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1 Introduction

Geomorphology is the study of the Earth’s surface and the processes which shape
it (Goudie and Viles 2010a, b). It is largely carried out by geologists and geog-
raphers. However, it is also an interdisciplinary discipline that has linkages to
hydrology, archaeology, environmental history, engineering, ecology, and clima-
tology. The discipline’s recent history has been reviewed byBurt et al. (2008),Goudie
(2016a), Gardner (2020), and Burt et al. (2022), while the role of various national
schools has been recounted by Walker and Grabau (1993). Geomorphology has also
become increasingly international in scope, as evidenced by the establishment of the
International Association of Geomorphologists in 1989, and by the participation of
geomorphologists in the meetings of the EGU.

The purpose of this chapter is to highlight some of the major features of
Geomorphology at the start of the twenty-first century.

2 Development of Techniques

In recent decades there has been an explosion of techniques that have become
available to geomorphologists (Goudie 1990). These have (i) allowed improved
field measurements (e.g., through the use of GPS and data loggers), (ii) improved
surveying of landform distribution and morphometry (through remote sensing,
LIDAR, GIS, unmanned aerial vehicles, etc.) (Eckardt 2022), (iii) geophysical
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techniques to permit two- or three-dimensional views of the materials and struc-
tures which make up the landscape (e.g., Ground Penetrating Radar and resis-
tivity surveys), (iv) superior analyses of geochemical properties of materials, by, for
example, the use of XRD and XRF, (v) assessment of the hardness of rocks (Viles
et al. 2011), (vi) absolute dating of landforms and deposits by means of isotopes,
optically stimulated luminescence, Caesium-137, cosmogenic nuclides, and ther-
mochronology, including fission track dating (Anderson 2022), (vii) experimenta-
tion in the laboratory and under real field conditions, using programmable environ-
mental cabinets, wind tunnels, rainfall simulators, dust and sand traps, electronic
sensors, etc. (Church 2022), (viii) detailed environmental reconstruction (especially
by miscellaneous types of core analysis), (ix) statistical analyses of large sets of data
by means of computers, (x) and computer-based modelling (Church 2010; Martin
2022). Without all these technical developments, geomorphology would be a very
different discipline from the one it has become.

3 Development of Landscapes Over Time

A major concern of geomorphologists for much of the past two centuries was the
study of the long-term development of landscapes in response to climate changes
and tectonic history. This involved the study of cycles of erosion, the establishment
of denudation chronologies, and the analysis of landscape development in response
to changes in climate (e.g., Büdel 1982) and base levels. Although in the second half
of the twentieth century this historical/evolutionary approach became less dominant
in the discipline, it has recently been re-energized because of the availability of a
suite of new dating techniques (e.g., optical dating, cosmogenic radionuclides) and
techniques for environmental reconstruction (e.g., by coring) (Anderson et al. 2013;
Anderson 2022). There has been a renewed burst of interest in the role of Late
Cenozoic environmental changes at a wide range of temporal scales. Quaternary
geomorphology is a vibrant field, not least in lower latitudes, where the impact of
pluvial and arid phases has been fundamental for understanding landscapes, including
those of Brazil (de Paula Barros and Junior 2020; Mescolotti et al. 2021).

Longer-term studies of landform evolution have also blossomed because of an
interest in plate tectonics, continental drift, sea-floor spreading, epeirogeny, and
orogeny (Summerfield 2000). This enables one to explain such phenomena as
drainage-basin evolution at a continental scale (e.g. Goudie 2005), the evolution
of great escarpments on passive margins, and the distribution of volcanoes around
the world.

Geomorphologists have also been much concerned with shorter-term environ-
mental history and it is here that their work overlaps with that of environmental
historians (seeHudson et al. 2008) and geoarchaeologists. Geoarchaeology is a fertile
field of researchwith its own journals.Workingwith prehistorians and archaeologists,
geomorphologists have investigated the effects of climatic, tectonic, and sea-level
changes on human societies (e.g., Flemming 1999) and have assessed the relationship
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of archaeological sites to geomorphological settings, including dunes (Allchin et al.
1978), arroyos, colluvium, calcareous tufas, caves, lakes and lunette dunes, coastal
erosion and construction, deltas, old river systems, badlands and alluvial deposits
(Vita-Finzi 1967).

