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Abstract. The human vision system assiduously looks for exciting
regions in the real world, in images and videos, to reduce the search
effort for various tasks, such as object detection and recognition. A spa-
tial attention representation can divulge the exciting segments, blocks or
regions in such images. The Conners’ continuous performance test is a
visual assessment technique to evaluate the attention and the response
inhibition component of executive control to assess attention deficit
hyperactivity disorder (ADHD) and other neurological disorders. Artifi-
cial Intelligence and Machine Learning models are advancing ever more
complex, going from shallow to deep learning over time. Thus, we can
achieve higher accuracy and greater precision. However, this also tends
to make these models ‘black boxes’, reducing the comprehensibility of the
logic played out in the various predictions and outcomes. This raises an
obvious question - how do we understand the prediction suggested or rec-
ommended by these machine learning models so that we can place trust in
them? XAI attempts to make a trade-off between precision, accuracy and
interpretability to achieve this. This research work presents an Explain-
able Artificial Intelligence (XAI) model for a continuous performance
test, monitoring multisensor data and multimodal machine learning for
engagement analysis. The sensor data considered included body pose,
Electrocardiograph, eye gaze, interaction data and facial features via
accurate labelling of engagement or disengagement for cognitive atten-
tion of a Seek-X type task execution. We used decision trees and XAI
to visualize the multisensor multimodal data, which will help us assess
the model’s accuracy intuitively and provide us with the explainability
of engagement or disengagement for visual interactions.
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1 Introduction

In recent times, inclusive education has been a primary worldwide concern.
Researchers across the globe are working towards providing teachers, support
staff, and educators with tool-sets to support the assessment and education of
children with special educational needs (SEN) as a combined approach towards
inclusive education by guiding what pedagogical methodologies are most appro-
priate for each child depending on their needs. By improving the pedagogical
support for these students, they will have an increased chance of inclusion in
mainstream classrooms or success in special schools.

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that
affects communication and behaviour and can be diagnosed at any stage of life.
There is no cure for ASD, but following a diagnosis, early detection of dysregu-
lation events and early intervention may help to diffuse difficult situations in the
classroom or at home. With the increasing prevalence of ASD, early detection
and possible intervention have become an important challenge [28]. Recently, AI
and machine learning (ML) are playing an increasingly dominant role in ASD
detection, supporting co-curricular psychology studies. The work of [7,16,25,28]
used ML models, performed in silico experiments to simplify and assist the con-
ventional clinical experiments in an optimized way.

Besides the SEN students, recently research across the globe has focused
significantly on the ability of children with learning difficulties to recognize [6,33],
perceive [31,38] and interpret [22,37] emotional cues. So, research on attention
detection or recognition of the emotional state of SEN students are still very
open. Though ML is used in many cases to develop supportive tools for educators
and SEN students, research in this direction and achieving a higher performance
is still a challenge. In recent times, artificial intelligence and Machine Learning
models are advancing to be ever more complex, going from shallow to deep
learning over time. Precisely in this many ML algorithms has been proposed for
attention detection i.e. [4,11,34,36] they are considering unimodal data. Until
this date, very few machine learning-based methods which consider multiple
modalities have been developed for multimodal fusion tasks.

Identification of attention for an individual is challenging and involves mul-
tiple factors [8,48]. Using deep learning models, we can achieve higher accuracy
and greater precision. However, this also tends to make these models ‘black
boxes’, reducing the comprehensibility of the logic played out in the various pre-
dictions and outcomes. This raises an obvious question - how do we understand
the prediction suggested or recommended by these machine learning models so
that we can place trust in them? Explainable Artificial Intelligence (XAI) [5]
attempts to make a trade-off between precision, accuracy and interpretability
to achieve this. Here in this work, we presented an XAI ML approach with
multimodal data for attention detection.
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2 Literature Review

ML became one of the most integrated part in research domain and playing role
in many field from genomics analysis [18,39], image processing [15,17], text pro-
cessing [14,24], trust management [30], different prediction models [26,41], health
care [29,35] and to a growing list of many more. Even a newer research domain
well known as Multimodal Machine Learning (MML) is an emerging multi-
disciplinary research domain that enhances the original goals of ML inspired AI
by combining multiple complementary and communicative modalities, including
vision, text, image, and many more [32].

