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Abstract. Social acceptability of fully autonomous systems, such as self-
driving cars (SDC), is a prominent challenge that academic communi-
ties as well as industries are now facing. Despite advances being made
in the technical abilities of SDCs, recent studies indicate that people
are negatively predisposed toward utilizing SDCs. To bridge the gap
between consumer skepticism and adoption of SDCs, research is needed
to better understand the evolution of trust between humans and grow-
ing autonomous technologies. In this paper, the question of mainstream
acceptance and requisite trust is scrutinized through integration of virtual
reality (VR) SDC simulator, an electroencephalographic (EEG) recorder,
and a new approach for real-time trust measurement between passengers
and SDCs. An experiment on fifty (50) subjects was conducted where par-
ticipants were exposed to driving scenarios designed to induce positive and
negative emotional responses, as sub-dimensions of trust. Emotions were
picked up by EEG signals from a certain area of the brain, and simulta-
neously, trust was measured based on a 5-point Likert scale. The results
of our experiment unveiled that there is a direct correlation between pas-
sengers’ real-time trust in SDCs and their emotional responses. In other
words, the trust level and trust rebuild after faulty behaviors depend on
the driving style as well as reaction of the SDC to passengers’ emotions.
Our results therefore illustrate that trust in SDCs, and accordingly, social
acceptability can be achieved if SDCs become responsive to emotional
responses, e.g., by selecting proper operation modes.

Keywords: Real-time trust measurement · Trust in self-driving cars ·
EEG signals · VR-based simulator · Human-autonomy interaction

1 Introduction

Trust can be conceptualized as a belief that an entity will act with benevolence,
integrity, predictability, or competence [14]. Recent studies indicate that people
have negative attitudes toward utilizing autonomous platforms [7,11]. With the
growth and the increase in the complexity of autonomous systems in the 21st
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century, managing the trust of users in such systems has become an important
concept when designing new autonomous systems [18,19]. Numerous studies in
the domain of trust and AI have suggested that the management and the con-
stant improvement of this mutual trust between autonomous systems and their
users will be one of the primary challenges the industry professionals will face
when trying to popularize the use of fully autonomous systems [3,4,9]. These
discoveries highlight the necessity and urgency of conducting research to bet-
ter understand the evolution of trust between humans and growing autonomous
technologies, and to provide technologies that are responsive to human trust.

Google-Waymo, Tesla, Mercedes-Benz, and others have been developing semi
or fully-autonomous vehicles, and they predict this technology will be deployed
in the near future [23]. It is known that the widespread adoption of autonomous
technologies depends on consumers experiencing and maintaining positive emo-
tional responses in autonomy.

We therefore aim at this problem using Electroencephalography (EEG) sig-
nals. The EEG signal analysis is a methodology that researchers use to monitor
brain activities and relate those signals to emotional states [6,12,15,25,26]. In
our experimental study, the emotional responses of fifty (50) human subjects
are evaluated through EEG analysis while they are in a SDC simulator. The
simulator is utilized to elicit negative emotions in order to evaluate the level of
passenger fear, stress, and anxiety in response to actions of the SDC. In fact, this
information can be used to develop controllers for SDCs so that they become
responsive to passengers’ emotional states, and accordingly, adjust their behav-
iors whenever it’s needed [18].

1.1 Motivation, Novelty and Contribution

The uniqueness of our experiment lies in the immersiveness of the SDC simulator,
its sequential-and-structured data collection approach, and the way it correlates
basic emotions such as fear, stress and anxiety to real-time trust. Prior research
works have not implemented a VR environment with real videos from roads
and highways, not computer-generated or animated videos, along with a motion
chair to create a SDC simulation while monitoring basic emotions by EEG and
measuring real-time trust by an objective approach. This work builds on prior
work from [21]. Our earlier work [24] illustrated that our simulator is highly
effective for collecting real-time data from subjects. The previous work only
required subjects to self-report their trust levels, while the usage of an additional
EEG brainwave monitor has potential to provide meaningful data to validate the
self-report metrics.

