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Introduction

Samuel Adelabu, Abel Ramoelo, Adeyemi Olusola, and Efosa Adagbasa

Montane environments are found in every continent on planet Earth. These areas are 
important biologically, as clearly portrayed by the Conference of Parties to the 
United Nations Conventions on Biological Diversity in 2004. The parties posited 
that montane environments are about the most biologically diverse parts of the 
Earth. A fact supported by the Conservation International by laying claim to the fact 
that 25 of the 34 world centers of greatest biodiversity hot spots are wholly or partly 
mountainous (see Price, 2013). These regions are of rugged terrain and have been 
defined as areas with an elevation of about 300 m and above over a radius of about 
7 km (Wohl, 2018). These regions cover not less than 12% of the earth’s surface and 
among other things provide various functions such as historical, cultural, religious, 
and environmental. Historically, these regions have been described as areas where 
man started domesticating plants and animals. Also, across the world, mountain 
ranges hold cultural eminence as places of tourist attractions, sports, and home to 
indigenous people. Montane environments have been deified across ages and time 
with various groups of people across the world objectifying mountains and worship-
ing them. In terms of environment, mountain regions serve as headwater catchment 
for most of the large rivers of the world (Price et al., 2013). Furthermore, the range 
of ecosystem services provided by the mountain ecosystem includes, but not limited 
to, meat, milk, wool, leather, maintenance of atmospheric composition and genetic 
library, amelioration of water, and conservation of soils (Kang et al., 2018), and it 
also provides shelter to those living on and around mountain environments. It is a 
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space for social interactions that allow for human-environment interactions. This 
human-environment interaction allows for the (re)production of goods and services. 
Due to the physiographic makeup of montane regions, that is, altitude, terrain, soil, 
and climate, montane environments are hotspots for biodiversity. The variety of 
plants and animals found within these environments is to a large extent endemic 
with great genetic diversity. Mountain biota (plants and animals) survive under the 
environmental conditions of their habitat because of their adaptability, which allows 
them to establish themselves and reproduce. It is precisely this ability to adapt to the 
specific characteristics of a given microsite, which has shaped one of the theories, is 
what partly explains the endemism found in the mountains through speciation.

From the foregoing, it is clear that montane regions or ecosystems are unique 
(Semala et al., 2022). Globally, there has been an increase in environmental aware-
ness of various environmental issues. However, within the montane setting, environ-
mental issues such as changing climate, habitat loss and fragmentation, population 
growth, agricultural activities, and natural hazards are burning issues (Atkinson and 
De Clercq, 2022; Das and Zhang, 2022, Onaolapo et al., 2022; Luliro et al., 2022). 
Although these issues are also peculiar to lowland environments, however, because 
of the physiography of montane environments and the highly sensitive nature of its 
ecosystems, changes or perturbations create almost irreversible reactions. The 
changing climate affects snow caps and glaciers on mountain tops by melting these 
age-long ice caps due to global warming (Boudhar et al., 2022). Also, the slower 
pace of recovery of natural regenerative processes, owing to colder temperatures, 
greatly increases potential for erosion, owing to steeper gradients and generally less 
fertile soil endangers this environment and soil fertility (Adagbasa et  al., 2022; 
Nyawacha and Meta, 2022; Harrison and van Tol, 2022; Luliro et  al., 2022). 
Furthermore, the changing climate is altering habitat makeup of various plants and 
animals, leading to migration of animals and extinction of some plants, which is a 
great challenge to the genetic pool of the region (Adagbasa et al., 2022). Besides, 
changing climate coupled with fires and other anthropogenic activities like over-
cultivation is leading to loss of carbon stocks in biomass of montane vegetation 
(Dipuo et al., 2022; Adagbasa et al., 2022; Onaolapo et al., 2022). These issues and 
many more impact on the livelihoods of mountain people. To the indigenous peo-
ples and those whose livelihoods depend on the ecology of the mountains most 
often than not see this physical entity, mountain, not just as a natural resource but 
also as part of their existence (Sharma et  al., 2019). To those living within and 
beyond, they understand that their well-being, to some extent their identity, espe-
cially for those living there, depends on careful stewardship of the montane ecosys-
tems (Wang et al., 2019). However, in the light of the changing climate and its direct 
and indirect consequences, new and emerging socio-economic patterns within and 
around mountain environments are developing which not only affect those living 
within and around the mountain but also those whose livelihoods depend on the 
montane ecosystems. Addressing these issues requires careful planning and the 
need to understand various aspects of montane environments. As against lowland 
areas where intensive field studies can be carried out, montane areas due to their 
physiography and location limit the number of field studies that could be carried 
out. Some mountains are so remote that to understand the dynamics of such 
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environments requires remote sensing through the use of satellites or unmanned 
aerial vehicles (UAVs) (Semala et al., 2022). Remote sensing, in contrast with tra-
ditional approaches, such as field studies, offers spatial and temporal data that are 
convenient for mapping large areas at different spatial scales in a more vigorous, 
rapid, and efficient manner (Fajji, 2015). Globally, we know more about mountain 
ranges in Asia, North and South America, and Europe than the ones in Africa. 
Several studies and documentaries abound for the Himalayas, Andes, Alps, etc. (see 
Smethurst, 2000; Funnell and Price, 2003; Wester et al., 2019). Studies for these 
ranges increased in light of the changing climates and global warming. Some of 
these studies focused on sea-level rise, melting ice caps, coastal cities in the global 
north, and changing lifestyle for those living around these ranges (Anderson et al., 
2020; Jorgenson and Ely, 2001; Wang et al., 2020). However, in Africa, besides the 
East-African Range (such as Kilimanjaro, Rwenzori), part of the Drakensberg and 
part of the high Atlas in North Africa (Smethurst, 2000; Thompson et  al., 2002; 
Kaser et  al., 2004; Jacobs et  al., 2016; Teixell et  al., 2003; Sebrier et  al., 2006; 
Büscher, 2012), little is known about other montane environments. As portrayed by 
Smethurst (2000), little or nothing is known about the mountains in Madagascar, 
Cape Verde, and other countries. Furthermore, despite the array of information 
available for some mountain ranges in different parts of the world, global assess-
ments such as the Intergovernmental Panel on Climate Change and the Millennium 
Ecosystem Assessment provide detailed information as regards mountain environ-
ments with respect to scientific and traditional indigenous knowledge (Wester et al., 
2019). Besides, only four journals deal with mountain environments globally (the 
Journal on Protected Mountain Areas Research, Sustainable Development of 
Mountain Territories, Mountain Research and Development, and the Journal of 
Mountain Science). Therefore, this book will open up closed mountain areas of 
Africa and present new and emerging studies within and around known and unknown 
mountain ranges in Africa using remote sensing techniques. This will push further 
the frontier of knowledge in mountain studies and help shape further global assess-
ments and policies. The 11 chapters presented in this book fall within the following 
thematic areas. These are:

