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Chapter 7
Development of Lightning Hazard Map 
for Fire Danger Assessment Over 
Mountainous Protected Area Using 
Geospatial Technology

Dipuo Olga Mofokeng, Adeyemi Olusola, and Samuel Adelabu

Abstract Lightning is regarded as a leading cause of fatalities, injuries, property 
damages, and interruptions to businesses. As against some other tropical countries, 
especially around the equator in Africa and South America, South Africa does not 
experience as much lightning activity; however, it is still considered a lightning- 
prone country. With the advent of remote-sensing technology and its capabilities, 
the world can detect nearly all lightning strikes in real-time with the ability to also 
geolocate the strike with high temporal and spatial accuracy. This study aims to 
advance the understanding of the geography of CG lightning activity in South Africa 
through the application of geospatial technology. Using spatial analysis techniques, 
this research evaluated 11-year lightning data (2007–2017) to develop a lightning 
hazard map for Golden Gate Highlands National Park. The monthly strike count of 
lightning increases from the minimum value in July (0.08%) and displays a peak in 
December (23.80%). The average diurnal variation (2007–2017) suggests that light-
ning is more prevalent in terms of occurrence from 14:00 to 18:00 SAST with two 
clear maxima at 15:00 SAST and 17:00 SAST. The lowest lightning activity is dur-
ing the morning hours at 05:00 and 06:00 SAST, and yet again at hour 08:00 
SAST. The average diurnal variation (2007–2017) suggests that lightning is more 
prevalent in terms of occurrence from 14:00 to 18:00 SAST with two clear maxima 
at 15:00 SAST and 17:00 SAST.  The lowest lightning activity is during the  
morning hours at 05:00 and 06:00 SAST, and yet again at hour 08:00 SAST.  
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Spatial autocorrelation analysis revealed that the clustering of lightning strikes at 
the park is at the distance of about 1.2 km. This connotes that strikes clustered with 
other strikes are not likely to strike an individual specific location from centre of 
cluster of strikes much beyond a circle with a radius of 1.2 km.

Keywords Lightning · Spatial Statistics techniques · Remote Sensing · Fire 
Danger Assessment

7.1  Introduction

Lightning as an activity most likely predates human existence (Gijben, 2012, Rakov 
and Uman, 2003) and even a critical meteorological phenomenon. Lightning is 
regarded as a leading cause of fatalities, injuries, property damages, and interrup-
tions to businesses (Cha et al., 2017, Gijben et al., 2017). By definition, lightning 
can be described as the release of static electricity in the sky or between the clouds 
and the ground (Gijben, 2012, Rakov and Uman, 2003). On a global scale, lightning 
is responsible for not more than 24,000 deaths and 240,000 injuries on an annual 
basis (Blumenthal et  al., 2012). From Earth Observation Satellites (EOS), about 
39–49 lightning flashes are captured around the globe per second. This is translated 
to about 1.4billion flashes per day on a Cloud-to-Ground (CG) scenario (Christian 
et al., 2003, Gijben et al., 2017).

As against some other tropical countries, especially around the equator in Africa 
and South America, South Africa does not experience as much lightning activity; 
however, it is still considered a lightning-prone country (Bhavika, 2007, Gijben, 
2012). Yearly death rates from lightning in South Africa is 6.3 per million of the 
population, which is 15 times more than the global average (Gill, 2009). This figure 
is presumed to be underestimated per actual mortality rate. This underestimation is 
likely to be because lightning deaths are not rigidly reported in rural areas (Gijben 
et al., 2017). As a natural ignition source for global fire, lightning activities were 
recently operationalized as one of the driving factors in fire danger or risk modelling 
(Chuvieco et al., 2014, 2010, Eskandari and Chuvieco, 2015, Huang et al., 2015). 
According to Cha et al. (2017), an average of 816 fires were ignited by lightning 
each year globally.

During 2005, lightning fire burnt a large area of fynbos and commercial timber 
plantation in Tsitsikamma, Western Cape Province of South Africa (Durrheim, 
2010). According to the Council for Scientific and Industrial Research (CSIR) 
report on the Elandskraal fire that ravaged approximately 9440 hectares, it was 
revealed that the positive lightning strike observed on the 22 March 2017 was 
responsible for the fire which started on the 07 June 2017 (Frost et al., 2018).

With the advent of remote-sensing technology and its capabilities, the world can 
detect nearly all lightning strikes in real-time with the ability to also geolocate the 
strike with high temporal and spatial accuracy. Numerous studies have focused on 
understanding lightning activities in many countries using different lightning 
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location systems (Christian et  al., 2003; Rakov and Uman, 2003; Kigotsi et  al., 
2018). Most of the lightning systems detect electromagnetic reading using Time of 
Arrival (ToA) and Magnetic Direction Findings (MDF) methods or a combination 
of ToA and MDF. A summary of literature relating to the methods can be found in 
(Gill, 2009). These systems are either ground-based or satellite lightning sensors. 
The latter detects lightning from space through the earth-orbiting satellite which 
either detects light or electromagnetic waves from lightning discharge (Rakov and 
Uman, 2003). The well-known satellite-lightning sensors include National 
Aeronautical & Space Administration (NASA) Optical Transient Detector (OTD) 
and Lightning Imaging Sensors (LIS) on-board the Tropical Rainfall Measuring 
Mission (TRMM) (1997–2014) (Christian et  al., 2003, Kigotsi et  al., 2018). 
Formerly, sensors which detect electromagnetic pulse in very low frequency (VLF) 
or low frequency (LF) include regional Lightning Detection Network (LDN) such 
as United States of America National Lightning Detection Network (USA NLDN) 
and Southern African Lightning Detection Network (SALDN) in South Africa. 
Global LDN includes World Wide Lightning Location Network (WWLLN) and the 
Global Lightning datasets (Kigotsi et al., 2018).

