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Abstract Fly ash (FA) is an inevitable byproduct from the coal-fired thermal power 
plants that need timely, effective and safe disposal in many developing countries. It 
is an amorphous ferro-alumino silicate material similar to soil having practically all 
the elements except organic carbon, nitrogen and phosphorous. Although in many 
developed countries its use has reached saturation but technologically-starved poor 
countries are still lagging far behind in its resourceful use. Its use in cement-concrete, 
and land and mine filling have been widely accepted but in agriculture, this chemically 
heterogeneous material deserves cautious consideration. At low concentration, FA 
alters soil physicochemical properties and thus, acts as soil ameliorant or conditioner. 
However, its use at higher rate is restricted due to presence of heavy metals that 
affect soil biosphere and limits plant growth. Hence, remediation of toxic metal 
ions for sustainable agricultural intervention is a prerequisite in FA-contaminated 
soils or dumpsites. Like phytoremediation, earthworms with unique accumulation, 
extraction, transformation, conversion, degradation and stimulation properties could 
also be engaged in remediation of FA. In this chapter, attempts have been made to 
elucidate various mechanisms and processes involved in vermiremediation, and the 
advantages, disadvantages and future prospects of this innovative technology. 

Keywords Amendment · Bioaccumulation · Earthworm · Fly ash · Heavy metal ·
Vermiremediation 

10.1 Introduction 

With the burgeoning global population, the demands for food have increased tremen-
dously over last few decades beyond the yielding ability of many crops. Increase in
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the current global food production for feeding the teaming millions is the greatest 
challenge before us (Dwibedi 2018). The pressure on land for higher productivity 
per unit area and time is increasing day by day, resulting in more dependence on 
chemical fertilizers, synthetic pesticides, hormones and probiotics at the cost of 
environmental health and sustainability. The land is degrading and becoming less 
productive which needs bio-physical amelioration for bringing back to its pristine 
conditions. Furthermore, the greed for energy, under the veil of pseudo civilization, 
prosperity and economic development, has been driving us towards peril (Dwibedi 
and Sahoo 2017). 

Although the global primary energy consumption in 2018 recorded sharp decline 
in coal share (27%), it still ranks next to petroleum oil (34%) (International Energy 
Agency 2020). However, other alternative energy sources such as nuclear and 
hydrothermal power require sophisticated technologies and huge initial investments 
that are beyond the reach of many developing countries. Therefore, production of 
ash (bottom and fly ash), is an inevitable byproduct from the coal-fired thermal 
power plants that need safe, timely and effective disposal. Combustion of pulverized 
sub-bituminous coal (lignite) in thermal power plants results in generation of this 
end-residue (Basu et al. 2009). Fly ash (FA) is an amorphous ferro-alumino silicate 
material similar to soil with all the elements except organic carbon, P and N (Tripathy 
and Sahu 1997; Pandey and Singh 2010; Pandey 2020a, b, c, d). It has been cate-
gorized ‘under high volume low effect waste under Hazardous Waste (Management 
and Handling and Trans-boundary Movement) Rules, 2008’ (Parab et al. 2012). Its 
production along with power generation in thermal power plants over decades of 
economic developments, both by developed and developing countries has been a 
necessary evil. This problematic ‘solid waste’ across the globe has now acquired 
the status of ‘resource material’ due to innovative uses in cement-concrete, land and 
mine filling, agriculture, etc. Its utilization in European countries is almost 100% 
while in developing countries like India lower percentage is being utilized in spite 
of its higher production (Dwibedi and Sahoo 2017). 

10.2 Properties of FA 

The physical, chemical and mineralogical properties of FA (Fisher et al. 1978; Page 
et al. 1979; Adriano et al. 1980; Carlson and Adriano 1993; Pandey 2020a) depend 
on the quality of coal, extent of thermal combustion and storage-handling methods. 
Therefore, ash compositions vary with burning of anthracite, bituminous and lignite 
coals. Elements present in coal are intense in FA. Physically, FA is very fine with 
mean diameter of <10 µm, light in texture. It has low to moderate bulk density (BD) 
and more surface area. Its water holding capacity is of 49–66% on the weight basis 
(Sharma and Kalra 2006). Its pH ranges from 4.5 to 12 largely depending on the S 
content in the coal. FA is chemically heterogeneous in nature as it contains variable 
proportions of different trace and heavy metals such as Be, B, Cd, Cr, Co, Hg, Mo, 
Mn, Pb and oxides Al, Ca, Fe and Si.
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Incorporation of FA alters physicochemical properties of soil and works as soil 
conditioner or modifier (Kalra et al. 1998; Pandey and Singh 2010; Pandey 2020b). 
It alters the texture of soil (Kalra et al. 2000), reduces BD and increases porosity, 
water holding capacity and aeration due to its silty nature. Kuchawar et al. (1997) and 
Bhaisare et al. (1999) have shown an increase in cation-exchange capacity (CEC) as 
a result of FA amendment in soil. It also improves soil bacteria count and enzyme 
activity viz. dehydrogenase, urease and alkaline phosphatase that promote plant 
growth (Yeledhalli et al. 2007). Comparative physicochemical properties of soil and 
FA, and also FA in combination with press mud (PM) have been depicted under Table 
10.1 (Singh and Pandey 2013). 

