
UCX Programming Interface for Remote
Function Injection and Invocation

Luis E. Peña1(B), Wenbin Lu2, Pavel Shamis1, and Steve Poole3

1 Arm Research, Austin, TX 78735, USA
{Luis.EPena,Pavel.Shamis}@arm.com

2 Stony Brook University, Stony Brook, NY 11794, USA
Wenbin.Lu@stonybrook.edu

3 Los Alamos National Laboratory, Los Alamos, NM 87545, USA
swpoole@lanl.gov

Abstract. Network library APIs have historically been developed
with the emphasis on data movement, placement, and communica-
tion semantics. Many communication semantics are available across a
large variety of network libraries, such as send-receive, data streaming,
put/get/atomic, RPC, active messages, collective communication, etc.
In this work we introduce new compute and data movement APIs that
overcome the constraints of the single-program, multiple-data (SPMD)
programming model by allowing users to send binary executable code
between processing elements. Our proof-of-concept implementation of
the API is based on the UCX communication framework and leverages
the RDMA network for fast compute migration. We envision the API
being used to dispatch user functions from a host CPU to a SmartNIC
(DPU), computational storage drive (CSD), or remote servers. In addi-
tion, the API can be used by large-scale irregular applications (such as
semantic graph analysis), composed of many coordinating tasks operat-
ing on a data set so big that it has to be stored on many physical devices.
In such cases, it may be more efficient to dynamically choose where code
runs as the applications progresses.

Keywords: Active message · Code injection · UCX

1 Introduction

The emergence of distributed heterogeneous systems is driven by the ever
increasing demands for performance, energy efficiency, and cost reduction. For
example, in the last decade, the HPC community has been driving the adop-
tion of GPU as an accelerator for large-scale distributed systems and appli-
cations. Recently, hyperscale service providers have introduced two new types
of datacenter infrastructure accelerators: the data processing unit (DPU) and
the computational storage drive (CSD). In contrast to GPUs, which have been
well-adopted by applications, both DPUs and CSDs are relatively new and have

L. E. Peña and W. Lu—Contributed equally.

c© Springer Nature Switzerland AG 2022
S. Poole et al. (Eds.): OpenSHMEM 2021, LNCS 13159, pp. 144–159, 2022.
https://doi.org/10.1007/978-3-031-04888-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04888-3_9&domain=pdf
https://doi.org/10.1007/978-3-031-04888-3_9

UCX Programming Interface for Remote Function Injection and Invocation 145

very limited adoption. DPUs and CSDs are usually programmable devices that
are realized using FPGAs and/or Arm cores. Despite being designed with user
programmability in mind, these devices are typically exposed as fixed-function
components that provide transparent acceleration for a few popular usages, e.g.,
embedded Open vSwitch, IPSEC, and compression. As the list of available func-
tionalities are determined by datacenter vendors, applications are not exposed
to the programmable elements of DPUs and CSDs, and therefore cannot take
advantage of the devices’ processing power for application specific purposes.

Developers are also challenged by the rapidly increasing amount of data
they have to deal with in their applications. For some applications the type
and distribution of the workload is highly dependent on the data and therefore
changes dynamically. Since moving data is still orders of magnitude slower than
doing computation, ideally we would like to move compute to data to improve
locality, not the other way around. Additionally, with new features being added
and tested on a daily basis, it could further slow down the development cycle
if the application needs to be re-compiled and re-deployed for every feature
addition and/or bug fix.

In this work, we aim to overcome the programmability barriers of such devices
by introducing the ifunc API, an UCX API designed to facilitate the movement
of application-defined compute and data. Injected functions (ifuncs), taking the
form of messages that contain binary code and data, are sent to and invoked by
other remote processes via the Two-Chains framework [7]. ifuncs are similar to
active messages in that each message contains data and an action to perform, but
their main difference is that ifuncs actually contain the code to be executed,
while active messages contain only a reference to the function to be called.
ifuncs provide more versatility because the available functions are no longer
fixed and a target system can register new functions during run-time, without
having to recompile UCX or the application. Our API breaks the commonly
used SPMD model of computation to benefit dynamic, irregular, and data-driven
applications on a wider range of heterogeneous devices. The main contribution
of this paper is an API and implementation of RDMA-based remote function
injection and linking.

