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Preface

OpenSHMEM is a portable specification API that implements a partitioned global
address space (PGAS) programming model that focuses on low-latency one-sided com-
munication across nodes within a system. OpenSHMEM is a modern derivative of the
SGI SHMEM API, originally developed by Cray Research, Inc., for efficient program-
ming of large-scale systems. Because of its strong following, Open Source Software
Solutions, Inc. (OSSS) was licensed to drive a specification called OpenSHMEM that
has portable implementations among vendors, research laboratories, and academia. The
OpenSHMEM and Related Technologies Workshop (OpenSHMEM Workshop) was
established in 2014 when OpenSHMEM 1.1 was released to the community and has
enjoyed success in being the main workshop where users, vendors, and researchers
share their experiences and publish their latest results. The community has developed
the specification to version 1.5, adding new features such as teams to group together sub-
sets of processing elements (PEs), non-blocking atomic memory operations (AMOs),
and a profiling interface.

This year’s workshop (OpenSHMEM2021) included topics ranging from new appli-
cations, benchmarks, and libraries experiences to new OpenSHMEM implementations
on novel hardware, programming models, and low-level communication framework
extensions. The workshop agenda can be found at http://www.openshmem.org/worksh
ops/openshmem2021/program.html. This year’s keynotes included talks on Bale 3.0, a
collection of applications with many-to-many communication patterns; NVSHMEM,
an implementation of OpenSHMEM for NVIDIA accelerators; the latest advances of
Chapel, an asynchronous PGAS programming language developed by Cray, which now
supports multi-resolution aggregated communication to improve the message rates of
applications; and Arkouda, a Chapel application that provides Python interfaces to key
NumPy and Pandas operations for data science applications.

This book constitutes the proceedings of the 6th OpenSHMEM and Related Tech-
nologies Workshop. The conference was held virtually and organized by Los Alamos
National Laboratory, having 102 attendees from around the world. In total, 12 papers
were selected from the 18 submissions (66% acceptance rate) and presented at the work-
shop. The Technical ProgramCommitteemembers and the chairs reviewed all the papers
submitted to the workshop. The papers were organized as follows: Applications and
Implementations; Tools and Benchmarks; and ProgrammingModels and OpenSHMEM
Extensions.

September 2021 Stephen Poole
Matthew Baker

Oscar Hernandez
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Applications and Implementations



A Study in SHMEM: Parallel Graph
Algorithm Acceleration with Distributed

Symmetric Memory

Michael Ing(B) and Alan D. George

Department of Electrical and Computer Engineering,
University of Pittsburgh, NSF Center for Space, High-Performance, and Resilient

Computing (SHREC), Pittsburgh, USA
{mci10,alan.george}@pitt.edu

Abstract. Over the last few decades, the Message Passing Interface
(MPI) has become the parallel-communication standard for distributed
algorithms on high-performance CPUs. MPI’s minimal setup overhead
and simple API calls give it a low barrier of entry, while still provid-
ing support for more complex communication patterns. Communica-
tion schemes that use physically or logically shared memory provide a
number of improvements to HPC-algorithm parallelization by reducing
synchronization calls between processors and overlapping communica-
tion and computation via strategic programming techniques. The Open-
SHMEM specification developed in the last decade applies these ben-
efits to distributed-memory computing systems by leveraging a Parti-
tioned Global Address Space (PGAS) model and remote memory access
(RMA) operations. Paired with non-blocking communication patterns,
these technologies enable increased parallelization of existing apps. This
research studies the impact of these techniques on the Multi-Node Par-
allel Boruvka’s Minimum Spanning Tree Algorithm (MND-MST), which
uses distributed programming for inter-processor communication. This
research also provides a foundation for applying complex communication
libraries like OpenSHMEM to large-scale apps. To provide further con-
text for the comparison of MPI to the OpenSHMEM specification, this
work presents a baseline comparison of relevant API calls as well as a
productivity analysis for both implementations of the MST algorithm.
Through experiments performed on the National Energy Research Sci-
entific Computing Center (NERSC), it is found that the OpenSHMEM-
based app has an average of 33.9% improvement in overall app execution
time scaled up to 16 nodes and 64 processes. The program complexity,
measured as a combination of lines of code and API calls, increases from
MPI to OpenSHMEM implementations by ∼25%. These findings encour-
age further study into the use of distributed symmetric-memory archi-
tectures and RMA-communication models applied to both additional
hardware systems and scalable HPC apps.

Keywords: MPI · RMA · OpenSHMEM · PGAS · HPC · MST
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1 Introduction

To maximize parallel processing and acceleration, programmers must minimize
overhead and synchronization bottlenecks. For distributed-memory systems the
current standard is the Message Passing Interface (MPI) due to its ubiquity
and support of many communication methods. Using handshake-based point-to-
point send and receive calls and primitive collectives like broadcast and gather,
MPI supports parallelization of numerous kernels and algorithms [14].

The remote memory access (RMA) model introduces new possibilities for
further acceleration of distributed parallel apps. Its support for non-blocking
and one-sided communication patterns can reduce synchronization bottlenecks
in MPI that stem from multiple sequential handshake communications. The
increased flexibility afforded by RMA comes with added complexity, requiring
the programmer to manually synchronize parallel processes independently to
avoid race conditions and invalid memory accesses. Nevertheless, RMA models
can lead to increased acceleration by minimizing communication bottlenecks and
maximizing the amount of uninterrupted parallel computation for the target of
the communication call [6].

In the last few decades, an older concept of distributed symmetric mem-
ory, or “SHMEM”, has been revisited as an alternative to MPI, resulting in
a new specification called OpenSHMEM. Utilizing a partitioned global address
space (PGAS) and adhering to the RMA communication model, this specifica-
tion attempts to support one-sided, non-blocking communication without adding
extensive setup overhead or complex API calls. Many OpenSHMEM API calls
are modeled after MPI methods, allowing for a low barrier of entry for parallel
programmers while still affording increased parallelization [9]. This research con-
trasts the two-sided MPI specification to the one-sided OpenSHMEM variant,
evaluating RMA acceleration benefits and quantifying any increased complexity
or loss in productivity.

This comparison starts at the API level and then extends to the app level
using a parallelized graph-processing algorithm based on Boruvka’s algorithm
[13]. The OpenSHMEM specification is applied to an existing MPI implemen-
tation of the algorithm and directly compared. A focus on overall execution
time and productivity provides a basic framework for the continued study and
development of the OpenSHMEM specification at multiple levels of complexity.

In summary, this research contributes:

– An evaluation of OpenSHMEM API calls based on existing distributed-
communication standards.

– A discussion of OpenSHMEM programming techniques that lead to parallel
acceleration and corresponding levels of increased complexity.

– Analysis of OpenSHMEM optimizations on a Parallel MST app.
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2 Background

The core of this research focuses on evaluating productivity and performance of
parallel communication libraries with distributed apps. The concepts presented
in this section illustrate the scope of the app with respect to that goal.

2.1 PGAS

To take advantage of the benefits of both shared-memory and distributed-
memory architectures, the PGAS model implements a global address space,
local and remote data storage, one-sided communication, and distributed data
structures [15]. Global addressing allows individual processors to simultaneously
access the same spot in symmetric memory. This one-sided communication leads
to increased programming flexibility and communication-computation overlap.
But not everything can be stored in symmetric memory. Data stored locally (in
“private” memory) can be more rapidly accessed, forcing programmers to decide
what data needs to be remotely accessible and what can be kept local. This
decision point creates an efficient compromise between performance and ease of
access at the expense of more vigilant design [15]. Support for distributed data
structures allows more data to be stored, opening the door for complex program
compatibility.

2.2 SHMEM

In 2010, SHMEM was standardized into the OpenSHMEM specification by the
PGAS community, unifying development efforts and expanding its viability for
widespread use [3]. Analogous to the popular MPI specification, OpenSHMEM
universalized functions and standardized important aspects of the model includ-
ing types, collectives, API-call structure and communication protocols. Open-
SHMEM has been supported across numerous platforms by multiple libraries,
including Cray SHMEM, OSHMEM, and SHMEM-UCX.

2.3 Minimum Spanning Tree

The baseline algorithm used for this research is Boruvka’s algorithm, one of the
simplest and oldest MST solutions. It starts with multiple small components
composed of individual vertices and their lowest-weight edges. These small com-
ponents are then merged along their lightest available edges to form larger com-
ponents. This process continues until only a single component remains, which is
the MST [2]. The bottom-up nature of this algorithm makes it amenable to par-
allelization, since vertices can be separately tracked by different processors, and
computation can be distributed. The time complexity of Boruvka’s algorithm
can be improved through utilization of clever data structures and parallelization
[11].
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3 Related Research

The OpenSHMEM specification has been explored on the API and app levels,
including graph processing. This research extends this investigation by analyzing
the specification on both levels for an MST graph-processing app, and evaluating
the impact on productivity.

3.1 OpenSHMEM API Calls

Jose and Zhang tested OpenSHMEM API call performance across four dif-
ferent OpenSHMEM libraries, including UH-SHMEM (University of Houston),
MV2X-SHMEM (MVAPICH2X), OMPI-SHMEM, and Scalable-SHMEM (Mel-
lanox Scalable) [8]. They compared point-to-point, collective, and atomic per-
formance on an Infiniband Xeon cluster, scaling up to 1 MB in message size
and up to 4 K processes for collective operations. This work found that MV2X-
SHMEM demonstrates consistently lower latencies compared to other OpenSH-
MEM libraries, as well as a smaller memory footprint per process. Jose and
Zhang also compare the performance of two kernels, Heat Image and DAXBY.
They find that MV2X-SHMEM again outperforms other libraries, demonstrating
consistent execution time improvement that scales with number of processes.

3.2 OpenSHMEM Graph Processing

OpenSHMEM has been used for graph processing in other contexts, as seen in
the work of Fu et al. [5] on “SHMEMGraph”, a graph processing framework
that focuses on the efficiency of one-sided communication and a global memory
space. In order to address communication imbalance, computation imbalance,
and inefficiency, the SHMEMGraph framework introduces a one-sided commu-
nication channel to support more flexible put and get operations as well as a
fine-grained data serving mechanism that improves computation overlap. The
resulting framework was used to test four large web-based graphs on five repre-
sentative graph algorithms, finding 35.5% improvement in execution time over
the state-of-the-art MPI-based Gemini framework [5].

3.3 Productivity Studies

To evaluate and compare the productivity of the algorithm using different com-
munication paradigms, multiple metrics are needed. Measuring both overall lines
of code (LOC) and number of communication-specific API calls strikes a balance
between increased complexity and overall workload. Development time has also
been used to measure productivity with HPC toolsets as seen in [16], but this
metric is more subjective and difficult to measure and compare. The OpenSH-
MEM specification’s growing similarities to MPI further legitimize these metrics,
making a direct comparison of productivity more viable and informative.
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3.4 Parallel MST

Work done by Yan and Cheng have developed a system to find minimum span-
ning tree data structures on distributed processors called Pregel [10]. This system
is “vertex-centric”, focusing on messages sent between vertices to keep commu-
nication simple and efficient [17]. Based on the bulk synchronous parallel model
(BSP), Pregel was theoretically able to achieve performance improvements for
graph processing apps by increasing the number of parallel communications that
could simultaneously execute.

This approach has inconsistency issues due to varying vertex degree in large-
scale graphs, leading to unequal communication backlog and bottlenecks. Two
improvements were made in the form of vertex mirroring for message combin-
ing as well as the introduction of a request-response API, resulting in the aptly
named Pregel+ [17]. Running Pregel+ against modern competitive graph pro-
cessing systems like Giraph and GraphLab demonstrated the effectiveness of
these two techniques, resulting in reduced communication cost and reduced over-
all computation time for the new Pregel+ implementation [17].

The algorithm used in this research is based on and uses source code from
Panja and Vadhiyar [13], who describe the operation of the parallelized, dis-
tributed minimum spanning tree graph algorithm. The algorithm is explained in
detail in Sect. 4.4. This research validates the algorithm’s performance compared
to Pregel+, and shows positive performance improvements for overall execution
time on a scaling number of parallel processes from 4 to 16. This work was
thus deemed acceptable for use as a state-of-the-art scalable distributed parallel
algorithm.

4 Experiments

This section details the nature of experiments performed, data collected, and
optimizations implemented. API-level experiments, app datasets, supercomput-
ing testbeds, and MND-MST algorithm optimizations are examined in detail.

4.1 API Level

To frame and analyze results for a larger app, it is important to analyze differ-
ences of the baseline, API-level performance. This evaluation is done by directly
comparing relevant API calls between MPI and OpenSHMEM. Point-to-point
and collective communications are averaged over 500 iterations and these tests
are scaled up in message size, with some of the collective operations scaling up
in number of parallel processes. Microbenchmark tests for both MPI and Open-
SHMEM are created by the MVAPICH project from Ohio State University, with
some adjustments made to scale to appropriate sizes [12]. Point-to-point bench-
marks were executed using two processors and scaling from 1 byte up to 4 MB
in message size. Collective benchmarks were similarly scaled up to 4 MB, and
the number of nodes was scaled from 2 to 64. All API-level benchmarks used
one PE per node.
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4.2 Datasets

The datasets used for the app consist of large web-based graphs formed by web-
crawling [1]. Created by the Laboratory for Web Algorithmics, these graphs are
undirected, weighted and have significantly more edges than vertices, making
them ideal for large-scale parallel processing and MST calculations. Although
not all fully connected, consistent MSTs can still be calculated effectively for
execution time comparison. These graphs range in size from 1.8 million vertices
to over 100 million vertices, with edge counts reaching nearly 4 billion. These
large graphs have execution times on the order of tens of seconds, allowing for
better detection of difference in execution time at scale. Execution times for
MPI and SHMEM implementations can be directly compared because the use
of different communication libraries have no effect on the way the algorithm is
executed. Edges are still processed, removed, and exchanged in the same way, and
various implementations differ only in the order and method of communication
of edges and components.

Table 1. Graph details

Webgraph Dataset (E/V = Edge-to-vertex ratio)

Name Size (GB) Vertices Edges Max deg E/V

uk-2014 0.15 1.77e6 3.65e7 6.59e4 20.66

gsh-2015 4.70 3.08e7 1.20e9 2.18e6 39.09

ara-2005 4.90 2.27e7 1.28e9 5.76e5 56.28

uk-2005 7.25 3.95e7 1.87e9 1.78e6 47.46

it-2004 8.80 4.13e7 2.30e9 1.33e6 55.74

sk-2005 15.00 5.06e7 3.90e9 8.56e6 77.00

4.3 Testbed

All data was produced by utilizing 2.3 GHz Haswell nodes on the Cori parti-
tion of the National Energy Research Scientific Computing Center (NERSC), a
U.S. Department of Energy Office of Science User Facility at Lawrence Berkeley
National Laboratory. This supercomputer has over 2,300 nodes each with 128
GB of DDR4 memory [4]. The OpenMPI 4.0.3 and Cray-OpenSHMEMX 9.1.0
libraries were used for data collection. Each configuration of runtime parameters
averaged execution times over 15 runs. OpenMP sections allocated 4 threads per
node.

4.4 Algorithm

This research’s algorithm is a parallelized version of the classic Boruvka’s algo-
rithm for finding minimum spanning trees, based on [13].
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The parallelized version of the algorithm is split into four major parts: graph
partitioning, independent computation, merging, and post-processing. During
graph partitioning the input graph is read in parallel by each PE and divided
into equal parts. The independent computation step allows each PE to run Boru-
vkas algorithm locally, while the merging step is used for clean-up of individual
components and internal edges. The post-processing step combines all remain-
ing components and edges into a smaller number of PEs, where a final round of
computation can be done to construct the full MST. Please see [13] for a more
detailed description on the algorithm steps and basic functionality.

4.5 Algorithm Variables

Runtime parameters including post-processing mode, MST Threshold, number of
nodes, and PE count were tuned during data collection for optimal performance.
Post-processing occurs after computation and merging, and was set to either
“single” or “leader” mode. The “single” mode consists of having each node send
all leftover components to PE 0 before final computation, while the “leader”
mode splits PEs into groups of 4 for more parallel computation. It was found that
the “single” mode led to better execution due to lower overhead, so all final data
was collected using the “single” post-processing method. The MST threshold
determined the point at which component consolidation and post-processing
was performed, based on the number of new MST edges. This threshold was
optimized to be 24% of the total number of MST edges.

Strong scaling was performed by altering the number of nodes and processing
elements per job, scaling nodes from 1 to 16 and PEs from 4 to 64. NERSC nodes
were limited to 118 GB per node, and 64 PEs per node [4]. Data for multiple
node-PE configurations was collected to further evaluate the scalability of both
implementations. Node-PE configurations were also influenced by memory limits
and allocations, including that of the private heap, the symmetric heap (SH), and
a separate “collective symmetric buffer” (CB) used for SHMEM collective com-
munications. The two symmetric buffers were set before running jobs and were
allocated per PE. NERSC memory limitations for individual nodes coupled with
large graph sizes required fine-tuning of these parameters for optimal execution.
Some failures resulted from symmetric memory (heap and the collective buffer)
that was too small to handle communication volume, while others were caused
by over-allocation that infringed on private memory. Some node-PE configura-
tions were even rendered impossible, as there wasn’t enough memory available
to support both symmetric memory for communication and private memory for
graph data storage. Webgraphs that were larger in size like the uk-2005 graph
tended to require larger symmetric heap sizes to execute properly.

4.6 SHMEM Optimizations

A number of techniques are used to optimize the OpenSHMEM-based app
beyond simple one-to-one API call replacement. By leveraging partitioning, non-
blocking communication and RMA, SHMEM enables programmers to reduce
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communication overhead and accelerate parallel execution without introducing
overwhelming complexity. The first major OpenSHMEM optimization occurs
during the exchanging of ghost information after independent computation,
including external vertices and their corresponding edges. In the baseline MPI
approach, this step consists of a series of handshake MPI send and MPI recv
calls, first exchanging the message size before sending the full data structure
of vertices and ghost edges to be updated. Each PE then locally updates the
corresponding data structure to reflect changes in component sizes.

This relatively straightforward communication can be improved with the use
of OpenSHMEM. First, the message size can be sent using one-sided put and
get operations followed by a shmem wait until synchronization API call. The
message size is used for data partitioning. These communications allow each PE
to operate independently while sending the message size, which leads to more
efficient execution. Second, the ghost information can be communicated via RMA
without the need for any synchronization which eliminates handshaking overhead
and slowdown from synchronization.

Finally, the OpenSHMEM implementation takes advantage of partitioning,
which is essentially overlapping communication and computation. Although the
message size communication is relatively small (only a single int or long data
value), the ghost information itself can consist of thousands or even tens of
thousands of edges. Such a large message can be divided and sent between PEs
in chunks, each overlapped with the updating of the local PE data structure.
Rather than using a single get operation to send the entire message, a non-
blocking get operation of a smaller chunk size is executed. While the smaller
non-blocking RMA operation executes, the PE updates the local data structure
for the previous data chunk. In this way communication and computation are
overlapped by using a shmem quiet for synchronization.

The other prime target for OpenSHMEM optimization is the exchanging
of component data during the merging step. In the MPI implementation, sizes
of exchanged vertices and edges are communicated for each pair of processors.
These sizes are then used to exchange portions of several different data structures
between the pair of processors using a series of synchronous send-receive com-
munications. The OpenSHMEM implementation avoids the handshake overhead
entirely by using non-blocking communication calls as well as RMA, which allows
each PE to operate independently and retrieve the required information simul-
taneously. Partitioning is also used to overlap this communication with some
of the ending data structure updating and copying. Used together, these tech-
niques take advantage of the large amount of data that must be communicated
between PEs and overlaps it with data structure update overhead to maximize
uninterrupted computation. The original MPI algorithm uses blocking communi-
cation with no overlap, so both PEs must communicate all data before running
computation. The optimized OpenSHMEM implementation uses non-blocking
communication-computation overlap, with a pre-defined number of partitions.
The data to be communicated is divided into equal chunks and communicated
chunk-by-chunk asynchronously, with each communication overlapped with
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computation and later confirmed by a synchronization call (shmem quiet).
Although MPI and OpenSHMEM both have the capability for non-blocking com-
munication and computation overlap, the OpenSHMEM implementation benefits
from RMA communication calls and fewer lines of code. Non-blocking two-sided
MPI also requires the use of additional MPI Request and MPI Status objects
for synchronization, which adds overhead.

These same techniques are applied to the post-processing step of the algo-
rithm. Data structures are gathered and combined in a similar manner to the
merge step, except that they are gathered into a smaller number of PEs for final
computation. For the baseline MPI implementation, all communications require
handshakes between a pair of processors. For the “single” mode PE 0 must
execute a series of send-receives with every other PE, resulting in a handshake
bottleneck. The RMA nature of the OpenSHMEM specification allows each PE
to simultaneously get data from PE 0 via a series of one-sided communication
operations. To support these communications, the OpenSHMEM implementa-
tion adds an additional all-reduce collective call to first calculate address offsets.
At the cost of an extra API call and an extra data structure, this technique
removes the handshake bottleneck with PE 0 and allows this entire series of
communications to execute asynchronously.

5 Results

All data collected are presented in this section, including microbenchmark per-
formance and an app-level comparison of OpenSHMEM and MPI. Additional
algorithm tuning data and productivity comparisons are also examined.

5.1 API Level

The results of the API-level OSU microbenchmarks executed on NERSC are
shown in Tables 2 and 3. To provide proper context for the distributed MST
algorithm, communication calls that are most often used in the algorithm are
presented in these tables, including get, put, all-reduce, and barrier-all opera-
tions. To compare one-sided and two-sided point-to-point operations, the MPI
benchmarks run 2 two-sided handshake communications and then divide the
round trip time by two. The barrier operation measures the latency for the
indicated number of processes to call barrier.

For point-to-point calls, the OpenSHMEM put and get operations show com-
parable latencies at all sizes, with get operations slower at low message sizes and
faster at high message sizes. This crossover occurs around a message size of 4KB.
The MPI basic communication calls show execution latencies that are similarly
comparable to both put and get communication latencies. At smaller message
sizes (≤4 KB), put latencies are lower by an average of 0.091 µs, and get latencies
are higher by an average of 0.531 µs. This latency gap widens at larger message
sizes to 3.56 µs higher for put and 3.75 µs lower for get per operation, but is
still a relatively insignificant difference for app execution time.
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Table 2. MPI and OpenSHMEM microbenchmark data. Latencies in µs.

Point-to-point Microbenchmarks

Size MPI 2-sided SHMEM put SHMEM get

64 bytes 1.18 1.13 1.71

1 KB 1.46 1.28 2.09

32 KB 8.27 5.46 5.13

256 KB 31.47 30.73 28.24

2 MB 217.49 230.23 212.70

4 MB 430.84 461.23 424.56

Barrier Microbenchmark

Nodes MPI 2-sided OpenSHMEM

2 1.24 1.48

4 5.16 2.15

8 7.12 2.62

16 12.72 6.41

32 13.10 4.62

64 14.48 6.64

Table 3. MPI and OpenSHMEM all-reduce. Latencies in µs

OpenSHMEM

Size N=2 N=4 N=8 N=16 N=32 N=64

64 bytes 5.20 10.70 13.99 29.41 26.27 29.30

1 KB 6.11 13.62 21.67 28.92 32.22 37.79

32 KB 18.59 47.79 72.73 95.59 93.05 101.88

256 KB 127.90 214.39 270.90 358.52 274.18 288.69

2 MB 974.60 1167.45 1456.71 1547.68 1454.02 1488.44

4 MB 1966.46 2342.73 2712.33 2876.35 3127.96 3070.97

MPI

Size N=2 N=4 N=8 N=16 N=32 N=64

64 bytes 1.36 5.52 5.60 9.06 13.59 24.06

1 KB 1.98 13.02 10.16 18.11 23.27 19.12

32 KB 20.69 171.23 82.76 185.84 280.24 432.05

256 KB 89.35 410.93 403.74 888.88 1113.13 745.60

2 MB 618.35 2994.57 3344.70 3774.10 2609.00 3459.31

4 MB 1217.65 5026.94 4760.20 4891.37 5215.68 4848.71

Collective operations shown in Tables 2 and 3 are scaled in message size and
number of processes. The OpenSHMEM barrier-all latencies increase at a slower
rate than the MPI counterparts, scaling by a factor of 4.47 from 2 to 64 nodes,
while MPI scales by a factor of 11.66. The all-reduce latencies display more
variation. At lower message sizes (≤4 KB) the OpenSHMEM latencies are on
average 74.18% slower than MPI, but at larger message sizes are 28.7% faster
on average than MPI. As the number of processes increases, the difference in
latency between the MPI and OpenSHMEM calls decreases. There is an average
of 111.8% absolute difference in latency from MPI to OpenSHMEM for 2 pro-
cesses, but only 63.9%, 75.8%, and 71.5% average absolute difference for 4, 8, and
16 processes, respectively. In addition, OpenSHMEM latencies are higher than
MPI counterparts for large message sizes (≥8 KB) with 2 processes, but are on
average lower when running with more processes. There is also a range of mes-
sage sizes (32 bytes to ∼2 KB) where OpenSHMEM latencies are significantly
larger than MPI, with an average percent increase of 118.3%.

5.2 MST Algorithm

The scaled execution time data for both implementations of the MND-MST
algorithm are presented with raw execution times in Figs. 1, 2, 3, 4, 5, and
6. Data for these experiments was collected for all 6 webgraphs using NERSC
Haswell nodes on the Cori partition, and was scaled up to 16 nodes and up to 64
PEs. MPI results are denoted by the blue bars, and SHMEM results are denoted
by the orange bars. The yellow bar displays the best overall MPI performance,
and the green bar displays the best overall SHMEM performance. As mentioned
previously, not all node-PE configurations were executable on NERSC due to
memory limitations. These are represented by blank bars.
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Fig. 1. MPI vs. OpenSHMEM performance for the uk-2014 webgraph. Bar labels
denote PEs. Blue = MPI, Yellow = Best MPI, Orange = SHMEM, Green = Best
SHMEM. (Color figure online)

Fig. 2. MPI vs. OpenSHMEM performance for the gsh-2015 webgraph. Bar labels
denote PEs. Blue = MPI, Yellow = Best MPI, Orange = SHMEM, Green = Best
SHMEM. (Color figure online)
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Fig. 3. MPI vs. OpenSHMEM performance for the ara-2005 webgraph. Bar labels
denote PEs. Blue = MPI, Yellow = Best MPI, Orange = SHMEM, Green = Best
SHMEM. (Color figure online)

Fig. 4. MPI vs. OpenSHMEM performance for the uk-2005 webgraph. Bar labels
denote PEs. Blue = MPI, Yellow = Best MPI, Orange = SHMEM, Green = Best
SHMEM. (Color figure online)
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Fig. 5. MPI vs. OpenSHMEM performance for the it-2004 webgraph. Bar labels denote
PEs. Blue = MPI, Yellow = Best MPI, Orange = SHMEM, Green = Best SHMEM.
(Color figure online)

Fig. 6. MPI vs. OpenSHMEM performance for the sk-2005 webgraph. Bar labels denote
PEs. Blue = MPI, Yellow = Best MPI, Orange = SHMEM, Green = Best SHMEM.
(Color figure online)
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5.3 Productivity Studies

Table 4. Implementation productivity, measured in LOC and API-calls.

Function API calls Lines of code

MPI SHMEM MPI SHMEM

Graph part 3 6 247 273

Ghost info 7 12 54 91

Merge 14 25 117 185

Post proc 24 29 128 160

Total 82 110 1188 1402

In addition to demonstrating scaling and performance results for the MPI and
OpenSHMEM-based apps, the development productivity of each implementation
of the algorithm is measured and compared. When measuring API calls, Open-
SHMEM and MPI share a common setup structure each with corresponding init
and finalize calls. For the sake of simplicity, these along with shmem malloc and
shmem free calls are ignored in API counts to avoid dilution. The OpenSHMEM-
based app shows an increase in LOC by 18.01%, and an increase in API calls by
34.15% as shown in Table 4.

6 Discussion

This section evaluates differences in performance at the API and app levels, in
the context of message size and webgraph composition. It also examines the
change in productivity with respect to overall performance.

6.1 API Level

When compared directly on the API-level, the point-to-point OpenSHMEM
operations are on-par with their MPI counterparts, with some variation depend-
ing on message size and number of processes. The put and get SHMEM calls have
similar latencies to the MPI Send-Recv pair. On the collective side, the OpenSH-
MEM barrier-all operation outperforms that of MPI for all process counts. The
all-reduce operation is more nuanced. The OpenSHMEM implementation out-
performs MPI allreduce for message sizes larger than 4KB and processor counts
greater than 2. While the discrepancies for collective operations are more sig-
nificant (an average of 45.1% decrease in latency for barrier-all and all-reduce
compared to only ∼2.5% decrease for put and get), these decreases are still rel-
atively minor in the scope of the entire app runtime. With a difference of at
most a few milliseconds per call at the largest message sizes and a few hun-
dred API calls in the entire app at runtime, the performance improvement from
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SHMEM API calls is on average less than 2% of the total execution time. This
minor improvement alone isn’t enough to justify an increase in programming
complexity that comes with the OpenSHMEM specification. Instead, it is the
combination of one-sided and non-blocking communication patterns with strate-
gic programming techniques that lead to concrete, noticeable speedup over MPI.

6.2 Productivity Studies

The use of communication-computation overlapping techniques and flexible
one-sided communication patterns comes with additional program complexity,
demonstrated by the ∼34% increase in API-calls and ∼18% increase in LOC for
the OpenSHMEM implementation. To combine these metrics into a single result,
we averaged both increases to find a combined increased complexity of ∼25%. To
produce significant performance improvement and justify this increase in com-
plexity, these programming paradigms must also be thoroughly understood and
implemented by the programmer, with the added risk of manual synchronization.

It is important to note that a portion of this increase can be attributed to the
use of custom MPI types which are currently not supported by OpenSHMEM.
Due to the “shmem TYPE OP()” format of SHMEM calls, certain lines were
doubled to ensure that the right datatype was being used. Another portion of
the increased overhead is caused by the use of “pWrk” and “pSync”, two array
data structures used to perform certain OpenSHMEM communications including
many collective operations [3].

The majority of the differences in productivity can be attributed to the merge
and post-processing portions of the algorithm, due to the high number of commu-
nication operations present. In addition, the optimized OpenSHMEM-based app
uses partitioning and non-blocking communication, which adds additional com-
plexity in the form of synchronization calls (shmem barrier and shmem quiet).

Finally, certain symmetric variables and data structures had to be introduced
to keep symmetric memory locations consistent between processors. With MPI,
variables of the same name are stored in separate locations across processors
and can thus be of different sizes. However, any pointer or variable declared in
the symmetric memory must be the same size across every PE to avoid invalid
accesses. For this reason, new “maximum value” variables were introduced to
ensure symmetric variables had consistent sizes across PEs, which had to be
calculated via collective communication. This addition introduced more overhead
in the form of additional API calls as well as lines of code.

One drawback of using OpenSHMEM is that the OpenSHMEM specification
version 1.4 only supports “to-all” communication for many collective API-calls,
meaning all processes receive data from every communication [9]. This fact is
due to the use of the symmetric heap present across all PEs, and leads to more
overhead for corresponding OpenSHMEM calls. In addition, performing any “to-
one” collective operation equivalent to an MPI Reduce or MPI Gather must be
programmed manually, using sequential point-to-point operations. As a result,
all “to-one” communications in the algorithm were replaced with “to-all” com-
munications, unless noted otherwise.
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6.3 MST Algorithm

The changes in API calls alone do not provide a significant amount of perfor-
mance improvement, and increase the programming complexity of the app. To
fully exploit the benefits of the OpenSHMEM specification, the programmer
must utilize strategic programming techniques, non-blocking communication,
and RMA to maximize uninterrupted computation time.

The result of the added overhead and nuanced programming strategies is
promising, with performance improvements from MPI to OpenSHMEM averag-
ing over 30% for all node-PE configurations. Some graphs seemed to perform
better with OpenSHMEM; the it-2004 and sk-2005 webgraphs averaged nearly
40% improvement in execution while gsh-2015 and uk-2014 showed an average
improvement of 20%. This variation in performance correlates roughly with file
size and number of edges, with the largest two webgraphs (sk-2005 and it-2004)
showing the best improvement and the smallest two webgraphs (gsh-2015 and
uk-2014) showing the least improvement. The correlation coefficient between
average percent decrease in execution time and both file size and number of
edges is 0.71. Performance improvement is even better correlated with edge-to-
vertex ratio, with a correlation coefficient of 0.86. This improvement is likely
due to the larger number of edges per vertex to analyze, which results in a
larger volume of communication and more potential for performance gain from
optimizations.

At all node counts, both MPI and OpenSHMEM implementations display
the best performance improvement at either 16 or 20 PEs with the exception
of the uk-2005 webgraph. When measuring percent decrease in execution time
compared to the 1 node, 4 PE configuration, both implementations show opti-
mum performance with a PE count of 16, with an average percent improvement
of 28.46% for MPI and 32.94% for OpenSHMEM. The worst performance for
both implementations is at 64 PEs, followed closely by 4 PEs. PE counts of 8 to
20 see more consistent performance improvement.

For node scaling, MPI shows optimum performance with 4 nodes at an aver-
age of 22.16% improvement, while OpenSHMEM peaks at 8 nodes, with an
average of 37.48% decrease. These results are calculated relative to 1 node and
4 PEs. MPI displays worst performance with 16 nodes, while OpenSHMEM dis-
plays worst performance when using 1 node. With too few or too many nodes,
graph data can either be too distributed or not distributed enough, resulting
in extra communication overhead or inadequate parallelization. The variability
of scaling results is due to the partitioning of the graphs by the processes, and
is highly dependent on the format of the graph itself. While some graphs are
amenable to more PEs and increased vertex subdivision, other graphs might
not be able to mask the increased communication overhead with independent
computation or data partitioning.
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7 Conclusions

At the app level, PGAS communication models such as OpenSHMEM show
promising results in terms of consistent scaled performance improvement, in
spite of limited latency difference between API calls. Through the utilization
of strategic programming techniques and flexible RMA communications, the
OpenSHMEM specification demonstrated significant improvement over MPI on
a parallel graph app, with percent increase in programming complexity equal to
or lower than percent increase in performance. The performance improvement
from MPI to OpenSHMEM also demonstrates positive correlation with increas-
ing webgraph size and edge-to-vertex ratio, indicating that OpenSHMEM has
promising scaling potential on HPC apps. As the specification continues to be
developed, more complex communication schemes will be supported, increasing
the range of apps and problems that can adopt this growing model.

This research provides a foundation for studying the OpenSHMEM specifi-
cation at a higher level. The baseline API-call comparison provides context for
evaluating the presented RMA programming optimizations, and the examination
of productivity quantifies the increased workload for prospective developers. As
apps and databases increase in scale, distributed-computing systems will become
even more prominent. In turn, the OpenSHMEM specification will continue to
grow in viability as a means for parallel performance improvement.

8 Future Work

The speedup displayed from using OpenSHMEM optimizations is promising,
and scales well. It has presently only been applied to the baseline version of the
algorithm which focuses on CPUs. Panja and Vadhiyar also describe a hybrid
version of the algorithm, leveraging GPUs to achieve higher levels of accelera-
tion, with the added cost of host-device communication overhead and complexity.
There is significant potential for further development on this implementation.
NVIDIA has recently released its own version of the OpenSHMEM library for
GPUs, called NVSHMEM, which uses GPUDirect RDMA (GDR). This technol-
ogy allows GPUs to directly communicate with one another, avoiding the CPU
communication bottleneck [7]. In addition to the acceleration displayed in this
work with non-blocking RMA communication, the application of the NVSHMEM
library to the MST algorithm could lead to further latency reduction.

While NVSHMEM has not yet been applied to larger apps, it is our hope to
continue to expand this work to the hybrid GPU algorithm, potentially combin-
ing OpenSHMEM and NVSHMEM libraries. This extension would more robustly
explore the performance improvement potential of the MND-MST algorithm,
and would combine two SHMEM libraries at a larger scale.

References

1. Boldi, P., Vigna, S.: The WebGraph framework I: compression techniques. In:
Proceedings of the Thirteenth International World Wide Web Conference (WWW
2004), pp. 595–601. ACM Press, Manhattan, USA (2004)



20 M. Ing and A. D. George
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Abstract. HPC architectures are increasingly handlingworkloads such as AI/ML
or high performance data analytics where the working data set cannot be easily
partitioned, or does not fit into node local memory. This poses challenges for pro-
gramming models such as OpenSHMEM, which require data in the working set to
fit in the symmetric heap. Emerging fabric-attached memory (FAM) architectures
enable data to be held in external memory accessible to all compute nodes, thus
providing a new approach to handling large data sets. Unfortunately, most HPC
libraries do not currently support FAM, and programmers use file system or key-
value store abstractions to access data that is resident off-node, resulting in lower
application performance because of the deep software stack necessary in the data
path.

The OpenFAM API treats data in FAM as memory-resident, and provides
memory management and data operation APIs patterned after OpenSHMEM. In
this paper, we discuss the design of an open-source reference implementation
of the API, and demonstrate its efficiency using micro-benchmarks on a 32-node
EDR InfiniBand cluster.We concludewith a discussion of futurework and relation
to OpenSHMEM.

Keywords: Fabric attached memory · Programming API · Disaggregated
memory · OpenFAM implementation

1 Introduction

High performance computing (HPC) clusters have been traditionally optimized forwork-
loads where the problem can be partitioned and parallelized. Increasingly, these clusters
are being used for problems such as high performance data analytics or machine learning
[1–3] where data cannot be partitioned easily. In addition, such workloads require very
large working sets, causing an imbalance in the compute-to-memory ratios within the
clusters [4, 5].
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Emerging fabric-attached memory (FAM) architectures [5] provide a new approach
to handling large data sets inHPCapplications by supporting externalmemory accessible
to all compute nodes over a high-speed, low-latency fabric. These architectures are
enabled by the emergence of high-speed optical networks [6] and storage class memory
(SCM) [7]. Although currently expensive, SCM offers the potential to significantly
reduce the latency to persistence, thus allowing higher performance for applications that
require large working sets. In addition, since FAM represents a separate failure domain
than compute nodes, FAM-based architectures can provide support for reducing down-
time and checkpoint-restart overheads [8] in long-running HPC jobs. Finally, by holding
shared data in FAM, applications can reduce contention at the network interfaces on
compute nodes, which currently have to serve data to other nodes when using one-sided
operations.

Although there is significant effort in the systems research community to explore
these architectures (see Sect. 6), most HPC libraries do not currently support FAM,
making these architectures inaccessible to applicationwriters. Programmers thus overlay
file system or key-value store abstractions [9, 10] for data that is resident off-node,
reducing the true potential of these architectures. In contrast, the OpenFAM API [11]
treats data in FAM as memory-resident, and provides memory management and data
operation APIs patterned after OpenSHMEM [12]. The API offers the following benefits
to the HPC programmer:

• The API is natural to HPC programmers used to writing applications using one-sided
operations such as those defined in OpenSHMEM.

• It allows an application to allocate FAM, and provides APIs to allow those allocations
to be retained after the application terminates. This allows FAM-resident data sets to
be shared among applications without the need to constantly move data to and from
slower storage tiers, thus enabling much more efficient HPC workflows [13, 14].

• It associates access permissions with individual allocations to restrict sharing as nec-
essary among users, thus providing user-level control over visibility of FAM-resident
data.

In this paper,wedescribe anopen-source reference implementation [15] of theOpenFAM
API. We start with a brief review of the OpenFAM API, followed by the architecture
of the reference implementation. We then present a performance characterization of the
implementation by evaluating the time taken within the implementation for different
operations. We follow with a discussion of some of the limitations we are working with,
and relationship to OpenSHMEM. The paper concludes by describing related work, and
a summary.

2 The OpenFAM API

We first provide a brief review of the OpenFAM API. A more detailed description
is present in [11]. The API is targeted for use in a clustered environment where each
compute node runs a separate OS instance, but also has access to fabric-attachedmemory
that is addressable using a global address space. The API assumes a two-level hierarchy
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for fabric-attached memory: Regions represent large data containers, and have non-
functional characteristics such as resilience or persistence associated with them. Each
region is treated as a separate heap by memory managers, which can allocate data items
within the region that are directly accessible by applications. Data items inherit the non-
functional characteristics of the region within which they are allocated. Both regions and
data items have access permissions associated with them to allow finer-grained access
control, and can be named to enable different parts or invocations of the application (or
different applications) to access a given region or data item as necessary.

Rather than exposing the global address space directly to the applications, the Open-
FAM API uses descriptors (opaque handles) to address FAM. The methods in the API
are grouped based on the following categories:

• Initialization and finalization: These operations include initialization, finalization, and
aborting a running application.

• Data path operations: Data path operations include blocking and non-blocking ver-
sions of get (copy data from FAM to local node memory), put (copy data from local
node memory to FAM), and corresponding gather and scatter operations. An
additional API allows a copy to be made from one part of FAM into another part of
FAM.

• Memory mapping operations: If supported by the underlying fabric, this set of APIs
allow FAM to be mapped directly into the process address space and accessed by
the CPU. Cache coherence is maintained among processors within a node, but is not
provided across nodes accessing FAM.

• Atomics: This group of operations include both fetching (e.g., fetch_add() or
compare_swap()) and non-fetching (e.g.,set()) operations on FAM,withmem-
ory side controllers ensuring atomicity in case the operation is performed concurrently
by multiple processing elements (PEs).

• Memory ordering and collectives: This group includes fence() and quiet()with
semantics similar to those defined in OpenSHMEM. Unlike OpenSHMEM, Open-
FAM only defines a barrier operation; other collectives are not defined in the
API.

• Memory management: These operations include region creation, destruction, and
resizing, as well as data item allocation and deallocation.

• Query and access control operations: These operations include the ability to look up
allocations by name, and change access permissions for data items or regions.

Most methods defined in the API follow a consistent pattern for providing byte-level
access to FAM-resident data, where localmemory is addressed using local pointers while
FAMis addressedusing adescriptor, a byte offset from the start of a data item, and a length
field specifying the number of bytes at that offset. For example, the get_blocking
call is specified as

void fam_get_blocking(void *local, Fam_Descriptor *descriptor,
uint64_t offset, uint64_t nbytes);

Here local represents the address of the destination buffer in the calling process,
descriptor is the associated reference to the source FAMdata item, and the operation
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is specifying that nbytes be copied starting at offset from the start of the data item
in FAM to the local destination buffer. Other methods follow the same pattern.

3 The OpenFAM Reference Implementation

The overall architecture of the OpenFAM reference implementation [15] is shown in
Fig. 1. It consists of about 50,000 lines ofC++code (including tests). The implementation
assumes that FAM is provided to compute nodes over a high speed RDMA network, and
is implemented using memory servers, which serve allocations to applications running
on the compute nodes. Applications are compiled with the OpenFAM library, and are
deployed across the compute nodes as processing elements (PEs) using a workload
manager such as SLURM [16]. The PEs treat the memory within the compute nodes
as “private”, while considering memory served by memory servers as “global.” Once
allocated by a PE, all other PEs within the application (or within other applications) can
access data items from the memory servers using RDMA and atomics operations.
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Libfabric

PMIx
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gRPC
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Libfabric

Region files
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Fig. 1. Architecture of the OpenFAM reference implementation

The OpenFAM implementation includes a client library that is linked to the PEs, a
memorymanagement service that runs on thememory nodes, and two additional services
(the client interface service and the metadata management service) that manage cluster
configuration information and metadata required for allocations respectively.

The OpenFAM client library. The client library exposes the OpenFAM API to the
application, and is used by the PEs to access FAM using libfabric [17]. In addition, the
client library includes a PMIx client [18] to communicate with the workload manager,
and a gRPC client [19] to communicate with the OpenFAM metadata services.

