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Biochar-Based Remediation of Heavy 
Metal Polluted Land 

Abhishek Kumar and Tanushree Bhattacharya 

Abstract The excessive use of heavy metals has led to the problem of pollution of 
land by heavy metals. The non-degradability, persistence, bioavailability and high 
mobility of heavy metals make them dangerous to human health and environment. In 
the previous decades, biochar has been suggested to remove the heavy metals from 
the soil effectively. Biochar is a carbonized material prepared by thermal treatment 
of a biomass feedstock. The variation in feedstock and thermal treatment affects 
the properties of the char produced. The properties of high sorption capacity, large 
surface area, high porosity, alkaline pH and remarkable oxygen-containing surface 
functional groups enable Biochar to minimize the mobility and bioavailability of the 
heavy metals. The high stability of biochar aids in removing the heavy metals for 
a long period of time. Mechanisms such as ion exchange, precipitation, diffusion, 
complex formation, electrostatic interaction and sorption, help in removal of heavy 
metals from the soil. Additionally, biochar could help in waste management, bioen-
ergy production, crop production enhancement and climate change mitigation, which 
are indicative of the wide-ranging advantages associated with biochar production 
and its application. Keeping these things in mind, the chapter was conceptualized 
to review the developments in the field of biochar application for remediation of 
heavy metal polluted sites. The chapter has focussed upon its production, modifi-
cation methods, physicochemical properties, and heavy metal removal mechanisms 
utilized by biochar. Additionally, the impact of biochar on mobility and bioavail-
ability of heavy metals and case studies across the various parts of the world have 
been explored. Lastly, applications other than heavy metal removal, advantages and 
risks associated with biochar application and future scope for biochar production and 
application have been discussed. 
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13.1 Introduction 

Our planet has seen emergence of numerous disasters inclusive of climate change, 
depletion of natural resources and pollution (Kumar et al. 2021b, c). Each of the issues 
is threatening for the survival of the planet and sustenance of the organisms thriving 
on it. Heavy metal pollution is one such significant issue that is undesirable for the 
twenty-first century and affects the socio-economic lives of people (Bhattacharya 
et al. 2021; Kumar et al. 2021a). The persistence and bioavailability of heavy metals 
make them toxic for the living organisms (Zhang et al. 2013). A number of remedia-
tion methods have been developed to remove the heavy metals from the environment 
(Pandey and Singh 2019). These methods could be physical, chemical or biological 
(Khalid et al. 2017; Pandey and Singh 2019). The physical methods include vitri-
fication, isolation, soil replacement and electro-kinetic remediation. The chemical 
methods are inclusive of encapsulation, soil washing and chemical immobilization. 
The biological methods include phytoremediation (Pathak et al. 2020; Pandey and 
Bajpai 2019), bioremediation and biochar-based remediation (Dwibedi et al. 2022). 
Biochar is very optimistic technique for removing the heavy metals from soil and 
water (Dwibedi et al. 2022). 

Biochar is a carbon–neutral recalcitrant substance obtained from the thermal treat-
ment of a carbonaceous biomass (Manyà 2012; IBI  2015). Depending upon the type 
of biomass and thermal treatment technique used, properties of biochar vary (Tang 
et al. 2013). Biochar helps in reducing heavy metal pollution by decreasing their 
mobility and bioavailability (Kumar and Bhattacharya 2021,2022). Further, biochar 
improves the quality of soil, which helps in improving the soil and plant produc-
tivity (Lehmann et al. 2006). Additionally, biochar could help in waste management 
by consuming the waste materials for production of biochar; climate change miti-
gation by carbon sequestration and greenhouse gas emission reduction; fossil fuel 
management by biofuel production; and food security management by enhanced 
crop production (Lehmann et al. 2011; Titirici et al. 2012; Zhang et al. 2013; Mohan 
et al. 2014; Windeatt et al. 2014; Hossain 2016; Lee et al. 2018; Manyà et al. 2018). 
Therefore, production and application of biochar could be a sustainable solution for 
a number of threatening issues in addition to remediating heavy metal polluted soils. 

13.2 Biochar and Its Production 

Biochar is a stable carbonaceous residue (IBI 2015), obtained after thermal treat-
ment of carbon-containing feedstock (Kumar et al.2022a, b; Shaikh et al. 2022b, 
a). Biochar is different from ‘Amazonian dark earth’, i.e. Terra preta, in structure 
and composition. Terra preta is produced by mixing low-temperature char with 
plant residues, bones, faeces and compost (Balée et al. 2016a, b). Identification 
of Terra preta’s nutritional significance, promoted the production and use of biochar 
for various applications (Glaser et al. 2002).
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A number of thermal treatment techniques have been used for biochar production 
(Kumar et al. 2020). These techniques include pyrolysis, combustion, torrefaction, 
gasification and carbonization (Meyer et al. 2011). Pyrolysis has been the most 
widely used method for producing biochar. It involves oxygen-deficient conditions 
and could be carried out in a kiln or furnace. The wide utilization of pyrolysis for 
biochar production is due to its efficiency and simplicity (Cha et al. 2016). 

The properties of biochar vary depending upon the treatment method, conditions 
and the type of feedstock used (Sahota et al. 2018; Zhang et al. 2018a). Some of 
the properties significant for heavy metal removal are inclusive of large surface area, 
high porosity, high cation exchange capacity, a non-carbonized fraction and oxygen-
containing surface functional groups (Mukherjee et al. 2011; Ahmad et al. 2014). 
Application of biochar for removing heavy metals from polluted lands has emerged 
in the recent times (Mohan et al. 2014). 

13.2.1 Feedstock Variation 

Theoretically, biochar could be produced by any type of biomass, but the costs 
of production and the applicability of biomass for compost and biofuel produc-
tion, restrict the range of feedstock for biochar production (Kuppusamy et al. 2016; 
Tripathi et al. 2016). Additionally, feedstock composition and its calorific value are 
determined for biochar production. Some of the feedstock biomasses used for the 
production of biochar are crop residues, kitchen waste, animal litter, poultry litter, 
sewage sludge, rubber tyres and algae (Beesley and Marmiroli 2011; Cantrell et al. 
2012; Lu et al.  2012; Ghani et al. 2013; Xu et al.  2013a; Zhao et al. 2013; Mazac 
2016). Importantly, utilization of waste material for production of biochar would 
assist in waste management by decreasing generation of waste, which could decrease 
the pollution of soil and groundwater, increase the levels of sanitation and reduce the 
number of landfill sites. 

Decreasing the moisture content in feedstock is necessary to increase the feasi-
bility of the thermal treatment of biochar (Bryden and Hagge 2003; Lv et al.  2010). 
Moisture content in the feedstock above 30% depletes the rate of heating, thereby 
increases the time needed to achieve the conditions necessary for thermal treatment. 
Therefore, it is vital to decrease the moisture content in feedstock by drying it through 
natural or human-assisted means. Naturally, it could be dried under the sun or by the 
influence of wind. Feedstock drying through human assistance incorporates use of 
microwave ovens or instruments that generate heat. However, natural ways must be 
preferred to decrease the energy consumption burden, which could help in tackling 
energy security partially. 

