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Cutting-Edge Tools to Assess Microbial 
Diversity and Their Function in Land 
Remediation 

Indra Mani 

Abstract Soil contamination caused by pollutants has been a great challenge for 
us. However, soil provides a vast shelter, which allows a co-occurrence of millions 
of microorganisms. These microbes play a critical role in the remediation of such 
contaminated land. There are various techniques available to evaluate microbial 
diversity (DNA and rRNA-based profiling) and their functions (functional genes). 
In addition, isolation of pure culture, 16S rDNA (for bacteria), and 18S rDNA (for 
fungi)-based identification and characterization have shifted to omics. For example, 
it has transformed from genomics to metagenomics, transcriptomics to metatran-
scriptomics, proteomics to metaproteomics, and metabolites to metabolomics to 
study microbial diversity and their function. These various omics methods are used 
to understand the microbial diversity, biomass, mineralization, detoxification, and 
nutrient cycling phenomenon. Currently, culture-independent-based molecular tech-
niques prevailing tools to isolate and identify functional genes from the uncultured 
microbes. Continuous development of sequencing technology and in silico tools, 
which has accelerated the identification and characterization of complex micro-
bial communities from various environmental samples. Therefore, the advancement 
of these technology would deliver meaningful insight to evaluate the microbial diver-
sity and their function for land remediation. This chapter highlights various tech-
niques from culture-dependent to culture-independent, which are to be used to assess 
the microbial diversity and their functions. 

Keywords Microbial diversity ·Metagenomics ·Metatranscriptomics ·
Metaproteomics · Soil · Sequencing 

5.1 Introduction 

Soil is the major source of a variety of microorganisms such as viruses, archaea, 
bacteria, fungi, and other parasites. Approximately a gram of soil might comprise
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1000–10,000 species of unidentified prokaryotes (Torsvik et al. 1990). Microbes in 
soil play a vital role in soil fertility (O’ Donnel et al. 2007), soil structure (Wright 
and Upadhyay 1998), plant health (Dodd et al. 2000), plant nutrition (Timonen et al. 
1996), biogeochemical cycle (Wall and Virginia 1999), degradation of xenobiotic 
compounds (Barakat 2011), and land management (Nacke et al. 2011). Due to such 
great importance and so much complexity of microorganisms, it is very challenging 
to identify and characterize them. Interestingly advancement of genomics to metage-
nomics is very much helpful to characterize them (Mocali and Benedetti 2010; Huson 
et al. 2011; Mani 2020a; Gangotia et al. 2021; Gupta et al. 2021). Due to rapid 
progress in technology, that has enhanced the identification and characterization of 
microorganisms from any ecological samples. Soil contains a very important strain 
of microbes, which need to identify and use for the remediation of soil. Before, it was 
totally dependent on culture-based methods, which provides very trivial information 
about microorganisms. It might be due to a lack of numerous growth associated 
knowledge such as pH, temperatures, humidity, chemicals, and tracer molecules. 
However, culture-independent approaches (Metagenomics) are helpful to census the 
microbes in any environments (Schloss and Handelsman 2004; Schloss et al. 2016; 
Mani 2020b). Further, an advancement in the DNA sequencing technology and 
availability of international nucleotides sequence database collaboration (INSDC) 
provides an opportunity to assess the microbial diversity as well as the specific func-
tion of microbes. It provides established genome references, which are very important 
to analyze the microbial communities (microbiota) and their functions. 

Metabolic networks such as the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) and Clusters of Orthologous Group (COG) are available to understand the 
metabolic pathways involve in synthesis and degradation of particular molecules. 
In addition, various omics techniques like metatranscriptomics, metaproteomics, 
and metabolomics are very helpful to understand the microbial diversity and their 
function in soil environments. After exploring these omics, a particular stain can be 
identified, characterized, and utilized for the bioremediation of soil (Mani 2020c). 
To understand the diversity and functions of microorganisms in metals contaminated 
and non-contaminated soils, it would provide valuable information. Further, it can be 
utilized to analyze an abundance of the particular microorganisms and also helpful 
to discover potential pathways involve in the degradation of heavy metals. 