The spatio-temporal lightning flash density and occurrence have been investi-
gated in the United States (Bentley and Stallins, 2005); Canada (Cha et al., 2017), 
Europe (Anderson and Klugmann, 2014), Mediterranean (Price and Federmesser, 
2006), India (Dewan et al., 2018), Africa (Kigotsi et al., 2018, Mayet et al., 2016) at 
the global scale (Cecil et al., 2014, Christian et al., 2003). According to Evert and 
Schulze (2005), studies on lightning have been in existence for about eight decades. 
However, in the past couple of years, there has been tremendous growth in South 
Africa as a result of the introduction of the National System (see Gill, 2009). Gill 
(2009) was the first to utilize the 2006 SALDN data in the development of the cli-
matology of South Africa. This was later updated by Gijben (2012) using the 
2006–2010 dataset. Recently, Evert and Gijben (2017) utilized the 2006–2017 
SALDN data to update the national lightning flash density map over South Africa. 
In their study, Evert and Gijben (2017) observed that the highest flash density occurs 
along the eastern escarpment of the country with values exceeding 15 flashes 
km−2 yr.−1.

Despite the availability of geo-coordinated lightning data, most CG lightning 
studies found within the country (South Africa) typically only focus on visualizing 
the distribution of CG lightning activity as a flash density for the simple purpose of 
identifying areas of high flash density rate. These forms of studies often do little in 
explaining the observed spatial patterns of flash density. Furthermore, based on the 
uniqueness of the country’s physiography, there are landscapes across the country 
that are unique to lightning activities, such as montane environments. Montane 
environments within South Africa are unique, in that they serve as places of water 
towers for South Africa and some neighbouring countries, also these areas preserve 
very unique grasslands that are endemic to South Africa and of global interest. Also, 
montane environments in South Africa are witnessing the impact of the changing 
climate through the emergence of invasive species and incessant lightning strikes. 
Therefore, this study aims to advance the understanding of the geography of CG 
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lightning activity in South Africa through the application of geospatial technology. 
Using spatial analysis techniques, this research evaluated 11-year lightning data 
(2007–2017) to develop a lightning hazard map for Golden Gate Highlands National 
Park by examining the statistical spatial and temporal patterns of lightning activity 
of Golden Gate Highlands National Park and their relationship with environmental 
characteristics, namely, elevation, slope, aspect, fire scars, and the vegetation type.

7.2  Material and Methods

7.2.1  Study Area

As a protected montane area, the Golden Gate Highland National Park (GGHNP) 
lies between 1657 m and 2797 m above sea level north-eastern of the Free State 
Province in South Africa (South African National Parks, 2013) (Fig. 7.1). The park 
is a unique Grassland Biome in South Africa and is situated in the summer rainfall 
region. The rainfall here is characterized by seasonal stretching from September to 
April with a mean annual value between 1800 mm and 2000 mm. The area is cate-
gorized as a dry sub-humid region. Summers are temperate with mean temperature 
(13 °C–26 °C) and winters are cold with mean temperature (1 °C–15 °C). In essence, 

Fig. 7.1 Location of the study area (GGHNP)
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the fire season starts in May and lasts till September. Despite numerous fire mitiga-
tion and management strategies (Strydom and Savage, 2016), this region is still 
highly vulnerable to wildfire which is in part due to its rugged terrain. On average, 
the park has lost 6809  ha of vegetation to fire accounting for 20% of the area 
(Govender, 2011).

7.2.2  Material

7.2.2.1  CG Lightning Data

CG lightning data was acquired from the Southern African Lightning Detection 
Network (SALDN) of the South African Weather Services (SAWS). The SALDN 
became operational in 2005 and underwent a series of upgrades. From 2015, the 
network consisted of 25 Vaisala CG lightning sensors that can detect all cloud-to- 
ground lightning discharges with a 90% efficiency measure (Evert and Gijben, 
2017). The SALDN is capable of detecting lightning with a location accuracy of 
~0.5 km (500 m) covering all of South Africa, Lesotho, and Swaziland (Bhavika, 
2007, Evert and Gijben, 2017, Gijben et al., 2017). The network records lightning 
events chronologically. The attribute information of each lightning strike is recorded 
including date and time, latitude, longitude, peak current with negative(−) or posi-
tive (+) polarity, major and minor ellipsoid angle, and the number of direction find-
ers that sensed the event (Bhavika, 2007). As recommended by International 
Electrotechnical Commission Standards (IEC 62858), lightning data for at least 
10 years is required to ensure that short-term scale variation in lightning parameters 
due to a variety of meteorological oscillations are accounted for (Javor et al., 2018). 
Therefore, in this study, lightning strike data for 11 years from January 2007 to 
December 2017 was utilized.