Thermal treatment of feedstock decomposes hemicellulose and cellulose at 200– 
315 °C and 315–400 °C, respectively (Sadaka et al. 2014). Lignin decomposition 
occurs beyond 400 °C. Therefore, feedstock rich in hemicellulose and cellulose could 
produce biochar at low-temperature thermal treatment. However, low-temperature 
chars are considered to be less efficient for heavy metal removal because of the low
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surface area, low porosity, less cation exchange capacity and less oxygen-containing 
surface functional groups obtained at lower temperatures (Igalavithana et al. 2017; 
Weber and Quicker 2018; Zhang et al. 2018b). Therefore, high-temperature chars 
are preferred for heavy metal removal purposes due to their high efficiency and 
efficacy. High lignin content in feedstock is necessary to increase the yield of biochar 
production at high-temperature thermal treatments (Angin 2013; Shivaram et al. 
2013). Therefore, feedstocks with less moisture content and high lignin content are 
preferred for the production of biochar for remediating heavy metal-polluted soils. 

13.2.2 Thermal Treatment 

The thermal treatment processes involve thermal conservation of biomass feedstock. 
The different thermal treatment techniques are torrefaction, combustion, gasification, 
carbonization and pyrolysis (Meyer et al. 2011; Zhang et al. 2013). The various 
treatment methods have been summarized in Table 13.1. Low-temperature thermal 
treatment of feedstock in oxygen-depleted conditions is referred to as torrefaction. 
The temperatures are in the range of 200–300 °C. Torrefaction could be used for 
feedstock pre-treatment in gasification to enhance the quality of biochar produced.

Combustion involves direct burning of the feedstock to convert the stored chemical 
energy into thermal energy. However, combustion needs pre-treatment due to the 
low yield of biochar production (McKendry 2002). Gasification involves thermal 
treatment of feedstock at very high temperatures ranging from 700 to 900 °C. The 
feedstock is partially oxidized in gasification and the carbon content is transformed 
into a gaseous product apart from generation of soils and liquid products. Gasification 
results in 85% syngas, 10% biochar and 5% bio-oil as products (Neves et al. 2011; 
Asensio et al. 2013). 

Carbonization is majorly of two types—flash carbonization and hydrothermal 
carbonization. In flash carbonization, feedstock is heated at 350–650 °C and elevated 
pressure for time less than 30 min. Flash carbonization yields syngas and biochar 
in equal amounts (Antal et al. 2003; Asensio et al. 2013). On the other hand, in 
hydrothermal carbonization, the wet biomass is thermally treated at elevated pressure 
and temperature. It results in conversion of wet biomass into hydrothermal carbon, 
i.e. hydrochar, along with the release of energy (Wang et al. 2018b). 

Pyrolysis is the most widely used method for thermal treatment of feedstock. 
Pyrolysis involves thermal treatment of feedstock in oxygen-depleted conditions 
at 300–900 °C. Oxygen-deficit conditions allow feedstock to be heated above the 
thermal stability limits, resulting in formation of biochar with high stability. Addi-
tionally, bio-oil and syngas is also obtained in pyrolysis. As pyrolysis proceeds, the 
heat decomposes and devolatilizes the feedstock constituents. Oxygen-rich func-
tional groups such as hydroxyl and carboxyl are formed on the surface after pyrol-
ysis (Ekström et al. 1985). Pyrolysis could be divided into slow, intermediate or fast 
depending upon the heating rate.
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Table 13.1 Various types of thermal treatment methods for production of solid (biochar), liquid 
(bio-oil) and gaseous (syngas) products 

Treatment 
method 

Feedstock used for 
production 

Products obtained References 

Torrefaction Rice husk, bagasse, 
peanut husk, sawdust, & 
water hyacinth 

Solid Pimchuai et al. (2010) 

Combustion Waste biomass Solid and thermal 
energy 

McKendry (2002), Caillat 
and Vakkilainen (2013) 

Gasification Lignocellulose rich plant 
biomass; Sedum alfredii 

Gas Pröll et al.  (2007), Balat 
et al. (2009), Cui et al. 
(2018) 

Flash 
carbonization 

Woods (Oak & 
Leucaena); agricultural 
waste (corncob & 
macadamia nut shells) 

Gas & solid Antal et al. (2003), 
Asensio et al. (2013) 

Hydrothermal 
carbonization 

Agricultural waste; 
eucalyptus sawdust & 
barley straw 

Solid (Hydrochars) Sevilla et al. (2011), 
Titirici et al. (2012) 

Slow pyrolysis Softwood chip & grass; 
Crop residues 

Solid Onay and Kockar (2003), 
Windeatt et al. (2014), 
Behazin et al. (2016) 

Fast pyrolysis Corn cobs & Stover; Rice 
straw 

Solid & liquid Onay and Kockar (2003), 
Mullen et al. (2010), Eom 
et al. (2013) 

Flash pyrolysis Rapeseed; Sunflower oil 
cake 

Liquid & gas Yorgun et al. (2001), 
Onay and Kockar (2003) 

Slow steam 
pyrolysis 

Vegetal waste, switch 
grass 

Solid & gas Giudicianni et al. (2013)

Feedstock is heated with moderate heating rate at 400–500 °C in slow pyrol-
ysis. Feedstock is heated at 500–650 °C in intermediate pyrolysis. Fast pyrolysis 
involves very rapid heating rate, where feedstock is heated up to 800–1200 °C. Slow 
pyrolysis yields the maximum amount of biochar (Tripathi et al. 2016). Apart from 
treatment temperature and heating rate, pyrolysis also depends upon vapour resi-
dence time, pressure, feedstock particle size and the technique used for production 
such as burning in a kiln or electrical heating in a furnace (Asensio et al. 2013). Rate 
of removal of volatile gases during pyrolysis affects the vapour residence time and 
the occurrence of secondary reactions on the surface of biochar, which consequently 
affects the properties of biochar produced (Meyer et al. 2011). It must be noted that 
pyrolysis is considered as the most efficient and cost-effective technique for biochar 
production (Cha et al. 2016).



322 A. Kumar and T. Bhattacharya

13.3 Biochar Modification Methods 

Application of biochar for removal of contaminants may need improvements for 
better remediation results. Recently, biochar modification has received attention for 
improving remediation performance in char (Alam et al. 2018; Shaikh et al. 2021). 
Some of the modification methods are digestion, oxidation, magnetization and acti-
vation. These methods affect the surface area, porosity, cation exchange capacity, 
pH and surface functional groups of biochar. These properties could be compared 
for the evaluation of heavy metal remediation efficiency in chars. 

For activation of biochar, steam activation is an effective method. The pore volume 
is enhanced and the pore structure becomes complex after biochar activation. Hass 
et al. (2012) reported that steam activation increases the surface area and pH of 
biochar. They stated that steam activation of char prepared at 350 °C is similar in 
efficacy to char prepared at 700 °C in terms of their liming effect. 