According to the Intergovernmental Panel on Climate Change (IPCC), lime appli-
cation for soil amelioration releases carbon dioxide (CO2) gas which ultimately adds 
to global warming. In United States of America, the Environment Protection Author-
ities (EPA) has estimated emission of 9 Tg (teragram = 1.012 g = 106 t) of CO2 from 
an approximate 20 Tg of agricultural lime applied in 2001. FA could be the befitting 
substitute for it minimizing global warming process (West and McBride 2005). It 
has also been estimated that 1 tonne of FA has the ability to sequester up to 26 kg of 
CO2 (i.e. 38.46 tonnes of FA per tonne of CO2 sequestered). 

10.3 Verms as Bioreactor 

Earthworms, regarded as the intestine of earth (Aristotle), are the terrestrial inver-
tebrates, belonging to the phylum Annelida, and class Oligochaeta and they have 
more than 3000 species across the globe (Berridge 2020). They act as bioreactors 
in recycling the organic wastes to reusable plant nutrients at a very low or marginal 
cost of production and because of that, they act as ‘farmers’ friends’. Wastes from 
the agricultural field after harvest, and urban and rural solid organic wastes can very 
well be used in vermicomposting. Vermicomposting of agricultural residues and its 
effects on plant growth, microbial population and nutrient transformation at different 
concentrations in soil rhizosphere have been studied with much attention and interest. 

10.4 Research Status on FA Use and Vermiremediation 

The research on FA use began in late 1970s to evaluate its suitability for improving soil 
environment and increasing crop productivity (Dwibedi and Sahoo 2017). In devel-
oped countries, its utilization is more than 70% but in developing countries; it is still 
less than 5%. FA may be applied as soil amendment along with organic substrates such 
as farmyard manure, compost and microbial culture. A lot of research on use of FA 
in agricultural crops such as rice, maize, grams, beans, vegetables, etc. in pot culture 
and field trials has already been conducted. Its far-reaching consequences on soil 
bio-physicochemical properties have also been evaluated in long-term experiments.
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Table 10.1 Comparative ash/soil properties with different levels of FA treatment 

Characteristics FA Soil 

(A) Physicochemical properties of Indian fly ash and soil (source Kumar et al. 2000; Goyal  
et al. 2002) 

Bulk density (g 
cc−1) 

<1.0 1.33 

Water holding 
capacity (%) 

35–40 <20 

Porosity (%) 50–60 <25 

K (%) 0.19–3.0 0.04–3.0 

P (%) 0.004–0.8 0.005–0.2 

S (%) 0.1–1.5 0.01–0.2 

Metals (mg 
kg−1) 

Zn 14–1000 2–100 

Mn 100–3000 100–4000 

Fe 36–1333 10–300 

Cu 1–26 0.7–40 

B 46–618 0.1–40 

(B) Soil properties and metal composition as influenced by combined application of FA and 
press mud (PM) (source Singh and Pandey 2013) 

Treatments 
parameters 

Control PM + FA (10 t 
ha−1) 

PM + FA (50 t 
ha−1) 

PM + FA (100 t 
ha−1) 

P value 

Soil properties 

pH 6.9 ± 1.3 7.1 ± 1.6 8 ± 1.8 8.3 ± 1.5 <0.01 

EC (ds m−1) 2.4 ± 0.7 3.5 ± 0.2 6.3 ± 0.6 6.9 ± 0.8 <0.01 

Soil moisture 
(%) 

17.2 ± 1.2 25.7 ± 2.2 28.4 ± 2.3 28.5 ± 2.1 <0.01 

Inorganic-N 
(NH4-N and 
NO3-N) 

32 ± 1.2 22.2 ± 1.3 26.2 ± 1.3 26.6 ± 1.3 <0.01 

Metal (µg−1) 