	1.	 Satellite Remote Sensing and Montane Vegetation
	2.	 Satellite Remote Sensing and Mountain Hazards
	3.	 Satellite Remote Sensing and Mountain Ecosystem Services
	4.	 Satellite Remote Sensing of Mountain Geological and Geomorphic Surfaces
	5.	 Satellite Remote Sensing and Mountain Energy Balance Modelling

The findings presented in this book will drive global policies and help strengthen 
these fragile ecosystems in Africa. With the impact of climate change already seen 
in various parts of the continent and especially in Sub-Saharan Africa, this book will 
help understand the role climate change is playing within mountain systems and the 
impact on those depending on them for their livelihoods either directly or indirectly.

Lastly, even though the studies covered in the book cannot touch every aspect of 
mountain systems, it is expected that enough would have been presented in the book 
to help drive policies and establish montane research units across the continent.
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Chapter 1
Montane Grasslands: Biomass Estimations 
Using Remote Sensing Techniques 
in Africa

Semala Mathapelo, Adeyemi Olusola, Samuel Adelabu, and Abel Ramoelo

Abstract  Grasslands are the least protected biome across the world. The range of 
ecosystem services provided by grassland biomes includes but is not limited to the 
sequestration of carbon. Most grasslands are threatened globally due to various 
direct and indirect anthropogenic factors. These anthropogenic factors considering 
changing climates are becoming amplified leading to the gradual or total destruction 
of global grassland communities. These transformations release carbon stocks 
sequestered in grassland biomes globally leading to the global accumulation of 
atmospheric carbon (CO2). Even though several studies have presented carbon loss 
from various grasslands across the world due to various anthropogenic practices and 
natural disasters, there is still a gap in accounting for global carbon sink or loss from 
grassland biomes especially from the montane grassy environments as they are 
largely underrepresented. Mountainous areas are largely inaccessible due to rugged 
terrains and harsh weather conditions. Hence, this review aims to present existing 
approaches to studying biomass in montane grasslands and their challenges. The 
study concluded that the best approach to biomass estimation in montane grasslands 
especially in Africa lies in the use of active sensors fused with passive sensors espe-
cially those with the red-edge bands.
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1.1 � Introduction

Grasslands are found the world over except in Antarctica; these grasslands can be 
divided into two: temperate and tropical. The temperate grasslands are called by 
different names such as prairies, steppes, velds and pampas. The tropical grasslands 
are largely referred to as savannas. Grassland biomes occupy about 20–40% of the 
whole land area on earth, and they have little or absence of trees (Egoh et al., 2011). 
From time immemorial, grasslands serve as sources of animal products and also 
home to indigenous people (Kang et al., 2007). Their role in the environment as 
regards the sustenance of ecosystem services and grounds for social interactions for 
animals is quite remarkable. Ecosystem services as defined by Daily (1997, p.3)

are the conditions and processes through which natural ecosystems, and the species that 
make them up, sustain and fulfill human life … In addition to the production of goods, 
ecosystem services are the actual life-support functions, such as cleansing, recycling, and 
renewal, and they confer many intangible aesthetic and cultural benefits as well.

The range of ecosystem services provided by grassland biomes includes meat, milk, 
wool leather, maintenance of atmospheric composition and genetic library, amelio-
ration of water and conservation of soils (Sala & Paruelo, 1997; Kang et al., 2007). 
Concerning ground for social interactions, grasslands are areas of large diverse bio-
diversity which allows for human-environment interactions (Kang et  al., 2007). 
This human-environment interaction allows for the (re)production of goods and ser-
vices. One major source of attraction from the interaction is the abundance of 
genetic resources available for humankind within grassland biomes (Sala & Paruelo, 
1997). As pointed out by Sala & Paruelo (1997 p. 264):

grasslands represent the natural ecosystem from where a large fraction of domesticated spe-
cies originated, and where wild populations related to the domesticated species and their 
associated pests and pathogens still thrive [social interactions]. These areas are most likely 
to provide new strains that are resistant to diseases or contain new features important for 
humankind.

One of the important ecosystem services provided by grasslands is the maintenance 
of atmospheric composition in terms of carbon sequestration (Lal, 2008). Carbon 
sequestration is the process through which atmospheric carbon dioxide (CO2) is 
secured in other long-lived carbon (C) pools to prevent them from being accumu-
lated in the atmosphere (Lal, 2008). Sequestration of large quantities of C in grass-
land soils is very important with regard to maintaining the dynamics of the 
atmospheric carbon cycle (Fan et al., 2008). Whether below- or aboveground, the 
storage of carbon in grasslands is very important for the development of viable 
strategies for mitigating climate change at this scale. Most grasslands are threatened 
globally due to various direct and indirect anthropogenic factors such as an increase 
in the human population, deforestation, overgrazing, fires and invasive species to 
mention a few. These anthropogenic factors in light of changing climates are becom-
ing amplified leading to the gradual or total destruction of global grassland com-
munities (Kang et  al., 2007). These transformations release carbon stocks 
sequestered in grassland biomes globally leading to the accumulation of 
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atmospheric carbon (CO2). Even though several studies have presented carbon loss 
from various grasslands across the world due to various anthropogenic practices and 
natural disasters, there is still a gap in accounting for global carbon sink or loss from 
grassland biomes especially from the grasslands of the montane environments that 
are largely underrepresented (Ward et al., 2014).