4 Rocks and Relief

Understanding the impact of rock types of landscapes is a fundamental compo-
nent of Geomorphology. Thus the study of the links between rocks and relief has a
long history during which studies have been performed on the links between partic-
ular rock types and landscape patterns. These have included studies of landforms
on limestones and dolomites (Ford and Williams 2007), sandstones and conglom-
erates (Young et al. 2009), and granites (Migoń 2007). However, notwithstanding
Yatsu’s (1966) exhortation, quantification of the links between rock properties and
landforms remains an under-researched part of Geomorphology. There was indeed
a great school of rock control work that arose in Japan (Ouchi 1996), notably by
Suzuki and colleagues (see Suzuki et al. 2000 for a history of this work). As Goudie
(2016b) argued, rock properties occur at a range variety of scales, from large linea-
ments and fractures (which are measured in the field) through to individual rock
micro-pores (which are calculated in the laboratory). At the mega-scale, there are
discontinuities—faults, joints, and bedding planes. At the mesoscale, rock strength
can be determined both in the laboratory and in the field bymeasuring such properties
as abrasiveness and abradability, compressive, shear and tensile strengths, penetrom-
eter resistance, surface hardness, and Young’s Modulus of Elasticity. At a smaller
scale, rocks can be tested in the laboratory to establish their resistance to weathering
(particularly frost and salt action) and to assess the role of such factors as their porosi-
ties and water absorption capacities A new technique for the small-scale analysis of
materials that was first developed in the 1930s but evolved from the 1960s onwards,
was Scanning Electron Microscopy (SEM) (Whalley 1978).

Techniques such as the assessment of rock mass strength (RMS) (Selby 1980)
and the study of the relationships between rock pore characteristics and resistance
to weathering (e.g., Yu and Oguchi 2009) are indicative of the progress that is now
being achieved. Rock hardness determination has developed as a research field (Viles
et al. 2011), involving the use of the Schmidt Hammer (SH) (Goudie 2006), the
Equotip, the Grindosonic, and dilatometric and sonometric techniques. Efforts have
been made to relate this to such diverse phenomena as slope forms and instability,
the morphology of shore platforms, glacial trough geometry, river channel dimen-
sions, valley forms, the formation of cavernous weathering features, and inselberg
development (Duszyński et al. 2022).
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5 Processes

There are twomain types ofEarth surface processes: exogenic and endogenic (Goudie
2016a). The former refers to those processes (weathering, erosion, sediment trans-
port, etc.) that are ultimately fuelled by the Sun’s energy and which operate via the
climate system. Particularly since the 1960s geomorphology has concerned itself
with these exogenic processes, often at a reductionist level and using quantitative
techniques, such as computational fluid dynamics (Lane et al. 1999). As a result of
the quantitative revolution, great efforts have been made to measure such processes
as grain entrainment and solute movements in small catchments. Classic and influ-
ential examples of this genre are those by Leopold et al. (1964) on rivers, by Carson
and Kirkby (1972) on slopes, by Drewry (1986) on glaciers, by Washburn (1979) on
the cryosphere, by Yatsu (1988) on weathering, by Masselink and Hughes (2003)
on coasts, and by Gillette (1977) on aeolian processes. Discussions on recent devel-
opments in three of the biggest components of geomorphology—rivers, coasts, and
slopes—are provided by Ferguson et al. (2022), Spencer and French (2022), and
Kirkby (2022), respectively.

On the other hand, the latter refers to volcanic and tectonic processes powered by
energy derived from the inside of the Earth. These exogenic processes operate over
long time scales and over great regional extents. Since the 1960s, they have received
increased attention as a consequence of the emergence of the plate tectonics paradigm
(Burbank and Anderson 2011), and have contributed to a greater understanding of
the global pattern of phenomena such as volcanoes, rift valleys, mountain ranges,
and guyots (Summerfield 1991, 2022). They have also helped us to understand rates
of denudation and fluvial incision in areas of active orogeny (Whipple and Meade
2006; Whittaker et al. 2007). Moreover, current work has shown that climate, as well
as the erosional development of the landscape, feeds back into the ongoing tectonic
processes (Whipple 2009). As Dadson (2010, p. 390) remarked ‘the results from
coupled geomorphic and geodynamic models suggest that climate-driven erosion is
of first-order significance in the evolution of mountain belts across a range of time
scales’. The study of rates of chemical weathering and physical denudation under
different climatic and tectonic conditions has been boosted by a concern with how
these processes relate to global carbon cycle (Goudie and Viles 2012). Exogenic
process geomorphology and the newmodels of long-term landscape evolution, asso-
ciated with new ideas on plate tectonics and novel geochronometric techniques, need
to be combined more effectively than they have been in the past (Summerfield 2005;
Bishop 2007).