Cr 3.68 ± 0.33 4.37 ± 0.23 5.64 ± 0.48 7.6 ± 0.63 <0.01 

Cd 1.8 ± 0.06 2.43 ± 0.19 3.6 ± 0.63 4.12 ± 0.45 <0.01 

Cu 4.34 ± 0.58 5.23 ± 0.33 6.23 ± 0.48 7.89 ± 0.23 <0.01 

Ni 5.52 ± 0.46 7.2 ± 0.33 9.06 ± 0.35 12.21 ± 0.42 <0.01 

Methanotrophs 
number (× 
104 g−1 of soil) 

23.4 ± 6.1 53 ± 11.5 29.4 ± 6.1 25.2 ± 6.1 <0.05 

Modified from Source Bhattacharya and Kim (2016)
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The role of FA in reclamation of acidic and sodic soils has been well acclaimed. Its 
utilization in agriculture has been a proven support as it improves physicochemical 
properties of soil resulting in better fertility and increased crop yield (Rautaray et al. 
2003). However, heavy metal accumulation with FA amendment is a great concern. 
Researchers are in view of its application in lower concentrations as soil microbial 
population and availability of plant nutrients are affected at higher concentrations.

Earthworms are the ecological engineers having profound role in amelioration of 
soil physical, chemical and biological properties (Shi et al. 2017). The significant 
role played by earthworms in soil fertility enhancement, biodiversity restoration and 
detoxification of contaminated soil was studied since early 1800s (Edwards 2004) 
while much stress on soil remediation was given during 1980s (Sinha et al. 2010). 
In the recent past, ‘vermiremediation’, a new approach has been invoked (Gupta and 
Garg 2009). Attempts have also been made to study the composting behaviour of 
earthworms at varying levels of FA substrates to prepare vermi-ash. 

10.4.1 FA Impact on Soil Characteristics 

FA has tremendous potential as a valuable resource in agriculture, building, road and 
bridge construction and other related areas. Its soil amending and nutrient-enriching 
properties contribute to agricultural production (Pandey 2020c). It contains consid-
erable quantities of both macro and micronutrients (Singh et al. 1997) which when 
applied to soil sustain crop growth and development, even in poor soils. As mentioned 
above, FA is deficient in N, P and organic matter and hence, its amendments with 
organic materials or microbial inoculants help in plant growth. Its possible agricul-
tural applications such as liming material, fertilizer and physical amendment have 
been illustrated by many researchers. For effective and efficient vermiremediation 
of FA, it is imperative to understand the effects of FA on soil properties and agricul-
tural crops as remediated land may simultaneously or subsequently be brought under 
cultivation. A brief review of the earlier studies on FA use in agriculture is hereunder 
for general reference. 

FA is helpful in increasing the physical properties of soil that ultimately improve 
soil fertility and enhance crop yield (Rautaray et al. 2003). FA amendment in 
sunflower fields decreases BD of the soil (Pani et al. 2015). Wong and Wong (1990) 
noticed alteration in soil texture, bulk density and porosity. FA addition in sandy 
soil alters soil texture and increases micro-porosity (Ghodrati et al. 1995). Increase 
in porosity and decrease in bulk density in soil was also reported by Zibilski et al. 
(1995). Water holding capacity of soil increases with FA amendment in sunflower 
fields (Pani et al. 2015; Parab et al. 2012). FA amendment in clay soil improves 
infiltration whereas in the coarse soil it reduces infiltration as reported by Dhindsa 
et al. (2016). 

The pH of soil (pH 6.65) increases with the addition of FA (pH 7.56) due to 
acid-neutralizing capacity of the latter one in presence of oxides of Ca and Mg in 
it. The soil becomes more alkaline with FA amendment in sunflower fields (Pani
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et al. 2015). Such increase in pH was also reported by Lee et al. (2006) and Sarkar 
et al. (2012). However, Sikka and Kansal (1995) reported no significant increase 
in pH with FA amendment. Electrical conductivity (EC) of the soil (281 dS cm−1) 
increases with the addition of FA (600 dS cm−1) in radish field, possibly due to 
precipitation of soluble cations (Singh et al. 2011a, b) and binding of metal ions to 
soil separates that facilitates ready availability of plant nutrients (Pani et al. 2015) in  
FA amended soils. However, elevated EC may suppress normal plant growth (Singh 
et al. 2011a, b). Organic carbon (OC) decreases with increase in FA concentration 
in radish (Sarkar et al. 2012) whereas in brinjal, the value of OC increases with FA 
(Singh et al. 2011a, b). FA improves nutrient levels in soil (Rautaray et al. 2003). 
Singh et al. (2011a, b) have observed increase in availability of N, P, K, Co, Ni, Cu, 
Zn, Mo, Al, V, Se, etc. as well as toxic metals such as Cr, Pb and As with addition of 
FA at different grades. Sarkar et al. (2012) have reported increase in availability of 
Na, K, Ca, Mg and Fe with significant reduction in total N, available P and OC under 
FA soil amendment. FA is also used to rectify B and S deficiencies in soil (Chang 
et al. 1977). P availability increases with the addition of FA (Lee et al. 2006). Reddy 
et al. (2010) have reported ‘the highest available N (224.6 kg ha−1),  P (24.6 kg ha−1), 
K (366.7 kg ha−1), S (8.80 mg kg−1), Fe (10.62 mg kg−1) and Zn (0.95 mg kg−1) 
content after harvest of rice crop with application of FA at 15 t ha−1 + FYM at 10 
t ha−1 (FA15 + FYM10), which were at par with FA10 + FYM10’. However, Sikka 
and Kansal (1995) reported no significant increase in available N and P in soil with 
the addition of FA whereas the available K increased. 