Magnetization is another efficient method reported for enhancing the sorption 
potential of biochar. Magnetization renders strong ferromagnetic capacity in biochar. 
Additionally, magnetization is beneficial in terms of the ability for its recollection by 
magnetic separation and reutilization. Chen et al. (2011) prepared magnetic biochar 
by chemical co-precipitation of orange peel powder with ferric and ferrous ions 
followed by their thermal treatment. They reported that the magnetic biochar had 
enhanced pore size and was more potent in removing contaminants. The ferric oxide 
particles on char surface aid in sorption enhancement by providing sites for electro-
static interaction. Wang et al. (2015) prepared magnetic biochar from pinewood 
and reported that the magnetized biochar could be used for removing metallic 
contaminants. 

Oxidation is another method utilized efficiently for enhancing the sorption poten-
tial of biochar. Oxidation is achieved by the addition of oxidants in the pre- or 
post-treatment stages. Some of the oxidants used are hydrogen peroxide, potassium 
permanganate and nitric acid (Xue et al. 2012; Li et al.  2014). Oxidation facilitates 
acidic functional groups to the char surface after treatment. Li et al. (2014) reported 
that nitric acid is more effective for biochar modification by oxidation treatment in 
comparison to potassium permanganate. 

Lastly, digestion is another method used effectively for enhancing the sorption 
capacity of biochar. Anaerobic digestion treatment of feedstock improves the sorption 
capacity of char in comparison to undigested feedstocks. Inyang et al. (2010) modified 
bagasse by anaerobic digestion and observed that the digested chars had greater 
cation exchange capacity, more surface area, surplus negative surface charges and 
higher pH than undigested chars. Similar results were reported by Yao et al. (2011) 
in the beetroot tailings-derived biochar and Inyang et al. (2012) in the dairy manure-
derived biochar. These results are indicative of the enhanced char properties after 
modification by digestion treatment.
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13.4 Properties of Biochar 

13.4.1 Composition 

Biochar composition depends on the composition of feedstock, rate of heating and 
treatment temperatures involved. Feedstock is generally composed of lignin and 
holocellulose, i.e. hemicellulose and cellulose. Thermal treatment decomposes the 
hemicellulose and cellulose in feedstock at 200–315 °C and 315–400 °C, respectively 
(Sadaka et al. 2014), while lignin decomposition occurs beyond 400 °C. Therefore, 
thermal treatment temperature could affect the biochar composition, which could 
affect the physical and chemical properties of biochar. 

Thermal treatment of the biomass results in detachment of oxygen and hydrogen-
containing surface functional groups, resulting in the decrease in their ratios with 
respect to carbon. Hydrogen, oxygen and nitrogen contents decrease with an increase 
in treatment temperature (Sun et al. 2014). Carbon contents increase in biochar at 
high treatment temperatures (Vassilev et al. 2010). The increase in treatment temper-
ature increases the loss of volatile matter by enhancement of devolatilization and 
decomposition of the char matrix. Therefore, the volatile matter decreases at higher 
treatment temperatures in biochar (Pimchuai et al. 2010; Weber and Quicker 2016). 
Elements such as magnesium, calcium and potassium increase in biochar with an 
increase in the treatment temperature (Sun et al. 2014). 

Addition of biochar to soil enhances dissolved organic carbon content. Such an 
enhancement stimulates the activity of micro-organisms in soils. Additionally, there 
is an alteration in redox processes and biochemical reactions. These changes affect 
the impact of biochar on soil contaminants (Beesley and Dickinson 2011; Choppala 
et al. 2012; Qian et al. 2016). Park et al. (2011b) reported that the dissolved organic 
matter increases the mobilization of copper, which could be indicative of a detrimental 
effect of biochar addition. 

With an increase in the treatment temperatures, aromaticity in the char enhances. 
This could be due to thermodynamic stability of aromatic carbon at high treatment 
temperatures (Conti et al. 2014). The aromatic structures help in increasing the heavy 
metal remediation efficiency by enhancing the sorption potential of organic and 
inorganic contaminants (Wang et al. 2016). 

13.4.2 pH and Ash Content 

The removal of the acidic functional groups on the surface of char enhances its 
alkalinity (Fidel et al. 2017). The increase in alkalinity is accompanied by an increase 
in pH of the char. pH values as high as 10–12 are obtained for thermal treatment at 
high temperatures. A high pH enables the char to neutralize acidic soils, thereby 
increasing the availability of arable lands, which could be extremely significant in
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the present context, comprising of a rise in pollution and the need for more food crop 
production. 

Increase in pH of the char could also be an outcome of the rise in the ash content 
at high treatment temperatures. Ash contributes in increasing the alkalinity in animal 
manure biochar. Volatilization of organic acids and removal of acidic functional 
groups contributes in the high pH in the agricultural waste biochar (Wang et al. 2019). 
In comparison to plant biomass-derived biochar, animal-derived biochar has a higher 
carbonate and ash content which could be responsible for the high pH (Rajkovich 
et al. 2012). Therefore, feedstock composition affects the pH of char (Wang et al. 
2019). Ash could be composed of oxides of alkaline and alkali metals such as silicon, 
aluminium, potassium, calcium and magnesium (Vassilev et al. 2013b). High ash 
content could be detrimental for the applicability of the char in industrial applications 
due to the health problems related to ash. 

Ash content regulatesion exchange in the soil matrix, while soil pH and alka-
linity regulate co-precipitation (Wang et al. 2018a). Heavy metals are stable in an 
alkaline environment while unstable in an acidic environment. Addition of biochar 
to soil facilitates the carbonates and oxygen-containing functional groups, thereby 
increasing the pH in the soil making it alkaline. Such alkaline conditions enhance 
the stability of heavy metals. Further, the functional groups provide negative charges 
on the char surface, aiding in heavy metal removal (Yuan et al. 2011). 

13.4.3 Cation exchange capacity 

Majority of the functional groups on surface of the char provide a negative charge, 
indicating its anionic nature. It enables the char to attract the cations. Therefore, 
char produced at low treatment temperature has a high cation exchange capacity 
(Mukherjee et al. 2011). Rajkovich et al. (2012) reported that cation exchange 
capacity is greater in biochar derived from oak, corn stover, or manure than compared 
to biochar derived from hazelnut shells, paper mill waste, or food waste. Cow manure-
derived char has a low cation exchange capacity in comparison to plant biomass-
derived char due to their high ash content and low carbon/nitrogen content (Wang 
et al. 2019). Further, it helps in capturing the contaminants, thereby assisting in 
the remediation of polluted lands. It could also help in reducing the contaminant 
levels in the plants by reducing their availability for plant uptake (Cushman and 
Robertson-Palmer 1998; Liang et al. 2006). 

13.4.4 Surface Area, Porosity and Pore Volume 

The porosity and surface area of char depends on the feedstock used, the treat-
ment temperature involved and the rate of heating (Manna et al. 2020). The thermal 
treatment of feedstock produces a porous biochar by releasing volatile gases and
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decomposition of the biomass matrix. With an increase in treatment temperature, 
porosity of the char increases. However, treatment temperatures above 800–1000 °C 
break the cell structures in the biomass, leading to a reduction in porosity at high 
treatment temperatures (Cetin et al. 2004). Treatment temperatures increase the pore 
volume in biochar (Fu et al. 2012). Furthermore, micropores (0.05–0.0001 µm) form 
volume above 80% in the char. The abundance of pores in biochar helps in sorption 
of heavy metals on the outer sphere and its transport to the inner sphere (Houben 
et al. 2013; Yin et al. 2016). 