7.2.2.2  Terrain Elevation, Slope, and Aspect

Advanced Spaceborne Thermal Emission and Reflection Radiometer-Digital 
Elevation Model (ASTER-DEM) data at 30 meters freely obtained from USGS 
EarthExplorer (http://earthexplorer.usg.gov) was used for retrieval of elevation, 
aspect, and slope values. These values were selected due to its known role of oro-
graphic lifting to the enhancement of convection and consequently to lightning 
(Kotroni & Lagouvardos, 2008).
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7.2.2.3  Vegetation Type

Vegetation plays a pivot role in the universal climatic variation together with the 
convective growth and lightning activity (Dissing and Verbyla, 2003; Mushtaq 
et al., 2018). Vegetation type of GGHNP was attained from Fire Ecology Department, 
South Africa National Park, in the polygon shapefile providing GIS coverage that 
shows vegetation types in community and habitat.

7.2.2.4  Historical Fire

Historical fire scar/spot data was received from the Fire Ecology and Biogeochemistry 
Department, South Africa National Parks, with their geographical coordinates in 
polygon shapefile format. The significance of these data in lightning activity is that 
a possible-induced thunderstorm can be conceived from all sides of fire scars (Kilinc 
and Beringer, 2007).

7.2.3  Methods

Lightning data was provided in a formatted text (.cvs) that was first parsed and 
saved in a spreadsheet and then converted into a point vector layer in a GIS environ-
ment using Microsoft Excel and ArcMap 10.2. software, respectively. The geo- 
reference UTM Zone 35S was used as the projection. A Clip Tool was employed to 
extract the study area. Databases of lightning activity by year, monthly, and hourly 
were then created by using the Select by Attributes tool.

7.2.3.1  Temporal Distribution of Lightning Strikes Activity

Lightning strikes counts were analysed to explore temporal patterns of lightning 
activities over GGHNP. Annually, monthly, seasonal, and diurnal distributions were 
calculated with the summation of counts for respective periods. To evaluate the 
influence of season on lightning activity, monthly data was summarized according 
to four seasons: summer (Dec, Jan, Feb), autumn (March, April, May), winter (June, 
July & August), and spring (Sept, Oct, Nov). For diurnal, a series of graphs and 
tables were created using Excel to visualize the temporal distribution of lightning 
activity of the park.
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7.2.3.2  Spatial Distribution of Lightning Strikes Activity

To capture the spatio-temporal distribution of lightning activity, maps for visualiza-
tion showing the individual CG lightning strikes as points and density were created. 
In this study, the Hex binning analysis was employed. This analysis helps in aggre-
gating spatially lightning strike data. The reason here is that the Hex binning as used 
in this study will help to spatially aggregate the dataset (lightning strike) in a hex-
agonal manner. The assumption stems from studies (Carr et al., 1992; Genton et al., 
2006) that have posited that hexagons are visually appealing and have better sym-
metry of nearest neighbour than square or rectangular bins. The hex grid (100 m) for 
each of the dataset (lightning) were created using MMQGIS plugin version 2018.1.2 
and the lightning data was spatially joined to the hex grid using the join by location 
attribute in QGIS 2.18.5. The lightning flash density attribute was added to the new 
feature table and calculated using the Field Calculator tool by dividing the ‘count’ 
by cell area and then by the number of years spanning the dataset resulting in a 
count per km2 per year (Ng).

Hot Spot Analysis was employed to determine whether or not there is clustering 
and also to measure the degree of spatial autocorrelation of CG lightning in the 
study area. Hot Spot Analysis was performed using lightning strikes density data as 
an input. Several analyses or processes precede hotspot analysis. First, we deter-
mined the specific threshold distance or distance band for neighbouring feature, 
which is called neighbourhood. The neighbourhood consists of features that are 
analysed together to assess local clustering and this is made possible through the use 
of a threshold distant band (TDB). To determine the TDB, the Incremental Spatial 
Autocorrelation (ISA) tool in ArcGIS was conducted.

ISA is a measure of spatial autocorrelation. The Z-score here depicts the spatial 
clustering intensity and statistically significant peak z-score indicates where spatial 
processes promoting clustering are most pronounced. These peak distances were 
used to determine a distance band or threshold distance band for hot spot analysis 
using Getis–Ord Gi* (ArcGIS, 2013, Cha et al., 2017).

Furthermore, Incremental Spatial Autocorrelation calculates Global Moran 
I. Moran’s I is a measure of the correlation where negative correlation indicates the 
dispersion of similar values, positive correlation indicates clustering of similar val-
ues (either high or low), and zero correlation indicates complete spatial random-
ness. It informs us whether a set of features is clustered, dispersed, or random. It is 
based on spatial covariation divided by total variation as shown in Eq. 7.1 (Amrhein, 
2017, Moran, 1950).
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From Eq. (7.1), n is the total number of features, wij is the spatial weight matrix 
between feature i and j, the variable y is the features attribute value.

Values for Moran’s I range from −1 (dispersion) to +1 (clustered). A Z-score and 
p-value are also calculated for Moran’s I statistic. For statistically significant posi-
tive Z-scores, the null hypothesis of spatial randomness is rejected, and the high and 
low values in the dataset are considered to be more clustered than expected. For 
statistically significant negative Z-score, the spatial distribution of high and low 
values is considered dispersed and the null hypothesis is rejected (Amrhein, 2017, 
Moran, 1950). Results were represented in the form of line graphs of Moran I and 
Z-score vs distance.