The memory management service. The allocated memory is served to the PEs from
memory servers. The PEs interact directly with memory servers via the underlying
fabric using RDMA for data path operations such as get, put, or atomics using the
topology details available from the client interface service. The service currently supports
several fabric interconnects including Ethernet, InfiniBand, and Omnipath. The memory
management service hostsNVMM[20] and libfabric components.NVMMis responsible
for creation of heaps, as well as the allocation and deallocation of data items. Memory-
mapped files provide parts of OpenFAM regions that are allocated within a memory
node for individual data items. For data path operations, upon validation of permissions,
FAM is mapped from the memory server, registered onto libfabric and the key is shared
with PEs. The PEs then access FAM in the memory servers directly using libfabric. The
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metadata management service coordinates region allocations across memory servers to
enable regions to span memory nodes. In addition to serving FAM to the clients, the
memory management service also supports RDMA operations among memory servers
for operations such as fam_copy().

The client interface service. The client interface service (CIS) provides a layer of
abstraction between PEs and metadata and memory services. All PEs interact with the
CIS for region and data item allocation, lookup and other metadata and memory oper-
ations. The CIS stores cluster information such as addresses for nodes hosting other
services, as well as memory node information. This service minimizes the burden on the
OpenFAM client to track and maintain cluster-wide configuration information.

The metadata management service. Region, data item, and memory server metadata
information is hosted in the metadata management service. This service also serves as a
resource manager. It provides a list of memory servers used for hosting regions. It also
identifies memory servers when data items are allocated. Our initial design uses hash-
based addresses for selecting memory servers when regions are created. In the future, we
can also enable other user-defined selection policies. The metadata management service
hosts the key-value store (KVS) used to track permissions and data item allocations. In
the current implementation, the radixtree module [21] provides the KVS service, but
other KVS implementations such as etcd, pmemkv or persistent concurrent hash maps
can be plugged in if needed.

Depending on configuration parameters, the client interface service and themetadata
management service can be co-located with the memory management service or run as
separate executables. Examples demonstrating the use of the API as well as example
applications (SpMV and PageRank) are available at [22] and [23] respectively.

4 Performance Measurements

The OpenFAM reference implementation can be configured to run on both scale-up
servers and scale-out clusters. We next describe performance results (throughput and
latency) measured for both blocking and non-blocking OpenFAM data path operations
(get, put, scatter, gather), as well as for atomics operations using the cluster
environment. We were specifically interested in scalability as memory servers are added
to the system during testing. In each case, 16 single-threaded PEs were used to generate
requests, while the number of memory servers was changed from 1–16. For large trans-
fers, we measured the aggregate throughput as the number of memory servers increased.
For small transfers and atomics, we used round-trip latencymeasurements, since they are
more representative of performance. To reduce the effect of the network whenmeasuring
latency, the PEs and the memory servers were distributed in the cluster to minimize the
number of switch-hops between the PEs and the memory servers.

The OpenFAM reference implementation can be compiled to turn profiling on and
off. When turned on, each API logs the time taken within itself as the test is conducted.
Once the test completes, the logs are used to compute averages, which are presented in
this section.
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4.1 Data Path Performance

Data path performance was measured using 48 nodes from a 96-node InfiniBand cluster.
The cluster interconnect provides 12.5 GBps link bandwidth, and is configured in a fat-
tree. Each node has 40 Xeon Gold 6248 cores (80 hyper threaded cores) with 128 GB
memory, and runs RHEL 8.3. For data path (e.g., get, put, gather, and scatter)
operations, tests were run using 34 nodes from the InfiniBand cluster. Metadata services
were hosted on two nodes, and 16 nodes hosted PEs (one per node). The remaining 16
nodes were used as memory servers, and number of memory servers (1, 2, 4, 8, and 16)
was variedwithin the tests. A single regionwas configured to span all memory servers, so
data items could be distributed across the memory servers. The workload was distributed
across memory servers using two configurations:

Even: For this distribution, each PE allocated data items equally on all memory servers,
starting from a different memory server (in a round robin fashion) and wrapped around
when number of PEs exceed the number of memory servers. Thus each PE concurrently
accessed data from all memory servers. The number of data items and accesses were
chosen to maintain an even balance across the memory servers.

Random: In this case, data items from each PE were randomized across memory
servers. Because the number of available memory servers is small during testing, a
random assignment distributes data unevenly across memory servers, thus resulting in
an imbalance of workload on the memory servers.

Each PE allocated 112 data items (4 MiB each), and performed 100 operations on
each data item. The average throughput was then computed from the instrumentation
logs and reported in the tests. In the second set of tests, small transfer performance was
measured by reducing the data item size to 256 bytes. In this case, average latency was
measured instead of aggregate throughput as the performance metric.

Figures 2 and 3 show the total achieved throughput when the data items are allocated
evenly as the number of memory servers is increased from 1 to 16.
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The Figures also show the aggregate available bandwidth with the number of mem-
ory servers. From the Figures, we observe that the total achieved throughput scales
linearly with memory servers and is close to the aggregate bandwidth (12.5 GBps ×
number of memory servers). For 16 servers, throughput ranges from 179.6 GBps for
fam_get_blocking to 193.1 GBps for fam_put_nonblocking.
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Figures 4 and 5 show the total achieved throughput when data items are allocated
randomly across available memory servers. Again, the overall aggregate bandwidth
available is shown for reference. Unlike the even configuration, we see a significant drop
in aggregate throughput as memory servers are added, with a maximum throughput of
134.5 GBps for fam_put_nonblocking with 16 memory servers.
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Fig. 4. Overall throughput for put/get calls in the random configuration.

Table 1 shows the number of data items allocated in each memory server with the
random configuration for get and put blocking calls when 16 memory servers are
used. It is clear from the table that there is a significant difference in the number of
data items allocated (and hence the number of accesses) on different memory servers.
Because performance in the implementation is primarily limited by the link bandwidth
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at the network interfaces on the memory servers, the overall performance drops because
of in-cast observed by the more-heavily loaded memory servers. We see similar patterns
with gather and scatter as well.
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Table 1. Number of data items allocated across memory servers for random placement

API/MSRVIDs 0 1 2 3 4 5 6 7

get_blocking 100 112 130 101 113 121 91 128

put_blocking 105 101 116 114 112 112 107 129

API/MSRVIDs 8 9 10 11 12 13 14 15

get_blocking 97 110 114 128 107 115 120 105

put_blocking 110 117 117 122 112 108 98 112

Figures 6 and 7 show the round trip latency obtained with small (256 byte) data
items with 16 concurrent PEs. As a comparison, an estimate of round-trip fabric latency
(obtained using the Linux ibv_rc_pingpong utility [24] with 256 byte messages
between two servers) is also provided. Comparisons show that the OpenFAM software
stack incurs an additional end-to-end roundtrip overhead (primarily within libfabric) of
slightly less than 1µs when a single PE is accessing a single memory server.

We note that in all cases (including both the even and the random placement of
data items) round-trip latencies are below 10 µs, and are comparable, supporting our
hypothesis that the drop in throughput for random workload placement is caused by
in-cast at the memory servers due to workload imbalance.

We also repeated the same experiments with different mixtures of get and put
workloads, and found that the aggregate throughput is consistent with the above results
when the fraction of get versus put is varied.
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Figure 8 shows the aggregate bandwidth utilization (aggregate throughput/aggregate
bandwidth) obtained with 16 PEs targeting 16 memory servers concurrently using 4
MiB transfers, while the fraction of PEs doing (blocking) get versus put requests is
varied. As in the previous tests, the implementation achieves an aggregate throughput
close to the aggregate fabric bandwidth when the workload is evenly distributed across
memory servers. The random case, once again, shows lower utilization, but performance
is better when the PEs are evenly balanced across get and put traffic, thus reducing
the contention for the network in the random case.

We next measured the performance of fetching atomic operations. Results are shown
in Figs. 9 and 10. Error bars on the graphs represent standard errors.

We observe that all latencies are below 10 µs, except the case when all 16 PEs are
accessing a single memory server, indicating that the memory server is overloaded. For
a single memory server, the random distribution of workload (where the workload is
unbalanced) shows larger latency than the even case when the server is heavily loaded.

To understand the scaling better, we repeated the last experiment by varying the
number of PEs accessing a single memory server concurrently. The results are shown
in Fig. 11. It is clear from the figure that as concurrency is increased, latency goes up,
showing additional contention at the memory server for atomics operations.
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4.2 Meta Data Operations

Metadata operations in OpenFAM include memory management operations (such as
allocation and deallocation of data items, and creation, deletion and resizing of regions),
permission management, and region naming and lookup. In this section, we focus on
performance for the region- and data item-related memory operations associated with
allocation and deallocation of memory, and lookups, since they are more frequently used
in applications. We used OpenFAM in its scale-up configuration on a MC990x server
with Intel Xeon E7-8890 v3 CPUs running at 2.50 GHz for these measurements. The
server contains 11.13 TB of memory and 288 cores running Centos Linux Server 7.6.
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Figure 12 shows the average time taken for region creation, deletion, resizing, and
lookup operations. For region creation and deletion, each PE creates 100 regions, each
256 MiB in size, spanning 16 memory servers. For region re-sizing, each PE starts with
a 1 MiB region, and increments its size by 1 MiB 100 times. We observe that region
creation is the most expensive operation (~320 ms). The time is largely dominated by
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the time needed to make the appropriate entries in the key-value store that tracks region
information. Region deletion ranges from about 4 ms to 14 ms depending on the number
of concurrent PEs. Resize operations are comparatively fast, taking about 1 ms, and
lookups take 300–400 µs.

Figure 13 shows times taken for data item allocation, de-allocation and lookups. For
these measurements, each PE allocates 100 data items in a loop, each 4 MiB in size.
All data items share a single region. Again, we observe a slight increase in allocation
time with increasing concurrency. Allocation times are about 4 ms, while deallocation
takes 400–600µs. Lookups are about 300µs, where time is dominated by the round-trip
latency within gRPC.
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5 Discussion and Future Work

In addition to the API-level measurements described in this paper, we are currently run-
ning additional benchmarks to characterize the performance of the OpenFAM reference
implementation. Our initial measurements of individual OpenFAMAPIs indicate several
areas where performance can be further improved.

Metadata Operations. As expected, the largest time is taken by the APIs to create
regions, primarily for zeroing out the associated space on persistent media before files
are memory-mapped and making entries in the key-value store holding metadata infor-
mation. The high overheads for these calls suggests that the practice in HPC programs
of allocating all space at the beginning of the application before the compute intensive
parts should be followed when using OpenFAM as well. In addition, data item allocation
requires several milliseconds, primarily to check for permissions, the overheads asso-
ciated with nested gRPC calls, and the book-keeping required for tracking allocations.
Currently, the library uses the default parameters for gRPC, which may require tuning.
In addition, it is possible to also use two-sided APIs provided by libfabric to make the
RPC calls much more efficient.
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Data Item Striping. The difference observed by us between the cases where the work-
load is evenly balanced across memory servers versus where the memory servers are
unevenly loaded (the random case) will most likely be reduced as the number of memory
servers are increased. In addition,we are exploring how individual data items canbe inter-
leaved across memory servers in addition to regions. For large data items, interleaving
may help improve performance in larger clusters.

Large Atomic Transfers. The OpenFAM API does not define atomic transfers for large
data items. As part of the reference implementation, we have extended the API to add
support for large atomic transfers, e.g., fam_put_atomic() [25]. These APIs take
advantage of the fact that FAM is actually provided by memory servers, which have
memory-side compute available. This enables the memory server to queue accesses to
overlapping transfers from different PEs, and use reverse RDMA to complete the oper-
ations. Atomic transfers allow programs to automatically serialize overlapping requests
at the memory server, and avoid torn reads or writes without requiring explicit locks
or barriers. In addition, the queuing mechanism provides crash-consistency, where an
all-or-nothing guarantee can be provided in case of failure during the transfer. While
functionally complete, we are currently optimizing the code for this capability and will
report on it in the future.

Exposing a Global Address Space. OpenFAM uses descriptors for addressing fabric
attached memory instead of a global address space. While this has advantages in that
it hides the details of the cluster from the programmer, it makes the API distinct from
the remote addressing used in other HPC APIs such as OpenSHMEM. A programmer
wishing to use both PE to PE communication as well as to access FAM within the same
program has to be cognizant of the two different addressing models. We are currently
exploring how FAM can be exposed using a single 64-bit address, thus making it simpler
for the programmer to use OpenFAM with other libraries that use a PGAS model for
addressing remote memory.

Co-existence of OpenFAM and OpenSHMEM. We are also exploring how OpenSH-
MEM programs can access FAM. OpenSHMEM provides guidelines to allow other
APIs to co-exist with OpenSHMEM, and those guidelines can also be used to develop
programs that use both OpenSHMEM and OpenFAM. The OpenFAMAPI drew heavily
from the OpenSHMEM1.3 API. Since then, the OpenSHMEM community has included
the notion of teams to allow subsets of PEs to coordinate accesses to remote data. In
addition, the community is considering proposals on memory spaces [26] to enable dif-
ferent types of memory (e.g., HBM or accelerator memory) to be defined within the
OpenSHMEM programming model. While FAM can also be defined as a memory type,
it fundamentally differs from remote memory defined in the symmetric heap, in that
FAM is not associated with any PE, and one-sided operations on FAM from a given PE
do not require any involvement of other PEs that “own” the remote memory. We are
tracking the memory spaces effort in OpenSHMEM to understand how FAM may be
supported using extensions to the memory spaces APIs.

System and Hardware Evolution. OpenFAM was designed to operate in the near-term
using commodity servers with RDMANICs as memory servers. However, given that the
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API primarily uses one-sided operations, the CPUs on the memory servers are relatively
under-utilized. This offers significant potential to optimize the memory server hardware
using specializedNICs andmemory controllers. It also offers the possibility of extending
the OpenFAMAPI to support memory-side operations, which can further reduce round-
trips over the fabric. We are exploring some of these choices for our future work.

6 Related Work

A significant amount of research exists on using distributed memory over RDMA net-
works, and associated challenges. Intel’s DAOS [10] has been designed to work directly
with persistent memory. At its core DAOS uses a key-value store abstraction, and can
work with both SCM and SSD back-ends. Intel has layered a number of APIs on top
of DAOS including a file-system API. Much like a distributed file system, DAOS has
built in mechanisms for data protection and resilience. Like OpenFAM, DAOS does not
directly expose a global address space, although one can be layered on top of DAOS. I/O
extensions to OpenSHMEM are described in [9], which extends OpenSHMEM to sup-
port workflows that need to persist data among analysis applications. This work is close
in spirit to OpenFAM, and uses extensions to the OpenSHMEM API by introducing
file-spaces. Unlike OpenFAM, however, it uses a file abstraction for remote memory.

AsymNVM [27] provides another solution for fabric-attached persistent memory. In
the proposed architecture, NVMdevices (i.e., back-end nodes) can be shared bymultiple
servers (i.e., front-end nodes) and provide recoverable persistent data structures. The
focus is on providing a framework where high-performance data structures can be built
using FAM, and the framework focuses on data structure updates; crash consistency and
replication; and data management.

Distributed Shared Persistent Memory (DSPM) [28] is a framework for using persis-
tent memory in data center environments. Like OpenFAM, DSPM provides load-store
capability to distributed memory with additional functions for naming and reliability.
Unlike OpenFAM, DSPM is implemented as a kernel module, and provides mechanisms
for transparent caching of memory pages. The key ideas are to integrate distributed
memory caching and data replication techniques and to exploit application hints. Simi-
lar mechanisms are described in [29], where rather than paging, cache-lines are tracked
and flushed to fabric attached memory to reduce the amount of network overhead and
write amplification.

DeACT [30] considers issueswhen using FAMas virtual memory, and focuses on the
necessary address translations required to do so. By defining fast caching of translations
in a trusted kernel, it leverages translation units at a hardware level. However, results
presented are based on simulations, and require hardware support for FAM. Remote
regions [31] enables a process to export parts of itsmemory to remote hosts, and to access
memory exported from remote hosts using a file interface. The abstraction provides a
simpler interface to RDMA and other remote memory technologies compared to the
existing RDMA verbs interface.

Megalloc [32] provides a distributed SCM allocator that exposes FAM as a shared
address space on a cluster using RDMA. It is similar to the NVMMallocator used within
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OpenFAM. Memory ordering and persistence in presence of failure is addressed in [33]
by using logging mechanisms to provide ordering, atomicity, and persistence protection
guarantees. Crash consistency is also the focus of [34], which explores different ways
to organize distributed persistent memory and build data stores using it.

AIFM [35] considers APIs that enable application developers to directly allocate
fabric attached memory, and provides a runtime that handles swapping objects in and
out, prefetching, and memory evacuation. Swapping is done at individual application-
level memory objects, rather than the virtual memory (VM) abstraction of pages. When
AIFM detects memory pressure, its runtime swaps out objects and turns all pointers to
the objects into remote pointers. When the application dereferences a remote pointer,
a lightweight green threads runtime restores the object to local memory. The runtime’s
low context switch cost permits other green threads to make productive use of the wait
cycles, which hides remote access latency and maintains high throughput.

Research has also explored distributed database systems that use RDMAunderneath.
For example, [36] reviews many existing databases and makes the case that RDMA net-
works move the bottlenecks to the CPU, thus making traditional replication techniques
used in transactional databases obsolete. Clover [37] is a recent high performance key-
value store that uses one-sided RDMA to persistent disaggregated memory for its oper-
ation. While OpenFAM’s use of disaggregated persistent memory can be used to build
a key-value store, or support multi-application workflows, OpenFAM was designed to
access disaggregated memory using a heap abstraction for direct use by the application,
rather than as a storage or database engine.

We may be able to use ideas from related research to extend the memory-mapped
APIs in OpenFAM to a cluster environment, to provide transparent caching in Open-
FAM for additional performance improvements, or to develop additional capabilities
that expose disaggregated memory at a higher level of abstraction with OpenFAM as a
substrate.

7 Summary

Emerging workloads such as machine learning and high performance data analytics
are increasingly being deployed on HPC clusters. However, in many instances these
workloads have datasets that are not easily partitioned, or are too large to fit within node
memory. Fabric-attached memory provides an approach to dealing with such workloads.

However, most HPC programming models do not currently support fabric-attached
memory, and programmers use file system or key-value store abstractions to access data
in FAM. The OpenFAMAPI was designed for accessing FAM, and is patterned after the
OpenSHMEM API. While it has differences from the OpenSHMEM API, it provides
one-sided operations similar to those in OpenSHMEM.

In this paper, we describe an open-source reference implementation of theOpenFAM
API, and present measurements characterizing the performance of the implementation.
The implementation has been tested using scale-up systems, as well as on InfiniBand and
Omnipath clusters. For an evenly balanced system, the implementation provides <10
µs round-trip latency for fabric atomics and short transfers, and aggregate throughput
close to the fabric bandwidth for large transfers.
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We are continuing to improve and optimize the reference implementation and expect
to enhance it for scalability as well as to test it using more extensive benchmarks in our
future work.
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Abstract. OpenSHMEM is a Partitioned Global Address Space
(PGAS) style programming model for one-sided scalable communication
over distributed-memory systems. The community has always focused on
high levels of performance for specific communication operations such as
RMA, atomics, and collectives and encourages native implementations
directly porting onto each network hardware in order to pursue minimal
instructions from the application to the network hardware. OSHMPI is
an OpenSHMEM implementation on top of MPI, which aims to provide
portable support of the OpenSHMEM communication over mainstream
HPC systems. Because of the generalized functionality of MPI, however,
OSHMPI incurs heavy software overheads in the performance-critical
path.

Why does OpenSHMEM over MPI not perform well? In order to
answer this question, this paper provides an in-depth analysis of the
software overheads of the OSHMPI performance-critical path, from the
aspects of both the semantics and the library implementation. We also
present various optimizations in the MPI and OSHMPI implementa-
tions while maintaining the full MPI functionality. For remaining per-
formance overheads that fundamentally cannot be avoided based on the
MPI-3.1 standard, we recommend extensions to the MPI standard to pro-
vide efficient support for OpenSHMEM-like PGAS programming mod-
els. We evaluate the optimized OSHMPI by comparing with the native
implementation of OpenSHMEM on an Intel Broadwell cluster with the
Omni-Path interconnect. The evaluation results demonstrate that the
optimized OSHMPI/MPI environment can deliver performance similar
to that of the native implementation.

1 Introduction

OpenSHMEM is a widely used Partitioned Global Address Space (PGAS) style
programming model for distributed-memory systems. As the fundamental prin-
ciple of the OpenSHMEM model, the community has heavily focused on high
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levels of performance for specific one-sided or collective communication patterns
through explicit data transfer operations. The intent of the OpenSHMEM spec-
ification is to get to “close to zero instructions” from the application to the
network hardware. For instance, each data transfer operation has the unique
typed version (i.e., separate function for each basic type such as shmem int put

and shmem double put). These functions embed the data type information as a
constant value at OpenSHMEM library compile time. Consequently the library
code can be highly optimized for each type without any type check overhead.
Following such a principle, the community has developed native implementa-
tions that are highly optimized for different vendor platforms (e.g., SGI SHMEM,
Cray SHMEM). Alternatively, some OpenSHMEM implementations tend to gain
portability by porting onto low-level network frameworks (e.g., Sandia OpenSH-
MEM (SOS) over Open Fabrics Interfaces (OFI) and OSHMEM over Unified
Communication X (UCX)). Nevertheless, these implementations still optimize
for a specific platform (e.g., SOS/OFI is optimized primarily for the Intel Omni-
Path architecture) and require the user to manually find the appropriate solution.

OpenSHMEM over MPI is the way to gain broader portability and ven-
dor support. In fact, MPI is recognized as the de facto standard for com-
munication on distributed-memory systems and supported by all major high-
performance computing (HPC) vendors and common parallel computing plat-
forms. More importantly, the MPI ecosystem covers powerful performance and
debugging tools, all of which are now available for use in OpenSHMEM pro-
grams. OSHMPI [11] is the OpenSHMEM implementation built on top of the
MPI-3 one-sided communication model (also as known as RMA). However, it
is treated primarily as a functionality reference rather than as a serious per-
formance contender. The general belief in the community is that such a heavy
software stack (e.g., OSHMPI/MPI/OFI) often generates bulky communication
instructions and may even cause significant performance loss.

Why does OpenSHMEM over MPI RMA not perform well? The primary
goal of this paper is to answer this question through a detailed deep-dive and
scientifically thorough analysis. From a high-level overview, we believe the per-
formance loss can be caused by two reasons. First, many MPI implementations
do not optimize the one-sided communication routines. Second, the MPI stan-
dard provides more generalized functionality than that of OpenSHMEM. The
generalization makes various complex algorithms possible to write, but it comes
with additional cost. For instance, a user can specify arbitrarily complex non-
contiguous derived datatypes in a call to MPI Put. MPI has to always check even
if such a functionality is not needed, such as in the context of OpenSHMEM
over MPI where only basic datatypes are used.

To diagnose all performance issues, we systemically analyze all instructions
generated for the OpenSHMEM over MPI context. Based on the analysis, we
further optimize the OSHMPI and MPI implementation to enable a fast path
for the OpenSHMEM context while still maintaining the full MPI functionality.
For any overhead that fundamentally cannot be removed, we recommend exten-
sions to the MPI standard to enhance support for the generic PGAS over MPI
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scheme. We employ a refactored version of the OSHMPI library and the MPICH
implementation with the ch4:ofi configuration to demonstrate the performance
study. MPICH provides a highly optimized MPI implementation by reducing
the software overhead and using techniques such as static builds and link-time
interprocedural optimization (IPO) inlining. It enables a very fast MPI Put/Get
path for both OFI and UCX [16].

To correctly capture and evaluate only the performance overhead of the
OpenSHMEM over MPI approach, we compare our implementation with the
SOS implementation of OpenSHMEM on an Intel Omni-Path platform where
both implementations are built on top of the same underlying OFI framework.
The experimental results demonstrate that the optimized OSHMPI/MPICH can
deliver performance similar to that of native implementations.
Scope of this Paper: While OpenSHMEM defines several kinds of communi-
cation routines, this paper focuses on the fundamental limits in implementing
the most performance-critical and essential RMA routines in OpenSHMEM on
top of MPI RMA. We believe similar observations can be extended to other
functions.

2 Background

In this section we compare the semantics of the one-sided models in OpenSH-
MEM and MPI and briefly introduce the design of OSHMPI as the reference
OpenSHMEM over MPI implementation.

2.1 Semantics Overview

Both OpenSHMEM and MPI define the one-sided communication model. The
semantics, however, have several key differences. We summarize the differences
below.
Memory Exposure: OpenSHMEM defines the concept of symmetric data
objects including symmetric heap and global/static variables. The symmetric
data is remotely accessible for all processes. Unlike OpenSHMEM, MPI requires
the user to explicitly expose a remotely accessible memory region called win-
dow. Each window object is associated with a communicator (i.e., a group of
processes). This semantics allows the user to benefit from communication virtu-
alization. For instance, a user can create multiple communicators with the same
group of processes. With each communicator, the user can also create multiple
windows for the same memory buffer. The communication with each commu-
nicator (or window) is fully isolated. We note that OpenSHMEM specification
1.5 introduces the teams concept that provides similar communication virtu-
alization. In this paper, we focus only on the implementation of the default
symmetric data objects.
Operation Expression: In OpenSHMEM, the RMA operation routines
directly deal with the absolute virtual address of the remote buffer, and the data
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type of each operation is encoded in the function interface (e.g., shmem int put).
The interface of MPI RMA operations has two differences. First, it requires
the relative displacement of the remote buffer rather than an absolute vir-
tual address. This was designed to meet the requirements of various networks,
some of which require relative offset whereas others require an absolute virtual
address. The second difference is that both basic data types (e.g., integer or
float) and complex user-defined data layout (e.g., vector or struct) are specified
as a datatype input parameter. This allows an MPI RMA operation to carry
arbitrary data layout.

2.2 OSHMPI

As indicated in the semantics comparison, MPI provides more generalized func-
tionalities than OpenSHMEM does. Thus, the one-sided communication of
OpenSHMEM can be fully expressed by using MPI RMA. OSHMPI-1.0 is a
reference implementation of OpenSHMEM 1.2 over MPI-3 [11]. As the basis of
this study, we redeveloped the OSHMPI library to fully support OpenSHMEM
1.4 and released it as OSHMPI-2.0b1.1 We give here a brief overview of its
high-level design.

OSHMPI internally creates two MPI windows at OpenSHMEM initializa-
tion, one for symmetric heap and the other for global/static variables. Every
process locks the two windows by calling MPI Win lock all immediately after
window creation. Thus, each OpenSHMEM Put/Get operation can be imple-
mented by using the corresponding MPI operation followed with a call to
MPI Win flush local.2 The shmem quiet synchronization can be implemented by
using MPI Win flush all3 and MPI Win sync.4 At finalization, OSHMPI unlocks
the internal windows on all processes and frees the windows before making a call
to MPI Finalize.

3 Related Work

In this section we describe the related work in the following three categories.
Native OpenSHMEM Implementations: The original implementations of
SHMEM were native implementations directly on top of hardware such as the
Cray T3D [5]. Subsequent native implementations included QSHMEM for the
Quadrics Elan network [15]. Many SGI platforms offered an optimized native
implementation of SHMEM, including ccNUMA systems. Cray SHMEM is the

1 https://github.com/pmodels/oshmpi/releases/tag/v2.0b1.
2 Flush local locally completes all outstanding RMA operations initiated by the calling

process to the remote process specified by rank on the window.
3 Flush all ensures all outstanding RMA operations issued by the calling process to

any remote process on the window will have completed both at the local and at the
remote side.

4 Win sync synchronizes memory updates on the specific window.

https://github.com/pmodels/oshmpi/releases/tag/v2.0b1
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highly optimized native implementation for Cray XC and XK series supercom-
puters. It is directly implemented on top of the low-level DMAPP API. Cray
OpenSHMEMX [13] is a OpenSHMEM specification version 1.4 compliant native
implementation for current and future-generation Cray systems. On InfiniBand
(IB) platforms, three OpenSHMEM implementations are commonly used. OSH-
MEM [3] is an implementation of OpenSHMEM API that is distributed within
the Open MPI distribution. It is implemented on top of the low-level UCX com-
munication framework. Scalable-SHMEM [2] is the native implementation for
Mellanox IB and works with the OpenFabrics RDMA for Linux stack (OFED).
MVAPICH2-X is the hybrid MPI+PGAS release of MVAPICH library and is
highly optimized for IB systems [12]. On Intel Omni-Path systems, SOS [14] is
the primary native implementation. It is implemented on top of the low-level
OFI communication framework. Our analysis for the OSHMPI/MPICH stack
utilizes the same OFI framework. Thus we choose SOS as the representative of
OpenSHMEM native implementations and compare it with our implementation
in this paper.
Other PGAS over MPI Implementations: MPI is often used as the portable
underlying communication runtime of high-level PGAS libraries. Dinan et al. [7]
analyzed the semantic mismatch between the ARMCI communication interface
of Global Arrays and MPI-2 RMA and evaluated the performance of Global
Arrays applications on the resulting implementation, ARMCI-MPI [1], on three
different HPC platforms. Since the introduction of MPI-3, ARMCI-MPI is able
to use RMA quite naturally, and the current implementation maps ARMCI’s
one-sided operations directly to MPI’s. DASH [9] is a C++ template library
following a PGAS-like programming model. DART-MPI [18] is a portable imple-
mentation of the DASH runtime based on the MPI-3 shared memory support
and RMA operations. OpenCoarrays is a library that supports the Fortran 2008
coarrays PGAS model using MPI (and possibly other communication protocols),
which is used by GCC Fortran today [8]. The Intel Fortran implementation of
coarrays is based on MPI-3 one-sided communication [4]. Bonachea and Duell [6]
analyzed the usage of the MPI-1 two-sided model and MPI-2 RMA for Global
Address Space (GAS) languages such as Unified Parallel C (UPC) and Co-Array
Fortran (CAF). Their analysis showed that those MPI-1 and MPI-2 models are
unsuitable for GAS languages. Yang et al. [17] then demonstrated that the more
comprehensive MPI-3 RMA framework can be used as the runtime of CAF with a
broader goal of enabling a single application to use both MPI and CAF with high
interoperability. All these previous studies focused on the complete functional-
ity and high-level performance. In contrast, our work pursues more fine-grained
semantics-mismatch and overhead analysis together with a comprehensive per-
formance fine-tuning. None of these aspects are covered by previous studies. We
also note that the outcome from our work may also apply to the other PGAS
over MPI libraries.
Software Overhead Analysis: Raffenetti et al. [16] analyzed the software
overhead of the MPICH implementation of MPI. Their analysis focused primar-
ily on the instruction-overhead critical paths including MPI send/and MPI Put
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operations, and the optimizations were proposed for general MPI applications.
In contrast, this paper focuses on the OpenSHMEM context that gives more
restricted semantics than that of the underlying MPI layer, thus exposing dif-
ferent overheads and optimization opportunities. Our analysis covers both the
instruction-overhead critical MPI Put/Get operations and the time-consuming
synchronization routines. We note that our work is based on the MPICH imple-
mentation that includes all optimizations presented in [16].

4 Analysis of Performance Loss in Contiguous RMA

Although OSHMPI is functional, many of the generalized features of MPI are
unnecessary for the support of OpenSHMEM and even cause performance loss,
especially in the performance-critical Put/Get routines in comparison with a
native implementation of OpenSHMEM. We demonstrate and analyze the per-
formance loss in the rest of this section. We note that we present only the
instruction analysis of the Put path, but the observations can be fully applied
also to the Get path. Thus, we omit the description of Get.

Our analysis and optimizations are based on the OSHMPI-2.0b1 and MPICH-
3.35 releases. OSHMPI-2.0b1 fully supports the OpenSHMEM 1.4 specification
and enables function inlining for all OSHMPI internal routines. We utilize the
ch4:ofi configuration of MPICH that provides highly optimized MPI RMA [16].
In the remainder of this paper OSHMPI refers to the OSHMPI-2.0b1 version and
MPICH refers to the ch4:ofi configuration of MPICH-3.3 unless otherwise speci-
fied. To emphasize the extra software overhead caused by the MPI layer, we com-
pare the internal implementation and the instructions of OSHMPI/MPICH with
those of SOS 1.4.2 release as the representative of native implementations. Our
analysis utilizes a basic latency scenario where one process performs shmem putmem

followed with a call shmem quiet to the remote process. We discuss their internal
implementations and analyze the overhead separately.
shmem putmem: It issues a Put operation to the remote process, and return-
ing from this function ensures the source buffer can be reused. In other words,
the Put operation is locally completed. A native implementation of shmem putmem

usually consists of only a few internal steps. For instance, SOS implements this
routine with two steps: (1) preparing OFI write parameters and making a call to
ofi inject write or ofi write,6 and (2) waiting the local completion of the out-
standing write by calling fi cntr read and fi cntr wait.7 In contrast, OSHMPI/
MPICH involves a number of additional steps, as demonstrated in Fig. 1. We
separate these steps into three phases and describe each step below.

5 http://www.mpich.org/downloads/.
6 ofi inject write is used for data smaller than 64Bytes, and ofi write is used for

other data sizes. The latter only initiates a write to remote memory, but the former
also guarantees local completion.

7 fi cntr read reads an OFI event counter that is updated at operation completion,
and fi cntr wait is its blocking version.

http://www.mpich.org/downloads/
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1 shmem_putmem(dest , source , nelems , pe) {
2 translate_win_and_disp(dest , &win , &disp); // (1)
3
4 /* nonblocking put */
5 MPI_Put(source , nelems , src_dtype=MPI_BYTE , pe, disp , nelems ,

dest_dtype=MPI_BYTE , win) {
6 win_get_ptr(win , &win_ptr); // (2)
7
8 trans_rank_to_netaddr(pe, win_ptr ->comm , &nw_addr); // (3)
9

10 decode_dtype(src_dtype , &src_size , &src_contig ,...); // (4)
11 decode_dtype(dest_dtype , &src_size , &dest_contig ,...);
12 if (src_contig && dest_contig && bytes <= ofi_max_bytes) { // (5)
13 prepare_ofi_write_parameters (...); // (6)
14 dest_vaddr = disp + win_ptr ->abse; // (7)
15 ofi_inject_write (...);
16 }
17 }
18
19 /* ensure local completion of nonblocking put */
20 MPI_Win_flush_local(pe , win) {
21 win_get_ptr(win , &win_ptr); // (8)
22 wait_ofi_completion (...); // (9)
23 target_ptr = win_find_am_target(win_ptr , pe); // (10)
24 do {
25 MPI_full_progress (); // (11)
26 } while (target_ptr && target_ptr ->local_cmpl_cnts != 0);
27 }
28 }

Fig. 1. Pseudo code of shmem putmem implementation in OSHMPI/MPICH

– Phase-1: MPI parameter preparation. The OSHMPI layer translates the dest

buffer address to its corresponding window handle (i.e., either the window
for symmetric heap or the one for global/static variables) and the relative
displacement (step (1) in Fig. 1).

– Phase-2: MPI Put. It then makes a call to MPI Put with the MPI BYTE datatype.
The implementation of MPI Put can be further divided into six steps. It first
gets the internal object pointer of the win handle (step (2)). The internal
object is used to store window attributes such as the initial address, size, and
displacement unit of remote memory regions associated with this window.
It next translates the remote process’s rank in the window’s communicator
to its physical network address (step (3)). The network address will be used
when posting an OFI write. Because the ranks in each communicator can be
arbitrarily reordered, the address lookup is an expensive operation. It then
decodes the source and destination datatypes to obtain the data layout such as
data sizes and whether the data is contiguous (step (4)). After that, it checks
whether both source and destination datatypes are contiguous and other OFI
conditions are met (step (5)). If so, it then prepares OFI write parameters
(step (6)), calculates the absolute virtual address of the destination buffer
(step (7)), and makes a call to ofi inject write or ofi write similarly to the
implementation of SOS.

– Phase-3: Local completion. Because MPI Put is a nonblocking operations, we
need to issue MPI Win flush local on the corresponding window to ensure its
local completion. The internal implementation of flush local can be broken
into four steps. It first gets the internal object pointer of the win handle
(step (8)). It next waits for the completion of any outstanding writes in OFI
by calling a loop of fi cntr read and fi cntr wait (step (9)). It then checks
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whether there is a target active message object associated with the remote
rank (step (10)). This step is necessary for MPICH because some RMA oper-
ations (e.g., Put with very sparse noncontiguous data or Accumulates with a
network-unsupported reduce operation) cannot be offloaded to hardware and
have to fall back to the active-message-based approach. If the target active
message object exists, it then triggers MPI full progress until all outstand-
ing active messages on the target process are locally completed; otherwise, it
makes the full progress once (step (11)). MPICH ensures that the full progress
is always triggered in blocking communication calls in order to guarantee
prompt progress for all MPI communication types such as point-to-point,
collectives, and internal active messages.

Obviously, these additional steps in OSHMPI/MPICH generate a significant
number of CPU instructions on the performance critical operation path. We
used the Intel SDE tool to emulate instructions generated from the OpenSH-
MEM latency program statically linked with the OSHMPI and MPICH libraries
and that linked with SOS. The instructions were generated with nelem=4 in
shmem putmem. Table 1 summarizes the instruction counts generated by each
internal step of OSHMPI/MPICH (see the Original Count column) and that
of SOS. As expected, OSHMPI/MPICH consumes more significant instructions
than does SOS. The total instruction count of OSHMPI/MPICH is 333 whereas
SOS consumes only 71, without counting the instructions of the underlying OFI
library. We especially emphasize the instructions caused by the requirement of
MPI semantics (rows are highlighted in gray), which are completely unnecessary
for the SOS implementation.

Table 1. shmem putmem instruction count analysis with parameter nelem=4. Gray rows
indicate instructions caused by the requirement of MPI semantics. The others instruc-
tions in MPI and SOS are implementation-specific; we omit the description.

OSHMPI Internal Step Orig Cnt Opt Cnt SOS Internal Step Cnt

OSHMPI: calling overhead 14 16 SOS: calling overhead 16

(1) OSHMPI: trans win and disp 12 5 - -

MPI Put: calling overhead 9 0 - -

(2) MPI Put: get win obj 14 9 - -

(3) MPI Put: trans rank to network address 17 5 - -

(4) MPI Put: decode dtypes 22 0 - -

(5) MPI Put: check OFI conditions 13 7 SOS: check OFI conditions 7

(6) MPI Put: prepare OFI param 14 8 SOS: prepare OFI param 24

(7) MPI Put: compute dest vaddr, mr rkey 8 1 - -

Flush local: calling overhead 8 0 - -

(8) Flush local: get win obj 7 8 - -

(9) Flush local: wait OFI completion 38 17 SOS: wait OFI completion -∗

(10) Flush local: find targets with active msg 59 0 - -

(11) Flush local: MPI full progress 81 2 - -

MPI: others 15 15 SOS: others 24

OSHMPI total 333 93 SOS total 71

∗ SOS skips completion waiting for data smaller than 64 bytes because it uses fi inject write,
which ensures local completion at return. Such an optimization cannot be done in MPICH because

flush local cannot determine whether other RMA operations (Get or large Put) has been issued.

Thus, it has to always check the OFI completion counters (step (9)).
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shmem quiet: We then perform a similar analysis for the shmem quiet routine.
This ensures completion of all remote memory access and memory updates.
In SOS, the synchronization is done by waiting for OFI completion coun-
ters. OSHMPI, however, has to take several MPI calls to ensure the seman-
tics correctness required by shmem quiet. Figure 2 demonstrates the internal
implementation of shmem quiet in OSHMPI/MPICH. OSHMPI internally calls
MPI Win flush all and MPI Win sync at quiet. Because OSHMPI creates two win-
dows, one for symmetric heap (symm heap win) and the other for global/static
variables (symm data win), it must call the two MPI functions twice.

In flush all, MPICH first gets the internal object pointer of the win han-
dle (step (1)). It next waits for OFI completion (step (2)). It then traverses all
target objects that are associated with the specific window to ensure any out-
standing active-message-based operations in this window are completed remotely
(step (4)). While waiting for the active message completion, it iteratively makes
MPI full progress. Similar to flush local, the full progress is made at least once
(step(3)). The next MPI function is win sync, which is used for memory syn-
chronization.

1 shmem_quiet () {
2 /* ensure remote completion */
3 MPI_Win_flush_all(win=symm_heap_win) {
4 win_get_ptr(win , &win_ptr); // (1)
5 wait_ofi_completion (...); // (2)
6
7 target_am_all_cmpl = TRUE;
8 do {
9 MPI_full_progress (); // (3)

10
11 // (4)
12 /* traverse targets that received active message to ensure

remote completions on all targets */
13 for (pe = 0; pe < win_ptr ->comm_ptr ->local_size; pe++) {
14 target_ptr = win_find_am_target(win_ptr , pe);
15 if (target_ptr && target_ptr ->remote_cmpl_cnts) != 0) {
16 target_am_all_cmpl = FALSE; break;
17 }
18 }
19 } while (! target_am_all_cmpl);
20 }
21 /* ensure memory updates */
22 MPI_Win_sync(win=symm_heap_win) { // (5)
23 memory_barrier ();
24 }
25 MPI_Win_flush_all(win=symm_data_win) { // (6)
26 /* same as above */
27 }
28 MPI_Win_sync(win=symm_data_win) { // (7)
29 /* same as above */
30 }
31 }

Fig. 2. Pseudo code of shmem quiet implementation in OSHMPI/MPICH

Table 2 summarizes the instruction count of shmem quiet generated by
OSHMPI/MPICH (see the Original Count column). The dominant cost in the
OSHMPI/MPICH path comes from the MPI full progress and the traversal
of target objects (steps (3–4)) in MPI Win flush all, both are required by MPI
semantics. Such a cost is even doubled because OSHMPI internally maintains
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two windows. As a result, OSHMPI/MPICH consumes 544 instructions whereas
SOS consumes only 91. We note that the result captures the instructions taken
by the Put latency program where only one Put is issued prior to a quiet. Thus,
OSHMPI/MPICH does not issue any active-message-based operation and makes
the MPI full progress only once.

Table 2. shmem quiet instruction count analysis. Gray rows highlights instructions
caused by the requirement of MPI semantics. The others instructions in MPI and SOS
are implementation-specific; we omit the description.

OSHMPI Internal Step Orig Cnt Opt Cnt SOS Internal Step Cnt

OSHMPI: calling overhead 15 15 SOS: calling overhead 15

Flush all: calling overhead 4 0 - -

(1) Flush all: get win obj 7 7 - -

(2) Flush all: wait OFI completion 14 14 SOS: wait OFI completion 51

(3) Flush all: MPI full progress 81 2 - -

(4) Flush all: traverse targets with active msg 130 0 - -

Win sync: calling overhead 4 0 - -

(5) Win sync: memory barrier 1 1 - -

(6) Flush all for global/static var 267 3 - -

(7) Win sync for global/static var 5 0 - -

MPI: others 16 2 SOS: others 25

OSHMPI total 544 44 SOS total 91

5 Optimizations for Fast RMA

Based on the overhead analysis in the preceding section, we then investigate
ways to optimize the shmem putmem and shmem quiet in the OSHMPI/MPICH
environment. We note that although our optimizations and discussion are based
on the MPICH implementation, most address general issues also exist in other
MPI implementations.

5.1 Basic Datatype Decoding with IPO Link-Time Inlining

Each OpenSHMEM RMA operation directly encodes the datatype in the func-
tion calls and supports only the standard RMA types. The datatype information
is treated as a constant in the native implementations. Unlike OpenSHMEM,
MPI allows the user to specify arbitrary datatypes such as the basic datatype
MPI INT or a complex user-defined derived datatype (e.g., vector, struct). The
datatype description is encoded into the MPI datatype object passed to MPI
calls as an input variable. MPICH cannot optimize the datatype decoding pro-
cess at compile time because the value of the datatype variable is unknown.
Because of such a semantics limitation, the constant information of datatypes
was lost in OSHMPI/MPICH and caused 22 additional instructions at the RMA
fast path (see Table 1 step (4)). Many of these instructions are expensive pointer
dereferences (i.e., to extract the attributes of the datatype object).
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The interprocedural (IPO) optimization technique allows compiler to opti-
mize code across source files and libraries at link time. This feature is provided by
mainstream modern compilers such as the Intel compiler and the LLVM family.
One of the IPO features is to inline functions across libraries and apply constant
propagation for all inlined functions.