More traditional evaluations of the links between climate conditions and the
nature and rate of geomorphological processes persist as an active area of research,
with syntheses of geomorphological phenomena in different climatic zones being
produced, including those of humid tropical environments (Thomas 1994), glaciated
areas (Benn and Evans 2010), deserts (Goudie 2013), and periglacial and permafrost
regions (French 2017).
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6 Living Landscapes

Organic agencies are crucial for understanding landform development. Thus since
the 1980s, there has been a burgeoning concern with establishing links between
plants, animals, and geomorphology, and the terms biogeomorphology (Viles 1988),
zoogeomorphology (Butler 1995), ecogeomorphology, and geoecology have been
used. Coombes (2016b) and Viles (2020) undertook citation analyses, which showed
that publications in biogeomorphology increased exponentially during the 1990s.

Biogeomorphology is ‘an approach to geomorphology which explicitly considers
the role of organisms’ (Viles 1988, p. 1), or as Coombes (2016a) defined it, ‘Biogeo-
morphology is the scientific study of interactions and feedbacks between living and
non-living parts of the landscape’. Viles recognized that there are two linked foci
in biogeomorphology: ‘The influence of landforms/geomorphology on the distribu-
tions and development of plants, animals, andmicroorganisms’, and ‘The influence of
plants, animals and microorganisms on earth surface processes and the development
of landforms.’ The whole spectrum of biological life-forms is involved in biogeo-
morphological interactions, frombacteria and fungi affectingweathering andmineral
precipitation to elephants excavating wallows, to cows causing ground compaction,
to the effects of a large forest on the behavior of river catchments (Viles 2004).

Undoubtedly during the evolution of life, the impact of organisms on geomorpho-
logical processes has also evolved, and, for example, the Palaeozoic development of
plant life about 440 million years ago would have dramatically changed the channel
activity of rivers (Ielpi and Lapôtre 2020). Likewise, Algeo and Scheckler (1998)
argued that the evolution of trees and seed plants and the appearance of multi-storied
forests in theDevonian led to an intensification of soil formation and increased fluvial
solute fluxes.

Recent work has tried to provide quantitative measures of relief complexity and
to link this to biodiversity. Landforms have been seen as important components of
habitat, particularly in river floodplains (e.g., Graf 2001; Bennett and Simon 2004).
Moreover, geomorphological processes enhance an area’s biodiversity by introducing
dynamism and creating new habitats (Viles et al. 2008). Plants and animals are not
merely passive occupiers of the Earth’s surface. They play an active and key role in
many geomorphological processes and can create unique landforms (beaver dams,
coral and serpulid reefs, termitaria, phytogenic dunes, animal dens, ant mounds,
etc.). Above all, biological influences can either accelerate or retard the rate of oper-
ation of exogenic processes. Organisms such as ants, notwithstanding their small
size, achieve a remarkable amount of geomorphological work (Viles et al. 2021).
Processes, including tree fall and root penetration, have major effects on slope forms,
shallow landslides, and creep, while vegetation cover influences rainfall interception,
infiltration rates, runoff, and sub-surface flow, temperature characteristics, and wind
action. Riparian vegetation impacts upon river channel forms, flood plains, and bank
erosion. Vegetation cover is also a crucial factor in controlling wind velocities and
turbulence at the ground surface and in reducingwind erosion, dust storm generation,
and sand dune movements. The combined effects of erosion reduction and accretion
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enhancement can be termed ‘bioprotection’ (Carter and Viles 2005), but conversely,
organisms can accelerate erosion, a process which is called ‘bioerosion’.

7 Submarine Geomorphology

Using an array of new techniques, geomorphologists have started to discover a great
deal about the ocean floors (Micallef et al. 2022) and extra-terrestrial landscapes
(Conway 2022).

For a long time, the former remained largely unexplored directly by humans,
apart from some submarine-based expeditions, but their major features have now
been mapped through ship and satellite-based remote sensing. Together, these have
been used to create global topographic maps or digital elevation models (DEMs) of
the ocean floor. Sidescan sonar and 3D seismic survey are among the techniques
that allow the creation of ‘images’ of surface and sub-surface materials. Many large-
scale features have been found which reflect the impact of glacial action (Ottesen and
Dowdeswell 2009), tectonics, mass movements, and other processes. One particu-
larly productive area of recent research has been the identification and interpretation
of subsea mass movements, for landslides, creep phenomena, flows, slumps, slides,
and falls are all common on the seafloor (Micallef et al 2007; 2009; 2018).