With an increase in treatment temperature, surface area of the char increases. 
Similar to the porosity, surface area of biochar decreases at temperatures above 
800–1000 °C (Cetin et al. 2004). The decrease in surface area could be a result of 
shrinking solid matrix (Pulido-Novicio et al. 2001). Cao and Harris (2010) stated 
that the surface area of a char derived from dairy manure is less than a char obtained 
from plant biomass due to the abundance of carbon in its matrix. The abundance of 
organic carbon also enables the char derived from plant biomass to have a very high 
porosity. High porosity and surface area increase the heavy metal removal capability 
of biochar by enhancing the adsorption capacity (Rouquerol et al. 1999). A high 
surface area aids in increasing the cation exchange capacity, water holding potential 
and nutrient retention capacity of biochar (Weber and Quicker 2018). Surface area 
also plays a vital role in affecting the microbial community present in the soil matrix 
by providing pores to the microbes for survival (Igalavithana et al. 2017). The surface 
of biochar could develop both positive and negative charges, which could help in the 
sorption of both positively and negatively charged metal species such as chromium 
and arsenic. This is brought about by the stimulation of microbial processes which 
helps in the promotion of redox reaction in the soil (Solaiman and Anawar 2015). 

13.4.5 Mechanical Stability and Grindability 

Thermal treatment of feedstock decreases its mechanical stability due to an increase 
in the porosity and a decrease in structural complexity of char, i.e. the solid product 
formed after thermal treatment of feedstock (Byrne and Nagle 1997). Biochar 
becomes brittle and grindable due to the decrease in mechanical stability. High hemi-
cellulose content in feedstock produces a highly grindable char. On the contrary, high 
lignin content in the feedstock produces biochar which is less brittle and has high 
mechanical stability (Emmerich and Luengo 1994). 

High mechanical stability could assist the char in replacing coal for industrial 
applications. High stability is also significant for the carbon sequestration for a long 
period of time. The extended stability of biochar in the soil does not have any negative 
impact on the heavy metal removal. In a study by Li et al. (2016), biochar prepared 
from hardwood was applied to cadmium and copper contaminated soils and incubated 
for 3 years. The biochar application reduced the concentration of cadmium and copper 
by 58% and 64% in the 1st year, followed by a further decrease in the 2nd and 3rd
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years. These results are indicative of heavy metal removal from the soil and absence 
of negative impacts of biochar ageing on the soil. 

Grindable nature of char affects its particle size distribution. Particle size affects 
the interaction between the char particles and the soil matrix (Liao and Thomas 
2019). Smaller particle size enhances the surface area and micro-porosity of the 
char, thereby increasing the interaction between char particles and soil (Valenzuela-
Calahorro et al. 1987; Sun et al. 2012a; Xie et al. 2015). It helps in increasing the 
nutrient availability for the plants grown in these soils (Xie et al. 2015). 

13.4.6 Energy Content and Thermal Conductivity 

The increase in carbon content in biochar helps in increasing the energy content 
(Weber and Quicker 2018). The energy content in char (30–35 MJ/kg) produced 
at 700 °C is nearly double the value of the energy levels of the feedstock (15– 
20 MJ/kg) from which the char is prepared. The high energy content could assist in 
its applicability as a source of bioenergy. 

Thermal conductivity of biochar increases with a rise in its density. Increase in 
porosity decreases the thermal conductivity of the char by trapping air in the pores. 
The decrease in thermal conductivity helps the soil in providing soil insulation in 
colder areas. biochar could be used in the construction materials to assist in heat 
insulation and electromagnetic shielding (Usowicz et al. 2006). 

13.4.7 Interaction with Water 

Previous studies have reported contrasting results of the interaction between biochar 
and water. Chun et al. (2004) reported a rise in water-repelling tendency of biochar 
produced at high temperatures. This is seen due to the detachment of oxygen-
containing surface functional groups, polar in nature. As a result of polar group 
detachment, hydrophobicity increases. However, Zornoza et al. (2016) reported that 
low-temperature chars are more hydrophobic in comparison to the high-temperature 
chars. 

Rise in the treatment temperature increases the porosity of char which assists in 
enhancing its water holding capacity (Zhang and You 2013; Gray et al.  2014). Such 
an enhancement of water holding capacity increases the water retaining capability 
of soil. This helps in reducing the water lost due to leaching and increasing the water 
available to plant roots.
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13.5 Heavy Metals and Their Removal 

Metals or metalloids with a potential to affect human and environmental health 
negatively and possesses a specific density above 5 g/cm3 are called heavy metals 
(Järup 2003). Lead, mercury, chromium, arsenic, cadmium, etc. are certain examples 
of heavy metals. They have been involved in vital processes such as cell division, 
redox reaction, enzymatic functioning, protein synthesis and regulation, etc. in the 
living organisms (Pilon-Smits et al. 2009). Additionally, they have been widely used 
by human beings for various domestic and industrial applications (Tchounwou et al. 
2012). 

The excessive use of the heavy metals has resulted in the pollution of land and 
water bodies. The non-biodegradability, high bioavailability and enhanced mobility 
of heavy metals make them toxic to the living beings (Zhang et al. 2013). Heavy 
metals enter the environment by natural (e.g. weathering) and anthropogenic routes 
(e.g. Industrial release, agricultural discharge, metal mining, etc.) and penetrate 
the soil and water bodies equally (Young 1995; Tchounwou et al. 2012). They are 
transported from soil to water and water to soil and do not get self-purified. 

Heavy metals could be taken up by plants and microbes through which they enter 
the animal bodies upon ingestion (Mohammed et al. 2011; Tangahu et al. 2011). 
They trigger chlorosis, necrosis, growth stunting, enzymatic inhibition, photosyn-
thetic stress and reactive oxygen species formation in plants (Stadtman 1990). Heavy 
metals affect the reproductive system, circulatory system, nervous system, digestive 
system and excretory system. Further, they damage the genetic material and could 
be mutagenic (Patra et al. 2006; Tchounwou et al. 2012). 

The persistence and toxicity of the heavy metals have made it impertinent to look 
for remediation methods. The various methods developed are physical, chemical and 
biological in nature (Gunatilake 2015; Khalid et al. 2017). Biochar-based remediation 
has gained attention in the previous decades because of the low costs involved, 
simplicity, high efficacy and efficiency, to minimize the damage caused by the heavy 
metals (Ahmad et al. 2014; Dwibedi et al. 2022). The fate of heavy metals, their 
toxicity manifestations in plants and human beings and their removal from soil have 
been depicted in Fig. 13.1.

