
Authoring for Story Sifters

Max Kreminski, Noah Wardrip-Fruin, and Michael Mateas

Abstract We discuss the issues of authoring for story sifters: systems that search
for compelling emergent narrative content within the vast chronicles of events gen-
erated by interactive emergent narrative simulations. We describe several different
approaches to the authoring of sifting patterns that specify how to locate particular
kinds of narratively potent situations; address the relationship between sifters and
the simulations they operate over from an authoring perspective; and sketch several
possible approaches to the authoring of sifting heuristics, or high-level encodings of
what makes for a compelling story that could be used to guide a sifter’s behavior.

1 Introduction

Interactive emergent narrative (IEN) [15, 21, 31, 38] is an approach to interactive
narrative design in which narrative is allowed to emerge organically from open-
ended interactions between autonomous simulated characters, as well as the actions
of the human player. Like many other approaches to interactive narrative design, IEN
attempts to solve the narrative paradox of reconciling open-ended interactivity with
the communication of a coherent story [19].

Most existing approaches to interactive narrative design take a top-down approach
to the narrative paradox: they attempt to ensure narrative quality by allowing only
events that follow a preordained high-level plot structure to occur. For example, in
linear interactive storytelling (often employed in many commercial story games),
the player is able to interact within and between story scenes (plot points) but with
no influence on their linear order. In branching interactive storytelling, the space

M. Kreminski (B) · N. Wardrip-Fruin · M. Mateas
University of California, Santa Cruz, 1156 High St, Santa Cruz, CA, USA
e-mail: mkremins@ucsc.edu

N. Wardrip-Fruin
e-mail: nwardrip@ucsc.edu

M. Mateas
e-mail: mmateas@ucsc.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
C. Hargood et al. (eds.), The Authoring Problem, Human–Computer Interaction Series,
https://doi.org/10.1007/978-3-031-05214-9_13

207

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05214-9_13&domain=pdf
mkremins@ucsc.edu
 854 51016 a 854 51016
a

mailto:mkremins@ucsc.edu
nwardrip@ucsc.edu
 854 53894 a 854 53894
a

mailto:nwardrip@ucsc.edu
mmateas@ucsc.edu
 854 56772
a 854 56772 a

mailto:mmateas@ucsc.edu
https://doi.org/10.1007/978-3-031-05214-9_13
 -2047
60726 a -2047 60726 a

https://doi.org/10.1007/978-3-031-05214-9_13

208 M. Kreminski et al.

of all possible story traces is pre-authored as a graph structure, often with choice
points explicitly presented to the player. And in strong story generative narrative
approaches [22, 27] such as story planning [26, 39], the system reasons about story
structure to generate linear or branching stories with a focus on story-centric char-
acteristics such as causality.

IEN, in contrast, takes a bottom-up approach to the resolution of the narrative
paradox, sacrificing fine-grained authorial control over plot structure in exchange
for a greater degree of novelty and responsiveness to player action. In IEN, because
the player and the simulated characters are free to take actions that don’t line up with
a preordained plot structure, the actions they take can vary significantly from one
playthrough to the next, and the player-perceived narrative outcomes of this open-
ended interaction can often surprise even the people who created the simulation.

Canonical works of IEN (such as Dwarf Fortress [1], The Sims [2, 6, 24], and
Stellaris [17]) are known not only for their propensity to generate compelling and
unexpected stories but also for their tendency to overwhelm players with the sheer
volume of narrative content that they produce. Many of these works present players
with complicated user interfaces that allow them to access a great deal of detailed
information about the simulated storyworld, but at the cost of requiring users to
spend a great deal of time learning to use this interface before they can reliably get
compelling stories to emerge [16]. From a narrative design perspective, the central
problem with IEN is one of unpredictability: because there is no central plot thread
in relation to which the importance of individual events can be gauged, the system
has no way to reliably determine which of the many events that take place within
the storyworld are likely to hold particular narrative significance for the player.
As a result, the most common failure condition for IEN play experiences involves
the dissolution of the player-perceived story into a structureless mess, breaking the
perception of narrativity [32] and causing players to understand the events of play
not as a story but as “just one damn thing after another” [29, p. 4].