These mass movements can be hazardous to humans (Innocenti et al. 2021) and
so this is a major research frontier for applied geomorphologists (Moore et al. 2018).
Landslides in fjords, in the Gulf of Mexico (Fan et al. 2020), and on the flanks of
oceanic islands, such as the Canaries, can generate tsunamis (Coppo et al. 2009),
though this is not always the case (Løvholt et al. 2017). In addition, turbidity currents
can pose challenges for engineering structures such as oil platforms (Clare et al.
2020). Submarine geomorphology also has implications for finding and developing
hydrocarbons in places like the Congo and Angola Fans in the Atlantic off western
Africa (Anka et al. 2010), the delta of the Nile (Li et al 2021), and the South China
Sea (Wang et al. 2021a, b).

8 Extra-Terrestrial Geomorphology

Today, planetary geomorphology, thanks to the pioneeringwork of people likeGreely
and colleagues (Greeley and Iversen 1985), is a flourishing area of study (Baker 2008;
Diniega et al. 2021;Conway2022).Muchwork has been undertaken onMars.Among
themanyMartian phenomena for which analogs have been sought on Earth, are wind
scouring, yardangs and ventifacts, mass movements, flood deposits and alluvial fans,
dunes, sand ripples, saltation phenomena, wind streaks, haloclasty and split rocks,
chemical coatings on rocks groundwater-sapping features, relief inversion, coastal
sabkhas, and dust events (Bhardwaj et al. 2021). This has stimulated research on
a number of landforms and processes and has also led to research in a number of
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Earth’s drylands, including theNamib (Bourke andGoudie 2009), theWesternDesert
of Egypt (El-Baz and Maxwell 1982), Australia (Mann et al. 2004), the sandstone
terrains of Utah (Chan et al. 2011) and the Qaidam Basin of the Tibetan Plateau
(Xiao et al. 2017).

Titan is the largest of Saturn’s moons and following the Cassini mission, which
was launched in 1997 and remained active until 2017, we now know much more
about its characteristics. The images sent back have revealed a landscape that is
quite similar to that on Earth—except that the surface is composed of water ice, not
rock, and is sculpted by liquid methane, not water. It has some interesting landform
features (Lopes et al. 2020), including thousands of linear dunes (Radebaugh et al.
2010), and the largest cover of dune fields in our solar system (Bourke et al. 2010).
There are also some stubby drainage networks that may have been generated by
methane spring-sapping (Soderblom et al. 2007), tropical endorheic lakes (Tokano
2020), volcanic craters (Keane 2019), and alluvial fans (Birch et al. 2016).

9 Geomorphology and Earth System Science

In the 1980s, Earth System Science (ESS) evolved (see Steffen et al. 2006). It
concentrates on modeling, treats the Earth as an integrated system, and seeks a
more profound understanding of the physical, chemical, biological and human inter-
actions that determine the past, current, and future states of the Earth’s lithosphere,
hydrosphere (including the cryosphere), biosphere, and atmosphere. It emerged in
response to (i) the realization that biogeochemical systems operate globally and (ii)
an increasing appreciation that Earth is a single system. Dadson (2022) provides a
good survey of the role of ESS in geomorphology. Geomorphologists have created
Earth System Models (Paola et al. 2006; Fan et al. 2019). A prime illustration of
the way in which geomorphology contributes to Earth System Science is through
understanding the links between silicate weathering in different geomorphological
settings (e.g., island areas,mountains, glaciated terrains), the global carbon cycle, and
long-term climate changes (Dupré et al. 2003). Examples of the effects of geomor-
phological change on the Earth System relate to biogeochemical cycling (Viles et al.
2008; Quinton et al. 2010), and silica and carbon budgets (Zhang et al. 2017). Soil
erosion by wind may play a significant role in these (Webb et al. 2012; Chappell
et al. 2013), but so may water erosion from agricultural fields, and the burning and
subsidence of peat.

10 Global Change

In the 1970s, widespread employment of the term ‘Global Change’ emerged, as seen
in the development of the InternationalGeosphere-BiosphereProgramme:AStudy of
Global Change (1986). The significance of this for geomorphology is demonstrated
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in the works of Steffen et al. (2006) and Slaymaker et al. (2009). Global warming,
allied with the growth of more local human impacts on the environment, will have
major effects on future landscapes. Indeed, they are already doing so.

