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Universitat Politècnica de València, Camı́ de Vera, 46022 València, Spain
{salcarpo,fcn}@prhlt.upv.es

Abstract. The vocabulary of a neural machine translation (NMT)
model is often one of its most critical components since it defines the
numerical inputs that the model will receive. Because of this, replacing
or modifying a model’s vocabulary usually involves re-training the model
to adjust its weights to the new embeddings.

In this work, we study the properties that pre-trained embeddings
must have in order to use them to extend the vocabulary of pre-trained
NMT models in a zero-shot fashion.

Our work shows that extending vocabularies for pre-trained NMT
models to perform zero-shot translation is possible, but this requires the
use of aligned, high-quality embeddings adapted to the model’s domain.

Keywords: Neural machine translation · Zero-shot translation ·
Continual learning

1 Introduction

Machine translation is an open vocabulary problem. There are many approaches
to this problem, such as using vocabularies of characters, subwords, or even
bytes.

Even though these approaches solve many of the open-vocabulary problems,
rare or unknown words are still problematic because there is little to no infor-
mation about them in the dataset. As a result, the model cannot learn good
representations about them. For example, if we create a character-based vocab-
ulary of lower and upper case letters but our training set only contains lower
case letters, our model will not be able to learn any information about uppercase
letters despite being in its vocabulary. Similarly, if they appear just a couple of
times, the model will also not be able to learn enough information about how to
use them.

As there are always constraints when training a model (e.g., amount of data
or computational resources), we need a method to update these vocabularies
after our model has been trained, but without the need to re-train the whole
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model again or without the risk of shifting its domain or weight distribution due
to the initialization and re-training of the new entries.

Most approaches to extend a model’s vocabulary either replace the old
embeddings with new ones (randomly initialized) or add new entries (randomly
initialized) on top of the old ones. However, the problem with these approaches
is that they require the fine-tuning of the model, thing that is not possible when
there is no data, or when there is so little data that its fine-tuning might hurt
the performance of the model by shifting its weight distribution too much from
the previous one.

In this work, we first study the properties that word embeddings must have
in order to use them in a zero-shot scenario. We do this by studying the conver-
gence of different word embeddings from several domains and qualities, projected
to a common latent space (e.g., GloVe, FastText and custom ones). Then, we use
FastText as a workaround to generate aligned embeddings for unknown words
and extend the vocabulary of a model in a zero-shot manner. Finally, we adapt
these embeddings to the target domain, achieving a significant boost in perfor-
mance for our zero-shot models.

The contributions of this work are two-fold:

– First, we show that word embeddings from different domains do not appear
to converge regardless of their quality. Hence, this suggests that latent space
alignment is a requirement for zero-shot translation.

– Then, we show that it is possible to improve the performance of an NMT
model in a zero-shot scenario by extending its vocabulary with aligned embed-
dings. However, to achieve significant gains in performance, these embeddings
must be adapted to the target domain.

2 Related Work

In recent years, many approaches have been proposed to learn good word rep-
resentations from large corpora. Among them, we can highlight Word2Vec [18],
which was one of the first successful neural models to learn high-quality word
vectors from vast amounts of data using neural networks; GloVe [21], which
achieved state-of-the-art performance by learning through a matrix factoriza-
tion technique the co-occurrence probability ratio between words as vector dif-
ferences; and FastText [5], which extends Word2Vec to represent words as the
sum of n-gram vectors.

Despite the success of these approaches, static word embeddings could not
capture the meaning of a word based on its context. To deal with problem1,
researchers began to focus their efforts on contextualized word embeddings such
as ELMo [22], a deep bidirectional language model, or BERT [9], a language
model that make use of the encoder part of Transformer architecture [27].

The zero-shot problem in machine translation has been widely studied with
relative success. For example, GNMT [12] showed that zero-shot machine transla-
tion was possible through multilingual systems; Ha et al. [11] presented strategies
1 This is typically seen in homograph words.



Incremental Vocabularies in Machine Translation 29

with which to improve multilingual systems to tackle zero-shot scenarios better;
and Zhang et al. [31] improved the zero-shot performance by using random online
back-translation to enforce the translation of unseen training language pairs.

