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Abstract. Automated and human-driven vehicles will coexist for a long
time. It would be helpful to improve user experience of automated vehi-
cles by considering drivers’ psychological model of hazard perception.
This work attempts to build a hazard perception model of a typical traffic
scenario for automated driving systems. Seventeen drivers were recruited
as participants for the driving simulation experiment to investigate the
effects of different road conditions on drivers’ subjective assessment of
danger level and risk acceptance. A nonlinear regression model of hazard
perception was built based on the experimental results. A case study has
shown that the model can effectively reflect the quantitative relationship
between drivers’ perceived danger level and the relevant road conditions.
It will provide theoretical basis for the development of future automated
driving systems for users with different risk preferences.
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1 Introduction

With the development of technologies such as the Internet of Things (IoT), artifi-
cial intelligence, and computer vision, the research and application of automated
vehicle technologies has developed rapidly in recent years. The United States,
Japan, and Germany have gradually started legislation to regulate road testing
of automated vehicles since 2016, and China also issued a management regula-
tion for road testing of automated vehicles in 2018 [1]. It is believed that more
and more human-driven vehicles will be replaced by automated vehicles in the
near future.

An automated driving system can perceive the surroundings of the vehicle
from various sensors, and control the steering and speed of the vehicle according
to the road, vehicle position and obstacle information, so that the vehicle can
drive on the road safely and reliably [1]. The research work in the field of auto-
mated driving mainly focuses on engineering issues such as the path planning
method for obstacle avoidance [2], the traffic logic at intersections for automated
vehicles [3], and the vehicle control model [4]. Such models or algorithms usually
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take traffic efficiency, cost, and safety as the optimization goals, and rarely con-
sider the psychological needs of drivers and passengers. For example, there are
two vehicles passing through an intersection at the same time. The automated
driving system can make the vehicles pass through the intersection quickly and
safely by calculating the vehicle driving data and applying coordination strate-
gies. With automation in L4 or L5, vehicles are assumed to drive safely and
independently, and thus the mental demand from human driver decreases signif-
icantly [5]. However, passenger’ perception of danger should not be ignored. In
other words, the road conditions deemed safe by the automated driving system
may not necessarily be safe for the driver and passengers. Moreover, there are
large differences in the perception of safety among different individuals. Although
there have been significant advances in fully autonomous driving in recent years,
it has not achieved the large-scale commercial applications due to a wide range
of limitations such as social dilemma, high costs and public trust [6]. Human-
driven vehicles will coexist with automated vehicles for a long time before being
completely replaced. The solutions designed for fully automated driving scenar-
ios are likely not suitable for the transition period [7]. Therefore, it is crucial
for the development of automated driving to consider drivers’ and passengers’
psychological factors in system solutions at present and for a long time in the
future.

Driving simulation is an effective method to carry out experimental research
on traffic safety, with which various hazard scenarios can be created in vir-
tual environments [8,9]. Participants’ safety is guaranteed in driving simulation
experiments. This study investigated drivers’ behaviors and subjective assess-
ment of danger level and risk acceptance under given traffic conditions. A haz-
ard perception model was built based on the experimental results. The results
and findings of this study will help to improve the driving behavior of auto-
mated vehicles, so that they will meet the safety expectations of their drivers
and passengers as well as other road users.

2 Method

2.1 Participants

Seventeen participants were recruited for the experiment. All participants have
(corrected to) normal vision. Those with vision correction needed to wear opti-
cal lenses during the experiment. Two participants quit the experiment due to
virtual reality (VR) sickness, and 15 participants (10 males and 5 females, 22-27
years of age) completed the experiment.

2.2 Apparatus

The driving simulation application was developed based on Unity 3D and
Steam VR. The virtual environment was rendered by Dell Precision 7820
Tower workstation (Intel Xeon Silver 4110, NVIDIA Quadro P4000). HTC Vive
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(2160 x 1200@90 Hz) HMD was used for VR display. Betop steering wheel and
pedals (BTP-3189K) were used as input devices. The virtual scene was a 1-
km urban road with buildings and transportation facilities. The subject vehicle
was on a two-way four-lane road with a lane width of 3.75m, and there was an
intersection 700 m ahead. Participants sat in the driver’s seat to observe the road
conditions in the virtual environment. The driving simulation system can provide
sound effects, such as engine sound and ambient sound through earphone. Steer-
ing wheel, brake pedal and gas pedal can be used for driving control. Figure 1
shows the participant practicing the virtual driving operation.