It is also important to distinguish the applicability of biochar for heavy metal 
removal in comparison to activated carbons. Activated carbons are prepared by 
oxygen activation of char, which renders them high porosity and surface area. 
However, the properties of porosity and surface area in activated carbons are compa-
rable to biochar (Cao et al. 2011). Further, biochar does not need an additional treat-
ment stage unlike activated carbons and contains surface functional groups rich in 
oxygen, possesses a non-carbonized fraction and a high cation exchange capacity for 
contaminant removal (Ahmad et al. 2012a). Additionally, biochar aids in soil quality 
enhancement, climate change mitigation, energy production and waste management 
(Atkinson et al. 2010; Sohi 2012; Lee et al. 2017b; Sophia Ayyappan et al. 2018). 
The advantages associated with biochar application are indicative for its preferability 
to activated carbons.
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Fig. 13.1 Fate of heavy metals in the environment, their toxic effects in plants and human beings 
and their removal from soil by biochar amendment and phytoremediation

13.5.1 Heavy Metal Remediation Mechanisms 

The properties of high porosity, adequate surface area, alkaline pH, aromaticity 
and oxygen-containing surface functional groups enable biochar remediating heavy 
metals from soil. The various mechanisms are summarized in Fig. 13.2. These 
mechanisms are elaborated in the following passages:

(1) Physical adsorption 
It is also called as van der Waals adsorption and is an outcome of the inter-

molecular interaction between the adsorbent particles and the adsorbate. The 
heavy metals in soil get sorbed on the char surface (Yu et al. 2009; Lou et al. 
2011). The process is reversible in general. High porosity, pore volume, large 
surface area, surface energy, high pH and adequate ionic strength affect heavy 
metal sorption (Zhang et al. 2009; Xie et al. 2011). A high surface area and large 
pore volume facilitate a greater contact between the heavy metals and biochar. 
An increase in pyrolysis temperatures increases the surface area and pore volume 
and consequentially contributes in a greater remediation of heavy metals. Liu 
et al. (2010) prepared chars from switchgrass and pine wood at 300 °C and 
700 °C, respectively. They reported that these chars could immobilize uranium
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Fig. 13.2 Various mechanisms involved in removal of heavy metals 

and copper effectively. Beesley and Marmiroli (2011) stated that biochar could 
immobilize zinc, cadmium and arsenic by physisorption remarkably.

(2) ion exchange 
Exchange of metal ions such as magnesium, potassium and sodium on char 

surface by heavy metal ions is called as ion exchange. It is dependent on 
the chemical properties of char surface. The high cation exchange capacity 
of biochar assists in the process of ion exchange. Cation exchange capacity 
decreases with an increase in pyrolysis temperature and maximum cation 
exchange capacity is seen in chars produced at 250–300 °C (Lee et al. 2010). 
El-Shafey (2010) prepared biochar from rice husks at 175–180 °C and reported 
that mercury and zinc were effectively removed by these chars via ion exchange 
mechanism. Liu et al. (2010) observed that char prepared by pyrolysis possess 
greater surface area in comparison to hydrothermal chars. The greater surface 
area assists in copper removal by ion exchange and sorption. They also stated 
that ion exchange removes heavy metals more effectively in comparison to sorp-
tion. Sánchez-Polo and Rivera-Utrilla (2002) demonstrated that ion exchange is 
related to soil pH. When soil pH is less than biochar pH at point of zero charge, 
greater amount of heavy metals are removed via ion exchange. 

(3) Electrostatic attraction/repulsion 
Electrostatic interaction between cations (metal pollutants) and anionic char 

surface is involved in heavy metal remediation (Xu et al. 2011). Metal exchange
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between cations on char surface and heavy metals results in electrostatic outer 
sphere complex formation thereby aiding in heavy metal remediation (Ahmad 
et al. 2014). Electrostatic interaction depends on factors such as soil pH, point 
of zero charge of biochar, valency and ionic radius of the metallic contam-
inant (Dong et al. 2011; Mukherjee et al. 2011). Qiu et al. (2008) reported 
that chars derived from rice and wheat straw is more effective remediator than 
activated carbon as a result of the electrostatic interaction between lead ions 
and the char surface. Peng et al. (2011) stated that the increase in soil pH and 
cation exchange capacity after biochar addition results in enhanced electrostatic 
interaction consequentially boosting heavy metal remediation. 

(4) diffusion 
A significant distinguishing feature between biochar and activated carbon is 

presence of non-carbonized phase in biochar. The contaminants diffuse not only 
into the non-carbonized portions of the char but also in the carbonized portions 
(Xu et al. 2012). 

(5) Complexation 
Biochar surface has abundant oxygen-containing functional groups such 

as hydroxyl and carboxylic groups. These functional groups form surface 
complexes with heavy metals (Park et al. 2011a; Tong et al. 2011). Biochar 
prepared at lower treatment temperatures consists of greater number of these 
functional groups. Further, oxidation of the char surface could result in an 
increase in the surface functional groups (Harvey et al. 2011). Stable complexes 
could be formed between lead ions and hydroxyl/carboxyl groups (Cao et al. 
2011; Lu et al.  2012). Dong et al. (2011) reported surface complexation as 
the main mechanism in chromium removal by biochar derived from sugar beet 
tailings. Further, smaller ionic radius of the metals aid in the enhancement of 
remediation (Wan Ngah and Hanafiah 2008). 

(6) precipitation 
precipitation is another mechanism through which biochar immobilizes the 

heavy metals and insoluble precipitates such as carbonates and phosphates are 
formed (Shen et al. 2015, 2017). Cao and Harris (2010) prepared biochar by 
thermal treatment above 300 °C and observed that these chars could be used 
for heavy metal removal by precipitate formation. In the study, lead formed 
lead-phosphate-silicate precipitates in the alkaline biochar. Cao et al. (2011) 
investigated lead immobilization by cow manure-derived biochar. These chars 
have high ash content, which is rich in magnesium, silicon, potassium, phos-
phorus and sodium. The phosphates could form insoluble precipitates with 
heavy metals, such as pyromorphite is formed with lead. Xu et al. (2013b) inves-
tigated cadmium, zinc, copper and lead removal by biochar derived from cow 
manure and rice husk and observed that precipitation, in the form of carbonate 
and phosphate precipitates, is the main mechanism involved in their removal. 

(7) Hydrogen bond formation 
Formation of hydrogen bonds could also be involved in the removal of heavy 

metals. Contaminants form hydrogen bonds with the oxygen-containing func-
tional groups present in abundance on the surface of biochar. Some of these
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functional groups are phenol, hydroxyl and carboxyl. Sun et al. (2011, 2012b) 
stated that organic contaminants could form hydrogen bonds with the surface 
functional groups available on the char. 

The properties of biochar are dependent upon the feedstock type and thermal 
treatment conditions, as previously stated. Different types of biochar could be used 
for different remediation performances and it would be difficult to pinpoint a biochar 
for universal heavy metal removal. Some of the biochars used for removal of heavy 
metals have been represented in Table 13.2. Further, biochar incorporates different 
types of mechanisms for removal of heavy metals from contaminated soil as previ-
ously discussed, and a universal specific mechanism cannot be pointed. Biochar could 
affect the mobility and bioavailability of different heavy metals when amended to 
the contaminated soils. Therefore, heavy metal type and biochar properties must be 
considered before using the biochar for soil amendment to remove heavy metals. The 
impact of biochar on mobility and bioavailability of heavy metals in soil is discussed 
in the following sections.