The rest of this paper is organized as follows: Sect. 2 provides an overview
on Two-Chains, the high performance remote linking and messaging framework
leveraging the ifunc API. This section also discusses some related work on
dynamic computation migration. Next, Sect. 3 presents the ifunc API, how it
could be used, how it is implemented, how it compares to UCX Active Messages
(AM), and how it can be secured. In Sect. 4, we describe how we validated our
prototype implementation and discuss the initial benchmark results. Finally,
Sect. 5 provides our plans to continue to improve the ifunc API and Two-Chains
framework.

146 L. E. Peña et al.

2 Background

The ifunc API is an evolution of the remote function invocation mechanism of
the Two-Chains framework. In this section we discuss the Two-Chains frame-
work as the background of the work presented in this paper, as well as several
related works.

2.1 Two-Chains

The original Two-Chains framework is presented in [7], which covers implemen-
tation details of the framework and how its performance can be improved using
existing hardware features.

Two-Chains is an extension of UCX [12], providing packaging, transfer and
execution of C functions in a fast and lightweight manner. It aims at an API
and a toolchain to enable the migration of compute and data between local
and remote CPU, GPU, DPU and CSD processes using UCX communication
capabilities. The users write the functions to be injected using a macro-based
interface, then use the Two-Chains toolchain to compile them into dynamic
libraries that can be loaded by the application at runtime. On the source process,
the executable code of the to-be-injected function is loaded from the dynamic
library, and is packaged with function arguments and a variable-length payload
to form a message (referred to as jams in the original publication).

Upon receipt of a message containing injected functions, the target system
directly executes the C function embedded in the message. This mechanism
employs dynamic linking to support calling functions from libraries resident in
the target system from the injected functions.

Two-Chains uses one-sided UCX put operations to enable fast delivery and
execution of injected functions. The runtime sets up a receiver thread waiting
to call the embedded function with minimal latency when a message arrives.
For code in the message to execute correctly on the receiver, the Two-Chains
toolchain statically modifies the assembly to allow runtime linking against sym-
bols on an arbitrary host by redirecting all global offset table (GOT) accesses to
an indirection stored in the message. Remote runtime linking allows distributed
application updates to sub-processes of the application that alter their execution
behavior (without re-starting the process) by loading a library into a process to
change the resolution of objects or functions with fixed symbolic names. This
way, applications can implement dynamic control and compute with library load-
ing and linking.

2.2 Related Work

There are numerous libraries, frameworks, and runtimes that implement active
message semantics that have influenced the development of Two-Chains and the
ifunc API presented in this work. In brief, these projects include GASNet, Snap
Microkernel, Charm++, CHAMELEON, and FaRM.

UCX Programming Interface for Remote Function Injection and Invocation 147

GASNet [4] is a communication library widely used on high-performance
computing clusters to implement advanced programming models. In addition
to normal data transfer routines, GASNet also provides a series of APIs for
registering and invoking active messages. GASNet uses the classical function
registration mechanism for identifying active message handlers, while ifuncs
sends the executable code and does not require actions from the target side. The
Snap Microkernel [10] project provides a platform for remote procedure calls in
the context of network functionality distribution. Like many of the other compu-
tation placement and migration frameworks, it is a heavyweight multifunction
entity. Our ifunc API has a smaller scope and could be used as a building
block as part of such a system. In the datacenter setting, lightweight container
launch for Lambda functions is implemented with Firecracker [3]. Another work
from Fouladi et al. provides very fast container launch to create highly granu-
lar lambda function execution [6]. None of these projects addresses issues like
heterogeneity of hardware, since containerization is meant to abstract this. Two-
Chains can be used as a shim between hardware and higher level libraries.

Charm++ [2] implements distributed C++ objects with a unified logical
view of them (not partitioned to processes/ranks from the programmer’s per-
spective), plus the ability to call methods on those objects regardless of their
physical location, unlike regular active message where the developer must decide
when and where to request function invocations. The Charm++ scheduler works
behind the scene to distribute and migrate the objects automatically, based on
load distribution and communication patterns. Its programming model runs at
a very high level compared to Two-Chains and UCX and its runtime system
supports lots of advanced features like fault tolerance. The CHAMELEON [9]
framework by Klinkenberg et al. uses compiler directives and runtime APIs to
encapsulate OpenMP tasks as migratable entities in a reactive workload bal-
ancer for irregular applications written in MPI. Unlike CHAMELEON, Two-
Chains does not contain a load balancer, does not depend on OpenMP or MPI
or C++, nor requires explicit task progress if the UCX library uses progress
threads. Further, CHAMELEON’s remote virtual address resolution process to
move tasks between address spaces is a heavyweight exchange of references via
MPI Send/Recv for each migration event. Our work could potentially be used as
a communication layer to greatly simplify and speed up CHAMELEON, espe-
cially since they found in the course of their work that push-oriented compute
movement (as we have implemented here) is a better mechanism than work
stealing for load balancing since it allows computation-communication overlap.