5.2 Culture-Dependent Techniques 

Cultivation of microorganisms for isolation, characterization, and identification is 
a gold standard approach for the detection of the pathogens (Rudkjøbing et al. 
2016). There are various media used for isolation, characterization, and identifica-
tion of microorganisms such as nutrient agar (NA), brain heart infusion (BHI) agar, 
Salmonella-Shigella (SS) agar, macConkey agar, mannitol salt agar, eosin methylene 
blue (EMB) agar, potato dextrose agar (PDA), trypticase soy agar, sabouraud dextrose 
agar, and many more selective, differential, enriched, and enrichment media. Several
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studies suggest that <0.1% of the microorganisms in soil are culturable using clas-
sical methods (Torsvik et al. 1990, 1994, 1996; Handelsman et al. 1998). However, 
molecular methods have the advantages to identify rapidly and cover more microbes, 
which may skip through a culture-based approach. 

DNA markers are an appropriate tool in order to obtain information about gene 
flow, allele frequencies, and other parameters that are important in population biology 
(Neigel 1997). Ribosomal DNA (rDNA) is useful for phylogenetic analysis because 
different regions of the rDNA repeat unit evolve at very different rates. Therefore, 
regions of rDNA arrays that are particularly possible to generate informative data for 
almost any systematic question can be selected for analysis (Hillis and Dixon 1991). 
In addition, the islands of highly conserved sequences within most rRNA genes are 
very helpful for constructing “universal” primers, which can be used for sequencing 
either rRNA or rDNA from several species, for amplifying regions of interest by use 
of the polymerase chain reaction (PCR), or for use as probes in restriction enzyme 
analyses (Hillis and Moritz 1990). Remarkably, sequences of 16S rRNA gene uncover 
an information of microbial diversity “black box” that guide analysis of the previously 
unknown bacterial life and their function (Nelson et al. 2011; De Sundberg et al. 2013; 
De Vrieze et al. 2018). There are several molecular methods used for the analysis of 
identification and characterization of microorganisms from the soil. 

5.2.1 Amplified Ribosomal DNA Restriction Analysis 
(ARDRA) 

Amplified ribosomal DNA restriction analysis (ARDRA) is utilized to investigate 
the microbial diversity on the basis of DNA polymorphism (Deng et al. 2008). In 
this method, 16S rDNA is amplified by either genus specific primer or universal 
primer and processed with restriction endonucleases, followed by agarose gel elec-
trophoresis or polyacrylamide gel electrophoresis (PAGE). DNA band profiles are 
used to genotyping the microbial community (Tiedje et al. 1999). ARDRA has been 
used to evaluate the microbial diversity in soil with changes in land use in Hawaii, 
USA (Nüsslein and Tiedje 1999), the Karst forest, China (Zhou et al. 2009), and 
arsenic affected Bangladesh soils (Sanyal et al. 2016). In addition, ARDRA-based 
study has isolated 358 isolates, which clustered into 35 groups from glacier fore-
land soils. These groups belong to 20 genera and six taxa such as Betaproteobac-
teria, Actinobacteria, Alphaproteobacteria, Bacteroides, Deinococcus-Thermus, and 
Gammaproteobacteria (Wu et al. 2018). The finding shows that ARDRA techniques 
could characterize the glacier foreland soils culturable microbial communities.
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5.2.2 Ribosomal Intergenic Spacer Analysis (RISA) 

Ribosomal intergenic spacer analysis (RISA) is another technique, which is based 
on ribosome DNA sequences. It is a culture-dependent technique, which used for 
the microbial community analyses (Sigler and Zeyer 2002). But in this technique, 
information coming from the spacer region of rDNA. In this technique, a pair of 
oligonucleotides primers (one from 16S and other from 23S rDNA) are required to 
amplify the internal transcribed spacer (ITS) (Borneman and Triplett 1997). The size 
of ITS ranges between 150 and 1500 bp, and it is a good candidate for an analysis 
of bacterial diversity (Sigler et al. 2002). 