We note that IPO is extremely time-expensive when the optimizing space
is large. Thus, we need to carefully define the inlining scope. Specifically, we
make the following two configurations: (1) We inline only OSHMPI and MPICH
libraries at link time, and (2) we explicitly exclude any non-performance-critical
path in OSHMPI such as shmem init. After applying IPO link-time inlining, we
observe that MPICH can recognize the basic datatype defined for each RMA
operation as a constant (e.g., MPI INT is for shmem int put).

Once the datatype parameter becomes a constant, we then reconstruct the
MPI datatype decoding routine to eliminate pointer dereferences. Specifically, we
embed the required datatype attributes into the object handle rather than stor-
ing them as object fields. Such an approach works for basic datatypes because
they require only two essential attributes when issuing an RMA operation:
datatype kind (i.e., basic or derived) and size in bytes. The former is to distin-
guish a basic datatype from more complex derived datatypes; thus the fast-path
code can be chosen. The latter is required for issuing the corresponding network
data transfer. MPI implementations such as MPICH, MVAPICH, and Cray MPI
represent the object handle as a 32-bit integer. It allows us to reserve a few bits
for the two attributes. We note that the handle-embedded approach might be
more complicated for MPI implementations whose object handle is represented
as address pointers (e.g., OpenMPI). However, most architectures require some
level of alignment for all pointer allocations (typically 4-byte or 8-byte align-
ment). Thus, even though the pointer uses 64 bits to represent the address, the
two or three least significant bits are unused for alignment reasons. Therefore,
the MPI implementation can reserve those bits to embed such information.

The attribute extraction now becomes bit-and and bit-shift instructions oper-
ated on the datatype handle. Thanks to IPO, these instructions can be fully
eliminated by the compiler since the handle is recognized as a constant value
at link time. Hence, no instruction is generated for datatype decoding in our
optimized OSHMPI/MPICH, just as that in native implementations.

5.2 Fast Window Attributes Access

MPI implementations usually maintain an internal data object for each window.
The object stores window attributes such as the associated communicator, net-
work address, network endpoint (ep), remote window’s memory registration key
(mr rkey), and remote window’s displacement unit (disp unit). At each RMA
operation, the MPI implementation has to load these window attributes to pre-
pare necessary parameters for network data transfer as well as for optimiza-
tions (e.g., one may compare the target rank with the rank of the local pro-
cess in the communicator and perform local copy if they are identical). Access-
ing each attribute field is essentially a pointer dereference, however, and may
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involve expensive memory access overhead. Such an overhead can be significant
especially when multilevel pointer dereferences are involved (e.g., accessing any
attribute of the window’s internal communicator is a two-level dereference).

Table 3. Pointer dereferences and instruction counts caused by window attributes
access inside MPI Put.

Internal step #Ptr Deref Instr Cnt

1. Translate rank to network address 2 8

2. Check target rank for self message optimization 2 3

3. Prepare OFI parameters (ep, base, mr rkey, disp unit) 4 13

4. OFI counter update for tracking completion 1 4

Table 3 shows the pointer dereferences and relevant instructions taken inside
each internal step of an MPI Put call. We note that the network address translation
(step 1) is required by the MPI semantics because the process’s rank can be
arbitrarily reordered in different communicators. Thus, MPICH has to maintain
a lookup table to translate the process’s rank in each communicator to the
physical network address. The lookup table implementation was highly optimized
in MPICH especially for common communicator patterns [10]. Figure 3a shows
the assembly code generated for this step within the context of an OSHMPI-
issued Put. The communicator is duplicated from COMM WORLD (i.e., defined as the
DIRECT INTRA communicator mode). Thus it can utilize the fast lookup path with
only 8 instructions. In order to load the communicator mode of the window and
choose the fast code path, however, two pointer dereferences cannot be avoided
(lines 1–2). We observed a similar situation in step 2. That is, in order to check
whether the target process is the process itself (i.e., a self message), MPICH
has to access the communicator’s internal field, causing a two-level dereference
(see lines 1–2 in Fig. 4a). We note that most MPI implementations contain this
step in every RMA operation because it allows a self-message to be directly
transferred in the MPI layer through memcpy. Steps 3 and 4 are required by the
semantics of OFI data transfer and also can be found in a native implementation
of OpenSHMEM. Thus, our optimization focuses only on the former two steps.

Similar to the object handle of datatypes, we noticed unused bits also in
the window handle. Thus, we can identify whether the communicator is the
DIRECT INTRA mode when creating the window, and we can reserve a “window
attribute” bit from the window handle to store such information. When issuing
an RMA operation, we first check the value of the “window attribute” bit rather
than loading the communicator’s mode through pointer dereferences. We note
that the window handle has already been loaded into the CPU register when
converting to the internal window object; thus, checking a bit of the handle is
very lightweight. In the context of OSHMPI, the windows are always created over
the simplest DIRECT INTRA communicators. Thus, the optimization can effectively
eliminate the communicator dereferences in steps 1 and 2 for all RMA operations.
Figures 3b and 4b show the optimized assembly code.
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1 /* load win ->comm */
2 mov r9, qword ptr [rdi+0x70]
3 /* load comm ->mode */
4 mov edx , dword ptr [r9+0x1b8]
5 /* mode == DIRECT_INTRA? */
6 cmp rdx , 0xb
7 jnbe 0x41db85
8 jmp qword ptr [rdx *8+0 x769560]
9 /* load table */

10 mov rax , qword ptr [rip+0 x60522f]
11 /* shift to table[target_rank] */
12 add rax , 0x28
13 jmp 0x41db85

(a) Original version

1 /* handle & DIRECT_INTRA_MASK? */
2 test ebx , 0x2000000
3 jz 0x41cfb5
4
5
6
7
8
9 /* load table */

10 mov rax , qword ptr [rip+0 x647740]
11 /* shift to table[ target_rank ] */
12 add rax , 0x28
13 jmp 0x41d203

(b) Optimized version

Fig. 3. Translating rank to network address in Put operation with optimization of
embedded window attributes.

1 /* load win ->comm */
2 mov rdx , qword ptr [rdi+0x70]
3 /* comm ->rank == target_rank? */
4 cmp dword ptr [rdx+0x50], 0x1
5 jz 0x41dc32

(a) Original version

1 /* load global comm_world_rank */
2 mov edx , dword ptr [rip+0 x6278a0]
3 /* comm_world_rank == target_rank? */
4 cmp edx , 0x1
5 jnz 0x41d238

(b) Optimized version

Fig. 4. Checking self-message in Put operation with optimization of embedded window
attributes.

5.3 Avoiding Virtual Address Translation

Unlike OpenSHMEM, MPI defines generic relative offset (i.e., displacement) to
describe the address of the remote RMA buffer. This allows MPI to be compatible
with different requirements for remote memory access performed by the network
hardware. For instance, some networks require the relative offset of the remote
buffer (e.g., the OFI/psm2 provider for Intel Omni-Path), but others may require
an absolute virtual address of the remote buffer (e.g., the OFI/gni provider for
Cray Aries interconnect and UCX for InfiniBand networks). When utilizing MPI
RMA in OSHMPI, however, we always must translate the remote absolute virtual
address defined in OpenSHMEM to the corresponding relative displacement for
every RMA operation. For networks that prefer absolute virtual address, a con-
sequent translation (i.e., from relative displacement to virtual address) has to be
performed again in the MPI layer. Obviously, such a translation is redundant.

Unfortunately, we cannot eliminate the redundant translation if we treat the
MPI standard as a constant. To demonstrate the more efficient approach, we
extended the MPI standard with a set of new functions called MPI Put|Get abs

that can directly take the absolute virtual address as the input parameter.
Figure 5 gives the API definition. Compared with the standard MPI Put|Get,
the only change is target vaddr, which was originally a displacement.

This way allows us to avoid the intermediate remote address translation in
OSHMPI and MPICH for networks that prefer absolute virtual address (e.g.,
Cray Aries and InfiniBand). However, we noticed that such an optimization can
cause an extra translation in the MPI layer for networks that require relative
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1 int MPI_Put_abs(const void *origin_addr , int origin_count ,
2 MPI_Datatype origin_datatype ,
3 int target_rank , MPI_Aint target_vaddr , int target_count ,
4 MPI_Datatype target_datatype , MPI_Win win);
5 int MPI_Get_abs(void *origin_addr , int origin_count ,
6 MPI_Datatype origin_datatype ,
7 int target_rank , MPI_Aint target_vaddr , int target_count ,
8 MPI_Datatype target_datatype , MPI_Win win);

Fig. 5. API definition of the abs extension for MPI Put|Get.

offset (e.g., Intel Omni-Path) at each of the extended abs function. To eliminate
such a translation, we require the user of MPI to use either only the basic RMA
functions or only the extended functions for each window. The user should choose
the preferred mode based on the application context. For instance, in OSHMPI
the abs functions are clearly more suitable. We then defined a window info hint
“rma abs” (value is true or false) to indicate whether the window is exclu-
sively used by the extended abs operations. If rma abs is true and the underlying
network requires relative offset, then MPICH internally registers MPI BOTTOM as
the base address of the virtual memory region on each process. For each RMA
operation, the relative offset can be calculated by (target vaddr−MPI BOTTOM).
Because MPI BOTTOM is a predefined constant in MPI, the arithmetic calculation
instructions can be fully eliminated by the compiler.

5.4 Optimizing MPI Progress

MPI implementations usually make expensive “full progress” in various MPI
blocking functions. The full progress guarantees that all types of MPI communi-
cation (i.e., point-to-point, collectives, and active message based RMA) can be
promptly progressed. For instance, for an active message based communication,
the remote process has to trigger the MPI progress in an MPI call to complete
the exchange of internal data packets. The MPI progress also internally trig-
gers low-level network progress by making network synchronization calls such as
fi cq read for OFI or ucp worker progress for UCX. These calls ensure prompt
progress for any internal software emulation (e.g., active message based RDMA)
or data processing (e.g., to move data out from a preregistered internal buffer)
at the low-level network libraries.

Both OpenSHMEM RMA and quiet operations involve the MPI full progress
in OSHMPI/MPICH. Table 4 analyzes the instructions that are taken for
progress-relevant internal steps in shmem putmem and shmem quiet. We note that
these steps are expensive not only in instruction counts but also in time because
they force memory synchronization with the network hardware.

The expensive progress steps are required for general MPI programs. Are
they necessary also in the special OSHMPI context? To answer this question, we
systemically analyze the MPI progress requirements below.

For MPI Point-to-Point/Collectives: Both MPI point-to-point and collec-
tives require two-sided communication between local and remote processes. Thus,
the remote process must ensure prompt progress, For instance, the eager protocol
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Table 4. Progress-relevant internal steps in shmem putmem and shmem quiet in
OSHMPI/MPICH.

shmem putmem Instr Cnt

Flush local: wait completion of outstanding RMA operations 38

Flush local: MPI full progress 24

shmem quiet Instr Cnt

Flush all: wait completion of outstanding RMA operations 14

Flush all: MPI full progress 24

designed for small point-to-point messages requires the receiver process to copy
data from the MPI internal buffer to the user receive buffer in order to complete the
data transfer. This step may be performed in the progress routine on the receiver
process. For collectives, for example, a process involved in an MPI Bcast call may
receive the data from the root process and then need to forward the data to another
member process. Such a protocol is commonly used to overlap multiple data trans-
fer in collective algorithms. The data receiving and forwarding steps are performed
by the progress routine on each member process. The point-to-point and collective
semantics require all processes involved in the communication to make the call.
Hence, a process need perform such steps only when a collective or point-to-point
call has been made.

For Active-Message-Based MPI RMA: MPI implementations may utilize
internal active messages for an RMA operation if the underlying network hard-
ware cannot efficiently handle it. For instance, a pack+AM+unpack-based app-
roach may be chosen for a noncontiguous Put if the data layout is very sparse.
An MPI Accumulate has to be implemented by using an active message if the
network hardware cannot guarantee atomic updates to the remote buffer with
the specified datatype or if the MPI implementation chooses to use only CPU-
based atomicity in order to be compatible with direct load/store-based intranode
Accumulates. Nevertheless, the MPI implementation always must assume that
the process may receive an active message from the other processes because
the above situations may potentially occur. Consequently, the progress routine
always has to be performed to promptly handle any incoming active message.

One may consider that the MPI implementation may predict whether active
messages will be used by remote processes and skip the progress routine when
possible. Such an approach, unfortunately, is complex because of two limitations.
First, we need information from both the user program and the underlying net-
work. To be specific, the user program must provide the (1) operation type (i.e.,
for atomic operations), (2) the basic datatype and data layout (e.g., contigu-
ous or sparse noncontiguous), and (3) the data length for each operation. The
network library must provide the (4) supported data layout for each operation
together with (5) the data length limitation (e.g., for ordered message or for
atomic message). By combining all the information, a correct prediction can be
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made. We note that many of these information are required to check whether an
MPI Accumulate can directly leverage native network atomics or requires active
message. For simple Put/Get, only (2) and (3) are essential. Nevertheless, to
disable the active message progress on a remote process, we have to check all
information. Second, a process requires all the other processes in the window to
share their local information in advance before any communication occurs (ide-
ally at window creation). The network-provided information is usually identical
on all processes; thus each process can simply query it locally. The user infor-
mation, however, may vary on each process. More important, the user has to
specify such information before communication occurs, likely through MPI info
hints. The hint may become significantly complex if the user program involves
several different combinations of (1–3) in a window. Clearly, such an approach
is impractical for MPI users.

Alternatively, we apply an engineer approach to resolve this issue. Specif-
ically, we assume that all RMA operations can be handled directly by a net-
work library when starting an MPI program. Thus, we trigger the active
message progress with a very low frequency. For instance, we trigger the
progress once only every 100 times RMA flush calls are made. This allows
MPICH to catch any unexpected incoming active message. Once an active
message is received, we then revert to normal frequency (i.e., trigger progress
at least once at each RMA flush call). The mechanism exposes two MPI
control variables (CVAR) for flexible user adjustment. Specifically, we define
MPIR CVAR CH4 RMA ENABLE DYNAMIC AM PROGRESS to enable or disable the optimiza-
tion (false by default) and MPIR CVAR CH4 RMA AM- PROGRESS LOW FREQ INTERVAL

to set the interval of progress polling at the low frequency mode. The former is
true at shmem init in OSHMPI. We expect that the active message progress is
always triggered with the low frequency for OpenSHMEM programs because all
OpenSHMEM RMA and atomic operations can be handled via native network
operations.

For OFI/UCX Internal Progress: The first step of each MPI flush call in
Table 4 already triggers necessary network progress for RMA data transfer. Thus,
it is unnecessary to make MPI full progress again for such a purpose.

To summarize, the MPI full progress can be safely skipped in both MPI Win-
flush local and MPI Win flush all, thus significantly reducing overhead for both
shmem putmem and shmem quiet functions in OSHMPI/MPICH.

5.5 Reducing Synchronization in OSHMPI

Although we have eliminated the MPI full progress step in the flush calls, the
overhead of an MPI Win flush local or MPI Win flush all is still expensive because
the first step of each call always makes a call to network synchronization. We
note that such synchronization is required to complete a network data trans-
fer even in OpenSHMEM native implementations. In OSHMPI, however, we
may unnecessarily trigger the synchronization call (i.e., MPI Win flush all) twice
at shmem quiet, one for the window of symmetric heap and the other for that of
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global/static data objects. If only one of the windows contains outstanding oper-
ations, we need trigger the synchronization call only on that “active” window.
Thus, we set a flag for each window in OSHMPI to keep track of the existence
of outstanding operations. The same optimization applies to MPI Win sync.

5.6 Other Implementation-Specific Optimizations

The instruction analysis also provides useful guidance for us to reduce unnec-
essary instructions at the performance critical paths. These optimizations are
MPICH-specific. Specifically, we apply four optimizations in MPICH: (1) elimi-
nating repeated MPI PROC NULL check,8 (2) removing unused signal checks in MPI
full progress, (3) statically triggering subprogressing hooks (e.g., for collectives)
instead of dynamic function pointer access, and (4) optimizing the hash search
for checking the existence of target active message objects.

6 Evaluation

In this section we evaluate the performance of OSHMPI/MPICH on the Argonne
Bebop cluster.9 Each Bebop node uses two sockets of the 18-core Intel Xeon
E5-2695 v4 processor (Broadwell) and is connected with the Intel Omni-Path
interconnect. We used the Intel compiler (version 17.0.4) and libfabric-1.7.0 as
the OFI network low-level library. We configured OSHMPI with the ch4:ofi

configuration of MPICH and compared it with the SOS 1.4.2 release.10 We linked
both the MPICH and SOS libraries with the same underlying libfabric library.
We also measured the OFI native Put latency by using a customized version
of the fi pingpong test included the libfaric official release. It mimics the data
transfer pattern of osu oshm put. We use it to demonstrate the ideal performance
of OFI-based data transfer. For each measurement we collected the execution
time of 10 runs and report the average and the standard deviation (shown as
error bars in the graphs). The error bars are very small for most results (less
than 5%) and thus can barely be seen.

6.1 Instruction Analysis

We first break down the instruction counts of optimized shmem putmem and shmem-
quiet following the same approach as that used in Sect. 4. We statically linked
8 MPI PROC NULL is an MPI predefined dummy process rank. An MPI RMA operation

using MPI PROC NULL as the remote rank is a no-op.
9 https://www.lcrc.anl.gov/systems/resources/bebop.

10 We have made the following changes in SOS to ensure a fair comparison with
OSHMPI/MPICH: (1) disable the OFI domain thread (set domain attribute
data progress = FI PROGRESS MANUAL at shmem init) to reduce latency overhead
at large data transfer; (2) reduce frequent calls to expensive fi cntr wait at
shmem quiet; and (3) disable bounce buffer optimization in the latency test because
it increases latency overhead for medium data sizes (set environment variable
SHMEM BOUNCE SIZE=0).

https://www.lcrc.anl.gov/systems/resources/bebop
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the latency program against the OSHMPI and MPICH libraries with IPO link-
time optimization. We explicitly disabled inline functions in the latency program
layer to make a fair comparison with SOS. In other words, both OSHMPI and
SOS are unaware of the variable values defined in the latency program layer
(e.g., nelem) and thus treat them as variables at compile time. Consequently,
only the information defined in OSHMPI (e.g., datatype) is passed into MPICH
via link-time inlining.

The Optimized Count columns in Tables 1 and 2 summarize the instruc-
tion counts generated by shmem putmem and shmem quiet, respectively. Roughly
speaking, the instruction overhead of shmem putmem is reduced to 93 and the
overhead of shmem quiet is reduced to 44 with all these optimizations. We espe-
cially highlight the following instruction-saving aspects. First, thanks to IPO
link-time optimization, the instruction count of all cross-library overheads (e.g.,
calling overhead of MPI Put and Flush local in shmem putmem) are now reduced
to zero. It also helped eliminate the datatype decoding overhead (step (4) of
shmem putmem) with an embedded datatype handle as described in Sect. 5.1. We
note that IPO allows more instructions to be saved throughout the implementa-
tion (i.e., partially reduced instructions in steps (5–6) and (9) of shmem putmem).
We omit the discussion in this paper. Second, the optimization of fast window
attribute access reduces the network address translation (step (3)) to only 5
instructions, matching with the instructions demonstrated in Fig. 3b. Third,
the instructions for computing dest vaddr (step (7)) are optimized via the abs
extension of MPI RMA functions. Fourth, we emphasize the highly optimized
progress routines (step (11) in shmem putmem and step (3) in shmem quiet). Because
we avoid unnecessary polling for non-RMA routines and utilize a dynamic app-
roach to deal with the active message challenge (see detail in Sect. 5.4) together
with implementation code refactoring (see Sect. 5.6), the optimized version now
consumes only 2 instructions for the MPI full progress step. Fifth, as shown in
Table 2, skipping unnecessary window synchronization (see Sect. 5.5) is straight-
forward and effective. When only either symmetric heap or global/static variable
is used for communication, such an optimization can reduce 269 instructions
including expensive low-level network synchronization calls. The remaining 3
instructions are used to check the window flag.

6.2 Latency

We next evaluated the latency of optimized OSHMPI/MPICH. We used the
osu oshm put and osu oshm get tests from the OSU microbenchmark suite (version
5.6.2) to measure the latency of Put and Get, respectively.

Figures 6a and 6b report the Put latency. For both the intrasocket and intern-
ode results, we also include the OFI native Put latency (denoted by OFI) to
indicate the ideal performance. The original OSHMPI/MPICH latency has a
clear gap between that of SOS and OFI, It consumes about 1µs latency for a
1-byte message, whereas OFI and SOS require only 0.54 µs and 0.66 µs, respec-
tively. The optimized version significantly reduces the cost. The achieved latency
is almost identical to that of SOS. The improved latency is mainly contributed



OpenSHMEM over MPI as a Performance Contender 57

by the optimization of MPI full progress in MPICH and reduced window syn-
chronization in OSHMPI. Similar observations can be made in the internode
results. Our optimizations reduce 0.4 µs latency of OSHMPI/MPICH with a
1-byte message. The achieved latency is the same as that of SOS and OFI. For
other message sizes, we observe a similar trend.

The Get latency reported in Figs. 6c and 6d shows less gap between the orig-
inal OSHMPI/MPICH and other implementations. Nevertheless, the optimized
OSHMPI/MPICH can achieve a lower latency that is the same as that of SOS.

Fig. 6. Latency evaluation on Bebop. The top and bottom labeled numbers are the
latency of OSHMPI/MPICH(orig) and OSHMPI/MPICH(opt), respectively.

6.3 Message Rate

The third set of experiments focus on message rate. We used the osu oshm put

mr nb and osu oshm get mr nb tests from the OSU microbenchmark suite. The
communication pattern involves multiple calls to the nonblocking shmem putmem

nbi (shmem getmem nbi for the Get test) followed by a call to shmem quiet. Thus,
these tests present the overhead of the lightweight nonblocking RMA calls.

Figures 7a and 7b report the message rate of nonblocking Put. We observe that
the optimized OSHMPI/MPICH significantly improves the message rate of Put. It
achieves an average improvement of 2.1× for intrasocket Put with varying data size
and 1.6× for internode Put. Since OSHMPI shmem putmem nbi internally contains
only an MPI Put, we confirm that the improvement is contributed by the fast path
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optimizations (i.e., datatype decoding, fast window attribute access, and RMA abs
extension). The optimized message rate is almost identical to that of SOS.

We observe a similar trend with nonblocking Get. However, the gap between
the original OSHMPI/MPICH and SOS is much less than that of nonblocking
Put. Thus, the improvement ratio is reduced. We report an average improvement
of 10.3% for intrasocket Get with varying data size and 7.3% for internode Get.

Fig. 7. Message rate evaluation on Bebop. The top and bottom labeled numbers are
the latency of OSHMPI/MPICH(orig) and OSHMPI/MPICH(opt), respectively.

7 Conclusion and Future Work

OpenSHMEM and MPI are two widely used communication models for
distributed-memory systems. The OpenSHMEM functionalities can be imple-
mented by using MPI. For instance, mapping the essential OpenSHMEM RMA
operations to MPI Put/Get with appropriate MPI window synchronization is
straightforward. However, a general belief in the community is that such an Open-
SHMEM over MPI implementation will not deliver the same level of performance
as that of native OpenSHMEM implementations. This is mainly caused by the
additional instructions generated for OpenSHMEM to MPI mapping. Therefore,
OpenSHMEM over MPI is often used only as a short-term solution for platforms
where a native OpenSHMEM is not yet available. In this paper we demonstrated
that OpenSHMEM over MPI can actually become a performance contender. We
showcased theOSHMPI andMPICH implementations and focused on the essential
RMA routines. We first made a thorough analysis to understand the instruction
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overhead generated in the RMA critical path of the OSHMPI and MPICH layers.
Based on the observed performance bottlenecks, we further optimized several key
aspects including datatype decoding, MPI window attribute access, virtual desti-
nation address translation, and the expensive MPI progress. Our evaluation was
performed on an Intel Broadwell cluster with the Intel Omni-Path interconnect.
We compared the optimized OSHMPI/MPICH with the native OpenSHMEM
implementation on that platform. We concluded that the optimized OSHMPI/
MPICH can deliver the same level of performance in both latency and message
rate as that of a native OpenSHMEM implementation.

Although the analysis and optimizations focused on the RMA routines, most
can be easily adapted also for other OpenSHMEM routines. As future work, we
plan to optimize atomics and collective routines in the OSHMPI and MPICH
environment. Furthermore, we note that our performance evaluation used only
microbenchmarks on the Intel Omni-Path platform. We therefore also plan to
look into the performance of miniapplications and evaluate other platforms.
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Abstract. Benchmarking is an important challenge in HPC, in partic-
ular, to be able to tune the basic blocks of the software environment
used by applications. The communication library and distributed run-
time environment are among the most critical ones. In particular, many
of the routines provided by communication libraries can be adjusted
using parameters such as buffer sizes and communication algorithm. As
a consequence, being able to measure accurately the time taken by these
routines is crucial in order to optimize them and achieve the best per-
formance. For instance, the SKaMPI library was designed to measure
the time taken by MPI routines, relying on MPI’s two-sided communi-
cation model to measure one-sided and two-sided peer-to-peer communi-
cation and collective routines. In this paper, we discuss the benchmark-
ing challenges specific to OpenSHMEM’s communication model, mainly
to avoid inter-call pipelining and overlapping when measuring the time
taken by its routines. We extend SKaMPI for OpenSHMEM for this
purpose and demonstrate measurement algorithms that address Open-
SHMEM’s communication model in practice. Scaling experiments are run
on the Summit platform to compare different benchmarking approaches
on the SKaMPI benchmark operations. These show the advantages of
our techniques for more accurate performance characterization.

1 Introduction

The ability to effectively utilize high-performance computing (HPC) systems
to their best potential depends heavily on tuned library implementations spe-
cific to a machine’s processor, memory, and communications components. For
distributed memory applications, the communication routines and distributed
runtime system should be implemented and optimized in close association with
the capabilities of the hardware interconnection network. This poses special chal-
lenges for standard communication interfaces designed to be portable across HPC
platforms. The performance of low-level communication operations is important,
but it is the communication model semantics that ultimately defines the context
for correct execution. Both aspects come into play when porting a communica-
tions library from one HPC architecture to another.
c© Springer Nature Switzerland AG 2022
S. Poole et al. (Eds.): OpenSHMEM 2021, LNCS 13159, pp. 63–80, 2022.
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Benchmarking is a powerful technique for understanding HPC performance.
When applied to the development and tuning of scalable distributed systems,
especially portable parallel communication libraries, benchmarking can provide
valuable insight for identifying high-value settings of parameters and algorithm
variants for different use scenarios. The design of a benchmarking methodology
and framework that can elaborate communication model behaviors and cor-
rectly generate test cases is highly relevant for achieving productive outcomes.
It serves to maintain a coherent plan for measurement and analysis during the
performance characterization and library tuning process.

The original goal of the research reported in this paper was to develop a
benchmarking system for OpenSHMEM that could be use to tune OpenSH-
MEM implementations across multiple HPC machines. Most important to our
work was designing a benchmarking methodology that was consistent with the
OpenSHMEM standard and systematic in its processing. Unfortunately, only
OpenSHMEM mini-benchmarks existed at the time the research began. While
we anticipated that we would have to develop the tests for most of the Open-
SHMEM operations, we wondered if we could reuse the high-level structure and
methods of the SKaMPI benchmarking system [18]. The paper reports our expe-
rience and success in following this strategy.

There are four research contributions deriving from our work. First, we pro-
duced a “first of its kind” fully functional benchmarking system for OpenSH-
MEM, based on the SKaMPI methodology and framework. Second, we show
how the SKaMPI methodology and framework could be reused for OpenSH-
MEM purposes. This outcome could be beneficial to extending SKaMPI with
other communication libraries in the future. Third, we describe how the tests of
communication routines specific to the OpenSHMEM standard are constructed.
Finally, we demonstrate our benchmarking system on the Summit platform and
report detailed analysis results.

The rest of the paper is structured as follows. In Sect. 2 we discuss related
research work in the performance measurement, analysis, and benchmarking
of communication libraries. Here we introduce the former SKaMPI work for
MPI. Section 3 looks at the specific problem of measuring OpenSHMEM rou-
tines and the challenges of creating a portable benchmarking solution based on
SKaMPI for characterization and tuning. Our experimental evaluation is pre-
sented in Sect. 4. We show the use of our solution on the DOE Summit system
at Oak Ridge National Laboratory (ORNL). Finally, we conclude and describe
future directions.

2 Related Works

Measuring the time taken by communications can be performed in two contexts.
It can be made on parallel applications, in order to determine how much time
the application spends communicating. Various robust profiling and tracing sys-
tems can be used, such as TAU [20], VTune [16], Scalasca [4], Score-P [11], and
EZTrace [24]. The objective is to characterize communication performance for
the routines actually used by the application.
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The other context has to do with analyzing communications performance for
the purpose of tuning the communication routines (point-to-point [2] or collective
routines [10,13]), and to make sure that they fulfill performance requirements
[23] on the system of interest. This benchmarking approach is fundamentally dif-
ferent from above, but can lead to important outcomes that contribute to better
application communication performance. The Special Karlsruhe MPI benchmark
(SKaMPI) was created to benchmark MPI communications for supercomputer
users and system administrators who want to tune their MPI libraries [12], eval-
uate and chose algorithms for collective communications [25,26], and ensure
performance portability of the MPI library across platforms [17].

Measuring the time spent in communications should consider parameters
that might potentially be exploited by applications. Regardless of the commu-
nication library used, the effective bandwidth can be measured directly [15].
However, each library will have communication routines that will need specific
measurement techniques to understand their operation. For instance, peer-to-
peer communications are interesting because certain libraries might allow over-
lap with computation. The measurement methodology to capture phenomena in
such cases can be non-trivial. Moreover, designing benchmarking methods that
can be applied across communication libraries is a challenge.

SKaMPI overcomes most limitations of previous benchmarks such as PARK-
BENCH [6] and mpbench [14], as described in [18]. For instance, mpbench reduces
the number of calls to the timer by calling the measured function several times
in a loop and measuring the total time taken by the loop. However, some pipelin-
ing might occur between consecutive calls; for instance, when measuring tree-
based collective operations, or point-to-point communications that do not ensure
remote completion when the sender call returns.

In order to eliminate obvious pipelining between some collective operation
calls, mpbench uses a different root for the operation (for broadcasts and reduc-
tions) at every iteration. However, depending on the communication topology
used, this might not be enough and in some cases a pipeline can still establish
between consecutive calls. Other algorithms have been designed to eliminate
inter-call pipelining and perform an accurate measurement of these calls, relying
on the synchronizing model of MPI peer-to-peer communications to enforce sep-
aration of consecutive collective routines [22], and on the synchronization model
of MPI2 one-sided communications [1].

Theoretical models are a close relative to benchmarking and can comple-
ment its objectives, in that they utilize empirical values measured on target
machines. The representative LogP model [3] expresses point-to-point communi-
cations using four parameters: the send and receive overheads, which are the time
to prepare the data to send it over the network and the time to get it from the
network and provide it to the application (denoted os and or), the wire latency,
which is the time for the data to actually travel through the network (denoted
L), and the gap, which is the minimum interval between consecutive commu-
nications (denoted g). Since o and g can overlap, the LogP model encourages
overlapping with computation with communication.
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3 Measuring OpenSHMEM Communication Routines

SKaMPI’s measuring infrastructure and synchronization algorithms are
described and evaluated in [8]. Our objective is to utilize the SKaMPI framework
for benchmarking OpenSHMEM communication. However, considering studies
of potential clock drift [9], we know that both barrier and window-based process
synchronization suffer from drift and the processes might lose their synchroniza-
tion as the measurement progresses. SKaMPI’s window-based clock synchro-
nization can measure operations very accurately, but the logical global clocks
drift quickly, so only a small number of MPI operations can be measured pre-
cisely. The hierarchical algorithm presented in [9] has a smaller clock drift, but
the processes still skew during the measurement. As a consequence, we cannot
rely on this synchronization only to perform our measurements, and whenever
possible, we need to design measurement strategies that rely on more precise
measurements than just a synchronization followed by a call to the measured
routine.

Scalable clock synchronization algorithms are presented in [7] and can achieve
synchronization in O(log(P )) rounds, whereas SKaMPI’s algorithm takes O(p)
rounds. Adopting a better algorithm is related to the infrastructure that supports
the measurements and is out of the scope of this paper. However, it is important
that we use lightweight timing mechanisms that are non-perturbing relative to
the granularity of the artifact being measured. In some fine-grained measurement
cases, we had to update SKaMPI timing methods.

3.1 Point-to-Point Communication Routines

Blocking Operations. OpenSHMEM includes two categories of blocking point-
to-point communication routines: remote memory access routines and atomic
operations. In these two categories, we have two types of routines: those that
return as soon as possible and not when the data has actually been delivered,
and those that return when the data has been delivered in the destination buffer.

Routines from the latter category can be called fetching or get-based. Their
completion time corresponds to the time elapsed between the call and the return
of the communication routine (see Fig. 1a), making them trivial to measure. Rou-
tines from the former category can be called non-fetching or put-based. They are
supposed to return as soon as the source buffer can be reused and not when the
data has actually been delivered to the destination buffer. Since OpenSHMEM
is a one-sided communication model, the target process does not participate in
the communication: a global synchronization routine like a barrier cannot ensure
completion of the operation, since the target process can enter the barrier and
exit before the one-sided operation completes (and, since the order of operations
is not guaranteed, before it has even reached the target process).

Completion of the operation can be ensured with shmem quiet. Therefore, we
want to measure the time elapsed between the call to the communication routine
and the return of shmem quiet (see Fig. 1b). However, calling shmem quiet can
have a cost. Therefore, we need to measure the cost of an almost empty call to
shmem quiet and with substract it from the measured time.
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The shmem quiet routine ensures completion of the outgoing put-based oper-
ations. It works on all active communications with remote processes for the call-
ing process. To measure the routine, therefore, we must issue a shmem put for
one byte before the shmem quiet. We cannot exclude this shmem put from the
measurement, because some communication engines might make it progress and
complete before they schedule the communication with all the remote processes
involved by shmem quiet. However, it sends a small message and its latency
should be combined with the latency of the first part of the shmem quiet, so this
shmem put should have a negligible impact on the measurement of shmem quiet
(see Fig. 1c).

Some implementations and some networks implement shmem put as a non-
blocking communication that only ensures that the sending buffer on the source
process is reusable after the call exits (as in OpenMPI1 [19]). Others implement
it like a blocking communication (oshmpi2 implements it as two MPI Isend fol-
lowed by a MPI Waitall [5,21]). Hence, measuring the time spent in the call to
shmem put is relevant. We provide a function for this.
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(c) Measure a quiet.

Fig. 1. Different measurement cases for blocking operations.

Non-blocking Operations. With some implementations and some networks, the
call to the communication routine can just post the communication and the
communication is performed in shmem quiet. Therefore, we can measure the
time taken by this call to shmem quiet for a given communication size. In the
preamble of the measurement routine, we measure the time to perform a com-
plete non-blocking communication (including the call to shmem quiet) for the
same buffer size. Then we post the operation and wait twice the measured time.
Then we measure the time spent in shmem quiet. If the library has good over-
lap capabilities, the communication will be performed during the wait, and the
call to shmem quiet will not do anything. Otherwise, the communication will be
performed in shmem quiet.

Hence, we are providing four functions to measure non-blocking put opera-
tions and four functions to measure non-blocking get operations:

1 SHA 62362849cae65b2445723e426affc2bb7918a6c8.
2 SHA 776449f6ea0368b61450b0c37e83463357f6f1bf.
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– Shmem_{Put,Get}_Nonblocking_Full measures the full completion of a non-
blocking operation, with a shmem_put_nbi or a shmem_get_nbi immediately
followed by a shmem_quiet.

– Shmem_{Put,Get}_Nonblocking_Quiet measures the time spent in
shmem_quiet, called immediately after shmem_put_nbi or shmem_get_nbi.
If there is no overlap, most of the communication time is expected to be spent
here. Otherwise, this call should be fast.

– Shmem_{Put,Get}_Nonblocking_Post measures the time spent in the call
to shmem_put_nbi or shmem_get_nbi. This call should be fast and the
communication should not be performed here, otherwise the communication
cannot be overlapped with computation.

– Shmem_{Put,Get}_Nonblocking_Overlap measures the time spent in
shmem_put_nbi or shmem_get_nbi and the time spent in shmem_quiet,

separated by a computation operation that should take about twice the time
to completed the full (non-blocking) communication.

These routines can be used to evaluate the overlapping capabilities of the
library, by showing how much time is spent posting the non-blocking communi-
cations, waiting for them to complete, and comparing the time spent in these
routines when they are and are not separated by a computation.

3.2 Collective Operations

Algorithm 1: Barrier-synchronized
broadcast measurement.
1 t bcast ← 0.0;
2 barrier();
3 for i ← 0 to iterations by 1 do
4 t1 ← wtime();
5 broadcast( buffer, root);
6 barrier();
7 t2 ← wtime();
8 t bcast ← t bcast + (t2 − t1);

9 t bcast ← t bcast/iterations;
10 t barrier ← time barrier();
11 t bcast ← t bcast − t barrier;

Broadcast. When measuring a
broadcast, a major challenge
concerns how to avoid a pipeline
that might occur between con-
secutive communications. There-
fore, we want to separate consec-
utive broadcasts, while avoiding
external communication costs to
be included. An initial possibil-
ity consists in separating consec-
utive broadcast with a barrier,
and subtracting the time to per-
form a barrier (measured sepa-
rately), as show by Algorithm 1.

root Px Py Pz

barrier

barrier

m
1

m
2

m
3

Fig. 2. Barrier-synchronized broadcast.
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Algorithm 2: Active synchronization-
based.
1 root ← 0;
2 for i ← 0 to iterations by 1 do
3 t1 ← start sync();
4 broadcast( buffer, root);
5 t2 ← stop sync();
6 t bcast ← t bcast + (t2 − t1);

7 t bcast ← t bcast/iterations;

However, since with some
broadcast algorithms, processes
might exit early, the barrier per-
formed after the broadcast could
become unbalanced and take a
time different than a barrier per-
formed by a set of already more
or less synchronized processes.
For instance, Fig. 2 depicts a case
when a process ends after the
other ones, so the barrier can be
finalized as soon as it enters it and all the other processes are already synchro-
nized (m3 < m1). Moreover, a barrier does not truly synchronize the processes.
For instance, they can be implemented as a reduction followed by a broadcast
using the same root, and depending on which process is the root of these opera-
tions, the end of the second barrier in Fig. 2 can create a skew between processes.

Algorithm 3: In rounds.
1 t1 ← start sync();
2 for root ← 0 to size by 1 do
3 broadcast( buffer, root);

4 e time ← stop sync();
5 t bcast ← (e time − s time)/size;

SKaMPI provides a time-
based synchronization, provided
by start synchronization and
stop synchronization routines.
We can measure the broadcast
operation as in Algorithm 2.

Another possibility to try to
avoid overlap and get the full
extent of a broadcast by doing
broadcasts in rounds. Each process is made the root of a broadcast and multiple
broadcasts are performed. However, depending on the broadcast topology, there
might still be some overlap between consecutive broadcasts. Algorithm 3 was
introduced by [22]. In turns, processes acknowledge completion of their part of
the broadcast to the root. The time to perform an acknowledgment is measured
prior to the measurement, and subtracted from the total time.

Algorithm 4: (Part 1) One-sided com-
munications broadcast measurement.
1 Function initialize(task)

/* Measure ack */

2 t1 ← wtime();
3 if root == rank then
4 ack(task);
5 wait for ack();

6 else if task == rank then
7 wait for ack();
8 ack(root);

9 rt1 ← wtime() −t1;
10 return rt1;

However, this algorithm was
designed in a two-sided com-
munication model, with syn-
chronous communications. Con-
veniently, OpenSHMEM provides
a routine that waits until a
variable located in the shared
heap validates a comparison:
shmem wait until. The first step
is used to measure the acknowl-
edgment time (rt1) between the
root process and each process
task. The algorithm is using
a “large” number of repetitions
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(M). In the algorithm described in [22], this first step is made using an exchange
of two-sided send and receive communications. This step is used to measure
the time taken by an acknowledgment, later used in the algorithm. Then a first
broadcast is performed and process task acknowledges it to the root of the broad-
cast (lines 3 to 8). Then comes the measurement step itself, performed M times
for each task (line 24 to 29). The broadcast time is obtained by subtracting the
acknowledgment measured in the first exchange step (line 34).

Algorithm 4: (Part 2) One-sided
communications broadcast measure-
ment.

11 Proc warmup(task)
/* Warm-up */

12 broadcast( buffer, root);
13 if root == rank then
14 ack(task);
15 wait for ack();

16 else if task == rank then
17 wait for ack();
18 ack(root);

19 return;

20 for task ← 0 to size by 1 do
/* Initialize */

21 rt1 ← initialize( task);
22 warmup( task);

/* Measure broadcast */

23 t1 ← wtime();
24 for i ← 0 to M by 1 do
25 broadcast( buffer, root);
26 if root == rank then
27 wait for ack();

28 else if task == rank then
29 ack(root);

30 t2 ← wtime();
31 if rank == task then
32 rt2 ← t2 − t1;
33 myt ← rt2 − rt1;
34 btime ←max(btime,myt);

35 return btime;

We are performing the acknowl-
edgment by incrementing a remote
counter using an atomic
fetch and inc operation and wait-
ing for the value of this counter.
We are using a
fetch and add operation instead
of an add operation because, as
specified by the OpenSHMEM
standard, non-fetching calls may
return before the operation exe-
cutes on the remote process.
We can wait for remote comple-
tion with a shmem quiet, but we
decided to use the simplest oper-
ation available; besides, although
this operation goes back-and-
forth between the source and the
target, we are measuring this
exchange in the initialization of
the measurement routine.

Lemma 1. even if a remote write
operation interleaves between the
operations
shmem int wait until( ack,
SHMEM CMP EQ, 1 ) and *ack = 0,
there cannot be two consecutive
remote increment of the *ack
variable. In other words, *ack
cannot take any other value than
0 and 1 and acknowledgments
sent as atomic increments are
consumed by shmem int wait until before another acknowledgment arrives.

Proof. If we denote:

– ≺ the happens before relation between two events, with a ≺ b meaning that
a happens before b;
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– broadcastay: the local operation on process y for the ath broadcast (beginning
of the operation);

– fetch incay: the local operation on process y for the ath shmem int
atomic fetch inc (on the source process y, beginning of the operation);

– incay: the increment of *ack on process y for the ath shmem int
atomic fetch inc (on the target process y);

– waitay: the ath time process y waits for the value of *ack to be modified with
shmem int wait until( ack, SHMEM CMP EQ, 1 );

– assignmentay: the ath time process y assigns *ack to the value 0, hence
consuming previously received acknowledgments.

These operations are represented Fig. 3. Even if *ack is incremented remotely
which the broadcast operation is still in progress on the root process, it will not
be read before the end of the root’s participation to the broadcast. Hence, the
root cannot begin the next broadcast before it is done with the current one. We
need to note the fact that other processes might still be in the broadcast.