In contrast, the problem of lifelong learning in neural machine translation has
not received enough attention, and it was not until 2020 that it was introduced
as a task in the WMT [3] conference. Following this research line, Xu et al. [29]
proposed a meta-learning method that exploits knowledge from past domains to
generate improved embeddings for a new domain; Liu et al. [15] learned corpus-
dependent features by sequentially updating sentence encoders (previously ini-
tialized with the help of corpus-independent features) using Boolean operations
of conceptor matrices; and Qi et al. [24] showed that pre-trained embeddings
could be effective in low-resource scenarios.

3 Models

3.1 Tokenization

Most tasks related to natural language require some form of pre-processing, being
tokenization one of the most common techniques. There are many tokenization
strategies, such as the ones based on bytes [10,30], characters [8,19,28], sub-
words [14,25], or words [7,26]. However, given the purpose of our work, we
considered that word-based tokenization would be enough.

Specifically, we used the Moses tokenizer [13] because it is a reversible word-
based tokenizer. That is, it can transform a tokenized text into its original ver-
sion, and it also considers punctuation marks and nuances about the language.

3.2 Transformer Architecture

Nowadays, most machine translation systems are based on encoder-decoder
neural architectures. However, amongst these Seq-to-Seq architectures [26], the
Transformer [27] is the one that has obtained the latest state-of-the-art results.

The Transformer model has the advantage that it is based entirely on the
concept of attention [4,16] to draw global dependencies between the input and
output. Because of this, the Transformer does not need to make use of any
recurrent layers to deal with temporal sequences, and it can process its sequences
in parallel, obtaining significant performance improvements.

To accomplish this, the Transformer uses linear and normalization layers,
residual connections, attention mechanisms, and mask-based tricks to encode
the temporal information of its sequences.

3.3 Projecting Vectors into Different Latent Spaces

One of the requirements to extend the vocabulary of a pre-trained model with
new entries is that the dimensionality of the new entries matches the dimension-
ality of the old ones.
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If both entries have the same dimensionality, there is no problem, but if they
do not, we need to transform them to have the same dimensionality (i.e., vector
compression). There are many ways to project a set of vectors into a lower-
dimensional latent space. We decided to explore the most common techniques,
such as the projection of embeddings through PCA and Autodercoders (linear
and non-linear), and their reconstruction error.

It is essential to highlight that although two sets of vectors might have the
same dimensionality, their vectors might be projected into different regions of
the same latent space. Namely, they could show similar distances amongst their
respective word-pairs, but at the same time, they could reside in different loca-
tions.

Principal Component Analysis. Principal Component Analysis (PCA) is a
method commonly used for dimensionality reduction. This method allows us to
project an n-dimensional data point from a given dataset into another vector
that resides in another n-dimensional space but with lower dimensionality while
preserving as much of the data’s variation as possible.

We will use this method to transform the embeddings from their original
dimension to a lower dimension to match the one that our models need.

Autoencoders. Autoencoders are a type of Artificial Neural Network used to
learn specific representations from unlabeled data. That is, they can encode a
vector in a given n-dimensional space into another n-dimensional space while
preserving as much of its information as possible.

These models usually are made from two separated blocks: i) the encoder,
which learns how to encode the input data into a latent space; ii) and the decoder,
which is in charge of transforming the encoded input data into the original input
data.

In this work, we will use linear autoencoders (which in theory should be equiv-
alent to PCA) and non-linear autoencoders. This comparison aims to explore
potential non-linear representations for the embeddings.

4 Experimental Setup

4.1 Datasets

The data used in this work comes mainly from the WMT tasks [1,2]. In Table 1
we find all datasets used in this work.
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Table 1. Datasets partitions

Dataset Train Val Test

Europarl v7 (DE-EN) 2M/100K 5000 5000

Multi30K (DE-EN) 29K 1014 1000

The values in this table indicate the number of
sentences.

These datasets contain parallel sentences extracted from different sources
and domains:

– Europarl contains parallel sentences extracted from the European Parlia-
ment website

– Multi30k is a small dataset from WMT 2016 multimodal task, also known
as Flickr30k

4.2 Training Details

As we were interested in exploring techniques to expand the vocabularies of a
pre-trained model, we did not use subword-based tokenizers such as BPE [25] or
Unigram [14]. Instead, we pre-processed our datasets using Moses [13] to create
a word-based vocabulary (one per language).

For each dataset, we created word-based vocabularies with 250, 500, 1000,
2000, 4000, 8000, and 16000 words each. Then, we encode the Multi30K (de-en),
Europarl-100k (de-en), and Europarl-2M (de-en) datasets using these vocabu-
laries.