13.6 Impact of Biochar on Mobility of Heavy Metal 

Applying biochar to contaminated soils decreases the mobility of heavy metals 
present in these soils. This helps in decreasing the metal taken up by the plants grown 
in contaminated soils. Previously, it has been reported that bamboo-derived biochar 
could help in adsorption of heavy metals such as cadmium, copper, chromium, 
mercury and nickel from contaminated soils (Skjemstad et al. 2002; Cheng et al. 
2006). In a study by Cao et al. (2009), biochar prepared from dairy manure at 200 °C 
was more effective in lead sorption when compared to biochar prepared from dairy 
manure at 350 °C. They stated that this could be an outcome of higher soluble 
phosphate concentration in biochar prepared at 200 °C. 

Beesley et al. (2010) investigated the impact of biochar prepared from hardwood 
on mobility of cadmium and zinc in contaminated soils and reported that the chars 
reduced the heavy metals in pore water. In another study by Beesley and Marmiroli 
(2011), biochar amendment immobilized zinc and cadmium in the contaminated 
soils. The concentration of zinc and cadmium decreased by 300 and 45 times, respec-
tively in the pore water. Namgay et al. (2010) investigated impact of biochar applica-
tion on mobility of heavy metals and reported an increase in zinc and arsenic concen-
tration, a decrease in lead concentration, an irregular trend in cadmium concentration 
and an absence of change in copper concentration. 

There could be involvement of redox processes between biochar and heavy 
metals, which could help in decreasing leaching of the heavy metals. Choppala 
et al. (2012) prepared biochar using chicken manure as feedstock and applied the 
chars to chromium-contaminated soils. They reported that chromium (III) ions are 
sorbed on cation exchange sites on biochar. Additionally, chromium precipitates as 
chromium hydroxides which help in chromium reduction. Therefore, biochar helps in
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Table 13.2 Variation in feedstock and treatment temperature for removal of heavy metals 

Feedstock Treatment temperature 
(°C) 

Remarks References 

Bamboo 500 Cadmium, Lead, Zinc, 
Copper (maximum 
removed—49%) 

Lu et al. (2014) 

Broiler litter 700 Cadmium, Nickel, Zinc, 
Copper (maximum 
removed—75%) 

Uchimiya et al. (2011a) 

Chicken manure 550 Cadmium, Lead 
(maximum 
removed—94%) 

Park et al. (2011a) 

Dairy manure 450 Lead (sorption 
capacity—132.81 mg/g) 

Cao et al. (2011) 

Miscanthus 600 Cadmium, Zinc, Lead 
(maximum 
removed—92%) 

Houben et al. (2013) 

Rice straw 500 Zinc, Copper, Cadmium, 
Lead (maximum 
removed—71%) 

Lu et al. (2014) 

Sewage sludge 500–550 Lead, Nickel, Cobalt, 
Chromium, Arsenic 
immobilization; 
Cadmium, Zinc, Copper 
mobilization 

Khan et al. (2013) 

Cottonseed hulls 200–800 Cadmium, Lead, Nickel, 
Copper removed by 
sorption, complex 
formation, precipitation 
and electrostatic 
interaction 

Uchimiya et al. (2011b) 

Hard wood NA Cadmium and Zinc 
removal; Arsenic 
mobilization 

Beesley and Marmiroli 
(2011) 

Oak wood 400 Bioavailability reduction 
of Lead by 76% 

Ahmad et al. (2012b)

reducing chromium (VI) ions to chromium (III) ions, thereby resulting in a decrease 
in chromium leaching (Bolan et al. 2013). The long-term existence of biochar in soil 
as a result of its excellent stability triggers changes in physicochemical properties 
of the char. Biochar ageing results in the oxidation of its surface, thereby increasing 
in the presence of oxygen-containing functional groups. Such a process could be 
accompanied by an increase in the cation exchange capacity and surface negative 
charges in biochar. These processes help in heavy metal immobilization (Wang et al. 
2019).
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Biochar application to soil could need amendments in certain cases. For example, 
arsenic (V) could get reduced to arsenic (III) by biochar application, consequentially 
increasing its mobility (Ahmad et al. 2014). Therefore, such a scenario could ask 
for amendments in biochar. Warren et al. (2003) stated that magnetization of biochar 
by iron oxide treatment could help in anion exchange thereby reducing the arsenic 
mobility in soil. Interestingly, reduction of heavy metals by biochar addition could be 
helpful in decreasing its toxicity in most of the cases. Choppala et al. (2016) reported 
that chromium (VI) is reduced to chromium (III) by biochar addition, which helps 
in decreasing their toxicity and bioavailability. The study also observed an increase 
in mobility of arsenic by its reduction from arsenic (V) to arsenic (III) when biochar 
was added to the soil. 

Furthermore, efficiency and efficacy of biochar application could be affected by 
the soil type. In a study by Shen et al. (2016a, b), biochar prepared from hardwood 
was applied to contaminated sandy soil and lead-contaminated kaolin. They reported 
that the biochar application reduced zinc and nickel concentrations in sandy soil. 
However, no major effect was observed on lead mobility in kaolin. 

13.7 Impact of Biochar on Bioavailability of Heavy Metal 

The bioavailability of heavy metals regulates its potential to cause toxicity in soil the 
risks associated with its entry in food chain and its accessibility by the organisms 
thriving in the soils (Naidu et al. 2008). Additionally, the bioavailability of heavy 
metals determines their degradation potential and ecotoxicology (Zhang et al. 2013). 

Application of biochar aids in immobilization of heavy metals in soils, which 
decreases their phytotoxicity and bioavailability. In a study by Fellet et al. (2011), 
biochar was prepared from orchard prune residues and applied at rates varying from 
1 to 10% to decrease the toxicity caused due to heavy metals in the mine tailings. 
They reported that there was an increase in water retention, cation exchange capacity 
and pH in the soils. Further, there was a decrease in bioavailability of cadmium, zinc 
and lead, with maximum decrease in cadmium. Zhou et al. (2008) prepared biochar 
using cotton stalks and applied them in contaminated soils to reduce cadmium uptake 
in cabbage plants. They reported that bioavailability of cadmium in soil was reduced 
by using co-precipitation and sorption. 

Méndez et al. (2012) prepared biochar using sewage sludge and used them to 
decrease the solubility and bioavailability of heavy metals in soils. They reported that 
biochar diminished the bioavailable nickel, zinc, cadmium and lead in the agricultural 
soils. Park et al. (2011a, b) prepared biochar using green waste and chicken manure 
and reported that they decreased copper, lead and cadmium uptake in mustard plants. 
In a study by Jiang et al. (2012), biochar prepared using rice straw immobilized copper 
and lead more efficiently than cadmium. It is, therefore, clear that biochars prepared 
from different feedstock at different treatment temperatures are differently potent 
in immobilization of heavy metals. Namgay et al. (2010) prepared biochar using 
activated wood and applied them to heavy metal contaminated soils. They observed
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that there is a decrease in arsenic, cadmium and copper concentrations in the shoots 
of maize plants. However, the results on lead and zinc removal were inconclusive in 
the study. 

pH of soil has been reported to be correlated to heavy metal bioavailability. 
Uchimiya et al. (2010) investigated the impact of biochar amendment in soils and 
reported that biochar increases the pH and cation exchange capacity of soil, thereby 
increasing heavy metal immobilization in soils. Ahmad et al. (2012b) reported a 
decrease in bioavailability of lead by 76% from contaminated soils in military 
shooting ranges by biochar application. They stated that biochar increases the pH of 
soil and the sorption potential, thereby aiding in heavy metal remediation. Beesley 
and Marmiroli (2011) investigated the impact of biochar prepared from fruit trees 
to remediate a naturally contaminated soil. They stated that biochar effectively 
decreased the heavy metal concentrations in soil and organic carbon content could 
have an important impact on decreasing heavy metals bioavailability. 