Fig. 1. Experiment setting.

2.3 Scenarios

In order to fully understand different types of road traffic hazards and their
mechanisms, a total of 208 collision video clips were collected from video websites
including traffic surveillance videos and driving recorder videos. After screening
and classifying the collision videos, a hazard scenario library consisting of 20
categories was obtained finally. A typical traffic scenario was chosen for experi-
mental study, in which the subject vehicle is approaching to an intersection while
the opposite vehicle is about to turn left through the intersection. As shown in
Fig. 2, the white car is the subject vehicle and the traffic light is green, and the
black car is in the opposite inner lane with the left turn signal flashing.

2.4 Experimental Design

This study investigated drivers’ behavior and hazard perception in a specific
traffic scenario. In vehicle collision accidents, the driving speed and the distance
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Fig. 2. Traffic scenario of the experiment. (Color figure online)

are two key factors, so speed of subject vehicle (SSV), speed of opposite vehicle
(SOV), and travel distance between two vehicles when either one reached the
intersection point (distance to collision) were selected as independent variables
(Table 1). Both SSV and SOV had two levels, low speed and high speed. Consid-
ering the speed limit of urban roads and the speed limit of passing intersections
required by the Road Safety Law of China, the low speed was set to 30km/h,
and the high speed was set to 60km/h. As shown in Fig. 3, O is the intersection
of the extension lines of the two vehicles’ travel trajectories. There are three
cases in the sequence of the two cars arriving at point O: the subject vehicle
arrives at the intersection first, the two vehicles arrive at the same time, and the
opposite vehicle arrives first.

In order to understand the relationship between hazard perception and dis-
tance to collision more accurately, it was subdivided. For the case of the subject
vehicle arriving at O first, there must be a certain point A on the driving trajec-
tory of the opposite vehicle, so that when the subject vehicle reaches O and the
opposite vehicle has not yet reached A, the subject thinks that it is safe to pass
through the intersection, while when the opposite vehicle has reached A, the sub-
ject thinks that it is dangerous. The driving distance from A to O is called the
psychological safety distance. Due to individual differences in hazard perception,
the psychological safety distance was determined through a pilot test including
5 participants. The participants drove straight through the intersection at a con-
stant speed in the virtual environment and met with opposite vehicle turning
into the intersection. Different safety distances were set for each test to allow
the subjects to conduct safety assessments. Considering the influence of driv-
ing speed on hazard perception, low-speed and high-speed test conditions were
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used for both the subject vehicle and the opposite vehicle. The average value
of the test results of the 5 participants was finally obtained, and the psycholog-
ical safety distance AO was 14.73m. The driving distance of AO was divided
into 3 sections evenly, and the distances from B and C' to O were obtained as
9.82m and 4.91 m respectively (Fig. 3). Following the same way, the psychologi-
cal safety distance GO was 21.00 m for the case of the opposite vehicle arriving
at O first. The driving distance of the GO was divided into 4 sections evenly, and
the distances from D, E, F to O were obtained as 5.25m, 10.50 m, and 15.75m
respectively (Fig. 3).

Finally, the independent variable distance to collision had eight levels, namely
the three positions A, B, C for the opposite vehicle, the four positions D, E,
F, G for the subject vehicle and the intersection point O for the two vehicles
arriving at the same time. A 2 SSVs x 2 SOVs x 8 distances within-group
experimental design was adopted in this experiment. The order of the SSV and
SOV conditions was counter-balanced and the order of the distance conditions
was randomized to minimize the influence of the experimental sequence on the
test results.
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Fig. 3. Eight vehicle positions when the other one arriving at the intersection point.
A, B, C is for the opposite vehicle and D, E, F, G is for the subject vehicle.

2.5 Procedure

The driving simulation experiment included two parts: warm-up practice and
formal experimental test. The participants were briefed on the research objec-
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Table 1. Independent variables.