The ITS regions evolve rapidly and, hence, are useable as “high-resolution 
marker” in populations genetics (van Oppen et al. 2002). Although in the few cases, 
polymorphisms have been detected in these non-coding regions (Nichols and Barnes 
2005). The ITS region has progressively been utilized for discrimination among 
bacterial species or strains, including Mycobacterium species (Roth et al. 1998), 
cyanobacteria (Boyer et al. 2001), acetic acid bacteria (Trcek 2005), and Escherichia 
coli strains (Gibreel and Taylor 2006), which cannot be easily distinguished by the 
16S rRNA gene. Similarly, the identifications of closely related species based on 
only morphological characters are difficult in the case of the multi-species genus. 

5.2.3 Random Amplified Polymorphic DNA (RAPD) 

Random amplified polymorphic DNA (RAPD) is a molecular technique that used 
a decamer (10 nucleotides) primer for PCR amplification and followed by agarose 
gel electrophoresis. Comparative amplified fragments are used for the analysis of 
microbial diversity. These short primes randomly bind anywhere in genomic DNA 
at low melting temperature (Tm) (Franklin et al. 1999). RAPD has been used to 
analyze microbial diversity in the soil of arid zone plants (Sharma et al. 2013), 
viral diversity in soils (Srinivasiah et al. 2013), Panax ginseng rhizosphere, and non-
rhizosphere soil (Li et al. 2012). Due to a limited resolving ability of RAPD and 
massive microorganisms, it needs to integrate with other advanced approaches. 

5.3 Culture-Independent Techniques 

There are numerous culture-independent methods, such as denaturing gradient 
gel electrophoresis (DGGE), terminal restriction fragment length polymorphism 
(TRFLP), and fluorescent in situ hybridization (FISH) have been utilized to inves-
tigate microbial diversity (Hwang et al. 2008; Rademacher et al. 2012; Klang et al. 
2015).
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5.3.1 Denaturing Gradient Gel Electrophoresis (DGGE) 

Denaturing gradient gel electrophoresis (DGGE) is a method that has been exploited 
for species identification. There are various steps involved in this method, such as 
genomic DNA extraction, amplification of 16S rDNA sequences, and separation 
of amplified products by PAGE. The electrophoretic mobility of DNA fragments 
depends upon the melted double-stranded DNA in gel contains the linear gradient of 
DNA denaturant, formamide, and urea (Muyzer et al. 1993) or a linear temperature 
gradient (Muyzer and Smalla 1998). DGGE has been used to assess the microbial 
diversity for the sulfate-reducing bacteria (Kleikemper et al. 2002), Gamma and 
Betaproteobactera (Fahrenfeld et al. 2013), and for functional diversity in different 
contaminated sites (Ferris et al. 1996; Geets et al. 2006; Orlewska et al. 2018). It 
has been extensively used for the assessment of various microorganisms in different 
environmental samples. 

5.3.2 Terminal Restriction Fragment Length Polymorphism 
(T-RFLP) 

Terminal restriction fragment length polymorphism (T-RFLP) technique is based on 
PCR and restriction endonuclease digestion. After extraction of genomic DNA from 
any environmental sample, fluorescence labelled primers are utilized for amplifica-
tion of 16S rDNA followed by restriction digestion. Analysis of separated fragments 
carried out by automated DNA sequencer, which provides the patterns of the peaks in 
the form of electropherogram (Thies 2007; Stenuit et al. 2008). The electropherogram 
peaks are identified through an available database for analysis of microbial diversity 
(Marsh et al. 2000). T-RFLP has been used to estimate the microbial diversity for the 
different groups such as eubacteria (Brunk et al. 1996), planctomycetes (Derakshani 
et al. 2001), methylotrophs and methanotrophs (Allen et al. 2007), aerobic and anaer-
obic hydrocarbon-degrading communities (Tipayno et al. 2012), and microbial diver-
sity in anaerobic digestion (De Vrieze et al. 2018). This technique has been replaced 
with 16S rRNA gene sequencing because of its time-consuming and complex nature 
(De Vrieze et al. 2018). Another disadvantage of the method, it covers limited phylo-
genetic analysis due to short sequence reads (Marzorati et al. 2008). This technique 
facilitates the detection of different haplotypes from any environmental samples. 