In fact, the way that our research correlates basic emotions to real-time
trust through objective as well as subjective data collections is unique. Basic
emotions such as fear, stress, anxiety, sadness, happiness and excitement are
well-studied. There are known brain’s activities and/or hormones, e.g., oxytocin,
cortisol and serotonin, associated with these basic emotions. They usually emerge
in real-time with visible signs and gestures. However, human factors such as
trust/distrust or satisfaction/frustration [1,2] are shaped over time, and often
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with invisible signs. I.e., there are no obvious connections between these human
factors and brain’s activities and/or hormones although there are prior studies
that show indirect connections, e.g., oxytocin increases trust in humans [10].
Our results showed that the elements of basic emotions collected in real-time
by an EEG headset were consistently associated with real-time trust measures
collected by our objective data collection approach. Indeed, we studied sub-
dimensions of trust by triggering elements of basic emotions that could affect
trust when observed.

The results of our experiment unveiled that there is a direct correlation
between the real-time trust in SDCs and emotional responses. In other words,
the trust level and trust rebuild after faulty behaviors depend on the driving
style as well as reaction of the SDC to passengers’ emotions. Using the mean
EEG beta/alpha wave band power, i.e., quantification of the emotional state, as
an indicator of feeling stress and anxious in a SDC appears to be effective when
the stress inducing event is dramatic and strong within a small time interval,
but becomes more difficult to obtain meaningful data when the incident does no
elicit a very strong response or the time interval is long.

Our results therefore illustrate that trust in SDCs, and accordingly, social
acceptability can be achieved if SDCs become responsive to emotional responses
by using proper operation modes, e.g., normal, cautious, and alert modes. For
instance, the SDC can avoid busy roads or highways, drive on the right-hand-
side lane with a speed lower than the speed limit, or avoid overpassing other cars
when it’s in the cautious mode. Our results are expected to inform the design
and operation of a control module that monitors the emotional state of passen-
gers, using computational models [17,20], and adjusts the AI control parameters
accordingly in semi or fully-autonomous vehicles [18]. Moreover, these results
can be utilized to better understand passengers’ expectations from semi or fully-
autonomous vehicles [5,19].

2 Self-driving Car Simulator Setup

The SDC Simulator is a safe platform to expose human subjects to a variety
of driving scenarios. It is built by fusion of an Oculus Rift headset with an
Atomic A3 Full Motion Simulator and offers a combination of complete visual,
audio, and motion immersion that creates a convincingly realistic simulation.
This platform allows for participants to safely be exposed to unique driving
situations that would otherwise offer potential risk to passengers if performed
with real vehicles. Figure 1 shows a participant in our VR SDC simulator.

Our driving scenarios were randomly recorded using the GoPro Fusion Cam-
era and edited using the GoPro Fusion Studio to produce 360◦ video1. The
videos of driving scenarios were exported from Fusion Studio at 4k resolution
as MP4s along with 360◦ MP3 audio files. The Oculus Rift headset outputs
1080× 1200 resolution per eye, at 90 Hz refresh rate, a 110◦ field of view, and
has headphones which output a 3D audio effect. Our human subjects could freely
1 gopro.com.

http://gopro.com/
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Fig. 1. Participant using the SDC simulator.

move their heads 360◦ to see the complete scene while using the Oculus Rift VR
headset. See Fig. 2 for the view inside the simulator.

Fig. 2. View from the simulation. Each frame represents the participant’s view as they
turn their head to look around, illustrating the 360◦ view inside the simulator.

Our motion simulator could move up to 71◦ per second across a full 27◦

dual-axis movement range2. The Atomic A3 Motion simulator has been used
previously by NASA to create realistic moon rover simulations3. The combina-
tion of complete visual, audio, and movement immersion provides a convincingly
realistic simulation.

2 atomicmotionsystems.com.
3 talonsimulations.com/clients.html.

https://www.atomicmotionsystems.com/
http://talonsimulations.com/clients.html
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3 Research Methodology

3.1 Sequential-and-Structured Data Collection

The exposure of participants to the various segments builds on prior work from
[16]. Two structured data collection templates to measure trust with autonomous
systems were used in the present work. Segments are categorized into five distinct
groups, as shown below.

