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Abstract. Deep learning techniques are gaining popularity due to their ability
of feature extraction, dimensionality reduction, and classification. However, one
of the biggest challenges in bearing fault diagnosis is reliable feature extraction.
When using the bearing fault vibration spectrum, the deep neural network (DNN)
model can learn the relationships in data that are unrelated to the task. In this work,
a simple approach to bearing fault diagnosis using the elimination of unrelated data
artifacts for DNN is proposed. The proposed fault diagnosis pipeline is explained
and the comparison with popular fault diagnosis methods is performed.
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1 Introduction

The rolling-element bearings are the most common industrial equipment which is nec-
essary for rotary motion machines. In electric motors, bearings are mounted on both
ends of the rotor shaft to provide smooth rotation. Especially in traction motors, bear-
ings have very high requirements for reliability due to the sensitive areas of applications
where a failure of the electric motor can lead to damage of the plant or even human
casualties. Electric motors are gaining attraction over internal combustion engines due
to their simple construction, however, a mechanical fault in the electric motor can result
in catastrophic failure. Specifically, the rolling-element bearing faults are responsible for
45%of all the electricmotor faults occurrences [1]. For this reason, conditionmonitoring
of the bearings in electric motors is of primary importance.

The most common types of faults in bearing are outer and inner race faults. When
a bearing is in the process of operation, rolling elements pass the damaged areas on the
surface of the bearing race and create vibration impulses with a certain rate defined as
fundamental defect frequency. In the case of the outer or inner race faults, the frequencies
are the ball pass frequency of the outer race (BPFO) and the ball pass frequency of the
inner race (BPFI) [2]. The definitions of these frequencies are given in Eqs. (1–2).
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where Ssh is a shaft speed in RPMs, dr is the diameter of the rolling element, Dp is the
pitch diameter.

In recent years bearing fault diagnosismethods canmostly be described as an applica-
tion of Machine Learning techniques to the bearing operation history data such as vibra-
tion, current or acoustic emission data. The usual pipeline for these methods is signal
preprocessing, feature extraction, feature selection, and classification. Signal processing
methods commonly used for bearing fault diagnosis are envelope analysis, which has
proven to be useful in analyzing low-amplitude high-frequency broadband signals con-
taining bearing fault characteristics, Spectral kurtosis [3], which is capable of extracting
the transient components masked by a noisy signal and can find the locations of tran-
sients in the frequency domain. Another technique is Wavelet Packet Transform based
on Wavelet Transform and is used for signal multi-band filtering and denoising [4].

Following the signal preprocessing step, the feature extraction step allows to repre-
sent a time, frequency, or time-frequency domain signal using several statistical param-
eters of the signal to facilitate the work of the classifier. The feature selection process
in its turn is used to choose the best features out of the feature pool and lower the fea-
ture space dimensionality. Xie and Zhang performed a comparative study of the most
popular feature selection techniques for fault classification tasks [5]. Separately using
Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) with
SVM classifier the performance of two was compared and both significantly reduced
data dimensions and showed improvement for classification accuracy, however, LDA
had better results due to consideration of interclass and intraclass correspondence.

After the feature pool is constructed, it is provided to amachine learning classification
algorithm with labels. Classification algorithms such as Support Vector Machine, Deci-
sion trees, and k-Nearest Neighbour are of the highest prevalence in rotating machinery
fault diagnosis field these days [6–8].

Gaining huge popularity during the last decade, Deep learning is a technology that
can automatically learn representative features from the data and perform classification
tasks. It significantly reduced the dependency on manual feature selection. Deep Neural
Network architecture can acquire hidden relationships contained in the original data and
amplify the meaningful interclass differences while suppressing irrelevant information
that can cause interference.

However, working with real data it is impossible to guarantee the absence of dis-
criminant fault-unrelated information, which helps in the improvement of classification
performance. This redundant information in the data may have no relationship to the
observed phenomena and in other terms can be referred to as artifacts. Thus, expert data
preprocessing for intrinsic fault-related information extraction is of primary concern.
This is true for both conventional feature extraction and DNN methods.