Climate change is only one of the drivers of landscape change, and it is impera-
tive that we weigh up the relative and/or combined impacts of global climate change
and local human impacts. At the regional scale, land cover changes (such as trop-
ical deforestation) may cause climate changes of comparable dimensions to those
predicted to arise from global warming (e.g., Deo et al. 2009). Changes in runoff and
sediment loads caused by land cover changes or dam construction may surpass those
caused by future changes in rainfall quantities (e.g., Xu et al. 2007). Loss of coastal
wetlands due to direct human action may be greater than those caused by sea-level
rise (Nicholls et al. 1999), and the changing incidence of landslides may owe more
to changes in human activity than to climate changes (Crozier 2010).

11 Global Warming

Global warming is one component of global change. Interest in this has developed
since the early 1980s and has progressively created considerable interest in its conse-
quences for a range of geomorphological phenomena (Goudie 1990, 2020) (Table 1).
Of great importance has been the search for areas that will be particularly sensitive
for four reasons: (i) their threshold reliance with respect to particular temperature,
precipitation, andvegetation cover conditions, (ii) the compounding effects of climate
change on other human actions, (iii) the presence of susceptible, fragile features and
(iv) the fact that they are present in zones where climate change will be specially
marked (e.g., higher latitudes and the margins of deserts).

Some phenomena that may as a consequence of these characteristics react very
substantially to future heating are valley glaciers (especially on tropical mountains),
permafrost features, floodplains, relict dune fields, low-lying coasts, areas exposed
to tropical storms and hurricanes, and snow-fed rivers (IPCC 2021). Some locations
will be subject to very rapid change because of the combined effects of climate
change and other anthropogenic pressures, as is the case with many of the world’s
great deltas (Tessler et al. 2018) and with American rivers (Wan et al. 2017). As
recent events in many parts of the world have shown, fire frequencies and severities
could change, which would in turn have potentially huge impacts on slope processes
(including mudflows) and surface runoff.

Moreover, most of the climatic models from 25 years ago have seemingly been
correct in the scenarios they presented. The magnitude of geomorphological changes
is becoming more evident by the day. Ongoing monitoring since the mid-1990s has
shown that many geomorphological environments are changing rapidly. Equally,
active layer thicknesses above permafrost have been increasing in many Arctic
regions.Moreover, theWorld GlacierMonitoring Service has suggested that globally
the average annual mass loss of glaciers between 1996 and 2005 was twice that of
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Table 1 Some
geomorphological
consequences of global
warming (modified from
Goudie and Viles 2016, Table
11.1)

Hydrological

Increased evapotranspiration loss leading to river flow
diminution, less soil cohesion, etc.
Overall increase in global precipitation leading to increased
flood activity
Increased percentage of precipitation as rainfall at expense of
winter snowfall leading to changes in river regimes
Increased precipitation as snowfall in very high latitudes
leading to changes in river regimes
Possible increased risk of cyclones (greater latitudinal spread,
frequency, and intensity)
Changes in the state of lakes, wetlands, and peatbogs
Less use of water by vegetation because of increased CO2
effect on stomatal closure

Vegetational Controls

Major changes in latitudinal extent of biomes—reduction in
boreal forest, increase in grassland and drylands, etc.
Major changes in altitudinal distribution of vegetation types
(i.e., 500 m for 3 °C)
Growth enhancement by CO2 fertilization
Changes due to increases in fire frequencies

Cryospheric

Permafrost decay, thermokarst, increased thickness of active
layer, instability of slopes, degradation of river banks and
shorelines
Changes in glacier and ice sheet rates of ablation and
accumulation: glacier retreat
Changes in glacier lakes and outburst floods
Removal of glacial buttresses from slopes, leading to slope
instability
Sea ice melting increasing wave attack conditions in Arctic
regions

Coastal

Inundation of low-lying areas by sea-level rise (including
wetlands, deltas, swamps, marshes, reefs, lagoons, etc.)
Increased storm surge activity associated with tropical storms,
hurricanes, etc.
Accelerated coast recession (particularly on sandy beaches)
Changes in rates of reef growth and coral bleaching
Spread of mangrove swamps into higher latitudes

Aeolian

Increased dust storm activity in areas of moisture deficit, but
reduced activity in areas of global stilling
Dune reactivation in areas of moisture deficit

Soil Erosion

Changes in response to changes in land use, fires, natural
vegetation cover, rainfall erosivity, etc.
Changes resulting from soil erodibility modification (e.g.,
sodium and organic contents)

(continued)
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Table 1 (continued) Subsidence

Desiccation of clays under conditions of increased summer
drought
Thermokarst as a result of permafrost melting

Weathering

Reduction in number of frosts
Salt weathering changes in response to groundwater levels and
temperature and humidity cycles

the previous decade (1986–1995) and over four times that from 1976–1985. Retreat
rates are unprecedented (Zemp et al. 2015).