The nematode population as observed in Chandrapura Thermal Power Station, 
reduced significantly (Singh et al. 2011a, b) with 40% FA amendment (Ahmad and 
Alam 1997; Khan et al. 1997) due to inhibitory effect (Khan et al. 1997; Tarannum 
et al. 2001) of FA. The carbon dioxide efflux from the soil as an indirect method 
of knowing soil biotic activities increased with 0–100 t ha−1 addition of FA than 
400–700 t ha−1 amendments. Several metals present at potentially toxic levels in FA 
might have suppressed soil heterotrophic microbial activities at higher levels (Arthur 
et al. 1984). 

10.4.2 FA in Agriculture 

Direct use of FA in crop fields is not so promising due to poor bioavailability of 
plant nutrients such as C, N and P that inhibit mineralization through reduced micro-
bial activities (Lazcano 2009/66). When applied to soil directly, it severely inhibits 
microbial process, N cycle and enzyme activity (Lazcano 2009). Pandey et al. (2009a) 
observed accumulation of Fe, Zn, Cu, Cd and Cr in Cajanas cajan when the soil was 
mixed with FA. FA amendment affects rice germination count in initial stage but after 
115 h, it picks up again equalizing with the untreated soil. Such delay in germination 
could be due to increase in soil impedance/ strength (Kalra et al. 1997). However, 
no such inhibitory effect is noticed in green gram, golden gram and black gram at 
0, 10, 20, 30, 40 and 50% FA amendment, except at 100%; possibly due to balance
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between growth promoters and inhibitors (Singh et al. 2011a, b). The highest rice 
seed germination is at 20 and 30% FA amendment (Adriano and Weber 2001) while 
the lowest is at 100% (Panda and Tikadar 2014). Germination of rice and maize 
in wet season is less sensitive to moderate FA than dry season (Kalra et al. 1998) 
whereas germination decreases with further increase in ash concentration (Panda and 
Tikadar 2014). 

Shoot and root length of green gram, golden gram and black gram increase with 
application of FA and the maximum length occurs at 30–40% while in radish, FA 
shortens plant height (Singh et al. 2011a, b). Shoot length of Luffa cylindrica increases 
up to 180 t ha−1 FA but at higher dose, the plant shortens (Singh et al. 2011a, b). At 
25% FA, taller rice plants with longer roots are observed compared to no or higher 
levels (Panda and Tikadar 2014). Tiller count in rice goes on increasing with the 
addition of FA up to 75 t ha−1 (Priatmadi et al. 2015) but on further addition, it declines 
(Sarkar et al. 2012). Chlorophyll a and b and carotenoid pigment concentration in 
chickpea, golden gram and black gram improves significantly at moderate levels of 
FA (120–180 t ha−1) but at 240 t ha−1, the pigmentation decreases (Singh et al. 2011a, 
b). Dry matter accumulation in rice seedlings reduces with increase in concentration 
of FA from 25 to 100% in rice nursery (Panda and Tikadar 2014). FA and FYM 
amendments enhance the rates of N transformation processes, plant available-N and 
paddy productivity (Singh and Pandey 2011) and can be used to enrich nutrient-
poor soils for crop productivity and yields. The mixture of FA and press mud shows 
positive effect on crop growth, physicochemical, microbial and enzymatic activities 
of sodic soil (Singh et al. 2016a). The mixture of 40% soil + 20% FA + 40% 
vermicompost is proved as most promising blend for wet rice nursery raising and 
for remediating the coal FA in agricultural production system (Dwibedi et al. 2021). 
Recently, it is proved that phytoremediated FA can be used as a fertilizer up to 100% 
for peas farming as metal concentrations was reported either below detection limit 
or below the WHO permissible limit (Bhattacharya et al. 2021). The application of 
FA for agriculture production is explored in great depth using the facts of plants, 
amendments, FA doses range and remark (Pandey et al. 2009b). 