The FaRM [5] project implements a shared address space programming model
that uses the RDMA network for remote object manipulation. Two-Chains uses
RDMA not only for moving data, it also injects user-defined functions to remote
machines using RDMA to provide higher flexibility while avoiding re-compiling
the application for functionality changes.

The Two-Chains API developed in this paper builds on the semantics of the
active message API [13], which combines a data payload with executable code on
a receiver. The primary innovation of the Two-Chains API relative to classical

148 L. E. Peña et al.

active message semantics is the ability to send binary function and data payload
simultaneously, without requiring the function to be present at runtime compile
time.

3 Design and Implementation

In this section, we present the design and implementation of the ifunc API,
provide an example on the expected usage, and talk about its security implica-
tions.

3.1 The ifunc API

ucs_status_t

ucp_register_ifunc(ucp_context_h context ,

const char* ifunc_name ,

ucp_ifunc_h* ifunc_p)

void

ucp_deregister_ifunc(ucp_context_h context ,

ucp_ifunc_h ifunc_h)

ucs_status_t

ucp_ifunc_msg_create(ucp_ifunc_h ifunc_h ,

void* source_args ,

size_t source_args_size ,

ucp_ifunc_msg_t* msg_p)

void

ucp_ifunc_msg_free(ucp_ifunc_msg_t msg)

ucs_status_t

ucp_ifunc_msg_send_nbix (ucp_ep_h ep,

ucp_ifunc_msg_t msg ,

uint64_t remote_addr ,

ucp_rkey_h rkey)

ucs_status_t

ucp_poll_ifunc(ucp_context_h context ,

void* buffer ,

size_t buffer_size ,

void* target_args)

Listing 1.1. UCP ifunc API

To start, the source process calls the ucp register ifunc function with the
ifunc’s name ifunc name to register an ifunc library. The UCX runtime will
search the directory defined by the UCX IFUNC LIB DIR environment variable
for the dynamic library named ifunc name .so, and uses dlopen and dlsym to

UCX Programming Interface for Remote Function Injection and Invocation 149

load the library and the user-provided ifunc library functions defined in Listing
1.2, and finally returns a handler to the registered ifunc. Now ifunc messages
can be constructed using the ucp ifunc msg create routine, which accepts user
arguments and passes them to the ifunc library routines to prepare the ifunc’s
payload that will be sent to the target process. Once the ifunc message object
is created, it is ready to be written into the target process’s memory using the
ucp ifunc send nbix routine, which uses the ucp put nbi routine to write a
continuous buffer into a memory region mapped by ucp mem map.

On the target process, the ucp poll ifunc routine should be used to wait
on a UCP mapped memory region for incoming ifunc messages. This routine
returns immediately if it could not find a newly received ifunc message in
buffer. If a valid ifunc message is found, the UCX runtime will invoke the code
contained in the ifunc message with a pointer to the payload, the size of the
payload, and the target args pointer that points to user-provided arguments
on the target process. Currently, in our implementation, the target process does
not yet construct a GOT that contains redirections for all the functions used
by the ifunc code, instead it uses the ifunc’s name contained in the message
header to auto-register the specific ifunc dynamic library and uses the local
GOT to patch the code shipped within the ifunc message. We plan to add
GOT reconstruction functionalities in the future and the target process will not
need to register the ifunc library anymore.

void

[i func name] main (void ∗ payload ,
s i z e t pay load s i z e ,
void ∗ t a r g e t a r g s)

s i z e t
[i func name] pay l oad ge t max s i z e (void ∗ source a rg s ,

s i z e t s o u r c e a r g s s i z e)

i n t
[i func name] p a y l o ad i n i t (void ∗ payload ,

s i z e t pay load s i z e ,
void ∗ source a rg s ,
s i z e t s o u r c e a r g s s i z e)

Listing 1.2. ifunc library API

A valid ifunc library should define all three routines specified in Listing
1.2. The [ifunc name] main launches the execution of the ifunc code; it gets
invoked when a ifunc message is received by ucp poll ifunc on the target
process, with the three arguments described in the previous subsection.