Montane grasslands, like other lowland grasslands, are facing threats, but more 
importantly, the montane grassland soils face unique threats such as historical inten-
sive use by humans, a greater amount of rainfall, snow cover, steep topography 
inhibiting widespread peatlands formation and natural disturbances such as soil ero-
sion, rockfall, spring snow thaw and avalanches (Ward et al., 2014). Even though 
mountainous areas are largely inaccessible due to rugged terrains and harsh weather 
conditions. Human activities around this area by the “mountain people” and other 
people from nearby lowland areas imprint on this biome and damage this unique 
biodiversity. The damage most often than not is irreversible (Ward et al., 2014). The 
transformation of montane grasslands yields loss of carbon stock; unfortunately, 
their distribution, extent and volume are still of growing concern as these areas are 
yet to be extensively studied and accounted for in global carbon emissions as against 
their lowland counterparts (Ward et al., 2014). Understanding the carbon sequestra-
tion of montane grasslands requires a methodological design that can access remote 
areas with rugged terrains.

This study aims to evaluate global trends in biomass estimations of grasslands 
across montane environments using remote sensing techniques. To achieve this aim, 
the study will highlight growth in biomass estimation (above and below) studies 
across grassland biomes in montane environments using available satellites and sen-
sors. Furthermore, the study will showcase emerging topics, trajectories and chal-
lenges in grassland biomass estimations in montane environments using remote 
sensing techniques. Even though in situ studies cannot be ruled out, estimation of 
biomass in remote environments using remote sensing techniques and tools is very 
germane to global carbon stock estimations and validation.

Remote sensing, in contrast with traditional approaches, offers spatial and tem-
poral data that are convenient for mapping biomass at different spatial scales in a 
more vigorous, rapid and efficient manner (Fajji, 2015). Several studies have con-
sidered biomass estimation using geographic information systems (GIS) and remote 
sensing (RS) techniques (Fang et  al., 2001; Baccini et  al., 2004; Lu, 2006; de 
Castilho et al., 2006; Attarchi & Gloaguen, 2014; Dube & Mutanga, 2015; Chapungu 
et al., 2020). Very few have considered biomass estimation on montane vegetation 
(Attarchi & Gloaguen, 2014; Barrachina et al., 2015; Brovkina et al., 2017; Cho & 
Skidmore, 2009; Du et al., 2020; Massetti & Gil, 2020; Soenen et al., 2010; Sun 
et al., 2002). However, studies on biomass estimation on montane grasslands using 
GIS and remote sensing are still growing especially in areas outside China; the ones 
available are largely field-based studies (Ward et al., 2014) especially in Africa. Out 
of all these, only a few studies have considered biomass (above or below) estimation 
for grassland areas in montane environments (Fan et al., 2008; Gill et al., 2002). 
There is a need for contributions to biomass estimations in montane areas with 
improved studies focusing on below-ground biomass for montane grasslands. This 
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review is divided into the following sections: methodology, aboveground biomass 
and remote sensing, aboveground biomass (AGB) and RS, below-ground biomass 
and remote sensing, BGB and RS, grassland biomass estimations in montane envi-
ronments with a sub-section on issues and challenges in Africa and finally the 
conclusion.

Biomass is related to many important components, such as carbon cycles, soil 
nutrient allocations, fuel accumulation and habitat environments in terrestrial eco-
systems (de Castilho et  al., 2006; Lu, 2006). Plants are responsible for biomass 
production through the process of photosynthesis. When plants are burned or trans-
formed, the stored energy, in this case, carbon dioxide, CO2, is released into the 
atmosphere. CO2 is one of the most important greenhouse gases (GHGs) influenc-
ing global warming. Hence, biomass is very basic in understanding stocks of carbon 
in plant communities and most especially in montane grassland environments (Fan 
et al., 2008). Even though field measurements stand as one of the most important 
ways to estimate biomass especially in lowland areas, the situation in montane 
grasslands is rather different. The rugged terrain, altitudinal extent and remoteness 
of most montane areas render intensive field measurement for biomass estimation to 
be a laborious task. Therefore, the ability to measure and derive estimates of bio-
mass remotely from observation platforms stands as one of the most unique ways to 
overcome this challenge. The ability to appropriately harness the utilities of remotely 
sensed products using remote sensing techniques will go a long way in ensuring 
improvement in biomass mapping in the light of the changing climates.

1.2 � Methodology

1.2.1 � Data Source

The study is approached from a global point of view. The data for this study were 
retrieved from the SCOPUS database. The SCOPUS database was used based on its 
reputation and wide acceptance. Hence, any paper published on the topic in any 
journal not indexed in SCOPUS would not have been retrieved. The data was down-
loaded in a .bibtex format, and it contains the title, authors, institutions, abstract, 
keywords, keywords plus and references, among other things (Fig. 1.1).

1.2.2 � Data Retrieval

The dataset in .bibtex format as retrieved for this study from SCOPUS is based on 
the syntax “grasslands and remote sensing and mountains and biomass” or “grasses 
and biomass and mountain and remote sensing” or “highlands and grass and 
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Fig. 1.1  Flowchart showing the methodology and outputs

biomass and earth observation”. The choice of the search syntax is borne out of the 
focus of the study and careful identification of the mix of words on google scholar. 
The syntax used for the review was tested within Google Scholar for appraisal and 
stability. After careful sorting and to the satisfaction of the authors, we applied the 
same search protocol ([grasslands and remote sensing and mountains and biomass] 
or [grasses and biomass and mountain and remote sensing] or [highlands and grass 
and biomass and earth observation]) within the SCOPUS database.