10.5 What is Vermiremediation? 

The term ‘vermiremediation’ has come from two Latin words: ‘vermis’ means 
‘worm’ and ‘remedium’ means ‘correct’ or ‘remove an evil’ (Shi et al. 2020). The 
term was coined by Edward and Arancon (2006) while Rodriguez-Campos et al. 
(2014) first attempted to define it as ‘the use of earthworms for removing contami-
nants (Sinha et al. 2008) or not recyclable compounds (Gupta and Garg 2009) from  
the soil’. However, a better definition by Shi et al. (2020) has come up later which 
expresses ‘vermiremediation as an earthworm-based bioremediation technology that 
makes use of the earthworm’s life cycle (i.e. feeding, burrowing, metabolism and 
secretion) or their interaction with other abiotic and biotic factors to accumulate and
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extract, transform, or degrade contaminants in the soil environment’. As per this defi-
nition, few synonymous terms viz. vermiaccumulation and vermiextraction, vermi-
transformation, vermiconversion and drilodegradation or drilostimulation could be 
used to understand the mechanisms and processes of vermiremediation (Shi et al. 
2020). 

Vermiaccumulation and vermiextraction, similar to term phytoaccumulation, refer 
to the process of ingestion of contaminants (organic and inorganic) from the soil by 
earthworms and accumulation of pollutants in their body parts (Shi et al. 2020). Accu-
mulation of contaminants occurs through preferential dermal or intestinal sequestra-
tion involving sub-organismic (preclitellum, clitellum, post-clitellum), tissue (body 
wall, gut, body fluids) and sub-cellular (intra and extracellular fractions) body parts 
of the earthworm (Shi et al. 2020). The process of biotransformation of contami-
nants by earthworms into harmless products by enzymes (such as peroxidases) and 
microbes (bacteria and fungi) in the alimentary canal and ultimately egested out as 
compost is known as vermitransformation or vermiconversion (Panda and Tikadar 
2014). Drilodegradation or drilostimulation refers to the microbial decomposition, 
degradation or elimination of toxic materials by microbes present in the drilosphere, 
the 2 mm thick zone of earthworm burrow wall (Bouché 1975; Brown et al. 2000). 
Drilospheric soil is rich in earthworm mucus and casts that stimulate microbial growth 
which subsequently promotes the growth of protozoa and nematodes (Stromberger 
et al. 2012). Drilosphere, a habitat rich in energy and nutrients, mostly C and N, acts 
as hotspot for soil microbial communities (Kuzyakov and Blagodatskaya 2015). The 
nutrients are mixtures of low-molecular organic acids such as amino acids, nucleic 
acid derivatives, carbohydrates, phenolics and enzymes (Zhang et al. 2009). The 
labile organic carbon supply in drilosphere can sustain microbial communities that 
supplement utilizable sources of energy (Tiunov and Scheu 1999). And hence, drilo-
spheric microorganisms have tremendous ability to remediate the potential pollutants 
(Shi et al. 2020). 

10.5.1 Advantages of Vermiremediation 

Vermiremediation is an emerging concept that needs rigorous investigation and 
exploration for gaining ecological milestones over conventional physicochemical 
methods. Primarily, it is one of the cheapest, easiest, efficient and in some cases, 
the fastest way of remediating the contaminated land without disturbing the topsoil. 
Furthermore, it is not substrate-specific, rather a useful technology for treating a wider 
range of hazardous pollutants. Synthetic insecticides, herbicides, polycyclic aromatic 
hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), crude oil and FA in soil can 
be removed by engaging earthworms (Rodriguez-Campos et al. 2014). It is environ-
mentally sustainable self-regenerating in-situ approach to remediate polluted land. 
Furthermore, vermiremediation enhances soil quality through addition of organic 
matter, supplementation of plant nutrients and proliferation of biodiversity (Sinha 
et al. 2008).
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10.5.2 Limitations of Vermiremediation 