The [ifunc name] payload get max size and [ifunc name] payload
init routines are both invoked by the ucp ifunc msg create routine on the
source process. The first routine is used by the UCX runtime to calculate the
maximum size of the payload to be sent within a ifunc message for a given set
of source process arguments source args. Then the UCX runtime will allocate
a ifunc message frame with a payload buffer of the requested size, and pass the
same source process arguments to the [ifunc name] payload init routine to

150 L. E. Peña et al.

populate the payload buffer. This way, we eliminate unnecessary memory copies
while maintaining the flexibility of the interface.

3.2 Using the API

#inc lude <paq8px . h>

s i z e t paq8px pay load get max s ize (void ∗ source a rg s ,

s i z e t s o u r c e a r g s s i z e) {
r e turn e s t o u t p u t s i z e (source a rg s , s o u r c e a r g s s i z e) ;

}

i n t paq8px pay load in i t (void ∗payload ,
s i z e t pay load s i z e ,

void ∗ source a rg s ,

s i z e t s o u r c e a r g s s i z e) {
encode (payload , pay load s i z e ,

s ource a rg s , s o u r c e a r g s s i z e) ;
r e turn 0 ;

}

void paq8px main (void ∗payload ,
s i z e t pay load s i z e ,
void ∗ t a r g e t a r g s) {

db handler dbh = t a r g e t a r g s ;
d e c od e i n s e r t (dbh , payload , pay l o ad s i z e) ;

}

Listing 1.3. Sample ifunc library

Here we provide an example on the expected usage of the ifunc API. Sup-
pose the target process manages a database that stores voice recordings. When
another process wants to send a record compressed by the paq8px algorithm,
which is unsupported by the database, it can use the ifunc library shown in
Listing 1.3 to perform the task. The header file included at the top of the library
code contains the implementation of the algorithm, which will be visible to the
compiler during compilation. The first two user-provided functions are used to
encode and package payload on the source process, while the main function
performs payload decoding and database insertion on the target process.

/* On the source process */

ucp_ifunc_h ih;

ucp_ifunc_msg_t msg;

ucp_register_ifunc(ucp_ctx , "paq8pv", &ih);

ucp_ifunc_msg_create(ih, record , record_size , &msg);

ucp_ifunc_send_nbix (ep, msg , recv_buffer , rmt_rkey);

ucp_ep_flush_nb(ep); // And wait on completion

ucp_ifunc_msg_free(msg);

UCX Programming Interface for Remote Function Injection and Invocation 151

ucp_deregister_ifunc(ucp_ctx , ih);

/* On the target process */

ucs_status_t s;

do {

s = ucp_poll_ifunc(ucp_ctx , recv_buffer ,

recv_buffer_size , db_handle);

} while (s != UCS_OK);

Listing 1.4. Sample ifunc API usage

During run-time, as demonstrated by Listing 1.4, the source process reg-
isters the paq8px library, constructs an ifunc message with the recording as
its payload, and sends it to the target process. On the target process, the
polling loop calls the ucp poll ifunc function until it returns UCX OK, which
indicates that it has received and executed an ifunc message. If the user would
like the target process to poll for incoming ifunc messages continuously, the
ucs arch wait mem routine can be used to wait on memory locations that ifunc
messages are expected to arrive and reduce resource usage.

3.3 ifuncs versus UCX Active Messages

Injected functions are inspired by active messages but are different in many
aspects. A comparison between Two-Chains injected functions and UCX active
messages helps the reader know the differences and decide which one to use.

We start by listing the main similarities. ifuncs and UCX AMs allow sending
payloads of various sizes and launching functions on remote processes. Both
accept user-defined arguments when the functions are launched on the target
processes, so the functions have access to resources in the local address space.
Lastly, both mechanisms require active progression on the target side to process
the received messages, in the form of non-blocking polling calls.

The main difference between active messages and injected functions is that,
instead of establishing a mapping between registered functions and unique IDs,
ifunc messages carry the actual binary code of the functions and the functions
themselves are identified by a name. This key ifunc feature enables a set of
ifunc benefits over UCX AMs. The first of these benefits is that ifuncs can
be loaded on-demand during run-time, without recompiling the application; AM
handlers are determined at compile time, requiring the application to be stopped
and recompiled when AM handlers are added or modified. A related benefit to
this one is that, since the function code is sent with each invocation, the code
can be modified anytime under the same ifunc name. Another Two-Chains
difference is that ifuncs are registered on the source process while AM handlers
are registered at the target process; this feature of the ifunc API enables the
system to dynamically add nodes with no previous knowledge of what functions
it might need to execute in the future.