To explain a spatial pattern of the CG lightning strike density, hotspot analysis 
was eventually performed using Hot Spot Analysis Getis–Ord Gi* Tool of ArcMap. 
Getis–Ord Gi* evaluates the spatial correlation from a local scale perspective. The 
Gi* as a statistic helps in determining areas of high and low clusters by looking at 
local averages to global averages. The Gi*statistic ranges in values from −3 to +3 
and is calculated for each feature and produces a Z-score indicating the intensity of 
the high or low clustering with respect to its neighbourhood depending on the sign 
of Z-score. A statistically significant ‘hot spot’ is one where a feature with high 
value is surrounded by other features with high values (positive Z-score). Likewise, 
a ‘cold spot’ is one where a feature with low value is surrounded by other features 
with low values (ArcGIS, 2013, Cha et al., 2017, Getis and Ord, 1992). The Gi* is 
calculated using Eq. 7.2.
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where xj is the attribute value for feature j, wi,j, is the spatial weight between i and j, 
and n is equal to the total number of features. Also, X and S are shown in Eqs. 7.3 
and 7.4, respectively.
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7.3  Development of Lightning Hazard Map

For the spatial distribution of Lightning Hazard Map (LHM), the Inverse Distance 
Weighted (IDW) technique of ArcMap 10.2 was employed. LHM was developed 
from the Z-score of the Hot Spot Analysis. The output of the IDW was normalized 
to range between 0 and 1 using the Raster normalization tool (ArcGIS), while the 
Reclass tool was used to stratify the entire data layer into five classes based on light-
ning potential risk of lightning activities guided by previous researches. These 
classes are categorized as follows: almost danger-free (0–0.2), minimal danger 
(0.2–0.35); moderate danger (0.35–0.50); severe danger (0.50–0.75); and extreme 
Danger (0.75–1).

7.3.1  Relationship of Lightning Hazard Map with Topography 
(Elevation, Slope, Aspects, Vegetation Types, 
and Fire Scar)

Regression analysis was undertaken to explore the relationship of LHM with terrain 
parameters, (elevation, slope, and aspect), vegetation types, and fire scars. Statistical 
analysis of the data, namely, Coefficient, Probability or Robust Probability, and 
Variance Inflation Factor (VIF), as well as t-test were used to assess each variable. 
In preparing the data for statistical analysis, the study area elevation data was pre-
pared using methods by Adelabu et al. (2018). Slope and aspect were calculated 
using the Surface Tool. All raster layers were converted into vector layers (poly-
gons) to align with vegetation types and fire scar layers and resampled to 1000 m. 
All six (6) layers were overlaid using the Spatial Join Tool of ArcMap. Regression 
analysis was performed using Ordinary Least Squares (OLS) Modelling spatial 
relationship Tool of ArcMap 10.2 software. The diagnostic results were displayed in 
the form of a table.

7.4  Results

7.4.1  CG Lightning Strike Events and Density Maps

Within the GGHNP, a total of 114,720 lightning strikes were recorded between 
January 2007 and December 2017. About 94.86% were of negative polarity and 
5.14% of positive polarity. In general, most of the previous studies showed a similar 
pattern of positive polarity accounting for less than 10% of total CG activities 
(Dewan et al., 2018). Since the CG lightning point event map is difficult to visually 
interpret, a lightning flash density map on the hexagon polygon grid for the entire 
11-year period is displayed in Fig. 7.2. The map showed that the density of lightning 
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Fig. 7.2 Map depicting the spatial density of CG lightning flashes within GGHNP between 2007 
and 2018. Lightning density (Ng) displayed the number of CG lightning events per km2 per year

Fig. 7.3 Graph of lightning events by year and hour

strikes is not uniform throughout the park. Areas of high density (in red) can be seen 
throughout the park. These observed variations in the CG lightning pattern follow 
the topography of GGHNP. The highest density was prominent at a highly elevated 
area within the park.

D. O. Mofokeng et al.
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7.4.2  Temporal Analysis

From Fig. 7.3, it can be observed that the GGHNP experienced the highest number 
of lightning events during 2016 (16,365). The distribution shows that the years 2015 
(7071 events) and 2017 (7067 events) witnessed the lowest number of individual 
lightning strikes in the park. Based on the inter-annual variability (Fig.  7.3 and 
Table 7.1), there is a possibility that the occurrence of these strikes is related to a 
large-scale climate phenomenon, such as the ElNino Southern Oscillation (ENSO) 
and the Southern Annular Mode (SAM) (Dowdy, 2016, Guha et al., 2017, Mariani 
et al., 2016). However, there is still the need to carefully unravel this relationship 
using standard climatic procedures.