This was essential to ensure that studies on the subject were not left out due to 
the choice of words. Hence, these strings of words form the focus of this study 
(Fig. 1.1). Therefore, any publication that is not solely on the use of remote sensing 
techniques for the estimation of grasslands in montane environments will not be 
retrieved by the search engine. Out of a total of four thousand three hundred and 
eighty-six (4386) papers published under the syntax “grasslands and remote sens-
ing”, only twenty-four (24) papers have been published so far using the “grasslands 
and remote sensing and mountains and biomass” or “grasses and biomass and 
mountain and remote sensing” or “highlands and grass and biomass and earth 
observation” syntax and indexed in SCOPUS (Fig. 1.1).
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1.2.3 � Data Analysis

The bibliometrix package in R (Aria & Cuccurullo, 2017) was used to analyse the 
data (Fig.  1.1) as retrieved from the SCOPUS database. The .bibtex format was 
converted into a bibliometrix file using the convert2df () function. The convert2df 
function converts the .bibtex format into a dataframe with variables such as but not 
limited to authors, countries, affiliations, references, keywords, co-authors and cita-
tions. After the conversion, the data was used to initiate the biblioshiny environment 
using the biblioshiny () function. The biblioshiny environment is a shiny app that 
provides a web interface for bibliometrix. From the biblioshiny app, document 
information, authors publication list, wordcloud, three-field plot and thematic evo-
lution of keywords were generated (Fig. 1.1).

1.3 � AGB and RS in Montane Grasslands

There has been considerable progress in the use of optical sensors in the estimation 
AGB of grasslands (Table 1.1). Optical remote sensing makes use of visible, near-
infrared and short-wave infrared sensors to form images of the earth’s surface by 
detecting the solar radiation reflected from targets on the ground. In simple terms, it 
makes use of natural radiation from the sun and provides a two-dimensional view of 
grasslands and other earth surface topographies. Most optical images such as 
Landsat and Sentinel-2 are freely accessible and affordable and have allowed a large 
number of studies to freely use the products from these optical sensors. AGB esti-
mation in lowland grasslands has proved successful using either active or passive 
optical sensors (Niu & Ni, 2003; Ali et al., 2017; Guerini Filho et al., 2020).

Multispectral data such as the Landsat MSS, Landsat TM and Advanced Very 
High-Resolution Radiometer (AVHRR) has been successfully used in many differ-
ent areas across the world for estimating grassland biomass (Niu & Ni, 2003; 
Nguyen et al., 2020); while some others have enhanced grassland biomass estima-
tion with machine learning algorithms (Adepoju & Adelabu, 2020; Silveira et al., 
2019), their use in montane grassland studies is largely constrained and remains 
limited (Table 1.1). These constraints are due to the regular cloud conditions that 
often restrain the acquisition of high-quality remotely sensed data by optical sensors 
(Mohd Zaki & Abd Latif, 2017; Xu et al., 2020). Furthermore, vegetation indices 
(VI) computed from these optical sensors reach a saturation level on high-density 
biomass estimation (Mutanga & Skidmore, 2004). In their study, on narrow-band 
vegetation indices, Mutanga and Skidmore (2004) posited that limited channels on 
multispectral images restrict the estimation of vegetal indices such as the Normalized 
Difference Vegetation Index (NDVI) because they asymptotically approach a satu-
ration level after a certain biomass density due to growing seasons, a view upheld 
by several authors (see Mutanga & Skidmore, 2004).

S. Mathapelo et al.



7

Table 1.1  Biomass estimation: sensors, findings and references from 2009 to 2020

Sensor(s) Elevation Findings References

Optical sensors

Landsat (5, 7, 8) Montane Landsat archive is a great resource for 
reconstructing grassland areas, and 
Landsat improves the estimation of 
biomass

Kuang et al. (2020), 
Morley et al. (2019), 
Primi et al. (2016), 
Barrachina et al. (2015), 
Borrelli et al. (2015), 
Elias et al. (2015) and 
Chen et al. (2014)

MODIS Montane The capability of MODIS with or 
without climatic variables and VI 
provides a good estimate of biomass 
across montane environments

Zhang et al. (2018); 
Kuang et al. (2020), De 
Leeuw et al. (2019), 
Yang et al. (2016), 
Choler (2015), Maselli 
et al. (2013) and Yan 
et al. (2021)

RapidEye Montane RapidEye is identified as a suitable 
product for biomass estimation and an 
improvement against some other 
optical sensors

Magiera et al. (2017)

GeoEye Montane Applicability of GeoEye in biomass 
estimation was satisfactory

Morley et al. (2019)

Sentinel-1 Montane As with other optical sensors, 
Sentinel-1 also provides a good 
estimate for biomass

Morley et al. (2019)

Systéme Pour 
lObservation de la 
Terre (SPOT)

Montane It was established that the (SPOT) 
NDVI-biomass relationship can be 
quantified effectively and is a good 
indicator of biomass

Morley et al (2019) and 
Klinge et al (2018)

Airborne

Unarmed aerial 
vehicle (UAVs)
Multi-rotor UAV 
equipped with 
Micro-MCA12 
Snap
Airborne Visible 
and InfraRed 
Imaging 
Spectrometer 
(AVIRIS)

Montane The study analyses the spatio-
temporal changes in AGB using 
UAVs in Tianshan Mountain. The 
author posited that poor correlations 
exist between aboveground biomass 
and VIs, but these correlations 
improved remarkably after 
considering the terrain factors
Furthermore, using the airborne 
AVIRIS, Ernst et al. (2003) 
discriminated against different grass 
species on the White-Inyo Range, 
Eastern California. This was later 
used to understand the relationship 
between vegetation and climate and 
geology