152 L. E. Peña et al.

UCX AMs use on-demand internal buffers for receiving messages, while
ifuncs require the user to allocate special buffers and a consensus about where
the target processes expect the messages to arrive. ifuncs need special modifi-
cations to the assembly code before they can be used, while AM code does not.
We expect these limitations to go away as we keep improving the Two-Chains
framework.

3.4 Implementing the API

FRAME LEN GOT OFFSET PAYLOAD OFFSET IFUNC NAME

SIGNAL CODE

PAYLOAD

SIGNAL

Fig. 1. Structure of an ifunc message

Each ifunc message, constructed by the ucp ifunc message create routine, is
composed of a header, a code section, an optional payload section, and a trailer
signal, as seen on Fig. 1. If the code section is a direct copy of the .text section
of the ifunc dynamic library, external function calls (e.g. printf) and accesses
to global variables will not have the correct relocations on the target process, due
to Linux’s relative addressing and address space layout randomization (ASLR).
To fix this issue, we compile the ifunc dynamic library with the -fno-plt flag
to force all relocations to go through the global offset table (GOT), skipping
the procedure linkage table (PLT). Then we use a Python script to modify the
assembly code so that all references to the GOT will redirect through another
table on the target process. A pointer to this alternative table is inserted as a
hidden global variable by the script and is shipped with the ifunc message as
part of the code, and the target process is expected to fill this variable with the
address of a reconstructed GOT before invoking the ifunc’s main function.

When an ifunc message arrives at the target process, the integrity of the
header is verified using the header signal, and messages that are ill-formed or too
long will be rejected. Then the runtime parses the header to get the total size of
the message frame and waits for the trailer signal to arrive, as shown in Fig. 2. In
our tests, we use the WFE instruction to reduce resource usage when busy-waiting
on the trailer signal, without incurring a heavy performance penalty.

Before calling the main function of a fully delivered ifunc message, the
target process should perform work similar to a dynamic linker: construct a
GOT that has all the relocations needed by the ifunc code in the correct offsets.
This mechanism is not implemented yet. Instead, we assume the same ifunc
dynamic library is also available on the target process’s file system, so the target

UCX Programming Interface for Remote Function Injection and Invocation 153

Fig. 2. ifunc source-target communication

process can simply load the library and let the system dynamic loader do the
GOT construction. In our implementation, the ucp poll ifunc routine uses the
ifunc’s name provided by the message header to attempt the auto-registration
of any first-seen ifunc type. If the corresponding library is found and loaded
successfully, the UCX runtime will patch the alternative GOT pointer of the
code section of the ifunc message with a pointer to the same library’s GOT
in the local address space, and store the related information in a hash table
for subsequent messages of the same type. We plan to implement the dynamic
linking and GOT reconstruction mechanism in the future.

3.5 Security Implications and Mitigations

A full security model design and implementation is well beyond the scope of this
paper. This section provides an overview of security challenges and directions
for security improvements.

For our Two-Chains framework implementation, we have relied on the built-
in security mechanisms defined by the UCX framework and the IBTA stan-
dard [8], which underpins RDMA interconnects. Specifically, we are using a
remote access key (RKEY) to register and control remote memory accesses. For
IBTA interconnects, the RKEY is defined as a 32-bit value. When the memory is
registered for remote memory access, the underlying interconnect generates the
RKEY based on a virtual memory address and the permissions (remote read,
write, or atomic access). In order to access the memory region over the RDMA
interconnect, the target process has to provide the RKEY to the RDMA initia-
tor through an out-of-band channel. Then, the remote memory access initiator
uses the RKEY to remotely read and write to the target process memory. If the
process accesses the memory with an invalid RKEY, the request gets rejected at
the hardware level.

154 L. E. Peña et al.

There are a number of security concerns [11] regarding the strength of RKEY
protection as defined by the IBTA standard. Improvements to the IBTA security
model are out of scope for this work. However, since we have constructed this
as a module of the UCX framework, the implementation is not as strictly tied
to the IBTA network implementation.

4 Evaluation

In this section, we present our test and evaluation efforts, along with testbed
and benchmark descriptions. We end the section by showing and analyzing the
initial results.