5.3.3 Fluorescence in situ Hybridization (FISH) 

Fluorescence in situ Hybridization (FISH) is a molecular tool, which was devel-
oped by Langer-Safer et al. (1982). In this technique, a fluorescence dye labelled 
probes (DNA or cDNA) are used, which bind to the complementary region of the
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DNA. The probes are prepared either by nick translation or PCR or tagged with 
biotin. After denaturation of DNA and probes, both allow for hybridization. After 
hybridization, followed by post-hybridization, samples examined under the fluores-
cence microscope (Amann et al. 1995; Mani et al. 2011). FISH, which can be used 
as a cultivation-independent approach for visualization, identification, and quantifi-
cation of microorganisms in the medical and environmental sample. FISH has used 
to evaluation of microbial diversity in contaminated environments (Richardson et al. 
2002), s-triazine herbicides treated soils (Caracciolo et al. 2010), methane-rich gas 
field in the Cook Inlet basin of Alaska (Dawson et al. 2012), and activated sludge from 
a nitrifying-denitrifying tank at the municipal wastewater treatment plant (WWTP) 
of Klosterneuburg, Austria (Lukumbuzya et al. 2019). Due to advancement in the 
FISH technique, multicolor FISH can be more suitable as compared to a classical 
FISH. 

5.4 Cutting-Edge High-Throughput Culture-Independent 
Approach for Microbial Diversity 

Presently, omics techniques like metagenomics, metatranscriptomics, metapro-
teomics, and metabolomics are very helpful to understand the microbial diversity 
and their function in soil (Fig. 5.1). For the bioremediation of soil, multi-omics 
approach can be utilized to screen potential microbial strain (Mani 2020c). These 
multi-omics are discussed in detail. 

Fig. 5.1 A schematic diagram of different molecular tools that used for an assessment of the 
microbial diversity and their functions in the remediation of contaminated land
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5.4.1 Metagenomics 

Metagenomics is also known as environmental genomics or community genomics 
or population genomics. The term metagenomics was coined by Handelsman et al. 
(1998). A detail procedure of shotgun metagenomic sequencing (Regar et al. 2019) 
is given in Fig. 5.2. A shotgun metagenomic sequencing has been utilized to evaluate 
the microbial diversity from the pesticides contaminated and non-contaminated soil 
samples. Results have shown various abundance of microbes such as Proteobac-
teria, Actinobacteria, Bacteroidetes, Firmicutes, and Acidobacteria in both samples. 
Interestingly, substrate specific pathway degradative gene analysis has shown the 
presence of many genes for both upper and lower pathways. However, a smaller 
number of degradative genes have identified for the degradation of atrazine, styrene, 
naphthalene, and bisphenol (Regar et al. 2019). These xenobiotic degradative genes 
carrying microbes can be utilized for remediation of such pesticides contaminated 
lands. 