The diagnosis of the bearing faults traditionally relies on the analysis of the bearing
characteristic frequencies which appear at certain stages of the bearing fault formation.
These four main stages of bearing fault formation are presented in Fig. 1. In Stage 1
the emerging subsurface microcracks start to appear at the ultrasonic frequencies from
20 kHz to 350 kHz in the range D. The progressing wear results in ringing natural fre-
quencies that start to appear in the range C at 500–2000 Hz together with higher signal
amplitude in the range D. Bearing defects become visible in Stage 3 when fundamental
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frequencies, accompanied by the well-formed sidebands, start to appear in the frequency
range B. At this stage, the fault diagnosis can be performed, and the damaged component
can be found. Stage 4 is characterized by decreased amplitude of characteristic frequen-
cies and the presence of broadband random vibration. It is caused by the increased rotor
vibration which is a result of the growth of the bearing damaged area. At Stage 4 the
bearing has to be replaced immediately.

Fig. 1. Bearing fault formation stag.

From the above, it is possible to conclude that for bearing fault diagnosis the amount
of useful vibration spectrum information can be scarce. So, for the successful analysis
and classification of the bearing fault, this information must be precisely selected to
improve the performance of the classification algorithms.

In this paper, a solution for this problem is proposed as a supervised learning model
using expert-selected frequency bands. Here, from the full envelope frequency spectrum
of vibration signal, fault characteristic frequency bands are isolated and selected using
Gaussian windows. It is done to neutralize the chances for DNN to learn the bearing
resonance frequencies or normal frequency component information that is present in the
envelope spectrum as meaningful information. Feature extraction is performed using
sparse autoencoders trained specifically for each selected band and the features from
each autoencoder bottleneck layer are used to create the feature pool. After that, the
obtained feature pool is provided to Deep Neural Network for classification.
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The rest of the paper is organized as follows. The experimental setup and data
collection are described in Sect. 2. The proposedmethod is described in Sect. 3. Section 4
contains results and discussion. The conclusion is made in Sect. 5.

2 Experimental Setup

The data used in this work is obtained from a public dataset made by Kat-DataCenter of
the Chair of Design and Drive Technology, Paderborn University, Germany [9]. The test
rig used for the experiment is shown inFig. 2. The test rig has an electricmotor,measuring
shaft, replaceable bearing module, flywheel, and load motor on one shaft. PMSM 425W
drive motor Type SD4CDu8S-009 is controlled by KEB Combivert 07F5E 1D-2B0A
industrial inverter at a switching frequency of 16 kHz.

Fig. 2. Modular test rig.

Vibration data was collected using an accelerometer (Model No. 336C04, PCB
Piezotronics, Inc.) and a charge amplifier with a 30 kHz Low-Pass filter. The sensor
was attached to the top end of the test rig bearing module. The signal was digitalized
and saved with a sampling rate of 64 kHz.

In the experiment, healthy and faulty bearingswere used. The damages of the bearing
were generated by accelerated lifetime tests. In this work in total 17 different bearing
signals were used, where 6 bearings are healthy, 5 have a fault in the outer ring and 6
have a fault in the inner ring. The dataset structure used in this work with bearing codes,
types of faults and labels are presented in Table 1.
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Table 1. Bearing state codes.

Bearing code Type of fault Extent of damage Class label

K001 Healthy Run-in period > 50 h 0

K002 Healthy Run-in period = 19 h 0

K003 Healthy Run-in period = 1 h 0

K004 Healthy Run-in period = 5 h 0

K005 Healthy Run-in period = 10 h 0

K006 Healthy Run-in period = 16 h 0

KA04 Outer ring 1 1

KA15 Outer ring 1 1

KA16 Outer ring 2 1

KA22 Outer ring 1 1

KA30 Outer ring 1 1

KI04 Inner ring 1 2

KI14 Inner ring 1 2

KI16 Inner ring 3 2

KI17 Inner ring 1 2

KI18 Inner ring 2 2

KI21 Inner ring 1 2

Besides the different bearing damage extent, for higher reliability of methods devel-
oped with this data, the test rig was operated at 4 different operational conditions with
changing rotational speed, load torque, and radial force. The operating parameters of
the test rig are shown in Table 2. Bearing vibration data with all operation parameters
are included in the dataset used in this research work. Time-domain plots of vibration
signal of healthy bearing, bearing with outer ring fault, and bearing with inner ring fault
are presented in Fig. 3.

Table 2. Test rig operation parameters.

No. Rotational speed
[rpm]

Load torque [Nm] Radial force [N]

0 1500 0.7 1000

1 900 0.7 1000

2 1500 0.1 1000

3 1500 0.7 400
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Fig. 3. Time-domain vibration signal plots.

3 Proposed Method

The pipeline of the proposed methodology is shown in Fig. 4. As it can be seen from
Fig. 4, in the first step time-domain bearing vibration signals are going through envelope
analysis and FFT to obtain the envelope frequency spectrum of the vibration signal.
It allows extracting the fault frequencies which are amplitude-modulated to the high-
frequency region that cannot be distinguished in the raw frequency spectrum.