In addition to this, we use AutoNMT [6] as our sequence modeling toolkit. All
the experimentation was done using a small version of the standard Transformer
with 4.1 to 25M parameters depending on the vocabulary size (See Table 2). The
reason for this was to speed up our research as the focus of this work was not to
achieve state-of-the-art performance but to extend the vocabulary of pre-trained
models in a zero-shot manner.2

Table 2. NMT models hyperparameters

Model Parameters Hyperparameters

Transformer small 4.1M (S)—25.0M (L) 3 layers/8 heads/256 dim/512 ffnn

Common hyperparamters: Loss function: CrossEntropy (without label
smoothing). Optimizer: Adam. Batch size: 4096 tokens/batch, Clip-norm: 1.0.
Maximum epochs: 50–100 epochs with early stopping (patience = 10). Beam
search with 5 beams.

In order to make a fair comparison for all the models studied here, we use
the same base transformer with similar (or equal) training hyper-parameters as
long as the model was able to train correctly.
2 All models were trained using 2x NVIDIA GP102 (TITAN XP) - 12 GB each.
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4.3 Evaluation Metrics

Automatic metrics compute the quality of a model by comparing its output with
a reference translation written by a human.

Due to the sensitivity of most metric systems to their hyper-parameters and
implementation, we used SacreBLEU [23] which produces shareable, comparable,
and reproducible BLEU scores. Similarly, we also evaluated our models with
BERTScore [32], but no additional insights were gained from this.

– BiLingual Evaluation Understudy (BLEU) [20]: Computes a similarity
score between the machine translation and one or several reference transla-
tions, based on the n-gram precision and a penalty for short translations.

– BERTScore [32]: Using pre-trained contextual embeddings from BERT, it
matches words in candidate and reference sentences by cosine similarity

5 Experimentation

5.1 Projecting Pre-trained Embeddings

The typical approach when using pre-trained embeddings is to initialize the
model’s embedding layers, freeze them, train the model, and finally, fine-tune
these layers using a small learning rate. Although effective, we have to consider
that the dimensions of the embedding layers of our model and the ones from
the pre-trained embeddings must match. This is usually not a problem when
training models from scratch as we can leave the original embedding dimension
or simply add a linear layer to transform one dimension into another, but for
pre-trained models, this could become a non-trivial task.

When adding new embeddings for a pre-trained model, we need to consider
a few things. For instance, if we can afford to replace all the embeddings, we
can simply drop the old embeddings, add the new ones (plus a linear layer to
match dimensions, if needed), and then fine-tune the model. The advantage of
this approach is that all vectors share the same latent space. However, if we need
to extend an existing embedding layer, not only the dimensions of the old and
the new embeddings must match, but the region of the latent space in which
their vectors are expected. That is, let say that in a embedding A, the word dog
is at position (1, 0) and the word cat at (1, 1). But in the embedding B, dog is
at (−1, 0) and cat at (−1, −1). In both cases, their respective distance is 1,
and their embedding dimension is 2. However, both embeddings are in different
locations of the same latent space. Because of that, it is expected that the new
embeddings have to be aligned with the previous ones to use them in a zero-shot
environment.

In Fig. 1a we have the reconstruction errors (R2) for the embeddings of a
translation task, corresponding to a Transformer trained on the Multi30k (de-
en) datasets. Similarly, in Fig. 1b we have the reconstruction errors (R2) for
the GloVe [21] embeddings, which are high-quality embeddings from modeling
co-occurrences probabilities through a matrix factorization process.
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(a) Multi30K (304 256) (b) GloVe (300 256)

Fig. 1. Reconstruction errors of the compressed embeddings using Linear and No-
linear methods. Comparing both images, we can see that the higher the quality of
the embeddings, the lower the reconstruction error. Furthermore, non-linear methods
do not seem to be needed, as the embeddings seem to basically hold linear relations
amongst them

In both figures, we see that PCA and autoencoders performed remarkably
similarly. For the linear projections, PCA had a perfect overlap with the linear
autoencoder, as expected, but the former significantly faster3. In contrast, the
non-linear autoencoder performed slightly worse than these two, probably due
to its additional complexity. From these observations, it seems that there is no
need for non-linear methods when it comes to projecting embeddings to other
latent spaces due to the linear relations of their vectors.