Fig. 7.4 shows the seasonal variation of lightning strikes over the GGHNP for the 
period between 2007 and 2018. It was evident that maximum lightning strikes were 
observed in summer. The decrease of lightning activity observed on the onset of 
autumn to the winter season is consistent with the results of (Gill, 2009). Gill (2009) 
also observed a shift in lightning activity with the change in season in South Africa. 
Regularly in summer, a surface trough (an elongated area with relatively low pres-
sure values when reduced to sea level) associated with the deep intrusion of well- 
defined easterly wave that will result in the development of a line of convection 
extending from northwest towards the southeast over the country. Such line thun-
derstorms are well organized and moved from west to east bringing rain and accom-
panied lightning to the most of the Free State province (Gill, 2009). Low lightning 
activity in the winter season could be attributed to the less vegetation cover and 
more bare-ground. The study by Kotroni and Lagouvardos (2008) revealed that over 
a bare ground, the lightning yield is low. Changes in the surface temperature from 
minimum in winter followed by maximum on the onset of springs may lead to fluc-
tuation of lightning activity. Moreover, high lightning activity in summer could be 
attributed to cloud cover during late springs.

Table 7.1 Percentage of lightning strikes count by month and season between 2007 and 2017

Month Percentage Season Percentage

Dec 23.80% Summer 56.26%
Jan 17.57%
Feb 14.89%
Mar 10.71% Autumn 14.22%
Apr 2.82%
May 0.69%
Jun 0.47% Winter 0.68%
Jul 0.08%
Aug 0.13%
Sep 1.90% Spring 28.84%
Oct 13.38%
Nov 13,56%
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Fig. 7.4 Seasonal variation lightning strikes over GGHNP

In addition, Fig.  7.4 illustrates the diurnal variation of lightning activity on a 
seasonal basis. It revealed that majority of lightning activity occurred in the after-
noon to the early evening across all four seasons. The diurnal pattern described the 
influence of solar radiation on the development of thunderstorms. The observed 
afternoon peak in lightning activity correlates to the peak in solar radiation and 
subsequently high energy levels during this time of the day (Bhavika, 2007). Gill 
(2009) demonstrated that heat-generated, isolated, or scattered thunderstorm activ-
ity is also common in the late afternoon. However, an abnormal observation was 
made during winter season with peak in early hours of the morning (02:00). This 
diurnal pattern indicated that winter lightning is not sensitive to solar heating, and 
thus frontal activity is the dominant factor influencing thunderstorm development in 
this season (Bhavika, 2007).

7.5  Spatial Pattern Analysis

7.5.1  Global Moran 1

Output from Moran I analysis on the monthly scale, as depicted in Fig. 7.5a, revealed 
that the Moran I values are greater than 0 ranging from 0.01 to 0.49 throughout the 
year, with the exception of July. This indicates positive spatial autocorrelation of 
clustering of either high or low values of CG lightning density. However, the Moran 
I value of July is smaller than 1 indicating that the spatial pattern is randomly dis-
tributed. In winter months (June, August, and September), Moran I values range 
from 0.01 to 0.07, which reveals that spatial pattern is close to the random distribu-
tion pattern of CG lightning density. The z-score values are above zero (see 
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Fig. 7.5 Global Moran I statistic results for monthly data (a) Moran I vs Distance, (b) Z-score vs 
Distance

Fig. 7.5b) and observed p-values are low, therefore, the spatial pattern is statistically 
significant and rejected the null hypothesis that lightning density is randomly dis-
tributed except in the month of July. The CG lightning density and the Moran I 
curves show the bias of lightning density with distance. From Fig. 7.5a, b, the CG 
lightning density shows a persistent decrease with distance for afternoon and eve-
ning hours ranging from 0.00 to 0.48 at 1.2 km to values less than 0.0 at 8.3 km. 
From Fig.  7.5, it can be posited that the spatial distribution of lightning density 
within the protected area is clustered at a distance of about 1.2 km which becomes 
closer to random as the neighbourhood distance increases. On the other hand, the 
Moran I curve for late morning hours suggests a random pattern since the morning 
hours is less than zero and negative for 06:00 SAST and 09:00 SAST (Fig. 7.6a).

From Fig. 7.6b, the observed Z-score (Z > 0 and positive) curves for early morn-
ing, afternoon, and evening hours are above zero and are positive signalling a posi-
tive spatial auto-correlation and an indication of a significant clustered pattern 
(p < 0.5). Based on Fig. 7.6b, the Z-score (Z < 0 and negative) for late morning 
hours 06:00 and 08:00 SAST suggests a negative non-significant spatial correlation, 
hence, lightning activities within GGHNP during 06:00 and 08:00 are likely to 
be random.

7 Development of Lightning Hazard Map for Fire Danger Assessment…
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Fig. 7.6 Global Moran I statistic diurnal data (a) Moran I vs Distance, (b) Z-score vs Distance

D. O. Mofokeng et al.
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Fig. 7.7 GGHNP lightning strike density showing hot and cold spots

7.5.2  Hotspot Analysis Getis–Ord Gi
*

The map of Hotspot Analysis Getis–Ord Gi
*statistic using the 11-year lightning 

activity is presented in Fig. 7.7. It illustrates the regions of a statistically significant 
cluster of high and low values (hot and cold spots) presented in shades of red and 
blue based on the calculated Z-score and p-values. From Fig. 7.7, the main clusters 
are large and are identified as hot spots. These are at a higher elevation within the 
park such as in the south-western through the north-western and eastern part of the 
park. These hotspot areas cover 23.76% of the study area. Clusters of statistically 
significant low values or cold spots are mainly located in the northern part of the 
park. While 13.43% was found as statistically significant and identified as a cluster 
of low values (cold spot).