13.8 Remediation of Polluted Sites by Application 
of Biochar 

Studies have been conducted in various parts of the world to determine the efficiency 
and efficacy of biochar amendment for heavy metal removal from polluted soils. 
Koetlisi and Muchaonyerwa (2019) prepared biochar from different feedstocks such 
as pine bark and human faecal products. They reported that these chars could be used 
to effectively remove copper, chromium and zinc from industrial effluents in South 
Africa so that soil contamination could be reduced. Gwenzi et al. (2016) prepared 
biochar by using sewage sludge to study their impact on soil properties, plant growth, 
nutrient uptake and heavy metal removal from tropical clayey soils in Zimbabwe. 
They reported that biochar could decrease the copper, lead and zinc concentrations 
in these soils. 

In a study by von Gunten et al. (2019), biochar was prepared from Tibouchina 
wood and applied to ferralsol in Brazilian forests. They observed that mobility of 
magnesium, calcium, potassium, barium and zinc concentrations in soil increased 
after biochar application. Puga et al. (2015) prepared biochar using sugar cane straw 
at 700 °C for amending Brazilian mine soils contaminated with heavy metals. They 
reported that biochar application reduced cadmium, lead and zinc concentrations in 
the pore water and the plants grown on these soils. Rodriguez et al. (2019) prepared 
biochar from corncobs for utilization as a lead-contaminated soil amendment. They 
observed that the biochar could immobilize lead in these Colombian soils. However, 
the immobilization is not that effective due to the extreme contamination of the soils. 

Rees et al. (2014) investigated the short-term impact of biochar produced in 
Germany on heavy metal mobility in French soils. They concluded that biochar could 
immobilize lead, copper, zinc and cadmium in soils by increasing the pH of the soil 
and intra-particle diffusion in the biochar matrix. In a study by Beesley et al. (2014),
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biochar was prepared from orchard prunings at 500 °C and applied to contaminated 
mine soils in Spain. They reported that biochar could effectively remediate heavy 
metals from the soils. Further, they stated that mixing biochar with compost could 
enhance the efficacy of heavy metal immobilization and toxicity reduction. 

In  a review by He et al.  (2019), it was concluded that biochar could be applied to 
Chinese soils to effectively minimize heavy metal contamination. The remediation 
potential is dependent on the properties of biochar and soil used. Further, biochar 
application could reduce the heavy metal accumulation in plants. Mohan et al. (2018) 
prepared biochar using corn stover and rice husk at 550 °C and 650 °C and observed 
that biochar could be applied in Indian soils to improve their productivity and remove 
heavy metals from the soil sustainably. Choudhary et al. (2017) prepared char using 
eucalyptus bark at 500 °C and highlighted their potential in effective chromium reme-
diation from groundwater, wastewater and soil in India. Hina et al. (2019) prepared 
biochar using rice husk and plant waste as feedstock to immobilize arsenic from 
soils in Pakistan. Rice husk char was more effective for lower arsenic contamination, 
while plant waste char was more efficient in higher arsenic concentrations. Mazhar 
et al. (2020) reported that biochar could be applied to soils in Pakistan to improve the 
plant growth parameters and effective removal of chromium. Bandara et al. (2017) 
prepared biochar using wood as feedstock and applied them to soils in Sri Lanka to 
effectively remove chromium, nickel and manganese from the soils. 

Samsuri et al. (2013) prepared biochar from rice husk and empty oil palm fruit 
bunch and used them to remove arsenic from Malaysian soils. Fahmi et al. (2018) used  
biochar derived from empty fruit bunch and demonstrated that they could remove 
cadmium and lead from soils in Malaysia. Mulder (2014) used biochar to remove 
heavy metals from Malaysian and Indonesian soils. Dang et al. (2019) prepared 
biochar from rice straws and applied them to contaminated soils in Vietnam. They 
reported that these chars could be used to remove zinc, cadmium, and lead from these 
soils. Saengwilai et al. (2020) used organic amendments to immobilize cadmium 
from the polluted soils in Thailand. Therefore, various studies across the globe have 
prepared biochar using different types of feedstocks at varying thermal treatment 
conditions. These chars have effectively decreased the mobility and bioavailability 
of heavy metals from polluted soils across the globe. 

13.9 Applications of Biochar Other Than Heavy Metal 
Removal 

The char properties of oxygen-containing surface functional groups, good porosity, 
surface area, high carbon content and remarkable energy content facilitate its wide-
ranging applications, which could help in tackling the issues of climate change, 
energy security, food security and waste management simultaneously. 

Waste biomass could be used as feedstock for biochar production. Examples 
of waste biomass include agricultural residues, food waste, kitchen waste, animal
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manure, sewage sludge, municipal solid waste and others (Cao and Harris 2010; van  
Zwieten et al. 2010; Yargicoglu et al. 2015; Kumar et al. 2016; Lee et al. 2017b). 
Further, the biochar could be used for decreasing the mobility and bioavailability of 
heavy metals consequently reducing their plant uptake and toxicity (Cui et al. 2012; 
Hmid et al. 2014). Thermal treatment of the waste biomass would also help in killing 
the prevalent microbes which could be harmful to the environment and human health 
(Dahal et al. 2018). Therefore, biochar production would help in waste management 
and risk reduction at the same time. 

Biochar helps in carbon sequestration. The carbon content available in biomass is 
converted to stable forms by thermal treatment in biochar. Carbon captured in biochar 
could check carbon dioxide release by 0.3 billion tonnes every year (Liu et al. 2015). 
Biochar has a very high stability in soil (Singh et al. 2012). Further, biochar could 
capture methane and nitrous oxide thereby helping in their emission reduction (van 
Zwieten et al. 2010; Yaghoubi et al. 2014; Edwards et al. 2018). It has also been 
reported that biochar could stimulate the activity of micro-organisms and help in 
suppressing the greenhouse gas emissions (Castaldi et al. 2011; Liu et al. 2014a, b). 
In a study by Spokas et al. (2009) and Al-Wabel et al. (2013), it was observed that 
biochar prepared at thermal treatment temperatures of 500 °C and above decreases 
the greenhouse gas emissions, consequentially mitigating climate change. 

Thermal treatment of biomass produces syngas, bio-oil and biochar in different 
concentrations depending on the feedstock variation and thermal treatment condi-
tions. Bio-oil is produced in large quantities in fast pyrolysis, while gasification 
produces syngas in abundance (Mohan et al. 2006; Lombardi et al. 2015). Biochar 
could be utilized as catalyst for biodiesel production (Lee et al. 2017a). The presence 
of surface functional groups in char help in metal sorption and aid in the functioning 
of biochar as catalysts (Titirici et al. 2012; Cheng and Li 2018). The various sources 
of bioenergy could be used to replace fossil fuels, consequentially decreasing the 
greenhouse gas emissions and aid in climate change mitigation. Biochar production 
could, therefore, help in solving energy security issues to a certain extent. 