P0 Px Py Pz

broadcasta0 broadcastax
broadcastay

broadcastaz
fetch incax

inca0
assigna0

Fig. 3. Broadcast measurement

The next broadcast starts after *ack has been set back to 0. We have:

– on the root process:
broadcast1root ≺ inc1root ≺ wait1root ≺ assignment1root ≺ broadcast2root ≺
inc2root ≺ wait2root ≺ assignment2root

– on any Px
broadcast1x ≺ fetch inc1x ≺ broadcast2x ≺ fetch inc2x

We also know that:

– fetch inc1x ≺ inc1root
– inc1root ≺ assignment1root

The OpenSHMEM standard states that: “When calling multiple subsequent
collective operations on a team, the collective operations—along with any relevant
team based resources—are matched across the PEs in the team based on ordering
of collective routine calls”. Hence, for any two processes x and y, broadcast1x ≺
broadcast2y, so fetch inc1x ≺ fetch inc2y.

Therefore, by transitivity of the ≺ relation:
fetch inc1x ≺ assignment1root ≺ inc2root ≺ assignment2root
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We can conclude that there cannot be two consecutive
shmem int atomic fetch inc on the root process with no re-assignment to 0
between them, and on any process, the acknowledgment cannot be sent while
the previous or the next broadcast is in progress on other processes. ��

The corollary of the lemma is that acknowledgment exchanges cannot be
interleaved with broadcasts (only local operations can be), and therefore 1) there
is no deadlock and 2) consecutive broadcasts cannot interleave.

3.3 Fine-Grain Measurements

There are important concerns we needed to pay attention to when updating
SKaMPI for making fine-grain measurements.

Algorithm 5: Timing outside.
1 t1 ← wtime();
2 for i ← 0 to iterations by 1 do
3 shmem putmem(...);
4 shmem quiet();

5 ttime ← wtime() − t1;
6 return ttime/iterations;

Algorithm 6: Timing inside.
1 ttime ← 0;
2 for i ← 0 to iterations by 1 do
3 t1 ← wtime();
4 shmem putmem(...);
5 shmem quiet();
6 ttime ←

ttime + wtime() − t1;

7 return ttime/iterations;

Measurement Disturbance. The timing function in SKaMPI (a call to PAPI’s
timing routine) takes a time of the same order of magnitude or, in some cases,
higher that the time taken by some of the functions we are measuring. Hence,
we want to minimize the number of calls to the timing function during a mea-
surement. We observed very significant differences between the times obtained
using Algorithm 6 and Algorithm 5. A lot of calls to the timing function, which,
if using an external function such as PAPI, we might not be able to inline, is
causing very significant disturbance to the measurement.

Algorithm 7: Timing shmem quiet.
1 ttime ← 0;

2 for i ← 0 to iterations by 1 do

3 shmem putmem(...);

4 t1 ← wtime();

5 shmem quiet();

6 ttime ← ttime + wtime() − t1;

7 return ttime/iterations;

Algorithm 8: Subtraction
method.
1 tpost = get post time();

2 t1 ← wtime();

3 for i ← 0 to iterations by 1 do

4 shmem putmem(...);

5 shmem quiet();

6 ttime ← wtime() − t1;

7 return ttime/iterations − tpost;

Separating Calls. Some functions we are measuring can be called only in the
context of another function. For instance, if we want to measure the time spent
waiting for a non-blocking communication to complete, we need to post a non-
blocking communication before. We cannot post a set of non-blocking commu-
nications and call shmem_quiet in a loop, because it waits for completion of
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all the outstanding non-blocking communications at the same time. Therefore,
each shmem_quiet must correspond to a previously posted non-blocking com-
munication. However, we cannot isolate it on our measurement such as described
by Algorithm 7, for the reasons presented in the previous paragraph. Therefore,
we are initializing the measurement by measuring the time taken by the rou-
tine that posts the non-blocking communication, measuring the whole loop, and
subtracting the post time from the result (Algorithm 8).

Stability. The aforementioned methods rely on subtracting values measured dur-
ing the initialization of the measurement. Therefore, the experimental conditions
must remain stable through the measurement. For instance, we noticed insta-
bilities on machines that were being used by multiple users at the same time,
while the measurements were quite stable on nodes used in exclusive mode.
Moreover, SKaMPI calls each measuring function multiple times and keeps call-
ing them until the standard deviation between measurements is small enough.
However, we found significant improvement in the stability between experiments
when each measurement function was, itself, performing a significant number of
measurements and returning their mean.

Busy Wait. In order to avoid voluntary context switches, we are not using
a sleep to wait while the communication is progressing in the background.
Instead, we are performing a computation operation that takes the same time,
but does not involve the operating system. Our approach is to increment a vari-
able in a loop and we avoid compiler optimization by inserting an call to an
empty assembly instruction (asm("")) in the loop.

4 Experimental Evaluation

We used our extended SKaMPI on the Summit supercomputer, which features
4 608 two-socket IBM POWER9 nodes, 6 Nvidia V100 GPUs per node and
512 GB of DDR4 plus 96 GB of HBM2 per node. The network is a Mellanox EDR
100G InfiniBand non-blocking fat tree. We used the provided IBM Spectrum
MPI and OpenSHMEM library version 10.3.1.02rtm0 and the IBM XL com-
piler V16.1.1. The input files used to run these experiments are available along
with the SKaMPI source file. The remainder of this section discusses selected
outcomes from the full set of SKaMPI-OpenSHMEM results.

4.1 Loop Measurement Granularity

In Sect. 3.3 we mentioned the importance of how loops are measured. We
compared the time returned by the functions that measure a non-blocking
put (shmem_put immediately followed by shmem_quiet, shmem_put and
shmem_quiet measured separately). We can see that iteration-level measurement
introduce a very significant latency, which is not visible for longer measurements
that are not latency-bound (higher buffer sizes).
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(a) Single node. (b) Two nodes.

Fig. 4. Measurement granularity: iteration vs global loop timer, on the elements of a
non-blocking put.

Similarity, we compared these time measurement strategies on the measure-
ment of the overlap capabilities of non-blocking communications. Iteration-level
measurement uses four calls to the timing routines in each iteration of the mea-
surement loop: before and after posting the non-blocking communication, and
before and after calling shmem_quiet to wait for its completion. The global loop
measurement times the whole loop and subtracts the time assumed to be taken
by the computation used to (try to) overlap the computation. As discussed in
Sect. 3.3, it relies on the hypothesis that this time will be stable throughout
the measurement. However, as we can see Fig. 5, the latency introduced by the
iteration-level measurement strategy is such that the numbers returned by this
method are too far from reality for small messages.

(a) Single node. (b) Two nodes.

Fig. 5. Measurement granularity: iteration vs global loop timer, on the overlap capa-
bilities of a non-blocking put.

Consequently, the results presented in this section were measured using our
global timer approach (as described in Sect. 3.3). The results are shown in the
figures. It can be seen that the global timer measurements produced smaller and
more reliable values versus iteration timers.
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(a) Get, intra-node (b) Put, intra-node

(c) Get, inter-node (d) Put, inter-node

Fig. 6. Point-to-point communication performance breakdown.

4.2 Point-to-Point Communications: Blocking vs Non-blocking

We measured the performance difference between a blocking communication and
a non-blocking communication, and the time it takes to wait for completion of
the communication. For instance, Fig. 6 shows the communication performance
on a single node and between two nodes. We can see that blocking communi-
cations have a smaller latency than a non-blocking communication followed by
a shmem quiet that waits for its completion. We can also see the breakdown
between how much time is spent posting the non-blocking communication and
how much is spent waiting for its completion.

4.3 Point-to-Point Communications: Overlap Capabilities

We can also use SKaMPI to measure the overlapping capabilities of the OpenSH-
MEM library, as described in Sect. 3.1. Figure 7 shows how much time is spent
in a complete non-blocking operation (shmem put or shmem get immediately fol-
lowed by shmem quiet) and how much is spent in these operations separated by
some computation. We can see on Figs. 7b and 7a that, since the interconnec-
tion network used on the Summit machine can make the communication progress
in the background, it achieves good overlap between communication and com-
putation. The time spent in communication routines is constant (called “non-
overlapped”) on the figure, corresponding to the time spent in the communica-
tion routines. On the other hand, intra-node communications cannot progress
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in the background. This can be seen in Figs. 7d and 7c where the time spent
in communication routines is the same as when these routines are called back-
to-back with no computation (i.e., these communications are not overlapped).
We can see on Fig, 6 that the time is actually spent in shmem_quiet, which is
completing (actually performing) the communication.

(a) Get, inter-nodes (b) Put, inter-nodes

(c) Get, intra-node (d) Put, intra-nodes

Fig. 7. Overlap capabilities of point-to-point communications.

4.4 Collective Communications: Broadcast

It is interesting to observe the differences in experimental results for the various
measurement algorithms. In particular, we expect the in round approach to give
a smaller value, since consecutive broadcasts can establish a pipeline depending
on the communication topology used by the broadcast. We also see on Fig. 8
that the broadcast separated by barriers can give smaller measurement values.
As explained in Sect. 4.4, we expect this observation can be explained by the
final barrier being faster on the last processes to finish (see Fig. 2).

The other algorithms give very similar results. As discussed in Sect. 3.2,
the synchronized broadcast can be less reliable because of time drifts and less
significant statistically speaking, since we are measuring broadcasts one by one.
Moreover, the SK algorithm with consecutive broadcasts separated by a sleep is
likely to be more relevant, although here it gives similar results.
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(a) 1 344 processes. (b) 2 016 processes.

Fig. 8. Comparing times returned by the broadcast measurement algorithms.

4.5 Locks

OpenSHMEM provide global locking functions. Our measurement of the time
taken by these functions takes into account whether the lock is already taken,
who is requesting it, and so on. Some of these measurements and their scalability
are shown Fig. 9.

(a) Acquisition and release. (b) Test.

Fig. 9. Global lock functions.

5 Conclusion and Perspectives

Our research work delivers a portable benchmarking framework for OpenSH-
MEM, in the spirit of the successful SKaMPI benchmarking system for MPI.
While the communication libraries are distinct from one another, the bench-
marking methodology practiced in SKaMPI is more general and very relevant
to our OpenSHMEM benchmarking objectives. Indeed, we made the impor-
tant decision to work within the SKaMPI benchmarking infrastructure and
implement OpenSHMEM-specific functionality, thereby delivering a more robust
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outcome in the end. Clearly, the most important contribution of our research are
the algorithms we created for the unique requirements of measuring OpenSH-
MEM routines.

The original SKaMPI benchmarking offered portability across platforms and
the ability to help tune communication library implementation. Our OpenSH-
MEM benchmarking development carries forward these key attributes. To illus-
trate its use, we conducted experimental evaluation on the Summit machine. Our
results demonstrate the richness of performance insight we can gain on point-
to-point and collective operations. We show how this can be used to optimize
certain implementation parameters.

The increasing complexity of HPC environments will further complicate abil-
ities to measure their performance. A well-defined benchmarking methodology
can serve as the core for evaluating multiple communication libraries. That per-
spective is well-supported based on our experience. It is reasonable to expect that
the approach we followed of specializing SKaMPI’s infrastructure for OpenSH-
MEM would work well with other communication models and libraries.

SKaMPI-OpenSHMEM can be downloaded from GitHub at the following
address: https://github.com/coti/SKaMPI.
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Abstract. The Partitioned Global Address Space (PGAS) programming model,
OpenSHMEM, is getting more traction as a useful method for parallel program-
ming on future-generation platforms. However, very few works have explored
on the enabling of external tools to analyze and control performance behavior of
OpenSHMEM runtimes. While the OpenSHMEM standard recently introduced
the profiling interface allowing tools to collect and monitor performance, it still
does not define a mechanism through which an implementation can expose its
internal performance knobs and metrics to the end users. To write OpenSHMEM
programs that perform efficiently in a uniform manner across different platforms,
it is necessary to understand and control these internal performance metrics. Early
work reveals that OpenSHMEM performance variables can provide insights that
are crucial to performance debugging, analysis, and optimization. In this paper,
we propose a generic tools information interface with flexible and portable vari-
able representation and a set of APIs that provide users the capability to analyze
and control the performance behavior. The goal of this paper is to establish the
usefulness and feasibility of such an API that users can leverage to better under-
stand the internal details of the runtime.

1 Introduction

Efficient one-sided communication in Partitioned Global Address Space (PGAS) pro-
gramming models is becoming more popular to provide high performance memory
access solutions as the next-generation compute platforms are employing deep memory
hierarchies within and across nodes. Similar to Unified Parallel C (UPC) [15] and the
MPI Remote Memory Access (RMA) [11], OpenSHMEM [12] provides the one-sided
communication interface over high-performance interconnects. With complex memory
hierarchies in next-generation systems, it is increasingly getting important to under-
stand the internal performance details of the operations and also being able to control
and tune the operations on different environments.

OpenSHMEM 1.5 [12] has introduced the profiling interface which provides an
easy-to-use flexible model for tool developers to interface their tools into OpenSHMEM
implementations. This provides a mechanism for the profiling tools to intercept the
OpenSHMEM calls and collect performance data in a black-box approach. However,
understanding the internal implementation details and controlling the performance
behavior through runtime parameters can be more useful for flexibility and performance
portability reasons. MPI 3.0 [3] introduced the tools information interface (MPI T) that
c© Springer Nature Switzerland AG 2022
S. Poole et al. (Eds.): OpenSHMEM 2021, LNCS 13159, pp. 81–91, 2022.
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defines a set of control and performance variables with APIs to access and use them.
This interface provides tool developers ways to understand and control the performance
behavior of the underlying implementation. Such interface and flexibility for Open-
SHMEM users have so far been elusive.

In this paper, we propose an interface similar to MPI T, to introduce the Open-
SHMEM control and performance variables and APIs that define the usage semantics.
We refer to this interface as shmem t. We categorize the OpenSHMEM performance-
critical information, represent them through performance and control variables, and
propose generic APIs that can be used to access them. We define a simple easy-to-use
variable representation to ensure minimal programming effort from the tool developers.

The rest of the paper is organized as follows. We discuss existing MPI approach
and other related studies on MPI T in Sect. 2. Section 3 provides a summary on ear-
lier research work that shows the benefits of performance variables in OpenSHMEM.
Section 4 presents our proposed interface and we provide some example usages in
Sect. 5. We conclude in Sect. 6 with future goals.

2 Related Work

MPI introduced the tools information interface for developers and users on MPI-3.0
standard [3]. With MPI tools interface (MPI T) support, MPI implementers can expose
implementation details through performance and control variables and events. MPI T
allows the implementers to choose the variables and events that they wish to expose to
the users and provide necessary routines to query and find out the number and details of
variables that are supported. MPI T also provides APIs to retrieve variable description
and to read and reset these variables in appropriate cases. An example tool utilizing
MPI T is shown in Listing 1. To minimize space, we highlight the key MPI T APIs
being used and skip detailed error checking, variable declarations, and API arguments.

In this example tool, it is shown that MPI T defines separate initialization and final-
ization routines to ensure separate usage from the MPI communication APIs. It also
uses a string representation of the variables that allows the user to choose from the list
of available variables supported by the underlying implementation using string compar-
ison. MPI T then allocates a separate handle to generalize the binding of a variable to
an MPI object. It uses the handle to read from or write to the variables. At the end, the
handle is freed and MPI T is finalized.

Most of the current major MPI implementations support MPI T and provide access
to control and performance variables through this interface. We investigated MPI imple-
mentations as shown in Table 1 to survey the number of variables supported in each of
them and observed presence of variables in all of these implementations. We found
the presence of performance variables in the open-source implementations, such as
MPICH [4], OpenMPI� [8], and MVAPICH2� [7].

Several existing tools utilize MPI T to collect and control performance through the
underlying variables implemented. For example, TAU [9] is a profiling and tracing
toolkit that supports MPI T to collect performance variables’ data from the runtime.
Caliper [10] is another example of a library that provides performance profiling capa-
bilities into the applications and uses various tool developers’ utilities such as MPI T.
Gyan [5] and VarList [6] are other example tools that utilize MPI T.
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Listing 1. An example program in C utilizing MPI T to read a control variable

int main(int argc, char* argv[]) {
...
char desired_var_name[30] = "MPI_T_EAGER_THRESHOLD";

/* Initialize MPI_T */
err = MPI_T_init_thread(MPI_THREAD_SINGLE, &ts);

/* Get the number of control variables supported */
err = MPI_T_cvar_get_num(&num);

/* Find the variable using name */
for (i = 0; i < num; i++) {

err = MPI_T_cvar_get_info(i, name, ...);
if (err == MPI_SUCCESS && strcmp(name, desired_var_name) == 0) {

desired_index = i;
break;

}
}

/* Allocate handle */
err = MPI_T_cvar_handle_alloc(index, &comm, &handle, &count);

/* Read the variable using allocated handle */
err = MPI_T_cvar_read(handle, val);

/* Free handle and finalize */
err = MPI_T_cvar_handle_free(&handle);
err = MPI_T_finalize();

}

Table 1. Support for MPI T control and performance variables

MPI implementation MPI T support Control variables Performance variables

MPICH 3.3.2 [4] � 265 10

Intel R© MPI (2019.6.166) [2] � 569 0

OpenMPI� 4.1.0 [8] � 1215 20

Cray-MPICH� 7.7.10 [1] � 109 0

MVAPICH2� 2.3.6 [7] � 105 566

OpenSHMEM introduced a profiling interface (pshmem) in OpenSHMEM 1.5. Sim-
ilar to the MPI profiling interface (PMPI), pshmem allows the profiling tools to intercept
the OpenSHMEM calls by the user application program and information can be col-
lected before and after this call to formulate profiling data. A tools information inter-
face will allow the programmers to directly gain access to control and in some cases,
observe the performance of internal operations in the runtime.

3 OpenSHMEM Performance Variables

In this section, we discuss the prior work on OpenSHMEM performance variables. In
[13], a set of OpenSHMEM performance counters with example APIs have been pro-
posed that expose communication details for OpenSHMEM Remote Memory Access
(RMA) operations. These information were used to influence application performance
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Fig. 1. Example OpenSHMEM information categories for performance and control variables

optimization and to present insightful characteristics of application behavior such as
communication pattern, load balance, operation overlap, etc. The examples presented
in [13] prove that a tools information interface exposing the communication intrinsics
can be useful for performance optimization, tuning, and debugging purposes. This work
also investigates on the performance overhead of using these APIs for performance vari-
ables on an implementation with Sandia OpenSHMEM [14]. While overhead exists, it
largely depends on the frequency of accessing these APIs and [13] shows that a rea-
sonable amount of data can be collected with negligible performance overhead.

While performance variables in OpenSHMEM communication operations reveal
the details of data transfer routines, they do not expose the structures and usage of
library and system resources that would be extremely useful for OpenSHMEM tool
developers. For example, the symmetric heap space usage can provide details of the
memory space being used for the symmetric data objects; a specific collective algorithm
being used can show the reasons behind observed performance on a scaled network;
the process to core mapping in the runtime can be used to avoid over-subscription of
system resources, and so on. In general, all of these control and performance data can
be broadly categorized into three types - resources, operations, and runtime data.

Figure 1 presents this example of information categories that we will expose through
our proposed design choices in Sect. 4. In general, the OpenSHMEM library resources
can be further categorized into software resources such as symmetric heap, context,
team, etc. OpenSHMEM operations can be divided into RMA, Atomic Memory Opera-
tions (AMO), Collective operations, etc. The runtime information can be categorized
into system resource information from CPU, network, and I/O usages. While this
generic categorization is applicable for most OpenSHMEM implementations, further
categorization is possible and depends on specific implementation choices.

4 Design of a Tools Information Interface

In Sect. 2, Listing 1 shows the basic building blocks of a tools information interface that
are essential to be used by a tool developer. While this provides a simple interface to
users, some aspects of the design choices can be made more flexible to allow efficient
implementation for both the library and the tool itself. In this section, we discuss some
of these design areas while we propose a tools information interface for OpenSHMEM,
shmem t.

Listing 2 lists the proposed APIs for shmem t. All of the APIs have the prefix
shmem t to differentiate with the current standard APIs. We define a separate set of
initialization and finalization routines than the current specification definition for com-
munication. This will allow the interface to be used independently when desired. The
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Listing 2. Proposed APIs in C for OpenSHMEM tools interface

/* Initialize and finalize routines */
void shmem_t_init_thread(int requested, int *provided);
void shmem_t_finalize(void);

/* Summary of variable routines */
void shmem_t_var_get_num(int type, int *num);
void shmem_t_var_avail(int type, void **list_vars);

/* Allocate and free handle routines */
void shmem_t_var_handle_alloc(shmem_t_handle_config *handle_config,

shmem_t_var_handle *handle);
void shmem_t_var_handle_free(shmem_t_var_handle handle);

/* Read and reset routines */
int shmem_t_var_reset(shmem_t_var_handle handle);
int shmem_t_var_read(shmem_t_var_handle handle, void *buf);
int shmem_t_var_write(shmem_t_var_handle handle, const void *buf);
int shmem_t_var_list_read(shmem_t_var_handle *handles, void **buf);

/* Get variable routines */
int shmem_t_get_var(int var_type, int operation, int bind,

int var_scope, int var_class, uint64_t *var);

shmem t init thread and shmem t finalize routines have the same function sig-
nature as the default initialize and finalize routines and will follow the same behavior for
out-of-order executions of the default ones. The major purpose of these routines is to ini-
tialize and allocate any resources for variables in addition to the default OpenSHMEM
initialize and finalize operations. The requested argument denotes the thread level
that is requested by the user and provided is returned from the implementation denot-
ing the actual thread level support provided. The shmem t finalize routine takes no
argument and finalizes the tools interface by freeing up the resources.

The next two APIs in Listing 2 provide summary information of the variables sup-
ported by the underlying implementation. The shmem t var get num API takes the
variable type as an argument and returns the total number of variables of the requested
type supported. The two types of variables that are supported by the interface are control
and performance variables. More details on the variable types are discussed in Sect. 4.1.
The shmem t var availAPI also takes the variable type argument and returns the cor-
responding variables of the requested type as an array of variable objects. The imple-
mentation can define the data structure for representing its variables and return a list
of those objects, or it can choose to return a list of variables represented by basic data
types.

Before using the shmem t variables, users should create a handle for the variable
through which the variable will be bound to an OpenSHMEM object (e.g., PE, team,
context). The allocation and deallocation of handle of type, shmem t var handle,
are done using the following two APIs in Listing 2. For allocation, a pointer to
the configuration object of type shmem t handle config is passed as an argument,
which provides the necessary information of the object bound to as well as keeps
the option of adding future extensions to configurations (e.g., session objects that
allow multiple tools to use the interface simultaneously). The proposed structure for
shmem t handle config is shown in Listing 3. Further explanation on the variable
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Listing 3. Example structure type for handle configuration

typedef struct {
/* Bit representation of the variable */
uint64_t var;
/* Reference handle to the object the variable is bound to; */
/* NULL for generic variables not bound to any object */
void *shmem_obj_handle;

} shmem_t_handle_config;

representation is given in Sect. 4.1. After the usage of the handle, it is freed using the
shmem t var handle free routine.

With the allocated handle, users can read or reset the variables that they would like.
This is achieved using the next four APIs presented in Listing 2. To reset a variable to its
original default value, shmem t var reset is used. The shmem t var write is used
to write a value to a variable. Before writing a value to a variable, an implementation
should check whether the variable can be updated. The APIs shmem t var read and
shmem t var list read are used to read contents of a variable and a list of variables,
respectively. All of these four APIs take the allocated handle as argument to get the
associated variable. On return, the APIs provide an integer value indicating the success
or failure of the operation.

OpenSHMEM tool developers may also like to get a unique identifier of a variable,
which can be achieved using the last API is Listing 2. OpenSHMEM variable identi-
fiers are constructed using different properties of the variables and further discussed
in Sect. 4.1. The shmem t get var API takes the properties as input arguments and
returns the identifier as an unsigned 64-bit integer output argument. The return value of
the function represents whether the corresponding variable is supported, and in case of
failure, it returns −1.

4.1 shmem t Variables

We design the OpenSHMEM tools interface variables based on the categories of infor-
mation that are presented in Fig. 1. Each of the boxes in the bottom layer of Fig. 1
represents a set of OpenSHMEM objects or entities in the underlying implementation
that are available to the user through OpenSHMEMAPIs, but are not directly accessible
to extract any internal information. While these objects represent the broad categories
of information, each of them can be sub-divided into more categories for which further
information can be collected and provided to the user (e.g., RMA information can be
sub-divided to Puts and Gets, blocking and non-blocking, etc.). Furthermore, an imple-
mentation can also define its own categories of information objects beyond the generic
ones presented in Fig. 1.

We design the shmem t variables with respect to the properties of these information
objects in an OpenSHMEM implementation. Unlike a string and an array index based
representation of the variables in MPI T, a shmem t variable is represented by a unique
64-bit unsigned integer constructed from values of different properties of the variable.
Different sets of the bits in the identifier represent a specific property of the variable.
An implementation can choose the ordering and mapping of the properties to specific
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Table 2. Example shmem t variable properties with minimum number of bits

Property Examples Minimum bits Possible options

Variable type CVAR, PVAR 2 4

Variable class Counter, Aggregate 4 16

Binding to Contexts, Teams 4 16

Associated operation Put, Fetch-AMO 12 4,096

Variable scope Completed, Pending 10 1,024

Other (unused) Implementation defined 32 Over 4 billion

values. We propose the following properties to represent a variable: type, class, asso-
ciated operation, binding to an OpenSHMEM object, and variable scope. While the
values for these properties are implementation specific, a defined minimum number of
bits for each of them will make the implementation flexible and portable. An example
of the minimum number of bits assigned for each of these properties from the 64-bit
unsigned integer identifier is shown in Table 2.

Variable type defines whether the variable is a performance or a control variable. To
keep scope for future additional variable types, we propose to keep 2 bits to represent
this property. Variable class defines the basic semantic and possible datatype of the vari-
able, similar to the MPI performance variable classes. Examples include counter, size,
state, aggregate, etc. A counter type variable can represent the number of put operations
completed, whereas an aggregate type variable provides the total number of bytes trans-
ferred for put operations. We propose to have at least 4 bits assigned to represent this
property. The bind-to property indicates which OpenSHMEM object a variable is bound
to. For example, a variable can be bound to a context (providing information pertaining
to the specific context in a PE) or to the PE itself. We keep at least 4 bits to represent
this property. The associated OpenSHMEM operation and the variable scope are the
two properties that can hold many possible values and we assign at least 12 and 10 bits
for these properties, respectively, to allow enough options for the current OpenSHMEM
standard and future extensions. While implementations can choose to use more bits for
each of these properties, they can also define implementation specific custom properties
by utilizing the unused 32 bits (over 4 billion options) from the 64-bit integer.

Apart from the robustness and ease-of-use benefits of the proposed variable rep-
resentation, there are additional advantages over the string representation in MPI T. If
an OpenSHMEM implementation chooses to expose their variable’s bit mapping and
ordering to their users, it will require little programming effort from the users to form
the variables using bitwise operations before accessing the variables. We provide some
examples in Sect. 5 to illustrate these use-cases.

5 Example Tool Usage

In this section, we provide some example codes to demonstrate the usage of our pro-
posed shmem t. In the first example, shown in Listing 4, we keep the usage similar
to the current MPI T usage shown in Sect. 2. Using this example, tool developers can
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Listing 4. Example C program utilizing tools interface to read a performance variable

static void *perf_collector(void *arg) {
...
/* Collect the number of performance variables supported */
shmem_t_var_get_num(&num_pvars, SHMEM_T_VAR_TYPE_P);

/* Get the list of performance variables supported */
shmem_t_var *pvar_list = malloc(num_pvars * sizeof(shmem_t_var));
shmem_t_var_avail(&pvar_list, SHMEM_T_VAR_TYPE_P);

int desired_pvar_operation = SHMEM_T_VAR_CAT_RMA_PUT;
int desired_pvar_binding = SHMEM_T_VAR_BIND_CTX;
int desired_pvar_scope = SHMEM_T_VAR_OP_PENDING;
int desired_pvar_class = SHMEM_T_VAR_CLASS_COUNTER;
int desired_pvar_index = -1;

/* Search for the desired variable in the list */
for (i = 0; i < num_pvars; i++) {

if (pvar_list[i].operation == desired_pvar_operation &&
pvar_list[i].binding == desired_pvar_binding &&
pvar_list[i].scope == desired_pvar_scope &&
pvar_list[i].class == desired_pvar_class) {

desired_pvar_index = i;
}

}

/* If no such variable available, exit */
if (desired_pvar_index == -1) {

fprintf(.., "No support");
return;

}

/* Allocate handle and reset */
uint64_t pvar = pvar_list[desired_pvar_index].var_id;
shmem_t_handle_config conf;
conf.var = pvar;
shmem_t_var_handle_alloc(&conf, &handle);
shmem_t_var_reset(handle);

/* Read the variable and store data */
while (running) {

shmem_t_var_read(handle, &curr_val);
store_data(curr_time, curr_val);

}

/* Free handle */
shmem_t_var_handle_free(&handle);

}

int main(int argc, char *argv[]) {
/* Initialize shmem_t */
shmem_t_init_thread(SHMEM_THREAD_MULTIPLE, &provided);

/* Launch the collector thread */
pthread_create(&thread, NULL, perf_collector, &args);
...
/* Finalize shmem_t */
shmem_t_finalize();
return 0;

}

enable OpenSHMEM performance and control variables with minimal code changes
compared to that for MPI T variables.
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Listing 5. Example of using shmem t get var in C to get the variable

...
int desired_pvar_operation = SHMEM_T_VAR_CAT_RMA_PUT;
int desired_pvar_binding = SHMEM_T_VAR_BIND_CTX;
int desired_pvar_scope = SHMEM_T_VAR_OP_PENDING;
int desired_pvar_class = SHMEM_T_VAR_CLASS_COUNTER;
uint64_t pvar;

/* Get the variable identifier; If not supported, -1 is returned */
int pvar_supported = shmem_t_get_var(SHMEM_T_VAR_TYPE_P, desired_pvar_operation,

desired_pvar_binding, desired_pvar_scope,
desired_pvar_class, &pvar);

/* If no such variable available, exit */
if (pvar_supported == -1) {
fprintf(.., "No support");
return;

}

/* Allocate handle and reset */
shmem_t_handle_config conf;
conf.var = pvar;
shmem_t_var_handle_alloc(&conf, &handle);

...

In the example shown in Listing 4, we show how a performance data collector can
interface with shmem t and collect data from a variable defined within the implemen-
tation. To keep the code concise, we have highlighted the portion where the shmem t

APIs are being used and skipped details such as basic error checking, declaration of
variables, etc. In this example, the main function in the program launches the collector
thread after initializing the tools interface. The collector thread starts with querying the
interface to get the number of supported variables and retrieves the list of variables from
the OpenSHMEM library. It then searches for the variable in the list to get the desired
variable identifier (var id). If the implementation does not support this variable, the
thread exits and returns. In case of success, it allocates a handle for the variable and then
resets and reads the variable. After collecting the data for some duration, it deallocates
the handle and returns.

With our proposed APIs, the tool developers can also simply retrieve the desired
variable using the shmem t get var API. This would allow a much simpler use-case
for tools to find out whether the variable is supported in the underlying implementation
and thus can be used. Listing 5 shows the corresponding part of the code where this
API can be used to retrieve the variable.

The OpenSHMEM implementation can define its own bit representation of the vari-
ables and may choose to provide the representation and the valid values to the users so
that users can access the variables by constructing the variable identifiers themselves.
Listing 6 shows such example usage where the tool developers can use bitwise OR
operations to construct the identifier and then use it accordingly.



90 Md. Wasi-ur-Rahman et al.

Listing 6. Example of retrieving variable using bitwise operation

...
int desired_pvar_operation = SHMEM_T_VAR_CAT_RMA_PUT;
int desired_pvar_binding = SHMEM_T_VAR_BIND_CTX;
int desired_pvar_scope = SHMEM_T_VAR_OP_PENDING;
int desired_pvar_class = SHMEM_T_VAR_CLASS_COUNTER;

/* Bit organization of the variables */
/* Bits 0 - 3 : variable class */
/* Bits 4 - 13 : variable scope */
/* Bits 14 - 25 : operation */
/* Bits 26 - 29 : binding */
/* Bits 30 - 31 : variable type */
/* Bits 32 - 63 : unused */
uint64_t pvar = desired_pvar_class | (desired_pvar_scope << 4) |

(desired_pvar_operation << 14) |
(desired_pvar_binding << 26) |
(SHMEM_T_VAR_TYPE_P << 30);

/* Allocate handle and reset */
shmem_t_handle_config conf;
conf.var = pvar;
shmem_t_var_handle_alloc(&conf, &handle);
...

With the bit representation made available to the user, implementations can also
define special values to identify a group of variables and provide additional APIs to
enable or access them. As an example, an implementation can define a special value
of the bits to identify all the RMA variables and APIs can support read or write to the
group of variables, instead of a single variable.

6 Conclusion

This paper conceptualizes the tools information interface for OpenSHMEM and pro-
poses an API structure that tool developers can use for controlling, tuning, and debug-
ging applications for correctness and performance. While we propose an API similar
to the state-of-the-art usages in other programming models, we design the variables
in a way that they can be utilized in a more flexible manner. We plan to implement
our proposed model in an open-source OpenSHMEM implementation, Sandia Open-
SHMEM [14], and to explore other opportunities to extend and improve the usages
with respect to tools.
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Abstract. Endeavors to engineer the next generation of exascale plat-
forms have resulted in a fundamental shift in system architectures.
Orthogonal to what was once considered conventional wisdom, high per-
formance systems designed today are characterized by heterogeneous
architectures wherein distinct components are carefully combined in
order to optimize system performance and energy efficiency. One unin-
tended consequence of this new paradigm is an increasingly complex
memory hierarchy that frequently spans multiple devices and may be
composed of disparate memory types. Unfortunately, the effect on per-
formance of this new memory model is not well understood. Moreover, a
quantifiable, system-agnostic methodology capable of assessing the per-
formance of the diverse memory subsystems within emerging architec-
tures has yet to be introduced. The CircusTent benchmark suite has been
introduced to fill this void by measuring system performance with respect
to atomic memory operations using established parallel programming
models. However, a detailed description and evaluation of CircusTent in
a distributed memory environment, critical to both current and future
system architectures, has yet to be produced. In this work, we rectify
this shortcoming by introducing CircusTent implementations based on
the OpenSHMEM and MPI programming models and evaluating these
implementations across a variety of platforms. We then detail our conclu-
sions and characterize our observations regarding the effect of different
system interconnects, memory hierarchies, and instruction set architec-
tures on system performance.

Keywords: Benchmark · Atomic memory operations ·
OpenSHMEM · MPI · Performance

1 Introduction

Modern high performance system architectures are becoming increasingly hetero-
geneous. Galvanized by the end of Moore’s Law and Dennard Scaling, as well as
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inherent limitations to multicore scaling [11], system architects have been forced
to adopt a new strategy in order to continue realizing improvements to system
performance. At the heart of this new paradigm is the principle of hardware/soft-
ware codesign. Herein, the concurrent design of hardware and software inform one
another, often towards the optimization of a particular class of problem. Devices
such as general-purpose graphics processing units, tensor processing units [16], and
data processing units/smartNICs [5,22] represent prominent designs derived from
this philosophy. As we move into the exascale era and beyond, it is widely accepted
that only by integrating these workload optimized components into existing high
performance computing infrastructures can we continue to enhance system capa-
bilities and simultaneously strive to improve energy efficiency.

As such, the ability to measure the performance of these emerging heteroge-
neous architectures is critical. Regrettably, the introduction of widely dissimilar
components into otherwise conventional architectures complicates efforts to con-
duct such measurements. One such impediment can be attributed to the increas-
ingly complex memory hierarchies present in heterogeneous systems. In addition
to traditional multilevel processor caches and DDR-based memory, these systems
also typically feature some number of separate memory pools directly coupled to
their constituent devices. Moreover, recent advances in memory technology have
resulted in a diversification of memory types. The development of 3D stacked
memory technologies such as high-bandwidth memory [17] and the hybrid mem-
ory cube [15] have provided a mechanism for improving memory bandwidth. In
contrast, non-volatile random access memory devices have proven effective at
alleviating I/O related bottlenecks [8] and have already inspired extensions to
existing programming models [13]. The effect of multiple discrete memory pools,
which, along with a system’s main memory, may be composed of novel memory
types, on overall system behavior is not well understood or quantified.

The CircusTent benchmark suite has been proposed as a tool for measur-
ing the performance of memory subsystems on both conventional and advanced
architectures. CircusTent utilizes atomic memory operations (AMOs), which,
while crucial in parallel execution environments, also represent a bottleneck for
memory hierarchies, in order to measure the performance of a target system.
Implemented upon well-established parallel programming models, CircusTent
provides a generalized methodology that remains agnostic of any system specific
requirements. In our previous work [32], we introduced the CircusTent bench-
mark suite and performed an experimental analysis of shared memory systems
using our OpenMP backend. Orthogonally, in this work we explore the perfor-
mance of atomic memory operations in the distributed memory environments
that are necessitated by problems driving the design of emerging architectures.
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The remainder of this work is organized as follows. Section 2 provides a primer
on atomic memory operations in distributed memory systems as well background
information on the CircusTent benchmark suite. Section 3 introduces the design
and implementation of CircusTent upon prominent distributed memory paral-
lel programming models. In Sect. 4, we conduct an evaluation of our OpenSH-
MEM and MPI CircusTent backends using several diverse platforms. Section 5
briefly introduces related work. Section 6 summarizes our findings and observa-
tions related to CircusTent in the context of distributed memory architectures.
Finally, Sect. 7 concludes this study with a discussion of planned future work.

2 Background

2.1 Atomic Operations in Distributed Memory

Analogous to shared memory environments, atomic memory operations in dis-
tributed memory systems represent a bottleneck to overall performance. Circus-
Tent seeks to provide a portable methodology for measuring the performance
of atomic operations on these systems. However, a thorough understanding of
the behavior of these operations is also necessary in order alleviate shortcomings
and improve performance when designing future platforms.

The behavior of a given atomic operation, as implemented in distributed
memory programming models such as OpenSHMEM and MPI, is dependent
upon the physical proximity of the executing process and the target memory
location. If the process and the memory location in question are co-located,
the atomic operation can be translated into its ISA-level analog for execution.
However, if the referenced memory location is physically decoupled from the
process, the implementation of this “remote atomic” is more complex.

Broadly, remote atomic operations may be implemented in either hardware
or software, with the former being highly preferable for improved performance.
The ability of a system to perform hardware-based atomic memory operations
is determined by the remote direct memory access (RDMA) capabilities of its
network interconnect. Modern high speed interconnects such as the InfiniBand
and Cray Aries architectures include support for RDMA-based remote atomic
operations. More conventional Ethernet-based networks may also incorporate
RDMA support through utilization of adapters that support the RDMA over
Converged Ethernet (RoCE) or iWARP protocols.

RDMA-based remote atomic operations are performed through coordination
of the NICs1 on both ends of the operation as demonstrated in Figure 1. When
a remote atomic operation is encountered during execution, the executing pro-
cess first sends a signal to its NIC to begin fulfillment of the request (1). The
NIC attached to this process then builds a request encapsulating the atomic
operation to be performed, the target remote memory location, and associated
metadata which is transmitted across the interconnect to the NIC responsible for

1 In this work, we use the generic term “NIC” to refer to network adapters in both
Ethernet and Cray Aries networks as well as InfiniBand HCAs.
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Fig. 1. Demonstration of RDMA-enabled remote atomic operation

the memory location (2). Once this request is received, the recipient NIC per-
forms the solicited read-modify-write atomic operation on the target memory
location (3). After the atomic operation is complete, the receiving NIC con-
structs a response acknowledging the operation completion which it forwards
to the original requesting NIC (4). For Compare-and-Swap and Fetch-and-Op
atomic operations, the original value located at the targeted memory location is
returned inside this response. Thus, from the perspective of the original process,
the atomic memory operation is considered complete only after the correspond-
ing response is received.

As a result of this behavior, wherein the actual atomic operation is per-
formed by the target side NIC, atomicity of remote atomic operations with
respect to other memory operations within local memory is not guaranteed.
Some interconnects, such as InifiniBand, provide within their specification the
option for individual hardware implementations to guarantee atomicity between
atomic operations executed by different NICs and/or ports [4]. However, since
this behavior is not standardized, distributed memory programming models do
not adopt such assurances.

It should be noted that a given interconnect may only support a subset
of the remote atomic operations offered by higher level APIs in hardware. For
example, InifiniBand hardware implements only 64-bit Compare-and-Swap and
Fetch-and-Add atomic operations [4]. Other operations are supported through a
combination of these mechanics or via active messages, but may incur associated
overheads. In contrast to InfiniBand, the Aries interconnect supports a richer set
of atomic operations in both 32-bit and 64-bit variations [24]. In the absence of
hardware support, software-based implementations of atomic operations may be
utilized as a fallback [26].
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Unique customizations to distinct RDMA-enabled interconnects may also
have significant effects on the performance of remote atomic operations in dis-
tributed memory settings. The atomic memory operation cache employed by
the Aries interconnect represents a prime example of such a customization [3].
Maintained by each Aries endpoint, this 64-entry structure caches local memory
values that have been the target of remote memory operations. Updated values
within the cache may be flushed to the host memory either after each update
or via a lazy update methodology. Through this mechanism, repeated requests
to host memory may be avoided for remote atomic operations that access the
same memory locations. Further details of the InfiniBand and Cray Aries net-
work architectures, as well associated protocols, while beyond the scope of this
work, may be found in [4] and [3], respectively.

2.2 CircusTent

As noted in Sect. 1, CircusTent is designed to remain independent of any spe-
cific hardware or software constraints. Instead, CircusTent is based on an easily
extensible, modular design that is built around ubiquitous parallel program-
ming models. Therefore, the performance of any architecture of interest may be
benchmarked using CircusTent as long the system in question implements one
or more of these models in some form. Moreover, this philosophy also enables
the user to leverage the presence of system specific optimizations in order to
more accurately gauge expected system performance. In conjunction with Cir-
cusTent’s generalized performance metric, the result is a benchmark suite which
is broadly applicable and whose results are directly comparable.

circustent 
command line Options Handler Implementation 
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OpenMP MPI OpenSHMEM xBGAS Future

Rand
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StrideN
PtrChase
Central
Scatter
Gather

Scatter/Gather

Rand
Stride1
StrideN
PtrChase
Central
Scatter
Gather

Scatter/Gather

Rand
Stride1
StrideN
PtrChase
Central
Scatter
Gather

Scatter/Gather

Rand
Stride1
StrideN
PtrChase
Central
Scatter
Gather

Scatter/Gather

Rand
Stride1
StrideN
PtrChase
Central
Scatter
Gather

Scatter/Gather

Fig. 2. CircusTent architecture
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CircusTent is implemented in a mixture of ANSI C and C++ and archi-
tected around an abstraction of two independent modules. The structure of
the CircusTent architecture is shown in Fig. 2. The first component of Circus-
Tent is the frontend. The frontend module defines the template imposed on
underlying programming model implementations and is responsible for parsing
command line options. Positioned directly below the universal frontend are inter-
changeable backend modules that encapsulate distinct implementations of the
CircusTent benchmark suite based on prominent parallel programming mod-
els. Currently, CircusTent supports backend implementations for the Pthreads,
OpenMP, MPI [12], OpenSHMEM [6,27], and xBGAS [18,30] programming
models. Each implementation is, in turn, composed of eight benchmark kernels
that emulate common memory access patterns in high performance computing
applications. The Stride-1 and Stride-N kernels replicate sequential access pat-
terns as well those defined by a regular, user-defined unit stride, respectively.
In contrast, the Random Access kernel accesses memory locations in an unpre-
dictable manner. The Pointer Chasing kernel demonstrates a memory access
pattern common to applications that utilize linked data structures. The Cen-
tral kernel measures performance in the presence of high memory hotspotting.
Finally, the Scatter, Gather, and Scatter/Gather kernels utilize a combination
of sequential and indexed memory accesses to replicate the common patterns
of the same name. Each kernel may be executed using either atomic Add or
Compare and Swap primitives. For a more detailed description of the individual
benchmark kernels, we refer the reader to our previous work [32]. As a result of
its modular design, CircusTent is intrinsically extensible such that support for
new programming paradigms may be added with minimum overhead. Further,
additional benchmark kernels and/or atomic primitives may be incorporated
through modification of the frontend template.