The results of the Getis–Ord Gi
*statistic for aggregated monthly data are revealed 

in Fig. 7.8. It showed that July and August (winter months) have a smaller area of 
coverage of high values of clustering and non-existing low values of clustering. 
Large coverage is identified as clusters of high values for all months between 
September and June. Table 7.2 showed the percentage of the area identified as clus-
ters of high values (hotspot) and low values (cold spot), as well as non-significant 

7 Development of Lightning Hazard Map for Fire Danger Assessment…



146

Fig. 7.8 GGHNP monthly lightning strike density showing hot and cold spots

for the monthly dataset. February and March have the largest coverage identified as 
clusters of high values (hotspot). During winter months when the lightning activity 
is at least, the largest area of coverage of hotspot is located in June (18.27%) fol-
lowed by August (12.38%) and July (10.36%) and located in the south-western part 
of the park and a small portion at the centre of the park.

During summer months when lightning activity is at its peak, the largest areas of 
coverage of hotspots are observed in February (23.70%) located in north-east and 
eastern parts of the park, followed by January (23.21%) and December showing the 
least (19.36%) and concentrated more in the south-west part of the park. During the 
autumn season, March (23.70%) contributed the highest area of coverage of hotspot 
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Table 7.2 Summary of monthly Getis–Ord Gi
*result showing the percentage of area identified as 

clusters of high values (hotspot), low values (cold spot), and non-significant

Month High Low Non-Significant Month High Low Non-significant

Jan 23.21 13.03 63.76 Jul 10.36 0 89.64
Feb 23.7 18.86 57.44 Aug 12.38 0 87.62
Mar 23.7 23.25 53.05 Sept 14.75 3.64 81.62
Apr 19.32 19.91 60.77 Oct 21.6 10.99 67.41
May 15.43 7.12 77.44 Nov 21.4 9.24 69.62
Jun 18.27 0.96 80.77 Dec 19.36 13.43 67.21
All 23.76 12.85 63.4

located extremely at the central part followed by April (19.32%) located in south- 
western and May (15.43%) located in the eastern part of the park. The high values 
of the cluster during the spring season are high in October (21.60%) concentrated 
mostly in the south-western region and less in the eastern part of the park and fol-
lowed by November (21.14%) located in the north-west portion, September with the 
least (14.75%) in north and south-western part of the park. The cold spots of light-
ning strike density are large in coverage during April and non-exist in July 
and August.

The hotspot coverage appears to be at its greatest during 22:00 SAST (30.08%), 
03:00 SAST (26.19%) and 17:00 SAST (25.75%) as shown in Fig. 7.9 and Table 7.3. 
The north-western, south-western, and central mountains have a consistently high 
level of hotspot during these time periods and through 06:00 SAST (3.33%) where 
it is almost non-existence. In the mountains of north-eastern and eastern GGHNP, 
the hotspot coverage in this region of the park is consistent but relatively smaller in 
coverage expect during 01:00, 04:00, 12:00, 16:00, and 19:00 SAST. Cold spot 
coverage appears to be at its greatest during 03:00 SAST (38.11%) and occurs 
mostly over the north-eastern flat terrain region of GGHNP. Therefore, the results of 
the Getis–Ord Gi

* test reveal localized hot and cold spots of CG lightning activity 
within GGHNP and vary with the seasons on the monthly time scale as well as 
diurnally hour of the day. The hot spots are generally located in or near the moun-
tains while most of the cold spots are located in the flat terrain of GGHNP.

7.5.3  Development of Lightning Hazard Map

The development of LHM was drawn from the Z-score of Hotspot analysis, interpo-
lated, normalized, and classified according to the potential of lightning hazard. The 
map showing coverage extent of hazard severity is illustrated in Fig. 7.10. It revealed 
that 48.76% of the entire landmass of the GGHNP falls under the severe danger 
zone. Two patches of the extreme danger zone are seen on the map towards the 
southwestern part and north-central portion of the map. Only very few portions of 
the entire landmass fall under almost danger-free zone, suggesting that the entire 
landmass of the GGHNP is largely prone to lightning hazard (Fig. 7.11).
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Fig. 7.9 GGHNP average hourly lightning strike density showing hot and cold spots

7.5.4  Regression Analysis

In order to explore the relationship between the developed LHM and the terrain 
parameters (aspect, slope, and elevation), vegetation type, and fire scars, the regres-
sion analysis was executed. OLS regression (Table  7.4) yielded a model that 
explained 77% of the variation in lightning hazard map as explained by R2 value of 
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Table 7.3 Summary of hourly Getis–Ord Gi
*result showing the percentage of area identified as 

clusters of high values (hotspot), low values (cold spot), and non-significant

Hour High Low Non-significant Hour High Low Non-significant

00 18 10.25 71.75 12 22.14 22.43 55.47
01 18.14 15.61 66.25 13 12.51 9.26 78.22
02 16.03 7.77 76.2 14 24.46 20 55.54
03 26.19 38.11 35.69 15 22.25 8.33 69.4
04 21.32 5.98 72.7 16 23.03 18.9 58.06
05 16.39 0 83.61 17 25.75 21.24 53.75
06 3.33 0 96.6 18 20.86 14.98 64.16
07 13.56 3.71 82.73 19 18 15.99 66.01
08 7.8 0 92.2 20 16.17 8.55 75.28
09 17.61 0 82.39 21 22.25 14.09 63.77
10 12.6 6 81.4 22 30.08 13.29 56.63
11 23.4 17.08 59.52 23 19.1 12.62 68.28

