the teacher-video-case (i.e., the group discussion 
that was recorded at the teacher PD level, see Sect. 4.2) as means to support facilita-
tor noticing. Clearly facilitators need to be able to notice and deal with the previ-
ously identified heterogenity of levels and categories of teacher noticing. In order to 
focus facilitator noticing when working with the teacher-video-case we generated 
specific prompts. An important distinction between the student-video-case and the 
teacher-video-case is that the student-video-case did not show the teacher, but the 
teacher-video-case shows the actions of the facilitator that moderates the group dis-
cussion of the teachers. Hence the teacher-video-case can be used in two ways. On 
one hand the teacher-video-case can be used to support the noticing of facilitators 
with respect to the different levels and categories of teacher noticing in the video. 
On the other hand, the teacher-video-case can also be used to help facilitators anal-
yse the facilitator moves and how these moves support or hinder teacher learning 
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(Schueler & Roesken-Winter, 2018). Therefore, we deliberately distinguished the 
prompts for the facilitators in two parts. The first discussion prompt asked facilita-
tors to pay attention to the teachers in the teacher-video-case. The second discussion 
prompt asked facilitators to pay attention to the facilitator in the 
teacher-video-case.

In the facilitator PD program, the facilitators first solved the MRT task on their 
own and then analysed the student-video-case of Lara and Rose in the same way as 
the teachers within the PD level. In the next PD meeting, which was one week later, 
the facilitators worked in small groups and analysed the teacher-video-case with 
respect to the two discussion prompts. Two small group discussions of the facilita-
tors were transcribed. Each of the facilitators’ statements was coded by using focus 
codes and stance codes following Sherin and van Es (2009) and Lesseig et al. (2017).

Focus Codes
Focus codes captured the facilitators’ attentions when watching the teacher-video- 
case. For this we extended the categories of Sherin and van Es (2009) and Lesseig 
et al. (2017) to account for the nested structure of our PD design. While Sherin and 
van Es (2009) distinguish between “student”, “teacher” and “other” as possible foci 
with respect to student-video-cases, Lesseig et  al. (2017) distinguished between 
“video-case teachers” “video-case facilitators” and generic codes like “PD in gen-
eral” or “Self”. Since our design has a nested structure, we structured the focus 
codes according to the TPD and classroom levels. Table 3 gives an overview of the 
focus codes used to code the teacher-video-case. Each of the facilitators’  state-
ments  was rated with one main-focus-code, which captured what the facilitators 
mainly focused on in a statement. In addition, each statement could have multiple 
sub-focus-codes which captured which aspects facilitators made connections to in 
their statement.

Stance Codes
Following Lesseig et  al. (2017), stance codes captured whether facilitators 

described, approved, disapproved, interpreted, speculated (framed comments as 
wonderings rather than declarative statements) or extended (considered other set-
tings or alternatives).

The coding of the transcripts was carried out by two of the authors. First,  the 
researchers individually coded each transcript. Then, they worked in pairs to discuss 
differences in their coding. Table 4 shows how often each focus-code was a main-
focus, or a sub-focus of the facilitators’ discussion. Table 5 shows the distribution of 

Table 3 Overview of focus codes

Teacher PD level focus Classroom level focus Generic focus

Focus on the teachers Focus on the task Students in general
Focus on the facilitator Focus on the students Teachers in general

Focus on the technology Facilitators in general
PD in general
Technology in general
Self
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Table 5 Distribution of stance codes

Describe Approve Disapprove Interpret Speculate Extend

12 8 8 11 5 9

stance codes across all statements. Clearly, facilitators most of the times focused on 
the teacher-video-case facilitator, while they rarely focused on the teacher-video-
case teachers or on aspects of the classroom level. With respect to the sub-focus, 
facilitators most often referred to teacher-video-case teachers in their statements. 
The distribution of stance codes reveals that facilitators often described (29%) and 
evaluated (28%), while interpreting (19%), speculating (8%) and extending (16%) 
occurred less often. Since interpreting and imagining alternatives are indicators of 
more productive noticing compared to simply describing or evaluating (approving, 
disapproving) (Lesseig et al., 2017) it can be concluded that facilitators’ noticing 
could be further improved.

As mentioned, the facilitators put their main focus on the teacher PD level, in 
particular on the facilitator who led the teacher-PD-discussion. In order to better 
understand the topics of the facilitators’ discussions, we briefly summarise this for 
the two most frequently addressed main-focus-codes, namely, teacher-video-case 
facilitator and teacher-video-case teachers.

Discussion focused on Teacher-Video-Case Facilitator
In the teacher-video-case the facilitator leading the discussion makes two state-
ments during the whole video-case. These statements were both made in response 
to statements made by the teachers that criticised the unaimed technology use by the 
students in the student-video-case (level 1 teacher noticing, see Sect. 4.2). The 
teacher-video-case began with a teacher heavily criticising the unaimed technology 
use, to which the teacher-video-case facilitator replies: “I would like to discuss this. 
To say it carefully that is not completely my opinion. It is a big fear that one can 
have and we can discuss this a bit”. This is followed by other teacher-video-case 
teachers replying with higher-level noticing comments (level 2 and 3, see Sect. 
4.2) before another teacher supports the critique concerning the unaimed technol-
ogy use of the students. This leads to the following reaction of the teacher-video- 
case facilitator: “But they didn’t just push around, we have heard this from different 
sides now”. Facilitators in the PD program heavily discussed whether this interven-
tion of the teacher-video-case facilitator was appropriate or not. Some facilitators 
argued that a facilitator should generally not judge in this way. Others highlighted 
explicitly the necessity of such judgements: “If the first comment is already so dev-
astating, it could then escalate and then it becomes difficult to get it [the discus-
sion] back and she [the facilitator] gets out of this situation right away.”

Discussion focused on Teacher-Video-Case Teachers
During the limited times where  the teacher-video-case teachers were the main 
focus for teacher noticing, facilitators  in the PD program mostly described state-
ments of the teachers and superficially related them to the  student-video-case- 
students and student-video-case technology use. Sometimes there was an evaluation 
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of the teacher-video-case teachers’ statements, but this did not lead to a deeper 
discussion among the facilitators.

5  Discussion

In this paper we set out to design a research-based PD activity for teachers and 
facilitators in a way that accounts  for  and takes advantage of the connections 
between the classroom, teacher PD and facilitator PD levels. In the following we 
discuss the main findings across these three levels.

Classroom and Teacher PD Level
The developed CAT-Model proved very suitable for identifying potential student- 
video- cases to be used in the teacher and facilitator PD program. In addition, the 
CAT-Model served as a helpful lens through which teacher noticing could be anal-
ysed. The analysis of teacher noticing showed that the student-video-case was well 
suited to distinguish the  different levels and categories.  Crucial to this was the 
student-video-case which showed a complex learning pathway for a pair of students 
that moved from unaimed use across different levels of mathematical activities to 
directed use and conceptual understanding. Furthermore we hypothesise that  the 
high heterogeneity of noticing that was found at the teacher PD level is likely to 
occur frequently in PD programs for teaching mathematics with technology and 
provides a challenge for PD facilitators. Facilitators must be aware of this possible 
heterogeneity and the results displayed in Table 2 illustrate the many different levels 
and categories of teacher noticing.  These  could be integrated into the design of 
future facilitator PD programs to inform facilitators about the different starting 
points of teachers with respect to noticing. In addition, the heterogeneity of teacher 
noticing shows that even focused discussion prompts do not necessarily trigger all 
teachers to notice students learning on a deeper level. We doubt that further refine-
ment of the discussion prompts will substantially enhance the depth of teachers 
noticing. Rather we hypothesise that teachers need more specific tools to scaffold 
their noticing. One such way could be to ask teachers to analyse the student-video- case 
using the CAT-Model. If the categories of the model are explained beforehand, 
teachers could be invited to reconstruct the learning pathways of the students using 
the CAT-Model. 

Facilitator PD Level
At the facilitator PD level our analysis revealed that facilitator noticing centered 
mainly on the facilitation moves of the teacher-video-case facilitator. We did not 
expect such a strong focus on the teacher-video-case facilitator, as in the teacher- 
video- case she only makes two very brief statements. The strong focus on the 
teacher-video-case facilitator limited an in-depth discussion about the teacher notic-
ing in the teacher-video-case. The strong focus on the facilitator in the teacher- 
video- case may be due to a high identification of the facilitators with their own role. 
Another explanation is that focusing on their peers is more familiar to facilitators 
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than focusing on teachers’ learning. Such a phenomenon of a one-sided focus has 
been previously described in the literature with respect to student-video-cases used 
in teacher PD courses (Goeze et al., 2014; Hogan et al., 2003). Hence, our results 
suggest that this problem is lifted to the facilitator PD level. Facilitators did not 
explicitly discuss different levels of teacher-video-case teacher noticing and how it 
is related to student-video-case students’ learning, despite the fact that the first dis-
cussion prompt for the facilitators was explicitly focusing on this aspect. Spoken 
with the language of the 3 T-Model, facilitators did not manage to focus on lower 
level tetrahedrons but rather took the perspective that is nearest to their own role, the 
PD facilitator. From this we conclude that the design of the facilitator PD video-case 
might be refined in two ways:

• In the implemented design we administered the discussion prompts focusing on 
teacher-video-case teacher and teacher-video-case facilitator at the same time. It 
might be beneficial to solely provide the discussion prompt focusing on  the 
teacher-video-case teachers first while explicitly stressing that facilitators should 
ignore the teacher-video-case facilitator.

• Another possibility would be to generate a teacher-video-case which does not 
include a facilitator. A drawback of this approach would be that different teacher- 
video- cases would be needed to discuss teacher-video-case teacher noticing and 
teacher-video-case facilitator moves.

In the few instances where the facilitators did actually focus on the teacher-video- 
case teachers, our findings suggest that the facilitators did not achieve elaborate 
levels of noticing. Hence facilitators are also likely to need specific tools that scaf-
fold their noticing. One way to scaffold facilitator noticing when working with 
teacher-video-cases could be to ask facilitators to analyse the teacher-video-case 
according to the levels and categories of noticing using the CAT-Model and the 
table that operationalises the different levels of noticing (see Table 1), in the same 
way that we did.

Finally, our study brings to the fore the role of PCK-PD. Just as teachers’ PCK is 
related to teacher noticing (Schoenfeld, 2011), so facilitator noticing is related to 
facilitators’ PCK-PD (Peters-Dasdemir et  al., 2020).  Hence, it is necessary to 
improve PCK-PD, for example, by making different levels of teacher noticing with 
respect to teaching with technology (Table 2) an explicit content of facilitator PD.

Taking the aforementioned points together, we highlight the following two tenta-
tive design-principles for the design of PD programs for facilitators in the context of 
teaching mathematics with technology:

 – Provide information to facilitators about various levels and aspects of teacher 
noticing. In particular, the CAT-Model and the examples given in Table 2 can be 
used to inform PD facilitators about different aspects of teacher noticing and 
help facilitators to analyse such teacher noticing.

 – Video-cases for facilitators should stimulate facilitators to notice relevant aspects 
at different levels (facilitator level, teacher level, classroom level). Tools such as 
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the CAT-Model should be used in PD programs for facilitators in order to help 
them understand and notice different levels of teacher noticing.

6  Conclusion

Research on the design and implementation of PD for facilitators is still limited 
(Thurm et al., 2023). In this chapter we detail an approach for designing a video-
case-based strategy to support both teacher and facilitator noticing. The design and 
research across the different levels of PD (classroom level, teacher PD level, facili-
tator PD level) highlights the subtle issues that have to be considered at each level, 
and how research and design decisions on one level impact the other levels. We have 
identified different levels and categories of teacher noticing with respect to teaching 
mathematics with technology. We also found that facilitator noticing when working 
with teacher-video-cases   may only be limited to a focus on the facilitator in the 
teacher-video-case and may not extend to the classroom and teacher PD levels. In 
addition, we found that even carefully crafted discussion prompts may not be suf-
ficient to focus teacher and facilitator noticing on relevant aspects. Rather we sug-
gest to use the CAT-Model and the taxonomy of levels and categories of noticing not 
only as research tools (as we exemplify in this paper) but also as “PD-tools” that can 
help to scaffold teacher and facilitator noticing when working with video-cases. In 
this sense we argue that facilitators might need to take more of a research stance by 
adopting similar analytic  tools as researchers. A prerequisite for this is that such 
tools are complex enough to capture the relevant aspects from the research perspec-
tive, but at the same time be accessible and usable not only for researchers but also 
for a wide range of teachers and facilitators.

We are aware that the work reported in this paper is only the first step to extend 
the knowledge about design and research on adequate facilitator PD programs in the 
area of teaching with technology. The complexity lies in the fact that classroom 
level, teacher PD level and facilitator PD level are inevitably intertwined and 
tools  and theories are needed to adequately address this complexity both at the 
research and the design level.
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Using the Instrumental Orchestration 
Model for Planning and Teaching 
Technology-Based Mathematical Tasks 
as Part of a Restructured Practicum 
Course

Gülay Bozkurt and Melike Yiğit Koyunkaya

Abstract Preparing prospective mathematics teachers (PMTs) to teach with tech-
nology has become one of the important concerns facing teacher education pro-
grammes. Accordingly, how such programmes can be structured to develop PMTs’ 
skills and knowledge of technology integration into their instruction is arising as a 
key question. This chapter details a restructured Practicum course at a Turkish 
University aiming to orient PMTs’ technology incorporation in mathematics teach-
ing. Specifically, we integrated the Instrumental Orchestration model as a means to 
identify and analyse the development of PMTs’ teaching practices with the use of 
the dynamic mathematics software, GeoGebra. The participants were enrolled in a 
4-year secondary mathematics education programme at a state university in Turkey. 
In this study, we employed an action research method that involved the PMTs in a 
cyclical process of designing technology-based lesson plans through planning, 
implementing and reflecting. The findings indicated that in the planning process the 
PMTs’ focus was on setting their objectives and general structure for a plan of 
action, in which they overlooked exploitation modes of their classroom orchestra-
tions. Through micro-teaching, they started noticing the complexity of using the 
features of dynamic technology in line with their objectives, requiring them to orga-
nise their tasks in a more systematic way that considered lesson objectives, techno-
logical actions, prompts and potential students’ responses.
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1  Introduction

Curriculums and standards in many countries have particularly emphasised the sig-
nificance of the use of digital technologies to improve teaching and learning in 
mathematics (e.g., Common Core State Standards for Mathematics, 2010; Ministry 
of National Education, 2018; National Center for Excellence in the Teaching of 
Mathematics, 2014). For instance, the use of dynamic geometry software/applica-
tions is generally suggested to teach geometry in secondary education, however, it 
does not necessarily provide specific guidance or materials regarding how to do so. 
Hence, such emphasis for a changing curriculum integrating technology presents 
significant concern for the preparation of mathematics teachers. In this sense, initial 
teacher education programmes are expected to promote prospective mathematics 
teachers’ (PMTs) technology adoption (Hofer & Grandgenett, 2012; Niess, 2005; 
Yeh et al., 2014). Although since the 1990s such programmes included technology- 
related courses, they have not provided much evidence regarding PMTs’ successful 
use of technology integration in their teaching (McCulloch et al., 2019). Initial criti-
cism is generally made on the grounds that such courses mostly focused on the use 
of technology considering only  the affordances and technical procedures of the 
technology for teaching school mathematics (e.g., Powers & Blubaugh, 2005). In 
recent years, therefore, teacher educators/researchers have turned their attention to 
content and effective instructional practices with technology in initial teacher edu-
cation courses (e.g., Bowers & Stephens, 2011; Lee & Hollebrands, 2008; 
McCulloch et al., 2020).

Research has also highlighted the importance of field experiences to support 
PMTs’ incorporation of technology-based tasks into mathematics lessons (e.g., 
Darling-Hammond et al., 2009; Strutchens et al., 2016). In this sense, practicum 
courses where PMTs are directly required to teach mathematical content to stu-
dents through the use of digital technologies play a crucial role in the develop-
ment of PMTs’ knowledge and skills regarding technology adoption (Grugeon 
et al., 2009; Meagher et al., 2011; Niess, 2005, 2012; Zbiek & Hollebrands, 2008). 
Hence, researchers suggested that teacher educators should rethink ways in which 
they can connect the formal training with the field experiences to enhance PMTs’ 
professional knowledge and learning of teaching with appropriate technologies 
(McCulloch et al., 2020; Niess, 2012; Strutchens et al., 2016). For example, those 
in which PMTs could “plan, organize, critique, and abstract the ideas for specific 
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content, specific student needs, and specific classroom situations while concur-
rently considering the affordances and constraints of the digital technologies” 
(Niess, 2012, p. 332). Although there have been some studies rethinking ways to 
offer a link between teacher education courses and PMTs field experiences (e.g., 
McCulloch et al., 2020), this issue is still considered from an international per-
spective as “an important endeavor and an emerging research area in need of 
systematic studies and a global effort to develop a cohesive body of literature” 
(Huang & Zbiek, 2017, p. 23).

In the light of the above discussion, we (as researchers and teacher educators, 
the authors of this chapter) aimed at preparing PMTs to design and teach 
technology- based lessons using a cyclical process in the context of a practicum 
course at a Turkish University. In working with PMTs, our goal was to focus on 
the development of their professional knowledge and experiences regarding the 
successful integration of digital technologies. Hence, we restructured the practi-
cum course by systematically focusing on developing PMTs’ integration of digital 
technologies to their teaching practices with the explicit aim of evaluating their 
technology-based lesson plans, examining their field experiences, and impact of 
such experiences on their development of the craft of teaching. To orient and con-
ceptualise the PMTs’ lesson planning and classroom practices in the course and 
enable them to make connection between planning and implementing, we 
employed a theoretical perspective, Instrumental Orchestration model (Drijvers 
et al., 2010; Trouche, 2004), that was particularly developed to address technol-
ogy integration in classroom teaching and learning. In the first edition of this book 
(Clark-Wilson et  al., 2014), researchers (Drijvers et  al., 2014; Gueudet et  al., 
2014) reflected on different classroom orchestrations of practicing teachers when 
using digital technology. As a next step, we were interested in how findings from 
those studies could be valuable when used in teacher education programmes “for 
purposes of structuring and scaffolding the reflexive appropriation and develop-
ment by teachers of the expertise that has been identified” (Ruthven, 2014, p. 390). 
Hence, our focus was on PMTs who were novices in teaching and in using 
dynamic mathematics software, particularly GeoGebra, in mathematics teaching. 
We aimed to answer the following questions:

• How do the PMTs engage with the instrumental orchestration model while pre-
paring a technology-based task?

• How do the PMTs orchestrate their tasks in classrooms?
• What changes or development in the PMTs’ orchestrations occur while involved 

in the practicum course?

In the next section, we will discuss the notion of instrumental orchestration and in 
particular, the identified classroom orchestrations, which we operationalised in 
this study.
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2  Instrumental Orchestration

The instrumental orchestration model (Drijvers et  al., 2010; Trouche, 2004) was 
based on the instrumental approach (Verillon & Rabardel, 1995), which focuses on 
learning processes involving tools in which the crucial difference between an arte-
fact and an instrument in a psychological sense has been emphasised. As Verillon 
and Rabardel (1995) stated that “the instrument does not exist in itself, it becomes 
an instrument when the subject has been able to appropriate it for himself and has 
integrated it” (p. 84). Following the instrumental approach, Trouche (2004) used the 
metaphor of orchestration to model the essential role of teachers in directing stu-
dents’ learning processes with the use of tools. As Trouche (2020) stated,

Designing an orchestration needs to carefully choose a mathematical problem, according to 
the didactical goals, to anticipate the possible contribution of the artifacts to the problem 
solving, to anticipate, in this context, the possible instrumentation of students by these 
artifacts (p. 410).

While defining the instrumental orchestration notion, Trouche (2004) used two con-
structs: a didactical configuration and an exploitation mode. A didactical configura-
tion is essentially an arrangement of technological tools in the environment. An 
exploitation mode is concerned with how teachers plan to take advantage of tech-
nology in order to achieve their lesson aims. Drijvers et al. (2010) made use of and 
developed this notion, by adding another construct, didactical performance as a 
necessary component of teachers’ instrumental orchestrations “to highlight that an 
instrumental orchestration is a living entity rather than something a teacher prepares 
beforehand” (Drijvers et al., 2020, p. 1457). A didactical performance emphasises 
teachers’ ad hoc strategy when an unexpected aspect of the mathematical task or the 
technological tool occurs in classroom teaching, with regard to the chosen didacti-
cal configuration and exploitation mode.

In this study, we mainly focused on the orchestrations for whole-class teaching 
due to the configuration of Turkish ordinary classrooms, hence we reviewed the 
studies on already identified whole-class orchestrations in the existing literature. 
The instrumental orchestration model was originally used to illuminate observed 
teaching practices of the function concept involving the use of applets (small appli-
cations) in the Netherlands secondary school context (Drijvers, 2012; Drijvers et al., 
2010). The researchers identified six orchestrations for whole-class teaching, which 
were Technical-demo, Link-screen-board, Discuss-the-screen, Explain-the-screen, 
Spot-and-show and Sherpa-at-work. Such whole-class orchestrations did not create 
many organisational issues and only required classroom access to the dynamic soft-
ware and equipment to project the computer screen and a classroom arrangement 
for students to see the screen for demonstrations. The Technical-demo was used to 
demonstrate the techniques of a new tool, such as what was possible with the tool 
and how to use it. The Explain-the-screen orchestration was used to explain what 
happened on the computer screen to the whole class and sometimes used to provide 
students with a good starting point for new tasks. The Discuss-the-screen created 
a  classroom interaction where a teacher and students discuss a problem on the 
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screen. All of these orchestrations illustrate technological alternatives of a regular 
teaching practice, for instance, Discuss-the-screen can be considered as Discuss-
the- board in non-technology-based lessons.

Additionally, Link-screen-board was used with the intention of showing students 
the relationship between the use in a technological environment and a paper and 
pencil environment. Spot-and-show was used to deliberately bring up student work 
for a classroom discussion, which was identified by the teacher as relevant for further 
discussion. Sherpa-at-work was about a so-called Sherpa-student using the technol-
ogy to present his or her work, or to carry out actions the teacher requests. These 
orchestrations seem to be more specific to technology-use. Link-screen- board is per-
haps the most obvious example of this kind. Drijvers et al.’s (2013) study identified 
more whole-class orchestrations of Guide-and-explain and Board- instruction. For 
the former, the teacher provided a closed explanation based on what was on the 
screen and often asked closed questions for students, resulting in limited interaction, 
and for the latter, the teacher used the board for writing as a regular teaching for the 
whole-class without any connections to the use of digital technology. Also, as a 
whole-class orchestration, we used Predict-and-test (Bozkurt & Ruthven, 2018; 
Ruthven et al., 2009) that was achieved where the teacher was leading the activity 
through the whole-class exposition and questioning format and testing students’ 
ideas on the computer rather than teacher validating or invalidating their conjecture.

After the notion of instrumental orchestration was introduced (Trouche, 2004) 
and developed (Drijvers et al., 2010), it has been used and extended by a number 
of  researchers in different educational contexts (e.g., Bozkurt & Ruthven, 2018; 
Erfjord, 2011; Ndlovu et al., 2013; Powell et al., 2017; Tabach, 2011; Tabach et al., 
2013). These studies have aimed to illustrate teachers’ teaching practices with tech-
nology and all have concluded the importance of both teachers’ preparation before 
teaching regarding how to exploit technology, followed by  their reflections after 
teaching. In this sense, these studies provided evidence regarding the usability and 
usefulness of the IO framework as a means for analysing technology-mediated 
teaching. Additionally, some of the studies (e.g., Tabach, 2011; Tabach et al., 2013) 
also contributed to extending potential orchestration types. However, as Drijvers 
et al. (2020) pointed out in their literature review “the focus seems to be on a grow-
ing repertoire of didactical configurations and exploitation modes, whereas didacti-
cal performance is hardly addressed” (p. 1462). In this study, by attempting to use 
the notion of instrumental orchestration in the context of the design and implemen-
tation of a practicum course in initial teacher education, we particularly aimed to 
examine and focus on PMTs’ didactical performances through both micro-teaching 
and actual classroom-teaching in school placements. We aimed to encourage the 
PMTs to reflect on their teaching and improve their planning based on what could 
happen in classrooms. In this sense, we believe this study has a potential to contrib-
ute to the field by operationalising the IO model in initial teacher education and 
allowing PMTs to consider the repertoire of instrumental orchestrations, which ulti-
mately could help them in developing practical strategies for the organisation of 
their technology-based lessons.
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3  Methods

The study was designed as action research, which is generally considered as a form 
of systematic educational research by a practitioner into their own practice to under-
stand and improve such practice (Cochran-Smith & Lytle, 1990; Sagor, 1992; 
Shagoury & Power, 2012). However, in the context of initial teacher education, pre- 
service teachers should be encouraged and supported to become “active learners 
shaping their professional growth through reflective participation in both programs 
and practice” (Clarke & Hollingsworth, 2002, p. 984). As research pointed out, pre- 
service teachers have more opportunities for their professional learning and become 
more critical and reflective regarding their own teaching in classrooms when teacher 
educators are involved in conducting action research with them (Darling-Hammond, 
2006; Shank, 2006; Snow-Gerono, 2005; Stark, 2006). In this sense, we as teacher 
educators decided to work collaboratively with PMTs in this action research since 
“collaborative action research processes strengthen the opportunities for the results 
of research on practice to be fed back into educational systems in a more substantial 
and critical way” (Burns, 1999, p. 13).

We, as teacher educators, were the facilitators of the process in order to “develop 
the methodological protocols necessary for the action research process” (O’Leary, 
2004, p. 98). We participated in the planning and evaluation of lesson plans and 
teaching practices, were responsible for analysing their technology-based tasks, and 
were observers during the implementation of their plans. In particular, we encour-
aged them to consider the role of the technology and the use of the instrumental 
orchestration model in designing and teaching mathematical tasks by reflecting our 
analysis, thoughts and experiences through asking probing questions. PMTs partici-
pated in the planning, implementation, and evaluation of their technology-based 
lesson plans.

3.1  Research Context

The research was conducted in the context of a compulsory university-based practi-
cum course in a 4-year mathematics teacher education programme at a state univer-
sity located in the west part of Türkiye (Bozkurt & Yigit Koyunkaya, 2020a, b, 
2022). In this practice-based course, PMTs were required to observe the assigned 
mentor teacher in school placements and to teach at least 6 hours of mathematics 
lessons in classrooms over a 14-week term. However, there was no requirement for 
PMTs to integrate digital technologies into their lessons. During the regular practi-
cum course, PMTs prepare and practise lesson plans using any teaching materials or 
methods that they have learned in their programme without any requirement to con-
duct a micro-teaching session. During the preparation and implementation of their 
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lessons, both the university course  instructor and the assigned school place-
ment  mentor teacher gave suggestions and feedback to improve their teaching. 
Based on our aims, we restructured the course in two aspects. Firstly, we specifically 
focused on preparing and developing technology use in PMTs’ teaching practices. 
Secondly, we conducted the course in three steps including seminars about using 
digital technology in teaching, micro-teaching to other PMTs in the university set-
ting and actual teaching in school placements. In each step, we conducted individual 
and group interviews providing opportunities for them to describe and reflect on 
their planning and practices. Additionally, we incorporated two technology specific 
models (namely, Dynamic Geometry Task Analysis (Trocki & Hollebrands, 2018) 
and Instrumental Orchestration) to support PMTs to design and teach technology- 
based tasks over three distinct cycles (Bozkurt & Yigit Koyunkaya, 2020a, b, 2022). 
This chapter specifically focuses on the use of the instrumental orchestration model 
for PMTs’ planning and teaching technology-based mathematical tasks.

3.2  Participants

The participants of the study were four PMTs (two female and two male) selected 
from eight PMTs taking the practicum course based on a purposive sampling method 
(Merriam & Tisdell, 2016). Among the eight PMTs in the course, we chose the four 
who were already familiar with several digital technologies in mathematics educa-
tion as they took several technology courses and whose general academic achieve-
ments were relatively higher amongst the eight PMTs in the class. In this sense, the 
selection criterion was mainly about their existing knowledge and skills relating to 
the use of digital technologies in mathematics education. The selection pro-
cess drew on the second author’s decision (also the instructor of the course) as she 
had previously taught both mathematics education and technology-based courses to 
the PMTs. This selection criterion was particularly important in our research since 
our focus was on how they planned and implemented the use of digital technologies 
into mathematics instruction rather than educating them about such technologies 
from scratch. Additionally, these four PMTs had worked well  together in previ-
ous group work and had established a good rapport between each other and their 
instructors. We believe such a rapport between the PMTs as well as between the 
participants and the instructor was of crucial importance in strengthening the col-
laboration in the research.

In addition, they had observed the ordinary classroom environments for a term in 
the context of a School Experience course. While presenting the results, we assigned 
numbers to the PMTs as PMT1, PMT2, PMT3 and PMT4 considering their 
confidentiality.
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3.3  Procedure

We conducted this research in three different cycles and each cycle consisted of 
planning, acting, observing, and reflecting (Kemmis & McTaggart, 2005). In the 
first cycle, the instructor of the course gave seminars about selecting and using vari-
ous digital technologies when designing mathematical tasks. Particularly, she dis-
cussed the affordances of using dynamic geometry software (i.e., GeoGebra and the 
Geometer’s Sketchpad) by pointing out teachers’ roles in the design and implemen-
tation process of the technology-based tasks. In addition, she introduced interactive 
applications such as Desmos and NCTM Illuminations, and video-based web sites 
such as Khan Academy. The following week, she provided a theoretical introduc-
tion of the instrumental orchestration model and an examination of different class-
room orchestrations through a video discussion on a mathematics teacher’s teaching 
with the use of GeoGebra (the teacher was leading the lesson on angle bisector 
construction). After the video discussion, the instructor also required the PMTs to 
write a reflection regarding the model. During the discussion, the instructor inten-
tionally stopped the video in particular moments and asked the PMTs about the 
teacher’s orchestrations, as he integrated the technology into his teaching. In these 
moments, it became apparent that initially, the PMTs were not able to discuss his 
didactical performance in detail. Instead, they were indicating his general classroom 
management skills and they were  only able to name the  observed  orchestration 
types supported by small descriptions. Hence, the instructor specifically focused on 
the teacher’s particular actions and tried to stimulate their discussion by asking 
questions such as “If you were the teacher in the video, how did you use the Sherpa 
student? or how did you guide the discussion?”. Introducing the relatively difficult 
vocabulary of the instrumental orchestration model theoretically and with connec-
tion to the classroom practices of a teacher aimed to guide and better support the 
PMTs’ preparation of lesson plans in terms of their planned classroom orchestra-
tions. In particular, we believed that this way of presenting the model could promote 
their understanding and awareness of the need for deliberate organisation in their 
didactical configurations and exploitation modes for successful didactical 
performances.

At the end of this cycle, which lasted 7 weeks of the course, we asked the PMTs 
to design their technology-based lesson plans on their chosen topics. Then, we con-
ducted individual interviews about their plans and gave feedback to help improve 
their designing and planning of the technology-based tasks. In the second cycle, the 
PMTs revised their plans based on these interviews and practised their micro-teach-
ing sessions. Micro-teaching in this study was conducted with the fellow PMTs 
acting as secondary school students, but conducted in the university setting. In this 
way, we aimed to provide an opportunity for the PMTs to practise teaching with 
technology before implementing their plans in their school placement and to collect 
feedback and suggestions from their peers and instructors to improve their own 
teaching. We must state that micro-teaching between PMTs in the university setting 
is typically preferred and used in the local institution since working with real stu-
dents requires more practical and ethical considerations.
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The micro-teaching sessions were done in a classroom at the university, with an 
interactive whiteboard next to a traditional board and a laptop computer available to 
each PMT, similar to the classroom in schools. There were 8 participants acting as 
students during the micro-teaching sessions, including two researchers, three PMTs 
from the study while one of them performing the micro-teaching and other two 
PMTs who were not in the study. After each PMT’s micro-teaching session, we 
conducted post-lesson group discussions to provide feedback/suggestions as well as 
individual interviews with the PMTs. Our main purpose in this 2-week cycle was to 
provide the PMTs with  an opportunity to practise their tasks before teaching in 
actual classrooms. In the last cycle (lasting 5 weeks), the PMTs again revised their 
lesson plans based on their experiences and feedback in the second cycle, and 
accordingly they implemented their revised plans in actual classrooms during their 
school placements. The Turkish ordinary classrooms included a configuration that 
was similar to the micro-teaching setting in terms of the place of interactive white-
board, traditional board and computer. Generally, there were around 25–30 students 
in each classroom. While the PMTs mainly were using the boards and computer in 
the whole-class teaching, the students sat on the tables and discussed and responded 
to the PMTs’ questions, without access to any technology. Following the  PMTs 
classroom practices, we conducted post-lesson individual and group interviews. As 
a final task the PMTs produced a revision of their technology-based lessons plans. 
Through each cycle, we examined and revised our research plan considering PMTs 
development and actions, as revealed while planning, designing or implementing 
their technology-based tasks.

3.4  Data Collection

In this chapter, we focus on one main technology-based task from each PMT’s les-
son plan. In detail, data included in the study consisted of the PMTs’ technology-
based tasks, video records of  their micro-teaching and actual classroom teaching 
sessions, and post-lesson individual and group interviews/discussions (see Table 1).

Table 1 The data sources of the study

Cycles The collected data

Cycle 1
(Weeks 1–7)

Video recordings of seminar in which instrumental orchestration model was 
introduced
Video recordings of interviews
Lesson plans

Cycle 2
(Weeks 8–9)

Video recordings of micro-teaching sessions
Video recordings of post-teaching discussions
Revised lesson plans

Cycle 3
(Weeks 
9–14)

Video recordings of classroom teaching
Video recordings of post-lesson individual interviews
Video recordings of post-lesson and final focus group interviews
Revised lesson plans
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In terms of the topics of the PMTs’ lesson plans, they made their decisions based 
on the syllabus and timetables of the classroom teacher in school placements and 
designed their tasks accordingly (see Table  2). PMT1 designed a lesson plan to 
teach trigonometric ratios in the 9th grade and her main technology-based task 
focused on a unit circle. PMT2 designed a lesson plan to teach the area formula of 

Table 2 Summary of the PMTs’ technology-based tasks

Name of the 
task Image The goal of the designed task

Unit circle PMT1 designed a unit circle task to 
indicate how the changes in one of the 
angles in a right triangle affects the 
trigonometric ratios related to this 
angle. She aimed for students to 
observe the variants and invariants on 
the sketch and to reach a 
generalisation regarding the 
relationships between angles and 
trigonometric ratios.

The area 
formula of 
the circle

PMT2 designed a task including a 
regular polygon whose number of 
sides could be changing with the 
slider to conclude the area formula of 
the circle. Particularly, he aimed for 
students to explore that the polygon 
tends to a circle when the number of 
the sides is maximised. With this 
approach, he planned to use the areas 
of the n-sided polygons by dividing it 
into the isosceles triangles to guide 
students to reach the area formula of 
the circle.

The area of 
the triangle

PMT3 designed a task to conclude the 
fact that the area of the triangle BEC 
is equal to the area of the triangle 
ABE and the area of the triangle ECD 
(S3= S1+S2). He planned to drag the 
point E on the line segment AD for 
students to generalise the equality.

Volume and 
base area of 
the cylinder

PMT4 designed a task to teach the 
base area and volume of a shape 
formed by rotating a rectangle at 
different angles such as 360o, 180o and 
120o using two sliders representing the 
angle and the radius of the base circle. 
From this point of view, she aimed for 
students to reach a general formula of 
the base area and volume of the shape 
dependent on the rotated angle.
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a circle in the 11th grade and his main technology-based task used inscribed n-sided 
polygons. PMT3 designed a lesson plan to teach the area formula of a triangle in the 
9th grade and his technology-based task involved dividing the rectangle into trian-
gles. PMT4’s main technology-based task was related to teaching the volume and 
base area of a shape in the 11th grade formed by rotating a rectangle through differ-
ent angles.

3.5  Data Analysis

Qualitative data analysis was guided by instrumental orchestration concepts. In the 
analysis of the design and teaching process of each task, we compared and con-
trasted the PMTs’ aims and plans of orchestrations and how they orchestrated their 
tasks in micro-teaching and classroom teaching sessions. Particularly, we identified 
the changes or development in their orchestrations and considered the reasons for 
those changes.

We began with a document analysis (Bowen, 2006) to examine the PMTs’ objec-
tives and exploitation modes of their tasks in their plans and identify their planned 
orchestration types. Adopting the video analysis method (Erickson, 2006), we 
watched all of the video recordings of the teaching sessions for each PMT to anal-
yse their orchestrations in both the micro-teaching and classroom teaching sessions. 
For each participant, we initially watched the whole video without stopping and 
took notes. Then, we watched the video and paused to identify notable events that 
evidenced their orchestration skills and transcribed these video clips.

In the transcribed clips, we particularly focused on the critical events related to 
the  pedagogical purposes of their orchestrations. Additionally, we used the data 
from individual and group interviews/discussions to support the identified critical 
events. By triangulating their teaching with post-lesson individual and group inter-
views/discussions, we compared and contrasted how their orchestrations in the 
identified critical events changed or developed. To provide a specific example, in 
PMT2’s case, we identified one of the critical events as his plan to employ link- 
screen- board orchestration. In his plan, he aimed to direct his students to construct 
a relationship between the area formulas of the inscribed polygons on the traditional 
board and changes on the screen by animating the slider. In his first micro-teaching, 
he could not manage to conduct this part of the lesson, as he failed to direct the 
students to develop a pattern to find the area of inscribed regular polygons and he 
requested to end the session. As seen in Table 3, we considered the exploitation of 
his technological actions and didactical performance in terms of the identified event. 
We used his direct quote from the post-lesson discussion as supportive data to anal-
yse his failure in his didactical performance and from his statements, we deduced 
that his unplanned discussion of the sketch prevented him from focusing on the 
inscribed polygon to reach the area formula of the circle. However, in his second 
micro-teaching, it became evident he had further articulated his exploitation mode 
and successfully guided the students to link what they saw on the screen by 

Using the Instrumental Orchestration Model for Planning and Teaching…



42

Table 3 An example of data analysis relating to PMT2’s first micro-teaching

Exploitation of 
technological action

Didactical 
performance

Post-micro teaching 
interview

Orchestration 
types

Micro- 
teaching 1

He moved the slider to 
3,4 and 5 in order to 
construct the equilateral 
triangle, square and 
pentagon. However, he 
lost his direction 
without moving the 
slider to the n-sided 
polygon and so on to 
discuss the relationship.

PMT2 did not 
reach this step. He 
could not direct 
students to 
construct a 
relationship 
between the 
formulas on the 
board and changes 
in the screen.

I think I lost my 
control at the 
beginning and then I 
could not get over the 
discussion. From a 
(pointing out one side 
of the triangle) * h 
(pointing out the blue 
segment) / 2, I 
planned to reach 
(3*a*h)/2. I mean I 
planned to construct 
perimeter multiply by 
height, perimeter 
multiply by height, 
perimeter multiply by 
height. ... When 
students represented 
both line segments 
using the same value 
a, I could not get 
around and I had to 
stop on pentagon.

Discuss-the- 
Screen

animating the slider (in which the polygon approached the circle) and the text on the 
traditional board (the area formula for each inscribed polygon).

Triangulation was used to ensure the trustworthiness of the research findings. We 
triangulated the PMTs’ written objectives and accounts with the video recordings of 
teaching sessions and post-lesson interviews/discussions to support each part of our 
analysis. In addition, considering the role of collaboration in the participatory action 
research, we gave assurance to the participants about the right of withdrawal at any 
time without any consequences as well as informed them about their confidentiality 
and anonymity throughout the research.

4  Results

In this section, we present the results of four PMTs’ technology-based classroom 
orchestrations during micro-teaching and actual classroom teaching. Our particular 
focus is on the evolution of the instrumental orchestrations of their dynamic mathe-
matical tasks. Results are presented in two sections: (1) a general perspective of 
the four PMTs’ orchestrations in micro-teaching and classroom teaching sessions; 
(2) detailed information about PMT2’s orchestration of a dynamic mathematical task.
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We specifically extended the PMT2’s case since he provided significant evidence 
of development of particular orchestration types through his teaching sessions. As 
he stated in the final individual interview:

My first micro-teaching changed almost everything for me about my orchestration of the 
class. In particular, it affected how I started my task, what questions I needed to ask while 
using technology, how to calculate the areas of inscribed polygons etc. I mean it really 
changed everything.

4.1  General Perspective of the PMTs’ Orchestrations 
in Micro- teaching and Classroom Practices

In the planning process, all PMTs’ focus was on setting their objectives and general 
structure for a plan of action, in which they all seemed to overlook the exploitation 
modes of their didactical configurations. In their plans, it became evident that the 
main orchestration type that all PMTs aimed to use was Discuss-the-screen. 
Additionally, they also stated several other orchestrations such as Explain-the- 
screen, Predict-and-test, Sherpa-at-work, and Link-screen-board without detailing 
these exploitation modes. It became apparent during micro-teaching that they had 
difficulties in orchestrating their tasks in effective ways. In particular they struggled 
to instrument their tasks with the use of dynamic technology or used the technology 
limitedly without an apparent intention. Hence, they mostly ended up either with 
Guide-and-explain or Board-instruction.

For example, considering the use of Discuss-the-screen, PMT1 aimed to teach 
about the Unit Circle and had indicated the dynamic use of Discuss-the- screen in 
her plan to enable students to observe the invariants/variants on the screen. Through 
micro-teaching, she realised that the way she conducted dragging on the screen or 
how she gave her prompts  while coordinating her technological actions were of 
crucial importance to achieve her goal. One of the aims in her plan was to guide 
students to explore the relationships between the sine and cosine values of the 
related angle and the coordinates of point B, by using the line segments in the unit 
circle. During micro-teaching, PMT1 tried to guide students to observe the trigono-
metric ratios for different angles by moving the point B on the circle but her use of 
dragging was random (i.e., dragging the point B on the unit circle back and forth in 
the first, second, third and fourth quadrants), which is considered as wandering 
dragging  in the wider literature (Arzarello et  al., 2002). Then, she measured the 
length of the line segments and showed the coordinates of the point B in the algebra 
window. During this process, she dragged point B again and asked students to 
simultaneously observe point B on the circle in the graphic window and its corre-
sponding value in the algebra window. In order to construct the relationship, she 
proposed the following question “If I try to say something like sin 50 is equal to 
something connected to point B? What could it be? Can I generalise this, can I con-
clude something if I try to say something related to B?”. However, students stated 
that they did not understand what she wanted to ask. Then, she continued her 
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teaching completely on the traditional board to explain and show the relationship 
between the trigonometric ratios and coordinates of the point (see Fig. 1).

Based on her experiences, in the actual classroom, PMT1 added a slider attached 
to point B in her task and animated it during her teaching, which enabled her to 
focus on posing questions considering the movement on the screen and improved 
her Discuss-the-screen orchestration. During the animation of point B around the 
unit circle, she initially asked students to spot the variants and invariants on the unit 
circle. Then, she indicated that the red and blue line segments (red line segment 
refers to the line segment AF and blue line segment refers to the line segment AE) 
simultaneously change when point B changes and asked students whether the line 
segments are related to point B. During the discussion, she also measured the line 
segments to support students to construct the relationship. Based on her didactical 
performance in micro-teaching, she intentionally added a dynamic text representing 
point B to make students realise the relationship between the red and blue line seg-
ments and the coordinates of point B (see Fig. 2). By animating or dragging the 
slider, she allowed students to observe the changes in the line segments and point B 
simultaneously.

Fig. 1 A screenshot from PMT1’s micro-teaching on traditional board

Fig. 2 Unit circle task with the dynamic text representing point B and slider
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Fig. 3 PMT3’s task including the perpendicular line and measured areas

Similarly, in his first micro-teaching, PMT3 also noticed his lack of use of the 
software tools to discuss the areas of the triangles in a rectangle as he only dragged 
the figure once and then measured the area of the triangles. Since he was quite hesi-
tant and nervous in his first teaching experience, he wanted to conduct another micro-
teaching of his task before the actual classroom teaching. In his second micro-teaching, 
he improved his approach by using different technological actions. For instance, hav-
ing asked students to compare the areas S1, S2 and S3, he guided them to divide the 
rectangle into triangles by proposing the question “If I want to divide the shape,  
I mean if I want to represent the triangle S3 by using S1 and S2, how could I do 
that?”. One of the students proposed to draw a perpendicular line from point A to line 
segment BC. After drawing the perpendicular line and allowing students to compare 
the areas, he measured the areas of each triangle (see Fig. 3) and verified how the 
areas S1 and S2 constituted the area S3 by dragging the point E on the rectangle. In 
this sense, he employed the dragging tool in a more purposeful way and used the 
tools to verify the equality of areas between the pairs of triangles.

In the actual classroom, PMT3 performed a similar didactical performance as his 
second micro-teaching experience. Also, he seemed more confident in front of the 
class both in proposing questions to students and in using the different technologi-
cal tools.

It also became evident that the PMTs started to comprehend the use of Sherpa- 
at- work orchestration through micro-teaching. For instance, during the  micro- 
teaching, after PMT4 had discussed the base areas of the shape formed by rotating 
360°, 180° and 120°, she asked students how the changes in height affected the ratio 
between the volumes of the shapes. She initiated the discussion by asking for stu-
dents’ predictions about the changes in ratio in relation to the change in heights. 
However, during this process, it became evident that she did not include any student 
input, and instead she mostly explained the answers to her own questions. Even 
though PMT4 chose a Sherpa student to drive the technology at the  front of the 
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Fig. 4 Different examples of cylinder figures occurred based on the dragging

classroom, she only asked the student to move the height slider without providing 
any specific directions. The student dragged the slider up and down to change the 
height for six seconds (see Fig. 4), however PMT4 did not coordinate her question 
with such movement nor guide the class (or the Sherpa) to make observations nor 
discuss the changes on the screen. Instead she only explained the ratios using the 
related formulas on the traditional board.

Some of the PMTs indicated that they understood the real meaning of the Sherpa- 
at- work orchestration through post-micro-teaching discussion sessions when they 
reflected on each other’s uses of the different orchestrations. As a result, some of 
them decided not to choose a Sherpa student to use the technology in actual class-
room teaching, since students within the school placements would not have previ-
ously used GeoGebra. Choosing a Sherpa to help with the use of technology might 
have ended up focusing on and guiding that student in a technical way, which might 
hinder the flow of discussion.

Based on the didactical performances and suggestions given in micro-teaching 
sessions, it became clear that most of the PMTs began to notice the complexity 
imvolved in using the features of dynamic technology in line with their objectives. 
There was a realistion that they needed to organise their tasks in a more systematic 
way that considered lesson objectives, technological actions, questions and poten-
tial students’ responses. The PMTs also realised the effects of using technology to 
test students’ predictions, organise the discussion and reach their intended goals. 
Particularly, they realised the meaning, and role,  of particular orchestration 
types  such as Discuss-the-screen, Sherpa-at-work and Predict-and-test. To con-
clude, after introducing and discussing orchestrations of technology-based tasks dur-
ing the planning stage of their tasks, a general reflection emerged that orchestrating 
the tasks was not an issue for the PMTs. They tended to believe that they would not 
need to detail the exploitation modes of their tasks step by step. Then, through the 
experiences of their teaching practices, they noticed that structuring and planning in 
advance was of crucial importance for a successful implementation of their tasks 
that addressed their general lesson objectives. In the final group discussion, PMT3 
reflected on this issue by stating:

At the beginning of this study, I was designing the tasks and then I was looking for the 
orchestration by considering what orchestration types does this task include? But now,  
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I think about what I can do here, does it get better if I manipulate the sketch dynamically? 
I am considering what happens if I measure this, or should I draw something on it? Is it 
possible to reach a generalisation if I follow these steps? So, I am thinking about the orches-
tration of the task by considering all these issues while designing my task. That is what 
has changed in my mind.

4.2  Extended Results of PMT2

In this section, we share the detailed analysis of PMT2’s classroom orchestrations 
through the processes of planning, micro-teaching and classroom teaching to indi-
cate the evolution of pedagogical purposes of his classroom orchestrations.

4.2.1  What Did He Plan?

After the seminars in which instrumental orchestration model was introduced, 
PMT2 reflected on this by saying:

I really like the conductor of the orchestra metaphor for teachers in the classroom. I think 
orchestration types provide a really useful language for us to describe what we do in the 
classroom. In my plan, I think I will often use technical-demo, explain-the-screen and link- 
screen- board. I would also use the other ones depending on the task.

Then, PMT2 prepared a technology-based task to teach the formula for the area of 
a circle. With the use of a slider attached to the number of sides of inscribed regular 
polygon, his main purpose was to use more sides of the regular polygon to become 
closer to the overall shape, which constitutes a circle itself (see Fig. 5).

In his plan, he aimed to use Explain-the-screen, Discuss-the-screen and Link- 
screen- board orchestrations without detailing the exploitation modes of his orches-
tration. For instance, his statement for the use of Link-screen-board was the 
following:

I planned to use a link-screen-board orchestration to encourage students to find the area 
formula of the circle by considering the changes in the number of sides of the polygon and 
constructing a relationship between the formulas on the traditional board and changes on 
the screen.

The above quotation indicated that he did not consider a particular moment to con-
figure the teaching setting or the tools of GeoGebra he planned to use, whilst select-
ing the use of the link-screen-board orchestration. The didactical configuration of 
his whole-class orchestration included access to the dynamic technology and IWB 
in a whole class setting in which all students were able to see the screen. It became 
evident that his main orchestration to use was Discuss-the-screen for a whole-class 
discussion about what is visible on the computer screen. In detail, his objective was 
to stimulate a discussion in which students could calculate the areas of inscribed 
regular polygons starting from an equilateral triangle, square... to an n-sided regular 
polygon and conclude the area formula of the circle. He particularly wanted to guide 
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Fig. 5 PMT2’s task including the slider

his students through the dynamic file in which each polygon was divided into equal 
isosceles triangles and by using the height (as blue segment a) the area of each

triangle should be calculated by using the formula ‘
1

2
*base*height’ (see Fig. 6). By

using this formula, he aimed to reach the formula of polygon as ‘
1

2
*(the number of 

the triangles) *base*height’ considering ‘(the number of the triangles)*base’ rep-
resents the perimeter of the polygon. Based on this, he wanted students to reach the

formula of the area of the polygon as ‘
1

2
*perimeter of the polygon*height’.

4.2.2  Micro-teaching 1

In his first micro-teaching, PMT2 only managed to allow students to calculate the 
areas of inscribed equilateral triangle and square in which the students’ way of cal-
culations did not match PMT2’s actual plan. The difference in the way of calcula-
tions hindered PMT2 to enable students to develop the intended pattern. Then for 
the inscribed pentagon, he lost his direction and ended the session at his own request 
before reaching his aims. Table 4 shows how PMT2 guided a discussion with the 
use of technological actions.
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Fig. 6 The case of an equilateral triangle that shows the isosceles triangles, when n=3

The above classroom dialogue shows that the teacher’s intentional guiding and 
the students’ actions were different, which created a confusion for him. While 
PMT2 planned for students to calculate the areas of the regular polygon by using the 
idea of ‘the number of polygon sides * the area of the isosceles triangle’ that was 
constructed inside the polygon, students used the height of the isosceles triangle 
representing the same value as a (the blue segment in the figure) for different regular 
polygons. At this point, PMT2 became confused and was not able to direct the stu-
dents to his planned actions. As he reflected on this during the post micro-teaching 
interview:

I think I lost my control at the beginning and then I could not get over the discussion. From 
a (pointing out one side of the triangle) * h (pointing out the blue segment) / 2, I planned to 
reach (3*a*h)/2. I mean I planned to construct perimeter multiply by height, perimeter 
multiply by height, perimeter multiply by height. ... When students represented both line 
segments using the same value a, I could not get around and I had to stop on pentagon.

When he stopped his teaching, during the post-lesson discussion, researchers and 
other PMTs present during the micro-teaching made several suggestions regarding 
his teaching. One of them was to represent the one side of the polygon as n1, n2, n3 
and so on as well as represent the height using different values such as h1, h2, h3 
and so on. Additionally, they stated that his aim was not clear within the questions 
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Table 4 A detailed description of how PMT2 guided the discussion in the first 
micro-teaching experience

Exploitation of technological 
action Didactical performance

Using the slider to move to 
n=3 to construct an 
equilateral triangle inscribed 
in the circle

Students offered a solution where they used the general formula 
 
of area of equilateral triangle 

oneside( )2 3

4
.

Then they calculated one side of the equilateral triangle by using 
the height (the blue segment a) of the isosceles triangle in the 
figure.

 The height (one side of the isosceles triangle ABC) = a
 Radius = 2a
 Other side of the isosceles triangle = a 3
 One side of equilateral triangle = 2a 3
At this point, PMT2 followed their directions and wrote these on 
the traditional board without considering his plan.

Using the slider to move to 4 
to construct a square in the 
circle

Students guided PMT2 to represent one side of the square similar to 
the equilateral triangle in terms of the height (the blue segment a).

 The height (one side of the isosceles triangle ABC) = a
 One side of the square = 2a
 Radius = a 2
During the teaching, PMT2 tried to direct the students to use the 
isosceles triangles inside the square (See verbatim transcript).
T: We calculated the area of the equilateral triangle using the 
general formula of it. What do you see here (showing the square on 
the screen)? What is in the square? Here, the square is divided into 
four equal isosceles triangles.
S: Can we find the area of one isosceles triangle and multiply it b 
y 4.
T: Yes. We could use the same method for the equilateral triangle. 
The equilateral triangle consisted of three isosceles triangles (he 
moved the slider to 3). We multiply this (showing the isosceles 
triangle) by 3.
T: Now, in the square, what is the radius here (he was on the 
traditional board)?
S: r
T: How could you write it in terms of a?
S. a 2
T: What is the height?
S: a
T: Here, what is the area of one isosceles triangle?

S: 
2

2

2a
 multiply by 4.

T: I am writing like this. Area of one of the triangles is square a, so 
the area of the square is multiplication of it by 4. [He was watching 
the traditional board for a while and then moved the slider to 5].

(continued)
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Table 4 (continued)

Exploitation of technological 
action Didactical performance

Using the slider to move to 5 
to construct a regular 
pentagon in the circle

He was not able to calculate the area of the pentagon; he 
encountered the situation that he did not manage to guide the 
students.
T: [by dragging the slider to 5] How can we calculate this based on 
the previous one?
S: This is a bit difficult to calculate. We should first find the angles.
[while students were discussing the angles, PMT2 drew an 
inscribed pentagon on the traditional board and seemed puzzled. 
By moving away from the board, he looked at the figure]
T: Now what do I know? I know the radius is r.
S: OK, we found 54o so the other two angles should be 36o [at this 
point the PMT was still thinking by looking at the figure from afar].
The PMT could not continue the discussion and he voluntarily gave 
up the instruction.

nor his guidance, so they did not really understand the lesson goals. Therefore, one 
of the suggestions to him was that before the activity students could be prepared 
regarding the mathematical context of the activity. Also, in order for him to effec-
tively link the screen to the board, they suggested that he should write the formulas 
on the board in a systematic way and highlight the perimeter in the formulas (i.e., 
3* length of one side=perimeter of equilateral triangle).

4.2.3  Micro-teaching 2

In the second micro-teaching experience, PMT2 orchestrated his class in a more 
successful way. In particular, he demonstrated an effective use of a slider tool and 
the  zoom tool within GeoGebra. When compared to his first micro-teaching, he 
had planned his exploitation mode for his Discuss-the-screen orchestration and was 
better prepared for the questions to ask and how to utilise technology to stimulate a 
successful classroom discussion in order to fulfil his lesson objectives. Although 
Discuss-the-screen remained the most apparent orchestration, while discussing the 
screen, he employed more specific orchestrations such as Predict-and-test and 
Link-screen-board.

He began the classroom discussion by asking a question “How can you approxi-
mate the area of a circle?” and he allowed students to make predictions. By using 
the dynamic technology, he tested their predictions. For instance, one of the stu-
dents said that they could find the area by using a square, and the other said an 
8-sided polygon. Starting from the students’ ideas, PMT2 opened his prepared 
GeoGebra file (see Fig. 7) and asked the following question “Let’s start with the 
smallest polygon that we know. How can I find the area of this triangle?”
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Fig. 7 The GeoGebra file in which he hid the isosceles triangles and the height segment

As seen in the GeoGebra file, he intentionally hid the sides of the isosceles tri-
angles and the blue segment (which showed the height of the isosceles triangle) for 
the area of regular polygons calculations which led to the failure of his first micro- 
teaching. In his final post-lesson interview, he said:

Students could calculate the area of the equilateral triangle by using the isosceles triangles 
within it. Therefore, I intentionally gave the equilateral triangle without dividing it into the 
isosceles triangle, and asked students directly how to calculate the area of this equilateral 
triangle.

Also, he purposefully guided the students to consider different ways to find the 
area of the equilateral triangle to exploit the steps within his planning. The transcript 
of this episode was:
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S1: If I know one side...
Y: Yes, you can find the area. What else?
...
S2: We can also use 

1

2  *base*height.
Y: Which height do you mean? The height of the big triangle? [he shows with 
his hand on the screen]
S2: Yes
T: OK, that is another way. What else?
S3: Can we find it by dividing the big triangle into small triangles?
T: Do you mean this? [he shows the file in the below figure]

 

S3: Yes
T: How can I find the area of these triangles? [he shows one of the isosceles 
triangles]
S1: So, the whole area is a small triangle × 3.
T: Ok, how about the area of those small triangles?

S1: base is r 3 , then, 
r A3

2

∗ | |C
.

T: [He shows the blue segment in the figure] OK, now we see the length of AC 
[Then he goes up to the normal board and writes what the student says].

 

T: Could you repeat it please? Here, let’s label one of the sides of the equilat-
eral triangle as n3 and its height as h3 [He drew the figure on the tradi-
tional board].
...
S1: OK, then 

n h3 3

2

∗
∗3.

[PMT2 revoice and writes the formula that S1 said on the traditional board]
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Similarly, by increasing the slider step by step, he enabled the students to discuss 
and calculate the areas of 4 and 5-sided regular polygons to support them to develop 
a pattern. Then, by dragging the slider to 20, 50 and 100 respectively, he stimulated 
the discussion on how the area of the polygon changed and also how the area of the 
inscribed polygon compared to the area of the circle as the number of sides was 
increased. At this stage, he effectively proposed questions requiring the students to 
predict what would happen when the number of sides increased and tested their 
ideas (verify or falsify) with the use of technology and progressed through seeking 
validation from the dynamic technology. In particular, to develop the approaching 
idea, he particularly utilised the zoom tool and zoomed in on the screen (see Fig. 8) 
to discuss the fact that although the overall shape of the polygon resembled the 
circle, there was still a gap between the polygon and the circle (see Fig. 8).

In the last stage of the discussion, he wanted the students to link the screen and 
board, in which he animated the slider, and asked students to consider the traditional 
board, where he wrote the area formula of each polygon (see Fig. 9). He encouraged 

Fig. 8 A screenshot from PMT2’s teaching when showing the gap between the circle and polygon

Fig. 9 A re-drawn writing of PMT2 on the traditional board
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Fig. 10 A screenshot from PMT2’s teaching in the position of linking the screen and tradi-
tional board

students to explicitly link what they saw on the screen and what was written on the 
traditional board.

While on the traditional board, he asked the question “How can I write the area 
formula for a 100-sided polygon area?”. Then he went to the screen and guided 
students to focus on and interpret the height. By increasing the number of sides with 
the use of the slider, he asked the students to observe where the sides and height of 
small triangles inside the polygon were approaching. He was standing in the middle 
of the IWB and the traditional board and by using his gestures he pointed to the 
sides and height on the screen (see Fig. 10).

On the traditional board, he asked the students to form the formula of the area of 
a circle by linking the relationships they had observed on the screen. To ease their 
observations, he dragged the slider effectively and prompted them with respect to 
the formula in the following dialogue.

T: OK, if the polygon approaches the circle, how can we calculate the area of a 
regular circumscribed n-gon where n is very large? Concerning the congruent 
triangles inside the n-gon, their sides would approach the radius. What is the 
circumference formula?

S: 2* pi * r
T: Yes, 2 * pi * r. How about the height? Where is it approaching?
S: Radius, as well.
T: That is also approaching the radius. OK, then, what is the formula?
S: 2 * pi * r * r /2
T: Which means pi multiplied by r2.

Concerning the fact that the polygon approaches the circle, one of the students sug-
gested that “It (the polygon) goes to infinity, but it never becomes a circle”. PMT2 
tried to answer the question using the task by indicating that the height of the isos-
celes triangle (the blue segment) approaches the radius of the circle. Specifically, he 
stated that “even if it is very tiny, there is still a gap between them”, but the students 
did not seem to be convinced with his response. In the post-lesson discussion, the 
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researchers and other PMTs suggested PMT2 to mention the concept of limit to 
explain this phenomenon.

In the post-lesson discussions, the researchers and other PMTs mentioned the 
successful points of his teaching. Particularly, they indicated that presenting many 
examples using the slider and testing students’ predictions on the sketch were cru-
cially important to the success of his didactical configuration. However, they sug-
gested moving the slider more slowly  to provide an opportunity for students to 
explore the changes on the screen instead of explaining himself and discussing the 
screen in a more effective way. Suggestions regarding his second micro-teaching 
were not related to the mathematical context of the task. Instead, the researchers and 
PMTs directed him to consider the features and role of the technology in a more 
detailed way.

4.2.4  Actual Classroom Teaching

In PMT2’s classroom teaching, there was a similar didactical configuration to the 
micro-teaching, in which the teacher used GeoGebra on one central screen along-
side the traditional board.  While the teacher controlled the manipulation of  the 
dynamic technology and provided the prompts to stimulate a classroom discussion, 
students were observing and actively involving in the discussion. As PMT2 planned 
his exploitation mode of the task, informed by the two previous didactical perfor-
mances during the micro-teaching, he seemed more confident to orchestrate his 
activity within the class. He was particularly successful in constructing a link 
between screen and board by considering the questions to ask  alongside how to 
utilise the  technology to stimulate a successful classroom discussion. He also 
strengthened his orchestration with an effective use of gestures such as his fingers 
and the movement of his body between the screen and board.

His orchestration of the task showed similarities with that of PMT2 during the 
second micro-teaching. Additionally, in classroom teaching, it became evident that 
PMT2 managed to pose more structured questions and he guided his planned dis-
cussion with the high school students who were not familiar with the task, technol-
ogy or context. In this light, during  the process of generalising the formula, he 
conducted an effective discussion by linking the screen to the board, which seemed 
more structured and indicated more involvement from students.

For example, during the second micro-teaching, the participants were already 
familiar with PMT2’s objectives and the task itself, hence, they seemed to reach 
intended results relatively easily such as noticing the perimeter in the formulas or 
the approaching idea of height. However, during the  classroom teaching, PMT2 
guided the students step-by-step to help them realise the use of perimeter within the 
formula, and also how the height of the isosceles triangle approaches the radius. In 
this process, he effectively discussed the context using the task and indicating the 
concept of limit (see the below text frame including verbatim transcript).
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T: OK, please have a look at the screen. What does 3*n3 indicate?
S: 3 sides.
T: I am asking 3*n3.
S: Perimeter.
T: Yes, perimeter of the triangle. Perimeter of the equilateral triangle. [He 
shows this on the traditional board and then goes to the screen and moves the 
slider to 3 and continues on the screen]. OK, we labeled one side as n3 and 
we have three of it.

 

T: How about 4*n4?
S: Perimeter
T: Whose perimeter is it?
S: Perimeter of the square
[He discussed the similar operations for the pentagon, 12-sided and 100- 
sided polygons by dragging the slider and linking the screen and the board]

 

T: Where does it go?
S: Infinity
T: Yes, it goes to infinity. How about this 

h3

2
, 
h4

2
, 
h100

2
…?

S: Half of the radius.
T: Why is it radius over 2?
S: There is a triangle, its height will be radius.
T: Would it become radius in the end?
S: No, it would not. The shape approaches a circle.
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T: Yes, it approaches the circle… But there will always be a gap between these 
two points, so there is always another point in between. Infinite points con-
struct the circle, and we say it approaches… This is about a concept called 
limit, which you will learn next year. So, the height will approach r.
S: But it will never be radius...
T: Yes, it will never be radius. Also, the perimeter of the n-sided polygon will 
never reach the circumference.

 

T: There will be a gap all the time. I already showed you for 100-gon and now 
[zooms in] for 1000-gon there is a smaller gap, you see. But, when we learn 
the limit concept in the twelfth grade, we will ignore this gap. I mean we will 
not ignore it, but we will take the approximate value of it.

At the end of the lesson, he considered the whole process to reach the area for-
mula of the circle by using the fact about the infinitely-sided polygon.

To conclude, based on his experiences throughout the whole process, his exploi-
tation modes and didactical performances of his instrumental orchestrations evolved 
(see Fig.  11), PMT2 managed to successfully orchestrate his task to achieve his 
mathematical goals. In his final individual interview, he reflected across all of the 
research cycles thus:

The first micro-teaching changed everything for me. I think it was an indispensable part in 
my development because I made all the mistakes that I could have done ... Then for the 
second micro-teaching I revised my plan carefully and considered all the suggestions for a 
successful organisation of my task. Therefore, the second micro was also quite important 
for me to think deeply about how to use technology and what kind of questions to ask to 
guide students. But I think the actual teaching was the most useful experience for me as a 
teacher. I was more nervous to teach in the real context with the students. … answering their 
questions, using technology to show the approaching idea, actualising my plan in the class-
room… It was a great experience!
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Fig. 11 PMT2’s evolution of instrumental orchestration through the cycles

5  Conclusions and Discussion

This chapter focused on a restructured practicum course at a Turkish University in 
the secondary school context which aimed to develop PMTs’ skills to design and 
teach lessons with the use of dynamic mathematics software focusing on the instru-
mental orchestration model. Our research questions concerned how the PMTs 
engaged with the instrumental orchestration model whilst planning their technology- 
based tasks, and then how they orchestrated these tasks in classrooms. Particularly, 
we examined what changes or development occurred in the PMTs’ instrumental 
orchestrations through different cycles of the practicum course.

The findings indicated that although the PMTs began to consider orchestration 
types in their initial plans, they only came to realise the importance of detailing the 
exploitation modes of their didactical configurations whilst in the process of micro- 
teaching. They started noticing the complexity of using the features of dynamic 
technology in line with their objectives and the need to organise their tasks in a more 
systematic way that considers lesson objectives, technological actions, prompts and 
potential students’ responses. Before practising their tasks, it became apparent they 
overlooked the pedagogical purposes for instrumental orchestrations. For instance, 
although most of them designed their tasks around Discuss-the-screen and Link- 
screen- board orchestrations, they ended up orchestrating mostly with Board- 
instruction as they either failed to use dynamic features of technology as planned or 
to coordinate appropriate prompting with their technological actions. For 
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Link- screen- board, they tended to stay at the traditional board and ignored the tech-
nology. As PMT1 reflected, “I realised when I was doing something on the tradi-
tional board, I forgot to drag the point B on the screen, which I needed to move 
simultaneously. So, I continued here on the board, but the screen stayed in the previ-
ous position”. In this sense, the insights and results learned from micro-teaching 
became an intermediate step and served as crucial inputs for the PMTs to reconsider 
their classroom orchestrations and elaborate their plans for their actual classroom 
teaching (Agyei & Voogt, 2011; Zbiek & Hollebrands, 2008). As a result, their 
actual classroom practices and reflections on such practices showed that they were 
more prepared regarding their teaching trajectory indicating their professional 
learning regarding technology integration (Goos, 2005; Rocha, 2020; Ruthven, 
2014; Trgalova et al., 2018). In particular, they tended to expand and structure their 
questions as well as their technological actions with an explicit aim to successfully 
orchestrate their tasks.

This study also provided evidence regarding how a practicum course could be 
restructured with a specific focus on technology integration (Niess, 2012). This is of 
essential importance in particular for the education contexts where there is no cur-
rent requirement for PMTs to incorporate digital technologies into their teaching in 
school placements. In the restructuring process, two aspects were important: 
the theoretical model and the methodological approach. For the former, the integra-
tion of the instrumental orchestration model into the course in general provided a 
useful lens both for the PMTs and the researchers. Hence, this study provides evi-
dence for the usability and usefulness of the instrumental orchestration model to 
help prospective teachers and teacher educators benefit from the practical knowl-
edge about technology integration. However, with the use of already identified 
whole-class orchestrations, at the first stage the PMTs structured their plans of 
actions without deeply understanding the concepts of the model. With the classroom 
practices, they started making sense of the details and systematic orchestrations of 
their activities in the classroom. In this light, we believe that introducing and dis-
cussing a theoretical model only in the planning stage (Bowers & Stephens, 2011) 
would not result in a successful orchestration in classrooms, in particular for PMTs 
to comprehend the exploitation modes of their didactical configurations. Hence, we 
argue that such practicum courses should involve a cyclical process through modi-
fication, implementation, and reflection. Also, involvement in participatory action 
research promoted the process of collaborative learning in two aspects. First, col-
laboration supported the PMTs’ development relating to the instrumental orchestra-
tion model and their teaching practices through our feedback and suggestions. 
Second, it supported us to revise our plan of actions by considering PMTs’ develop-
ment of the processes of  designing and teaching  tasks using the technology. 
Although conducting a course such intense collaboration in three cycles might not 
be feasible for a larger size group of PMTs with only the instructor of the course, we 
believe this study provided and discussed PMTs’ potential hiccups (Clark-Wilson, 
2010) and pivotal teaching moments (Stockero & Van Zoest, 2013), which can be 
used in training PMTs to improve their technology-based teaching in school place-
ments. Also, this study is of value in bridging “acknowledged gap between research 
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and practice” (McIntyre, 2005, p. 357) by making research-based concepts acces-
sible to the future teachers and to encourage them to think about those concepts. 
McIntyre (2005) argued that members of the academic community must take 
responsibility to bridge that gap by seeking out and working with the professional 
knowledge of teachers and should not simply expect practitioners to engage with 
research knowledge.

Nevertheless, we cannot claim that the professional development arrangement 
fully developed the PMTs’ pedagogical functioning and dynamic use of instrumen-
tal orchestrations. In particular, further opportunities to experience learning about 
the instrumentation of the slider tool as a teaching instrument are necessary for the 
PMTs to design tasks that aim to allow students to generalise mathematical con-
cepts, processes or relationships and to explore different topics and concepts in their 
mathematics curriculum. Also, further research could examine PMTs’ instrumental 
orchestrations where students actively work at computers themselves to encourage 
the PMTs to promote independent learning with the use of digital technologies.
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An Ensemble Approach to Studying 
the Teaching of Multiplication Using 
TouchTimes

Sandy Bakos

Abstract This chapter examines the function of a novel, multi-touch iPad applica-
tion called TouchTimes as it is integrated into the instructional repertoires of two 
primary school teachers in British Columbia, Canada. The aim of this research was 
to study the ensemble of teacher, tool and mathematical concept – in this case, mul-
tiplication – as it played out in the classroom. The ensemble views each part in rela-
tion to the whole, rather than individually. Using the notion of double instrumental 
genesis and the construct of instrumental orchestration, I examine case studies in 
order to identify and highlight specific ways in which the teachers adopted this digi-
tal tool into their mathematical pedagogical practice. Three new types of orchestra-
tion are identified that emerged from using touchscreen technology for mathematics 
in the context of primary school classrooms. I also observe ways in which the tool 
exerted agency in the classroom, especially in relation to new ways of speaking 
about multiplication and a new attention to fingers as means by which to express 
and engage with multiplicative relations.

Keywords Touchscreen technology · Double instrumental genesis (personal/
professional) · Instrumental orchestration · TouchTimes · Multiplication · Primary 
school mathematics
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1  Introduction

With the increasing prevalence of digital technology in schools, mathematics 
education researchers have a continued interest in how teachers choose to imple-
ment these resources for the teaching of mathematics (e.g., Monaghan, 2004; 
Thomas & Palmer, 2016) and their effect on student learning (e.g., Calder & 
Murphy, 2018; Sinclair & Baccaglini-Frank, 2015). The emergence of touch-
screen devices and their ease of use for younger students are providing new 
means for primary school teachers to support mathematics learning, though 
Larkin and Milford (2018) have found that many of the apps downloaded onto 
these devices for classroom use are chosen, “without a strong conceptual, peda-
gogical, or methodological underpinning” (p.  12). Integrating technology 
remains a complex undertaking (Monaghan, 2004) and, despite some aspects of 
technology becoming more user-friendly, many teachers find it challenging to 
exploit skillfully the opportunities that technology can offer for learning 
(Trigueros et al., 2014), and this is also true in particular of TouchTimes (Sinclair 
et al., 2020).

While much of the early research on the use of digital technology in the mathe-
matics classroom focused on student learning (e.g., Behr & Wheeler, 1981; Noss, 
1987), often in classrooms where researchers were closely involved (sometimes 
even as teachers themselves), there has been a shift towards studying the phenom-
enon of teaching with technology (Artigue, 2010). Several theories that have 
emerged to account for the impact of digital technology integration on mathematics 
teaching practice include the notion of double instrumental genesis, which exam-
ines teachers’ personal and professional instrumental genesis (Haspekian, 2011), 
and the construct of instrumental orchestration (Trouche, 2004).

In this chapter, I am specifically interested in the double instrumental genesis of 
the teacher in relation to TouchTimes (TT), as well as the instrumental orchestra-
tions (a notion coined by Trouche and enhanced/expanded by Drijvers et al., 2010, 
2013) initiated or led by the teacher. However, while the instrumental orchestration 
approach has provided important insights into the ways that teachers have organised 
classroom activity to make use of digital tools, it prioritised the human over the tool 
(Carlsen et al., 2016). There is also a need to examine the ways in which the func-
tioning of the tool itself impacts the teacher, especially in terms of shaping mathe-
matical concepts. This is relevant to this study because the design of TT promotes 
an approach to multiplication that is different from—and indeed, sometimes con-
trary to—existing practices in primary schools in British Columbia (and beyond), a 
theme that will be explored further in the next section. Therefore, the teachers 
involved in this study were not only adopting a new digital tool into their instruc-
tional repertoire, they were also integrating an entirely different way of thinking 
about and teaching multiplication based on this application. Clark-Wilson (2010) 
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found that teachers’ mathematical ideas shaped how they used digital tools, but that 
their teaching was also shaped by their increasing familiarity with the tool itself. 
Indeed, as Noss and Hoyles (1996) point out, “tools wrap up some of the mathemat-
ical ontology of the environment and form part of the web of ideas and actions 
embedded in it” (p. 227).

Prioritising the teacher as the sole intentional agent in the classroom may fail to 
account for the effects of the tool itself or the mathematics—overly ascribing both 
responsibility and intentionality to the teacher, while under-appreciating the multi-
ple roles that a teacher performs in a classroom, not all of them strictly didactical. 
By shifting the subject–object framing towards an ensemble approach, in which the 
teacher–tool–mathematical concept is viewed as a whole, rather than individually,  
I was better able to notice the emergence of new classroom phenomena that did not 
fall into intentional teacher choices, but arose from unexpected, spontaneous 
occurrences.

The next section of this chapter provides some context related to multiplication 
and, in subsequent sections, I will situate the theoretical foundation and introduce 
the construct and theory used. This will then be followed by two sections that focus 
specifically on the project: its methods, which include a brief description of TT, as 
well as the study context and participants. I will then detail the case studies of two 
primary teachers who were integrating TT into their classroom practice. Finally,  
I close with a discussion focused on some of the issues that emerged which are 
directly linked to the mathematics as it is presented by TT and then on the types of 
orchestrations used with touchscreen technology in primary classrooms. Though  
I will articulate my research question after elaborating a theoretical framing, my 
aim is to study the teacher–tool–mathematics ensemble in a primary school class-
room (within the context of this chapter, a grade 3 and a 3–4 classroom), as it is 
perturbed by teacher–TouchTimes in concert.

2  Multiplication

In the early primary grades, skip counting, equal grouping and repeated addition 
are commonly used methods for introducing and working with multiplication 
(Davis & Renert, 2013; Greer, 1992), even though research indicates that char-
acterising multiplication as repeated addition has limitations (Askew, 2018; 
Boulet, 1998; Davydov, 1992). Askew (2018) noted that the practice of repeated 
addition is encouraged by curriculum developers and remains a persistent per-
ception of multiplicative situations for primary teachers and their students. This 
is also true in British Columbia, where multiplication first appears in the provin-
cially mandated third grade (8–9-year-olds) mathematics curriculum and the 
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examples given are: groups-of, repeated addition and arrays (Province of British 
Columbia, 2016). Fischbein et  al. (1985) claimed that repeated addition is a 
primitive model that, “tacitly affects the meaning and use of multiplication, 
even in persons with considerable training in mathematics” (p.  6) and that it 
“reflects the way in which the corresponding concept or operation was initially 
taught in school” (p. 15).

The benefits of visual representations and the use of different models as math-
ematical tools for teaching and learning multiplication have been highlighted by 
researchers (Anghileri, 1989; Kosko, 2018; Maffia & Mariotti, 2018). Though 
Davis & Renert (2013) outlined multiple models of multiplication, such as 
number- line hopping, making a grid or rectangular array, area generation, branch-
ing, scaling and linear function, they suggested that multiplication as repeated 
addition is so well rehearsed, that it may eliminate other interpretive possibilities 
for multiplication. Referring to the work of Bolden et  al. (2015) and Davydov 
(1991), Kosko (2018) noted the importance of how plural aspects of units are 
conveyed in multiplication and that, “students’ interactions with visual represen-
tations may involve attending to the multiplicative nature conveyed by the visual, 
or may involve counting all units by ones” (pp.  262–263). In the Davydovian 
approach (Davydov, 1992), the first unitising occurs when the multiplicand is 
established (e.g., number of tires on a car), followed by the second unitisation, 
which is the number of units (e.g., how many cars). In order to be considered 
multiplicative, Steffe (1992) described the necessity of co-ordinating at least two 
composite units “in such a way that one of the composite units is distributed over 
the elements of the other composite unit” (p. 264). Jacob and Willis (2003) con-
cluded that it is the “identification or construction of the multiplicand and the 
multiplier within a situation, and the simultaneous coordination of these factors, 
that signified a multiplicative response” (p. 460).

When discussing methods for teaching multiplication, while participating in an 
a priori study (see Sinclair et al., 2020), the two primary teachers who are part of 
this study (Leah and Rachel, pseudonyms) referred to the curriculum requirements 
and the strategies presented in the textbook as resources that guide their teaching. 
Leah even pulled out a third-grade textbook, stating, “It’s all groups-of. Groups-of 
is the first thing, okay repeated addition… Groups-of. Two groups-of five, so this 
would be two times that [pointing at a picture showing two groups-of five with the 
associated number sentence, 2 × 5] whereas this [pointing at the iPad with TT on it], 
shows it the other way”. The primary resources that these teachers rely on do not 
include other approaches, such as the use of double number lines (as described in 
Askew, 2018) or the Davydovian approach based on a double unitisation. This lack 
of awareness also contributes to these primary teachers’ heavy reliance on equal 
grouping, skip counting and repeated addition.

S. Bakos



69

3  Situating the Theoretical Foundation

I begin by outlining some theoretical elements of the instrumental approach 
(Artigue, 2002; Guin et  al., 2005) and introduce double instrumental genesis 
(Haspekian, 2011). I will then detail the construct of instrumental orchestration 
(Trouche, 2004), highlighting some of its conceptual tools and results, with a par-
ticular focus on its relation to the study of technology integration in the context of 
primary school mathematics.

3.1  The Instrumental Approach

Extending Rabardel’s (1995) theory of instrumentation on the human use of tools, 
the instrumental approach was developed for the analysis of technology-mediated 
teaching and learning in mathematics (Artigue, 2002; Guin et al., 2005). Two ideas 
used by the instrumental approach that are part of the theory of instrumentation are 
the characterisation of artefact/instrument and the acknowledgement that tool use is 
a two-way process. Vérillon and Rabardel (1995) distinguished an artefact as a 
physical object or tool that, through human use, becomes an instrument. This inter-
action between artefact and humans builds an instrument, using a two-way process 
called instrumental genesis, where the user adapts to the tool (instrumentalisation), 
and the tool shapes the user’s actions or thinking (instrumentation). Before using a 
digital tool in a classroom context, teachers must first engage in a personal instru-
mental genesis, similar to all learners, where the artefact becomes an instrument for 
mathematical activity. In addition to this, teachers must also engage in a profes-
sional instrumental genesis, in order to construct and appropriate the artefact into a 
didactical instrument for teaching mathematics. “The teacher’s professional genesis 
with the tool is much more complicated as it includes the pupils’ instrumental gen-
esis” (Haspekian, 2014, p. 254). This dual process has been termed a double instru-
mental genesis by Haspekian (2011). Researchers have also studied how it is that 
teachers plan for and make decisions within an instrumentalised classroom, which  
I will discuss in the next sub-section.

3.2  The Construct of Instrumental Orchestration

First used by Trouche (2004), instrumental orchestration involves, “the teacher’s 
intentional and systematic organisation and use of the various artefacts available in 
a—in this case computerised—learning environment in a given mathematical task 
situation” (Drijvers et  al., 2010, pp.  214–215). This may guide the instrumental 
genesis of individual learners or encourage whole-class, collective instrumental 
genesis.
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Table 1 A summary of whole-class and individual orchestrations

Orchestration type Didactical intention
Whole- 
class Individual

Technical-demo Techniques for tool use are demonstrated by the 
teacher

✔ ✔

Guide-and-explain The teacher explains or asks closed-type questions 
based on what is on the screen

✔ ✔

Explain-the-screen The teacher explains the mathematical content 
related to the digital technology

✔

Link-screen-board 
or link-screen-paper

The teacher connects the mathematical ideas or 
representations from the technological device to the 
way this mathematics is commonly recorded

✔ ✔

Discuss-the-screen Class discussion about what is happening on the 
screen

✔ ✔

Spot-and-show Student work samples are used for class discussion 
and/or teaching

✔

Sherpa-at-work A student uses the technology to present work and/
or carries out teacher-directed actions

✔

Board-instruction Teaching in front of the board with no real-time 
reference to, or use of, technology

✔

Technical-support Providing technical support ✔
Drijvers et al. (2013)

Eight instrumental orchestration types for teacher-led, whole-class instruction 
and five further orchestration types used for individual students while working inde-
pendently (see Table 1) have been identified (Drijvers et al., 2010; Drijvers et al., 
2013). The teacher may decide to use teacher-centred orchestrations or ones that 
explicitly invite student participation. Such decisions are part of the exploitation 
modes used by teachers to benefit their teaching goals. This may include ways that 
tools or tasks are introduced and engaged with, forms of user interaction (e.g., part-
ner work) or techniques developed by the students. Didactical performance, how 
teachers adapt plans ‘on the fly’ while teaching, is of particular importance when 
engaging in student-centred orchestrations. Things such as how to address student 
input, what questions to ask and when to ask them, and solving unanticipated issues, 
which Clark-Wilson (2010) terms ‘hiccups’, related to the technological tool, the 
mathematical task or the students themselves are all part of the intertwined nature 
of teacher–tool–mathematics ensemble.

Tabach (2011) argued that, if a lesson includes technology that is available, but 
the teacher intentionally chooses not to use it, then this too is an orchestration type, 
which she terms a Not-use-technology orchestration. Though Tabach (2013) noted 
that Drijvers (2012) used the term Work-and-walk-by for individual orchestrations 
where the students work independently, while the teacher monitors student progress 
and assists as needed, she preferred the term Monitor-and-guide, an orchestration 
type where students are working independently while the teacher monitors and 
guides progress, either in person or through electronic feedback. Also emerging 
from this research in fifth- and sixth-grade classrooms were instances where the 
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teacher discussed the use of technology, but did so without the technology present. 
It is termed Discuss-tech-without-it orchestration.

When applying the construct of orchestrations in a kindergarten setting in France, 
Gueudet et  al. (2014) identified two new orchestration types: Autonomous- use, 
when children are able to use the technology independently with the teacher moni-
toring from a distance, and Supported-use, when individual children require teacher 
assistance to engage either with the technology or with the mathematics itself. Both 
of these orchestrations were used as ways to manage class heterogeneity and dif-
ferentiate instruction to meet individual learner needs. Also emerging from the 
French kindergarten context was a variation of the Link-screen-board orchestration, 
which Besnier (2018) termed a Manipulatives-and-software-duo orchestration. 
Here, the teacher creates concrete manipulatives reflective of the digital technology, 
which are displayed and can be manipulated to demonstrate or explain experiences 
with the software.

Much of the research focused on instrumental orchestration has been situated 
either at the secondary-school level (Trouche, 2004; Drijvers, 2012) or at the kin-
dergarten level (Besnier, 2018; Gueudet et al., 2014). In fact, at a digital technology 
conference in mathematics education with ‘orchestrating learning’ as the central 
theme, Joubert (2013) noted that there were only five out of over one hundred sub-
mitted papers about technology use related to primary schools. In addition, prior 
instrumental orchestration research has typically involved either desktop software 
or interactive whiteboards, rather than touchscreen technology.

I was curious about how the age of the students and the nature of the technology 
influence the orchestrations used by the teacher. For example, in the two classes  
I observed, there were multiple iPads available, thus allowing individual or pairs of 
children to work simultaneously on their own devices, rather than needing to 
observe a single, shared, digital device, such as a stationary computer connected to 
a projector or a single interactive whiteboard. Additionally, the dexterity involved in 
using a computer mouse productively can prove physically difficult for young chil-
dren, whereas the touchscreen affordances of an iPad make it a more easily acces-
sible form of technology for primary students.

Within the construct of instrumental orchestration, the teacher is usually posi-
tioned as the main agent in organising, arranging, adapting and managing the task, 
the tool and classroom interactions. There is an underlying assumption that the pres-
ence of the tool has prompted didactic configurations and exploitations, in addition 
to shaping didactic performance. However, until recently, little attention has been 
paid to the agential role of the tool itself. For example, Gueudet et al. (2014) briefly 
noted that their data clearly demonstrated that several of the software’s features did 
influence the orchestration choices made by the kindergarten teachers, though their 
research focus stated that, “Orchestrations can be considered as the choices made by 
the teachers about the use of technology in their classrooms” (p. 215).

In a second example, Carlsen et al. (2016) drew on Pickering (1995) to position 
the teacher, the learner, the digital tool and the mathematics (as agents) interacting 
in what they termed “distributed agency”. They argued that the phrase teachers’ 
choices, used by Drijvers et al. (2010), “obscures the influence/agency of digital 
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tools in understanding teachers’ use of digital technology in mathematics class-
rooms” (p. 15). This prompted me to pay attention to when non-intentional actions 
on the part of the teacher may be driven or influenced by the tool.

The following three research questions are considered in this chapter:

 1. What orchestrations, or sequences of orchestrations, does a primary school 
teacher employ when using touchscreen technology (TT specifically) in teaching 
mathematics?

 2. How does the way in which TT materialises the mathematical concept of multi-
plication impact the pedagogical choices of a teacher?

 3. How does a teacher’s professional instrumental genesis evolve while using TT as 
a teaching tool?

In order to respond to these questions, I draw on the data gathered during the broader 
research project described in the method section that follows.

4  On Method

As a member of the initial TouchTimes research team, I am aware of some of the 
intentional choices related to TT’s design and its potential to support the teaching and 
learning of mathematics. I will situate some of the research-informed design choices 
within the research literature on the teaching and learning of multiplication.

4.1  TouchTimes as a Multiplying Machine

Designed to enable young children’s experiences with multiplication that are multi-
plicative rather than additive, TT (Jackiw & Sinclair, 2019) is a multi-touch, iPad 
application. Children receive direct visual, symbolic and haptic feedback as they 
create and transform pictorial representations of multiplicative situations on the TT 
screen through their fingertips. There are two microworlds in TT, Grasplify and 
Zaplify, and I will briefly describe the one relevant to this chapter, namely, Grasplify.1 
Embodying the co-ordination of units in a visually singular form, in this world each 
of the user’s hands becomes either the multiplicand or the multiplier. In order to 
more easily visualise and better understand how the mathematics in Grasplify func-
tions in response to a user’s fingertips, this short, 2-min video demonstration, and 
brief explanation of some Grasplify basics may be helpful (see video Fig. 1).

Grasplify opens with a blank screen, split in half by a vertical line (Fig.  2a). 
Designed to be symmetric, coloured dots (called ‘pips’) appear on whichever side 
of the screen is touched first, and remain present while the user’s fingertips are still 

1 For a more detailed description of Grasplify, see Bakos and Pimm (2020), pp. 148–150.
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Fig. 1 Short video demonstration of Grasplify (▶ https://doi.org/10.1007/000-8wt)

Fig. 2 (a) Initial screen; (b) pip creation

in contact with the screen (in this instance, the left side in Fig. 2b). Enclosed bun-
dles of pips (named ‘pods’) are then created by finger taps (either singly or collec-
tively) on the opposite side of the screen from where the pips are held (Fig. 3a). 
Unlike pips, which require continuous finger-screen contact to remain present, pods 
remain visible on the screen even after finger contact has been removed, and are 
visual duplicates, both in colour and in spatial orientation, to their corresponding 
pip configuration. The composition and shape of the pods adjust instantly to the 
addition or removal of pip-creating fingers from the screen, unless all pip-fingers are 
removed, which resets the screen (effectively multiplying by zero). The numerical 
expression at the top of the screen symbolically represents the multiplier, the 
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Fig. 3 (a) Post-pod creation; (b) two composite units showing what would be projected on 
the screen

multiplicand and the corresponding product (Fig. 3b), and is produced in time, ele-
ment by element, and adjusts automatically as pips and pods are created or removed.

The functional and relational aspects of TT’s design were inspired by Vergnaud’s 
(1983) work on the conceptual field of multiplication, which focuses on doubling, 
tripling, etc., rather than repeated addition. Grasplify also embodies the co- 
ordination of Davydov’s (1992) double change-in-unit process, as a unit (the multi-
plicand, represented by the pips) must first be created, before a unit of units (the 
multiplier, represented by the pods) can be made. This ordering of multiplicand × 
multiplier is the opposite of what British Columbian teachers (among others) usu-
ally encounter in textbooks. However, this ordering is intentional in TT and is 
grounded in approaches to early mathematics based on measurement and ratio, 
where the unit quantity is identified prior to the number of units. The order of factors 
in TT, in which the multiplicand precedes the multiplier, is consistent with the 
Davydovian approach to multiplication, where one wants to identify the unit quan-
tity before asking ‘how many units?’ This approach is therefore asymmetric, in that 
the chronological order of the two factors’ appearance is important. But this order 
is the opposite of what is found in most of the textbooks and resources used in 
Canada, where multiplication is primarily introduced through repeated addition and 
where the multiplier always precedes the multiplicand in terms of the notation. The 
TT design embodies alternative models of multiplication, while making the func-
tional and the change-in-unit approaches accessible to young children.

4.2  Study Context and Participants

The episodes described in this chapter took place in two primary classrooms, in dif-
ferent schools in British Columbia, Canada, during the 2019–2020 school year. 
Both of the teachers involved are experienced Canadian primary teachers, with 

S. Bakos



75

master’s degrees, who teach French Immersion in grade 3 or 3–4. The teachers had 
volunteered to be part of a larger, multi-phase project involving the integration of 
TT and the collaborative development of tasks to be used with it.

The data used in this chapter comes from phase two of the project, when the 
research team (two professors and two doctoral students, including the author) were 
invited by both teachers into their classrooms to observe mathematics lessons where 
TT was being used. Members of the team (between two and four depending on 
availability) observed and video-recorded a total of seven 60- to 90-min mathemat-
ics lessons in the two classrooms. These observations began with three visits to 
Leah’s third-grade classroom in October–November 2019. There were then two 
classroom visits in Rachel’s grade 3–4 classroom in December 2019 and another 
two in March 2020.

There was one video camera set up either in the corner or in the centre of the 
classroom, in order best to capture the teacher-led, whole-class aspects of the les-
son. An additional camera was used by one member of the research team to record 
what individual students or pairs of students were doing on their iPad while explor-
ing their assigned tasks. Field notes taken during these visits, as well as the digital 
recordings of the whole-class lessons and partner work, were examined and the 
episodes shared here have been chosen to illustrate each teacher’s orchestrating of 
TT in their classroom and to highlight how TT has impacted these teachers.

The next sub-section draws on the data outlined above to present case studies of 
these two primary teachers and the episodes have been chosen to develop a picture 
of each teacher’s orchestrating of TT and to highlight the influence of the digital 
technology and its presentation of mathematical ideas on the teachers.

4.3  Data Analysis

The data was analysed with two specific aims. The first was related to orchestrations 
and the second concerned double instrumental genesis. Initially, I identified the 
orchestration types used by each teacher and then looked for sequences of orches-
tration that were commonly used by both. Additionally, I wanted to understand how 
each teacher’s professional instrumental genesis evolved while using TT as a teach-
ing tool.