Another shotgun metagenomics-based study has reported that bacterial and fungal 
microbes were associated with vineyards and forest land in Chile. In both habitats, the 
most abundant bacteria Candidatus, Bradyrhizobium, and Solibacter, and the fungus 
Gibberella were identified. Interestingly, metabolic diversity was different in the 
vineyards associated microbes while no difference was observed at the taxonomic 
level (Castañeda and Barbosa 2017). Swenson et al. (2018) analyzed the metage-
nomics to understand microbial diversity from the biological soil crust (biocrust). The 
study demonstrated that microbial diversity was directly linked with environmental 
chemistry in biocrust (Swenson et al. 2018). Soil microbial diversity greatly affected

Fig. 5.2 A schematic presentation of a shotgun metagenomic approach for evaluation of the micro-
bial diversity and their functions from the pesticides contaminated sites. Major steps such as sample 
collection, total DNA isolation, sequencing, gene profiling, and bioinformatics analysis have been 
shown (Regar et al. 2019. Adapted with permission)
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at mining sites due to soil pollution. To understand the abundance of microbes, 
a study was conducted in zinc (Zn) and lead (Pb) contaminated soil using the 16S 
rDNA-based metagenomics approach. Results from the study, ten frequently detected 
bacteria, which included Geobacter, Solirubrobacter, Edaphobacter, Gemma-
tiomonas, Pseudomonas, Xanthobacter, Sphingomonas, Ktedonobacter, Pedobacter, 
and Nitrosomonas (Hemmat-Jou et al. 2018). This study demonstrates the bacterial 
profiling in Pb and Zn contaminated soils using a powerful tool like metagenomics.

To understand microbial diversity in the desert environment, a 16S rDNA 
sequence-based metagenomics approach has been utilized. For the analysis, soil 
samples were taken from the two quadrates desert environment (Thar Desert India) 
that face hot dry weather with fewer rain and intense temperatures. In this study, 
they utilized V3-V4 regions of 16S rDNA and Illumina next generation sequencing 
(NGS) to analyze bacterial diversity. They found the three phyla in abundance, Acti-
nobacteria, Proteobacteria, and Acidobacteria, in both environments (Sivakala et al. 
2018). Among these phyla, Actinobacteria is an important phylum based on their 
commercial value. A finding suggests that desert environments can be a good source 
to isolate an important microorganism to remediation of land. 

A 16S rDNA-based high throughput sequencing method has been used to analyze 
alfalfa and barley rhizosphere microbial diversity in oil contaminated soil. A 
study reported that oil contaminated soil has higher abundance of oil-degrading 
microbes (Alcanivorax and Aequorivita) but reduced diversity as compared to oil 
non-contaminated samples. Moreover, two more phyla (Thermi and Gemmatimon-
adetes) were also present in the oil-contaminated soil (Kumar et al. 2018). These 
findings suggest that the presence of these oil-degrading microbes play a vital role in 
the degradation of hydrocarbon contamination in soil. The combination of metage-
nomics and in silico approaches have been used to identify novel genes, proteins, 
and enzymes from the diverse groups of microbes. With the help of the NGS and 
Sanger sequencing method, genome sequences are generated, and in silico method 
aids in the prediction of protein function. After all, it can be cloned and expressed 
in a particular host in in vitro. Such types of approaches can be used in any environ-
mental samples (Calderon et al. 2019). Interestingly, this approach can be utilized to 
discover important enzymes from microbial diversity for the remediation of land. 

A metagenomics method has been extended to understand the effect of altitude 
on microbial diversity in soil. Features of high altitude ecosystems are low tempera-
ture, decreased atmospheric pressure, variable precipitation, and soil nutrient stress 
(Morán-Tejeda et al. 2013). It has found the most abundant phyla of Acidobac-
teria, Proteobacteria, and Actinobacteria at high altitude land, whereas Fermicutes 
and Bacteroidetes at low altitude. The high throughput sequencing data analysis 
helped to identify a novel bacterial diversity at high altitude, which was missed by 
conventional methods (Kumar et al. 2019). Due to better survival of microbes at high 
altitudes under various variable conditions including soil nutrient stress, it would be 
beneficial to explore them further. Therefore, a study suggests that these groups 
of microbes can be used to remediation of hill agriculture land. A metagenomic 
method has been utilized to examine the microbial diversity in effluent contaminated 
constructed wetlands and in rhizosphere soil. Interestingly, the rhizosphere soils have
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shown the richness of microbial diversity as compared to wetlands. From functional 
analysis, it has been demonstrated that different xenobiotic degradation pathways are 
associated in the soils (Bai et al. 2014). The finding suggests that utilizing a recent 
tool to investigate the diversity of microbes on the sequence based as well as function 
based can be used to the remediation of effluents contaminated land. 