4.1 Microbenchmark Description

To verify and do a preliminary evaluation of our API and its implementation,
we ran message throughput and ping-pong latency benchmarks with a simple
ifunc library and we compare them against the same benchmarks written using
UCX AM. The results are presented below. In both benchmarks, the ifunc
main function simply increases a counter on the target process used to count the
number of executed messages.

In the ifunc message throughput benchmark, a ring buffer is allocated using
the ucp mem map routine so it allows UCP put operations. The source process fills
the buffer with ifunc messages of a certain size, flushes the UCP endpoint used
to send the messages, then waits on the target process’s notification indicating
that it has finished consuming all the messages before continuing to send the
next round of messages. This leads to some overhead but is not significant when
the number of messages is large. For the equivalent UCX AM throughput bench-
mark, since the UCX runtime uses internal buffers to handle the messages, the
source process simply sends all the messages in a loop and flushes the endpoint
at the end.

The ping-pong benchmark is implemented using the classical approach: each
process sends a message, flushes the endpoint and waits for the other process to
reply before continuing this process.

4.2 Testbed Platform

The development and evaluation testbed for this work consisted of two servers,
each with a 4-core, Arm-based modern superscalar processor with a 1 MB dedi-
cated L2 cache per core, a 1 MB shared L3 cache per 2-core cluster, and a 8 MB
shared last level cache (LLC). The core clock is 2.6 GHz and the on-chip intercon-
nect clock is 1.6 GHz. Each server has 16 GB of DDR4-2666 main memory. For
the interconnect, we used two Mellanox/Nvidia ConnectX-6 200 Gb/s InfiniBand
dual-port HCAs. The two systems were connected back-to-back (no InfiniBand
switch) using the first port on each ConnectX-6 HCA. The servers used Ubuntu
20.04, running a custom Linux 5.4 kernel, modified to allow user space control of
the CPU prefetching mechanisms. We used the RDMA and InfiniBand drivers
that came with Mellanox OFED, versioned OFED-5.3-1.0.0d.

UCX Programming Interface for Remote Function Injection and Invocation 155

4.3 Experimental Results and Analysis

Fig. 3. Latency comparison between ifunc and UCX AM, including ifunc latency
reduction with respect to UCX AM latency

Figure 3 shows the one-way latencies of sending and executing the benchmark
function using the ifunc and UCX AM APIs. For smaller payloads, the ifunc
latency is up to 42% slower than the AM latency. As payload (and message) size
increases, the ifunc latency gets closer to that of AM, crossing over somewhere
between payload sizes 8 KB and 16 KB. After this crossover point, the ifunc
latency keeps improving, reaching a 35% latency reduction for the 1 MB payload
size. For small payload sizes, we expected the AM latencies to be better because
the code sent in the ifunc messages dominate the message size, not the payload.
That being said, the performance gap is larger than it needs to be because of
the clear cache operation.

To ensure the correct operation of the ifunc invocation, the instruction cache
needs to be cleared after the runtime confirms the data has arrived because the
I-cache could have stale data due to some systems not having coherent I-caches.
glibc’s Arm64 clear cache implementation avoids clearing the I-cache when it
detects a coherent I-cache by reading an architectural register. Our testbed did
not have a coherent I-cache, and that is why the arrival of each ifunc incurs a
performance hit on the target system. This is likely to be the reason why the
latencies were not better.

156 L. E. Peña et al.

Fig. 4. Message throughput comparison between ifunc and UCX AM, including ifunc

throughput increase with respect to UCX AM message throughput

Figure 4 presents the results of the message throughput benchmarks using
both APIs. For 1B payloads, the ifunc message rate is 81% lower than that of
UCX AMs. The message rate continues to be worse until the payload goes from
1 KB to 2 KB. From this point on, the ifunc message rate is superior, first
spiking at 380% better, then dropping to 23% and then coming back up to 62%
higher.

One interesting observation is the stepping experienced by the UCX AM
line. These steps are likely due to the change is underlying protocol for moving
the active messages. Interestingly, the point where ifuncs start performing bet-
ter coincides with the sharp performance falloff step experienced by UCX AM,
possibly due to protocol differences between ifunc and UCX AM.

As in the latency case, we think that the ifunc performance would have been
better if we had evaluated using a platform with a coherent I-cache. Another
area where we could have extracted more performance is the buffer mechanism
used to send messages to the target.