0.77. The coefficient statistic which explains the type and strength of co- relationship 
showed negative relationship between LHM and aspect (−0.0424). However, posi-
tive and statistically significant relationship was found on fire scars (4.5668), slope 
(0.683), vegetation (0.021), and elevation (0.0029). These results are in agreement 
with the study conducted in Yellowstone National Park (Amrhein, 2017), whereby 
there was no relation of any aspect with lightning activity. The predictor variables 
used to predict spatial clustering all have variable inflation factor (VIF) less than 7.5 
(Table  7.4) indicating little redundancy amongst variables except fire scars. 
However, fire scars have a robust relation with LHM.

The model was identified as statistically significant owing to the very low value 
of Joint F- and Wald-Statistic that is smaller than 0.05. With the Koenker (BP) sta-
tistics showing no statistical significance indicate that the model is consistent in data 
space, the variation in the relationship between predicted lightning strike density 
and explanatory variables does not change within explanatory variable magnitude. 
Therefore, there is no heteroscedasticity (non-constant variable or non-stationary) 
in the model. The Jarque–Bera Statistic test was also not statistically significant 
indicating that the regression residuals are normally distributed with a p-value 
higher than 0.05, therefore the model is unbiased. The adjusted R2 and AICs values 
of the model are 0.63 and 73.66, respectively, validating the sound performance of 
the predicted model.

7.6  Discussion

The study revealed the outcomes in assessing the spatio-temporal patterns of CG 
lightning activity over the GGHNP. The application of statistical spatial autocorre-
lation and clustering techniques such as Global Moran I and Getis–Ord Gi

* was 
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Fig. 7.10 GGHNP average hourly lightning strike density showing hot and cold spots (contd)

effective in delineating the LHM, identifying what areas of the park experience 
clusters of lightning activity. The regression analysis was performed testing the rela-
tionship between the developed LHM and physical properties of GGHNP terrain.

The monthly strike count increases from the minimum value in July (0.08%) and 
displays a peak in December (23.80%) as shown in Table 7.1. It is observed that the 
maximum lightning strikes count occurred in the summer months (DJF), accounting 
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Fig. 7.11 Lightning hazard map for GGHNP (2007–2017) showing coverage extent of hazard 
severity

Table 7.4 OLS regression diagnostic for the entire dataset

Dependent variable Lightning hazard map
Variables Coefficient Std. error t-Statistic Probability Robust_Pr VIF

Aspect −0.0424 0.0606 −0.6949 0.4970 0.4884 1.41
Elevation 0.0029 0.0008 3.5989 0.0024* 0.0003* 2.14
Slope 0.0683 0.0699 0.9773 0.3429 0.2706 1.72
Vegetation 0.0211 0.0676 0.3125 0.7586 0.6393 1.35
Fire 4.5668 6.1007 0.74857 0.4649 0.008631* 37.164
R-Squared 0.770884 Wald- 

Statistic
0.000000*

Adjusted 
R-Squared

0.670646 Koenker 
(BP)

0.415350

(AICc) 73.663751 Jarque–
Bera

0.789538

F-Statistic 0.000382*
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for 56.26% of the total lightning strikes. This is followed at a distance by the spring 
(SON) and  autumn (MAM) months. SON and MAN accounted for 28.84% and 
(14.22%), respectively, with the lowest count in the winter (JJF) months (0.68%). 
Also, we observed that as the winter season progresses, that is April upwards, light-
ning strikes count showed a decreasing trend. This decreasing trend during the 
autumn season moving into the winter season is constituent with Dewan et  al. 
(2018) who reported a shift in lightning strikes count with the change in season in 
Bangladesh. The summer peaks and the consistent monthly variability are consis-
tent with Bhavika (2007) and Mayet et al. (2016). The lightning strikes observed 
during summer months are associated with the nature of the terrain leading to oro-
graphic forcing; the increase in the total precipitable water column as a result of 
abundant moisture in the atmosphere;  an increased surface temperature due to 
intense solar heating leading. The persistent heating of the land atmosphere creates 
instability in the atmosphere, by enhancing convection activities leading to severe 
storms heralded by lightning.

The average diurnal variation (2007–2017) as depicted in Fig. 7.3 suggests that 
lightning is more prevalent in terms of occurrence from 14:00 to 18:00 SAST with 
two clear maxima at 15:00 SAST and 17:00 SAST. The lowest lightning activity is 
during the morning hours at 05:00 and 06:00 SAST, and yet again at hour 08:00 
SAST. A 24-h distribution of lightning activity was divided by 6-h periods revealed 
the following pattern: early mornings (00–05:59) 7.82%, late morning (06:00–11:59) 
3.72%, afternoon (12:00–17:59) 55.60%, and evening (18:00–23:59) 32%. From 
the foregoing, within the GGHNP, the lightning activity follows an afternoon–eve-
ning maxima. A comparison of diurnal variation across the seasons reveals that 
lightning activity is predominantly late afternoon-type, although it is not evident in 
the winter season. Both summer and autumn have prominent peak at 17:00 SAST 
and spring at 15:00 SAST. During winter, lightning activity is greatly diminished, 
however, there is a prominent peak at 02:00 SAST. The diurnal variability and inter- 
seasonal diurnal variability observed in Figs. 7.3 and 7.4 are in agreement with the 
study by Dewan et  al. (2018), which found that peak lightning activity usually 
occurs during the afternoon-evening hour.