3 CircusTent for Distributed Memory

CircusTent currently provides backend implementations built upon the OpenSH-
MEM, MPI RMA, and xBGAS programming models for evaluating the perfor-
mance of system architectures with respect to distributed memory hierarchies.
In this section, we provide a brief overview of the OpenSHMEM and MPI RMA
implementations by utilizing the Scatter/Gather (SG) kernel, which is the most
complex of the eight CircusTent benchmark kernels, as an illustrative example.
We compare the design of these backends targeting distributed memory envi-
ronments with their OpenMP analog as described in [32]. Moreover, we also
emphasize distinctions between the OpenSHMEM and MPI RMA implementa-
tions necessitated by the differing semantics of the programming models them-
selves. Note that the xBGAS programming model is designed to mirror that of
OpenSHMEM. Differences that exist between the two paradigms do so at the
microarchitectural level. As such, a separate discussion of the xBGAS backend
is not included as part of this work.
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3.1 OpenSHMEM

1 void SHMEM_SG_ADD(uint64_t *restrict ARRAY, uint64_t *restrict IDX,
2 int *restrict TARGET, uint64_t iters){
3

4 uint64_t i = 0, start = 0, src = 0, dest = 0, val = 0;
5

6 for(i=0; i<iters; i++){
7 src =(uint64_t)(shmem_long_atomic_fetch_add((long *)(&IDX[i]),
8 (long)(0x00ull),
9 TARGET[i]));

10 dest =(uint64_t)(shmem_long_atomic_fetch_add((long *)(&IDX[i+1]),
11 (long)(0x00ull),
12 TARGET[i]));
13 val =(uint64_t)(shmem_long_atomic_fetch_add((long *)(&ARRAY[src]),
14 (long)(0x01ull),
15 TARGET[i]));
16 start=(uint64_t)(shmem_long_atomic_fetch_add((long *)(&ARRAY[dest]),
17 (long)(val),
18 TARGET[i]));
19 }
20 }

Listing 1. OpenSHMEM SG Kernel Code

The OpenSHMEM implementation of the Scatter/Gather kernel is shown in
Listing 1. In many ways, the structure of this kernel is similar to that of its
OpenMP analog. Herein, ARRAY represents an array of randomized 64-bit values.
Similarly, IDX points to an array whose values correspond to random indices
within ARRAY. In contrast however, both ARRAY and IDX are now allocated in the
symmetric heap in order to make their respective memory locations remotely
accessible. The addition of the local TARGET array, which contains a random
OpenSHMEM processing element (PE) identifier for each kernel loop iteration,
represents another difference between the OpenSHMEM and OpenMP Scatter/-
Gather implementations. Utilizing the arguments detailed above, the OpenSH-
MEM Scatter/Gather kernel replicates its eponymous memory access pattern in
a distributed memory environment through the use of four atomic operations.
First, a src value representing an index within ARRAY is set using the return value
from an atomic operation on the target remote IDX array. A subsequent atomic
operation retrieves a dest value in the same manner. Using src obtained in the
first step, a data value, represented by val, is gathered using a third atomic
operation. Finally, val is scattered to the location denoted by dest to finish
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the given kernel iteration. Although Listing 1 demonstrates the Scatter/Gather
kernel using the Fetch-And-Add atomic operation, which is directly analogous
to Add in our OpenMP implementation, a Compare-And-Swap variation is also
provided. Notably, the PGAS semantics of the OpenSHMEM model, which, for
fetching atomic operations, require no synchronization beyond the atomic oper-
ation calls themselves, map particularly well to the CircusTent Scatter/Gather
kernel.

3.2 MPI RMA

As demonstrated by Listing 2, the MPI RMA Scatter/Gather kernel is consider-
ably more complex than its OpenSHMEM counterpart. For the most part, this is
due to the semantics of the MPI RMA model itself. CircusTent performs remote
memory accesses to randomized memory locations across all active PEs during
execution. As such, local memory segments associated with a given PE that are
designated for remote access must be exposed to all other PEs during kernel
execution. Moreover, the results of each atomic operation at the target memory
locations must be immediately visible to all other PEs after the operation is com-
plete. In order to accommodate these requirements, the CircusTent MPI imple-
mentation utilizes the MPI passive target synchronization model. This model,
which most closely emulates the one-sided remote memory access semantics of
PGAS programming models, also enables better performance as compared to the
active synchronization model. In this implementation, ARRAY, IDX, and TARGET
are all allocated in a PE’s local memory, but otherwise behave as described
for the OpenSHMEM Scatter/Gather implementation. The two additional argu-
ments, AWin and IWin, define the windows of “exposed” memory for the ARRAY
and IDX data values, respectively. The procedure utilized by the MPI implemen-
tation of the Scatter/Gather kernel itself is highly reminiscent of the OpenSH-
MEM variation, but with one critical difference. In contrast to the OpenSHMEM
Fetch-And-Add atomic operation previously described, MPI atomic operations
are not blocking operations. Therefore, in order to ensure correctness and consis-
tency, an MPI Win flush call is necessary between each atomic operation. This
extra synchronization operation ensures that the result of each atomic operation
is visible to both the calling and target processes before proceeding. Consistent
with the OpenSHMEM Scatter/Gather kernel shown above, Listing 2 utilizes
MPI Fetch and Op (in conjunction with MPI SUM) to formulate a Fetch-And-
Add atomic operation. Again, a Compare-And-Swap based MPI implementation
is also included in CircusTent.
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1 void MPI_SG_ADD(uint64_t *restrict ARRAY, uint64_t *restrict IDX,
2 int *restrict TARGET, uint64_t iters,
3 MPI_Win AWin, MPI_Win IWin){
4

5 uint64_t i = 0, start = 0, src = 0, dest = 0, val = 0,
6 zero = 0x00ull, one = 0x01ull;
7

8 MPI_Win_lock_all(0, AWin);
9 MPI_Win_lock_all(0, IWin);

10

11 for( i=0; i<iters; i++ ){
12 MPI_Fetch_and_op((unsigned long *)(&zero),(unsigned long *)(&src),
13 MPI_UNSIGNED_LONG,TARGET[i],
14 ((&IDX[i])-(&IDX[0])),MPI_SUM,IWin);
15 MPI_Win_flush(TARGET[i], IWin);
16

17 MPI_Fetch_and_op((unsigned long *)(&zero),(unsigned long *)(&dest),
18 MPI_UNSIGNED_LONG,TARGET[i],
19 ((&IDX[i+1])-(&IDX[0])),MPI_SUM,IWin);
20 MPI_Win_flush(TARGET[i], IWin);
21

22 MPI_Fetch_and_op((unsigned long *)(&one),(unsigned long *)(&val),
23 MPI_UNSIGNED_LONG,TARGET[i],
24 ((&ARRAY[src])-(&ARRAY[0])),MPI_SUM,AWin);
25 MPI_Win_flush(TARGET[i], AWin);
26

27 MPI_Fetch_and_op((unsigned long *)(&val),(unsigned long *)(&start),
28 MPI_UNSIGNED_LONG,TARGET[i],
29 ((&ARRAY[dest])-(&ARRAY[0])),MPI_SUM,AWin);
30 MPI_Win_flush(TARGET[i], AWin);
31 }
32 MPI_Win_unlock_all(AWin);
33 MPI_Win_unlock_all(IWin);
34 }

Listing 2. MPI RMA SG Kernel Code

4 Evaluation

4.1 Methodology

In this section, we conduct a series of experiments using the CircusTent OpenSH-
MEM and MPI RMA backend implementations in order to evaluate the viability
of our benchmark suite as a tool for measuring the performance of heterogeneous
memory hierarchies in distributed memory environments. We utilize a small set
of diverse evaluation platforms to better illuminate the effect of distinct system
components on overall performance. On each of our evaluation platforms, we
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conduct trials of all eight CircusTent benchmark kernel using 2–7 nodes. Fur-
ther, for each node configuration we vary the number of coresident PEs from
1–16. Across each of our conducted trials, a static size of 2 GiB was used for the
ARRAY data structure on each PE. Similarly, a static stride size of 9 was used
for all STRIDE-N tests. For each benchmark kernel, 100,000 iterations were per-
formed by each PE. Due to space considerations, we present only a subset of
these results in this work. For the same reason, and because the results did not
significantly vary, we detail only the results gathered using the Fetch-And-Add
atomic operation. In order to standardize performance comparisons across plat-
forms, we utilize CircusTent’s portable Giga Atomic Memory Operations per
Second metric as shown in Eq. 1. Herein, AMOs Per Iter represents the num-
ber of atomic memory operations utilized by each kernel during a given loop
iteration. While this value varies across kernels, it remains fixed across backend
implementations.

GAMs =
(PEs× Iters×AMOs Per Iter)/1e9

time
(1)

4.2 Platforms

We utilize four distinct platforms throughout our evaluation of CircusTent for
distributed memory systems. In conjunction, these systems provide a varied
cross section of architectures and, in particular, system interconnects for con-
ducting our investigation. Two of these systems, Trinitite and Capulin, are Cray
systems hosted by Los Alamos National Laboratory that utilize the Aries inter-
connect. The former features conventional server class Xeon processors while
the latter employs Cavium ThunderX2 processors. Our third platform, Texas
Tech University’s Nocona system, utilizes Xeon processors similar to Trinitite,
but implements an InfiniBand interconnect. Finally, Tactical Computing Labra-
tory’s Pennywise cluster represents a more traditional commodity class system
utilizing an Ethernet based network that does not employ RDMA-enabled NICs.
In an attempt to focus our investigation on the hardware aspects of our plat-
forms, we uniformly utilized OpenMPI and OSHMEM, respectively, for our MPI
and OpenSHMEM implementations. Moreover, utilization of the Modular Com-
ponent Architecture (MCA) employed by these implementations enabled fine-
grained control of diverse transports across platforms and ensured proper config-
uration. Each OpenMPI/OSHMEM installation was built upon UCX v1.10.1 [25]
regardless of platform. A detailed specification of each evaluation platform’s con-
figuration is given by Table 1.
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Table 1. Evaluation platform characteristics

Trinitite Capulin Nocona Pennywise

ISA ×86 64 ARMv8.1 ×86 64 ×86 64

CPU 2× Intel Xeon
E5-2698 v3 16
cores/socket, 2
threads/core

2× Cavium
ThunderX2 9975, 28
cores/socket, 4
threads/core

2× AMD EPYC 7702,
64 cores/socket, 1
thread/core

2× Intel Xeon
E5-2650, 8
cores/socket, 2
threads/core

Cache
configuration

L1 d/i: 32 KiB,
L2: 256 KiB,
L3: 40 MiB

L1 d/i: 32 KiB,
L2: 256 KiB,
L3: 32 MiB

L1 d/i: 32 KiB,
L2: 512 KiB,
L3: 16 MiB

L1 d/i: 32 KiB,
L2: 256 KiB,
L3: 20 MiB

Memory 128 GiB 256 GiB 512 GiB 64 GiB

Interconnect Cray Aries Topology:
Dragonfly

Cray Aries Topology:
Dragonfly

InfiniBand HDR
200G Topology: Fat
Tree

1Gbps Ethernet
Topology: Fat Tree

Operating
system

CLE SLES 15.1 CLE SLES 15.1 CentOS 8.1 Ubuntu 18.04

Compiler GCC 10.2.0 GCC 10.2.0 GCC 10.2.0 GCC 7.3.0

MPI imple-
mentation

OMPI 3.1.6 OMPI 3.1.6 OMPI 4.1.1 OMPI 4.1.0

OpenSHMEM
implementa-
tion

OSHMEM 3.1.6 OSHMEM 3.1.6 OSHMEM 4.1.1 OSHMEM 4.1.1

4.3 Kernel Scalability

The performance of both conventional high performance platforms, as well as
the increasingly heterogeneous platforms of the future, is inherently to coupled
to the system architecture’s ability to effectively scale out. As such, the ability
to measure the performance of atomic memory operations as physical memory
resources become increasingly distributed is critical. We apply CircusTent to
this use case to investigate the scalability of different memory access patterns
across not only platforms, but also distinct programming models, as the num-
ber of nodes is increased. Figure 3 demonstrates the effect on performance of
monotonously increasing the number of distinct nodes executing each benchmark
kernel. The number of PEs across trials is kept constant at 16 PEs per node.

Multiple trends are immediately apparent upon examination. Notably, the
performance of each individual kernel remains fairly consistent relative to both
platform and programming model. Moreover, the GAMs performance of the
benchmark kernels increases in an approximately consistent manner alongside
the number of participating nodes. Herein, the kernels that exhibit regular mem-
ory access patterns, such as STRIDE-1, demonstrate the highest performance.
In contrast, the Random Access kernel performs most poorly among the Cir-
cusTent kernels. Notably, the CircusTent OpenSHMEM implementation demon-
strates higher performance than its MPI analog with respect to platform and
memory access kernel.
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Fig. 3. Kernel scalability across platform/model

4.4 Shared Memory Optimizations

Orthogonal to the use case detailed above, CircusTent can also be employed to
explore the effect of co-located resources on performance when utilizing program-
ming models that support physically distributed memory. For this experiment,
we fix the number of nodes participating in kernel execution at four. Instead,
we conduct trials of each benchmark kernel using our OpenSHMEM and MPI
RMA implementations and vary the number of PEs executing on each node.
We gather results for both 1 PE per node and 16 PEs per node to perform our
analysis.

As shown in Fig. 4, results from this experiment differ in several ways. Most
apparent is the considerable performance gain shown by both implementations
when scaling from 1 PE per node to 16 PEs per node. This behavior, demon-
strated across platforms and benchmark kernels, fits well with what one might
expect. In line with the results shown above, the OpenSHMEM implementation
demonstrates superior intranode performance in comparison to the MPI RMA
backend. Also notable is some interesting behavior with respect to the kernels
themselves. Unsurprisingly, the irregular memory access patterns of the Random
Access kernel again demonstrate the poorest performance across platforms. Per-
haps more unexpectedly, only the Nocona platform demonstrates appreciably
higher performance for the Stride-1 trials in comparison to other kernels.
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Fig. 4. Effect of physically shared memory across platform/model

4.5 Observations

Several general observations can made based on the results of our evaluation.
First and foremost, the impact of the network interconnect on the performance
of atomic memory operations in distributed memory environments is paramount.
The roughly comparable performance of the Trinitite, Capulin, and Nocona sys-
tems, each of which utilizes a high speed, RDMA-enabled interconnect, testify
to this fact. In contrast, the Pennywise cluster, which employs a Ethernet net-
work limited to more conventional communication protocols, performed up to
two orders of magnitude more poorly.

It also seems that the atomic memory operation cache employed by the Aries
interconnect may offer significant benefits for remote atomic operation perfor-
mance. This is demonstrated by the fact that, despite the similar processors
employed by Trinitite and Nocona, Trinitite typically showcases higher GAMs
performance. This is particularly true as the number of nodes is increased and
for regular memory access patterns.

Although the interconnect is critical to the performance of atomic memory
operations in distributed memory environments, the effect of the node architec-
ture itself cannot be discounted. Assuming the Aries interconnect enables higher
performance for similar architectures as noted above, the fact that Nocona per-
forms comparably, or in some cases exceeds the performance of Capulin, lends
credence to this conclusion.
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5 Related Work

A significant number of previous studies have been devoted to improving our
understanding of the behavior and performance of memory subsystems. We
classify works particularly relevant to CircusTent into those associated with
atomic memory operations, and those introducing novel memory benchmarks,
as detailed below.

5.1 Atomic Memory Operations

In perhaps the most exhaustive study to date, David et al. conducted an investi-
gation of synchronization that spanned multiple hardware and software method-
ologies [10]. Notably, as part of this study, the authors performed experiments
using atomic memory operations analogous to the CircusTent CENTRAL kernel
in a shared memory environment. Herein, they conclude that the performance
of these operations varies depending on the socket and cache configurations of
the underlying platforms. In [23], Schweizer et al. develop a methodology for
analyzing the latency and bandwidth of atomic operations. In particular, they
study the effects of different cache coherency states and complex memory hierar-
chies on these operations. As part of their evaluation, they show that, contrary
to popular belief, all of the tested atomic operations exhibit comparable perfor-
mance in terms of latency and bandwidth. Hoseini et al. also study the prop-
erties of atomic operations in physically shared memory systems [14]. For their
investigation, they monitor accesses to shared cache lines in conditions that sim-
ulate both high and low levels of contention. Finally, the Bale project [1], which
explores parallel programming methodologies in conjunction with communica-
tion aggregation mechanisms, includes several applications, such as histogram
and indexgather, that employ atomic operations.

The studies enumerated above provide useful insights into the behavior and
performance of atomic memory operations. However, most employ an approach
specific to the architecture under test and/or target only shared memory environ-
ments. In contrast, CircusTent provides a portable methodology for measuring
the performance of atomic memory operations in both shared and distributed
memory scenarios.

5.2 Memory Benchmarks

Several benchmark suites have been proposed for measuring the performance
of memory hierarchies in heterogeneous architectures. The Rodinia benchmark
suite [7] is composed of a variety of applications and kernels parallelized using
OpenMP and CUDA. As such, it is well-suited to its original target of bench-
marking multicore CPU and GPU enabled platforms. In a similar vein, MP-
STREAM [20] adapts the conventional STREAM benchmark, an exemplar for
measuring memory bandwidth, to a variety of heterogeneous devices via an
OpenCL-based implementation. Spatter is a memory benchmark developed by
Lavin et al. [19] designed to measure an architecture’s performance with respect
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to indexed memory access patterns such as scatter and gather operations. Circus-
Tent also integrates kernels that replicate these memory access patterns, but does
so using atomic operations in lieu of traditional loads and stores. The Hopscotch
benchmark suite [2], which incorporates kernels replicating a variety of memory
access patterns, provides a powerful tool for benchmarking memory systems.
Moreover, it is also tunable, and can be used to emulate read-only, write-only,
or mixed access workloads. Regrettably, the benchmarks detailed above do not
employ distributed memory programming models. As such, they are limited to
measuring physically isolated memory spaces.

In contrast, a number of benchmark suites have been widely adopted for
measuring the performance of distributed memory systems. The majority of
these solutions, such as those from The Ohio State University [29] and San-
dia National Laboratories [31], examine performance as the intersection of a
system’s memory hierarchy and network interconnect. Metrics such as latency
and bandwidth are standard in these suites. Most often, however, they do not
explicitly incorporate different memory access patterns nor utilize atomic oper-
ations. Benchmarks that do incorporate atomic operations do not measure their
performance in high contention scenarios in the same manner as CircusTent.
The OpenSHMEM benchmark suite from Oak Ridge National Laboratory [21]
is something of an exception to this generalization. Although this suite does,
to some degree, incorporate these elements, it does so in the context of larger
applications rather than small micro-kernels. A final interesting benchmark of
note is Apex-Map [28], which examines global data accesses using the MPI,
OpenSHMEM, and UPC programming models. One of the most novel aspects
of Apex-Map is its ability to model performance for a variety of applications
based on provided spatial and temporal locality parameters.

Each of the benchmark suites listed above are imminently useful and, in
many cases, widely recognized standards for benchmarking heterogeneous archi-
tectures. However, they do not explicitly stress memory hierarchies with respect
to atomic memory operations, which represent a point of contention regardless
of architecture. To the best of our knowledge, CircusTent is the first portable
benchmark suite for both shared and distributed memory architectures that
measures memory performance using read-modify-write atomic operations. As
such, we believe CircusTent will prove a useful supplement to existing solutions
and further enable comprehensive analyses of existing and emerging platforms.

6 Conclusion

Motivated to meet the needs of the exascale era and beyond, the landscape
of high performance system architectures is rapidly changing. Marked by the
adoption of increasingly heterogeneous systems composed of novel device types,
this shift has introduced a new set of challenges. Among these challenges is the
difficulty associated with measuring the performance of these diverse platforms
in a standardized, portable manner. The open source CircusTent benchmark
suite has been proposed to help meet this need by measuring the performance
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of memory hierarchies within heterogeneous architectures through the use of
atomic memory operations.

In this work, we introduced CircusTent backend implementations based on
the prominent OpenSHMEM and MPI RMA programming models. We next
detailed some of the semantic differences between these two distributed memory
paradigms and discussed the resulting consequences on each model’s respective
implementation. In order to evaluate the viability of CircusTent for distributed
memory systems, we conducted a series of experiments using both implementa-
tions across a set of distinctive platforms. Utilizing the results of these experi-
ments, we then highlighted the effects of shared memory optimizations, varied
interconnects, and the programming models themselves on system performance.
Based upon these observations, we believe that CircusTent will prove to be a use-
ful tool for measuring the capabilities of distributed memory hierarchies within
emerging heterogeneous system architectures. We will continue to refine and
improve the CircusTent benchmark suite in the hope of increasing its usefulness
to the community at large.

7 Future Work

This study, in conjunction with our previous work [32], has introduced the Cir-
cusTent benchmark suite as a tool for measuring the performance of hetero-
geneous memory hierarchies. Herein, we have demonstrated CircusTent imple-
mentations targeting both shared and distributed memory systems and eval-
uated them across a variety of platforms. Nevertheless, multiple avenues exist
for improving the viability of the CircusTent benchmark suite moving forward.
Although we have constructed CircusTent backends around the OpenSHMEM,
MPI, and xBGAS programming models, numerous other distributed paradigms
exist. In order improve the generalizability of CircusTent, we will pursue devel-
opment of implementations based on other PGAS models such as Chapel, UPC,
and Coarray Fortran. Moreover, while we have targeted general-purpose shared
and distributed memory models, we have neglected to include more special-
ized backends designed for accelerator-style devices. Adding support for pro-
gramming models such as OpenACC, CUDA, and OpenCL will help rectify this
shortcoming.

Beyond increasing the generalizability of CircusTent, several interesting
research topics also bear further exploration. As noted in Sect. 2.1, software
based remote atomic operations must often be utilized in lieu of more optimized
hardware based solutions. However, the performance penalties of such solutions
across distinct interconnects is unclear. Adding support for additional atomic
primitives, including those not supported in hardware, would enable a quan-
tifiable investigation of these penalties. Similarly detailed in Sect. 2.1, network
adapters play a critical role in the execution of remote atomic operations. As
such, the increasing adoption of DPU/SmartNIC devices stands to make a sig-
nificant impact on the future of high performance system architectures. Given
its unique methodology, CircusTent is well-suited to evolve in order to assist this
transition and the design of associated interfaces such as OpenSNAPI [9].
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Abstract. SHMEM-ML is a domain specific library for distributed
array computations and machine learning model training & inference.
Like other projects at the intersection of machine learning and HPC
(e.g. dask, Arkouda, Legate Numpy), SHMEM-ML aims to leverage the
performance of the HPC software stack to accelerate machine learning
workflows. However, it differs in a number of ways.

First, SHMEM-ML targets the full machine learning workflow, not
just model training. It supports a general purpose nd-array abstraction
commonly used in Python machine learning applications, and efficiently
distributes transformation and manipulation of this ndarray across the
full system.

Second, SHMEM-ML uses OpenSHMEM as its underlying communi-
cation layer, enabling high performance networking across hundreds or
thousands of distributed processes. While most past work in high perfor-
mance machine learning has leveraged HPC message passing communi-
cation models as a way to efficiently exchange model gradient updates,
SHMEM-ML’s focus on the full machine learning lifecycle means that a
more flexible and adaptable communication model is needed to support
both fine and coarse grain communication.

Third, SHMEM-ML works to interoperate with the broader Python
machine learning software ecosystem. While some frameworks aim to
rebuild that ecosystem from scratch on top of the HPC software stack,
SHMEM-ML is built on top of Apache Arrow, an in-memory standard
for data formatting and data exchange between libraries. This enables
SHMEM-ML to share data with other libraries without creating copies
of data.

This paper describes the design, implementation, and evaluation of
SHMEM-ML – demonstrating a general purpose system for data trans-
formation and manipulation while achieving up to a 38× speedup in dis-
tributed training performance relative to the industry standard Horovod
framework without a regression in model metrics.
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1 Motivation

Data science and machine learning techniques have found broad applications,
from proxy modeling in scientific applications to consumer recommendation
engines to autonomous vehicles.

Most DS/ML frameworks are written to maximize programmability and
portability, sacrificing performance. For example, most are written for Python,
an extremely flexible but also interpreted programming language with high over-
heads. Pandas, a popular Python library for data scientists, mostly follows a
copy-on-write semantic for mutating large n-dimensional arrays. This can lead
to massive memory consumption on moderately-sized datasets. While this trade-
off makes sense for small-scale projects, this causes problems for even simple data
processing, exploration, and visualization workflows on the large-scale datasets
that are common place today.

As a result, several efforts have explored taking well-known techniques
and frameworks from the HPC community and applying them to DS/ML
frameworks to yield both productive and high performance domain specific
libraries/languages. These past works generally fall in to two buckets: (1) efforts
to transparently use HPC frameworks underneath existing, industry-standard
DS/ML frameworks, or (2) effort to replace existing DS/ML frameworks with
new ones built with HPC technologies from the start.

1.1 Related Work: Using HPC Frameworks Under Existing DS/ML
Frameworks

For example, in [11] the authors used OpenSHMEM [7] to accelerate distributed
Caffe training jobs of the LeNet Solver network by replacing the existing MPI-
based gradient exchange with equivalent OpenSHMEM operations. While this
yielded a 30% improvement in training time over the existing implementation,
this application of HPC technologies ignores the rest of the data science workflow.
Projects like this one focus on a relatively small segment of the data science
workflow (in this case, model gradient updates). Additionally, given that these
optimizations are generally done at the lowest level of the data science software
stack, they may miss optimizations that are only possible when higher level
semantics are exposed.

1.2 Related Work: Novel HPC DS/ML Frameworks

On the other hand, there are several recent projects that aim to offer an all new
data science software stack built on top of HPC technologies.

Legate Numpy [2] aims to offer a numpy-like [6] interface for multi-
dimensional array processing on top of a high performance, distributed pro-
gramming model called Legion [3]. Legate exposes a SPMD interface in Python,
and a bridge to arrays stored in Legion (called logical regions) that allows for
Python programmers to interact with Legion arrays in a similar manner to how
they would interact with a Numpy array. While the programming model will be
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familiar, the authors call out that only a “a subset of the full NumPy API” is cur-
rently supported. To our knowledge, there would also be no straightforward way
to use Legate arrays with other Python libraries (e.g. Tensorflow, scikit-learn).

Arkouda [5] is another example of a high performance data science frame-
work, in this case built on top of Chapel [4]. It aims to offer “distributed arrays
with parallel primitives”, a “familiar interactive interface”, and “smooth integra-
tion with mature HPC code”. In the case of Arkouda, the high level architecture
is a Chapel-based cluster communicating with a Jupyter/Python client. In this
way, the user can run their analyses in an easy-to-use and familiar Python envi-
ronment most of the time but still ship larger kernels to a massive, distributed
environment when needed (while accepting that the functionality supported in
that larger environment is also more limited).

In both the case of Arkouda and Legate, we can see some challenges with these
approaches. While Legate tries to offer a familiar programming model and Ark-
ouda supports single-threaded Python execution on the client, both approaches
essentially ignore the existing and massive DS/ML Python ecosystem of libraries
and tools that users may expect to have access to (even in an HPC, distributed
environment).

1.3 Contributions

SHMEM-ML is a new distributed nd-array and distributed inference/training
machine learning system built on top of OpenSHMEM, exposing productive
C++ & Python APIs, and leveraging Apache Arrow to support integration with
the broader Python ecosystem. SHMEM-ML is available open source at https://
github.com/agrippa/shmem ml.

The remainder of this paper is structured as follows. Section 2 will cover the
high level programming model and APIs of SHMEM-ML, as well as walk through
some simple examples of SHMEM-ML’s usage. Section 3 will describe its imple-
mentation in detail. Section 4 will walk through some illustrative performance
benchmarks, and Sect. 5 will wrap up with some discussion and conclusions.

2 Programming Model

2.1 Distributed SHMEM-ML Arrays

SHMEM-ML exposes C++ and Python APIs for:

1. Distributed nd-array creation, manipulation, and destruction.
2. Distributed training and inference of machine learning models, applied to

SHMEM-ML’s distributed nd-array abstractions.

Creating and mutating distributed SHMEM-ML arrays can be done concisely
in both C++ and Python. Table 1 includes a few example SHMEM-ML APIs.

The full SHMEM-ML C++ and Python APIs is too long to be included
inline, but in general SHMEM-ML arrays support:

https://github.com/agrippa/shmem_ml
https://github.com/agrippa/shmem_ml
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Table 1. Example SHMEM-ML routines for creating, accessing, and manipulating
SHMEM-ML arrays in C++ and Python.

Operation C++ Python

Create a 1D array of
length N initialized to zero

ShmemML1D<float>

arr(N, 0.0);

PyShmemML1DD(N)

Create a 2D array of size
MxN initialized to zero

ShmemML2D<float>

arr(M, N, 0.0);

PyShmemML2DD(M, N)

Apply a function to each
element of an array

arr.apply ip([]

... );

arr.apply(lambda ...)

Access a single local or
remote element

arr.get(i); arr.get(i)

– Allocation of distributed one- and two-dimensional arrays of primitive types
and arbitrary size, up to the limits of the machine being used.

– Applying custom functions element-wise.
– Getting or setting elements.
– Clearing arrays to a specified value.
– Atomically updating local or remote array elements.
– Global reductions across the entire array (e.g. sum reduction).
– Saving and restoring of arrays to disk.

2.2 SHMEM-ML Arrays with Third Party Python Libraries

Additionally, today SHMEM-ML arrays integrate with commonly used Python
data science libraries, including numpy, scikit-learn [8], and keras [12]. Section 3
includes more details on the implementation of this integration. For example,
you can use a numpy random number generation API to populate data in a
distributed SHMEM-ML array:

from PyShmemML import rand

vec = rand(vec)

Under the covers, the above code snippet uses the numpy.random.rand inter-
face to implement random number generation.

It is also possible to train and apply scikit-learn models on SHMEM-
ML distributed arrays. In the example below, Xtrain, Ytrain, Xvalid, and
predictions are all distributed SHMEM-ML arrays.

from PyShmemML import SGDRegressor

clf = SGDRegressor(max_iter=niters)

clf.fit(Xtrain, Ytrain)

predictions = clf.predict(Xvalid)

The same can be done with Keras:
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from tensorflow import keras

from PyShmemML import Sequential

clf = Sequential()

clf.add(tensorflow.keras.Input(shape=(5,)))

clf.add(tensorflow.keras.layers.Dense(3, activation=’relu’))

clf.add(tensorflow.keras.layers.Dense(1, activation=’relu’))

opt = keras.optimizers.SGD(learning_rate=0.01)

clf.compile(optimizer=opt, loss=’mse’)

clf.fit(Xtrain, Ytrain, epochs=niters)

predictions = clf.predict(Xvalid)

The structure of the code above will be very familiar to any existing Python
data scientists. However, behind the scenes the data and workload is being dis-
tributed across an OpenSHMEM-based cluster. At the same time, we are leverag-
ing all of the existing software in the Python data science ecosystem by relying
on third party libraries like scikit-learn and keras for algorithms like forward
propagation, backward propagation, gradient calculation, optimizers, etc.

2.3 Client-Server vs. SPMD

One of the main differences between how data scientists and HPC programmers
interact with high performance clusters today is in the fundamental parallelism
model exposed to them. Most data scientists are familiar with a client-server
style model, in which a single Python notebook or shell distributes work to a
large cluster. This is also the approach taken in Arkouda. However, most HPC
programmers are more familiar with SPMD-style programming as it generally
offers better scalability by removing the bottleneck of distributing work from a
single client. This is the approach taken by Legate.

While it is safe to assume that SPMD-style programming will be more scal-
able for most use cases, it is also important to meet data scientists where they
are comfortable. As a result, SHMEM-ML supports both a client-server style
interface and an SPMD-style interface.

By default, SHMEM-ML in Python runs in SPMD mode with each pro-
cess executing the same Python program in parallel. Processes have access to
a PyShmemML.pe() function to fetch their unique OpenSHMEM PE ID, and
PyShmemML.npes() to fetch the number of running OpenSHMEM PEs.

To run in client-server mode, rather than launching the Python pro-
gram using the python interpreter (e.g. python foo.py), the program-
mer uses a SHMEM-ML wrapper called shmem ml client server (e.g.
shmem ml client server foo.py). Then, the SHMEM-ML program will be run
with a single process distributing work to the entire cluster.

In this way, users in both the data science and HPC communities can choose
the programming abstractions they are most comfortable with. In the case of
Arkouda and Legate, each programming system dictated whether the program-
mer worked in client-server or SPMD mode.
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3 Implementation

SHMEM-ML is built on top of a number of open source or third party software
packages. This section offers a brief overview of the fundamental building blocks
of SHMEM-ML, as well as how they are put together to support distributed
arrays and integration with the broader Python ecosystem.

At a high level, SHMEM-ML uses:

– Apache Arrow [1] for in-memory data storage and zero-copy data exchange
with third party Python libraries.

– OpenSHMEM [7] for distributed job creation, inter-process communication,
and inter-process coordination.

– Tensorflow, Keras, scikit-learn, numpy and other Python data science libraries
for the implementation of more algorithmically complex data science function-
ality such as training and inference of deep neural networks.

3.1 Background: OpenSHMEM

The OpenSHMEM library provides a single program, multiple data (SPMD) exe-
cution model in which N instances of the program are executed in parallel. Each
instance is referred to as a processing element (PE) and is identified by its integer
ID in the range from 0 to N − 1. PEs exchange information through one-sided
get (read) and put (write) operations that access remotely accessible symmetric
objects. Symmetric objects are objects that are present at all PEs and they are
referenced using the local address to the given object. By default, all objects
within the data segment of the application are exposed as symmetric; additional
symmetric objects are allocated through OpenSHMEM API routines. OpenSH-
MEM’s communication model is unordered by default. Point-to-point ordering is
established through fence operations, remote completion is established through
quiet operations, and global ordering is established through barrier operations.

3.2 Background: Apache Arrow

Apache Arrow is an open community effort to define a universal in-memory data
format for n-dimensional arrays. Arrow’s aim is to enable zero-copy, efficient
data exchange between different libraries regardless of language and without
each library having to provide explicit support for every other library. Apache
Arrow defines a number of commonly used objects and functionalities, including
one-dimensional arrays, two-dimensional tables, and file I/O.

3.3 Background: Scikit-Learn, Tensorflow, and Horovod

scikit-learn and Tensorflow/Keras are industry standard libraries for training and
applying data-driven or machine learned models. Scikit-learn focuses on provid-
ing classes for more classical and statistically-derived machine learning models
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(e.g. linear regressors, support vector machines, random forests, gaussian mix-
tures). Tensorflow/Keras focus on more recent developments in deep learning
models, making it simple and straightforward to create deeply layered mod-
els with a variety of built-in layer types supported (e.g. Dense, Convolutional,
Pooling, Recurrent, Normalization). Custom layer types can also be added by
programmers. While Keras was started as an independent framework for train-
ing deep learning models, it was eventually merged into Tensorflow in 2017 as
an alternative API.

While scikit-learn does not support distributed training today, Tensor-
flow/Keras offer a number of options. The most commonly used framework for
distributed training of Keras models is Horovod [9] which uses an efficient ring-
allreduce method to distributed gradient updates while sitting on top of high
performance communication libraries (e.g. MPI) when supported. The introduc-
tion of Horovod to the Tensorflow/Keras communities drastically improved the
scalability and productivity of distributed training.

3.4 ND-Array Implementation

Today, SHMEM-ML distributed arrays are limited to being either one- or two-
dimensional – in the future, this restriction could be lifted. In either case, the
core data backing a SHMEM-ML array is an Apache Arrow data structure allo-
cated on the OpenSHMEM symmetric heap. In the case of a one-dimensional
array, we use Arrow’s FixedSizeBinaryArray class which allows us to allocate
a contiguous array of elements, each containing sizeof(T) bytes. In the case
of two-dimensional SHMEM-ML arrays, we use Arrow’s Table class to store
columns of Arrow Arrays.

To have the backing allocations for Arrow’s Table and Array classes allo-
cated in the OpenSHMEM symmetric heap, we have also implemented a custom
Arrow MemoryPool that supports Allocate, Reallocate, and Free functions
that operate on memory regions in the symmetric heap. This custom memory
pool is passed to the Arrow runtime when constructing a new Array or Table,
and in turn the Arrow runtime calls it when memory is needed.

One-dimensional SHMEM-ML arrays are distributed in chunks across the
available OpenSHMEM PEs, and two-dimensional arrays are chunked across
rows. Today, the type of distribution and chunk size is chosen for the program-
mer – future work could extend this to support different data distributions (e.g.
cyclic). SHMEM-ML also supports what we call “replicated” arrays. When allo-
cated with a size N, they allocate N elements on every PE (rather than distribut-
ing them across PEs). In general, replicated arrays are useful when a programmer
wants to update the local copy and then perform some type of a global sync of
every PE’s local updates (e.g. a global sum of all local values).

SHMEM-ML arrays include functions for looking up basic information on a
distributed array, including the number of elements in the array, which PE stores
a given element based on its index, and the starting/ending indices of elements
stored on the local PE.
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SHMEM-ML arrays also support a number of getter and setter APIs. For
example, one-dimensional arrays support both getting and setting elements in
the array using either global indices into the entire distributed array or local
indices into the local chunk of the array. Some example one-dimensional APIs
are included below. Under the covers, all remote operations are performed using
OpenSHMEM APIs (e.g. shmem putmem or shmem getmem).

// A remote get based on the global index in the distributed array

inline T get(int64_t global_index);

// A remote set based on the global index in the distributed array

inline void set(int64_t global_index, T val);

The getter and setter methods above are not atomic (i.e. if two PEs try to
set the same global index, the result is undefined). As a result, SHMEM-ML also
supports atomic operations on elements of arrays. There are two implementations
of atomic operations in SHMEM-ML: OpenSHMEM-based and message-based.
OpenSHMEM-based atomic operations are directly implemented using OpenSH-
MEM atomics APIS (e.g. shmem longlong atomic fetch add. Message-based
atomics are packaged up by the SHMEM-ML runtime as a small packet encod-
ing the operation to be performed and sent in batches to the target PE through
asynchronous mailboxes. In the cases of workloads performing large numbers
of atomic operations, this approach increases latency of individual operations
but can also drastically improve throughput. On the receiving side of an atomic
message, updates are simply done using memory reads and writes – this means
that the two types of atomics in SHMEM-ML are not atomic with respect to
each other. Additionally, because message-based atomics are asynchronous an
additional sync call is needed on the array in question to ensure all outstanding
atomics have been sent and processed. Some example atomics APIs are included
below.

// Perform an atomic compare-and-swap at the designated element.

// Return the previous value at that location.

T atomic_cas(int64_t global_index, T expected, T update_to);

// Perform an atomic compare-and-swap at the designated element,

// using the message-based atomics implementation.

void atomic_cas_msg(int64_t global_index, T expected, T update_to);

// Wait for all pending message-based atomics to complete on the

// target array.

void sync();

Finally, SHMEM-ML arrays also support global reductions performed on
their contained elements (e.g. max reduction, sum reduction). In general, a
local result is computed sequentially and then an OpenSHMEM reduction is
performed to compute the global result based on each PE’s local result. Some
example reduction array APIs are shown below.
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T max(T min_val);

T sum(T zero_val);

3.5 Client-Server Implementation

Section 2 described the difference between SPMD and client-server execution
from the user’s perspective. All that was needed to switch to a client-server
architecture for SHMEM-ML was to use a special shmem ml client server exe-
cutable when launching your distributed Python program, rather than the stan-
dard python interpreter.

Under the covers, this custom executable does the following:

1. Initializes OpenSHMEM and the Python runtime (if we are running client-
server mode from Python, and not from C++).

2. Sets a flag on each OpenSHMEM PE to indicate which are servers/workers,
and which is the client. In general, we select PE 0 as the client.

3. Symmetrically allocates what we call a command mailbox on every PE. This is
the only mechanism by which the client PE issues work to worker/server PEs.
Every time a distributed operation occurs on the client PE (e.g. distributed
array allocation, a distributed apply, a global reduction), coordination mes-
sages are sent from the client PE to all server PEs informing them of the
distributed operation to be performed.

4. All PEs that are servers then enter a command loop, waiting on new incoming
commands from the client and then performing the requested operations.

5. The client PE then launches the provided Python program using
PyRun SimpleFileExFlags. When it completes, it sends all servers a com-
mand to indicate that the program has completed and a collective
shmem finalize occurs.

Naturally, client-server mode faces some intrinsic scalability bottlenecks that
SPMD mode does not. However, for programmers that are less familiar with an
HPC-style programming environment it offers a more comfortable on-ramp to
using SHMEM-ML.

3.6 Integration with Scikit-Learn and Tensorflow/Keras

SHMEM-ML’s use of Apache Arrow enables zero-copy data exchange between
SHMEM-ML and other Arrow-based libraries, including numpy, Pandas, scikit-
learn, and Tensorflow. However, integrating into their workflows (particularly
for model training) does require some added logic.

Supporting executing numpy functions on SHMEM-ML arrays is relatively
straightforward. All SHMEM-ML arrays expose functions for (1) getting the
local Arrow arrays backing them (get local arrow array), and (2) updating
their contents from another Arrow array (update from arrow). Arrow arrays can
then be converted to or from numpy arrays, which can be passed to numpy’s
routines.
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Model inference workloads are also relatively simple, and generally consist of
applying a model element-wise to an input SHMEM-ML array after it has been
converted to a numpy array via Apache Arrow. Below is a simplified example
of the glue code between SHMEM-ML arrays and scikit-learn models for model
inference.

def predict(self, x):

# Convert the local chunk of our SHMEM-ML array to a Pandas

# Dataframe using Apache Arrow

x_arr = x.get_local_arrow_table().to_pandas(

zero_copy_only=True, split_blocks=True)

# Run the trained scikit-learn model on our local chunk,

# producing a new numpy array as output

pred = self.model.predict(x_arr)

# Allocate a new distributed SHMEM-ML array to store the

# result of the inference

dist_pred = PyShmemML1DD(x.M())

# Update the contents of dist_pred with the output of the model

dist_pred.update_from_arrow(pyarrow.array(pred))

# Return the new SHMEM-ML array containing the predictions

return dist_pred

However, model training workloads require more extensive glue code between
SHMEM-ML arrays and scikit-learn/Tensorflow models. In particular, because
the models themselves are responsible for updating their weights but are not
aware that they are being trained in parallel (i.e. that there are updates occurring
on remote PEs to remote copies of the model), SHMEM-ML must (1) take
over the iterative training process, (2) manage inter-process gradient exchange
between iterations, and (3) rely on models’ incremental training APIs to support
iteration-by-iteration training updates. This is in contrast with how models are
generally trained, by passing in the full training dataset and training for a large
number of iterations.