Story sifting [29, 31] attempts to address the problems of overwhelm and struc-
turelessness in works of IEN by augmenting the underlying simulation (which is
responsible for generating narrative events) with an additional technical system: the
story sifter, which aims to detect narrative events or event sequences that make for
compelling narrative material. Sifting thus allows the adoption of an ‘overgenerate
and test’ approach to storyworld simulation, in which simulations are allowed to
generate a wide variety of surprising juxtapositions; sifters are tuned to detect and
surface the most interesting narrative situations that emerge from the simulation;
and the overwhelmingly vast amounts of uninteresting or nonsensical material also
generated by the simulation along the way can be downplayed or dismissed, allowing
for a coherent story to solidify. James Ryan (who introduced the term ‘story sifting’)
refers to this IEN design strategy as the curationist approach [29, p. 6].

However, beyond the known issues of authoring for IEN [20], story sifting intro-
duces new authoring challenges of its own. In particular, current approaches to story
sifting are heavily reliant on human-authored story sifting patterns: short blocks of
code that a sifter can execute to detect instances of a particular type of narratively
potent situation that have emerged within the storyworld. Additionally, sifting also

Authoring for Story Sifters 209

has implications for simulation authoring, particularly around the need to keep track
of causality relationships between events at the simulation level and the possibility of
integrating sifting into simulation design. And finally, although there has been little
concrete research in this direction to date, sifting could also be augmented by sifting
heuristics. These are higher level, more generic descriptions of what makes emergent
narrative content potentially compelling. Such heuristics could be used to prioritize
some sifting pattern matches over others when deciding what narrative material to
highlight, though identifying these heuristics is still an open research problem.

In this chapter, we discuss these three key authoring issues. First, we discuss
the challenge of sifting pattern authoring and present a brief history of attempts to
improve the ergonomics of writing sifting patterns. Second, we consider the issues
of simulation design for curationist IEN experiences and the need to construct sim-
ulations in sifting-compatible ways. And third, we briefly discuss the possibility of
developing higher level sifting heuristics that could further improve the authorial
leverage [5] of story sifting as an approach.

2 Authoring Sifting Patterns

Modern story sifters make extensive use of story sifting patterns to detect emergent
narrative content that might be worth incorporating into a story. A sifting pattern is
a block of code that specifies how to find instances of a particular kind of narratively
potent situation that might emerge within a storyworld, for instance, an escalating
cycle of revenge between two characters; a character who is consistently unable
to hold down a job; or a sequence of events in which a social contract (such as
the expectation that hosts do not harm their guests) is betrayed. These ‘nuggets’
of potentially interesting narrative content can then be woven—either by a human
interactor, a computational system, or both working together—into a coherent story.

The more sifting patterns a sifter has at its disposal, the wider the range of emergent
microstories that it can detect and reason about, and the better its ability to respond to
the unexpected consequences of player interaction. Consequently, a number of efforts
have recently been made to improve the efficiency of sifting pattern authoring. In
this section, we briefly recount the history of these efforts.

2.1 Procedural Sifting Patterns

The term ‘story sifting’ was first employed to describe the role of the wizard (per-
formed by a member of the design team) in the simulation-driven interactive theater
experience Bad News [33]. The wizard is responsible for manually searching for
interesting narrative material in a Talk of the Town [30] simulation. To perform this
search, they make use of the wizard console, a Python REPL equipped with a number
of predefined functions for conveniently executing specific types of queries against

210 M. Kreminski et al.

the full simulation state. Attempts to automate Bad News’s wizard role resulted in
the Sheldon sifter [29, p. 657], which executes sifting patterns specified as chunks
of procedural Python code against a Talk of the Town-like simulation state to iden-
tify sets of interrelated storyworld entities (such as events and characters) that meet
certain criteria. Below is an example of a Sheldon sifting pattern, which is executed
against many possible candidate events to find those representing the enactment
of an arson revenge scheme (in which a character who has been harmed by another
character burns down a building belonging to that character as a means of getting
revenge) and bundle them with some relevant context for narration:

self.match = (

candidate.name == "set-fire" and candidate.find_ancestor(

name="hatch-revenge-scheme",

initiator=candidate.initiator

)

)

if self.match:

self.set_fire = candidate

self.hatch_scheme = (

candidate.find_ancestor(

name="hatch-revenge-scheme",

initiator=self.set_fire.initiator

)