4.4 Takeaways

From these initial benchmarks, we observe that the ifuncs perform worse than
UCX Active Messages for small payload sizes. The larger the payloads become,
the better ifuncs behave. This small-payload behavior is expected because,

UCX Programming Interface for Remote Function Injection and Invocation 157

while active messages carry a numerical ID alongside the payload, ifuncs actu-
ally carry the function binary alongside the payload. Despite the ifunc messages
being larger, we expected them to be more performant, but the slowdowns could
be explained by the need to perform a clear cache operation on the instruction
cache because our testbed does not have a coherent I-cache.

Since this is a preliminary evaluation of the ifunc API, we plan need to run
additional benchmarks to better understand the behavior of the Two-Chains
framework with a wider set of micro-benchmarks and applications in the future.

5 Conclusion

The ifunc API and Two-Chains framework provide a high performance mech-
anism of moving compute and data over networks between a wide class of pro-
cessing elements. It uses dynamic linking and loading to resolve ifunc external
symbolic references on a per-process basis. We presented the user-facing side of
the API and how developers write ifunc libraries. Important differences between
ifuncs and traditional active messages were also discussed. We provided an
overview of the security mechanisms of that Two-Chains can leverage. The code
is released on GitHub [1]. We will discuss the future steps on the evolution of
Two-Chains and the ifunc API below.

5.1 Future Work

Our Two-Chains vision does not require the presence of the ifunc dynamic
library on the target’s filesystem. We implemented it first this way in our proto-
type because it was going to allow us to have a version working sooner for eval-
uation. We are looking into ways of removing this requirement so Two-Chains
target processes are able to handle received ifunc messages with the correct
dynamic linking mechanism.

We are also working on switching the underlying implementation of Two-
Chains to use UCX’s send-receive semantics instead of RDMA Puts. This change
will enable a simpler API because the user would not have to worry about setting
up a RWX-enabled buffer on the target process. In addition, the user would not
have to tell the source process exactly where to PUT the messages. This change
would also eliminate the need for a special polling API and calling it from the
target process to process incoming messages, as ifuncs will be progressed with
other UCX operations by calling ucp worker progress. The good thing with
this change is that the current API will only have minimal changes: we would
mostly be removing unnecessary arguments and functions calls.

Currently the payload is tightly packed after the code segment of the ifunc
message frame so we do not have any data alignment guarantees. This could be
undesirable for vectorization and some other applications. We plan to allow the
user to specify an alignment requirement on the payload buffer to better support
vectorization and other needs.

158 L. E. Peña et al.

The compilation toolchain of this work uses a Python script to prepare the
ifunc code section to accept a patched GOT. We are considering updating the
way we do this to make this important step target-process-architecture agnostic.

We are still debugging and stress-testing the Two-Chains and its API imple-
mentation. We are also working on getting Two-Chains in a state where it can
be accepted to upstream UCX. Finally, we will test the Two-Chains framework
with benchmarks that do useful work and on a machine that has a coherent
I-cache.

Acknowledgments. The authors would like to thank the Los Alamos National Lab-
oratory for their continued support of this project. In addition, we would like thank
Curtis Dunham, Megan Grodowitz, Jon Hermes, and Eric Van Hensbergen for their
review of the paper and code.

References

1. Two-Chains source code. https://github.com/openucx/ucx-two-chains
2. Acun, B., et al.: Parallel programming with migratable objects: charm++ in prac-

tice. In: SC 2014: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 647–658. IEEE (2014). http://
charm.cs.illinois.edu/newPapers/14-07/paper.pdf

3. Agache, A., et al.: Firecracker: lightweight virtualization for serverless applications.
In: 17th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 2020), pp. 419–434. USENIX Association, Santa Clara, CA (2020). https://
www.usenix.org/conference/nsdi20/presentation/agache

4. Bonachea, D., Hargrove, P.H.: Gasnet-ex: a high-performance, portable communi-
cation library for exascale. In: International Workshop on Languages and Compil-
ers for Parallel Computing, pp. 138–158. Springer (2018). https://bytebucket.org/
berkeleylab/upcxx/wiki/pubs/gasnet-ex-lcpc18-6da6911-tech.pdf

5. Dragojević, A., Narayanan, D., Castro, M., Hodson, O.: Farm: fast remote memory.
In: 11th {USENIX} Symposium on Networked Systems Design and Implementa-
tion ({NSDI} 14), pp. 401–414 (2014)

6. Fouladi, S., et al.: From laptop to lambda: outsourcing everyday jobs to thousands
of transient functional containers. In: 2019 USENIX Annual Technical Confer-
ence (USENIX ATC 19), pp. 475–488. USENIX Association, Renton, WA (2019).
https://www.usenix.org/conference/atc19/presentation/fouladi