Independent variables Levels

Speed of subject vehicle (SSV) | Low: 30km/h; High: 60 km/h
Speed of opposite vehicle (SOV) | Low: 30 km/h; High: 60 km/h
Distance to collision A B,C,0, D, E, F,G (Fig.3)

tives and precautions. Afterwards, they provided their consent to the experi-
menter. The experimenter helped the myopic participants choose and install the
optical lenses, and then the participants wore the HMD with the assistance of
the experimenter. The interpupillary distance of the HMD was also adjusted
for each participant if necessary. It was ensured that each participant wore the
HDM comfortably and can see the virtual environment clearly.

All participants were asked to take a warm-up practice for at least 3 min
before the formal experimental test. They can use the steering wheel, accelera-
tor pedal and brake pedal to control the vehicle to drive in the virtual environ-
ment. They were required to experience visual and auditory feedback at different
driving speeds through acceleration and deceleration operations. The warm-up
practice can help participants become familiar with the virtual environment and
the handling characteristics of the driving simulation system.

For each trial of the formal experimental test, the subject vehicle was driv-
ing at a predetermined speed approaching to the intersection while the opposite
vehicle was about to turn left through the intersection. The subject vehicle can
maintain the constant speed and direction, so the participant did not need any
operation until he/she had to avoid a dangerous situation. The participant was
asked to complete an assessment questionnaire regarding the scenario just expe-
rienced after each trial. In order to avoid the inconvenience caused by wearing
the HMD repeatedly, the questionnaire was displayed in the virtual environment
directly after the driving simulation test, and the participant simply said the rat-
ing option for each question, which was then recorded by the experimenter. One
trial was performed under each test condition, and each participant need to
complete 2 SSVs x 2 SOVs x 8 distances = 32 trials totally. The whole experi-
ment took around an hour, with a break of five minutes every eight trials. Each
participant received 50 Chinese yuan as a reward.

3 Results

3.1 Time to Intersection

In order to study the driving behavior of the subject vehicle when the oppo-
site vehicle turned left through the intersection at different speeds and different
timings, the experimental results were analyzed in three cases: the subject vehi-
cle arrived at the intersection first, the two vehicles arrived at the same time,
and the opposite vehicle arrived first. For the first case (A, B, C in Fig. 3), the



Study of the Hazard Perception Model for Automated Driving Systems 441

time when the participant braked was recorded. The average time to reach the
intersection was calculated for the two conditions of SSV and the two conditions
of SOV correspondingly. As shown in Fig. 4(a), when the subject vehicle passed
through the intersection at low speed, the participants reserved longer response
time, and when the speed of the opposite vehicle was higher, the participants
tended to reserve a longer response time as well. Figure 4(b) shows the result of
the two vehicles arriving at the same time. The difference from the first case is
that the subject vehicle would take hazard avoidance actions in advance when
it passed through the intersection at high speed and found the opposite vehicle
turning left slowly. The average time to reach the intersection is about 1.0s.
While for the last case, the subject vehicle tended to take hazard avoidance
actions earlier than the first two cases when passing at low speed. If the subject
vehicle was passing at high speed and encountered a high-speed vehicle turning
left, the actions would be taken later (0.9s) as shown in Fig. 4(c).

3.2 Danger Level Assessment

The danger level for each test scenario was rated on a 7-point Likert scale, with 1
to 7 representing from not at all dangerous to extremely dangerous. The results
are shown in Table2. Figure5 shows the relationship between the perceived
danger level and distance to collision when the subject vehicle and the opposite
vehicle were driving at different speeds. The perceived danger level increased
as the distance to collision decreased in general, no matter the subject vehicle
passed first or the left-turning vehicle passed first. However, it is likely to be
biased due to the influence of traffic rules. The subjective assessment of the
danger level tended to be lower when participants were observing traffic rules,
while it tended to be higher when the danger was caused by violating traffic
rules by themselves.