I was conscious of three factors essential to my research: (1) the primary school 
context; (2) the touchscreen nature of the digital technology; (3) the novelty of the 
TT model of multiplication (both for teachers and for students). When examining 
these sequences of orchestrations, I was also looking for lesson ‘hiccups’ (Clark- 
Wilson, 2010) arising from the teacher–tool–mathematics ensemble: “the perturba-
tions experienced by the teachers during the lesson, triggered by the use of the 
technology that seemed to illuminate discontinuities in their knowledge and offer 
opportunities for the teachers’ epistemological development within the domain of 
the study” (p. 138).
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Research based on double instrumental genesis (Haspekian, 2011, 2014) has 
been carried out in the context of teaching with spreadsheets at the secondary- 
school level. Unlike spreadsheets, TT is a digital tool specifically developed for 
teaching mathematics with primary students. However, as discussed earlier in this 
chapter, TT’s functional and change-in-unit approaches to multiplication are very 
different from those with which British Columbian primary teachers are familiar.

5  Case Studies of Instrumental Orchestrations

I begin with some general-level observations about the orchestration types and con-
figurations across both classrooms. As I illustrate them, I also point out instances of 
the teacher–tool–mathematics ensemble, the development of teacher professional 
genesis and the impact of a lesson ‘hiccup’ in the creation of a new orchestration.

5.1  Sequences of Orchestrations

Both Leah and Rachel had access to sufficient iPads with TT downloaded onto them 
for individual or pairs of students to use and were able to plug an iPad into a projec-
tor, which presented an enlarged screen image of TT on the wall for all students to 
see. Rachel sometimes used an Elmo device, so that the projected image also showed 
the user’s fingers maneuvering on the iPad screen.

During our team presence in both classrooms, a similar sequence of orchestra-
tions was used by the teachers when introducing a new task using TT. For example, 
Leah made 1 × 2 = 2 on an iPad (a Technical-demo) that was projected onto the 
screen for all to see (Fig. 4a) and asked, “What is the product?”, thereby introducing 
unfamiliar mathematical vocabulary (an element of the mathematics register) to her 

Fig. 4 (a) Leah’s Technical-demo projection; (b) Rachel’s Technical-demo
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third-grade students. Invoking the teacher-centred Explain-the-screen orchestration, 
Leah then physically pointed out the product on the screen.

Rachel preferred to begin her lesson by gathering students on the carpet in a 
group, often holding an iPad up for students to view, while demonstrating (Technical- 
demo) what she wanted students to do (Fig. 4b). On occasion, she also verbally 
explained the TT task using a Board-instruction orchestration where, for example, 
she wrote the target products that students were to produce using TT (such as mul-
tiples of 3).

I now provide a full elaboration of the second lesson observed in Rachel’s grade 
3–4 classroom, which illustrates the use of follow-up orchestrations. All students 
were seated on the carpet in front of Rachel, and she began by asking them what 
colour the product is. When she asked this question, she did not have an iPad in her 
hands, nor one projected for students to see. Despite this, one of the students imme-
diately answered, “Blanc [white]”. Though the technology was not physically pres-
ent, Rachel drew upon student mental images of TT through this Explain-the-screen 
orchestration, linking mathematical vocabulary with the colour of the product sym-
bol displayed by TT. She then explained that students were to use TT to make the 
product go up by twos. A short (84-second) visual demonstration and explanation of 
how to skip count using Grasplify by creating additional pods and how to skip count 
by placing more pip-creating fingers on the screen can be viewed in video Fig. 5.  
A brief description of the mathematical differences in these two ways of skip  
counting is also included.

As students worked on the task in pairs, Rachel engaged in a Monitor-and-guide 
orchestration, moving throughout the room, monitoring student progress, answer-
ing questions and providing differentiated instruction, as necessary. Once most 
pairs had successfully completed the task, Rachel brought the class back together 
and, using a Spot-and-show orchestration, asked a pair of students to share. The pair 
chosen came to the front of the group, becoming Sherpas-at-work (Fig. 6), holding 
up an iPad for their classmates to see, while demonstrating and explaining how they 
had completed the assigned task.

Fig. 5 Video demonstration of skip counting by pips (▶ https://doi.org/10.1007/000-8ws)
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Fig. 6 Sherpas-at-work

While engaging the pairs in the Explain-the-screen orchestration, Rachel also 
simultaneously interacted with the pair (and sometimes with the whole class) in a 
Discuss-the-screen orchestration, drawing attention to the mathematics. [The tran-
script below was translated from French.]

Rachel:  Show us one way to count by two. [Student 1 places two pip-creating 
fingers on the screen. Then student 2 creates two pods.] Wait, describe 
what you’re doing. [Students remove fingers and start again.]

Student 2: So, go up two. [Student 1 creates two pips.]
Rachel:  Those are two pips. [Points to left screen where the pips are being 

created.]
Student 2: Pips.
Rachel: Pips. [Nodding.]
Student 2:  And then we’re going to add pods here. [Student 2 adds two pods to 

create 2 × 2 = 4.]
Rachel: Pods. [Nodding.]
Student 2:  We just add one and then… [Student 1 places another pip-finger on the 

screen, creating 3 × 2 = 6. Then sequentially adds one, two, three more 
pip- fingers from her other hand; 4 × 2 = 8, 5 × 2 = 10, 6 × 2 = 12.]

Rachel:  You’re adding to the pips or the pods? [Student 2 adds one, two, three 
more pips; 7 × 2 = 14, 8 × 2 = 16, 9 × 2 = 18.]

Student 2:  Pips. And it makes it go by two. [Rachel assists by placing two pip-
creating fingers on the screen. 10 × 2 = 20, 11 × 2 = 22.]
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Rachel: So, how many pods are there?
Student 2: Two.
Rachel: And how many pips in each pod? How many?
Student 2: Eleven.
Rachel: Have we seen what the girls did?
Students: [Some respond yes, and others respond no].
Rachel: Where do you add? Did you add to the pods or to the pips?
Student 2: The pips.
Rachel:  The pips. Okay, thanks. Who found another way to make the product 

go up by two?

As the pair explained their method of skip counting, Rachel assisted by provid-
ing more pip-creating fingers, while simultaneously engaging in a Discuss-the- 
screen orchestration, clarifying how many pips and how many pods there were. She 
also specifically asked how many pips were in the pods and whether they adjusted 
the number of pips or pods when making the product go up by two. In so doing, 
Rachel led the pair beyond the technique used with the technology, towards a more 
explicit explanation involving mathematical language related to multiplication, 
while also building collective instrumental genesis by highlighting that the pair had 
counted up by twos by changing the number of pips each time.

In this moment, the teacher–tool–mathematics ensemble was working in concert 
and the elements were mutually influencing each other. This can be seen as Rachel 
spoke to the children in terms of pips and pods, directly using the language of TT in 
her instruction and merging it with the language of skip counting. It can also be seen 
in the way fingers became part of the multiplicative expression. Later in the lesson, 
students skip counted backwards from twenty. Rachel asked a pair who had created 
5 × 4 = 20 on their TT screen, “Can you explain why you can count down by five or 
four? If you take away one finger right now, will it count down by five or by four?” 
In this instance of the tool–mathematics merger, it is unclear where the tool stops, 
and the mathematics begins.

Though Rachel had taught skip counting before, during her implementation of 
TT, skip counting had become a new mathematical concept, more nuanced and 
complex. The concept, and therefore her pedagogical strategies (of doing it in dif-
ferent ways), have both changed. Her teacher pedagogy now includes the TT-inflect 
concept. The design of TT and the manner in which additional finger touches affect 
the multiplication model displayed on the screen have mathematical implications 
that influence the didactical performance of the teacher. TT’s design allows for the 
product to increase by two in different ways, thus providing a pedagogical opportu-
nity for Rachel, which will be discussed in more detail in the sub-section that fol-
lows. Her ability to recognise and exploit this situation, in order to support students’ 
instrumental genesis and mathematical learning, is indicative of her professional 
genesis of TT as a teaching tool.
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5.2  New Orchestrations

In this sub-section, I highlight three new instrumental orchestrations identified in 
the two classrooms. The first one can be exemplified by continuing the lesson from 
Rachel’s classroom discussed above. We pick up where a new pair had just shown 
another way of counting by twos, by adding successive pods.

Rachel  How many pods are there now? [Points toward the right side of the 
screen where the pods are. 2 × 12 = 24.]

Student 3 Twelve.
Rachel Yes, twelve. And how many pips are there?
Student 4 Two.
Rachel  Look at this image. [2 × 12 = 24.] How is their image different from 

the image of the first pair [12 × 2 = 24.]? How is this image different?
Student 5 Because they add the pods and not the pips.

As the two students used their iPad to demonstrate and explain their method for 
counting up by twos, Rachel once again engaged in a Discuss-the-screen orchestra-
tion by asking how many pips and how many pods were on the final screen. She then 
pointed to the screen (Fig.  7), asking the class to look at the current image and 
identify how it is different from the first one. In this instance, Rachel was engaging 
in a variation of the Discuss-the-screen orchestration by referring to the visible tech-
nology and to a mental image of the previous screen shared by the first pair, which 
required students to make a sequential comparison. This orchestration was used by 
both teachers several times to compare different strategies and I shall refer to it as a 
Compare-successive-screens orchestration.

Fig. 7 Discuss-the-screen
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This orchestration was also observed and used in whole-class orchestrations in 
Leah’s classroom, though in a slightly different way. Often, with a particular con-
figuration on the screen, Leah would ask the class prediction questions such as, “If 
I put one more pip-finger down, make a prediction about how the sentence at the 
top will change. What is that going to look like? What are the numbers at the top 
going to say?” This involves a Link-screen-board orchestration, by having stu-
dents notice the interaction among the pips and pods and the mathematical sen-
tence displayed by TT. However, it also involves a Compare-successive-screens 
orchestration, where the focus is on comparing the present screen state with an 
imagined future one.

In drawing students’ attention to how the pips (the multiplicand) influence the 
pods (the multiplier), the Compare-successive-screens orchestration is an exploita-
tion mode used by the teacher, that once again exemplifies the emergence of the 
teacher–tool–mathematics ensemble. Rachel was drawing students’ attention to the 
two different ways in which multiplication was occurring in TT. In order to skip 
count by twos and achieve 2 × 12 = 24 in TT, students started with two pips and 
sequentially created additional pods, a strategy reminiscent of repeated addition, 
whereas 12 × 2 = 24 required students to begin with a single pip and two pods. 
Students then sequentially placed a second, third, fourth, etc. pip-finger on the 
screen. By so doing, each additional pip ‘spreads’ across all pods (two pods results 
in an increase of two with each new pip). By using Comparing-successive-screens, 
both Rachel and Leah (with her predictive questions) could focus attention on the 
effects of additional finger placements on the product. Rachel also chose to high-
light the different ways of skip counting by twos through the use of this orchestra-
tion. The Comparing-successive-screens orchestration occurred during both 
teachers’ didactical performances, evidence of the co-implication of TT in their 
ways of thinking about and teaching multiplication. TT had become a mathemat-
ics–teaching instrument.

In the following example, Leah used a specific orchestration that is related to 
Link-screen-paper, where students are requested to draw a particular screen con-
figuration. Starting from the initial configuration of one pip and three pods, students 
were asked to show how they could double three using TT. After students shared 
their strategies for doing this, they were asked to use their mini-whiteboards to draw 
what the TT screen would look like after doubling three. I see this as an important 
and distinct orchestration that I will call Document-screen-on-paper, as it requires 
students to reproduce various elements of the screen, as can be seen in examples 
Fig. 8a, b, which included the vertical line dividing TT into two, the use of different 
colours for the pips and the reproduction of those colours in the pods, and the mul-
tiplication equations, as well as some of the screen icons.

The dynamic nature of TT allows children an opportunity to create, see and feel 
through their fingertips an entirely different experience of multiplication from that 
produced through static images on worksheets. Once their fingers are removed from 
the TT screen, however, the images vanish. Drawing is commonly used in primary 
classrooms as a way of capturing and expressing ideas, and the Document-screen- 
on-paper orchestration encourages students to examine more carefully the screen 
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Fig. 8 (a) Document-screen-on-paper on a mini-whiteboard; (b) Document-screen-on- 
paper drawing

images that are modeling multiplication, and to replicate these in their drawings. 
The shape, colour and composition of the pods (multiplier) are all important in rela-
tion to the pips (multiplicand).

A final new orchestration observed, which is specific to the touchscreen nature of 
TT, arose during the whole-class orchestrations and was a result of a lesson ‘hic-
cup’. Although the iPad screen was projected, students were unable to see what the 
user’s fingers were doing on the screen. This was problematic, as students could see 
the results of the finger manipulations on the projected screen image, but could not 
see how the fingers themselves were producing this. Leah was in the early stages of 
her professional genesis, and this was an unforeseen problem. Therefore, she had to 
address the students’ need to see the actions of the user’s fingers on the screen in 
other ways. This sometimes involved pointing to the screen herself (Fig. 9a), asking 
a child to point at the screen (Figs. 9b and 10a) and occasionally holding up an iPad 
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Fig. 9 (a) Pointing to the product; (b) pointing to the array button

Fig. 10 (a) Pointing to a yellow pip within a pod; (b) Sherpa-at-work on an iPad

vertically for students to explain and demonstrate on the screen for their classmates 
(Fig. 10b), in what I call a Discuss-the-finger-and-screen orchestration.

TT requires finger-screen contact to function and, as a result, there is a natural 
emergence of an orchestration for Discuss-the-finger-and-screen. The mathematics 
accessed through TT can only be materialised through finger–screen contact. The 
importance of the fingers and the necessity for seeing them manipulating TT is an 
instance of the tool’s influence on a teacher’s actions. Moreover, fingers newly 
become part of how to express multiplication and how to attend to the process of 
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producing a multiplicative expression, rather than just considering the result (as the 
static image shows, for example, in Fig. 10a). Again, we can see the emergence of 
an ensemble that performs in a way that is pedagogically, mathematically and tech-
nologically very distinct from normal practice.

5.3  Exploring the Tool–Teacher Relation

In the previous sub-sections, I have focused on documenting the sequences of 
orchestrations used and identifying new ones, while highlighting that TouchTimes, 
the mathematics and the teacher are not independent, but rather are co-implicated. 
In this sub-section, I focus on episodes where the tool had a strong agential role.

In the first lesson, Leah introduced TT to her students by engaging in a teacher- 
centred, Technical-demo to show students which button to push to enter the Grasplify 
world. In the video-recording, a student is overheard asking, “the light blue?” in 
reference to the colour of the Grasplify button. Leah then asked, “What do you 
notice happens on this side? [Fig. 11a] What do you notice happens on that side? 
[Fig. 11b]”. She demonstrated few features of the technology, only showing how to 
create a pip and pods. Though the images on the iPad screen were projected, stu-
dents were unable to see what Leah’s fingers were doing (Fig. 11c). Her instructions 
were to play with and explore the technology, and to pay attention to what happens 
at the top of the screen when lifting, moving or adding a finger.

Students began their individual explorations on their iPads. Early in the explora-
tion, a student asked a question. Leah stopped the class and asked the student to 
share her question, which was: “I was wondering if you can do… because there’s 
always like, one times something, but I was wondering if you can do zero times 
something?” Rather than answer the question, Leah used it as an example of a ‘won-
dering’ that could emerge while playing with TT, and requested that students record 
their ‘wonderings’ on their mini-whiteboards.

In this excerpt, I see a coming together of disparate elements that occasioned the 
taking up of this particular student ‘wondering’. Leah’s purpose for the lesson was 
clear: “I want you to play with what happens when”. She did not intend to discuss 

Fig. 11 (a) Creating a pip; (b) creating a pod; (c) screen projection
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the issue of multiplication by zero and was likely surprised when a student won-
dered if it was possible to obtain 0 on the pip-making side of the screen. This 
instance of a lesson ‘hiccup’ was prompted by TT.

The multiplication symbols, in which a and b in the expression a x b both can be 
any numbers, brush up against the physicality of TT, in which there is no possible 
unit of 0, since one cannot touch the screen zero times. Though this ‘hiccup’ pro-
vided an opportunity to discuss multiplying by zero, which is generally not addressed 
in teaching approaches that rely on repeated addition, Leah chose to stay with her 
original lesson purpose, which was to familiarise students with the technology. The 
question was used as an opportunity to validate the act of ‘wondering’, positioning 
her as a teacher who invites open questions. It also concretised TT as a whole- 
number multiplying machine and provided a clear moment in which the character-
istics of the tool destabilised the teacher.

5.4  The Order Matters, So Language Matters Too

During her professional instrumental genesis, Leah was engaging in a process of 
instrumentalisation where she “instrumentalised the tool in order to service didactic 
objectives” (Haspekian, 2014, p. 253). As she became more familiar with TT and its 
design, her thinking about multiplication and the language she used in reference to 
multiplicative notions began to transform.

When first introduced to TT as part of the research project in 2018, Leah 
described the app as “backwards”, explaining, “because when I’m teaching it, […] 
always the multiplication is the groups-of, not this five times. For instance, if I am 
doing three times four, I would expect three groups-of four to show up (Fig. 12a), 
but four groups-of three is showing up for three times four” (Fig. 12b). Although not 
experienced during a lesson, this ‘hiccup’ was clearly triggered by the design of TT 
and throughout the first year of the project, Leah returned to this idea multiple 
times. She described showing TT to other teachers, who agreed that, “It’s […] the 
opposite way that the app is looking at it than some of us are used to teaching it” and 
she referenced the textbook where, “the multiplication is always groups-of. But the 
app is […] the opposite.” Leah’s discomfort with the order of the multiplier and the 

Fig. 12 (a) TouchTimes model of 3 × 4; (b) ‘groups-of’ model of 3 × 4
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multiplicand in TT was prompted by the technology and, when using TT, she had to 
think about and understand multiplication differently herself.

A year later, during one of our observational visits in Leah’s classroom, this issue 
spontaneously arose during her teaching while TT was projected onto a screen.

Leah  If we think of a pod of whales, is there more than one? It’s a group, 
right? So, the pods, if you think of a pea, with a pod, a pod of peas 
with all the pods. There’s more than one in it, it’s a group of things. 
Oh, I don’t want to use that word. [Laughs and looks towards the 
research team.]

Researcher It’s okay.
Leah It’s a collection of things. It’s more than one. Right?
Student Why don’t you want to say […] groups-of?
Leah  [Leah looks to the research team.] Before Madame started 

TouchTimes, I was stuck on calling multiplication as being groups-of. 
But we don’t always want to be thinking about multiplication that 
way. And TouchTimes helps us start thinking about it in a different 
way, so I’m trying to avoid that language that I’m using and change 
the way we look at it. I’m learning that as I go along.

This illustrates how TT influenced her thinking about multiplication and offers 
an example of Leah’s personal genesis interfering with her professional genesis. 
Initially, it was the multiplicand followed by the multiplier in the expression dis-
played at the top of the screen by TT that drew her attention towards how she 
thought about and taught multiplication to her third-grade students. Multiplication 
was no longer solely about ‘groups-of’ the way it previously had been for Leah.  
In reconciling her thinking about this mathematics, it also changed the language that 
she was using in reference to multiplication with her students.

In interviewing Leah in early March 2020, she shared her curiosity about student 
thinking in relation to the ordering in TT and whether the order mattered to them.

Leah  Yeah, and then I said, “Is seven times one the same thing on 
TouchTimes?” [Fig. 13a] And of course, because of com... how  
I always say it in French, commutative... commutative property. They 
all said, well it’s the same thing. And I said, “But does it look the 
same thing?” So, then I put, okay, one times seven on the board. [Fig. 
13b] “Make that on your TouchTimes. What does that mean on 
TouchTimes? Talk to me in TouchTimes language.” It was funny how 
a lot of kids went, “Well, it’s one group of seven”. Finally, one kid 
pipes up, “No, it’s not. It’s one, seven times.” So, it was so fascinating 
because it made them LOOK at that. […] Some of them got confused 
by that, but we changed it with two. If you change it with that you’ll 
see. There you go. There’s two, seven times [Fig. 13c].

During one of our classroom observations, Leah could be overheard in the video- 
recording, explaining to a research team member that her students were, “okay with 
the order”. Curious to know more about her thoughts relating to this comment, in 

S. Bakos



87

Fig. 13 (a) 7 × 1; (b) 1 × 7; (c) 2, 7 times

my interview with her I shared the video clip containing this comment and asked her 
to elaborate further.

Leah  That’s not the old-fashioned group-of. […] Do you want to know 
what I meant by that? Was… I’m still trying to go, this whole groups-
of thing, the way the order of the sentence is. Which still, people I’ve 
showed it to can’t get past it. But the kids are okay with it. It’s work-
ing for them, this five times. So why are we so stuck on it? Right? 
That’s what I meant by it. See the kids are okay with this, they’re 
learning, they’re understanding it.

Sandy Okay and so what prompted the comment?
Leah  Because I was amazed that that child did it exactly how TouchTimes 

would do it, without even a flinch.

Leah’s prior way of thinking about and teaching multiplication was primarily 
based on thinking of 7 × 2, in terms of repeated addition, that is as seven groups-of 
two. In TT, multiplication involves units of units, and therefore here it is a unit of 
seven, taken two times. Given the intertwined nature of teacher–tool–mathematics, 
the multiplicand × multiplier model used by TT created a ‘hiccup’ for Leah. Not in 
her lesson per se, but in her own understanding of multiplication. This significantly 
affected her personal genesis of TT, though it did not prove to be a barrier to her 
professional genesis (nor to the students’ explorations themselves). It is striking that 
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Leah was able to instrumentalise TT to serve her didactic objectives and proceeded 
to integrate TT into her pedagogical repertoire as a way of teaching multiplication, 
in spite of her own difficulty with the multiplicand × multiplier design of TT being 
the opposite of repeated addition approaches.

When sharing her continued difficulty with this ordering, Leah brought up com-
mutativity, though repeated addition as a model does not offer a way of understand-
ing commutativity. In trying to reconcile, for herself, that the order of TT should not 
matter, Leah drew upon her knowledge of the commutative property. Though the 
product will be the same for a × b and b × a, in Grasplify the emphasis is not on the 
product itself: rather, it is on the creation of the pip(s) and the ‘spreading’ of the pips 
throughout the pod-units. In this context, the multiplicand is not interchangeable 
with the multiplier – they have differing roles – and therefore commutativity did not 
assist Leah’s personal genesis of TT. What was compelling for her, however, was 
the successful instrumental orchestration of TT by her students. Unhampered by a 
deeply entrenched view of multiplication as repeated addition, her students easily 
used the language of ‘three, five times’ or ‘five groups-of three’ for 3 × 5.

It is worth questioning whether or not Leah’s personal and professional geneses 
would have evolved if she had not been part of our research project. When con-
fronted with a tool that did not conform to her accepted model and ways of thinking 
and speaking about multiplication, would she have persisted with her use of TT? If 
the tool and the mathematical concept both create dissonance for the teacher, does 
this thwart the development of the teacher–tool–mathematics ensemble?

6  Discussion

In this section, I draw on the case studies in returning to the purpose of this work, 
which was to gain a better understanding of the teacher–tool–mathematics ensem-
ble. To this aim, the previous sections have introduced some important elements and 
exemplified the manner in which TT modulated the classroom practice in the case 
studies examined, which I will discuss here. The scope of my study remains limited, 
as I observed only two teachers who were both voluntarily part of a research project 
involving the integration of TT. Nevertheless, some of my comments are not limited 
to these specific cases. I first present issues that are directly linked to the mathemat-
ics as presented by TT and then discuss the types of orchestrations that emerged 
from these primary classrooms through the use of touchscreen technology.

6.1  The Mathematics, the Teacher and the Tool

It is common practice for many primary school teachers to introduce multiplication 
through repeated addition, and many teachers, like Leah, become firmly rooted in 
teaching multiplication using a ‘groups-of’ approach. The design of TT, which 
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requires the multiplicand to be created by the user before the multiplier, and there-
fore the numerical expression at the top of the screen which reflects the number of 
pips and pods created by the user does not match this ‘groups-of’ idea. In this 
instance, the digital technology itself, as well as its manner of presenting the math-
ematics, shapes how a teacher discusses multiplication with her students, as when 
she refers to ‘pips’ and ‘pods’.

Leah became very conscious of using language such as ‘two, seven times’, which 
matched what was visible on the iPad screen. This new way of talking about multi-
plication is significantly related to the mathematics and exemplifies the mutual 
influence within the teacher–tool–mathematics ensemble. The manner in which 
Leah talked about multiplication sounded one way when using TT with her stu-
dents, but it might sound entirely different when teaching multiplication without the 
presence of TT. This has not been evoked in the literature (e.g., Anghileri, 1989; 
Kosko, 2018; Davis & Renert, 2013) on using different representations of multipli-
cation, which are shown visually, but are not accompanied by particular language 
expressions.

Additionally, both teachers used whole-class orchestrations to focus student atten-
tion on the effects of adding or removing pip-fingers to the configuration of the pods, 
and linking these unitisations to the product displayed in the numerical expression. 
In doing this, new orchestrations such as Compare-successive-screens, Document-
screen-on-paper and Discuss-the-finger-and-screen occurred. Though these orches-
trations could also be used at a secondary-school level, they initially emerged from a 
primary-school context. The Compare-successive screens and Discuss-the-finger-
and-screen orchestrations appeared spontaneously as the teachers interacted with the 
children and the ideas being shared during whole-class discussion. The Compare-
successive-screens orchestration was linked to the importance of highlighting math-
ematical ideas that emerged from TT, such as what happens when the unit is changed, 
a new idea for teachers when teaching multiplication.

Having children draw mathematical ideas and images in their notebooks is also 
a common pedagogical practice in many Canadian primary classrooms, and there-
fore the Document-screen-on-paper allows children to re-present the mathematics 
created with their fingers using TT into their notebooks for future reference. This 
directs attention to the relationship between the pip-side and the pod-side of the 
screen, which is helpful for students to appreciate the co-variation that is manifested 
through the colour and shape of the pips and pods. The Discuss-the-finger-and-
screen orchestration is very specific to the touchscreen nature of the technology, 
where the action of the fingers is not solely instrumental (to push buttons), but is 
conceptual (to express relations).

Leah and Rachel both engaged in a style of teaching where students were given 
a mathematical task, provided time to explore that task (often in pairs) and then the 
whole class was brought together for sharing and discussion. This is not an uncom-
mon method of teaching in Canadian primary schools. What is interesting, and 
appears to be more prevalent in the primary context, is the manner in which whole- 
class orchestrations occur during whole-class discussion. Rather than being domi-
nated by their teacher, primary students are situated in lead roles, sharing, 
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demonstrating and discussing their findings with their peers, and the teacher assumes 
a coaching role to assist in drawing out student thinking and highlighting or extend-
ing the mathematical ideas. The didactical performance of the teacher is complex 
and responsive to the ideas presented by the children, the mathematical ideas that 
are the focus of the lesson and the opportunities that emerge from TT and the 
task given.

This also differs from the approach that was used by the kindergarten teachers in 
Carlsen et  al.’s (2016) study where the teachers assumed assistant, mediator or 
teacher roles. In the case study excerpts provided, the situations were very much 
teacher-led, with the teacher mediating basic child–technology interactions between 
the interactive whiteboard and the children’s eyes and hands, as well as between the 
technical and mathematical aspects of the digital tool. Though Besnier (2018) men-
tions the kindergarten teacher’s emphasis “on verbalisation in mathematics and the 
idea that peer-to-peer exchanges promote learning” (p.  261), which is similar to 
what I observed in third and fourth grades, the focus of Besnier’s paper is on the 
kindergarten teacher’s creation of labels used on the board for children to manipu-
late and mimic the actions of the software, in the Manipulatives-and-software-duo 
orchestration. Besnier does not elaborate on the interactions between the teacher 
and students during this process.

One way in which the agency of TT was observed occurred through an unex-
pected student question related to multiplying by zero. This situation unfolded in a 
non-intentional way, where TT seemed to prompt a novel set of actions. This is 
noteworthy in that it was clearly an instance in which features of the tool had unin-
tended influence (agency) on the practice of the teacher. There was synergistic 
movement amongst and between the three components of teacher, technology (TT) 
and mathematics (multiplication). Although this movement sometimes arises out of 
teacher choice, it is also at times energised by TT itself. There are the classroom 
orchestrations that the teacher initiates because of the presence of TT. The design of 
TT occasions certain ways of seeing/feeling multiplication, which also affects how 
the teacher speaks about multiplication and the body (finger)–TT interaction also 
prompts new orchestrations.

6.2  Types of Orchestrations in Primary Classrooms

From the outset, I expected there to be some differences between the orchestrations 
used with touchscreen technology and the orchestrations previously reported using 
computers or interactive whiteboards (e.g., Carlsen et  al., 2016; Drijvers, 2010; 
Gueudet et al., 2014). Some differences are linked to the availability of iPads, which 
allows for individuals or pairs to access TT simultaneously, while others are related 
to the ways in which the TT screen was shared with students during class discus-
sion. When Leah was projecting the image of the TT screen for all to see, students 
were able to view the digital screen, but were unable to view the movements of the 
user’s fingers on the screen (which was also significant). In order to address this 

S. Bakos



91

issue, Leah sometimes had students Document-screen-on-paper, which could be 
held up and shared by students during class discussion.

The Discuss-the-finger-and-screen orchestration relates both to the touchscreen 
aspect of the digital technology and also to the difficulty in projecting the user’s 
fingers and their effects on the TT screen. This orchestration seemed to arise spon-
taneously in Leah’s didactical performance when she specifically wanted to draw 
attention to the fingers themselves, as well as the effects of adding or removing pip- 
fingers related to the configuration of the pods. Given the age of the students, both 
teachers sometimes brought the class together for discussion by having the students 
seated on the carpet in front of them. In this way, students could hold up their iPads 
for demonstration, or an iPad could be placed upright along the whiteboard ledge 
for all to see.

Students both in Leah’s and in Rachel’s classrooms were observed using mini- 
whiteboards to document the images on their screens. Both teachers wanted to con-
nect the finger actions on the screen when using TT with written or drawn hand 
actions that brought attention to the mathematics. The difficulties with unseen fin-
gers on the projection screen and mathematical ideas vanishing with the removal of 
fingers from TT are both problems that are entangled in the teacher–tool–mathemat-
ics ensemble. The solutions that emerged for these problems, however, indicate the 
growing professional genesis of the teachers in their implementation of TT as a 
teaching tool.

7  Conclusion

This chapter has used an ensemble approach to examine the ways in which the 
teacher–tool–mathematical components mutually influence each other while pri-
mary teachers are using TT to teach multiplication. Research on double instrumen-
tal genesis and instrumental orchestrations used by primary school teachers and/or 
the instrumental orchestrations used with touchscreen technology is scarce and this 
chapter contributes to this area. Many of the orchestrations noted by Drijvers et al. 
(2010, 2013) were also observed in these primary mathematics lessons.

Though I observed three new orchestrations (Compare-successive screens, 
Document-screen-on-paper and Discuss-the-finger-and-screen) that emerged dur-
ing the use of this particular touchscreen technology in the primary school context, 
I also observed ways in which the TouchTimes tool exerted agency in the classroom, 
especially in relation to new ways of speaking about multiplication and paying new 
attention to fingers as means to express and engage physically with multiplicative 
relations. This therefore underlines the importance of studying the use of different 
digital technologies, as they too may lead to specific orchestrations.
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Using First- and Second-Order Models 
to Characterise In-Service Teachers’ 
Video-Aided Reflection on Teaching 
and Learning with 3D Pens

Oi-Lam Ng, Biyao Liang, and Allen Leung

Abstract This study examines the processes through which video-aided reflections 
may guide teachers to become aware of, and develop, expertise in the use of a novel- 
to- them technology in mathematics classrooms. Four mathematics teachers partici-
pated in this study aimed at exploring teachers’ initial experience of using and 
planning lessons with the technology of “3D Pens”, which enables learners to con-
struct 3D models instantly via moving their hands. We analyse the participants’ 
reflections and interpretations of students’ actions during semi-structured interview 
sessions while they were watching video episodes of a lesson integrating 3D Pen for 
mathematics teaching and learning. Adopting the constructs of first- and second- 
order models, we provide fine-grained characterisation of the teachers’  mathematical 
and pedagogical learning in the moment of their reflection. The results suggest that 
the teacher participants not only shifted from operating on their first-order models 
to constructing second-order models of students’ geometrical thinking as supported 
by 3D Pens, but they also reasoned pedagogically based on their second-order mod-
els. Hence, watching videos of authentic technology-rich lessons facilitated a pro-
ductive noticing experience for mathematics teachers in terms of realising the 
educational potential for the technology of the 3D Pens.
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1  Introduction

The effective integration of  technology into the mathematics classroom to improve 
learning poses various challenges—most notably being teachers’ participation and 
expertise (Roschelle, 2006). In other words, what underpins the successful integra-
tion of technology is not only the design of the technology, but also the teachers’ 
levels of adaptive expertise (i.e., becoming more adaptive and more expert in help-
ing their students learn). For example, the last decade has seen an increase in teach-
ers’ adaptive expertise in using multi-representational and classroom networking 
technologies for teaching mathematics (e.g., Bellman et al., 2014; Clark-Wilson, 
2014); here, teachers were appropriating what were then novel technologies in their 
practice and transforming their pedagogies to take advantage of multiple represen-
tations and connected classrooms to help students learn mathematics. With new 
forms of technology becoming increasingly adopted in education, more research is 
needed to address teachers’ personal and professional development when adapting 
a technology—one that is novel to them—in subject teaching (Haspekian, 2014), as 
well as to explore professional development approaches for supporting teachers’ 
exploitation of technology affordances in classroom practices (Drijvers et al., 2016). 
Specifically, there is a need to understand how to support teachers’ realisation of the 
opportunities provided by new forms of technology for teaching and learning, which 
we aim to address in this chapter.

In recent years, teacher noticing has featured prominently in practice and research 
for developing mathematics teachers’ capacity to interpret complex classroom situ-
ations and events (e.g., Jacobs et  al., 2010; van Es & Sherin, 2002). The term, 
teacher noticing, has been greatly influenced by Mason (2002)‘s work on the disci-
pline of noticing, which encompasses becoming aware of one’s practice and keep-
ing such noticing productive through interpretations and enquiry. In particular, 
video-based approaches to teacher noticing can help capture the complexity of 
classroom events that could otherwise be easily overlooked or unattended to, such 
as critical moments of teaching and learning (Stockero & Zoest, 2013). Video-based 
discussions occasion teachers to observe and interpret what was watched and allow 
them to re-think their own teaching practices (Coles, 2019). When watching videos 
of someone else’s teaching, teachers may realise they have experienced much of 
what was happening in the videos themselves (Borko et al., 2008). In addition, the 
use of videos may help teachers anticipate what they might experience in an 

O.-L. Ng et al.



97

unfamiliar situation, such as when teaching in technology-rich environments. As 
Mason (2014) suggested, certain affordances of technology may or may not be 
manifested in the classroom; aligning teacher and student attention will improve 
communication of technology-in-use, and the use of videos can support teachers in 
anticipating the kinds of classroom communication and activities that may be mani-
fested. Video recording of someone else’s lesson can be conceptualised as a “bound-
ary object”, which lies at the intersection of different worlds or communities, here 
with the potential to be interpreted and conveyed in various ways by different view-
ers (Robutti et al., 2019). For example, Baccaglini-Frank et al. (2018) used videos 
as the boundary “between the single (real) classroom communities and future, 
potential classroom communities in which the activities would be realised again” 
(p. 102). In line with this, one area of future research is to establish empirical evi-
dence of how to effectively engage teachers in video-aided reflections, particularly 
when it comes to the kinds of noticing tasks that are facilitated in video-based pro-
fessional development (Coles, 2019; Tripp & Rich, 2012).

This study seeks to inform the processes through which teachers become aware 
of, and begin to reflect on, the use of a novel-to-them technology in mathematics 
classrooms. Of significance is that the teacher participants have just learned to use 
the technology for themselves, but not yet in their classroom teaching; in this way, 
we are interested in the participating teachers’ initial encounters with the target 
technology and whether they decide to (and how they) adopt it for their future teach-
ing. In the current study, we use video-aided reflection to facilitate a noticing expe-
rience for in-service mathematics teachers to consider the potential for the 
technology of “3D Pens” (Fig. 1), which enables one to draw in three dimensions, 
thereby enhancing the teaching and learning of geometry topics at the primary and 
secondary school level (Ng et al., 2018; Ng & Ferrara, 2020). The choice of 3D Pens 
is suitable for our investigation because it is a novel technology not only for the 

Fig. 1 Drawing in the third dimension with a 3D Pen
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current study’s participating teachers, but also in the mathematics education com-
munity at large. Therefore, we are interested in how the teacher participants inter-
preted what they noticed from watching the video episodes of a mathematics lesson 
involving the use of 3D Pens. Previous research has shown that video-aided teacher 
reflection promotes genuine engagement with students’ mathematical thinking, thus 
enriching teachers’ pedagogical content knowledge (Jacobs et  al., 2010). In the 
present study, we extend video-aided reflections to the context of technology-rich 
classrooms by taking videos of authentic 3D Pen-enabled classroom episodes as a 
tool for providing rich opportunities for teachers to develop their pedagogical 
knowledge; this can help hypothesise and reflect on student thinking within 3D Pen 
learning activities.

Our second research goal is to provide a fine-grained characterisation of the 
teachers’ mathematical and pedagogical learning in the moment of their reflection. 
Extant theoretical framing and empirical work on teacher noticing have focused on 
the features and actions of teacher noticing (e.g., what teachers notice, how teachers 
notice) (Sherin & Star, 2011). There is lack of research that unpacks the cognitive 
processes underlying teachers’ noticing activities. In the present study, we aim to 
address this research gap by gaining insights into how teachers’ knowledge interacts 
during noticing at a mental level. Instead of taking a possessive view of teacher 
knowledge, we conceptualise teachers’ knowledge construction as a dynamic, con-
structive, and adaptive process (Fennema & Franke, 1992; Liang, 2021). Engaging 
teachers in viewing and discussing lesson episodes provides a rich opportunity for 
teachers to construct knowledge of student thinking and adapt their personal math-
ematical knowledge. In the following section, we discuss the theoretical perspec-
tives and constructs that enable our inquiry into teachers’ mental activities during 
noticing.

2  Theoretical Framework

We adopt an epistemological perspective of constructivism that personal knowl-
edge, as the product of experiential knowing, is not a representation of objective 
truth—rather, it functions and organises viably within a knower’s experience and is 
idiosyncratic to the knower (von Glasersfeld, 1995). Therefore, each individual 
does not have direct access to other’s knowledge but can only construct hypothetical 
mental models (or interpretations) of the other’s knowledge as an observer. 
Regarding the context of teachers attempting to understand students’ mathematical 
thinking, because teachers do not have access to students’ knowledge, they can only 
construct models of the students’ thinking. In what follows, we elaborate on the 
notions of decentering and first- and second-order models that align with the central 
tenets of our theoretical framework.
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2.1  Decentering

The notion of decentering can be traced back to Piaget’s work on children’s egocen-
trism and decentration, including his work on children’s socialisation and speech 
development (Piaget, 1926/1959), children’s construction of space (Piaget & 
Inhelder, 1948/1967), and children’s ability to separate themselves from the envi-
ronment or other objects (Piaget, 1947/2001; 1954/2013). For example, it is non- 
trivial for an infant to model properties of other objects until they can decenter from 
the self and conceive of the objects existing independently. Before children’s 
achievement of object permanence, they believe an object does not exist until it is 
perceptually available.

Building on Piaget’s work on decentration, mathematics education researchers 
have adopted this construct to conceptualise decentering in the context of teaching 
(Confrey, 1990; Silverman & Thompson, 2008; Steffe & Thompson, 2000a). They 
defined teacher decentering as the mental action of an observer setting aside their 
own thinking and attempting to understand the perspective of others. Teachers’ con-
struction of knowledge of students’ mathematical thinking requires teachers to 
decenter from their personal mathematical knowledge to understand the knowledge 
of the students. A decentering teacher does not assume that their students would 
share the same mathematical thinking with the teacher themselves; instead, the 
teacher actively constructs interpretations of the students’ thinking through interac-
tions with students and reflection on the students’ mathematical activities (Baş- 
Ader & Carlson, 2021; Teuscher et al., 2016).

Moreover, engaging in decentering to understand students’ mathematical think-
ing requires the teacher to truly believe that students’ mathematical experiences, 
although potentially distinct from that of the adults’, is legitimate, rational, and 
valuable (Steffe & Thompson, 2000b). As Confrey (1990) stated:

Decentering, the ability to see a situation as perceived by another human being, is attempted 
with the assumption that the constructions of others, especially those held most firmly, have 
integrity and sensibility within another’s framework. (p. 108)

In the context of mathematics teaching and learning, this means mathematics teach-
ers need to respect students’ mathematical thinking, and here, one of the teachers’ 
tasks is to gain insights into the students’ mathematical realities, including how 
their thinking is rational and internally viable within the students’ frameworks.

2.2  First- and Second-Order Models

It may be asked how the notion of decentering can provide analytical power for 
researchers to investigate teachers’ construction of students’ mathematics. We find 
Teuscher et  al.’s (2016) framing of decentering through the lenses of first- and 
second- order models helpful in answering this question. Steffe et al. (1983) defined 
first-order models (FOMs) as “[hypothetical models] the observed subject 
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constructs to order, comprehend, and control his or her experience” (p. xvi). A stu-
dent’s (or a teacher’s) first-order mathematics consists of the student’s (or the teach-
er’s) mental actions that govern their mathematical activities. Teachers do not have 
access to their students’ first-order mathematics, in the same way that researchers 
do not have access to the observed teachers’ first-order mathematics. However, teach-
ers (or researchers) can make inferences or interpretations of the observed students’ 
(or teachers’) knowledge, which can help explain the observable actions of the stu-
dents (or teachers). Such inferences or interpretations are called second-order mod-
els (SOMs)—“[the hypothetical models] observers may construct of the subject’s 
knowledge in order to explain their observations (i.e., their experience) of the sub-
ject’s states and activities” (Steffe et al., 1983, p. xvi).

To recap, a teacher’s construction of SOMs requires the teacher to decenter. In 
other words, a decentering teacher engages in second-order modeling to generate 
hypotheses of their students’ thinking to the extent that if the teacher imagined 
themselves reasoning with the mathematics in those hypothetical ways, they would 
act in a similar way as the students. In contrast, a teacher who is constrained to their 
FOMs operates entirely from their own perspectives (i.e., not decentering) and may 
assume their students’ understandings are identical to their own or do not attempt to 
discern differences in the students’ thinking.

2.3  Pedagogical Consequences of Second-Order Modeling

Upon building the SOMs of students’ mathematics, a teacher is poised to compare 
the mental actions constituting their FOMs and SOMs to reflect on how students’ 
thinking is different, similar, or related to their own thinking. The teacher can also 
compare the SOMs of different students to discern differences in those students’ 
thinking. These interactions and reorganisations between multiple mathematical 
meanings have important pedagogical implications (see Silverman & Thompson, 
2008; Simon, 1995, 2014), including task design, questioning, and responding. 
Simon (2014) highlighted “the need for pedagogical theory to connect the work on 
second-order models with effective pedagogical design and interventions” (p. 350). 
He stated, “[p]edagogy requires knowing where one is starting, where one is going, 
and how to get there” (Simon, 2014, p. 349). Knowing where one is starting, and 
where one is going, necessarily implies simultaneous constructions of SOMs and 
operations on FOMs. A teacher’s ability to discern nuances in the SOMs of different 
students is also important when considering how to orchestrate meaningful mathe-
matical conversations in their classrooms and provide equitable learning experi-
ences for diverse students. In this book chapter, we provide empirical evidence that 
teachers’ SOMs and FOMs are indeed necessary, and meaningful, to motivate peda-
gogical considerations sensitive to student thinking.

O.-L. Ng et al.



101

3  Methods

3.1  Participants and Study Context

The qualitative and in-depth nature of our research necessitated that we only recruit 
four (three male and one female) teachers to participate in the study. The partici-
pants were four in-service secondary school mathematics teachers—Denny, Sam, 
Denise, and Michael (pseudonyms)—whose teaching experience at the time of the 
study was one, four, seven, and 10 years, respectively. They were selected due to the 
range of teaching experience they represented, and they had provided consent to 
take part in the study upon a call for participation from the first author’s networks of 
in-service mathematics teachers in Hong Kong.

The current study is situated within a larger, design-based research project which 
explored the technology-rich teaching and learning concerning a specific form of 
emergent technology: a handheld 3D Pen. It features a collaboration between the 
first author and the four participants that concerns pedagogical innovations for con-
structionist learning (Ng, 2020; Papert, 1980), with 3D Pens as the technological 
media. Given the ability to construct a 3D diagram and manipulate the constructed 
3D model, we anticipated that the 3D Pens might be useful in the learning of school 
mathematics, where many topics involve perception of space and the visualisation 
and manipulation of shapes. Hence, the larger design-based research intended for 
the teacher participants, in collaboration with researchers, to create a series of math-
ematics lesson plans integrating 3D Pens, to be implemented by the participants in 
their classrooms. We achieved this in four monthly project meetings, during which 
the participants tried out the use of 3D Pens and discussed suitable topics that com-
plemented their use in mathematics classrooms (Project Meetings 1 and 2); watched 
videos of a lesson with 3D Pens “in action” and  discussed refinements of the 
watched lesson (Project Meeting 3); and designed 12 secondary mathematics lesson 
plans that integrated 3D Pens for future implementations (Project Meeting 4). To 
date, two of the four teachers have implemented their designed lesson plans in their 
classrooms upon the four project meetings. As aligned with the research goal to 
analyse the teachers’ emerging knowledge of utilising the 3D Pens for their class-
room teaching via constructing first- and second- models of students’ mathematics, 
the data source analysed in this chapter was derived from Project Meeting 3, in 
which the participants engaged in the designed video-based noticing activity.

3.2  The Video

The participants watched a video of a Primary 5 (ages 11–12) mathematics lesson 
featuring the use of 3D Pens in the learning activities. We considered the video for-
mat to be suitable because watching videos of someone else’s teaching has 
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been found to be effective for teacher participants to evaluate aspects of the videos 
(Nickerson et al., 2017). Moreover, the choice of a Primary 5 lesson was to enable 
the participants to relate to their own context of secondary mathematics, without 
having explicit impressions of what their own lessons might look like. Indeed, there 
were numerous secondary mathematics topics that required strong visualisation of 
3D shapes and space, such as those captured in the video. The selected video high-
lights the integration of 3D Pens for teaching and learning the “properties of prisms” 
(Hong Kong Curriculum Development Council [HKCDC], 2015), namely, the num-
ber of bases, lateral faces, and the total number of faces in a prism. In the local 
context of Hong Kong, this topic has been approached with or without (virtual) 
manipulatives by teachers and has been emphasised numerically (i.e., how many) 
rather than relationally (i.e., what are the properties). The video captured a Primary 
5 lesson taught by an experienced classroom teacher who had jointly prepared the 
lesson plan with the first author. Hereafter, we refer to this teacher in the video as 
the instructor to differentiate him from the participating teachers.

The main learning activity in the lesson was using the 3D Pens to work in pairs 
to construct two rectangular prisms and two triangular prisms, one of each by each 
student in the pair (see Fig. 2a). Finally, the classroom teacher led a whole-class 
discussion about the target properties once the students had constructed the 3D sol-
ids (see Fig. 2b,c). Table 1 outlines the nine video episodes compiled into a 13:54 
video segment, as well as the camera focus of the episodes. We chose these nine 
episodes because they chronologically captured key moments of the lesson, namely, 
the introduction, the learning activity with the 3D Pens, debriefing about the activity 
and the conclusion. They were taken from different camera foci (whole class and 
individual students) in order to capture teaching and learning from both general and 
fine-grained perspectives.

Fig. 2 (a) A student drawing a triangular prism with a 3D Pen (captured in Episode 2); (b) a final 
product made by the student (captured in Episode 3); and (c) the instructor leading a class discus-
sion on the properties of the prisms (captured in Episode 8)
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Table 1 The number and length of video episodes as they relate to different parts of the 
mathematics lesson with 3D pens and camera focus

Lesson parts in chronological 
order

Corresponding 
episode number

Length of selected 
episodes (in 
[min:sec]) Camera focus

Whole-class discussion on 
naming prisms

1 [00:40] Whole class

Paired students drawing prisms 
with 3D Pens (see Fig. 2a)

2–6 [01:20], [01:42], 
[01:43], [01:13], 
[02:06]

Individual 
students at their 
desks

Whole-class discussion on the 
properties of the solids drawn 
(see Fig. 2b–c)

7 [01:44] Whole class

Whole-class discussion on 
generalising the properties

8, 9 [02:18], [01:08] Whole class

Total length: 
[13:54]

3.3  Video-Based Semi-structured Interviews

The method of video-based semi-structured interviews is suitable for examining 
teachers’ mathematical and pedagogical learning during noticing because it enables 
teachers to view and reflect on unique instructional moments. During Project 
Meeting 3, the four teacher participants and two researchers (the first author and her 
collaborator, named R1 and R2 in the transcript, respectively) watched the afore-
mentioned nine video episodes. After each episode was played on a large projected 
screen, the two researchers each conducted a semi-structured interview with their 
assigned pair of participants. The first author worked with Denise and Michael in 
one group, and the other researcher worked with Denny and Sam. The prompts used 
in the semi-structured interviews were drawn from Mason (2002), who argued that 
two requirements exist for professional noticing. The first requirement is to create 
an “account of” an event, that is, to reconstruct step by step what the participants 
saw and briefly but vividly describe some events in the video. The second require-
ment is to “account for”, that is, to offer an interpretation, explanation, value, judge-
ment, justification, or criticism of the accounts. Two video cameras were placed in 
the room to capture the teachers’ verbal and nonverbal communication as they 
described and reflected on what they noticed from watching the episodes. The 
video-based semi-structured interviews lasted for 80 min.

Following the video-based semi-structured interviews, the participants spent 
15 min individually refining the lesson that they had just watched by annotating or 
making notes on the printed lesson plans the instructor had prepared. Then, the 
group of four teacher participants and the two researchers engaged in a 15-min dis-
cussion about the specific details of their lesson refinement and the justifications for 
their decisions. The aims of the study reported in this chapter do not warrant a report 
on the teachers’ lesson-refining activities in detail. However, we did include some 
statements made during the lesson-refining session to support our claims about the 
teachers’ FOMs and SOMs.
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3.4  Method of Analysis

The interviews were videotaped, transcribed in full, and analysed according to the 
teacher participants’ verbal statements and hand movements, that is, we attended to 
the participants’ discourse to infer the areas and processes through which the teach-
ers gained mathematical and pedagogical insights in relation to teaching with 3D 
Pens. As an example of our analysis, we iteratively watched the data obtained from 
the video-based interviews and lesson-refining sessions to generate and refine 
descriptions of the mathematical meanings constituting the participating teachers’ 
FOMs and SOMs and how these models influence their pedagogical thinking.

In our first pass of the data, we focused on identifying the instances where the 
teachers discussed their own mathematical thinking and the observed students’ 
mathematical thinking. This involved us excluding statements about classroom 
management, classroom environment, and communication and tasks that were non- 
mathematical. For example, the statements of “[the instructor] did something related 
to classroom management…” and “I also think that it is really difficult to engage 
two people in one task using one Pen” were considered non-mathematical state-
ments. Our second pass focused on constructing SOMs of the teachers’ thinking. 
Regarding each selected instance, we wrote inferential and descriptive memos of 
the teachers’ mathematical thinking and the teachers’ interpretations of the stu-
dents’ thinking. We inferred that a teacher was operating on their FOMs when they 
discussed how they would act or think regarding a mathematical situation, and we 
inferred a teacher was constructing their SOMs when they discussed their interpre-
tations or explanations of the students’ actions. Meanwhile, we inferred and 
described the interactions of a teacher’s SOMs and FOMs when the teacher com-
pared their own mathematical thinking to their inferences of students’ thinking, or 
when the teacher compared different students’ thinking. We alternatively tested, 
refined, and stabilised our inferences as we continued to find supporting or non- 
supporting evidence of those inferences. During the final pass, we reviewed the 
transcripts following each selected instance and identified additional instances that 
captured the teachers’ discussion on pedagogical decisions that were sensitive to 
their FOMs and SOMs. These efforts enabled us to re-include some instances that 
were excluded in the first pass of the data, affording us insights into the consequen-
tial pedagogical thinking of the teachers in relation to their construction of and 
operation on FOMs and SOMs.

4  Results

Our focus on teachers’ second-order modeling and the pedagogical potential of 
their modeling activity led us to characterise the four teacher participants’ reflection 
in relation to three episodes: Episodes 3, 4, and 6 (in which pairs of students were 
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creating prisms with the 3D Pens). Specifically, we discuss the mathematical mean-
ings constituting these teachers’ FOMs and SOMs, along with how these meanings 
and their interactions were situated in their viewing of students’ constructions with 
3D Pens and were generative to their pedagogical thinking. We illustrate three 
vignettes: first, we discuss a teacher’s pedagogical thinking based on his FOMs; 
second, we discuss a pair of teachers’ constructions and comparison of SOMs with 
respect to two groups of students and conjecture the pedagogical potential of such 
constructions; finally, we discuss three teachers’ constructions of SOMs (as well as 
the interactions between SOMs and FOMs) and their pedagogical thinking sensitive 
to those models. We note that our goal is to illustrate the multiple ways teachers may 
engage in video-aided reflection on the teaching and learning with 3D Pen construc-
tion, but not to make any value judgement on those different approaches.

4.1  Vignette 1: 3D Pen Constructions with Varying Sizes

After watching Episode 3, which offered the participants a video clip of the paired 
students’ geometric construction with the 3D Pens, Denise and Michael discussed 
the size of the drawings created by the students. In this discussion, Michael noticed 
that some students’ solids were very tiny. He commented that, “it is better if the 
teachers could ask his students to draw a larger solid” since it would make the con-
struction process easier and the properties of the solid more apparent. Following up 
on Michael’s comment, Denise suggested that maybe the teacher could indicate in 
the worksheet the exact size of the solid the students were supposed to produce. 
Michael disagreed and said:

Michael: I don’t think [the size] should be exact. It’s because in terms of the shapes, if the 
shapes are different sizes at the end, if you look at them, it shows some kind of mathemati-
cal concept […] I think to show them to all students, if they are of different sizes, it can help 
with the mathematical concept, I think.

In the above quotation, Michael suggested that although it might be helpful to ask 
students to draw bigger solids, it was unnecessary to require students to produce 
solids of an identical size. On the contrary, allowing students to use the 3D Pens to 
produce solids of varying sizes would be helpful for the students to relate to the 
“mathematical concept”. We interpreted that by “mathematical concept”, Michael 
was likely referring to the general structure and property of the solid, namely, the 
variations in the solids’ size could afford students’ discussions on the common 
properties held by multiple solids. We acknowledge that we were constrained by our 
interactions with Michael and that we could not further confirm our interpretation 
of his meaning of “mathematical concept”. Regardless, we claim that Michael was 
primarily operating on his FOM instead of SOM when making his statements. 
Namely, from his own perspective, he could see the general properties and structure 
of solids of varying sizes, and thus, he considered the pedagogical decision of 
allowing students to draw in any size as being significant. We do not find evidence 
that this pedagogical consideration (including the rationale he provided) had its 
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basis in his SOMs of the students’ mathematical activities. However, we do not 
intend to suggest that Michael’s reasoning was deficit merely because his pedagogi-
cal reasoning was FOM-based. Rather, he demonstrated a nice example of taking 
into account the use of 3D Pens to consider how to leverage the advantage of this 
tool to advance students’ mathematical reasoning.

4.2  Vignette 2: Straightening the Edges with 3D Pens

Next, we discuss how Sam and Denny, instead of operating on their FOMs, engaged 
in constructing and comparing the SOMs of two groups of students. Episode 6 
depicted two groups of students’ activities after completing a triangular prism with 
3D Pens. Denny discussed the differences he noticed between the two groups:

Denny: I noticed some students used scissors to cut the extra material [see Fig. 3a]. The first 
group of students were very happy after they drew the small triangular prism [see the stu-
dents’ final products in Fig. 3b]. And then the boy in the second group was persistent in 
making the lines straight, like making sure that those sides were parallel [see the students’ 
actions in Fig. 3c and their final product in Fig. 3d]. My interpretation is that maybe differ-
ent students had different foci. some may be satisfied by just completing the shape of the 
prism without paying attention to whether the lines were parallel.

Fig. 3 (a) A student cutting the extra materials at the vertex upon completion of a prism, (b) the 
final products of one group of students, (c) a group of students straightening the edges of a prism, 
and (d) their final product
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Sam: I think the student understood that the sides of a prism should be straight and that they 
cannot be messy. Otherwise, if the [two bases] were different, it was not a prism. They 
might not say this explicitly, but at least they had the concept.

R2: So you think they had the concept?

Sam: Yes. That’s why he knew he should make the lines straight, and the angles had to be 
one point, which was a good thing.

In the above transcript, Denny and Sam mentioned that one group of students 
made efforts to straighten the edges of their prism and cut away the surplus materi-
als at the vertices. They inferred that these students considered parallel sides and 
uniform bases as the critical features of a prism, while the other group of students 
might lack such understanding. We consider this to be an evidence of Denny and 
Sam constructing SOMs of those students; they considered specific student actions 
associated with their 3D Pen construction (e.g., drawing, straightening, and cutting) 
as indications of their underlying mathematical thinking. We conjecture that Denny 
and Sam’s interpretations of students’ technology-rich learning would have impor-
tant pedagogical potential in their future teaching. For example, we can envision 
them reinforcing the ideas of parallel-ness, vertices, and uniform bases when sup-
porting students’ 3D construction of prisms.

4.3  Vignette 3: Two Ways of Constructing and Perceiving 
a Triangular Prism

We now turn to providing analyses of how the participating teachers not only shift-
ing from operating on their FOMs to constructing SOMs, but also reasoning peda-
gogically based on their SOMs. We divide our discussion into three subsections.

4.3.1  “Originally I Thought He Was Drawing Something Wrong”

Upon viewing Episode 3, Denise noticed an unexpected event where she interpreted 
one group of students drawing a rectangle instead of a triangular prism (see the 
students’ activity in Fig. 4). In this case, she said, “Many of them were drawing 
triangular prisms, but one group was not.” The researcher then asked, “Is it possible 
to draw a rectangle first?” Denise hesitated to respond. We infer from Denise’s 
utterances that she considered the students could not have been drawing a triangular 
prism by first drawing a rectangle. In comparison, Michael interpreted that the same 
pair of students were trying to construct a rectangular prism (as opposed to a rect-
angle) because he noticed them drawing extra edges on top of the rectangle (also see 
Fig. 4). Similar to Denise, he concluded that the students were not drawing a trian-
gular prism as instructed by the instructor. We argue that at this point, both Denise 
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Fig. 4 Two students initially drew a rectangle during the construction of a triangular prism

Fig. 5 Denise’s gestures of (a) drawing a triangle and (b) drawing the triangular prism in a vertical 
orientation

and Michel were primarily operating on their FOMs and were interpreting the stu-
dents’ actions as contra-indications of those FOMs.

As the conversation progressed, Denise conjectured that “perhaps he is drawing 
a rectangle first and then a triangle”. She repeatedly described her imagined process 
of drawing one rectangle and then drawing two triangles on opposite sides of the 
rectangle (see her gestures in Fig. 5a). Here, we interpreted that Denise started to 
construct SOMs of the students’ thinking, namely, she was hypothesising a way of 
thinking that could explain the student’s actions of drawing a rectangle. Recall that 
initially, she considered these actions to be contra-indications of her own thinking 
without decentering, whereas here, she was able to infer the underlying rationality 
behind the students’ actions. Having re-enacted the drawing with her hands, Denise 
continued to comment with enthusiasm that this way of drawing with 3D Pen was 
better because “the triangles would stay sturdy no matter how long the horizontal 
edges were” and that if drawn otherwise (see her gesture in Fig. 5b), “it’s going to 
fall easily”. A few turns later, she said that “she had never thought we could draw it 
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in this way” and that “originally I thought he was drawing something wrong…or 
something else”. Denise’s discussion on the affordance of the students’ way of 
drawing suggested that she considered it a viable way of drawing that should be 
valued despite its novelty. This is evidence of her decentering from her personal 
mathematics to truly engage with the students’ mathematical thinking as she herself 
would think in their position.

4.3.2  “Why Did He Do That, and What Was He Thinking?”

Following up on Denise’s comments, Michael also conveyed his appreciation and 
curiosity for the students’ construction with 3D Pen:

Michael: [The teacher in the video] didn’t teach them how to draw it. [The student] just 
discovered [it] himself. (…) I mean I was thinking about it just now; if I draw a triangular 
prism, I’d draw a triangle first and then draw this [see Fig. 6a–b]. I’d make sure this and that 
are the same, so I’d draw a uniform base first, this thing first [pointing at the diagram; see 
Fig. 6c]. So, thinking in the other way, I found the students’ way of drawing very interest-
ing. Why did he do that, and what was he thinking? That’s what I was actually thinking.

Michael described how his personal way of drawing a triangular prism was dif-
ferent from the students’ way of drawing (i.e., drawing a triangle first versus draw-
ing a rectangle first). Here, he was simultaneously operating on his FOM and SOM 
and comparing them. It is also noteworthy that such a comparison motivated Michael 
to be inquisitive about the students’ intention and thinking (e.g., “Why did he do 
that, and what was he thinking?”).

Later, Michael discussed that the students’ unique way of drawing the prism with 
the 3D Pen might be underpinned by a different way of perceiving the shape:

Michael: I was thinking that when he was constructing the shape, his concept of the shape 
governed his way of construction. (…) If we try to trace back what he was thinking from his 
drawing, he was probably visualising the shape in that way. (…) In terms of cognition, he 
was thinking differently from other students, but I don’t think we can judge it as being 
good or bad.

Fig. 6 (a–b) Michael sketching his way of drawing a triangular prism on paper; (c) Michael ges-
turing over the shaded region while uttering, “I’d make sure these are the same” and then over the 
dotted region when uttering “I’d draw a uniform base first, this first”
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In the above quote, Michael claimed that the student’s actions of constructing the 
prism implied how he imagined a triangular prism. That he could look beyond the 
students’ physical actions of drawing to infer the students’ perceptions of the solids 
was an important benchmark for engaging in second-order modeling. His last state-
ment also indicated that he valued such a novel way of thinking without judging it 
as “good or bad”.

To sum up, we argue that both Denise and Michael shifted from primarily operat-
ing on their FOMs and not decentering to constructing SOMs of the students’ math-
ematics through decentering. This shift had important mathematical outcomes for 
both teachers. Recall that using 3D Pens to construct geometric shapes was also a 
novel experience to these participating teachers. It is not surprising that students 
may use 3D Pens to create drawings in diverse ways, and it is understandable that 
teachers who lack personal experience of using this tool may not be able to exhaust 
different construction approaches solely based on their FOMs. The cases of Denise 
and Michael suggested that second-order modeling had served as an avenue to 
enrich these teachers’ FOMs as they conceived of the students’ way of constructing 
a geometric shape as an additional viable construction approach. In the follow-
ing sub-section, we move to discussing the teachers’ pedagogical reasoning based 
on their second-order modeling activity.

4.3.3  “They Might Struggle to Understand.” “The Instructor 
Could Have…”

In our interactions with Denise during the lesson-refining phase, we observed that 
she built on her SOMs to make pedagogical decisions. She commented on the 
instructor’s inability to address different drawing methods and suggested that a 
classroom discussion should be facilitated:

Denise: Some people had drawn the lateral faces first and then the base, and [the instructor] 
completely ignored that group as if he didn’t see it. So, I feel that here, the instructor could 
have talked a little bit about why the students drew in these ways, and so forth.

Denise commented that the instructor was not sensitive to the students’ diverse 
ways of drawing and that he could have built upon the students’ different ways of 
thinking instead of ignoring them. She considered it valuable to have a discussion 
with, and among students about the different ways of viewing or positioning a trian-
gular prism. Here, we highlight that Denise’s emphasis on responding to the stu-
dents’ ways of thinking was contingent upon her SOMs of the students and valuing 
the students’ thinking, as we previously discussed. In contrast, we hypothesise that 
it is unlikely that the instructor in the video had engaged in second-order modeling 
as had  Denise. This instance suggested the pedagogical potential of teachers’ 
engagement in second-order modeling through  the processes of watching, and 
reflecting on, teaching videos.

Another teacher participant, Sam, also generated hypotheses to explain the same 
group of students’ drawings and commented on the potential consequence of the 
students’ thinking:
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Fig. 7 Sam’s gestures of (a–b) laying down a solid and (c–d) placing a solid upright

Sam: I noticed they lay down the solid [gesturing from Fig. 7a to Fig. 7b] and drew the 
lateral face first. This might be due to the lateral face being bigger, and they treated it as the 
base instead [gesturing similarly to Fig. 7b]. (…)

R2: Do you think this method of drawing would influence their conception of the prism?

Sam: I doubt that they had the intention of making the prism stood upright [gesturing a 
rotation of 90 degrees with his hand; see Fig. 7c and Fig. 7d]. Consequently, their  conception 
of the prism might be different because if they treated the lateral face as a base, they might 
struggle to understand, very difficult to understand.

From Sam’s words, we interpreted that he was hypothesising how the students 
who produced the prism by drawing the rectangular face first would struggle to 
perceive the triangle as the base. Specifically, these students would treat the rect-
angle as the base of a prism because location-wise, the rectangle was sitting at the 
bottom from their perspectives. This way of positioning and perceiving the prism 
was contrasted with his FOM that a prism was constructed upright with a triangular 
base. Sam was simultaneously constructing and comparing his SOM of the stu-
dents’ technological activities and his FOM. As such, he was able to anticipate the 
potential mathematical consequences of the observed student actions with 3D Pens 
given the mismatch between his own thinking and the students’. We consider Sam’s 
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reasoning as having important pedagogical potential; if he were to encounter a simi-
lar phenomenon in his instruction, he could enact pedagogical moves to facilitate 
students’ discussion on what should be considered a base and lateral face and clarify 
the conventional definitions of each.

5  Discussion and Conclusion

5.1  Video-Aided Reflections of Teaching and Learning 
with 3D Pens

To restate, the teachers in the current study had never used 3D Pens in a lesson 
before; hence, by viewing the videos, they were able to see the authentic teaching 
and learning episodes that occurred in the lessons that integrated the 3D Pens. 
Unlike prior studies in which the teachers realised that they had experienced much 
of what was happening in the videos themselves (Borko et al., 2008), the teachers in 
the present study used the videos to anticipate what they might experience in an 
unfamiliar situation. The teachers’ discourse has shown to be multimodal, as they 
often re-enacted their imagined drawing process with 3D Pens, either through ges-
turing or diagramming on paper. This suggests one affordance of using video-aided 
reflections. That is, it enables teachers to experientially construct multimodal FOMs 
associated with novel technology use.

Moreover, video-aided reflections support teachers to go beyond operating on 
FOMs to become observers of someone else’s activities and constructing SOMs of 
others’ thinking (i.e., becoming more decentered from FOMs). As shown in our 
findings, the teachers attended to students’ nuanced actions of 3D drawing, ranging 
from the hand movements with 3D Pens to the size and orientation of the final prod-
uct. Importantly, the videos captured the process of students’ drawing with 3D Pens 
in addition to merely the final product. These dynamic actions of 3D drawing would 
not have been accessible to the teachers if only students’ static written work or final 
product had been used to facilitate the reflection. Besides, the captured processes 
are likely not fully accessible to teachers in the moment of their teaching, consider-
ing a typical teacher-student ratio in mathematics classrooms. With regard to teach-
ing and learning with 3D Pens, having access to students’ construction process is 
not only beneficial but also essential for teachers’ constructions of fine-grained and 
explanatory SOMs, as students’ reasoning is heavily conveyed by, influenced by, 
and embedded within their physical actions. As suggested by the teachers’ discus-
sion on the students’ way of drawing a triangular prism horizontally, we argue that 
the temporality of the 3D drawing process enabled the teachers to construct SOMs 
as revealed by the students’ acts of 3D drawing.

In today’s era where multimodal and haptic interfaces are becoming an important 
design consideration for educational technology, particularly in mathematics educa-
tion (see, for example, a review in Carreira et al., 2017), we imply that more research 
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is needed in understanding how mathematics teachers may engage in personal and 
professional development when working with these novel forms of technologies. To 
this end, we highlight the value of video-based approaches to supporting teachers’ 
professional development in technology-rich mathematics teaching, for the oppor-
tunities it occasions for teachers to access and build models of student thinking in 
technology-rich classroom contexts.

Another affordance of using video-aided reflection is that it engenders teachers’ 
pedagogical reasoning sensitive to their FOMs, SOMs, and technology-rich con-
texts. The results of this study did not only shed light on what teachers identified as 
important and noteworthy in a 3D Pen-enabled lesson but also how they realised 
certain pedagogical affordances of the 3D Pens through the course of the video ses-
sion. For example, the teachers described that the 3D Pen afforded the students to 
visualise different orientations of a 3D shape and with varied sizes (e.g., Michael 
preferred not to restrict the size of the solids drawn and argued that the variation of 
sizes could serve to support students’ constructions of some “mathematical con-
cepts”). From this experience, they realised that certain ways of constructing with 
3D Pens (and visualising the product) should not be taken as given (e.g., Sam argued 
that it might not be trivial to students who constructed a triangular prism horizon-
tally to consider the triangular face as a base). Further, by being open to learning 
students’ diverse ways of construction in a 3D Pen environment, they reflected on 
their pedagogical moves that responded to individual student thinking for future 
lesson enactments (e.g., both Denise and Sam valued a deeper discussion on the 
different ways of constructing and perceiving a triangular prism).

To conclude, we suggest that videos can serve as a boundary object (Robutti 
et al., 2019), serving purposes from both the teachers’ and the researchers’ perspec-
tives on pedagogies and curricular design with news forms of technology. Through 
second-order modeling and associated pedagogical reasoning in the context of 
video-aided reflections, teachers can learn to be responsive to students’ diverse 
ways of construction with 3D Pens and to facilitate meaningful classroom conversa-
tions with students in their classrooms. Given that the participating teachers had 
already used (or planned to use) 3D Pens in their classroom teaching, it would be 
worthwhile to examine how they draw on this noticing experience to implement 
lessons with 3D Pens as a next stage of the study.

Finally, we draw the reader’s attention to another aspect of our methodology—
the method of interviewing. The interview prompts for the participating teachers’ 
interpretation (accounting for) and re-collection (made accounts; Mason, 2002) of 
what they saw in the video were helpful for triggering teachers’ second-order mod-
eling as well as guided their reflections of their own FOMs. This allowed the teach-
ers to become conscious of the connections they were drawing between specific 
classroom episodes and the principles of teaching and learning, as well as to reason 
about the observed classroom events (Star & Strickland, 2008). We encourage 
future research to consider using video-aided reflections as a means of developing 
teachers’ expertise in other target areas, particularly those that are unfamiliar and 
not easily accessible to teachers in their everyday teaching.
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5.2  Researching Teachers’ Second-Order Modeling Associated 
with Technology-Rich Teaching

Over the past three decades, constructivist researchers have used the notion of 
second- order modeling and relevant methodologies to generate findings on indi-
viduals’ mathematical cognition regarding various topical areas and contexts. 
However, teacher professional programmes have by and large “not been grounded 
in a similarly extensive research based on the nature of teachers’ knowledge and its 
development” (Doerr & Lesh, 2003, p. 128). Hence, scholars have called for empiri-
cal work on teachers’ second-order modeling to fill in this research gap (see 
Kastberg, 2014; Liang, 2021; Wilson et al., 2011). To this end, our work echoes 
Doerr and Lesh’s (2003) proposal of a modeling perspective on teachers’ develop-
ment and Simon and Tzur’s (1999) accounts of teachers’ practices (i.e., explaining 
teachers’ perspectives from researchers’ perspectives). That is, we characterised 
these teachers’ capabilities of modeling and reflections on student thinking from our 
interactions with them. In particular, our work is a novel attempt to answer these 
calls by detailing four in-service teachers’ enactment of their first-order mathemat-
ics, constructions of SOMs of students’ mathematical thinking, and the mathemati-
cal affordances of such constructions. As in the cases of Denise and Michael, their 
constructions of SOMs served as an important avenue for their development of 
FOMs about triangular prisms associated with 3D Pens construction. Additionally, 
we identified three different ways that first- and second-order modeling could be 
generative to teachers’ pedagogical thinking: directly operating on FOMs (see 
Vignette 1), comparing SOMs of different individuals (see Vignette 2), and compar-
ing FOMs and SOMs (Vignette 3). These findings contribute to the literature on 
second-order modeling and decentering by specifying the types of reasoning 
involved as well as illuminating the pedagogical potential of this reasoning.

We acknowledge that our use of SOMs is loose when compared to constructivist 
researchers’ common use of second-order modeling to investigate students’ math-
ematical cognition. First, second-order modeling is often conducted through sus-
tained interactions between the observer and the observed (Steffe & Thompson, 
2000b; Ulrich et al., 1995). Second, second-order modeling has been considered an 
ongoing, dynamic, and iterative process (Liang, 2021; Steffe & Thompson, 2000b). 
An individual’s SOMs of another person are always subject to revision, confirma-
tion, and rejection based on additional observations of the observed individual’s 
actions. Therefore, we expect a decentering teacher to continually develop, test, and 
refine their SOMs so that these models become more stable, coherent, explanatory, 
and even predictive of their students’ mathematical activities.

In the present study, we did not provide our participating teachers with the oppor-
tunity to have direct interactions with students. Instead, their construction of SOMs 
occurred in the context of watching videos that captured students’ mathematical 
activities in a classroom. Because of our limited interactions with the teachers, we 
did not accomplish the goal of capturing the evolution of the teachers’ SOMs either. 
However, we highlight that our work is a novel attempt to apply the constructivist 
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notion of second-order modeling to analyse teachers’ understandings of students’ 
mathematical activities in a technology-rich environment. We focus this initial 
attempt on the mathematical substance constituting these teachers’ SOMs, the inter-
actions between multiple SOMs and between their SOMs and FOMs, and the teach-
ers’ consequential technology-rich pedagogical thinking. We call for continued 
research along this line of inquiry, to include working with other mathematical, 
technological, and educational contexts to test, refine, and supplement the findings 
we have reported in this chapter.
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Opportunities and Challenges That Silent 
Video Tasks Bring to the Mathematics 
Classroom

Bjarnheiður Kristinsdóttir

Abstract This chapter provides readers with a new perspective on how short, ani-
mated video clips can be used in the mathematics classroom to elicit, attend to, 
discuss, interpret, and respond to student thinking. It reports on findings from a case 
study conducted over one school term in collaboration with three Icelandic upper 
secondary school teachers who implemented silent video tasks in their classrooms 
and took active part in developing the tasks’ instructional sequence. By viewing the 
tasks’ potential along the five dimensions of powerful mathematics classrooms 
defined by the TRU framework (Teaching for Robust Understanding) and compar-
ing them with data from classroom observations and teacher interviews, I aimed to 
identify opportunities and challenges that silent video tasks bring to the mathemat-
ics classroom. Special emphasis was put on the formative assessment dimension. 
This chapter contributes to the research community’s current knowledge of the role 
that short, animated videos can play in teachers’ formative assessment practices. 
Results of this study confirm previous research indicating that students’ responses 
to silent video tasks can give teachers valuable insights into students’ mathematical 
understanding and enable teachers to refer to students’ ideas in a new way in class-
room discussion. The biggest challenge created by the silent video tasks was the 
delicate task of orchestrating meaningful classroom discussions based on students’ 
task responses.
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Keywords Task design · Silent video tasks  · Teaching for robust understanding · 
Formative assessment · Video narration technology · Teacher practices · 
Technology-mediated practices

1  Introduction

The use of short films for the teaching and learning of mathematics has become 
more common as flipped classroom approaches and resource collections such as 
Khan Academy gain more popularity (Cargile & Harkness, 2015). Instructional vid-
eos used in mathematics classes are usually created by teachers, but as access to 
technology for video narration and creation becomes more widespread, the roles of 
teachers and students can change. For example, students can create a narrative to 
accompany a silent animated video (Kristinsdóttir et al. 2020b) or become video 
creators (Oechsler & Borba, 2020) and thus take on a more active role in their 
learning.

This chapter describes and analyses teachers’ implementations of silent video 
tasks (SVTs), in which students are asked to add their own narrative to a silent ani-
mated mathematics video, share it with their teacher and peers, and reflect on each 
other’s task responses in a whole class discussion. It draws on data from the final 
phase of a multi-phased design-based doctoral study that aimed to design, define, 
develop, and implement silent video tasks in collaboration with Icelandic upper 
secondary school teachers. From here onwards this particular phase will be referred 
to as a case study. Previous research indicated that SVTs might give teachers insight 
into students’ current level of understanding, and thus be useful for their formative 
assessment practices (Kristinsdóttir et  al. 2020a, b). Therefore, the case study 
emphasis was on the further development of instructional sequences for SVTs to 
support teachers’ technology-mediated formative assessment practices, and to gain 
clarity on how and why teachers could, or would, use SVTs in their classrooms as 
part of formative assessment practices.

The chapter focuses on the teachers’ role in the integration of video narration 
technology for the purpose of assessment in mathematics. Such technology is an 
important part of students’ social media culture but has hitherto rarely been utilised 
for mathematics teaching and learning. The chapter aims to contribute to the math-
ematics education research community’s current knowledge (e.g., Aldon & Panero, 
2020; Bellman et al., 2014; Olsher et al., 2016; Venturini, 2015; Venturini & Sinclair, 
2017) related to the use of technology in assessment, with a specific focus on video 
narration. The next section gives a short historical overview of the ways in which 
silent video clips have been used for mathematics teaching and learning in the past. 
It will be followed by a description of the research context and an introduction to the 
frameworks used to analyse data.
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2  Background: Silent Video Clips for Mathematics Teaching 
and Learning

Silent videos include no text, music, voice-over, recordings of classroom settings, or 
human beings. They solely include dynamic representations of mathematical 
objects; illustrations that change in time but never fail to stay intact with the defini-
tion and properties of the object. For example, a silent video could show a triangle 
inscribed in a circle such that one of its sides is equal to the circle diameter. As the 
vertex opposite to the diameter is moved along the circle circumference, its angle 
remains 90°. For a student who is unfamiliar with Thales’ theorem, this might be 
surprising, evoke curiosity and be worth seeking explanation for.

Despite silent videos not being interactive, in a way, animated silent films show-
ing mathematics dynamically can be seen as a predecessor of digital geometry soft-
ware (DGS), which came about in the 1980s. The use of silent video clips for 
mathematics teaching and learning dates back to 1910, when the German mathe-
matics teacher Ludwig Münch (1852–1922) produced and screened 30 short, ani-
mated films about geometry and astronomy for his students. Twenty of Münch’s 
films are known to exist in archives, on topics such as the Apollonius circle, but they 
are not accessible to the general public (Kitz, 2013).

Better known are the animated geometry films made by the Swiss teacher Jean 
Louis Nicolet in the 1930s, as they were widely introduced to teachers by the math-
ematics educator Caleb Gattegno in the 1950s (Tahta, 1981). Later, Gattegno also 
introduced films for university teaching made by the UK teacher Trevor Fletcher 
between 1952–1979 (Tahta and Fletcher 2004). Gattegno, who was a founding 
member of the Association of Teachers of Mathematics (ATM), reconstructed the 
Nicolet films in colour with computer animation and underlined that they were not 
merely illustrations but tools that teachers could use in many ways both in terms of 
explanations and follow-up work to promote mathematics learning in the classroom 
(Gattegno, 2007; Tahta, 1981). A recent example of such work is Sinclair’s use of 
the Nicolet-Gattegno film Circles in the plane to invoke gestures with her students 
as they studied the mathematical concept of circle by watching the film a few times 
in a row, each time with a new task to imitate the video: first by talking, then by 
moving their hands, and finally by drawing (Sinclair, 2016).

Silent videos differ from the majority of mathematics videos that can be found 
via YouTube, Vimeo, and similar sources, in that they are not directly instructional. 
Rather, they are intended to be thought-provoking. Silent videos used in SVTs are 
usually less than 2 min in length and thus shorter than the Münch, Nicolet, and 
Fletcher films. Despite differences in length, all these films have in common that 
they do not pose a mathematical problem to be solved. Rather, they invite viewers 
to wonder, experience dynamically changing mathematical objects and think about 
characteristics of mathematical phenomena shown such that they might discover 
something new or consolidate previous thoughts about the mathematics shown in 
the video.
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3  Silent Video Tasks

Silent video tasks (SVTs) involve the screening of a short (less than 2 min long), 
silent, animated video clip on a previously studied mathematical topic. The video is 
designed to invite description, explanation, and/or narrative with possibilities to 
generalise mathematical ideas. Working in pairs, students are invited to prepare and 
record their voice-over to the video clip. Students’ responses to the task are then 
listened to, and discussed, in a whole class discussion led by the teacher. During the 
discussion, teachers can ask and prompt students with the aim to approach common 
understanding of mathematical concepts and properties. A vignette might help read-
ers visualise the task implementation:

We enter Anna’s classroom. She shows a one- minute video clip (see video Fig. 1) to her 
16-year-old students in a remedial class. The video features a topic that they have been 
working on for the past 2 weeks: Different zones of the Cartesian coordinate system (e.g., 
x > 0) are highlighted successively in distinct colours, and four points appear one after the 
other. As the class watches the video, a student can be overheard commenting that there is 
no sound. Anna acknowledges this observation and explains to students that it will be their 
task to add the narration to the video.

“What are we supposed to talk about?”, one student asks, and Anna replies, “Whatever 
comes to your mind. Imagine a blind person visiting, how would you narrate, describe or 
explain to them what is going on in the video?”. She assigns students randomly into groups 
of two and gives them twenty minutes to watch the video as often as they want to, whilst 
they work on their recording. Some students try to fish for what Anna “wants them to say” 
(without success), but others start recording after a short dialogue. Gathered back in the 
classroom, Anna plays one student response after the other, stopping the playback every 
now and then to ask for clarification or point students’ attention to something specific: “Did 
you understand that? What do you think they wanted to say here?” and “Can you explain 
what you mean by…?”

4  Icelandic Context

Throughout the research project, I worked with upper secondary school teachers in 
Iceland to develop the instructional sequence of SVTs and determine their value for 
teaching and learning in the mathematics classroom. There are 38 upper secondary 
schools in Iceland, out of which 30 offer lines of study that prepare students for 
further studies in STEM (science, technology, engineering, mathematics) subjects. 
The majority of upper secondary schools are state run and those privately owned 
also receive state support. Until 2015, most Icelandic upper secondary school pro-
grams were planned for 4 years, but now they are planned for 3 years, during which 
learners are generally 17–19 years old. Some vocational programs require longer 
periods of study.
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By adding courses to their studies, students in vocational programs have the pos-
sibility to complete the matriculation examination in preparation for entering higher 
education. Although not compulsory, emphasis is placed on providing everyone 
with the opportunity for upper secondary education, irrespective of their results at 
the end of compulsory schooling (primary and lower secondary education are com-
pulsory). All three school levels, pre-primary, compulsory and upper secondary, are 
built on the same values as stated in the national curriculum for each level—values 
such as respect and care for others, tolerance, and responsibility.

Teaching methods in Icelandic upper secondary mathematics lessons are mainly 
teacher centred (Sigurgeirsson et al., 2018) and although some schools use DGS, 
often it is the teacher who uses the DGS for demonstration purposes rather than the 
learners using it for discovery (Jónsdóttir et al. 2014). Formative assessment and 
group discussions are rarely practiced in Icelandic upper secondary school mathe-
matics lessons (Jónsdóttir et al., 2014).

In accordance with the Icelandic upper secondary school main curriculum from 
2011, mathematics teachers suggest course descriptions to the Icelandic Ministry of 
Education Science and Culture, which checks them for acceptance. From 2011 
onward, the course descriptions are expected to include course objectives and com-
petencies that learners are expected to achieve. At larger upper secondary schools 
where the same course is taught to many groups of learners (e.g., five groups of 30 
learners each), each group having one teacher, the teachers collaborate and usually 
attempt to follow the same course schedule during each semester. Despite the 2011 
National Curriculum Guide’s emphasis on competencies, an ‘undercover’ mathe-
matics course schedule with ‘lists of things to cover’ exists at the majority of upper 
secondary schools in Iceland. The same phenomenon was observed after a National 
Curriculum change in 1999 (Harðarson, 2010).

5  Teaching for Robust Understanding in Mathematics

It is widely accepted that there is no prescribed ‘best way to teach’. By analysing 
mathematically powerful classrooms (classroom environments that support stu-
dents’ mathematical learning) of various kinds with teachers applying a spectrum of 
different teaching methods, Schoenfeld and his colleagues attempted to distil the 
characteristics of these classrooms into a small number of dimensions that teachers 
might be guided towards paying attention to. This was not to claim that one teaching 
method was best, but to identify what was important to be aware of. Out of this work 
came five dimensions that constitute the TRU framework (Teaching for Robust 
Understanding). They are: (i) Mathematics: the richness of the mathematical con-
tent, (ii) Cognitive Demand: the opportunity for students to engage in productive 
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struggle, (iii) Equitable Access to Content: that all students are involved in mean-
ingful ways, (iv) Agency, Ownership, and Identity: opportunities for students to 
develop a sense of agency, make mathematics their own, and to develop productive 
mathematical identities as thinkers and learners, and (v) Formative Assessment: the 
degree to which student ideas are made public and responded to in productive ways 
(Schoenfeld, 2018). Of course such distillation is problematic in the sense that it 
puts more emphasis on some critical aspects of the teaching practice over others. 
Intended to help teachers create classrooms from which students emerge as “knowl-
edgeable, flexible, and resourceful thinkers and problem solvers” (Schoenfeld, 
2018, p. 494), the TRU framework, however, does not prescribe any specific prac-
tices. It only suggests that teachers become aware of and pay attention to ways (and 
there are many such ways possible) in which they can improve their current practice 
along the five TRU framework dimensions.

Since the TRU framework is mostly used to guide teachers’ professional devel-
opment, it was not obvious that it could be useful for the study presented in this 
chapter. The idea to identify whether silent video tasks offer opportunities to teach-
ers along the dimensions of the TRU framework emerged after the data was col-
lected  and in the process of its  analysis. This was due to the TRU frameworks’ 
emphasis on conversations between teachers and students and ongoing reflection, 
i.e., building up awareness of and learning from experience. The intentions of the 
tasks might align well with the TRU frameworks’ dimensions, but theory and prac-
tice must grow together. Thus, data on teachers’ experiences with using silent video 
tasks was analysed through the lens of the TRU framework with the aim to identify 
potential challenges. Such challenges are often connected to tensions that arise in 
teacher practice when social or sociomathematical norms (in the sense of Yackel & 
Cobb, 1996) in the classroom are violated. Regarding the fifth dimension of the 
TRU framework, I will connect to key strategies for formative assessment practices 
by Wiliam and Thompson (2008) and a list of socio-technical approaches to raising 
achievement in mathematics education as presented by Wright et al. (2018).

6  Formative Assessment

Malcolm Swan argued that “technology usage must move away from merely 
rehearsing procedural skills (albeit with feedback) toward a usage that mirrors the 
outside world; it must become a tool that changes the way we think and reason” 
(2017, p. 31). After all, mathematics is about generalisations, and what varies or 
remains invariant. By emphasising that, we might improve student learning of math-
ematics. Previous research indicates that SVTs might fit the description of being a 
tool that could be utilised to decide about next steps in instruction (Kristinsdóttir 
et al. 2020a), as mentioned in Wiliam’s (2011) definition of formative assessment:

An assessment functions formatively to the extent that evidence about student achievement 
is elicited, interpreted, and used by teachers, learners, or their peers to make decisions 
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about the next steps in instruction that are likely to be better, or better founded, than the 
decisions they would have made in the absence of that evidence. (p. 43).

For practice, Wiliam and Thompson (2008) further identified the following five key 
strategies for formative assessment: (1) Clarifying and sharing learning intentions 
and criteria for success, (2) Engineering effective classroom discussions and learn-
ing tasks that elicit evidence of student understanding, (3) Providing feedback that 
moves learners forward, (4) Activating students as instructional resources for one 
another, and (5) Activating students as owners of their learning.

The focus of this chapter is on the ways in which technology can be used by 
teachers to support formative assessment practices. In Table 1, I refer to Wright 
et al. (2018, p. 219), whose research defined six technology-based formative assess-
ment strategies that have the potential to support teaching and learning (see Table 1). 
Previous results indicated that SVTs addressed all but the final potential listed in 
Table 1, because feedback was not immediate but took place later in a follow-up 

Table 1 A priori analysis of the ways in which silent video tasks addressed the potential that 
technology-based formative assessment strategies might have to support teaching and learning, 
framed by Wright et al. (2018, p. 219)

Technology-based formative 
assessment strategies that 
might support teaching and 
learning

Ways in which silent video tasks addressed these potential 
before the case study was conducted

Provide immediate feedback Currently not addressed. Feedback to students is given in a 
follow-up lesson 1–3 days after students work on the silent 
video task.

Encourage discussion and 
developing cooperation

On the basis of some selected or voluntarily played task 
responses, students are encouraged to discuss and reflect on the 
ways in which they understand the mathematical concepts that 
are the topic of the silent video.

Provide an objective and 
meaningful way to represent 
problems and 
misunderstandings

Possible misunderstandings uncovered in student responses can 
be directly referred to and discussed as useful steps on students’ 
path toward understanding.

Provide opportunities for 
using preferred strategies in 
new ways

Teachers who want to build a culture of discussing and 
collaborating in their classroom surely do not only want 
students to express their mathematical thoughts in writing. 
SVTs offer a way to ask for an audio response to a task, thus 
bringing students’ thoughts and ideas to the forefront of the 
discussion.

Help raise issues that were 
previously implicit and not 
transparent for teachers

For example, if students who normally do not speak up in class 
(‘live’ format) take the opportunity to speak up via the 
voice-over (recorded format), there might be a problem of 
distrust (students not considering the classroom as a safe space 
for discussion) that needs to be addressed.

Provide different feedback 
outcomes

Feedback is provided to the whole class via discussion. When 
needed, teachers can prepare and provide individual feedback 
after the discussion finds place.
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lesson (Kristinsdóttir et al. 2020a). However, as will be reported in more detail in 
the findings of this chapter, working with teachers who had experience with using 
formative assessment (referred to as FA hereafter), they emphasised the importance 
of immediate feedback and changed the SVTs instructional sequence such that dis-
cussion based on students’ responses would take place immediately after students 
submitted their responses.

The next section introduces the case study presented in this chapter.

7  Method

In the following subsections, I introduce the participants of the study, describe 
the data that was collected, and how it was analysed. Challenges in data collection 
and ethical considerations are also discussed.

7.1  Participants

As I was interested in further developing SVTs as a tool for FA, I purposefully 
selected and contacted three schools that were known for their emphasis on FA to 
be involved in the study. Two schools in the urban area agreed, and all teachers who 
were interested were invited to join. One teacher at Blackbird (school names are 
pseudonyms), a small, 16–19, urban comprehensive school and two teachers from 
Mallard, a large, 16–19, urban comprehensive school (see Table 2) took part in the 
project. Both schools’ policies expect students to be “active participants in their 
studies”, Blackbird explicitly states in its school policy that their studies are “char-
acterised by FA”,1 and Mallard emphasises “use of continuous evaluation of stu-
dents’ progress by a variety of assessment methods”. It was also considered helpful 
if teachers at the schools encouraged learners’ use of DGS such as GeoGebra and 
Desmos and had some familiarity with leading group discussions in mathematics 
lessons.

1 For participants anonymity, the corresponding school policy paper, which is presented on their 
website, cannot be referred to. The quotes given here have been translated from Icelandic to 
English.

Table 2 Participating teachers in the second implementation phase of the research project and 
their teaching experience

Teacher pseudonym (gender) School pseudonym Use of DGS Teaching experience

Andri (m) Mallard high school GeoGebra 10 years
Edda (f) Mallard high school GeoGebra 20 years
Orri (m) Blackbird high school Desmos, GeoGebra 2 years
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Andri, Edda, and Orri (teacher names are pseudonyms, see Table 2) who volun-
teered to participate in the study were all open to trying out new teaching approaches. 
Orri was relatively new to teaching and saw both challenge and an opportunity for 
collaboration in the research project. He had some previous experience with using 
GeoGebra and Desmos activities in his classroom. Andri and Edda each had around 
a decade of experience with using GeoGebra at Mallard. Together, they had partici-
pated in various Icelandic, Nordic, Baltic, and European collaboration projects for 
professional development.