Ernst et al. (2003)
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Despite the aforementioned limitations in the use of optical sensors, success has 
been recorded in the use of GeoEye, RapidEye, Sentinel, SPOT, Landsat and most 
especially Moderate Resolution Imaging Spectroradiometer (MODIS) (Table 1.1). 
The level of success recorded has been attributed to but not limited to the use of 
narrow-band vegetation indices computed from hyperspectral data and high spectral 
resolutions to estimate biomass (Zhang et al., 2020), especially with some results 
showing that modified vegetation indices calculated from the red-edge and near-
infrared shoulder domains can successfully estimate biomass (Table 1.1) as com-
pared to the standard red or infrared-based indices. Cho and Skidmore (2009) in 
their study conducted within the Majella National Park, Italy, a Mediterranean mon-
tane area, between 2004 and 2005 extracted vegetation indices (VIs) (narrow-band 
NDVI, modified soil-adjusted vegetation index, NSAVI, and normalized difference 
water index, NDWI) and also red-edge positions (REP) from HyMap image, an 
airborne hyperspectral imaging sensor. They concluded in their study that VIs are a 
weak predictor of grass/herb biomass within their study area. However, they con-
cluded that narrow bands in the red-edge positions are more consistent predictors of 
biomass estimations in montane grasslands. The limitations regarding hyperspectral 
data sources include but are not limited to cost, availability, processing and high 
dimensionality.

Generally, whether it is hyperspectral or multispectral, Lu (2006) and Wu et al. 
(2016) affirmed that the use of moderate to coarse spatial resolution sensors such as 
Landsat, MODIS and AVHRR for AGB estimation especially in montane grassland 
results in poor forecast accuracy. This is because of the occurrence of mixed pixels 
composed with a mismatch between the size of sections and the pixel since the area 
consists of different landscapes. However, despite these limitations, passive optical 
sensors are still the first point of call for most AGB estimations because of avail-
ability, free-to-low-cost, coverage and spectral resolution.

1.4 � BGB and RS in Montane Grasslands

Below-ground biomass (BGB) is the biomass totality of live roots except for those 
roots less than 2 mm in diameter. Live roots less than 2 mm in diameter are largely 
excluded because of the yet-to-be verified difference between these roots and soil 
organic matter. Globally, BGB accounts for about 20% of the total biomass. 
Therefore, the direct estimation of below-ground biomass is very important espe-
cially in estimating the total carbon pool and understanding carbon loss and storage 
for specific environments. Conventionally, the following methods are used in the 
estimation and monitoring of BGB. These are the excavation of roots, monolith for 
deep roots, soil core or pit for non-tree vegetation, root-to-shoot ratio and allometric 
equations (Fan et al., 2008; Peng et al., 2020). BGB estimations for most grassland 
studies have employed the above-listed methods or a combination of field-based 
studies (Fan et al., 2008; Peng et al., 2020).
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Compared to AGB, BGB of grassland communities is still growing in the litera-
ture. The use of remote sensing techniques in the estimation of BGB is still growing 
even for lowland studies. Chapungu et al. (2020) estimated BGB of savanna grass-
lands using an indirect relationship between AGB and BGB and then comparing 
that with NDVI. In their study, they stated the limitations of multispectral data espe-
cially those obtained from Landsat images. They concluded that for grassland bio-
mass estimation, multispectral sensors of Sentinel-2 and Worldview-3 hold great 
promise using the red-edge region. For montane environments, BGB estimations for 
grasslands are few and far in between. There is a need for studies on BGB estima-
tions for montane grasslands using remote sensing techniques to fully understand 
these unique ecosystems and their dynamics.

1.5 � Grasslands Biomass Estimation in Montane 
Environments: Global Knowledge

Globally, the state of knowledge with regard to biomass estimations in montane 
environments is just growing. The first paper emerged on the global scene in 2003 
(Table 1.2). The highest number of papers, five (5) in total, was published in the year 
2015 and then three published in the year 2018; every other year had less than three 
publications (Table 1.2). The growth of papers in biomass estimation of grasslands 
in montane environments has not been very great, and the reasons could be but not 
limited to the terrain, available sensors and the importance attached to this ecosys-
tem. From these studies, the platform for data extraction has been mainly from 
space (satellites), while only two studies have made use of airborne instruments 
(Sun et al., 2018).

On the global scene, some authors have contributed greatly to the subject matter. 
These authors such as Magiera, A., Feilhauer, H., Waldhardt, R., Wiesmair, M., 
Otte, A, Barrachina, M and Zhang, Y (Fig. 1.3), have published at least two papers 
on the subject matter. Across the available studies, most of the keywords outside 
grasslands, remote sensing and biomass have been on but not limited to some parts 
of China and Italy.

Attempting a spatio-temporal evolution of these keywords reveals how over time 
(2003–2020), there has been growth in the direction of studies on grasslands, bio-
mass and remote sensing in montane environments (Fig.  1.2). Studies involving 
carrying capacity, ecosystems and spatial distribution entered the narrative of stud-
ies on grasslands within montane environments using remote sensing in 2016. Since 
2016, these words have stayed to date. However, there has been little concern about 
below-ground biomass. The focus has been on aboveground biomass, primary pro-
duction of grasslands within these environments. The most prominent sensor has 
been the MODIS, while the only machine learning tool observed between the period 
is the random forest (Fig. 1.3).
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Table 1.2  Progression of publications from 2003 to 2020

Year No and title(s)

2003 1. Reindeer Pasture Biomass Assessment Using Satellite Remote Sensing
2. Relationships among vegetation, climatic zonation, soil, and bedrock in the central 
White-Inyo Range, eastern California: A ground-based and remote-sensing study

2009 1. Influences of changing land use and CO2 concentration on ecosystem and landscape 
level carbon and water balances in mountainous terrain of the Stubai Valley, Austria

2010 1. Spatial Analysis of Fire Potential in Iran Different Region by Using RS and GIS
2. Development of new vegetation indexes, shadow index (si) and water stress trend (wst)