However, this process is relatively uniform across frameworks. Indeed, the
SHMEM-ML code base uses a single model training function to perform dis-
tributed training of both scikit-learn and Tensorflow models – with some model-
specific logic plugged in (e.g. to fetch the weights from a given model type).
A simplified version of that training function is shown below. Note that this
implementation is likely making some assumptions about the type of model and
type of optimizer being used for training, such that an averaging of weights on
each iteration will yield convergence. While this approach has been tested for
stochastic gradient descent optimizers, it may need customization for different
types of model optimization.
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def _training_driver(model, x_arr, y_arr, epochs, **custom_args):

dist_weights_grad = PyReplicatedShmemML1DD(...)

for it in range(epochs):

# Rely on the model supporting incremental training

model._fit_one_epoch(x_arr, y_arr, **custom_args)

# Fetch the model’s new weights as an arrow array, and

# convert it to a distributed, replicated SHMEM-ML array

arrow_weights = pyarrow.array(model._copy_weights())

dist_weights_grad.update_from_arrow(arrow_weights)

# Perform a sum reduction across all PEs on the model

# weights following this iteration’s updates

dist_weights_grad.reduce_all_sum()

# Extract a local numpy array containing the summed

# weights, and normalize the new weights by number of

# PEs (taking the mean of model weights across all PEs)

all_weights_grads = dist_weights_grad \

.get_local_arrow_array() \

.to_numpy(zero_copy_only=True) / npes()

# Update the model itself with the new average of all

# model updates across all PEs

model._update_weights(all_weights_grads)

4 Performance Evaluation

In this section, we will compare the performance and accuracy of models trained
on scikit-learn, Tensorflow, and SHMEM-ML. All results were collected on the
TACC Frontera machine’s primary compute system [10]. Each node of Frontera
includes a dual-socket Intel Xeon Platinum 8280 “Cascade Lake” CPU with 56
cores per node. Each node also includes 192 GB of DDR4 system memory. Nodes
are connected by a Mellanox Infiniband HDR-100 interconnect.

SHMEM-ML was built using OSSS-UCX OpenSHMEM and Apache Arrow
built from source code as of October 2020. GCC 9.1.0 was used. Tensorflow
v2.1.0, scikit-learn 0.23.2, and Horovod 0.21.1 were used in this evaluation.

To evaluate SHMEM-ML’s performance when training a scikit-learn model,
we will compare the performance of training a scikit-learn linear regression model
in a single-threaded Python process to distributed training in SHMEM-ML using
both client-server and SPMD modes.

To evaluate SHMEM-ML’s performance when training a Tensorflow model,
we will compare between (1) Tensorflow single-node, (2) Tensorflow multi-node
using Horovod, (3) SHMEM-ML SPMD, and (4) SHMEM-ML client-server.
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4.1 Scikit-Learn

The source code for model training in both the SHMEM-ML and scikit-learn
implementations of this benchmark are identical:

clf = SGDRegressor(max_iter=50)

clf.fit(X, Y);

predictions = clf.predict(X)

We use a synthetic dataset with 5 million samples and 5 32-bit floating point
features per sample for the purposes of benchmarking.

Table 2 includes wall times for training on a single node for scikit-learn and
SHMEM-ML. Note that running SHMEM-ML on a single node implies running
one PE per core, and so the SHMEM-ML numbers are with 56-way parallelism.
As expected, that added parallelization yields large speedups for SHMEM-ML in
client-server and SPMD mode relative to scikit-learn (37.3× and 45.3×, respec-
tively) with SPMD achieving slightly higher throughput. The sublinear speedup
on a single node for even the SPMD version can be attributed to coordination
and communication overheads required to exchange gradient updates between
PEs on each iteration of training. This is commonly the largest challenge to train-
ing scalability, and a source of future work for SHMEM-ML (e.g. by leveraging
more efficient communication patterns, similar to Horovod).

Table 2. Training performance running SHMEM-ML and scikit-learn on a single node

Framework Training (s) Training speedup

Single-threaded scikit-learn 509.83 1.0×
Client-server SHMEM-ML on one node 13.67 37.3×
SPMD SHMEM-ML on one node 11.26 45.3×

Figure 1 shows the execution time of SHMEM-ML’s scaling while training the
SGDRegressor model. We can observe the throughput benefits of SPMD mode,
though both modes of execution fail to scale beyond 1,792 PEs (32 nodes).

4.2 Tensorflow

Like scikit-learn, the source code for the SHMEM-ML and Tensorflow imple-
mentations of this benchmark are identical:

clf = Sequential()

clf.add(tensorflow.keras.Input(shape=(nfeatures,)))

clf.add(tensorflow.keras.layers.Dense(1, activation=’relu’))

opt = keras.optimizers.SGD(learning_rate=0.005)

clf.compile(optimizer=opt, loss=’mse’)
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Fig. 1. SHMEM-ML execution time in client-server and SPMD modes for training.
Note the log scale Y axis.

clf.fit(X, Y, epochs=niters, batch_size=128)

pred = clf.predict(X)

Like with scikit-learn, we use a synthetic dataset with 5 million samples and
5 32-bit floating point features per sample for the purposes of benchmarking.

There are additional hyperparameters in training of deep learning models
which did not have to be considered in the scikit-learn comparison. In particular,
we increase both the number of iterations/epochs in the distributed case and
the batch size per iteration to yield better convergence. In general, the following
tables and figures will report performance per iteration to ensure an apples-to-
apples comparison. Table 3 describes the full set of hyperparameters tuned for
our local and distributed jobs.

Table 3. Per framework hyperparameters

Framework Iterations Batch size

Single node tensorflow 40 32

Multi node tensorflow 5 128

Multi node SHMEM-ML 400 128

Table 4 includes wall times for training on a single node for Tensorflow
and SHMEM-ML. Again, the parallelism added by SHMEM-ML yields large
speedups in both client-server and SPMD mode relative to Tensorflow (111.98×
and 116.57×, respectively). Numbers are not reported for Horovod+Tensorflow,
as an OOM was encountered with only a single node.

Additionally, we ran experiments to compare the accuracy of the models pro-
duced by each framework – attempting to optimize hyperparameters for model
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Table 4. Training performance running SHMEM-ML and tensorflow on a single node

Framework Seconds per iteration Speedup

Single node tensorflow 142.22 1.0×
Client-server SHMEM-ML on one node 1.27 111.98×
SPMD SHMEM-ML on one node 1.22 116.57×

metrics rather than for an apples-to-apples throughput comparison. Table 5
summarizes the results. Not surprisingly, SHMEM-ML’s increased throughput
enables more iterations and therefore better model metrics.

Table 5. Model metrics and performance

Tensorflow Horovod SHMEM-ML

Iterations 40 130 500

Batch size 32 128 128

# Nodes 1 32 32

Total wall time 5899.15 2334.89 61.21

Seconds per iter. 147.48 17.96 0.12

RMSE 4.504500E−08 5.000000E−06 9.676908E−23

Finally, Fig. 2 shows the elapsed time per iteration of SHMEM-ML out to
32 nodes. While Horovod fails with an out of memory error below 16 nodes, its
execution time per iteration at 16 and 32 nodes is much higher than SHMEM-
ML. At 16 nodes, Horovod takes 65.65 s per iteration while SHMEM-ML SPMD
takes 0.15 s per iteration. At 32 nodes, Horovod takes 14.13 s and SHMEM-ML
SPMD takes 0.09 s.

Fig. 2. SHMEM-ML execution time per iteration for training
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5 Conclusions

SHMEM-ML leverages OpenSHMEM to accelerate data science and machine
learning workflows. By focusing on a scalable distributed array data structure
and composability with the existing Python data science ecosystem, SHMEM-
ML aims to enable scalable end-to-end data science workflows – including data
loading, data manipulation, model training, and model inference.
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Abstract. As a lightweight library-based Partitioned Global Address
Space (PGAS) programming model, OpenSHMEM provides efficient one-
sided and collective communications and is receiving more attention in
recent years. However, task-based programming models are getting big-
ger traction in scientific computing communities. Application developers
are attracted by their ability to achieve better load balance in the face of
ever-growing application complexity, and the increasing on-node paral-
lelism in modern high-performance computing machines. Although com-
munication contexts provide threads with first-class access to the network
in the OpenSHMEM+X model, OpenSHMEM still has very limited abil-
ity to perform advanced operations found in other task-based models. For
example, compared to the remote procedure call (RPC) mechanism in the
UPC++ programming model, more work is required if the signal/wait
routines are used to achieve similar remote task launching operations.
In this paper, we introduce a lightweight active message (AM) exten-
sion to OpenSHMEM that is designed to perform short, non-blocking
remote function invocations. This extension aims to bring some bene-
fits of task-based programming to OpenSHMEM without making it a
full-blown heavyweight tasking system with a sophisticated scheduler.
We study the performance of this active message extension by running
micro-benchmarks, and by evaluating its computation efficiency at dif-
ferent task granularities using the TaskBench framework.

Keywords: PGAS · OpenSHMEM · Active message · Tasking

1 Introduction

The increasing complexity of software and hardware in the exascale era calls for
more adaptive and dynamic programming models. In recent years we are seeing a
surge of new programming models that break away from the traditional SPMD-
way of expressing parallelism and embrace the flexibility and scalability provided
by dynamic execution of operations, mostly in the form of tasks or a variant
of active messages [8]. In today’s diverse and heterogeneous HPC systems, an
application using HPX [11], an active global address space programming model,
was able to achieve a much higher parallel efficiency at scale than MPI [6].
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Many members in the family of partitioned global address space (PGAS) pro-
gramming models already have some way to launch functions remotely: Coarray
Fortran [20], GASNetEX [3]/UPC++ [1], and Chapel [4] are among the most
prominent ones. Their ability to insert operations into another process’s execu-
tion flow is a simpler, sometimes more scalable, way to realize tasks and their
dependencies than using distributed signal variables. As of OpenSHMEM 1.5
[15], a similar feature is not available, and we believe it is affecting OpenSH-
MEM’s adoption in the supercomputing community.

In this paper, we propose a lightweight active message extension for Open-
SHMEM that is designed to support a basic form of task-based programming
without feeling out-of-place when mixed with other parts of the model. It enables
efficient remote invocation of pre-defined message handler functions across Pro-
cessing Elements (PEs). Our work provides a basis for the inclusion of this
important feature, and we hope to spark discussion in the OpenSHMEM com-
munity on this topic.

This paper is organized as follows: Sect. 2 discusses the background of this
work. Section 3 describes the proposed API extension and its implementation.
Section 4 provides a preliminary evaluation of the work and Sect. 5 gives a con-
clusion and talks about future work.

2 Background

2.1 Task-Based Programming and Active Messages

Task-based programming is the practice of expressing parallelism in terms of
small units of computation called tasks. Two tasks can be executed indepen-
dently or have an order imposed on them in the form of task dependency. The
directed acyclic graph (DAG) constructed with task dependencies is expressive
enough for the majority of HPC applications, while still can be mapped and exe-
cuted on supercomputers. Due to its ability to express sophisticated workflows
in an organized manner and expose more opportunities for load balancing, task-
based programming is playing an increasingly prominent role in the exascale
era.

Active messages [8] enable one process to schedule a function (AM handler)
invocation on a remote process, using a pre-registered AM handler ID and a set
of handler arguments (AM payload) contained in the scheduling request. AM and
its derivatives have become building blocks of many HPC programming models
and machine learning frameworks for performing distributed control flow (e.g.
work assignments, load balancing). While a simple AM implementation lacks the
central/distributed task scheduler found in fully-fledged tasking frameworks, it
still can be used to construct tasks and dependencies between them. The devel-
oper needs to implement an application-specific scheduler to decide when and
where to send AM requests, but this might be preferable for some applications.
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2.2 OpenSHMEM

OpenSHMEM [5] is an SPMD programming model that implements the PGAS
memory model. It is library-based and uses one-sided remote memory access
(RMA) as its main method for doing point-to-point communication and synchro-
nizations between its processes/PEs. Due to its elegant and implementer-friendly
design, it has been well-received in both academia and commercial products like
NVSHMEM [14].

However, when compared to other members of the PGAS family, OpenSH-
MEM lacks advanced features that could help developers achieve scalability and
portability in the face of the exploding complexity of the modern HPC ecosys-
tem. The recent addition of teams [17] and contexts [7] are solid steps towards
this direction and have been shown to improve application performance [13], but
data movement is still the main focus.

Currently, if the developers want to have a task-like workflow in an OpenSH-
MEM application, the entire DAG of tasks must be hard-coded into the appli-
cation, with every task spawning operation and dependency realized through
a dedicated signal variable and a wait operation. This approach not only loses
the flexibility of task-based programming but also requires heroic effort and is
very error-prone. Moreover, inputs and outputs of the tasks must be placed on
the symmetric heap and passed using PUTs or GETs even if they are single
integers/floating-point numbers, which further increases complexity and reduces
scalability.

The active message extension proposed in this paper could bridge the gap
between OpenSHMEM and other programming models on handling control flow
on the distributed-memory level. Instead of using signals to trigger task execution
and notify the availability of execution results of tasks, parent tasks can inject
tasks into any PE’s execution flow and the children tasks can invoke AM handlers
on the parent task’s PE to fetch computation results, or simply send the results
as the AM payload if the sizes are within the limits. If designed with care, the
AM extension will blend nicely with the rest of the OpenSHMEM specification
and does not introduce unnecessary overhead to other OpenSHMEM operations.

2.3 Related Work

An AM extension for OpenSHMEM has been proposed before [10], in which a
set of APIs is presented to initiate, progress, and perform active message opera-
tions between PEs. Their GASNet-based implementation features opportunistic
execution of incoming active messages using a background polling thread. The
potential risk of data race on internal data structures and other progression
issues leads to the need of banning the invocation of most OpenSHMEM rou-
tines from the AM handler, as well as a dedicated mutex interface for handler
safety. The main difference between their design and ours is that: we allow the
use of simple point-to-point communication routines including sending AMs from
the handler, give the user total control of where the handler gets executed, and
let the user handle thread-safety using whatever mechanism they see fit. As a
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result, our design does not require SHMEM THREAD MULTIPLE when not requested
by the application and is much more flexible in what can be done inside the
handler.

MPI, being the most popular distributed-memory programming model for
HPC, also has had a few attempts to retrofit it with active message capabilities.
The MPI-Interoperable Generalized Active Messages [24] is the most complete
one, which is similar to the MPI Op of MPI-3’s RMA accumulate operation but
is extended with user-defined operations and a data streaming-like interface.
Compared to our design, their API is extremely complex and requires more effort
to use. Another attempt at MPI AM is presented in [21] and has achieved good
performance. However, the work focused on implementing an active message
mechanism using MPI RMA and did not design a general-purpose API interface
for it.

Active message-like functionalities can be found in many other programming
models. UPC++’s RPC mechanism supports automatic serialization and pro-
vides future objects that can be waited on to obtain the RPC’s return value.
Charm++ [12] features location-agnostic method invocations on a unified view
of all the distributed C++ objects, with its runtime performs automatic object
migration and load balancing behind the scene. Legion [2] implements a mapper
layer that controls the placement of the tasks instead of having to specify on
which process each task should run in the application’s main workflow. These
advanced features are too heavy-weight for both the OpenSHMEM specification
and its implementations.

3 Design and Implementation

This section describes the design of our OpenSHMEM active message extension
and the rationale behind it. The extension’s implementation is also discussed to
demonstrate how we are able to allow the use of simple point-to-point commu-
nication operations from within the AM handlers.

3.1 OpenSHMEM Active Message API Extension

The type and macro definitions for the AM handler are shown in Listing 1.1.
The size of the active message payload is limited by the implementation-defined
macro SHMEMX AM PAYLOAD MAX SIZE, typically this will be a few kilobytes. We
decide to add this restriction to avoid introducing the rendezvous protocol to
handle large payload sizes. Since OpenSHMEM focuses on fast one-sided commu-
nication operations, an active message interface with MPI-like request objects
and/or callbacks deviates too far away from OpenSHMEM’s communication
semantics. If the user needs to transfer a large amount of data with an AM
request, our design allows invoking PUTs/GETs from within the AM handler
so it should not be a problem.

Active message handlers must be registered on the destination PE before
the initiator PE can schedule its execution. The handlers must have the same
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// Maximum active message payload size.

#define SHMEMX_AM_PAYLOAD_MAX_SIZE

// Active message handler signature.

typedef void (* shmemx_am_handler_t )(void* payload ,

size_t length ,

void* args_r ,

void* args_p ,

int source_pe)

[IN] payload Active message payload

[IN] length Size of the payload

[IN] args_r Registration-time user arguments

[IN] args_p Polling-time user arguments

[IN] source_pe PE number of the initiator of this AM

Listing 1.1. Proposed OpenSHMEM Active Message API type definitions

function type defined by shmemx am handler t, and its definition must be visible
to the compiler/linker when the application is compiled. When a handler is
invoked by the destination PE, the payload and its size, a pointer provided by
the user when the handler was registered, a pointer passed to the polling routine
that invoked this handler, and the PE number of the source of the AM request
are passed as function arguments. Once the handler returns, the payload buffer
is freed.

One of the main advantages of our design is the ability to call OpenSHMEM
routines from the AM handler. Point-to-point communication operations like
PUT/GET/atomic operations are all supported, as well as shmem fence and
shmem quiet, and even send AM requests using the API in Listing 1.2. Usage of
collective communications, distributed locking routines, symmetric heap man-
agement routines, and contexts & teams routines inside the handlers are still
forbidden. Additionally, the user can make libc and other external function calls
inside the AM handler, but we strongly discourage performing any potentially
blocking operation in the handler, as doing so could prevent timely handling of
other AM requests or even cause deadlocks. Our proposed API is inter-operable
with shared-memory tasking frameworks, so long-running computations or sys-
tem calls like I/O can be handled by offloading them to other threads.

Listing 1.2 defines the API extension that will be used to register, send and
progress OpenSHMEM active messages. A PE can call shmemx am set handler
to register an AM handler and receive an integer as the ID of the registered
handler, this ID will be used by an initiator PE to send an AM request that
invokes this handler. The registration routine is not a collective call and the
application is not required to have the same handler-to-ID mapping across all
PEs. A pointer to local arguments can be registered along with the handler, and
it will be passed as the third argument (args r) to the handler for every AM
request of this ID.
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// Set & reset active message handler.

void shmemx_am_set_handler(shmemx_am_handler_t handler ,

void* args_r ,

int* id)

[IN] handler Active message handler (NULL to reset)

[IN] args_r User-defined local arguments

[OUT] id Active message ID

// Send an active message.

void shmemx_am_send_nbi(int id,

void* payload ,

size_t length ,

int pe)

[IN] id Active message ID

[IN] payload Payload to send

[IN] length Size of the payload

[IN] pe PE number of the remote PE

// Non -blocking poll of incoming active messages.

int shmemx_am_poll(void* args_p)

[IN] args_p User-defined local arguments

[RETURN] Non-zero if any AM was processed, zero otherwise.

// Blocking wait on incoming active messages.

void shmemx_am_wait(void* args_p)

[IN] args_p User-defined local arguments

Listing 1.2. Proposed OpenSHMEM Active Message API routines

To send an AM request, the initiator PE should pass the ID, the payload
and its size, and the PE number of the destination to the shmemx am send nbi
routine. Safe reuse of the payload buffer is not guaranteed when the non-blocking
send routine returns and so the user should use the shmem quiet routine to
wait for the completion of all outbound AM requests, as the AM requests are
sent through the default context SHMEM CTX DEFAULT. We do not provide any
guarantee of the ordering of consecutive AM requests, as well as the atomicity
of the execution of the handlers.

For the progression and completion of active message requests, we provide
the shmemx am poll and shmemx am wait pair of routines. The shmemx am poll
routine checks for arrived AM requests, it returns 0 immediately if no pending
requests could be found, or a non-zero number if it was able to execute one
or more AM requests. Alternatively, if the application calls the shmemx am wait
routine and it could not find pending AM requests, it blocks the execution, enters
a passive polling mode until an AM request arrives. Both routines could pass
another pointer to user-defined arguments as the fourth argument (args p) to
the handler, so the handler can have easy access to the calling context.
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// Active message handler definition

void am_handler(void* payload ,

size_t length ,

void* args_r ,

void* args_p ,

int src_pe)

{

database_t* db = args_r;

scheduler_ctx_t* ctx = args_p;

int payload_index = db->store(payload , length ,

src_pe);

ctx ->insert_task(payload_index);

}

// Initiating PE of the AM request

shmemx_am_send_nbi(am_id , payload , length , pe_id);

shmem_quiet ();

// Destination PE

shmemx_am_set_handler(am_handler , &database , &am_id);

while (! scheduler_ctx.done()) {

shmemx_am_wait (& scheduler_ctx);

int got_new_am;

do {

got_new_am = shmemx_am_poll (& scheduler_ctx);

} while (got_new_am != 0);

}

Listing 1.3. Sample Usage of the Proposed OpenSHMEM Active Message API

The two polling routines can be combined in a fashion that is similar to the
adaptive spinlocks: wait is used to put the thread to “sleep” while waiting for
incoming AM requests to reduce resource usage; after wake-up, we perform busy
non-blocking polling with the other routine until it returns 0, then go back to
the blocking wait.

We deliberately choose to not have a background polling thread because
we want the developers to have precise control over when and where the AM
handlers are executed. This decision is crucial for inter-operating with OpenMP
tasks: OpenMP does not provide an “entry” to its task scheduler for inserting
new tasks on the fly, the user must write #pragma omp task inside the AM
handler and make sure the handler is executed by an OpenMP-managed thread
to inject a new task into a parallel region.

An example showing how the proposed API extension could be used to
insert a task into a hypothetical shared-memory tasking system is presented in
Listing 1.3. The active message handler stores the payload and the ID of the ini-
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tiator PE into a database on the destination PE. Then the handler inserts a task
into the task scheduling context that processed this AM request, so the shared-
memory tasking framework can pick it up later and process the corresponding
entry in the payload database. The initiator sends the AM request using an
am id that is the same as the one returned by the shmemx am set handler rou-
tine on the destination PE and flushes the default context so the payload buffer
can be reused. On the destination PE, we use the wait-and-poll combo to receive
AM requests and insert tasks to the current scheduling context, until the work
is done.

The example above can also be viewed as a child task sending its execu-
tion results to the parent task, or as a parent task sends a unit of work to
one of its children for execution. This approach could be extended to execute a
dynamic DAG of tasks that changes based on run-time information. Task migra-
tion through our active message extension is more flexible and maintainable than
allocating one signal variable for each edge in the DAG and perform manual task
queue management.

3.2 Implementation

Our implementation is based on the reference implementation of OpenSHMEM,
OSSS-UCX [16]. This implementation uses UCX [22] as its communication sub-
strate, which provides unified low overhead access to various vendor-specific
communication protocols like InfiniBand Verbs and Cray uGNI. UCX provides a
simple active message interface that works as follows: AM handlers are registered
on UCP workers, AM requests are sent through UCP endpoints which represent
pairs of ”linked” workers, and calling the ucp worker progress routine on the
destination process executes incoming active messages. The UCX AM handlers
are invoked from the progress context, so trying to perform nested progression
by calling ucp worker progress from within the handler is not allowed, thus
prohibiting the handler from tracking the completion of various non-blocking
operations. Constraints like this are common in similar frameworks to prevent
deadlocks and other issues, with GASNet being another notable example.

Figure 1 shows how a PE processes an incoming AM request and sends
another one from the AM handler. Rectangular boxes represent the execution
contexts of different UCP workers and AM handlers, and the outermost rounded
boxes represent the execution context of the OpenSHMEM runtime library. The
shmemx am send nbi routine sends the AM request and the accompanying pay-
load to a dedicated UCP worker (AM worker) on the destination PE, along with
some metadata, using the UCX AM mechanism and an internal UCX AM han-
dler. When the destination PE calls shmemx am poll, the OpenSHMEM runtime
calls ucp worker progress on the AM worker to process incoming AM requests.
The UCX AM handler simply stores the pointer to the payload and returns
UCS INPROGRESS so that the UCX runtime does not deallocate the payload
when the handler returns. Then, the OpenSHMEM runtime calls the requested
OpenSHMEM AM handler using the ID assigned during registration. Any com-
munication request initiated from the OpenSHMEM AM handler goes through
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Fig. 1. OpenSHMEM active message implementation in OSSS-UCX.

the worker (DEF worker) that handles the default context to avoid accidentally
invoking another incoming AM request. Finally, when the OpenSHMEM AM
handler finishes execution, ucp am data release is called on the payload buffer
to return it to UCX.

This design adds some overhead when compared to UCX active messages, but
the two-worker approach enables chaining of AM requests and avoids execution
of AM handlers in unexpected places (e.g. quiet, barriers) if the default worker
is also used to process incoming active messages.

Advanced features like active message completion notification, automatically
return data from the handler to the initiating PE and aggregated active message
queues are have been considered for inclusion. These features could be very use-
ful for many applications, but they will increase the complexity of the API and
its implementation significantly, so we have decided to not support them in this
work. The resulting API is still capable of being used as a task-based program-
ming model and is inter-operable with a shared-memory tasking framework.

4 Performance Evaluation

We perform a preliminary evaluation of the performance of our implementation
using two point-to-point micro-benchmarks and the TaskBench [23] framework.
The performance numbers presented below were obtained on a cluster equipped
with Fujitsu A64FX FX700 CPUs and NVIDIA Mellanox ConnectX-6 100 GB/s
network cards. On the software side, the machine is running CentOS 8.1.1911
AArch64, Linux 4.18.0, MOFED 5.0-2.1.8.0, UCX 1.10.1, and GCC 10.3.0. For
all MPI results, we use OpenMPI 4.1.1 linked to the same version of UCX.
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Fig. 2. Active message inter-node round-trip latency results (UCX protocol switching
threshold = 1KiB).

4.1 Latency and Throughput

The classic ping-pong micro-benchmark is a good way to measure the latency of
communication operations. A pair of PEs exchange active messages of a certain
payload size between two nodes, each side sends one AM request and polls for
the other side’s AM request to arrive before moving on to the next iteration. We
compared the round-trip latency of our OpenSHMEM AM extension against
vanilla UCX AM to see how much overhead is added by the implementation
shown in Fig. 1. The handler only sends an AM request to the other PE so this
benchmark does not measure unrelated workload.

From Fig. 2, we can see that our implementation adds roughly 10 µs to
every round-trip of active messages, so it’s 5 µs of overhead per AM request.
This overhead is the result of fetching the OpenSHMEM AM handler from the
hash table of registered handlers, parsing the AM metadata, and other internal
operations. The drop in latency when the payload increases from 1K to 2K
is caused by UCX switching its communication protocols. It is worth noting
that the two worker approach slightly increases memory usage and slows down
the launching of OpenSHMEM applications, but once the application is up and
running, the impact should be minimal.

Message throughput benchmark results are shown in Fig. 3, where one PE
sends a large amount of AM requests with a trivial handler to the other PE and
waits for the completion of all the requests. From the numbers, we can see that
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Fig. 3. Active message inter-node throughput results (UCX protocol switching thresh-
old = 1KiB).

the message rate of OpenSHMEM AM is consistently lower than that of vanilla
UCX AM, but the difference is within a reasonable range and is expected since
the OpenSHMEM runtime library performs extra work. Again, the sudden drop
of throughput in both implementations is caused by UCX switching protocols.

4.2 Tasking Framework Efficiency

Measuring the performance of a tasking framework is not easy: micro-benchmark
results do not translate well to real-world application performance; it is dif-
ficult to create comparable ports of mini-apps and above to different tasking
frameworks; even strong and weak scalability results can have different mea-
suring methodologies and interpretations. TaskBench [23] is a new benchmark
framework designed to provide a better way to compare different ways to do
task-based programming. TaskBench makes the process of creating benchmarks
(different DAGs and types of workload) orthogonal to the process of adding
a new tasking framework backend, thus enabling the comparison of different
programming models on equal grounds. Additionally, minimum effective task
granularity (METG) is proposed as a new metric to compare the performance
of tasking frameworks. METG is defined as the minimum task granularity that
can utilize the hardware effectively for a given combination of hardware and
workload, with a user definition of what is effective (usually being the ability to
reach a certain percentage of the computer’s peak performance). It is based on



140 W. Lu et al.

100102104106108
0

10

20

30

40

50

60

70

80

90

100

Fig. 4. TaskBench efficiency v.s. task granularity results.

the assumption that application efficiency drops as task granularity decreases,
which is generally true due to the high scheduling cost of the execution of a large
task DAG.

To compare the METG of our active message extension against OpenSH-
MEM’s signal variable approach and MPI’s message-passing approach, we run
TaskBench on 8 nodes with 8 PEs/ranks per node (a total of 64 processes).
The DAG used here is a 256× 256 array of tasks with the all-to-all dependency
pattern and 16 bytes of input/output data along the edges. Each task runs a
compute-bound kernel with various numbers of iterations of synthetic computa-
tions to simulate tasks of different granularities. We use the MPI backend that
comes with the TaskBench package, a signal-and-get OpenSHMEM back-end,
and an OpenSHMEM active message back-end that uses AM requests to launch
tasks and complete dependencies.

The results are presented in Fig. 4. Similar to the original paper’s methodol-
ogy [23], we define the machine’s peak performance to be the FLOPS achieved
when using a very large task granularity and calculate the efficiency of a partic-
ular task granularity by dividing the FLOPS obtained at that granularity by the
peak FLOPS. From the achieved percentages of peak FLOPS show in Table 1,
we can see that our OpenSHMEM active message backend shows a clear advan-
tage (6%–24%) between task granularities from 210 to 216 iterations. DAGs with
longer tasks are compute-bound and DAGs with shorter tasks are latency-bound,
so we see similar results for all three backends. Also, from the embolden per-
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Table 1. Percentage of peak FLOPS achieved at different task granularities

Task granularity MPI Send/Recv OpenSHMEM signals OpenSHMEM AM

1024 6.503% 10.41% 12.51%

2048 12.35% 19.11% 23.60%

4096 21.91% 32.59% 42.06%

8192 35.49% 48.78% 59.48%

16384 52.48% 65.49% 76.85%

32768 69.46% 79.22% 87.32%

65536 81.66% 88.05% 93.85%

centages in Table 1, we can see that to reach 80% of the peak FLOPS of our test
setup, the active message backend only requires about 1/2 of the task size of the
signal-and-get backend, and about 1/4 of the task size of the MPI send/receive
backend. This shows that our implementation of the proposed extension provides
better performance for a wider range of task-based applications than MPI and
classic OpenSHMEM.

5 Conclusion and Future Work

In this paper, we present an OpenSHMEM active message extension and its
implementation that is designed to support basic task-based programming on
its own, and inter-operates well with shared-memory tasking frameworks. Our
proposed API is simple and adheres to the look and feel of existing OpenSHMEM
routines. The user is given full control of when and where the AM handlers are
executed, and the ability to perform selected communication operations from the
AM handlers. The two-worker approach used in our UCX-based prototype imple-
mentation separates the initialization and completion of AM requests, which is
crucial for the flexibility of the AM handler.

The performance of the implementation of the active message extension was
evaluated using point-to-point micro-benchmarks and TaskBench. Evaluation
results show that our design adds a reasonable amount of overhead when com-
pared to vanilla UCX AM, and it beats both the MPI back-end and a signal-
and-get-based OpenSHMEM back-end of TaskBench in minimum effective task
granularity. The proposed active message extension narrows the functionality
gap between OpenSHMEM and other task-based programming models.

In the future, we plan to explore the feasibility and performance trade-off of
adding optional AM completion notifications, as it could further simplify depen-
dency management of the task DAG. We also plan to port mini-apps like Mini-
AMR [19] to OpenSHMEM+X where X is a shared-memory tasking model like
OpenMP, Intel TBB [18] and Taskflow [9], and evaluate the real-world perfor-
mance benefits of our active message extension in load-imbalanced applications.
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Abstract. Network library APIs have historically been developed
with the emphasis on data movement, placement, and communica-
tion semantics. Many communication semantics are available across a
large variety of network libraries, such as send-receive, data streaming,
put/get/atomic, RPC, active messages, collective communication, etc.
In this work we introduce new compute and data movement APIs that
overcome the constraints of the single-program, multiple-data (SPMD)
programming model by allowing users to send binary executable code
between processing elements. Our proof-of-concept implementation of
the API is based on the UCX communication framework and leverages
the RDMA network for fast compute migration. We envision the API
being used to dispatch user functions from a host CPU to a SmartNIC
(DPU), computational storage drive (CSD), or remote servers. In addi-
tion, the API can be used by large-scale irregular applications (such as
semantic graph analysis), composed of many coordinating tasks operat-
ing on a data set so big that it has to be stored on many physical devices.
In such cases, it may be more efficient to dynamically choose where code
runs as the applications progresses.

Keywords: Active message · Code injection · UCX

1 Introduction

The emergence of distributed heterogeneous systems is driven by the ever
increasing demands for performance, energy efficiency, and cost reduction. For
example, in the last decade, the HPC community has been driving the adop-
tion of GPU as an accelerator for large-scale distributed systems and appli-
cations. Recently, hyperscale service providers have introduced two new types
of datacenter infrastructure accelerators: the data processing unit (DPU) and
the computational storage drive (CSD). In contrast to GPUs, which have been
well-adopted by applications, both DPUs and CSDs are relatively new and have
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very limited adoption. DPUs and CSDs are usually programmable devices that
are realized using FPGAs and/or Arm cores. Despite being designed with user
programmability in mind, these devices are typically exposed as fixed-function
components that provide transparent acceleration for a few popular usages, e.g.,
embedded Open vSwitch, IPSEC, and compression. As the list of available func-
tionalities are determined by datacenter vendors, applications are not exposed
to the programmable elements of DPUs and CSDs, and therefore cannot take
advantage of the devices’ processing power for application specific purposes.

Developers are also challenged by the rapidly increasing amount of data
they have to deal with in their applications. For some applications the type
and distribution of the workload is highly dependent on the data and therefore
changes dynamically. Since moving data is still orders of magnitude slower than
doing computation, ideally we would like to move compute to data to improve
locality, not the other way around. Additionally, with new features being added
and tested on a daily basis, it could further slow down the development cycle
if the application needs to be re-compiled and re-deployed for every feature
addition and/or bug fix.

In this work, we aim to overcome the programmability barriers of such devices
by introducing the ifunc API, an UCX API designed to facilitate the movement
of application-defined compute and data. Injected functions (ifuncs), taking the
form of messages that contain binary code and data, are sent to and invoked by
other remote processes via the Two-Chains framework [7]. ifuncs are similar to
active messages in that each message contains data and an action to perform, but
their main difference is that ifuncs actually contain the code to be executed,
while active messages contain only a reference to the function to be called.
ifuncs provide more versatility because the available functions are no longer
fixed and a target system can register new functions during run-time, without
having to recompile UCX or the application. Our API breaks the commonly
used SPMD model of computation to benefit dynamic, irregular, and data-driven
applications on a wider range of heterogeneous devices. The main contribution
of this paper is an API and implementation of RDMA-based remote function
injection and linking.

The rest of this paper is organized as follows: Sect. 2 provides an overview
on Two-Chains, the high performance remote linking and messaging framework
leveraging the ifunc API. This section also discusses some related work on
dynamic computation migration. Next, Sect. 3 presents the ifunc API, how it
could be used, how it is implemented, how it compares to UCX Active Messages
(AM), and how it can be secured. In Sect. 4, we describe how we validated our
prototype implementation and discuss the initial benchmark results. Finally,
Sect. 5 provides our plans to continue to improve the ifunc API and Two-Chains
framework.
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2 Background

The ifunc API is an evolution of the remote function invocation mechanism of
the Two-Chains framework. In this section we discuss the Two-Chains frame-
work as the background of the work presented in this paper, as well as several
related works.

2.1 Two-Chains

The original Two-Chains framework is presented in [7], which covers implemen-
tation details of the framework and how its performance can be improved using
existing hardware features.

Two-Chains is an extension of UCX [12], providing packaging, transfer and
execution of C functions in a fast and lightweight manner. It aims at an API
and a toolchain to enable the migration of compute and data between local
and remote CPU, GPU, DPU and CSD processes using UCX communication
capabilities. The users write the functions to be injected using a macro-based
interface, then use the Two-Chains toolchain to compile them into dynamic
libraries that can be loaded by the application at runtime. On the source process,
the executable code of the to-be-injected function is loaded from the dynamic
library, and is packaged with function arguments and a variable-length payload
to form a message (referred to as jams in the original publication).

Upon receipt of a message containing injected functions, the target system
directly executes the C function embedded in the message. This mechanism
employs dynamic linking to support calling functions from libraries resident in
the target system from the injected functions.

Two-Chains uses one-sided UCX put operations to enable fast delivery and
execution of injected functions. The runtime sets up a receiver thread waiting
to call the embedded function with minimal latency when a message arrives.
For code in the message to execute correctly on the receiver, the Two-Chains
toolchain statically modifies the assembly to allow runtime linking against sym-
bols on an arbitrary host by redirecting all global offset table (GOT) accesses to
an indirection stored in the message. Remote runtime linking allows distributed
application updates to sub-processes of the application that alter their execution
behavior (without re-starting the process) by loading a library into a process to
change the resolution of objects or functions with fixed symbolic names. This
way, applications can implement dynamic control and compute with library load-
ing and linking.

2.2 Related Work

There are numerous libraries, frameworks, and runtimes that implement active
message semantics that have influenced the development of Two-Chains and the
ifunc API presented in this work. In brief, these projects include GASNet, Snap
Microkernel, Charm++, CHAMELEON, and FaRM.
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GASNet [4] is a communication library widely used on high-performance
computing clusters to implement advanced programming models. In addition
to normal data transfer routines, GASNet also provides a series of APIs for
registering and invoking active messages. GASNet uses the classical function
registration mechanism for identifying active message handlers, while ifuncs
sends the executable code and does not require actions from the target side. The
Snap Microkernel [10] project provides a platform for remote procedure calls in
the context of network functionality distribution. Like many of the other compu-
tation placement and migration frameworks, it is a heavyweight multifunction
entity. Our ifunc API has a smaller scope and could be used as a building
block as part of such a system. In the datacenter setting, lightweight container
launch for Lambda functions is implemented with Firecracker [3]. Another work
from Fouladi et al. provides very fast container launch to create highly granu-
lar lambda function execution [6]. None of these projects addresses issues like
heterogeneity of hardware, since containerization is meant to abstract this. Two-
Chains can be used as a shim between hardware and higher level libraries.

Charm++ [2] implements distributed C++ objects with a unified logical
view of them (not partitioned to processes/ranks from the programmer’s per-
spective), plus the ability to call methods on those objects regardless of their
physical location, unlike regular active message where the developer must decide
when and where to request function invocations. The Charm++ scheduler works
behind the scene to distribute and migrate the objects automatically, based on
load distribution and communication patterns. Its programming model runs at
a very high level compared to Two-Chains and UCX and its runtime system
supports lots of advanced features like fault tolerance. The CHAMELEON [9]
framework by Klinkenberg et al. uses compiler directives and runtime APIs to
encapsulate OpenMP tasks as migratable entities in a reactive workload bal-
ancer for irregular applications written in MPI. Unlike CHAMELEON, Two-
Chains does not contain a load balancer, does not depend on OpenMP or MPI
or C++, nor requires explicit task progress if the UCX library uses progress
threads. Further, CHAMELEON’s remote virtual address resolution process to
move tasks between address spaces is a heavyweight exchange of references via
MPI Send/Recv for each migration event. Our work could potentially be used as
a communication layer to greatly simplify and speed up CHAMELEON, espe-
cially since they found in the course of their work that push-oriented compute
movement (as we have implemented here) is a better mechanism than work
stealing for load balancing since it allows computation-communication overlap.

The FaRM [5] project implements a shared address space programming model
that uses the RDMA network for remote object manipulation. Two-Chains uses
RDMA not only for moving data, it also injects user-defined functions to remote
machines using RDMA to provide higher flexibility while avoiding re-compiling
the application for functionality changes.

The Two-Chains API developed in this paper builds on the semantics of the
active message API [13], which combines a data payload with executable code on
a receiver. The primary innovation of the Two-Chains API relative to classical
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active message semantics is the ability to send binary function and data payload
simultaneously, without requiring the function to be present at runtime compile
time.

3 Design and Implementation

In this section, we present the design and implementation of the ifunc API,
provide an example on the expected usage, and talk about its security implica-
tions.

3.1 The ifunc API

ucs_status_t

ucp_register_ifunc(ucp_context_h context ,

const char* ifunc_name ,

ucp_ifunc_h* ifunc_p)

void

ucp_deregister_ifunc(ucp_context_h context ,

ucp_ifunc_h ifunc_h)

ucs_status_t

ucp_ifunc_msg_create(ucp_ifunc_h ifunc_h ,

void* source_args ,

size_t source_args_size ,

ucp_ifunc_msg_t* msg_p)

void

ucp_ifunc_msg_free(ucp_ifunc_msg_t msg)

ucs_status_t

ucp_ifunc_msg_send_nbix (ucp_ep_h ep,

ucp_ifunc_msg_t msg ,

uint64_t remote_addr ,

ucp_rkey_h rkey)

ucs_status_t

ucp_poll_ifunc(ucp_context_h context ,

void* buffer ,

size_t buffer_size ,

void* target_args)

Listing 1.1. UCP ifunc API

To start, the source process calls the ucp register ifunc function with the
ifunc’s name ifunc name to register an ifunc library. The UCX runtime will
search the directory defined by the UCX IFUNC LIB DIR environment variable
for the dynamic library named ifunc name .so, and uses dlopen and dlsym to



UCX Programming Interface for Remote Function Injection and Invocation 149

load the library and the user-provided ifunc library functions defined in Listing
1.2, and finally returns a handler to the registered ifunc. Now ifunc messages
can be constructed using the ucp ifunc msg create routine, which accepts user
arguments and passes them to the ifunc library routines to prepare the ifunc’s
payload that will be sent to the target process. Once the ifunc message object
is created, it is ready to be written into the target process’s memory using the
ucp ifunc send nbix routine, which uses the ucp put nbi routine to write a
continuous buffer into a memory region mapped by ucp mem map.

On the target process, the ucp poll ifunc routine should be used to wait
on a UCP mapped memory region for incoming ifunc messages. This routine
returns immediately if it could not find a newly received ifunc message in
buffer. If a valid ifunc message is found, the UCX runtime will invoke the code
contained in the ifunc message with a pointer to the payload, the size of the
payload, and the target args pointer that points to user-provided arguments
on the target process. Currently, in our implementation, the target process does
not yet construct a GOT that contains redirections for all the functions used
by the ifunc code, instead it uses the ifunc’s name contained in the message
header to auto-register the specific ifunc dynamic library and uses the local
GOT to patch the code shipped within the ifunc message. We plan to add
GOT reconstruction functionalities in the future and the target process will not
need to register the ifunc library anymore.

void

[ i func name ] main ( void ∗ payload ,
s i z e t pay load s i z e ,
void ∗ t a r g e t a r g s )

s i z e t
[ i func name ] pay l oad ge t max s i z e ( void ∗ source a rg s ,

s i z e t s o u r c e a r g s s i z e )

i n t
[ i func name ] p a y l o ad i n i t ( void ∗ payload ,

s i z e t pay load s i z e ,
void ∗ source a rg s ,
s i z e t s o u r c e a r g s s i z e )

Listing 1.2. ifunc library API

A valid ifunc library should define all three routines specified in Listing
1.2. The [ifunc name] main launches the execution of the ifunc code; it gets
invoked when a ifunc message is received by ucp poll ifunc on the target
process, with the three arguments described in the previous subsection.

The [ifunc name] payload get max size and [ifunc name] payload
init routines are both invoked by the ucp ifunc msg create routine on the
source process. The first routine is used by the UCX runtime to calculate the
maximum size of the payload to be sent within a ifunc message for a given set
of source process arguments source args. Then the UCX runtime will allocate
a ifunc message frame with a payload buffer of the requested size, and pass the
same source process arguments to the [ifunc name] payload init routine to
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populate the payload buffer. This way, we eliminate unnecessary memory copies
while maintaining the flexibility of the interface.