Among other teaching duties during fall 2019, Andri, Edda, and Orri all worked 
with low-achieving 16-year-old students in slow-paced remedial classes of different 
class sizes. They explained that these courses’ schedules accommodated flexibility 
and thus suggested them as good situations in which to try out SVTs. All three 
planned to use two or three SVTs over the period of one semester. It turned out that 
Orri (N = 14–16) implemented three SVTs within one term, whereas Andri (N = 22) 
and Edda (N = 13) implemented one SVT each. The numbers in brackets denote the 
number of students, N, who were present in class during task implementation.

As compensation for their participation, I offered the participating teachers sup-
port meetings in case they were working on any changes in their practice. Orri 
accepted the offer and we met six times to discuss ways to build a thinking class-
room (e.g., Liljedahl, 2018) at meetings that were recorded but not transcribed or 
analysed.

7.2  Silent Videos Used in This Study

At initial meetings with Andri, Edda, and Orri, we discussed the teachers’ course 
curricula and ideated to identify topics that might be visualised in a silent video. 
Based on discussion and ideation with Andri and Edda, I sketched drafts and dis-
cussed ideas of three videos on the topics of coordinate geometry and linear equa-
tions. Then, based on feedback from Orri, I created the scenarios in GeoGebra and 
screen recording software to finalise the videos. All three videos show the coordi-
nate system with (0,0) at the centre; the x- and y-axis marked with numbers. The 
videos were designed intentionally to point students’ attention to details in the defi-
nitions (characteristics) of the mathematical phenomena in focus. The videos were 
intended to be used for assessment, but they could also be shown at the start of a 
lesson sequence to collect students’ initial ideas about each mathematical topic 
within a word cloud.

SVT1 The first video (see Fig. 1) focuses on properties of the coordinate system: 
First, zones of the coordinate system appear highlighted in light-blue colour one 
after the other: x > 0, y > 0, x < 0, and y < 0. Next, the quartiles appear highlighted 
one after the other and a point appears in each of them: 1st quartile blue with (4,2), 
2nd quartile green with (−3,5), 3rd quartile pink with (−2,−2), and 4th quartile 
orange with (9,−1).
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Fig. 1 A still from SVT1, a silent video that focuses on properties of the coordinate system 
(▶ https://doi.org/10.1007/000-8ww)

SVT2 The second video (see Fig. 2) focuses on the slope of a line. Two points 
marked A and B, with A = (−3, 1) and B = (−1,2), are shown in blue along with a 
blue line AB from the start of the video. Point A stays constant while B (and thus the 
line along with it) moves following a rectangular shaped path, pausing for a short 
while along the path at the following points: (−1, 3), (−2, 3), (−3,3), (−4,3), (−5,3), 
(−5,2), and (−5,1). Thus, the movement of point B pauses when the line has the 
following sequence of slopes: ½, 1, 2, undefined, −2, −1, −½, 0.

SVT3 The third video (see Fig. 3) focuses on the graph of a line as a function of x. 
One after the other, blue points with integer coordinates along the line y = x show up 
from (−7,−7) to (8,8) before the line through the set of points is drawn in blue. 
Next, red points on the line y = 2x + 4 show up one after the other from (−5,−6) to 
(2,8) before the line appears drawn in red. Then, all the red and blue points move 
along their shortest path to the x-axis and back to their lines again. This movement 
of the points toward the x-axis and back to their position on the respective lines is 
repeated once more before the video ends.
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Fig. 2 A still from SVT2, a silent video that focuses on the slope of a line 
(▶ https://doi.org/10.1007/000-8wv)

These specific SVTs will hereafter be referred to as SVT1, SVT2, and SVT3. 
The next section will clarify what data was collected within the frame of the pre-
sented study.

7.3  Collected Data

Data collected included semi-structured interviews with participating teachers, field 
notes from classroom observation visits, the students’ responses to SVTs, and stu-
dents’ feedback. For the purposes of this case study, my focus was mainly on the 
interviews and field notes. Prior to the study, I had visited Blackbird and Mallard 
within the framework of teacher conferences. To get to know the participating 
teachers and their working places better, I visited them in their schools in August 
2019. I also visited Edda once and Orri three times to observe lessons that did not 
include SVTs. Before and after each SVT implementation, I conducted and audio- 
recorded semi-structured interviews (Brinkmann & Kvale, 2009) with participating 
teachers: two with Andri and Edda together, one with Andri, one with Edda, and five 
with Orri (see Fig.  4). These interviews included questions regarding teachers’ 
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Fig. 3 A still from SVT3, a silent video that focuses on the graph of a line as a function of x  
(▶  https://doi.org/10.1007/000-8wx)

expectations of, and experiences with, implementing SVTs in their classrooms. All 
interviews took place either in teachers’ classrooms or their schools’ meeting rooms. 
For the purpose of this study, I wrote classroom observation field notes on three 
visits to Orri’s classroom and one visit to each of Andri and Edda’s classrooms. The 
reason for why I collected field notes rather than video recordings from classrooms 
is given in the next section.

7.4  Challenges in Data Collection

What goes on in classrooms involves speech, gestures, and mimes, many of which 
happen simultaneously in different corners of the classroom or school building. 
Even though these actions might seem obvious to the participants involved, they can 
be less obvious and require more careful examination for visitors. Therefore, to 
grasp what goes on in classrooms in practice, researchers normally aim to collect 
video recordings rather than only classroom observation notes.
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Fig. 4 A timeline of the data collection process. Andri and Edda work closely together at Mallard 
and thus they were only interviewed separately after the task implementation. Three interviews 
with Orri at Blackbird included “think-aloud” exercises. When possible, information was trans-
ferred by the researcher between teachers, shown by arrows that cross the dotted line between the 
two schools. The arrows between the three implementations at Blackbird indicate that each imple-
mentation informed the next

At the point of data collection—due to the recent introduction of the General 
Data Protection Regulation (GDPR)—school leaders in Iceland were increasingly 
aware of complexities regarding data collection in their teachers’ classrooms. They 
preferred field notes over video recordings from teachers’ classrooms. To build trust 
and positive correspondence needed for research that is done in collaboration with 
teachers, I thus decided to take field notes.

7.5  Ethical Considerations

The Icelandic Data Protection Authority was informed about the research project. 
Teachers signed an informed consent stating their awareness that they could with-
draw their participation at any point in time. Principals signed informed consent 
granting me permission to interview teachers and to visit their classrooms provided 
that I would not collect identifiable information about students. They trusted me to 
treat collected data in a respectful manner and anonymise names. Students received 
written and oral information about the research project and were informed that they 
could deny participation, meaning that their voice-over recording would only be 
listened to by their teacher and not the researcher. No student refused 
participation.
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7.6  Research Design and Data Analysis

By working with teachers—asking them to implement SVTs in their classrooms 
and to reflect on their expectations and experiences—I took a hermeneutic (interpre-
tive) phenomenological stance (van Manen, 2016) towards answering the question 
of how and why teachers could use SVTs in their mathematics classrooms. I studied 
teachers’ actions and reasons given for their actions, and I transferred between par-
ticipants (see Fig. 4) all suggestions related to the development of SVTs instruc-
tional sequence. In the busy setting of the participating teachers’ own classrooms,  
I observed their work and interviewed them to hear their personal insights on 
whether, and how, they could use this tool for the teaching and learning of mathe-
matics. Furthermore, I reflected on teachers’ insights by writing notes directly after 
our meetings, and again as I analysed the transcripts from our interviews. Iterative 
cycles of writing notes and reflections contributed to our collective and evolving 
understanding of how SVTs could be used in the mathematics classroom.

During my interviews with Orri, I developed a think-aloud exercise, asking him 
to think aloud about how he would implement the SVT next time and why. In the 
first interview, the purpose of the think-aloud exercise was to hear his ideas and then 
in later interviews—after each implementation—the purpose was to re-construct his 
experiences and record his reflection, alongside his expectations for the next round 
of implementation.

It usually requires training to become aware of, remember and reconstruct our 
own interpretations; what we were thinking or making sense of. Despite having no 
training, Orri reflected on what he thought about in-the-moment and related it to 
planned actions for the next implementation. It was a free-flow and in-the-moment 
exercise, meaning that Orri could revise his own thinking on the go. During the 
think-aloud exercise I thus normally did not interrupt unless something needed 
immediate clarification.

All interviews were transcribed verbatim in Icelandic. When possible, I tran-
scribed directly after the interview took place and thus was able to add some extra 
notes in parentheses. Analysis started immediately after the first interview and in 
that first familiarisation phase, I focused on the instructional sequence design and 
development. After transcribing the last interview, I underwent a second familiarisa-
tion phase of the data using open coding in Icelandic on anything that I found inter-
esting in the data. Directly after the second familiarisation phase, I read through the 
transcripts again, writing detailed notes in English where I summarised and deep-
ened my thoughts. On the basis of the detailed notes, I created a distilled overview 
of the five interviews with Orri on a large sheet of paper (630x891mm), gaining an 
overview of how Orri’s ideas, experiences, and expectations developed over time.

Regarding opportunities that tasks bring to the mathematics classroom, it comes 
down to what we consider important. SVTs were developed to be a socio- constructive 
approach to teaching, a tool that teachers might use to support students in 
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Fig. 5 A summary in the form of questions asked within each of five dimensions of mathemati-
cally powerful classrooms according to the Teaching for Robust Understanding (TRU) framework 
(Baldinger et al. 2018, p. 2, reprinted with permission)

developing their own understanding of mathematics. Previous research has indi-
cated that SVTs occasioned for teachers a fundamental shift in perspective from 
teacher- centred to student-centred instruction (Kristinsdóttir et  al. 2020b), and 
although the TRU framework offers no prescription on how to teach, it also includes 
such a fundamental perspective shift (Schoenfeld, 2018). Furthermore, the TRU 
framework seemed to provide a language for talking about instruction along dimen-
sions of interest. Therefore, after the phases of familiarisation and analysis, I once 
again read through my detailed notes with questions from the TRU framework 
(Baldinger, Louie, & the ATSMAP, 2018; Schoenfeld, 2018) in mind. I used these 
questions (see Fig. 5) to determine the opportunities and challenges that SVTs can 
bring to the mathematics classroom and discussed the findings in a doctoral semi-
nar. The findings are presented in the next section.

8  Findings

This section starts by introducing  the teachers’ current assessment practices and 
some ways in which they influenced the SVTs instructional sequence. It continues 
to describe teachers’ implementations of the SVTs and my use of the TRU frame-
work to summarise the opportunities and challenges that SVTs bring to the mathe-
matics classroom.
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8.1  Teachers’ Existing Assessment Practices 
and their Influence on SVTs Instructional Sequence

Topic booklets made by Andri and Edda at Mallard and by colleagues of Orri’s at 
Blackbird were the main focus of remedial classes. They were composed of practice 
problems that were partly exploratory or designed to be worked on using GeoGebra, 
but mostly they included closed question problems. Work on problems from these 
booklets counted towards students’ final grade. At Mallard, students had access to 
online self-assessment exercises and completed three exams (each covering part of 
the material of the course) during the term. A good grade on these three exams could 
render the final exam as optional. At Blackbird, assessment was based on students’ 
observed work in class, participation in Desmos classroom activities, handed-in 
work on problems similar to the booklet problems, and participation in final-week 
group projects that required knowledge of all topics of the term.

Some emphasis was put on group work at Mallard and Blackbird, but no specific 
emphasis on developing students’  verbal communication about mathematics. 
Despite the teachers’ awareness of the importance of whole class discussions, these 
were seldom practiced and were mostly constrained to teachers asking closed ques-
tions, waiting for a response, and either answering the question themselves or evalu-
ating a received response.

All three teachers were familiar with FA practices and what they entailed. This 
was manifested in the first interview with Andri and Edda as they suggested that 
feedback via group discussion should take place immediately after students had 
submitted their task responses. Thus, they changed the initially suggested SVT 
instructional sequence, which was based on previous research (Kristinsdóttir et al. 
2020b), which had placed the group discussion in a follow-up lesson some days 
after students had submitted their task responses, i.e., to provide time for teachers to 
prepare themselves by listening to, selecting, and sequencing some task responses 
on which  to base the follow-up  discussion. Andri and Edda explained that they 
expected feedback to be less effective/useful if it was not immediate, similar to 
Wright et  al.’s (2018) suggestions. Also, Andri and Edda wanted all student 
responses to be listened to in a random order rather than sequencing some selected 
responses. Otherwise, students might interpret their actions as if they were judging 
students’ responses “from the worst to the best”.

Furthermore, Andri asked if self-assessment and peer-assessment practices 
could be used such that students would provide written feedback to each other’s 
responses. His idea was brought to Orri before the SVT1 implementation. Orri 
prepared an online reflection sheet for students, where each pair would reflect on 
three other pairs’ responses and at least two pairs would listen to each response. 
In practice, however, Orri experienced students not taking their role as peer-
reviewers seriously. Thus, in the think-aloud exercise before SVT2, he suggested 
a different approach where the whole group would listen to all task responses in a 
random order.
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8.2  Description of Perceived Classroom Norms

Andri and Edda expressed that they aimed to create a safe and constructive working 
environment for students, especially those in remedial classes. They set a clear ethos 
resulting in a calm and engaged atmosphere. Before the SVT implementation, they 
wanted to make sure that focus would not move from the mathematics to solving 
technological issues and therefore prepared, by downloading and testing screen 
recording software (laptops) and sound recording software (smart phones) as well 
as confirming that the learning management system would suffice to accept stu-
dents’ task responses.

Orri aimed to create a relaxed atmosphere in his classroom. This resulted in a 
rather loose ethos, with students frequently arriving late and leaving the class-
room from time to time. He often put in much time to prepare tasks and create 
feedback opportunities for students and was repeatedly disappointed by students 
not putting effort into their work on prepared tasks and not reading/listening to his 
feedback notes/videos. Orri expressed explicitly and indirectly that he wanted 
mathematics to be fun, a goal that he expected would lead to students putting in 
more effort.

8.3  Description of How SVT2 Was Used by Teachers

Orri aimed to collect students’ initial ideas about the new mathematical topic and so 
he showed the video from SVT2 to students at the start of the lesson sequence on 
the topic of the linear equations. He asked students to think and write words or con-
cepts that connected to the video and he  collected these in a word cloud. Orri 
explained that he never would have thought of some of the words that students 
wrote (e.g., compass, box, time, and spin) beforehand. Two weeks later, at the end 
of the lesson sequence, Orri implemented SVT2.

All participating teachers implemented SVT2 in a similar way. At the start of the 
lesson, they showed the video to the whole class. Its topic (the slope of a line) had 
been the course focus of the preceding weeks. After explaining that it would be the 
students’ task to add a narrative explanation or description to the video, teachers 
randomly assigned students into groups of two to work on their voice-over. Despite 
technical preparations, teachers were observed attending to a few students who had 
difficulties with either downloading recording software or uploading their voice- 
over recording.

Some students in each group immediately opened up the link to the video and 
started to work, but others seemed more confused. This made teachers busy reacting 
to students who wanted either instructions regarding what to focus on in their 
response or a confirmation that their contribution was going in a ‘right’ direction. I 
had discussed with the teachers  the risk of such stop-thinking situations (see 
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Liljedahl, 2018) during preparation and even though they considered it to be chal-
lenging not to answer students’ questions, they—upon entering such situations—
made clear that it was the students’ responsibility to make decisions on what to 
focus on in their voice-over. Nevertheless, there was an apparent tension created by 
the stop-thinking situations.

Immediately after receiving students’ voice-over recordings, the teacher gath-
ered the group together to listen and react to all of them. Similar to what teachers 
had predicted, students seemed to find it important that their own task response 
would be played and they were eager to hear their teacher’s and peers’ reaction. 
Still, the teachers’ effort to involve students in discussions resulted only in some 
short reflections and surface-level discussion; no student-to-student debate was 
observed. The questions used by the teachers to facilitate discussion included ask-
ing students to recognise differences and similarities among their responses, and 
clarifying questions regarding whether and how students understood what was 
being said. At the end of class, Andri and Edda asked students to answer a ques-
tionnaire, on what (if anything) they would have liked to change in their voice-
over, if there was anything that made them wonder, and if they would like to add 
any comments or questions regarding the SVT. Orri, on the other hand, asked 
students to record a new voice-over, wondering what (if anything) they 
would change.

In the next section, the goals for the SVTs will be identified along the five dimen-
sions of the TRU framework. Then, I will present the opportunities and challenges 
that were identified based on the classroom observation and interview data from 
teachers’ SVT implementations along the dimensions of this framework.

8.4  In Theory: Opportunities and Challenges that SVTs 
Might Bring

Within the TRU framework, a Conversation Guide (Baldinger et al. 2018) lists a set 
of questions intended for teachers’ planning and reflection. These questions are 
organised along the TRU framework’s five dimensions (see Fig. 5). Based on the 
intentions behind the way in which SVTs were designed and developed, the ques-
tions are answered in Table 3.

Answering the questions from Fig.  5 offered a way to evaluate whether  the 
SVTs fulfilled their intended role in theory. Then, to connect with practice, I took 
a new look at the interview and classroom observation data to perform a top-down 
analysis, collecting instances that evidenced teacher practice along the five dimen-
sions. This top-down analysis was, then, followed up by a bottom-up analysis of 
the selected data excerpts with a focus on identifying the opportunities and chal-
lenges that teachers encountered during task implementation. Results of that anal-
ysis are given in the next section, which is organised according to themes that 
were identified.
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Table 3 When intentions behind the design of silent video tasks are viewed along the dimensions 
of the TRU framework, some alignment can be seen. Here, questions from Fig. 5 are answered 
based on assumptions about the ways silent video tasks might support teachers in teaching for 
robust understanding

TRU 
Dimension What silent video tasks are intended for

The 
mathematics

By describing, explaining, or narrating the video, students’ mathematical ideas 
are explicitly put into words that get heard, reflected on and discussed by the 
whole group. By both recording their voice-over and participating in the whole 
group discussions, students might develop their mathematical ideas and create 
meaningful connections. They might also realise whether, and in what ways, 
they understand the mathematics shown in the video.

Cognitive 
demand

Students might make their own sense of mathematical ideas that arise when 
watching the silent video and discuss in pairs what to focus on in their 
voice-over recording. It can be a challenge for students to decide what to focus 
on.

Equitable 
access to 
content

Students are offered an untraditional way (recorded verbal communication) to 
participate in the lesson. It might create opportunities for each and every 
student to participate meaningfully in the mathematical communication of the 
class.

Agency, 
ownership, 
and identity

Students whose response is listened and reacted to might develop a feeling of 
belonging and gain a new view on their own articulated ideas as these get 
discussed by the whole group. As participants (not only listeners) in the 
discussion, students get an opportunity to see themselves and their peers as 
mathematical thinkers.

Formative 
assessment

From listening, discussing, and re-listening to students’ responses to the SVT, 
teachers gain insight into what students pay attention to when watching the 
silent video and thus might gain insight into students’ current conceptual 
understanding. Teachers can build on this insight, probing more deeply into 
aspects that seem currently unclear to students. Also, it might be possible to 
lead students’ discussion towards more abstraction or to generalise and to lead 
the group towards some common understanding of the mathematics shown in 
the video. Teachers’ work with the current group of learners can also be helpful 
the next time teachers work with learners on the same mathematical ideas.

8.5  In Practice: Opportunities and Challenges That 
SVTs Brought

This subsection is based on excerpts from observation and interview data that were 
identified to be connected with teacher practice along one or more of the five dimen-
sions. Even though each dimension of the TRU framework involves putting on new 
glasses that highlight that dimension, some overlap is unavoidable because the cat-
egories discussed in each dimension are not completely distinct. Still, usually one 
dimension was identified to be the most prominent one for each excerpt of data. 
Labels regarding what dimension each quote or data reference belongs to are not 
provided here. Rather, the focus is on introducing the data organised by themes 
identified regarding opportunities and challenges that SVTs bring to the mathemat-
ics classroom. After the listing of themes, these results will be discussed.
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8.5.1  Challenge: It Is Hard to Change a Prevailing Socio-Mathematical 
Norm (For Example, That There Is a Single Correct Answer)

Andri and Edda were surprised by the students’ responses that did not mention 
slope at all and only focused on coordinate points:

Andri: This was only2 about the point coordinates.
Edda:  But they never mention the line slope. And still they say that they would 

not change their voice-over if they would do a new recording. [refer-
ring to students’ end-of-class feedback]3

They were happy to see that students mastered how to list the coordinate points:

Andri:  what surprised me was that almost all of them put the x-coordinate 
before the y-coordinate […] in my experience this is endlessly difficult 
for some students

Edda: At least they figured out the coordinate points completely

Nevertheless, Andri and Edda expressed that they would like their students to gain 
understanding about linear functions, not only points, even though they read 
the  coordinates correctly. The teachers  found it challenging to change students’ 
ideas of what mathematical practice entails in regard to sharing information that one 
is not yet sure about. If students decided to avoid mentioning the slope, they sug-
gested it might be a coping strategy due to a socio-mathematical norm that is persis-
tent in the Icelandic school system, which is to assume that mathematics is a practice 
where only one correct answer exists that matters the most.

8.5.2  Opportunity: Previously Inaccessible Information Revealed by 
Students’ Task Responses

Students’ responses made their struggles with the concept of slope graspable and 
discussable:

Andri:  For example, it becomes painstakingly clear how they have not yet 
realised, you know,4 [what the concept of] slope [is/means] somehow, 
the minority of them have, at least.

Andri:  I actually just feel like I always need to teach them this [slope] anew 
[..,]. You know, I have shown it to them multiple times, you see, but it 
does not seem like […] it seems like it does not properly arrive.

2 Words in the transcript are underlined if interviewees put special emphasis on them
3 In a few cases, for clarification purposes, words within square brackets have been added to the 
excerpts from interviews.
4 Commas have been added around common hesitations (such as “you know” or “you see”) to make 
the excerpts from interviews clearer to read.
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Edda:  I noticed that they avoided mentioning [the slope when the line was] 
horizontal and vertical.

Edda:  One sees that it is the slope and negative slope that is something that is 
confusing them […] they do not realise that when the outcome is nega-
tive then the slope is negative well they see it approximately but they do 
not connect it. I find it very interesting

In the last quote, Edda was referring to students’ responses that described the 
changing slope of the line as ½, 1, 2, 0, 2, 1, ½, and 0 (instead of ½, 1, 2, undefined, 
−2, −1, −½, and 0). This difficulty hitherto had gone unnoticed but was made vis-
ible by students’ task response and was received by Edda as valuable 
information.Similarly, responses to SVT3 revealed a previously unnoticed lack of 
precision in word use when it came to describing intercepts of a line with the axes 
of the coordinate system. In retrospect, Orri realised that his own level of precision 
might be improved:

Orri:  One realises when one assigns such tasks and does, you know, something, which one 
finds so obvious that one forgets that it is not obvious at all, you see, one speaks of 
intercepts over and over again, you know, it is maybe not always obvious that it is 
often, you know, that there are two intercepts, you see, that one needs to take, you 
know, that there is not only an intercept that it is a y-intercept and an x-intercept, you 
see, you know, we find it completely clear […] but to them it is maybe something that 
one has never properly covered.

Orri’s awareness was thus not only raised regarding students’ mathematical dis-
course, but also his own. Reflecting on how to address students’ precision, Orri 
suggested that he could play a random example task response as an audio file (with-
out viewing the video) and draw on the whiteboard according to what he heard. 
Then, the students might realise:

Orri:  Then one would simply say “ok, cuts the x-axis at negative four and the 
y-axis at negative four ok then it goes through these two points” and they 
will just say “no we did not mean it in that way” and then I can say “then 
how can you say it such that it can be understood?”.

This idea was never tested in action because Orri came up with it after the third 
implementation.

8.5.3  Challenge: It Can Be Tempting to Return to Teacher-Centred 
Transmission of Knowledge

Upon noticing students’ perception of slope as always being positive, Edda felt it 
was something under her responsibility to clarify:

Edda:  […] they have yet to connect that [slope being negative or positive] so 
it is something one needs to go maybe better through and I did that 
after showing the last one [student response].
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In other words, although Edda wanted to draw upon students’ responses when con-
cluding the discussion, she could not resist reacting by giving a lecture about slope. 
Her return to teacher-centred transmission of knowledge might have been influ-
enced by a part-exam which was planned in the upcoming week. Edda expected her 
students to connect to her clarification because of their SVT participation:

Edda:  So I think it is good to do such tasks [SVTs] and then you can go 
through the video and explain it better then maybe they will get it better 
since they have themselves worded it in their own way already and one 
understands what is wrong and what not so in that way it is very posi-
tive so I think it would be exciting to add this task into the [course] 
curriculum.

By developing this idea further to make clearer connections to students’ responses, 
maybe what Swan (2006) called a conceptual reorganisation might be facilitated 
when such inconsistencies or obstacles (based on students’ ideas) were identified. 
In that way, students could develop their ideas or build a bridge over the gap. 
However, as the next theme shows, this was considered by teachers to be a challeng-
ing task.

8.5.4  Challenge: It Is Challenging to Lead Group Discussions Based 
on Students’ Ideas

Leading a group discussion—and especially connecting it to students’ words and 
mathematical ideas—revealed itself to be quite a challenge for teachers:

Andri:  Ahhh, you know, it is a little scary to do this, you see, but I have in a 
way done similar things before but still not in this way […] it would 
be amazing to do this again.

Orri:  I think one needs some training in listening well to this, what they are 
saying and trying to figure out why they are thinking things or I feel that 
you [the researcher] often hear such things […] things that I had not 
figured out myself, you see.

This was not surprising. After all, the orchestration of classroom discussion in the 
mathematics classroom is a challenging task that requires much practice (Stein & 
Smith, 2011). Also, the development of awareness of “what students are saying”, that 
Orri mentions above, is important for reflecting in the moment and reflecting on the 
moment (Pai, 2018, p. 41). Teachers knew that it would be challenging to lead group 
discussions based on students’ work, and they also knew how important it was:

Orri:  I have to confess that I have not put too much emphasis on that [con-
versations/discussion] one knows that it is absolutely the thing but 
somehow one has not dared to dip the toes too much into it.

After three implementations Orri had a feeling of going in the right direction:
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Orri:  But it was like last time we did the silent video task […] I was show-
ing these and […] felt like it did not go well […] because then I tried, 
you know, then I was through maybe one half [of the responses] and 
felt like nobody was following and I did not mention that I just felt 
they did not bother at all […] but now somehow it was easier it got 
more fun not fun maybe but interesting when we were all watching 
together.

Comparing implementations of SVT2 and SVT3, there was less sense of time pres-
sure in the latter one. Orri was observed gradually activating everyone’s attention 
such that the students’ participation in commenting on each other’s responses slowly 
increased. Plenty of time had been devoted to reflecting on each students’ response 
and this seemed to have a positive effect on students’ participation. There was also 
more sense of trust, evidenced by one pair of students showing no sign of embar-
rassment when their peers’ initial response to their voice-over was to start laughing 
(followed by discussion). They told each other “we did well” as the next response 
was uploaded to play.

The difference between implementations of SVT2 and SVT3 is described further 
in the next theme.

8.5.5  Opportunity: SVT Practices Might Support Teachers 
to Institutionalise Knowledge

Orri mainly posed clarifying questions during his moderation of the SVT2 whole 
group discussion. Even though students did not participate much, he saw potential 
for improvement and decided to give it another try in the third SVT implementation. 
In his reflection, he wondered about ways to enhance students’ participation in con-
cluding the discussion and finally, he created a plan during the think-aloud exercise:

Orri:  Then toward the end I would like to discuss with them the concepts in 
general like for instance in this case, you know, slope “What is slope? 
Can anyone reflect on that?” and yes somehow in this way it would be 
a summary to tie everything together at the end.

Then, in group discussion based on students’ responses to SVT3, Orri carried out 
his plan by activating students to participate in summarizing the discussion. 
Furthermore, he connected students’ inputs to the topics that the class had been 
working on in the preceding weeks. Thus, seemingly attempting to institutionalise 
(Brousseau, 1997) knowledge, which is something that Swan (2006) and Aldon 
(2014) identify as important but often neglected part of teaching practice.
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8.5.6  Challenge: It Is Hard to Change Prevailing Social Norms 
on the Motivation Role of the Final Grade

At both Blackbird and Mallard, teachers expressed frustration when students did 
“not show their true potential” or “not put in enough effort”:

Orri:  They are not putting in much effort here, […] and they seem not to have 
bothered to make a new recording.

Edda:  I could imagine using such tasks again and then letting it count [toward 
the final grade] then they might put in more effort.

All three mentioned the motivation role of grades when it came to enhancing 
effort, i.e., that students generally put more effort into tasks that counted towards a 
grade. It seemed hard to change this social norm.

8.5.7  Opportunity/Challenge: Providing Access 
to the Classroom Discussion

Orri:  […] they might feel uncomfortable that someone is listening to their 
voice […] I think most of them will be fine […] there just might be some 
who feel maybe, yeah, uncomfortable.

Before implementing SVT1, Orri suggested that there might be students who 
would not feel comfortable with the task. Students can get isolated due to disabili-
ties such as severe anxiety, autism spectrum disorder or language barriers that 
either cause them to be uncomfortable with group work or have a harder time to 
communicate. Orri and Andri had one student each on the autism spectrum and 
Edda had three Icelandic language learners (ILL) in their classes.Orri described 
how his student often rejected working on unconventional tasks. Still, both his and 
Andri’s students participated in the SVT. Orri got his student to participate by 
offering him to work individually and hand in a written script instead of a record-
ing. Andri’s student surprised him by participating in group work despite some 
discomfort:

Andri:  […] this surprised me a bit namely that she took the lead [in the group 
work] and is the one who speaks.

Her response included much detail, listing coordinates of points A and B, and 
intercepts with both axes of the coordinate system as they changed in time. It invited 
an opportunity to support the student in moving from describing detail towards 
generalizing about patterns, but that opportunity was not recognised until later.

Edda explained that no extra support was provided for ILLs or their teachers at 
Mallard. When assigning students into random pairs, she strategically made one 
exception to make sure that the ILL who also was not fluent in English would be in 
a group of three:
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Edda: But they were actually it was mainly the two of them doing the task.

Still, Edda’s intention to create access was observed to have the effect that this 
student participated in the preparation discussion before the other two recorded the 
task response.

9  Discussion Along the Five TRU Dimensions

Comparing the two previous subsections, identifying opportunities and challenges 
that SVTs bring, some trends along the five dimensions of the TRU framework can 
be seen:

The Mathematics Teachers were observed engaging students in an experience 
that contrasted with the prevailing sociomathematical norm about one correct 
answer. They gained insight into previously inaccessible information about stu-
dents’ mathematical ideas (including possible misunderstandings), and by repeated 
use of SVTs Orri raised his own awareness of the importance of precision when 
describing mathematical objects. It thus seems fitting to conclude that with SVT 
practices, teachers might support students’ learning by raising their awareness of (a) 
various explanations/descriptions existing, (b) common misunderstandings related 
to the mathematical topic presented, and (c) why precision is important in mathe-
matical discourse.

Cognitive Demand The teachers were observed attending to students who had a 
hard time deciding what to focus on in their task responses. This seemed to be due 
to the fact that the classroom environment involved mainly tasks with one right 
answer. We cannot be sure if students participating in SVT2 chose to lower the cog-
nitive demand by only focusing on what they were absolutely sure about or if they 
simply did not think of line slope when watching the video. However, it is then the 
teachers’ task to gather students’ ideas about slope in the group discussion. In the 
discussion they will be given opportunities to make their own sense of mathematical 
ideas. Provided that teachers persist in taking on the (clearly identified) challenge of 
leading group discussions, they might establish that problems and misunderstand-
ings will be discussed in an objective and meaningful way for the benefit of every 
learner in the classroom. In other words, they might create a safe environment for 
students to share their thoughts (erroneous or not) with others along the road.

Equitable Access to Content To create opportunities for each and every student to 
participate in the mathematical communication of the class, teachers were observed 
adjusting their practices to make clear that everyone was invited to participate in the 
SVT and that everyone’s voice would be both listened and reacted to. With ILLs the 
adjustments were only partly successful and therefore they remain to be developed 
further. For example, teachers might invite ILLs to create a task response in any 
language in which they are fluent.
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Agency, Ownership, and Identity Students will not see themselves as powerful 
mathematical thinkers unless teachers treat them as such. This is connected with 
why teachers were asked to refrain from answering stop-thinking questions during 
task implementation. Also, it is connected with how problematic (but often tempt-
ing, therein lies the challenge) it is to turn back to teacher-centred practices, giving 
a lecture that does not connect to, or meaningfully build on, students’ responses and 
ideas. For example, if teachers had prepared and played their own version of a task 
response for students, such an act would confirm students’ observed expectation of 
a ‘role model’ response.

Formative Assessment By insisting on using immediate feedback, teachers were 
observed to put extra strain on themselves in terms of orchestrating a meaningful 
classroom discussion based on their reactions to students’ responses in real time. 
Still, teachers’ emphases on immediate feedback made sense theoretically, in terms 
of Wright et al.’s (2018) list. In practice, one could imagine that lengthening the 
time between recording a task response and reflecting on peers’ responses could 
make the experience more teacher oriented, as only the teacher would have had time 
to prepare. In one case, Orri was observed ‘tying together’ students’ ideas at the end 
of class discussion. This happened during his third implementation and underlines 
that it takes experience, training, and reflection to develop discussion orchestration 
skills. By practicing and putting more emphasis on formative assessment and class-
room discussions, teachers might prevail over the motivation role of the final grade, 
because more emphasis would be put on the process of learning than on the 
final grade.

10  Conclusion

This chapter described how SVTs can be implemented in the mathematics class-
room and demonstrated how the TRU framework can be used to identify opportuni-
ties and challenges of technology-mediated FA practices for the teaching and 
learning of mathematics. Based on what was experienced by Andri, Edda, and Orri 
as they implemented SVTs in their classrooms, three opportunities (one of them 
also including a challenge) and four challenges were identified by analysing class-
room observation and interview data via the lens of the TRU framework. The oppor-
tunities can be re-phrased as follows:

• SVTs have the potential to make previously unnoticed inconsistencies, or prob-
lems regarding students’ mathematical ideas (understanding), or ways in which 
they express their ideas (precision in word use) visible to teachers, thus, allowing 
teachers to address them.

• Situations created by SVTs might enable teachers to institutionalise 
mathematical knowledge.
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• By offering students a new way of using technology for communicating 
(through implementing SVTs), teachers can include more students’ voices in 
the class discussion.

The first of these opportunities is important for FA practices since it helps raise 
issues that were previously implicit for teachers, which is one of the potential identi-
fied by Wright et al. (2018). The second opportunity connects to three of Wiliam 
and Thompson’s (2008) key strategies for FA (regarding providing feedback that 
moves learners forward, activating students as instructional resources for one 
another, and as owners of their learning) because in a situation of institutionalisa-
tion, students’ ideas are discussed and connected to mathematical objects that have 
previously been discussed in the classroom. In other words, students’ ways of 
describing mathematics are given status by relating them to the ways that had been 
used by the teacher to describe mathematics. It is important to note, that the act of 
institutionalising knowledge implies learning as acquisition (of knowledge), 
whereas what was intended with the SVTs was learning as participation (Sfard, 
1998; Sfard, 2008). However, learning as participation might be achieved by sup-
porting students in the process of reification (Sfard, 2008), i.e., in their transition 
from describing processes towards talking about objects—a process that might be 
supported via students’ participation in the group discussion.

Since the third in the list of opportunities in some cases demanded that teachers 
adapt the task in ways not necessarily obvious to them, it was also considered to be 
a challenge. Maybe due to their similarity to students’ popular culture (e.g., 
YouTube, TikTok, SnapChat), the task of adding a voice-over to a silent video was 
observed to be easily understood by students. Apart from a few students who needed 
technical support with downloading software or uploading their recordings, the use 
of technology seemed not to be a great hurdle. What requires practice and support 
is mainly the facilitation of a meaningful discussion. Two of the challenges had to 
do with socio-mathematical and social norms. They might be country-specific, 
although the presented study cannot confirm that. These two challenges can be re-
phrased as follows:

• Due to the prevalent norm in which students assume ‘one correct answer’ to exist, teach-
ers can encounter tensions when implementing open tasks like SVTs.

• It can be cumbersome for teachers to enhance students’ motivation in formative assess-
ment practices when students are mainly driven by final summative assessment.

The other two challenges concerned the way in which SVTs require teachers to 
shift to working in a socio-constructive way, basing feedback on students’ ideas via 
discussion:

• It is challenging to lead group discussions based on students’ ideas.
• It can be tempting to return to teacher-centred transmission of knowledge

These challenges are significant and important to acknowledge when teachers 
shift to technology-mediated FA practices. They connect both to key strategies for 
FA and the  potential of technology-based FA strategies (Wiliam & Thompson, 
2008; Wright et al., 2018). Teacher-centred transmission of knowledge can take the 
form of a lecture or a monologue spiced with a few questions such as “What is the 
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slope when the line is vertical?” that reinforce students’ perception that questions 
always having one right answer in mathematics. Considering the fact that most 
teachers are not used to implementing open tasks that require both the use of tech-
nology and the orchestration of classroom discussion, it is an understandable reac-
tion to return to teacher-centred practices. Also, an implication that leading a 
discussion based on students’ ideas might have longer-lasting effect on students’ 
learning could be considered less important than the fact that such discussions often 
will require more time. However, if teachers are so restricted by tight time schedules 
that they make no time to get their students to think mathematically, something 
surely needs to change.

According to Mason (2002, p. 8) it is important for teachers to feel that they have 
made an informed decision in a moment of choice and responded professionally 
(based on awareness) rather than just reacting. There were indications in this study 
that a novice teacher using SVT practices started developing an in-the-moment 
awareness of possibilities for classroom discussion within one school term, sup-
ported by the practice of reflection and think-aloud exercises. For him and the expe-
rienced teachers, the orchestration of group discussion was clearly the biggest 
challenge involved in SVT practices. Kooloos et al. (2020) described how support 
via a professional development course based on the work of Stein and Smith (2011) 
can support teachers who want to develop their practice of classroom discussions 
based on open tasks. Within four lessons, they supported a teacher to establish a 
discourse community in her mathematics classroom. For teachers who aim to 
include SVTs and similar practices—developing their ability to elicit, attend to, 
discuss, interpret, and respond to student thinking in their work—such professional 
development courses with like-minded teachers building a community of practice 
would probably be a good next step.
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Teaching Linear Equations 
with Technology: A Flipped Perspective
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Abstract This chapter discusses the experiences and perceptions of one secondary 
school teacher’s implementation of a technology-enhanced flipped pedagogic 
approach over a 4-week period whilst teaching the topic linear equations in a Year 9 
mathematics class in Victoria, Australia. The study found significant teacher time 
demands during the initial implementation of the flipped pedagogy, primarily due to 
the process of establishing teacher technology competence. The use of formative 
assessment to monitor students’ progress was found to be helpful to support the 
teacher to plan and monitor student participation. Student engagement was increased 
in the flipped group, as it seemed to allow more time in class for the teacher to help 
individual students, resulting in reduced time pressure on the teacher in class. We 
conclude that a number of professional development opportunities should be con-
sidered to support teachers’ implementations of a flipped approach, to include the 
development of: teacher technology competence, teacher strategies for monitoring 
students’ expectations for learning mathematics and teachers’ abilities to be critical 
about aspects of teaching and learning, which might be enhanced through a flipped 
classroom approach.
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1  Introduction

The twenty-first century has ushered in an increased reliance on, and access to, 
technology for students and teachers alike, both inside and outside physical class-
room spaces (Groff & Mouza, 2008). Increased access to technology has presented 
a myriad of opportunities for teachers that foster “fresh thinking about what is 
taught, how it is taught and why it is taught” (Moyle, 2010, p.  5). The 2020 
COVID-19 pandemic, which has forced remote teaching and learning across much 
of Australia and many other areas worldwide, has expedited teacher consideration 
of technology-supported practices for teaching and learning in mathematics.

This chapter reports the teacher component of a larger study, which also investi-
gated student understanding, attitude and perspectives to learning how to solve lin-
ear equations in Year 9 mathematics through a flipped approach (McAlindon, 2020). 
This chapter responds to the following research question by presenting a case study 
of a particular teacher’s experiences as a flipped pedagogic approach was imple-
mented in an Australian mathematics classroom:

What are the teacher experiences and perspectives of implementing a flipped 
learning approach for the first time?

Given that most flipped research occurs in higher education settings (Akçayır & 
Akçayır, 2018), our study adds insights from the perspective of secondary school 
implementation. In higher education, the flipped approach is reported to improve 
upon a traditional lecture through increased engagement (Yeung & O’Malley, 
2014). However, there are also challenges for implementation ranging from time 
constraints for teachers in the planning and preparation of a new approach to teach-
ing (Critz & Wright, 2013; Hoffman, 2014) to the inability to adequately support or 
monitor student participation (Lo et  al., 2017). Higher education and secondary 
classrooms have students at different ages and stages of education, so there are 
likely to be differences in findings related to implementations of a flipped class-
room. This study provides insight into whether identified benefits and challenges 
associated with implementations of a flipped approach in higher education are also 
evident in the secondary mathematics classroom setting that is reported here.

The research study that this chapter reports involved two parallel classes, one 
flipped and one non-flipped. This enabled the teacher to reflect upon  the differences 
between the flipped classroom and the non-flipped classroom. For these two classes:

• the teacher was the same.
• the planned examples were the same.
• the non-flipped group were not given access to the flipped content (i.e., the 

teacher videos).
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1.1  Flipped Classroom: Overview of Components & 
Implementation

A flipped classroom is defined as an “instructional model, in which some activities 
traditionally conducted in the classroom (e.g., content presentation by the teacher) 
become home activities, and activities that normally constitute homework now 
become classroom activities” (Akçayır & Akçayır, 2018). Content presented by the 
teacher generally utilises digital technologies through the video recording of instruc-
tion, or by identifying appropriate existing online videos, for students to view as 
homework prior to class (Lo et al., 2017). A flipped classroom where technology is 
used for content delivery is termed a technology-enhanced flipped classroom (Lo 
et al., 2017). In the mathematics classroom, content presentation might typically 
include teacher examples that demonstrate the use of mathematical procedures, 
explain concepts, demonstrate concrete materials, or model the use of technol-
ogy, etc.

In general, classroom lessons can be considered as having two main compo-
nents: an out-of-class and an in-class component. These two components typically 
differ in the timing and location of the activity, with the out-of-class component 
(i.e., problems or tasks) occurring asynchronous to the in-class component (typi-
cally a face-to-face lesson where there is some content presentation by the teacher). 
A flipped classroom “flips” this paradigm, with the content presentation by the 
teacher given as homework as a pre-class activity (asynchronous out-of-class com-
ponent), and the problems or tasks set by the teacher completed in class.

While appearing a relatively simple concept, the flipped approach is more 
nuanced than the ‘invert-the-process’ approach to teaching may suggest, with a 
number of possible implementations. There is neither global practice for implemen-
tation nor a mandate that technology must be used (Lo and Hew, 2017; Love et al., 
2014). Lo et al.’s (2017) synthesis of research on flipped pedagogies concluded no 
standard approach to flipped implementation in the mathematics education litera-
ture. The pre-class activities reported in the flipped mathematics classrooms, which 
included watching videos, reading articles, viewing presentations, and reading a 
textbook (Lo et al., 2017; Lo & Hew, 2017), highlight the extent to which pre-class 
activities can vary for both teachers and students. Furthermore, numerous in-class 
activities have been reported in flipped classrooms, including teachers providing 
students with time for independent practice, active-learning activities, textbook 
review work, student presentations, small-group work, group discussions, and tar-
geted focused learning on previously identified problems (Lo et al., 2017).

Multiple approaches to teacher implementations have contributed to differing 
conclusions about the efficacy of a flipped classroom (Bishop & Verleger, 2013; 
Kadry & Hami, 2014; Love et  al., 2014; Jensen et  al., 2015). Differences in 
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pre- class and in-class activities in flipped classroom research make it difficult to 
determine efficacy or attribute any successes/drawbacks of flipped implementation 
to any one component (pre-class or in-class). Authors claim a “blurry picture” of the 
impact of a flipped classroom across multiple subject areas (Låg & Sæle, 2019).

Our research therefore sought to examine the impact of altering the pre-class 
activity when implementing the flipped approach in a secondary mathematics class 
and reported the perspectives of the teacher in doing so.

1.2  Technology, Pedagogy and Flipped Implementation

In the flipped classroom it is important to distinguish between the types of technolo-
gies used. These include technology for recording the teacher content (e.g., video 
recording the explanations of examples); technology to support the delivery of 
flipped content (e.g., students using their computer to access YouTube clips or play-
ing files provided by the teacher); technology used by the teacher to collect forma-
tive assessment (e.g., use of online platforms); and technology used by the teacher 
or students to solve problems, or to assist in explaining a concept or procedure.

Consequently, although the flipped classroom can be supported using technol-
ogy, there are potential barriers for teachers to overcome to effectively implement 
technology-enhanced flipped classrooms. Kearney et al. (2018) highlighted chal-
lenges faced by teachers in adopting new technology in their teaching practices, 
including access to timely professional development. The complexities of effective 
technology integration within pedagogy are highlighted by the Technological 
Pedagogical Content Knowledge (TPACK) framework (Mishra & Koehler, 2006) 
which outlines the need for teachers to integrate subject content, pedagogical 
knowledge, and technological knowledge. The TPACK framework is not directly 
linked with flipped classroom research, but exemplifies the demands placed on a 
teacher in the implementation of a technology-enhanced flipped classroom. Teachers 
must consider how to utilise technology to develop students’ mathematical under-
standing when students are learning new mathematical skills and concepts outside 
class, and where this new understanding underpins the subsequent face-to-face class.

An important pedagogical consideration is that students will not be able to ask 
questions of the teacher while engaging with the flipped content, so teachers must 
consider the nature and extent of the flipped content in order to engage students, but 
also to anticipate and ameliorate any expected student difficulties. Mishra and 
Koehler (2006) suggest that technology may constrain pedagogical decisions. In the 
flipped mathematics classroom this is evident through flipped content presentation 
occurring without teacher interaction with students; the teacher cannot monitor or 
respond to students’ understanding in real time. Teachers must consider the extent 
to which they choose to include reasoning, mathematical solution steps, technology 
use (e.g., a CAS calculator to simplify algebraic expressions) or demonstrate con-
crete materials within the context of an inability to respond to students’ questions 
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in-the-moment. This impacts the pedagogical choices that teachers make when 
planning the pre-class material.

Alongside these pedagogical issues, there are specific technological challenges 
that teachers need to overcome, many of which relate to competence with technol-
ogy and the increased workload to develop the new lesson content (Akçayır & 
Akçayır, 2018; O’Flaherty & Phillips, 2015).

1.3  Teacher Experiences in Flipped Implementation

A flipped classroom requires teachers to make decisions about both content delivery 
for pre-class and in-class activities. There are technology considerations in the prep-
aration of videos, or selection of content, for pre-class work. In addition, teachers 
must decide whether students will use technology (for example, dynamic geometry, 
computer algebra systems, graphing software, applets, etc) for learning or doing 
mathematics during in-class activities. Therefore, the teacher must consider how 
and when to utilise technology for both pre- and in-class activities. The focus in this 
chapter is on technology use for pre-class activities.

Preparing content for the teaching of mathematical skills and/or concepts in an 
asynchronous manner requires planning by teachers. Preparing pre-class content 
increased teacher preparation time, even for the most experienced teachers (Akçayır 
& Akçayır, 2018; Bergmann & Sams, 2016). Increased preparation time is a chal-
lenge for teachers to overcome and a major criticism of the approach (Lo & Hew, 
2017). Previous research has reported 70+ working hours to redesign courses for a 
flipped approach (e.g., Adams & Dove, 2016). The increase in time is predomi-
nantly due to time required to create and edit video lectures, in addition to preparing 
in-class activities (Akçayır & Akçayır, 2018; Lo et al., 2017).

Johnson and Renner (2012) highlighted the perspective of one teacher, who 
found the workload required for planning the flipped classroom cumbersome, with 
each lesson requiring two lesson plans (i.e., pre-class and in-class). Similarly, 
Wanner and Palmer (2015) noted increased workload as the biggest concern of 47 
Australian university academics; one academic noted a six-fold increase in prepara-
tion time. Despite this, increased job satisfaction has been reported by teachers 
(e.g., Brunsell & Horejsi, 2013). The flipped classroom has provided opportunities 
for teachers to differentiate for students’ needs (Finkel, 2012; Fulton, 2012; Speller 
2015), with Saunders (2014) reporting enhanced opportunities for high school 
mathematics teachers to enrich learning opportunities for all types of learners.

While some teachers have found a positive trade-off for the increased time com-
mitment (i.e., more targeted in-class activities), others view it as burdensome with 
few rewards (Johnson & Renner, 2012). This chapter presents benefits and draw-
backs of flipped implementation through the experiences and perspectives of one 
teacher who was able to reflect on the experiences of flipped implementation 
through teaching a parallel non-flipped class concurrently.
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2  Methodology

2.1  Methodological Basis

Given the focus of flipped classroom research in higher education and across a 
range of subject areas, there was a gap in understanding of  the impact of such 
approaches on secondary mathematics teachers. It is important to understand teach-
ers’ experiences when implementing a flipped approach (and also their perspectives 
on this approach), as teachers play a crucial role in deciding on the teaching 
approaches in their lessons. To determine the viability of a flipped approach one 
important aspect is to understand potential opportunities and barriers from the per-
spective of the teacher.

In this study the teacher’s experiences and perspectives were gathered through 
interviews at three distinct timepoints: before, during and after flipped implementa-
tion. Gathering the teacher’s experience and perspectives at these three stages was 
important to ensure adequate understanding of teacher planning (before implemen-
tation), teacher considerations (during implementation) and teacher reflection (after 
implementation).

Two Year 9 classes (flipped and non-flipped) were taught by the same teacher, 
which focused on  the solution of linear equations. The teacher explanations and 
examples were planned to be the same for each class, with the delivery of instruc-
tion the only planned difference. The teacher planned to use explicit instruction for 
presenting examples to the non-flipped class. Figure 1 provides an example used by 
the teacher, showing the procedural steps that would be recorded. Analysis of the 

Fig. 1 Teacher procedural 
example for an algebraic 
approach for solving linear 
equations
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lesson content and videos is not provided in this paper. The teacher’s explicit 
instructions for the same examples were videoed and provided to the flipped class.

Case-study methodology was used as it allows for rich evidence of teacher prac-
tice to inform our understanding (Hamilton & Corbett-Whittier, 2013). In our con-
text, it was used to develop detailed descriptions of the teacher’s experiences and 
perspectives based on her natural observations of her two classes. This approach 
provided a naturalistic setting for the teacher and the students, with students in their 
usual mathematics class with their mathematics teacher.

2.2  Setting of the Study

The study took place in the first-named researcher’s place of employment, a co- 
educational secondary school in Victoria, Australia (School A). School A has a 1:1 
computer implementation strategy, with each student and teacher issued an Apple 
MacBook for use at school and home. Teachers also have access to a range of tech-
nology, including graphics tablets (Wacom Intuos).

School A offers semester-based professional development workshops where 
teachers choose professional development to suit their interests. One workshop 
series focused on flipped learning pedagogies and was facilitated by the first-named 
researcher, who was the professional development coordinator at School A.  The 
7 × 1.5 h flipped learning workshops covered a general introduction to the flipped 
classroom, common deliveries of in-class and pre-class activities, how to upload 
videos and this included time to create and upload a video. Teachers were provided 
with the following summary of the 10 design principles to support implementation 
devised by Lo et al. (2017):

 1. Manage the transition to the flipped classroom for students.
 2. Manage the transition to the flipped classroom for instructors.
 3. Consider presenting introductory materials and providing online support in 

video lectures.
 4. Enable effective multimedia learning by using instructor-created short videos.
 5. Use online exercises with grades to motivate students’ class preparation.
 6. Modify in-class teaching plans based on students’ out-of-class learning 

performance.
 7. Activate students’ pre-class learning by using a structured formative assess-

ment such as a quiz at the start of face-to-face lessons.
 8. Require students to solve varied tasks and real-world problems.
 9. Meet the needs of students through instructor feedback and differentiated 

instruction.
 10. Facilitate peer-assisted learning through small-group learning activities. (Lo 

et al., 2017, pp. 62–66)
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2.3  Teacher Participant

Teachers from the mathematics faculty who had attended the flipped learning ses-
sions were invited to participate in the study. The first-named researcher explained 
the study and provided a rationale that having one teacher teaching two parallel 
classes would help minimise variability in teaching approach and support compara-
tive reflections.

One teacher, Kate (a pseudonym), who taught two classes at Year 9, volunteered 
to participate in the study. Kate had taught mathematics for over 15 years, and had 
taught with technology (e.g., MacBook, CAS Calculator) for most of this time. Kate 
had not taught using a flipped approach before but had previously taught Year 9 
linear equations. Kate nominated one of her classes as an experimental group and 
the other as a control group. The experimental group received their instructional 
content using a technology-enhanced flipped approach; this class is referred to as 
the flipped group. The control group received Kate’s regular approach to teaching 
and learning where she presented content and students solved problems during the 
lesson, with homework involving solution of topic-related problems; this class is 
referred to as the non-flipped group. The school Principal, Kate, her students and 
their parents were all provided with a plain language statement outlining the research 
and signed a consent form to participate in this study. Students who did not return a 
signed consent form still participated in the classroom activities, however their data 
was excluded from analysis.

2.4  Research Design

Kate was requested to plan the same explanations and examples for both the flipped 
and non-flipped groups for the linear equations topic. This enabled comparison 
between the flipped and non-flipped approaches, as the only planned difference for 
explanations and examples was the delivery of instruction.

Kate had been provided with the design principles by Lo et al. (2017) during the 
professional development sessions but she was not directed to apply these in pro-
ducing the videos. However, as Kate had seen these principles, they may have 
impacted her lesson design and subsequent teaching.

For each 50- or 100-min lesson over a four-week period (16 lessons) Kate pre-
pared a video for students to watch as a pre-class activity. Kate made her own deci-
sions about the quantity and quality of the explanations and examples for each 
lesson. As a result, Kate created 73 min and 48 s of online content, across 11 videos.

Kate recorded her examples and explanations (i.e., screen captured audio and 
video) using a graphics tablet connected to her computer. Recordings were uploaded 
to an online platform, Edpuzzle (edpuzzle.com), at the first researcher’s request. 
This platform has the functionality to gather student participation data and thus sup-
port monitoring. Kate included some formative assessment items, which she 
expected the flipped group students to answer as they watched each video.

A. McAlindon et al.
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Table 1 Categorisation of similar and different aspects in the flipped and non-flipped groups

Category Item
Group
Flipped Non-flipped

Pedagogical Teacher Same Same
Instructional content 
(examples used)

Same Same

Initial delivery of 
instructional content

Completed for homework 
via video (not during regular 
class time)

Explained by teacher 
during scheduled class 
time

Student work 
requirements

Practice questions 
assigned to students

Same Same

Use of scheduled 
class time

Clarifying concepts from 
video
Solving problems

Listening to teacher 
explain instructional 
content
Clarifying concepts
Solving problems

Typical homework 
routine

Watching video for the next 
lesson

Solving problems

Overall time 
commitment

Same Same

Data on the students’ access to each video (i.e., duration watched) and responses 
to the teacher’s formative assessment items enabled Kate to monitor students’ par-
ticipation and understanding. Students accessed the pre-recorded videos for home-
work (Table 1).

2.5  Flipped and Non-flipped Lesson Content and Structure

An overview of the pedagogy and student work expectations for both the flipped 
and non-flipped group is summarised in Table  1. Students in both groups were 
expected to have the same time commitment for mathematics.

The mathematical content for the lessons, solving linear equations, included col-
lecting like terms, recognising equivalence, solving arithmetical equations (e.g., 
equations of the form Ax + B = C) and non-arithmetical equations (e.g., equations 
of the form Ax + B = Cx + D). Kate used procedural examples which involved dem-
onstration of step-by-step routine procedures to solve non-contextual problems 
(Fig. 1). The same explanatory notes, examples and problems were used for both the 
flipped and non-flipped groups, which enabled her to reflect on the success of the 
flipped approach.
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2.6  Semi-Structured Interviews

Semi-structured interviews provide an appropriate and flexible approach for small- 
scale research (Drever, 1995), as a set of predetermined questions can have their 
order, wording, or structure modified based on the interviewer’s perception of what 
seems to be most appropriate at the time (van Teijlingen, 2014). Each semi- 
structured interview with Kate had pre-planned questions to gain insight into her 
planning, implementation, technological difficulties, perceptions of student prog-
ress and issues with the flipped approach (see Appendices 5.1, 5.2 and 5.3).

Kate participated in three 20-min semi-structured interviews: one before teach-
ing the topic (pre-implementation), a second halfway through teaching the topic 
(during-implementation), and the third at the end of the topic (post- implementation). 
Interviews were transcribed verbatim and the full transcript was provided to Kate to 
check and provide any elaborations or clarifications.

2.7  Data Analysis

Qualitative analysis of each of the three semi-structured interviews was guided by 
the nine-stage approach outlined by Ball (2011), involving the use of transcripts to 
determine themes (Fig. 2). This process resulted in subthemes (referred to as clus-
ters by Ball, 2011), which were a collection of similar focused comments made by 
Kate. Subthemes were grouped into overarching themes that represented similar 
sets of related subthemes (Table 2).

Data was continually revisited to determine themes that provided the best expla-
nation of “what’s going on” (Srivastava & Hopwood, 2009). Transcripts were revis-
ited by all authors to establish a representative set of subthemes, and ultimately, 
validate a set of themes that captured the content of each interview.

Kate restated or repeated ideas in the same or subsequent interviews, and these 
similar ideas were grouped into “subthemes” (Stages 4–6). This was achieved by 
highlighting comments and paraphrasing them in the margin of the transcript, with 
related paraphrased comments forming a subtheme. An example of the outcomes of 
Stages 4 and 5 are depicted in Fig. 3.

The subthemes and themes were determined across the three interviews. Using 
the same paraphrased examples as those from Figs. 3 and 4 exemplifies how sub-
themes were formed across multiple interviews. The themes relating to the teacher 
experiences and perspectives of flipped implementation are in the following section.

A. McAlindon et al.
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Fig. 3 Example of paraphrased comments formed from interview transcript

Fig. 4 Example of subthemes from multiple paraphrased comments over multiple interviews
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3  Results and Discussion

Six themes emerged from the interview analysis with Kate, and these have been 
organised into the following three broad areas:

• requirements for flipped implementation (Theme 1),
• the processes involved in the implementation (Theme 2), and
• the key perceived outcomes of implementation (Themes 3–6).

The themes, subthemes and frequency of comments that related to each sub-
theme and the interviews in which they were made in are shown in Table 2.

What follows is an explanation of each of these themes with exemplification 
from the data.

3.1  Requirements for the Flipped Classroom – Theme 1

This theme categorises the main requirements identified as important for the imple-
mentation of flipped lessons. Two subthemes related to expectations of students and 
teacher technology competence.

3.1.1  Clear Expectations of Students’ Participation 
in the Flipped Classroom

The need for clear student expectations with regard to the watching of the videos for 
homework was evident in all interviews (subtheme 1.1). Before implementation, 
Kate raised concerns that students might not watch the videos and may “waste their 
time in the class”. To mitigate these concerns, Kate ensured that the students under-
stood that the time gained in class for solving problems should be used effectively, 
noting any problems not completed in class “they have to still do, obviously at 
home, plus watching the new tutorial [i.e., video] and getting the notes”. Kate dis-
cussed her clear expectations that students were accountable for homework and 
classwork in Interviews 1 and 2, highlighting student expectation remained a focus. 
In Interview 2 Kate described the expectations provided to her students to complete 
the following pre-class activities:

• watch the video tutorial and copy the notes to their workbook; how they watched 
the tutorial was left up to the students (i.e., pause or rewind as required);

• highlight difficulties prior to entering the next class so these could be clarified 
in class;

• complete the tutorial quiz questions in their workbook.

Edpuzzle enabled Kate to monitor student work completion. Kate noted some 
students watched videos at 6 am the morning of class, and subsequently asked all 
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students to complete work the night before, as an additional expectation. By 
Interview 2, Kate was confident her expectations were being met, and despite “a few 
students who did not watch the tutorial the first time round”, her continual follow-up 
ensured all students participated in the flipped classroom as intended, noting that by 
the mid-point of the topic “all students know what they need to do” and “are quite 
prepared” for face-to-face lessons.

The three interviews highlighted a progression in Kate’s flipped implementation. 
In Kate’s experience, teacher intervention was required to maximise student partici-
pation. Kate’s communication of expectations assisted appropriate student partici-
pation, consistent with Lo et al.’s (2017) guidelines that teachers must manage the 
transition to the flipped classroom for their students. Kate’s expectation that stu-
dents watched the videos (before the next lesson) and wrote summary notes once a 
video had been viewed engaged students with the pre-class videos, which meant 
they were prepared for the in-class activities where problem solution relied on 
knowledge from the videos. Furthermore, the need to monitor student participation 
is highlighted; as without this capacity, teacher intervention is more limited.

3.1.2  Teacher Technology Competence

Teacher technology competence (subtheme 1.2) was a consistent subtheme across 
the three interviews. In Interview 1, Kate discussed the additional time investment 
required to become accustomed to working with new forms of technology (i.e., a 
graphics tablet, screencast software, Microsoft OneNote, Edpuzzle). She noted that 
it took quite “some time to adjust” to using these technologies. Kate commented 
that “the first video probably took me … 2 hours, umm, because I couldn’t get 
everything sort of aligned together, video and pen and everything”, highlighting a 
substantial time investment to assimilate aspects of technology. For Kate, preparing 
the first video was the most time-consuming task, but over the interviews her com-
ments indicated the time required to produce videos decreased.

In the second interview, and despite growing competency with technology, Kate 
noted that aspects of technology continued to remain problematic. These centred 
around developing adequate technical expertise in using features within the plat-
form, such as “… learning how to get feedback from Edpuzzle of the student’s 
ongoing progress”. This feedback related to student viewing data and responses to 
the quiz questions, both crucial aspects in order for Kate to monitor students’ 
participation.

By Interview 3, no technology issues were evident, however Kate reflected on 
the initial start-up considerations for teachers implementing the flipped classroom. 
These included developing technical expertise (i.e., use of graphics tablets, screen-
cast software, upload platforms) and coordinating the use of such tools (sometimes, 
simultaneously).

Although time consuming, Kate acknowledged, “It’s worth the time spending 
preparing for the flipped classroom”. Kate cautioned that not taking the time to 
build this competence would result in teachers “… spend[ing] a lot of time 
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preparing notes and the students still won’t get it”. Kate’s interview suggested that 
while teachers can understand how to use certain aspects of technology, they needed 
to be fluent operators and integrate multiple technologies. For example, the graphics 
tablet needed to be managed alongside a voiceover, with clear handwriting on the 
tablet to ensure students could make sense of the final product.

McGivney-Burelle and Xue (2013) cautioned that “Those new to flipping should 
expect many technology glitches especially when creating the first few videos” 
(p. 484). By Interview 3, Kate suggested her competency with the technology had 
reached a point where it was no longer an issue, and so this technological compe-
tency was built in a matter of weeks. Thus, although there may be an initial increase 
in time demands in learning to teach with new technologies, the demands may 
decrease.

This theme highlighted the requirements for a flipped classroom are multifac-
eted. Teachers should establish student expectations, even if these are the same as 
for non-flipped classrooms (i.e., the completion of assigned homework), and moni-
tor student participation. Additionally, teachers need to develop technological com-
petence to integrate the use of a number of technologies simultaneously.

3.2  Understanding the Process of Flipping 
a Classroom – Theme 2

This theme relates to the process of flipping a classroom, such as increased time 
demands, the required quality of videos and use of student data to inform planning.

3.2.1  Flipping Lessons Is a Time-Consuming Process

This subtheme highlighted Kate’s concern about the additional time for implement-
ing flipped lessons. In Interview 1, Kate discussed that planning for her regular 
mode of teaching would take around 5 min for a 50-min lesson given her experience 
in teaching (i.e., over 15 years). Kate pointed out that her planning time for flipped 
lessons was “definitely more lengthy than the 5 minutes”. In preparation for record-
ing videos, Kate wrote a plan for her examples and explanations, noting that “pre-
paring the notes … written … took for sure about 2 to 3 hours to prepare for a whole 
unit”. Talbert (2015) described a ratio of “roughly a 6:1 ratio in time spent scripting 
and producing each video to the running time of the video” (p. 624). Kate noted her 
first video of approximately 10 min duration took about 2 h to create.

The extended lesson planning time due to the need for a high level of teacher tech-
nology competence was discussed in the previous theme; however, the preparation 
of notes and sequencing for each lesson also required Kate to spend more time than 
in her regular lesson planning. Kate acknowledged this additional time was a wor-
thy investment, as videos had an immediate impact on students’ engagement and 
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her ability to differentiate content (addressed later in themes 4 and 5). Furthermore, 
Kate acknowledged the benefits in the reusability of the videos (addressed later in 
theme 3).

3.2.2  Video Quality Does Not Need to Be Perfect

When teachers make videos for students, there could be an expectation that videos 
should be high quality, with considerable editing and refining. Subtheme 2.2 indi-
cates this was not essential for Kate, and hence need not consume considerable time.

Initially, Kate devoted a large portion of time in her attempts to make perfect 
videos (Interview 1), with any imperfections in voiceovers or minor imperfections 
in writing causing her to start recordings over. After approximately five lessons 
Kate accepted being “less perfect, so if a mistake was done, I would just say no this 
is the way it needs to be done, rather than just starting from scratch”. By Interview 
2, Kate had sought feedback from students about the videos and received positive 
feedback, noting that her students did not expect videos to be perfect:

They have been “nah we like them Miss”, “we can understand them”, “there’s enough 
examples” and I can tell that because they can then go straight into their work after we’ve 
reviewed the quiz questions, umm—so yeah, the feedback was good.

Acceptance of less than perfect video quality by Kate’s students suggests that 
teachers may not need to allocate significant time for editing videos. In initial vid-
eos Kate re-recorded videos in order to eradicate “ums” and “ahs” and fix minor 
errors, such as use of incorrect notation. While others have suggested self-created 
videos to be of preference in flipped implementation (Lo et al., 2017), Kate’s experi-
ence highlights that acceptance of minor errors may be able to save time in video 
production, without compromising student satisfaction.

3.2.3  Formative Assessment in the Flipped Classroom Assists Planning 
and Preparation

The preparation for face-to-face lessons was enhanced through Kate’s ability to 
monitor student progress through the platform, which provided a summary of stu-
dents’ answers to the embedded online questions. In both Interviews 1 and 2 Kate 
discussed use of student progress data from these questions to guide discussion in 
the next face-to-face class, stating in Interview 2 that she “will show them … how 
many of you got this one incorrect, let’s discuss it on the board”.

Given her extensive experience in the teaching of linear equations, Kate men-
tioned that the student responses to the formative assessment tasks did not reveal 
anything she had not already anticipated. However, she still used these responses to 
inform the group focus for the in-class lesson:

When we did the transposing of equations, the flipped group—I had to go through the tuto-
rial again with them in class, because they got most of the questions, the quiz questions 
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incorrect. And so … we discussed extra examples on the board, and once I explained it on 
the board, then they said “oh now I get it”. (Interview 3)

Bhagat et al. (2016) reported the benefit of targeting teaching for specific groups 
of learners based on progress in pre-class activities. Kate used whole class instruc-
tion to clarify any difficulties identified through the quiz questions, rather than 
design more targeted interventions for specific groups, which may have limited the 
efficacy of this approach.

3.3  Key Perceived Outcomes: Resources – Theme 3

This theme relates to the reusable nature of the resources created and has only one 
subtheme.

3.3.1  Flipped Tutorials Are Reusable

Kate highlighted the ability to reuse tutorials (i.e., videos) year-to-year, or for mul-
tiple classes in 1 year, as advantages of creating video explanations. While these 
advantages were discussed in Interview 1, Kate identified an additional advantage 
during Interview 2, which was to make the videos available to absent students, com-
menting that the videos “have already been useful for those students who weren’t 
there”. This shows a shift in emphasis from thinking about time saving for herself 
(i.e., to mitigate the extensive start-up time investment from Themes 1 and 2), to 
considering how videos can be used to enhance opportunities for student learning, 
opportunities that were not available in a non-flipped approach.

During Interview 3, Kate reemphasised these advantages but returned to the ben-
efits for the teacher from the perspective of being able to use videos with multiple 
class groups at the same year level:

When you’ve got the same class, you know you’ve got two or three of the same classes as 
well. It is quite efficient to have the tutorials—because to repeat the same things twice or 
three times a day—it can be draining.

This subtheme highlights the specific resource outcomes of flipped classroom 
implementation. The reusable nature of resources serves to benefit both teachers 
and students. While previous themes have elaborated on the substantial time invest-
ment for flipped implementation, this theme begins to acknowledge potential gains. 
Kate’s perspectives aligned with McGivney-Burelle and Xue (2013), who claimed 
that “Once a polished set of videos and course materials are created the preparation 
time will be significantly reduced” (p. 484).

However, there is a caveat to any discussion of these advantages as teachers are 
unable to engage with students during the explanation of new mathematical con-
cepts or procedures, nor can students discuss the mathematics with other students, 
if necessary. Thus, there is an inability to involve students in building an 

A. McAlindon et al.



167

explanation, questioning aspects of an explanation or taking part in discussions 
related to the new understanding being developed. This approach of using pre-
recorded videos has some advantages in the mathematics classroom, but teachers 
will need to balance this against recognised benefits that arise from the social nature 
of learning, for example, through constructing understanding through argumenta-
tion (Yackel, 2002) or promoting knowledge development through discussion of 
technology displays (Ball & Barzel, 2018). This particular caveat was also acknowl-
edged as a drawback of the flipped approach by students in their feedback within the 
wider study in which this research took place (McAlindon, 2020).

3.4  Key Perceived Outcomes: Student Classroom 
Engagement – Theme 4

Theme 4 related to aspects of student classroom engagement, viewed from Kate’s 
perspective, that were impacted through the flipped classroom implementation. Two 
subthemes related to student behaviours and their in-class interactions.

3.4.1  More Engagement and Less Behavioural Issues After Flipping

The emergence of subtheme 4.1 was supported by 11 comments, all occurring dur-
ing Interviews 2 and 3 (i.e., after implementation of the flipped lessons). Kate noted 
student behavioural issues in the face-to-face lessons for the flipped group, and 
despite not discussing this as an anticipated benefit in Interview 1, referred specifi-
cally to this group’s improvement in their behaviour in Interview 2:

The behaviour in the flipped group, I think it has improved—you know they work straight 
through then they ask for a break, they come back in and then they keep working. Whereas 
the other group, there is still that struggle, once you finish off the explanation, they want a 
break, because they’ve had, you know, almost enough, and then they still need to start work-
ing. Yeah, so in the flipped group, the behaviour is much better.

The disparity in engagement between the two classes was further reinforced dur-
ing Interview 3, with Kate commenting that during face-to-face classes, “… the 
flipped group were more engaged in their work. They were really, you know, heads 
down and just completing their work”. She reported that the flipped group had 
improved behaviour compared to prior to the study and they seemed more engaged 
with the work in class when compared to the non-flipped group. Kate suggested that 
the flipped group were actively engaged with the examples and explanations, while 
the non-flipped group found the same content tiring, possibly due to the cognitive 
demands of learning new procedures and/or concepts in the same lesson as solving 
problems.

The flipped group had a novel format for their classes, with students able to view 
explanations at their own pace prior to class, with class time devoted to solving 
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problems that involved the application of known procedures and concepts. This 
resulted in fewer behavioural disruptions and more active participation in the flipped 
group. Increased student engagement in the flipped group could be attributed to the 
“flow-on” impact of the pre-class activities, rather than any deliberate change to in- 
class activities. This contrasts with the findings from Jensen et al. (2015), which 
attributed the increased engagement of post-graduate students in a flipped class-
room to be the product of changes to in-class activities, and not the classroom 
flip itself.

3.4.2  Increased Collaboration Opportunities in a Flipped Classroom

In Interviews 2 and 3, Kate commented on the impact of the flipped approach on 
students’ inclination to help their peers with mathematics. She noted “students are 
helping each other more, I noticed, because obviously they’ve watched the video—
they’ve understood it—and then they might be feeling more comfortable helping 
out each other”. Kate did not report such observations in her non-flipped classroom.

Increased opportunities for students to interact and collaborate during class in a 
flipped approach have been reported to enhance learning through structured peer- 
based learning. For example, Lo et al.’s (2017) review of the flipped classroom lit-
erature in mathematics highlighted 33 studies with reported benefits that were 
attributed to peer-assisted learning which occurred in a flipped classroom. While 
Kate did not explicitly build opportunities for peer-assisted learning into the struc-
ture of her face-to-face lessons, the in-class component of the flipped classroom was 
conducive to peer-based learning as it did not focus on the teacher explaining exam-
ples, thus provided more opportunities for interactions.

3.5  Key Perceived Outcomes: Teacher Specific – Theme 5

This theme had two subthemes related to increased teacher support afforded to stu-
dents and reduced teacher stress in the flipped classroom.

3.5.1  Increased Opportunities to Observe and Support Student Progress

Kate noted an increased ability to observe and support students’ learning during in- 
class activities for the flipped group. In Interview 1, Kate reflected on the potential 
of the flipped classroom, suggesting the non-flipped group would be disadvantaged 
as most textbook problems will be completed “when they are at home working by 
themselves and the teacher is not there”. By contrast, her flipped group seemed 
advantaged by learning at home through video, and “more time to complete class 
work … with my assistance”.
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Kate valued the ability for more dedicated teacher time responding to individual 
student’s questions for the flipped group, noting in both Interviews 2 and 3 that the 
flipped students had an increased ability to just “put their hand up and there’s my 
help”. This notion of enhanced support was due to extra time helping students, with 
Kate commenting she could “get a feel more from the flipped group because I’m 
seeing them doing their work in front of me”. This was not possible in the non- 
flipped group as content explanations consumed considerable class time.

Bhagat et al. (2016), Clark (2015) and Strayer (2012) also reported that freed-up 
class time enhancing opportunities to further support students as they actively work 
through problems. Even in the absence of specific targeted intervention programs, 
the pre-class component of the flipped classroom provided more time for the teacher 
to target help to individual students in-class.

3.5.2  Reduced Teacher Stress in a Flipped Classroom

Subtheme 5.2 highlighted reduced teacher stress resulting from the normal time 
constraints in-class. After implementation, Kate highlighted that she felt less time 
pressure to teach the curriculum with the flipped approach, compared to the non- 
flipped approach where finishing the topic was “always sort of a struggle”.

Kate identified difficulties with both time and maintaining student engagement 
in her non-flipped group, both of which were not apparent in her flipped group. A 
potential of the flipped approach may be reduction of time stress during class, which 
can be a worthwhile trade-off against the time in initial planning for flipped imple-
mentation. This, coupled with the reusability of videos discussed in Theme 3, high-
lights a potential advantage of the approach in the longer term.

3.6  Key Perceived Outcomes: Learner Specific – Theme 6

This theme focuses on the potential outcomes of the flipped classroom specific to 
the students, as perceived by Kate. Three subthemes related to enhanced capacity 
for differentiation within the classroom.

3.6.1  More Time for Student Work in the Face-to-Face Classroom

Kate perceived students in the flipped classroom had more time to work on prob-
lems in-class, noting this as a potential advantage during Interview 1:

So, with the flipped group, I would probably say out of a double period [100 minutes] 
we’re, maximum spending, 20 minutes if I see that they had difficulties with the quiz ques-
tions. Um, whereas with the other class having to go through the difficulties from the last 
lesson and then through the content and then I would say that maybe they end up with 20 
minutes of doing work, so that’s a big difference.
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Kate’s description of the “big difference” for students in the flipped group, with 
80% lesson time used to complete problems, in comparison to just 20% for the regu-
lar group highlights a large disparity in time for student to solve problems in class. 
This difference is perhaps the explanation for Kate feeling she had more time to 
support her students (Sect. 3.5.1), engage with their classwork (Sect. 3.4.1) and 
each other (Sect. 3.4.2). This difference resulted from a change in the pre-class 
activity, involving students watching a video of approximately 7 min. The ability for 
students to capitalise on this (i.e., through watching at their own pace—see Sect. 
3.6.3), provides natural flow-on opportunities for the teacher (Sect. 3.5.1) and more 
time for students to solve problems in class (Sect. 3.6.1).

3.6.2  The Flipped Classroom Supports Lower Achieving Students

Kate perceived that the flipped approach had enhanced her ability to support low- 
achieving students in particular, as it allowed students to better control the pace of 
explanations (a finding that is supported by the student data in McAlindon, 2020) 
and created subsequent increased time in the classroom, which could be used to 
assist those students.

Kate referenced specific students in her class, who would not have otherwise 
engaged with previous topic content due to perceived difficulty, now actively engag-
ing with content and completing work. This could highlight that the pre-class com-
ponent of the flipped classroom provided new opportunities for learning for these 
students that were perhaps not feasible in a non-flipped class.

3.6.3  The Flipped Classroom Enables Flexible 
and Individualised Learning

Following implementation, Kate felt that students were able to achieve better out-
comes “because they could you know, watch the tutorials at their own pace, as many 
times as they want”, which then “allowed me to help them more in class”. The fea-
ture of on-demand viewing of videos could explain the perceived efficiency of the 
flipped approach as students were able to re-watch explanations as often as they 
wished to understand the examples; this contrasted with the non-flipped group 
where Kate re-explained ideas in class when students were having difficulties.

Kate suggested she was able to explain the same amount of content that could 
otherwise consume 80 min of her 100-min lessons, in a video with an average dura-
tion of 7 min. This was achieved without reduction in content delivered.

What Kate didn’t account for in her interviews was the notion that the examples 
and explanations might need to be further elaborated to help students who were hav-
ing difficulty or to deepen students’ understanding. Kate did not discuss the role of 
the class discussion in helping students to develop their understanding of solving 
linear equations. This could be due to the focus on procedures in the examples and 
might differ when promoting reasoning, problem solving or conceptual 
understanding.
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4  Implications and Conclusions

This chapter reported the experiences and perspectives of one teacher who imple-
mented a flipped approach for the first time when teaching Year 9 students to solve 
linear equations. Overall, the teacher had a positive experience and believed that the 
time investment required to implement a flipped classroom was worthwhile. Three 
broad conclusions can be drawn from the study, namely, using a flipped approach 
requires an initial time commitment by the teacher, there are potential advantages 
for both teachers and students in using a flipped approach, and there are consider-
ations for teachers when using a flipped approach in their teaching of mathematics. 
These findings, which are discussed below, can inform the design of future profes-
sional development for teachers.

4.1  Advantages for Teachers

Four advantages of flipped implementation were identified by the teacher: the abil-
ity for students to independently view/review content explanations, a reduction in 
time pressure in class for the teacher, increased student classroom engagement and 
increased opportunities for the teacher to engage with students.

Students’ independent viewing/reviewing of content explanations. This also sup-
ported absent students or those who needed to consolidate content knowledge. 
When a teacher develops a suite of lessons it will be possible to target video 
explanations to students for revision of previous mathematics concepts or skills 
where student difficulties have been identified.

Reduced time pressures and teacher stress in-class. The transfer of content expla-
nations to a pre-class activity reduced teacher stress in the face-to-face class-
room. Kate noted decreased pressure in the flipped classroom, when compared to 
her non-flipped classroom, as she did not have to “rush through” explanations.

Increased classroom engagement. Kate noted a more “active” work environment in 
the flipped group compared to the non-flipped group. Increased engagement 
resulted in fewer behavioural disruptions, increased collaboration between stu-
dents, and more focus on tasks. These differences were also apparent when com-
paring the same flipped group to themselves prior to flipped implementation.

Anderson and Brennan (2015) reported teachers who invested significant time 
and effort, yet lacked confidence and direction in their implementation, which ulti-
mately led to poor teacher and student outcomes. The professional development 
recommendations presented in Table 3 attempt to ensure appropriate support and 
direction in flipped implementation.

Increased Time for the Teacher to Engage with Students. More class time was 
available for the flipped group to solve problems in Kate’s classes (80% of lesson 
time), compared to the non-flipped group (20%). This afforded extra time  in- class 
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Table 3 Professional development recommendations and associated rationale

Professional Development 
Recommendation Rationale

Discuss criteria for choice of 
content to flip

For content to be appropriate to be flipped, students need to be 
able to develop an understanding of the key concepts or skills 
independently, without reliance on classroom discussion or 
teacher-student interaction. Discussion of criteria for selection 
of content will support teachers to identify appropriate content 
for a flipped approach.

Discuss the differing level of 
time commitment required at 
various stages of flipped 
implementation

Teacher time commitments have been shown to be substantial 
in the initial planning and preparation of flipped 
implementation (Sect. 3.2). This is due to a range of factors, 
including increased need for teacher competence in 
technological pedagogical knowledge
Fewer time pressures in class are then observed, with reduced 
teacher stress in-class and better behavioural engagement 
outcomes (Sect. 3.4). This along with the reusability of videos 
(Sect. 3.3) can be acknowledged as trade-off for the initial 
investment

Discuss and model strategies to 
capitalise on the additional 
in-class time to deepen and 
extend students’ understanding

Teachers will have additional time in-class to support students 
in developing their mathematical understanding (Sects. 3.5 
and 3.6) and will need to consider how to best use this time to 
maximise student learning

Provide video excerpts of 
flipped tutorials for teachers to 
discuss and critique

Critique of video of flipped tutorials will provide teachers 
with the opportunity to identify features that contribute to, or 
detract from, development of students’ understanding. This 
will help teachers make informed choices about the creation 
and selection of video content

Discuss and develop students’ 
participation guidelines in a 
flipped approach

To support students to participate in the flipped approach to 
develop mathematical understanding, they will need guidance 
on how they are expected to engage in the flipped classroom 
(Sect. 3.1)

Discuss and model approaches 
for monitoring students’ 
participation and understanding

Student data will inform planning of face-to-face teaching and 
provide the teacher with information regarding the efficacy of 
the flipped approach

to work with students and observe students as they solved problems enabling 
Kate to better monitor students’ understanding.

4.2  Technology Considerations

Teacher competence with technology is a major requirement for the flipped class-
room when videos are created. School-supported professional development will 
assist in supporting such teacher competence. Discussion and support on the use of 
a variety of technologies for presentation could be included, for example, helping 
teachers learn the approach for embedding a dynamic geometry file in a video, or 
including links to virtual manipulatives for students to engage with. Initially, 
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although Kate attended professional development at the school, the time commit-
ment for technology competence exceeded that provided by the school. Therefore, 
appropriate professional development and time release is likely to assist teachers, 
but not eliminate the burden of implementation.

4.3  Student Expectations

The need for teachers to discuss expectations for student engagement with the vid-
eos and the ability to use inbuilt features of software to monitor students’ use were 
important in Kate’s implementation of the flipped classroom. Teachers will need 
strategies for achieving buy-in from students in a remote learning environment and 
also for monitoring students’ expectations (i.e., through use of analytics).

4.4  Future Directions for the Flipped Classroom in Secondary 
School Mathematics

This study focused on exploring the efficacy of a flipped classroom approach where 
the teacher used their regular examples and explanations to teach students how to 
solve linear equations. In this case, the teacher demonstrated procedures by writing 
on a tablet, which mimicked what would be done on a whiteboard in a face-to-face 
classroom. Having the same examples and explanations enabled the efficacy of 
flipped class to be contrasted with the teacher’s regular approach. Having demon-
strated positive benefits through flipped implementation, the next consideration for 
teachers is investigating the potential for improved student learning through use of 
a range of explanations and examples, as well as the inclusion of deliberate changes 
to in-class activities.

Further consideration should be given to whether all explanations should be 
‘flipped’, or if it should be used to target aspects of explanations or particular types 
of examples. As noted earlier, there is considerable research to support argumenta-
tion and communication as essential components of development of students’ 
understanding, so one possibility is that a teacher provides some introductory mate-
rial for students to engage with as a pre-class activity, and then building on this in 
the next class, to extend student understanding through discussion, further explana-
tion and activities. More deliberate changes to activities within the in-class compo-
nent would most certainly contribute to further increases in planning time, however, 
may offer further enhancement of the benefits observed within this study.

The time duration of this research was less than one school term, and thus Kate’s 
perception could be impacted by the novelty of a new flipped approach. Longer 
duration research (e.g., Guerrero et al., 2015; one semester) noted that, for students, 
“the novelty of the videos wore off, fatigue and boredom with the same instructional 
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approach day after day become a factor” (p. 827). Kate reported positive impacts in 
her classroom which could have been due to the short time frame of the flipped 
intervention. Further research on the ability of the flipped classroom to maintain 
student positive attitudes and engagement, across a range of mathematical topics, 
would be beneficial.

This study investigated one teacher’s approach to the implementation of the 
flipped classroom for the teaching of linear equations in Year 9. Although the results 
from one teacher cannot be generalised, the findings provide a view on some of the 
potential barriers and opportunities which might be faced by other teachers. For 
schools or systems that are considering widespread implementation of the flipped 
classroom, the lived experience of real classroom teachers provides some insight 
into potential challenges and opportunities that may be encountered in a secondary 
mathematics setting.

If we consider the principles introduced by Lo et al. (2017) for teacher imple-
mentation it appears that Kate utilised the first five of ten listed principles.

Having identified Kate’s perspectives and experiences, the next step in imple-
mentation could be to consider the remaining five principles that were not evident 
through interview analysis with Kate, and consider professional development to 
support flipped classroom implementation. For example, attention could be pro-
vided to developing activities for in-classroom differentiation or small-group learn-
ing activities that further capitalise on the advantages of the technology-enhanced 
flipped classroom.

Therefore, to support these suggested future directions, it is also important to 
provide professional development for teachers to support their pedagogical content 
knowledge and competence in implementing a flipped approach. Table 3 presents 
some key considerations for teacher professional development to achieve this sup-
port when implementing a flipped approach.

In addition to the requirements for professional development to build teachers 
pedagogical content knowledge for teaching a flipped approach (Table 3), schools 
need to provide an environment where such innovations are possible and supported. 
For schools interested in exploring the flipped classroom, this study highlights the 
importance of providing assistance and opportunities for teachers to develop their 
technological competence, alongside a provision for additional planning time in the 
initial flipped implementation.

Therefore, schools need to acknowledge that teachers may be required to upskill 
in areas of technology; to create videos, upload to a new platform, monitor progress 
remotely and engage in the recommendations as outlined above. At the same time, 
schools should also consult teachers when they are acquiring new technological 
solutions for flipped classrooms to foster a partnership and identify skill gaps prior 
to flipped implementation.

All of these factors may require a substantial time investment from the teacher 
and should be supported by embedded opportunities at the school.
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4.5  Capitalising on Lessons from the COVID-19 Pandemic

The COVID-19 pandemic, which forced many schools into remote environments 
provides a unique perspective into the flipped classroom. Many teachers who may 
not otherwise have had opportunities to create videos found themselves in a position 
where this commitment was now required to ensure continuity of learning for their 
students. These teachers are well-placed for flipped implementation, as the time 
investment already spent in setting up a remote learning environment could place 
them ahead of the initial barriers of attaining competence with technology and cre-
ation of video explanations. These teachers could now be considered prime candi-
dates to capitalise on the learning from the COVID-19 pandemic, and in return to 
face-to-face learning, look to further utilise these videos to enhance students’ 
learning.

Acknowledgements We would like to thank the teacher for the time she spent creating videos 
and implementing the flipped approach in her classroom. Thank you also to Catholic Education 
Melbourne, the school and the students who were participants in this study.

Statement on Research Ethics Human ethics approval was granted from the University of 
Melbourne. Permission was sought and granted from Catholic Education Melbourne to conduct 
research in a Catholic School. The Principal, teacher, students and their parents were provided with 
a plain language statement and consent form to participate in this research.

 Appendix: Semi-structured Interview Questions and Rationale

 First Interview: Before Starting the Flipped Classroom 
with Students

Question Additional prompt (If required)

Describe your usual preparation for a linear 
equations lesson, in terms of time and resources

Average time planning for a 50 min lesson
Typical resources used (i.e., MacBooks – In 
what way?)

Describe your usual teaching practice in the 
mathematics classroom, in terms of whiteboard 
use and questioning

How do you usually ‘teach’ concepts within 
linear equations?
How do you know when students are 
understanding what you are teaching?

Discuss your current experiences and comfort with 
technology

How does this comfort level usually play 
out in your mathematics classes?
How does it usually play out in your 
preparation of these classes, specifically, 
previous linear units?

(continued)
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(continued)

Question Additional prompt (If required)

Describe your preparation for the linear lessons 
for the flipped classroom group. In doing this, 
detail your experience in creating the content 
using technology, including the upload of this to 
content EdPuzzle

Factors to prompt: did you find anything 
particularly easy/straight forward? 
Anything particularly difficult? Anything 
you ended up abandoning as a result of its 
difficulty?
How do you feel the flipped approach 
aligns with your usual teaching 
methodology? Discuss any similarities and 
differences

In your previous experiences, how have you found 
students to perform and perceive linear equations 
in your usual teaching format?
Do you anticipate any differences with the flipped 
approach, in terms of student understanding or 
engagement?

Why/why not?

Was there a reason you selected one particular 
group to receive the flipped instruction over the 
other? If so, can you elaborate further on this in 
terms of your expectations?

 Second Interview: During (Mid-way) Implementation 
of the Flipped Classroom

Question Additional prompt (If required)

How did you establish the expectations around the flipped 
classroom for your flipped students?
What have you found students have taken well to with the 
flipped classroom?
What have the students struggled with?
Tell me about the differences and similarities between that 
you have seen in your flipped and non-flipped classrooms.

Have you had to address any of 
these issues with students?

Have you noticed any obvious differences between 
engagement or understanding between the flipped and 
non-flipped groups as a whole?

Describe the difference.

Any differences between groups of students within each 
group?

Describe the difference.

Did the students have any technical difficulties? What were these?
How do you think the students are finding the flipped 
classroom approach to learning linear equations?
Do you check how often students have completed their 
work in both classes?

How do you do this for each class?

Do you know when students are accessing the flipped 
content?

i.e., Home, train, bus?
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(continued)

Question Additional prompt (If required)

Has anything been surprising in the student responses to 
your EdPuzzle questions?

Describe why this may be of 
surprise

Have you adjusted/refined any of your face-to-face content 
based on the flipped student responses to your questions in 
EdPuzzle?

Why/why not?

Other prompts to ensure reference to any themes that may 
have arisen from the first interview

Did you have any technical 
difficulties?
Any unexpected benefits or draw 
backs?
Anything different in interactions 
between student student or student 
teacher?

 Third Interview: After Completion of the Flipped Classroom

Question Additional prompt (If required)

Can you describe how you found the implementation of the 
flipped classroom compared to your regular approach?
Do you feel any groups of students were able to benefit 
more from any one type of approach (i.e., flipped or 
non-flipped)?

What makes you think this?

Do you feel any groups of students were at any more of a 
disadvantage in any of the approaches?

What makes you think this?

You mentioned in the last interview about a student who 
you thought wouldn’t get Algebra, can you explain their 
journey a little more and how this was turned out different 
to your expectations?

Mention student name from 
previous interview

What did the flipped students struggle more or less with 
when compared to the other class?

Why do you think that?

When you are walking around the classroom, what is your 
perception of what is going on?

What gave you those impressions?

What would be an outsider’s perspective on what is 
happening if they were to walk into each class?
Did students in the flipped vs non-flipped have different 
types of problems?

What were they?

Can you discuss the workload requirements to produce 
your flipped lessons, and compare this to your regular 
approach?
Do you believe the additional workload is worth the effort 
in the long run?

Why or why not?

On balance, how do you see the future of the flipped 
classroom in your future mathematics classes?

Consider this in reference to your 
usual approach
Why do you think this?
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Question Additional prompt (If required)

Are there factors that you would consider (i.e., student 
groups, topics taught, classroom setup, year level) as being 
conducive to a flipped approach?

Discuss these factors and your 
opinion on why they would 
influence the success of a flipped 
approach

What advice would you now offer to anyone wanting to 
create flipped content for maths?
What sort of training and resources do you think teachers 
need to be successful in flipped lessons?

Training, resource, timing.