1. Initial Trust: Segments that capture the initial trust of the passengers in
the first few minutes of the interaction.

2. Trust Escalation: Segments where the subject’s trust is increased: Involves
smooth and predictable driving by the SDC without any complications.

3. Trust Reduction: Segments where the human subject’s trust is decreased:
Involves the SDC driving aggressively.

4. Trust Mutation: A sequence of mild incidents (e.g., a rapid lane change
by the SDC) followed by critical incidents (e.g., stop-sign violation or near
collision with another car) and vice versa, can be negative/positive incidents.

5. Re-Building Trust: Segments designed to rebuild trust between the pas-
senger and the SDC. Involves the SDC driving predictably and calmly after
trust-damaging incidents.

3.2 Experimental Design

Participants were randomly placed in one of two possible SDC simulation sce-
narios that were based on templates from prior work in [16]. Each scenario is
made up of 5 segments. Specific scenario-segment pairs are denoted with a two
letter abbreviation followed by the scenario and segment numbers, e.g., TRI−II

denotes trust reduction segment 2 of scenario 1, shown in Tables 1 and 2.

Table 1. Simulation Scenario 1.

ITI−I Initial Trust

TRI−II Trust Reduction

TRI−III Further Trust Reduction

NMI−IV Negative Trust Mutation

RTI−V Rebuild Trust

Table 2. Simulation Scenario 2.

ITII−I Initial Trust

TEII−II Trust Escalation

TRII−III Trust Reduction

NMII−IV Negative Trust Mutation

RTII−V Rebuild Trust

Once the participant is in the SDC simulator, the EPOC+ EEG is attached
to the participant. An initial 1 min baseline is taken of the participant’s brain-
waves with no visual, audio, or motion stimulus. After the baseline, the scenario
begins, and the EEG records the participant’s brainwaves for each segment. Each
segment is an exposure to an approximately 2 min SDC driving simulation. After
each segment, the participant is presented with a Likert Scale that appears inside
the Oculus Rift. The participant selects their response by focusing their gaze on
the desired answer for five seconds while wearing the Oculus Rift.
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During the response interval, the participant responds to the question “On
a scale of 1–5 with 1 being the lowest and 5 being the highest, after this simula-
tion, what is your level of trust in the self-driving car?”. After the participant
responds, the application moves on to the next segment until the simulation
scenario is complete. Tables 1 and 2 define the scenario and segment pairings.

An initial trust/trust escalation segment involved the SDC moving slowly and
predictably while adhering to the rules of the road. A trust reduction segment
involved the SDC along with Human-Driving Cars (HDC) moving erratically
and unpredictably, breaking rules of the road including speeding, tailgating, and
sudden lane changes. In the NMI−IV segment, the SDC ran through a non-
visible stop sign and nearly collided with another car and then proceeded to
drive through a residential neighborhood. In the NMII−IV segment, the SDC ran
through a stop sign unexpectedly and detected a pedestrian and a bicyclist cross-
ing a crosswalk and abruptly came to a stop. A rebuild trust segment involved
the SDC driving defensively and adhering to rules of the road. Note that HDCs
were involved in all scenarios.

In reality, it takes months and even years to be able to repair/rebuild dam-
aged trust. In the case of minor issues, it may take several months to rebuild
trust. In critical situations, it may take years. If the concentration of the project
was on repairing trust between human-and-human, we probably could execute
a multi-year clinical study to conduct this research. However, to rebuild trust
between human-and-SDC, it would be challenging to run similar studies. For that
reason, we made it clear that, after the trust-damaging incident in segment-4,
the human subject should assume that the behavior of the car in segment-5 will
be repeated for months and months.