A metagenomics-based study has analyzed the microbial diversity in Cadmium 
(Cd) contaminated soil. After comparison with non-contaminated soil, Feng et al. 
(2018) found that Cd-contamination significantly reduced the diversity of microor-
ganism. Interestingly, they have found Sulfuricella, Proteobacteria, and Thiobacillus 
as major microbes which played an important role in the remediation of Cd-
contaminated soil (Feng et al. 2018). These Cd resistant microbes can be further 
used in the remediation of Cd-contaminated land. Similarly, metagenomics study 
has performed in uranium contaminated soil to understand the functional and struc-
tural diversity of microbes. In uranium contaminated and non-contaminated soil, 
Proteobacteria, and Actinobacteria were common while Alicyclobacillus, Robig-
initalea, and Microlunatus were present in the non-contaminated soil only. KEGG 
metabolic pathway database was used to analyze the metabolism of amino acids and 
signaling molecules (Yan et al. 2016). Common microbes such as Proteobacteria 
and Actinobacteria can be used in the remediation of uranium contaminated land. 

A metagenomic study was reported from China utilizing mercury (Hg) contam-
inated soil. Analysis demonstrated the Hg affected microbial diversity, abundance, 
and functional aspects. In contaminated soil, Firmicutes and Bacteroidetes were 
abundance, and contamination of Hg also affected on different functional genes 
that involve in its transformation, such as methylation and reduction (Liu et al. 
2018). Metagenomics methods have been used to evaluate the effects of natural 
groups of microbes and consortium microbes on the degradation of polycyclic 
aromatic hydrocarbon (PAH) in the contaminated soil. A study has demonstrated 
that the degradation of PAH was significantly higher by using microbial consor-
tium as compared to other groups of microbes. At the gene level, variations in 
laccase, aromatic ring-hydroxylating dioxygenases (ARHD), salicylate, benzoate, 
and protocatechuate-degrading enzyme were found (Zafra et al. 2016). This study 
suggests that these potential gene producing microbes can be useful in remediation 
of PAH-contaminated land. 

5.5 Cutting-Edge High-Throughput Culture-Independent 
Approach for Microbial Function 

Assessments of functional characteristics of microorganisms are complex as 
compared to sequence-based study.
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5.5.1 Metatranscriptomics 

Metatranscriptomics is RNA-based methods used to analyze the taxonomic compo-
sition and profile of the microbial functions. There are various experimental steps 
involved in this approach, which need to be addressed while analyze through meta-
transcriptomics (Carvalhais and Schenk 2013; Jiang et al. 2016). The advancement 
in this technology is very promising to help to understand microbial function. A 
culture-independent method has been utilized to evaluate microbial diversity from 
halogen contaminated and non-contaminated German forest soils. Weigold et al. 
(2016) analyzed the genes encoding enzymes that are involved in halogenation and 
dehalogenation of the halogens. They determined that Bradyrhizobium and Pseu-
domonas genera were involved in these processes. Further, they found chloroperox-
idases and haloalkane dehalogenases enzymes, which were responsible for the halo-
genation and dehalogenation of halogens in the contaminated forest soil (Weigold 
et al. 2016). 