What advice do you think is pivotal for students to have in 
order to get the most from flipped learning?
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Tensions and Proximities in Teaching 
and Learning Activities: A Case Study 
of a Teacher’s Implementation 
of Tablet- Based Lessons

Maha Abboud and Fabrice Vandebrouck

Abstract This chapter presents an example of how mathematics teachers integrate 
tablets into their classroom activities. It focuses on mediations and actions in the 
teaching-learning situation from both a cognitive and pragmatic lens and extends 
our contribution to the first edition of this book by presenting two new theoretical 
concepts: tensions and proximities. The first is grounded in Activity Theory, as 
developed in the context of French didactic research focused on teachers’ practices 
and students’ activities. The second takes a more Vygotskian perspective. It consid-
ers the students’ zone of proximal development (ZPD) as well as Valsiner’s zones of 
free movement and promoted action (the ZFM/ZPA complex), which the teacher 
designs to support learning. These theoretical elements are illustrated within a case 
study of a sixth-grade mathematics teacher who uses tablet-based dynamic geome-
try in a problem-solving situation. We highlight several issues related to the evolu-
tion of the ZFM/ZPA complex when tablets are introduced. We also identify and 
characterise the cognitive and pragmatic tensions that emerge from this evolution, 
and more specifically, the instrumental nature of these tensions. We identify prox-
imities provided by the teacher, which may fall outside the student’s ZPD, without 
the teacher’s full awareness. The chapter concludes with a discussion of the insights 
provided by our theoretical tools, and what remains to be learned for a better under-
standing of the uses of tablets in day-to-day mathematics teaching practice.
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Keywords Tablets · Zone theory · Teachers’ activities · Mathematics learning · 
Proximities · Tensions

1  Introduction

In France, as in many other countries around the world, we can observe that despite 
the advent of the digital age, the integration of digital technologies into education is 
still a major challenge for educators and researchers. Much of this challenge relates 
to teaching practices, notably how to maximise the didactical and pedagogical 
potential of these new resources. Schools, like other professional environments, 
regularly see the arrival of new technologies such as laptops and the interactive 
whiteboard and, more recently, tablets and smartphones. Easy-to-use graphical dis-
plays that are, in some ways, an extension of the human body, have given rise to new 
issues. In mathematics teaching, these are mainly related to the representation, visu-
alisation and manipulation of mathematical objects. Much of the institutional texts 
and recommendations (at least in France) on the integration of these technologies in 
mathematics teaching are based on the optimistic premise that their user- friendliness 
and ease-of access supports their integration into teaching and learning tools used in 
the classroom.1

Several authors (e.g., Depover et  al., 2007; Mullet et  al., 2019; Tamin et  al., 
2015) argue that tablet technologies such as iPads have great potential to support 
learning, and that their use motivates and engages students. They are also claimed 
to enhance cooperation, dialogue, and negotiation skills (Ingram et  al., 2016). 
However, some authors point out that, although attractive, they need to be used with 
care for them to have real didactic value in the classroom (Villemonteix & 
Khaneboubi, 2013). Teachers, therefore, require a better understanding of how to 
make best use of them (Galligan et al., 2010; Karsenti & Fievez, 2013), and research 
needs to focus on making sense of the impacts of the resulting learning activities.

Tablets are relatively new to the French classroom. They have been available for 
less than 10 years, and their full potential remains to be investigated. Their use has 
led some teachers to develop new forms of mathematical work. Villemonteix and 
Khaneboubi (2013) indicate some of these forms particularly related to assessment, 
reactivation of knowledge, or individual work in classroom settings, for example, 
when tablet applications provide interactive or self-assessment exercises. The mul-
timedia context can be exploited to offer students a richer working environment, 
while remaining faithful to traditional methods. For instance, students do not need 
to access a dedicated computer room to carry out individual research. They can stay 
in the classroom setting, but supplement traditional paper-and-pencil activities 
using their tablets.

1 https://www.education.gouv.fr/repenser-la-forme-scolaire-l-heure-du-numerique-vers- 
de-nouvelles-manieres-d-apprendre- et-d-2678
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The wider  exploratory project, in which  we are involved, aims to study how 
teachers and students use tablets (provided by the institution) within their day-to- 
day work in the classroom. More specifically, in this chapter we present a case study 
of teaching activities focused on learning geometry in a tablet-based lesson. 
Compared to the use of desktop dynamic geometry environments, tablets can enrich 
the cognitive and mediating aspects of the activity. For example, the touchscreen 
can be used to write on, or manipulate geometrical objects directly with the fingers. 
While tablets are primarily seen as a way to facilitate mediations and enrich stu-
dents’ activities, they might also be used as an instrument for learning new geo-
metrical concepts.

The overall research question for our wider exploratory project is: to what extent 
can tablets and related technologies support effective mathematics learning in sec-
ondary schools? Our work is, therefore, in line with a body of research that seeks to 
understand how digital and mobile technology can enhance the teaching and learn-
ing of mathematics (Hoyles & Lagrange, 2010), and examines the implications for 
teaching practices and education (Calder et al., 2018; Clark-Wilson et al., 2014).

The research addressed in this chapter aims to observe mediations in the teach-
er’s activity, specifically the instrumental one (Rabardel, 2002) and to examine the 
impact of these mediations on students’ learning. Our specific research questions 
concern the  interactions between teachers, their students, tablet technology, and 
mathematical knowledge. The detailed research questions are provided at the end of 
the following section. We first begin by introducing the notions of tensions and 
proximities in teaching and learning activities to clarify the focus of these research 
questions.

2  Theoretical Background and Analytical Tools

Our theoretical point of departure is outlined in the first edition of The Mathematics 
Teacher in the Digital Era (Abboud-Blanchard, 2014). This is the general Double 
Approach (DA) framework introduced in France by Robert and Rogalski (2002). It 
combines didactical and ergonomic perspectives when analysing teachers’ and stu-
dents’ classroom activity and the factors that determine such activity. Rogalski 
(2008) argues that activity theory provides the frame of reference for the DA. Activity 
theory was first proposed by Leontiev (1978), building on Vygotsky’s sociocultural 
theory (1934), and adopted in France in the context of ergonomic psychology 
(Leplat, 1997), before being integrated into the teaching and learning of mathemat-
ics (Abboud-Blanchard & Vandebrouck, 2012; Vandebrouck, 2013).

Building on this general framework, our chapter in the first edition (Abboud- 
Blanchard, 2014) presented an overall theoretical construct that helps to synthesise 
findings on technology-based practices that arise  from different research studies; 
the original aim was to identify underlying similarities that go beyond factual diver-
sity. The DA construct is structured by three dimensions: cognitive, pragmatic and 
temporal (CPT). The cognitive dimension is related to the teacher’s mathematical 
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goals, and the tasks students are asked to undertake in order to achieve these goals. 
The pragmatic dimension emphasises the open character of the classroom environ-
ment when digital technology is used. It focuses on class management and the spec-
ificities of teacher–student interactions in relation to instrumental issues (Abboud 
et al., 2018a). The temporal dimension concerns how teachers manage two types of 
time: didactic time and physical (clock) time. It focuses not only on what happens 
in the classroom, but also includes the  time spent away from the classroom, for 
example, when preparing lessons, searching for resources, collaboration with other 
teachers, etc.

However, while the CPT construct offers a macro-level analysis of teaching and 
learning activities, in the context of technology-based lessons, the research pre-
sented in this chapter adopts a micro-level analysis, by taking a more fine-grained 
approach. The aim is to improve our understanding of the teaching activity in envi-
ronments where tablets are used and to  examine the challenges regarding the 
related students’ mathematical activities and learning.

2.1  Defining Tensions

As Abboud and Rogalski (2017b) note, the teacher’s conceptions of the mathemati-
cal domain to be taught, and their students’ relation to it are determinants of their 
professional activity. These factors condition the didactical path the teacher wants 
their students to follow, i.e., the planned cognitive route, and the management of 
processes that unfold during the lesson (Robert & Rogalski, 2005). Although the 
teacher is likely to be familiar with the didactic format, the diversity of students’ 
activities, and the specific classroom context introduce uncertainty. This uncertainty 
is exacerbated when students work with a technological tool; the feedback provided 
by the tool depends on the student’s manipulation, and the teacher can struggle to 
understand their interpretation of this feedback. Thus, in this teaching–learning 
environment, teachers are faced with tensions that arise not only from the use of the 
tool and its role in students’ activity, but also its interaction with the mathematical 
knowledge to be learned.

Abboud and Rogalski (2017a) defined tensions in the teacher’s activity as “mani-
festations of struggle between maintaining the intended cognitive route and adapt-
ing to phenomena linked to the dynamics of the class situation” (p. 2336). Some of 
these tensions can be predicted, and the teacher can plan how to manage them. 
Others are unexpected. In this case, the teacher must take in situ decisions that direct 
the actions. Tensions relate to various aspects of teacher and students activities, and 
they take different forms, depending on the three CPT dimensions.

Tensions related to the cognitive dimension are seen in the gap between the 
mathematical knowledge that the teacher anticipates to be used and developed by 
students, and what students actually use as they attempt the task. Tensions related to 
the pragmatic dimension are specifically linked to the instrumental work environ-
ment created by the teacher. On the one hand, they can be anticipated by taking into 

M. Abboud and F. Vandebrouck



185

account potential disruptions that affect the autonomy, commitment and motivation 
of students. On the other hand, they relate to the issue of manipulating the technol-
ogy and exploiting (individually or collectively) the feedback it provides. Tensions 
that relate to both pragmatic and cognitive dimensions are mainly linked to the illu-
sion that the mathematical objects and operations implemented in the software 
closely resemble their counterparts in the paper-and-pencil context. Tensions related 
to the temporal dimension are linked to the pace of learning, and the discrepancy 
between the predicted duration of students’ activities, and the actual time they need 
to complete the task.

Teachers can be aware of such tensions while the lesson is in progress. They can 
often manage the situation, either by giving the expected answer directly, or by 
manipulating the software themselves. When not identified in situ, un-managed or 
poorly-managed tensions can lead to a significant deviation from the planned cogni-
tive route, or even an exit from it. The teacher can be dissatisfied at not having 
achieved his or her objectives, or may have to directly supervise students’ activity, 
creating an illusion that the objective has been achieved.

2.2  Defining Proximities

Our new understanding of teaching and learning activities in technology-based les-
sons builds on Vygotsky’s zone of proximal development (Vygotsky, 1986), together 
with Valsiner’s zone of free movement and zone of promoted action (Valsiner, 
1987). We use these zones as a framework to conceptualise teaching and learning 
activities when technologies, in particular tablets, are used in mathematics lessons. 
Thus, we define proximities as teaching actions that support students’ activities 
within these zones. We begin by presenting our understanding of these three zones, 
and then outline our analytical construct.

From a learning perspective, the zone of proximal development (ZPD) refers to 
a zone that encompasses the area where a learner is able to complete tasks unaided, 
and what they are able to learn with assistance from someone who is more knowl-
edgeable than them, e.g., the teacher. It thus represents a set of knowledge develop-
ment possibilities. From a practical perspective, the teacher creates a working 
environment that incorporates the use of tablets (and other instruments) to support 
the students’ understanding of the mathematical content to be learned. By setting up 
the environment, two zones emerge: the zone of free movement (ZFM), which 
structures how students access different areas of the environment and interact with 
different instruments in these areas, and the zone of promoted action (ZPA), which 
seeks to facilitate the acquisition of new learning. The teacher creates an environ-
ment where there is direct access to activities and instruments that support students’ 
learning. What the teacher provides (in the ZFM), and promotes (in the ZPA), are 
interrelated, and usually the two aspects have to be considered simultaneously. 
Consequently, many authors refer to the ZFM/ZPA complex to describe what the 
teacher provides and how the teacher organises the environment in order to achieve 
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the task at hand. It captures the notion of the interactive generation of the environ-
ment in which the learner develops (Blanton et al., 2005).

Moreover, the ZPA must be consistent with the student’s ZPD, and supporting 
actions that the individual believes to be feasible within the ZFM (as created by the 
teacher) (Goos, 2020). As Galbraith and Goos (2003, p. 3) state, “A link between the 
ZFM and ZPA is provided by the ZPD. For learning to be possible the ZPA must be 
consistent with an individual’s capacity to learn (ZPD), while for the intended 
approach to learning to have a chance of success the ZPA must lie within the effec-
tive ZFM”.

An important observable element relates to teacher–student interactions, which 
are analyzed in terms of their assumed influence on students’ activities. Some of the 
teacher’s interventions are at the cognitive level and relate to the mathematical con-
tent (assistance, assessments, review of notions, explanations, presentation of 
knowledge, etc.), while others are at the pragmatic level and relate to how the stu-
dent interacts with the environment to achieve the task at hand (the format of class-
room work, the available resources, switching from one instrument to another, etc.). 
An important focus of our study is, therefore, the proximity of these interventions to 
students’ acquired knowledge, i.e., their ZPD.

Our earlier work built on the notion of discursive proximities (Abboud et al., 
2018b). Discursive proximities are explicit elements or fragments of discourse that 
the teacher uses to bridge the gap between students’ existing knowledge and the 
mathematical content to be learned during activities that relate—directly or indi-
rectly—to this knowledge. Robert and Vandebrouck (2014) describe discursive cog-
nitive proximities, and show how these elements of the teacher’s discourse can 
influence students’ understanding as a function of their existing knowledge, and the 
activities they undertake. More specifically, the authors develop some of these dis-
cursive proximities and use them to study paper-and-pencil environments.

Here, we extend the previous by defining the notion of pragmatic proximities. In 
particular, we associate them with the teacher’s words and actions related to instru-
mental issues observed in technology-based environments. Investigating the ZFM/
ZPA complex in a tablet-based lesson provides an insight into teacher–student–
technology interactions. While cognitive proximities within the ZPD direct atten-
tion to the new mathematical knowledge students can (potentially) learn, pragmatic 
proximities tell us about the opportunities teachers give to their students, in the 
form of the ZFM/ZPA that is set up to engage them in mathematical learning, with 
the help of technology. Following Galbraith and Goos (2003), we consider that 
technology may be regarded as a mathematical tool (to increase capacity) or as a 
transforming tool (to reorganise thinking). In either case, its presence in the work 
environment changes relationships between teachers, students, and the task to be 
undertaken.

In the classrooms we observed, two instruments were regularly provided in stu-
dents’ ZFM: paper-and-pencil (and related tools) and tablets (and related software). 
The corresponding ZPA that was designed by the teacher aimed to facilitate task 
performance. The teacher’s assistance (actions and interventions) takes the form of 
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instrumental and inter-instrumental proximities that support students’ development. 
Other pragmatic proximities linked to this ZFM/ZPA relate to how the teacher uses 
the tablet as a cultural tool. One example is to draw upon real-life scenarios (games, 
virtual reality, etc.) that are anchored in the students’ adolescent universe, under the 
assumption that this will enhance learning. However, efficient pragmatic (and cog-
nitive) proximities must be consistent with what can, potentially, be learned (i.e., the 
ZPD). Hence, the teaching activity should be directed appropriately, and the work 
environment should support the intended learning activity.

It is important to distinguish between predicted and effective proximities during 
the data  analysis process. The former relates to what is intended by the teacher. 
These cognitive and pragmatic proximities are (or can be) predicted when setting up 
the ZFM/ZPA. For example, the aim may be for students to work independently, 
without any intervention by the teacher during the lesson; alternatively, a discursive 
or non-discursive intervention can be planned to get as close as possible to students’ 
ZPD. Effective proximities take two forms: (1) planned actions that are actually car-
ried out and (2) improvised actions that are developed in situ. The latter depend 
directly on what the student is doing at the time, and aim to ensure that the actions 
supported by the ZPA are possible (or reachable) in the ZPD. In case (1), the teacher 
can assume that there is an effective proximity when, in fact, this is not the case; this 
contributes to tensions observed in the classroom.

To conclude, we frame our research questions in terms of tensions and proximi-
ties. It is clear that the introduction of tablets within teaching–learning leads to a 
change in the ZFM/ZPA complex. Our first question asks what are the cognitive and 
pragmatic tensions that result from this change, with a particular focus on instru-
mental tensions that are directly caused by the introduction of the tool? We examine 
the extent to which the teacher is aware of these new tensions, and how he or she 
deals with them. Secondly, we ask what are the proximities that are developed, or 
could be developed, to support students’ learning in this new environment? We seek 
to evaluate which of these proximities can be predicted, which are effective, and if 
cognitive and pragmatic proximities fall (or not) within students’ ZPD?

3  A Case Study

In this section, we present our theoretical approach and analytical tools through a 
case study, and use it to highlight the new results these concepts can generate. First, 
we present the context of our study and the methods associated with our theoretical 
approach. Secondly, we outline the teacher’s profile. Then we develop an a priori 
task analysis of the observed sequence, and students’ expected activity. This analy-
sis identifies potential sources of tensions and predicted proximities in the teach-
ing–learning situation. Finally, we analyse the teaching process from the perspective 
of effective proximities, notably instrumental, and their impact on students’ learning.
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3.1  Context and Data

We are currently involved in a long-term project2 that studies how teachers and stu-
dents use tablets, provided by academic authorities, in their day-to-day classroom 
work. The project is designed to support the production of tablet-based mathemati-
cal resources for secondary school teachers. Ten mathematics teachers, from several 
regions of France, are participating in experiments that seek to develop, in a col-
laborative process, tablet-based learning situations and associated resources. These 
teachers are already members of the Institutes for Research in Mathematics 
Education (IREM) network, and they already use digital technologies in their class-
rooms on a regular basis. They have contributed to a book that is aimed at teachers, 
which offers a range of ways to use the dynamic geometry software GeoGebra in 
the mathematics classroom.3 The teachers’ goals, in engaging in this new project, 
are to use tablets in teaching–learning mathematics and to provide other teachers 
with new resources. Project funding has enabled them to equip their classrooms 
with tablets and financed regular meetings over the past 3 years. The case study we 
present here looks at the work of one of these teachers: Roger. He is an experienced 
teacher who has been involved in the IREM network for about 10 years. He teaches 
at a secondary school in Lille (northern France) with students from grade 6 to grade 
9 (aged from 11 to 14).

A sixth grade geometry lesson was observed. Students had access to tablets 
equipped with the GeoGebra dynamic geometry software. It should be noted that 
the tablets did not belong to the students; they were distributed at the beginning of 
lessons in which they were to be used.

Three types of data were collected. The first was a video recording of the lesson, 
which was transcribed and the progress of the lesson divided into phases identified 
in relation to the succession of the teacher’s actions. The second data set consisted 
of responses to a short questionnaire completed by the teacher after the lesson. In 
this, the teacher was first asked to explain the goals of the lesson and to describe the 
related work environment. Second, he was asked to report on what actually hap-
pened and the extent to which the goals that were initially set was reached. Following 
our analysis of the video recording and the questionnaire, the third data set was 
collected. This consisted of responses to a post-lesson interview with the teacher 
based on elements from the analysis, which served to triangulate some of our inter-
pretations and to remove uncertainty about others. In addition, the post- lesson inter-
view data provided more insights into the teacher’s practice and shed light on some 
of the choices he made during the lesson that had impacted how the session 
had unfolded.

2 http://perseverons.inspe-bordeaux.fr/
3 Créer avec GéoGébra: https://tice.univ-irem.fr/lexique/perso/frontLexiqueGGB/
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3.2  Introducing Roger

Roger has taught mathematics to lower secondary school (students aged 11–14) for 
20 years. He began using technologies in his classroom with the arrival of interactive 
whiteboards in his school almost 13 years ago. He is very familiar with GeoGebra, 
and uses it on a regular basis both for lesson preparation work, and to illustrate math-
ematical concepts and animate geometric figures during classroom sessions.

He teaches at an average suburban school with around 600 students. Students 
come from heterogeneous socio-economic backgrounds, including a certain number 
of disadvantaged students (e.g., with no access to technology at home). In his 
school, other colleagues who teach mathematics use digital technology in the com-
puter room from time-to-time, but not on a regular basis. He is the only member of 
staff who is interested in the tablet project, and has been using tablets regularly since 
the school acquired them. He tends to share his experience of their integration into 
teaching with members of the IREM group, rather than colleagues in his own school.

When interviewed, Roger stated that he sees mathematics teaching as embracing 
pleasure, creativity and “practising things”. He added that this is what made him 
quickly adopt tablet technology, because it can be manipulated with the fingers 
(unlike traditional computers), especially geometric objects, and students can have 
fun simulating real-life situations. Hence, in addition to the use of tablets for pre- 
defined “traditional tasks”, he also sees it as a tool for creativity and exploration.

The lesson that was observed, and that we analyse below, is with a grade 6 class 
(students aged 11). It concerns a learning situation that Roger designed. The first 
objective was to use GeoGebra tablet software to revise the concept of the circle (a 
topic that was  already covered in previous classes). He designed an interaction 
between the paper-and-pencil environment and the tablet environment that was 
intended to help students to revise their understanding of the centre and radius of a 
circle and how to draw circles using a pair of compasses. Second, he aimed to pro-
vide students with an opportunity to explore another definition of the circle, which 
we explain in more detail below. Prior to the observed lesson, he had already intro-
duced his students to GeoGebra. However, he declared in the post-lesson interview 
that he felt that this initiation to dynamic geometry was too dry. Hence in this lesson 
he expressed his desire to expose the students to a more engaging situation using the 
software interface and dragging mode in the tablet environment, in a way that lim-
ited access to other GeoGebra menus that might offer alternative ways to accom-
plish the task.

3.3  Task Analysis

We begin with an analysis of the task, and the expected mathematical activities. 
This first step is a recurring interest in studies within the DA framework 
(Vandebrouck, 2013) as it provides in-depth insight into the mathematical knowl-
edge required to complete the task. It sheds light on how the teacher negotiated the 
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Crossing the room
Worksheet

A little girl enters an unlit room through 

door E. The door slams shut behind her! It’s 

locked, and there’s no way to open it!

As she turns around, her eyes get used to the 

darkness.... Oh no! She thinks she can see 3 

monsters… and they’re waking up! Quick, do 

something! She has to get to the exit, but it’s at 

S...

You have to help her cross the room! Draw 

a path that she can follow without getting 

caught by any of the monsters. 

Here’s some useful information so that you 

can help her:

− the room is a square, with 8 m sides;

− the scale of the drawing is 1 cm to 1 m;

− the first monster is attached to point P by a 

3.8 m chain;

− the second is attached to point Q by a 3 m 

chain;

− the third is attached to point R by a 2.6 m 

chain.

Fig. 1 Task statement (French version and English translation)

inevitable unpredictability of the classroom, when attempting to bring students into 
contact with mathematical concepts (Abboud & Coles, 2018). In the post-lesson 
investigation, we take into account the deep links between actual student activities 
and the task analysis, including its mathematical content (Vandebrouck, 2018). 
Wherever possible, we make the link with potential pragmatic/cognitive tensions or 
proximities.

The task is designed to require students to draw upon their existing knowledge of 
circles. They would have already encountered circles, presented as geometrical 
forms (a curved line) and investigated circles by observation and with the use of 
instruments. They were expected to revise the two elements of a circle, its centre 
and radius, introduced by drawing with pairs of compasses. In the post-lesson ques-
tionnaire, Roger stated that the new challenge was to identify the circle as a geo-
metrical set of points at an equal distance from a point that would be identified as 
the centre of the circle, while this distance would be defined as its radius. This defi-
nition requires students to be able to reason and demonstrate their arguments with-
out only using what they could see or their instruments. The paper-and-pencil task 
they were given is shown below (Fig. 1).
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In the first phase, the task is completed in a paper-and-pencil environment and 
the students can use artefacts such as a ruler, pairs of compasses and a set square 
(the first ZFM). They can tackle the problem in two ways. First, they can draw pos-
sible paths through the room that avoid being captured by the monsters (the first 
ZPA). In this case, they have to make measurements, and compare them at several 
possible positions, by drawing a path with several checkpoints. These activities are 
accessible to all students as they rely upon acquired knowledge about measuring 
with a ruler, and do not require specific mathematical knowledge about circles. In 
this phase, there is no feedback from the environment. Validation can only come 
from the teacher, who can help to identify points on the path where the girl can be 
caught (or not) by one of the monsters. There is no possible cognitive proximity 
with new knowledge.

Nevertheless, the task involves a major adaptation that students must make in 
order to be able to find a path that prevents the girl from being caught by any of the 
monsters. They must change their point of view, focusing on the monsters and their 
areas of action, rather than the girl and her movements around the room. This sec-
ond approach is only possible for the most advanced students (a maxima activity), 
while the first is accessible to all students (a minima activity). If the teacher does not 
manage this passage between the first and second approaches, we can reasonably 
hypothesise that a cognitive tension arises and lasts throughout the session.

At this stage, the teacher has set up a ZPA in which students have to explore the 
monsters’ areas of action, and think about the idea of circles that they can draw with 
a compass. This requires them to recognise existing knowledge about circles, their 
centre and radius. If this is achieved, they will be able to draw a path that is outside 
the three areas. Validation is cognitive: the girl has to remain outside the three cir-
cles, so that she cannot be caught by the monsters. However in order for the ZPA 
created by the teacher to be effective, he must provide cognitive proximities to 
enable students to develop the new knowledge, even if they only have developed a 
minima activity (in other words, even if they did not recognise that the notion of 
circle is a way to solve the problem). Some students will easily make the leap, while 
it is outside the ZPD of others.

In the second phase, students undertake the same task in the tablet environment. 
Here, they have access to GeoGebra dynamic geometry software (the second ZFM).

In this environment (Fig. 2), students can experiment with moving the girl, as in 
the paper-and-pencil environment, but they can also move the monsters (the second 
ZPA). To prevent pragmatic tensions due to the change in ZFM/ZPA, the design of 
the task is the same in both the environments (in fact, the paper-and-pencil version 
was a printed copy of the tablet’s screen). However, there is a significant change to 
the ZPA. In the tablet environment the monsters can be moved as in real life, with 
two outcomes: if the girl enters the monster’s area, she is immediately caught and 
the red message “lost” appears (Fig. 3). If she reaches point S without being caught 
by a monster, the yellow message “win” appears (Fig. 4). Students can make several 
attempts, with immediate feedback. The adaptation, which represents a change in 
the viewpoint, is easier than in the paper-and-pencil environment, because the 
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Fig. 2 Tablet environment

monsters can easily be moved. Thus, the tablet environment supports pragmatic and 
cognitive proximity, along with new knowledge.

All students have access to these activities in the tablet environment. However, 
the task may not require any mathematical knowledge at all, as the students can 
move the actors with their fingers and avoid any need to perform measurements and 
comparisons directly on the screen. Despite a planned pragmatic instrumental prox-
imity between the two ZFM/ZPA, there are new cognitive and pragmatic/instrumen-
tal tensions that the teacher must manage to situate the activity within the ZPD of 
each student. Some students can only develop a minima activities, moving actors 
with their fingers; in this case, even without any mathematical knowledge, they can 
accomplish the task. The teacher must underline that the task is not just to find one 
way to win, but to find a winning strategy using all of the resources provided by the 
tablet, with reference to previous work in the paper-and-pencil environment (inter- 
instrumental proximities). Other students are able to visualise circular zones around 
the monsters, but the teacher may have to intervene to ensure first that these zones 
are recognised as (pieces) of circles (i.e., as geometric figures) and, second, that the 
three circles are complete (the ropes are stretched), so that the zones of the monsters 
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Fig. 3 Lost outcome

and the safe area for the girl are clearly visualised as regions of the plane. GeoGebra’s 
trace (of the monsters) function can help students to visualise disks around the mon-
sters. Let us note here that when asked about this during the post-lesson interview, 
Roger stated that he was not aware that the use of this function could have led the 
students to visually perceive the disk as the inner area of the circle. So, recognising 
circles—with or without the visualisation of the monsters’ zones—remains as a 
maxima activity for the best students, and may be even more a more difficult pro-
cess than in the paper-and-pencil environment.

The ZFM/ZPA created in the second phase can, therefore, reinforce the existing 
cognitive tension in the teaching activity. This tension lies in the transition from the 
first (a minima) approach, where the expected mathematical knowledge is lacking, 
and the second (a maxima) approach, where the student is able to recognise circles 
as geometrical objects with a centre and radius. Although the tablet introduces prag-
matic and cognitive proximities linked to the change of viewpoint, it can encourage 
the first approach (we’re not even doing maths anymore, we’re just playing), and the 
adaptation that brings into play the targeted knowledge (the concept of the circle is 
even less apparent). Moreover, there is a new pragmatic cognitive tension between 
the two environments, as recognising circles in the tablet environment can act as an 
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Fig. 4 Win outcome

obstacle to the use of the compasses in the paper-and-pencil environment. In prac-
tice, there is no clear link between moving a monster on the tablet with your fingers, 
and the centre and radius of a circle, while the latter does not appear as a global set 
of points. The teacher must be aware of these new cognitive tensions in order to 
anticipate discursive proximities, while taking into account inter- instrumental 
aspects.

3.4  Tensions and Proximities in Teaching 
and Learning Activities

The lesson lasted 55 min, and 11 students were present (Fig. 5). Seven phases were 
identified. In Phase 1 the task was presented to students. The teacher explained the 
situation: the girl is in an unlit room and the door is locked. She sees the monsters, 
and there is only one way to exit the room – through the door marked S. In Phase 2, 
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Fig. 5 Global view of the classroom

students worked individually on the problem in a paper-and-pencil environment. 
The teacher gave individual explanations and feedback. In Phase 3, students contin-
ued to work on the problem with the tablet and on paper. The teacher briefly intro-
duced the tablet environment on the whiteboard, and showed students how to move 
the monsters and the girl with their fingers. Students who completed the task in the 
tablet environment were asked to draw their solution on paper. In Phase 4, the 
teacher presented the solution to the whole class. He showed on the whiteboard the 
monsters’ trace (with GeoGebra) (Fig.  11),  but students were not able to do the 
same with their tablets (where the trace function is not available). The monsters’ 
circles were partly drawn but he did not use the word “circle”. In Phase 5, students 
once again tackled the problem individually, switching between moving the mon-
sters on their tablets, and the paper-and-pencil environment. The teacher was 
expecting students to draw the monsters’ circles on the paper and then find the path 
for the girl. In Phase 6, the teacher explained the notion of the circle to the whole 
class. Finally, in Phase 7 he asked students to write down how they solved the prob-
lem and explain their mathematical construction.

In Phase 1, Roger presented the task to students. It was a theatrical performance, 
with him taking the role of the girl. He turned out the lights, and entered the class-
room by the main door; he noticed the three monsters, and then exited a door at the 
back of the classroom (Fig. 6). This presentation was, thus, far more realistic than 
the mathematical problem, and was consistent with Roger’s aim that his students 
have fun while learning mathematics. However, this created a pragmatic tension 
between the simulation and the mathematical problem. This tension would last 
throughout the lesson—several students and Roger himself mixed realistic vocabu-
lary and geometrical notions. For example, Roger used centimetres or metres 
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Fig. 6 Presentation of the task

interchangeably, and referred to monsters and the girl even when he used centime-
tres. During this phase, the tablet window was shown on the whiteboard, and Roger 
only used it to illustrate possible movements of the monsters. Tablets were provided 
to the students, but they were told not to use them.

In Phase 2, as underlined by the a priori analysis, a cognitive tension arose 
between the a minima activity that was accessible to every student and the a maxima 
activity that was only within the reach of the more able students (involving a change 
of viewpoint and a recognition of circles). Feedback during the paper-and- pencil 
environment was only from the teacher, who validated (or not) the paths proposed 
by students. Figures 7 and 8 show the solutions proposed by some students, and the 
teacher’s corrections.

In this context, to invalidate a path, the teacher showed points on the path where 
the girl could be caught. The students could, in turn, use measurements and com-
parisons to see why their solution does not work. Sometimes the teacher highlighted 
several points: “So, she can walk between these two monsters, you’re right. But 
here? Does that work? (Fig. 8: the teacher was referring to points of the path) You 
see? So, it’s very good at this point, but at this point it’s not”.

For most students these interventions were insufficient to develop the expected 
activity, and the cognitive tension remained. Some students developed alternative 
strategies, such as running fast, but the teacher was able to show, with the tablet 
window on the whiteboard, that the monsters ran faster than the girl. As soon as the 
girl enters the monster’s zone, it catches her and the message “lose” is displayed. At 
the end of Phase 2, none of the students developed the expected a maxima activity.

In Phase 3, the teacher enhanced his students’ ZPM/ZFA by introducing the 
tablet environment. Here, the objective was to provide an easy trial-and-error pro-
cess, based on feedback from the device. However, we observed a crucial switch, as, 
immediately after telling his students that they could use their tablets, he said: “now 
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Fig. 7 Example 1 of students’ solutions in Phase 2

Fig. 8 Example 2 of students’ solutions in Phase 2

we can move the monsters; we can see where the girl will be safe and where she 
cannot go”. This change in viewpoint, which is a major element in the cognitive 
tension, was initiated by the teacher, and directly supported by the ZPA. Instrumental 
and cognitive proximities, identified in the a priori task analysis, could occur as the 
teacher himself stated the targeted strategy. Moreover, there was a new pragmatic 
tension (inter-instrumental) as some students may have thought that the strategy 
was different because the instruments (within the ZFM) were different. Roger 
seemed to be unaware of these tensions, and had to repeat the change of viewpoint 
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to most of his students: “I suggest that you move the monsters”; “Lucie, try to find 
all the places where each monster can go”; “the objective is to find all the places 
they can get to”. A little later, when students were still unable to change their view-
point, Roger had to justify the reason for this new strategy, “Fanny, I said that the 
objective is to try to find out where each of the monsters can go, and once you have 
understood that, to draw on the sheet of paper all the places the little girl cannot 
go”; “try to draw on the paper all the places that one of the monsters can reach, in 
other words all the places where the little girl can’t go”, “Try to draw on your sheet 
of paper all the places where she can’t go”, etc.

Students who did manage to switch their viewpoint—and who had understood 
the reason why—still could not recognise the zones accessed by monsters as circles 
(disks). As they could not activate the monsters’ traces within GeoGebra, it was dif-
ficult to visualise circles. The cognitive tension remained, and most students still did 
not recognise the mathematical knowledge to be learned. The ZPA did not incorpo-
rate the action of stretching the rope as the monsters move. At this point, Roger 
drew upon discursive proximities—he used geometry vocabulary to characterise the 
monsters’ areas and to draw them with instruments on paper—thinking that it was 
now in most of his students’ ZPD. But these efforts failed for most of the class. We 
see the teacher showing and drawing virtual circles with his finger over most of his 
students’ screens or sheets of paper. At this point, some of the best students can use 
these proximities, stating that they can see the circles, or use their compass to draw 
a circle on paper. However, it was a step too far for most of the class. For instance, 
Roger asked one student, who had drawn several radii around one monster on paper 
(Fig. 9) what the geometrical shape was. But his attempt fails, as the student has 
only developed a partial, discrete view of the area, while identifying the area as a 
circle requires a global and continuous visualisation.

Fig. 9 A student who completed the task by drawing radii, but was unable to visualise the circle

M. Abboud and F. Vandebrouck



199

Hence, Roger struggled to manage the classes’ cognitive tensions, and most stu-
dents did not benefit from the available ZPA.

Moreover, as noted in the a priori task analysis (and expected activity), there was 
a new cognitive pragmatic tension that the teacher seemed not to have anticipated. 
Some students could accomplish the task in the tablet environment without switch-
ing their viewpoint, and without any mathematical reasoning (Fig. 10). For instance, 
Roger had to guide one student towards the expected solution: “You managed to 
win, good, the little girl’s still there so you won, right? But can you work out all the 
positions where the green monster can go, the same for the vampire, and for the 
mummy…” As predicted in the a priori analysis, the initial cognitive tension 
between a minima activity possible for all students and a maxima activity achieved 
by using knowledge about circles seemed to be reinforced. In another example, the 
teacher tried to stop one student who continued to only move the girl, and always 
lose, “I want you to stop playing, I want you to look for the positions that each mon-
ster can reach, but that’s not what you’ve done so far. You’ve been playing and you 

Fig. 10 Winning without visualising any circles
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haven’t understood what’s going on…”. Therefore, it appears that the ZPA set up by 
the teacher in the tablet environment was inappropriate with respect to the ZPD of 
some students, at this point in the activity.

In phase 4, Roger showed his students the monsters’ paths on the whiteboard 
(Fig. 11). As the students could not do the same on their personal tablets, he pro-
vided some new suggestions, “Take a look. If I move my green monster here, he 
leaves a slimy trail behind him, like a snail. Okay? (…) I know that these black 
marks are all places that the little girl can go – or not? (Students’ responses: No!) 
If I go as far as I can, then I’ll get there, okay? (Teacher dragging the green monster) 
And then if I go a little further… then I can’t go any further, you see? And there 
I can’t go any further either. Now I can go there, but then I’m stuck here. And now 
I’m stuck here. Is that alright? Same for this other monster. Now, he’s stuck here, he 
can go there, he can go there, but there, no, he’s stuck. Okay? Does it help you if you 
know where the limits of all the places they can go are? Does it help you a lot? Does 
it? So now I want you to take a look at your notebooks, and see if you can find some-
thing that tells me exactly where the limits are”. During his explanations, the teacher 
moved the monsters on the whiteboard, showing several places where they can go 

Fig. 11 Monsters’ paths shown on the whiteboard
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or not. We thus observe that the ZPA incorporated now the action of stretching the 
rope as the monsters move.

In Phase 5 students’ progress and activities became heterogeneous (as is often 
observed in technological environments). Some continued to play with the tablet, 
developing a minima activity focused on the girl, or having just switched their view-
point. Some succeeded in moving the monsters from point to point, but failed to 
grasp the idea of a global circle. Some students asked to have the monsters’ traces 
on their own tablet (as on the whiteboard), but Roger told them it was not possible. 
By stretching the rope as they moved the monsters, most students eventually com-
pleted the task; the little girl exited the room, and they saw the “you have won” 
message. In these cases, the teacher asked them to go back to their paper-and-pencil, 
and draw the girl’s path with their instruments using a geometrical approach. 
However, only some seemed to have recognised the monsters’ zones as circles (or 
disks), while most did not. For those who had recognised the circle there was a new 
task, which was to identify the centre and the radius of each of the three circles, 
demonstrating that they knew how to use their compasses. For others, this new 
mathematical task did not make any sense.

In Phase 6, Roger highlighted the idea of a circle. We see cognitive proximity, 
after one student identified the monsters’ zones as circles, “Well if I go as far as 
I can each time, if I keep the rope stretched, and I move my monster, something we 
know appears … what do we see appearing? Use your finger… what do we see 
appearing when I keep the rope stretched to the maximum and I move my monster? 
Luna? (One student says: a circle) A circle. Exactly…”. When Roger asked this 
student to go to the whiteboard to show the limits of the monsters’ zones, we observe 
(Fig. 12) that even if the rest of the class seemed to see that the monsters’ area limits 

Fig. 12 A student draws a circle by stretching the rope of monster Q and overlapping the zone 
occupied by monster P
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as circles, the movement of the student’s arm was not consistent with the idea of a 
constant radius between the centre and this limit. At this moment, it is far from evi-
dent that all students could see circles, and that the cognitive proximity was effec-
tive. The fact that, in GeoGebra, it is possible to draw shapes without considering 
their geometrical properties reinforces the pragmatic (inter-instrumental) tension 
already present. Roger did not seize the opportunity to manage this tension, and 
went on to ask every student to write down the mathematical reasoning for their work.

As noted above, the discursive-cognitive proximity between the activity of most 
of the students, and the mathematical knowledge to be learned, only fell within the 
ZPD of students who had already identified the monsters’ zones as geometrical 
objects. For instance, one student, Soren, had successfully identified the need to 
draw circles, and had made the link between circles in the tablet environment and 
the circles that he was asked to draw with a compass in the paper-and-pencil envi-
ronment. Roger says, “Soren, explain to me what you did? (Well, I made circles) 
What? (I made circles to limit where they can go) Yes. Then how did you make the 
circles? (Well, I took my ruler with my compass and made the measurements that 
were written here) Yes…”.

But for other students, the circle and the compasses remained far beyond their 
ZPD; even those who successfully completed the task in the tablet environment 
(seeing the winning message) and those who plotted a few points in the monsters’ 
zones. An interaction from Phase 4 illustrates how difficult it was to recognise a 
circle as a global, continuous set of points: “Put a mark at 3.8. Put a mark at 3.8 
centimetres. He is 3.8 centimetres from the point P.  Is that okay? Can you put 
another point at 3.8 centimetres from P? Go ahead and do another one. From point 
P. From point P. From point P. Where point P is. Ah, go ahead. Another point 3.8 
centimetres from point P (Am I on the same line?) Well no, otherwise you’ll be at the 
same point again. Okay. Here’s another one. So, the objective is to plot them all, all 
the points that are 3.8 centimetres from point P. There are lots of them, aren’t there? 
There’s an infinite number of them, okay? It’s up to you to find them all. Find me a 
solution that finds them all”. Another example was observed earlier, at the end of 
Phase 3 with a different student. Pointing to several of the limit positions of mon-
sters found by the student (Fig. 9), the teacher asked, “Wouldn’t there be a way, isn’t 
there a way? Because this one is OK, this one is OK, this one is OK, but here I don’t 
know where it stops… so can you measure it? Yes, but here? All right, I see. And 
between those two? And between this one and this one? I don’t see where I can stop. 
How long are we going to do this? (Decades) Decades, yes, but isn’t there a quicker 
way?”. These examples underline the ongoing cognitive tension between what has 
been done in the tablet environment and recognising circles as a geometrical object 
defined by a continuous set of points, a centre, and a radius. For these students, the 
teacher’s intervention was ineffective due to the lack of proximity between the work 
they produced and the mathematical knowledge to be learned. The idea of the circle 
was not within their ZPD.

In Phase 7 all students had to draw their solution using paper and pencil, and 
write down their mathematical reasoning. However, despite being able to identify 
that the monsters’ circles were the key to a winning strategy, in this phase, one 
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student still drew three circles around the monsters by hand, again showing that the 
circle as a geometrical object was not within his ZPD. Roger said, “Which tool did 
you use? What did you use as a tool to draw the limits? The pencil and that’s all. 
What can you use to draw a circle? (A pair of compasses) So what? Why don’t you 
use your compasses? Well, if you know you have to use compasses, you have to use 
it, right?”. Here again, the teacher’s intervention could not be called a proximity, 
despite his intentions. He asks the student a question about how he could draw a 
circle, whereas the mathematical object associated with the use of the compasses 
was not yet within the student’s ZPD.

The only tension of which  the teacher seemed to be aware was the pragmatic 
tension between the realistic situation and the mathematical problem. He tried to 
manage this by repeatedly asking his students to use mathematical terms, “I’ll say it 
again, I want you to use geometric terms. Is that all right? Try to be as precise as 
possible, as accurate as possible…”. However, there was ongoing confusion in the 
students’ and the teacher’s discourses with respect to the two approaches, “When 
the monster tries to stretch his rope it’s stretched from point P over there; what’s the 
maximum distance? What’s the maximum distance for that one  – the monster  – 
attached to point P? How long is the rope? (3.8 metres). Okay, so we can actually 
go up to 3.8 what? (Metres) It’s not metres here, it’s what? (Centimetres) …”. Even 
at the end of the lesson he used real-world vocabulary to invalidate some of the geo-
metrical objects produced by the class, “Is your drawing precise? I want a precise 
drawing, don’t I? Don’t forget that it’s the little girl’s life at stake. We’re not taking 
any risks, right? Do you have your compass? Go ahead and take it out”. The session 
ended with this confusion between the two approaches. Some students explained 
their solution without using mathematical terminology. The last interaction between 
the teacher and a student illustrates the confusion in the student’s mind, “Ah, you’ve 
written down your solution, so I’m interested to see, you say: I used the compasses 
to draw the limits of the monsters and I managed to get the little girl to escape. 
There’s a mathematical term missing, I can’t see it. A mathematical word that 
I don’t see (The monsters’ metres?). No, no, no, no, no, no, no, no, no, no, no. What 
have you drawn? You say that you’ve drawn the limits with a compass. Do you know 
the name of this limit? What’s it called in mathematics? (The circle?) Yes, I would 
have liked to see that word. With all the vocabulary we already know, circle, centre, 
radius…”.

4  Findings

Our findings can be summarised according to two aspects.
First, the ZFM/ZPA complex evolves significantly—and in several directions—

when the task has to be performed with the tablet instead of paper-and-pencil. The 
teacher must be aware of all of these evolutions, as they create new tensions, or 
reinforce existing ones, as the activity progresses, making them increasingly diffi-
cult to manage. It seems that the teacher’s efforts have only addressed a few 
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predicted pragmatic tensions between the two ZFM/ZPA, for instance by printing 
out a copy of the tablet’s screen and using it as the paper-and-pencil sheet. He was 
aware that the tablet can provide feedback that is missing in the paper-and-pencil 
environment, and that it allows the students to experiment more with potential solu-
tions. However, he seemed to be unaware of other, crucial changes in the ZFM/ZPA 
complex. The new ZPA provided by the tablet (students can move the monsters with 
their fingers in a natural way, whereas this is not possible using paper-and-pencil) 
supports a change of viewpoint, and could help students find the correct solution. 
The tablet, therefore, created a natural link with the targeted knowledge (about cir-
cles) and is an instrumental cognitive proximity.

However, in the observed lesson, the teacher himself initiated the change of 
viewpoint. He redefined the task and, in doing so, reduced the potential of the initial 
task to support students’ learning. Moreover, it caused a new, inter-instrumental ten-
sion, as some students may not have understood why they should adopt this new 
strategy (a new task) in this new environment. We observe that the teacher had to 
explain this new strategy several times to several students. We argue that although 
the teacher deliberately set up the new ZFM, he also, unintentionally, changed the 
ZPA. The instruments themselves changed the ZPA, and an effect of technology that 
it is important for teachers to be aware. In the tablet environment, some students 
were able to “win”, without learning anything more about the underlying mathemat-
ical properties. Freedom of movement was made possible by the feedback provided 
in the tablet environment, which is not possible in the paper-and-pencil environ-
ment. Although students were more motivated in the tablet environment, there was 
a greater risk of them making less progress than in the paper-and-pencil setting. The 
cognitive tension between students’ a minima activity and expected mathematical 
understanding is reinforced, while the teacher was unaware of the changes engen-
dered by the new ZFM/ZPA complex. Faced with new pragmatic and cognitive 
tensions, Roger had to manage this new complexity as the lesson progresses, and 
had to explain more than once the reason for the new strategy in the tablet environ-
ment. Another challenge was that some students continued to play with the tablet, 
instead of engaging in the mathematical task.

The second aspect of our findings concerns the difficulty within the tablet envi-
ronment for the teacher to exploit discursive cognitive proximities regarding the 
new knowledge, based on students’ activity. As Vandebrouck and Robert (2017) 
note, the recognition of mathematical objects is different in technological environ-
ments. Recognition is cognitive in the paper-and-pencil environment, and precedes 
students being able to use the compasses to draw the monsters’ zones. It is more 
pragmatic in the tablet environment, and is associated with being able to visualise 
the monsters’ paths (visible or invisible). In the paper-and-pencil environment, this 
path initially appears as a collection of discrete points, and only becomes a continu-
ous shape with cognitive efforts (associated to the use of the compasses). Whereas 
the recognition of the shape of the circles in the tablet environment, through the 
iconic visualisation of the monsters’ zones, may not be sufficient to identify these 
shapes as geometrical figures, nor to draw them using compasses in the paper-and- 
pencil environment.
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Moreover, during phase 6, we observed that on the whiteboard the movement of 
the student’s arm (Fig. 12) was not consistent with a visualisation of the use of a 
compass. More specifically, it did not allow a cognitive and instrumental proximity 
with the idea of a constant radius between the centre and the limit of the monster’s 
area. By referring to Duval (1999), who distinguished between iconic and non- 
iconic visualisation of geometric figures,4 we argue here that visualisation in the 
tablet environment was mostly iconic, in other words, it did not associate the 
observed circular shape with its mathematical attributes (the centre and the radius). 
Moreover, this iconic recognition can create a pragmatic-cognitive tension with the 
expected, non-iconic recognition. We observed throughout the lesson how difficult 
it was for some students to identify circles as global, continuous geometrical objects, 
based on a collection of discrete points located around the monsters (Fig.  13). 
Furthermore, they found it difficult to transfer their identification of the circle in the 
tablet environment to the use of the compass in the paper-and-pencil environment.

As a consequence, it remained challenging for the teacher to exploit discursive and 
cognitive proximities, based on his students’ effective activities in the tablet environ-
ment. In Phase 3, we observed that although he did seize opportunities to provide 
some discursive proximities, his efforts failed for many of students. He had to give 
procedural help by drawing circles with his fingers over students’ screens or over their 
sheets of paper. We note here that his belief that he was working in, or close to stu-
dents’ ZPD was an illusion, as the recognition of mathematical objects was only iconic.

4 Duval introduces two types of visualisations that are associated with representations, namely, 
iconic and non-iconic. “Iconic representation refers to a previous perception of the represented 
object, from which [we can infer] their concrete character. […] In mathematics, visualisation does 
not work with such iconic representations: to look at them is not enough to see, that is, to notice 
and understand what is really represented.” (Duval, 1999, p. 14).

Fig. 13 This student identified several points around monster R, but could not draw a circle by 
identifying its centre and radius
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5  Conclusion

Policymakers have always advocated for the use of technology in schools, and aca-
demic authorities have made financial investments to support its integration into 
school practices. The assumption is that it is likely that teaching and learning will 
benefit from the incorporation of an increasing number of technological devices, 
such as tablets, into classroom activities.5 In practice, projects that encourage enthu-
siastic mathematics teachers to engage with emergent technologies may help to 
address the challenges students face in conceptualising mathematical ideas. 
Institutional projects that provide technologies to classrooms often rely on a small 
number of teachers who are recognised for their ability to implement innovative 
practices. These collaborative projects also create opportunities for teachers to share 
their experiences, and develop resources that can be disseminated to the wider com-
munity. We participated in such a project, as observers and experts in the domain of 
digital technology integration. Our focus was on how teachers plan their lessons, 
and try to engage students in a variety of activities, in a classroom environment that 
is enhanced by the use of tablets.

Our first, global analyses drew upon the analytical tools we had developed in 
earlier work, namely, the CPT construct, and the concept of tensions in the teacher’s 
activity. Fine-grained, in-class observations led us to develop new tools (still in line 
with those developed before) that we considered better-adapted to the use of tablets. 
In particular, we explored Vygotsky’s ZPD and Valsiner’s ZFM and ZPA as ways to 
interpret our observations. From this, we developed the concept of proximities, 
namely, teaching actions (discursive or not) that support students’ activities within 
these zones. Proximities provided by the teacher lead to development in the 
ZPD. There are two kinds: cognitive proximities are directly related to the knowl-
edge at play within the ZPD, while pragmatic proximities are more closely associ-
ated with actions within the ZFM/ZPA that are related to the working environment. 
These analytical tools have helped us gain new insight into teachers’ actions, par-
ticularly when the class (and the teacher) uses a technological environment to learn 
(teach) mathematics. In the study presented here, this concerns the tablets that are 
used in teaching and learning geometry.

A key finding is that in such environments,  the ZFM/ZPA complex becomes 
more difficult for the teacher to grasp. This is because the evolution from the paper- 
and- pencil environment to the tablet environment brings with it new tensions and 
opportunities of proximities, certainly cognitive but mostly pragmatic. Even if the 
teacher conceives these proximities as instrumental or inter-instrumental, they have 
cognitive aspects that the teacher does not fully realise. This brings us close to find-
ings provided from studies within a semiotic perspective on mathematics teaching/
learning that highlighted the potential synergy that may occur between the use of 
different artefacts linked to the same content (Faggiano et al., 2018). At the same 

5 See the Report of the French Ministry of Education on the use of tablets: https://eduscol.educa-
tion.fr/numerique/dossier/apprendre/tablette-tactile
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time, these studies raise the questions of what happens when a teacher does not 
recognise semiotic interferences6 and what is needed to recognise and manage them 
(Maffia & Maracci, 2019).

Moreover, in our study, discursive proximities became more difficult as the per-
ception of activity (leading to learning) may be an illusion and, thus, there was a 
failure to identify the real ZPD (for example, related to the iconic visualisation of 
geometric objects). We argue that this situation is an example of what Blanton et al. 
(2005) designated as the illusionary zone,  in which the teacher believes that oppor-
tunities for action are being provided to students but, in reality, this is not the case. 
Nevertheless the use of Valsiner’s zones in Blanton and colleagues’ work is rather to 
explore the ZPD of teachers and gain insights into their potential for development. 
We plan to examine the illusionary zone concept in more detail in forthcoming work. 
Our aim is to study its usefulness in understanding the proximities that the teacher 
seeks to develop in order to reach (or build upon) the ZPD of his or her students.

We are aware that this case study of Roger, and the task he designed, is specific 
and cannot be generalised. This is not our intention. However, on the one hand, it 
allowed us to develop theoretical tools that can be generalised to the study of other 
teachers’ practices, and other technological tools. On the other hand, it raises the 
issue of the extent to which the practices that are developed by teachers who partici-
pate in funded projects are supported by the educational institution, and to what 
extent the learning scenarios that they develop can be disseminated. As experts with 
an informed critical perspective on these practices, we have the objective to contrib-
ute to bridging the gap between policymakers’ aspirations and classroom reality 
regarding the integration of digital technologies. On a local level, our work with 
teachers, in particular, helping them to reflect on their own practices is one way to 
bridge this gap. As teacher educators, our research provides resources and methods 
that seek to improve their uses of technology. On a global level, teachers’ profes-
sional development can be affected by hoped-for collaborations between the institu-
tion and the research community. As Lerman (2014) stated:

[…] the mathematics education research community is largely identical to the mathematics 
educators’ community. This means that as researchers, the tendency is to focus on internal 
issues of teaching and learning mathematics; an examination of the research field demon-
strates the relative lack of attention to policy matters.

Our ambition in participating in the tablet project was to play a constructive part in 
reflecting on, debating and identifying a realistic vision of how tablets can be inte-
grated into schools. We still have a lot of work ahead of us!

Research Ethics A consent form was signed by the teacher and the students (and their parents) 
authorising the use of their images for all research purposes and all oral or written communications 
related to the experimental project.

Both teacher and students were anonymised throughout the current paper.

6 Maffia and Maracci (2019) define semiotic interference as an enchaining of signs emerging from 
the contexts of use of different arte facts, referring one to the other (p. 57).
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Digital Resources in Kindergarten 
Teachers’ Documents and Resource 
Systems: A Case Study in France

Ghislaine Gueudet, Sylvaine Besnier, Laetitia Bueno-Ravel, 
and Caroline Poisard

Abstract This chapter concerns the use of digital resources by kindergarten teach-
ers. It presents a three-year study, using the theoretical perspective and the methods 
of the documentational approach. We focus on the case of an experienced kindergar-
ten teacher, Mia, and on her teaching of numbers. At a micro-level, we investigate 
the evolutions of a document she developed around the use of a mathematical soft-
ware during two years. At a macro-level, we follow the evolutions of her resource 
system during the three years of our study, in particular concerning the role of digi-
tal resources in this system. Drawing on Mia’s case, we contend that, at the kinder-
garten level, digital resources can contribute to teacher professional development. 
Their use requires at the same time a development of the teacher’s design capacity, 
in particular for designing relevant associations of digital resources with tangible 
material. The combination of a micro-analysis of documentational geneses and a 
macro-analysis of the teacher resource system can deepen our understanding of 
these phenomena.

Keywords Digital resources · Design capacity · Documentational approach to 
didactics · Kindergarten · Resource system · Tangible material

1  Introduction

In this chapter we focus on teachers at the kindergarten level. In France, where our 
study takes place, kindergarten welcomes pupils from 3- to 5-years old. It has its 
own official curriculum, including an objective (to be reached at the end of 
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kindergarten) labelled as ‘learning numbers and their use’ which incorporates in 
particular: learn the names of numbers (up to thirty), learn to read numbers written 
in digits (up to ten), learn the use of numbers to describe quantities, including 
decomposition and re-composition of small numbers (up to ten).

Using the theoretical and methodological perspective of the documentational 
approach to didactics (DAD, see e.g., Gueudet, 2019; Trouche et al., 2020a), we 
study the interactions between teachers and resources in the context of the teaching 
of numbers at kindergarten, with a particular focus on digital resources. DAD con-
siders that, as part of their professional activity, teachers develop a resource system: 
a structured set of resources that support the different goals of their activity. 
Moreover, for a given goal, a teacher interacting with resources develops a docu-
ment, associating resources (selected, modified) and professional knowledge (see 
Sect. 3 for an elaboration of the DAD).

The chapter we authored in the first edition of this book also considered teaching 
at the kindergarten level in which we used the DAD perspective associated with the 
concept of orchestration (Gueudet et  al., 2014). This chapter introduces two 
new kinds of evolutions. First, following theoretical and methodological evolutions 
within the DAD, we focus on the development by a teacher of a document (on the 
micro-level of one goal of her activity) and on the evolutions of her resource system 
(on the macro-level of her different goals linked with mathematics). Second, we use 
new data in our empirical analyses collected in further steps of the same project: 
MARENE, meaning ‘Mathematical Package of Resources’, a group associating 
teachers and researchers whose goal is to research and design digital resources for 
kindergarten and primary school.

In the next section (2) we present a brief synthesis of recent research about the 
use of technology at the kindergarten level, by teachers in particular. In Sect. 3 we 
articulate the central concepts of the documentational approach and present  our 
research questions. In Sect. 4 we describe the design of our case study in which we 
followed a kindergarten teacher, Mia, over a period of three years. In Sect. 5 we 
present our results that concern a selected document developed by Mia on the one 
hand, and, on the other hand, the evolutions of her resource system. In Sect. 6 we 
discuss how our findings answer the research questions.

2  Mathematics at Kindergarten in the Digital Era 
and Teachers’ Practices

Since the first edition of this book, the number of studies concerning uses of digital 
tools at the kindergarten level for learning mathematics has increased. This ten-
dency seems to be linked with several factors, in particular the introduction of pro-
gramming in curricula internationally (especially for enhancing and practising 
spatial content knowledge through the use of robots such as Bee-Bots) and the 
development of touchscreen technologies.

G. Gueudet et al.
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Digital tools used to teach numbers at the kindergarten level that have been ana-
lysed in these studies can be divided into two categories. Some of these tools are 
purposefully designed, drawing on research results, to foster the learning of precise 
mathematical content such as counting (Hundeland et al., 2013; Ginsburg, 2016), 
cardinality, ordinality and number sense through the use of multimodal representa-
tions of numbers (Sinclair & Heyd-Metzuyanim, 2014; Sinclair & Pimm, 2015; 
Coles & Sinclair, 2017; Sinclair, 2018; Baccaglini-Frank et al., 2020), addition and 
subtraction (Zaranis et  al., 2013; Sinclair & Heyd-Metzuyanim, 2014; Carlsen 
et al., 2016; Zaranis, 2017) and developing finger gnosis (Sinclair & Pimm, 2015). 
By contrast, other authors focus on commercial touchscreen apps, which are devel-
oped for entertainment, but offer possibilities for young children to interact with 
mathematical concepts (Byers & Hadley, 2013; Lange & Meaney, 2013; Baccaglini- 
Frank & Maracci, 2015).

In most of these studies, the analyses concern students’ learning and point out 
that digital tools open up new possibilities for the development of children’s number 
sense, in particular when combining “multi-touch affordances with aural, visual and 
symbolic ones” (Baccaglini-Frank et al., 2020, p. 2). Using touchscreen technology 
develops new forms of interactions with mathematics (Byers & Hadley, 2013) and 
“a new set of tasks” involving finger gnosis in the case of  the TouchCounts app 
(Sinclair & Heyd-Metzuyanim, 2014, p. 98).

Whatever the digital tool used at the kindergarten level, its manipulability is 
always foregrounded. For example, Jung et  al. (2014, p.  223) note, “students’ 
achievement in mathematics greatly increased with the presence of mathematics 
manipulatives”. However, the question of articulation between tangible materials 
and digital tools is scarcely examined, even when both are proposed to students in 
an experimental intervention (see e.g., Zaranis, 2017). Like Sinclair and Pimm 
(2015) and Sinclair (2018), we maintain that the use of digital tools cannot be stud-
ied without taking into account its relation with tangible materials (and other 
resources) available in kindergarten classrooms, and its interactions with the math-
ematical situation.

Considering the combined use of digital tools and other resources requires atten-
tion on teachers’ choices. Several authors underline that teachers’ mediation is cru-
cial to fully exploit the potential of digital technologies (Baccaglini-Frank et al., 
2020; Bullock et  al., 2017). In particular, without verbalisation, negotiation and 
discussion guided by teachers about the strategies used by students, students’ learn-
ing can remain at a surface level and students can keep using the same strategies 
(Baccaglini-Frank et  al., 2020; Baccaglini-Frank & Maracci, 2015). However, 
research focusing on kindergarten teachers’ use of digital technology for their math-
ematical teaching is still scarce. Hundeland et al. (2013) and Carlsen et al. (2016) 
have identified that kindergarten teachers adopt three roles in their use of technol-
ogy: Assistant, Mediator and Teacher. These authors observed that “these roles were 
used interchangeably and purposefully by kindergarten teachers” (Carlsen et  al., 
2016, p.  1). Thus, according to Hundeland et  al. (2013), kindergarten teachers’ 
mathematical and didactical knowledge has to be taken into account to analyse the 

Digital Resources in Kindergarten Teachers’ Documents and Resource Systems: A Case…



214

quality of digital technology integration in kindergarten mathematics teaching and 
learning.

More recently, Trgalová and Rousson (2017) designed a digital game for learn-
ing numbers at the kindergarten level. Focusing on the concept of ‘appropriation’, 
they developed a theoretical model drawing on the instrumental approach (in par-
ticular the concept of orchestration) and on the documentational approach. Using 
this model they analysed the appropriation of the digital game by a kindergarten 
teacher. They observed that the flexibility of the game (the possibility for the teacher 
to choose different parameters) was an important factor for its appropriation. They 
also noted, like Hundeland et  al. (2013), that solid mathematical and didactical 
knowledge was important for this appropriation, because it allowed the teacher to 
understand the choices of the designers. Their work also evidenced the professional 
development of this teacher: he reflected on the most suitable orchestrations, and on 
how to continuously assess his pupils’ progress.

In the chapter published in the previous edition of this book (Gueudet et  al., 
2014), our perspective was very similar to the work of Trgalová and Rousson (2017). 
We investigated orchestrations developed by kindergarten teachers using mathemat-
ical software (a virtual abacus, and a game named ‘the passenger train’ concerning 
the ordinal aspect of numbers). Our analyses evidenced strong links between the 
teacher’s knowledge and these orchestrations. In Besnier and Gueudet (2016), we 
deepened our analyses of orchestrations and initiated a systematic investigation of 
documents developed during two years by a kindergarten teacher, Mia. In this chap-
ter, we also study the case of Mia (adding a third year of data collection). We do not 
consider her orchestrations, but instead we study her development of a particular 
document and the evolutions of her resource system for the teaching of numbers.

3  Teachers’ Documents, Teachers’ Resource Systems: 
A Theoretical Framework

The need to understand the impact of digital technologies on learning and teaching 
processes has led to the development of many theories. In mathematics education 
research, the instrumental approach (Rabardel, 1995; Guin et al., 2005) is one of 
these theories, developed in the 1990s and early 2000s. The first studies using the 
instrumental approach focused on how students learned mathematics using calcula-
tors (Guin et al., 2005). The research questions evolved to encompass the use of 
digital technologies in the classroom by the teacher leading to the introduction of the 
concept of orchestration (Drijvers, 2012; Buteau et al. in this book), which describes 
the technology-rich environment designed by the teacher and how the teacher 
exploits this environment with their students for teaching mathematics. The studies 
about orchestration have often focused on classroom use of a single device or appli-
cation, for example,  the calculator or the spreadsheet. Instrumental orchestration 
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does not provide tools to enlighten the interactions between teachers and the com-
plex sets of resources now available for their activity, which incorporates e- textbooks, 
video-conference systems, discussions within online communities, etc.

This theoretical gap motivated the development of the documentational approach 
to didactics (DAD, Trouche et al., 2020a), which focuses on the interactions between 
teachers and resources intervening in their professional activity. DAD considers that 
the documentation work of teachers (selecting resources, modifying them, using 
them in class) is central in their professional activity and plays a central role for 
teachers’ professional development. The concept of resource in DAD corresponds 
to a definition proposed by Adler (2000), considering as a resource anything likely 
to ‘re-source’ the teacher’s professional activity: a textbook, a software, but also a 
discussion with a colleague or a student. Referring to activity theory (Vygotsky, 
1978), DAD considers the activity of the teacher as goal-directed. For a specific 
goal of their activity (e.g., ‘introducing the correspondence between a set of objects 
and a number word’) teachers interact with different resources (e.g., textbooks, soft-
ware, discussions with colleagues). Along their activity for this goal they develop a 
document: resources (selected, transformed, combined) and a scheme of usage of 
these resources (Vergnaud, 1998). We represent this definition by the 
simple equation:

 Resources Schemeof usage Document� �  

The development of a document, called a documentational genesis, is a twofold 
process: “the affordances of the resource/s influence teachers’ practice (the instru-
mentation process), as the teachers’ dispositions and knowledge guide the choices 
and transformation processes between different resources (the instrumentalization 
process)” (Trouche et al. 2020a, p. 239).

A scheme is a cognitive structure, defined by Vergnaud (1998) as a stable organ-
isation of the activity for a given aim. It associates four components: the goal of the 
activity and sub-goals; rules of action; operational invariants; possibilities of infer-
ences. The operational invariants are the epistemic aspects of the scheme. They are 
of two kinds: concepts-in-action (concepts considered as relevant) and theorems-in- 
action (propositions considered as true). For example, for the goal ‘introducing the 
correspondence between a set of objects and a number word’, the operational invari-
ants of a teacher can incorporate ‘one-to-one correspondence’ as concept-in-action, 
associated with the theorem-in-action, ‘students must learn to establish a one-to-one 
correspondence between a set of objects and the sequence of number words’. These 
operational invariants steer the rules of action of the teacher, who can choose, for 
example, to propose different kinds of sets of objects (e.g., with the possibility to 
move the objects or not). Within the situation, the teacher can make inferences, 
leading to adapt their action to the specific features of the situation (e.g., if all stu-
dents succeed with tangible objects, offer objects represented on a sheet of paper).

The set of all the resources used by a teacher in their professional activity is 
called their resource system (Trouche et  al., 2020a). This resource system is 
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organised according to the goals of the activity. Indeed, according to Rabardel and 
Bourmaud (2003), the activity of a subject is structured in activity families, corre-
sponding to similar goals of the activity, for example, ‘Planning the teaching of 
mathematics’, ‘Designing and implementing an activity about the ordinal aspect of 
numbers’, etc. Resources intervening for two (or more) different activity families 
are called pivotal resources. In this chapter, we focus on the position of digital 
resources in a kindergarten teacher’s resource system and on the evolutions of this 
resource system linked with the use of digital resources. Our study is framed by the 
following research questions:

 1. What are the characteristics of a document developed by a kindergarten teacher, 
using digital resources for her teaching of numbers? How do previous resources 
and professional knowledge influence the  resulting  document? How do new 
resources influence the evolution of professional knowledge?

 2. What is the role of digital resources in a kindergarten teacher’s resource system, 
and which evolutions of this resource system are linked with the use of digital 
resources?

We study the case of one teacher, Mia. For question (1) we focus on the develop-
ment by Mia and on the evolution of a document, at micro-level. For question (2) we 
consider Mia’s resource system for her teaching of numbers, at a macro-level.

4  The Case Study Design

In this section, we first present the principles grounding the general method associ-
ated with the DAD, which is called the reflective investigation of teachers’ docu-
mentation work (Trouche et al., 2020a). Then we present the case study used in this 
chapter. Finally we introduce our methods for analysis of the data.

4.1  Methodological Principles

The investigation of teachers’ documentation work can lead to the collection of dif-
ferent kinds of data. However, it always guided by  the principles of reflective 
investigation:

 – The organisation and the aims of the data collection are presented to the teacher 
and discussed with her.

 – The material resources used and produced by the teacher are collected.
 – The teacher is not followed only for one lesson, but over long periods – several 

years if possible.
 – The teacher is followed in all the different places where her documentation work 

takes place (in class and out of class).
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 – The teacher is actively involved in the data collection and analysis.
 – The statements of the teacher in interviews are always compared with her actual 

activity and material resources produced.

The necessity of these principles comes directly from the theoretical perspective of 
the DAD. The documentation work of the teacher unfolds in multiple moments and 
places and is only fully accessible to the teacher. The schemes are stable organisa-
tions. Consequently, a long-term follow-up is necessary to be able to identify stable 
patterns in teachers’ activity. A large part of these schemes is unconscious, and the 
declarations of the teachers are not sufficient for identifying  the schemes. The 
observation of the teacher’s activity and of the resources designed, compared with 
the teachers’ statements, can provide access to elements of schemes.

4.2  The Case of Mia: Profile and Working Environment

Mia is an experienced kindergarten teacher (of 10 years) who works a medium- 
sized town in France. She was a member of the MARENE project group. We fol-
lowed Mia for three years from 2012 to 2015. She worked in a school located in the 
city centre during the two first years and then moved to a school in an underprivi-
leged area of the same city in 2014–2015. During these three years Mia taught a 
class called “small section” (3-year-old pupils). In France, 3-year-old pupils take a 
nap in the afternoon. During this time the other classes of the school are split into 
small groups who are then taught by the 3-year-old pupils’ teacher. This work is 
organised around a project or a specific learning theme and a rotation of groups is 
planned to allow each group to meet the different themes over a period of one or two 
weeks. So, in the afternoons during years 1 and 2, Mia taught specific mathematical 
activities to small groups of older pupils (4- to 5-year olds). In Table 1, we sum-
marise her working context (school, age of pupils, equipment in terms of digital 
tools) during the first three years.

During these three years we collected different kinds of data, according to the 
principles presented above. We summarise the data types in Table 2.

Mia has solid mathematical and didactical knowledge (presentation question-
naire). Indeed Mia was previously a high school economics teacher, and subse-
quently decided to work with younger students. She mentioned several professional 

Table 1 Mia’s working context

Year Working context

Years 1 
and 2

A school in the city Centre of R. Mia worked with 3-year-old pupils and with groups 
of 4-year-old pupils in the afternoon with a focus on mathematics. She had access 
to three computers in her classroom.

Year 3 Mia changed schools and worked in an underprivileged area of R. with 3-year-old 
pupils and groups of 4-year-old pupils in the afternoon with a focus on language. She 
had access to one computer and an IWB in her classroom.

Digital Resources in Kindergarten Teachers’ Documents and Resource Systems: A Case…



218

Table 2 Mia’s case, data collected

Data collected – Year 1
  Presentation questionnaire: Professional history of the teacher, working environment, 
viewpoint on mathematics teaching, viewpoint on technology, collective work, personal 
relationship to mathematics.

 Initial interview about her resources for teaching mathematics and her documentation work.
  ‘Guided tour’ of her resources for teaching.
 Schematic representation of her resource System (SRRS, produced by Mia).
  Videos and observation of lessons based on ‘cars and garages’ resources with the 4-year-old 
pupils, in the afternoon – 6 sessions observed.

 Pre-session and post-session discussions with the researcher.
 Collection of her resources, including her computer files.
Data collected – Year 2
 Updated SRRS.
  Videos and observation of lessons in mathematics with 3-year-old pupils (zoo situation). 3 
sessions observed.

  Videos and observation of lessons based on “cars and garages” resources with the 4-year-old 
pupils, in the afternoon. 6 sessions observed.

 Pre-session and post-session discussions with the researcher.
 Collection of her resources, including her computer files.
Data collected – Year 3
 ‘Guided tour’ of her resources.
 Updated SRRS.
  Videos and observations of lessons in mathematics with 3-year-old pupils (MOOC project). 3 
sessions observed.

 Pre-session and post-session discussions with the researcher.
 Collection of her resources, including her computer files.

development courses on the teaching of mathematics in kindergarten that made her 
aware of the didactic issues in these early learning experiences. According to previ-
ous research (Hundeland et al., 2013; Trgalová & Rousson, 2017), this knowledge 
is a very important condition to guarantee a relevant use of digital resources for her 
mathematical teaching. This motivated our choice of Mia’s case for this chapter, 
from the different teachers followed in the MARENE project.

4.3  Analysing the Data Collected

In Sect. 4.1 we outlined a central set of principles that guided the analysis of our 
data, which involved the comparison of teachers’ views on their activity and our 
observations of this actual activity. Here we present more details about how we 
analysed the data to identify elements of documents on the one hand and to investi-
gate the structure of the resource system on the other hand.

For the analysis of the documents, we introduced a methodological tool called a 
“document table” (Gueudet, 2019). Table 3 below provides the first example.
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Table 3 Example of a “document table”

Goal Main resources Rules of action
Operational 
invariants

Design and 
implement a 
synthesis

The black board, and 
magnetised stickers 
reproducing elements of 
the software [...]

Use a vocabulary that 
approximates that used 
when working on the 
software [...]

Verbalisation is 
important in 
mathematics.

In such a table, a row represents a document, that is, the resources and an associ-
ated scheme of use with its components. The first column describes the goal of the 
activity. To identify this goal, we searched the teacher’s interviews for utterances 
indicating such goals: “For designing an introductory activity […]”; “When I want 
to communicate with the parents […]”, for example.

Then we noted the resources used to support that achievement of this goal (across 
all the data collected). The next step is to search for operational invariants and asso-
ciated rules of action. The operational invariants can be inferred from the inter-
views, alongside the content of the resources designed by the teacher. For example, 
the resources designed can provide evidence that “It is important that the children 
associate different representations of numbers” is probably a theorem-in-action for 
a teacher, associated with a rule-of-action such as “I always propose several repre-
sentations of the numbers to my students”. If the researchers observed such opera-
tional invariants from the analysis of the resources, they would record it in the table 
in a particular colour and then present the table to the teacher, inviting a reflective 
view on the elements that had been included in the document table.

Moving to the resource system, according to the DAD it is structured by the dif-
ferent goals of the activity. Several similar goals can be gathered to identify “activ-
ity families” (Rabardel & Bourmaud, 2003). As described above for schemes, our 
starting point was again the teachers’ interviews to support  the identification of 
goals. We gathered similar goals, also drawing on previous literature (Gueudet 
et al., 2012) where activity families have been identified for secondary school math-
ematics teachers. We then made an inventory of the resources associated with these 
goals, starting with the interviews, and compared them with the observed activity. 
We produced a representation of the resource system (see Sect. 5.3) and again sub-
mitted it to the teacher who amended it as she felt appropriate.

5  Analysis of Mia’s Case

In this section we first describe some digital resources present in Mia’s resource 
system for her teaching of mathematics. Then we analyse a particular document 
developed by Mia during the two first years. Finally, we discuss the structure of her 
resource system and the evolutions of this system across these three years.
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5.1  Selected Digital Resources Used by Mia

Educational Software
When we started our data collection, Mia was already using software called 
‘GCompris’.1 ‘GCompris’ is an educational software that offers a variety of interac-
tive exercises (maths, science, reading, etc.) for pupils from 2 to 10 years old. Mia 
used ‘GCompris’ for computer discovery activities (keyboard, mouse) and mathe-
matical activities (numbers and forms). ‘GCompris’ allows pupils to practise some 
techniques and it is not problem-solving oriented.

By contrast, the “Cars and Garages” (CG in what follows) resources are inspired 
by a previously existing problem-solving situation (not digital, Charnay et  al., 
2005). This situation was designed for enhancing children’s number sense, and 
more precisely the ‘cardinality’ aspect (Baccaglini-Frank et  al., 2020) by using 
number as the memory of a quantity.

Pupils have at their disposal several garages (boxes). They are required to make 
a single journey in a remote place such that they have exactly the number of cars so 
that each garage has exactly one car. That is, there are no cars without a garage. For 
pupils, the challenge is to notice that they can use number-based procedures, count-
ing garages, then cars to keep track of their quantity. The MARENE group designed 
a digital version of this situation and associated tangible material (Fig. 1).

In the software, garages appear in an orange area (the teacher chooses the 
numeric field). Then they disappear, and cars appear on the right of the screen. 
Pupils must move the correct number of cars to the grey area at the bottom of the 
screen and click on the arrow symbolising the storage of cars. The garages reappear; 
the cars chosen are stored in these garages, which validates or invalidates their choice.

The resources designed by the group also include classroom scenarios. For more 
details, see Besnier (2016, 2019), or the MARENE group’s website.2

MOOC ‘Teach and Learn with Digital Tools in Mathematics’ and 
Nursery Rhymes
During year 3, Mia decided to participate in a Massive Open Online Course (MOOC) 
called ‘Teaching and Learning in Mathematics with Technology’ (Panero et  al., 
2017) to learn more about the use of digital resources for her mathematics teaching. 
The MOOC offered videos, quizzes and different kinds of resources. During the 
MOOC,  the participants designed and shared teaching projects that  used digital 
technologies. Mia formed a team with a colleague in her school and the second 
author of this chapter, and they proposed a project entitled ‘Develop enumeration 
strategies and build the number 3’. This project used the IWB and a nursery rhyme 
called ‘The magpies’. This rhyme, traditionally sung in French schools, tells the 
story of three magpies who land successively on a tree and then leave. We present 
this project further in Sect. 5.3.

1 « GCompris » means « I got it » in French.
2 http://seminaire-education.espe-bretagne.fr/wp-content/uploads/marene_main.pdf
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Screen 1. The garages are visible. Screen 2. The garages are hidden; a

collection of cars is available on the right.

Screen 3. Four cars have been selected and

placed in the grey zone.

The CG tangible material.

Fig. 1 CG software and tangible material

5.2  Focus on the Development of a Document by Mia

Our analysis in this section is based on data collected during years 1 and 2 (Mia did 
not work on the CG situation in year 3).

In year 1, Mia taught mathematics once a week in her class to a group of 6 pupils 
(4-year-olds) during the afternoon. The work around the CG situation comprised 6 
sessions (Table 4).

Mia developed several documents incorporating the CG software. For the sake of 
brevity, we focus here on the goal ‘Design and implement practice and consolida-
tion activities around the CG situation’ (sessions 3 and 4 in year 1).

The six pupils were organised in pairs to work with the CG software, and Mia 
supported them very closely (Fig. 2).

This choice reflects professional knowledge: the importance that Mia gives to 
verbalisation in mathematics and the idea that exchanges between peers promote 
learning. Indeed, in several interviews, Mia emphasised the importance of asking 
questions of the students, to enable them to  verbalise  and justify their answers. 
Moreover, she considered that for such young students the verbalisation has to be 
supported by the teacher.

At the same time, she observed (final interview year 1) that her presence might 
have hindered some pupils in their search for a solution. Thus she decided to give 
more autonomy to the pupils for their work on the software. This required prior 
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Table 4 Work around the CG situation, year 1

S1 Initial diagnostic, computer (mouse) and numbers
S2 Discovery of the software
S3, S4 Practice and training in pairs on the software
S5 Synthesis on the board
S6 Reinvestment activity: On a worksheet, exercises about number as memory of a quantity

Theo: We will take all the cars!
Mia: You want to take all the
cars? Do you agree, Ana?
Ana: No!
Mia: Why don’t you agree, Ana?
Theo: I agree! We will take all the 
cars!
Ana: Not at all, or we are going to 
lose!

Fig. 2 Practice on the CG software, year 1 – Mia supports the work of one pair (Theo and Ana)

Table 5 Work around the CG situation, year 2

S1 Initial diagnostic, computer (mouse) and numbers
S2 Discovery of the situation with tangible material
S3, S4 Practice in pairs on the software/practice in pairs with tangible 

material
S5 Synthesis on the board
S6 Practice with software and material

understanding of the situation by the pupils. Thus she decided for the following year 
to use the tangible material first, and then to associate the software and the tangible 
material for the practice and consolidation.

In year 2, Mia worked with several groups of 6 to 7 pupils daily in the afternoon. 
The work around the CG situation still comprised 6 sessions (Table 5).

Mia organised the work according to her intentions presented above. Unlike the 
previous year, the different groups all became familiar with the situation by han-
dling the boxes. Then they practised in pairs on the software, or using both the 
software and the tangible material. Halfway through, a synthesis was carried out 
with each group. After this synthesis, pupils continued to practise with the software 
and the tangible material (Fig. 3).

We observed here, as in year 1, the importance that Mia gave to verbalisation in 
mathematics. We also note evolutions of the document developed over the two years 
(see Table 6).
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Fig. 3 Year 2. Practice on the computer and with the tangible material

Table 6 Document for the goal ‘Design and implement practice and training activities around the 
CG situation’

Goal Main resources Rules of action Operational invariants

Design and 
implement practice 
and training 
activities around the 
CG situation

The CG software
The tangible CG 
material
Discussions, 
strategies with the 
software proposed 
by the students

The students have to 
practise on the computer 
only after the 
appropriation of the 
situation.
The students practise on 
the computer and with 
the tangible material.
A synthesis is organised 
between two phases of 
training and practice.
Have the students 
express themselves and 
have them try the 
different procedures they 
offer.

The tangible material 
supports the 
understanding of the 
situation.
Organising a second 
practice moments after 
the synthesis supports 
learning.
Verbalisation is 
important in 
mathematics.
Peer-to-peer exchanges 
promote learning.

The evolutions between Y1 and Y2 are presented in italics

Through her interactions with the resources, Mia developed professional knowl-
edge. Mia had previously developed operational invariants, for example, ‘verbalisa-
tion is important in mathematics’, ‘exchanges with peers promote learning’ which 
intervene in the document ‘Design and implement practice and training activities 
around the CG situation’. She also developed new operational invariants, about the 
association of tangible material and software. Indeed she observed during year 1 
that it was difficult for the students to discover both a new situation and a new soft-
ware at the same time. The tangible material was used for discovery and also for 
consolidation, while the software was limited to consolidation.

The document developed in year 2 connects the CG software and the tangible 
material. Both kinds of resources belong to Mia’s resource system. In the next sec-
tion we consider this system more broadly and discuss its evolutions.

Digital Resources in Kindergarten Teachers’ Documents and Resource Systems: A Case…



224

5.3  Mia’s Resource System and Its Evolutions

In this section, we present Mia’s resource system for her teaching of numbers in 
year 1 (Y1) and year 2 (Y2) (Fig. 4) and for year 3 (Y3) (Fig. 6). Our data analyses 
led us to identify several activity families. Some activity families are linked with 
mathematics and others are general families whose scope exceeds mathematics but 
whose resources inform this teaching and probably the teaching of all the other 
subjects.

For each year, we analysed the structure of these systems, identifying pivotal 
resources (defined as resources that intervened in several activity families) and dis-
cussing the role of digital resources in these systems. We also analysed the evolu-
tions, first between Y1 and Y2, then between Y2 and Y3.

Structure of Mia’s Resource System (Years 1 and 2): Professional Activity 
Families
As presented above, the representation of this system is constructed by the 
researcher, drawing on Mia’s SRRS (for the list of resources) and on her general 
interview (for the aims of the activity). We identified from her interview seven activ-
ity families concerning her teaching of numbers. Four of them can also concern 
other subjects: planning her teaching (this includes planning for the whole year, but 
also detailed planning of a lesson); communicating (with colleagues and with the 
families); following the students; professional development. Three of them concern 
only her teaching of numbers: design and implement introductory activities; design 
and implement practice and training activities; design and implement syntheses. 
This last activity family only concerns the groups of 4-year-old students that she 
teaches in the afternoon, as Mia considers that 3-year-old students are too young for 
participating in syntheses.

Pivotal Resources in Mia’s Resource System, Y1

 – Mia’s computer and the internet. Mia uses her computer for searching the inter-
net for resources for different aims, and for designing a large part of her teaching 
resources. She does not directly use it for syntheses, since she has no video pro-
jector, but also uses it to design stickers for the syntheses on the board.

 – Detailed planning tables. During year 1, Mia decided to design with a colleague 
a common sequencing of topics for the whole year. They designed common 
 planning tables, which were very detailed. These detailed planning tables are 
pivotal resources, since they were used with a goal of communication with her 
colleague, and with the goal of planning the learning.

 – Life Notebooks. Students in Mia’s class have individual Life Notebooks, gather-
ing traces of all the activities done in class. Mia also designed a Life Notebook 
of the class, and she used it the next year as a record of what was done during the 
previous year. So these Life Notebooks are designed and used to follow the stu-
dents and to communicate with the families.
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 – Mathematical software. The two mathematical software: GCompris and CG are 
integrated in two mathematical activity families: for introductory activities and 
for practice.

 – Stickers. Mia designed stickers, linked with many different activities (Fig. 5—in 
particular, in mathematics. When Mia integrated the CG software, she designed 
stickers associated with this software, in an instrumentalisation process. These 
stickers were used both for introductory activities and for syntheses, thus they 
are also pivotal resources.

Design and implement the teaching of numbers (for 3- and 4-year-old students)

Planning the teaching
Computer (Mia), Internet, Grid ina�endu.org
Detailed planning tables (Y1 only) 
Discussions with a colleague (Y1 only)
Textbook (Y2 only)
Logbook, Class life notebook previous year

Design and implement introductory ac�vi�es in 
mathema�cs
Computers (Mia and class), Internet, So�ware: 
Gcompris Cars and Garages (Y1 only)
Textbook, Games (commercial or designed), S�ckers
Nursery rhymes

Design and implement prac�ce and training ac�vi�es 
in mathema�cs
Computers (Mia and class), Internet, So�ware: 
Gcompris, Cars and Garages
In Y2, tangible material Cars and Garage
In Y2, new games on numbers
Manipula�ves, Games (commercial or designed)

Communica�ng
Detailed planning tables
Students’ life notebook current year, 
assessment notebooks
Computer (Mia), Parents’ USB key

Following the students
Students’ life notebook current year, 
assessment notebooks
Computer (Mia), Camera
Individual folders on her computer with 
photos

Professional development
Professional development course in her 
district
MARENE group
Computer (Mia), Internet, Digital 
resources collected and designed in PD 
ac�vi�es

Design and implement syntheses in mathema�cs (4-
year-olds)
Blackboard, s�ckers,
Strategies presented by the students, discussions. 
Reproduc�on of the computer CG screen with a grey 
zone on the blackboard (Y2 only).

Fig. 4 Mia’s resource system for Y1 and Y2 as represented by the researcher. In italics, digital 
resources. In solid frames, activity families specific to mathematics. In dotted frames, general 
activity families

Digital Resources in Kindergarten Teachers’ Documents and Resource Systems: A Case…



226

Fig. 5 Stickers designed by Mia

Digital Resources in Mia’s Resource System, Year 1
Concerning digital resources, we note that:

 – Mia’s computer was the most important pivotal resource she cites, often in asso-
ciation with the internet. Her computer, resources found on the internet and other 
digital resources (photos in particular) were essential for designing her other 
pivotal resources, in particular the Life Notebooks.

 – Several digital resources were associated with collective aspects in Mia’s work: 
her planning activity was done with a colleague, using the grids from a website 
(inattendu.org). Communication with the families involved a lot of photos of the 
activities. These photos (in a digital format) were copied onto USB keys belong-
ing to the parents.

 – Concerning mathematics, Mia was already used to working with ‘GCompris’. 
This facilitated the integration of the CG software in her system: she knew that 
some software can be useful for the learning of mathematics, and she was already 
used to organising group work on the few available computers in her class.

Stabilities and Evolutions in Mia’s Resource System Between Year 1 
and Year 2
We did not notice major changes in Mia’s resource system during these two years. 
We note below the most important modifications.

 – Use of the textbook and planning
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During year 1, Mia used the textbook (for mathematics) only for designing intro-
ductory activities. In year 2, the role of the textbook extended to planning her teach-
ing of mathematics. She no longer used the grid from the inattendu.org website, but 
used the textbook for her planning activity. The textbook hence became a pivotal 
resource.

 – CG software and associated material
Evolutions concerning the use of the CG resources are linked with the analyses 
presented in 5.2. During year 2, Mia integrated the tangible material in her work 
about the CG situation. She considered that this material was needed for the appro-
priation of the situation, and also decided to associate the software and the tangible 
material for training. In year 2, she also designed for the synthesis of the CG situa-
tion a grey zone to be displayed on the board, to faithfully reproduce the appearance 
of the software screen on the board. She noticed that it is very important to provide 
4-year-old pupils with similar representations of the CG situation, whatever the 
medium used (software, tangible material, stickers on the board).

 – Introduction of new games on the topic of numbers
During year 2 Mia used new games on numbers with her 3-year-old students. She 
designed, for example, material for a game entitled “the zoo”, inspired from the 
textbook. The introduction of this new game was motivated by her feeling that she 
had to strengthen her teaching of numbers. According to Mia’s interview (Y2), this 
was a consequence of her work in the MARENE group and with the CG software in 
particular. Mia’s knowledge about the way to introduce numbers to 4-year-old stu-
dents has been developed by her participation in the MARENE group.

We note that in year 2, no new digital resource was integrated into Mia’s resource 
system. On the contrary, she no longer used the CG software for the introduction of 
the situation or the inattendu.org website to design her planning.

We now consider year 3. We remind the reader that Mia changed schools between 
year 2 and year 3. This significant change impacted what Rocha has introduced as 
the teacher’s “documentational trajectory” (Trouche et al., 2020b), defined as “a 
path (with continuities and ruptures) linking professional events (individual and/or 
collectives) lived by the teacher” (ibid., p. 1245). In this new school, she met a new 
team of colleagues and she no longer taught 4-year-old students and so no longer 
used the CG resources, and she had an IWB in her class. We observed significant 
changes in her resource system (Fig. 6).

We focus here on the evolutions linked with digital resources and with her teach-
ing of numbers.

 – The IWB, a new pivotal resource: the IWB was very quickly integrated in Mia’s 
resource system, and became immediately a pivotal resource. Indeed the compat-
ibility of the IWB with her previous resource system was very high. The IWB 
enabled games to be organised, and  the associated IWB software provided a 
record of classroom activities that Mia transformed into booklets contributing to 
the communication with the families.

Digital Resources in Kindergarten Teachers’ Documents and Resource Systems: A Case…
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Fig. 6 Mia’s resource system in Y3, as represented by the researcher. In italics, digital resources. 
Changes in the resources (compared with Y2) are in bold. In solid frames, activity families specific 
to mathematics. In dotted frames, general activity families

 – The MOOC project, another new pivotal resource: In Y1 and Y2, working around 
the situation of CG, Mia was challenged by the question of the link between 
tangible material and digital resources. So she proposed designing a mathemati-
cal project articulating tangible material and digital resources for her 3-year-old 
students. The MOOC project led to the design of a lesson with three sessions. 
Session 1 was a work on a rhyme (‘The three magpies’) to be learned by the 
students. Session 2 was a guided workshop based on the use of a digital version 
of the rhyme on the IWB (Fig. 7). This digital version was designed by Mia for 
the MOOC project at the beginning of year 3. Session 3 was a workshop around 
a situation from the textbook, the ‘Bears’ birthday cake’. In the workshop the 
students worked firstly with tangible material (birthday candles) then on a digital 
version of the ‘Bears’ birthday cake’ situation on the IWB.
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Fig. 7 Digital version of “The magpies rhyme”

After this first experience in the context of the MOOC, Mia designed digital ver-
sions of other mathematical rhymes on the IWB.

We note between Y2 and Y3 an increase in the frequency of use and importance 
of digital resources in Mia’s resource system. These changes are linked with the 
presence of the IWB in her class, but they are also supported by Mia’s operational 
invariants, which we discuss in more detail in the section that follows.

6  Discussion and Conclusion

The study presented in this chapter only concerns the case of Mia, and this naturally 
limits the conclusions we can draw. Mia was an expert teacher; she worked within 
the MARENE group, so her use of the CG resources does not inform us about the 
integration of this software by less expert teachers, not involved in its design. 
Moreover she worked in France, where kindergarten is considered part of primary 
school with its own mathematics curriculum. This institutional and cultural context 
certainly influenced our observations.

Nevertheless our analyses provide elements of answers to the research questions, 
and also suggest hypotheses about kindergarten teachers beyond this single case. 
Our first research question concerned the micro-level of a document:

 1. What are the characteristics of a document developed by a kindergarten teacher, 
using digital resources for her teaching of numbers?
In the case of Mia, we followed the development of a document for the aim 

‘Design and implement practice and training activities around the CG situation’. We 
observed that her previous knowledge of the general aim ‘Design and implement 
practice and training activities’ influenced the document developed, in an instru-
mentalisation process. She considered verbalisation very important for learning, 
while  it is simultaneously difficult for these young  children. Thus in year 1 she 
strongly supported pairs of students working on the software. These 
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instrumentalisation processes were associated with instrumentation processes, 
within Mia’s documentational genesis. She noticed indeed during year 1 that it was 
difficult for the pupils to handle the software and investigate the CG situation at the 
same time, and that her presence could hinder the search for solutions. Thus in year 
2 she decided to introduce the CG situation with the tangible material, and to associ-
ate the material and the software. She also decided to conduct a synthesis and then 
to organise a new phase of practice and training, thus reinforcing the links between 
tangible material and CG software.