2011 1. The correlation analysis between herbage yield and ecoclimatic factors and carbon 
storage accounting of desert grassland in Xinjiang, China

2013 1. Simulation of grassland productivity by the combination of ground and satellite data
2014 1. The application of grassland aboveground biomass estimating model in Karst 

mountainous area
2015 1. Estimating above-ground biomass on mountain meadows and pastures through remote 

sensing
2. The implications of fire management in the andean paramo: A preliminary assessment 
using satellite remote sensing
3. Land conversion dynamics in the borana rangelands of southern Ethiopia: An 
integrated assessment using remote sensing techniques and field survey data
4. Growth response of temperate mountain grasslands to inter-annual variations in snow 
cover duration
5. 2015 8th International Workshop on the Analysis of Multitemporal Remote Sensing 
Images, Multi-Temp 2015

2016 1. Monitoring of grassland herbage accumulation by remote sensing using MODIS daily 
surface reflectance data in the Qingnan Region
2. From Landsat to leafhoppers: A multidisciplinary approach for sustainable stocking 
assessment and ecological monitoring in mountain grasslands

2017 1. Modelling biomass of mountainous grasslands by including a species composition map
2. Natural mowing grassland resource distribution and biomass estimation based on 
remote sensing in Hulunber

2018 1. Mapping Plant Functional Groups in Subalpine Grassland of the Greater Caucasus
2. Climate effects on vegetation vitality at the treeline of boreal forests of Mongolia
3. Estimating aboveground biomass of natural grassland based on multispectral images of 
Unmanned Aerial Vehicles.

2019 1. Application of the MODIS MOD 17 Net Primary Production product in grassland 
carrying capacity assessment
2. Quantifying structural diversity to better estimate change at mountain forest margins

2020 1. A remote sensing monitoring method for alpine grasslands desertification in the eastern 
Qinghai-Tibetan Plateau
2. Spatial distribution pattern of NPP of Xinjiang grassland and its response to climatic 
changes

1.6 � Issues and Challenges in Africa

The issues and challenges surrounding African grasslands can be conceptually cap-
tured using the DPSIR (Drivers, Pressures, State, Impact and Response) Framework 
(Agyemang et  al., 2007). The grasslands of Africa are savannas asides from the 
velds of Southern Africa. The savanna in Africa is the most extensive in the world 
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Fig. 1.2  Thematic evolution describing the focus of studies from 2003 to 2020

Fig. 1.3  Three-field plot showing keywords (left), authors (middle) and keyword plus (right)

covering almost half of the continent. Grasslands of Africa (savanna and the velds) 
form a significant component of Africa’s terrestrial ecosystem covering not less 
than 30% of the land area and contribute about 20% of the total terrestrial primary 
productivity. In Africa and most especially in the southern part of the continent, 
grasslands are said to be an entirely important source of livestock forage, which 
does support the entire livelihood of the community depending and relying on it as 
well as the wildlife population (Schmidt and Skidmore 2001; Xu and Guo 2015).

However, before delving headlong into the challenges and issues, a background 
into existing studies will be provided. Few studies have been carried out on the 
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estimation of grassland biomass in lowlands of the African environments using 
remote sensing techniques (Fajji, 2015; Shoko et al., 2016; Sibanda et al., 2016; 
Timothy et al., 2016; de Leeuw et al., 2019; Dingaan & Tsubo, 2019; Naidoo et al., 
2019). Studies within the highlands across African environments have been on for-
est biomass (Adagbasa et  al., 2020; Adagbasa et  al., 2019; Adepoju & Adelabu, 
2019), while studies focusing on grassland biomass using remote sensing tech-
niques in montane environments are few. From the sampled dataset, none of the 
existing papers focused on Africa. This shows a key knowledge gap as regards car-
bon sequestration and loss across montane environments in Africa (Fig. 1.2). Even 
though studies have been carried out within montane environments in Africa which 
suggests that the basic requirement and datasets required for grassland studies are 
available, reasons for the low turnout on montane grassland and biomass estimation 
using remote sensing remain yet unsolved.

As with other biomes of the world, the drivers of African grasslands are largely 
human populations, livelihood patterns, wildlife and landuse/landcover. These driv-
ers put a strain on the grassland communities and ecosystem provisioning. These 
drivers create pressures on the grassland community through various human activi-
ties such as fires, urbanization, cultivation, climate change, grazing and invasive 
species (Balima et al., 2020; Gallego-Zamorano et al., 2020; Newbold et al., 2017; 
Waters et  al., 2019) and, as a result, alter the state of the grassland biome com-
pletely. The state of the African grassland community at present is an accumulation 
of pressures over the years. Across the continent, the grassland community in some 
quarters has witnessed gradual destruction, while some have been completely wiped 
out. The gradual change or changes being witnessed across African grassland envi-
ronments is a major contributor to total carbon loss into the atmosphere (Chapungu 
et al., 2020). The use of satellite data has proved useful in the understanding of pres-
sures and state. It has helped in detecting patterns of both interannual and seasonal 
variations of the land surface features as a result of various pressures such as fires 
(Adagbasa, Adelabu, Okello, et al. 2019; Adelabu et al., 2018; Adepoju & Adelabu, 
2019), anthropogenic activities (direct and indirect) (Adeola et al. 2020) and conse-
quences of climate change (Propastin et al., 2006) such as drought, dehydration, 
instabilities in rainfall patterns (Balas et al., 2007) and high temperature (Xiao & 
Moody, 2004). These climatic variables and other pressures including anthropo-
genic are products that are fully captured from remotely sensed platforms at various 
resolutions and are disseminated daily, hourly, seasonally and monthly, based on the 
observing satellites, sensors, their orbits and objectives (Wang et al., 2003). These 
techniques can be applied over Africa with a more focused and concerted effort. The 
impact of these increases the total amount of greenhouse gases (GHGs) being 
released into the atmosphere. There is therefore a need to respond by arresting the 
threat to grassland communities not only to save the community but also to preserve 
the entire environment and forestall the increasing impact of climate change. The 
response of governments and stakeholders such as conservationists, park rangers, 
environmentalists, academia and the communities is to work together and be 
involved in the co-production of knowledge and sustainable methods that would 
help save the grasslands of Africa. Therefore, adequate and enhanced environmental 

S. Mathapelo et al.



13

monitoring using remotely sensed products and techniques (Table 1.1) proves to be 
a reliable means of monitoring the impact, variations and dynamics of the changing 
African grassland communities especially the montane grasslands of Africa (Booth 
& Tueller, 2003).