Metagenomics and metatranscriptomics methods have been used to examine 
microbial diversity and their functions in dissolved organic matter (DOM) from the 
soil samples. A study reported that there were great variations in microbial genera 
such as Thermoleophilia, Syntrophobacterales, Spirochaeta, Geobacter, and Gaiella. 
In  this  study, Li et al.  (2018) found a correlation with the richness of microbial 
metabolic pathways lignolysis, methanogenesis, and fermentation in DOM of paddy 
soil samples. A metatranscriptomics-based study analyzed an environmental func-
tional gene microarray (E-FGA) containing 13,056 mRNA microbial clones from 
different environmental samples. They have examined the E-FGA containing mRNA 
microbial clones by profiling the microbial activity of agricultural soils with a high 
or low flux of nitrous oxide (N2O). Interestingly, 109 genes have been expressed 
and demonstrated significant variability with high and low N2O emissions (McGrath 
et al. 2010). Such an approach may be useful to evaluate the functional activity of 
the microorganisms. 

Shotgun metagenomic sequencing and metatranscriptomics studies have 
performed to analyze the rhizosphere microbial communities of Archis hypogaea 
(peanut plant), roots of plants grown in the soil of crop rotation, and peanut 
monocropping. Interestingly, in monocropping, an enrichment of different rare 
species occurred, but microbial diversity of rhizosphere had reduced. A further reduc-
tion occurred in the downregulation of genes in auxin and cytokinin and upregulation 
of genes related to other hormones (abscisic acid and salicylic acid) (Li et al. 2019). 
As the study suggested, plant rhizosphere microbiota and plant physiology were 
affected by land use history. 

A metatrasncriptomics approach has been utilized to identify cadmium (Cd) 
tolerant genes from the contaminated sites. cDNA libraries of different sizes of 
yeast mRNA (from 0.1 kb to 4 kb) were developed. After screening of cadmium 
tolerant transcript through yeast complementation system, Thakur et al. (2018) have  
found that transformants ycf1∆PLBe1 were capable to tolerate Cd in the range of 
40–80 μM. Interestingly, a sequence of PLBe1 cDNA shown homology with AN1
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type zinc finger protein of Acanthameoba castellani. In addition, it has also shown 
the tolerance against copper (Cu), cobalt (Co), and zinc (Zn) (Thakur et al. 2018). 
The finding suggests that PLBe1 can be a promising candidate for the multi-metal 
tolerant gene for remediation of the heavy metal contaminated lands. A metatran-
scriptomics study has identified an Actinobacteria as a most abundant family in hot 
desert soil samples. Interestingly, it found that chemoautotrophic carbon fixation 
genes were more expressed as compared to photosynthetic genes in these samples 
(León-Sobrino et al. 2019) indicating that chemoautotrophy could be alternative of 
photosynthesis in hot dessert soils. 

Bragalini et al. (2014) developed a solution hybrid selection (SHS) technique, 
which is very effective for the recovery of eukaryotes cDNAs from soil extracted 
mRNA. The authors utilized this technique on endo-xylanases of Glycoside Hydro-
lase (GH) 11 gene family. Approximately 25% cloned cDNAs sequences were 
expressed in Saccharomyces cerevisiae (Bragalini et al. 2014). This technique can 
be utilized to explore eukaryotic microbial communities to the prospecting of land 
remediation related genes. A 16S rDNA and metatranscriptomics methods were 
used to evaluate microbial diversity and their functions in the sandy loam soil, which 
was treated with various concentrations (60–2000 mg/kg) of silver nanoparticles 
(AgNPs). Analysis has shown that it was very much upregulation in genes, which 
are involved in the heavy metal resistance (Meier et al. 2020). Finding suggests that 
multi-level concentration-based studies are important to assess microbial functions 
in a particular land site. 