Number of factors may be related to this type of diurnal variation; these include 
diurnal solar cycle leading to destabilisation of the atmosphere and development of 
convective particular in springs and summer seasons (Williams, 1994). In south- 
western and north-central part of GGHNP, topography forcing the Thaba Bosiu 
Plateau and the foothills of Maluti Mountains allow convection and associate light-
ning to develop. Thus, topography in conjunction with synoptic system may lead to 
convective development (Qie et al., 2003) subsequently to the development of thun-
derstorm and lightning. Early morning peaks observed in winter season might be 
attributed to land and sea breezes circulation, nocturnal valley wind which promotes 
convection to early mornings and vertical wind shear for local convection (Dewan 
et al., 2018).

Regional road that passes through the GGHNP may enhance aerosol in atmo-
sphere caused by increased anthropogenic activities within and adjacent to the park. 
The study by Mushtaq et  al. (2018) showed that presence of aerosol in the 
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atmosphere may affect the lightning activity. South-western and northern central 
part of GGHNP support the notion that mesoscale convective is higher in the moun-
tainous area. Qie et al. (2003) articulated three trigger mechanisms of such concept 
as orographic and terrain effects, presence of wind discontinuity line or dry line, and 
availability of vegetation moisture. Since these areas of the park are dominated by 
moderate height terrain, orographic lifting with respect to complex terrain could 
initiate conditional instability of atmosphere which favours the development of 
thunderstorm  – facilitated lightning. Therefore, these mechanisms influence the 
spatial clustering of lightning activity over the study area.

Spatial autocorrelation analysis revealed that the clustering of lightning strikes at 
the park is at a distance of about 1.2 km. This connotes that strikes clustered with 
other strikes are not likely to strike an individual specific location from centre of 
cluster of strikes much beyond a circle with radius of 1.2 km. Spatial regression 
analysis (OLS) identified that elevation, slope, vegetation type, and fire scars are as 
statistically significant and positive in predicting the development of LHR.  The 
vegetation-type variable was statistically significant showing a positive relation 
with LHM. This relation of vegetation type with LHM could be viewed in light of 
the vegetation of the study area. GGHNP is predominantly an Afromontane grass-
land park. There is a conjecture that grassland has much higher sensible heat flux 
because they have senesced during dry season, and an increased sensible heat flux 
may drive thermal convection and increase lightning activity. Although fire scars 
were found to be the only variable with the highest IVF values, which is responsible 
for multicollinearity and the most variables with the robust correlationship with the 
LHM. This multicollinearity is due to the fact that the short-period dataset (I year 
dataset) was used for this variable; therefore, increasing the sample size or long- 
period dataset could be a solution (ArcGIS, 2013). A small fire scar will show an 
increase in heating, but its impact on the heating of the boundary layer will be mini-
mal (Kilinc and Beringer, 2007).

7.7  Conclusion

To the best of our knowledge, this is the first study of its kind to make use of SALDN 
data over the mountainous protected area to explore the statistical spatial and tem-
poral patterns of lightning activity: the first to employ spatial analysis techniques to 
determine the clustering of CG lightning within the GGHNP. Global clustering spa-
tial pattern was calculated using Global MoranIemployed on lightning-strike for the 
entire dataset (2007–2017), and monthly and hourly data revealed that there is 
strong evidence of global clustering and spatial patterns are statistical spatially sig-
nificant and appear to be clustered except in July, late morning hour of 06:00, 08:00, 
and 09:00 SAST.  The study demonstrated that the overall spatial pattern of CG 
lightning activity varies with time due to regional and local weather patterns as 
influenced by a large scale of climatic nodes (ENSO and SAM). This relationship 
still needs to be explored. Monthly variation revealed that lightning activities are at 
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peak during summer, in December, while diurnal variation revealed afternoon- 
evening maxima attributed to orographic effect, availability of abundant moisture, 
and diurnal solar heating cycle. The developed LHM revealed that almost 16% of 
the study area is at risk of lightning. OLS helped to identify the key factors contrib-
uting to the lightning threat being elevation. The study is a step towards new infor-
mation regarding the spatio-temporal distribution of CG lightning. The data derived 
from this study would be of significance for wildfire models used to predict, moni-
tor, and assess the lightning-induced wildfire. Knowing where and when lightning 
is mostly to cluster will allow managers to preposition suppression, plan for fuel 
treatment, and prepare fire prevention and public safety (Van Wagtendonk and 
Cayan, 2008). Although this study furnished some initial results, incorporating 
strikes characteristics (polarity, multiplicity, and strength), regional climate condi-
tions and local weather patterns that result from physical geography of GGHNP 
would advance the understanding of spatio-temporal distribution of CG lightning 
activity. Knowledge of why positive or negative clusters occur in the study area can 
be used to improve lightning-induced wildfire models.
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