Therefore, one major way out is the effective use of remote sensing techniques 
and geographic information systems, in a more coordinated manner which includes 
but not limited to the establishment of montane research units in various zones of 
the continents such as the Afromontane Unit in South Africa, to focus on montane 
activities across these zones in Africa. Together, these units using remotely sensed 
products and ground-based datasets to monitor, map and understand more closely 
the montane grassland biome will eventually help in the conservation and monitor-
ing of grasslands in Africa and contribute to the global atmospheric storage of car-
bon. This will go a long way in the conservation and protection of biodiversity 
within the grassland biomes in Africa. The stability and the resilience of the ecosys-
tem largely depend on this to ensure the continued supply of ecosystem services 
from this threatened biome, in quality and quantity as and when needed.

1.7 � Conclusion

Firstly, this study has shown that the difficulty in accessing montane areas due to 
reasons such as terrain could be one of the reasons for the low output in terms of 
publication on montane grassland studies, despite the fact that these ecosystems are 
covered by a variety of vegetation types that are largely unique to their environ-
ments and some of these grasses are yet to be fully classified, especially in Africa. 
Therefore, there is still a lot to be done by improving on studies on montane grass-
lands especially the below-ground biomass using remote sensing techniques. As 
already highlighted in the study, remote sensing platforms offer a solution since it is 
a technology that offers information in very high resolutions and is independent of 
topographic conditions.

Optical sensors with either wider or special spectral bands such as Sentinel-2, 
RapidEye and Worldview have great potentialities in biomass estimation. These 
optical satellites when fused with either RADAR or LiDAR could provide enhanced 
information on biomass estimations in mountainous regions especially in the red-
edge positions. Other positions along the electromagnetic spectrum such as the red 
and near-infrared are also of importance but more restricted and sensitive to weather 
conditions making satellites such as the NOAA, AVHRR, MODIS and Landsat of 
limited use.

Summarily, for biomass estimations (above or below), the use of active sensors 
holds great promise and opens a world of opportunities. However, cost especially 
for these active sensors stands to be an issue. Sentinel-1, radar, when fused with 
optical sensors has immense capabilities to offer in the estimation of biomass espe-
cially in montane environments. Even though studies using remotely sensed prod-
ucts to estimate below-ground biomass of montane grasslands are very few globally, 
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the inherent characteristics of the sensors and their applications in lowland areas 
show that their application in montane areas cannot be overemphasized. Radar 
images have longer wavelengths; hence, they can penetrate further than optical sen-
sors, and coupled with the fact that some radar images are freely available makes it 
even better for montane environments in Africa. The emergence of Sentinel satellite 
missions provides unlimited radar products at no cost. Also, Worldview-2 and 
Worldview-3 and RapidEye satellite missions provide datasets with multispectral 
channels that can be fused with radar images to improve the quality of biomass 
estimations across montane environments. This in essence provides a way to 
improve studies on montane biomass grassland estimations across the world and 
especially in Africa.
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Chapter 2
Unravelling Regional Geodiversity: 
A Grid-Mapping Approach to Quantify 
Geodiversity in the uThukela District, 
KwaZulu-Natal

Jonathan T. Atkinson and Willem P. De Clercq

Abstract  The interpretation and integrated application of geodiversity has under-
gone significant theoretical and applied undulation to establish its own identity 
beyond its initial generic application linked to geological diversity and biodiversity 
conservation. Geodiversity (abiotic complexity) has not received the same level of 
attention as biodiversity (biotic complexity) despite its intrinsic and indivisible link-
ages to ecosystem and landscape richness characterisation. Therefore, it must have 
its potential explored. The present work outlines the findings of a semi-quantitative 
assessment of geodiversity in the entire uThukela District Municipality (UTDM) 
using a grid-mapping approach of surrogate environmental variables. Foremost this 
work aims to provide a first approximation methodology for geodiversity index 
(GDIx) quantification adapted to a regional context with scaling-up potential to a 
national level. We present a proper application of the concept by producing a 
regional, 11,500 km2GDIx map highlighting the richness of selective (limited) abi-
otic elements at the landscape scale. We evaluate the contribution of seven ensuing 
partial diversity covariates that consider hydrographic, lithostratigraphic, pedologi-
cal, climatic, topographic, solar morphometric and geomorphometric information 
to obtain a final GDIx calculated from the sum of these partial thematic indices. It is 
expected that the GDIx digital coverage will be a flexible decision support tool, even 
for the most agnostic of users, allowing straightforward interpretation regardless of 
specialist background. Beyond the regional merits for decision-makers and practi-
tioners, this research’s novelty is its contribution to unravelling local application 
enigmas and cementing specific affirmations regarding GDIx quantification 
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optimisation gained with GIS. One of the primary outputs is a simple cartographic 
representation of ranked diversity importance of the quality of geodiversity for the 
entire UTDM that is easily understandable by a varied audience. Therefore, the 
GDIx map(s) should be considered first as a tool for integrated natural resource 
management, monitoring and reporting at a regional level. This will facilitate land 
and biodiversity management recommendations and action programmes in an inte-
grated approach to environmental management and geoconservation given the 
structural ties between geodiversity and biodiversity.