Concerning the vocabulary size (number of embeddings), as we increase it,
the reconstruction error also increases regardless of the model. We believe that
this is because the entries in our vocabulary are sorted by frequency, forming
a long-tail distribution. Hence, as we increase the vocabulary size, we add less
and less frequent entries to our vocabulary. As a result, their embedding vectors
will not have the same average quality as the previous ones due to the lack of
samples (frequency), so they will be noisy. Because of this, and given that noise
cannot be compressed, it is to be expected that some of their information is lost,
given that both PCA and Autoencoders perform lossy compression.

In the case of the GloVe embeddings, we see that the reconstruction errors
remained pretty low regardless of the vocabulary size. In the same line as the pre-
vious explanation, we think that this is because the GloVe embeddings have more
quality than the Multi30k embeddings because the GloVe embeddings resulted
from a technique specifically designed to learn high-quality embeddings, while
the Multi30K embeddings were the byproduct of a translation model trained on
a very small dataset.

3 We compare these linear methods despite their theoretical equivalence as a sanity
check, and because we cannot use PCA when the dimensionality of the vectors is
greater than the number of samples.
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5.2 On the Importance of High-Quality Embeddings

In order to perform zero-shot translation when new vocabulary entries are added,
we need these entries to share the same latent space at some point as an initial
requirement.

We expected that as we increased the amount of training data, the embed-
dings would not only improve their quality but, at some point, they would start
to converge to the same regions in the latent space. To test this theory, we pro-
jected embeddings from multiple dataset sizes and domains into a 2-dimensional
space using t-SNE [17] to visualize the shape and the linear relations between
the clusters of words, in order to intuitively get a grasp on both the quality and
similarity of the embeddings.

(a) Multi30K (b) Europarl-100k (c) Europarl-2M

Fig. 2. t-SNE projections for the 8000-word embedding layer (en) of a transformer
trained on Multi30k, Europarl-100k and Europarl-2M.

In Fig. 2 we see that it was not until we used a dataset with 2M sentences
(See Fig. 3a) that we started to see clusters of similar words. However, when
we re-trained the model, we ended up with a completely different set of high-
quality embeddings (different clusters) that would not have allowed zero-shot
translation.

Finally, we wanted further explore the non-convergence problem by adding
two well-known high quality embeddings: GloVe [21] and FastText [5]. From
the t-SNE projections [17] in Fig. 3 we can see that although these high-quality
embeddings group similar words together (i.e., man, woman, children), their
clusters are completely different as well as the distance between non-related
words (i.e., distance between bird and man).

From these results, it is clear to us that in order to perform zero-shot transla-
tion, the new embeddings have to be perfectly aligned with the previous ones. It
is essential to highlight that we ended up with different projections each time we
trained a t-SNE projection (figures). However, these projections were remark-
ably similar for the same embedding set (e.g., GloVe-GloVe, FastText-FastText,
etc.), but very different between different embedding sets (e.g., GloVe-FastText,
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(a) Europarl-2M (b) GloVe (c) FastText

Fig. 3. t-SNE projections for the Europarl, Glove and FastText embeddings

Europarl-FastText). Because of this, we consider that our findings are sound and
not the artifact of a specific projection.

5.3 Zero-shot Translation

To study whether it was a strong requirement that the new embeddings had
to be aligned with previous ones in order to perform zero-shot translation, we
designed three experiments in which we studied vocabulary expansion using:

– Unaligned Embeddings
– Aligned Embeddings (out-of-domain)
– Aligned Embeddings (in-domain)

For each experiment, we trained six translation models with vocabularies of
250, 500, 1000, 2000, 4000, and 8000 words. We then extended these vocabularies
to 16K words using pre-trained embeddings, but without fine-tuning (zero-shot).
Finally, we evaluated the performance of each model as a zero-shot task before
and after the vocabulary expansion.

Unaligned Embeddings. In this experiment, we trained six translation mod-
els (with randomly initialized embeddings) on the Europarl-100k (de-en) dataset.
Once the models were trained, we extended their vocabularies up to 16K (with-
out fine-tuning) using the following pre-trained embeddings:

– Multi30K (Low-quality/out-of-domain)
– Europarl-100k (Low-quality/in-domain)
– GloVe (High-quality/out-of-domain)

However, the results in all cases were worse than the base model, although
not by much, with a decrease of 0.25 to 1.0 pts of BLEU. This happened regard-
less of the quality of the embeddings (GloVe vs. Multi30k/Europarl-100k) and
their domain (Europarl-100k/in-domain vs. GloVe/out-of-domain). Similarly, we
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performed another experiment where the new entries had been randomly initial-
ized, but the results were surprisingly similar. This observation shows that an
NMT model does not know what to do with the new embeddings without proper
alignment or re-training despite their quality.