7. Grodowitz, M., Peña, L.E., Dunham, C., Zhong, D., Shamis, P., Poole, S.: Two-
chains: high performance framework for function injection and execution. In: (To
appear in) 2021 IEEE International Conference on Cluster Computing (CLUS-
TER). IEEE (2021). https://arxiv.org/abs/2108.02253

8. Infiniband trade association specification. https://www.infinibandta.org
9. Klinkenberg, J., Samfass, P., Bader, M., Terboven, C., Müller, M.S.: Chameleon:

Reactive load balancing for hybrid MPI+openmp task-parallel applications. J.
Parallel Distrib. Comput. 138, 55–64 (2020). https://doi.org/10.1016/j.jpdc.2019.
12.005, http://www.sciencedirect.com/science/article/pii/S0743731519305180,
https://gauss-allianz.de/files/projects/Chameleon Reactive Task Migration for
Hybrid MPI OpenMP Applications 9 HPCStatusKonferenz 191128083805.pdf

https://github.com/openucx/ucx-two-chains
http://charm.cs.illinois.edu/newPapers/14-07/paper.pdf
http://charm.cs.illinois.edu/newPapers/14-07/paper.pdf
https://www.usenix.org/conference/nsdi20/presentation/agache
https://www.usenix.org/conference/nsdi20/presentation/agache
https://bytebucket.org/berkeleylab/upcxx/wiki/pubs/gasnet-ex-lcpc18-6da6911-tech.pdf
https://bytebucket.org/berkeleylab/upcxx/wiki/pubs/gasnet-ex-lcpc18-6da6911-tech.pdf
https://www.usenix.org/conference/atc19/presentation/fouladi
https://arxiv.org/abs/2108.02253
https://www.infinibandta.org
https://doi.org/10.1016/j.jpdc.2019.12.005
https://doi.org/10.1016/j.jpdc.2019.12.005
http://www.sciencedirect.com/science/article/pii/S0743731519305180
https://gauss-allianz.de/files/projects/Chameleon_Reactive_Task_Migration_for_Hybrid_MPI__OpenMP_Applications_9_HPCStatusKonferenz_191128083805.pdf
https://gauss-allianz.de/files/projects/Chameleon_Reactive_Task_Migration_for_Hybrid_MPI__OpenMP_Applications_9_HPCStatusKonferenz_191128083805.pdf

UCX Programming Interface for Remote Function Injection and Invocation 159

10. Marty, M., et al.: Snap: a microkernel approach to host networking. In: Proceed-
ings of the 27th ACM Symposium on Operating Systems Principles, pp. 399–
413. SOSP 2019, Association for Computing Machinery, New York, NY, USA
(2019). https://doi.org/10.1145/3341301.3359657, http://pages.cs.wisc.edu/∼yxy/
cs839-s20/papers/snap.pdf

11. Rothenberger, B., Taranov, K., Perrig, A., Hoefler, T.: ReDMArk: bypassing
RDMA Security Mechanisms. In: Software for Exascale Computing - SPPEXA
2016–2019. USENIX (2021)

12. Shamis, P., et al.: Ucx: an open source framework for HPC network APIS and
beyond. In: 2015 IEEE 23rd Annual Symposium on High-Performance Intercon-
nects, pp. 40–43. IEEE (2015)

13. Von Eicken, T., Culler, D.E., Goldstein, S.C., Schauser, K.E.: Active messages:
a mechanism for integrated communication and computation. ACM SIGARCH
Comput. Arch. News 20(2), 256–266 (1992)

https://doi.org/10.1145/3341301.3359657
http://pages.cs.wisc.edu/~yxy/cs839-s20/papers/snap.pdf
http://pages.cs.wisc.edu/~yxy/cs839-s20/papers/snap.pdf

	UCX Programming Interface for Remote Function Injection and Invocation
	1 Introduction
	2 Background
	2.1 Two-Chains
	2.2 Related Work

	3 Design and Implementation
	3.1 The ifunc API
	3.2 Using the API
	3.3 ifuncs versus UCX Active Messages
	3.4 Implementing the API
	3.5 Security Implications and Mitigations

	4 Evaluation
	4.1 Microbenchmark Description
	4.2 Testbed Platform
	4.3 Experimental Results and Analysis
	4.4 Takeaways

	5 Conclusion
	5.1 Future Work

	References