Vermiremediation technology has its own limitations as it can only be appli-
cable in moderately or slightly contaminated soils that allow survival of the 
earthworms. In severely contaminated soil, earthworms may not survive due to 
toxic effects of the pollutants (Rodriguez-Campos et al. 2014; Shi et al. 2019). 
Vermiremediation is also restricted to the earthworm habitats depending on the 
species used and ambient environmental conditions-beyond which its efficacy is 
limited. Earthworms are categorized into epigeic, anecic and endogeic groups 
(Fig. 10.1) depending on the species used, body size, mobility, fecundity, habitat, 
feeding and burrowing behaviour, casting activity, etc. (Lazcano et al. 2009) 
of the earthworm. Dendrobaena octaedra, Dendrobaena attemsi, Dendrodrilus 
rubidus, Eiseniella tetraedra, Heliodrilus oculatus, Lumbricus rubellus, Lumbricus 
castaneus, Lumbricus festivus, Lumbricus friendi, Lumbricus rubellus, Satchel-
lius mammalis, Eisenia fetida and Eudrilus euginae live on the upper layer 
of the soil profile and feed mainly on organic debris and thus are classified 
as detritivores under epigeic group. Endogeic (means within the earth) earth-
worms such as Allolobophora chlorotica, Apporectodea caliginosa, Apporectodea 
icterica, Apporectodea rosea, Drawida grandis, Murchieona muldali, Octolasion 
cyaneum, Octolasion lacteum, Anecies longa, Anecies nocturna and Octochaec-
tona thurstoni remain deep inside the soil and are geophagus in nature. Whereas 
anecics or anegeic (out of the earth) earthworms, e.g. Aporrectodea longa, Apor-
rectodea nocturna, Lumbricus friend, Lumbricus terrestris and Letmpito mauritii

Fig. 10.1 Three major ecological groups of earthworms identified basing on feeding and burrowing 
behavior. Source Adapted and modified from Brown and Sherlock (2021)
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are sub-surface dwellers and are phyto-geophagus in nature (Brown and Sherlock 
2021; Bhattacharya and Kim 2016). Vermiremediation potential is dependent on food 
abundance and feeding preference of earthworm species (Curry and Schmidt 2007). 
Earthworms are sensitive to temperature, moisture and other climatic and seasonal 
conditions that may inhibit their survivability thereby affecting the vermiremedi-
ation process (Butt and Lowe 2011). Additionally, accumulated contaminants in 
earthworms can become a potential threat if get transferred into food chain under 
mismanagement in disposal schedule (Shi et al. 2014).

10.6 Biology of Earthworm and Its Functional Significance 
in Waste Degradation 

Before getting into the process of vermiremediation in FA-contaminated soils, it is 
imperative to know the biology of earthworm and the mechanism of waste degrada-
tion with relation to soil health. They prefer moist and dark habitats with optimum 
moisture of 60–75% and their skin is permeable for which they need moist envi-
ronment to prevent from drying out (Shi et al. 2020). Although they can survive 
temperature range of 5–35 °C, but the optimum is 20–25 °C. Most of them prefer 
neutral pH and C/N ratio of 2–8 (Sharma and Garg 2018). Within a life span of 
220 days, they produce 300–400 offspring (Shi et al. 2020). They are bisexual and 
under ideal soil temperature, moisture, pH and food availability they can multiply 
28 times in every six months (Shi et al. 2020). They mostly feed on detritus mate-
rials, living bacteria, fungi, protozoa, nematodes and many other microorganisms 
(Sharma and Garg 2018). Earthworms have digestive tubes housed inside their thick 
cylindrical muscular outer body tube (Berridge 2020). They swallow considerable 
amount of food materials along with soil through their mouth present at 1st segment 
and shred down by gizzard present at 8th or 8th to 9th segment. The elementary canal 
of earthworm includes mouth (1st), buccal cavity (2nd and 3rd), pharynx (3rd and 
4th), esophagus (5th to 7th), gizzard (8th or 8th and 9th), stomach (9th or 10th to 
14th), intestine (15th up to the last segment except anus) and anus (Aryal 2020). They 
also passively absorb dissolved chemicals through their body wall (Shi et al. 2020). 
These absorbed and eaten substrates are mixed with intestinal fluid and enzymes 
from microbes. Earthworm’s intestine acts as warehouse for microbes and enzymes 
such as lipase, amylase, nitrate reductase, protease, phosphatase, cellobiase, etc. that 
bioprocess disintegration of ingested foodstuffs. 