Some selected studies from 2020/2021 are listed in Table 2. The list is not compre-
hensive but gives a taste of the huge increase in studies that have taken place in the

Table 2 Select studies of the
geomorphological effects of
global warming undertaken in
2020/2021

Phenomenon Source

Coastal erosion Masselink et al. (2020)

Coastal plain submergence Antinioli et al. (2020)

Coral bleaching Goreau and Hayes (2021)

Coral reefs—turbid situations Morgan et al. (2020)

Coral reefs—accreting situations Masselink et al. (2021)

Cryosphere melting Ding et al. (2020)

Fire-induced erosion Moran-Ordonez et al. (2020)

Glacial lake formation Shugar et al. (2020)

Glacier outburst floods Zheng et al. (2021)

Glacier retreat Sommer et al. (2020)

Ice cap retreat Wood et al. (2020)

Mangrove swamps Bozi et al. (2021)

Peat bog degradation Lin et al. (2021)

River floods Di Sante et al. 2021

Salt marshes Cahoon et al. (2021)

Sedimentary conditions East and Sankey (2020)

Siberian discharges Wang et al. (2021a, b)

Slope instability Savi et al. (2021)

Small island submergence Lin et al. (2020)

Soil erosion and desertification Ma et al. (2021)

Storm surges Chen et al. (2020)

Thermokarst Turetsky et al. (2020)

Wave attack Morim et al. (2021)
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twenty-first century. They demonstrate both the range and the importance of global
warming for geomorphological processes and forms.

The complexity of future changes in the environment creates severe problems
for prediction and modeling (Blum and Törnqvist 2000). As Bogaart et al. (2003)
pointed out, landscape response to climate change is (i) highly non-linear, and (ii)
characterized by numerous feedbacks between different variables and by lead-lag
phenomena. An example they cite is a precipitation increase in an initially semi-arid
area. This would initiate hillslope erosion and increased sediment transport capacity.
However, over time, soil and vegetation conditions would adjust to the new moisture
conditions, resulting in an improved soil structure and greater vegetation cover. As
a result, after a time lag, slope erosion and sediment yields might diminish.

Interest has also arisen in the role that global warming might play in accentu-
ating or triggering geohazards (McGuire 2010). For example, accelerated thawing
of submarine permafrost and the release of gas hydrates therefrom might promote
submarine slope failure within turn might lead to tsunamis (Day and Maslin 2010).
Equally, changes in the extent of ice sheets would modify the amount of loading on
Earth’s crust and so might have an influence on seismic and volcanic activity.

12 The Human Impact and the Anthropocene

Particularly over the last few centuries of the Anthropocene, and over the ‘Great
Acceleration’ since the 1950s (Steffen et al. 2010), humans have become major
agents of landscape change (Goudie and Viles 2016; Goudie 2018; Hudson et al.
2015), not least in Brazil (Junior et al. 2018) The Anthropocene concept has arisen
(Ellis 2018). This was introduced by Crutzen (2002) as a name for a new epoch
in Earth’s history—an epoch when human activities have ‘become so profound and
pervasive that they rival, or exceed the great forces of Nature in influencing the
functioning of the Earth System’ (Steffen 2010, p. 443).

Anthropogeomorphology studies both the nature of deliberate land-forming
processes (Szabo et al. 2010; da Luz and Rodrigues 2015), such as the creation of sea
defenses, artificial islands, embankments, levees, spoil heaps, agricultural terraces,
mines, quarries, canals and reservoirs, and the less deliberate changes in the operation
of processes. Deforestation, grazing, plowing, city growth, atmospheric pollution,
construction, and hydrologicalmanipulation, have awide range of impacts. Theymay
accelerate a number of hazards, including mass movements, ground subsidence, soil
erosion, rock weathering, and even seismic activity caused by fracking (Table 3).

Direct human interventions can have linked unforeseen and unwanted indirect
impacts on landscapes. For instance, there are many examples of attempts to reduce
coastal erosion which exacerbated it rather than solved it. Protecting one piece of
coast,which comprises a component of a natural sediment circulation system,without
realizing its larger setting, can lead to unanticipated knock-on effects elsewhere. For
example, groyne construction to stop beach erosion, by reducing sediment transport
downdrift can deplete beaches and lead to accelerated cliff retreat.
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Table 3 Some major
anthropogeomorphic
processes (based on Goudie
2018, Table 6.2)

Direct processes

Constructional

Tipping, molding, plowing, terracing, reclamation

Excavational

Digging, cutting, mining, blasting of cohesive or non-cohesive
materials
Trampling, churning

Hydrological

Flooding, damming, canal construction, dredging, channel
modification, draining, coastal protection

Indirect processes

Acceleration of erosion and sedimentation

Agricultural activity and clearance of vegetation
Engineering, especially road construction and urbanization
Modifications of hydrological regime by dams, etc.