When the speed difference between the two vehicles was large and they main-
tained a relatively large distance, the danger level perceived by the driver of the
subject vehicle was low and did not change significantly with the distance, such
as A, B, C under L/H speed condition and E, F'; G under H/L speed condition.
When comparing the left and right sides of point O of each curve, it is found that
the left part is concave downward except for H/L. That means in the case where
the subject vehicle passed first, the perceived danger level decreased rapidly with
the increase of the distance to collision as long as no collisions occurred. The
above psychological perception of danger is likely to be caused by the traffic rules
for left-turning vehicles to yield to straight vehicles. The post-experiment inter-
views also confirmed this. The reason for the shape difference between H/L and
other speed conditions on the left is probably due to the influence of violating the
speed limit at an intersection. The right part of curve H/L is concave and lower
than most of other speed conditions, which is determined by the participants’
high controllability of the dangerous situation. Since the opposite vehicle turned
through the intersection at low speed and the subject vehicle was driving at high
speed, collision can be avoided by slowing down. Based on the observation of the
highest danger level area as shown in the dotted circle in Fig. 5, there are two
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types of situations in which participants perceive a higher risk except for the
situation where the two vehicles arrived at the same time and collided. The first
case is that the subject vehicle passed first at high speed, and the left-turning
vehicle passed at low speed. The second case is that the subject vehicle passed
behind, and it was at low speed or both vehicles were at high speed.

Table 2. The results of danger level assessment.

SSV/SOV A B C O |D E F G
H/H M |2.13]2.53|3.93|6.67|6.00|4.73|3.73 | 2.80
SD|1.25|1.36|1.580.49|1.001.49|1.79|1.70
L/H M |1.67|1.33/1.93|5.80|5.33|4.13|3.00|2.07
SD|1.11]0.62|1.22|1.21|1.35|1.25|1.69|1.44
H/L M |2.53|2.87|5.47|6.47|4.07|2.67|2.33|2.13
SD|1.68|1.81|1.51|0.74|1.53|1.35|1.54 | 1.46
L/L M |1.80|2.40|4.20|6.07 |5.60|3.20 | 2.33 | 1.60
SD|1.01|1.50|1.78{1.28 | 1.18|1.37|1.54|0.83

—o—H/H —-&-L/H H/L L/L

H: High speed, L: Low speed, Subject vehicle/Opposite vehicle

N w w o)) ~
T

Perceived danger level

A B C (0] D E F G
Vehicle position

Fig. 5. The relationship between perceived danger level and distance to collision under
different speed conditions.

3.3 Risk Acceptance

The risk acceptance for each test scenario was rated on a 7-point Likert scale,
with 1 to 7 representing from totally unacceptable to perfectly acceptable. The
results are shown in Table 3. Figure 6 shows the relationship between the risk
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acceptance and distance to collision when the subject vehicle and the opposite
vehicle were driving at different speeds. It was found that risk acceptance and
perceived danger level were roughly negatively correlated when comparing the
corresponding curves in Fig. 6 and Fig. 5. That means drivers were less receptive
to scenarios that feel dangerous and more receptive to scenarios that feel safe,
which is consistent with common sense. However, there are exceptions as shown
in Fig.6. For example, D is the lowest point of curve L/H, which means that
although the left-turning vehicle could pass the intersection at high speed before
the subject vehicle, the small safe distance caused extreme discomfort to the
subject vehicle. In addition, the risk acceptance changes of H/H and L/H at
G were inconsistent with the danger level assessment, indicating the subject
vehicle’s low acceptance of the left-turning vehicle’s behavior of rushing through
the intersection at high speed.

Table 3. The results of risk acceptance assessment.

SSV/SOV A B C O |D E F G
H/H M |6.00|5.80|4.27|1.53 |2.27|3.53 | 4.60 | 4.20
SD|1.00|1.32/1.79/0.83|1.58 1.92 |1.72|2.08
L/H M |6.53|6.60|6.07|3.00|2.40 | 4.60 | 5.80 | 6.00
SD |0.74]0.63|1.16 | 1.89|1.18 | 1.64 | 1.08 | 1.36
H/L M |5.73]4.80|3.00|1.80|4.47|5.80|6.20 | 6.33
SD |1.10{1.97|1.89|1.57|1.36 | 1.21 | 0.86 | 0.82
L/L M |6.20|5.73|3.60|2.27 | 2.87|4.87 |5.73 | 6.33
SD|1.26|1.33|1.76|1.22|1.55|1.64|1.28|0.72

——H/H --&--L/H H/L L/L

H: High speed, L: Low speed, Subject vehicle/Opposite vehicle

Risk acceptance

o B N W A~ U O N
T

Vehicle position

Fig. 6. The relationship between risk acceptance and distance to collision under dif-
ferent speed conditions.
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4 Hazard Perception Model