5.5.2 Metaproteomics 

Another powerful tool of omics is metaproteomics that includes the study of all 
proteins which are directly recovered from any environmental samples. Metapro-
teomic approaches are undertaking microbial functional characteristics more directly 
as compared to metagenomics and metatranscriptomics. This method is used to 
understand the functional diversity of microorganisms in any particular site. A 
metaproteomics-based study analyzed the maize rhizosphere soil, where 696 proteins 
were discovered from 244 genus and 393 species (Renu et al. 2019). These important 
results can be helpful in designing experiments for other rhizosphere soil samples. 
Metaproteomics and phospholipid fatty-acids analysis has performed in petroleum 
polluted semiarid soil samples to understand the phylogenetic and physiological 
response of the microbiome. A 2016 study illustrated that petroleum contamina-
tion increases proteobacterial proteins while reducing the richness of Rhizobiales as 
compared to non-contaminated soil (Bastida et al. 2016). A metaproteomics method 
has been utilized to understand the effect of chlorophenoxy acid-degrading bacteria 
on the soil sample, which was treated with 2, 4-dichlorophenoxy acetic acid (2,4-D) 
for 22 days. They have identified the chlorocatechol dioxygenases enzymes from
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these samples (Benndorf et al. 2007). This enzyme can be further used for the treat-
ment of 2,4-D contaminated land. Rotation of the plantation on a particular land may 
affect rhizosphere microbial diversity. 

5.5.3 Metabolomics 

Exometabolomics or metabolic footprinting is a sub-field of metabolomics, which 
is used to study extracellular metabolites (Allen 2003; Mapelli et al. 2008; Silva and 
Northen 2015). A detail procedure of metabolomics is given in Fig. 5.3. A study 
has analyzed exometabolome to understand the function of a microbial community 
of the biological soil crust (biocrust) (Swenson et al. 2018). Finding suggests that 
the microbial community is directly linked with environmental chemistry in biocrust. 
Gas chromatography-mass spectrometry (GC–MS) and liquid chromatography-mass 
spectrometry (LC–MS) were used to investigate the metabolites from the saprolite 
(chemically weathered rock) soil samples. In this study, 96 metabolites have been 
identified, including amino acids and their derivatives, nucleosides, sugar, alcohol, 
and carboxylic acids. After quantification of 25 metabolites, it has indicated an 
uneven quantitative distribution. There were two types of soil defined media (SDM 
1 and SDM2) designed using these metabolites information. There were 30 different 
types of soil bacterial isolates grown on both media. However, a result has shown 
that SDM1 sustained growth of 13 isolates, and SDM2 supported the growth of 15 
isolates (Jenkins et al. 2017). This information can be utilized to develop suitable 
media for the growth of promising microorganisms, which are potential candidates 
for land remediation. 

5.6 Conclusion, Challenges, and Future Perspective 

An increase of contamination in soil is a vast problem, and remediation of it a great 
challenge. Due to ubiquitous nature of the microbes in the environment, it plays 
an important role in the remediation of contaminated land. Further, microbes are an 
excellent source of enzymes that convert harmful metal into a neutral state. However, 
soil is a massive shelter of the diversity of culturable and unculturable microorgan-
isms. Due to the complexity of microorganisms, it is very challenging to identify 
and characterize them. To understand the microbial diversity and their functions, 
various classical to advance techniques, including multi-omics are available. For 
the analysis of microbial diversity and their function, culture-dependent and culture-
independent methods are being used. As metagenomics (culture-independent) molec-
ular approach offers a powerful lens for viewing the microbial world and which is 
very promising to help to understand the questions like who are there? Or what are 
they doing? Therefore, the combined information of phylogenetic and functional 
aspects would provide thoughtful understandings about soil microorganisms. The
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Fig. 5.3 Experimental workflow and biocrust microbe–metabolite relationship predictions. 
a Biocrust wetup metabolomics and metagenomics experimental setup and analysis. b 
Exometabolomics-based in situ microbe-metabolite relationship prediction (Swenson et al. 2018. 
Adapted with permission)

multi-omics methods such as metagenomics, metatranscriptomics, metaproteomics, 
and metabolomics are very helpful to screen potential microbes. Further, through the 
use of cutting-edge tools, a potential microbe can identify, characterize, modify, and 
construct microbial consortium to remediation of any contaminated land. 
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