)

self.arsonist = self.hatch_scheme.binding("arsonist")

self.target = self.hatch_scheme.binding("target")

Though this example is relatively readable for an experienced programmer, it
also highlights some of the weaknesses of the procedural (as opposed to declarative)
approach to specifying sifting patterns. In particular, it makes heavy use of chained
object graph traversal to access event sequences and properties of matched events,
limiting the ability of sifting patterns to flexibly traverse the graph ‘in reverse’.
The find_ancestor method on event data structures represents a particularly
thorny part of the Sheldon API, since it forces all event sequence access to begin
at the last event in sequence unless the simulation authors also define a mirrored
find_descendant function (thereby increasing the authoring burden on the sim-
ulation side). In general, this example illustrates how the procedural (non-declarative)
approach to writing sifting patterns ties the pattern strongly to the implementation
details of the simulation. Ideally, we would like to be able to specify sifting pat-
terns independently of these implementation details. Additionally, because Sheldon
patterns are expressed in plain Python code, potential authors of Sheldon patterns
must learn the syntax and semantics of general-purpose Python language constructs
(such as method calls, boolean operators, and if statements) before they can write
patterns effectively. This reduces the approachability of pattern authoring to those
with limited programming experience.

Authoring for Story Sifters 211

2.2 Declarative Sifting Patterns

Felt [14] attempts to alleviate the difficulty of writing procedural sifting patterns by
instead applying a declarative approach to sifting pattern specification. Felt patterns
specify what to find instead of how to find it, and are expressed in a small domain-
specific query language that compiles down to a subset of Datalog instead of a
Turing-complete programming language. Consequently, they are often more concise
than equivalent Sheldon sifting patterns; can perform bidirectional traversal of the
entity graph without any extra authoring effort on the simulation side; and can be
authored by people with less programming experience, since the surface area of Felt
as a language is much smaller than that of Python or a similar scripting language.

Felt sifting patterns look like the following:

(eventSequence ?e1 ?e2)
[?e1 eventType hatchRevengeScheme] [?e2 eventType setFire]
(contributingCause ?e1 ?e2)
[?e1 actor ?arsonist] [?e2 actor ?arsonist] [?e2 target ?target]

Like the example Sheldon sifting pattern listed above, this pattern locates instances
of an arson revenge event sequence in which an ?arsonist character burns down
a building belonging to another character as part of a revenge scheme against them.
Identifiers preceded by a ? character represent logic variables, which are bound
to concrete values when an instance of the pattern is successfully found. Square-
bracketed clauses (such as [?e1 actor ?arsonist]) represent assertions that
the entity on the left-hand side (here, ?e1, or the first event in the matched sequence)
has an attribute with the name in the middle (actor) whose value is the entity
or constant on the right (?arsonist, or the character responsible for the arson
scheme). Equality checks are often handled by unification: here, we specify that the
actor for the first and second events in the sequence must be the same character
by assigning both of them to the same logic variable, ?arsonist, so that only
matches in which both events have the same actor will succeed. Meanwhile, clauses
surrounded by parentheses (such as(contributingCause ?e1 ?e2)) invoke
simulation-specific inference rules that can be used to make judgments about the
relationships between entities—here, to judge whether the first event in sequence
(?e1) is causally related to the second (?e2).

A small authoring study of Felt [14] found that relatively programming-
inexperienced users (four high school-aged research interns) were successfully able
to use Felt to write working sifting patterns after one day of training. However, they
used only a minimal subset of the Felt language constructs available to them and did
not make full use of the available simulation domain constructs, suggesting that fur-
ther guidance in exploring the space of possible sifting patterns would be necessary
to assist novice programmers in making full use of story sifting affordances.

In addition to the approach taken by Felt, inspiration for future declarative
approaches to story sifting may be found in the approaches taken by Playspecs [25],
which apply regular expressions to the recognition of patterns (sometimes narrative)

212 M. Kreminski et al.

in gameplay traces but are limited in expressiveness by their inability to capture
variable bindings; by prior work on plan recognition in narrative domains [3], some
approaches to which closely resemble story sifting from a technical perspective; and
by the use of story intention graphs for analogy search between plot structures [7],
which could be leveraged for sifting via the analogical comparison of simulation
outputs against structural patterns extracted from known-good stories.