Earthworms maintain and improve soil quality parameters (Bhadauria and Saxena 
2009) and act as bioindicators of soil quality (Fründ et al. 2011). Abundance and 
species composition of earthworms, their behaviour in contact with the soil, assimila-
tion of chemicals in their body parts and biochemical or cytological stress markers can 
indicate soil quality (Fründ et al. 2011). Earthworms produce pores and aggregates 
(biostructures) in soil, thus influencing soil’s physical properties, nutrient cycling 
and plant growth (Lal 1999; Scheu 2003). Anecic species make permanent burrows
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in mineral soils; they drag surface organic materials into the soil for food. Endo-
geic species are the ecosystem engineers who make nonpermanent burrows in the 
upper surface mineral layer through which other organisms get accessibility to under-
ground resources (Jones et al. 1994). No till or minimal disturbance to the soil, as 
in conservation agriculture, enhances organic residues, thus creating ideal condi-
tions for earthworm habitat (Labenz 2021). Mucus production associated with water 
excretion by earthworms enhances the activity of soil beneficial microorganisms that 
help in improving soil structure and aggregate stability. Earthworm’s excreta (cast) 
are rich in plant-available nutrients, thus concentration of N, P, K, Ca, Mg and many 
more trace elements in soil increases and toxic materials including heavy metals get 
accumulated in their gut (Usmani and Kumar 2017) which make them biologically 
potent for remediation of FA (Fig. 10.2). 

Metal accumulation mostly occurs in the chloragogenous tissue at the posterior 
end of the alimentary canal of earthworm (Usmani and Kumar 2017; Morgan and 
Morris 1982). On exposure to metals, earthworms synthesize metallothioneins (MT) 
that have low-molecular weight, cysteine-rich proteins with high affinity towards Cd, 
Cu and Zn (Dallinger 1994). These proteins protect organisms against toxic metal 
stress and thus can be used as indicator of soil pollution. While dealing the unneces-
sary heavy metals, earthworms detoxify their effects through interaction with many 
chemicals in the metabolic processes. Bioaccumulation of metals and organocomplex 
formation results in decline in the availability of heavy metals in soil as part of enzyme 
antioxidant systems such as superoxide dismutase (SOD) and MT (Li et al. 2008).

Fig. 10.2 Physicochemical transformations occurring in different compartments of earthworm 
illustrating heavy metal sequestration and nutrient assimilation on ingestion of FA [source Usmani 
and Kumar 2017 (Adapted and modified with the permission of the Publisher)]
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As mentioned above, the highest metal accumulation occurs in the posterior alimen-
tary canal (PAC) of the earthworm. Intracellular vesicles within PAC accumulate Pb 
and Zn and the superfluous metals interact with P ligands within the chloragosome 
matrix (Usmani and Kumar 2017; Morgan and Morgan 1990). The cation-exchange 
properties in chloragosomes (Fischer 1973, 1977) are considered as integral part 
for the physiological functioning of intracellular organelles (Morgan 1981; Fischer 
and Trombitts 1980). Microprobe X-ray analysis of air-dried chloragogenous tissue 
revealed Ca, Pb and Zn (in association with sulphur) accumulation in the chlorago-
somes while Cd was accumulated in an electron-lucent vesicular component called 
cadmosome (Usmani and Kumar 2017).

10.7 Process of Vermiremediation 

Metal accumulation by earthworm (vermiremediation) may be in-situ or on-site treat-
ment in the FA dumped sites (contaminated land), or it may be ex-situ through vermi-
composting (Usmani and Kumar 2017). Eisenia fetida cannot tolerate 100% FA, thus 
addition of organic matter is essential (Niyazi and Chaurasia 2014). Considerable 
reduction in metal concentration occurs after vermiremedition. FA lacks N and C 
and thus organic matter addition is required to support microbial growth (Mupambw 
et al. 2015). Experiments on vermicomposting of cow dung with FA showed 30–50% 
reduction in heavy metal concentration up to 60% FA while 10–30% reduction was 
in 80% FA addition. Hence, 60% addition of FA with E. fetida was proposed to be a 
sustainable vermiremediation technique (Gupta et al. 2005). In another experiment, 
minimum mortality and maximum population growth were observed in 1:3 mixture of 
FA and cow dung. Significant reduction of heavy metals viz. Cu, Pb, Mn and Cr were 
also observed with vermiremediation at variable range of FA and cow dung mixtures. 
Vermistabilization resulted reduction in pH by 8–15.7%, EC by 16.2–53.6%, total 
organic carbon by 15.6–32.5% and C:N ratio by 43.2–97.4% (Singh et al. 2016b). A 
decline in heavy metal concentration in vermicompost was reported by Niyazi and 
Chaurasia (2014) like Anderson and Laursen (1982), Morgan and Morgan (1990) 
who observed variations in metal accumulation depending on inter-specific metal 
intake ability, worm age, their physiological utilization and transformation, season 
and many other factors (Usmani and Kumar 2017). 