Fig. 4. A pipeline of the proposed method.

Secondly, the vibration envelope spectrum of every one-second sample is multiplied
with the Gaussian windows focused on the characteristic frequency components of the
outer ring and inner ring faults. The fault bands around inner ring characteristic frequency
harmonics tend to be wider than in the case with outer ring faults due to the inner ring
rotation at the shaft speed. Therefore, Gaussian window shapes depend on the rotational
speed and the expected shapes of the fault signature frequency band. The Gaussian
windows means are placed at the harmonics of fault characteristic frequencies which
values are calculated using Eqs. 1 and 2. Ten windows are deployed for inner ring
fault harmonics selection and in a similar way ten windows are deployed for outer ring
harmonics.
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Following that, for each of 20 selected bands, a unique three-layer sparse autoencoder
is trained in an unsupervised manner for feature extraction with the dimension of the
bottleneck layer equal to 5, while the input and output dimensions depend on the width
of each frequency band. Consequently, when the feature extraction process is done, the
data from each autoencoders bottleneck layer is gathered in the feature vector, where
each of the 10 bands obtained from multiplication with IR windows and each of the 10
bands obtained from the multiplication with OR windows is characterized by 5 features
from autoencoder. As a result, each envelope spectrum of a 1-s vibration signal sample
is now represented by 100 features.

This number of features can be too high and lead to classification performance
decrease for conventional Machine Learning techniques, therefore in this work Deep
Neural Network architecture was chosen to perform the classification task. A DNNwith
a 100-neurons input layer, one 25-neurons hidden layer, and a 3-neuron output layer is
constructed for classification.

Before training the dataset is balanced among three classes using the stratified sam-
pling technique and is normalized between zero and one. The activation function for
the input layer and a hidden layer of the DNN is ReLu and the output layer activation
function is SoftMax. Cross entropy loss function with Adam optimizer are used for DNN
training.

4 Experimental Results and Analysis

Figure 5 showsnetwork loss and accuracyplot for one training iteration.Here the network
was trained for 51 epochs at which the loss and the accuracy tended to converge, and
the training process was automatically early stopped with the training accuracy reaching
0.9976, and loss reaching 0.099.

Fig. 5. Loss-accuracy plot for DNN training.
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To evaluate the performance of the proposed method, a holdout validation approach
was chosen. For this, prior to training the network, the dataset was randomly split into
training and testing parts in 80/20 manner with the same proportion of the samples
for each class. The network was trained using the training data and then tested using
previously unseen testing data. To verify the stable performance of the proposedmethod,
the neural network was trained and tested 10 times using the unique data split for each
iteration. Figure 6 shows the confusion matrix obtained by averaging of the results from
10 training and testing iterations. The accuracy of the proposedmethod is also calculated
as the average of 10 iterations.

Performance comparison with other bearing fault diagnosis methods trained and
tested using Paderborn bearing vibration data is given in Table 3.

Fig. 6. Confusion matrix.

Table 3. Performance comparison.

Method Accuracy %

Proposed 95.07

GMM-WBBS [10] 93.10

WPT-BE-MSVM [11] 91.40

WPT-PCA-MSVM [11] 91.46
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The comparison shows that the accuracy of the proposed method is generally higher
than the accuracy of the comparison methods. This difference can be mainly explained
by the usage of the Sparse Autoencoder for feature extraction due to its capability to
create an effective characteristic representation of the data.

The Sparse Autoencoder and DNN parts were implemented using TensorFlow with
Python 3.8. All signal processing was performed in MATLAB R2021b.

5 Conclusions

In this work, a novel bearing fault diagnosis method was proposed using sparse autoen-
coder for feature extraction and Deep Neural Network for classification. The workflow
of the process was described and on an overall idea of the fault diagnosis method and
its structure was given. Method performance was compared to a set of state-of-the-art
methods.

The GMM-based spectrum selection for fault characteristic frequency bands was
intended to neglect the possible negative effects of the model learning bearing resonance
frequencies and bearing normal vibration components along with gear mesh frequency
components as related to the bearing fault. Thanks to this, the proposed approach allows
reducing the possibility of the negative influence of the data artifacts.

Although the proposed bearing fault diagnosis algorithm had access exclusively to
narrowbandmeaningful data instances selected usingGaussianwindow series, it showed
very high accuracy results compared with techniques that utilized the whole range of the
data thanks to the highly effective feature selection performance of SparseAutoencoders.
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