4.1 Model Building

A hazard perception model for this traffic scenario was built to enable the experi-
mental results to be applied in vehicle control of automated driving systems. Two
cases were considered according to the order in which the two vehicles passed
through the intersection: Case 1, the opposite vehicle passed first; Case 2, the
subject vehicle passed first. For the first case, it was observed that the perceived
danger level decreased with the increasing distance to collision (see Fig.5, O to
@G). In addition, the perceived danger level should be zero when the distance is
far enough according to common sense. Based on the observation and analysis
of the danger level curves, the relationship between danger level and distance
roughly conforms to the asymptotic regression model. The degree of curvature
is mainly affected by SOV. Therefore, the model is represented as

d
r=p + Bae® (1)

where r is the perceived danger level; d; is the distance between the two vehicles
when the opposite vehicle is arriving at the intersection; and vy is the SOV. The
experimental data of r were normalized before nonlinear regression analysis was
performed. The parameter estimates, 51 = 0.117, S = 0.801 and 33 = —2.66,
were obtained (R? = 0.910). The model expression for Case 1 is

d
r=0.117 + 0.801e =250 (2)

For the case of the subject vehicle passing first, the shape of the left part of
the curve is similar to the right side. The curves H/H and L/L are very close.
Based on the observation of the other two curves, the regression model expression
for Case 2 is

r =P+ Bae™ =l (3)
where 7 is the perceived danger level; ds is the distance between the two vehicles
when the subject vehicle is arriving at the intersection; vy is the SOV; and v is
the SSV. The initial parameter estimates of nonlinear regression analysis were
B1 =0.193, B2 = 0.712 and B3 = —0.158. The model was corrected considering
the consistency of the two cases. The r values of the two equations should be
the same when d; = d2 = 0. The regression model for Case 2 is represented as
the following equation after correction (R? = 0.951).

vy d
r = 0.193 4 0.725¢ 2101727 (4)

4.2 Model Application

The above model can reflect drivers’ subjective perception of danger under dif-
ferent road conditions in that traffic scenario. Using this model in automated
driving can help the vehicle control system to better understand the driver and
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passengers’ psychological feelings of the hazard scenario, so that the automated
driving behavior can not only meet the road safety needs, but also meet the users’
psychological safety needs. In addition, it can also be customized according to
different risk preferences of users. For example, an automated vehicle is going
straight through the intersection at a speed of 30 km/h and meets an oncoming
vehicle that is about to turn left at the intersection at a speed of 45km/h. At
this moment, the automated vehicle can determine the relationship between the
perceived danger level and the relative position of the two vehicles based on the
hazard perception model as shown in Fig. 7. The driving speed can be adjusted
by comparing the perceived danger level with the user’s risk preference. The
customized automated driving system will be able to meet the psychological
safety expectations of a specific user. This feature is particularly important in
road traffic environments where automated vehicles and human-driven vehicles
coexist, and can help improve the user experience of automated vehicles.
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Fig. 7. The application of hazard perception model for the given traffic scenario. OV
is short for opposite vehicle and SV is short for subject vehicle.

5 Conclusion

It is crucial to improve user experience of automated vehicles by considering
drivers’ psychological model of hazard perception. This work takes a typical
traffic scenario where a straight vehicle encounters a left-turning vehicle in the
opposite lane at an intersection as an example. The effects of the two vehicles’
speeds and distance to collision on driving behaviors, perceived danger level,
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and risk acceptance were investigated through a driving simulation experiment.
A regression model of driver hazard perception was built based on the experimen-
tal results. The regression model fit the data well, which can effectively reflect
the quantitative relationship between perceived danger level and the relevant
road condition parameters, so that the automated driving system can better
understand users’ psychological safety expectations. It makes the customized
design based on user’s risk preference become possible.

The hazard perception modeling method is also applicable to other types of
hazard scenarios. Other hazard scenarios will be experimentally researched and
modeled in future. In addition, only vehicle speed and distance to collision were
considered as impact variables in the regression model. Drivers’ perception of
danger may also affected by their previous experience [10]. The sample size of
this study is relatively small. Therefore, the influence of other factors will be
further investigated with a bigger sample size to improve the accuracy of the
model in future.
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