We claim that this analysis of Mia’s case provides general insights about the 
integration by kindergarten teachers of specific software in mathematics. In 
year 1, Mia had already created links between the software and the work without 
computers, with stickers for the synthesis that  reproduced the software. During 
year 1 she also developed further knowledge about associating the software and the 
tangible material. Previous research (e.g., Maschietto & Soury-Lavergne, 2013) has 
evidenced the potential of a duo of material and digital artefacts for the learning of 
numbers. At the kindergarten level, the tangible material is especially important, but 
combining it productively with the use of software is complex. Mia developed new 
knowledge about this issue through her documentation work during Year 1.

The CG software and its associated resources can contribute to kindergarten 
teachers’ professional development if they are appropriated by these teachers 
(Trgalová & Rousson, 2017), which means, for us, integrated into their resource 
systems. The MARENE project’s research results concerning the association of vir-
tual and tangible materials and the importance of verbalisation were the common 
thread of a 3-h training for all kindergarten teachers in Brittany (approximately 
1200) on the subject ‘Playing to learn numbers’. Moreover, following the design of 
the CG software and its first implementations, the MARENE group created a hybrid 
professional development course (4.5 h of remote training, including implementa-
tion time, plus 4.5  h of face-to-face training) entitled ‘Mathematical Games for 
Kindergarten: Materials and Software for Number Sense’. One of the challenges of 
this training is to get teachers to think about the integration of new technologies in 
relation to manipulatives for their mathematics teaching. This course is part of a 
national catalogue of 95 hybrid training courses for kindergarten teachers. It has 
been implemented 52 times since 2016 and there are 20 sessions currently open.3

Research question 2 was:

 2. What is the place of digital resources in a kindergarten teacher’s resource sys-
tem, and which evolutions of this resource system are linked with the use of digi-
tal resources?
Mia’s computer was, from the beginning, a pivotal resource in her system and the 

same holds for the internet. This corresponds to a use of digital resources for her 
preparation work, but not in class. We note nevertheless that she used digital means 
for communications with the parents, a very important aspect with students of this 

3 https://magistere.education.fr/local/magistere_offers/index.php?v=course#offer=84 (accessed 30 
March 2021).
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age. Moreover she had already experienced the use of the mathematical software 
GCompris in class with her students. We contend that the presence of this software 
in her resource system facilitated the integration of the CG software, which was 
integrated in year 1 exactly in the same activity families (‘introduction’ and ‘prac-
tice’). During the second year the CG software was not used for introduction. It was 
replaced by an introduction to the situation using tangible material; moreover, the 
software and the tangible material were associated for practice and training as dis-
cussed above.

In year 3, we observed significant changes in Mia’s resource system, primarily 
because of the presence of an IWB in her classroom in her new school. We want to 
foreground here that these changes are not discontinuities, in particular because her 
professional knowledge connects her practice in year 3 with her practice in years 1 
and 2 (and the same holds for her resource system).

Using the IWB and in the context of a MOOC, Mia designed (with a colleague 
and a researcher) a project where students worked on mathematical nursery rhymes 
with the IWB, and simultaneously with tangible material. This practice was new 
and linked with an evolution in her resource system. Nevertheless, Mia’s choices 
evidence the intervention of her professional knowledge, developed in years 1 and 
2, about the association of tangible material and digital resources. Moreover the 
choice of nursery rhymes is also linked with other professional knowledge, already 
observed in year 1: the importance of verbalisation for the learning of mathematics 
for these young students. We also consider that the design, with the IWB, of book-
lets for communication with the families evidences a continuous evolution between 
the resource system in years 1–2 and the resource system in year 3. Indeed the com-
munication with the families was always important for Mia; she used the IWB to 
develop it further (in particular about mathematical classroom activities).

What do we learn from the case of Mia concerning the resource systems of kin-
dergarten teachers for their teaching of numbers and the role of digital resources in 
these systems? The appropriation of the IWB by Mia was very quick. IWBs afford 
a common visual focus for a group of students, and this can be useful, especially at 
the kindergarten level (Carlsen et al., 2016). Nevertheless, Mia did not only present 
ready-made animated pictures: she also designed illustrated nursery rhymes with 
the Openboard software. We note that the integration of new digital resources (here 
the CG software, then the IWB) enriches the teacher’s resource system; as stated in 
previous work, this is linked with the development of the teacher’s design capacity 
(Pepin et  al., 2017). The digital resources create new opportunities for teacher 
design, and at the same time require new expertise which can be developed through 
collective documentation work.

Beyond these answers to our research questions concerning the case of Mia and 
the integration of digital resources by kindergarten teachers, we want to emphasise 
some contributions of this chapter in terms of both theory and methodology.

Mia was followed for three years; this long period gave us access to her docu-
mentational geneses and to her resource system. An increasing number of studies 
using the DAD consider the work of teachers over several years (see e.g., Trouche 
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et  al., 2020b). This chapter confirms the value of such studies to understand the 
evolutions (and the stabilities) of teachers’ resource systems.

We developed the analyses at the micro-level of a document and at the macro- 
level of the resource system simultaneously. Analyses at the micro-level evidence 
precise professional knowledge developed along the use of a particular resource or 
that which influences this use. Analyses at the macro-level permitted us to follow 
how the teacher’s knowledge can lead to associate several resources, and how the 
introduction of a new resource in this system can impact the role of other resources. 
Such analyses also evidenced the importance of the pivotal resources, which we 
have shown to be very influential in terms of the teacher’s activity. When digital 
resources become pivotal, the teacher’s resource system is transformed (Trouche 
et al., 2020b).

Further research is needed about teachers’ resource systems, their structure, and 
the role of pivotal resources in teachers’ professional development (in particular, in 
the development of their design capacity). The 2020 Covid-19 pandemic and associ-
ated lockdowns have disrupted the work of kindergarten teachers in many countries 
and opened the path to new roles for digital resources in their resource systems. 
Thus this direction of research is crucial to inform the design and implementation of 
relevant professional development programmes for kindergarten teachers.

Ethics Statement The teacher Mia was a member and active participant of the research project; 
she gave written consent for the use of all the data collected for research purposes, including pub-
lication and communication. The parents of the children in Mia’s classes for the three years of data 
collection gave a written consent for the classroom observation and the videos, and for the use of 
all the data collected for research purposes including publication and communication.
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Abstract This chapter reports research on teachers using technology to teach 
mathematics in schools located in low socioeconomic neighborhoods in Mexico. 
The aim of the study is to research how aspects of the roles of two teachers using 
technology in their lessons supports the development of rich environments promot-
ing students’ demanding mathematical activity and learning. We focus on how their 
actions and use of digital resources contribute to the creation of a classroom culture 
that allows these students to work with important mathematical ideas. Using an 
enactivist approach, the teachers’ lessons were examined to characterise their 
actions, and the resulting students’ activity, by focusing on how students living in 
unfavorable contexts can be motivated to fully participate in lessons where 
 technology is used. Our results highlight how teachers can develop immersive envi-
ronments to help students who usually lack motivation to develop their mathemati-
cal thinking and learn by taking advantage of available technological resources.
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1  Introduction

Research on how teachers’ uses of technology in their classrooms can create an 
environment where it is possible to promote students’ learning is important. This 
outcome depends on teachers’ planning, the selection of digital resources and their 
abilities to adapt their roles according to students’ needs throughout their lessons. 
This is more important when they teach in schools that are located in low socioeco-
nomic neighborhoods, as it is well known that the context where learning takes 
place affects students’ learning outcomes. Such research can offer clues about stu-
dents’ opportunities to learn, about teachers’ professional development needs and 
inform the direction for future teachers’ training.

We are particularly interested in studying how teachers work with students in 
unfavorable socioeconomic conditions, where advanced technology is not widely 
available and students do not have access to technology at home. There are many 
underserved schools in under resourced countries, such as México, where teaching 
conditions are difficult, and teachers have specific needs due to limited access to 
technological resources and the particular needs of their students. Knowledge of 
teachers’ roles in these conditions can be valuable, particularly with respect to those 
teachers who have overcome school circumstances and, by using technology in their 
lessons, created environments where students learn productively. In this chapter we 
intend to contribute to the literature by analysing the aspects of such teachers’ roles 
that can be related to their creation of rich learning environments in underserved 
schools. Results obtained can help to gain understanding about how teachers use 
technological resources to introduce these students to key mathematical ideas and to 
better understand the constraints that teachers face.

2  Literature Review and Background

Many studies have shown that socioeconomic conditions at home and at the envi-
ronment surrounding schools have a strong influence on students’ achievement (i.e., 
Ferguson et al., 2007). In Mexico there is a large number of schools where students 
can be considered at risk of dropping out because of the prevailing conditions in the 
school neighborhood, in their families and in the school itself. Mexico’s govern-
ment has developed a marginalisation index, a multidimensional measure that 
includes socioeconomic indicators that imply exclusion from school: illiteracy; 
housing without basic services such as water, electricity, drainage; overcrowding 
and household income lower that ten U.S. dollars (Conapo, 2013). In those under-
served schools, even where technology is available, the equipment and software are 
old. They were distributed as part of a former large-scale national project (170,000 
classrooms) “Enciclomedia”, which was created in 2004 with the intention of 
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complementing already existing materials in primary school classrooms—such as 
the mandatory textbooks—with digital resources (SEP, 2004). The project aimed to 
support teaching and learning of all subjects in grades 5 and 6 in the elementary 
school through the use of one computer and an interactive whiteboard. Although 
this project was abandoned in 2008 for political reasons, many teachers around the 
country continue to use its interactive software, particularly in mathematics teach-
ing, for its support in motivating students to engage in mathematical problems 
through games and interactive activities and by providing them with interesting 
learning contexts (Trigueros et al., 2014, 2020).

Students attending underserved schools are prone to drop out and most of them 
show a low attainment in standardised tests (Solís, 2010; Tapia & Valenti, 2016). 
This was confirmed by the 2018 national exams results where 90.5% of students 
attending highly-marginalised schools obtained a low grade in mathematics, in con-
trast with 77.9% of those attending mid-marginalised schools (INEE, 2018). There 
are, however, studies where authors claim that schools can help students overcome 
those difficulties (Mc Neil et al., 2009; UNESCO, 2017). Academic goals, teachers’ 
experience, and care for students together with resources available, institutional cli-
mate and students’ sense of belonging are among aspects that can play a role in 
retaining students and in overturning their performance (Schmalenbach, 2017; 
Treviño Villarreal et al., 2019). Other studies about social mobility (i.e., Adelantado, 
2000) assert that education is the most important factor predicting students’ future 
success.

In studies related to mathematics achievement, researchers have examined its 
relation to students’ socioeconomic status. Findings with respect to mathematics 
teachers’ behaviours underline the importance of the creation of conditions where 
students can enjoy mathematics and develop a good relationship with it as a disci-
pline (Lerman, 2000). Other studies point out the importance of promoting stu-
dents’ autonomy by using motivating tasks as a factor to change undeserved 
students’ knowledge (Jorgensen et al., 2014). A respectful and “equitable” relation 
has been found in other studies to contribute in the creation of environments favour-
able to mathematics learning (Boaler & Staples, 2008), while other researchers 
emphasise the role of communication and the importance of students’ opinions 
being valued by their teacher and peers (Civil & Planas, 2004) and the importance 
of students’ reasoning in problem solving and respectful relations between teacher, 
students and parents (Civil, 2006). Regarding the use of technologies in mathemat-
ics teaching at elementary school in México, it has been found that even though 
teachers’ access to technology is limited and long-term projects to make them avail-
able face many difficulties to be sustained (Sacristán & Rojano, 2009), some teach-
ers working in underserved schools continue to use technology stimulated by 
observed improvement in students’ achievements (Sacristán, 2017).

For many years, studies have shown that the use of digital resources that address 
higher order thinking skills and introduce students to powerful mathematical ideas 
can improve students’ mathematical learning (e.g., Papert, 1980; Noss & Hoyles, 
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1996). These resources change the learning contexts, the communication and the 
interactions among the actors involved (Niess, 2005; Drijvers et al., 2018). However, 
access to digital resources is not enough to improve teaching, their learning poten-
tial depends on teachers’ didactic planning, selection of digital resources and on 
their actions in the classroom. Moreover, the possibility to foster students’ and 
teachers’ learning is closely linked to activities contributing to create rich environ-
ments where participants are engaged (Hoyles, 2018; Ruthven, 2018; Trigueros 
et al., 2020).

Recently, studies on teachers’ use of digital resources in mathematics lessons 
conclude that there is a growing need to develop learning opportunities for teachers 
to enable them to encounter new innovations, and how they can be effectively inte-
grated in their mathematics lessons (Urbina & Poly, 2017; Ruthven, 2018). Studies 
focusing on mathematics classrooms point out the diversity of uses those teachers 
can create for technology (Goos, 2010; Trigueros & Lozano, 2012; Trigueros, 
Lozano and Sandoval, 2014; Urbina & Poly, 2017; Loong & Herbert, 2018) and the 
variety of possible interrelations between mathematical, pedagogical, and techno-
logical knowledge (e.g., Niess, 2005; Urbina & Poly, 2017).

Literature on mathematics teaching and learning with technology in elementary 
schools has increased in the past decade (e.g., Sinclair & Yerushalmy, 2016; Sinclair 
& Baccaglini-Frank, 2016; Spiteri & Chang-Rundgren, 2020). Most studies focus 
on students’ learning (e.g., Moyer-Packenham et al., 2018) and there is still a need 
for studies addressing its potential in everyday teaching (Drijvers et  al., 2018). 
Research results on elementary school teachers use of technology in their lessons 
concur that digital resources are not always used to promote deep mathematical 
thinking and that doing so requires specialised mathematics knowledge, alongside 
the selection and innovative uses of specific technologies (Goos, 2010). Some 
researchers point out that the rapid changes of platforms and the creation and dele-
tion of digital resources, together with the growing supply of interactive mobile 
technologies, increases the need for elementary school teachers to have clear selec-
tion criteria to enable them to choose appropriate technology to reach the program 
goals and foster students’ learning (Cuban, 2001; Pierce & Stacey, 2013; 
Larkin, 2015).

Research on the practices of successful mathematics teachers working in under-
served elementary school students in technology enriched classrooms has shown 
that relationships, verbal interactions and trust are central for students to attain self- 
esteem and mathematical achievement (Page, 2002). Other studies show that these 
students’ mathematical learning, improved engagement, self-efficacy, attitude 
toward school, and skill development benefit from interaction with technology par-
ticularly when teachers provide a supportive environment in which higher order 
thinking skills are developed, discovery is promoted and opportunities for interac-
tion among them are provided, (Zielezinski & Darling-Hammond, 2016). The study 
of the elementary school classroom conditions that influence teachers’ opportuni-
ties to interact both with students and with technology still needs attention, even 
more so in the case of teachers working in underserved schools. This study intends 
to make a contribution by addressing this research gap. In this chapter, we analyse 
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how aspects of elementary school teachers’ roles using digital resources make it 
possible to promote students’ mathematical activity. We focus on how the use they 
make of digital resources and their actions contribute to creating a culture in the 
classrooms that introduces students in socioeconomically disadvantaged contexts to 
important mathematical ideas.

3  Theoretical Framework

Enactivist theory developed by Maturana and Varela (1992) considers the body, 
mind and world as inseparable. It focuses on the importance of embodiment and 
action to cognition. Consequently, it takes into account how individuals change and 
make sense of new experiences and challenges during interactions between them-
selves and with their environment. Learning is considered as the production of 
meaning through interaction with the world and past personal experiences 
(Lozano, 2015).

Enactivism backs up our ideas about learning and acting in the classroom. It 
considers knowing as effective action, which refers to actions which allow an indi-
vidual to continue existing in a given context. To act effectively in a given environ-
ment means performing actions that are acceptable in that environment; in our 
perspective, effective actions mean that teachers and students behave in a way con-
sistent with interactions between them in a context where technology is used. 
Effective behavior includes immediate coping (Varela, 1999) which consists of act-
ing when a situation needs a reaction, in our case, the teacher acts even though he or 
she does not have time to think; these actions only come to mind when the person 
reflects about it later.

Enactivism proposes teaching as a collaborative process and considers learn-
ing as noticing particular features through individuals’ actions, thus any given 
learning situation must encompass the teacher, the student, the content and the 
context in order for interactions to take place (Davis, 1996). From an enactivist 
perspective, the use of technologies is part of human experiences, since they com-
prise human practices and their cultural experience (Davis et  al., 2000). When 
digital resources are used in the classroom, they become part of the environment 
as a tool which shapes teachers and student actions and promotes interaction 
among teachers, learners, and resources. The relations that emerge from these 
interactions are dynamic and complex. In an environment where digital resources 
are present, learning occurs through a dynamic interaction. The technology gen-
erates a context where actions can take place and a set of restrictions on possible 
actions. When technology is used in the classroom, teachers as learners, accord-
ing to their history, can modify their actions. Actions undertaken by teachers as 
learners define their different roles in the classroom and their use of the techno-
logical tools (Trigueros et  al., 2014) (Table  1). In our study, we look at these 
actions in detail to find out how the teachers’ actions throughout the lessons 
(involving their use of technology as described in Hughes (2005)) enable them to 
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Table 1 Aspects of the role of teachers who use technology

Role in terms of Description

Communication of 
mathematics

Technology might influence the teachers’ role regarding mathematics by 
providing complementary information which teachers and students can 
comment on and work with. Effective behaviors include several forms of 
interaction with the mathematical content included in the programs.

Interaction with 
students

The inclusion of technology can influence the way in which the teacher 
regulates interactions by presenting unexpected situations that might have 
not occurred without the use of particular programs. Effective behaviors 
might include students’ exploration, the use of the program and discussing 
the mathematics that arises while using technology.

Validation of 
mathematical 
knowledge

Technology may give feedback to students. Teachers might discuss 
answers with them before the program validates them or might allow 
students to use the program as a means for validating their answers. 
Teachers’ actions might include encouraging students to solve those 
problems, even when unexpected uses of technology appear.

The source of 
mathematical 
problems

Technological devices lead to mathematical problems that had not been 
addressed before and that might not be included in the lesson plan or in 
the curriculum. Effective actions might include addressing these problems, 
taking into account students’ needs.

Actions and 
autonomy of 
students

Actions on mathematical objects and tools can be carried out both by 
teachers and students. Technology may change the dynamics in the 
classroom. Teachers’ actions might include allowing the students to work 
with the program and the mathematical problems and to explore with it.

Trigueros et al. (2014, pp. 114–115)

develop rich environments that promote underserved students’ motivation and 
learning. We are aware that the different aspects of the teacher’s role overlap and 
cannot be clearly differentiated and we use this classification only for the purpose 
of data analysis.

From an enactivist perspective, by considering all of these aspects together, 
we can have a clearer picture of how teachers integrate technology in their math-
ematics lesson. These aspects also inform us about teachers’ work with groups 
of students who live in an unfavorable environment. Also, through teachers’ 
actions with technology, we can appreciate how and when they immediately 
cope with students’ needs to create rich opportunities for learning.

4  Research Questions

We are interested in gathering information to address the following questions:

• What aspects of the teachers’ role promote underserved students’ mathematical 
activity when digital resources are used in classrooms?
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• To what extent do aspects of the teachers’ role account for the emergence of 
specific mathematical activity, for example, visualisation, argumentation and the 
construction of relationships between concepts?

• How does the use of digital resources and the teacher’s actions contribute to 
creating a culture in the classrooms that introduces students in socioeconomi-
cally disadvantaged contexts to important mathematical ideas?

5  Methodology

Five underserved schools in Mexico City and in cities located in surrounding states 
participated in this study. Teachers were selected to take part according the follow-
ing criteria: they promoted students’ mathematical activity in their lessons; they had 
experience using digital resources in their mathematics class, and their actions con-
tributed to creating a culture of participation in the classrooms. All of the partici-
pants agreed to participate in the research through the National Pedagogical 
University research partnerships with those schools where our research was con-
ducted. Fifteen teachers, who used technology while teaching at least two lessons 
related to a specific mathematical topic, were observed and their lessons video 
recorded. We then reviewed and analysed all of the video recordings and considered 
different teaching experiences, personal history and, from our perspective, if teach-
ers created a rich environment for learning during their lessons.

We then selected as case studies two of those teachers (Carla and Yasmin1) who 
were additionally recognised by their peers or administrators as good teachers, 
who had different teaching experience with technology and who worked in schools 
with different marginalisation indices. We selected two lessons that addressed the 
same mathematical topic and where they also used digital resources, as represent-
ing their teaching behaviour and conducted a new more specific interview with 
each of them. The interviews aimed to gather further information about their 
teaching experience, their interest in the use of digital resources in their mathe-
matics lessons at underserved schools and the criteria they used to select and use 
these resources in their class plans. Carla used Cycle Track, an Enciclomedia 
interactive environment designed to teach proportionality in a movement related 
context that had been developed to be used by teachers on the interactive white-
board and one computer, Yasmin used Lego-Logo Digital Designer (LDD) soft-
ware to teach geometrical and spatial thinking using the 14 computers available in 
her classroom.

1 We use pseudonyms for both teachers and for all students.
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5.1  The Teachers, Students and Schools

Carla had 20  years of teaching experience in a suburban elementary school in 
Cuernavaca. She frequently used digital resources in her classes. She liked partici-
pating in training workshops; one of them on the use of “Enciclomedia’s resources” 
when this project started and others on the use of different programming software 
such as “GeoGebra” and “Scratch”. Over a period of 4 years, she had met infor-
mally and regularly with other teachers to discuss and share experiences on using 
digital resources in their classrooms. She was concerned with her students’ living 
conditions and tried to create motivating environments for them, to motivate their 
interest in attending school and participating in class. During the interview she said: 
“Since my first use of technologies in the classroom, I noticed children liked it. There 
are always some children that are not interested in school … Some of them have 
problems at home or like it better to be with friends on the streets… but when I use 
technology, they are more interested and involved, … I feel they can think differently 
and learn”. Carla taught a group of 33 fifth grade students (10–12 years old) who 
had some earlier experience with technology in previous school years.

Yasmin is a new teacher-researcher who had been teaching for 2 years in an urban 
elementary school in Mexico City. Her initial training was in mathematics teaching 
and it included the use of digital resources. She had been involved in mathematics 
education for 4 years and was interested in the design of activities to develop chil-
dren’s spatial reasoning abilities through the use of easily accessible resources. We 
selected her because she showed interest in learning from her experiences and wanted 
to use innovative projects directed to vulnerable populations that enable the integra-
tion of STEM disciplines. When we looked at her videos, we considered that she 
offered rich mathematics learning opportunities to her students while integrating 
digital resources in her classes. During the interview, Yasmin commented “digital 
technology enables students living in these contexts to have access to valuable math-
ematical ideas and to use them to do mathematics with representations that provide 
a different experience”. Yasmin taught a group of 28 3rd grade students who had little 
experience in using technology such as Microsoft Word and Paint softwares.

Both schools are free and public, they are located on the outskirts of each city 
and both teachers work in the afternoon shift (2 pm to 6:30 pm). The school where 
Carla works serves a population of 700 students distributed in two shifts in a mod-
erately marginalised neighborhood, while the school where Yasmin works serves a 
population of 1000 students also distributed in two shifts in a highly marginalised 
neighborhood.

5.2  Research Tools

In order to study teachers’ actions when investigating their role in the classrooms, 
we analysed classroom observation notes, video-recordings of teachers’ lessons and 
audio-recordings of the interviews. Observers took notes during each lesson and 
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they registered important events in terms of teachers and students’ actions and the 
use of technology (Hughes, 2005) during lessons. During the interviews, which 
were carried out as part of a larger project, teachers were asked about their back-
ground, their training and about how they worked with technology during their 
mathematics lessons. For this particular study attention was also paid to students’ 
behaviours, their use of language, and the relations between participants during the 
lessons.

Each researcher analysed the information obtained from different sources using 
both enactivist theory and the codes in Table 1. Then, we discussed our independent 
findings and negotiated until we reached consensus on our interpretations, to guar-
antee the analysis’ reliability.

6  Results

6.1  Carla’s Case

Carla selected the Cycle track program because she liked to teach the relation 
between physics and mathematics and, in her experience, it was appropriate to teach 
proportionality. Most teachers in this school interacted with students during lessons, 
however, as Carla explained “most of them focus on having children work on the 
textbook activities and verify if they are correct, and on explaining correct answers; 
some use technology, frequently Enciclomedia sometimes PowerPoint. I prefer to let 
students discuss and listen to their ideas...”. During the interview, she told us that 
she was kind but exigent with students but emphasised, from their first day, some 
behavior rules (respect, tolerance and participation) as “indispensable for learning”. 
She also described her school context:

conditions outside the school are rough, so the principal and all of us teachers try to create 
a different context inside the school where students learn to be responsible and tolerant, 
where all students are valued. This is how we help them not to drop out and to feel self- 
assured and value knowledge usefulness in their lives. In my case, I believe that students 
interactions and their being able to talk about their ideas knowing that they will be listened 
to is fundamental for developing self-confidence and thus their feeling that they can learn 
and begin to enjoy learning.

6.1.1  Proportionality and Movement with the Cycle Track Program

The Cycle track can be considered as an interactive tool that offers new infrastruc-
tures for teaching specific mathematical concepts (Hoyles, 2018). Its purpose is to 
introduce uniform movement as an example of a proportional relation. This pro-
gram includes three movement representations that can be presented simultane-
ously, by pairs or individually (see Fig. 1). It dynamically simulates the movement 
of cyclists going from home to school at three different constant speed. It can show 
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Fig. 1 The Cycle Track program

one or two cyclists moving simultaneously with different speeds on tracks that can 
be shaped in terms of their incline or by dividing them in different straight segments 
by touching the screen or electronic whiteboard (Trigueros et al., 2020).

6.1.2  Carla’s Case: First Session

Carla was working on proportionality and, as she was also interested in science, 
chose constant speed motion as an interesting example connected to students’ expe-
rience. She designed a two-session teaching plan where different possibilities 
offered by the resource were used.

Carla introduced students to proportionality during a previous lesson through 
team work on proportional and non-proportional examples using different represen-
tations, which she concluded by providing the definition. She used the Cycle track 
program in the subsequent two sessions.

During the first of these sessions, she asked students to discuss how they would 
describe a cyclist’s movement. Important ideas related to the description of move-
ment emerged and Carla listened to students’ ideas and arguments and interacted 
with them to validate their proposals. Carla selected an activity related to students’ 
experiences which is particularly important for underserved students. Through her 
actions the teacher motivated students’ participation and focused their attention on 
what she would later do with the technology.
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Fig. 2 Two representations of movement

Then, using the Cycle track program and the electronic whiteboard, she let them 
continue their discussion within this new context. As they had mentioned the rela-
tion between velocity and time, Carla showed the cyclist’s movement together with 
its table, and asked “What do you see?” (Fig. 2). Students discussed using argu-
ments based on their experience but when looking at the table they focused on it and 
assertions such as “As he said. He goes all the time with the same velocity … well, 
if you think that each time a minute passes, he moves the same stretch, always, that 
is it goes even” were proposed. Then Elena suggested. “Teacher, the table is like 
what we saw before… that about being proportional”. Carla asked the class what 
they thought and students discussed the relation between the table and the concept 
of proportionality.

Carla listened and let students communicate the mathematics. Although they had 
not been introduced to the study of motion before, they used their experience to 
identify and relate the variables involved: time, distance and velocity. She promoted 
students’ interactions and they were able not only to relate the two representations 
but also to recognise the relationship to proportionality.

Carla was the source of the mathematical problem but students communicated 
the mathematical ideas. They considered the variables involved and looked for a 
relation between them. Carla’s actions, showing the cyclist movement on the anima-
tion, asking appropriate questions, listening to students’ proposals, and letting them 
communicate the mathematics, promoted students’ interactions and the use of their 
own language; she used technology as amplifier to help students focus on the two 
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representations and the proportional relation. Carla thus created a rich environment 
where students’ contributions were valued, which is not generally the case in the 
living context of these students.

Carla posed effective questions at appropriate moments. She continued the dis-
cussion by asking: Can you say something about the  graph of the movement? Elena 
answered “It will be inclined, a line”, other students added “Yes, as the cyclist goes 
slowly, the velocity… the graph will grow slowly” or “if we use another bike, it will 
be more slanted. Let’s check it!”. Carla agreed and suggested to use two cyclists on 
the Cycle track together with their tables and graphs. Students exclaimed: “We were 
right!” and Carla asked “What does the slant of the line depend on?” Students 
replied “On the velocity!” She closed this episode by formalising the proportional 
relation regarding movement.

Carla’s actions created a rich environment where her students had autonomy to 
interact and offer interesting arguments, thus promoting learning. Students’ answers 
supported the adequateness of her actions combining the use of technology (Hughes, 
2005) and interaction with students to promote their reflection on the mathematics 
involved in the situation. Her effective actions involved insisting in students’ pre-
dicting and justifying their ideas. Then, using technology as a transformational tool 
(Ibid.), she helped students explore, explain, and validate their thoughts. Her deci-
sion to use two cyclists as a response to students’ proposals was not in her plan since 
“I decided that would help assess their arguments” (after class interview). Carla’s 
action to show three different representations of movement, using technology as 
transformation, promoted a rich environment for students’ reflection and argumen-
tation, thus motivating them and fostering their learning about movement and 
proportionality.

Throughout the session Carla adapted her role and the use of resources from 
being the source of mathematical problems and communication to promoting stu-
dents’ interaction and communication of mathematical ideas and giving them 
autonomy to pose mathematical problems She adapted aspects of her role and her 
use of technology from amplifier to transformation (Ibid.) to create a respectful 
environment where these students could feel safe to speak out and be listened and 
where they could be confident to pose questions and share their mathematical ideas.

6.1.3  Carla’s Case: Second Session

Carla showed students how the path could be changed on Cycle track. She selected 
a new path (Fig. 3) and asked: “How do you expect the velocity to be?” This dia-
logue followed:

S2: First, the velocity is small… then it will be larger.
Carla: Let’s see it with the table and graph.
E: …The two lines in the graph go up! One should go down.
J: Why? It is fine. He is always going to be farther and farther as the time passes… 

velocity changes, it is larger in the second part.

2 In the dialogue, the initials represent the different students involved.
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Fig. 3 A different path

L: Yes, but when he goes up his velocity should be less and less, not the same as it seems 
in the table, then it would grow.

S: I am not sure, it should go down, because the path goes down.
Carla: Let’s see it again but pay attention to the table this time.
M: […] the distance grows all the time, he is farther! The graph goes up.
Carla: What would a line going down in the graph mean?
M: He goes back to his house?

Carla’s actions involved the use of technology as amplifier and transformational 
tool and as the source of the problem to promote discussion to assess students’ 
understanding. She gave students the autonomy to predict and to argue their ideas. 
Her immediate coping strategies when faced with different and conflicting student 
opinions was apparent, which included adapting her role and her use of technology 
to direct the students’ attention to the information given in different representations 
and to let students compare their arguments. By opening a collaborative argumenta-
tion space, she promoted students’ interactions and fostered their noticing of the 
important relations between the representations and to “see” the difference between 
trajectory and mathematical representations of movement. She thus opened their 
possibility to learn. Then, new mathematics arose. Ismael said: “…the graph is… 
not proportional… the first little part is, but the other … it doesn’t start from zero” 
and Regina asked: “Why if he is going up, the velocity is the same… if I go up … 
velocity diminishes… but when I go down it should grow”. Other students agreed. 
Carla’s use of technology as amplifier helped a student to focus on the movement 
and its representations, technology became the source of the mathematical 
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problems when they confronted different representations of movement and their 
own experience. Carla’s role changed to cope with the situation, she communicated 
the mathematics. Her effective actions consisted in discussing with students the 
limitations of the technology used and referring to their experience to explain aver-
age velocity through an everyday example and as a way to simplify the problem.

Ismael insisted: “It is not proportional! … that graph does not start at zero”. 
Carla’s immediate coping strategy included an explanation of how the graph could 
represent two consecutive movements in a way that was convincing for the student: 
“If for the second movement you start counting the time from zero that graph would 
represent proportionality…. Here to describe the whole movement and compare …, 
the two graphs are together.” Ismael agreed.

Carla’s effective actions were focused on her students’ needs: Guiding their 
interactions and letting students listen to each other’s ideas. She then became the 
source of a new related mathematical problem by illustrating the distance-time vari-
ation for an accelerated movement by constructing, together with students, a table 
and a graph. Students visualised, discussed and reasoned on differences between 
proportional and non-proportional relations. Also, resorting to students’ everyday 
experience, she took responsibility for the communication of mathematics and 
explained the role of average velocity as a simplification of accelerated movement. 
Again, Carla’s actions and the dynamics of aspects of her role fostered students’ 
interactions and her willingness to listen to the students’ opinions. Students felt free 
to express their concerns even if they were incorrect. Through her creation of a 
respectful environment her actions promoted students’ trust in her, their own self- 
esteem and interactions, thus learning. Throughout this episode Carla’s varying 
roles and alternating use of technology and other resources created a culture in the 
classroom where interactions among participants fostered knowledge exchange.

Carla then proposed a team-game for the students. They had to draw a piece-wise 
motion graph for a cyclist that comprised three parts and challenge other teams to 
draw the cyclist’s trajectory. Students were given autonomy and became the source 
of new mathematical problems. Their actions involved discussing, justifying and 
arguing mathematical ideas. Carla invited them to use the technology to draw the 
proposed path and the corresponding distance-time graph to validate their mathe-
matical thinking. Carla thus created a motivating environment where students were 
involved in doing mathematics and in interacting with the technology. For example, 
a team proposed a graph. Adri described: “The cyclist moves quickly, this large dis-
tance, a short time. Then… it is horizontal… time passes but he is in the same 
place… maybe he stopped, and then continued slowly… the path would be some-
thing like this (Fig. 4)”.

Other students complained: “It is not right! Going up like that, he would go 
slowly!” or “He moves in the second part”. Adri corrected: “I was wrong. It does 
not stop; he moves very slowly and then a little quicker.” Adri introduced the idea of 
“not moving”, although it was not correct for this situation, she was able to describe 
it corresponding to a horizontal graph.
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Fig. 4 A team’s drawing

Carla’s actions created a rich context where students were immersed in mathe-
matical activity. When Adri seemed to confound the path with the distance-time 
graphs, other students were able to correct her mistake showing their understanding. 
Students were able to work on an inverse problem, that is, they reconstructed the 
path of the cyclist from the distance- time graph demonstrating they understood the 
relations between variables involved in movement. Students were able, in general, 
to draw the cyclist path on the interactive whiteboard, using technology as a trans-
formational tool. They sometimes struggled when they wanted to show a very steep 
path or a very sharp angle between two parts of a piece-wise function. The program 
does not allow a trajectory where the cyclist would stop for a while. When students 
had problems, Carla’s role changed from fostering students’ exploration and argu-
mentation to explaining the technological restrictions to the whole class. These 
restrictions made it possible for students to find new strategies to represent cyclists’ 
trajectories, and the corresponding position-time graph and/or tables that were not 
allowed by the resource.

To summarise, through the two sessions, Carla’s aspects of her roles and the 
use of technology created spaces for students’ interaction where their arguments 
and contributions were valued. Her actions demonstrated she looked for opportu-
nities for students to perceive similarities and differences in movements and 
noticing relations among the variables involved, thus promoting their learning. 
The exploration space she created when students could interact with the technol-
ogy, allowed students’ problem posing, communication and interaction. Students 
felt free to speak, to use mathematics to explain different problems and to validate 
their ideas: An encouraging environment which propitiated both learning and stu-
dents’ autonomy and confidence in their mathematical knowledge. Students gave 
evidence of being motivated and interested in participating. Again, Carla’s actions, 
the aspects of her roles and use of technology contributed to develop underserved 
students’ interest in learning and self-confidence in their possibility to work with 
and enjoy mathematics.
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6.2  Yasmin’s Case

6.2.1  Developing Spatial Reasoning and Collaborative Skills with Lego: 
2D–3D Dimensional Change

Yasmin selected an accessible technology for 8-year-old students which enabled 
them to identify relations between 2D and 3D representations by showing different 
perspectives together with the possibility to manipulate 3D objects.

Lego Digital Designer (LDD) is free software to explore 3D objects’ digital rep-
resentations. It provides a set of digital modular virtual blocks with different shapes, 
sizes and functions that can be selected from a list. Students can initiate different 
actions such as inserting, rotating, moving, attaching or detaching the virtual bricks. 
With LDD, students can experiment with different representations to analyse, 
design, build simple assemblies, or follow step-by-step instructions to construct 
objects. LDD was considered a tool that “offers connections between school math-
ematics and learners’ agendas and culture” (Hoyles, 2018, p. 3).

Yasmin previously designed constructions on LDD to be reproduced with Lego 
blocks by each student. She created an activity for two lessons where individual, 
team and whole group work was combined as the teams constructed a park contain-
ing all of the objects they had constructed.

In the previous session students had analysed 3D objects by looking at different 
views and the correspondence to their 2D representations. Yasmin organised the 
students into teams, and the children selected responsible peers for picking up and 
delivering materials for each lesson. The activity’s goal was the interpretation of 
LDD instructions to construct objects with Lego blocks. Students were motivated 
and interested to play with Lego blocks, which were not available at their homes. 
This geometrical activity promoted actions to visualise, to interpret the representa-
tions of a solid figure’s views and perspectives to support students’ spatial reason-
ing. Students were asked to predict the result of rotations or other movements 
conducted using either the Lego or the virtual blocks before moving them. These 
activities developed both students’ mathematical thinking and their collaborative 
work skills.

Due to the number of available computers, the group was divided into two sub-
groups. During the first lesson, one group worked with Lego blocks (Fig. 5) to cre-
ate castles for the park while the other used them individually to assemble objects 
shown on LDD. For the second lesson, the subgroups interchanged activities. 
Students had not used this software before, so they performed actions to get 
acquainted with rotation, move forward and backward arrows for each construction 
move. The use of LDD changed the lesson dynamics by promoting students’ auton-
omy to follow step by step instructions in constructing a given object and validating 
their results.

While using LDD to assemble their objects, students worked at their own pace 
and self-assessed their results. Yasmin’s actions promoted the articulation between 
the physical and virtual Lego blocks by focusing students’ attention on the figure’s 
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Fig. 5 Classroom’s activities

Fig. 6 Superposition of constructions and comparison using rotation and translation

characteristics instead of their size or colour. She encouraged comparison and visu-
alisation of forms by using different views of the object to be constructed, particu-
larly rotation which was a useful approach for a successful outcome. Through her 
actions, Yasmin strengthened and made connections between students’ geometric 
knowledge on similarity and scaling, geometric transformations, relations between 
representations (2D-3D) and perspective views. Her actions included allowing the 
students to work and explore with the program alongside solving mathematical 
problems. Yasmin used the technology as an amplifier and as a transformational tool 
to enable students to assemble and disassemble a construction and to use the avail-
able tools, such as rotation and interpretation of representations.

The LDD task design favored students’ autonomy to validate their construction. 
They compared actions shown on LDD to those made on Lego blocks, since LDD 
does not give feedback about the correctness of their process. Nevertheless, stu-
dents’ actions, such as attaching or detaching blocks, opened possibilities to con-
trast their results and helped students explore through interactive processes; 
something impossible to achieve with instructions on paper and pencil. Yasmin’s 
roles during the lesson promoted students’ autonomy to take decisions while con-
structing and correcting their mistakes. She created an environment where commu-
nication with her and other students to share procedures, pose questions and ask for 
help together with the construction of respectful and trust relations between stu-
dents and with her were fostered and could be observed through the verbal interac-
tions and collaborative work in teams.
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Students’ strategies to validate their constructions were to superimpose their 
construction onto LDD (Fig. 6) and to change and check if different views coin-
cided. When they struggled, Yasmin invited them to focus on similarities and differ-
ences or asked them to reconstruct their process “in their mind”. Her teacher’s role 
was questioning: “how did you do it?”, “is this block the same as that you used?” or 
“can you explore again?” For example, when discussing Samuel’s mistake:

Y. Which block? Where should it go?
S. This. [Showing a new block and changing the construction].
Y. Isn’t a block missing?
S. That’s it!
Y. Are you sure? Check it. I think there is something missing. Is something in a different 

place? You can compare if you want (Fig. 6b).

Samuel compared and used instructions on LDD until he could solve the problem 
by detaching and attaching four blocks and exclaimed: “I did it”. In this process, 
visualisation and interpretation of 2D and 3D representations actions were 
fundamental.

The use of arrows and exploring each step at a time became verification tools for 
students. As Hoyles (2018) pointed out, the interplay between the dynamic and the 
static was a key factor as students could pause, reflect, go back and test through 
feedback from what was shown on the screen.

When students faced difficulties relating to their interpretation of symmetry 
(Fig. 6b, c) Yasmin alerted them: “check the duck’s legs”, “the plane wings’ direc-
tions are different than those in the construction”, “look! count how many studs on 
LDD are free”. During the interview Yasmin confirmed that she promoted children 
exploration to help them identify their mistakes and rely on their capability to solve 
them. Yasmin’ actions included allowing students autonomy while working with the 
geometrical problems. She considered this strategy “promoted students’ confidence 
to compare their actions with others and to participate in classroom activities”. 
Through her and her students’ actions it could be observed that Yasmin valued the 
communication of mathematical ideas and students considered their opinions as 
valuable independently of their being or not correct. Students felt confident to share 
their difficulties and to show their accomplishments.

Fig. 7 Pedro’s mistake
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When Pedro had troubles related to the observer’s position and symmetry, he 
shared with Yasmin the actions he was planning to do, and while doing this he 
reflected on the correct actions required (Fig. 7). This was an achievement for him. 
Pedro, as common to most of these students, did not participate much at the begin-
ning of this experience. Initially, he did not recognise his mistakes and expected the 
teacher to tell him what to do, or if what he was doing was fine; now he demon-
strated more confidence in his own ideas:

Y. What was your mistake?
P. This [showing the dogs’ back legs]. It was like this, and it should be backwards. And 

these little blocks [referring to a plate de 2 × 3] had only one stud line outside, while there 
should be two lines.

This episode shows the importance of exploration with digital resources. Pedro 
identified the changes needed and explained them using geometrical terms: “this 
was backwards” (symmetrical). Actions on digital resources together with manipu-
lation of blocks, helped students to develop abilities to construct, describe, and 
explain the resources’ effects.

Unexpectedly, Ana and Juan found out they were missing blocks. They told 
Yasmin and she took advantage of this situation by asking them to find the missing 
block from those on a table. Students compared the blocks. Ana selected two similar 
blocks. Yasmin invited her to compare them with the LDD’s construction.

Y. What does the block look like?
A. This one. Because this one here [she had it in her hand] doesn’t have this [pointing 

to the screen].
Y. Just for that?
A. No. Because this is larger [referring to its thickness].

Ana identified the missing block and finished her construction, but she placed it in 
the opposite position (Fig. 6c). Yasmin said “Look closely. Turn it around [referring 
to rotating it to see other views]. Look at it from above, it looks like an L. What can 
you do for it to look like this? [referring to the LDD construction].” Ana noticed that 
her L was upside down (symmetrical), explored the digital construction and recon-
structed it step-by-step with her blocks. At each step, Yasmin asked her reflection 
questions: “which one is below here? which one is next? how do you know? Let’s 
turn it a little bit, look how it should be”.

Through her interaction, Yasmin promoted Ana’s reflection on the process to be 
followed and helped her compare each result to its virtual representation. In this 
interaction, Yasmin used spatial location vocabulary, since, as she informed us dur-
ing the interview, “it is necessary in communication activities about location and in 
relation to blocks to use relations such as being on or, under, how many studs are 
left in a plate, to the right of, rotate it, observe the inferior view”. Asking “how you 
identified which blocks should go there [indicating with her finger the place]? how 
did you move the block so that it is in the correct position?” promoted students’ 
reflection and consciousness of their actions. It was observed how Yasmin effec-
tively responded to students’ needs and created opportunities to learn geometric 
transformations. Several students demonstrated learning as they compared the con-
structed objects to those on LDD by discriminating symmetrical positions (Fig. 8a), 
the blocks’ form, counting studs, and relations between them.
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Fig. 8 (a) Identifying symmetrical figures, (b) Final construction

All students were able to replicate the LDD constructions and all teams assem-
bled their parks (Fig. 8b). Yasmin created a motivating environment where students 
could imagine and visualise the forms, they needed to construct so that scale and 
proportion among components were maintained. While doing so, students learned 
to work collaboratively and to communicate their understanding and conceptualisa-
tion of spaces, objects and descriptions. LDD’s use enhanced students’ learning 
experience by providing meaningful hands-on activities, developing their construc-
tion description and explaining the effects of moving blocks around abilities to 
communicate mathematical ideas.

The teacher’s effective actions promoted the construction of rich learning envi-
ronments which fostered mathematics learning. Yasmin made appropriate decisions 
throughout the lesson adapting to the students’ prior needs. She attentively listened 
and responded to students while they worked independently.

In the interview, she told us that students had difficulties to work in teams and 
they had little tolerance to work with disabled students, or with those who were not 
their friends. Students seldomly participated in class because of lack of self- 
confidence and were not responsible in using and taking care of class materials. 
Yasmin worked with them to create a new classroom culture based on respect and 
recognition of other’s opinions where teamwork and individual work were both 
valued. She considered it a way to “offer opportunities to develop social and emo-
tional abilities so children learn and counteract the adverse environment in which 
they live”.

7  Discussion

On Aspects of the Role of the Teachers
During both teachers’ lessons we observed that they adapted aspects of their role, 
which involved their use of technology and taking account of the mathematical and 
social needs of their students. They both continuously invited students to predict the 
results of their actions before using the technology to validate their proposals. Carla 
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created a class atmosphere where students were immersed in mathematical situa-
tions related to movement. She stimulated students’ participation and focus on the 
use of different representations through their analysis. She insisted on students’ 
engagement with data, by seeking their involvement, their autonomy, the communi-
cation of mathematical ideas and, through interactions with the technology, she 
encouraged teamwork and students’ interest in working with demanding mathemat-
ical situations to validate their assumptions. In the environment created by Carla’s 
actions, the students’ self- confidence and learning were stimulated. In Yasmin’s 
case, working with real objects together with one-to-one technology enabled her to 
create an environment where autonomy, participation and engagement were 
favored. The problem, and the activities she created, stimulated students’ actions 
that would not be possible without the technology and the blocks. For instance, her 
actions focused students’ attention on important transformations, such as rotation, 
to obtain hidden information about the object, but the students had to explore further 
using the technology to accomplish their goal. Throughout the sessions, she stimu-
lated students’ interactions both with the technology and with each other. As a 
result, they became more open, showed trust in their teacher, were able to commu-
nicate their difficulties and their progress with both Yasmin and their peers.

In both cases the teachers’ effective actions created rich environments where 
students felt free to explore, interact and discover higher order mathematical ideas, 
which promoted their learning. The students’ consistent actions throughout the les-
sons contributed not only to their motivation and self-esteem, but to their develop-
ment of trust in adults, teamwork abilities, responsibility, and mathematical 
communication skills. Moreover, Carla and Yasmin’s effective actions also created 
supportive environments for their underserved students through practices that can 
be considered central for their mathematics learning and the development of higher 
order thinking skills (Page, 2002; Zielezinski & Darling-Hammond, 2016).

7.1  On the Emergence of Mathematical Activity

The digital technologies used by the teachers in this experience afforded different 
opportunities to use their knowledge and experience to create rich learning environ-
ments (Hoyles, 2018; Ruthven, 2018).

Both teachers’ actions introduced their students to complex and age-relevant 
mathematical ideas: For Yasmin, spatial geometry, projection and transformations 
and for Carla, proportionality, the study of movement and the use of different repre-
sentations (Noss and Hoyles, 1996). They used each technology’s affordances by 
designing tasks that gave students opportunities to act and reflect upon their actions 
to make sense of the related variables—concerning the movements, in Carla’s case, 
or in the search of appropriate transformations to assemble objects, in Yasmin’s 
case. Even though both teachers’ students were introduced to different mathemati-
cal topics and technological tools, Carla and Yasmin continuously used prediction 
to foster students’ use of their everyday experiences and their imaginations to pro-
mote the emergence of new mathematical ideas.
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It was observed that Carla created a space where technology was used as 
an  amplifying or transformational tool such that students could use and contrast 
their experience through visualisation and reasoning about movement. The Cycle 
track technology offers a range of different motion possibilities that she used to 
offer her students opportunities to make sense and reason about how variables (and 
their relation) change in different situations and what remains constant.

Yasmin’s students showed that they were able to use technology as an amplifier 
or transformer, as needed, to accomplish their goal. They also developed appropri-
ate vocabulary to communicate position and orientation spatial relations between 
Lego blocks and LDD. Yasmin’s effective actions helped students to consolidate the 
meaning of those terms needed to describe spatial relations, and to incorporate them 
in some of their procedures’ descriptions or in their communication with others. In 
particular, assembling Lego blocks by following bidimensional representations 
helped students to “see” how to assemble the blocks and how to move forward or 
backwards and rotate their construction. These actions were relevant in recognising 
different views of the same object and in using them to assemble their 3D object, 
thus progressing towards identification of hidden elements in a construction.

These two teachers promoted a justification and argumentation space in their 
lessons where students’ suggestions of new mathematical ideas were valued 
(Lerman, 2000; Civil, 2006). They always listened to their students when the stu-
dents were working and guided them by using age-appropriate questioning. Together 
with the technology Yasmin and Carla promoted a respectful atmosphere (Civil & 
Planas, 2004) where identification of possible misunderstandings was possible. 
They also encouraged refutations to develop students’ awareness of the validity of 
their arguments. By encouraging students’ argumentation and discussion both 
teachers promoted the development of students’ confidence in themselves, and in 
their mathematical thinking, which is uncommon in the contexts where they live. 
Carla, for example, fostered the emergence of the notion of the slope of the line 
while discussing the graphical representation of different movements. Yasmin’ 
actions to insist on students responding to questions such as “why?” or “what do you 
need to do?” promoted students’ use of rotations and of different views with the 
technology hence developing awareness of the relation between objects on the 
screen and those in their hands. Both teachers’ effective actions contributed to 
developing an enjoyable environment and a rich mathematical context where, 
according to enactivism, they and students can learn.

7.2  Creation of a Classroom Culture That Introduces Students 
in Socio-Economically Disadvantaged Context 
to Important Mathematical Ideas

The Cycle track technology is a unique simulator in that it offers students the pos-
sibility to explore the variables involved in constant speed movement. Students in 
this school do not have technology at home and it is difficult for them to pay to play 
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digital games in commercial establishments. Carla’s selection of the Cycle track 
task, the dynamics of her role and her own, and students’ uses of technology pro-
vided important experiences that are uncommon in marginal contexts. The students 
were able to notice that when the cyclist path was changed, the distance-time graph 
and table simultaneously changed. They compared two simultaneous movements 
through different paths while contrasting them with their corresponding tabular and 
graphical representations. The technology–teacher–students interaction patterns 
opened interesting opportunities for students to engage with data and different rep-
resentations. As a result, the students could abstract mathematical relationships by 
perceiving what remained constant and what changed, while differentiating move-
ment representations and path, which is difficult even for more advanced students.

For Yasmin’s students, the LDD tool opened the possibility to interact dynami-
cally with the technology in order to build a specific three-dimensional object. By 
using it, students had the opportunity to familiarise themselves with symbolic refer-
ents that helped them to move, and particularly to rotate virtual objects to see them 
from different perspectives and thus to be able to construct a real object correctly, 
step by step. In their lives, these students neither had access to Lego blocks nor to 
technology. During the experience, they discovered important 3D geometric proper-
ties of objects and were able to interpret projections, symmetry and transformations 
while enjoying playing with Lego blocks.

The two teachers in this study had different life histories and experiences, how-
ever, our analysis of their role while teaching with technology shows how they share 
important traits in terms of the classroom culture they created through their lessons.

Carla’s history, as evidenced by her interview, showed her to be a diligent and 
responsible teacher. She cared about her students and about her own preparation, as 
shown by her continuous participation in courses and collaboration with other 
teachers to share ideas about the use of Enciclomedia resources to support students’ 
learning. Despite the poor technological conditions at the school where she works, 
Carla was able to maximise its impacts on the students’ learning outcomes through 
her experience, her knowledge about the context where the school is located, her 
students’ needs and the school administrators’ support.

Yasmin was a young teacher, with less teaching experience but was interested to 
learn through her involvement in research on the use of technology in mathematics 
education. She was aware of the possibilities offered by different digital resources 
and was capable of using LDD to design tasks for all her students to work on the 
Lego project. She knew that her students did not have access to construction toys or 
technology at home so she gave them an opportunity to work with both during the 
class through an activity she knew they would enjoy.

Both teachers promoted student involvement by flexibly adapting their roles to 
students’ needs and by designing enriching and motivating activities to enable them 
to learn. The teachers’ actions created opportunities for their students to share their 
experiences. They were given autonomy throughout the session (Jorgensen et al., 
2014), they were able to share their mathematical ideas, to feel free to ask questions 
and to interact respectfully with teachers and other students and to use interactive 
technology designed for them to propose, use, validate and value mathematics. 
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Yasmin did it through the construction of the park. Her students were responsible 
for the construction blocks and other materials they used in their work; they helped 
other students when needed; negotiated within their teams and with the whole group 
to design a park where all the students’ constructions could be compatible in terms 
of size and location. Carla gave students multiple opportunities to reflect on the rela-
tions about different representations with and without technology; she gave students 
opportunities to interact directly with the Cycle track technology and used games to 
maintain students’ interest on the discussed ideas, to assess their mathematical 
knowledge and to friendly discuss their difficulties.

Through these multiple opportunities, these teachers created a class culture 
where students living in unfavorable conditions were involved and felt confident in 
their own mathematical learning (Schmalenbach, 2017; Treviño Villarreal et  al., 
2019). Carla and Yasmin’s effective actions with the technology created a rich class-
room culture where students thought and talked about important mathematical top-
ics and became aware of their capability to think mathematically and to enjoy their 
activity and thus learn (Civil & Planas, 2004).

Both teachers demonstrated high expectations on their students’ learning capa-
bilities. They used stimulating technology to help children in vulnerable conditions 
to learn demanding mathematical ideas. Through the use of the interactive technol-
ogy, and its immediate feedback and the possibility for students to select (and con-
trast the results) of interesting scenarios, students who live in contexts where 
expectations of them are low, had opportunities to engage with data, compare results 
obtained and abstract mathematical concepts. Such opportunities could be invalu-
able to inform their decisions to remain in school, and for their future (Boaler & 
Staples, 2008). The teachers also demonstrated that the opportunity to use the tech-
nology to do mathematics can stimulate students’ self-esteem together with their 
interaction and communication skills (Sacristán, 2017).

Although it might be perceived that all the above-mentioned features are common 
to many other classes, and that results obtained can also be achieved in class contexts 
where technology is not available, this may not be the case. The use of technology by 
these teachers played a particularly important role for students living in unfavorable 
conditions who, in most cases, are limited to work on lower demand and unmotivating 
exercises. For these students, access to technology as an learning tool that can have 
uses that go beyond communication or entertainment, is in itself an advantage. 
Moreover, the use of technology in the studied cases made it possible for students to 
value themselves, value mathematics and develop specific competences such as 
engagement with data, abstraction and problem-solving strategies that can help them 
revalue the role of school and can play an important role in their future.

8  Conclusions

This chapter’s contribution is its analysis of how elementary school teachers who 
teach mathematics using technology in the context of underserved elementary 
schools, a topic that has not received much attention from research in mathematics 
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education. The findings provide insight into how these teachers can help students, 
who normally feel undervalued, to approach mathematical thinking by taking 
advantage of available technological resources in participatory and motivating 
ways. Framed by an enactivist approach, the teachers’ lessons were examined to 
characterise their actions in terms of the development of environments promoting 
both students’ learning.

Both teachers designed activities that in spite of limited technology propitiated a 
balanced development of different forms of thought. Both were able to create a 
space where students felt free to express their ideas and to actively participate, thus 
producing contexts rich in constructive relationships (Goos, 2010). The use of 
games in both classrooms contributed to students’ motivation and all of them 
enjoyed doing mathematics (Lerman, 2000; Civil, 2006).

Some specific aspects of technology use by the studied teachers played an impor-
tant role in creating rich environments that fostered the emergence of positive 
behaviors and interesting ideas for these underserved students. The dynamics 
expected by these students in a mathematics classroom were completely changed 
due to the amount of autonomy they were given. They profited from the possibility 
to explore different scenarios with the technology, and through interaction, the pos-
sibility it offered for them to pose mathematical problems independently. This 
developed their confidence to work actively with mathematics, have their own 
mathematical ideas, and to openly communicate with the teacher and other students 
while using the technology. The teachers’ encouragements supported the students to 
seek validation of their mathematical ideas, to solve the original and newly arisen 
problems and by fostering their self- confidence. The teachers’ actions fostered the 
emergence of key mathematical ideas involved the use of prediction of results at 
different moments in the activities; collaborative and respectful discussion of stu-
dents’ ideas; justification and argumentation of students’ proposals and students’ 
possibility to use the technology to explore the mathematics involved in the pro-
posed tasks or to validate their own conceptions. All these actions promoted student 
autonomy and contributed towards the creation of a learning environment in which 
respectful relations and communication were possible (Boaler & Staples, 2008), 
and students’ opinions were valued both by teachers and their peers (Planas & Civil, 
2008). In other words, both teachers fostered conditions considered crucial for 
impactful disadvantaged students’ mathematics learning.

Students in both groups showed good attitudes towards mathematics learning 
through the use of the selected technological resources, their teachers’ collaborative 
approach to mathematics teaching together with institutional conditions supporting 
a stable environment. As underlined by Schmalenbach (2017) and Treviño Villarreal 
et  al. (2019) these conditions are factors contributing to retaining disadvantaged 
students at school and in overturning their generally poor performance.

This study also shows the importance of teachers’ knowledge and abilities to 
adapt to their students’ particular circumstances. Their history indicates how the 
positive impacts of working collaboratively with a support group of teachers or 
researchers to discuss their experiences when using technology in these school con-
ditions played an important role in enriching their classroom practices.
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The case studies reported in this study provide important insights for the design 
of tasks that might be included in pre- or in-service teacher education programs, 
particularly those for teachers who serve in schools in low socioeconomic neighbor-
hoods. For example, during seminars promoting reflection on actions, which can 
create conditions fostering students’ learning and workshops to discuss the learning 
results of collaborative work and the development of imaginative ways to use exist-
ing technological resources to promote the emergence of key mathematical ideas in 
their classrooms. Such initiatives can have a major impact on teachers. They can 
discover that students who face difficult conditions in their daily life can learn math-
ematics through enriching experiences that may help them change their future 
through the appreciation of powerful mathematical knowledge.
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Teachers’ Curriculum Scripts 
for Geometric Similarity with Dynamic 
Mathematical Technology
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Abstract We report part of a larger research study that explores secondary teach-
ers’ integration of dynamic mathematical technology (DMT) to their classroom 
practice with a particular focus on the mathematical domain of geometric similarity 
(GS). The study adopted a multiple case study approach and was situated in an 
English lower secondary school setting. The participants were three teachers with 
different levels of experience and expertise both in teaching and in using digital 
technology. Data collection involved video-recorded classroom observations, audio- 
recorded post-observation teacher interviews, and teachers’ resources and students’ 
work. The Structuring Features of Classroom Practice (SFCP) framework guided 
the data collection and analysis. The findings presented in this chapter focus 
 specifically on the SFCP construct of ‘curriculum script’ and revealed salient differ-
ences between the teachers’ practices that concern several key characteristics of 
their curriculum scripts for GS with DMT. The contributions of this paper are two-
fold: (1) bringing together the research on GS and the SFCP framework to specify 
a fine- grained mathematics-specific version of curriculum script for GS with DMT, 
and (2) showing the value of this fine-grained framework for characterising features 
of teachers’ classroom use of DMT for teaching GS.
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1  Introduction

Since the early 2000s, researchers have sought to understand how teachers can fully 
exploit the potential of dynamic mathematical technologies (DMTs), by focussing 
their research lenses on classroom practice incorporating DMT(s) (e.g., Bozkurt & 
Ruthven, 2017; Monaghan, 2004; Ruthven et  al., 2008; Vahey et  al., 2020). 
Researchers have aimed to characterise and develop an improved, holistic under-
standing of the features of classroom practice with DMTs (Ball & Stacey, 2019; 
Trgalová et al., 2018). There is a motivational assumption that the development of 
such characteristics, and the underlying mechanisms, promotes the complex pro-
cess of teachers’ technology integration in ways that might lead to improvements in 
students’ learning (Clark-Wilson et al., 2014).

Further research is needed to fully address the complexities of teachers’ integra-
tion of DMTs into the teaching and learning of mathematics in the classroom 
(Clark-Wilson et al., 2020; Drijvers, 2019). Specifically, researchers have argued 
that there is a need for systematic case studies guided by different theoretical lenses 
(Goos, 2014; Ruthven, 2014; Trgalová et al., 2018).

Moreover, research into DMT-enriched practice has drawn attention to the 
need to conduct studies within specific mathematical domains (e.g., Vahey et al., 
2020). Geometric similarity (GS) is one such domain: an investigation into prac-
tices of teachers using DMTs for the teaching of GS is important both in terms of 
the significance of GS for school mathematics and the difficulties that it presents 
to students (Denton, 2017; Edwards & Cox, 2011; Lamon, 2008; Noss & Hoyles, 
1996). This is because the dynamically linked multi-representational potential of 
such technologies offers opportunities (e.g., dragging, dynamic measuring, ani-
mation) for students to explore this topic in more tangible ways (Adelabu et al., 
2019; Denton, 2017; Noss & Hoyles, 1996). Students’ engagement with DMTs 
might promote their understanding of both  the underlying concepts and the 
embedded variant and invariant relationships. However, to the best of our knowl-
edge, there is no research investigating deeply how teachers use DMTs in their 
practice to teach about GS.1

The research reported in this chapter forms part of a larger study that aimed to 
address this gap. Guided by the Structuring Features of Classroom Practice 
(SFCP) framework (Ruthven, 2009), the larger study aimed to investigate teach-
ers’ practices as they used a particular DMT, the Cornerstone Maths (CM) soft-
ware, to teach GS to lower secondary-aged learners (13–14 years old) (Simsek, 
2021). This chapter focuses on one of the five features of the SFCP framework, 
‘curriculum script’ (which we describe in more detail in the section that follows) 

1 One exception is Clark-Wilson and Hoyles’s (2017) research. However, their research did not 
focus specifically on GS, hence their data provides useful but limited insights.

A. Simsek et al.



265

as our analysis suggests this construct is more closely aligned with both mathe-
matical and technological aspects of our study. We address the following research 
questions:

What differences can be identified in the characteristics of secondary teachers’ curriculum 
scripts when they use DMT in the classroom to promote students’ understanding of GS?
What effect might these differences have on the ways in which teachers enact their curricu-
lum scripts when using DMT in the classroom to promote students’ understanding of GS?

In the following sections, we argue for the need to specify the SFCP framework for 
mathematics and then describe our operationalisation of curriculum script as a con-
struct to deeply explore the teaching of GS with DMT.

2  Specifying the SFCP Framework for Mathematics: 
The Case of GS

The SFCP framework was chosen for this research because of its systematic and 
holistic approach to understanding the complex and dynamic nature of DMT- 
enriched practices (Bozkurt & Ruthven, 2017; Ruthven, 2009). With the specific 
issue of technology integration in mind, Ruthven (2009) identified the features 
of classroom practice based on the previous research into classroom organisa-
tion and interaction along with teacher professional knowledge (e.g., Anderson, 
1981; Burns & Anderson, 1987; Cohen et  al., 2002; Putnam, 1987; Rivlin & 
Weinstein, 1984). The resulting five features of classroom practice are curricu-
lum script, resource system, activity structure, working environment, and time 
economy. We first define the focal construct of curriculum script and then briefly 
outline how these five features pertain to the integration of new technologies in 
the classroom.

The concept of curriculum script, in the psychological sense, refers to an event- 
structured organisation of knowledge incorporating potential emergent issues and 
alternative courses of action that establishes a loosely (but well-defined) ordered 
model of relevant goals, resources, and actions for teaching a topic (Leinhardt et al., 
1991; Ruthven, 2009). When teachers implement new technologies in their class-
room practices, they need to develop and/or modify their curriculum script for 
teaching a particular mathematical domain. This script informs the ways in which 
teachers originate the overall structure for the lesson agenda and enact it in a flexible 
and responsive way. Likewise, the exploitation of new technologies, together with 
the tools and resources already in use, entails that teachers establish a coherent 
resource system and develop appropriate pedagogical approaches to use such a sys-
tem in a complementary and coordinated way. Teachers also need to make adapta-
tions to the settled patterns of their activity structures so that they can create new 
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classroom routines to encourage interaction between themselves, students, and 
technologies during the different phases of a lesson. Moreover, the incorporation of 
new technologies makes several demands on teachers in their working environment 
of lessons depending on their teaching and pedagogical goals, involving change of 
room location or physical layout in addition to change in classroom organisation. 
Finally, the use of new technologies might have an impact on the time economy of 
the classroom, inviting teachers to reconsider how to manage the use of allocated 
lesson time efficiently and economically so that they can maximise students’ learn-
ing time with technologies.

It is important to note that this framework is not originally specific to mathe-
matics nor in particular to the concept of GS. On its own, it would not provide the 
basis for a sufficiently fine-grained analysis to gain a more holistic understanding 
of the research phenomenon under scrutiny. Thus, it seemed essential to draw on 
ideas from research on GS (e.g., Chazan, 1988; Clark-Wilson & Hoyles, 2017; De 
Bock et al., 2002; Denton, 2017; Edwards & Cox, 2011; Noss & Hoyles, 1996; 
Seago et al., 2014; Son, 2013) to specify the SFCP framework by building a theo-
retical model more appropriate for the context of classroom teaching of GS 
with DMT.

In the next sub-section, we present our operationalisation of curriculum script 
for teaching GS with DMT (see Table  1). A full description of the theoretical 
model, operationalising all five components of the framework, is available in 
Simsek (2021).

Table 1 A theoretical model for operationalising the ‘curriculum script’ construct of the 
Structuring Features of Classroom Practice (SFCP) framework for teaching geometric similarity 
(GS) with dynamic mathematical technology (DMT) in the classroom

Operational definitions of the accompanying 
professional knowledge Exemplification

(C1) Setting and specifying teaching goals 
for GS and supporting students to achieve 
these goals by exploiting the affordances of 
DMT

The teacher identifies the variant and invariant 
properties of mathematically similar shapes by 
making use of the dynamic scale factor slider, 
angle slider, and the ratio checker in DMT, such 
as:
   for a set of mathematically similar shapes, 

the overall appearance of shapes and their 
corresponding angles are invariant;

   for mathematically similar shapes, while the 
between ratios of corresponding sides are 
variant, the within ratios of corresponding 
sides are invariant

(continued)
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Table 1 (continued)

Operational definitions of the accompanying 
professional knowledge Exemplification

(C2) Using the full range of vocabulary 
necessary to connect the mathematical and 
technological aspects of DMT-enriched tasks 
in relation to GS and promoting students to 
make use of precise mathematical and 
technological language to support their oral 
and written explanations

By using the technological word ‘scale factor 
slider’ and the mathematical words 
‘corresponding sides’ and ‘corresponding 
angles’, the teacher encourages students to 
explore and explain that when moving the scale 
factor slider, for three or more mathematically 
similar shapes, while the corresponding angles 
are staying the same, the scale factor and the 
ratios of corresponding sides vary together. The 
teacher also pays attention to how precisely 
students are able to use the words ‘scale factor 
slider’, ‘corresponding sides’ and ‘corresponding 
angles’ in their explanations and justifications

(C3) Focusing more on the mathematical 
aspects of tasks rather than the technical 
aspects, which results in making the 
mathematics that underpins each task 
explicit to students

The teacher focuses students’ attention to the 
variant and invariant properties of mathematically 
similar shapes when moving the scale factor 
slider in DMT rather than predominantly to the 
function of the scale factor slider with no or little 
reference to the underlying mathematics

(C4) Developing efficient questions (along 
with follow-up questions) and posing them 
to the class during the different phases of the 
lesson, which may be connected with the 
mathematical and technological aspects of 
tasks and implementing ‘think-pair-share’ 
pedagogic routine into the lesson to 
encourage students to think about the 
questions posed and articulate their 
associated thoughts with justifications

The teacher develops and poses questions to the 
class during whole-class discussion involving 
DMT, such as “When playing the animation in 
DMT, how do the values in the two statements in 
the ratio checker change dynamically and what 
do such changes in the values tell us about within 
ratios across mathematically similar shapes?”. 
The teacher then invites students to think and 
make conjectures in their pairs and then to share 
their conjectures with the class

(C5) Anticipating students’ likely 
misconceptions about GS when planning 
lessons and probing for additional 
misconceptions while teaching in the 
DMT-enriched class and then identifying 
ways involving DMT to help students to 
confront, reflect upon and therefore address 
their misconceptions

The teacher anticipates the most common 
misconceptions about GS such as that adding the 
same length measure to the sides of a geometric 
figure (except for rhombus, square) always 
results in a mathematically similar figure. The 
teacher assists students to confront, reflect upon 
and therefore address this misconception by 
enabling them to increase the sides of a 
geometric figure by a certain amount using the 
length sliders in the dynamic environment, and 
then to observe and explore visually and 
numerically if the obtained figure is 
mathematically similar to the original
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2.1  Operationalising Curriculum Script in the Context  
of GS with DMT

A curriculum script includes: the mathematical ideas that teachers aim to develop 
through DMT; the mathematical and technological vocabularies that they seek to 
highlight; the questions referencing DMT that they intend to pose; and the miscon-
ceptions that they want students to confront and reflect upon through DMT (Bozkurt 
& Ruthven, 2017; Ruthven, 2009, 2014; Simsek, 2021). In the context of our 
research, teachers might be expected to set the appropriate teaching goals for teach-
ing GS and to exploit the DMT to achieve these goals. They might, for example, set 
a teaching goal that concerns exploring the variant and invariant properties of math-
ematically similar shapes (e.g., angle and length properties) through the DMT 
(Clark-Wilson & Hoyles, 2017; Edwards & Cox, 2011). When developing a cur-
riculum script, teachers might also be expected to identify a range of vocabulary to 
use in the lesson to connect the mathematical and technological aspects of tasks. For 
example, teachers might aim to use explicitly the words ‘scale factor slider’, ‘cor-
responding sides’, ‘corresponding angles’ while moving the scale factor slider to 
draw students’ attention to the fact that for mathematically similar shapes, while the 
corresponding angles stay the same, the scale factor and the ratios of corresponding 
sides vary together.

Furthermore, it is important that teachers foreground the mathematical ideas 
being taught rather than the technical features of DMT (Clark-Wilson & Hoyles, 
2017). This implies teachers might be expected to use the DMT to improve stu-
dents’ mathematical understanding of GS rather than making its technical charac-
teristics the main discourse in the lesson. For example, after enabling students to 
make sense of how to use the scale factor slider, teachers might focus students’ 
attention on the variant and invariant properties of mathematically similar shapes 
(e.g., invariant ratio property) while dragging the scale factor slider. Moreover, 
teachers might need to form more open-ended questions focusing both on the math-
ematical and technical aspects of the tasks (Hollebrands & Lee, 2016). Teachers 
might, for example, develop and pose questions such as “When playing the anima-
tion, how do the values in the two statements in the ratio checker change dynami-
cally and what do such changes tell us about within ratios across mathematically 
similar shapes?”. Finally, when planning their curriculum scripts, teachers might 
typically foresee the likely misconceptions that students may encounter when 
engaging with mathematical ideas (De Bock et  al., 2002). They might also be 
expected to identify misconceptions that students may confront and/or develop dur-
ing classroom teaching, and to respond to these misconceptions using DMT. For 
example, teachers might anticipate that students are likely to confront a misconcep-
tion regarding the incorrect use of additive strategies within GS tasks (Chazan, 
1988; Son, 2013) and then identify ways in which they use the DMT to enable stu-
dents to encounter and reflect upon this misconception (Noss & Hoyles, 1996).
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3  Research Context

In this section, we describe the research context by setting the scene and outlining 
the research design, participants, data collection and analysis procedures.

3.1  Setting the Scene

In this study, we investigated the classroom practices of teachers approximately 
one year after they had undergone the professional development (PD) provided as 
part of the Cornerstone Maths (CM) project (Clark-Wilson & Hoyles, 2017). This 
research was undertaken independently from the original CM project, recruiting 
teachers from the community of the project to explore their practices where they 
used the DMT to teach GS. We considered these teachers to be suitable participants 
for our research because, after their involvement in the project, they were still com-
mitted to using the CM software to teach the CM curriculum unit on GS for lower 
secondary mathematics.

3.1.1  Introducing the CM Project

CM was a large-scale multi-year project2 (2011–17) conducted at the UCL Institute 
of Education, University College London in England. The central aim of the project 
was to address underuse of DMTs by secondary teachers in the classroom. To do so, 
the researchers supported teachers’ integration of the DMT to enhance the teaching 
and learning of a selection of three mathematical ideas central to the English 
National Curriculum for lower secondary mathematics (i.e., GS, algebraic patterns 
and expressions, linear functions). Each of these three CM curriculum units com-
prises carefully designed DMT (the CM software), student workbooks and teacher 
guides, along with teacher PD activities. The researchers assumed, with the 
resources and PD opportunities, teachers rethink the mathematical ideas as they 
employ new pedagogies underpinned by the DMT (Clark-Wilson & Hoyles, 2017).

3.1.2  Defining the CM Software as DMT

The CM software3 is a web-based DMT embedded within the three aforementioned 
CM curriculum units. It was specially designed to exploit the dynamic, visual, and 
multi-representational potential of digital technology. It contains several carefully 

2 The website of the CM project is: https://www.ucl.ac.uk/ioe/research/projects/cornerstone-maths
3 The website of the software is: https://www.cornerstonemaths.com/modules/2/investigations
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Fig. 1 The key affordances of the CM software available in a task

pre-designed dynamic tasks associated with each of the three units, including 
GS. These tasks were created on the basis of realistic contexts in a technological 
learning environment in which there are visual, dynamically linked multiple math-
ematical representations (e.g., geometric shapes, measurement tables, graphs, and 
algebraic expressions). The software was designed to offer the potential for students 
to make and test conjectures by manipulating the dynamic representations, leading 
them to engage with the underlying mathematical concepts and relationships in a 
realistic context (Clark-Wilson & Hoyles, 2019).

In relation to GS, the CM software was designed to offer students 12 different 
dynamic investigations and 19 sub-tasks. The tasks allow students to engage with 
geometric shapes using several key features encompassing dragging, translating, 
enlarging, rotating, measuring, colouring, and labelling, together with length, 
angle and scale factor sliders, ratio checker, measurement table, and snapshot (see 
Fig. 1 for some of the key affordances of the DMT). Therefore, students can poten-
tially recognise and identify the variant and invariant properties of mathematically 
similar shapes. In its visual, dynamic and interactive learning environment, students 
and teachers, for example, can translate, enlarge and rotate geometric shapes to 
determine whether they are mathematically similar, or produce a family of similar 
shapes to the original shape. Additionally, while moving the various scale factor, 
length and angle sliders, they can also examine and identify the variant and invariant 
properties of mathematically similar shapes, by focusing on the appearance and 
orientations of shapes, corresponding angles and sides, and the ratios of correspond-
ing sides and lengths within a shape and between the shapes.
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3.2  Design for the Study

We chose a qualitative approach, a multiple case study research design, as our 
research seeks to examine and develop a deep insight into a contemporary and com-
plex phenomenon, teachers’ classroom practices involving DMT with a focus of GS, 
in a naturalistic way (Ruthven, 2009), by taking classroom realities or conditions 
into consideration (Yin, 2014).

3.3  Participants

Participants were selected to have contrasting levels of involvement in the original 
CM project, their use of the CM resources and different levels of experience in 
teaching since we expected such variation to reveal differences in the characteristics 
of teachers’ DMT-integrated classroom practices with a focus on GS. We expected 
teachers with high levels of these attributes to exemplify characteristics of expert 
teachers and those with relatively lower levels to exemplify those of advanced 
beginners (Berliner, 2004). We assumed that working with these teachers would 
provide exemplary contrasting performances, which may become a source of case 
study information from which teachers, particularly novice teachers, could gain 
insight and understanding into the complex and dynamic nature of classroom prac-
tices with DMT.

Through the help of the principal investigators of the CM project (the third and 
fourth named authors of this chapter), three teachers were identified who were will-
ing to participate in the research and who had contrasting levels of involvement in 
the original CM project, use of the CM resources and experience in teaching. They 
were from two London-based, co-educational secondary schools. Below, the brief 
distinctive characteristics of the three participant teachers who were selected to 
exemplify expert and advanced beginner teachers are summarised in Table 2 and 
described as follows:

Table 2 Profiles of the case study teachers

Teacher
Experience in 
teaching

Involvement in the original CM project and use of CM 
resources

Jack 10 years High-level involvement; consistent use
Lara 3 years Mid-level involvement; intermittent use
Alex 4 years
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 – Jack (pseudonym) was expected to exemplify characteristics of an expert 
teacher in the use of DMTs within mathematics teaching and learning as he 
had considerable experience and expertise in the exploitation of the dynamic 
affordances of such technologies in the classroom. He was well respected and 
regarded as a successful teacher in his school, especially in terms of his skills 
and confidence in the use of technology. In his school, he had the responsibility 
to support his colleagues in planning and conducting lessons with technolo-
gies. He had high- level involvement in the original CM project by voluntarily 
participating fully in all sessions of the PD provided by the project. He also led 
his colleagues to take part in the CM project and his school supported their 
attendance in the CM project. Jack was committed to continuing use of the CM 
resources in the classroom.

 – Alex and Lara (pseudonyms) were expected to exemplify characteristics of 
advanced beginner teachers in the use of DMTs within mathematics teaching 
and learning as they gained experience and expertise to some extent in the use of 
such technology in the classroom. They were colleagues who taught in the same 
school. They had mid-level involvement in the sessions of the PD provided by 
the original CM project. Their school encouraged them to take part in the CM 
project. Although they both only used the CM resources intermittently in the 
classroom, they agreed to use them in their classroom for this research as they 
wanted to participate in the research.

Although Lara and Alex had similar profiles, any differences in their observed prac-
tices would provide insight for the research in terms of analytic generalisation. The 
differences between the three case study teachers presented an advantage for the 
research to make the characteristics of classroom practices with DMT across the 
cases more visible and analysable (Bellman et al., 2014; Bozkurt, 2016; Bozkurt & 
Ruthven, 2018; Thomas & Hong, 2013).

During the process of data collection, which took place in April to November 
2018, all three teachers taught the first eight CM investigations from the CM cur-
riculum unit on GS to a Year 9 class (13–14 years old) approximately over a period 
of a month. Before planning and teaching their lessons, they were all provided with 
the same DMT-enriched teaching resources for the teaching of GS, that was the CM 
curriculum unit on GS. As outlined previously, this unit involves the use of carefully 
designed DMT (along with the student and teacher booklet) containing a set of the 
learning objectives in relation to GS and a sequence of tasks. Therefore, in their les-
sons, the teachers had the same opportunity to adopt the identical learning objec-
tives for GS and offer the related tasks to students.

3.4  Methods of Data Collection

The research reported in this chapter is taken from a larger doctoral study conducted 
by the first author and co-supervised by the second, third, and fourth authors. The 
first author collected and analysed all data during the study.
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Each of the three case studies in the research drew on multiple data sources 
including non-participant, video-recorded classroom observations (involving 
recordings of  the teacher’s eye view); semi-structured, audio-recorded post- 
observation teacher interviews; and scrutiny of teachers’ lesson resources involving 
students’ work in both digital and paper environments.

3.4.1  Classroom Observation

For each case study, the first author observed eight each of both Lara’s and Jack’s 
lessons and seven of Alex’s lessons. In the cases of Lara and Alex, they both taught 
their lessons either in a pre-booked computer room or in an ordinary traditional 
classroom, depending on the availability of the computer rooms. In the computer 
rooms, they provided students with desktop computers to interact with the DMT to 
accomplish the tasks. However, in the ordinary classrooms, they both allowed stu-
dents to use iPads. Jack conducted his lessons in his normal classroom where he 
taught all his lessons with laptop computers.

To gather good evidence on what was actually occurring in the teachers’ class-
rooms, with their permission, we video-recorded their practices with two different 
types of video technology. We used two conventional digital video cameras located 
on tripods. While one of these cameras (located at the back of the classroom) 
focused on the whole-class and was stationary, the other camera was directed on the 
teacher and therefore the observing researcher operated the camera to turn it to fol-
low the teacher’s movements around the classroom. Being able to rotate the direc-
tion of the camera was vital to capture the teachers’ movements and speech, 
especially their actions on the DMT when they used it ‘live’4 on the Interactive 
Whiteboard (IWB) (or from their desktop computers) and their accompanying 
discourse.

Besides these two video cameras, for rich and reliable data collection especially 
during students’ independent work with the DMT, we also used an ear-mounted 
wearable mini digital video camera as a data collection instrument. All three teach-
ers agreed to use this camera which was mounted on the user’s ear and pointed 
forward roughly at eye level, allowing to record person-centred point-of-view 
scenes and the associated dialogue (see Fig. 2 for the wearable mini video cam-
era used).

We decided to use such a camera as a supplementary observational instrument so 
that we could seek to overcome the obstacle that researchers have faced (e.g., 
Bozkurt, 2016). This obstacle concerns the difficulty of capturing both the teacher’s 
eye view of the classroom and visual and audible interactions between the teacher, 
students and technology. The two conventional digital cameras allowed us to cap-
ture the teachers’ activities and engagements and their actions from the researcher’s 

4 Throughout the chapter, the term ‘live’ is used to refer to that the teacher operates DMT for them-
selves for different purposes.
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Fig. 2 One of the case study teachers, Jack, wearing the ear mounted wearable mini digital camera 
in his teaching

point of view. However, this wearable camera offered us an access to what was 
‘seen’ by the teachers undertaking their activities with the DMT in a natural way, 
especially during students’ independent work with the DMT. It therefore helped 
explore the teacher’s point of visual attention on the screen of the computer or the 
IWB when using the DMT ‘live’.

During the observations, the observing researcher positioned himself at the side 
of the classroom next to the camera that focused on the teacher so that he could 
observe the teachers’ actions without disturbing the teaching process.

3.4.2  Teacher Interview

The first author conducted six post-lesson interviews with Alex and Jack and eight 
with Lara. The interviews occurred face-to-face in an empty classroom and lasted 
between 35–45 min. With the permission of the teachers, all interviews were audio- 
recorded to obtain more accurate data by concentrating more on the content dis-
cussed and capturing the non-verbal communication. During the interviews, two 
digital recording tools were used, including Apple’s QuickTime multimedia soft-
ware and a mobile smartphone to avoid any possible problem with recording. 
Furthermore, a MacBook laptop was used during the interviews to enable the teach-
ers to use the DMT ‘live’ to show their actions on the DMT or to articulate better 
their thoughts by referring to the DMT-enriched CM tasks displayed on the screen. 
Using Apple’s QuickTime software, the screen of the laptop was also recorded dur-
ing the interviews.
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3.4.3  Lesson Resources

In addition to the collection of data from classroom observations and teacher inter-
views, the teachers’ lesson resources were also collected, in the forms of IWB or 
PowerPoint slides, their worksheets created for use by students, photographs of 
students’ DMT screens and their written work in the workbook in response to the 
DMT-enriched tasks.

3.5  Data Analysis

The following general analytic approach was adopted for the qualitative data analy-
sis that led to the identification of the salient differences (and some similarities) 
across the cases and revealed some common themes. This analysis was led by the 
first author.

First, a within-case analysis (Mills et al., 2010) was used initially to examine 
each case in-depth by creating an individual description of the case in written form. 
This required the first author to re-watch all of the video recordings of each of the 
observed practices and then produce the rich and thick narrative descriptions to 
summarise what happened in the lessons. The descriptions of the lessons were then 
coded and categorised based on our theoretical model (see Table 1 for the theoreti-
cal model for operationalising the construct of curriculum script) using NVivo 12, a 
computer-assisted qualitative data analysis software and identified and modified the 
associated concepts and themes. Likewise, the first author re-listened to the audio 
recordings of the interviews and transcribed the interviews verbatim on the com-
puter. He then reviewed the transcripts to gain insights and understandings of the 
contained aspects as relevant to the theoretical model and developed an overall pic-
ture. Having imported the interview transcripts into NVivo 12, the first author coded 
and categorised the interview data according to its relevance to the theoretical 
model and identified and modified the associated themes, if helpful. Following these 
steps, he triangulated all the data available by categorising the teachers’ observed 
actions using the DMT and their rationale for doing so, as articulated during their 
post-observation reflections. Secondly, a cross-case analysis (Mills et al., 2010) was 
then carried out, which used spreadsheets to compare and contrast the cases of the 
teachers according to the themes for each individual case. This was to identify the 
key differences and similarities in their practices and therefore make the practices 
more visible and analysable in a holistic sense.

To address the reliability of the analysis, the first author also discussed regularly 
his interpretations and analysis of the data and the accompanying results with the 
three co-authors during each step of the data analysis process. We all reached an 
agreement on the data coded, the different themes and the associated interpretations 
and conceptualisation of the results.

Lastly, it is noteworthy that our analysis process is not a linear, but more a recur-
sive process, implying that we usually moved back and forth between the different 
analysis steps outlined above.
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4  Results

In this chapter, we present only a cross-case analysis of teachers’ curriculum scripts 
enacted in the classroom for teaching GS with a particular DMT. From the cross- 
case comparison, we were able to identify characteristic features of expert and 
advanced beginner teachers’ curriculum scripts, which served to distinguish their 
expertise in teaching GS with the DMT.

Our expectations about the teachers’ expertise were borne out through the cross- 
case comparison. Specifically, Jack, as an expert teacher, had a more comprehensive 
curriculum script for teaching GS with the DMT than Alex and Lara with respect to 
the following characteristics:

 – the diversity of GS-related teaching goals enacted in the lessons with the DMT;
 – the range of mathematical and technological discourse in the classroom;
 – the depth and variety of questioning referencing the DMT; and
 – the variety of students’ misconceptions about GS anticipated, identified, and 

addressed using the DMT in the lessons.

We now discuss in detail each of these characteristics in relation to the three case 
study teachers.

4.1  The Diversity of GS-Related Teaching Goals Enacted 
in the Lessons with the DMT

Although all three teachers broadly taught all of the first eight CM investigations in 
their lessons, there were differences between them in terms of both the diversity of 
the teaching goals they focused upon and the ways these were addressed using the 
DMT in their enacted scripts. In comparison to Alex and Lara, Jack included three 
additional mathematical goals in his scripts and exploited the dynamic potential of 
the DMT more effectively and frequently to accomplish these goals by:

 – introducing the use of decimal scale factors along with integer scale factors in the 
creation of mathematically similar shapes;

 – introducing the idea of ‘congruency’ as a special case of similarity; and
 – introducing the use of a transformations-based approach to GS in determining 

whether geometric shapes are mathematically similar.

For example, through the use of the DMT, Jack introduced the class to the use of 
decimal scale factors (i.e., between 0 and 1) in addition to integer scale factors 
(including 1) when creating mathematically similar shapes to the original shape. In 
his post-lesson interview, he reported that his “emergent goal with that [the intro-
duction of decimal scale factors] was to get them [students] to play with different 
decimal scale factors because [he] noticed that kids do not always get it and [he] just 
thought that it [the use of the DMT] was an opportunity to kind of focus on that a 
little bit for some students”. Specifically, in Task 3.2 (see Fig.  3) Jack invited 
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Fig. 3 A task, Task 3.2, in the DMT in which Jack used (and allowed students to use) to exploit 
the dynamic scale factor slider to create mathematically similar triangles to the original

students to first predict the effect of various scale factor values (including 1, 2, 0.5, 
respectively) on the side lengths of shapes and then validate or refute their accom-
panying conjectures using the DMT. Following this, Jack used the IWB to drag the 
scale factor slider to create many different cases of similar triangles. For example, 
by manipulating the scale factor slider, he set the slider to several different values, 
including 0.2 and 0.5, to generate particular cases of similar triangles. However, 
Alex and Lara introduced their classes only to integer scale factors. Also, Jack was 
the only teacher who used the DMT dynamically by dragging the scale factor slider 
to create several similar shapes, enabling students to examine and explore the mul-
tiplicative relationship between the measurements of the corresponding sides of the 
similar triangles.

Furthermore, unlike Lara, both Jack and Alex mentioned the idea of ‘congru-
ency’ as a special case of similarity in their lessons. However, although the idea of 
congruency was prominent within the relevant DMT-enriched CM task, while Jack 
created and used opportunities for students to examine and discuss the set of proper-
ties of congruent shapes using the DMT, Alex only verbally explained it to students 
and did not make (either dynamic or static) use of the DMT. For example, Jack used 
a paper-based CM task incorporating the DMT in the lesson (see Fig. 4). In the task, 
he invited students to originate and write down their conjectures about the set of 
four statements related to congruent shapes and then tested their conjectures using 
the DMT ‘live’. In Task 3.2 (see Fig. 3), Jack set the scale factor slider to several 
numbers including 1 and asked the whole class to investigate if the triangles were 
mathematically similar by examining their variant and invariant properties. This 
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Fig. 4 A paper-based task involving the use of the DMT, used by Jack in his lesson

prompted students to check their conjectures and then explain their justifications for 
their answers. For example, they were observed saying that “While congruent 
shapes are always similar, similar shapes are sometimes congruent”.

Lastly, all three teachers introduced students to a transformations-based approach 
to GS in the classroom to some degree. For example, Jack and Alex introduced stu-
dents to this approach to facilitate their comparisons of geometric shapes in the 
environment of the DMT when determining if they were congruent or mathemati-
cally similar. During whole-class discussions, they both used the DMT ‘live’ to 
apply a sequence of transformations (e.g., translations, rotations, and enlargements) 
to superimpose the shapes on each other, aiming to support students to examine and 
compare the properties such as corresponding sides and angles (see Fig. 5 for an 
example from Jack’s case). To apply a transformation-based approach to GS in the 
dynamic environment, Jack made more frequent use of the DMT (eight times over 
six lessons) than Alex (two times over seven lessons). When making use of the 
DMT for this purpose, in each of the eight times he used the DMT, Jack exploited 
the dynamic features of the software more efficiently than Alex. An example, which 
represents or typifies Jack’s more efficient use, is when he made dynamic links 
between the different mathematical representations available in the environment of 
the DMT while using the software ‘live’ (see Fig. 5). In Lara’s case, although she 
seemed to invite students to use a transformations-based approach to GS, this only 
happened in one of the eight observed lessons and she did not use the DMT in this 
context in any way. However, in her interview, when asked to reflect on this, it 
became clear that she did not intentionally promote students to use the types of 
transformations to accomplish the GS-related task. She seemed to be unaware of 
such an approach to GS.

Despite the importance of these three ideas related to GS, which are also 
acknowledged in the broader literature (e.g., Seago et al., 2014; Son, 2013), Alex 
and Lara did not appear to pay attention to them in their enacted curriculum scripts 
by either not introducing them to the class or by not using the DMT ‘live’ to support 
students to engage with them.
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Fig. 5 The steps that Jack followed when using a transformations-based approach to GS

4.2  The Range of Mathematical and Technological Discourse 
in the Classroom

Our analysis showed differences in how the three teachers paid attention to, and 
promoted, students’ mathematical and technological language (e.g., corresponding 
sides and angles, scale factor, slider, ratio checker). Jack’s overall awareness of, and 
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attention to, the development of students’ mathematical and technological language 
was notably more precise when compared to that of Alex and Lara, in terms of the:

 – frequency and length of his verbal interactions with students;
 – nature of the language focused on;
 – extent to which students’ articulations were valued.

Compared to Alex and Lara, Jack more frequently interacted with students when he 
had discussions with each pair of students about their work. Jack’s interactions with 
students were for much longer periods of time than Alex’s and Lara’s. Such interac-
tions gave Jack more chances to use (and encourage his students to use) a wide 
range of mathematical and technological vocabularies, leading to a rich associated 
mathematical discourse. On the contrary, in the case of Alex, while students were 
working on the DMT-enriched tasks using the DMT, there was a low level of  
student–teacher interaction as he very rarely interacted with them to create discus-
sions (once or twice in a lesson). When his interaction(s) with a (pair of) student(s) 
occurred in small-group format, it lasted only for a short period of time (less than 
1 min). Similarly, in the case of Lara, although she more often interacted with stu-
dents during their independent work at computers than Alex and created some dis-
cussions on their work with the DMT, her interactions and discussions were much 
shorter compared to Jack’s. The following dialogue provides one example that typi-
fies the brief interactions that Lara had with students:

Lara: Can you observe what is happening [on the screen]?
Student: When I change the scale factor, it [the shape] is getting bigger or smaller. (The 
student kept dragging the scale factor slider to enlarge the side lengths of the shape).
Lara: Okay, so, is it getting bigger on just one side or both of sides? Okay, make your 
observation and write it down [in the workbook].