3.2 Using the API

#inc lude <paq8px . h>

s i z e t paq8px pay load get max s ize ( void ∗ source a rg s ,

s i z e t s o u r c e a r g s s i z e ) {
r e turn e s t o u t p u t s i z e ( source a rg s , s o u r c e a r g s s i z e ) ;

}

i n t paq8px pay load in i t ( void ∗payload ,
s i z e t pay load s i z e ,

void ∗ source a rg s ,

s i z e t s o u r c e a r g s s i z e ) {
encode ( payload , pay load s i z e ,

s ource a rg s , s o u r c e a r g s s i z e ) ;
r e turn 0 ;

}

void paq8px main ( void ∗payload ,
s i z e t pay load s i z e ,
void ∗ t a r g e t a r g s ) {

db handler dbh = t a r g e t a r g s ;
d e c od e i n s e r t (dbh , payload , pay l o ad s i z e ) ;

}

Listing 1.3. Sample ifunc library

Here we provide an example on the expected usage of the ifunc API. Sup-
pose the target process manages a database that stores voice recordings. When
another process wants to send a record compressed by the paq8px algorithm,
which is unsupported by the database, it can use the ifunc library shown in
Listing 1.3 to perform the task. The header file included at the top of the library
code contains the implementation of the algorithm, which will be visible to the
compiler during compilation. The first two user-provided functions are used to
encode and package payload on the source process, while the main function
performs payload decoding and database insertion on the target process.

/* On the source process */

ucp_ifunc_h ih;

ucp_ifunc_msg_t msg;

ucp_register_ifunc(ucp_ctx , "paq8pv", &ih);

ucp_ifunc_msg_create(ih, record , record_size , &msg);

ucp_ifunc_send_nbix (ep, msg , recv_buffer , rmt_rkey);

ucp_ep_flush_nb(ep); // And wait on completion

ucp_ifunc_msg_free(msg);
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ucp_deregister_ifunc(ucp_ctx , ih);

/* On the target process */

ucs_status_t s;

do {

s = ucp_poll_ifunc(ucp_ctx , recv_buffer ,

recv_buffer_size , db_handle);

} while (s != UCS_OK);

Listing 1.4. Sample ifunc API usage

During run-time, as demonstrated by Listing 1.4, the source process reg-
isters the paq8px library, constructs an ifunc message with the recording as
its payload, and sends it to the target process. On the target process, the
polling loop calls the ucp poll ifunc function until it returns UCX OK, which
indicates that it has received and executed an ifunc message. If the user would
like the target process to poll for incoming ifunc messages continuously, the
ucs arch wait mem routine can be used to wait on memory locations that ifunc
messages are expected to arrive and reduce resource usage.

3.3 ifuncs versus UCX Active Messages

Injected functions are inspired by active messages but are different in many
aspects. A comparison between Two-Chains injected functions and UCX active
messages helps the reader know the differences and decide which one to use.

We start by listing the main similarities. ifuncs and UCX AMs allow sending
payloads of various sizes and launching functions on remote processes. Both
accept user-defined arguments when the functions are launched on the target
processes, so the functions have access to resources in the local address space.
Lastly, both mechanisms require active progression on the target side to process
the received messages, in the form of non-blocking polling calls.

The main difference between active messages and injected functions is that,
instead of establishing a mapping between registered functions and unique IDs,
ifunc messages carry the actual binary code of the functions and the functions
themselves are identified by a name. This key ifunc feature enables a set of
ifunc benefits over UCX AMs. The first of these benefits is that ifuncs can
be loaded on-demand during run-time, without recompiling the application; AM
handlers are determined at compile time, requiring the application to be stopped
and recompiled when AM handlers are added or modified. A related benefit to
this one is that, since the function code is sent with each invocation, the code
can be modified anytime under the same ifunc name. Another Two-Chains
difference is that ifuncs are registered on the source process while AM handlers
are registered at the target process; this feature of the ifunc API enables the
system to dynamically add nodes with no previous knowledge of what functions
it might need to execute in the future.
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UCX AMs use on-demand internal buffers for receiving messages, while
ifuncs require the user to allocate special buffers and a consensus about where
the target processes expect the messages to arrive. ifuncs need special modifi-
cations to the assembly code before they can be used, while AM code does not.
We expect these limitations to go away as we keep improving the Two-Chains
framework.

3.4 Implementing the API

FRAME LEN GOT OFFSET PAYLOAD OFFSET IFUNC NAME

SIGNAL CODE

PAYLOAD

SIGNAL

Fig. 1. Structure of an ifunc message

Each ifunc message, constructed by the ucp ifunc message create routine, is
composed of a header, a code section, an optional payload section, and a trailer
signal, as seen on Fig. 1. If the code section is a direct copy of the .text section
of the ifunc dynamic library, external function calls (e.g. printf) and accesses
to global variables will not have the correct relocations on the target process, due
to Linux’s relative addressing and address space layout randomization (ASLR).
To fix this issue, we compile the ifunc dynamic library with the -fno-plt flag
to force all relocations to go through the global offset table (GOT), skipping
the procedure linkage table (PLT). Then we use a Python script to modify the
assembly code so that all references to the GOT will redirect through another
table on the target process. A pointer to this alternative table is inserted as a
hidden global variable by the script and is shipped with the ifunc message as
part of the code, and the target process is expected to fill this variable with the
address of a reconstructed GOT before invoking the ifunc’s main function.

When an ifunc message arrives at the target process, the integrity of the
header is verified using the header signal, and messages that are ill-formed or too
long will be rejected. Then the runtime parses the header to get the total size of
the message frame and waits for the trailer signal to arrive, as shown in Fig. 2. In
our tests, we use the WFE instruction to reduce resource usage when busy-waiting
on the trailer signal, without incurring a heavy performance penalty.

Before calling the main function of a fully delivered ifunc message, the
target process should perform work similar to a dynamic linker: construct a
GOT that has all the relocations needed by the ifunc code in the correct offsets.
This mechanism is not implemented yet. Instead, we assume the same ifunc
dynamic library is also available on the target process’s file system, so the target
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Fig. 2. ifunc source-target communication

process can simply load the library and let the system dynamic loader do the
GOT construction. In our implementation, the ucp poll ifunc routine uses the
ifunc’s name provided by the message header to attempt the auto-registration
of any first-seen ifunc type. If the corresponding library is found and loaded
successfully, the UCX runtime will patch the alternative GOT pointer of the
code section of the ifunc message with a pointer to the same library’s GOT
in the local address space, and store the related information in a hash table
for subsequent messages of the same type. We plan to implement the dynamic
linking and GOT reconstruction mechanism in the future.

3.5 Security Implications and Mitigations

A full security model design and implementation is well beyond the scope of this
paper. This section provides an overview of security challenges and directions
for security improvements.

For our Two-Chains framework implementation, we have relied on the built-
in security mechanisms defined by the UCX framework and the IBTA stan-
dard [8], which underpins RDMA interconnects. Specifically, we are using a
remote access key (RKEY) to register and control remote memory accesses. For
IBTA interconnects, the RKEY is defined as a 32-bit value. When the memory is
registered for remote memory access, the underlying interconnect generates the
RKEY based on a virtual memory address and the permissions (remote read,
write, or atomic access). In order to access the memory region over the RDMA
interconnect, the target process has to provide the RKEY to the RDMA initia-
tor through an out-of-band channel. Then, the remote memory access initiator
uses the RKEY to remotely read and write to the target process memory. If the
process accesses the memory with an invalid RKEY, the request gets rejected at
the hardware level.
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There are a number of security concerns [11] regarding the strength of RKEY
protection as defined by the IBTA standard. Improvements to the IBTA security
model are out of scope for this work. However, since we have constructed this
as a module of the UCX framework, the implementation is not as strictly tied
to the IBTA network implementation.

4 Evaluation

In this section, we present our test and evaluation efforts, along with testbed
and benchmark descriptions. We end the section by showing and analyzing the
initial results.

4.1 Microbenchmark Description

To verify and do a preliminary evaluation of our API and its implementation,
we ran message throughput and ping-pong latency benchmarks with a simple
ifunc library and we compare them against the same benchmarks written using
UCX AM. The results are presented below. In both benchmarks, the ifunc
main function simply increases a counter on the target process used to count the
number of executed messages.

In the ifunc message throughput benchmark, a ring buffer is allocated using
the ucp mem map routine so it allows UCP put operations. The source process fills
the buffer with ifunc messages of a certain size, flushes the UCP endpoint used
to send the messages, then waits on the target process’s notification indicating
that it has finished consuming all the messages before continuing to send the
next round of messages. This leads to some overhead but is not significant when
the number of messages is large. For the equivalent UCX AM throughput bench-
mark, since the UCX runtime uses internal buffers to handle the messages, the
source process simply sends all the messages in a loop and flushes the endpoint
at the end.

The ping-pong benchmark is implemented using the classical approach: each
process sends a message, flushes the endpoint and waits for the other process to
reply before continuing this process.

4.2 Testbed Platform

The development and evaluation testbed for this work consisted of two servers,
each with a 4-core, Arm-based modern superscalar processor with a 1 MB dedi-
cated L2 cache per core, a 1 MB shared L3 cache per 2-core cluster, and a 8 MB
shared last level cache (LLC). The core clock is 2.6 GHz and the on-chip intercon-
nect clock is 1.6 GHz. Each server has 16 GB of DDR4-2666 main memory. For
the interconnect, we used two Mellanox/Nvidia ConnectX-6 200 Gb/s InfiniBand
dual-port HCAs. The two systems were connected back-to-back (no InfiniBand
switch) using the first port on each ConnectX-6 HCA. The servers used Ubuntu
20.04, running a custom Linux 5.4 kernel, modified to allow user space control of
the CPU prefetching mechanisms. We used the RDMA and InfiniBand drivers
that came with Mellanox OFED, versioned OFED-5.3-1.0.0d.
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4.3 Experimental Results and Analysis

Fig. 3. Latency comparison between ifunc and UCX AM, including ifunc latency
reduction with respect to UCX AM latency

Figure 3 shows the one-way latencies of sending and executing the benchmark
function using the ifunc and UCX AM APIs. For smaller payloads, the ifunc
latency is up to 42% slower than the AM latency. As payload (and message) size
increases, the ifunc latency gets closer to that of AM, crossing over somewhere
between payload sizes 8 KB and 16 KB. After this crossover point, the ifunc
latency keeps improving, reaching a 35% latency reduction for the 1 MB payload
size. For small payload sizes, we expected the AM latencies to be better because
the code sent in the ifunc messages dominate the message size, not the payload.
That being said, the performance gap is larger than it needs to be because of
the clear cache operation.

To ensure the correct operation of the ifunc invocation, the instruction cache
needs to be cleared after the runtime confirms the data has arrived because the
I-cache could have stale data due to some systems not having coherent I-caches.
glibc’s Arm64 clear cache implementation avoids clearing the I-cache when it
detects a coherent I-cache by reading an architectural register. Our testbed did
not have a coherent I-cache, and that is why the arrival of each ifunc incurs a
performance hit on the target system. This is likely to be the reason why the
latencies were not better.
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Fig. 4. Message throughput comparison between ifunc and UCX AM, including ifunc

throughput increase with respect to UCX AM message throughput

Figure 4 presents the results of the message throughput benchmarks using
both APIs. For 1B payloads, the ifunc message rate is 81% lower than that of
UCX AMs. The message rate continues to be worse until the payload goes from
1 KB to 2 KB. From this point on, the ifunc message rate is superior, first
spiking at 380% better, then dropping to 23% and then coming back up to 62%
higher.

One interesting observation is the stepping experienced by the UCX AM
line. These steps are likely due to the change is underlying protocol for moving
the active messages. Interestingly, the point where ifuncs start performing bet-
ter coincides with the sharp performance falloff step experienced by UCX AM,
possibly due to protocol differences between ifunc and UCX AM.

As in the latency case, we think that the ifunc performance would have been
better if we had evaluated using a platform with a coherent I-cache. Another
area where we could have extracted more performance is the buffer mechanism
used to send messages to the target.

4.4 Takeaways

From these initial benchmarks, we observe that the ifuncs perform worse than
UCX Active Messages for small payload sizes. The larger the payloads become,
the better ifuncs behave. This small-payload behavior is expected because,
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while active messages carry a numerical ID alongside the payload, ifuncs actu-
ally carry the function binary alongside the payload. Despite the ifunc messages
being larger, we expected them to be more performant, but the slowdowns could
be explained by the need to perform a clear cache operation on the instruction
cache because our testbed does not have a coherent I-cache.

Since this is a preliminary evaluation of the ifunc API, we plan need to run
additional benchmarks to better understand the behavior of the Two-Chains
framework with a wider set of micro-benchmarks and applications in the future.

5 Conclusion

The ifunc API and Two-Chains framework provide a high performance mech-
anism of moving compute and data over networks between a wide class of pro-
cessing elements. It uses dynamic linking and loading to resolve ifunc external
symbolic references on a per-process basis. We presented the user-facing side of
the API and how developers write ifunc libraries. Important differences between
ifuncs and traditional active messages were also discussed. We provided an
overview of the security mechanisms of that Two-Chains can leverage. The code
is released on GitHub [1]. We will discuss the future steps on the evolution of
Two-Chains and the ifunc API below.

5.1 Future Work

Our Two-Chains vision does not require the presence of the ifunc dynamic
library on the target’s filesystem. We implemented it first this way in our proto-
type because it was going to allow us to have a version working sooner for eval-
uation. We are looking into ways of removing this requirement so Two-Chains
target processes are able to handle received ifunc messages with the correct
dynamic linking mechanism.

We are also working on switching the underlying implementation of Two-
Chains to use UCX’s send-receive semantics instead of RDMA Puts. This change
will enable a simpler API because the user would not have to worry about setting
up a RWX-enabled buffer on the target process. In addition, the user would not
have to tell the source process exactly where to PUT the messages. This change
would also eliminate the need for a special polling API and calling it from the
target process to process incoming messages, as ifuncs will be progressed with
other UCX operations by calling ucp worker progress. The good thing with
this change is that the current API will only have minimal changes: we would
mostly be removing unnecessary arguments and functions calls.

Currently the payload is tightly packed after the code segment of the ifunc
message frame so we do not have any data alignment guarantees. This could be
undesirable for vectorization and some other applications. We plan to allow the
user to specify an alignment requirement on the payload buffer to better support
vectorization and other needs.
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The compilation toolchain of this work uses a Python script to prepare the
ifunc code section to accept a patched GOT. We are considering updating the
way we do this to make this important step target-process-architecture agnostic.

We are still debugging and stress-testing the Two-Chains and its API imple-
mentation. We are also working on getting Two-Chains in a state where it can
be accepted to upstream UCX. Finally, we will test the Two-Chains framework
with benchmarks that do useful work and on a machine that has a coherent
I-cache.
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Abstract. This work examines the small-message problem in OpenSH-
MEM applications, and proposes a new software interface that helps
alleviate its detrimental performance impacts. We summarize the state-
of-the-art in transport middleware that defers and bundles communica-
tion to reduce small-message overheads. These techniques increase small-
message transmission rates by chaining together many small messages
in favor of fewer coarse messages and fewer exchanges (“doorbell rings”)
with the network interface card (NIC). For OpenSHMEM, we focus on
the relatively simple approach of chaining only remote memory access
(RMA) and atomic memory operations (AMOs).

Theoretically, the performance benefit from small-message chaining
should not scale well with the number of processing elements (PEs),
because more diverse target PEs typically lead to less opportunity for
chaining. However, this paper will show that in practice, there are still
good reasons to support this optimization. For instance, many OpenSH-
MEM users have no need to scale past thousands or even hundreds of
clustered compute nodes, and at these scales there is still plenty of ben-
efit from chaining - this paper will show message rate speedups of up to
2.6× in standard benchmarks. Our measurements also show comparable
speedups without noticeable degradation at scale for the critical bench-
mark, Giga Updates Per Second (GUPS). Although micro-benchmarks
like GUPS are not entirely indicative of more sophisticated applications,
even small portions of small-message random accesses can have signifi-
cant performance effects on the application overall, suggesting that the
small-message problem is worth addressing.

1 Introduction

Some critical OpenSHMEM applications, communication patterns, and bench-
marks rely on the performance of small-sized point-to-point operations. Exam-
ples include distributed table lookups/updates, certain sparse matrix and graph
analytics operations, and any application doing collective/reduction operations
where the nelems argument is relatively small. In the world of benchmarking,
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important examples that highlight small-message performance include the Giga
Updates Per Second (GUPS) benchmark [1], histogram/index-gather bench-
marks [2], and the plethora of micro-benchmarks used for analyzing, evaluat-
ing, and marketing networking platforms in terms of latency, bandwidth, and
message rate.

It is well-known that network interface devices generally transfer at a lower
throughput when handling small messages. Consider a simple performance
model, Throughput ≈ N/(L + N/B), where N is the size of the message (in
bytes), B is the maximum network bandwidth, and L is the latency. From this
model, we see that the small-message bottleneck is due to the fact that N is
small and L dominates, so throughput is limited to ∼1/L. For large-messages,
N is large and throughput is ∼B. An opposite pattern applies to messaging
rates: small messages exhibit the highest message rate, because large messages
are bottlenecked by streaming constraints within the networking platform to
enqueue/dequeue segments the length of a maximum transmission unit (MTU).

A general strategy for increasing throughput of small messages is to reduce
the number of transactions with the networking interface. A simple example of
this strategy is to combine or chain multiple small messages into a single coarse
message to be transmitted all at once. Several existing OpenSHMEM imple-
mentations utilize transport layer libraries that support such mechanisms (see
Background Sect. 3), but there is a catch - the performance benefit of defer-
ring messages is only considerable when there is a sufficiently large number of
messages to be chained together in a sufficiently short amount of time. There
is currently no way for an OpenSHMEM implementation to accurately deter-
mine whether or not the application will initiate enough small messages within
a short enough amount of time to reap any benefit from chaining messages. For
this reason, OpenSHMEM implementations would benefit from users providing
hints suggesting that a series of RMA/AMO operations are about to start or
end, but currently no standard interface for this exists.

The goal of this paper is to summarize the existing transport-level mecha-
nisms for chaining and to present evidence that these mechanisms can improve
the throughput of OpenSHMEM implementations. We first describe related work
and background in Sects. 2 and 3. We then describe a simple API for user-
provided hints regarding chaining in Sect. 4. We then present some benchmark-
ing measurements that motivate this API in terms of performance improvement
in Sect. 5. Finally, we describe future work and conclude in Sect. 6.

2 Related Work

This section briefly summarizes existing work related to small-message optimiza-
tions. Some of this related work warrants a closer look and is described in more
detail in Background Sect. 3. Readers familiar with these concepts can safely
proceed to Sect. 4.
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2.1 Nagle’s Algorithm

Although TCP/IP is not particularly applicable to most modern high-
performance computing (HPC) networking stacks, the idea of deferring com-
munication to improve small-message throughput is not at all new to TCP/IP.
Nagle’s algorithm was first published as an Request for Comments (RPC) in
1984 as a way to provide congestion control for TCP implementations. RPC 896
defined the (even then) well-known “small-packet problem” and observed that
it had been first addressed in the Tymnet dial-up communication network as
early as the late 1960s [3]. Nagle’s algorithm defers sending TCP segments until
all previously sent segments are acknowledged. Nagle’s algorithm is described in
more detail in Subsect. 3.1.

2.2 DMAPP Bundled Puts

An existing interface that implicitly chains non-blocking puts is the bundled
put function, dmapp bput nbi, which is provided by the Distributed Memory
Application API (DMAPP) [4]. DMAPP’s bput function targets use-cases in
which several non-contiguous transfers are destined for the same target PE.
This provides a useful alternative to packing the data into a contiguous buffer
for the simpler dmapp put nbi function, because packing may require additional
memory allocation and copying.

The DMAPP API User Guide [5] suggests there are two important restric-
tions when using shmem bput nbi: 1) each put within a series of bundled puts
must target a constant destination PE and 2) the series of puts must not be bro-
ken by another non-bput operation. The first constraint likely limits opportunity
for bundling random access benchmarks like GUPS, where there is a diverse
range of targets in the main communication loop. The second constraint also
motivates the API described in Sect. 4: since implementations do not know when
a chain ends or a non-compatible operation will break a chain, user-provided
hints would help avoid the implementation from having to detect such events on
the RMA critical path.

2.3 Bale: Exstack and Conveyor

A highly influential software project that tackles the small-message problem is
found in the bale package, which includes the modules exstack, exstack2,
and conveyor, as well as several relevant Partitioned Global Address Space
(PGAS) mini-apps, such as histogram (histo), index-gather, topological sort,
distributed matrix transpose, and several more [2]. The exstack, exstack2, and
conveyor modules include variations of a novel API that enables writing PGAS
programs with potentially much better performance than if they were written
more simply using direct Atomics, Gets, and Puts (AGP), in other words written
as you would find in a textbook or “as God intended”. The bale modules present
a unique push, pull, and advance programming model which goes beyond the
simple OpenSHMEM chaining interface proposed in this paper. We provide more
details about bale and a simple performance evaluation in Subsect. 3.2.
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2.4 Libfabric (FI MORE)

The OpenFabrics Interface (OFI) is a framework that exposes fabric commu-
nication services to applications [6]. OpenSHMEM implementations can access
services through the libfabric library, which implements a rich set of portable,
user-level software interfaces for utilizing high-speed communication fabrics.
Libfabric has been designed to support multithreaded communication models
and to address new fabric resource management challenges introduced by mod-
ern high performance fabrics. There are several interesting publications describ-
ing particular utilizations of libfabric providers for OpenSHMEM implementa-
tions [7–10].

Libfabric provides users with the FI MORE [8] optimization flag, which is
used to indicate that additional communication requests will be immediately
posted after the current call returns. This would allow the provider to chain
multiple requests (doorbell rings) to the NIC into one. The semantic behind
this feature is remarkably similar to the intent of the proposed API described
in Sect. 4.1. It could prove extremely useful for OpenSHMEM implementations
to easily support chained RMA and AMO operations. The only downside is
that there are currently very few libfabric providers that support the FI MORE
optimization. It appears that libfabric’s GNI provider is the only one to support
FI MORE as of this writing.

2.5 IB Verbs Postlists

The InfiniBand (IB) Architecture Specification [11] defines a set of “Base Queue
Management Extensions” (in §11.1.1) that enable a list of Work Requests (WRs)
to be submitted to the Send or Receive Queue. In the implementation of the IB
verbs API (libibverbs), this feature is exposed as a linked list of work requests
passed to the ibv post send() function. This capability is commonly referred
to as the IB postlist, which allows applications to post a linked list of WRs with
only a single call to ibv post send(). This optimization potentially reduces the
number of NIC doorbell rings for a collection of send operations to only one.

It seems that existing OpenSHMEM implementations running over
libibverbs typically post non-blocking RMA/AMO requests eagerly. For
example, each non-blocking put operation involves an individual call to
ibv post send(). In other words, for n back-to-back OpenSHMEM puts, there
would be n calls to ibv post send(). However, it would be compliant with the
OpenSHMEM specification to defer these non-blocking puts and append them
together into a list of WRs. Although we are not aware of any OpenSHMEM
implementations that make such usage of IB postlists, the results in Sect. 5.2
strongly suggest that applications could benefit from the overhead reduction. It
would be particularly helpful if applications could easily indicate that a chain of
non-blocking RMA/AMO is beginning and/or ending.

Section 5.2 will present performance measurements using standard IB
postlists benchmarks over libibverbs.
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3 Background

This section provides extra background information on select topics from the
related work in Sect. 2. In particular, Subsect. 3.1 described Nagle’s algorithm
and some important caveats and Sect. 3.2 goes into more detail about the bale
modules with some informative performance measurements. Finally Sect. 3.3
provides a brief summary of OpenSHMEM communication contexts, which is
required background for the proposed API design discussion in Sect. 4.

3.1 How Nagle’s Algorithm Works and Its Caveats

Nagle’s algorithm works by simply deferring the transmission of TCP data seg-
ments if any previously transmitted segments are so far unacknowledged. In
other words, the algorithm buffers all outgoing TCP segments until all previ-
ously sent segments receive an acknowledgement (ACK); then, the collection
of outgoing segments are all sent simultaneously. This optimization can show
excellent performance improvement, especially for applications which send lots
of small messages (a classic example is Telnet).

However, there is an important caveat to Nagle’s algorithm: it may exhibit
very poor performance when combined with other congestion optimizations, such
as delayed/piggybacked ACKs. ACKs can be delayed with a timeout (up to 500
ms for TCP) to reduce the round-trip time overheads associated with the TCP
protocol. However, if the sender is also deferring messages until that delayed
ACK arrives, the sender may incur a delay proportional to the timeout [12].

This algorithm is certainly different than the mechanisms for OpenSHMEM
proposed in this paper; after all, it is primarily targeting congestion reduction as
opposed to network interface transactions. However, we mention the concept due
to its interesting history in encountering and remedying the small-packet prob-
lem in networking. Also, it is possibly prudent for OpenSHMEM implementers
to be mindful of the negative interaction between deferred communication and
delayed ACKs. For instance, the throughput of small-message chaining in Open-
SHMEM will likely suffer if the underlying transport runtime simultaneously
delays ACKs on the target PE.

3.2 The Bale Programming Model and a Performance Summary

The bale package includes three modules (exstack, exstack2, and conveyor)
that roughly share the same high-level programming model. While there are
subtle (but important) differences between the three implementations, we will
keep this discussion concise by referring to these generally as “bale” modules,
but the conveyor model is the newest and has advanced optimizations, such as
asynchronous progress and multi-hop routing [2].

The bale modules provide a capability the authors refer to as aggregation of
PGAS operations, which roughly refers to the packing of “coalesced” messages
on the initiator side and the unpacking of these aggregated buffers on the target
side. To facilitate this aggregation, the bale modules maintain an object on each
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Fig. 1. Bale histogram performance for 3 different packed buffer sizes: 32 bytes, 256
bytes, and 4096 bytes. For each compute node, there is a collection of 9 bars (runs):
the first 3 runs used input/output buffer size of 32 bytes, the next 3 used a size of
256 B, and the final 3 use a size of 4 KiB.

PE that includes a collection of input and output buffers for every other PE in
the application. When the user issues a push operation, a data item is packed
into the output buffer for the appropriate target PE. If the buffer ever reaches
maximum capacity (the buffer size is user-defined and defaults to ∼8 KiB), then
the runtime automatically transfers the aggregated buffer. Meanwhile, PEs can
pull individual items from the input buffers, and can call advance (or proceed)
to flush the output buffers to the appropriate target PE’s input buffers. This is
done in bulk-synchronous parallel fashion in exstack, but asynchronously in
conveyors.

Figure 1 shows a performance experiment comparing the exstack, conveyor,
and the original (atomics, gets, puts: AGP) variations of the histogram (histo)
micro-benchmark. The histo benchmark is extremely simple, consisting of a
single loop of n random lookups in a distributed table using an atomic add oper-
ation. This is essentially a weak scaling experiment where the size of the table
and number of lookups is proportional to the number of PEs. The experiment
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was performed on the NERSC Cori nodes with Intel R©Xeon Phi 7250 processors
using Cray SHMEM - the detailed system setup is described in Subsect. 5.1.
There were 10,000 64-bit integers per PE in the table, and we performed 10
million random table lookups per PE.

Figure 1 also compares measurements for 3 different input/output buffer
sizes: 32 bytes, 256 bytes, and 4096 bytes. The horizontal axis in the chart shows
the number of compute nodes executed, with 68 processes per node (PPN). For
each compute node, there is a collection of 9 bars (runs): the first 3 runs used
input/output buffer size of 32 bytes, the next 3 used a size of 256 B, and the final
3 use a size of 4 KiB. We should note that no other parameters were tuned in
these executions, we simply accept the default values provided by the runtime.

There are several features to note in Fig. 1. First, the overall speedups of
exstack over AGP are impressive: up to 11× on 2 nodes and 4.1× on 256
nodes. While exstack throughput surpasses conveyor at lower scales, this does
not suggest that exstack generally outperforms conveyor; in fact, conveyor
provides routines such as convey new simple(), which construct exstack-style
(synchronous) objects that undoubtedly perform like exstack. The throughput
of exstack is best at smaller scales, but decreases as we scale out. On the other
hand, the throughput of conveyors actually improves a bit when scaling out.
Overall, conveyors exhibits better scaling properties, likely due to its support
for asynchronous progress and advanced topology-aware/hierarchical routing.
Finally, we see that 4 KiB is a good choice for the size of the aggregation buffers
(although not captured in this figure, 4 or 8 KiB seems to be the best overall
choice on this system for histogram).

Inherent to the bale programming model is the participation of all remote
PEs throughout the execution phase. In other words, the execution phase is effec-
tively collective - target PEs need to pull data from their input buffers until the
bale object no longer needs to advance. (For this reason, users should be cautious
when calling OpenSHMEM routines during this phase.) This collective pattern is
important for performance, however, as it enables the impressive speedups shown
in Fig. 1. For the histo benchmark in particular, this programming model con-
straint allows the application and middleware to completely avoid calling the
atomic routines, which make up the core of the original AGP version of histo.
Instead, the participating target PEs can simply increment their local values
because they have complete control over when the pull operations occur with
no chance for contention from remote PEs.

A separate but related question is whether comparable performance gains
can be made without the collective participation of all PEs in the aggregation
phase. We attempt to address this question in Sect. 5 below.

3.3 OpenSHMEM Contexts

Section 4 will argue that RMA/AMO chaining hints are best associated with
OpenSHMEM communication contexts, so this section provides a brief overview
of these contexts and a collection of citations for the interested reader. However,
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the most direct source of information regarding the OpenSHMEM context API
is the latest version (1.5) of the specification itself [13] in §9.5.

In essence, OpenSHMEM communication contexts are objects affiliated with
RMA, AMO, and memory ordering operations that provide independent ordering
and completion properties. In multi-threaded OpenSHMEM applications, users
can potentially improve performance by using private contexts across threads
that call OpenSHMEM RMA/AMO routines simultaneously, thereby reducing
the underlying overhead in the runtime related to threads sharing resources.
In single-threaded OpenSHMEM applications, multiple shared contexts can be
used to pipeline/overlap communication and computation.

There is a rich collection of research literature describing OpenSHMEM con-
text implementations and other details [14–16]. For this paper, it suffices to say
that the chaining operations mentioned in related work (FI MORE, IB postlists,
the bale modules, and DMAPP bundled puts) are most directly affiliated with
RMA/AMO operations, suggesting that OpenSHMEM contexts are an obvious
candidate for affiliated user-provided chaining hints. As we will see in Sect. 4,
a very simple interface to enable user-provided chaining hints is done on the
OpenSHMEM context.

4 Design and Discussion

This section presents a tentative and simple API that would provide users a
way to inform the OpenSHMEM runtime about the imminent occurrence of
chainable operations. It also briefly describes some speculative follow-on APIs
that would support collective operations and/or aggregation. Please note that
the discussion below uses the generic term, “chain”, in the proposed function
names, but there are certainly other viable candidates for a final standardized
API including session, bundle, batch, group, chain and more.

4.1 Proposed API

There are several viable interface designs that would enable chained operations
in OpenSHMEM programs. For example, it is possible to add a new set of
RMA/AMO routines, named something like shmem (op) chain nbi. However,
this approach would require OpenSHMEM implementations to support chaining
across a large number of routines, and the semantics could be difficult to define
portably across all these routines. This could also expose non-portable perfor-
mance behaviors across implementations; for instance, if an implementation is
unable to support performant chaining on a particular network. After discussion
among the OpenSHMEM specification working groups, we opted for a simpler
hint-based API that would not change any semantics of a program if the chaining
optimization were either unsupported or removed.

A very simple chaining API would consist of only two routines, a routine
to indicate the start of a chain and a routine to indicate the end of a chain. In
between the chain start and stop routines, the user could make any OpenSHMEM



168 D. Ozog et al.

calls, but only certain calls are viable candidates for chaining. Here is a rough
example of a chained code block:

shmem_ctx_t ctx;

shmem_chain_start(ctx);

/* Any non-blocking RMA routines, non-blocking AMO routine, and/or

non-fetching blocking AMO routines could be chained here. */

shmem_chain_stop(ctx);

/* Users need to include any necessary memory ordering routines (fence

or quiet) regardless of whether chaining hints are included or not. */

Our central proposal for this hint-based chaining API is that the communica-
tion semantics of the enclosed code region are unchanged regardless of whether
the chain start/stop calls are included. We can use this guiding principle to
deduce whether an OpenSHMEM routine is a candidate for chaining (but spe-
cific chaining support and methods are ultimately implementation-defined). For
example, with this hint-based chaining API, all non-blocking RMA and non-
blocking AMOs are candidates for chaining, because local and remote com-
pletion are not guaranteed immediately after returning from these routines.
Therefore, the OpenSHMEM runtime has the opportunity to chain non-blocking
operations without affecting the completion semantics when adding or remov-
ing the start/stop routines. Additionally, blocking non-fetching atomics (such
as shmem atomic inc and shmem atomic and) as well as scalar puts (shmem p)
could be chained. These non-fetching operations have no buffer to update or
reuse on the initiator PE immediately after returning, so an OpenSHMEM imple-
mentations may freely chain these operations without affecting the completion
semantics of the enclosed code region.

On the other hand, blocking RMA (except shmem p), blocking fetching
AMOs, and scalar gets would not be chained, because these routines have com-
pletion semantics indicating that the initiator’s local object (i.e., the source
buffer for puts and the destination buffer for gets) can be used immediately
after returning. For now, we do not consider point-to-point synchronization rou-
tines (like shmem wait and shmem test) for chaining, because they do not occur
on a OpenSHMEM context, and far richer capabilities are provided by the vector
point-to-point synchronization API in OpenSHMEM version 1.5.

Stopping a chain should not affect memory ordering or completion semantics,
it only provides a hint to the runtime that a collection of chainable operations has
finished. Chaining requirements for memory ordering and synchronization is rel-
atively simple with this hint-based API: the inclusion of shmem chain start()
and shmem chain stop() should not affect the application’s requirements for
invoking fence, quiet, sync, and barrier operations. In other words, if the appli-
cation requires a fence and/or a quiet operation for correctness, then it should
be included with or without the chaining start/stop routines. With this straight-
forward API design, we hope users and implementers can easily deduce which
OpenSHMEM operations are suitable candidates for chaining optimizations,
while maintaining correctness and portability across different implementations
and platforms.



OpenSHMEM Bundles 169

4.2 API Extensions (Items up for Discussion)

To generate interesting discussion, we briefly describe two other hypothetical
API extensions that may or may not eventually be worthy of OpenSHMEM
standardization: collective routines and aggregation APIs.

Collectives. In general, it is more challenging to reap benefits from chaining
multiple collective operations than it is for RMAs and AMOs. One reason for
this is that the underlying transport mechanisms and interfaces are more geared
towards chaining RDMA network “primitive” operations, like send/receive,
put/get, and network atomics operations. So OpenSHMEM implementations can
easily chain RMAs and/or AMOs within a single collective, but it is far more
challenging to determine whether multiple application-layer collectives opera-
tions are chainable. However, this is not to say that it is theoretically impossible
to chain collectives. One can imagine a future network in which collectives opera-
tions can be encapsulated as a single work request. In this hypothetical scenario,
a challenge for OpenSHMEM is in designing a valid chaining interface that is
compatible with OpenSHMEM teams. However, contexts do belong to a team
in OpenSHMEM v1.5, so perhaps one can safely and productively group col-
lective operations in the future. Furthermore, the hint-based semantic proposed
above may require non-blocking collectives in OpenSHMEM, which are currently
a work-in-progress for standardization.

Aggregation. The simple API design in this section considered chaining only,
not the aggregation capability that was discussed in the related work and back-
ground sections summarizing the bale modules (Sects. 2.3 and 3.2). It is certainly
possible to standardize an interface that accomplishes aggregation in OpenSH-
MEM (think shmem push, shmem pull, and shmem advance) with semantics sim-
ilar to the bale interfaces. However, there are matters to consider: The bale
modules show us that the push/pull/advance programming model leads to a very
complex runtime with a rich set of tunable parameters and execution options
(buffer sizes, multi-hop routing, asynchronous/synchronous, etc.). There may
not be much advantage to requiring all OpenSHMEM implementation vendors
to implement these intricate features when there is an impressive implementation
already like convey. On the other hand, as networks evolve towards having more
programmable computational power, like they currently do with Infrastructure
Processing Units (IPUs) and SmartNICs, there may be vendor-specific concerns
at play when it comes to doing efficient aggregation. There is no doubt that the
performance benefits of the push, pull, advance model are substantial, so there
may come a day when it makes sense to standardize this type of interface.

5 Performance Evaluation

We now examine performance measurements that quantify the expected benefit
of a chaining interface for OpenSHMEM. Section 5.1 describes the experimen-
tal setup and system configurations. Section 5.2 shows the expected increase in
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message rate between processes when they vary the size of the underlying Infini-
Band (IB) Verbs postlist. Section 5.3 uses the OSU non-blocking put message
rate micro-benchmark to show the benefit of automatic/implicit chaining with
Cray SHMEM over DMAPP. Finally, Sect. 5.4 examines the benefit of Cray
SHMEM’s implicit chaining for the GUPS benchmark.

5.1 Experimental Setup

In Sect. 5.2, the IB postlist experiment was conducted on two separate systems:
one with an Intel R© Columbiaville E810-C NIC, and the other with a Mellanox∗

ConnectX-6 MT28908A0 NIC.
The system with an Intel R© Columbiaville (CVL) NIC is an internal cluster

named Diamond, where each compute node contains a 2-socket Intel R© Xeon R©

Platinum 8170 CPU with 35.75 MB L3 cache at 2.10 GHz (Skylake). Intel R©

Hyper-Threading Technology and Intel R© Turbo Boost Technology are enabled.
The operating system (OS) was Red Hat Enterprise Linux 8.1 (Ootpa) with ker-
nel 4.18.0-147.el8.x86 64. The system memory was 12xDDR4, 196608 MB, 2666
MT/s. Diamond was configured with irdma version 1.3.19, ice version 1.4.11,
CVL firmware-version 2.15 0x800049c3 1.2789.0, and Intel microcode 0x2000065.
We used the Open Fabrics Enterprise Distribution (OFED) Performance Tests
peftools version 5.5, with the ib write bw benchmark. The network consisted
of an Intel R© Colubmiaville E810-C NIC, an Arista DCS-7170-32CD-F switch,
4.22.1FX-CLI, and Mellanox MCP1600-E002 cables.

The system with a Mellanox ConnectX-6 NIC is an internal cluster name
Endeavour, where each compute node contains a 2-socket Intel R© Xeon R© Plat-
inum 8358 CPU with 48 MB cache at 2.60 GHz (Ice Lake). Intel R© Hyper-
Threading Technology and Intel R© Turbo Boost Technology are enabled. The OS
is CentOS Linux release 8.3.2011 with kernel 4.18.0-240.22.1.el8 3.crt2.x86 64.
The system memory is 256 GB 16*16 GB 3200 MT/s DDR4. We also use the
OFED Performance Tests peftools version 5.93, with the ib write bw bench-
mark. The network consists of a Mellanox ConnectX-6 MT28908A0 interconnect
with a Mellanox MQM8790-HS2F HDR InfiniBand switch and MCX654105A-
HCAT host bus adapter.

In Sects. 5.3 and 5.4 the experiments are run on NERSC’s Cori supercom-
puter, which is a Cray∗ XC40 system [17]. Cori contains 2,388 Intel R©Xeon E5-
2698 v3 (Haswell) processor nodes at 2.3 GHz and 9,688 Intel R©Xeon Phi 7250
(Knights Landing) processor nodes with 68 cores per node at 1.4 GHz. The
Haswell (HSW) nodes each have 128 GB of DDR4 2133 MHz RAM. Each CPU
has 2-way Intel R© Hyper-Threading Technology with 32 cores, providing 32 phys-
ical cores and 64 hardware thread contexts per compute node. Each Knights
Landing (KNL) node has a single socket with 68 cores at 1.4 GHz. The KNL
nodes each have 96 GB of DDR4 2400 MHz RAM with 16 GB of MCDRAM. All
the Cori compute nodes run a light-weight Cray∗ Linux Environment based on
the SuSE∗ Linux Enterprise Server distribution. Cori deploys the Aries intercon-
nect with a dragonfly topology [18].
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In Sects. 5.3 and 5.4 we use Cray SHMEM [19] version 7.7.16, which is the
best-in-class OpenSHMEM implementation for the Cori platform. It is also con-
venient to do chaining comparison experiments with Cray SHMEM, because
it uses DMAPP for transport where we can use the DMAPP PUT NBI CHAIN OFF
environment variable to turn automatic chaining on and off. The benchmarks
used are the OSU micro-benchmarks version 5.7 and the Giga Updates Per Sec-
ond (GUPS) application [1] that is included in Sandia OpenSHMEM version
1.5.0 [20].

5.2 Perftools Measurement of IB Verbs Message Rates

Fig. 2. Single PE message rate (relative to the maximum rate) on Intel R© Columbiaville
(CVL) and Mellanox∗ ConnectX-6 HDR (MLX). Each datapoint shows the percent of
the maximum message rate with respect to the NIC itself. The graph does not directly
compare message rates, instead it shows how the rate is affected by the IB postlist size.

Figure 2 shows the message rate of the ib write bw benchmark as a function
of the size of the IB Verbs postlist (described in Sect. 2.5). Each point in the
graph is a single run of the benchmark with the postlist size explicitly set. All
benchmark executions transferred work requests with a size of 8 bytes, because
this is the size which most often exhibits the highest message rate. We also
increased the number of iterations to 1 million to ensure a steady state and
reduce measurement variation. For both graphs, we set the number of queue
pairs (QPs) to 4, which helps to saturate the NIC to achieve higher message
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rates, and all QPs are reliably connected (RC). We avoid publishing the raw
message rate in Fig. 2 and instead focus on the improvement relative to the
maximum message rate measured on each system. This is simply because the
data we are trying to highlight is the potential performance benefit of chaining,
not any differences in message rate between the two platform (which have very
different CPUs in addition to fabrics).

Figure 2 shows that Columbiaville’s message rate with a postlist size of 1
is only 31% of the maximum measured message rate, which is achieved at a
postlist size of 50. As far as we are a aware, OpenSHMEM implementations over
libibverbs typically perform a single non-blocking RMA or AMO operation
with a postlist size of 1, suggesting that there may be considerable room for
improvement by increasing the postlist size, at least when there are many small
messages initiated within a sufficiently short amount of time. Figure 2 also shows
that the ConnectX-6 message rate with a postlist size of 1 is even lower, ∼15% of
the maximum measured message rate, which in this case is achieved at a postlist
size of 42. Overall, these measurements suggest there is opportunity in chaining
OpenSHMEM operations when using IB Verbs.

5.3 OSU Microbenchmarks: Chained vs. Unchained Message Rates

The measurements from the previous section only used single client and server
processes over libibverbs, which may not be entirely reflective of an actual
OpenSHMEM implementation. In this section we measure the message rate as a
function of buffer size using Cray SHMEM on the NERSC Cori system. We use
the OSU microbenchmark, osu oshm put mr nb, with symmetric heap memory
and all default launch parameters. The benchmark was run on two separate
compute nodes with 10 executions per data point. Each plotted point in Fig. 3
shows the maximum message rate across all 10 trials - this technique reduces
variation in the message rate measurement. To turn automatic chaining off in
the DMAPP layer, we simply set the DMAPP PUT NBI CHAIN OFF environment
variable. Figure 3 shows the message rate for various PPN across message sizes
from 1 byte to 4 MiB by powers of 2. Figure 3 shows the same data, but excludes
measurements below 1 million messages/second to focus on the region of interest.

Curves sharing the same color in Fig. 3 were executed with the same PPN.
The only difference between two curves sharing the same color is whether chain-
ing was enabled or disabled. Curves with the empty diamonds correspond to
executions where chaining was enabled (the default case), and curves with the
filled squares correspond to executions where chaining was disabled (by setting
the environment variable).

The major takeaway from these graphs is that the chaining optimization for
message rate is already done in practice in Cray SHMEM, and with impressive
effect. For transfer sizes less than 128 bytes, message rate improvement is con-
sistently in the 1.5–2× range. For 4 and 8 bytes messages, the improvement is
upwards of 2.6×. More investigation and/or instrumentation of the source code
is needed to explain the 4–8 byte bump. We also see that the message rate scales
up well to 16 PPN on these nodes. However, Table 1 shows that 22 PPN and
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higher begins to suffer poor message rate scaling, likely due to over-subscription
effects. Despite this, the highest message rate is seen with 20 PPN, as highlighted
in Table 1.