The properties of high carbon content and remarkable water retention capacity in 
biochar promote its utilization as soil conditioner to tackle water deficit situations 
(Bryant 2015; Nichols 2015). Biochar application minimizes the nutrient loss from 
soil (Sohi et al. 2010). Alkaline conditions introduced by biochar into soil help in 
neutralizing the acidic conditions. Further, biochar application stimulates microbial 
communities in soil and the associated microbial activity (Lehmann et al. 2011). 
Microbes oxidize the char surface thereby increasing oxygen-containing functional 
groups and the cation exchange capacity of the soil matrix. These changes help 
in increasing nutrient retention by soil, correspondingly enhancing the growth in 
plants. Various studies have stated that biochar application increase crop yield by 
facilitating nutrients to the plant roots (Steiner et al. 2009; Vassilev et al. 2013a; 
Houben et al. 2014; Siebers et al. 2014). Biochar could be used to decrease the 
time needed for composting and increase the value of compost (Awasthi et al. 2017; 
Sanchez-Monedero et al. 2018). All of the aforementioned changes help in improving 
crop yield, consequently solving the problem of food security partially.
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Apart from removal of heavy metals from soil, biochar could also help in removing 
organic contaminants from environment (Beesley et al. 2011; Ahmad et al. 2014). 
Soils contaminated with oil and petroleum could be treated by biochar amendment 
(Wang et al. 2017; Kandanelli et al. 2018). Biochar supports microbial population 
growth in its pores and on its surface, which assists in hydrocarbon degradation. 
Biochar could also be utilized for dye degradation and remediation (Nautiyal et al. 
2016; Sophia Ayyappan et al. 2018). The surface area and high pH of biochar could 
help in removing hydrogen sulphide from biogas (Sahota et al. 2018). 

13.10 Advantages and Risks Associated with Biochar 
Production and Application 

Apart from the various applications, biochar production and its use has a number 
of advantages. Biochar is cheaper than activated carbons and does not require addi-
tional activation steps. Additionally, biochar has a rich surface oxygen-containing 
functional groups, a non-carbonized fraction and a great cation exchange capacity, as 
stated previously. These enhanced properties aid in enhanced contaminant removal 
(Cao and Harris 2010; Ahmad et al. 2012a; McCarl et al. 2012). Further, biochar 
supports the growth of microbial colonies, consequently enhancing food chain in the 
soil (Pietikäinen et al. 2000). Additionally, they enhance the water retention capacity 
in soil aiding in nutrient retention and crop growth (Ventura et al. 2013; Yu et al.  
2013). 

However, there could be risks associated with biochar production and applica-
tion. There could be presence of contaminants such as heavy metals and polycyclic 
aromatic hydrocarbons in the feedstock used for biochar production (Hossain et al. 
2007). Risks associated with these contaminants could, however, be removed by 
thermal treatment at 500 °C and above (Verheijen et al. 2010). Interestingly, in a study 
by Gong et al. (2018), it was observed that heavy metals in plants used for phytore-
mediation could be stabilized by charring. Further, chars prepared from such plants 
could be used for remediation of polluted sites. The ash content in chars could be a 
threat to human health (De Capitani et al. 2007). However, health safety guidelines, 
during production and application of char, could be enforced to minimize and remove 
the risks associated with ash. Biochar could sorb agro-chemicals, such as pesticides 
and herbicides, thereby decreasing their potential to increase the crop yield. However, 
such a sorption could help in immobilizing excess agrochemicals in soil (Sun et al. 
2012b). In a few studies, biochar has been reported to negatively affect earthworms 
and increase nitrous oxide emissions (Topoliantz and Ponge 2003; Warnock et al. 
2007; Angst et al.  2014; Verhoeven and Six 2014). However, wet biochar could be 
applied to minimize the damage to earthworms (Li et al. 2011). Therefore, risks 
associated with biochar production and application do prevail, but the risks could 
be minimized by appropriate steps taken and guidelines properly enforced. Further,
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the need for extensive research arises with regard to biochar production and their 
application. 

13.11 Future Research 

Although biochar has been used for remediation of heavy metals from a number 
of polluted sites, there is a lot of scope for future research. These opportunities are 
mentioned in the following points: 

(1) Due to the variation in properties and performance of biochar produced from 
different feedstock and thermal treatment conditions, there is a need to establish 
a global standard for obtaining maximum advantage in terms of remediation of 
polluted sites. 

(2) Most of the studies have been small-scale and limited to laboratories and tiny 
agricultural lands. Further, the experiments have been focussed on single heavy 
metal removal. However, real-time metal pollution involves multiple heavy 
metals and occurs on large areas of land. Therefore, there is a need for extensive 
research involving multiple heavy metal contamination. 

(3) The complexity of soil systems brings about variation in biochar efficiency 
from remediation. The mechanisms involved in the metal removal could be 
studied extensively to bring clarity in remediation of polluted sites by biochar 
application. 

(4) The dose and rate of biochar application in metal-polluted sites need further 
optimization. Additionally, the suitability of biochar could be determined for 
targeted and specific removal of heavy metals. 

(5) Emergence of extreme weather events in the scenario of climate change, enquire 
for identification and confirmation of their impact on the efficacy and efficiency 
of biochar performance for heavy metal removal. 

13.12 Conclusion 

Biochar could be a sustainable alternative for effective and long-term removal of 
heavy metals from polluted lands. Biochar could be produced from wide-ranging 
biomass sources and a number of thermal treatment methods are employed for its 
preparation. Biomass type and thermal treatment conditions affect the properties 
of char produced. Properties of alkaline pH, high cation exchange capacity, high 
surface area, high porosity, abundant oxygen-containing surface functional groups 
and a non-carbonized fraction, enable the biochar to remove heavy metals from the 
soil. Biochar incorporates mechanisms such as ion exchange, precipitation, diffusion, 
complex formation, electrostatic interaction and sorption, for the removal of metal 
pollutants from soil. Biochar decreases the mobility and bioavailability of heavy 
metals, thereby minimizing their toxic effects. The potential of biochar for heavy
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metal removal has been tested in different studies conducted across the various parts 
of the globe and biochar was found to be effective in the remediation of heavy metal 
polluted sites. 

Biochar could also be used for removing the organic contaminants from soil. 
Utilization of waste biomass assists in waste management and waste reduction. 
Enhancement of crop production can help in tackling issues of food security. Removal 
of contaminants from soil and water makes it safe for the animals and human beings. 
Extended stability of biochar in soils reduces the safety concerns. Biochar production 
could help in producing bioenergy which could be used as an alternative to fossil 
fuels. Biochar production would help in solving the problem of energy security and 
depleting fossil fuel reserves. Biochar would help in the mitigation of climate change 
by carbon sequestration and reduction in emission of greenhouse gases. Therefore, 
biochar could be a promising method for remediation of polluted sites and tack-
ling the various problems endangering the environment and human health. Govern-
ment of various countries could assist the scientists by providing them grants for 
research and they could commence policies to boost the production and applica-
tion of biochar. Lastly, the risks associated with biochar production and application 
should be acknowledged and minimized for helping the society in the longer run. 
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