10.8 Strategies for Vermiremediation 

Earthworm survival and mobility of contaminants are the two limiting factors in 
vermiremediation (Usmani and Kumar 2017). The performance of earthworms is 
affected by poor soil quality, environmental conditions and high concentration of 
pollutants (Sinha et al. 2008). Vermiremediation of FA-contaminated soils needs
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controlled mobility and bioavailability of toxicants and facilitated growth of earth-
worms under ameliorated soil environment. Nutrient and organic amendments 
and provisioning for better soil physical properties should be the prime manage-
ment strategies for efficient and effective vermiremediation. The vermiremedia-
tion capacity of different earthworm species needs through assessment before their 
engagement in contaminated land reclamation. Suitability of crops to differential FA 
and organic residue amendments and bioaccumulation of toxic heavy metals across 
trophic levels need in-depth investigation for validation of the remediation tech-
nologies. Safe and timely evacuation of earthworms in vermiremediation is mostly 
lacking, which requires burning as specialized for hazardous waste (Sheoran et al. 
2010; Ali et al. 2013). A brief account of different harvest methods of the earth-
worms used in vermiremediation is presented under Table 10.2. Vermiremediation 
can be facilitated through appropriate microbe-earthworm combined interactions as 
is evident in phosphorous solubilizing bacteria inoculated FA amendments (Lukashe

Table 10.2 Potential harvest methods of earthworms used in vermiremediation—based on the 
summary of earthworm sampling methods 

Classifications Expellant Characteristics References 

Ethological 
methods 

Chemical 
methods 

Mustard or hot 
mustard 

Non-destructive or 
‘environmental 
friendly’; more 
effective on anecic 
species; expensive 

Chan and Munro 
(2001) 
Lawrence and 
Bowers (2002) 

Formalin A standard method 
for the expulsion of 
earthworms; highly 
toxic to soil 
organism 

Čoja et al. (2008) 

Detergent Toxic East and Knight 
(1998) 

Allyl 
isothiocyanate 
(AITC) 

Environmental 
friendly; effective 
on deep-burrowing 
anecic species 

Zaborski (2003) 

Onion solution Environmental 
friendly 

Steffen et al. (2013) 

Electrical 
method 

Electroshocking Little damage Eisenhauer et al. 
(2008) 

Hand-sorting – – Physical disturbance 
of soil system; 
labour-intensive; 
time-consuming 

Valckx et al. (2011) 

Mechanical 
separation 

– – Energy consuming – 

Source Shi et al. (2020)-reproduced with permission
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et al. 2018). Harmonious integration of phytoremediation, vermiremediation and 
effective microorganisms has been far better option against any two of these remedi-
ation techniques to clean up residual contaminants (Deng and Zeng 2017). In heavily 
contaminated soils, vermiremediation can be used as polishing step after primary 
remedial treatment (Sinha et al. 2008). Another way of enhancement of vermireme-
diation is through quality food supplementation and optimization of the inoculation 
conditions (temperature, pH, aeration, moisture, etc.) that ultimately increase earth-
worm biomass and rate of uptake of contaminants as well (Curry and Schmidt 2007). 
Improvement of agronomic conditions such as soil texture, organic matter, hydraulic 
conductivity and homogenization of contaminants to avoid hotspots will certainly 
enhance vermiremediation (Gerhardt et al. 2017). Since it is impracticable and time-
consuming to study individual species under all possible conditions, various models 
viz. empirical, rate, equilibrium-partition, mechanical and fugacity models predicting 
uptake and accumulation of toxic materials in earthworms need to be validated (Shi 
et al. 2020).

10.9 Conclusions and Prospects 

Vermiremediation as an expanding, sustainable, ecofriendly and cost-effective tech-
nology available for treatment of polluted soils, including FA, has been well acknowl-
edged widely. Unlike physiochemical remediation, vermiremediation is an environ-
mental supportive and relatively cheaper, easier, effective and efficient technique that 
should be highlighted. Many researchers have studied vermiremediation of FA over 
past few decades thereby opening up an innovative scientific approach in remedi-
ating contaminated land. Vermiaccumulation and vermitransformation play impor-
tant roles in vermiremediation of pollutants like heavy metals in FA. Furthermore, 
emphasis is to be given for enhancing bioavailability of organic residues and by 
providing congenial environment for optimum growth of earthworms. Integration of 
effective microorganisms, agronomic practices, phytoremediation, biomass enhance-
ment, etc. has the potential to facilitate vermiremediation. Safe and timely harvest 
and disposal of contaminated earthworms could prevent biomagnification of pollu-
tants in natural food chains which should be considered seriously. Available models 
for predicting uptake and accumulation in earthworms need to be validated so that 
the capacity, contribution and mechanism of different processes in vermiremediation 
are fully clarified.
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