Additionally, during both whole-class discussions and student independent work at 
computers, Jack more often, regularly and effectively, used the DMT ‘live’ than 
Alex and Lara in each lesson. Jack therefore created and used more opportunities to 
use and highlight a wide range of mathematical and technological language (e.g., 
scale factor, scale factor slider, ratio checker) when describing and explaining his 
(and his students’) actions on the DMT and the associated outcomes. This, in turn, 
enabled him to support the development of students’ skills to use more appropriate 
correct vocabulary. However, as Alex and Lara used the DMT less frequently and 
effectively, compared to Jack, they had fewer opportunities to support students’ use 
of precise mathematical and technological language.

Second, during the periods of whole-class teaching, there were also differences in 
the focus of the language that the teachers used, mainly depending on whether they 
made reference to the DMT in their explanations and discussions. For example, 
Lara’s language during whole-class teaching focused far more on the mathematical 
aspects of the tasks than the technological aspects. This was because she tended not 
to make reference to the DMT (displayed statically on the IWB) nor did she make 
dynamic use of it. Compared to Lara, Alex and Jack had more opportunities to pro-
mote students’ use of both mathematical and technological language as they did use 
the DMT dynamically, leading them (and their students) to use both types of lan-
guage explicitly. However, the more detailed data analysis revealed some differences 
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between the cases of Alex and Jack. For example, the questions Alex posed to the 
class provided clear evidence that he sometimes prioritised the language of technol-
ogy over that of mathematics and thus the discussions he created did not often go 
beyond the technical aspects of the tasks in the DMT, particularly during his first few 
lessons in which he did not make use of the DMT ‘live’ when convening whole- class 
plenaries. For example, typical questions that he posed were: “What functions do we 
have here which are slightly different from the last activity [task] which we carried 
out?” or “What did you realise when playing with the functionality stuff [available in 
the DMT]?”. However, over time, he began to foreground the mathematical rather 
than the technological content, asking more open-ended questions to the class to 
provide their explanations and justifications about the mathematics at stake.

Third, there were also differences in the degree to which, and the way in which, 
the three teachers appreciated students’ use of correct vocabulary. In the case of 
Jack, during both whole-class discussions and student independent work, he fre-
quently encouraged and valued students’ oral and written explanations in response 
to the questions asked by him or presented in the workbook. Jack did this by sharing 
students’ language with the whole class through explanation and/or demonstration 
on the IWB (see Fig. 6).

In Lara’s case, her questions did not necessarily provoke students to give full 
explanations in their responses, nor probe and seek to understand their underlying 
thinking and associated justifications. Her primary goal seemed to be to examine if 
students’ responses were correct or not. For Alex, he sometimes encouraged stu-
dents to articulate their oral and written responses using correct vocabulary and 
appreciated precise language. Alex did this more frequently than Lara, but less fre-
quently than Jack. However, Jack’s practice was most developed in this respect. In 
his post-lesson reflection, Jack justified his practice by saying:

If I am asking them [students] to write down [their explanations and justifications], I often 
say to them I want you to use the best mathematical language you can. Also, when I put 
other students’ work up on the [interactive white] board, they can see it done well and they 
can see the good mathematical language used [in the work].

4.3  The Depth and Variety of Questioning 
Referencing the DMT

Our analysis elucidated differences between the three teachers that concerned, in 
particular; the extent to which they asked open-ended questions followed by further 
probing questions (particularly referencing the DMT) during both whole-class 
teaching and student independent work with the DMT; and the foci and aims of such 
questions.

The difference in the extent to which the teachers posed open-ended questions in 
their teaching practice can be explained as follows. First, Jack tended to pose a 
sequence of follow-up open-ended questions to his students that required them to 
clarify and elaborate their thinking. He was using this approach to probe their 
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Fig. 6 A student’s explanations that Jack selected to display on the IWB

understandings. He invited students to explain and justify their work with (and with-
out) the DMT and supported and guided them to originate conjectures, predict the 
associated outcomes, and eventually justify their answers. However, unlike Jack, 
Alex and Lara were inclined not to pose follow-up open-ended questions to their 
students. Although they sometimes asked this type of questions, these did not usu-
ally create meaningful, rich discussions, as Jack did, which might lead students to 
examine and explore the variant and invariant properties of GS. Both Alex and Lara 
were inclined not to pursue their discussions with students. Second, the way Jack 
exploited the DMT in his lessons enabled and triggered his questioning approach. 
He regularly used the DMT dynamically during both whole-class discussions and 
student independent work at computers. He exploited the dynamic and visual nature 
of the DMT by using its dynamic affordances, such as the scale factor slider, and by 
making the (dynamic) links between the main mathematical representations explicit. 
Therefore, his questions concerned what was happening in the different representa-
tions, the links between them, and their possible meanings, while using the DMT 
‘live’. This contributed to stimulating interactions between Jack, the students and 
the dynamic mathematical environment and therefore brought to light the underly-
ing mathematical concepts and relationships. However, Alex and Lara rarely asked 
such probing questions referencing the DMT in their lessons. Nevertheless, it is 
notable that Alex began to integrate his dynamic use of the DMT more frequently 
into his whole-class teaching in his latter lessons, which led to him having more 
opportunities than Lara in this respect.
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Furthermore, in terms of the foci and aims for the open-ended questions, Jack’s 
questions incorporated both mathematical and technological aspects. For example, 
when interacting with a pair of students, his questioning implied that they should 
drag the scale factor slider to 1 and explore the properties of the resulting shapes.

If the scale factor is 2, the sides [of the original shape] are doubled, right? Every sides are 
multiplied by 2. Then, what do you think what happens when the scale factor is 1? […] With 
the scale factor of 1, what do you think may happen?

It appears that Jack’s aim was to focus students’ attention to the underlying key 
mathematical concepts, both in the DMT and on paper, to probe and support the 
development of their understandings in both contexts. However, as mentioned in the 
previous section, Alex’s questions focused predominantly on the technological 
aspects, especially in his initial lessons. After students had offered their responses, 
Alex was inclined not to pose follow-up questions to investigate and probe students’ 
thinking about the mathematics. Nonetheless, as he began to make more dynamic 
use of the DMT during whole-class discussions in his latter lessons, the focus of his 
questions shifted more towards the mathematical content. In this new context, the 
aim of Alex’s questions seemed to probe mostly what students noticed and explored 
in terms of the mathematics during their interaction with the DMT. However, unlike 
Jack’s case, Alex’s open-ended questions did not necessarily result in students 
noticing and exploring the underlying mathematical concepts and the relationships 
between them. His questions did not tend to prompt students to make explicit the 
mathematical links between the different representations within the DMT, such as 
that how manipulating the scale factor slider changes the respective pairs of corre-
sponding angles in the two mathematically similar parallelograms. This is similar to 
the findings of Hollebrands and Lee (2016) who reported that although teachers 
posed students questions focusing on both mathematics and technology, they did 
not invite or encourage students to explain and justify what a relationship they 
realised might be true. Finally, Lara’s open-ended questions concentrated generally 
on the mathematical aspects of the tasks due to the lack of her use of the DMT dur-
ing whole-class teaching. However, her questions were usually broad (e.g., what did 
you notice?) and were used to obtain information from students further evidence 
that  she seemed to aim to evaluate the correctness of their answers rather than 
understanding their way of thinking.

4.4  The Variety of Students’ Misconceptions About GS 
Anticipated, Identified, and Addressed in the Lessons 
Using the DMT

The data evidenced that when compared to Alex and Lara, Jack showed more aware-
ness and understanding of the likely misconceptions and the potential teaching 
strategies incorporating the dynamic use of the DMT to tackle them. While Jack 
anticipated and identified a total of six different key misconceptions (e.g., the angles 
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of a geometric figure are multiplied by a scale factor along with its side lengths) and 
made dynamic use of the DMT (e.g., manipulating the dynamic angle slider along-
side the scale factor slider) to provide opportunities for students to encounter and 
reflect upon them, Alex and Lara predicted only three and two different misconcep-
tions, respectively, and did not necessarily use the DMT in the same way as 
Jack used.

Additionally, our analysis identified more prominent differences between the 
teachers in terms of their spontaneous identification of misconceptions and their 
exploitation of the DMT to tackle them. For example, Jack tended to engage the 
whole-class or a group of students to investigate and diagnose the causes of such 
misconceptions and sought to enable them to see the correct solutions through the 
dynamic use of the DMT. This was evident, for example, by the misconception 
related to the areas of mathematically similar shapes that Jack identified in a lesson 
when interacting with a pair of students during their independent work with the 
DMT. It is noteworthy that even though Jack spontaneously spotted this misconcep-
tion during his circulation around the class, he exploited (and encouraged his stu-
dents to exploit) the affordances of the DMT ‘live’ most effectively, particularly the 
animation and the gridlines. Consequently, the students could realise and correct 
their misconception and understand the underlying reason why it had occurred. This 
echoes a skill that an expert teacher would be expected to have as part of his/her 
professional knowledge. According to Bellman et al. (2014), an expert teacher is 
inclined to take responsibility to ‘make real-time decisions’ about how to use DMT 
to address the misconceptions they identify in the classroom (p. 98). Unlike Jack, 
both Alex and Lara tended not to recognise and identify misconceptions students 
developed and/or encountered during their lessons. Although both teachers drew 
students’ attention to some misconceptions that they might hold (e.g., a scaled shape 
is always larger than the original), they did not tend to use the DMT to support stu-
dents to notice and reflect upon them.

5  Conclusion

In this study, we adopted a multiple case study approach to investigate the class-
room practices of three English lower secondary mathematics teachers with differ-
ent levels of experience and expertise in the use of digital technology for the teaching 
and learning of school mathematics. One of the case study teachers was termed an 
expert teacher who had experience of teaching and of using DMTs in the classroom, 
while the other two were called advanced beginner teachers as they were neither 
novice nor expert in teaching and in using DMTs in the classroom. Our findings 
indicated that the teachers, particularly the advanced beginner ones, experienced 
difficulties with the incorporation of the dynamic affordances of the DMT into their 
classroom teaching of GS (e.g., developing (and extending) their curriculum script) 
as they needed to “draw on a matrix of [their] professional knowledge” to (re)think 
and (re)formulate their associated curriculum scripts (Ruthven, 2009, p. 138).
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Across the cases of the three teachers, our findings also suggested several impor-
tant differences in relation to one of the features of classroom practice identified 
within the SFCP framework, curriculum script. In what follows, we conceptualise 
these differences across classroom practices of expert and advanced beginner teach-
ers, leading to the development of an understanding of characteristics of teachers’ 
curriculum scripts for teaching GS with DMT. It is important to acknowledge that 
since we worked with only three teachers from two different schools in this case 
study, the findings from this study cannot be generalised in a simplistic way to a 
wider population of teachers without further empirical validation. Further research 
involving different teachers would be needed to address the issue of generalisability 
of our conceptualisation that follows.

 1. Expert teachers develop more comprehensive curriculum scripts compared to 
advanced beginner teachers for teaching GS with DMT in terms of:

 – the variety of GS-linked teaching goals enacted in the lessons incorporating 
the use of DMT;

 – the range of mathematical and technological vocabulary used, and paid atten-
tion to, during students’ use of DMT in the classroom;

 – the depth and variety of questions referencing the DMT, particularly encom-
passing more open-ended questions and follow-up questions; and

 – the range of GS-related student misconceptions anticipated, identified and 
addressed in the lessons that exploit the dynamic features of DMT.

 2. Expert teachers show a deeper understanding of the dynamic nature of GS than 
advanced beginner teachers. This enables them to use DMT dynamically, for 
example, to:

 – introduce both decimal and integer scale factors to create mathematically 
similar shapes;

 – introduce the idea of ‘congruency’ to the class and promote students’ under-
standing of the properties of congruent shapes;

 – anticipate and identify common student misconceptions related to GS and to 
allow students to confront and reflect upon them;

 – make links between GS and geometric transformations by applying the types 
of transformations (e.g., translations, rotations, enlargements) to geometric 
shapes in the dynamic mathematical environment to facilitate determining 
mathematical similarity or congruency;

 – make multiple mathematical connections between the representations of GS 
in DMT which promotes meaningful whole-class and individual discussions 
with students.

 3. Expert teachers predominantly foreground the mathematics rather than the tech-
nology while advanced beginner teachers tend to do vice versa. Expert teachers 
tend to use DMT ‘live’ to enhance students’ understanding of GS focusing on the 
mathematical content rather than on techniques for using DMT. However, in 
advanced beginner teachers’ lessons, the mathematics tends to remain implicit, 
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especially in their initial lessons. But, over time, they begin to foreground the 
mathematics.

 4. Expert teachers’ ‘live’ use of DMT tends to create opportunities to encourage the 
use of precise and correct mathematical and technological vocabulary in stu-
dents’ oral and written explanations and justifications. By contrast, advanced 
beginner teachers tend not to use DMT ‘live’, which in turn restricts such occa-
sions. Expert teachers tend to use a broad range of mathematical and technologi-
cal vocabulary while advanced beginner teachers display a more limited range 
when describing actions on DMT and to articulate the mathematical outcomes of 
such actions.

 5. Expert teachers develop a wide range of open-ended questions referencing DMT 
to provoke students to make and test mathematical conjectures by exploiting the 
dynamic features of DMT, and then to articulate and justify their reasoning and 
results. However, advanced beginner teachers develop a more limited range of 
open-ended questions that do not necessarily refer to the use of DMT and their 
questioning requires low-level convergent reasoning, mainly leading to students 
finding and articulating the right answers, without giving detailed explanations 
and justifications.

Our research contributes to the literature by articulating in finer detail the impor-
tant characteristics of teachers’ classroom practice with a particular emphasis on 
their curriculum scripts. More particularly, our study reveals that the further artic-
ulations of curriculum script are helpful in identifying the more efficient practice 
of an expert teacher. Additionally, in the first edition of this book series, Ruthven 
(2014) invited researchers to use the SFCP framework both in the process of data 
collection and analysis so that they test, elaborate and refine this novel frame-
work. In this regard, our study offers a further test of how the SFCP framework is 
useful and functional as a tool for investigating teachers’ everyday classroom 
practices with (new) technologies. It also shows how the SFCP can be specified 
for a particular mathematical domain by operationalising the framework to anal-
yse the data and to identify differences (and similarities) in teachers’ classroom 
practices, particularly in their curriculum scripts. Finally, our research has also 
made a methodological contribution to the literature. We used three different digi-
tal video cameras in our lesson observations: one focusing on the teacher, the 
other capturing the whole- class, and the third to capture the ‘teacher’s eye view’. 
To the best of our knowledge, this study has been the first research in the field of 
educational technology within mathematics education that employed an ear-
mounted wearable video technology as a data collection instrument to capture 
teachers’ unique view of the classroom.
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Instrumental Orchestration of the Use 
of Programming Technology for Authentic 
Mathematics Investigation Projects

Chantal Buteau, Eric Muller, Joyce Mgombelo, Marisol Santacruz Rodriguez, 
Ana Isabel Sacristán, and Ghislaine Gueudet

Abstract This chapter focuses on teaching the use of programming technology for 
pure or applied mathematics investigation projects to university mathematics students 
and future mathematics teachers. We investigate how the theoretical frame of instru-
mental orchestration contributes to our understanding of this teaching. Our case study 
is situated within the implementation of three undergraduate mathematics courses 
offered at Brock University (Canada) over the past 20 years, whose main activities 
include investigation projects. The study examines an instructor’s actions and deci-
sion-making in relation to potential students’ schemes that might have been promoted, 
implicitly or explicitly, by the instructor. The analysis also focuses on two student 
schemes, namely, the scheme of articulating a mathematics concept within the pro-
gramming language and the scheme of validating the programmed mathematics. The 
case study led us to develop an orchestration and genesis alignment (OGA) model 
that associates different elements of the instructor’s orchestration with the intended 
student development of specific schemes. Our findings highlight the  instructors’  
dual role as policy makers and as teachers responsible for orchestrating students’ 
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instrumental geneses (i.e., their web of schemes development). Findings also high-
light the integration of projects as a key element of the exploitation mode.

Keywords Instrumental approach · Instrumental orchestration · Schemes · 
Programming · University mathematics · Investigation projects

1  Introduction

Cassie walks into the computer lab. Today, she was told that the class will start pro-
gramming an environment for the investigation of the bifurcation diagram of the 
logistic function. She is pretty excited and looks forward to what her instructor 
has promised: She will “see and experience chaos” with her own program! We ask: 
What kind of teaching prompts such interest in students and supports their skill 
development when programming mathematics concepts and designing their investi-
gation—or in other words, to use programming technology as an “object-to-think- 
with” (Papert, 1980) in mathematics?

In this chapter, we examine a case study of an instructor in a university setting to 
investigate how the frame of instrumental orchestration can enhance our under-
standing of this kind of teaching. In Sect. 2 we give an overview of programming 
integration in the mathematics classroom and illustrate the activity of using pro-
gramming for mathematical investigation projects by continuing our story of Cassie. 
We present in Sect. 3 the frame of the instrumental approach and outline how we 
operationalise this theory when the artefact is programming and the activity is a 
university-level mathematics investigation project. We describe in Sects. 4 and 5 our 
case study methods and findings involving one instructor, and propose in Sect. 6 a 
model of this kind of teaching. In Sect. 7 we discuss insights gained about this 
teaching through the lens of the instrumental approach and conclude in Sect. 8 with 
some recommendations and wider perspectives.

In their recent survey paper about mathematics teaching with technology, Clark- 
Wilson et al. (2020) stress that an area “that would benefit from closer study…is 
research that looks at the outcomes of longer-term use of technology in teachers’ 
own mathematics classrooms” (p.  1237). This chapter contributes to this area. 
Indeed, our case study involves a sustained integration of programming as part of a 
sequence of three university mathematics courses called Mathematics Integrated 
with Computers and Applications (MICA I−II−III/III*) taught at Brock University in 
Canada. The courses were first implemented in 2001 and in the intervening 
period, 10 instructors have since taught them. In these project-based courses, math-
ematics majors and future mathematics teachers learn to design, program, and use 
interactive environments to investigate mathematics concepts, conjectures, and 
applications (Buteau & Muller, 2014; Buteau et al., 2015b). Our case study is part 
of a 5-year project aiming to understand how students learn to use programming for 
“authentic” mathematical investigations, identify if and how their use is sustained 
over time, and how instructors support that learning. Next, we provide a brief over-
view of the integration of programming within mathematics education.
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2  Programming Integration and Teaching 
in the Mathematics Classroom: An Overview

The last decade has seen a resurgence of interest in education that integrates com-
puter programming or more broadly “computational thinking”. Indeed, we are wit-
nessing this integration as part of compulsory elementary  school programs in 
different parts of the world. For example, the integration is part of mathematics in 
Ontario, Canada (Ontario Ministry of Education, 2020) and in France (Direction 
générale de l’enseignement scolaire, 2020; Vandevelve & Fluckiger, 2020); part of 
computer science in England (Benton et al., 2017; Department for Education, 2013) 
and in New Zealand (New Zealand Ministry of Education, 2020); and a transversal 
approach throughout subjects in Finland (Bocconi et al., 2018). Although program-
ming in secondary school programs has been integrated for some time (mostly as 
part of elective computer science courses), it now has started to change in some 
countries. For example, Poland has recently integrated programming in the compul-
sory secondary programs (Sysło & Kwiatkowska, 2015; Webb et al., 2017), while 
in France algorithmics has been integrated since 2009 into mathematics courses for 
students seeking a university STEM path (Lagrange & Rogalski, 2017; Ministère de 
l’Éducation nationale et de la Jeunesse, 2020).

Although the integration of programming in school mathematics curricula is 
relatively recent in some countries, programming for mathematics learning has a 
half-century legacy beginning with the design of the LOGO programming language 
(Papert, 1972) and constructionism (Papert & Harel, 1991). The fundamental prem-
ise of the constructionist paradigm is to create student-centered learning situations 
for students to consciously engage in constructing (e.g., through programming) 
shareable, tangible objects through meaningful projects. Studies of constructionism 
in mathematics education have shown how programming, used as an object-to- 
think-with (Papert, 1980), may support students’ understanding of mathematical 
concepts (e.g., Noss & Hoyles, 1996; Wilensky, 1995). In Papert’s (1980) vision, 
when integrating programming in this way, “the relationship of teacher to learner is 
very different: the teacher introduces the learner to the microworld in which discov-
eries will be made, rather than to the discovery itself” (p. 209). In other words, the 
role of the teacher in Papert’s view is to create conditions that promote invention, 
creativity, and the pursuit of ideas (cf. Barabé & Proulx, 2017), particularly relevant 
in a context when programming is used by students as an object-to-think-with.

Overall, from the 1970s until the last decade, much research centered on pro-
gramming’s potential for engaging in mathematical thinking and learning (Benton 
et al., 2017), which evolved more recently into the broader context of “computa-
tional thinking” (e.g., diSessa, 2018; Gadanidis et al., 2018; Sinclair & Patterson, 
2018). Until recently, research focused largely on learning, whereas pedagogical 
design mainly has been analyzed tangentially (e.g., Hoyles & Noss, 1992) due per-
haps to programming’s scant integration in schools. With the recent increased inte-
gration of programming in schools and (mathematics) curricula, we see a crucial 
need for more research about teaching programming as an object-to-think-with in 
mathematics. An example of such research is by Benton et al. (2018) who discuss 
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professional development to support mathematical learning through programming 
in England’s elementary schools.

At the university level, the integration of programming in mathematics has taken 
different forms, such as: within specific courses (e.g., modeling, numerical analy-
sis), as a required skill (e.g., a computer science course requirement), as part of an 
interdisciplinary program (e.g., in data science, mathematical biology), or through 
a more integrated approach (e.g., a sequence of courses or throughout a program). 
In the U.K., for example, Sangwin and O’Toole (2017) found that 78% of under-
graduate mathematics programs required training in computer programming, mostly 
in numerical analysis and statistics. As an example of a more integrated approach, 
the mathematics and physics programs at University of Oslo (Norway) are being 
revised to help students develop abilities to apply numerical methods to solve prob-
lems in courses throughout the program (Malthe-Sørenssen et al., 2015).

There are other examples of program-wide integration of programming whose 
foci are broader than numerical methods, such as at Carroll College, USA (Cline 
et al., 2020) and at Manchester Metropolitan University, England (Lynch, 2020), 
both of which use programming for modeling that may provide students an oppor-
tunity to experience programming as envisioned by Papert (1980). The integration 
of Python in the large-enrolment (>1000 students) calculus course for Life Sciences 
at McMaster University, Canada (Clements, 2020) is an example of such integra-
tion, as are the MICA sequence courses mentioned earlier (Buteau et al., 2015b), 
though the latter involve broader mathematical areas (number theory, dynamical 
systems, etc.). In fact, research has shown that programming can support students’ 
learning of university mathematics in many areas such as algebra (Leron & 
Dubinsky, 1995), calculus (Clements, 2020), probability (Wilensky, 1995), combi-
natorics (Lockwood & De Chenne, 2019), and statistics (Mascaró et al., 2016). For 
instance, in their study, Lockwood and De Chenne (2019) found that “the Python 
programming, the representations of each of the outcomes, and the formulas that 
were reflected in the code together offered an effective approach by which to 
enhance students’ combinatorial reasoning and activity” (p. 306).

Many of the approaches mentioned above concern meaningful, rich ways to inte-
grate programming in university mathematics classrooms as described in the work 
of Weintrop et al. (2016), who detail various computational practices in which pro-
fessional mathematicians and scientists engage in their work (see Fig.  1). Their 
detailed taxonomy gives insights into the engagement by research mathematicians 
as envisioned by the European Mathematical Society (2011): “Together with theory 
and experimentation, a third pillar of scientific inquiry of complex systems has 
emerged in the form of a combination of modeling, simulation, optimization and 
visualization” (p. 2). For example, “interpreting and preparing problems for math-
ematical modeling,” “assessing different approaches,” “developing modular solu-
tions,” and “using computational models to understand a concept.”

Weintrop et al. (2016) argue that these practices should inform policy makers and 
instructors on how programming and computational thinking can be integrated in 
mathematics and science classrooms in order to be “more in line with current pro-
fessional practices in these fields” (p. 143). In other words, these authors point to 
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Fig. 1 Taxonomy of computational thinking in mathematics and science. (Weintrop et  al., 
2016, p. 135)

ways for instructors to integrate programming that facilitates diverse pure and 
applied “authentic” inquiry-based activities, such as in modeling and simulation 
projects. Broley (2014) found that Canadian research mathematicians’ views of an 
ideal integration of programming in the mathematics classroom reinforces the affor-
dances grounding the enactment of these computational practices. In their recent 
“Call for Research That Explores Relationships Between Computing and 
Mathematical Thinking,” Lockwood and Mørken (2021) argue that “serious consid-
eration of machine-based computing [including programming] is largely absent 
from much of our research in undergraduate mathematics education” (p. 2) and that 
the various integration approaches in the university mathematics classroom should 
provide opportunities for research on teaching. This chapter addresses this gap by 
discussing a study on the teaching of using programming as a tool for authentic pure 
or applied mathematical modeling projects. In the next section, we illustrate the use 
of programming for such mathematical investigation projects through a reconstitu-
tion of a student’s engagement.

2.1  Programming for Authentic Mathematics Investigation 
Projects: An Example

As illustrated in this chapter’s introduction, Cassie was asked by her MICA II 
instructor to investigate the bifurcation diagram of the logistic function 
f(x) = kx(1 − x), where x ∈ [0, 1], and k ∈ [0, 4] is a constant. The year before in 
MICA I, she used VB.NET programming to investigate the dynamical system by 
fixing values for k and initial values of x, and observing, numerically and 
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graphically, the convergence of the generated sequences (i.e., study of orbits). As 
she starts her work, she reads through this program, her current lecture notes about 
the logistic function, and her project guidelines; she is identifying what is common 
and what should be different. She now knows and understands; she will build on her 
previous year’s code for the iterative process xn + 1 = f(xn), but this year’s input and 
output are to be different. Indeed, her input will include the range of values for k, 
and a minimum threshold for the number of terms in the sequence. The output will 
be a graph that shows for a k value (horizontal axis), the higher terms of the gener-
ated sequence for the initial x value (i.e., the bifurcation diagram on the selected 
range for k). See Fig. 2.

She now starts her work in VB.NET: she first creates her graphical user interface 
(GUI) using Visual Studio’s drag ‘n’ drop menu (Fig.  3 left). She then uses her 
mathematical knowledge to program the mathematical process while regularly test-
ing the accuracy of her code as she builds it (Fig. 3 right).

Cassie completes the last step of her programming after she verifies that her 
graphical output is correct by comparing it with the example given by the instruc-
tor. She then uses her program to investigate the dynamical system in two differ-
ent ways: (i) she varies the range of k in order to identify in the diagram when the 
system first becomes chaotic; (ii) she also investigates fixed points of selected 
cases: of f ∘ f with k = 3.3 and of f ∘ f ∘ f ∘ f with k = 3.5, both analytically and visu-
ally. Finally, she submits her program and a written report of her exploration to 
her instructor. Throughout this activity, Cassie interacts at times with her peers 
and her instructor.

In a project like this, programming is not the sole goal but rather a way to engage 
in the mathematics made possible by the technology. Cassie confirms this by reflect-
ing, when asked if engaging in programming or using the end program affected her 
learning:

I feel like both probably affected my learning. Just because like then I understood what the 
graph was actually showing and then I could see it. So, it was like I was putting in the func-
tion and like telling it what to do and like how to form and then I saw it, so yeah I guess 
it- they both helped. (Cassie et al., 2019)

It appears that Cassie, as an undergraduate, was able to use programming as an 
object-to-think-with in a way that is similar to how some mathematicians use pro-
gramming in their research (Broley et al., 2017). Other examples of such authentic 
investigation projects in MICA courses include a student designing and program-
ming an interactive environment to investigate, visually and algebraically, the struc-
ture of hailstone sequences, or a student trio designing and programming an 
interactive environment to explore the changes in the water supply of the local Lake 
Erie (Canada) over time and explain why and how it changes (Buteau et al., 2016). 
In this chapter, we are interested in the ways an instructor creates conditions and 
teaches students to engage in such programming-based mathematical investigation 
projects. We frame our study with the theory of instrumental orchestration, which 
we introduce next.
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Fig. 2 Screenshot of the GUI of Cassie’s program for her investigation of the bifurcation diagram

Fig. 3 Left: Screenshot of the drag ‘n drop menu in Visual Studio to construction a GUI; Right: 
Screenshot of an excerpt of Cassie’s VB.NET program for her investigation of the bifurca-
tion diagram
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3  Theoretical Framework

Our work is informed by the instrumental approach. We briefly describe the theory 
in Sect. 3.1, articulate student learning when considering programming for investi-
gation projects as the artefact in Sect. 3.2, and finally in Sect. 3.3, briefly describe 
how this chapter extends the themes discussed in the 2014 chapter (Buteau & 
Muller, 2014).

3.1  Instrumental Genesis, Schemes, 
and Instrumental Orchestration

The instrumental approach was developed to conceptualise human activity with 
artefacts in the field of ergonomics (Rabardel, 1995) and it was further articulated to 
account for teaching and learning contexts that involve the use of artefacts in math-
ematics education (Artigue, 2002; Guin et al., 2005). The approach is grounded in 
the theoretical framework that brings together post Piagetian and Vygotskian per-
spectives of cognition—specifically, the post Piagetian concept of scheme as articu-
lated in theory of conceptual fields (Vergnaud, 1998) and the Vygotskian concept of 
mediation by cultural artefacts as articulated in activity theories. In contrast with the 
dyadic subject−object interaction, the approach highlights the triad interactions 
among the subject, the instrument, and the object towards which instrumented 
action is directed.

From the instrumental approach perspective, there is a distinction between an 
artefact as a material or semiotic construct and an instrument as a psychological 
construct that emerges from the subject’s activity with the artefact for a given goal 
through the process of instrumental genesis. The instrument is composed by a part 
of the artefact and a scheme of its use (Vergnaud, 1998). Vergnaud’s (1998) recon-
ceptualisation of the Piagetian concept of scheme provides a basis for a definition of 
instrumented action schemes. For Vergnaud, a scheme, defined as a stable organisa-
tion of the subject’s activity for a given goal, comprises four components: (i) the 
goal of the activity; (ii) rules-of-action (RoA), generating the behaviour according 
to the features of the situation; (iii) operational invariants: concepts-in-action and 
theorems-in-action, which are propositions considered as true and governing the 
RoA; and (iv) possibilities of inferences.

Trouche (2004) considers that students’ instrumental geneses in the mathematics 
classroom may need to be steered by a teacher, because the didactical introduction 
of artefacts impacts the students’ activity and the teacher’s work. To describe the 
ways that the teacher guides the students’ instrumental geneses, and provides a 
learning environment, he proposes the concept of instrumental orchestration refer-
ring to the systematic and intentional organisation, arrangement, and didactical use 
of artefacts (including the digital ones) in the classroom. Trouche explains that, 
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through the teacher’s instrumental orchestration, not only individual aspects are 
mobilised in the class, but also social and collective aspects that influence students’ 
instrumental geneses. The teacher steers the development of students’ schemes by 
proposing tasks and resources, with certain goals for which the artefact can or must 
be involved, and by trying to foster the development of associated schemes.

Later, the concept of instrumental orchestration was enriched with the contribu-
tions of Drijvers et al. (2010), who considered Trouche’s (2004) didactical configu-
ration and exploitation mode components and introduced the didactical performance 
component to explain the modifications, adjustments, and changes made by the 
teacher in response to events and interactions in class. Drijvers et al. (2010) describe 
in detail the three components:

• Didactical configuration—“an arrangement of artefacts in the environment, or, in 
other words, a configuration of the teaching setting and the artefacts involved in it”;

• Exploitation mode—“the way the teacher decides to exploit a didactical configu-
ration for the benefit of his or her didactical intentions [it] includes decisions on 
the way a task is introduced and worked through, on the possible roles of the 
artefacts to be played, and on the schemes and techniques to be developed and 
established by the students”; and

• Didactical performance—which “involves the ad hoc decisions taken while 
teaching on how to actually perform in the chosen didactical configuration and 
exploitation mode” (p. 215).

As part of the exploitation mode, we see the teacher’s decisions on the way tasks are 
worked through to possibly also include assessment and grading.

Instrumental orchestration has been used in mathematics education studies with 
various technologies such as the graphing calculator (e.g., Trouche, 2004), dynamic 
geometry software (e.g., Ndlovu et al., 2013), spreadsheets (e.g., Haspekian, 2014), 
and mathematics applets (Drijvers et al., 2010). Such studies have focused mostly 
on the elementary level (e.g., Gueudet et al., 2014; Santacruz & Sacristán, 2019) or 
the secondary level (e.g., Drijvers et al., 2014; Ruthven, 2014). It appears that only 
a few studies focus on the tertiary level (e.g., Ndlovu et al., 2013; Thomas et al., 
2017). Other than in our own work (Buteau et al., 2020c; Sacristán et al., 2020), we 
haven’t found any instrumental orchestration study focusing on programming tech-
nology. Furthermore, most studies examine aspects of the three orchestration com-
ponents, whereas few concentrate on specific student schemes and their 
corresponding rules-of-action (e.g., Drijvers et  al., 2010). To our knowledge, no 
study analyzes the instrumental orchestration of technology-rich investigation proj-
ects. In this chapter, we focus our orchestration analysis of teaching to use program-
ming for authentic mathematics investigation projects by associating its elements to 
potentially intended students’ schemes (i.e., what the instructor does with the inten-
tion to support students’ instrumental geneses). In the next section, we describe a 
student’s instrumental genesis in our context.
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3.2  Instrumental Genesis of Using Programming 
for Mathematics Investigation Projects

The unit of analysis in the instrumental approach is the instrument-mediated activ-
ity. In our context, the students’ instrument-mediated activity involves students 
using programming with a goal of mathematics investigations in project-based 
tasks. More precisely, the artefact is a programming language together with an inte-
grated development environment (IDE), for example, Python in Jupyter Notebook 
IDE, or VB.NET in Visual Studio IDE (Buteau et al., 2019a). By using program-
ming in these mathematics investigation projects, students transform programming 
into a mathematical instrument, associating some aspects of programming and 
schemes of use for specific sub-goals such as those described in the development 
process model illustrated in Fig. 4 (Buteau et al., 2019a; Buteau & Muller, 2010). 
For example, the scheme of articulating a mathematics process in the programming 
language, as a sub-scheme of the scheme of designing and programming an object 
(Step 3 in Fig. 4). (For a dynamic illustration of the model with a student activity, 
see Balt & Buteau, 2020b.)

The model represents the student engagement in the activity involving multiple 
steps that arise in a dynamic and non-linear way. The development process (DP) 
model, which aligns with mathematicians’ process when using programming in 
their research work (cf. Broley et al., 2018), provides a basis for understanding (the 
structure of) a student’s activity and schemes s/he mobilises and develops (Buteau 
et al., 2019a; Gueudet et al., 2020). Unlike studies that focus on one scheme, stu-
dents in our context mobilise and develop a web of schemes whose ramifications 
include, among others, those shown in Fig.  4 (Buteau et  al., 2020a, b). (For a 
dynamic visualisation of the web of schemes, see Balt & Buteau, 2020a.)

Fig. 4 Development process (DP) model of a student engaging in programming for an authentic 
pure or applied mathematical investigation. (Buteau et al., 2019a)
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3.3  Research Question and Link with Our Previous Work

The question guiding the study presented in this chapter is: What do we learn about 
the teaching of using programming for authentic mathematical investigations by 
interpreting within the theoretical frame of instrumental orchestration, considering 
programming as an artefact? Building on our previous work on students’ instrumen-
tal geneses when using programming (Buteau et al., 2019a; Gueudet et al., 2020) 
and on constructionist facets of related teaching (Buteau et  al., 2019b; Sacristán 
et al., 2020), this chapter deepens and extends a preliminary study (Buteau et al., 
2020c) focusing on teaching aspects that aim at steering students’ instrumental 
geneses.

The chapter further develops the themes discussed in the first edition of this book 
(Buteau & Muller, 2014) in which we had discussed the dual role of university 
instructors, as teachers and policy makers, in relation to the classroom implementa-
tion of technology while guided by departmental policies. This role was illustrated 
through a discussion, guided by Assude’s (2007) concept of instrumental integra-
tion, of the teaching of MICA I (which was extended later to student development 
stages of their web of schemes; see Buteau et al., 2020b). More precisely, this chap-
ter extends the concepts of the instrumental approach used in (Buteau & Muller, 
2014) by including instrumental orchestration, alongside building on our deeper 
and more recent understanding of the student activity and learning processes at 
stake (e.g., Buteau et al., 2019a; Gueudet et al., 2020). Furthermore, the analysis in 
this chapter mainly focuses on the teaching of MICA II whereas the 2014 chapter’s 
main focus was on MICA I. Next, we present the methods used in our study.

4  Methods

We investigate the teaching of using programming for authentic mathematical 
investigations using the case of the instrumental orchestration of Bill, the MICA II 
instructor during Winter 2019. This is part of a 5-year non-design and non- 
interventionist- based research whereby some parts (participant recruitment and data 
collection) were designed in a way that would be least intrusive to (or constrained 
by) the naturalistic learning environment (i.e., the undergraduate MICA I–II–III/
III* course sequence aforementioned).

4.1  Participant

Bill is a mathematician, a remarkable teacher with much teaching experience (over 
30 years) who played a key role in the initial and ongoing development and teaching 
of MICA courses (Buteau et al., 2015b). This dual role of the instructor reflects that 
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educators in a post-secondary context are often involved in the development and/or 
creation of courses, as well as in their teaching (Buteau & Muller, 2014). Bill is not 
researcher; rather, he volunteered to participate in this project. He was the only 
MICA II instructor when we first collected data for this second MICA course. By 
Winter 2019, Bill had taught this second course about 15 times.

4.2  Data Collection

Data in our research about Bill’s teaching included all MICA II course materials 
(course outline, assignment guidelines) and semi-structured task-based inter-
views with Bill which were conducted shortly after the deadline for each of the 
four assigned and one original mathematics investigation projects (whose topic 
is chosen by the students). These 30−40-min interviews took place between 
January 2019 and April 2019. The interview questions prompted Bill to describe 
for each assignment: the learning objectives; the anticipated straightforward and 
more challenging parts (and why); and, for each part of the assignment, the 
expected knowledge to be mobilised by students. For this study, we use only one 
of Bill’s project assignments, and we select the Assignment 1, a starting point for 
our long-term research. This assignment contains four short investigation prob-
lems involving the Monte Carlo integration method (we discuss Bill’s problem 
choice in the next section; see Appendix or Ralph (n.d.) for a complete set of 
MICA II assignment guidelines):

• Problem 1. Buffon Needle problem;
• Problem 2. Area between two curves;
• Problem 3. Hypervolume of the unit hyper-sphere in R4;
• One of the following: Problem 4. Buffon-Laplace problem; or Problem 5. Infinite 

limit of the probability that two randomly selected integers smaller than n are 
relatively prime.

Data for this study also included an additional post-course 90-min interview (in 
February 2020) that focused on Bill’s expectations and guidance about two specific 
student schemes associated to the programming-based mathematics investigation 
project activity. We selected these two student schemes based on our detailed analy-
sis of their components in our previous work (e.g., Buteau et al., 2019a). The inter-
view was structured in two parts: (i) Bill’s reflections arising from one open-ended 
question; and (ii) Bill’s comments from a provided list of rules-of-action for each of 
the two student schemes (identified in Buteau et al., 2019a), viewed as a reflective 
process on Bill’s part (akin to part of a reflective investigation, in terms of the meth-
odology proposed by Gueudet & Trouche, 2012). We chose to focus on rules-of- 
action rather than operational invariants in order to align, in the future, Bill’s 
reflection with the analysis of students’ data about their explicit strategies (i.e., 
rules-of-action).
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Finally, the data also included a departmental program description document 
published when the MICA courses were designed and adopted in 2000. This docu-
ment contains a detailed course description, including learning objectives, sug-
gested mathematics content, assessment practices, and how these courses fit with 
the undergraduate mathematics program principles (Buteau et al., 2015a).

Usual ethical protocols for this study were reviewed, received clearance, and 
were put into place accordingly. The instructor was formally invited to participate 
by an email invitation, and he confirmed his participation by signing an informed 
consent letter; as agreed, every interview was scheduled at a time that suited the 
instructor.

4.3  Data Analysis

Bill’s Assignment 1 interview and project guidelines were analysed by identifying 
potential student schemes that might have, implicitly or explicitly, intentionally 
been promoted by Bill. This was done in two stages: first, the data was analysed by 
two coders, and second, two additional coders (all of whom are co-authors of this 
chapter) reviewed the coding to reach consensus. The first part of Bill’s post-course 
interview focused on two student schemes, analysed similarly by identifying poten-
tial rules-of-action; the second part of the interview was analysed by first selecting 
excerpts representing his responses, summarised in a table, and categorised by asso-
ciating his guidance with what he thinks of students’ rule-of-actions enactment. 
This was also done in two stages similarly as mentioned above but involving one 
additional co-author. In most cases, we identified the schemes and rules-of-actions 
based on our previous work on students’ instrumental geneses (e.g., Buteau et al., 
2019a), and, in a few instances, based on our own understanding of and experience 
with the activity.

Finally, we looked through the 2000 document to provide us with the general 
guidance to instructors for the MICA courses (as policy document), including their 
main didactical intention. Moreover, throughout the analysis, we build on our mul-
tifaceted understanding of the teaching of MICA courses since their start (e.g., 
Buteau et al., 2015a, 2019b).

In order to deepen our analysis, we focus our examination on the development of 
schemes related to the programming artefact, rather than considering a system of 
artefacts involved in teaching (such as “mathematics,” “internet,” etc.). In our analy-
sis, we do not elaborate on Bill’s schemes; when we use the term “scheme,” it 
always refers to students’ schemes. Also, we did not directly observe Bill’s teach-
ing. Only a part of his teaching was accessible through the course material he pro-
duced. This is a limitation of our research, but we also collected student data from 
Bill’s class (such as Cassie’s), allowing to relate in the future their instrumental 
geneses with Bill’s orchestration. Next, we present the results of our analysis of 
Bill’s instrumental orchestration.
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5  Instrumental Orchestration of Using Programming 
for Math Investigation Projects: A Case Study

Our analysis of Bill’s instrumental orchestration is twofold: (i) by considering his 
guidance towards all student schemes involved in the activity (i.e., schemes repre-
sented by steps and cycles of the DP model, shown in Fig. 4); (ii) by examining 
Bill’s teaching focused on his guidance towards two specific student schemes only, 
namely, the scheme of articulating in the programming language a mathematics 
concept and the scheme of validating the programmed mathematics.

5.1  Bill’s Overall Instrumental Orchestration

In this section, we outline each orchestration component (didactical configuration, 
exploitation mode, and didactical performance) of Bill’s teaching of MICA II by 
distinguishing his role as policy maker (of MICA courses) and as a teacher. Excerpts 
from Bill’s interview data were selected to provide evidence of his orchestration 
associated to each step of the student DP model (Fig. 4).

5.1.1  Didactical Configuration

The didactical configuration of an instructor’s orchestration concerns an organisa-
tion of the artefact in the course (Drijvers et al., 2010, p. 215). In the case of Bill’s 
orchestration, we found that the choice of programming technology use in MICA 
courses and the teaching setting configuration was established in 2000 by the math-
ematics department (including Bill), and has since remained (Buteau & Muller, 
2014; Buteau et al., 2015a).

The established teaching format involves 2  h of lecture (in a regular lecture 
room) and 2 h of computer lab (one computer per student) weekly, and with teach-
ing assistants (with an instructor/teaching assistant−student ratio of about 1:10).

In regards to the artefact, there is an agreement among the instructors that MICA 
I−II courses mainly use VB.NET language with Visual Studio. There are now two 
MICA III courses; one for mathematics and science majors moving on to C++ pro-
gramming language with GNU IDE, and the new MICA III* course for future math-
ematics teachers using VB.NET, Scratch, and Python with Jupyter Notebook. 
Specifically, in the case of Bill’s teaching in 2019 of MICA II, he decided to also 
introduce Excel technology as part of his second assignment. Bill justifies: “I also 
think… that every math major has to be able to use Excel, because this is one of the 
standard tools in the outside world” (B.A2.143).

Finally, we also mention resources (textbook, lecture notes, internet, etc.) that 
are part of the didactical configuration yet not made explicit in the 2000 
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departmental document because these are assumed in any mathematics courses with 
a lab component.

5.1.2  Exploitation Mode

The exploitation mode concerns “the way the teacher decides to exploit a didactical 
configuration for the benefit of his or her didactical intentions” (Drijvers et  al., 
2010, p. 215). Once again, in the case of Bill’s orchestration, we found that the main 
didactical intention grounding how programming technology would be integrated 
into a sequence of three MICA courses was established in 2000 by the mathematics 
department; students would learn to exploit programming for mathematical work 
(Buteau et al., 2015a). Indeed, the 2000 departmental document stipulates:

[Students] will confront problems from pure and applied mathematics that require experi-
mental and heuristic approaches. In dealing with such problems, students will be expected 
to develop their own strategies and make their own choices about the best combination of 
mathematics and computing required in finding solutions.

Furthermore, the core of each MICA course is the pure and applied programming- 
based mathematics investigation projects that account for 70−80% of a student’s 
final MICA course grade. This is a key element of the exploitation mode (here 
again, the “instructor” is viewed as “policy maker faculty” rather than a “teacher”); 
through these projects, the department thus appears to expect that students engage 
in the process described in Fig. 4 (Buteau et al., 2015a). During lectures, the instruc-
tor introduces students to mathematics that is needed for the assigned individual 
mathematics investigation projects that are worked on during the labs. We interpret 
such projects as tasks designed to promote the development and reinforcement of 
various student schemes, such as the scheme of articulating a math process in the 
programming language. Because the instructor chooses the topic and direction of 
these mathematics investigations and communicates it through detailed guidelines, 
we interpret such projects to aim at students developing their web of schemes asso-
ciated mainly to Steps 3–7 of the DP model (Fig.  4). Each MICA course also 
involves a final original project, in lieu of a final exam, in which students work 
individually or in pairs, and choose a topic of their own and the direction of the 
mathematics investigation. Such final projects can be viewed as an intention for 
students to develop further or mobilise their complete web of schemes including 
those associated to Steps 1 and 2.

For the individual MICA instructor (as a “teacher”), the way s/he decides to 
exploit the didactical configuration in order to meet the didactical intentions envi-
sioned and decided by the department includes decisions about the mathematics 
content and related investigation projects. It also includes decisions about the ways 
the content is developed in lectures and synchronised with the investigation project 
work in the labs.

In terms of the choice of mathematics content in MICA II, the instructors over 
the years have selected various topics and areas of mathematics relevant to a 
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computational approach for investigations, often according to their own evolving 
mathematics interests and research (Buteau et al., 2019b). In the case of Bill, he 
comments on the computational relevance of the Problem 5 investigation and his 
personal interest in this area:

[Problem 5] generated a lot of great discussion… I love the idea… I like analytic number 
theory, I love the idea that, um, there are patterns… I jump up and down about that with the 
[students]... I can sell this assignment to my students. (B.A1.174)

We associate Bill’s choice of “relevant topic” to Step 1 (Fig. 4), and interpret it as 
an implicit guidance to students (to develop a scheme of) identifying when a pro-
gramming approach is an added value for the work, such as for math that cannot be 
done by hand.

Using various resources (including their own research), the MICA II instructor 
designs programming-based mathematics investigation projects and develops 
guidelines aligned with both the planned lecture content and planned guidance in 
lab as student work through the projects. In the case of Bill, he designs MICA II 
project assignments by “playing on the computer with some math” and decides on 
parts of an assignment (and guidelines) by thinking on the potential difficulties that 
MICA II students may confront, for example, when programming the mathematics 
(Steps 3−5 in the DP model). Bill mentions:

I actually tried many many many things before we got the formula that you have here and I 
would try something and I’d say, “That’s too hard, that comes too fast, this has to go, this 
has to be sequenced differently.” (B.A1.43)

As Bill designs the investigations, he appears to have in mind a certain student back-
ground that he expects and wishes to build on. For example, we interpret Bill’s 
expectations from students to be able to mobilise usage schemes of programming in 
VB.NET (Step 3) developed in MICA I. This is suggested by Bill, when he says 
about Problem 1 that it is “to keep them calm” as “there are no new programming 
tricks… it’s all review.” Furthermore, for this same Problem 1, Bill gives students a 
code to build from. Bill says that providing students with a “well written piece of 
code … helps them review… proper coding practice” (e.g., “how to change from 
math coordinates to graph coordinates… separately and clearly”). Also, Bill requires 
students to submit, for Problem 3, a print-out of their code rather than the program; 
he says: “I’m telling them I’m going to actually read the code on the page, it sends 
that signal” (B.A1.154). We interpret it as Bill’s intention to steer students’ mobili-
sation or development of their scheme of coding with rule-of-action “I write codes 
according to standards.”

Bill suggests that he constantly has in mind the careful synchronisation of the 
mathematics content developed in lecture and the investigation project work initi-
ated in lab sessions. Bill notes:

Part of this course is to try to understand the idea that we can take a real-world situation, 
and we can distill from that the mathematics, and then take that mathematics and write a 
simulation based on that mathematics, so it’s a kind of a two-part process, the real world, to 
the model, write the formal model that we do in the classroom, and then finally the com-
puter simulation that we do in the lab. So, I’m thinking about that all the time, that, that 
sequence. (B.A1.96–98)
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We associate these respectively to Steps 1, 2, and 3 in the DP model, and concerning 
the student scheme of articulating in VB.NET a mathematics concept which we 
elaborate more in Sect. 5.2.

The project guidelines developed by the MICA instructor outline the topic to be 
investigated, within the mathematics context developed (i.e., synchronised) in the 
lectures, together with some details of the investigation design (such as input and 
output) sometimes complemented with partial code (as for Problem 1 mentioned 
above). We associate these overall to Steps 1, 2, and 3 in the DP model. The guide-
lines sometimes also detail how to use the program for the mathematical investiga-
tion (e.g., by suggesting a range of parameter values) and/or emphasise the need to 
interpret output within their mathematics knowledge (e.g., by requiring to justify 
their conclusion from the investigation). We associate these to Steps 5 and 6 in the 
DP model, respectively. In Problem 3, Bill’s guidelines read:

The output should show the mean and standard deviation of the samples. Estimate the 
hypervolume accurate to one decimal place and use your observations to explain why you 
are confident that your first decimal place is correct.

This suggests to the students that they must apply their statistics knowledge in order 
to appropriately use their program and justify their answer (Step 5−6 cycle). Bill 
elaborates his view on this question:

The final part of that [Problem 3] is that they need to think about what does it mean… what 
does confidence mean? How does the standard deviation have anything to do with that, how 
will you use the standard deviation and sample size to convince me that you have one deci-
mal place of accuracy? (B.A1.117–119)

In fact, Bill mentions that he revised the guidelines due to his dissatisfaction from 
past students’ poor interpretation of their program output. We interpret that Bill 
implicitly viewed that more student guidance was needed for this problem in rela-
tion to Step 6.

Bill deliberately includes a more challenging question (selection between 
Problem 4 or Problem 5) as part of Assignment 1 where he plans close to no extra 
guidance beyond the statement of the problem (i.e., Step 1): “But there has to be a 
question on every assignment that, is something to think about… This one is solo. 
Um, they don’t get very much help from me” (A1.162–4). We interpret Bill’s inten-
tion that students mobilise and develop, without his help, their whole web of 
schemes for this particular investigation task.

5.1.3  Didactical Performance

The didactical performance concerns the “ad hoc decisions taken while teaching on 
how to actually perform in the chosen didactic configuration and exploitation mode” 
(Drijvers et al., 2010, p. 215). In the case of Bill’s orchestration, and of any MICA 
instructor’s orchestration, teaching in lectures and labs involves ad hoc decisions 
aligned with how they have planned to support students’ learning to use program-
ming technology for pure and applied mathematical work mainly through their 
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individual mathematical investigation projects. Based on interactions with students, 
individually or collectively, and on observations of interactions among students, the 
instructor takes decision as to how to respond. This response may take form as indi-
vidual help addressing what we interpret as an identified student’s difficulty to 
develop/mobilise a certain scheme, or as a class intervention aiming at what we 
interpret as steering the collective development a certain scheme.

Bill recalls many individual interventions during the labs. In one intervention, 
Bill expects from students what we interpret as mobilising their scheme of debug-
ging (programming cycle in the DP model) when needed. He explicitly mentions it 
to students: “it will be unusual for either me or the TA [teaching assistant] to debug 
your code; that’s not our job” (B.A1.207–8). He recalls an intervention with a stu-
dent, aligned with his expectation, as he sits down beside the student: “Explain the 
principles and the ideas. … If you’re desperate, we might look through your code” 
(B.A1.216). As Bill explains, “In first year they need much more support, but in 
second year they have to do it, you know, themselves” (B.A1.216). We interpret 
Bill’s response as a reminder to the students of this scheme’s effective rules-of- 
action: step back from the code, think through the big picture of the code design, and 
think of the different parts of the code.

Bill recalls another individual intervention with a student who was communicat-
ing enthusiastically to him his finding about Problem 3:

In the lab I had a very good student say, “Look, I’ve written the program, and uh, the area 
of the region is 4.25.” And I said, “But, but, look, the region you’re looking at sits inside an 
area of 4.” And he said, “Yes but look, I’ve got an area of 4.25.” And I kept saying, “Maybe 
you need to check that.” (B.A1.102)

We interpret Bill’s response as steering the student to the theorem-in-action, An 
unexpected outcome from my code may indicate that there is something wrong with 
my code of the scheme of validating the programmed mathematics.

Bill also recalls collective responses in lab, such as when addressing the stu-
dents’ difficulties in explaining their output from the program in Problem 3, which 
we interpret as steering the collective mobilisation and development, for this task, 
of schemes associated to Step 6:

I’m very interactive in the lab… so when we get to working on this question I’ll be talking 
about variability on the blackboard… you know, what does it mean in terms of the answers 
you’re getting here. … It’s an opportunity to work on the board with them… none of this 
sits by itself. (B.A1.140)

In the next section, we further our analysis by focusing on two specific student 
schemes.

5.2  Bill’s Orchestration of Two Selected Student Schemes

We organise this section by presenting, for each scheme, first Bill’s open-ended 
reflection and second his comments when he was shown a list of rules-of- 
action (RoA).
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5.2.1  Student Scheme of Articulating a Mathematics Process 
in the Programming Language

Bill acknowledges there is a transition between abstract mathematics and operation-
alizing the mathematics as a code. He explains that “You have to understand things 
so much better if you’re going to code it” (B.Post.33). Furthermore, Bill says “that’s 
always a leap” (B.Post.24) and “so it’s the translation really that’s the hard part” 
(B.Post.47). He addresses this challenging transition for students by preparing and 
presenting in lecture the mathematics in a format that facilitates its coding:

I would have done all the mathematics on the blackboard… very carefully and very clearly 
because I know that they’re going to program it. So even when I’m teaching, I’ve oriented 
the lecture toward programming, in the sense that they can take what I’ve written on the 
board and that’s the beginning in some sense of the code. (B.Post.24–25)

Furthermore, Bill expects students to have their lecture notes in front of them during 
the lab sessions and exploits them during individual interventions by pointing at 
them. We interpret Bill’s action as part of his exploitation mode and as steering 
students to use the I start by translating what I would do by hand RoA.

In addition, Bill mentions developing his lecture notes throughout the course in 
such a way that the “leap” to be undertaken by students is purposely increased in 
later assignments. Bill justifies this didactical choice with his belief that there is no 
learning if there is no struggle: “It’s a calculated thing how much frustration can my 
students stand before they give up” (B.Post.38).

As for during the lab sessions, Bill comments about the extent of his individual 
help to students to code mathematics processes, namely, devolving from a lot of 
direct help at the beginning to only giving hints later on. We interpret Bill’s decision 
and action, which are involved in aspects of both his exploitation mode and didacti-
cal performance, as justified by his aforementioned belief. This appears to promote 
students to enact RoA relevant to the context, including I start by translating what I 
would do by hand. Furthermore, Bill reports sometimes sitting beside students, tak-
ing a sheet of paper, and saying “let’s just think about how this all is going to work” 
(B.Post.43). This points to Bill’s didactical performance where he appears to steer 
students to the I organise on paper the programming of the concept RoA.

Table 1 summarises selected excerpts from Bill’s reactions when he was shown 
a list of RoA. We interpret Bill’s responses about his guidance to each RoA as indi-
cating what elements of his orchestration he viewed important in regards to the 
guidance of this scheme. Without having seen the list of RoA before, Bill promptly 
identified some of his actions corresponding to an obvious guidance of the RoA. We 
interpret that he implicitly knew about his guidance. For some RoA (d, g, h, i, and 
j), Bill mentions his guidance and that according to him, students often or even 
always enact the RoA. For others (a, e), Bill indicates he wished he had guided the 
students further, and mentions that according to him, only a few students enacted 
these RoA. As for RoA “f,” Bill interestingly appears to realise that he might have 
unconsciously guided students to this RoA, whereas he believes this might have 
been too early for them as learners using programming for mathematics 
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Table 1 Selected excerpts from Bill concerning his guidance (middle column) of RoA (left 
column) pertaining to the scheme of articulating a mathematics process in the programming 
language, and his views/observations of students’ enactment of these RoA (right column)

Student rules-of-action 
(RoA): When I program a 
mathematics concept I do 
the following:

Bill’s responses to how he guided 
students to develop or prompt the 
corresponding RoA

Bill’s views and 
observations of whether 
students enact or not the 
corresponding RoA

a. I work through one or 
more examples on paper

“I wish I had said more and more 
about pencil and sitting with a sheet of 
paper for five seconds and thinking 
about how this is all gonna work. I 
think that would be helpful” (306).
“It’s funny talking to you, it’s, it’s—I 
wish I had thought more about pushing 
them to the big picture. I have said 
things like that, but I haven’t really 
really emphasised it, but I have 
emphasised structured programming” 
(304).

“Rare. … They want to 
dig into the code 
immediately.” (135)

b. I work through one or 
more examples in my 
mind

[No comment] “Most of them do that at 
some level.” (138)

c. When I start typing in 
VB.NET I first declare all 
variables I think I will 
need

[No comment] “Certainly they do a lot 
that.” (139)

d. I translate into VB.
NET what I think I do on 
paper

[Careful presentation of the math 
development in lectures—discussed 
above]

“Yes, they do a lot of 
that.” (148)

e. I organise on paper the 
programming of the 
concept

“I wish I had said this in, a lot more 
strongly” (153).

“Oh, I wish!” (153).

f. I organise the 
programming of the 
concept as I go

“It’s possible that they are following 
my possible ‘bad example’ [laughing)” 
(176).

“Definitely. They do it on 
the fly.” (158)

g. I organise my code by 
using functions

“They do it partly because also I sit 
beside them and I say: ‘don’t you dare 
write all that code in one block.’… 
And this idea of breaking code down 
into small chunks is something… I 
really emphasise that” (188−192).

“They do a lot of that.” 
(190)

h. I ask someone (e.g., a 
peer, a TA, or the 
instructor)

“A few students are shy to ask. ... And 
you have to watch for that. … If 
they’re really confused and really 
upset, they won’t talk to you. … So 
that requires… a very gentle kind 
intervention and support.” (198–201)

“They’re very good at 
it…In my tutorials, um I 
can’t keep up; sometimes 
with the hands. It’s that 
busy.” (196, 205)

i. I review the 
mathematics concept 
(e.g., in my lecture notes, 
on internet, etc.)

“But you know because they’re going 
to code it, there’s extra emphasis [in 
lecture] on getting [the math] down not 
just correctly but so cleanly and clearly 
right on the board.” (210)

“They almost always 
have their lecture notes 
open in front of them 
during the lab.” (207)

(continued)
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Table 1 (continued)

Student rules-of-action 
(RoA): When I program a 
mathematics concept I do 
the following:

Bill’s responses to how he guided 
students to develop or prompt the 
corresponding RoA

Bill’s views and 
observations of whether 
students enact or not the 
corresponding RoA

j. I search online or in 
textbook for how to use 
some programming 
concepts (e.g., loop, exit 
loop, functions, arrays, 
etc.)

“I encourage them to… I tell them 
where to go, how to find … where, I 
give them a direction… I sometimes 
teach it sometimes… depends on the 
student. … I just send them to look for 
the resources.” (211–216)

“Yes, they go online. … 
All the time.” (211–213)

k. [Other?] Open the 
blackbox. “Stop the 
program and look inside”

“I’m always telling my students to… 
pump out what’s in there or put in a 
stop and just see what’s happening 
with the code at that point.” (220)

investigations. Finally, Bill commented that one RoA (k) was missing in the list, 
which we interpret that to him, coding a mathematics process is done incrementally 
and that debugging is inherently part of this distributed process.

5.2.2  Student Scheme of Validating the Programmed Mathematics

This student scheme is related to the previous one as it concerns a complex pro-
cess for students to control what they do by articulating a mathematics concept in 
VB.NET. Bill’s immediate response about his guidance of students’ control was 
that he demonstrates a working project in the lab and expects students to use the 
output of his program to validate their programmed mathematics by comparing 
with the feedback of their programs; he mentions: “I write [it]… at the beginning 
of the lab, I run it, and the data is sitting right there. Can you emulate this?” 
(B.Post.68, 80).

We interpret Bill’s action as a collective steering of students to the I use visual 
output to validate the programmed mathematics and I compare the output of my 
program with an example from a trustworthy source RoA. Furthermore, still as 
part of his exploitation mode, Bill projects on the screen a “simple case” for 
students to replicate, “so that they can verify that they are doing it correctly in 
that simple case. … If they can duplicate that, then they feel confident that they 
can do more complicated things” (B.Post.85−86). We interpret Bill’s action as to 
steer students to the I trust that I translate in VB.NET what I do on paper RoA. We 
interpret it also as guiding students to mobilise, adapt, and develop schemes 
involved in a simple case as they “work incrementally,” such as the two schemes 
under discussion. To us, this RoA is the decision of not having to act at this time 
about checking the in- progress coding of the mathematics concept. It appears as 
the first entry in Table 2 that was shown to Bill after his open comments that we 
just discussed.
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Table 2  Selected excerpts from Bill concerning his guidance (middle column) of RoA (left 
column) pertaining to the scheme of validating the programmed mathematics, and his views/
observations of students’ enactment of these RoA (right column)

Student rules-of-action (RoA): 
When I program a mathematics 
concept I do the following:

Bill’s responses to how he 
guided students to develop or 
prompt the corresponding RoA

Bill’s views and observations 
of whether students enact or 
not the corresponding RoA

A. I trust that I translate in 
VB.NET what I do on paper

“[Students] do like to know it 
corresponds with something 
that I’ve given to them as a 
start.” (235)

“Umm, I don’t think they 
much trust what they’re 
coding” (234−235)

B. Once I have programmed it 
all, I run the program with a 
few different inputs and 
compare the output with my 
hand calculations

“They have to do it by hand 
and they have to do it by 
code, and the two things have 
to agree so I think that’s a 
really important tool for us as 
teachers… you know 
theoretically… and then you 
watch it happen 
approximately.” (238)

“Yes that’s built in some… 
of the assignments” (236)

C. I check a few times as I 
program by compiling with a 
few input

“Okay so the different inputs 
and doing it by hand yes that’s 
really important for a beginner 
and that’s built into some of 
my assignments. I think that’s 
really important that they do 
that.” (248)

“Yeah they do that all the 
time.” (255)

D. I compare my program 
with that of a peer

“[Students do this] constantly 
and that’s encouraged” (257). 
“It’s a public forum. Chat, talk, 
discuss” (261). “We are 
collaborating and I want to 
foster that atmosphere.” (268)

“Constantly… [they’re] 
functioning exactly the way I 
want them to function, 
they’re sharing, they’re 
working together, they’re 
collaborating and this is our 
time. This is what people are 
doing in this age” (257, 
267).

E. I compare the output of my 
program with that of a peer 
or with examples from the 
internet

“There are places where the 
answers are on the internet and 
I encourage them to check that 
their program gives that 
output.” (270)

“Yes.” (270)

F. I use other technology 
(Maple, Desmos, etc.) to 
generate an example and 
compare it with the output of 
my program

“Part of the problem is that 
Maple has no existence outside 
of academia” (273).

“No. I’ve never seen that.. I 
mean it’d be great actually if 
they did- if they used Maple 
… and Maple could do it.” 
(271–272)

G. I ask someone (a peer, a 
TA, the instructor, etc.)

[Bill had previously mentioned 
unsolicited individual help and 
his encouragement of 
collaboration; see D above]

“Yes, constantly.” (283)

(continued)
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Table 2 (continued)

Student rules-of-action (RoA): 
When I program a mathematics 
concept I do the following:

Bill’s responses to how he 
guided students to develop or 
prompt the corresponding RoA

Bill’s views and observations 
of whether students enact or 
not the corresponding RoA

H.* I don’t really know if it 
works
*This is not a RoA proper but 
rather an indication of lack of 
mobilisation of the scheme

“Well they’ll ask me they say, 
‘I wrote it, I have no idea: is it 
working or not?’ Right, and so 
then there’s all kinds of 
discussions and… chat. ‘Let’s 
go through it together! Let’s 
see how it’s doing!’” 
(289–290)

“Yes, there’s a good amount 
of that.” (285)

I. [Other?]: “So one thing 
that’s not on here is the idea 
of working incrementally. You 
put something in, you try it, 
and then you add to that, you 
try it, you add to that, you try 
it. So that incremental 
approach is very important to 
them.”

[No comment on his guidance] “They will often test… they 
develop programs 
incrementally, so they’ll 
write, you know, just a 
couple of like a loop or 
something and they just look 
and see: does that make 
sense?” (294)

Again, we interpret Bill’s responses as indicating what elements of his orchestra-
tion he viewed as important in relation to this scheme. For some RoA (B, C, D, E, 
G), Bill mentions about his guidance and that according to him, students often enact 
the RoA. For RoA “A,” Bill reiterates his guidance mentioned during his open com-
ment and adds that his view and observations is that students mostly do not yet enact 
this RoA. For RoA “F,” he reflects that he does not guide students, has not observed 
any of them enacting it, and appears not to be concerned as he views Maple not a 
useful technology outside academia. As for what we could describe as a non-RoA 
“H,” Bill answers by indicating individual interventions to assist students, step-by- 
step, in the process of controlling their work. Finally, just as for the previous scheme, 
Bill comments that the working incrementally RoA “I” is missing in the list. We 
interpret it as emphasising that for Bill, coding, testing/validating, and debugging 
are naturally done through a dynamical and cyclical process.

In the next section, we generalise the findings from Sect. 5.1 through a model 
highlighting the connections between teaching elements and intended students’ 
instrumental geneses.

6  Model of Instructor’s Instrumental Orchestration 
and Students’ Instrumental Genesis Alignment

Our analysis in the previous section showed that Bill’s didactical configuration, his 
main didactical intention, and the project element as part of his exploitation mode 
arose from his roles as designer and policy maker rather than as a course instructor. 
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It turns out that these three components are the same for all MICA courses adopted 
by the department in 2000. This finding is supported by an examination of the 
course material (course syllabi, project guidelines, lab guidelines, etc.) from all 
MICA I−II−III/III* courses. Furthermore, these three elements are followed and 
integrated by all MICA instructors. The finding is further supported by various pre-
vious background work about MICA, including about its teaching (e.g., Buteau & 
Muller, 2014, 2017; Buteau et al., 2015a, 2015b, 2019b).

Reviewing our analysis of Bill’s orchestration from this broader perspective 
leads us to propose a model illustrating an instrumental orchestration of using pro-
gramming for authentic mathematics investigation projects (see Fig. 5). More pre-
cisely, we are proposing a “model of (instructor’s) instrumental orchestration and 
(students’) instrumental genesis alignment” (OGA model) of using programming 
for authentic pure or applied mathematics investigation projects. The diagram on 
the left in Fig. 5 represents the main didactical intention and the three components 
of an instrumental orchestration. Selected key relations among those components 
are illustrated by the vertical arrows (which we elaborate further below). Written in 
black are elements of the orchestration deduced from the MICA instructor’s role as 
policy maker, and written in orange, from their role as instructor. The horizontal 
yellow arrows link each of the instructor’s orchestration elements to parts of the 
intended student activity represented by the student DP model (Fig. 4), in the dia-
gram to the right. In other words, the yellow arrows link the instructor’s teaching 
activity and decision-making to intended students’ development of their web of 
schemes (instrumental geneses) associated to different steps of the student activity.

Main Didac�cal Inten�on: 
Students learn to exploit programming technology for pure or applied mathema
cal work

Didac�cal Configura�on

Exploita�on Mode

Didac�cal Performance

• Programming language(s): VB.NET for MICA I-II and C++ for MICA III or
VB.NET, Scratch and Python for MICA III*

• Computer lab (1 computer/student)
• Teaching format: 2hrs lectures + 2hrs computer labs with teaching assistants
• Resources (textbook, lecture notes, Internet, etc.)
• Student programming-based math inves�ga�on projects as core

ac�vity in the courses: count toward ~75% of a student’s final grade
• Instructor selects topics and areas of mathema�cs relevant to a

computa�onal approach for inves�ga�ons 
• Instructor designs programming-based math inves�ga�on projects
• Instructor plans lecture content and guidance in labs needed for

those projects
• Instructor develops project guidelines aligned with these plans
• Enacts the planned lecture and labs in the classroom

Instructor’s Instrumental Orchestra�on

dp-model Step 1: selects an inves
ga
on topic for 
which using programming is relevant

dp-model Steps 1-2-3: develops understanding of the 
math involved in the planned inves
ga
on

dp-model Steps 3-4: designs and programs an
environment for the planned inves
ga
on

dp-model Steps 3-7: designs, programs, and uses an
environment to conduct the planned inves
ga
on, 
and reports

Intended students’ instrumental genesis 
development of using programming for math work
(complete DP model)

• Instructor provides collec�ve help in lab through class interven�on 
(e.g. on the board)

• Instructor provides individual help in lab going from student to 
student

• Instructor mentors teaching assistant to provide meaningful
individual help

a certain scheme as part of a s step or cycle in the DP 
model 

Students’ Instrumental Geneses

Fig. 5  The orchestration and genesis alignment (OGA) model of programming for authentic 
pure or applied mathematics investigation projects
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In this model, certain elements of the orchestration components appear to be 
intrinsically connected (vertical arrows). Namely, the main didactical intention of 
having students learn to exploit programming for authentic mathematical work 
leads to establish individual investigation projects as the core activity of the course 
(exploitation mode). The latter, in turn, calls for a teaching format (didactical con-
figuration) dedicating time to students in a computer lab that makes possible not 
only collective but also individual support from the instructor (exploitation mode 
and didactical performance), for example, Bill’s collective and individual interven-
tions in the lab sessions discussed in Sect. 5. These individual investigation projects 
as the core activity is the one element of the exploitation mode that seems to drive 
everything the instructor envisions, prepares, and does in his/her teaching (exploita-
tion mode), all of which aligns with the main didactical intention established by the 
department (instructor as a policy maker).

7  Discussion

In this chapter we address the question: What do we learn about the teaching of 
using programming for authentic mathematical investigations by using the theoreti-
cal frame of instrumental orchestration, considering programming as an artefact? 
Drawing on the findings of our case study of MICA II teaching, we discuss here the 
different elements that together answer this question.

The identified didactical configuration, main didactical intention, and the project 
element as part of the exploitation mode turned out to be the same for all MICA 
courses adopted by the department and also followed by MICA instructors. This 
configuration and exploitation mode element underscore a “student-centered” and a 
mainly formative assessment approach, whereby the core of the courses is on indi-
vidual student projects, which aligns with a constructionist approach (Papert, 1980). 
The instructor aligns with the collective exploitation mode, namely, through his/her 
choices of “content” through project guidelines and planned guidance in lab and 
lectures according to his/her intention of steering the collective students’ instrumen-
tal geneses of their complex web of schemes associated with the programming- 
based mathematical investigation activity. This gives insights into how institutional 
decisions support individual instructors.

Instrumental orchestration has been used in some studies with various technolo-
gies and mainly focused on the school level (e.g., Drijvers et al., 2010; Trouche, 
2004). Our study expands the instrumental orchestration literature at the tertiary 
level by illustrating the way that a university instructor orchestrates student learning 
of mathematics in programming-based investigations. The use of this frame, in ter-
tiary education, allowed us to ascertain the complexity of the teacher work in the 
classroom and at the institutional level, identifying the key dual role of the teacher 
as policy maker and instructor.
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The exploitation mode of MICA II teaching also highlights that, unlike most 
technology-rich mathematics courses, the choice of integrating programming comes 
before the choice of mathematics content. This has led to describe the mathematics 
content at the individual level, rather than the usual collective level (as a “policy 
maker level”). The didactical performance of MICA II teaching pointed to the sig-
nificance of the lab setting as a key element of the didactical configuration to facili-
tate the MICA II instructor to steer both individual and collective students’ 
development of schemes. Unlike the didactical configuration, these other two com-
ponents of MICA instrumental orchestration seem to be evolving—for example, 
Bill’s refining of the project guidelines to explicitly steer the students’ mobilisation 
or development of the scheme to mathematically interpret the program output.

Our study contributes to the understanding of how an instructor at tertiary level 
attempts to support students’ combination of programming and mathematics. 
Indeed, using the instrumental orchestration frame allowed us to describe Bill’s 
action and decision-making with explicit or implicit intention of steering student 
schemes at the level of RoA, when the artefact is programming technology. 
Specifically, we learned which student RoA were emphasised by Bill and the differ-
ent ways (as part of his exploitation mode and didactical performance) he guides 
students to enact those rules. This kind of analysis was made possible due to our 
detailed analyses of students’ instrumental geneses at the level of schemes and their 
components (Buteau et al., 2019a; Gueudet et al., 2020). Our study contributes to 
the instrumental orchestration frame by expanding its use when the artefact is pro-
gramming and by connecting the teacher’s choices and the students’ activity in 
terms of schemes the instructor intends the students to develop. Such an analysis of 
instrumental orchestration has rarely been done, particularly at the level of student 
scheme components (RoA).

Most studies about instrumental orchestration consider technology-mediated 
tasks in their analysis that involve a rather specific activity and are not as complex 
as tasks that involve investigation projects. As a consequence, orchestration analy-
ses most often focus on one or two student schemes (e.g., use graphing calculator to 
find the infinite limit of a function; Trouche, 2004). Using the instrumental orches-
tration frame to examine Bill’s teaching allowed us to identify different actions and 
decisions by Bill with the explicit or implicit intention to guide students through 
their whole investigation projects, and as such, associated to different steps (i.e., 
schemes) in the DP model (Fig. 4). In other words, the instrumental orchestration 
frame sheds light on how an instructor’s decisions and actions may support the stu-
dents’ development of their web of schemes related to the project type of task.

Furthermore, by examining all MICA I−II−III/III* courses and building on the 
case study of Bill, we proposed a model—the OGA model (see Fig.  5)—of an 
instructor’s teaching of authentic programming-based mathematics investigation 
projects, highlighting relationships between the different orchestration modes and 
between these modes and the students’ activity as illustrated in the DP model. More 
precisely, the OGA model associates different elements of an instructor’s orchestra-
tion to the intended students’ development of specific schemes as part of their web 
of schemes. It contributes to the instrumental orchestration frame particularly by 
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expanding to its use when the type of task is programming-based mathematics 
investigation projects. This model was made possible due to the sustained long-term 
implementation of the studied learning environment (20 years, different instructors, 
multiple courses, different programming languages).

Our study also highlights a methodological contribution to the instrumental 
orchestration approach. Showing a list of potential student RoA to the instructor 
fostered a reflective participation by Bill in the identification of his own orchestra-
tion (e.g., which RoA he observes his students using and which one(s) he empha-
sises in his teaching). We invite researchers to explore further this method.

8  Recommendations and Perspectives

Programming is increasingly being integrated in school education, with connections 
to mathematics (e.g., Benton et al., 2018; Webb et al., 2017). One can foresee oppor-
tunities and the need to bridge its integration in university mathematics education. 
Following the study presented in this chapter, we determined three recommenda-
tions for practice at the tertiary level.

First, our study highlighted that Bill implicitly knows about the student schemes, 
as he uses programming daily in his mathematical work as an expert. However, he 
mentions how having them made explicit to him was enlightening, for example, he 
mentions:

It’s funny talking to you. … I wish I had thought more about pushing [students] to the big 
picture. I have said things like that, but I haven’t really really emphasised it. (Bill.Post.304)

We thus recommend that efforts be made to better communicate to tertiary instruc-
tors the results of research concerning the use of programming for mathematical 
investigation projects.

Second, the 20  years of sustained MICA implementation, through different 
instructors, suggests that this didactical configuration and exploitation mode ele-
ment support well the teaching of programming-based mathematics investigations. 
In particular, we recommend that the instructor focuses on selecting “authentic” 
mathematics investigation projects with a level of programming appropriate to the 
students’ abilities (either with or without guidance from the instructor), rather than 
trying to impose programming to a mathematics topic in mind.

Third, the MICA experience centered on four or five course projects stresses that 
such authentic mathematics investigation projects require significant time within a 
course. For example, Franklin et al. (2020) discuss the tension between covering the 
planned content and engaging students in constructionist experiences. We recom-
mend the following for planned courses integrating programming-based mathemat-
ics investigation projects: (i) for curriculum policies (i.e., instructor as a policy 
maker) not to overload course curriculum; and (ii) for the instructor to plan for 
significant classroom time dedicated to authentic projects.
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We also mention two perspectives from the research. First, we note that the proj-
ect guidelines, as a collection, appear to steer students to develop or mobilise their 
whole complex web of schemes associated with the mathematics investigation 
activity. This includes their implicit guidance to the scheme of identifying whether 
programming is an added value for the mathematical work essential for conducting 
independent investigations (e.g., MICA final projects). Studying aspects of investi-
gation project tasks, as part of the whole task collection, that affect which and how 
different schemes are guided in the project guidelines (and in lectures and labs), 
could lead to essential recommendations for practice in terms of key characteristics 
of individual project guidelines and for sequences of project guidelines within a 
course and among courses. Second, our research gathers both student (such as 
Cassie) and teacher data. This provides us with a unique opportunity to examine in 
a naturalistic learning environment the alignment between Bill’s instrumental 
orchestration and students’ actual instrumental geneses at the level of both schemes 
and scheme components, such as RoA.

We end our chapter with a quote from Bill that we associate with his view of the 
activity of using programming for authentic pure or applied mathematics investiga-
tion projects: “There’s these two sides… they are doing things computationally, 
doing things theoretically, and how much does it need to agree?... It’s a beautiful 
ballet of theoretical mathematics.”
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 Appendix: Bill’s MICA II Assignment 1 Guidelines, 
Winter 2019

Note: All of your code should be carefully structured and very easy to read with 
all variables, functions and subroutines labeled in a helpful way. In addi-
tion, the interface should be user friendly and attractive.

 1. Suppose that a needle of length 1/2 is dropped onto a plane of parallel lines that 
are 1 unit apart. By modifying the Buffon Needle program given in class, find the 
probability that the needle touches a line. Hand in your finished program which 
should look like the one given in class but with the appropriate modifications. 
Label this program as “Buffon Needle Problem”. (25 marks)

 2. Consider the region R in [0,2] x [0,2] for which
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sin sina x x b y y y c x x d y y� � � � � � � � ��� � � �� �  

  Hand in a program that makes this area appear on the screen for different values 
of a,b,c and d and estimates its area using n points chosen at random in R. The 
user should be able to input a,b,c,d and n. Label this program as “Area In A 
Square”. (25 marks)

 3. By choosing n points at random inside [−1,1]4, write a program to estimate the 
hypervolume of the unit hypersphere in R4 which is the set of points for which 
x2 + y2 + z2 + w2 < = 1. The user should be able to input the sample size n and the 
number of samples w. The output should show the mean and standard deviation 
of the w samples. Estimate the hypervolume accurate to one decimal place and 
use your observations to explain why you are confident that your first decimal 
place is correct. Also hand in a printout of your code which should be in the 
simplest possible form. Do not hand in the working program. (25 marks)

Do either question (4) or question (5). Your choice!

 4. Suppose that a needle of length 1 is dropped onto a plane of parallel horizontal 
and vertical lines that are 1 unit apart. By modifying the code for the Buffon 
Needle program given in class, find the probability that the needle touches any of 
the lines. Hand in your written explanation of the mathematics behind your 
method as well as your working program. This program does not have to have a 
graphical component (unless you’d enjoy giving it one). Label this program 
“Buffon-Laplace Problem”. (25 marks)

 5. Suppose that two numbers a and b are chosen at random from {1, 2, ..., n}. Let 
Pn be the probability that they are relatively prime. As n goes to infinity, does the 
limit of Pn exist? Hand in the program you write to investigate this question and 
a discussion of what you observed. Can you guess the exact limit? (25 marks)
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Researching Professional Trajectories 
Regarding the Integration of Digital 
Technologies: The Case of Vera, a Novice 
Mathematics Teacher

Mónica E. Villarreal and Cristina B. Esteley

Abstract This study examines the professional trajectory of a novice mathematics 
teacher, Vera, concerning her integration of digital technologies (DTs). This case 
study aims to: (1) characterise Vera’s initial views and experiences as a student 
regarding the use of technologies for mathematics education and (2) analyse in 
depth how Vera integrates technologies while acting as a mathematics teacher. Vera 
was invited to participate in the study due to her positive attitude towards the use of 
digital technologies. Different moments in her trajectory as a preservice teacher and 
as novice teacher are analysed to highlight the different kinds of relationships she 
established with DTs. To analyse those kinds of relationships, we used a taxonomy 
of four metaphors that represent different types of relationships with  technology: as 
master, servant, partner, and extension of self. The integration of new technologies 
into Vera’s teaching practices is then analysed using five dimensions: working envi-
ronment, resource system, activity structure, curriculum script, and time economy. 
Our results show a prevalence of Vera’s relationship with technology as a partner or 
extension of herself, moving on to more sophisticated ways of integrating new tech-
nologies when she started teaching regularly at school. The study provides useful 
insights to support the rethinking of how technology use is introduced and taught 
within teacher education programmes.
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1  Introduction

Policies to incorporate DTs across the Latin American educational systems began in 
the 1990s following different models and with varied impact, depending on the 
country. Lugo and Delgado (2020) analyse the implementation of information and 
communication technology (ICT) policies in the regional education systems in the 
period since 2007, concluding that despite these policies, “it has not been possible 
to transform educational practices in such a way that they take advantage of DTs to 
improve teaching practices” (p. 22, our translation). This fact has a direct associa-
tion with teacher education, particularly for initial teacher education where prepara-
tion in the pedagogical use of DTs is an ongoing demand. Thus, the authors 
recognise the need to “strengthen teacher education policies in the pedagogical use 
of digital technologies” (p. 22, our translation). This regional panorama related to 
teacher education includes the particular case of mathematics teacher education. 
Ruiz (2017) reports on the scarce training of mathematics teachers in the use of DTs 
in some Latin American countries. At the international level, Clark-Wilson, et al. 
assert that:

…despite over 20  years of research and curriculum development concerning the use of 
technology in mathematics classrooms, there has been relatively little impact on students’ 
experiences of learning mathematics in the transformative way that was initially anticipated 
(2014, p. 1).

Six years after that publication, it seems that, at least in our country, Argentina, the 
problems associated with the integration of DTs in mathematics teacher education 
have still not yet been sufficiently addressed.

Alongside, the use of DTs has been recommended in the mathematics curricu-
lum for secondary schools in Argentina (12–17-year-old students) since 2011, as 
well as in documents with didactic recommendations, since 2009, or the standards 
for mathematics teacher education since 2011. However, the use is still scarce in 
both contexts. Some reasons for this lack of use are related to institutional con-
straints, such as the lack of updated equipment or the existence of a conservative 
academic culture that does not promote the use of DTs at school. Other reasons are 
related to difficulties of access or insufficient digital literacy for both students and 
teachers. Furthermore, there are other reasons related to the limited use of DTs in 
schools such as poor trajectories in the use of DTs during the initial or in-service 
education of mathematics teachers and the low value attributed to DTs for mathe-
matics education. At the same time, it is possible to find educational practices in 
mathematics classes in which DTs are significantly integrated into the didactical 
proposal of certain teachers (Mina, 2018; Sessa, 2018; Esteley, 2014). Therefore, 
we can find schools with absent or poorly integrated DTs, and schools with signifi-
cantly integrated DTs.
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Focusing on the last case, this chapter proposes an in-depth study of a novice 
female mathematics teacher’s trajectory, called Vera, who has succeeded in integrat-
ing DTs in her mathematics classes.

Our study has two aims and a set of research questions that align with each aim.

Aim 1: To characterise Vera’ initial views and experiences as a student regarding the 
use of technologies for mathematics education.

RQ1. What kind of experiences with DTs did Vera have while she was a stu-
dent in high school or in the undergraduate teacher education programme at 
the university?
RQ2. What spontaneous views about the use of technologies for teaching and 
learning mathematics did Vera have?
RQ3. How did Vera use DTs while taking certain mathematics education 
courses?

Aim 2: To analyse in depth how Vera integrates technologies while acting as a math-
ematics teacher.

RQ4. In which ways did she integrate DTs in her first teaching practice, and 
later, as a novice teacher?

In the next section, we present a brief review of research related to our study.

2  Teacher Education and Digital Technologies

As highlighted in several studies, the integration of technology in mathematics 
classes responds to diverse and complex factors. These factors sometimes go beyond 
the mere disposition of the teacher, and some of them can become barriers to such 
integration. For instance, Desimone et  al. (2013), and Ertmer and Ottenbreit- 
Leftwich (2010), identify different barriers such as: resources, knowledge and skills, 
institution, assessment, subject culture and teachers’ attitudes and beliefs. 
Additionally, Drijvers (2015) identifies three factors which might inhibit or promote 
successful integration of DTs: the teaching design, the role of the teacher, and the 
educational context.

Ndlovu et al. (2020) report results from a study in which they investigated South 
African preservice teachers’ (PSTs) beliefs about their intentions to integrate ICTs 
in their future mathematics classes. The study shows that attitudinal beliefs, and 
control over ICT use, shape PSTs’ intentions to use technologies in classes. Based 
on their analysis, the authors recommend that technologies should be integrated into 
teacher education curricula, as early as possible, if we intend PSTs to integrate ICTs 
in their future teaching.

Researching Professional Trajectories Regarding the Integration of Digital Technologies…
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Gurevich et  al. (2017) conducted a study involving a group of novice Israeli 
mathematics teachers who had attended a teacher education programme in which 
the use of technologies was encouraged. The authors conducted a longitudinal study 
to trace the participants’ choices of technological tools and their attitudes toward the 
integration of technologies in mathematics teaching at three stages of their profes-
sional development: two stages as trainee teachers and a third as novice teachers. 
The paper reports a significant increase in the recognition of the technological ben-
efits, and the incorporation of new technological tools for teaching when the partici-
pants became practicing teachers.

Drijvers et al. (2014) assert that the integration of DTs in secondary school math-
ematics classes has not yet been successful. Moreover, the authors consider that 
teachers are “crucial players” for such integration. Their study reports a gradual 
introduction of DTs in the classes of two experienced teachers in the Netherlands. 
They conclude that the process of integrating technology in mathematics classes is 
not simple and requires that teachers have an early immersion in the use of technol-
ogy for teaching. In this sense, Ertmer and Ottenbreit-Leftwich (2010), and 
Hammond et al. (2009) point out that preservice teacher education that includes the 
use of technologies influences the type of teachers’ future instruction and their 
capability to manage technological challenges.

Stein et al. (2019) study attitudes of novice mathematics teachers towards the use 
of technological tools in their teaching. They researched 14 novice teachers from 
Israel who studied in a technologically rich environment. In their results, they con-
clude that the novice teachers adopted digital tools for teaching and learning in a 
deliberate and rational way. Although the novice teachers recognised the benefits of 
using ICTs in their classes, they also pointed out some difficulties linked to institu-
tional aspects.

Goos (2005) reports on PSTs’ and novice teachers’ pedagogical practices and 
beliefs about the integration of technologies into the teaching of mathematics in 
Australian secondary schools. The study focuses on cases of novice teachers who 
graduated from a technology-enriched teacher education programme. The author 
conducted her study from a sociocultural perspective in which teacher’s beliefs can 
change in relation to the social environment, and the teachers’ related goals and 
actions. The cases examined show that the development of the pedagogical identi-
ties of novice teachers related to the use of technology is shaped by constant nego-
tiations between their teaching environments, actions, and beliefs. The study also 
evidences that novice teachers had to overcome some constraints of their working 
environments to integrate the technologies in their classes.

Considering the development of mathematics teachers’ professional identities 
and agency, Losano et al. (2018) conducted an interpretative case study centred on 
one novice mathematics teacher who worked in a secondary school in the city of 
Córdoba (Argentina). As a student teacher, she had experienced the possibility of 
working in technologically rich environments. In her first years as a teacher, despite 
certain constraints in her working environment, she found ways to integrate tech-
nologies into her mathematics classes. She mainly developed her professional iden-
tity and agency in relation to technologies by incorporating the feasible teaching 
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practices of her school, the positions she could occupy as a newcomer in the institu-
tion, and also the cultural practices and discourses embodied during her preservice 
education.

This literature review reports a small sample of studies that, in placing the focus 
on teachers and their educational trajectories, identify factors that hinder or favour 
the process of technological integration in mathematics classes. Teachers are recog-
nised as central actors in this integration. Hence, we consider that our study comple-
ments existing research findings by providing evidence of how a novice teacher’s 
initial educational process impacts the ways in which she integrates DTs in her later 
classes.

3  Theoretical Framework

In this section, we describe some framing ideas regarding teacher education related 
to DTs, and outline the dimensions that are considered to support the analysis of 
Vera’s integration of technologies.

Teacher education and the relationships that teachers establish with DTs can be 
recognised as influential factors for the integration of DTs in mathematics classes. 
These relationships are forged by their experiences within different environments. 
More specifically, (preservice or in-service) teachers’ trajectories and previous per-
sonal experiences constitute the matrix from which teachers interpret, and make 
sense of themes, debates and tasks that are pertinent in their respective learning 
environments (Menghini, 2015; Edelstein, 2011; Vezub, 2009).

For Vezub (2013), teachers’ professional trajectories1 result from the interaction 
of multiple objective elements (e.g., the context of teachers’ performance, initial 
and continuous education) and subjective ones (e.g., their motivations and expecta-
tions). The author proposes the idea of trajectory to emphasise teacher education as 
a complex and long-term process that articulates initial and in-service education. 
Vezub considers that professional trajectories are neither linear nor uniform, and 
that they can be seen as the result of actions and practices developed by individuals 
in specific situations over time. The interactions between the existing structures of 
opportunities, and the appropriations that individuals achieve, according to their 
own objective and subjective possibilities, are synthesised through these 
trajectories.

Vezub’s ideas help us to understand that the integration (or not) of DTs in teach-
ers’ professional trajectories is conditioned by the existing opportunities and the 
possibility they have to take advantage of such opportunities. According to Borba 
and Villarreal (2005), technologies may reorganise teaching and learning practices, 
curriculum content, and ways of thinking and knowing. Particularly, in mathematics 

1 Vezub (2013) proposes the term trajectory considering Bourdie’s use and definition of the term 
when referring to the trajectories of subjects in a given social field.
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classes, DTs are understood as actors that demand new pedagogical approaches. 
However, such pedagogical approaches that seek to integrate DTs2 in the mathemat-
ics classes may not be implemented, due to the multiple factors listed above, if the 
actors involved in the classroom do not form significant relationships with the 
technologies.

Goos et al. (2000) developed four metaphors to form a “taxonomy of sophistica-
tion with which teachers and students work with technology” (p. 307). This taxon-
omy describes four different roles for technology in relation to teaching and learning 
interactions:

• Technology as master: the user is subordinate to the technology and is only able 
to make use of some features due to the limited individual knowledge and the 
force of circumstance.

• Technology as servant: the user knows the technology but uses it in a limited way 
to support their usual way of performing tasks.

• Technology as partner: the user makes creative use of technology to increase the 
power over their learning.

• Technology as extension of self: the user incorporates technological expertise as 
an integral part of their repertoire as teacher or student. In this case, powerful use 
of technologies “forms an extension of the user’s mathematical prowess” 
(p. 312), and also of the pedagogical skills of teacher users. This is a type of 
relationship with technology that involves the highest level of functioning.