2.3 Sifting Pattern Authoring Tools

A small ecosystem of authoring tools and higher level domain-specific languages
based on Felt have emerged, with each presenting a slightly different form of assis-
tance to users in the definition of Felt sifting patterns.

Synthesifter [18] (Fig. 1) aims to support the authoring of Felt sifting patterns by
presenting users with an example-based interface for pattern specification. Once users
provide a small number of concrete example event sequences matching their intended
sifting pattern, Synthesifter uses inductive logic programming [23] to automatically
synthesize a sifting pattern capable of matching these sequences, and presents the
user with further possible matches of this pattern against a corpus of test events. Users
can then refine the synthesized sifting pattern by marking these additional matches
as positive or negative examples, or modify the synthesized pattern directly to get
live feedback on which event sequences are matched by their modified pattern. By
obviating the initial need to create new sifting patterns by writing code from scratch
and using program synthesis to introduce new syntactic and semantic concepts in the
sifting pattern language to the user, Synthesifter provides the user with well-formed
concrete examples of how to use potentially unfamiliar parts of the Felt language
and/or simulation domain, and thereby aims to mitigate the tendency of novice Felt
users to use only a limited subset of the available constructs.

Centrifuge [9] (Fig. 2) is a visual editor for Felt sifting patterns that uses a node-
graph model to make the Felt syntax more approachable. Elements of the Felt syntax
and the simulation domain are represented as nodes, and connections between these
nodes indicate the relationships between pattern-relevant simulation domain entities.
This approach helps users avoid low-level syntax errors and view the pattern as a
whole graphically, with the goal of making the connections between entities clearer—
especially in complex patterns containing many interrelated entities. It also provides
a palette of constructs that can be added to a pattern, allowing users to more readily
explore the space of possible patterns.

And finally, Winnow [11] is a higher level domain-specific query language for
story sifting that aims to save authoring effort by asking users to write a smaller
number of explicitly staged sifting patterns, which can be executed incrementally to
identify partial instances of desired microstories (e.g. the first few events of an arson
revenge event sequence) before the sequence has run to completion and without

Authoring for Story Sifters 213

Fig. 1 Screenshot of the Synthesifter user interface (taken from [18]). On the left sits a scrolling,
filterable log of all events that have occurred in the storyworld so far, allowing the user to select
event sequences to use as examples. On the right sits an editable view of the current synthesized
sifting pattern; the sets of positive and negative examples the user has provided; and the set of
additional matches for the current candidate sifting pattern, which the user can add as positive or
negative examples

any extra authoring effort. Consider the following Winnow translation of a slightly
expanded arsonRevenge sifting pattern:

(pattern arsonRevenge
(event ?harm where
tag: harm, actor: ?victim, target: ?arsonist)

(event ?scheme where
eventType: hatch-revenge-scheme,
actor: ?arsonist, target: ?victim,
(ancestor ?harm ?scheme)),

(event ?arson where
eventType: set-fire, actor: ?arsonist, target: ?victim,
(ancestor ?scheme ?arson)))

By explicitly incorporating the initial ?harm event that leads to the revenge
scheme into the sifting pattern and dividing the pattern into three explicit stages (one
per matched event), we enable Winnow to automatically detect instances in which

214 M. Kreminski et al.

Fig. 2 Partial screenshot of the Centrifuge user interface, showing the graphical specification of a
moderately complex sifting pattern. The depicted pattern is used to find instances of a nuclear plant
safety inspector who has been fired twice in a short time period, without any other interceding life
events

the first two events of the sequence (or any other prefix) have taken place, but the
remaining events have not yet transpired. This allows for the procedural generation of
foreshadowing for later events in the sequence; the suggestion or promotion of simu-
lation actions that would advance this partially-formed microstory; and the capacity
for avoidance of actions that would cut this microstory off before it has the chance
to run to completion. To perform similar partial matching with Felt patterns alone
would require pattern authors to maintain several partial variants of each pattern in
parallel with the complete version; this increases the likelihood that errors will be
introduced in the copying process, as well as the burden of synchronizing changes
between the full pattern and its variants.