It is predicted that after the initial trust/trust escalation segments, the par-
ticipants will respond with high levels of trust in the SDC, and after trust reduc-
tion segments, the participant will respond with low levels of trust in the SDC. It
is also predicted that after the negative trust mutation segment, the participant
will report a drastic decrease in trust. For EEG response, it is predicted that
when trust damaging events occur in the simulation a high beta/alpha ratio will
be observed in participants, indicating negative emotional response, and loss of
trust. In trust building segments, it is expected that a low beta/alpha ratio will
be observed in participants, indicating positive emotional response, calmness,
and trust in the SDC simulator. It is also expected that spikes in the power
of the beta/alpha ratio will correlate in time to when negative incidents occur
inside the SDC simulator, e.g., in segment NMI−IV when the SDC does not stop
at an intersection and is nearly in a devastating car accident.

4 Experiment and Technical Results

Fifty (50) human subjects were recruited to participate in the 11-minute VR
autonomous driving simulation4. Subjects were each given $25 gift cards. Each
subject was randomly placed in either Scenario 1 or Scenario 2.
4 IRBNET ID #: 1187756-1.
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4.1 Participant’s Response

Scenario 1. Figure 3 shows subjects response to “On a scale of 1–5 with 1
being the lowest and 5 being the highest, after this simulation, what is your level
of trust in the SDC?” after each segment in Scenario 1. The green box shows
the quartiles of the dataset. The yellow whiskers extend to show the whole
distribution, except for points that are determined to be outliers using a method
that is a function of the inter-quartile range. Pink lines are the median response.

In the initial trust segment (ITI−I), participants responded with a mean
score of 4.68± 0.47, followed by a mean score of 3.72± 0.96 in the first trust
reduction segment (TRI−II). After exposure to the further trust reduction seg-
ment (TRI−III), the score decreased slightly to 3.68± 1.25, followed by a large
decline to 1.92± 0.84 when exposed to the negative trust mutation segment
(NMI−IV). Finally, trust levels increased to 3.96± 0.92 in the rebuild trust seg-
ment (RTI−V). The largest change across segments was between the negative
trust mutation (NMI−IV) and the initial trust segment (ITI−I), consistent with
the expectation that erratic driving has the potential to severely reduce trust.

Fig. 3. Subjects reported trust level in the SDC.

Scenario 1 performed as expected. Participants scored the initial-trust and
rebuild-trust segments with high levels of trust. Participants scored the trust
reduction segments with lower levels of trust, and the negative trust mutation
segment with the lowest level of trust. As expected, the negative trust mutation
had the lowest trust levels and was significantly lower than all other segments.

An interesting result is the difference between the initial trust segment and
the final segment designed to rebuild trust. While participants scored their level
of trust after RTI−V at 3.96 ± 0.92, a high value, it is significantly lower than
the initial trust value (4.68 ± 0.47), representing a 15% decrease. This seems
to indicate that participants trusted the SDC less after being exposed to trust-
damaging segments.
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Segment (NMI−IV) was the most drastic portrayal of a malfunction in a SDC.
In segment (NMI−IV) the SDC runs through a stop sign, and comes within inches
of colliding with another vehicle. The view from the participant’s perspective of
this incident can be seen in Fig. 4.

Fig. 4. During the (NMI−IV) segment an incident occurs where the SDC does not stop
at an intersection and nearly collides with another vehicle. The frames from top to
bottom show the progression of the incident from the perspective of the participant.

Scenario 2. Figure 5 shows subjects response to “On a scale of 1–5 with 1
being the lowest and 5 being the highest, after this simulation, what is your level
of trust in the SDC?” after each segment in Scenario 2. The green box shows
the quartiles of the dataset. The yellow whiskers extend to show the rest of the
distribution, except for points that are determined to be outliers using a method
that is a function of the inter-quartile range. Pink lines are the median response.

In the initial trust segment (ITII−I), participants responded with a mean
score of 4.40± 0.69, followed by a mean score of 4.64± 0.68 in the first trust
escalation segment (TEII−II). After exposure to trust reduction (TRII−III), the
score decreased to 3.68± 1.12, followed by a further decline to 3.64± 1.13 when
exposed to the negative trust mutation (NMII−IV). Finally, trust levels increased
to 4.04± 1.11 in the Rebuild Trust segment (RTII−V).

Fig. 5. Subjects reported trust level in the SDC.