MML models deal with heterogeneous types of data which bring added chal-
lenges to cope with the different modalities, extract data and develop knowledge
from it. The process comprises the separate stages of representation, transla-
tion, alignment, fusion and co-learning, which is in itself a complex research
area. Representation is the study of how to represent and summarise multimodal
data which could be complementary or redundant between multiple modalities.
The translation is the stage where acquired data is mapped from one modal-
ity to another. Due to the heterogeneity of data, this relationship between the
modalities is a significant challenge. Alignment is the identification of the rela-
tions between multiple modalities. The next step is fusion, where information
is joined from multiple modalities to make a prediction, classification or rec-
ommendations. Finally, co-learning is the stage where knowledge is transferred
between modalities, their representation, and their predictive models [3].

To support practice in academia and various special needs social settings,
the demand of AI embedded in non-autonomous systems is gaining interest for
human cognition and enhancing learners, support staff and teachers’ capabilities.
This differs significantly from approaches that aim to create fully automated AI
systems. MML and its analytics aim to create AI through externalisation and
replicating human cognition and design artefacts closely linked with humans to
increase their cognitive abilities and improve their overall capabilities [9,10,13].

In a research Hilbert at. el. 2017 used machine learning on multimodal biobe-
havioral data to classify subjects according to the presence of a generalised anxi-
ety disorder (GAD) from mental disorder (MD) from cortisol data, clinical ques-
tionnaire data and structural MRI data using MML [21]. In another study [47]

Fig. 1. The figure shows a Seek-X quiz. Where for a given cue, we need to find the
correct answer out of the wrong one. During an experimental setup, the participants
were asked to find or seek the target object from different non-target objects acting as
a matrix of noise.
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used MML for automated international classification of diseases (ICD) coding,
where the ICD coding was adopted widely by physicians and other health care
workers. Another study by [45] used MML for automatic behaviour analysis to
augment clinical resources in diagnosing and treating patients with mental health
disorders. In a more recent study, [46] used a multimodal AI-based framework
to monitor individual’s working behaviour and stress levels. Identification of this
behaviour and stress levels can be achieved with higher precision by fusing mul-
tiple modalities obtained from an individual’s behavioural patterns. They used
a methodology to determine stress due to workload by integrating heteroge-
neous sensor data streams, including heart rate, posture, facial expressions and
computer interaction.

Early identification can notably improve the prognosis of children with ASD.
Yet, existing identification models are expensive, time consuming, and mostly
depend on the manual judgment of experts [12,43]. A multimodal framework
that can fuse data on a child’s eye movement and facial expression can help iden-
tify children with ASD and improve identification efficiency and explainability.
Various ML models, used data types and modalities and their performance for
attention detection have been summarized in Table 1.

Table 1. Various ML model, used data type and modality for attention detection.

Ref Data type ML model Accuracy Modality

[4] EEG, ECG, HF DWT, SVM HF 59.64%, EEG 86.86% Unimodal

[34] EEG (3 states) SVM 71.6% to 84.8% Unimodal

[36] EEG SVM 93.33 ± 8.16 Unimodal

[1] EEG-based passive BCI SVM (Avg.) 91.72% Unimodal

[11] Eyeball movement LR, MLP, SVM, DT LR 96% Unimodal

[20] EEG, GSR, ECG, GR, RF, SVM Combined 64% Multimodal

[27] Facial expression, Eye gaze Multimodal

[19] Text and Image RNN Multimodal

3 Methodology and Data Sets

3.1 Data Collection

A child’s level of attention can be assessed using mobile devices in a non-intrusive
manner. We can observe and record their body posture, facial expression, eye
gaze, brain activity (EEG), thermal data, and gesture recognition as forms of
data. These data can be collected via different sensors, sometimes wearable and
sometimes wirelessly connected. So, a mobile device on which the child is play-
ing a game can be used for a continuous performance test (CPT). The platform
tracked students’ engagement, performance and attention with a range of sen-
sors. Head tracking and hand tracking from a RealSense camera combined with
head tracking data from a Tobii 4C sensor were used. Body positioning was
tracked from the combined posture tracking and gesture tracking data from the
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Fig. 2. The figure on the left shows the cartoon of target images that were used in a
‘Where’s Wally’ game. The challenge was to spot Wally in a seek-X type game. The
figure on the right shows the multimodal fusion of data obtained from different sensors
and their labelling. A detailed explanation is available in [8]

mobile device’s motion sensors. The RealSense camera and the Tobii 4C sensor
monitored facial features and eye gaze. A Muse headband (in a child-friendly
design) was connected wirelessly over Bluetooth and streamed brain activity
data. Figure 2 on the left shows the cartoon of target images that have been used
to find- ‘Where’s Wally’ game. Where the challenges to spot Wally, a specified
character, a seek-X type games. The figure on the right shows the multimodal
fusion of multimodal data obtained from different sensors and their labelling.
There were 2615 samples obtained from 59 sessions where 4 participants were
involved. An in-detail explanation is available in [8]. Figure 3 shows the basic
multimodal data flow evaluation technique. Participants were instructed to find
Wally in the seek-X type game. As a part of the CPT experiment, different sen-
sors were collecting multimodal data, such as eye-tracking, facial expression and
others. After the labelling of data as by [8], we used our XAI model for attention
detection. A detailed explanation of the experimental setup is available at [8].