Though the tools and languages discussed in this section have introduced substan-
tial subjective improvements to sifting pattern authoring processes from the authors’
perspective, little evaluation of pattern authoring tools has been done, and none of
these tools have been put through a formal user study at the time of this writing.
Consequently, one potentially beneficial direction for future work in this area would
be to perform a more thorough evaluation of the strengths and weaknesses of these
authoring tools, particularly for less programming-experienced users.

Authoring for Story Sifters 215

3 Authoring Siftable Simulations

Beyond the authorship effort that is put into the construction of story sifting patterns
appropriate for a particular emergent narrative domain, creators of IEN systems also
have the option of crafting simulations with sifting in mind. This entails additional
authoring effort at the simulation level, but can make it substantially easier to write
sifting patterns that match relevant narrative situations. In this section, we describe
three major levels of engagement with sifting at the level of simulation authoring.

3.1 Authoring Sifters for Existing Simulations

One advantage of story sifting as an approach is that it can be applied to the output
of a simulation that was created without story sifting in mind. However, this often
requires the construction of an adaptation layer that transforms the output of the
simulation engine into a form that is more amenable to sifting—typically including
what Ryan calls a chronicler, or a system that extracts a list (i.e. a ‘chronicle’) of all
the potentially narratively significant events that have transpired in a storyworld’s
history [29, p. 236].

A number of chroniclers have been authored for existing IEN systems, includ-
ing several distinct chroniclers (with slightly different aims) created to extract event
sequences from the Blaseball simulation1 and the Legends Viewer chronicler for
Dwarf Fortress2. Legends Viewer is notable because it also provides some lightweight
interactive sifting affordances on top of the extracted data, and because it has been
used as a base for autonomous sifter development—for instance, by the Dwarf
Grandpa project [8]. The creators of these chroniclers often need to exercise editorial
judgment as to how the continuous output of an IEN system can best be quantized
into discrete events: there is a balance to be struck in chronicler authoring between
capturing enough data that a wide variety of expressive sifting patterns can be written
over the data, and providing a sufficiently summarized view of the data that sifters do
not get bogged down in considering many narrative-irrelevant events (e.g. movement
events with little narrative content) when executing sifting patterns.

3.2 Co-designing a Simulation and Its Sifter

One difficulty of sifting the output of a simulation that was not designed for story
sifting is that information about the causality relationships between events (which
plays an important role in narrative) is not preserved or made retroactively avail-
able by most simulations. Consequently, Ryan argues that simulation authors who

1 https://sibr.dev/apis.
2 http://www.bay12forums.com/smf/index.php?topic=154617.0.

https://sibr.dev/apis
 -1461 57437 a -1461 57437
a

https://sibr.dev/apis
http://www.bay12forums.com/smf/index.php?topic=154617.0
 -1461 58766 a -1461 58766 a

http://www.bay12forums.com/smf/index.php?topic=154617.0

216 M. Kreminski et al.

intend their simulations to be amenable to curation should ensure that the simula-
tion performs causal keeping in its recording of events [29, p. 162], taking note of
which events led to other events and making these causality relationships available
alongside the records of the events themselves.

More broadly, in authoring simulation actions, it can be beneficial to include
extra information alongside the events themselves that are useful in writing more
abstract story sifting patterns. Rather than specifying only a single string to identify
a simulation event’s type, for instance, we have found that it can make authoring
sifting patterns much easier if you also attach a variable-length list of string tags
to each event. For example, an event representing asking someone out on a date
and being turned down can be tagged with romantic and failure. This allows
different sifting patterns (for example, some that are looking for looking for ‘any
romantic event’, and some that are looking for ‘any failure’) to consider the same
event for inclusion in matches. This event polymorphism increases the potential for
narratively interesting emergent behavior to be captured by sifting.

When authoring both a simulation and the sifter meant to operate over that simu-
lation in parallel, it is important not to create only the simulation actions that lead to
satisfaction of your existing sifting patterns—this misses the point of IEN (increased
novelty and emergence) and falls back into what Louchart and Aylett call ‘plot-based
authoring’ [20]. Consequently, it may be advantageous to follow an iterative three-
step process: first, author a number of simulation actions without considering the
sifting patterns that they might be matched by; second, test the simulation to see
what surprising new emergent microstories appear; and third, author sifting patterns
to capture these new microstories. Alternating between simulation-focused authoring
and sifting-focused authoring creates mental distance between the action sequences
that you expect to occur and the action sequences that you are attempting to rec-
ognize, allowing emergent behavior to appear independent of attempts to recognize
that behavior.