In (NMII−IV), the SDC approaches a crosswalk and stops for a pedestrian to
cross the street. This was the only segment that involved the SDC interacting



410 C. Park and M. Nojoumian

near a pedestrian. Participants reported low levels of trust after this segment and
commented that they especially did not trust the SDC near pedestrians. In Sce-
nario 2, while participants score their level of trust after RTII−V at 4.04± 1.11,
a high value, it is significantly lower than the initial trust segment (4.40 ± 0.69),
representing a 8% decrease. This seems to indicate that participants trusted the
SDC less after being exposed to trust-damaging segments.

The results of the experiment were generally consistent with our expecta-
tions. The participants reported higher trust levels after experiencing initial
trust and trust escalation segments and reported distrust after the trust reduc-
tion segments, as well as high distrust after the negative trust mutation segment.
Participants did not trust the SDC around pedestrians. Finally, participants in
both groups were able to relatively rebuild their trust after the trust damaging
Negative Trust Mutation segments.

4.2 EEG Response and Data Cleaning

Based on prior research [8,22,26] the ratio of the average power between the
beta and alpha waves was used as the main feature to determine emotional
state. A high beta/alpha power ratio indicates negative emotional response. A
low beta/alpha ratio indicates positive emotional response. The average power
in the delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), and beta (12–30 Hz)
is computed from the PSD of the raw EEG data.

Since Wang et al. [26] found that the features with the most information
on emotional response were mainly on right occipital lobe and parietal lobe in
alpha band, the parietal lobe and temporal lobe in beta band, the P7, T7 and
O1 electrodes were the channels used for the signal processing and data analysis.
In the future, more channels and interaction between channels will be analyzed.

The power spectral density of raw EEG data sampled 128 Hz was computed
in 4 second blocks using Welch’s method with a 50% overlap. The beta to alpha
power ratio was computed for each 4 second block by taking the ratio of the
mean power in the respective frequency band. A low pass and high pass variance
filter was applied to reduce signal noise from participant head movement.

EEG Analysis Scenario 1. Figure 6 shows the mean beta/alpha power for all
participants in Scenario 1 across segments after the data was cleaned with the
variance filter. Figure 7 shows the change in the power of the mean beta/alpha
power between segments for Scenario 1. From the TRI−II to NMI−IV segments
the mean beta/alpha power is increasing (TRI−II dB: −2.10, TRI−III dB: −1.78,
NMI−IV, dB: −1.54), indicating that participants are feeling increasingly stressed
and anxious. This is expected as the segments become increasingly stress-full,
and this matches the subjects ratings of their mean trust in the SDC (TRI−II

Mean Trust Score: 3.72 ± 0.68, TRI−III Mean Trust Score: 3.68 ± 1.25, NMI−IV

Mean Trust Score: 1.92 ± 0.84).
As predicted, NMI−IV segment had the lowest mean beta/alpha power (−1.54

dB) for all participants, matching the lowest mean reported trust score of
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1.92± 0.84. In the RTI−V a large increase in the mean beta/alpha power across
participants is observed. An interesting observation is that the largest change
in the beta/alpha power between segments occurs from NMI−IV to RTI−V. The
largest change in how participants rated their trust levels also occurred between
these two segments (NMI−IV 1.92 ± 0.84 to RTI−V 3.96± 0.92).

The only segment in Scenario 1 that deviated from expectation was the ITI−I

segment that had a mean beta/alpha power (−1.59 dB) that was higher than the
TRI−II −2.10 dB and TRI−III −1.78 dB segments. It would be expected that the
ITI−I segment would have low beta/alpha power since subjects reported having
high levels of trust in the SDC in this segment ITI−I 4.68± 0.47. The ITI−I

segment was the subjects’ first experience in the simulator and there may have
been increased stress due to becoming acclimated with the simulator.

Fig. 6. The β/α mean power across
segments.

Fig. 7. Change in β/α power across
segments.