The metaphors of Goos et al. (2000) constitute an analytical tool that allows us to 
analyse the type of relationship with technology that Vera built throughout her edu-
cational trajectory. Alongside, the interplay between the five structuring features of 
classroom practice for understanding the integration of new technologies into daily 
mathematics classroom practice proposed by Ruthven (2009) offers a rich analyti-
cal lens to scrutinise Vera’s teaching practices both as a preservice teacher and as a 
novice teacher. Working from a perspective that focuses on the daily work of teach-
ers, Ruthven identifies five key structural characteristics of classroom practice that 
relate to technology use: working environment, resource system, activity structure, 
curriculum script, and time economy.

The working environment concerns the physical arrangements and class organ-
isation required for the introduction of technologies for teaching. Technologies have 
not only the potential to expand the range of tools and materials available to support 
school mathematics, but they also imply the need to build a consistent resource 
system. The use of DTs may require a set of adaptations of certain established rep-
ertoires in the construction of classroom activities that frame the actions and inter-
actions between teachers and students or among students, which would imply the 
creation of prototypical activity structures or cycles for some types of lessons.

2 Briefly, for the purposes of this article, we are specifically interested in DTs, which include the 
internet, any type of software (GeoGebra, spreadsheets) and programming languages (such as 
Python).
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The incorporation and integration of instruments and resources require that 
teachers make new choices, organisation, and sequencing of the content to be taught, 
alongside the activities and resources for teaching. This implies that teachers will 
need to reorganise their curricular scripts, into which the activities and tasks are 
contemplated. These scripts are influenced by the resources that are incorporated, 
the possible students’ difficulties and the learning environment.

Finally, the introduction of DTs can influence the economy of time in the class, 
changing the “rhythms” of work and the creation of “didactic time”. This didactic 
time is measured in terms of the advancement of knowledge within the classroom.

4  The Contextual Frame of the Study

Our research was conducted with the participation of Vera, a novice mathematics 
teacher, who graduated from the mathematics teacher education programme at the 
University of Córdoba (UNC) at the end of 2017. For this study, it is necessary to 
consider two main contexts that frame our results and analysis: the UNC teacher 
education programme, and the school where Vera has been working as a mathemat-
ics teacher since 2018.

4.1  Vera’s Educational Context as a Preservice Teacher

The teacher education programme at UNC that prepares mathematics teachers for 
secondary schools lasts 4  years. Sixty six percent of the curriculum courses are 
devoted to mathematics and are mainly taught by mathematicians. The remaining 
courses deal with educational issues and are taught by pedagogues or mathematics 
educators. Within this second group of courses, there are two annual courses which 
are central for the PSTs’ education: Mathematics Education (ME) and Teaching 
Methodology and Practice (TMP). They are included in the third and fourth year of 
the programme, respectively. Both are 30  weeks courses of two 4-h classes per 
week. Every year since 2011, at least one of the authors of this chapter has taught 
on these courses.

Within the mathematics courses of the teacher education programme, PSTs 
experience few mathematical activities in which DTs are significantly integrated. 
Consequently, work with technologies during the ME and TMP courses is essential 
if future teachers are to be expected to integrate technologies into their school math-
ematics classes.

In the ME course, several themes are studied, among them, the use of technolo-
gies. For this course, we adopt the epistemological perspective presented by Borba 
and Villarreal (2005), which assumes that knowledge is produced by collectives of 
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humans-with-media3 and that cognition is a social enterprise that includes the media 
with which knowledge is produced. During the course, both the teachers and the 
PSTs discussed these ideas, analysed examples, and recognised the role of the 
media in the processes of knowledge production as well as in the mathematical 
teaching and learning processes. Moreover, they discussed possibilities, scope, and 
conditions for using technologies in educational contexts, and they analysed syner-
gistic pedagogical approaches for the use of DTs. Mathematical tasks are solved 
using different technologies, such as calculators, GeoGebra, or PhET Interactive 
Simulations.4 The advantages and disadvantages of the use of technology in differ-
ent contexts arise from the texts studied, personal experiences, discussions, and the 
tasks solved during the course.

Although the topic “DTs in mathematics education” is specifically addressed 
over a period of one and a half months, DTs are also present in the treatment of dif-
ferent curriculum topics throughout the ME course. For example, when mathemati-
cal modelling is studied as another important theme, the synergy between 
technologies and the modelling process arises naturally when the PSTs develop free 
open modelling projects (Villarreal et al., 2018).

The path proposed in the ME course provides some foundational tools and strate-
gies for the TMP course, which many PSTs attend the following year. The TMP 
course’s central aim is for student teachers to develop their first teaching practice in 
secondary school classes (which lasts for 1  month). During the first four-month 
period of the TMP course, issues corresponding to the macro-educational and the 
micro-didactical levels of the curriculum are addressed. The analysis of certain 
learning environments (previously introduced during the ME course) are deepened 
and the main variables that influence lesson planning are discussed.

The PSTs first teaching practice at secondary schools is carried out in groups of 
two or three within the same school and grade, under the supervision of one of the 
TMP course teachers and the secondary school teacher of the grade assigned for the 
teaching practice. Before teaching starts, each group conducts observations in the 
assigned classes, develops lesson plans, prepares materials and elaborates scripts 
for each class, anticipating possible students’ actions or difficulties, interventions 
and concerns. The overarching work of teaching is continuously under revision 
according to the emerging conditions and requirements of the school. If schools are 
richly equipped with DTs, PSTs must integrate them into their teaching. When 
conducting the teaching practices, one PST oversees the class, another PST observes 
it, acting as an assistant, if necessary. When the teaching practices conclude, each 
group of PSTs writes a report and prepares an oral presentation to share their work 
with teachers and classmates on the PST programme.

3 For these authors, media means any kind of tool, device, equipment, instrument, artefact, or mate-
rial resulting from technological developments, but also includes orality and writing.
4 PhET Interactive Simulations (https://phet.colorado.edu/) is a non-profit open educational 
resource project at the University of Colorado Boulder (USA), which provides a suite of research-
based interactive computer simulations for teaching and learning physics, chemistry, biology, earth 
science, and mathematics.
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4.2  The Context of Vera’s Current School

At the beginning of the 2018 school year, Vera worked temporarily in two schools 
in the city of Córdoba for a short period of time. They were part-time jobs. Then, 
she quit those jobs to concentrate her teaching at the secondary school where she is 
currently working, because this institution offered better working conditions. At this 
privately managed public school,5 Vera teaches mathematics to 2nd- and 3rd-year 
students (13–15 years old). During the last 10 years, this institution has been encour-
aging the use of DTs for the teaching and learning of all subjects and for all courses. 
Each classroom has wifi internet access and is equipped with a digital board con-
nected to a data projector and a chalkboard. Each student has a tablet or a personal 
mobile phone with specific software for mathematics, such as GeoGebra, and clas-
sic office suite.

Knowing this context supports us to understand and make sense of Vera’s 
answers, ideas, and different decisions within the context of her trajectory as a 
teacher with respect to DTs.

5  Methodological Procedures

We conducted qualitative research within the interpretative paradigm (Denzin & 
Lincoln, 2018) as an in-depth study of Vera’s case. She was selected to participate 
in the study for several reasons. We had both taught Vera during the teacher educa-
tion programme at UNC and so had observed her trajectory as a student and were 
aware of her positive disposition towards the use of DTs for learning or teaching 
mathematics. Two years after finishing her studies at the university, we learned that 
she had started working in a school that has both the all-important technological 
infrastructure and a favourable position towards the pedagogical use of DTs. 
Consequently, Vera had now begun to integrate DTs into her classes extensively and 
we were keen to research the trajectory of her development in this respect.

The study comprises two parts which align to the aims for the study, which focus 
on Vera’s educational and professional trajectories. The former (addressing RQs 1, 
2 and 3), refers to Vera’s experiences with DTs as a high school student and her first 
3 years as a PST. The latter (addressing RQ 4), is based on the analysis of data col-
lected during Vera’s first teaching practice as a PST at UNC and an interview con-
ducted in her role as an in-service teacher.

5 In Argentina, privately managed public schools are those in which the school building and its 
entire infrastructure belong to a private entity. However, the school employees’ salaries are paid by 
the State. In these schools, students pay a monthly fee that is not as high as the fees of a fully pri-
vate school.
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The taxonomy proposed by Goos et al. (2000), and Ruthven’s (2009) conceptual 
framework are used as analytical tools.

5.1  Vera as a Student

We draw on data from the ME course that Vera attended in 2016, which comprised: 
individual written answers to tasks related to DTs, the written report of the model-
ling project carried out by Vera’s group, the files produced with software (GeoGebra, 
spreadsheets, Python, etc.) when solving the problems of the modelling project or 
other mathematical problems, the slides for the oral presentation of their modelling 
project, videotape recordings of such oral presentation, and our field notes.

To address RQs 1 and 2, we analyse Vera’s written response to a task posed by 
the teacher to the whole class, when the “DTs in mathematics education” topic was 
studied in the ME course. In this task, the PSTs were asked to explain (a) their prior 
experiences with the use of technologies in mathematics classes, and (b) their views 
about the relationships between the use of technologies and the teaching and learn-
ing of mathematics. From this analysis, we aimed to characterise Vera’s initial views 
and experiences regarding the use of technologies for mathematics education.

To address RQ 3, we focus on the analysis of Vera’s productions resulting from 
an intensive use of DTs during a modelling project.

5.2  Vera Acting as a Mathematics Teacher

The data associated with the second aim of the study originate from the written 
report6 (Lovaiza & Marchesini, 2017) on Vera’s first teaching practice and a semi- 
structured interview protocol. The interview, which was conducted virtually in 2020 
by the second author, probes Vera’s reflections and views on her integration of DTs 
into the ME course, her first teaching practice and her current practice as a novice 
teacher. The initial questions were:

 1. Do you remember in which of the UNC courses you used DTs and for what 
purpose?

 2. The year after you graduated from UNC, you taught at two schools. In those 
schools, did you use DTs?

6 This report is open access and published under Creative Commons license.
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 3. Regarding the school where you are currently working:

 (a) What do you think of the infrastructure offered by the school for the 
use of DTs?

 (b) Do you incorporate the DTs into your daily class routines?
 (c) How do you organise and complement the resources you use?
 (d) How do you select and organise the activities?
 (e) How do you think that the use of DTs influences the interactions in the class-

room or the didactic time?

Before concluding this section, we include a statement of compliance with ethical 
standards. Four PSTs including Vera gave us their consent, via email, to use in this 
study the information from their modelling project written report. Moreover, they 
were also informed by email about this chapter and authorised us to publish their 
report’s images and content. Vera was informed about the aims and scope of the 
study and the use of her responses during the interview, both at the time of the invi-
tation to the interview and prior to its start. Both Vera and the other three PSTs were 
given the opportunity to request clarification on what would be reported. Anonymity 
was also guaranteed.

6  Results

In this section, we present the results with respect to how Vera was developing her 
relationship with the DTs. We consider instances of her approach to technologies as 
a high school student and as an undergraduate student. Then, we report ideas and 
experiences of the integration that Vera developed as a novice teacher. Figure  1 
presents a timeline showing Vera’s trajectory.

Fig. 1 A timeline of Vera’s trajectory
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6.1  Vera’s Relationship with DTs in Different 
Educational Contexts

Vera had no experience of using DTs at her high school. She admitted, “…I have not 
used much technology in mathematics classes. In other subjects, yes, we had to 
prepare PowerPoint […] as the main task”. Besides, she stated that in her mathemat-
ics classes, scientific calculators were allowed only to solve computations involving 
trigonometrical, logarithm or exponential functions. However, when students had to 
analyse and plot functions, the calculator was not allowed as the task had to be 
handwritten. According to Goos et al.’s (2000) taxonomy, the role of technology 
promoted in Vera’s high school can be associated with the metaphor of technology 
as servant since it is not used in a creative way, but only for making routine 
computations.

Vera was asked about the use of calculators when she was a preservice teacher, 
on which she reflected:

…the fact that they [the students] are allowed to use the calculator in certain topics to be 
taught or studied does not make the student think or reason less. I simply see it as a tool that 
was made to be used as the ruler and the compass.

These words show Vera’s special disposition towards the use of DTs, revealing her 
open-minded position in relation to the use of the calculator which differed from her 
college classmates’ predominant position.

When Vera took the mathematics courses during the teacher education pro-
gramme, the use of DTs was limited. For instance, not all mathematics faculty 
embraced the use of DTs, the mathematical tradition was still handwritten mathe-
matics, and the examinations did not allow DTs (including calculators) to be used. 
More specifically, GeoGebra software was used to make geometrical constructions 
in a course on Euclidean geometry, but not to experiment or make conjectures. 
Alongside the mathematics courses, basic notions of programming using Python 
were introduced in a course on computer programming and applications of numeri-
cal methods taught by physicists. At the same time, during the ME course, Vera used 
DTs profusely. For example, during the aforementioned collaborative mathematical 
modelling project, and for communicating the progress of such work throughout her 
different classes.

For the modelling project, Vera and a group of other three students decided to 
study the following theme: “Looking for letters in magazines for school home-
work”. A common homework for children in the first grades of primary schools in 
Argentina is to find and cut out, from different magazines, letters or words that 
contain a combination of certain letters. This theme was chosen since one of the 
members of the group remembered that she always found it difficult to complete 
this activity because she had very few magazines at home. The group established 
some assumptions to solve some typical school tasks related to this theme and posed 
some questions such as:

• what is the minimum number of magazines needed to find all the letters of our 
alphabet?
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• or, given a specific task such as to cut out 3–5 words that are written with MB or 
with, BR or with CH, what is the probability of finding that number of words on 
one page of a magazine?,

• or what is the probability of finding that number of words on more than one page 
of a magazine?, and what about using more than one magazine?

The group established a set of assumptions, which included: a standard magazine 
has about 45 pages, a child can look for words or letters in 4 magazines at most, and 
a child can cut letters of at least 1 cm high. The group also defined the following 
probabilistic condition: an event is, in their words, “sufficiently probable” when its 
probability is greater than or equal to 0.7. The selected tasks and the assumptions 
were established following consultation with elementary school teachers.

To respond to their questions regarding the probability of accomplishing a given 
specific school task, Vera and her group turned to Python programming. For this, 
having used a word processor to reproduce the sentences (with letters of at least 
1 cm high) from a sample of 30 magazines of 45 pages each, they programed a code 
to count words according to the selected task. Once the database was built, they 
used a spreadsheet to calculate probabilities, make charts and graphs. In some com-
bined tasks, they also wrote programs within the spreadsheet itself. Figures 2 and 3 
illustrate the work developed within Python and the spreadsheet, respectively.

Fig. 2 Python Code. (Source: students’ written report)
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Fig. 3 Graph of probabilities of achieving the tasks (finding 3 or 5 words) versus number of maga-
zines used. (Source: students’ written report)

Among their conclusions, the group indicated that, to be able to find all 27 letters 
of the alphabet with “sufficient probability”, it was necessary to have at least 3 
magazines to cut. It would not have been “sufficiently probable” to perform any of 
the proposed tasks with only one magazine. Moreover, they were not aware of the 
difficulties that these types of activities could bring to the children and their parents, 
especially at the current time when fewer and fewer magazines are available at home.

In the final report of the modelling project, Vera and her colleagues recognised 
the importance and support of the various technologies (Python, office suite, and 
Google docs) used for various purposes at different phases of the modelling project. 
They wrote: “They [the DTs] allowed us to streamline the organisation and analysis 
of data and calculations as well as to visualise the results obtained in a clearer and 
more concise graphic way”. In this case, DTs were partners that contributed to the 
efficiency of the group’s work, facilitating and enhancing the mathematical produc-
tion. In addition, the students stressed that they had learned how to use the technolo-
gies they needed for their modelling project, more specifically programming in 
Python and spreadsheet, in a collaborative way. The project was carried out by a 
thinking collective of humans-with-DTs, showing that the technologies were inte-
grated not only as an extension of each isolated individual, but as an extension of 
themselves.

In the following subsections, we will focus on Vera’s use of DTs to teach math-
ematics in the school setting as a PST and as in-service teacher.
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6.2  Vera’s First Teaching Practice: DTs as Media to Teach 
and Facilitate Mathematical Production

During 2017, Vera and her pedagogical partner carried out their first teaching prac-
tice in a public high school. They worked with students of 12–13 years of age. The 
mathematics theme for their practice was angles and triangles, which included the 
study of pairs of special angles formed when parallel lines are intersected by a trans-
versal line, the classification of triangles, and congruence in triangles: definition and 
properties.

For the lesson plan, as detailed in the written report of their practice (Lovaiza & 
Marchesini, 2017), they considered a general objective: “…to generate a teaching 
proposal that covers the required knowledge…, taking into account the importance 
assigned by the institution to the development of critical and argumentative thinking 
of students” (p. 31). Therefore, they claimed: “[we] decided that our plan should be 
permeated by the use of technologies” (p. 32). The resources and didactical materi-
als used in the classroom were: textbooks, PSTs’ notes, blackboard and chalk, a data 
projector, PowerPoint software, computers, students’ mobile phones, GeoGebra 
software, rulers, pairs of compasses, protractors, and photocopied texts with activi-
ties and definitions.

Guided by their general objective and decision to use DTs, they organised the 
lesson script by considering three didactic units: definition, argumentation, and the 
congruence of triangles.

For the first didactic unit, the notion of mathematical definition was considered 
as a teaching object. For this purpose, they worked on what a definition is, the parts 
of which it is composed, and examples and counterexamples generated for a par-
ticular concept. They also designed a teaching plan in which the knowledge about 
definitions was then applied to define, and then classify angles.

The second didactic unit focused on the justification of mathematical statements. 
They designed definition analysis activities to support arguments about the validity 
of any given statement. In this case, they appealed to concepts and relationships 
between angles defined by two parallel lines and a transversal one. They also pro-
posed activities for students to elaborate written and oral arguments, validating their 
own and other classmates’ statements, by using geometric figures, hand drawn on 
the chalkboard, or cut from paper, or constructed in GeoGebra and GeoGebra hand- 
animated dynamic figures as didactical resources.

In the third didactic unit, they applied the concept of congruence already devel-
oped within the first unit, which addressed mathematical definitions. They designed 
congruent triangle construction activities “using GeoGebra as a teaching resource to 
elaborate conjectures about the properties of and criteria for the congruence of tri-
angles” (p. 33).

Some of the GeoGebra files designed by Vera and her partner are shown in 
Figs. 4 and 5. Figure 4 shows an image of the animation in GeoGebra used to study 
the congruence of the corresponding angles between two parallel lines cut with an 
intersecting transversal line. Figure 5 shows part of the process demonstrating the 
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Fig. 5 Sum of the interior angles of a triangle and the construction protocol, on the right. (Source: 
Lovaiza & Marchesini, 2017, p. 55. Accessible at https://www.geogebra.org/m/naaEb7xY)

Fig. 4 Image of an animation in GeoGebra. (Source: Lovaiza & Marchesini, 2017, p.  48. 
Accessible at https://www.geogebra.org/m/esPBcwR3)
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property of the sum of the interior angles of a triangle referring to the argument of 
the congruence of angles determined by two parallel lines cut with an intersecting 
transversal.

During her first teaching practice, Vera and her partner made an intensive use of 
DTs. This use was not only for the purpose of exposing or discussing ideas or argu-
ing with their students, but they also proposed tasks mediated by DTs for them. 
Such tasks invited the use of DTs in small groups or collectively in order to explore 
situations, propose conjectures and move forward with arguments to support the 
conjectures. Among the multiple reflections made by Vera and her pedagogical part-
ner in their final report, they highlighted:

The use of technologies was fundamental for our practices as they permeated and condi-
tioned all the didactic units. Software such as PowerPoint and GeoGebra allowed students 
to construct figures, analyse them, generate conjectures and make assumptions, question 
them, and validate them. They facilitated the creation of experimentation and debate sce-
narios that favoured group interactions and the cooperative generation of knowledge as 
collective knowledge… (Lovaiza & Marchesini, 2017, p. 108).

As highlighted above, during Vera’s first teaching practice, technologies were essen-
tial, not only for her, but also for her students. As reported by the pair, the initial 
didactic decisions that related to the selection, organisation and sequencing of the 
activities and corresponding resources played a fundamental role in influencing the 
quality and type of knowledge produced by the students. For Vera, technology had 
become an extension of herself as a teacher, thus encouraging students to think col-
lectively among themselves and with the DTs.

It is worth noting that, whilst Vera was answering the first interview question, she 
explained that both her group’s mathematical modelling project and her first teach-
ing practice were instances that contributed and motivated her to use various tech-
nological resources as a teacher.

6.3  The Integration of DTs into Current Vera’s Daily Work

Vera began teaching in two high schools in Córdoba for a short period. When asked 
if she had used DTs in those schools, her answer was short and clear: “[…] no, 
because the resources [DTs] were not available. That’s why”. And she quickly 
pointed out that in contrast, at the school where she is currently working, she fre-
quently uses DTs, asserting that “[…] in this school, I use Excel, GeoGebra… a lot, 
for the students to explore and conjecture, mostly […] I also use the digital screen, 
the Activ7 […]”.

In Vera’s current school, the work with DTs did not require students and teachers 
to move to a special place away from their usual mathematics classroom. The class-
room had wifi internet access, the students had tablets or mobile phones for personal 

7 She refers to ActivInspire, a lesson delivery software for interactive displays. The digital Screen 
and the Activ are installed in the classroom.
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use and the teacher had a desktop computer connected to a digital screen. Since the 
available infrastructure facilitated the introduction of the DTs and it did not involve 
changes in the working environment or in the physical layout, it was not necessary 
to modify the rhythm of the work routine in the classroom.

For Vera, this new work environment was conducive for using DTs, enabling her 
to retrieve familiar knowledge and skills. But this new environment also meant that 
she had to broaden her knowledge. As Vera explained, while she was teaching, she 
was learning to use new resources such as the digital screen. She began to learn by 
observing her colleague’s work, and then attended a course offered at the school in 
which she learned to use the digital screen and the school’s Moodle platform.

Although this work environment allowed her to access all the DTs needed for the 
daily work in the classroom, she did encounter some technical problems such as 
“the electricity gets disconnected, the internet doesn’t work, or the screen doesn’t 
turn on…” For Vera, what was important for the daily routine of the mathematics 
classes was not only the access to DTs, but the activities proposed that included the 
use of DTs. She explained:

[…] I find it hard to imagine my classes without technology as a medium. Obviously, not 
always the same type of use, nor with the same intensity or the same role. That is, there are 
classes where it is auxiliary. For example, the use of a calculator or designing a small pre-
sentation to share. And I make other [uses] in which the class is based on observing a 
GeoGebra animation and making conjectures, or making a construction which we could not 
do without the tool [the DTs] […] that depends on the goals established for the class.

In the scripts for her daily classes, Vera incorporated activities, purposes, DTs and 
other resources. However, the curriculum is shaped through the students’ interac-
tions with DTs. For instance, Vera indicated that she usually tried to follow a struc-
ture for each class. She begins by presenting the objectives and the organisation of 
the class. In the classes, the teacher and students interact using presentation slides 
(previously prepared by Vera) to introduce a new topic or to assign tasks for her 
students that are displayed using the digital screen. For group activities during the 
class, each group prepares presentation slides and some groups are chosen to pre-
sentation their work to their classmates using both the digital display board and the 
chalkboard. When taking notes or completing activities, students can use either pen 
and paper or a digital pen and tablets, or a combination of both.

Although Vera and her students have a wide range of available materials or tools, 
she preferred to develop her lesson material using the digital screen since the result-
ing work can always be saved as a pdf file. Following the lesson, she uploads the 
files to the Moodle virtual classroom so that everyone could have access to these 
materials. In some instances, she also promotes the use of compasses, rulers, or 
other geometric tools, or pencil and paper to encourage the development of fine 
motor skills. This integration of non-digital media such as these is also motivated by 
the institutional factor that tests must be handwritten to conform to the school rules.

By recognising the school’s specific demands, Vera was able to overcome the 
challenge of building a coherent resource system composed of digitals and non- 
digital tools.
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When dealing with DTs in the classroom, Vera highlighted: “I think that the DTs 
encourage interactions in the classroom, well now [she referred to the classes during 
the COVID-19 pandemic], in this virtual model, the Moodle platform favours dis-
cussions, […] the production of conjectures and explorations”.

When referring to the production of conjectures, she explained, “that was the 
theme of my first teaching practice, and I continue to implement it”, referring to her 
current pedagogic approach. When asked about the relationships between DTs and 
time, Vera noted that the time spent working with DTs is based on its contributions 
to students’ learning and not to the economy of time. She illustrated this idea with 
an example: when teachers have to explain the property of the sum of the interior 
angles of a triangle, they may resort to a time-saving strategy of informing that the 
sum is 180°. But, if they want the students to discover such property, they can pro-
pose exploratory activities using DTs. In this last case, the nature of the knowledge 
and learning will be more meaningful, and the time invested will become a didac-
tic time.

Didactic time for Vera seems to be measured in terms of the richness of the inter-
actions between the participants in the classroom as well as their progress in learn-
ing mathematical concepts and processes. The economy of time and rhythm goes 
beyond the time measured by the clock, but it seems to be measured in terms of the 
advances in the students’ learning.

Vera’s interview responses evidence a work environment that is conducive to the 
integration of DTs, which seems to start when she produces the curriculum script 
for her classes. The script assembles goals, a structure of activities, a coherent sys-
tem of resources, and a didactic time that privileges the students and their learning 
as well as the production of rich mathematical and technological knowledge. In that 
sense, most of Vera’s answers put into play an interesting network of ideas in which 
the dimensions proposed by Ruthven (2009) are evident.

Finally, Vera summarises her vision of the deep sense she perceives about the 
integration of the DTs in her words, “[…] technology is omnipresent at this time. 
Kids always have their mobile phones in their hands, so they always have their 
maths folder8 in hand”.

7  Discussion and Conclusions

Our study contributes to the body of research on the professional trajectories of 
mathematics teachers by considering one teacher’s passage from a PST to becoming 
a teacher into the first years of teaching and focuses on issues related to the integra-
tion of DTs in this context.

8 It has been translated as math folder to refer to what in Argentina we know as carpeta de 
matemática, which is a school material in which a student can store their mathematics work, writ-
ten assignments, class notes, etc. In the case of a mobile phone, the carpeta de matemática would 
be a folder containing files with all the work done in mathematics class.
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As reported in the literature, current integration of DTs in mathematics classes, 
in which teachers are recognised as crucial players, is not satisfying the initial 
expectations with respect to improving mathematical learning (Drijvers et  al., 
2014). Many authors (Desimone et al., 2013; Ertmer & Ottenbreit-Leftwich, 2010; 
Drijvers, 2015) have listed factors that can act as barriers or promoters of such inte-
gration. In the analysis of Vera’s case, it is possible to observe some of these promo-
tional factors in action. For example, the presence of an educational context that 
favours the integration of DTs in the school environment resulting from an infra-
structure that guarantees access conditions or Vera’s positive attitude towards the 
use of DTs. This attitude was evidenced in: her position towards the use of calcula-
tors; the profuse and creative use of DTs during the development of a group model-
ling project; the type of tasks she proposed in her first teaching practice; and her 
statements about the evolving role of DTs in her current professional life. Our study 
provides evidence that supports the points made by Ertmer and Ottenbreit-Leftwich 
(2010) and Hammond et  al. (2009) regarding how experiences with DTs during 
teachers’ initial education influence and impact upon their emerging teaching style.

In Vera’s case, the use of DTs in the mathematics teacher programme at the UNC 
was particularly intensive within the ME course and during her first teaching prac-
tice. In the ME course, PSTs carried out a mathematical modelling project in groups. 
The project conducted by Vera and her colleagues using multiple technologies, dis-
cussed in this chapter, was part of the data used in a previous study we reported on 
Villarreal et al. (2018). In that article, we showed evidence of the synergy between 
the use of technologies and the development of modelling tasks. The analysis we 
present in this chapter constitutes new evidence of such a synergic relationship and 
brings an example of a type of task that allows a natural integration of DTs in math-
ematics classes. Borba and Villarreal (2005) point out that the association of explor-
atory activities, technology and modelling exhibits a natural synergy. Another 
example of tasks that call for the integration of DTs in a significant way is the cre-
ation of learning scenarios where technologies allow exploration, production of 
conjectures and arguments to justify their validity, as Vera and her pedagogical pair 
did during their first teaching practice.

Throughout Vera’s trajectory, we could observe the different types of relation-
ships she established with technologies. Following the taxonomy of Goos et  al. 
(2000), we found instances in which technology was assumed as a servant, but it 
also assumed other significant roles. For example, when a collaborative modelling 
project was being developed, a collective of humans-with-DTs was constituted, and 
technology was assumed as a partner, and even became an extension of selves. As 
observed by Goos (2005), the ways of working with DTs can become more varied 
and sophisticated over time, moving from using technology as a servant to an exten-
sion of self.

Despite the limitations of the type of research carried out (an individual case 
study) in terms of the possibilities of wider generalisations, details of a novice 
teacher’s professional trajectory in relation to DTs provide clues for rethinking the 
actions in our teacher education programme in which DTs are completely absent 
from the teaching of several mathematics courses. In other courses, DTs have a 
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mere auxiliary role, acting as servants, which means that they are neither integrated 
meaningfully into the teaching or learning processes nor does their presence result 
in changes in the task, DTs merely accompany the usual performance of tasks. It is 
therefore necessary to change the approach from using technology as a servant to 
using technology as a partner and as an extension of self (Goos et  al., 2000). 
However, as pointed out by Goos, this is not an easy task. For this to happen, during 
initial teacher education, it is necessary to create learning scenarios involving tasks 
that demand technology use that go beyond the teacher-centred lecturing pedagogy 
that is typical of the Argentinian university context. As previously highlighted, 
modelling or explorations-with-technologies scenarios are a possible option to gen-
erate another type of relationship with the DTs.

Vera’s case was chosen due to its uniqueness. The relationship that Vera has 
established with DTs can be characterised as an extension of self. In her classes, this 
underpins her significant integration of a variety of DTs, both in terms of the types 
of tasks posed and in the ways that students participate. Vera’s earlier experiences as 
a student alongside the current work environment in which she is immersed, facili-
tate the organisation and management of her students’ access to DTs. The system of 
resources developed by Vera, enables coordinated work between digital and non- 
digital technologies. Such coordination is related to the choice of a system of activi-
ties declared in her curricular script. The time spent in the classroom is for Vera a 
true didactic time measured in terms of students’ learning and knowledge.

Most recently, Vera’s knowledge, the available school infrastructure, and her 
own disposition towards the integration of DTs, facilitated a quick adaptation of her 
practice to the new requirements of a wholly virtual teaching environment in the 
context of the COVID-19 pandemic, which hit the world in 2020. During her inter-
view, Vera specified that, although she reduced the number of activities when she 
worked with students, she continued to privilege joint interactions and the produc-
tion of arguments. This required some changes in the interaction rules. The 
school Moodle platform continued to be the space where the memory of the school-
work was preserved.

Vera’s current conditions are favourable for the adoption of DTs. By contrast, 
Vera had stated that in the first schools where she worked, she did not employ DTs 
due to a lack of technological resources in the classroom. This shows how the same 
teacher can act in different ways according to the context in which the teacher is 
immersed. For this reason, guaranteeing equity of access to DTs in schools is indis-
pensable for the achievement of a quality education that integrates DTs in the teach-
ing and learning of school subjects for all learners.

In the current socioeconomic conditions of our country, with more than 40% of 
the population below the poverty line,9 public policies for digital inclusion are abso-
lutely indispensable to guarantee the right of access to technologies for all students 
in public schools, which are the ones that concentrate the poorest student 

9 Data published by the National Institute of Statistics and Census of the Argentine Republic 
(INDEC). Available in: https://www.indec.gob.ar/indec/web/Nivel4-Tema-4-46-152. Accessed on 
19 Dec 2020.
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population. The situation of inequality was aggravated by the COVID-19 pandemic. 
The sudden change to remote education exposed the inequity in access to DTs that 
was necessary for educational continuity. This shift towards distance education was 
detrimental to students from the most impoverished sectors of society.

Under these conditions, the integration of DTs in the classroom cannot be the 
exclusive responsibility of the teacher. However, when the conditions of access are 
guaranteed at school, it is absolutely necessary that teachers are prepared to inte-
grate DTs in their classes, overcoming personal prejudices, and understanding 
access to DTs as a citizen’s right. For this to happen, and in accordance with the 
recommendations of Ndlovu et al. (2020) or Lugo and Delgado (2020), it is essen-
tial to integrate the use of DTs into initial teacher education at an early stage.

We suggest that, through these research results, it is feasible to highlight how an 
initial professional development course can have an impact on how PSTs are able to 
both appropriate and use DTs in their practice. Within the boundaries of the reported 
case, it is hoped that the advances of this study can provide input for researchers, 
teacher educators, and curriculum developers.

Our study leaves open questions. Having investigated this particular case leads 
us to highlight the need of widen the horizon of the study towards: an investigation 
of other possible trajectories and the level of integration in the DTs in other 
Argentinean or Latin American educational contexts involving other teachers. For 
example, if the pre-condition of access to DTs in schools is not satisfied, but stu-
dents have access to mobile phones, what kinds of tasks can a mathematics teacher 
propose to integrate such technology in the classroom? How is it possible to inte-
grate mobile phone technologies into mathematics teacher education programmes 
so that teachers can later integrate them into their teaching? How can we educate 
mathematics teachers to be intelligent and knowledgeable users of technology such 
that they can integrate the applications available on a mobile phone in their teach-
ing? These questions open new horizons for research that we look to explore in 
the future.

Acknowledgments This research was carried out with the financial support of the Secretaría de 
Ciencia y Técnica (UNC), the Agencia Nacional de Promoción de la Investigación, el Desarrollo 
Tecnológico y la Innovación, and the Consejo Nacional de Investigaciones Científicas y Técnicas. 
We would like to thank the meaningful and insightful suggestions of the reviewers in previous ver-
sions of this paper. Finally, we would like to thank our students who made this work possible.

References

Borba, M., & Villarreal, M. (2005). Humans-with-media and the reorganization of mathematical 
thinking: Information and communication technologies, modeling, experimentation and visu-
alization. Springer.

Clark-Wilson, A., Robutti, O., & Sinclair, N. (Eds.). (2014). The mathematics teacher in the digital 
era. An international perspective on technology focused professional development. Springer.

M. E. Villarreal and C. B. Esteley



345

Denzin, N. K., & Lincoln, Y. S. (Eds.). (2018). The SAGE handbook of qualitative research (5th 
ed.). SAGE.

Desimone, L.  M., Bartlett, P., Gitomer, M., Mohsin, Y., Pottinger, D., & Wallace, 
J. D. (2013). What they wish they had learned. Phi Delta Kappan, 94(7), 62–65. https://doi.
org/10.1177/003172171309400719

Drijvers, P. (2015). Digital technology in mathematics education: Why it works (or doesn’t). In 
S. Cho (Ed.), Selected regular lectures from the 12th international congress on mathematical 
education (pp. 135–151). Springer. https://doi.org/10.1007/978- 3- 319- 17187- 6_8

Drijvers, P., Tacoma, S., Besamusca, A., van den Heuvel, C., Doorman, M., & Boon, P. (2014). 
Digital technology and mid-adopting teachers’ professional development: A case study. In 
A. Clark-Wilson, O. Robutti, & N. Sinclair (Eds.), The mathematics teacher in the digital era 
(pp. 189–212). Springer. https://doi.org/10.1007/978- 94- 007- 4638- 1_9

Edelstein, G. (2011). Formar y formarse en la enseñanza. Paidós.
Ertmer, P. A., & Ottenbreit-Leftwich, A. T. (2010). Teacher technology change: How knowledge, 

confidence, beliefs, and culture intersect. Journal of Research on Technology in Education, 
42(3), 255–284.

Esteley, C. (2014). Desarrollo Profesional en Escenarios de Modelización Matemática: Voces y 
Sentidos [Doctoral dissertation, Facultad de Filosofía y Humanidades – Universidad Nacional 
de Córdoba]. Editorial Filosofía y Humanidades. E-books. https://ffyh.unc.edu.ar/publicacio-
nes/wp- content/uploads/sites/35/2022/05/EBOOK_ESTELEY.pdf?

Goos, M. (2005). A sociocultural analysis of the development of pre-service and beginning teach-
ers’ pedagogical identities as users of technology. Journal of Mathematics Teacher Education, 
8, 35–59. https://doi.org/10.1007/s10857- 005- 0457- 0

Goos, M., Galbraith, P., Renshaw, P., & Geiger, V. (2000). Reshaping teacher and student roles 
in technology-enriched classrooms. Mathematics Education Research Journal, 12, 303–320. 
https://doi.org/10.1007/BF03217091

Gurevich, I., Stein, H., & Gorev, D. (2017). Tracking professional development of novice teach-
ers when integrating technology in teaching mathematics. Computers in the Schools, 34(4), 
267–283. https://doi.org/10.1080/07380569.2017.1387470

Hammond, M., Fragkouli, E., Suandi, I., Crosson, S., Ingram, J., Johnston-Wilder, P., Johnston- 
Wilder, S., Kingston, Y., Pope, M., & Wray, D. (2009). What happens as student teachers 
who made very good use of ICT during pre-service training enter their first year of teaching? 
Teacher Development, 13(2), 93–106. https://doi.org/10.1080/13664530903043939

Losano, L., Fiorentini, D., & Villarreal, M. (2018). The development of a mathematics teacher’s 
professional identity during her first year teaching. Journal of Mathematics Teacher Education, 
21, 287–315. https://doi.org/10.1007/s10857- 017- 9364- 4

Lovaiza, P., & Marchesini, V. (2017). Una propuesta para aprender a argumentar en geometría 
con alumnos de segundo año del nivel secundario [Final teaching practice report, Facultad 
de Matemática, Astronomía, Física y Computación  – Universidad Nacional de Córdoba]. 
Repositorio Diginal UNC. http://hdl.handle.net/11086/5784

Lugo, M.  T., & Delgado, H. (2020). Hacia una nueva agenda educativa digital en América 
Latina (Documento de Trabajo n° 188). Centro de Implementación de Políticas Públicas 
para la Equidad y el Crecimiento. https://www.cippec.org/wp- content/uploads/2020/03/188- 
DT- EDU- Hacia- una- nueva- agenda- digital- educativa- en- Am%C3%A9rica- Latina- L....pdf. 
Accessed on 1 April 2021.

Menghini, R. A. (2015). Los profesores principiantes frente a su formación inicial: entre la infor-
mación y la construcción de herramientas intelectuales para enseñar. Polifonías Revista de 
Educación. Año IV, 6(2015), 103–126.

Mina, M. (2018). Simulaciones-con-Scratch como proceso de modelización matemática: Un 
estudio de caso acerca de la construcción de conocimiento matemático con alumnos de nivel 
secundario [Master thesis, Facultad de Ciencias Sociales – Universidad Nacional de Córdoba]. 
Repositorio Diginal UNC. http://hdl.handle.net/11086/12854

Researching Professional Trajectories Regarding the Integration of Digital Technologies…

https://doi.org/10.1177/003172171309400719
https://doi.org/10.1177/003172171309400719
https://doi.org/10.1007/978-3-319-17187-6_8
https://doi.org/10.1007/978-94-007-4638-1_9
https://ffyh.unc.edu.ar/publicaciones/wp-content/uploads/sites/35/2022/05/EBOOK_ESTELEY.pdf?
https://ffyh.unc.edu.ar/publicaciones/wp-content/uploads/sites/35/2022/05/EBOOK_ESTELEY.pdf?
https://doi.org/10.1007/s10857-005-0457-0
https://doi.org/10.1007/BF03217091
https://doi.org/10.1080/07380569.2017.1387470
https://doi.org/10.1080/13664530903043939
https://doi.org/10.1007/s10857-017-9364-4
http://hdl.handle.net/11086/5784
https://www.cippec.org/wp-content/uploads/2020/03/188-DT-EDU-Hacia-una-nueva-agenda-digital-educativa-en-América-Latina-L....pdf
https://www.cippec.org/wp-content/uploads/2020/03/188-DT-EDU-Hacia-una-nueva-agenda-digital-educativa-en-América-Latina-L....pdf
http://hdl.handle.net/11086/12854


346

Ndlovu, M., Ramdhany, V., Spangenberg, E., & Govender, R. (2020). Preservice teachers’ beliefs 
and intentions about integrating mathematics teaching and learning ICTs in their classrooms. 
ZDM Mathematics Education, 52, 1365–1380. https://doi.org/10.1007/s11858- 020- 01186- 2

Ruiz, A. (Ed.). (2017). Mathematics teacher preparation in Central America and the Caribbean. 
The cases of Colombia, Costa Rica, the Dominican Republic and Venezuela. Springer.

Ruthven, K. (2009). Towards a naturalistic conceptualisation of technology integration in class-
room practice: The example of school mathematics. Éducation et Didactique, 3(1), 131–159. 
https://doi.org/10.4000/educationdidactique.434

Sessa, C. (2018). About collaborative work: Exploring the functional world in a computer-enriched 
environment. In G. Kaiser, H. Forgasz, M. Graven, A. Kuzniak, E. Simmt, & B. Xu (Eds.), 
Invited lectures from the 13th international congress on mathematical education. ICME-13 
monographs (pp. 581–599). Springer. https://doi.org/10.1007/978- 3- 319- 72170- 5_32

Stein, H., Gurevich, I., & Gorev, D. (2019). Integration of technology by novice mathematics teach-
ers–what facilitates such integration and what makes it difficult? Education and Information 
Technologies, 25, 141–161. https://doi.org/10.1007/s10639- 019- 09950- y

Vezub, L. F. (2009). Notas para pensar una genealogía de la formación permanente del profesorado 
en la Argentina. Revista Mexicana de Investigación Educativa, 14(42), 911–937. http://www.
scielo.org.mx/pdf/rmie/v14n42/v14n42a14.pdf

Vezub, L.  F. (2013). Hacia una pedagogía del desarrollo profesional docente: modelos de for-
mación continua y necesidades formativas de los profesores. Páginas de Educación, 6(1), 
97–124. http://www.scielo.edu.uy/pdf/pe/v6n1/v6n1a06.pdf

Villarreal, M., Esteley, C., & Smith, S. (2018). Pre-service teachers working in mathematical mod-
elling scenarios with digital technologies. ZDM Mathematics Education, 50, 327–341. https://
doi.org/10.1007/s11858- 018- 0925- 5

M. E. Villarreal and C. B. Esteley

https://doi.org/10.1007/s11858-020-01186-2
https://doi.org/10.4000/educationdidactique.434
https://doi.org/10.1007/978-3-319-72170-5_32
https://doi.org/10.1007/s10639-019-09950-y
http://www.scielo.org.mx/pdf/rmie/v14n42/v14n42a14.pdf
http://www.scielo.org.mx/pdf/rmie/v14n42/v14n42a14.pdf
http://www.scielo.edu.uy/pdf/pe/v6n1/v6n1a06.pdf
https://doi.org/10.1007/s11858-018-0925-5
https://doi.org/10.1007/s11858-018-0925-5


347

The Abrupt Transition to Online 
Mathematics Teaching 
Due to the COVID- 19 Pandemic: Listening 
to Latin American Teachers’ Voices

Mario Sánchez Aguilar, Danelly Susana Esparza Puga,  
and Javier Lezama

Abstract This study explores the way in which a group of Latin American mathe-
matics teachers cope with the abrupt integration of digital technology into their 
mathematics teaching caused by the COVID-19 pandemic, which began in 2020. 
The study gives voice to mathematics teachers who have experienced first-hand the 
digital transition caused by the pandemic. Through an open survey of 179 mathe-
matics teachers from different Latin American countries, teachers are asked how 
they adapted their mathematics lessons to the new context, how they felt in this 
transition, and if they received associated material support or guidance. The ques-
tionnaire recognises teachers’ knowledge and experience by asking them about sug-
gestions or recommendations to other colleagues who are experiencing the same 
digital transition. This study contributes to broadening our knowledge about the 
way mathematics teachers deal with the integration of technology in their teaching 
practices, particularly in situations where such integration is imposed.
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1  Introduction

The infectious COVID-19 disease is caused by the virus SARS-CoV-2 and can lead 
to serious respiratory complications, and even death. The first COVID-19 outbreak 
was first identified in Wuhan, China, in December 2019. Since then the virus gradu-
ally spread around the world, including Latin America, the region where the teach-
ers who participated in this study live. The global COVID-19 pandemic brought 
about profound changes in the social, political and economic dynamics of nations 
around the world. In the particular case of school mathematics instruction, many 
teachers experienced an abrupt transition from a face-to-face teaching setting to a 
completely different scenario of remote instruction based on the use of digital tools. 
However, such a transition is not without complications. It is possible to hear diverse 
stories from teachers expressing the difficulties resulting from this transition. 
Several of those difficulties are related to the implementation of technological ele-
ments in their mathematics teaching, which in many cases is carried out under 
adverse conditions.

The digital transition also evidenced a heterogeneous digital culture reflected in 
a diversity of teaching practices and competencies. Some mathematics teachers 
seemed to be better prepared for the implementation of digital tools in their teaching 
practice. This is mainly due to the access and previous experiences with the use of 
digital tools in mathematics that these teachers had (Csachová & Jurečková, 2020).

This digital transition led the mathematics teachers to make improvements—not 
without difficulties—at the personal, collective and institutional level that would 
allow them to build teaching solutions to continue the educational act. Training 
themselves in the use of digital tools, improving the production of digital materials, 
designing ways to promote and evaluate mathematical learning in virtual settings, 
as well as trying to rescue those students lost during the digital transition (Chirinda 
et al., 2021).

Research on mathematics teacher education and development has studied the 
limitations, constraints and obstacles related to the implementation and adoption of 
digital technologies into mathematics teaching (e.g., Abboud-Blanchard, 2014; 
Thomas & Palmer, 2014); however, such studies were not developed under the 
extraordinary conditions experienced as a result of the COVID-19 pandemic. In this 
particular scenario, the implementation and adoption of digital tools was suddenly 
imposed on many teachers in regions of the world where the economic and social 
conditions were not always optimal. The study reported in this chapter expands the 
discussion on the constraints of, and obstacles to, implementing digital technologies 
in mathematics teaching, by exploring the way teachers cope with the abrupt inte-
gration of digital technology (mathematical software, video-conferencing software, 
learning management systems, YouTube, among others) into their daily teaching 
practices due to the COVID-19 pandemic.

The aim of this study is to explore the way in which Latin American mathematics 
teachers deal with the abrupt implementation of digital technology in their teaching 
practices. The study gives voice to mathematics teachers in order to know more 
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about not only how they deal with the digital implementation, but also their feelings 
about this digital transition caused by the COVID 19 pandemic and the support they 
have received to navigate it. The study contributes to broadening our knowledge 
about the way mathematics teachers deal with the integration of technology in their 
teaching practices, particularly in situations where such integration is imposed 
upon them.

2  On the Notion of Teachers’ Voice

The notion of teachers’ voice arises as a critical response to a type of educational 
research focused on producing knowledge about teachers and their work, but which 
paradoxically tended to ignore the teachers’ inquiries and lived experiences of their 
own teaching practice as a possible source of knowledge (Atkinson & Rosiek, 
2008). Thus, the interest in giving teachers a voice arises from the need to produce 
research knowledge that considers the experiences lived by teachers, the teaching 
contexts that give rise to their voices, and the different things they may have to say 
about teaching and learning (Hargreaves, 1996).

The notion of “teachers’ voice” has been used and conceptualised in different 
ways within the field of teacher education research. For instance, in the case of 
mathematics teacher education, the development of the teachers’ own voice has 
been associated with the evolution of a professional identity as a mathematics 
teacher (Brown & McNamara, 2011). It has also been used as a tool to articulate 
critical and dissenting thoughts in connection to the teaching of mathematics (De 
Freitas, 2004). In educational research where the notion of teachers’ voice has been 
most widely used, there are also varied and nuanced definitions. For instance, Frost 
(2008) defines teacher voice as “the views, experience, and perspective of teachers 
on educational policy and practice” (p. 347), while Hargreaves (1996) defines it as 
“the place teachers occupy and the role they play in school restructuring and reform” 
(p. 12). Another definition is provided by Gyurko (2012): “the expression by teach-
ers of knowledge or opinions pertaining to their work, shared in school or other 
public settings, in the discussion of contested issues that have a broad impact on the 
process and outcomes of education.” (p. 4).

In this study the notion of teacher’s voice is understood as the values, beliefs, 
emotions, practical experiences, and perspectives of teachers about their work 
alongside the degree to which those elements are considered, included, listened to, 
and acted upon when important decisions and changes are being made in the educa-
tional context where teachers carry out their work. Some authors have argued about 
the importance of referring to the teachers’ voices (in plural) instead of the “teach-
er’s voice” as a representative and unifying entity (e.g., Atkinson & Rosiek, 2008; 
Hargreaves, 1996). Referring to teachers’ voices emphasises the individuality and 
even dissonance of such voices, which have been shaped “by immense variations in 
the context in which they teach” (Atkinson & Rosiek, 2008, p. 177).
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Before introducing our methods to elicit the voices of the teachers in this qualita-
tive study, we present a brief review of previous research focused on analysing the 
obstacles and constraints that mathematics teachers experience when integrating 
digital technology into their teaching. To promote the articulation and continuity 
among research studies, we frame our study by focusing on relevant research pub-
lished in the first edition of this book (Clark-Wilson et al., 2014).

3  Previous Research on Obstacles and Constraints to Digital 
Technology Integration

The research focused on analysing the obstacles and constraints that mathematics 
teachers experience when integrating digital technology into their own teaching is 
well represented in the first edition of this book (Clark-Wilson et al., 2014). In par-
ticular, two chapters address this problem from different perspectives (Abboud- 
Blanchard, 2014; Thomas & Palmer, 2014).

The study by Thomas and Palmer (2014) reviews research that identifies obsta-
cles to, and constraints on, secondary teachers’ implementation of digital technol-
ogy into their mathematics teaching. Based on the results of a longitudinal study in 
New Zealand, the researchers identify the following obstacles and constraints to 
technology use (particularly computers and calculators):

• Time constraints (e.g., the time needed to become familiar with the technology).
• Access to technology (e.g., unavailability of calculators, computers and software).
• Lack of training in the use of technological tools.
• Lack of confidence in the use of technological tools.
• Government and school policies.

Thomas and Palmer (2014) point out that the obstacles and constraints identified 
can be divided into extrinsic factors (such as the lack of access to technological 
resources) and intrinsic factors (such as the lack of confidence in the use of techno-
logical tools in teaching mathematics). The authors also indicate that their results 
coincide with the factors influencing teacher adoption and implementation of tech-
nology in mathematics teaching identified by other researchers (e.g., Forgasz, 2006; 
Goos, 2005).

The approach followed by Abboud-Blanchard (2014) to the study of the integra-
tion of digital technology (such as dynamic geometry software and online electronic 
exercise portals) into mathematics teaching is different from that taken by Thomas 
and Palmer (2014). Based on a synthesis of three studies developed in France, the 
researcher identifies common characteristics in terms of common responses to 
shared constraints related to the integration of technology by ordinary mathematics 
teachers. By ordinary teachers she refers to “teachers who are not technology- 
experts and who are not involved in experimental projects” (Abboud-Blanchard, 
2014, p. 298).
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Abboud-Blanchard (2014) acknowledges that the practices analysed in the three 
considered studies are shaped by the socio-educational and institutional conditions 
in which teachers develop their job, as well as by their personal trajectories. 
Nevertheless, she claims that it is possible to find regularities in the teachers’ 
responses reported in these studies:

These regularities seem to be directly related to the common constraints and difficulties that 
teachers face when using technology and the way that they handle them […] these are 
choices (though certainly related to the personal component) that reflect how teachers 
invest the few options left, given the institutional and social constraints. (p. 304)

Abboud-Blanchard (2014) analysed the teachers’ common responses to the shared 
constraints into three axes, which are the:

• Cognitive axis. How to simultaneously teach mathematics and use technology in 
class (related to the mathematical content taught with technology)

• Pragmatic axis. How to teach mathematics in new teaching environments (related 
to what the teacher does and says when implementing a classroom situation 
using technology)

• Temporal axis. How to manage the time for teaching and learning when using 
technology (related to different aspects of time management)

There are some similarities in the research findings reported by Abboud-Blanchard 
(2014) and Thomas and Palmer (2014). For example, both researchers coincide in point-
ing to teachers’ lack of confidence in using digital technology as a constraint of, or an 
obstacle to, its implementation in the teaching of mathematics alongside a (lack of) time.

In our study we also focus on the way teachers implement digital technology in 
their mathematics teaching and the obstacles they find to doing so; however, our study 
maintains important differences with its predecessors. Firstly, we not only consider 
the implementation of digital technologies typically associated with the teaching of 
mathematics (such as calculators or dynamic geometry software), but we also con-
sider the implementation of more general digital technologies such as videoconfer-
encing software, learning management platforms, and YouTube, among others.

Another important difference with previous studies is the context and conditions 
in which the process of implementation of digital technologies takes place. The 
COVID-19 pandemic forced mathematics teachers to abruptly implement the use of 
digital tools in their teaching, regardless of their institutional and social constraints 
and conditions. This study explores how mathematics teachers navigate the early 
stages of this difficult and demanding implementation process.

Finally, another significant difference between this study and those reported by 
Abboud-Blanchard (2014) and Thomas and Palmer (2014) is the fact that this study 
does not directly observe the teacher’s practice (the “pragmatic axis” according to 
Abboud-Blanchard, 2014). As explained in more detail in the next section on the 
research method, this study approximates mathematics teachers’ practices through 
their self-reports captured through an open questionnaire, which were analysed 
using a grounded (inductive) approach. Consequently, our research enriches the 
inquiry of the limitations, constraints, and obstacles related to the implementation 
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and adoption of digital technologies into mathematics teaching. In particular, this 
study aims to broaden our understanding of the way in which mathematics teachers 
act and feel when faced with a phenomenon of abrupt implementation of digital 
technology in their own teaching.

4  Method

This chapter and the study that it reports were developed under lockdown during the 
COVID-19 global pandemic. This section describes the method that was followed 
to develop the study under these conditions, beginning with a brief description of 
the pandemic context in which it was developed.

4.1  Context of the Study

The global COVID-19 pandemic triggered social and economic crisis around the 
world. Among the effects of the pandemic is the global digital migration of thou-
sands of teachers and students from face-to-face mathematics instruction to online 
mathematics instruction. This research took place during the first months of this 
massive digital migration.

Although with different issuing dates, the institutional orders to begin distance 
instruction in Latin American countries took place during the first semester of 2020. 
The abrupt nature of the digital transition made evident the heterogeneity between, 
and within, Latin American countries in terms of quality of internet connections, 
access to digital tools, and digital competencies. Consequently, students and teach-
ers in geographically distant or isolated regions experienced greater difficulties in 
continuing with their mathematics instruction. Even in large urban areas in Latin 
America where access to the internet and digital tools is more widespread, access to 
online instruction was not guaranteed for all students. The socio-economically dis-
advantaged students faced greater obstacles to staying connected, due to a limited 
access to digital resources exacerbated by the economic crisis that accompanied the 
pandemic. In the more severe cases, students and teachers from some particularly 
underprivileged areas of Latin America were simply detached from the educational 
system—interrupting their mathematics instruction completely.

4.2  Study Participants

We were interested in hearing the voices of Latin American teachers about their 
experience teaching mathematics in this new context of instruction. An opportunity 
sample was constituted by sending email invitations to approximately 800 Latin 
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American mathematics teachers, asking them to voluntarily answer a questionnaire 
(see next section) related to the digital transition of their teaching practice due to the 
COVID-19 pandemic. Despite the pressing moment in which the questionnaire was 
sent, 179 teachers agreed to answer it.

The teachers who answered the questionnaire were contacted through two main 
means. On the one hand, teachers associated with the social network DocenMat (a 
regional social network of mathematics teachers interested in mathematics educa-
tion; see https://docenciaenmatematicas.ning.com) were contacted and invited to 
answer the questionnaire; on the other hand, teachers who had graduated from an 
online postgraduate program in mathematics education were invited to participate 
and to use their personal networks to extend the invitation to other teachers. 
Although the online postgraduate program is located in Mexico City, it receives in- 
service mathematics teachers from different Latin American countries (see Gómez- 
Blancarte et al., 2019).

The 179 teachers who responded were men and women from Argentina, Chile, 
Colombia, Mexico and Uruguay. One hundred forty-nine of these teachers reported 
working in public schools and 28 in private schools (two teachers declined to pro-
vide this information). The participating teachers work at the university level (45), 
upper secondary level (66), primary level (44), and some of them (24) declared that 
they work at more than one educational level, without stating the levels. All the 
schools where these teachers work are located in urban and semi-urban areas, except 
for six teachers who through their responses stated that they work in rural areas.

4.3  The Questionnaire

Due to its potential for gathering information from large audiences, and due to the 
mobility and social distancing restrictions imposed by the COVID-19 pandemic, we 
designed an online questionnaire. It was constructed with an empathetic spirit that 
invited teachers to express their views. The questionnaire (see Appendix 1) was 
designed to elicit:

• general contextual questions not directly related to mathematics instruction 
(questions 1, 2 and 3).

• how the teachers were adapting their mathematics lessons to the new context 
(questions 7, 8 and 9)

• how the teachers felt about this transition and if they received related material 
support or guidance (questions 5, 6 and 10).

• the knowledge and experience of the teachers by asking about the suggestions or 
recommendations that they would make to other colleagues who are in the same 
digital transition (question 11).

Of special relevance to the focus of this book are the questions related to teachers’ 
adaptations of the mathematical content and its approach to the virtual format, the 
time this took and the format of the resulting lessons.
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4.4  Implementation of the Questionnaire

The final questionnaire was distributed to the participating teachers using the survey 
administration software Google Forms. This software automatically anonymised 
the responses and organised them in a spreadsheet, which facilitated the capture and 
subsequent analysis of the empirical data. The questionnaire was distributed 
between May 22 and June 3, 2020 a few weeks after the teachers had begun the digi-
tal migration, to gather data on their emotions and experiences at this early stage of 
the process of transformation.

4.5  Analysis of the Teachers’ Responses

The analysis process for the teachers’ responses was different for each type of ques-
tion. In the case of questions that were answered with a “yes/no” or with a small set 
of possible answers, a frequency count of the answers expressed by the teachers was 
made (i.e., questions 1, 6 ad 9).

The open questions, designed to give voice to the mathematics teachers, were sub-
jected to open coding (Saldaña, 2013). As mentioned before, this type of questions not 
only ask teachers about the adaptation of their mathematics lessons to the new con-
text, but also ask about the way they feel and the support they have received during the 
transition (i.e., questions 7, 8 and 10). This open coding enabled regularities in the 
teachers’ answers to be found, which could then be grouped into categories. In a first 
level of coding, similar keywords or phrases were identified within the teachers’ 
responses and a code was assigned to each, which would enable later categorical 
grouping. For example, in several responses, teachers reported difficulties they were 
experiencing related to the digital transition. The utterances in which the teachers 
expressed such difficulties were coded according to their nature (see Table 1). These 
codes were subsequently grouped into the category of implementation obstacles that 
teachers face during the digital transition caused by the COVID-19 pandemic.

5  Results

In this section we present the results of the analysis of the teachers’ responses to the 
open questions. The results are organised into six categories: implementation obsta-
cles, time needed for adapting the lessons, teachers’ lessons descriptions, imple-
mentation of digital tools, teachers’ emotions, and teachers’ suggestions and 
recommendations. These categories represent different aspects of what teachers did 
and felt during the abrupt digital transition that their mathematics teaching work had 
undergone. The categories are illustrated with extracts from the teachers’ responses 
to the questionnaire.
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Table 1 Codes and responses that constitute the category of implementation obstacles faced by 
teachers

Code and number of 
respondents Code description Sample response

Lack of training 
(92)

Teachers stated that they did 
not receive training from the 
authorities of their educational 
institutions

R127: I did not receive advice. Only 
between colleagues and friends from the 
school. Remains the same until now. 
Then I resorted to what was available on 
YouTube

Lack of computer 
equipment (8)

Teachers stated that either their 
students or themselves did not 
have the necessary computer 
equipment to teach or study 
online

R147: I have had great difficulty 
adapting myself to the virtual mode, and 
in acquiring the appropriate equipment 
to perform it (I have old and obsolete 
computer equipment)

Limited access to 
the internet by 
students (69)

Teachers declare that, for 
various reasons, students have 
limited or no access to the 
internet

R117: As the students come from a rural 
community, they do not have unlimited 
access to the internet and they do not 
have computers. We generally work by 
WhatsApp

Deficiencies in the 
teachers’ quality of 
internet services 
(97)

Although most teachers had 
internet access, some 
commented that the quality of 
their service was poor

R131: The internet service is average. I 
have had some problems due to the 
total loss of the internet signal, one of 
them precisely on the day of the lesson

5.1  Implementation Obstacles

As mentioned before, in the teachers’ responses it was possible to identify obstacles 
that they faced when trying to migrate from face-to-face mathematics instruction to 
online mathematics instruction (see the sample responses and number of respon-
dents in Table 1). In particular, two types of obstacles were identified. The first of 
these is the lack of training, which refers to the lack of support that teachers received 
from the authorities to train themselves in the use of digital tools.

R35: We were not given assistance and I had to do some research around the han-
dling of online whiteboards.

R108: I did not receive support, but with my colleagues we supported each other.

The second type of obstacle refers to the lack of internet access. Teachers refer to 
how the lack of internet access—for both their students and themselves—ham-
pered the development of their courses.

R67: It is very difficult to do an online class as such, because in the environment 
where I work, students do not have enough financial resources to be in virtual 
lessons.
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R167: I have internet access, but the access to the service is intermittent. There are 
times of the day where the connection does not allow you to work smoothly.

R74: The internet access in my community is null, so I limit myself to working on WhatsApp.

There were eight teachers who identified the lack of access to adequate computer 
equipment as an obstacle to implementing their mathematics lessons online (for 
instance, see sample response R147 in Table 1).

5.2  Time Needed to Adapt Mathematics Lessons

Teachers wrote about the time needed to adapt their mathematics lessons to the 
online modality. A recurring complaint from teachers was that they had to invest 
much more time preparing their teaching materials for the online setting than the 
time needed for planning face-to-face lessons (91 of the teachers reported this). 
However, there were a few teachers (24) who stated that they did not need much 
time to plan their lessons, due to their previous experiences of using digital tools.

R72: It takes me a long time. Because I look for activities and also explanatory 
videos on the topic. If I calculate the time, it would be triple the time I did before. 
Practically I am working for most of the day.

R149: I changed the topics to start with the simplest ones. It takes a lot of time, since 
it not only involves preparing each activity in a digital format and explaining it 
in a way that the student can understand it, but also involves learning to use the 
[digital] tools and provide feedback to each student.

R90: I do not need much [time] because I constantly use technology in my lessons.

5.3  Teachers’ Lessons Descriptions

The analysis of the teachers’ descriptions of their own mathematics lessons allowed 
us to identify a number of similarities within the descriptions. Some teachers 
(42) declared that, for different reasons, their lessons had to be asynchronous. 
Teachers (76) also indicated that they had the possibility to communicate syn-
chronously with their students. However, a dominant trait in the teachers’ 
descriptions was the tendency to mimic or reproduce the form of their face-to- 
face mathematics lessons but in an online setting (53 teachers declared this).

R97: They are lessons recorded and posted online, and I have consultation hours 
every day.

R64: I only send emails with activities and delivery deadlines.
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R18: Two platforms are available for the lessons: Zoom to teach live every day of 
the week, both morning and evening. The Schoology platform is used to post 
recorded videos and activities to be solved online (questionnaires, crosswords, 
word searches). WhatsApp and email are used to send instructions and have con-
tact with parents.

R168: They are lessons very similar to the face-to-face ones, with a traditional 
explanation supported by presentations, videos and the digital whiteboard. The 
students ask questions whenever they want, and they use the platform to rein-
force knowledge and hand in their homework.

R25: I try to make them as similar as possible to the face-to-face lessons.

R180: I have two groups of students, undergraduate (Geometry) and graduate (Research 
Methodology and thesis supervision). In both cases we work through meetings via Zoom. At 
undergraduate level I present the subject. We use the sharing tool to look at the book in PDF, or 
the whiteboard, or GeoGebra. At first, I used an auxiliary camera to focus on a notebook in 
which (using it as a blackboard) I made operations or sketches, as required. But then I discov-
ered a tool that has been very useful to me and allows me to write or draw over the file.

5.4  Implementation of Digital Tools

The digital tools that the mathematics teachers report having implemented can be 
divided into mathematical digital tools, that is, digital tools associated with the 
teaching of mathematics (n = 68) and non-mathematical digital tools, which are 
not necessarily associated with the teaching of mathematics but that allow for 
communication between teachers and students (n  =  111). Example responses 
include:

R90: We use applications and applets such as GeoGebra, the games on the Spanish 
page of the Canary Islands, interaction on the Zoom whiteboard to build answers, 
a digital book, and YouTube to explain topics but with videos made by myself.

R114: The subject of numerical analysis has three tools: Visual Studio (C++), 
Mathematica and Simulink. The difference lies in the use of Blogger that is no 
longer used and YouTube videos. An example accompanied with exercises, and 
a problem to be solved as a team. Their homework is sent via WhatsApp Web. 
They [the students] do not like Blogger, they told me it is more complicated.

R9: I send the activity through Google Classroom and then I invite the students to 
share their doubts through Google Meet. But it is very difficult due to the limited 
time that the application gives you and not being able to use a blackboard.

R11: Brief explanations, video recordings on the YouTube platform, answering questions through 
Google Classroom and social networks.
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5.5  Teachers’ Emotions

When mathematics teachers were asked how they felt in relation to the transition 
from face-to-face to online mode of instruction, most of them (148) concurred in 
their expression of negative feelings such as stress, frustration, uncertainty, 
and worry.

R143: It was very abrupt, it is very stressful; there are no equal conditions for [inter-
net] connection, neither between students, nor between teachers.

R32: Frustration, since I cannot reach even half of my students.

R42: Uncertainty, because we don’t know how long we will be working like this, 
worried because not all of our students have access to digital tools.

R3: I am very concerned about those who do not have internet service, there are 
many and this greatly limits my interaction with them. The authority pretends 
that this does not matter.

R169: Only 10% of the students who enter into the virtual class participate. I sit talking alone. 
Human warmth is lacking. The order, discipline, organisation, participation, attention, punctu-
ality and other factors that help the schooling of students, has been lost.

5.6  Teachers’ Suggestions and Recommendations

Through the questionnaire, the mathematics teachers gave suggestions and recom-
mendations for their colleagues who were going through the same transition to 
online teaching. These recommendations focus on time management (n = 65), 
the exploration of digital tools (n = 77), self-initiated training (n = 43), and emo-
tional issues (n = 68).

R108: The most important thing is to put limits on the consulting hours for students, 
because once they have access to your mobile number or Facebook, they will 
send you messages at any time, any day and that is not very healthy. We must 
educate ourselves in organising our time and activities.

R155: Set defined hours to work. The virtuality has no end.

R6: Explore options, there are many resources available that we are not aware of 
and can contribute with something different to our lessons.

R2: We must take advantage of the possibilities that technology offers us. This is 
going to be a great opportunity to further explore tools that can improve the les-
sons even when we return to the [face-to-face] classroom environment.

R31: As teachers, we need to train ourselves in the use of digital tools.

R18: Learn, take courses, understand or try to understand how students think to 
determine what resources can facilitate their learning processes.
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R11: Be patient, do not get discouraged if the percentage of active students decreases 
or does not increase.

R47: Be patient with ourselves, seek support and accept all possible help, be ready 
to look for information and be patient with parents as well.

R69: Do not be afraid and dare to address this new technological challenge.

6  Discussion

The aim of this study is to explore the way in which Latin American mathematics 
teachers deal with the abrupt implementation of digital technology in their teaching 
practices. Mathematics teachers were given a voice to express their feelings about 
this abrupt implementation and how they are responding to it in their practice.

The notion of teacher’s voice is understood as the values, beliefs, emotions, prac-
tical experiences, and perspectives of teachers about their work. It also considers the 
degree to which those elements are considered, included, listened to, and acted upon 
when important decisions and changes are being made in the educational context 
where teachers develop their work. Thus, an open questionnaire was designed and 
implemented through which teachers could freely describe the material and techni-
cal difficulties experienced during the digital migration and suggestions they had to 
help other colleagues to navigate this digital transition. The open questionnaire also 
provided space for the mathematics teachers to express their emotional response to 
this abrupt implementation of technology in their teaching.

The analysis of the teachers’ responses shows that they encounter obstacles to 
the implementation of digital technologies mainly related to poor or non access to 
the internet, and the lack of associated support and training from the educational 
authorities. The results of the study also indicate that the abrupt implementation of 
digital technology is time-consuming and can generate negative emotions for math-
ematics teachers. Finally, the teachers’ responses suggest that during the first weeks 
of the abrupt implementation of digital technology, several of them focused on the 
problem of how to communicate and share information (files, videos) with their 
students, and not so much on the problem of how to represent and manipulate the 
mathematical content in the new instructional setting. This might be due to the 
abrupt conditions in which technology implementation took place, where the prob-
lem of establishing contact and fluid communication with students is a priority for 
the development of remote instruction and a prerequisite for online mathematics 
instruction.

Some of the results of this study coincide with the observations of Abboud- 
Blanchard (2014) and Thomas and Palmer (2014), who studied the phenomenon of 
the integration of digital tools into mathematics teaching. For example, we agree 
with Abboud-Blanchard’s observation regarding the existence of commonalities in 
the way that teachers integrate technology into their classroom practices—regard-
less of whether the teachers come from different contexts. We have also identified 
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regularities in the implementation practices and in the obstacles reported by the 
different teachers who participated in the study. One of the regularities is the fact 
that the integration of digital technology can be time-consuming, particularly for 
those mathematics teachers without prior experience with the use of digital tools in 
their teaching. Time constraints and time-related limitations connected to the imple-
mentation of digital technology into mathematics teaching have been also identified 
in the studies of Abboud-Blanchard and Thomas and Palmer. The significant 
increase in the time required to prepare and teach an online mathematics lesson dur-
ing the pandemic has also been reported by Italian university mathematics teachers 
(see Cassibba et al., 2021).

As in the work of Thomas and Palmer (2014), in this study the lack of training 
and the lack of access to digital resources were identified as obstacles to the imple-
mentation of digital technology in the teaching of mathematics. However, we argue 
that the impact that the lack of access to digital resources—particularly the inter-
net—has on the development of mathematics instruction in the pandemic scenario 
is much greater than the impact that such lack of access to digital resources could 
have in the mathematics instruction of the pre-pandemic era. Here the data shows 
how the lack of access to a stable internet connection can have serious consequences 
for the relationship between the teachers and their students, such as the impoverish-
ment of their interaction and feedback, and, in some cases, the inability to continue 
attending the mathematics lessons. The lack of access to a stable internet connection 
or to basic digital tools such as a computer or a tablet is probably not a common 
problem in well-developed countries. However, there are wide sectors in Latin 
America where these shortages are part of everyday life.

What we witnessed is a massive digital transition focused on overcoming the 
disruption in the teaching process caused by the pandemic. However, this digital 
transition exacerbates the already profound inequality between students from differ-
ent regions of the world. The transition allows those students in better geographic 
and socioeconomic conditions to somehow continue with their mathematical educa-
tion, but leaves behind thousands of students who cannot be part of this digital 
transition. This poses a huge problem of inequality in access to mathematical 
instruction that will profoundly influence the mathematical literacy of these future 
adults and the societies to which they belong.

The results of this study contribute to expand the perspectives developed by 
Abboud-Blanchard (2014), Thomas and Palmer (2014) and other scholars about the 
affective elements related to the integration of digital tools into mathematics teach-
ing. Research on the adoption and integration of digital tools into mathematics 
teaching has usually focused on teachers’ beliefs on the use of digital tools. Different 
mathematics teachers’ belief systems have been identified, some more compatible 
than others with the integration of digital tools. An example of this is the work of 
Erens and Eichler (2015) who identified two general teachers’ beliefs systems, 
which they called “the old school” and “technology supporter”, and relate such 
beliefs systems to teachers’ ways of integrating graphing and computer algebra sys-
tems in their calculus teaching. On the other hand, Abboud-Blanchard (2014) and 
Thomas and Palmer (2014) point to teachers’ lack of confidence in using digital 
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technology as an obstacle to its implementation in the teaching of mathematics. 
Such lack of confidence could be interpreted as a self-efficacy belief (Bandura, 
1993), i.e., teachers’ beliefs in their personal efficacy to put digital technologies to 
good use in the mathematics classroom. However, the exploratory study reported in 
this chapter brings to the fore the emotions experienced by mathematics teachers 
during the abrupt process of implementing digital tools into their teaching. Emotions 
are a more intense and less stable affective element than beliefs, however, beliefs 
and attitudes are thought to arise from emotions (McLeod, 1992; Schukajlow et al., 
2017). Most of the emotions expressed by the teachers who participated in this 
study were characterised by a negative valence (stress, frustration, worry) and the 
object of these emotions was the abrupt process of implementation of digital tools 
into their teaching. Since emotions are the basis on which beliefs and attitudes are 
consolidated, we think it is necessary to pay more attention to these affective ele-
ments that are triggered by the process of implementing digital tools. It is important 
that mathematics teachers are heard with respect to what they feel and do during 
processes of digital transformation.

As noted earlier, this study did not directly observe the implementation of digital 
tools into the teachers’ practices during the COVID-19 pandemic. This is an aspect 
that needs to be addressed by future studies to corroborate and complement the find-
ings reported in this exploratory work. We believe that the study of mathematics 
teachers’ practices in the post-pandemic digital era is one of the topics that will 
require the attention of researchers in the years to come.

Acknowledgments We express our warmest thanks to the mathematics teachers who answered 
the questionnaire that served as the basis for this study.

 Appendix: Questionnaire Given to the Mathematics Teachers 
Who Participated in the Study

 1. The educational system(s) where you work, is it public or private?
 2. Indicate the educational levels in which you work
 3. Do you have internet access at home?
 4. Before the health emergency and the suspension of face-to-face instruction, 

was it usual for you to use digital tools in your courses? If your answer is yes, 
indicate which ones you used.

 5. Were you instructed to change to the online teaching format? If your answer is 
yes, from what authority did you receive the instruction?

 6. Upon receiving the instruction, was any digital tool provided to you to develop 
your work? Did you receive support on this respect?

 7. How did you adapt the mathematical content and its approach to the virtual 
format? How long did this take?

 8. Describe your mathematics lessons in the virtual environment.
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 9. Specify the digital tools that you currently use with your students to develop 
your courses.

 10. How do you feel about the transition from face-to-face to online mode of 
instruction?

 11. What suggestions or recommendations would you make to other colleagues 
who are undergoing the same digital transition?
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Meta-Didactical Transposition.2: 
The Evolution of a Framework to Analyse 
Teachers’ Collaborative Work 
with Researchers in Technological Settings

Annalisa Cusi, Ornella Robutti, Monica Panero, Eugenia Taranto, 
and Gilles Aldon

Abstract Meta-Didactical Transposition is a framework created to interpret and 
analyse the interactions between teachers and researchers in the general context of 
teachers’ professional development. The use of this framework in specific contexts 
(not only professional development face-to-face courses, but also within MOOCs or 
collaborative research projects) triggered the need to develop the main ideas of the 
framework, intertwining them with ideas from other theoretical frameworks that 
analyse interactions between actors in education. In this chapter we present the 
evolution of the Meta-Didactical Transposition framework, focusing, in particular, 
on the integration of new  theoretical elements with the aim to deepen the analysis 
and interpretation of the so- called phenomenon of “internalisation”, which allows 
teachers and researchers to introduce external components to their own praxeolo-
gies. Specifically, we show, by means of three examples in which digital technolo-
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gies play complementary roles, how this theoretical integration has supported the 
investigation of the internalisation process from different perspectives, that is, “the 
where”, “the why” and “the how”.

Keywords Mathematics teachers’ professional development · Meta-didactical 
transposition · Collaborative work · Praxeology · Agents · Boundary 
object · MOOCs

1  Introduction: The Meta-Didactical 
Transposition Framework

All the authors of this chapter have been involved in research contexts characterised 
by interactions between teachers and researchers in mathematics education involv-
ing uses of technology. All of our investigations have been shaped within the Meta- 
Didactical Transposition framework (indicated here as MDT.1), described in the 
previous edition of this book (Arzarello et al., 2014), grouping ourselves in smaller 
authoring groups with the indirect result of differently extending and deepening 
both the use and the characterisation of the framework.

In this chapter, we first summarise the main elements that characterise MDT.1, 
before discussing the advances we have made in the elaboration of this framework, 
through three different examples, how  the integration of specific new theoretical 
elements within MDT.1 have enabled us to deepen our investigations. As the result 
of this integration, we present a new framework MDT.2.

MDT.1 was created to analyse the evolution of mathematics teachers’ and research-
ers’ practices within institutional contexts, when they are jointly engaged in profes-
sional development programmes that had been designed by researchers (Aldon et al., 
2013; Arzarello et al., 2014). It was based on Chevallard’s Anthropological Theory of 
Didactics (Chevallard, 1985), which conceives mathematics teaching as a human 
activity, carried out within institutions, and shapeable through different praxeologies. 
A praxeology is constituted by 4 different components: the task and one or more tech-
niques for solving the task (together they consist in the “praxis” or “know how”); the 
justification of the technique, which is called technology, as a discourse (λόγος: logos) 
on the technique (τέχνη: tekhnè), and a theory (technology and theory form the 
“logos” or “know why”). Different techniques could be used to address the same type 
of tasks and the justifications for these praxis could refer to different logos, depending 
on one’s institutional position (think, for example, of the task of teaching fractions at 
primary or secondary school level). In contexts in which researchers and teachers are 
involved, such as teacher education, research projects or collaborative design, MDT.1 
takes into account the relationships and reciprocal influences of the different commu-
nities with respect to their professional practices. It models the evolution of their prax-
eologies, since they could build new praxis or logos, internalising (in the sense of 
making them part of their activity) those components that were initially external to 
their respective praxeologies.
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Fig. 1 An illustration of MDT.1 (Arzarello et al., 2014, p. 355)

The frame of MDT.1 (Fig. 1) has been structured on five different cornerstones 
(Arzarello et al., 2014; Robutti, 2020):

 1. Institutional aspects, since the actors involved come from different institutions 
whose expectations determine specific operating rules, codes, objectives and 
goals. For example, in a national teacher education programme such as  
M@t.abel (see Arzarello et  al., 2014), the actors involved are teachers, who 
belong to specific institutions (within the  Italian school system), researchers 
from universities, which are another type of institution, and educators—experi-
enced teachers who have been trained by researchers.

 2. Didactical praxeologies referring to tasks related to the knowledge to be taught 
and the technique being recognised and justified within a specific institution, and 
meta-didactical praxeologies focused on teachers’ and researchers’ reflections on 
contents to be taught and corresponding didactical praxeologies. Praxeologies are 
dynamic in their nature: they continuously evolve, and their evolution is the result 
of the reflections developed by actors from different institutions when they interact.

 3. The dynamics of praxeological components from external to internal, which 
constitute the internalisation phenomenon, at the base of the evolution of both 
didactical and meta-didactical praxeologies. Internalisation is linked to the 
knowledge at stake, whether practical or theoretical, and could not exist if the 
actors do not take advantage of their interactions to modify their knowledge 
systems.

Meta-Didactical Transposition.2: The Evolution of a Framework to Analyse Teachers…
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 4. The role of the broker, the “mediator” who links the different communities and 
facilitates dialogue between them. Often used in the medical field (e.g., Boissel 
et al., 2010; Gagnon et al., 2016; Lomas, 2007), but not only (Rasmussen et al., 
2009), the concept of “brokering” is defined by the actions that an actor carries 
out at a certain point in time in a given institutional context to make the link and 
ensure good communication between the actors involved. For example, within 
M@t.abel programme, educators played the role of brokers between the com-
munity of teachers and the community of researchers by supporting the interpre-
tation of concepts introduced by researchers referring to specific ideas set within 
the institutional context to which the teachers belong.

 5. The double dialectics, the first—didactical—referred to teaching into the class 
and the second—meta-didactical—referred to the experience of professional 
development, in relation to the didactical experience.

In Fig. 1, praxeologies of researchers and of teachers are represented at the top 
(as initial praxeologies of the communities) and at the bottom (as new praxeolo-
gies), after the process of meta-didactical transposition. This process may give rise 
to a convergent and partially overlapping status of praxeologies of the two commu-
nities, called “shared”. MDT.1 is intended to be a framework for describing and 
analysing the evolution of praxeologies in communities working together. This evo-
lution consists in modifying the techniques and justifying discourses—as compo-
nents of praxeologies—that each community has at its disposal, as professional 
experience and knowledge. MDT.1 has been introduced to analyse the processes 
involved in professional development environments, but it has been quickly used to 
analyse collaborative research contexts (e.g., Aldon et al., 2017; Robotti et al., 2019; 
Robutti et al., 2019; Sanchez & Monod-Ansaldi, 2015), focusing also on members 
of other communities, such as computer scientists and designers. These new studies 
have triggered our reflections on the potential uses of MDT.1 to deepen the investi-
gation of these new environments, fostering the integration of new theoretical ele-
ments within the framework. In the sections that follow, we present this integration 
through three examples, focused on the identification of different new theoretical 
lenses aimed at analysing the effects of the interaction between different communi-
ties of teachers and researchers within different settings.

2   Three Examples to Chart the Evolution from MDT.1 
to MDT.2

The focus of the three narratives is on the process of internalisation. These exam-
ples aim to  show how the analysis of teachers’ and researchers’ learning can be 
deepened with respect to internalisation processes, as they interact within profes-
sional development environments or collaborative research settings. We then show 
how new theoretical elements have been identified to be included within MDT.1 to 
better describe, analyse and interpret this process of internalisation.
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Specifically, each example will deepen understanding of a specific focus of the 
analysis of the internalisation process:

• The first example focuses on “the where” of internalisation: Connectivism is the 
theoretical element integrated within MDT.1 to conceive internalisation as a pro-
cess that happens within a context that involves not only the institutions in which 
the groups of actors live, but also the complex networks within which they 
interact.

• The second example focuses on “the why” of internalisation: the integrated theo-
retical element is the notion of agents, used to develop an analysis aimed at 
explaining different effects of internalisation. In particular, we show how devel-
oping a micro-level analysis could enable to identify the driving forces that trig-
ger, or sometimes inhibit, an evolution of specific praxeological components that 
characterise an internalisation process.

• The third example focuses on “the how” of internalisation: the notion of a bound-
ary object and a framework to support interpretations of the processes that are 
developed at the boundary are integrated within MDT.1 to support the analysis of 
the discourses that the actors develop when working on a common object and 
deepen the interpretation of the evolution of specific praxeological components.

The following table introduces the three examples, focusing on the contexts 
within which they are set, and on the main characteristics of these contexts (Table 1).

2.1  Example 1: A Focus on the Where of Internalisation

2.1.1  Aim of the Research Regarding MDT and Focus of the Analysis

In this example, MDT.1 is used to frame teachers’ professional development context 
that takes place entirely online: the Math MOOC UniTo project (2015–2020), at the 
Mathematics Department of the University of Turin, where a MOOC on a specific 
mathematical topic is designed and implemented every year. Two communities 
interacted within each MOOC: a community of researchers (3 researchers and  
10 researcher-teachers, who we refer to as educators) and a community of teachers 
(424 teachers from across Italy, working at different school levels and with different 
levels of seniority in their institutions).

Within the MOOC, the teachers can interact in the virtual environment in syn-
chronous or asynchronous mode, with no orchestration by the educators (as an edu-
cational choice). This choice implies that the MOOC is enriched by teachers’ 
observations, ideas, reflections, and shared resources, expanding the number of 
stimuli available to teachers, fostering the internalisation of components of teach-
ers’ praxeologies, which represents the focus of our analysis. Our aim is, in fact, to 
investigate “the where” of internalisation, by researching the influence of the MOOC 
context on the internalisation of specific components within teachers’ 
praxeologies.
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Table 1 The context in which the three examples are set

Example 1 Example 2 Example 3

Context A professional 
development course 
focused on the didactics 
of geometry, as a 
MOOC for in-service 
mathematics teachers of 
all school levels.

A professional 
development course, 
realised in Italy and in 
Australia, to integrate 
GeoGebra in classroom 
practices for in-service 
secondary mathematics 
teachers. The example 
focuses on Italian data.

A collaborative research 
project (the European project 
FaSMEd) involving teams of 
researchers and teachers in 7 
countries. The example focuses 
on data collected by the Italian 
and French teams.

Aim of the 
course/
project

Researchers and 
researcher- teachers, as 
educators, offer an 
online professional 
development experience 
for a large number of 
teachers, on a national 
basis (see, for instance, 
Taranto, 2020; Taranto 
et al., 2020)

Researchers, as 
educators, have 
designed the course 
with the aim of 
developing teachers’ 
competencies for the 
integration of GeoGebra 
in mathematics 
problem-solving 
activities at secondary 
level and supporting 
teachers to implement 
student-oriented 
teaching practices (for 
further details, see 
Prodromou et al., 2018).

Teachers and researchers work 
together to study the potential 
for the design and 
implementation of digital tools 
and resources that aim to foster 
the activation of formative 
assessment strategies within 
the classroom (see, for 
instance, Aldon & Panero, 
2020; Cusi et al., 2017).

Course/
project 
duration

The MOOC lasted one 
semester of a 
school year.

The teacher education 
programme lasted 
4 months.

The overall project lasted 
3 years. Collaborative work 
between teachers and 
researchers lasted officially 
2 years, although their 
collaboration continued 
beyond the end of the project.

Data 
collection

The data was collected 
from the Moodle 
platform that is hosting 
the MOOC and 
comprising teachers’ 
contributions 
to communication 
message boards and 
their uploaded 
resources.

Data has been 
collected from initial 
and final interviews 
and from teachers’ 
logbooks of the whole 
experience.

The data, collected throughout 
the whole project, consisted of 
students’ written work; 
video-recordings of classroom 
activities and of the meetings 
between teachers and 
researchers; teachers’ 
post- lesson interviews; 
and students’ final interviews 
and questionnaires.

The type/
role of 
digital 
technology 
within the 
course/
project

Three forms of 
technology are present: 
The platform, its 
communication message 
boards and the specific 
technologies/resources 
for didactical activities 
(e.g., GeoGebra, 
videos).

The course was 
planned specifically 
around GeoGebra and 
its sustainable 
integration into 
teachers’ practices.

Digital technology is the core 
of the project, since its focus is 
on the identification of specific 
digital tools and on a careful 
design of their use to support 
formative assessment 
processes.
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2.1.2  Actors Involved and Initial State of the Praxeologies

With respect to the MOOC the educators focus on the task of transposing, totally 
online, teaching approaches for Geometry (in relation to the national curriculum), 
by means of a set of resources (activities for teachers and for students, teaching 
methods and suggestions for integration of technologies), and the different tech-
niques adopted to implement them. Educators’ practical choices in designing the 
MOOC are informed by theories such as Didactical Transposition and community 
of practice.

Teachers participating in the MOOC have their own didactical praxeologies, 
based on their professional experience. They address the tasks proposed within the 
MOOC (reading texts, looking at videos and commenting on them, experiencing 
activities in their classes) making use of different techniques, accompanied by theo-
retical justifications, which may be explicit or implicit in teachers’ interventions.

2.1.3  What is the Theoretical Gap in the MDT.1 Framework?

The dynamics of the interactions between participants and their related learning in 
a MOOC are different from those of other educational environments explored previ-
ously with MDT.1. So this example helps to characterise new aspects of “the where” 
of internalisation. Since a  MOOC constitutes a new environment, the study of 
the particular internalisation processes requires new theoretical ideas that support 
interpretations of the complexity of the interactions.

2.1.4  What Do We Add and Why?

MDT.1 has been hybridised (Arzarello, 2016) with other theoretical frames (Taranto, 
2018) and here we present the integration of the construct of Connectivism (Siemens, 
2005). A MOOC is a particular learning environment in which Connectivism can be 
applied to account for its complexity. Each teacher is connected with colleagues and 
has the opportunity to share ideas/questions/resources with them. Connectivism 
enables the interpretation of the learning processes, activated in a MOOC by partici-
pants’ interaction, as the evolution of a network of knowledge (Siemens, 2005). 
This evolution is characterised by different phases: self-organisation of participants 
in selecting resources and ways of using them (Siemens, 2005), integration of these 
resources/uses in participants’ own cognitive structures and sharing of uses/
resources inside the interactive tools at their disposal (Taranto, 2020; Taranto et al., 
2017; Taranto & Arzarello, 2020).

According to Connectivism, knowledge is defined as a particular type of net-
work, whose nodes are “any entity that can be connected with another node” 
(Siemens, 2005, p. 4), including information, data, images, ideas, and feelings. The 
network is dynamic and may change over time, so learning is conceived as a con-
tinuous process of network exploration, involving construction, development, and 

Meta-Didactical Transposition.2: The Evolution of a Framework to Analyse Teachers…



372

self-organisation of knowledge. Hence, according to Connectivism, learning 
implies: (a) adding a new node to one’s own network of knowledge; (b) connecting 
(in the sense of relating) old nodes of one’s own network of knowledge in a new way.

Connectivism supports both the observation of teachers’ activity in MOOCs and 
the peculiarities of the learning that is fostered through this activity. Learning within 
a MOOC could be, in fact, interpreted in terms of the evolution of teachers’ own 
network of knowledge. This evolution is triggered by the creation of new nodes 
when a teacher perceives the MOOC resources as new within their network. 
Moreover, teachers’ interaction with other teachers in the virtual environment 
enables them to create new and different connections. This evolution of teachers’ 
networks of knowledge have been interpreted within the MDT framework in this 
way (Taranto et al., 2020):

 (a) when a teacher adds a new node to his/her own network of knowledge, it 
means that one or more components become internal to their meta- 
didactical praxeologies;

 (b) when a teacher connects old nodes of his/her own network of knowledge 
in a new way, it means that s/he looks at his/her didactical praxeologies in 
a fresh way and possibly modifies them, so changing also his/her meta- 
didactical praxeologies.

2.1.5  Data

Module 1 of the first MOOC delivered (MOOC Geometria on geometry contents) is 
focused on the topic of distance between a point and a line and is aimed at overcom-
ing students’ typical misconceptions related to this topic. The communication mes-
sage board embedded into Module 1 was the forum where the educators have 
inserted an assignment to stimulate discussion among the teachers: “Share your 
ideas and/or teaching experiences related to the topics [in Module 1]”. The follow-
ing interventions are taken from the discussion triggered by the educators’ assign-
ment within the forum:

T1 - 27/10/15; 6:50 p.m. - The idea is to play with the heights of the triangles and I 
half minded proposing it to my students :) This is a draft of text. 3 male friends 
Antonio, Bruno and Carlo are at the top of the triangle in the figure (Figure 2). 3 
female friends Antonella, Barbara and Carlotta are also at the top of the triangle 
in the picture. Friends via WhatsApp agree to find themselves in the orthocentre 
of the triangle while the friends will meet in the centroid of the triangle. Draw the 
meeting points of the two groups.

PS: I used the map of Latina, my city.
Didactic note: I deliberately chose an obtuse triangle and the position of the trian-

gle is not the stereotyped one.
T2 - 27/10/15; 11:16 p.m. - This activity is beautiful: I will propose it next week 

(obviously using a map of a city closer to my students, like Turin) to see how they 
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Fig. 2 Latina’s map created by T1

have internalised the concepts of orthocentre and centroid, since they have just 
discovered heights and medians […]

T3 - 28/10/15; 10:40 a.m. - I really like the proposal and I propose a variant of the 
text: in a treasure hunt the competitor Alberto of the team is in A, Bruno in B and 
Caterina in C. The next clue will be given only when all three competitors will 
meet in the orthocentre of the triangle and communicate the position to the direc-
tor ... etc ... it could also be said that there is a tolerance of a certain amount of 
meters for the possible presence of buildings on the geometrically found point. 
Other points of discussion could arise on the comparison between the mutual 
positions of centre of gravity and orthocentre. What do you think?

T1 - 29/10/15; 4:45 p.m. - I really like the use of tolerance! [...] Thanks for the idea :)

2.1.6  Analysis

The intervention with which T1 opens the discussion shows that the stimuli received 
by the materials allowed him to produce his own resource and share it with others. 
T1 was inspired by a concrete situation: he took from Google Maps a map of his 
city, Latina, and drew a triangle (Fig. 2) to design a task for his students.

T2 congratulated T1 and, in a process of self-organisation, makes visible the fact 
that she has added a new node to her network of knowledge (“I will propose it”), but 
at a specific time (“next week”) to link it to mathematical concepts that she has 
already addressed with her class. T3 positively evaluated T1’s idea and, in making 
it her own, proposed a variant to the original task, to stimulate students’ reflection 
and argumentation. T1’s reply to T3 testifies not only his appreciation for the sug-
gestion, but also that he had updated his network of knowledge.
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Although he had not been asked to produce and share materials, T1 used the 
ideas he gained from the MOOC to develop a new and original product. In this way, 
the other teachers were provided with additional sources of learning and led to 
embedding T1’s product as a new node in their own networks and highlighting con-
nections with other nodes.