3.3 Designing Simulations That Incorporate Sifting

Beyond authoring a simulation and its sifter in parallel, it is also possible to incorpo-
rate sifting directly into the simulation—for instance, by enabling certain character
actions within the simulation if and only if certain sifting patterns have been matched.
Felt and Kismet [37] both play double duty as sifters and simulation engines by allow-
ing incorporation of sifting patterns into the preconditions of simulation actions.

The co-creative IEN writing game Why Are We Like This? [12, 13], which uses
Felt as its underlying simulation engine, employs this feature to implement character
subjectivity. In addition to taking simulation actions that update the state of the
outside world, individual simulated characters can also perform introspection actions
in which they apply one of their own preferred sifting patterns to a sequence of past
events and formulate a narrative perception of those events. This mechanism can
be used to craft characters with distinct reactive procedural personalities [36] by
giving them access to different sifting patterns: for instance, a melancholy character

Authoring for Story Sifters 217

might be assigned a pool of sifting patterns that allow most social interactions to
be interpreted as indicative of hostility, causing the character’s interpretations of the
world to be biased systematically toward the negative.

Though it has not yet been attempted to the best of the authors’ current knowl-
edge, it is also possible to construct a sifting-based drama manager [28] that uses
sifting to gather information about the current state of the storyworld, then makes tar-
geted interventions at the simulation level to influence the development of emergent
storylines based on the sifted information. This would likely represent a relatively
light-handed approach to drama management, attempting to gently nudge emergent
storylines toward completion (in much the manner of the ‘narrative promotion’ tech-
niques employed in The Sims 2 [2, 24]) rather than to impose a single overarching
plot structure on the entirety of a storyworld’s history.

4 Toward Sifting Heuristics

The sifting patterns that are used in existing story sifters tend to be fairly low-
level, concrete specifications of emergent story patterns that make for good narrative
material. Patterns at this level, however, do not necessarily capture more generic
notions of what makes for a good story, for instance, those that have been set out in
cognitive narratology research. This raises the question of how a more generic sense
of narrativity could be encoded into the machine, such that sifters can leverage this
information to better understand the player-perceived story—for instance, by using
abstract narrativity to gauge which of many viable sifting pattern matches are most
likely to be important to the player-perceived narrative. In the story sifting literature,
encodings of abstract narrativity are called sifting heuristics [29, p. 237].

Sifting heuristics may attempt to operationalize constructs from cognitive nar-
ratology, including story interestingness as defined by Schank [35] and event
salience [10] (a proxy for story memorability) as operationalized in Indexter [4]. An
operationalization of surprise—which is often treated as a key component of inter-
estingness, and which may be detectable via statistical approaches such as anomaly
detection—could also prove useful in sifting heuristics. Since surprise tends to trade
off against narrative coherence, striking an appropriate balance between these dimen-
sions is likely to be a central challenge in pursuing this approach.

Sifting heuristics might also be learned from data on how users interact with
existing interactive story sifters, for instance, the Bad News ‘wizard console’ or
the Legends Viewer interface for exploring Dwarf Fortress worlds. Samuel et al.
have recently conducted an analysis of interaction trace data with the Bad News
wizard console [34], revealing that certain sets of wizard console commands are
often executed together. Recurring patterns of interaction with these lower-level
sifting interfaces could potentially be abstracted into high-level sifting heuristics,
since a human user’s sense of what information is needed to identify a compelling
narrative throughline for a whole Bad News play session (for instance) could be
expected to serve as a good proxy for the information that a computational system
would need to make similar determinations.

218 M. Kreminski et al.

5 Conclusion

Story sifting presents a potential solution to one of the key difficulties of interac-
tive emergent narrative: that of mitigating overwhelm and perceived narrative struc-
turelessness while preserving responsiveness and the potential for surprising but
compelling emergent narrative developments. However, sifting also introduces new
authoring difficulties, particularly around the authoring of story sifting patterns; the
construction of simulations that are amenable to sifting; and the definition of highly
general sifting heuristics. Several technical and design problems remain to be solved
if sifting is to become a more widely deployed solution to the difficulties of IEN.