Fig. 3. Message rate of Cray SHMEM with and without chaining for various processes
per node (PPN) excluding data with a message rate lower than 1 million per second
on two Cori HSW nodes.

Table 1. Message rates (in millions/second) not shown in Fig. 3. The underlined values
emphasize performance degradation that is likely due to over-subscription effects, and
the � measurement shows the maximum rate measured.

Size Chaining 16 PPN 18 PPN 20 PPN 22 PPN 24 PPN

1 byte Enabled 48.3 53.4 62.4 28.7 11.4

1 byte Disabled 31.7 35.4 36.3 37.0 37.4

8 bytes Enabled 78.5 88.8 91.0� 78.0 36.2

8 bytes Disabled 32.3 35.9 36.7 37.3 37.6

32 bytes Enabled 54.5 60.3 65.8 63.8 47.3

32 bytes Disabled 31.6 35.3 35.8 35.8 36.0

64 bytes Enabled 53.1 56.7 64.8 69.4 69.3

64 bytes Disabled 32.5 34.7 35.4 35.8 36.2
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5.4 GUPS with and Without Chaining

We now quantify the performance effects of chaining non-fetching AMOs using
the GUPS benchmark [1]. In short, GUPS quantifies the number of random
memory locations that can be updated across a distributed table per second.
Although GUPS may not reflect the complexities of sophisticated workloads,
a small percentage of random accesses within an application can have signif-
icant performance effects on the application overall. Modern GUPS has two
variants: 1) performs a shmem g on the remote table index, then a local XOR,
then updates the same remote location with a shmem p, and 2) performs a single
shmem atomic xor to the remote table index. In this experiment we focus on the
2nd variant exercising non-fetching AMOs. All operations are done with values
of type long (64-bits), and the table size is set to 1024 values per PE, making
this a weak-scaling experiment. We also set the number of table updates to 20
million to establish a steady state and to reduce the effects of system noise. We
include data for both the Cori Haswell (HSW) as well as the Knights Landing
(KNL) nodes. This is done to show the performance effects of chaining on these
two different architectures, not to compare them in terms of absolute perfor-
mance. It also is far easier to scale out further on Cori’s KNL queues because of
is lesser demand and the substantial core-hour discount offered by NERSC.

Fig. 4. GUPS chaining vs. no-chaining on KNL.

Figures 4 and 5 show the GUPS measurement across several different num-
bers of compute nodes. We ran the benchmark 10 times for each datapoint,
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and recorded the maximum measured GUPS value in the figure. The speedups
comparing chaining with no chaining are considerable, varying between 1.7×
and 2.7× depending on the architecture, number of compute nodes, and values
of PPN. In general, speedups appear to decrease as we increase the number of
total PEs. However, even at the largest scales (32,768 PEs on KNL and 4,096 PEs
on HSW), speedups are still considerable enough to motivate this optimization
(1.7× and 2.0×, respectively).

Fig. 5. GUPS chaining vs. no-chaining on HSW.

It is important to note that the observed increase in message rate was accom-
plished by an OpenSHMEM implementation that detects whether a chain is in
progress. In other words, Cray SHMEM was given no hints in either the OSU
benchmark or in GUPS that a chain is in progress. We can only expect bet-
ter performance if the runtime was informed that a chain is taking place. For
instance, the OpenSHMEM runtime may not have to do any chain continuity
checks on the performance-critical path if the user can supply a hint that a
chain is in progress. Also, the runtime would not have to detect that a chain is
complete if the user can supply a hint to stop the chain.

6 Future Work and Conclusion

The experiments throughout Sect. 5 prove that an OpenSHMEM implementation
can substantially increase message rate for benchmarks in which many small
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messages are sent back-to-back. While the benchmarks in Sect. 5 do not entirely
reflect more complex “real-world” PGAS applications, they certainly highlight
common latency-bound communication patterns that can dramatically hinder
the performance of critical application components.

Because the experiments in Sect. 5 leverage an implicit chaining feature in
Cray SHMEM, they do not fully capture the potential benefit of more explicit
chaining based on user-provided hints. For instance, it is likely that implicit
chaining requires a branching instruction on the RMA/AMO critical path, which
might be removable given more explicit chaining. Future work could quantify
how much performance benefit is to be gained from chaining hints that the pro-
posed OpenSHMEM session/bundle API would enable. This would be particu-
larly important for more sophisticated applications with interspersed OpenSH-
MEM operations that are not chainable (like the point-to-point synchronization
routines, shmem test and shmem wait). Users could easily supply hints to the
OpenSHMEM runtime regarding when is the best time to start and stop chaining
communications.

Another item for future work is to investigate the performance of FI MORE
within OFI/libfabric, and to develop this optimization on providers that are
relevant to PGAS. Furthermore, the increasing message rate as a function of IB
postlist size (Sect. 5.2) is promising, but does not fully capture the performance
aspects of chaining via postlists in an OpenSHMEM implementation. Future
work should include similar analysis within an OpenSHMEM implementation
that exercises ibv verbs.

Finally, while the results of this paper suggest substantial performance ben-
efits are possible with chaining on the host/CPU, there is still the open question
of whether GPU-initiated OpenSHMEM communication would benefit similarly.
Although this experiment is yet to be done, we hypothesize that the benefits of
chaining would be even more fruitful for device-initiated communication, because
of the relatively high cost of initiating a NIC operation from a PCI-attached
device (i.e., ringing the NIC doorbell for every single RMA/AMO operation).
We leave this investigation as future work.
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Abstract. HPC workloads experience significant overhead due to han-
dling network-related tasks on the CPU. Some tasks could be offloaded
to a SmartNIC, thus reducing the run-time of the workload, but this
typically requires explicit support in the application. Moreover, several
SmartNIC models available today expose different APIs for offloading
tasks. In this paper we present a model for SmartNIC programmability,
including a proposed system design for allocating and utilizing network-
wide SmartNIC resources. Unlike existing APIs for programming accel-
erators, our proposal focuses on access to resources over the network:
large-scale deployments imply a network-based mechanism for allocat-
ing, and offloading to, SmartNIC devices. While a SmartNIC is often
characterized by its embedded processor, the proposed system is also
applicable to NICs based on ASIC or FPGA, aided by the host CPU.

1 Introduction

The growing throughput of modern interconnect technologies increases the
rate of traffic reaching the server: both internal, between processes or virtual
machines, and external - targeting other servers or appliances, e.g. storage. Both
create memory-intensive tasks on the CPU and typically impact application per-
formance. Tasks that can be performed on incoming or outgoing messages and
only require limited local state are good candidates for offloading to a SmartNIC.
Part of the challenge in offloading operations from the host CPU is the various
APIs provided by accelerator vendors. Accelerators are common in data-centers,
targeting workloads such as image processing and machine learning, but a stan-
dardized programming API standard does not exist. As a result many applica-
tions are written for a specific hardware platform, impairing or preventing the
same run on a different platform. OpenSNAPI is a collaborative effort to form
a standard API for utilizing the capabilities of SmartNICs across the network.
Such API would allow programming SmartNICs from different vendors, with
the goal of performing processing operations on compute engines on the net-
work, possibly in parallel with a workload on the host CPUs. In this paper, we
will present our proposal for the OpenSNAPI standard.

The rest of this paper is organized as follows: Sect. 2 outlines the proposed
design for SmartNIC programming, Sect. 3 discusses scalability aspects, Sect. 4
covers related work and Sect. 5 summarizes the remote SmartNIC programma-
bility model.
c© Springer Nature Switzerland AG 2022
S. Poole et al. (Eds.): OpenSHMEM 2021, LNCS 13159, pp. 178–186, 2022.
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2 Proposed System Design

The problem statement outlined in the previous section requires a flexible design,
accommodating the various use-cases. In this section we propose a design for this
system, followed by an example. In order to describe the interactions within this
system, we define the following roles:

Initiator A process which requires the service of a SmartNIC.

SmartNIC The SmartNIC to be used by the initiator.

SmartNIC Host The host where the SmartNIC is physically installed.

Manager A central entity in the network that manages SmartNIC resources.

The interaction between these roles is divided into four stages, as illustrated
with a typical flow in Fig. 1. We note that while the initiator is expected to run
on a host CPU in most cases, it could potentially run on a SmartNIC in the
manner described below, creating a chain of SmartNICs collaborating on a task.

Ini ator

Stage 1: Alloca on

Manager SmartNIC SmartNIC Host

Register
"I have o oad X"

Alloca on Request
"I want o oad X"
Alloca on Reply

"Use Smart-NIC Y"

Stage 2: Coordina on

Coordina on Request
"Allocate a port for o oad X"

Coordina on Reply
"O oad X is ready on QP #123"

Stage 3: Execu on
Payload

"Apply X to this (on QP #123)"

Op onal: Tear-down

Coordina on Finalize
"Done using o oad X / QPN #123"

Dealloca on Request
"Done with o oad X"

Update
"O oad X allocated"

Deregister
"O oad X gone"

Update
"O oad X freed"

Fig. 1. Communication stages of the proposed design for OpenSNAPI
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2.1 Rationale

In contrast to traditional accelerator APIs invoked on the host, we propose
SmartNIC programming over the network. Section 3 elaborates on the motivation
for this difference, making this API resemble RPC designs. The technology to
facilitate this RPC must be flexible, performant and suitable to run on embedded
systems. In light of these factors, we chose gRPC and gNMI as the framework
to be extended by SmartNIC vendors.

Allocation Stage

During this preliminary stage, SmartNICs make their presence and capabilities
known to a central entity. These include hardware offloads present (e.g. compres-
sion or MPI tag-matching), consumed resources (e.g. memory or storage space)
and API information (i.e. supported RPC calls for the upcoming coordination
stage). This central entity, the Manager from Fig. 1, is responsible for tracking
network-wide resources and allocating them upon request.

Before a process can use SmartNIC resources, be it on the same host or
elsewhere, it sends an allocation request to the manager with its identification
and a list of requirements. In return, the manager sends an allocation reply with a
list of allocated resources and optionally a security-oriented token. Alternatively,
a job launched by a resource manager, e.g. SLURM or PBS Pro, could receive
SmartNIC resources as part of the allocation for the entire job (even without an
explicit request). At the end of this stage, the initiator has all that is required
for contacting the SmartNIC directly.

Most data-centers already have central entities for managing network
resources, where this stage could be integrated. For example, Infiniband inter-
connects rely on a subnet manager for NIC addressing information, and it can
be extended to manage SmartNIC resources as well. As a fallback, gNMI can
provide a simple allocation mechanism. The initiator would send a Get request
over a gNMI connection, and receive an address of an available SmartNIC in
reply. An initiator could also send a Capabilities request to check if any Smart-
NIC supports the features it needs. Lastly, a gNMI-based manager would also
accept Set requests from SmartNICs when it is ready to be used.

Coordination Stage

The coordination stage is when the initiator sets up the SmartNIC for subsequent
usage. Setup may include internal allocation of resources on the SmartNIC, such
as RDMA QP creation and memory registration, and in the general case launch-
ing a custom executable file. For this stage, we propose a combination of gNMI
and its underlying gRPC layer. The gNMI provides an easy API to interface
with for querying local capabilities and obtaining the resources allocated in the
previous stage. gRPC allows for custom functions to contact existing SmartNIC-
based programs and launch new ones. At the end of this stage, the SmartNIC is
ready to receive and process network traffic - which is the next stage.
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This stage is when the SmartNIC programmability is exercised. SmartNICs
are expected to expose some built-in features, such as packet filtering or stream
operations (e.g. compression). These features could be loaded using gNMI Get
requests, and remain active as long as the connection to the initiator remains
open. For custom features, some SmartNICs allow running executables on the
embedded processor - this could be achieved by a gNMI Set request containing
the binary executable. On simpler NICs, which cannot run executables, the host
CPU can facilitate the coordination stage and control the NIC.

Execution Stage

This stage is when the initiator makes use of the SmartNICs it had set up in the
previous stage. During this stage either a built-in feature or a custom program is
consuming SmartNIC resources to aid the initiator and offload some of its tasks.
This stage is not limited to a specific interconnect technology or software stack,
though it is expected to use existing low-latency solutions (e.g. UCX [1]).

Tear-Down Stage

Once the execution is finished, and the resources on the SmartNIC are no longer
required, the initiator messages the SmartNIC to indicate tear-down can take
place. This stage is considered optional since many use-cases would not require
explicit termination.

2.2 Example: SmartNIC-Based Storage

In order to demonstrate the proposed design we implement a simple storage
service to run on a SmartNIC. The initiator uses this storage for caching requests,
and even simple NICs can provide this capability. The demonstration code uses
gRPC and focuses on the coordination and execution stages.

Allocation Stage. For systems using gNMI to manage SmartNIC resources,
a YANG model describes the capabilities an initiator can request. Below is a
YANG file excerpt demonstrating possible features. For example, if a SmartNIC
can offload the MPI’s Alltoall collective operations then a gNMI Get request on
cap-alltoall would return true.

module : smartnic
+−−rw smartnic−c on f i g
| +−−ro fw−ve r s i on ? uint32
| +−−rw enable−o f f l o a d ? boolean
| +−−ro supported−mpi−f unc t i on s
| | +−−ro cap−a l l r e du c e ? boolean
| | +−−ro cap−a l l t o a l l ? boolean
. . .
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Coordination Stage. During this stage the initiator opens a gRPC connec-
tion to the SmartNIC and asks for a buffer of a given size by invoking the
AllocRequest gRPC call. Upon invocation, the SmartNIC allocates the buffer
and replies with a message containing the fields which the initiator needs for
the execution stage. Because the demonstration uses UCX, the reply consists of
fields it later requires for one-sided operations on the new buffer - including the
address of the UCX Worker. To complete the stage, the initiator uses UCX to
connect to the newly created worker.

To use gRPC for coordination, we define the offloaded function prototypes
for buffer allocation and deallocation in a protocol buffer file:

service ServiceAPI {
rpc AllocateBuffer (AllocRequest) returns (AllocReply)
rpc DeallocateBuffer (DeallocRequest) returns (DeallocReply)

}

Next, we add the four messages passed between the initiator and the Smart-
NIC for calling these two functions via gRPC:

message AllocRequest {
int32 size = 1;

}

message AllocReply {
uint64 targetPtr = 1;
uint32 rkeyLen = 2;
uint32 ucpAddrLen = 3;
bytes rkey = 4;
bytes ucpAddr = 5;

}

message DeallocRequest {
int32 size = 1;

}

message DeallocReply {
string message = 1;

}

Execution Stage. At this point, the initiator is free to access the buffer using
one-sided operations. We used the UCX calls equivalent to RDMA Read and
Write operations: ucp get nbx and ucp put nbx.

Tear-Down Stage. To finish the execution, the initiator uses gRPC to invoke
DeallocRequest, the service instance on the SmartNIC then releases the buffer
and responds, which indicates to the initiator it can now close the gRPC con-
nection and terminate.

3 Scalability

A critical aspect of OpenSNAPI and the deployment of SmartNICs in a data-
center is the aspect of scale. This includes both technological considerations and
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commercial ones. One technological consideration is the overhead of coordinat-
ing among multiple SmartNICs, and another is handling faults brought on by
the increasing number of components. Commercial considerations may include
the trade-off between cost and computational power, however those are outside
the scope of this paper. This section explores a range of SmartNIC deployment
options in relation to the typical job using them, focusing on the resource man-
agement considerations.

The density of SmartNICs in the data-center determines the availability of
a SmartNIC for a given process and the expected distance between the two.
Density may be as high as multiple SmartNICs in each host (e.g. a SmartNIC per
accelerator), however a single SmartNIC per-rack may also prove advantageous
for some cases. Next, we will explore the range of possible density and how it
would effect the usage.

SmartNIC per Accelerator. In this scenario, each accelerator has a dedi-
cated SmartNIC - either sharing the same board or accessible over the system
bus. HPC systems commonly host GPU and TPU devices as accelerators. While
the simplest case is a 1:1 ratio, some vendors suggest one SmartNIC for every two
GPUs. This scenario diminishes the significance of SmartNIC resource allocation:
process affinity dictates the SmartNIC to be chosen for it, making resource allo-
cation for both the job and the process trivial. SmartNIC programming would be
likely be carried out by either the process itself or some central per-host entity.

SmartNIC per Host. This scenario is expected to be the typical one, where
each host contains a SmartNIC for all the processing on its CPUs and acceler-
ators. Much like with the previous case, clearly all tasks will run on the same
SmartNIC - keeping SmartNIC usage local and making resource allocation moot.

SmartNIC per Rack. This scenario addresses the need to reduce the over-
all cost of the system while still benefiting from SmartNIC offloads. One suit-
able use-case is MPI collective operations, many of which have an explicit (root
process is specified) or implicit logical tree topology. For example, a reduction
operation could use the SmartNIC in each rack to aggregate the vectors from its
hosts.

SmartNIC Pool. This scenario is especially relevant for cloud providers, where
resources are often pooled and allocated towards compute instances on multi-
tenant data-centers. It could be viewed as a generalization of the previous sce-
nario, with the key difference of disassociating the process and SmartNIC loca-
tions. Here the SmartNIC is allocated based on resource availability and sup-
ported offload features rather than location, and the process should not make
assumptions about the proximity of the SmartNIC it was allocated.

To conclude this section, Table 1 reviews the combinations of job span and
the aforementioned SmartNIC density, with the following variables in mind:
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– Resource Usage: the distance between the SmartNIC and the process which
explicitly uses it, including both the initial programming and the run-time
processing. This could be either local (process and SmartNIC on the same
host), remote (process and SmartNIC on different nodes) or both.

– Resource Allocation: the distance between the process and the entity allocat-
ing SmartNIC resources for subsequent usage. This could be either “internal”
or “external” with respect to the processes composing the job.

– Resource Sharing: the likelihood of having to share the resources on a single
SmartNIC with other jobs.

Table 1. SmartNIC resource management aspects for deployment parameters

Density Multiple jobs per host Few hosts per job Large-scale jobs

Per Accelerator local external a local internal unlikely local internal unlikely

Per Host local external likely local internal unlikely local internal unlikely

Per Rack remote external likely remote external likely b external unlikely

Pool remote external likely remote external likely remote external likely
a An accelerator along with its associated SmartNIC might be either completely allocated to
one of the jobs (no resource sharing) or split among them.
b Job is assumed to span across multiple groups, racks and SmartNICs. However, an in-job
allocation mechanism would require knowledge of the network topology and job layout, and
may interfere with the central allocation mechanisms for smaller jobs. Thus, it is likely that
SmartNICs belonging to a network group or rack will be allocated by a central entity, similarly
to the pool scenario.

The main conclusion from this table is the need to support various methods
for both the allocation and the sharing of SmartNIC resources. Namely, methods
for an efficient in-host SmartNIC usage as well as obtaining and using remote
SmartNICs over the network. While the former may be easier and better suited
for existing SmartNIC APIs, e.g. IB Verbs, we estimate that the latter is critical
for large-scale deployments on SmartNICs in a data-center.

4 Related Work

Numerous studies [7,8] demonstrate the utilization of programmable NICs to
accelerate applications by offloading tasks to the NIC. Such offloading signifi-
cantly reduces both host CPU and memory usage. For example, Lynx [2] provides
a system to implement direct networking services which need access to accelera-
tors, e.g. GPUs, without involving the host CPU - for over 4x higher throughput
on GPU-centric face verification. λ-NIC [3] exposes an event-based program-
ming abstraction, Match+lambda, for SmartNICs. Porting the Key-value store
use-case to run on SmartNICs [4,5] has been shown to achieve a significant
improvement in terms of requests per second compared to a popular host-based
KVS implementation. sPIN is a programming model proposed by Hoefler et al.:
it extends the RDMA and message matching concepts to enable the offloading
of simple packet processing functions to the NIC. sPIN acceleration results in a
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significant speedup for real-world applications, and a follow-up work by Di Giro-
lamo et al. [9] expands these concepts to a new SmartNIC design - tailored for
offloading packet processing functionality using sPIN. While previous research
on SmartNIC programmability focused on developing the program to match NIC
hardware, our work focuses on how to allocate SmartNIC resources and facilitate
the execution of any program compatible with the target SmartNIC.

5 Conclusions and Summary

In this paper we presented a software design for programming SmartNICs over
the network, which aligns with the goals of OpenSNAPI. A successful imple-
mentation should take into account the requirements that come with scale and
facilitate the offloading of tasks to the SmartNIC. This system would rely on the
gRPC and gNMI software frameworks to communicate between the SmartNIC
and the host-based processes offloading tasks to it. Both frameworks are already
used for RPC and configuring network devices, and can be extended to accom-
modate the flows required for SmartNIC programming. With several SmartNIC
models already available, the challenge is to balance performance and portability
across these and future models.
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Abstract. The OpenSHMEM programming model encourages applica-
tion developers to partition memory into local and symmetric segments
through the use of the SHMEM SYMMETRIC SIZE environment variable.
While this can lead to improved communication efficiency, it requires
applications to partition the available memory. Setting this value requires
that users calculate the amount of memory an application requires for
a given dataset or problem. It also presents challenges to applications
that progress through phases where OpenSHMEM is not used in every
phase and the full memory capacity is needed when OpenSHMEM is not
in use. This work presents a dynamic mapping approach to establishing
the symmetric heap in NVSHMEM, an OpenSHMEM library for clus-
ters of NVIDIA GPUs. Results indicate that this approach obviates the
need for static partitioning of memory with low overheads, significantly
improving the usability and flexibility of the NVSHMEM library.

Keywords: NVIDIA GPU · PGAS · High performance computing ·
OpenSHMEM · NVSHMEM · CUDA Virtual Memory Management

1 Introduction

OpenSHMEM is a Partitioned Global Address Space (PGAS) library that pro-
vides an API for doing one-sided communication, atomic operations, and collec-
tive operations. These operations are performed on remotely accessible memory
that is allocated on each Processing Element (PE). For efficient reference to
remotely accessible memory it is organized as symmetric memory. That means
that a remotely accessible memory allocation has the same size on each PE
which enables to compute references to the symmetric memory on a remote PE
without involving the remote PE. All information needed is the local object’s
reference and the remote PE index. From this information, symmetry allows
the OpenSHMEM library to calculate the corresponding location in the remote
PEs memory by adding the local objects offset to the remote PE’s symmetric
memory base address.

In an OpenSHMEM program, remotely accessible memory is allocated with
the call shmem malloc. To ensure symmetry, i.e., that each local object is placed
at the same offset relative to the PE’s base, this is a collective operation that
c© Springer Nature Switzerland AG 2022
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https://doi.org/10.1007/978-3-031-04888-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04888-3_12&domain=pdf
https://doi.org/10.1007/978-3-031-04888-3_12


188 A. Langer et al.

requires special management of the underlying heap. In NVSHMEM the app-
roach was to preallocate an equally sized symmetric heap during library ini-
tialization. That provides an equally sized Virtual Address (VA) range reserva-
tion backed by physical memory on each PE and therefore allows the required
heap management during shmem malloc. However, it requires a sufficiently large
symmetric heap to serve all allocations done by an OpenSHMEM application.
Because the preallocated heap competes with local memory allocations for capac-
ity, it is necessary to limit the size of the preallocated symmetric heap. This is
possible by setting the environment variable SHMEM SYMMETRIC SIZE prior to
starting an OpenSHMEM application. Setting SHMEM SYMMETRIC SIZE to too
low will cause shmem malloc to fail with an out of memory error, while setting
it too high might cause regular local allocations to fail with an out of mem-
ory error even if the total physical memory capacity is sufficient. The amount
of required symmetric memory in an OpenSHMEM program often depends on
the program’s input, the number of PEs participating in a run and other run-
time parameters. It is therefore not always easy to determine the right value of
SHMEM SYMMETRIC SIZE. Furthermore, when symmetric memory is deallocated
it is only returned to the symmetric heap not to the system. This further limits
the memory capacity available to local allocations of the same program or other
concurrently running programs.

In this paper we describe an approach to avoid specifying SHMEM SYMMETRIC
SIZE by only reserving a sufficiently large virtual address (VA) range during library
initialization. Within this VA range, NVSHMEM allocates and maps physical
pages on demand during shmem malloc. This is enabled by the CUDA Virtual
Memory Management (VMM) API introduced with CUDA 10.2 [13]. Besides
avoiding the described issues this also allows to simplify calculation of remote
pointers of peer-to-peer connected GPUs. In most cases it is possible to reserve a
VA range that is large enough to cover the aggregate available memory of all peer
GPUs so that the memory of each peer can be mapped at fixed offsets. During cal-
culation of remote references to peer GPUs this can avoid a round-trip memory
access that is otherwise necessary to fetch the mapped base address of the peer
GPU.

The paper is organized as follows. In Sect. 2, we introduce NVSHMEM and
how it implements the symmetric heap. Section 3 introduces the CUDA VMM
API. Section 4 describes the implementation of dynamic symmetric heap. Exper-
imental results are presented in Sect. 5, and related work is discussed in Sect. 6.
Finally, we conclude the paper in Sect. 7.

2 NVSHMEM

The OpenSHMEM specification [12] defines a standard API for the SHMEM pro-
gramming model, which was first introduced for the Cray T3D system [2]. Open-
SHMEM is a single program, multiple data (SPMD) programming model that
defines symmetric memory segments. Symmetric memory is globally addressable
and may be physically distributed, forming a partitioned global address space
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(PGAS). Objects in symmetric memory are allocated collectively, such that every
processing element (PE) allocates space for an object of the given size. Open-
SHMEM treats the local address of a given symmetric object as a symmetric
address, which can be used to reference any location in the same object at any
peer PE. In the OpenSHMEM model, a tuple containing a symmetric address
and PE index represents a global address that can be used to access any location
in the PGAS.

NVSHMEM is an implementation of the OpenSHMEM specification for clus-
ters with NVIDIA GPUs. NVSHMEM provides APIs for initiating communi-
cation from kernels executing on the device, enqueueing operations on CUDA
streams, embedding operations as nodes in CUDA graphs, and for initiating com-
munication from host CPU processes. NVSHMEM is optimized for GPU centric
communication and all symmetric objects are located within GPU device mem-
ory. While APIs for most operations are provided for both CPU and GPU usage,
some operations are not supported from the CPU because CPU bindings would
be inefficient. For example, the wait APIs are not supported on the CPU because
they would incur high overhead from the CPU polling device memory. Instead,
users can enqueue a wait operation on a CUDA stream and wait for completion
of the enqueued wait operation.

NVSHMEM supports peer-to-peer communication between GPUs using
NVLink or PCI Express, as well as communication over a network, such as
InfiniBand or RoCE Ethernet. Device-side functions in NVSHMEM are inlined
in order to allow the compiler to optimize for peer-to-peer memory access.
NVSHMEM provides thread, warp, and block level data transfer functions,
which enable threads to parallelize peer-to-peer data copies. Network transfers
in NVSHMEM are facilitated through a proxy thread running on the CPU. Ker-
nels running on the GPU submit work requests through a circular queue to the
proxy thread and interactions between the GPU and CPU are optimized to min-
imize the number of memory barriers required to submit the request. Relative to
the overhead of submitting work requests directly to the NIC, work submission
to the proxy thread incurs significantly lower overhead to the calling thread.
The NVSHMEM proxy thread, in turn, submits communication request to a
lower-level communication layer, presently either Verbs or UCX.

2.1 NVSHMEM Symmetric Memory

NVSHMEM supports dynamically allocated symmetric objects through a
symmetric heap located in GPU device memory. Symmetric memory access
in NVSHMEM has been optimized to minimize address translation and
memory registration overheads. Prior to this work, PEs allocate a slab of
NVSHMEM SYMMETRIC SIZE bytes of memory during initialization and the start-
ing address (or base address) of the memory is shared with rest of the PEs.
The address of the symmetric object on remote PE (remote pe) can then be
calculated as

remote addr = base addr[remote pe] + (addr − base addr[local pe]) (1)
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where base addr[remote pe] is the starting address of the symmetric heap on
remote pe, base addr[local pe] is the starting address of the local symmetric
heap, and addr is the local address of the remote object being referenced.

The remote GPU can be connected either via a peer-to-peer (P2P) connection
(e.g., NVLink or PCIe) or via a network interconnect (e.g., Infiniband (IB) or
RDMA over Converged Ethernet (RoCE)). Memory access setup is performed
for each connection type as detailed in the next sections.

2.2 Peer-to-Peer Memory Access

Fig. 1. Memory mapping of P2P connected GPUs using CUDA IPC API

When the peer GPU is P2P connected via NVLink or PCIe, a pointer to its
memory location can be obtained and direct loads or stores can be performed
to that location. NVSHMEM uses the CUDA IPC API to map memory of P2P
connected GPUs to local virtual address space, as shown in Listing 1.1. The
resulting mapping is shown in Fig. 1.

2.3 Network Interconnect

For GPUs connected via a network interconnect like IB or RoCE, the local
symmetric heap is registered with the networking layer. For example, when using
the NVSHMEM IB Verbs transport, memory is registered with the RDMA core
layer by calling ibv reg mr. The memory handle returned by this operation
is then shared with all other processes, so that it can be used when issuing
communication operations.
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Listing 1.1. Using CUDA IPC API to map memory of P2P connected GPUs

/* Obtain IPC handle of symmetric heap */

CUipcMemHandle ipc_handle;

CUdeviceptr heap_addr; /* pointer to symmetric heap */

cuIpcGetMemHandle (& ipc_handle , heap_addr);

/* Peer PE maps the IPC handle to a local virtual address */

cuIpcOpenMemHandle (& peer_heap_addr , ipc_handle ,

CU_IPC_MEM_LAZY_ENABLE_PEER_ACCESS);

3 CUDA Virtual Memory Management (VMM) API

CUDA 10.2 introduced the new virtual memory mangement functions that
enable the programmers to have better control of GPU memory usage. There
are many applications where it is hard to guess how big the initial allocation
should be. A classic example of this is the vector class in C++ Standard Tem-
plate Library (STL) where the amount of memory that the vector will require
cannot always be determined in advance. Hence, the vector may need to grow
as it runs out of memory to add new elements. However, one cannot afford the
performance and development cost of pointer-chasing through a specialized data-
structure from the GPU. An alternative is to maintain virtual address contiguity
by allocating new memory that is large enough and copying the data from old
memory to new memory. This has memory copying overheads and also limits
the maximum memory usage to half of total available memory. What is ideal in
such a scenario is that the application can grow the allocation as more memory
is needed and yet have the contiguous address range as it was before. The CUDA
VVM API allows the programmer to do just that (Article [13]). There are six
primary functions in the VMM API:

cuMemCreate
Creates a physical memory handle representing a memory allocation of a
given size described by the given properties.

cuMemAddressReserve
Reserves a virtual address range.

cuMemMap
Maps a physical memory handle to a virtual address range.

cuMemSetAccess
Sets the memory access rights for each device to the allocation.

cuMemExportToShareableHandle
Exports an allocation to a requested shareable handle type.

cuMemImportFromShareableHandle
Imports an allocation from a requested shareable handle type.

Listing 1.2 shows example usage of the VMM API. This example shows how
physical memory is allocated, how VA range is reserved, and mapping of the
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Listing 1.2. Low-level Virtual Memory Management CUDA API since CUDA 10.2

size_t granularity = 0;

CUmemGenericAllocationHandle allocHandle;

CUmemAllocationProp prop = {};

prop.type = CU_MEM_ALLOCATION_TYPE_PINNED;

prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE;

prop.location.id = currentDev;

cuMemGetAllocationGranularity (& granularity , &prop ,

CU_MEM_ALLOC_GRANULARITY_MINIMUM );

padded_size = ROUND_UP(size , granularity);

cuMemCreate (& allocHandle , padded_size , &prop , 0);

/* Reserve a virtual address range */

cuMemAddressReserve (&ptr , padded_size , 0, 0, 0);

/* Map the VA range to the physical allocation */

cuMemMap(ptr , padded_size , 0, allocHandle , 0);

CUmemAccessDesc accessDesc = {};

accessDesc.location.type= CU_MEM_LOCATION_TYPE_DEVICE;

accessDesc.location.id = currentDev;

accessDesc.flags = CU_MEM_ACCESS_FLAGS_PROT_READWRITE;

cuMemSetAccess(ptr , size , &accessDesc , 1);

physical memory to a desired location in the VA range. We discuss the usage of
this API for implementing dynamic symmetric heap management in NVSHMEM
in the following section.

4 Using VMM for Dynamic Heap Allocation

While the VMM API has been available since CUDA 10.2, NVSHMEM requires
VMM features available since CUDA 11.3 to support dynamic heap allocation.
Dynamic heap allocation can be enabled or disabled in NVSHMEM using the
NVSHMEM DISABLE CUDA VMM environment variable. Without dynamic heap allo-
cation, NVSHMEM relies on a statically allocated heap whose size is specified
using the NVSHMEM SYMMETRIC SIZE environment variable.

The default allocation size for the static symmetric heap is 1 GiB per PE plus
a small memory for internal structures used in the implementation of collective
operations. The entire slab is allocated during NVSHMEM initialization and all
future calls to nvshmem malloc will be reserved from this slab. Once the static
heap is exhausted, all calls to nvshmem malloc will return NULL until sufficient
memory is released back to the symmetric heap from other allocations using
nvshmem free.
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In the dynamic heap implementation, during NVSHMEM initialization first
the Virtual Address (VA) space is reserved using the cuMemAddressReserve
API. The amount of VA space reserved is equal to the following.

(Num. of P2P connected GPUs) * (Max. Symmetric Heap Size Per GPU) (2)

The cuMemAddressReserve API returns the starting address of the VA range
(heap base). The memory of ith P2P GPU is then mapped starting at address
as follows.

heap base + i ∗ (Max. Symmetric Heap Size Per GPU) (3)

During NVSHMEM initialization, some amount of symmetric memory is allo-
cated which is required for implementing collective operations. More memory is
allocated during nvshmem malloc when there is not sufficient memory left to
service the nvshmem malloc request. The new memory is allocated using the
cuMemCreate API which returns a handle to the physical memory object. The
physical memory objects may be discontinuously located in physical memory but
they are mapped to contiguous locations in the VA space using the cuMemMap
API. We implemented a custom allocator to manage the allocated memory. This
allocator can add new VA space to its memory pool. Whenever new physical
memory is allocated and mapped to the PEs VA space, the new VA space is
added to the allocator’s available memory pool.

Figure 2 shows the mapping of two physical memory objects onto the VA
space. A shareable handle of type CU MEM HANDLE TYPE POSIX FILE DESCRIPTOR
for a memory object can be created using the cuMemExportToShareableHandle
API. The returned file descriptor is then exchanged with other P2P connected
PEs using a Unix domain socket. The PEs then import the file descriptor into
CUDA memory allocation handle using the cuMemImportShareableHandle API.
This is followed by a call to cuMemMap API to map the imported allocation handle
onto the VA space reserved for the peer GPU as shown in Fig. 2.

For data transfer over networks such as IB or RoCE, the symmetric heap has
to be registered with the network using the ibv reg mr API from the ibverbs
library [8]. The ibv reg mr API in turn calls nv-p2p APIs to register the memory
for GPUDirect RDMA [6], and returns a Memory Region (MR) (of type struct
ibv mr *) corresponding to the given buffer address and size.

Today, support for PCI Express Base Address Register 1 (PCIe BAR1) map-
pings of VA space that spans multiple memory objects does not exist. This
implies that NVSHMEM has to maintain an MR for every new physical mem-
ory object that is added to the NVSHMEM symmetric heap. The physical
memory allocations are done at a certain granularity that is determined by the
cuMemGetAllocationGranularity API and can also be set to a larger value via
the NVSHMEM CUMEM GRANULARITY environment variable. The allocation mapping
makes it possible to store mappings from addresses to MRs in such a way that
an MR for any address can be looked up in O(1) time by using bit masks. The
communication API in ibverbs takes one MR each for the source and destination
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Fig. 2. Memory mapping of P2P connected GPUs using CUDA VMM API

buffers. This means that a given communication operation may have to be split
into multiple communication operations depending on the number of MRs (or
physical allocations) registered by the source and destination buffer. Listing 1.3
shows the pseudo-code for a communication operation.

When nvshmem free is called, the memory is not returned back to the system
but is returned to the NVSHMEM allocator. Subsequent nvshmem malloc calls
will therefore be faster if available memory is sufficient to serve the request.

5 Experimental Results

The experiments were performed on Nvidia’s Selene supercomputer. Selene is
made up of Nvidia DGX A100 nodes. A DGX A100 node consists of 2 AMD
EPYC 7742/2.25 GHz CPUs, 8 Nvidia A100 GPUs, and 8× 200 Gbps HDR
Infiniband network adapters. As of the time of obtaining these results the nodes
have CUDA Display Driver 470.57.02 installed, and CUDA version 11.4 was used
for obtaining the results.

5.1 Register Count

Usage of the VMM API makes peer address calculation faster and simpler. Prior
to VMM API, memory of peer GPUs is mapped by the cuIpcOpenMemHandle
API, and the returned address is stored in an array in global memory. Peer
address calculation involves loading the start address from this array in global
memory:

ldg(peer heap base addr[remote pe]) (4)

CUDA VMM API makes it possible to map the peer GPUs memory to the
desired address using the cuMemMap API. Peer address calculation then involves
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Listing 1.3. Implementation of Communication Operation

void *src , *dst;

while(size_remaining) {

chunk_size = min(size_remaining ,

get_chunk_size(src),

get_chunk_size(dst));

/* where , get_chunk_size(void *ptr) returns size of

remaining portion of ptr in current physical object

with (O(1) lookup overhead */

ib_send(sptr , dptr , get_mr(src), get_mr(dst), ..);

src += chunk_size;

dst += chunk_size;

size_remaining -= chunk_size;

}

loading the starting address of the VA range from constant memory and then
doing a bit-shift operation and an addition.

heap base + (remote pe << 37) (5)

where 37 = log2(128 GB), and 128 GB is the maximum heap memory per GPU.
PTXAS (Parallel Thread Execution Optimizing Assembler) analysis of the bw1

kernel having the above two different ways of calculating the peer base address
showed that the latter uses 2 fewer registers compared to the former method.

5.2 Memory Allocation Time

We compare nvshmem malloc times without and with dynamic heap feature.
In static heap runs, during NVSHMEM initialization, NVSHMEM SYMMETRIC SIZE
sized memory is allocated and memory of peer GPUs is mapped using the CUDA
IPC API. Since all the memory allocation and setup has already happened,
nvshmem malloc only calls the allocator to find a chunk of requested size. On
the other hand, in dynamic heap runs, physical memory allocation and mapping
happens during nvshmem malloc using the CUDA VMM API.

Table 1 shows the memory allocation times on 8 GPUs of NVIDIA DGX A100
server in which all the GPUs are NVLink connected to each other. In addition
to dynamic allocation, the difference in allocation times is also attributed to the
different APIs used by the two setups. NVSHMEM initialization times for static
and dynamic heap were 300 ms and 120 ms, respectively.

1 perftest/device/pt-to-pt/shmem p bw.cu in the NVSHMEM distribution [11].
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Table 1. Latency of nvshmem malloc for different allocation sizes, using the static and
dynamic heap management methods.

Malloc size (GB) Time (ms)

Static heap Dynamic heap

1 0.023 98

2 0.023 159.9

4 0.023 299.7

8 0.023 568.8

16 0.023 1133.4

6 Related Work

OpenSHMEM 1.5 memory allocation is collective across all PEs and must also
allocate an identical buffer size at every PE. While a symmetric heap is not a
requirement, this is the approach that most OpenSHMEM libraries have taken
for supporting symmetric memory allocation. As shown in Sect. 5.2 this can
significantly reduce runtime overheads. However, reserving memory for the sym-
metric heap can be challenging for applications, which may have difficulty spec-
ifying the total symmetric heap size ahead of time, or may go through phases
where memory is used only locally. Welch et al. [14] and Ravichandrasekaran
et al. [10], have proposed the concept of memory spaces for OpenSHMEM that
allows for collective allocation of symmetric memory on an OpenSHMEM team.
This proposed extension to OpenSHMEM would allow users better control over
memory usage, in comparison with the current method of symmetric memory
allocation that is performed across all PEs.

The symmetry requirement of OpenSHMEM memory allocation also poses
a challenge to applications with irregular data distributions. Relaxing the sym-
metry of OpenSHMEM allocations was proposed by Ionkov and Young [7]. This
work identified that the OpenSHMEM symmetric pointer addressing model can
require internal lookups to support asymmetric registration and it explored the
relationship between latency and number of registrations for the symmetric
pointer addressing model. As an alternative to the OpenSHMEM symmetric
pointer addressing model, the MPI Remote Memory Access (RMA) [9] address-
ing model uses an opaque object, called a window, and a displacement into the
window’s memory. An existing memory allocation can be exposed in a window,
or new memory can be allocated as part of window creation. The window object
provides a reference to communication metadata, eliminating lookup overheads.
The displacement-based addressing model can also avoid the challenges associ-
ated with symmetric pointer arithmetic when a remote PE exposes more memory
than the local PE.

UPC (Unified Parallel C) [4] is a C language extension that provides a
Partitioned Global Address Space (PGAS) programming model for writing
parallel programs. In addition to collective shared memory allocation, UPC
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also allows a single thread to allocate distributed, shared memory from the
PGAS that is accessible by all other processes. In this way, UPC also allows
asymmetric allocation of shared memory. UPC libraries provide an environ-
ment variable (for example, UPC SHARED HEAP SIZE in Berkeley UPC [3] or
XT SYMMETRIC HEAP SIZE in Cray UPC [5]) that can be tuned at run-time
to set the per-thread maximum amount of memory in bytes that can be allo-
cated dynamically by upc alloc() and other shared array allocation functions.
UPC++ [1,15] is a C++11 library that supports a UPC-like PGAS model in
C++. Upon startup, each UPC++ rank creates a fixed-size shared memory heap
from which calls to shared memory allocation API are satisfied. The amount of
shared memory on a rank cannot exceed the size of the heap. The heap size can
be adjusted by passing -shared-heap parameter to the UPC++ run script. The
approach of dynamic symmetric heap management presented in this paper, can
also be applied to the shared memory heap in UPC and UPC++.

7 Conclusion and Future Work

This work identified static symmetric allocation as a challenge to applications
and proposed a dynamic symmetric heap allocation method that takes advan-
tage of virtual addressing to split symmetric heap management into separate
virtual and physical address allocation stages using the CUDA VMM API. Dur-
ing initialization, enough VA space is reserved to map the local PE’s symmetric
heap, as well as all peer-to-peer accessible symmetric heaps into a contiguous
VA range, up to a maximum size for each PE’s symmetric heap. During memory
allocation, additional physical address space is allocated and mapped as needed
by each PE. In addition, P2P and network registrations are created to enable
communication on the newly mapped physical memory.

Dynamic mapping of the symmetric heap enabled a simplified layout of peer
symmetric heap mappings in memory, allowing this approach to improve peer-to-
peer communication overheads by eliminating base address lookup and reducing
register usage. However, an analysis of the overhead involved in growing the
symmetric heap revealed some overheads. In particular, the need to separately
register each physical memory allocation with RDMA core layer leads to split-
ting of a communication operation into multiple communication operations. This
overhead can be addressed by enabling registration of VA space backed with
multiple physical objects. Finally, while this work has enabled dynamic growing
of the symmetric heap, dynamic shrinking of the symmetric heap and effective
heuristics to balance resource availability with runtime overheads remains unex-
plored.

Dynamic symmetric heap allocation addresses the usability challenges asso-
ciated with static partitioning of memory into symmetric and non-symmetric
regions. However, global allocation by all PEs and symmetric allocation size
requirements present challenges to applications whose data layouts don’t fit eas-
ily into this memory management model. Additional work is needed to explore
how best to support such applications in the OpenSHMEM model, while still
maintaining low overheads and high communication efficiency.
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