‘Engagement is the single best predictor of learning in students with learning
disabilities’- [23]. In the Swanson’s CPT [44] experiment the participant needs
to pay continuous attention to a display screen on an interactive way. Where
a game provides them with a pre-defined signal detection challenge. We will
say this CPT ‘Seek-X type’ game as [8] to label multi-sensor data. During the
experiment, the participants were asked to find the predefined target object from
other non-target objects acting as a matrix of noise like a ‘Where’s Wally’ game.
The challenge is to spot Wally, from a grid displayed on the screen. The size
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Fig. 3. The figure shows the basic data flow diagram. Participants were instructed
to find Wally in the seek-X type game. As part of the CPT experiment, different
sensors collected multimodal data like eye tracking, facial expression, and others. After
labelling data as by [8], we used our XAI model for attention detection.

of the grids of characters in which to spot Wally in a crowd of characters can
be varied. The CPT outcome measures and labels these multimodal data (facial
expression, eye gaze, body posture) into high and low attention regions. This
provides the labels by which we can assess engagement in the live system.

At the data level, information is highly abstract and the main focus of data
fusion is noise reduction and compression. At this level, raw data is processed.
Data fusion provides an opportunity for data reduction through data correlations
and redundancies. At the feature level, the data has already been processed and
the features have been extracted. The fusion is applied to the features themselves
rather than the raw data. At the decision level, the data is highly semantic and
clear temporal behaviours can be seen in the data. A further detailed explanation
of the data prepossessing and fusion is available at [8]. Data frames from these
three levels of abstraction with their corresponding CPT attention level labels
are used as input into the machine learning layer.

3.2 Decision Tree

The decision tree, a machine learning model, is commonly used in ML, data
science and related domains to construct classification tasks based on multiple
features or for building prediction algorithms given target variables. If a data
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Fig. 4. The figure shows a decision tree where at the root node (layer 1) contains
all the instances in a mixed orm. Then it splits into two determinations by predictor
variable which is also known as a splitting variable that splits between the left child
node and the right child node. For a splitting variable, the split criterion depends on
some scoring like the Gini Index or Entropy.

set has a mixture of continuous, categorical, and binary types, we can use a
decision tree algorithm for better prediction. The decision tree asks yes/no type-
specific questions and take decisions. This model classifies a given population into
branch-like segments constructing an upside-down tree having multiple levels or
heights with the root node on the top level, internal nodes in between levels, and
leaf nodes at the bottom. This ML algorithm is a non-parametric model where
no parameter tuning is required at the prior stage and can efficiently deal with a
large volume of data. The mathematical formulation is also simple and does not
impose a complicated parametric structure. Two branches from a parent node
are constructed based on the similarity of the data for a given feature, where
impurities are calculated by entropy or Gini index. Figure 4 shows a decision
tree. During the development of ML models, the data can be divided into two
categories. The first segment is the training set, and the second segment is the
testing set. A 75% and 25% or 80% and 20% train and test dataset split is a good
choice. Yet, k-fold cross-validation is also widely used in the research community
for decision trees. However, to leave one out could be a poor choice if the data
size is huge. We use the training data set to construct a decision tree and the
test dataset to evaluate its performance to construct the final optimal model
[40,42]. We can calculate the accuracy of decision tree algorithm prediction by
Eq. 1 where TP indicates the true positive, FP indicates the false positive, TN
indicates the true negative, and FN indicates the false negative

Accuracy =
TP + TN

TP + FP + TN + FN
. (1)
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3.3 Gini Index for Decistion Tree

Impurities in a decision tree are calculated by the Gini Index (GI), which is
also known as Gini impurity. When selected randomly, for a specific feature, GI
calculates the probability of that classified incorrectly. If in a single class all the
elements or samples are linked with or similar type then this class can be termed
as pure. GI varies in the range between 0 and 1, where 0 expresses a pure class
obtained from a classification, such that all the elements belong to a specific class,
whereas a GI score of 1 indicates an absolute impure or distribution of elements
came from a random nature. The GI value is somewhat at the middle shows a
nearly equal distribution of samples or elements over some classes. During the
modelling phase of the decision tree, the feature providing the least GI value is
preferred. The GI can be calculated by Eq. 2 which is determined by calculating
the sum of squared probabilities of every classes from one. Mathematically-

GI = 1 −
n∑

i=1

(Pi)
2 (2)

where Pi represents the probability of a sample being classified for a distinct
class.