References

1. Adams T (2019) Emergent narrative in Dwarf Fortress. In: Procedural storytelling in game
design. AK Peters/CRC Press, pp 149–158

2. Brown M (2006) The power of projection and mass hallucination: practical AI in The Sims 2
and beyond. Invited talk at AIIDE 2006

3. Cardona-Rivera R, Young R (2015) Symbolic plan recognition in interactive narrative environ-
ments. In: Proceedings of the AAAI conference on artificial intelligence and interactive digital
entertainment, vol 11

4. Cardona-Rivera RE, Cassell KB, Ware SG, Young RM (2012) Indexter: a computational model
of the event-indexing situation model for characterizing narratives. In: Proceedings of the 3rd
workshop on computational models of narrative, pp 34–43

5. Chen S, Nelson M, Mateas M (2009) Evaluating the authorial leverage of drama manage-
ment. In: Proceedings of the AAAI conference on artificial intelligence and interactive digital
entertainment, vol 4

6. Eladhari MP (2018) Re-tellings: the fourth layer of narrative as an instrument for critique. In:
International conference on interactive digital storytelling. Springer, pp 65–78

7. Elson DK (2012) Detecting story analogies from annotations of time, action and agency. In:
Proceedings of the LREC 2012 workshop on computational models of narrative, Istanbul,
Turkey, pp 91–99

8. Garbe J (2018) Simulation of history and recursive narrative scaffolding. http://project.
jacobgarbe.com/simulation-of-history-and-recursive-narrative-scaffolding

9. Johnson-Bey S, Mateas M (2021) Centrifuge: a visual tool for authoring sifting patterns for
character-based simulationist story worlds. In: Proceedings of the AIIDE workshop on pro-
gramming languages and interactive entertainment (PLIE)

10. Kives C, Ware S, Baker L (2015) Evaluating the pairwise event salience hypothesis in Index-
ter. In: Proceedings of the AAAI conference on artificial intelligence and interactive digital
entertainment, vol 11, pp 30–36

11. Kreminski M, Dickinson M, Mateas M (2021) Winnow: a domain-specific language for incre-
mental story sifting. In: Proceedings of the AAAI conference on artificial intelligence and
interactive digital entertainment, vol 17, pp 156–163

12. Kreminski M, Dickinson M, Mateas M, Wardrip-Fruin N (2020) Why are we like this?: explor-
ing writing mechanics for an AI-augmented storytelling game. In: Proceedings of the electronic
literature organization conference

13. Kreminski M, Dickinson M, Mateas M, Wardrip-Fruin N (2020) Why are we like this?: the AI
architecture of a co-creative storytelling game. In: Proceedings of the fifteenth international
conference on the foundations of digital games (2020)

http://project.jacobgarbe.com/simulation-of-history-and-recursive-narrative-scaffolding
 29670 39491 a 29670 39491 a

http://project.jacobgarbe.com/simulation-of-history-and-recursive-narrative-scaffolding
http://project.jacobgarbe.com/simulation-of-history-and-recursive-narrative-scaffolding

Authoring for Story Sifters 219

14. Kreminski M, Dickinson M, Wardrip-Fruin N (2019) Felt: a simple story sifter. In: International
conference on interactive digital storytelling. Springer, pp 267–281

15. Kreminski M, Mateas M (2021) A coauthorship-centric history of interactive emergent narra-
tive. In: International conference on interactive digital storytelling. Springer, pp 222–235

16. Kreminski M, Mateas M (2021) Toward narrative instruments. In: International conference on
interactive digital storytelling. Springer, pp 499–508

17. Kreminski M, Samuel B, Melcer E, Wardrip-Fruin N (2019) Evaluating AI-based games
through retellings. In: Proceedings of the AAAI conference on artificial intelligence and inter-
active digital entertainment, vol 15, pp 45–51

18. Kreminski M, Wardrip-Fruin N, Mateas M (2020) Toward example-driven program synthesis
of story sifting patterns. In: Joint proceedings of the AIIDE 2020 workshops