Subsidence: collapse, settling

Mining (e.g., of coal and salt)
Hydraulic (e.g., groundwater and hydrocarbon pumping)
Thermokarst (melting of permafrost)
Draining and desiccation of organic soils

Slope failure: landslides, flows, accelerated creep

Loading by spoil, buildings etc.
Undercutting by road construction, etc.
Shaking
Lubrication by irrigation water, broken sewers, etc.

Seismic activity

Loading by reservoirs
Lubrication along fault planes
Fracking

Weathering

Acidification of precipitation by sulfate emissions
Accelerated salinization following changes in groundwater
levels
Lateritization following vegetation removal

Anthropogenicmodifications of erosion and sedimentation rates havebeen amajor
concern. Various studies (e.g., Hooke 1994; Douglas and Lawson 2001; Walling
2006) suggest that the amount ofmaterialmoved by humans is somewhat greater than
that moved by the world’s rivers to the oceans. As technology evolves, this ability
grows still further (Haff 2010). Furthermore, land-use changes, and in particular
developments in farming, have led to a leap in erosion rates (Wilkinson andMcElroy
2007). Conversely, Syvitski et al. (2005) calculated that sediment retention behind
dams has led to a reduction in the annual net flux of sediment reaching the world’s
coasts by around 1.4 billion tonnes, with a total of more than 100 billion tonnes



Introduction: Geomorphology at the Start of the Twenty-First … 13

being trapped within the last 50 years. Syvitski and Milliman (2007) estimated that
reservoirs behind dams now trap around 26% of the global sediment delivery to
the oceans. Data on increasing sediment accumulation rates in eastern USA are
presented in Rodriguez et al. (2020). Cooper et al. (2018, p. 222) argued that ‘the
annual direct anthropogenic contribution to the global production of sediment in
2015 was conservatively some 316 Gt (150 km3), a figure more than 24 times greater
than the sediment supplied annually by the world’s major rivers to the oceans.’

It is now appreciated that human impacts on geomorphology go back a long
way into prehistory (Braje 2015). Smith and Zeder (2013) argued that the Anthro-
pocene commenced around 10,000 years ago at the Holocene/Pleistocene boundary,
with the first domestication of plants and animals and the development of agricul-
ture and pastoralism. In antiquity, huge changes in land cover in Europe took place
(Kaplan et al. 2009), and there is increasing evidence to suggest that Bronze and Iron
Age valley fill resulted from accelerated slope erosion produced by the activities of
early farmers. Macklin et al. (2014) employed the term ‘Anthropocene Alluvium’
to describe human-generated floodplain sediments. Indeed, in recent years, studies
in Britain have shown the importance of changes in sedimentation rate caused by
humans at different times in the Holocene (e.g., Foster et al. 2009). In some parts of
the world, more landscape change may have been achieved in prehistoric times than
has been achieved by humans since. For example, in the circum-Mediterranean lands
and the Levant, huge tracts of land are characterized by terraces, check dams, rain-
water harvesting structures, and the like, while in Central America there are raised
fields, drainage channels, reservoirs, and other structures produced in what Beach
et al. (2015) described as the ‘Mayacene’.

13 Geomorphological Hazards

As Latrubesse (2009) and Alcántara-Ayala and Goudie (2010) have shown, geomor-
phologists have become more and more concerned with geomorphological hazards.
Although high magnitude, low frequency, catastrophic events, such as hurricanes or
earthquakes with their concomitant geomorphic hazards, gain attention because of
the casualties and financial losses they lead to, there aremanymore pervasive and less
spectacular changes that are also highly significant for the welfare and livelihoods of
human populations. These may have slower speeds of onset, longer durations, wider
spatial extents, and a higher frequency. Examples include weathering phenomena
(Goudie and Viles 1997), which can threaten a wide range of engineering structures
(Goudie and Viles 2010a, b), and soil erosion (Boardman and Poesen 2006), which
causes soil loss and the incision of adlands.