4 Result Analysis

From the figure we can see that the root node starts with 9639 samples of each
of the two classes, with a Gini Index. This is a categorical tree where a lower GI
represents a better split. Figure 5 and Fig. 6 shows the full splitting mechanism to
spilt the data and to measure the decision taking process of attention detection.
However, due to the number of levels of the tree, it might not be readable yet a
higher resolution image explains the full scenario. To get a better understanding
we pruned the number of layers in Fig. 7 just considering four levels. The figure
shown in the root node, eye dwelling is the feature that best split the attention
and non-attention classes of the data, using as a threshold a value of 22.859.

Fig. 5. The figure shows the decision tree for CPT of attention detection from mul-
timodal multi-sensor data up to layer 6. This is an explainable approach and we can
easily explain the process of decision making. Due to the size of the tree and the given
size of the page, the outcome isn’t readable. Yet, a better resolution picture will be
easily readable.
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Fig. 6. The figure shows the decision tree for CPT of attention detection from multi-
modal multi-sensor data up to layer 4. This is an explainable approach, and we can
easily explain the process of decision making.

Fig. 7. To get better visualization, we pruned the number of layers in this figure. From
the figure we can see that in the root node eye dwelling is the feature that best split the
attention and non-attention classes of the data, using as a threshold a value of 22.859.
The GI score here is 0.259. From the root node, we get two classes. At level 1, in the
left node, we got 4906 samples and in the right node, we got 4733. For the left node
of level 1, the threshold value of eye dwelling is 19.767 which splits 4908 samples to
further two classes with 640 (left) and 4266 (right) samples with a GI score of 0.227.
In the 3rd node of level 2, we can see that the GI score is 0.454, which means both
attentive and non-attentive classes are grouped together here.

The GI score here is 0.259 which is not a pure class there are similarities in the
chosen class but some impurities are also there. From the root node (let’s say
level 0) we get two classes. At level 1, in the left node, we got 4906 samples and
in the right node, we got 4733. For the left node of level 1, the threshold value
of eye dwelling is 19.767 which splits 4908 samples to further two classes with
640 (left) and 4266 (right) samples with a GI score of 0.227. In the 3rd node of
level 2, we can see that the GI score is 0.454, which means both attentive and
non-attentive classes are grouped together here. In all of these nodes, all the
other features of the data (eye blink, squint, eye gaze inward and outward, facial



Explainable MML for Engagement Analysis 395

Fig. 8. The figure on the left shows the accuracy for attention detection using an XAI
model decision tree for individual modalities. Here we considered eye blink, squint, eye
gaze inward and outward, facial feature smile, frown, head tilt and ppi as a unimodal
feature. Where the figure on the right shows the comparative performance of our XAI
model with different existing ML approaches. The performance of our model is not
the best but it did come from an explainable approach. However, as they worked on
different dataset the results may also vary as mentioned by [2]

feature smile, frown, head tilt and ppi) were evaluated and had their resulting
GI was calculated, however, the decision tree shows that feature that gave us
the best results in terms of GI score is eye dwelling.

Figure 8 shows the cooperative performance.In this figure, the left bar graph
shows the accuracy for attention detection using our XAI model decision tree
for individual modalities. Here the performance for attention detection is shown
considering only eye blink, squint, eye gaze inward and outward, facial feature
smile, frown, head tilt and ppi as a unimodal feature. Where the right sidebar
graph of Fig. 8 shows the comparative performance of our XAI model with dif-
ferent existing ML approaches. The performance of our model is not the best
but it did come from an explainable ML algorithm decision tree.

5 Conclusion

In this research work, we presented decision trees from an XAI model for a
continuous performance test obtained by monitoring multi-sensor data and mul-
timodal machine learning, for engagement analysis. We considered body pose,
eye gaze, interaction data and facial features by objective labelling of engage-
ment or disengagement for cognitive attention of a Seek-X type task execution.
We used decision trees, an XAI algorithm, to visualize the decision process of
multi-sensor multimodal data, which will help us assess the accuracy of the model
intuitively and provide us with the explainability of engagement or disengage-
ment for visual interactions. The accuracy of the model does not give the best
possible results, but helps decision making - and it is important that this model
is more explainable than the black box-like algorithms of machine learning. As
engagement is the single best predictor of learning in students with learning
disabilities, we believe, an explainable model for engagement analysis will help
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to develop a tool useful in inclusive education by assisting teachers, supporting
staff and educators with the assessment of children with SEN.
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