19. Louchart S, Aylett R (2004) The emergent narrative theoretical investigation. In: Narrative and
interactive learning environments conference, pp 21–28

20. Louchart S, Swartjes I, Kriegel M, Aylett R (2008) Purposeful authoring for emergent narrative.
In: Joint international conference on interactive digital storytelling. Springer, pp 273–284

21. Louchart S, Truesdale J, Suttie N, Aylett R (2015) Emergent narrative, past, present and future
of an interactive storytelling approach. In: Interactive digital narrative: history, theory and
practice. Routledge, pp 185–199

22. Mateas M, Stern A (2000) Towards integrating plot and character for interactive drama. In:
Working notes of the social intelligent agents: the human in the loop symposium. AAAI, pp
113–118

23. Muggleton S, De Raedt L (1994) Inductive logic programming: theory and methods. J Logic
Program 19:629–679

24. Nelson MJ (2006) Emergent narrative in the sims 2 (2006). https://www.kmjn.org/notes/
sims2_ai.html. Accessed 20 Aug 2021

25. Osborn J, Samuel B, Mateas M, Wardrip-Fruin N (2015) Playspecs: regular expressions for
game play traces. In: Proceedings of the AAAI conference on artificial intelligence and inter-
active digital entertainment, vol 11

26. Porteous J (2016) Planning technologies for interactive storytelling. In: Handbook of digital
games and entertainment technologies. Springer

27. Riedl MO, Bulitko V (2013) Interactive narrative: an intelligent systems approach. AI Mag
34(1)

28. Roberts DL, Isbell CL (2008) A survey and qualitative analysis of recent advances in drama
management. Int Trans Syst Sci Appl, Spec Issue Agent Based Syst Hum Learn 4(2):61–75

29. Ryan J (2018) Curating simulated storyworlds. PhD thesis, University of California, Santa
Cruz

30. Ryan J, Mateas M (2019) Simulating character knowledge phenomena in talk of the town. In:
Game AI Pro 360. CRC Press, pp 135–150

31. Ryan JO, Mateas M, Wardrip-Fruin N (2015) Open design challenges for interactive emergent
narrative. In: International conference on interactive digital storytelling. Springer, pp 14–26

32. Ryan ML (1992) The modes of narrativity and their visual metaphors. Style 368–387
33. Samuel B, Ryan J, Summerville AJ, Mateas M, Wardrip-Fruin N (2016) Bad news: an exper-

iment in computationally assisted performance. In: International conference on interactive
digital storytelling. Springer, pp 108–120

34. Samuel B, Summerville A, Ryan J, England L (2021) A quantified analysis of Bad News for
story sifting interfaces. In: International conference on interactive digital storytelling. Springer,
pp 142–156

35. Schank RC (1979) Interestingness: controlling inferences. Artif Intell 12(3):273–297
36. Short T (2017) Designing stronger AI personalities. In: Proceedings of the AAAI conference

on artificial intelligence and interactive digital entertainment, vol 13, pp 111–117
37. Summerville A, Samuel B (2020) Kismet: a small social simulation language. In: Joint work-

shops of the international conference on computational creativity
38. Walsh, R.: Emergent narrative in interactive media. Narrative 19(1):72–85 (2011).

https://www.kmjn.org/notes/sims2_ai.html

23950 24879 a 23950 24879 a

https://www.kmjn.org/notes/sims2_ai.html
https://www.kmjn.org/notes/sims2_ai.html

220 M. Kreminski et al.

39. Young RM, Ware SG, Cassell KB, Robertson J (2013) Plans and planning in narrative genera-
tion: a review of plan-based approaches to the generation of story, discourse and interactivity in
narratives. Sprache Und Datenverarb, Spec Issue Form Comput Model Narrat 37(1–2):41–64

	 Authoring for Story Sifters
	1 Introduction
	2 Authoring Sifting Patterns
	2.1 Procedural Sifting Patterns
	2.2 Declarative Sifting Patterns
	2.3 Sifting Pattern Authoring Tools

	3 Authoring Siftable Simulations
	3.1 Authoring Sifters for Existing Simulations
	3.2 Co-designing a Simulation and Its Sifter
	3.3 Designing Simulations That Incorporate Sifting

	4 Toward Sifting Heuristics
	5 Conclusion
	References