From these results, we conclude that for an NMT model, the quality and the
domain adaptation of these pre-trained embeddings are properties that might be
critical for transfer learning but not sufficient to perform zero-shot translation.

Aligned Embeddings. Since in the previous experiment we had shown that the
quality and domain adaptation of the embeddings were not a sufficient require-
ment for their use in zero-shot settings, this time we wanted to study whether,
as we previously hypothesized, the alignment of the embeddings was a critical
requirement for extending the vocabularies of an NMT model in a zero-shot
setting.

To this end, we designed a twofold experiment in which we studied the use
of aligned embeddings, but with in-domain and out-of-domain embeddings.

For the experiment with the out-of-domain aligned embeddings, we decided
to use FastText to initialize the embeddings of our models4. After initializing
the embeddings layers and freezing them, we trained six NMT models with
vocabularies from 250 to 8K words on the Europarl-100k (de-en) dataset, similar
to previous experiments. Finally, we extended the vocabularies of these models
up to 16K words. As the previous and new embeddings had been generated
using FastText (and not modified), both embeddings were already aligned, so
there was no need to use any alignment method.

(a) FastText embeddings (raw) (b) FastText embeddings (fine-tuned)

Fig. 4. BLEU scores from using aligned embeddings: FastText (raw) and FastText
(fine-tuned). Adapting the aligned embeddings to the model’s domain seem to be par-
ticularly relevant.

Interestingly, we can see in Figs. 5 and 4a that when we trained our models
using the FastText embeddings (frozen), we got a wide range of results depending

4 The reason why we switched from GloVe to FastText is that the latter had mul-
tilingual support and in addition to this, it allowed us to generate embeddings for
unknown words.
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on the original vocabulary size. When we extended the vocabulary from 250 to
16K, we lost 0.37 pts of BLEU. Then, the increases or decreases in performance
were marginal after expanding the 500, 1K, and 2K vocabularies up to 16K
words. In contrast, after we extended the 4K and 8K vocabularies to 16K, we
obtained small but consistent performance increases of up to +0.53 pts of BLEU.

These results seem to indicate that even though the embeddings were aligned,
an NMT model still needs enough words to learn to generalize to other but similar
words. However, we wondered how domain adaptation could affect these results,
so we repeated the previous experiment, but this time, fine-tuning the FastText
embeddings to the Europarl domain.

Fig. 5. BLEU scores differences from using Random (baseline) and FastText (raw
and fine-tuned) aligned embeddings. Adapting the aligned embeddings to the model’s
domain seem to be particularly relevant but the model still requires an initial medium
vocabulary to learn to generalize to unseen embeddings

Surprisingly, this fine-tuning turned out to be much more important than we
initially expected as we got significant improvements in all our models, with a
peak improvement of +1.92 pts of BLEU (See Fig. 4b and Fig. 5).

These results appear to indicate that if we want to expand the vocabulary of
an NMT model in a zero-shot fashion, both the alignment and domain adaptation
of the embeddings are strong requirements for zero-shot translation.

6 Conclusions

In this paper, we have studied the properties required to extend the vocabularies
of an NMT model in a zero-shot fashion.

First, we have shown that high-quality embeddings have low-construction
errors when projected into lower-dimensional spaces. However, despite the large
amounts of data needed to obtain high-quality embeddings, these embeddings
do not seem to converge to the same regions of the latent feature space. Hence,
embedding alignment is required. Next, we have shown that extending the
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vocabulary of an NMT model in a zero-shot fashion is not only possible, but
it is also a simple and effective way to improve the performance of an NMT
model without re-training.

Finally, our work suggests that to expand the vocabulary of an NMT model
and perform zero-shot translation, we must use high-quality embeddings adapted
to the domain and, above all, properly aligned with the previous embeddings.

7 Future Work

Many adaptations and experiments have been left for the future due to a lack
of time. Some of the ideas that we would have like to study are:

– Can we mitigate the effects of the catastrophic forgetting problem through
vocabulary extensions?

– Does this method work for context-aware embeddings?
– Can we have an Online NMT model that learns its vocabulary on the fly?
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