Geomorphological hazards are very diverse. Mass movements are onemajor cate-
gory (Crozier 2010). There is also a range of fluvial hazards, such as flooding and
changes in channels. In areaswith volcanic activity, disasters are caused by eruptions,
lava flows, ash falls, and lahars (Thouret 2010). In coastal regions inundation caused
by storm surges, rapid coastal erosion and siltation, dune encroachment, and sea-level
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rise are all significant (Walker and McCraw 2010). In glacial areas surging glaciers,
outwash floods, pro-glacial lake formation, and impedance of drainage are severe
hazards. Permafrost regions are hazardous because of ground heaving, thermokarst
development, slumping of slopes and banks, icings, etc. There is also a wide range
of ground subsidence hazards caused, inter alia, by solution of limestone, dolomites,
and evaporites (Gutierrez 2010), degradation of organic soils and peats, sediment
hydrocompaction, andmining of groundwater, brines, and hydrocarbons. In drylands,
wind erosion (Shao 2008), flash floods, deflation of susceptible surfaces, dust storm
generation (Goudie and Middleton 2006), and dune migration, pose hazards. Large
modern cities are not immune from these sorts of hazards (Garcia-Soriano et al.
2020), and urbanization may increase their incidence.

14 Applied Geomorphology

For many years, geomorphologists, collaborating with engineers and engineering
geologists (Fookes et al. 2005), have used their skills to mitigate problems facing
humanity, including hazards of the type mentioned above (Cooke and Doornkamp
1990; Hooke 2020). Indeed, applied geomorphology is a developing field (Keller
et al. 2020; Griffiths and Lee 2022).

Notable examples of recent work in this area include mapping geomorphological
phenomena for terrain evaluation (Smith et al. 2011); assessing the effects of river
restoration following dam removal (e.g., Foley et al. 2017; Wohl 2020); developing
means of forest management to control erosion (Phillips et al. 2018); managing of
coasts to reduce erosion (Lazarus et al. 2016); establishing the flood histories of rivers
in the Holocene by surveying and dating slack-water deposits laid down by earlier
floods (Harden et al. 2010); and management of the effects of water and sediment
control structures on river flows (Nichols et al. 2018).Geomorphologists are no longer
simply spectators of geomorphological change but have become active in promoting
it. Slope stabilization and river channelization, for example, clearly manifest the role
of engineering geomorphology in modifying the landscape. Recognition of negative
and persistent human impacts has encouraged research and applications in river
restoration, including large-scale dam removal (Wohl 2014).

15 Geoconservation and Education

Geomorphologists have taken an increasing interest in how they can make an impact
in terms of landscape conservation. There are major contributions that geomorpholo-
gists can make to landscape conservation and the preservation of Geodiversity (Gray
2013; Singh et al. 2021). The ‘Convention Concerning the Protection of the World
Cultural and Natural Heritage’ was adopted by UNESCO in November 1972, and
came into force in December 1975. This created a burgeoning interest in landscape
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conservation and interpretation. UNESCO has now established an annual Interna-
tional Geodiversity Day. It has also commissioned reports on the need to designate
areas of karst and caves (Williams 2008), volcanic landforms (Wood 2009), and
deserts (Goudie and Seely 2011). There are already a large number of essentially
geomorphological World Heritage Sites in the natural category, as well as some
cultural sites that may also have geomorphological value (https://whc.unesco.org/
en/list/) (accessed 22nd September 2021). Related to this is the establishment of
Geoparks and Geomorphosites (Joyce 2010; Santos et al. 2019). At present, there
are 169UNESCOGlobal Geoparks in 44 countries (https://en.unesco.org/global-geo
parks) (accessed 22nd September 2021). Individual countries, such as the USA, have
national parks andState Parks thatmay exist primarily because of their beautiful land-
forms. Geotourism is a developing field that shows the need for geomorphological
education and explanation (e.g., Wang et al. 2019). The series edited by Piotr Migoń,
WorldGeomorphological Landscapes (published bySpringer), is an immensely valu-
able source of information on geomorphological diversity and contains 25 volumes
(https://www.springer.com/series/10852) (accessed 22nd September 2021).

16 Conclusions

In the early twenty-first century, Geomorphology has become a discipline that is
both wide-ranging and speedily evolving. This is because of the development of a
wide spectrum of techniques, by the arising of the plate tectonics paradigm, by the
ability to explore both extra-terrestrial and submarine landscapes, by the continued
success of Quaternary studies, by an appreciation of the growing role of human
and biological activities, by its engagement with research on the newly developed
and controversial concept of the Anthropocene, by the application of the discipline
to solving and managing various issues of concern to humans, including hazards,
and geoconservation and stewardship of landscapes. However, geomorphology is
also engaged, though perhaps not yet sufficiently, with issues raised by both Earth
System Science, and by global environmental change associated with land cover
changes and with global warming.
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