2.1.7  Final State of the Praxeologies

The dynamics between internal and external components of the praxeologies, 
namely, the phenomenon of internalisation, is addressed by calling into question the 
network of knowledge of Connectivism, specifying what it means when a new node 
is added to one’s network or new connections are generated. Since the knowledge at 
stake in a MOOC is not only the knowledge transposed by the instructors, but also 
the result of a process that takes into account the countless interactions between 
teachers within the communication message boards, Connectivism’s terminology 
allows us to better interpret these virtual and massive phenomena.

As far as the educators are concerned, the evolution of their meta-didactical prax-
eologies occurs at the end of the MOOC, that is when they go to reflect on the 
results of this training from the point of view of the homework carried out by the 
teachers, the requests made by the teachers in questionnaires or interviews, and by 
carefully reading of the interactions that took place on the communication message 
boards. They have the possibility to reflect on their own praxeologies and possibly 
arrive at an evolution of them (e.g., contents to be proposed to teachers of different 
school levels; presentation of pedagogical suggestions to be maintained or made 
more explicit in the proposals for teachers; variation in the time allowed to teachers 
to complete the homework assigned during the training).

2.1.8  Conclusion of This Example

MOOCs constitute professional development environments that are new with 
respect to those in which MDT.1 has originally been developed. This example has 
shown that integrating Connectivism within MDT.1 enabled us to better character-
ise “the where” of internalisation. Interpreting learning as the evolution of the indi-
vidual’s own network of knowledge enables, in fact, to conceive internalisation as a 
phenomenon that happens within a wide context, which includes not only the insti-
tutions to which the individual belongs, but also the complex networks of his/her 
interactions. Moreover, Connectivism frames the analysis of both the activities that 
teachers perform within a MOOC (the exploration of resources, their self- 
organisation in cognitive structures, and the sharing of uses/resources through inter-
active tools), and the peculiarities of the dynamics of the learning that is promoted 
through each activity.

A. Cusi et al.



375

2.2  Example 2: A Focus on the Why of Internalisation

2.2.1  Aim of the Research Regarding MDT and Focus of the Analysis

In this example, we use the MDT.1 framework in the same context in which it was 
originally created, a teacher education programme. Our aim is to explore the effec-
tiveness of this programme by focusing on the evolution of teachers’ praxeologies 
during the course over time. The analysis focuses, in particular, on teachers’ prax-
eologies concerning the use of GeoGebra and on the internalisation process of spe-
cific praxeological components (i.e., techniques related to a specific use of GeoGebra 
and corresponding justifications within their meta-didactical praxeologies). In par-
ticular, we aim to provide evidence for the possible causes that might help to deter-
mine a successful or unsuccessful internalisation process, that is, “the why” of 
internalisation.

2.2.2  Actors Involved and Initial State of the Praxeologies

Our reflections draw on data  from a common project developed in Italy and 
Australia. In this chapter, we focus only on the Italian case, consisting in a second-
ary school teachers’ professional development course with GeoGebra as part of a 
national programme, promoted by the Ministry of Education and implemented by 
the Department of Mathematics of the University of Torino. The professional devel-
opment comprised three face-to-face meetings (of 3 hours each) between teachers 
and educators; collaborative work through the Moodle platform; and teachers’ 
implementations of the activities in their classrooms.

The researcher-educators manage the task, which is to “stimulate teachers’ use 
of GeoGebra in a mathematics laboratory modality”, where “mathematics labora-
tory” (Robutti, 2006) represents a particular student-centred teaching method. The 
techniques adopted by researcher-educators include proposing significant activities 
with an active use of GeoGebra for exploratory purposes, discussing the proposed 
activities with the teachers, leaving the teachers to work independently on tasks, as 
if they were the students (the “mathematics laboratory” teaching method to cope 
with problem solving activities).

The participating teachers were not all new to the use of GeoGebra. Some of 
them used it within teacher-centred methodologies, by exploiting GeoGebra mainly 
to show properties to students. However, these teachers were less familiar with the 
use of GeoGebra in a “mathematics laboratory” modality. This implies that their 
initial use of GeoGebra was based on specific logos that consider this digital tool as 
useful for demonstration purposes.
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2.2.3  Data: Two Contrasting Cases

We present two paradigmatic cases (further described in Prodromou et al., 2018): 
one of internalisation (Riccardo) and one of lack of internalisation (Lara).

Riccardo’s case. At the beginning of the programme, Riccardo explicitly 
declared, in the pre-training interview, that he used GeoGebra in his classrooms 
only on some sporadic occasions and “in an even less than basic way”:

“With grade 13 students, I went [to the digital laboratory] in order to show them how to 
draw graphs of functions with GeoGebra, whereas, with grade 10 students I made some 
statistics. I haven’t gone yet [to the digital laboratory] with grade 9 students, but I intend 
to show them some geometrical topics with GeoGebra. The training course can help me in 
this sense”.

At the end of the course, Riccardo explicitly declared that he had discovered a dif-
ferent use of GeoGebra, aimed at enhancing students’ imagination:

“there is a childish attitude in me, that is … the child who has not discovered geometry has 
to manipulate [GeoGebra]…You can use this with students […] In my opinion, working 
with GeoGebra, you can build upon their imagination. And some of them have got a lot of 
it [imagination], it is sufficient to train it someway”.

The analysis of other interviews and meetings, and of Riccardo’s logbook, enabled 
us to show that Riccardo had started to adopt a more student-centred methodology 
during his lessons with GeoGebra as a result of his participation in the PD 
programme.

Lara’s case. Lara has experience in using GeoGebra on the IWB to reproduce the 
sketches she would have otherwise drawn on the blackboard to stress invariant prop-
erties of geometrical constructions. However, after having implemented the activi-
ties in her classroom, she answered negatively to the question “Would you repeat 
this experience?”:

I don’t believe I would repeat it: number one for time reasons, number two because I have 
neither the availability of [a] digital laboratory nor of a technician who could help me. (…) 
GeoGebra, as after all I’m often using it in the classroom with the IWB, but, indeed, every-
thing is constructed by me. Here the only difference for them is that I don’t show a ready- 
made construction, we build it together, starting from zero.

2.2.4  What is the Theoretical Gap in the MDT.1 Framework? 

In its current form MDT.1 does not help us to explain why the internalisation of 
some components of teachers’ praxeologies occurs in some cases (as in Riccardo’s 
case) and not in others (as in Lara’s case). Our hypothesis is that, if praxeologies are 
the observable variables, there may exist other underlying variables, which can 
influence the evolutions of the praxeologies. The investigation of these underlying 
variables, through lenses of more specific magnitudes, could support an analysis 
aimed at identifying the possible causes that might help to determine the internalisa-
tion process of praxeologies’ components.
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2.2.5  What Do We Add and Why?

We introduce a new level of analysis of the professional development process: the 
micro-level, in addition to the already existing macro-level of praxeologies.

This approach recalls the description of physical phenomena related to gas dis-
tinguishing between macro variables (e.g., temperature, pressure or volume of the 
gas) and micro variables (e.g., mass or velocity of a particle). To this purpose, we 
identified agents (at micro-level) that may determine teachers’ praxeologies’ devel-
opment and evolution (at macro-level). With the term “agents’’ we refer to human 
or non-human entities involved in the mathematical activity (De Freitas & Sinclair, 
2014). The result of the interaction of agents at the micro-level can be observed at 
the macro-level, as it happens for micro and macro variables of the gas.

Similar phenomena happen within professional development environments, 
where interactions between numerous smaller and simpler agents at the micro-level 
can influence the internalisation process, at the macro-level (Goldstein, 1999). 
When a teacher is planning and teaching, the interaction between different agents, 
at the micro-level, contributes to shaping the teacher’s praxeologies or some of their 
components (technique or justifying discourses), at the macro-level. Among others, 
we identified methodological agents, institutional agents, material and technologi-
cal agents, motivational agents (Prodromou et  al., 2018). To exemplify, teacher- 
centred (explaining, or lecturing, demonstration, and direct instruction) and 
student-centred (class participation, inquiry-based learning, cooperative learning, 
discussions, mathematics laboratory, etc.) teaching methods are methodological 
agents, while, for instance, GeoGebra is considered within material and technologi-
cal agents.

2.2.6  Analysis

The technique of using GeoGebra underpinned by a specific justifying discourse 
(such as the activation of the mathematics laboratory methodology) was external for 
the teachers’ community at the beginning of the professional development course. 
To foster the transformation of these praxeological components from external to 
internal for the teachers’ community (or at least for some of the individual teachers), 
the researchers implemented activities involving different kinds of agents: material 
(e.g., paper, pencil); technological (e.g., GeoGebra, IWB); methodological (e.g., 
mathematics laboratory); institutional (national curriculums, other teachers); and 
motivational (e.g., personal beliefs).

For each participating teacher, these agents could be already active or needed to 
be activated by the professional development programme,which fosters their inter-
action with other agents, observable at a micro-level of analysis. When different 
independent agents are active in teachers’ activities and reflections, the researchers 
observe some changes in teachers’ praxeologies at the macro level. For Riccardo 
and Lara, GeoGebra was already active as a technological agent in their didactical 
praxeologies. However, it was interacting at a micro-level with more teacher- centred 
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teaching practices as methodological agents. In particular, the methodological agent 
of the mathematics laboratory was not active, which is fundamental to  teachers’ 
internalisation of the desired praxeological components, namely, the use of 
GeoGebra for mathematics laboratory activities.

2.2.7  Final State of Praxeologies

As a result of the professional development course and the stimuli introduced by 
educators, some teachers (i.e., Riccardo) experienced the interaction of GeoGebra 
as a technological agent with the newly explored mathematics laboratory methodol-
ogy, which fostered the internalisation of specific praxeological components at both 
the praxis and the logos level. In particular, Riccardo had begin to use a more 
student- centred methodology during his lessons with GeoGebra (technique), justi-
fying this choice declaring that the use of GeoGebra can enhance students’ imagina-
tion (logos). This internalisation concerns the meta-didactical praxeologies since 
our data concern the teachers’ reflections about their didactical praxeologies (that is 
not observable in the classroom context).

Lara’s case is completely different from Riccardo’s case, since, although she 
tested the use of GeoGebra in a mathematics laboratory modality with her students, 
she decided not to repeat the experience after the PD course. Her intervention dur-
ing the meeting highlights that her technique has probably remained the same (use 
of GeoGebra for demonstrative purposes) as well as the logos behind. Such a differ-
ence can be interpreted as the intervention of motivational agents coming from the 
teacher’s beliefs and personal experience, as well as of institutional agents (e.g., 
time, school context and curriculum constraints), which have interacted with 
GeoGebra agent and mathematics laboratory agent, inhibiting, in this case, the shift 
of the component “use of GeoGebra in a laboratory way” from external to internal.

From a different perspective, the  researcher-educators highlighted the impor-
tance of explicitly discussing, within the different institutions, the role of time as a 
fundamental variable which could foster (or not) the integration of GeoGebra in a 
mathematics laboratory modality.

2.2.8  Conclusion of This Example

The internalisation of praxeological components (initially new or little explored by 
teachers), at both the praxis and the logos level, is an emergent phenomenon that 
may occur or not at the macro-level of professional development, even if stimulated 
in a specific educational programme. To investigate why it occurs successfully for 
some individuals and does not occur for others, we have deepened the analysis con-
sidering what happens at the micro-level of professional development, where sev-
eral agents of different kinds interact. Some of them are activated by rooted and 
spontaneous teachers’ meta-didactical praxeologies, some others are added or dif-
ferently stimulated by the course that teachers are attending. The focus on agents 
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represents a key idea to deepen the investigation of “the why” of internalisation, 
since the interaction of agents (at the micro-level) could foster or inhibit teachers’ 
internalisation of specific praxeological components that a professional develop-
ment course intends to promote (at the macro-level). This result has an impact on 
researcher-educators’ meta-didactical praxeologies, suggesting which agents have 
to be activated and taken into account to trigger and support the evolution of teach-
ers’ praxeologies.

2.3  Example 3: A Focus on the How of Internalisation

2.3.1  Aim of the Research Regarding MDT and Focus of the Analysis

In this example, the frame of MDT.1 is used within a context of  a collaborative 
research project  involving researchers and teachers  within the European project 
FaSMEd (where collaborative research is intended in the sense proposed by Robutti 
et al., 2016). This represents a new application of the framework, since here profes-
sional development is conceived as the consequence of the collaborative work.

The research aim is to interpret, through a MDT.1 lens, data from teachers and 
researchers’ interactions within the project to analyse how their participation in the 
project has affected the teachers’ and researchers’ learning. In alignment with the 
FaSMEd project’s aim and methodology, the focus of the analysis is on the partici-
pants’ learning about formative assessment (FA) and on their reflections on the use 
of technologies to support FA processes.

The data is analysed with the aim to highlight “the how” of the internalisation 
process, specifically how it could develop as a result of the participants’ collabora-
tive work.

2.3.2  Actors Involved and Initial State of the Praxeologies

The data on which we base our reflections was collected by two of the partners of 
the FaSMEd project, in Italy (University of Turin) and France (Ecole Normale 
Supérieure de Lyon). The research particpants are: (1) a team of Italian teachers 
who work in a primary school (grades 4 and 5) in Turin and the researchers who 
collaborated with them; (2) a team of French teachers who work in a primary school 
in the suburb of Lyon (grade 3 to 5) and the researchers who collaborated with them. 
Both teachers and researchers are focusing on the same meta-task: designing the use 
of digital tools within classroom activities in a way that fosters FA processes.

Initially, researchers share their ideas about the techniques to be used (specific 
digital tools that could be used to address the task and possible ways of using them) 
and the justifying discourses corresponding to the reasons why these techniques 
could be effective (elements of a framework on FA, Black & Wiliam, 2009).
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In particular, during the first cycle of teaching experiments, Italian researchers 
planned to equip all of the classes with computers and tablets and to use a connected 
classroom technology to create a network between the teacher’s computer and the 
students’ tablets. Moreover, researchers suggested the organisation of the lessons 
according to a common structure focused on teachers’ construction of a digital doc-
ument containing groups of students’ answers to be shown through the IWB (for 
more details, see Cusi et al., 2017).

French researchers equipped the classes with Interactive Whiteboards, electronic 
voting keypads and Primary Plus TI calculator.

The Italian teachers had a previous long experience within a regional project 
focused on FA, which represented, for this reason, an internal component of their 
didactical praxeologies. As a result, they were used to collecting students’ answers 
(written with paper and pencil), analysing them at home and writing these answers 
on the blackboard during the following lesson to open a discussion with students. 
However, they were not familiar with any digital technology, so the techniques pro-
posed by researchers were external to their praxeologies.

For French teachers initially, the elements belonging to the technique’s compo-
nent of the researchers’ praxeologies were external as well as the justifying 
discourses.

In both cases, researchers shared their ideas and were confronted with teachers’ 
didactical praxeologies based on their  habitual assessment behaviours  and paper 
and pencil techniques.

2.3.3  The Data

Both in France and in  Italy, the methodology of collaborative work during the 
FaSMed project consisted of periodic meetings, between teachers and researchers, 
aimed at reflecting on the results of the teaching experiments that were being car-
ried out in the schools.

In this example we focus on two meetings: (1) the first took place in Italy, at the 
end of the first year of the project following a first round of teaching experiments; 
(2) the second took place in France, at the end of the project, and following two 
cycles of teaching experiments.

For each meeting, we focus on one scene and include the interventions proposed 
by some teachers during the discussions with researchers.

Scene 1: A Meeting in Italy at the End of the First Year of the Project
The following transcript describes some teachers’ interventions when discussing, 
with researchers, the use of connected classroom technologies and the IWB to plan 
and conduct the discussions on students’ answers.

T1:  “We are used to carrying out classroom discussions and we work a lot on argu-
mentation, but, usually, we have to write down all the students’ answers and to 
read them with students. This [the use of the digital technology] is immediate: 
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you have all the students’ answers over there [on the computer]! The difference 
is undeniable!”

T2:  “Students appreciated a lot to have the possibility to see their answers written 
[on the IWB] and to discuss them. …They would have wanted to see all the 
answers. It is different to listen to something or to read it. This is an important 
support provided by technology.”

T3:  “I remember one of the first lessons, when a student, who previously gave a 
wrong answer, referred to what his mates said during the discussion and, in this 
way, was able to correctly answer. Discussing in-the-moment was really useful 
for him. If we had had discussed the following week, maybe we would have lost 
that moment.”

Scene 2: A Meeting in France at the End of the Whole Project
At the beginning of the project, the analysis of the discussions between French 
researchers and teachers revealed a misunderstanding between the two communi-
ties, due to their different goals. The teachers wanted to use the digital materials and 
tools to avoid students’ mistakes and prevent any pupil from falling behind, while 
the researchers focused on the ways in which these materials could be used to foster 
multiple FA strategies.

The following reflections were developed by teachers when they were asked to 
comment on their new ways of interpreting the use of digital tools during their 
lessons:

T4:  As a teacher, I found myself well suited to this because I found that it allowed 
me to be very precise [...] it allowed me to take time for students with difficulties 
and also to put those who were doing well in situations where they could deepen 
their competences.

T5:  The goal is that we changed groups, that we became more green than red, and 
even at the level, uh, at the level of the class, uh, not just at the individual level.

T6:  [...] they exchange with each other on this competence, there are exchanges 
because it creates, as you say, emulation. [...] It’s rather positive, in fact, in 
terms of assessment!

2.3.4  What is the Theoretical Gap in the MDT.1 Framework?

The MDT.1 framework supports the analysis of the short excerpts presented in the 
previous section by highlighting the changes within the praxeologies of the teachers 
who participated during the meetings. However, although an evolution of praxeolo-
gies could be described to make the changes in praxeological components explicit, 
we could see an opportunity to deepen the interpretation and analysis of how the 
evolution of praxeologies has been triggered. In other words, what kind of analysis 
could we perform to show “the how” of internalisation?
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2.3.5  What Do We Add and Why?

In our goal to reveal the how of internalisation, we identified new theoretical ele-
ments to be integrated within MDT.1 to support the investigation of the ways in 
which the teachers and researchers’ joint actions on the object of the collaborative 
work (in this case, FA through digital technologies) to  affect the internalisation 
processes of specific components of their meta-didactical praxeologies.

We interpret the object of the collaborative work in terms of a boundary object 
(hereafter, BO), referring to Star and Griesemer’s (1989) and Star (2010) characteri-
sation of BOs as “objects which are more plastic enough to adapt to local needs and 
constraints of the several parties employing them, yet robust enough to maintain a 
common identity across sites” (p. 393). Moreover, we adopt Star’s (2010) perspec-
tive on BO, which stresses that the BOs are the objects of common actions devel-
oped by different communities within a shared place. This new perspective enables 
us to conceive the boundaries of the BO as the collaborative contexts within which 
the people involved in the work on BO have opportunities to exchange and pursue 
common aims. The transition from an object of work to a BO thus can be interpreted 
as a process that requires acceptance, interest and the development of common joint 
actions by the various actors involved in the collaborative work.

To highlight the internalisation processes boosted by the joint actions on BOs, 
we refer also to Carlile’s (2004) characterisation of the three actions that could be 
carried out on BOs, at different levels of interaction:

• Transfer, an action carried out at a syntactic level and aimed at sharing a com-
mon vocabulary on specific BO’s components;

• Translation, an action carried out at a semantic level and aimed at negotiating 
common meanings related to specific BO’s components;

• Transformation, an action carried out at a pragmatic level and aimed at enabling 
the actors involved to integrate specific BO’s components within their own 
practices.

2.3.6  Analysis

The two scenes are complementary in terms of elements that characterise the inter-
nalisation process, since they highlight different dynamics connected to the meta- 
didactical praxeologies’ components that are the object of this process.

In fact, in scene 1, the teachers’ reflections focus on new techniques within their 
didactical praxeologies, while in scene 2 the new elements that are internalised 
mainly enrich the logos part of teachers’ meta-didactical praxeologies.

The excerpt in scene 1 highlights the effects of an action that teachers performed 
on the BO at the semantic level, since they are developing their reflections with the 
aim of giving meaning to the new techniques they are experimenting (initially exter-
nal to their praxeologies), by referring to their previous experiences to justify these 
new techniques. It is evident, for example, when T1 highlights the effectiveness of 
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accessing and storing all students’ answers through the connected classroom tech-
nology, in contrast with the less effective strategy of writing down students’ answers 
on the blackboard. Also T2’s reflection stresses on the comparison between the pre-
vious approach of reading students’ answers during classroom discussion and the 
power of displaying students’ answers on the IWB. The new praxis is defined in light 
of the previous one through a translation action aimed at carrying out a process of 
sense making that highlights the positive effects of the cooperation between previous 
practices and new ones, as in T3’s reflection, which stresses the potential related to 
being able to develop an in-the-moment discussion thanks to the support given by 
digital tools. Other hints that testify that a translation action has been carried out are 
related to teachers’ need to take multiple perspectives when they reflect on the use of 
digital tools to support FA processes. It is evident, for example, in T2 and T3’s inter-
ventions, explicitly aimed at considering the point of view of their students. In our 
opinion, this hint of an ongoing expansion of perspectives could be interpreted as the 
effect of actions of transformation that were developed at the pragmatic level, since 
the collaborative work at the boundary has fostered the internalisation of new ele-
ments within the technique component of teachers’ didactical praxeologies.

The excerpt in scene 2 highlights how the actions on components of the BO have 
been illuminated not only at the pragmatic level, since they stress on the more effec-
tive organisation of the class, but also at the theoretical level, since they interpret the 
strategies developed during the lessons according to the new elements provided by 
the FA framework. In T4’s reflection, for example, we could highlight implicit ref-
erences to Black and Wiliam’s (2009) FA strategies, such as, for example, clarifying 
learning intentions and criteria for success (“it allowed me to be very precise”) and 
engineering effective classroom discussions and other learning tasks that elicit evi-
dence of student understanding (“in situations where they could deepen their com-
petences”). Moreover, in T5’s reflections the shift of focus from an individual 
perspective on assessment to a collective perspective is made evident, referring, as 
in T6’s reflections, to the FA strategy of activating students as resources for each 
other. Although the reference to the FA strategies is not explicit, we could observe 
that new didactical praxeologies are justified referring to the theoretical lenses 
shared by researchers, highlighting an ongoing process of teachers’ internalisation 
of these new components.

Therefore, the phenomenon of internalisation shown in scene 2 has started through 
actions on the BO at a syntactic level, due to the teachers and researchers’ need of 
better understanding each other, then the actions shifted to a pragmatic level, to mod-
ify the techniques to be implemented in the classroom, and to a semantic level, to 
develop shared meanings and a consequent better understanding of the BO at stake.

2.3.7  Final State of the Praxeologies of Teachers and Researchers

The performed analysis has shown that the experience in the use of specific digital 
technologies and the reflections on the comparison between the previous method-
ologies adopted to foster FA and the actual ones have enabled teachers to internalise 
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the new technique component and to enrich the justifying discourses related to this 
technique. Due to space limitations, we were not able to document also the evolu-
tion of researchers’ praxeologies. However, we can state that the dialogue with 
teachers enriched researchers’ praxeologies since the FA practices adopted by 
teachers before participating in FaSMEd have made the methodology of using spe-
cific digital tools evolve. So the technique component of researchers’ praxeologies 
have evolved, together with the justifying discourses behind it. Both examples show 
the evolution of actors’ praxeologies into a “shared praxeology”, in the sense of a 
mutual understanding of each other’s praxeologies and the internalisation of com-
ponents allowing praxeologies to evolve.

2.3.8  Conclusion of This Example

The work on BO represents the driving force that triggered the evolution of both 
teachers’ and researchers’ praxeologies. To describe how this evolution happens, we 
referred to Carlile’s levels of communication on BO to analyse the reflections devel-
oped by teachers (and also by researchers, even if not documented here), interpreted 
as the justifying discourses through which they explain what they have learnt from 
the experience. This analysis shows: (a) the role played by the syntactic level of 
communication in fostering the appropriation of the task by both communities; (b) 
the link between the semantic level of communication and the internalisation of the 
logos’ components of praxeologies; (c) the connection between the discourses 
developed at the pragmatic level of communication and the internalisation of the 
technical components of praxeologies.

Therefore this example has highlighted that the integration of the idea of BO and 
of the framework useful to interpret the work developed on BO within MDT.1 has 
enriched our analysis, since it has enabled to deepen the investigation of “the how” 
of internalisation by highlighting evidence of this process by means of focusing on 
the actors’ discourses.

3  The Evolution of the MDT Framework from MDT.1 
to MDT.2

In this chapter, we discuss the evolution of the MDT framework from MDT.1 to 
MDT.2 through our three examples, developed around the concept of internalisation 
(of praxeological components), to show how the integration of new theoretical ele-
ments into the MDT.1 framework supported the investigation of this process from 
different perspectives, that is, “the where” (first example), “the why” (second exam-
ple) and “the how” (third example) of internalisation.

The final results of the various integrations are shown diagrammatically in Fig. 3, 
which is built around the process of internalisation.
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Fig. 3 Diagram representing the MDT.2 framework

Internalisation is conceived in this chapter as an ongoing process that determines 
a continuous evolution of the praxeologies of the actors collaboratively interacting 
in the research or PD settings described in the three examples. Therefore, without 
the internalisation of praxeological components, the professional development, con-
ceived as the result of interaction, whether in a specific educational programme or 
in participation in a research group, cannot take place.

Through teachers’ participation within PD programmes or collaborative research 
projects, their initial praxeologies, grounded on their professional experiences and 
knowledge, could evolve into new ones, integrating, thanks to the internalisation 
process, “new” components within them.

The first example focuses on “the where” of internalisation and introduces 
Connectivism as a theoretical lens that complements MDT.1, since it enables to 
interpret the internalisation process in terms of extension of the actors’ network of 
knowledge which characterised the dynamics observed within MOOCs or other PD 
settings. The result of the internalisation process is, in fact, the addition of a new 
node or a new connection between two nodes in the teachers’ network of knowl-
edge. The clouds in Fig. 3 represent the teachers’ or researchers’ networks of knowl-
edge before their participation in the research project or PD programme. In 
particular, the grey dots represent the nodes that have already settled in the network 
and the lines connecting them are the current connections linking the nodes to each 
other. The black dot linked to dashed segments indicates the possibility of inserting 
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a new node in the network of knowledge and/or generating new connections. The 
arrows that link these clouds to the word internalisation highlight the interrelation 
between the evolution of the network of knowledge and the internalisation phenom-
enon, since this evolution enables the shifts of specific praxeological components 
from external to internal. The integration of the connectivitistic approach within 
MDT.1 allows, therefore, researchers to interpret the internalisation phenomenon 
within a wider context in which learning is also analysed in terms of expansion and 
evolution of networks of knowledge.

The second example shows that the internalisation process could be investigated 
from the point of view of the factors and the conditions that activate it, that is, “the 
why” of internalisation. The main theoretical element, which is integrated within the 
MDT.1 framework, is the notion of agent, which provides opportunities for under-
standing how the complex process of teachers’ professional development is gener-
ated. This example highlights, in fact, the role played (at a micro-level) by specific 
agents (C in Fig. 3), in interaction with each other (A and B in Fig. 3), in determin-
ing (or not) the internalisation of new components (at the macro-level). The analysis 
developed in this example shows the value of studying the internalisation process at 
both micro and macro-level, to highlight the driving forces (the agents) that deter-
mine or inhibit the internalisation of different components within teachers’ meta- 
didactical praxeologies.

The third example enables us to deepen “the how” of the internalisation process, 
by showing that this process could be made visible through the analysis of the teach-
ers and researchers’ joint actions on a common object of work which becomes a 
boundary object (BO). The work on BO is conceptualised as an opportunity to initi-
ate a joint work between different communities (represented through the arrows in 
Fig. 3 that connect teachers’ and researchers’ praxeologies to the BO). The joint 
work on the BO fosters the two communities’ reflections and makes them refer to 
properties, concepts, pieces of knowledge or experiences to develop a better under-
standing of the BO itself. Internalisation is conceived as the result of this process, 
since it makes the objects of reflection become internal components of the two com-
munities’ didactical or meta-didactical praxeologies.

In particular, each level of action on the BOs is related to the internalisation of 
specific components, as we highlighted at the end of sect. 3.3. Therefore, the two 
communities’ common aim of understanding the BO contributes to modify their 
praxeologies, fostering the internalisation process (as highlighted by the arrow 
which connects the BO to the word internalisation, in Fig. 3) and highlighting a 
“shared praxeology”, characterised by those components that are understandable 
and familiar by both the teachers’ and researchers’ new praxeologies (Fig. 3).

The MDT.2 framework has been used to investigate the dynamics that character-
ise not only the collaborative PD settings presented in the three examples, but also 
other PD contexts with different cultural backgrounds (see Capone et  al., 2020; 
Otaki et al., 2020; Shinno & Yanagimoto, 2020). The flexibility of the framework in 
supporting the investigations developed within these different contexts highlights its 
robustness.
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We showed through our examples that, although not created specifically to anal-
yse processes that involve the broad use of technology in mathematics teaching and 
in teacher education, the MDT.2 framework proved to be flexible enough to enable 
us to deepen this analysis. In the three analysed examples, digital technology plays 
various roles: (a) the context in which the interaction between communities hap-
pens; (b) a tool used to perform specific tasks; (c) a common object of work. As 
regards points (b) and (c), in particular, the three examples clearly show that MDT.2 
can be efficiently applied to the study of didactical and meta-didactical praxeologies 
related to the introduction, use and reflection on the role of digital tools in mathe-
matics teaching, learning and teacher education contexts.

Even if the new framework MDT.2 presents an evolution with respect to MDT.1, 
research is still in progress to enhance the complete framework, both from a theo-
retical and from a methodological point of view. Firstly, in order to further study the 
interactions between the didactical and the meta-didactical levels, we aim at deep-
ening the investigation of the double dialectic to analyse the long-term effects of the 
internalisation process, focusing on the evolution of the practices activated by the 
different actors involved in a collaborative work. Second, we want to deepen the 
study of motivational agents at the micro level by analysing, through the double 
dialectics, the role played by beliefs, emotions, attitudes and values in influencing 
the elaboration of the justifying discourses within the teachers’ and researchers’ 
meta-didactical praxeologies.

References

Aldon, G., & Panero, M. (2020). Can digital technology change the way mathematics skills are 
assessed? ZDM – The International Journal on Mathematics Education, 52(7), 1333–1348.

Aldon, G., Arzarello, F., Cusi, A., Garuti, R., Martignone, F., Robutti, O., & Soury-Lavergne, 
S. (2013). The meta-didactical transposition: A model for analysing teachers education pro-
grams. In A. M. Lindmeier & A. Heinze (Eds.), Proceedings of the 37th conference of the 
international group for the psychology of mathematics education. — Mathematics learning 
across the life span, July 28-Aug 02, Vol. 1 (pp. 97–124). Kiel, Germany.

Aldon, G., Cusi, A., Morselli, F., Panero, M., & Sabena, C. (2017). Formative assessment and 
technology: Reflections developed through the collaboration between teachers and researchers. 
In G. Aldon, F. Hitt, L. Bazzini, & U. Gellert (Eds.), Mathematics and technology, a CIEAEM 
sourcebook (pp. 551–578). Springer.

Arzarello, F. (2016). Le phénomène de l’hybridation dans les théories en didactique des mathé-
matiques et ses conséquences méthodologiques, Conférence au Xème séminaire des jeunes 
chercheurs de l'ARDM, Mai 7–8, 2016, Lyon.

Arzarello, F., Robutti, O., Sabena, C., Cusi, A., Garuti, R., Malara, N., & Martignone, F. (2014). 
Meta-didactical transposition: A theoretical model for teacher education programmes. In 
A. Clark-Wilson, O. Robutti, & N. Sinclair (Eds.), The mathematics teacher in the digital era 
(pp. 347–372) Springer.

Black, P., & Wiliam, D. (2009). Developing the theory of formative assessment. Educational 
Assessment, Evaluation and Accountability, 21(1), 5–31.

Meta-Didactical Transposition.2: The Evolution of a Framework to Analyse Teachers…



388

Boissel, J.-P., Riondet, O., Cucherat, M., Stagnara, J., Wazné, H., & Nony, P. (2010). Le courtage 
des connaissances en thérapeutique. Une étude pilote de faisabilité. Pratiques et Organisation 
des Soins, 41(1), 55–64.

Capone, R., Manolino, C., & Minisola, R. (2020). Networking of theories for a multi-
faceted understanding on lesson study in the Italian context. In H.  Borko & D.  Potari 
(Eds.), Proceedings of the 25th ICMI study (pp.  102–109). National and Kapodistrian  
University of Athens. http://icmistudy25.ie.ulisboa.pt/wp-content/uploads/2020/11/201114- 
ICMI25Proceedings6.13.2020.pdf.

Carlile, P. (2004). Transferring, translating, and transforming: An integrative framework for man-
aging knowledge across boundaries. Organization Science, 15(5), 555–568.

Chevallard, Y. (1985). La transposition didactique du savoir savant au savoir enseigné. La Pensée 
Sauvage.

Cusi, A., Morselli, F., & Sabena, C. (2017). Promoting formative assessment in a connected 
classroom environment: Design and implementation of digital resources. ZDM Mathematics 
Education, 49(5), 755–767.

De Freitas, E., & Sinclair, N. (2014). Mathematics and the body: Material entanglements in the 
classroom. Cambridge University Press.

Gagnon, J., Lapierre, J., Gagnon, M.-P., Lechasseur, K., Dupéré, S., Gauthier, M., Lechasseur, 
K., Dupéré, S., Gauthier, M., Farman, P., & Lazure, G. (2016). Processus de transfert et 
d’appropriation des savoirs d’étudiantes en sciences infirmières et de milieux de soins 
Africains: une étude de cas multiples. Recherche en Soins Infirmiers, 124(1), 53–74.

Goldstein, J. (1999). Emergence as a construct: History and issues. Emergence, 1(1), 49–72.
Lomas, J. (2007). The in-between world of knowledge brokering. BMJ: British Medical Journal 

(International Edition), 334(7585), 129–132. http://ezproxy.usherbrooke.ca/login?url=https://
search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=23834807&site=ehost- live

Otaki, K., Asami-Johansson, Y., & Hakamata, R. (2020). Theoretical preparations for studying les-
son study: Within the framework of the anthropological theory of the didactic. In H. Borko & 
D. Potari (Eds.), Proceedings of the 25th ICMI study (pp. 150–157). National and Kapodistrian 
University of Athens. http://icmistudy25.ie.ulisboa.pt/wp- content/uploads/2020/11/201114- 
ICMI25Proceedings6.13.2020.pdf

Prodromou, T., Robutti, O., & Panero, M. (2018). Making sense out of the emerging complex-
ity inherent in professional development. Mathematics Education Research Journal, 30(4), 
445–473.

Rasmussen, C., Zandieh, M., & Wawro, M. (2009). How do you know which way the arrows go. 
Mathematical Representation at the Interface of Body and Culture, 171–218.

Robotti, E., Grange, T., & Peloso, S. (2019). Recherche action et développement professionnel 
des enseignants de maths en maternelle et primaire. Le cas d’EduMathVallée (Italie). Actes 
COPIRELEM, 46° colloque international sur la formation en mathématiques des professeurs 
des écoles, 547–559, HEP Vaud, Lausanne, Suisse.

Robutti, O. (2006). Motion, technology, gestures in interpreting graphs. International Journal for 
Technology in Mathematics Education, 13(3), 117–125.

Robutti, O. (2020). Meta-didactical Transposition. In S. Lerman (Ed.), Encyclopedia of mathemat-
ics education (pp. 611–619). Springer.

Robutti, O., Cusi, A., Clark-Wilson, A., Jaworski, B., Chapman, O., Esteley, C., Goos, M., Isoda, 
M., & Joubert, M. (2016). ICME international survey on teachers working and learning through 
collaboration. ZDM Mathematics Education, 48, 651–690.

Robutti, O., Aldon, G., Cusi, A., Olsher, S., Panero, M., Cooper, J., Carante, P., & Prodromou, 
T. (2019). Boundary objects in mathematics education and their role across communities of 
teachers and researchers in interaction. In G. M. Liloyd & O. Chapman (Eds.), International 
handbook of mathematics teacher (Participants in mathematics teacher education) (Vol. 3, 2nd 
ed., pp. 211–240). Brill-Sense.

Sanchez, E., & Monod-Ansaldi, R. (2015). Recherche collaborative orientée par la concep-
tion. Un paradigme méthodologique pour prendre en compte la complexité des situations 
d’enseignement-apprentissage. Education & Didactique, 9(2), 73–94.

A. Cusi et al.

http://icmistudy25.ie.ulisboa.pt/wp-content/uploads/2020/11/201114-ICMI25Proceedings6.13.2020.pdf
http://icmistudy25.ie.ulisboa.pt/wp-content/uploads/2020/11/201114-ICMI25Proceedings6.13.2020.pdf
http://ezproxy.usherbrooke.ca/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=23834807&site=ehost-live
http://ezproxy.usherbrooke.ca/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=23834807&site=ehost-live
http://icmistudy25.ie.ulisboa.pt/wp-content/uploads/2020/11/201114-ICMI25Proceedings6.13.2020.pdf
http://icmistudy25.ie.ulisboa.pt/wp-content/uploads/2020/11/201114-ICMI25Proceedings6.13.2020.pdf


389

Shinno, Y., & Yanagimoto, T. (2020). An opportunity for preservice teachers to learn from in 
service teachers’ lesson study: Using meta-didactic transposition. In H.  Borko & D.  Potari 
(Eds.), Proceedings of the 25th ICMI study (pp.  174–181). National and Kapodistrian 
University of Athens. http://icmistudy25.ie.ulisboa.pt/wp- content/uploads/2020/11/201114- 
ICMI25Proceedings6.13.2020.pdf

Siemens, G. (2005). Connectivism: A learning theory for the digital age. International Journal of 
Instructional Technology and Distance Learning, 2(1), 3–10.

Star, S. L. (2010). This is not a boundary object: Reflections on the origin of a concept. Science, 
Technology, & Human Values, 35(5), 601–617.

Star, S. L., & Griesemer, J. R. (1989). Institutional ecology, ‘Translations’ and boundary objects: 
Amateurs and professionals, Berkeley’s Museum of Vertebrate Zoology, 1907-39. Social 
Studies of Science, 19(3), 387–420.

Taranto, E. (2018). MOOC’s zone theory: Creating a MOOC environment for professional learn-
ing in mathematics teaching education. Doctoral Thesis. Turin University.

Taranto, E. (2020). MOOCs for mathematics teacher education: New environments for profes-
sional development. In J. P. Howard II & J. F. Beyers (Eds.), Teaching and learning mathemat-
ics online (pp. 359–384). CRC Press.

Taranto, E., & Arzarello, F. (2020). Math MOOC UniTo: An Italian project on MOOCs for math-
ematics teacher education, and the development of a new theoretical framework. ZDM – The 
International Journal on Mathematics Education, 52(5), 843–858.

Taranto, E., Arzarello, F., Robutti, O., Alberti, V., Labasin, S., & Gaido, S. (2017). Analyzing 
MOOCs in terms of their potential for teacher collaboration: The Italian experience. In 
T. Dooley & G. Gueudet (Eds.), Proceedings of the tenth congress of the European Society for 
Research in mathematics education (pp. 2478–2485). Dublin.

Taranto, E., Robutti, O., & Arzarello, F. (2020). MOOCs-UniTo: Theoretical framework and 
research lines on teachers and researchers. Quaderni di Ricerca in Didattica (mathemat-
ics), Numero speciale n. 8, 31–42. Palermo, Italy: G.R.I.M., Dipartimento di Matematica e 
Applicazioni. http://math.unipa.it/~grim/quaderno_2020_numspec_8.htm

Meta-Didactical Transposition.2: The Evolution of a Framework to Analyse Teachers…

http://icmistudy25.ie.ulisboa.pt/wp-content/uploads/2020/11/201114-ICMI25Proceedings6.13.2020.pdf
http://icmistudy25.ie.ulisboa.pt/wp-content/uploads/2020/11/201114-ICMI25Proceedings6.13.2020.pdf
http://math.unipa.it/~grim/quaderno_2020_numspec_8.htm


391

Revisiting Theories That Frame Research 
on Teaching Mathematics with Digital 
Technology

Nathalie Sinclair, Mariam Haspekian, Ornella Robutti, 
and Alison Clark-Wilson

Abstract In this chapter, we offer an overview of some of the major trends in the-
ory development and use in relation to teaching mathematics with digital technol-
ogy. We showcase some of the developments that have occurred since the first 
edition of this book (2014). We also provide a deep review of the multiple ways in 
which the instrumental approach has evolved over time, as a way to exemplify how 
theory development responds to new questions and new theoretical insights. 
Throughout the chapter, we make explicit the philosophical assumptions on which 
these theories depend—particularly the binaries they reify—and use these to open 
up consideration of different assumptions and how they might matter to our field of 
research.

Keywords Theories in mathematics education · Evolution of theories · Teaching 
with technology · Instrumental approach · Philosophical considerations · Axiology 
· Ontology · Epistemology

N. Sinclair (*) 
Faculty of Education, Simon Fraser University, Burnaby, BC, Canada
e-mail: nathalie_sinclair@sfu.ca 

M. Haspekian 
Université Paris Cité, EDA, F-75006, Paris, France 

O. Robutti 
Dipartimento di Matematica, Università di Torino, Torino, Italy 

A. Clark-Wilson 
UCL Institute of Education, University College London, London, UK
e-mail: a.clark-wilson@ucl.ac.uk

© The Author(s), under exclusive license to Springer Nature 
Switzerland AG 2022
A. Clark-Wilson et al. (eds.), The Mathematics Teacher in the Digital Era, 
Mathematics Education in the Digital Era 16, 
https://doi.org/10.1007/978-3-031-05254-5_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05254-5_15&domain=pdf
mailto:nathalie_sinclair@sfu.ca
mailto:a.clark-wilson@ucl.ac.uk
https://doi.org/10.1007/978-3-031-05254-5_15


392

1 Introduction 

In the 2014 edition of this book, theorising around the practice of teaching mathe-
matics with digital technology was relatively new. Ruthven (2014) provided an 
overview of three of the main theories being used in the field at the time and, signifi-
cantly, highlighted the different insights they offered. These three theories were 
interesting in that they represented three different provenances: one that was rooted 
in more general theories about teaching (TPACK); one that drew from psycho- 
ergonomic studies of the human activity (Instrumental Approach), and one that was 
‘homegrown’ in the specific context of teaching mathematics with digital technol-
ogy (Structuring Features of Classroom Practice1).

Now, eight years later, we can see that some of these theories have evolved and 
that new theories have emerged. In a review of the articles reporting research on 
teaching mathematics with technology published in seven prominent mathematics 
education journals (see Appendix) between 2014 and 2020,2 we have found that the 
Instrumental Approach dominates the recent research landscape. Several of these 
articles also extended this approach with other theories. The second most dominant 
frame was TPACK. Setting the Instrumental Approach and TPACK aside, research-
ers adopted a wide range of theories that were not technology specific. To put this in 
context, we noted that over a half of these articles made no reference to technology- 
specific theories and that 11/67 articles offered no explicit theoretical grounding. 
Despite the slow uptake of theories to support understanding of teaching mathemat-
ics with technology, there has been significant evolution of existing theories—espe-
cially with respect to the Instrumental Approach—as well as the growing networking 
of theories, as we will show in the Sects. 1 and 2 of this chapter.

Theories in mathematics education research pertain both to mathematics itself, 
as well as to mathematics education, and they concern their epistemological assump-
tions (about what can be known and how), ontological assumptions (about the 
nature of things, such as concepts) and axiological assumptions (about ethical and 
aesthetic values). Any theory makes certain choices about these assumptions, even 
if they are only inferred implicitly. As theories diversify and develop over time, we 
think it is important to gain explicit appreciation of these assumptions, not only to 
be able to compare and possibly network them, but also in order to gain awareness 
of how the theories we use shape our interpretation of the world and, with it, the 

1 Although the component ideas were drawn from different sources in the general literature on 
teaching, as Ruthven (2014) writes: “The Structuring Features of Classroom Practice framework 
(Ruthven 2009) was devised by bringing a range of concepts from earlier studies of classroom 
organisation and interaction and of teacher craft knowledge and thinking to bear on this specific 
issue of technology integration” (p. 386).
2 For each journal, we searched for articles that had the word “teacher”, “teaching” or words related 
to teachers’ classroom practices (e.g., questioning, assessment, etc.) and words related to technol-
ogy (e.g., ICT, software, DGE, etc.). We also read the abstract and research questions to determine 
whether the article related to aspects of teaching mathematics with technology. This produced a 
final sample of 67 articles. We thank Canan Gunes for her help with this research.
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goings-on in a mathematics classroom. This awareness is also necessary to better 
appreciate the research results that these theories allow us to obtain. Additionally, 
while many theories that have been traditionally used in mathematics education 
research articulated particular epistemological assumptions (we know by develop-
ing/constructing mental schemas or we know by participating in a community of 
practice or we know through our social, economic, or historical–cultural position-
ings), it is only recently that theories making explicit ontological and axiological 
assumptions have emerged. In Sect. 3, we will show how such assumptions might 
be relevant to theorising in relation to teaching mathematics with technology.

Overall, this chapter will point to some emerging trends in theory development. 
These include, for example, a growing interest in calling into question the many 
binaries that have long shaped our understanding of mathematics teaching and 
learning. For example, the mind–body binary (of Cartesian origin) that separates the 
thinking mind from the active body is challenged by theories that seek to understand 
embodied ways of knowing, that is, how bodily actions (e.g., gestures) shape think-
ing. Other commonly found binaries include: nature–culture, cognition–affect, pro-
cess–product, procedural–conceptual, intuition–logic, technocentric–anthropocentric 
points of view or, more generally, human–non-human.3 In the context of teaching 
with digital technology, the relaxing of the mind–body binary has led to theoretical 
elaborations that attend to the ways that teachers notice and use gestures and other 
bodily actions in the classroom, as can be seen in the Theory of Semiotic Mediation 
(Bartolini-Bussi & Mariotti, 2008) or in the notion of the Semiotic Bundle 
(Arzarello, 2006). Another binary is that between thinking and feeling, which makes 
hard distinctions between cognitive and affective processes. This binary can be seen 
in action when the focus on research is entirely on one or the other, as in the Second 
Handbook on the Psychology of Mathematics Education (2016), which has a large 
section on cognitive aspects of teaching (and learning) and a small section on social 
and affective aspects.

In the specific context of teaching mathematics with digital technology, theories 
seeking to challenge these binaries might take seriously the affective impact of tech-
nology use in the classroom. For example, how do existing theories attend to a 
teacher’s uncertainty around how to deal with the changing status of school mathe-
matics when digital technology can be used to do so many things that used to be 
done by hand, such as long division, solving equations and graphing functions? We 
think that re-visiting some mathematics education theories to better understand 
which binaries they mobilise (or, in some cases, the binaries that uses or interpreta-
tions of these theories introduce), even implicitly, might lead to productive growth 
in our knowledge of the field from a more general point of view.

Finally, in this chapter we have attempted to provide detailed and trustworthy 
description of various theories and how they are used. However, given our own 

3 This has been a long-standing binary that has served to distinguish those who can think from 
whose who cannot (animals, plants, stones, etc.). In mathematics, this binary has been at stake in 
discussions of computer-based proofs—can machines think and know and learn, and therefore 
produce acceptable proofs, or must this be done by humans in order to be valid? A whole part of 
the research activity in computer science, via the field of semantics, is occupied with precisely this 
question and the search for rigorous justifications in computer science.
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philosophical commitments, we cannot assert that it is possible to write from a com-
pletely unbiased, neutral point of view, since our own values and interests, as well 
as our own cultural backgrounds, shape what we see as being of importance or inter-
est. This does not mean that we will put forward the claim that any theory is worth 
using or that all theories are somehow valid; indeed, we are committed to sustaining 
a critical attitude towards every theory, and particularly those that aim, implicitly or 
not, to depreciate or marginalise teachers, students or researchers.

2  Evolutions of Theories Related to Teaching 
with Technology

While we find ourselves today with multiple theories supporting research on teach-
ing practices in instrumented environments, a retrospective panorama of the evolu-
tion of these theories in mathematics education shows that these theories have roots 
in the 1960s with research and general theories on students’ learning, as shown in 
Fig. 1. From the 1960s to the 1990s, technology-related research in mathematics 
education progressively drew from these general developments, adapting them to 
the use (and, at the time, rather the usefulness) of a specific digital technology. Thus, 
this corpus mainly investigated learning processes. Although this chapter is focused 
on teachers, we insist on this history because it helps illuminate the persistence of 
well-entrenched theories of learning in the current landscape of theories on teach-
ing. In this section, we chart the broad strokes of theory development as it pertains 
to the use of technology in mathematics education, therefore sweeping through the 
bottom row of Fig. 1. In Sect. 2, we consider the evolution of a particular theory, the 
instrumental approach and therefore show some of the links across the three rows, 
as scholarship from outside of mathematics education as well as outside of 
technology- specific concerns, have shaped theory development. Section 3 steps 
aside from current mainstream theories—and therefore past the right-most  
column—to show how future theory development might evolve, that is, where new 
considerations and assumptions might lead.

As is evident in Fig. 1, since the mid-2000s, an increasing number of teacher- 
specific theories have emerged. One large group of these are linked to the instru-
mental approach in didactics, based on the cognitive-ergonomic instrumental 
approach (Vérillon & Rabardel, 1995), which has roots in the work of Piaget and 
Vergnaud (for the concept of scheme), as well as Vygotsky (for the concepts of 
mediation, and the social aspects of the instrumentation). Over time, it is also pos-
sible to see how different influences from outside of mathematics education research, 
such as the notion of boundary objects (Star, 1989) and the role of gestures in teach-
ing and learning  (Goldin-Meadow, 2005), have been conjugated into teacher- 
specific theories. In addition, changes in the software and hardware 
technological  infrastructure, such as the emergence of touchscreen tools, which 
have shaped broader theories in mathematics education, may eventually come to 
affect teacher-specific theories. In this section, we will trace some, but not all, of the 
evolutions represented in Fig. 1.
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The early work of Papert (1980) offered many new concepts for understanding 
the role of technology in learning, such as body syntonicity (which would later 
become central to theories of embodiment), microworlds, bricolage, and objects-to- 
think-with. With Logo, and then the proliferation of new digital technologies such 
as Computer Algebra Systems (CAS), Spreadsheets and Dynamic Geometry 
Environments (DGEs), the technology-related literature was initially mainly limited 
to descriptions of digital technology’s potential to change mathematics learning (see 
Lagrange et al., 2003).

From the 1990s, new theorizing attempted to account for how that learning might 
take place, using concepts such as scaffolding and situated abstraction (see Noss & 
Hoyles, 1996). These concepts were adapted from more general theories (such as 
Piaget, but also theories of situated cognition). Similarly, the concept of representa-
tion, which began as a general-level theoretical idea from scholars such as Bruner, 
was transposed into the technology-specific literature through the work of Kaput 
(1989) and colleagues, who were concerned with the particular linked and distrib-
uted forms of representation that digital technology offered. In return, this contrib-
uted to develop more general theories about representation. In the words of Drijvers 
et al. (2010) “The demand for clarification coming from the new technologies and 
their representational potential contributed to an effort to outline a unifying theoreti-
cal frame for representation” (p. 97).

Yet, these elaborations were still mostly addressing learning phenomena. The 
word “teaching” was missing, which says something not only about the conception 
of learning at that time, but also about assumptions made about teachers. Of course, 
concerns about teacher education have always existed—indeed, Celia Hoyles high-
lighted this in her 1992 Plenary talk at PME—but were rather oriented towards 
defining the mathematical knowledge required to teach. With the emergent question 
of content transposition, research on teachers emerged gradually. So did research on 
teaching practices with digital technology. It was also in 1992 that Chevallard 
emphasised the importance of the teacher in the integration and viability of digital 
technology, warning that innovation will fail unless “a functionally integrative 
didactic stewardship” is explicitly managed (Chevallard, 1992, p. 195, our transla-
tion). Ten years later, in her Handbook chapter, Mariotti (2002) also points out, even 
if in a very small section, that the role of the teacher is a central consideration in 
students’ mathematics learning with technology. Some years later, she studied the 
role of the teacher in the processes mediated by DGE (Mariotti, 2009).

From the 2000s onwards, teacher concern expanded. For example, some early 
studies focussed on teachers’ perception of graphing calculators (Simonsen & Dick, 
1997; Tharp, Fitzsimmons & Ayers, 1997). By this time, the concept of instrumental 
orchestration had evolved and developed to the point of sometimes being called a 
frame per se, extending the instrumental approach to a focus on the teacher. In 
CERME conferences, for example, there was a shift from one TWG on technologies 
in CERME8 (2013) (called Technologies and resources in mathematics education), 
to two TWGs in CERME9 (2015) (called, respectively, TWG15 on Teaching math-
ematics with resources and technology and TWG16 on Students learning mathe-
matics with resources and technology). By 2014, in the first edition of this book 
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(Clark-Wilson et al., 2014), various theories relating to teaching with digital tech-
nology appeared, which showed an increased awareness of the complexity that new 
technologies introduce into teaching practices.

Research on technology integration in mathematics teaching has now contrib-
uted to general research on teaching. An example is the evolution of a new research 
field, Meta-Didactical Transposition (MDT) (Arzarello et al., 2014; Robutti, 2020), 
this time focused on teacher professional development and teacher education. MDT 
can model the evolution of praxeologies of teachers (rather than focus on teacher 
knowledge at a certain time, or to teachers’ practices in the class) and researchers 
working together in an institutional educational setting, towards the sharing of com-
mon practices and corresponding theoretical justifications (the so-called shared 
praxeology). This framework evolves from the anthropological theory of didactics 
(Chevallard, 1989), concentrating the attention on the teachers not in classrooms (as 
Chevallard did), but in their professional education.

While it is possible to distinguish theories in terms of their historical genesis, it is 
also interesting and important to understand their differences in terms of what they 
stress and ignore in the phenomena they seek to understand or interpret. For example, 
as Ruthven (2014) points out, whereas TPACK focusses on the explicit knowledge of 
the teacher, the Structuring Features of Classroom Practice focusses on teacher exper-
tise and practice, much of which may be quite implicit. While the Structuring Features 
of Classroom Practice “provides a more differentiated characterisation” of the incor-
poration of a new tool into the resources system and adapting activity structures 
(p. 391), the Instrumental Orchestration theory identifies specific patterns of teacher 
activity in the classroom, around the instrumentation of student mathematical knowl-
edge. The Documentational Approach considers the teacher activity as a process that 
traces the whole span of professional work (not just in the classroom), in relation to 
the use of different tools and resources (Trouche et al., 2019).

Theories can also be compared in terms of the binaries they create and/or main-
tain, which are often implicitly assumed rather than explicitly stated. In relation to 
the three theories discussed by Ruthven (2014), for example, the cognition–affect 
binary is maintained in the sense that no attention is paid to affect, which suggests 
that teaching and learning is primarily a cognitive enterprise. Obviously, teachers 
respond in a variety of ways to the emotional and aesthetic cues from both of their 
students and of the discipline and among the variety of tasks potentially favorising 
mathematics learning, they choose certain tasks because they know their students 
will experience pleasure or surprise or satisfaction; they make certain instructional 
decision to avoid student anxiety or frustration, but these phenomena are not consid-
ered to be significant in current theories of teaching with technology. Another exam-
ple, which we will return to in Sect. 3, is the mind–matter binary. All the theories 
discussed so far maintain this binary by centring the human subject as the inten-
tional, knowledge-producing actor, whether as a teacher or learner, while the tech-
nology is given a more passive, mediating role. This binary has been challenged by 
some scholars, who argue that the material world (which can include physical 
objects as well as digital ones, but also various aspects of the environment) cannot 
be separated from the knowing subject and that knowledge emerges from 
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human–tool relations (see Latour, 1987) or in a ‘dance of agency’ between the dis-
cipline, the material world and the mathematician (see Pickering, 1995). We men-
tion this point about binaries because they are important to keep in mind when 
considering theory networking and because the attempt to dissolve a particular 
binary can be theoretically very productive, as we aim to show in the next section.

3  An Example of a Theory and its Evolution: 
The ‘Instrumental Approach’

One of the arguments for the educational integration of digital technologies in math-
ematics is that they can relieve students from the more computational aspects of 
mathematical activity and allow them to focus on the conceptual ones. These oppo-
sitions are part of the broader binary between body and mind, which is often hierar-
chised by assigning cognitive activities a value that is traditionally more ‘noble’ 
than that assigned to bodily activities (a point of view inherited from Descartes, and 
repeated throughout history by philosophers, psychologists and educators). The 
Instrumental Approach questions the binary between the ‘technical’ use of instru-
ments and the ‘cognitive’ conceptualisations that this use brings into play.

3.1  An Overview of the Instrumental Approach

For Rabardel (1995), the study of the relation between cognition and action consti-
tutes one of the important tasks of contemporary psychology. The instrumental 
approach, born in the context of cognitive ergonomics by Vérillon and Rabardel 
(1995), follows the work of Vygotsky’s theorisation, focussing on the learning pro-
cesses involving tools. Going beyond classical binary models (subject/object), they 
introduce a third pole between the subject and the object, which is that of the instru-
ment: a mixed entity that pertains to both the subject and the artefact: “The instru-
ment does not exist in itself, it becomes an instrument when the subject has been 
able to appropriate it for himself and has integrated it” (Vérillon & Rabardel 1995, 
p. 84). The cognitive component refers to what a subject learned from/for using the 
artefact in this context. Consequently, an instrument is always something that 
belongs to somebody, for performing a given type of task, at a given step of its 
development (Trouche, 2020). The development of an instrument from an artefact, 
along with the actions of the subject, is called instrumental genesis.

The instrumental approach was introduced in mathematics didactics after a 
period of “disappointed” hopes regarding the integration of digital technologies in 
the mathematics classroom, while they were, paradoxically, very present both in the 
resources and in the curricula. In France, the first studies aiming to understand these 
paradoxes involved formal calculation software (a Computer Algebra System, CAS) 
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and symbolic calculators (Guin & Trouche, 1998). CAS research has shown that the 
real teaching situation was much more complex than that which the favourable 
arguments above were suggesting. For example, the introduction of such tools into 
the classroom considerably increased the number of resolution techniques available 
to the students, an increase that was not necessarily anticipated, nor intended, by the 
teacher. The symbolic calculator was also introducing new types of tasks and, more 
disturbing, new instrumental objects that involved mathematical concepts different 
from those intended by the curriculum. Moreover, the articulation of the work and 
the tasks within the instrumented environment, especially with the traditional paper- 
based techniques (to which the didactical objectives of curricula and institutional 
assessments continued to refer) was not self-evident either.

A double complexity, underestimated or even denied until then, was thus coming 
to light, which was both institutional and instrumental:

• Institutional because the knowledge taught depends on an institutional context: it 
has undergone a didactic transposition (Chevallard, 1985) regarding the knowl-
edge of ‘mathematicians’—this transposition being specific to the institution in 
which it is taught.

• Instrumental because the artefact does not intervene in a neutral way in the 
teaching- learning situation. It carries its own techniques, instrumental knowl-
edge, signs, meanings, and a technological transposition of mathematical knowl-
edge also takes place (see Balacheff’s notion of computer transposition, 1994). 
The instrument transforms the knowledge into knowledge that is distant from 
that institutionally intended—this instrumental distance (Haspekian, 2005) being 
more or less significant, depending on the artefact.

To reckon with this double complexity, researchers in this field (Artigue, 1996; 
Trouche, 1997; Lagrange 1999; Defouad, 2000) have combined the two theoretical 
perspectives: the anthropological theory of the didactic (ATD – Chevallard, 1999), 
with this instrumental approach (Rabardel, 1995; Vérillon & Rabardel, 1995). ATD 
allows the institutional dimension with its conditions and constraints to be taken 
into account, while the instrumental approach takes into account the instrumental 
dimension and the non-neutral role of the ‘gesture on the thought’, i.e., of the use of 
the artefacts on the conceptualisation of the subjects (the human users).

At the basis of the ATD there is the notion of didactic transposition in mathemat-
ics education (Chevallard, 1985; Chevallard & Bosch, 2020), as the transformations 
that knowledge undergoes from the moment it is produced and theorised, to the 
moment in which it is put into use in a teaching situation, so it is selected and 
designed to be taught in a specific educational institution. The ATD theory is based 
on the assertion that mathematical activity has to be interpreted as an ordinary 
human activity, and gives a general model to describe human activities (the praxe-
ologies), a model that links and gives the same importance to their theoretical (knowl-
edge) and practical (know-how) dimension (Bosch & Gascon, 2006).

The combination of these two theoretical perspectives, usually called the instru-
mental approach in didactics of mathematics, is interesting in that it both revives 
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and overcomes binaries by questioning the role that instruments play in the produc-
tion of scientific knowledge. In particular, through its use of ATD, which does not 
include ‘mind’ or ‘body’ or related concerns, the instrumental approach highlights 
the idea of instrumented techniques. At the same time, it takes from the cognitive 
ergonomic perspective the concept of utilisation schemes (in the sense of Vergnaud, 
1990). This introduces an ontological distinction between the subject and the tool, 
which requires the introduction of psychological processes (in this case, schemes) 
to explain how the subject knows and/or uses the tool. These schemes are inferen-
tial, of course – they are not directly visible, but assumed to exist (in the brain). The 
instrumental approach thus links mind and body through the notion of schemes of 
use, which give origin to the instrument, thanks to the use of an artefact made by a 
subject.

The question of techniques played an important role in the development of the 
instrumental approach, which challenges assumptions about technology being 
merely a scaffolding or mediating tool, and instead as co-implicated in mathematics 
itself. In other words, pencil-and-paper mathematics is not the fixed, universal given 
that technology merely attempts to represent, a point made repeatedly in the past by 
researchers such as Shaffer and Kaput (1999). This partly explains why it demands 
such radical changes on the part of the teacher.

3.2  Towards a Focus on the Teacher: Instrumental 
Orchestration, Teachers’ Instrumental Geneses 
and the Documentational Approach

The development of the instrumental approach continued with changes in focus, by 
moving from a focus on the learning with an artefact (the student and the artefact, 
instrumental genesis, schemes of use, instrumental distance) towards a focus on the 
teaching with one or more artefacts. This led to several, and non-independent, 
extensions:

• extending the focus on the use of instruments by singular subjects to the focus on 
the teacher, managing a class of students, developing their own instrumental gen-
esis, which led to the concept of instrumental orchestration (Trouche, 2004), 
which concerns these collective and collaborative dimensions of the uses;

• extending the instrumental genesis to the teacher (analysing also the instrumen-
tal genesis of the teacher);

• extending the notion of artefact to the teachers’ resources, which led to the docu-
mentational approach (Gueudet & Trouche, 2009);

• enlarging the perspective of observation to a holistic approach—the resource 
approach—which investigates the teacher’s documentational approachivity in 
all their multifaceted aspects.
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In terms of the shift from the instrumentation of the student to that of the teacher, 
the multiplicity of student geneses and the need to unify social schemes of use of the 
artefact in the classroom raised the question of the management and guidance of 
these instrumental geneses by the teacher. Focussing then on the teacher’s consider-
ation of these phenomena and, more generally, on the management of the students’ 
instrumental geneses, Trouche (2004) introduces the concept of instrumental 
orchestration to designate this necessary work of the teacher to devise an organisa-
tion of the teaching that manages the students’ instrumental genesis. The notion of 
instrumental orchestration includes, according to Trouche, the didactic configura-
tions and the exploitation modes. These ideas will be further developed (Trouche & 
Drijvers, 2010), for example, by Drijvers et al. (2010), who adds the idea of didacti-
cal performance. Moreover, Drijvers et al. (2013) proposes a classification of the 
orchestrations initially identified in research (whole-class/individual, more teacher- 
centred/more student-centred). This has been useful to subsequent authors in offer-
ing new types of orchestration, variations of existing ones and, later so-called chains 
of orchestration (Besnier & Gueudet, 2016).

The focus on teachers gains a reinforced position when Rabardel’s concept of 
instrumental genesis is applied to the teacher and not just to the student. This exten-
sion of the theory leads to the identification of a double instrumental genesis (pro-
fessional and personal) (Haspekian, 2011) on the teacher’s side, intertwining in that 
case a personal instrumental genesis, leading to a personal instrument, with a pro-
fessional one, leading to the didactical one. In this work, the growing attention to 
the teaching practices leads to the necessity of another theory: the double approach—
ergonomics and didactic—of teacher practices (Robert & Rogalski, 2002). For 
example, this approach helps to better define and explain why and how the instru-
mental distance presents a problem for mathematics teachers as they work to inte-
grate technologies in their teaching practices (Haspekian, 2017). The association 
with the instrumental approach shares the fact that this theory also draws on cogni-
tive ergonomics roots, combined with a didactic perspective. Continuing in the 
focus on the teachers’ activity in a technology-instrumented classroom, Gueudet 
and Trouche (2009) applied Rabardel’s artefact/instrument distinction, this time to 
the teacher’s resources. Thus, they introduced the distinction “resource/document” for 
the teacher and elaborated the documentational approach to didactics (also 
called DAD).

The fourth theoretical extension draws on the DAD and aims to describe teach-
ers’ work from a holistic approach: the resource approach considers all the things 
that feed teacher work. The focus is on activity, on what actors in the educational 
environment use and/or design for their work. A resource is what can be drawn on 
by a person or organisation in order to function effectively (Trouche, 2019). This 
approach is more directly linked to activity (something to be engaged in some-
body’s activity) rather than to characteristics or features of the actor (their knowl-
edge or beliefs, for example). It has been used in a variety of contexts to study not 
just digital resources, but also curricular and cognitive resources, referring to 
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teachers’ professional work as a process, in which managing complexity among 
resources plays a fundamental role.

To the four theoretical extensions described above, we can add one more, intro-
duced by Drijvers et al. (2019) in their book on orchestration: “five future perspec-
tives of this notion, to further extend its value for mathematics educations, and for 
teacher training in particular: (1) a shift toward student-centred orchestrations, (2) 
extending the repertoire of orchestrations, (3) chaining orchestrations, (4) didactical 
performance, and (5) teachers’ and students’ gestures” (p. 400). The 5th point aims 
to incorporate into the instrumental approach, existing theories of embodied cogni-
tion (with their attention to the significant of gestures in mathematics thinking and 
learning).

Attention to embodiment in the context of learning with digital technology dates 
back to the work of Papert (1980) with his notion of body syntonicity. Since then, 
various theories of embodied cognition have been used, with some drawing on 
Lakoff and Núñez’s (2000) metaphor approach (Sinclair, 2001; Edwards, 2009) and 
others drawing on semiotic approaches (Arzarello & Robutti, 2008; Arzarello et al., 
2009; Arzarello et al., 2015) and still others drawing on phenomenological and new 
materialist approaches (Sinclair et al., 2013; Nemirovsky & Ferrara, 2008). Drijvers 
et al. (2019) adopt a more semiotic approach, where gestures are studied through 
their “symbolic” dimension (through mathematics techniques), and rarely from 
their “physical” dimension. This may be due to the allegiance of the instrumental 
approach in the didactics of mathematics to ATD, since the study of mathematical 
techniques is strongly inscribed in Chevallard’s concept of praxeology.

4  Reflections on Theory Development 
in Mathematics Education

With the advent of digital technology in school mathematics (in the 80s, mainly 
through the use of turtle geometry, e.g., Papert, 1980), and the rapid evolution of 
different kinds of software, the use of digital tools spread out all over the world and 
researchers needed to find ways to theoretically frame their uses in school. This first 
began by attending to students’ use of digital tools, drawing on theories used within 
mathematics education (Piaget, for example), and attempting to justify what math-
ematics were being learned. Theories then began drawing on ideas and points of 
view found outside of mathematics education, and were used to explain the interac-
tions between students and tool (initially individually). This was the case, for exam-
ple, with the instrumental approach’s use of cognitive ergonomics.

We are now completely immersed in a third wave of digital technology use, with 
distributed, highly integrated, connected, and interconnectable infrastructures (that 
includes both the first and the second waves). Indeed, communication and represen-
tation infrastructures, which were previously separated (Hegedus & Moreno- 
Armella, 2009) are now more blended in a complex net with different affordances. 
How, as researchers, do we make sense of the use of tools by students and teachers 
in these interconnectable infrastructures? We are now seeing the emergence of 
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theories responding to technology infrastructure changes. For example, new kinds 
of infrastructures are being explored by networking a theory relating to teachers—
that of Meta-Didactical Transposition (Arzarello et al., 2014)—with connectivism 
(Siemens, 2005) within the context of Massive Open Online Courses (MOOCs), in 
which online connectivity provides the medium for teachers’ collective work 
(Taranto et al., 2020). We are also seeing the emergence of theories responding to 
changing philosophical perspectives. For example, the use of the construct of 
boundary object (Star & Griesemer, 1989), as a socio-material and dynamic inter-
face that attempts to dissolve the theory–practice binary, has been used in teacher 
professional development (Robutti et al., 2019) and in studies of teacher practice 
(Sinclair et al., 2020), to interpret and justify phenomena of interaction among com-
munities, focusing attention on the processes that characterise them.

More generally, we see several specific opportunities for theoretical develop-
ment, some of which have already begun:

• Adapting existing theories and theoretical concepts (such as instrumental orches-
tration) to account either for new phenomena (new kinds of digital experiences, 
such as hapticity, e.g., Sinclair & de Freitas (2014)) or for new aspects of existing 
phenomena (e.g., embodiment) (e.g., Drijvers et al., 2019).

• Networking existing and/or new theories to draw on established constructs and 
findings in a more inclusive and reliable way (see Prediger et al., 2008).

• Exploring and addressing the different scales of phenomena at play in the math-
ematics classroom, from the molecular circulation of affect, to the mid-level tem-
porality of discussion and tool-use, to the larger-scale temporality of institutions 
and disciplines, including teacher professional development (Lemke, 2000). 
These scales can be also observed from an institutional point of view, looking at 
the context according to levels of codetermination (Chevallard, 2002; Barquero, 
Bosch & Gascón, 2013).

• Challenging existing philosophical assumptions (about the nature of learning; 
about the status of mathematical objects; about the role of values in mathematics 
and mathematics teaching and learning) to see how they give rise to new theoreti-
cal ideas that can productively address current opportunities and challenges.

In the next section, we show how re-thinking the philosophical assumptions of theo-
ries can give rise to new insights into the possibilities of networking, the different 
scales of phenomena that might matter in the teaching and learning of mathematics, 
and the challenging of existing binaries.

4.1  Some Philosophical Reflections on Theories Relation 
to Technology

Two main theoretical tendencies have dominated the past few decades of research in 
mathematics education. On the one hand, there are student-centred theories that 
adopt an epistemological stance in which the cognising subject constructs her own 
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knowledge in an autonomous way, such as constructivism and radical constructiv-
ism (Radford, 2008). In these theories, knowledge is not passively received, which 
contravenes prior transmission theories of learning such as behaviourism, but 
actively constructed. There are also constructivist theories that attend more specifi-
cally to the social processes involved in this construction, such as interactionism. 
Epistemologically, these theories assume that it is not possible to have any certain 
knowledge of reality, opting instead to conceptualise knowledge as adaptive, serv-
ing to organise one’s experiential reality—these theories do not assume that knowl-
edge correspond to an ontological reality. This epistemological position finds its 
lineages in Kantian philosophy. However, whereas Kant saw mathematics as the 
paradigm of certain knowledge (therefore according it an ontological reality), 
Piaget, whose influence on constructivism in mathematics education was signifi-
cant, assumed all knowledge to be hypothetical—it is about viability rather than 
certainty.

Even while recognising the importance of social processes, the theories described 
above depend on a binary that distinguishes the cognising subject from the culture 
in which the subjects act and know (Lerman, 1996). In socially oriented constructiv-
ist theories, the teachers play a crucial role, because they must enable children to 
construct their own knowledge, while at the same time guiding the negotiation of 
this knowledge in the classroom. Unlike constructivism, the Theory of Didactical 
Situations (TDS), which inherits the constructivist assumption of students con-
structing their own knowledge, and attends to the social, with its concepts of situa-
tion and milieu, assumes that there is a target, cultural knowledge at stake, which 
means that the teacher is focussed on straddling the border between student knowl-
edge and cultural knowledge. In both cases, teachers integrating technologies that 
are novel (either historically, or in terms of a teacher’s prior experiences) will face 
significant challenges, both in legitimising student knowledge and in linking student 
knowledge to cultural knowledge.

On the other hand, there are socio-cultural approaches, where autonomy is not a 
prerequisite for knowledge construction. These approaches view knowledge as 
coming from the historically generated knowledge that is mediated by language and 
tools, as can be seen in the Theory of Semiotic Mediation (TSM). Such approaches 
adopt a significantly different ontological position, which is that knowledge is his-
torically generated, which contrasts with the realist assumption that mathematical 
exists independently of time and culture. Therefore, as Radford (2008) argues, 
“sociocultural research starts from the premise of a cultural (material and ideal) 
reality that precedes the cognitive activity of the individual, and as such transcends 
the individual from the outset” (p. 10).4 This quote makes explicit the epistemologi-
cal position of socio-cultural theories, which is that students make sense of certain 
modes of thinking, learn to participate or become fluent in them—knowledge comes 
from without, rather than from within. For the teacher, the goal is less to support 

4 Social constructivism recognises the importance of social interactions in the classroom in the 
processes of teaching and learning, but this does not change its epistemological commitment to 
knowledge arising from the individual.
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students in autonomous cogitations, than to provide mediation—through tools, con-
cepts, language—that enables a learner to achieve something that could not be 
achieved autonomously. In this sense, autonomy is the outcome of the learning pro-
cess rather than its prerequisite. For teachers integrating novel technology, it can be 
challenging for them to know just what mathematically valid problem these tech-
nologies can enable students to accomplish, especially when that problem is not 
explicitly connected to curricular expectations. For example, to use a dynamic 
geometry environment example, dragging a point can quite evidently enable stu-
dents to generate a family of dynamic triangles, it is less evident for teachers to 
identify both the cultural knowledge this action might mediate and the curriculum 
goal to which it relates.

The instrumental approach has been influenced by the constructivist orienta-
tion—as Ruthven writes, citing Rabardel (2002), the instrumental approach was 
“developed in cognitive ergonomics to study the typically non-proposition and 
action-oriented knowledge involved in making use of tools” (p. 380). The two pro-
cesses of instrumental genesis, although oriented in two different directions in the 
subject-artefact (learner-tool) relationship, are both generated by the subject, within 
the affordances and constraints of the artefact. As such, most researchers in mathe-
matics education are primarily interested in studying—in terms of processes—the 
evolution of students and teachers, both of whom begin as naïve users, but eventu-
ally become proficient ones. This approach disrupts both the conceptual–technical 
and thinking–acting binaries that commonly ground mathematics education 
research.

Instrumental Orchestration focusses on the teacher’s handling of the myriad of 
processes of instrumental genesis in the classroom, and it adopts a socio- 
constructivist interest in studying the “collective path by means of which emergent 
knowledge is socialised into a shared form aligned with wider conventions and 
practices” (Ruthven, 2014, p. 381), thereby the term “orchestration”. As Trouche 
(2005) points out, of the various didactic configurations identified in Trouche 
(2004), only one focusses on the adaptation of the tool itself, whereas the others 
only obliquely implicate the tool. Indeed, as Ruthven (2014) argues, much of the 
research using Instrumental Orchestration has focussed almost exclusively on the 
organisation of classroom activity, thereby saying little about tool adaptation. 
Additionally, by focusing on the exploitation modes of the teacher, which are “the 
way the teacher decides to exploit a didactical configuration for the benefit of his or 
her didactical intentions” (p. 215), Drijvers et al. (2010) study only the presumed 
intentional acts of teachers.

While the Instrumental Approach in didactics began as a learner-specific theory 
with the concept of instrumental genesis, and later gave birth to teacher-specific 
concepts, the theory of semiotic mediation (TSM), which draws on a socio-cultural 
approach, has always been a teacher-and-student theory (Bartolini Bussi & Mariotti, 
2008). In TSM, teaching and learning are studied simultaneously, with the teacher 
having two specific aims, which are to design activities (which includes the choice 
of task, artefact and mathematical knowledge) and to make the activity function 
(which involves exploiting, monitoring and manages the students’ behaviours, 
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including utterances, gestures and artefact actions). Given the socio-cultural episte-
mological assumptions of TSM, knowledge is taken to be grounded in the historical 
practices, which includes the artefacts, language and mathematical objects in which 
the teacher acts as a cultural mediator. An important a priori stance is taken in TSM, 
through the work to identify the semiotic potential of an artefact, which is to recog-
nise the links between the artefact, the task and mathematical knowledge. The 
teacher must then try to exploit this semiotic potential, and this can occur when the 
teacher manages to transform artefact signs (actions accomplished with the artefact, 
such as dragging a point along a specific path) into mathematical signs (such as a 
locus). The TSM includes certain specifications, called the didactic cycle, about 
how a lesson might be planned, as well as how it should be performed, including 
how a collective discussion should unfold (Bartolini Bussi & Mariotti, 2008). When 
it is used to study student learning (e.g., Bartolini Bussi & Baccaglini-Frank, 2015), 
it does so by attending also to the teacher’s role, moreover specifying – in a sense – 
certain aspects of it.

While differing in terms of their epistemological assumptions, both constructiv-
ist and socio-cultural theories treat tools as being essentially passive with respect to 
human intention and action. However, both the Instrumental Approach and TSM 
challenge the passivity of tools and grant them a significant role in shaping students’ 
conceptualisations, thus showing how changes in technology can also lead to 
changes in philosophical assumptions about how we come to know. For example, 
Rabardel (1995) writes about the “structuring effects of artefacts on activity” (p. 5). 
He identifies different types of structuring constraints of artefacts, which thus 
include “pre-organized forms that subjects are confronted with in their instrumented 
activities” (p. 6). Arguably, however, the ontological question about what knowl-
edge is has not been explicitly addressed in either theory. In most constructivist 
approaches there is a sense that mathematical knowledge (of a given concept, such 
as number), exists, and that the cognising subjects attempts to construct it, perhaps 
with the help of a teacher or a tool, but the knowledge itself is an independent entity. 
Knowledge can therefore be acquired, transferred, developed, connected, etc. For 
socio-cultural theories, including TSM, knowledge is historically generated and 
cannot be dis-embedded from cultural and context. Knowledge is framed in terms 
of participation within a particular community, focussing on doing/talking/making 
more than having. Knowledge is not just situated within culture, it is subordinate to 
that culture—defined and determined by it.

There are many variations of both constructivist and sociocultural theories in 
mathematics education, which we will not explore here. Instead, for the sake of 
thinking generatively about theory, we are interested in the possibilities opened up 
by considering both ontological assumptions and axiological ones. This is not just 
idle theory play, but is instead motivated by the new perspectives that such consid-
erations would give rise to, particularly in relation to issues of equity, but also of 
validity (accounting for the complexity of teaching and learning mathematics). For 
this chapter, we use the work of the French philosopher Gilbert Simondon to guide 
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our exploration, not only due to his extensive writings on technology (some of 
which shaped Rabardel and Vérillon’s thinking), but also for his commitment to 
challenging some of the binaries we have evoked earlier in this chapter.

4.2  An Exploration of Technology Related Theories 
from the Work of Simondon

Simondon can be described as a process philosopher, that is, he takes becoming to 
be more fundamental than being—seeing change or difference as the central feature 
of reality, rather than identity. He therefore seeks to replace substantialist assump-
tions (that students, teachers, tools, etc. can be adequately defined through a set of 
properties or characteristics) with operational ones (that what exists, what can be 
described, are processes and relations). By focusing on process, he does not need to 
make a priori distinctions between cognition and affect, for example, nor between 
the individual and the collective. Instead of asking questions about being—what 
does the teacher know? what are the tool’s affordances?—which assume an intact 
subject to which things happen (like instrumentation, or internalisation or participa-
tion), Simondon (1958) would prompt us to ask ontogenetic questions such as: how 
does a knowing teacher emerge from interactions with textbooks or tools? what 
gives rise to the idea of dynamic geometry and how does it remain stable or change 
over time? In other words, rather than assuming the existence of the individual that 
one is seeking to account for, Simondon focusses on individuation, which is the 
process of constituting that individual, dynamic in itself. Individuation describes 
processes through which a tool becomes a tool or a teacher becomes a teacher, pro-
cesses that occur through multiple domains, including the physical, the biological, 
the psychosocial and the technological. The concept of being concerns the process 
of mutation, a potential, rather than fixed categories. Simondon will assert that this 
process is fundamentally affective. He blurs the individual–collective by study-
ing the process of transindividuation, which concerns individuation in relation to a 
collective.

This is interesting because it might help address important problems in our stud-
ies of teaching with technology. For example, it might help account for how teach-
ing and learning mathematics arises from both individual and cultural forces. It 
might draw attention to how the individuation of tools impacts teachers’ actions. It 
might shine light on the affective dimension of teachers’ individuation, with respect 
to digital tools, which might help us understand their limited presence in the math-
ematics classroom. It might help us describe how digital tools participate in pro-
cesses of collective individuation. Finally, it can help us appreciate the new relations 
made possible between living beings and digital tools, which exceed—and cannot 
be read in terms of—existing paper-and-pencil, alphanumeric relations.

A significant assumption of Simondon’s is that individuation is not reserved for 
humans, and also occurs, for example, in technical objects (as well as crystals, which 
he uses as a paradigmatic example). Tools thus have a new “ontological dignity” in 
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that they individuate—they have the potential to change or to become in their given 
milieus, much as humans do. The theory of instrumental genesis respects this per-
spective when it focuses on the genesis of instrument (through instrumentation and 
instrumentalisation). For Rabardel, one of the interests of the instrumental genesis is 
precisely to theoretically “found the articulation and the continuity between the insti-
tutional processes of conception of the artefacts and the continuation of the concep-
tion within the activities of use” (ibid, p.  5). However, it adopts a psychological 
approach: this becoming of the technological objects is a psychological construct, on 
the subject’s side. It exists only through this human relation. Methodologically, it is 
crucial for Simondon that this process of individuation is not seen from a strictly 
psychological perspective, nor from a sociological one, each of which assumes that 
the human and the group, respectively, are pre-defined.

Simondon’s insistence on affectivity—that is, the way we affect and are affected 
in the world, prior to any conscious or cognitive interpretation or inference—offers 
an interesting direction for research on teaching with technology. Affectivity, for 
Simondon, describes the liaison between the individual and the world. It establishes 
a relation with something that the individual brings with them, but that is felt as 
being exterior to themselves. This might be the relation that arises from a teacher’s 
encounter with a pair of compasses (such as a haptic response of fixing, turning) or 
with dynamic geometry environment (such as a anticipation of movement). Affective 
life shows us we are more than individuals, we are parts of multiple, heterogeneous 
networks (other humans, groups, tools, mountains, rain, spiders) and this is why 
Simondon will refer to the “more-than-individual” life. Individuation can be 
described as the resolving of this affective world (the relation) and the perceptual 
one (the disjunction). As researchers, we might inquire into  how is this tension 
resolved when new digital tools are used in the classroom, or while teachers partici-
pate in professional development programmes, or in the process of task design.

From Simondon’s perspective, technical objects are not “in need of meaning, 
form, purpose and value which must be brought to it from the outside, through 
human intervention” (Grosz, 2012, pp. 52–53). In Trouche’s (2000) parable of the 
“casserole à bec” (a saucepan with a spout used to pour milk) the technical object is 
described as not being adapted to its user, who is left-handed, which means that the 
user must make one of several (seven!) choices on how to proceed. The focus is on 
the point of view of the subject, on how the subject changes to accommodate the 
tool. And while the tool is granted some “affordances”, its own individuation is 
rarely studied. What Simondon would have been interested in, is not only the gen-
esis of the spouted saucepan, including the microtechnical level of detachable pieces 
(the handle, the spout) and the macrotechnical levels of webs of distribution and 
exchange (as it co-mingles with other objects), but how the technical object indi-
viduates. Doing so would confer a certain status on the technical object that is not 
merely instrumental (what it enables us to do), but that is also aesthetic (how it 
makes us feel). Simondon’s perspectives align well with recent posthuman 
approaches to education that attempt to de-centre the human subject (see Snaza 
et al., 2014), and re-direct attention to how the material world, our geography, or 
classroom seating arrangements, our tools, the weather, etc., matters in teaching and 
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learning. This may represent an actual Copernican revolution in mathematics edu-
cation theories.

More generally, for Simondon, technical objects have modes of existences just as 
humans and cultures do; they are becomings rather than beings, and it thus makes 
sense to study them as actualisations of a process rather than as fixed, isolated  
entities—there is a dynamic reciprocity within the world of technical objects. Here, 
the documentational genesis of Gueudet and Trouche (2009) comes to mind since it 
focusses on the individuation of a teacher’s resource, but in Simondon’s hands, the 
genesis applies not only to the teacher (or to the student) but to the resources as well. 
In Simondon’s ontology, the socio-cultural assumption about knowledge being fun-
damentally historical and cultural no longer applies, and therefore the physical, 
material world is not read in terms of this socio-cultural reality. This is the sense in 
which technology objects are proffered an ontological dignity. Simondon thus offers 
new considerations for how theories are used in mathematics education research, 
especially as they relate to digital technology, which will have geneses that are quite 
unique. In education, where we are concerned with the experiences of students and 
teachers, we may well gravitate to theories that concern psychological or sociologi-
cal processes. However, we might draw on Simondon to see how our theories could 
position digital technologies in less instrumental or passive ways, so they can dis-
rupt the subject–object and individual–society binaries. That they could use chal-
lenging is evident in the fact that our current theories have either been psychological 
or sociological, whereas lived experience is clearly both. 

Simondon-inspired research might study the genesis of specific technologies, be 
they physical ones such as Cuisenaire rods or virtual ones such as dynamic geom-
etry environments, which, like the automobile motor, have evolved in relation to 
their own modes of existence, and experienced multiple individuations, that is, mul-
tiple processes of becoming. Indeed, the simple action of triangle dragging has 
evolved into measuring angles and sides, plotting measurements related to the tri-
angle onto a Cartesian coordinate system, collecting measures in a spreadsheet, etc. 
These processes enabled the dynamic geometry environments become dynamic 
mathematics environments, through complex assemblages with mathematics, teach-
ers, school mathematics, and other technologies. Now there exist many large multi- 
purpose dynamic mathematics environments, parts of which can be found—that 
have been re-used—in other technical objects, such as on-line textbooks or tablet- 
based microworlds. And these parts have different geneses as they become re- 
inscribed in new media, for example, the multi-touch tablet now makes dragging all 
three vertices of the triangle possible, which fundamentally changes the experience 
of dragging, as well as the mathematics (from single, sequential variation to simul-
taneous multi-dimensional variation).

In terms of theories concerned with teachers, Simondon invites a view of tech-
nology as being less epiphenomenal to issues of didactic configurations, exploita-
tion schemes, classroom discussions, and so on. We might consider, for example, 
the non-intentional ways in which classroom activity unfolds, perhaps seeking to 
study how teachers respond to these agential forces of technical objects (see Carlsen 
et al., 2016; Chorney, 2017). Clark-Wilson’s (2014) study of “hiccups” seems to be 
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within this vein, in that the particular moments of instability in which she docu-
ments (the “hiccup”), are precisely those in which the technology is asserting itself, 
affecting the teacher in ways that demand new responses. Such moments of instabil-
ity may be transformed into pedagogical opportunities. As with the other untheo-
rised aspects of classrooms,  periods of silence, side conversations about 
non-mathematical topics, rises in heartbeat, flushing of the cheeks—they might 
matter quite significantly to our understanding of the teaching and learning process.

5  Looking Forward

All three of the  theories described in Ruthven (2014) fall within the Understand 
paradigm of educational theories discussed by Stinson and Walshaw (2017). Loosely 
following the Predict paradigm that is associated with behaviourism and other posi-
tivist theories, the Understand paradigm begins in the 1980s and continues to domi-
nate mathematics education research. The two other paradigms, emerging from the 
socio-political turn, are characterised as Emancipate and Deconstruct. These make 
very different epistemological and ontological assumptions from constructivist and 
socio-cultural theories. Theories in the Emancipate paradigm assume, for example, 
that knowledge, power and identity are constituted in and through socio-political 
discourse. Theories in the Deconstruct paradigm challenge that transparency of lan-
guage, the objectiveness of knowledge and “the idea that knowing is an outcome of 
human consciousness and interpretation and that individuals are autonomous and 
stable with agency to choose what kind of individual they might become” (Stinton 
& Walshaw, 2017, p. 139). Further, they may seek to decentre the human, and thus 
attend to the distributions of agency and knowledge across human and non-human 
entities – therefore troubling the primacy of the intact human body and passiveness 
of the material world.

Interestingly, there are extremely limited research studies in the mathematics 
education research related to the use of digital technology that adopts these second 
two paradigms of research. This may be a result of the historical divide between 
technology enthusiasts who align with scientific ideas of progress and detractors 
who align with humanist concerns (that technology will rob humans of agency, 
inequitably redistribute wealth and freedom, etc.) (Simondon, 1958/2017). This can 
be seen in Fig. 1, where there are no connections to theories emanating from the 
socio-political turn of the 2010s (Gútierrez, 2013). Very few articles5 use a critical 
theory lens to examine, for example, how the use of digital technology may feed 
into the inequalities that exist between populations (rich/poor, male/female, black/
white, abled/disabled). There is broad-level research that critiques the neoliberal, 
social engineering project of the STEM movement. Some authors argue that 

5 As a counterpoint though, two leading scholars of this socio-political turn have studied the role of 
interactive whiteboards, arguing that this technology exacerbates existing inequities—see 
Zevenbergen and Lerman (2008).
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STEM- based activities must be more attentive to ethical and ecological forms of 
knowing (Glanfield et al., 2020; Wisemant et al., 2020). The research of feminist 
black studies, who draw on Simondon (among other theorists), to disrupt colonial 
assumptions about who counts as human and what counts as reason (see Keeling, 
2019), might be generative for rethinking what it means to know and do and teach 
mathematics.

The current lack of research in these two paradigms points to an underlying fea-
ture of the framing of digital technology in education (and more generally, in soci-
ety) as a largely utilitarian concern that relates very little to broader questions 
around politics, social, ethics and aesthetics. For Simondon, this trivialising of tech-
nology was a symptom of a significant paradoxical angst, namely, that the world 
divides into two camps: one on side, there are the technology cheerleaders and the 
technology detractors. (This is of course a simplistic binary, one that has surely been 
complicated in the past 60 years, but we use it merely to illustrate a tension.) The 
former are keen to show how technology is going to improve human life (including 
enthusiasts such as Francis Bacon and Karl Marx) and the latter are those who fear 
that technology will replace or control humans, Samuel Butler’s Erewhon (1872) 
being a paradigmatic example. As the divide between the “two cultures” grew, the 
humanists and social scientists tended to belong to the latter group, while the scien-
tists and engineers tended to the former, and were interested in the more technical 
aspects of technology.

In education, this angst plays out in a more nuanced way, particularly in relation 
to the detractors, since the very same digital technologies that have improved math-
ematical activity (such as the calculator that can compute more quickly and accu-
rately, or the dynamic geometry environment that can continuously manipulate 
shapes) actually replace important aspects of some teachers’ practices. While math-
ematics education researchers tend to celebrate the added opportunity offered by 
digital technology, they seldom acknowledge the associated losses, especially in 
terms of how they might affect teachers’ professional or mathematical identities or, 
to put it in Simondon’s language, how they problematise the liaison between affec-
tive and perceptual worlds. 

 Appendix: List of the Journals Reviewed

 1. International Journal of Science, Mathematics & Technology Learning (From 
Volume 21 Issue 2 to Volume 27 Issue 1)

 2. International Journal of Mathematical Education in Science and Technology 
(From Volume 46 Issue 1 to Volume 51 Issue 8)

 3. Educational Studies in Mathematics (From Volume 88 Issue 1 to Volume 105 
Issue 2)

 4. Digital Experiences in Mathematics Education (From Volume 1 Issue 1 to 
Volume 6 Issue 3)

Revisiting Theories That Frame Research on Teaching Mathematics with Digital…



412

 5. International Journal for Technology in Mathematics Education (From Volume 
22 Issue 1 to Volume 27 Issue 3)

 6. International Journal of Science and Mathematics Education (From Volume 13 
Issue 1 to Volume 18 Issue 8)

 7. ZDM Mathematics Education (From Volume 47 Issue 1 to Volume 52 Issue 7)
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