EEG Analysis Scenario 2. Figure 8 shows the mean beta/alpha power for all
participants in Scenario 2 across segments after the data was cleaned with the
variance filter. Figure 9 shows the change in the power of the mean beta/alpha
power between segments for Scenario 2. Scenario 2 did not perform as expected.
It was predicted that in segments that did not induce stress or anxiety and
that participants rated with high levels of trust in the SDC, ITII−I 4.40 ±
0.69, TEII−II 4.64 ± 0.68 and RTII−V 4.04 ± 1.11, a lower mean beta/alpha
power would be observed, and in segments that elicit stress and anxiety and
that participants rated with low levels of trust in the SDC, TRII−III 3.68 ± 1.12
and NMII−IV 3.64 ± 1.13, a higher mean beta/alpha power would be observed.
This was not the case as segments ITII−I −0.46 dB and TEII−II −0.37 dB had
relatively higher mean beta/alpha power compared to TRII−III −0.83 dB and
NMII−IV −1.01 dB.

However, the anticipated effect of a decrease of mean beta/alpha power from
a stressful to non-stressful segment was observed between segments NMII−IV

−1.01 dB and RTII−V −2.47 dB. Between segments of Scenario 2 participants
self-reported the largest change in trust levels to be between segments NMII−IV

3.64± 1.13 and RTII−V 4.04± 1.11, and it was found that the EEG is able to
capture the strongest effect between segments.
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Fig. 8. The β/α mean power across
segments.

Fig. 9. Change in β/α power across
segments.

EEG Analysis at Moment of Near Collision. From the analysis of the EEG
data in Scenario 1 and in Scenario 2, it appears that using the mean beta/alpha
power to indicate if a subject is stressed or anxious is effective at capturing big
effects, however it misses more nuanced changes. Also attempting to capture an
effect by averaging subjects data over a long 2 min time interval will be unable to
resolve quickly changing conditions or events. A more precise alternative would
be to analyze individual participants’ EEG data at specific inflection moments.

Participants reported the lowest levels of trust in segment (NMI−IV, Mean
Trust Score: 1.92 ± 0.84), and it contains the most stressful and trust damaging
incident were the SDC malfunctions and nearly causes a car accident at an
intersection. The incident is outlined in Fig. 4. Since Participant 50 had the
cleanest EEG signal, due to having a shaved head and limited head movement,
this single participant’s mean beta/alpha power during the stressful incident of
nearly experiencing a car crash is plotted in Fig. 10. A much shorter time interval
of 16 s is used to analyze the EEG data.

Fig. 10. Beta/alpha power change at point of near collision inside the SDC simulator.

As expected, a large increase in the mean beta/alpha power is observed dur-
ing the small time window that coincides with the near car accident. Analyzing
subjects individually at specific moments using small time intervals allows for
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more meaningful information retrieval. It is worth noting that being able to selec-
tively evaluate subjects with clean EEG signals (having less interference due to
hair and limited head movement) makes it easier to gain meaningful results.

5 Conclusion and Future Work

As stated earlier, social acceptability of autonomous vehicles is a prominent
challenge that academic communities and industries are now facing. Therefore,
research is needed to better understand the evolution of trust between humans
and growing autonomous technologies. In this paper, an experiment on fifty (50)
subjects was conducted where participants were exposed to driving scenarios
designed to induce positive and negative emotional responses, as sub-dimensions
of trust. Emotions were picked up by EEG signals from a certain area of the
brain, and simultaneously, trust was measured based on a 5-point Likert scale.

The results of our experiment unveiled that there is a direct correlation
between passengers’ real-time trust in SDCs and their emotional responses. In
other words, the trust level and trust rebuild after faulty behaviors depend on
the driving style as well as reaction of the SDC to passengers’ emotions. In our
experiment, the participants reported higher trust levels after experiencing ini-
tial trust and trust escalation segments and reported distrust after the trust
reduction segments, as well as high distrust after the negative trust mutation
segment. A notable observation was that participants especially did not trust
the SDC around pedestrians. Interestingly, all these objective observations were
fully consistent with emotional responses picked up by the EEG signals.

We utilized signal processing parameters for power spectral density estimates
and the resultant EEG beta/alpha wave band power ratios based on a limited
investigation of spectral processing methods, windows and overlaps. However, it
may be that better results can be obtained by optimizing the signal processing
parameters, and it is likely that parameters best suited for responsive detection
of emotional changes in short intervals will differ from those that work best for
longer-term emotional states.

The EEG data has a low signal to noise ratio. Therefore, it would be chal-
lenging to manually classify a data set, making the usage of a Machine Learning
(ML) based classifier necessary for large data sets. Prior research works have
illustrated that Linear Support Vector Machine (LSVM) and multilayer percep-
tron (MLP) neural networks are possible candidates to classify EEG data [13].
Other physiological sensors (heart rate, skin perspiration, etc.) will be used in
future work to detect stress. Perhaps EEG in combination with other physiolog-
ical sensors will create a more robust system of detecting stress and anxiety in
participants. Also future work will dedicate more time to analyzing the interac-
tion of EEG signals with various electrode positioning.

Our results therefore illustrate that trust in SDCs, and accordingly, social
acceptability can be achieved if SDCs become responsive to emotional responses,
e.g., by using proper operation modes such as normal, cautious, and alert modes.
Future work will utilize ML classifiers to determine the human subjects’ emo-
tional state based on a combination of sensors. As stated earlier, our results



414 C. Park and M. Nojoumian

are expected to inform the design and operation of a control module that mon-
itors the emotional state of passengers and adjusts the AI control parameters
accordingly in semi or fully-autonomous vehicles [18].
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T. (eds.) GameSec 2018. LNCS, vol. 11199, pp. 418–431. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-01554-1 24

18. Nojoumian, M.: Adaptive mood control in semi or fully autonomous vehicles. US
Patent 10,981,563 (2021)

19. Nojoumian, M.: Adaptive driving mode in semi or fully autonomous vehicles. US
Patent 11,221,623 (2022)

20. Nojoumian, M., Lethbridge, T.C.: A new approach for the trust calculation in
social networks. In: Filipe, J., Obaidat, M.S. (eds.) ICETE 2006. CCIS, vol. 9, pp.
64–77. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70760-8 6

21. Park, C., Shahrdar, S., Nojoumian, M.: EEG-based classification of emotional state
using an autonomous vehicle simulator. In: 10th Sensor Array and Multichannel
Signal Processing Workshop (SAM), pp. 297–300. IEEE (2018)

22. Putman, P., van Peer, J., Maimari, I., van der Werff, S.: EEG theta/beta ratio
in relation to fear-modulated response-inhibition, attentional control, and affective
traits. Biol. Psychol. 83(2), 73–78 (2010)

23. Shahrdar, S., Menezes, L., Nojoumian, M.: A survey on trust in autonomous sys-
tems. In: Arai, K., Kapoor, S., Bhatia, R. (eds.) SAI 2018. AISC, vol. 857, pp.
368–386. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-01177-2 27

24. Shahrdar, S., Park, C., Nojoumian, M.: Human trust measurement using an immer-
sive virtual reality autonomous vehicle simulator. In: 2nd AAAI/ACM Conference
on Artificial Intelligence, Ethics, and Society (AIES), pp. 515–520. ACM (2019)

25. Tong, J., et al.: EEG-based emotion recognition using nonlinear feature. In: IEEE
8th International Conference on Awareness Science and Technology (iCAST), pp.
55–59 (2017)

26. Wang, X.W., Nie, D., Lu, B.L.: Emotional state classification from EEG data using
machine learning approach. Neurocomputing 129, 94–106 (2014)

https://doi.org/10.1007/978-3-030-01554-1_24
https://doi.org/10.1007/978-3-540-70760-8_6
https://doi.org/10.1007/978-3-030-01177-2_27

	Social Acceptability of Autonomous Vehicles: Unveiling Correlation of Passenger Trust and Emotional Response
	1 Introduction
	1.1 Motivation, Novelty and Contribution

	2 Self-driving Car Simulator Setup
	3 Research Methodology
	3.1 Sequential-and-Structured Data Collection
	3.2 Experimental Design

	4 Experiment and Technical Results
	4.1 Participant's Response
	4.2 EEG Response and Data Cleaning

	5 Conclusion and Future Work
	References