Keywords  Geodiversity · Geodiversity index · Pedodiversity · Sustainable land 
management

2.1 � Introduction

The interpretation and integrated application of geodiversity have systematically 
undergone an evolutionary adaptation in the context of geoscience since its genesis 
between 1991 and 1993, admittedly to the benefit of a broader scientific audience 
(Araujo & Pereira, 2018). First introduced at the International Symposium on the 
Conservation of Geological Heritage (Panizza, 2007) and then further unpacked 
during the Malvern Conference of Geological and Landscape Conservation 
(Sharples, 1993; Sharples, 1995) and (Serrano & Ruiz-Flaño, 2007); the concept of 
geodiversity has undergone significant theoretical and applied undulation in an 
attempt to establish its own identity beyond its initial generic application linked to 
geological diversity and biodiversity conservation (Pellitero et al., 2015). It is well 
accepted that both geodiversity and biodiversity are concepts that emerged from the 
1992 World Biodiversity Convention in Rio de Janeiro, Brazil, and has since been 
embraced by numerous countries (Brilha, 2005; Gray, 2008). Owing to its useful-
ness as a driving mechanism for habitat variation and how widely it can be employed, 
the convenience of the geodiversity concept has gained reputable exposure beyond 
that of the inaugural application centred on geological site (geosite) heritage conser-
vation (Sharples, 1993) and pedodiversity (Ibáñez et al., 1995; Alba Alonso et al., 
1998; Thwaites, 2000). Most notably, recent studies highlight additional contribu-
tions in the disciplines of biodiversity and ecosystem development (Parks & 
Mulligan, 2010; Gordon et  al., 2012), geomorphodiversity (Zhang et  al., 2003), 
geotourism (Serrano & González Trueba, 2011), geoconservation (Gray, 2013), 
environmental policy management and even geodiversity action plans (Burek & 
Potter, 2006; Prosser et al., 2011). Of particular relevance to the present study are 
the works by Serrano and Ruiz-Flaño (2007), Benito-Calvo et al. (2009), Hjort and 
Luoto (2010), Araujo and Pereira (2018) and Betard and Peulvast (2019), highlight-
ing how the combination of geological, geomorphological, climatic and hydrologi-
cal information can be used to quantify geodiversity at a regional scale.
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Geodiversity (abiotic complexity) has arguably not received the same attention 
as its biological counterpart (biotic complexity), despite its intrinsic and indivisible 
linkages to both ecosystems and landscape richness (Pellitero et al., 2015). Natural 
ecosystem diversity is understood to be the combination of these two constituents: 
biological and physical complexity of nature is necessary to determine the land-
scape individuality for a region, country and even continent (Kostrzewski, 2011; 
Santos et  al., 2017). Manosso and de Nóbrega (2016) further point out that like 
biodiversity, geodiversity is not a constant but is instead adapted to a given moment, 
place or region. While it is necessary to acknowledge the synergies between bio- 
and geodiversity, it is equally important to recognise that geodiversity is of inherent 
value in itself. Geodiversity is a significant driver of many environmental processes 
that require further affirmation on its characterisation, spatial distribution and sys-
tematisation of mapping techniques to better quantify and evaluate the full scope of 
its capability and preservation (Manosso & de Nóbrega, 2016; Zwoliński et  al., 
2018). The recent work by Atkinson et  al. (2020) demonstrates that geomorphic 
classification and delineation need a better representation in discrete landform map-
ping endeavours in South Africa. Using modern geographic technologies and incor-
porating better base maps of topography into landform mapping process (Miller & 
Schaetzl, 2014) is the centrepiece of this directive, moving away from an ad hoc to 
a more formal and systematic approach to landscape character assessment (Wascher, 
2005). Landscape character is defined here as the distinctive, recognisable and con-
sistent pattern of elements in the landscape that differentiate one landscape from 
another (Swanwick, 2002). Hence, this definition identifies individual landscape 
elements that constitute the landscape and enables systematic comparison of areas 
according to their landscape character (Galatowitsch et al., 2009).

Given the broad scope of geodiversity application, it is not surprising that there 
is limited lingua franca for defining the concept and its methodological assessment. 
Several pragmatic and mainstream definitions for geodiversity, notably that of 
Sharples (1993), Dixon (1996), Kozlowski (2004) and Zwoliński (2008), dominate 
the progressive geodiversity pedagogy. However, this study follows the definition(s) 
of the concept of geodiversity endorsed by Gray (2004) as a departure point for 
scope of assessment: “The natural heterogeneity (diversity) of geological (rocks, 
minerals, fossils), geomorphological (landforms, topography, physical processes), 
soil and hydrological features. It includes their assemblages, structures, systems and 
contributions to landscapes”, and Ruban (2010) considers the assessment of geodi-
versity “as a numerical expression of geocentric entity diversity”. For reasons of 
clarity, consistency and simplicity, it is necessary to acknowledge the interrelation-
ship of geodiversity with the following commonly used concepts (adapted after 
(Crofts et al., 2020):

•	 Geoconservation, the conservation of geodiversity for its intrinsic, ecological 
and geoheritage value.

•	 Geoheritage is an element of geodiversity, whether it is singular or combined, 
that has significant value for intrinsic, scientific, educational, cultural, spiritual, 
aesthetic, ecological or ecosystem reasons and therefore deserves conservation.
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•	 Geotope, geomorphological and/or geologic associations within a particular spa-
tial area. A geotope is the geologic equivalent of an ecotope.

Knight et al. (2015) caution that the use of these different terms may lead to a 
cause of confusion and limitations in potential geodiversity application in the con-
text of digital geomorphological mapping. While the nature of “heritage” differs 
considerably among people, between places and over time, it invariably stems from 
nature and culture, and our attachments to it are universal (Lowenthal, 2005). This 
concept is well defined in the Digne Declaration (Crofts et al., 2020) “Our history 
and the history of the Earth cannot be separated. Its origins are our origins, its his-
tory is our history, and its future will be our future”. The pluriform manifestations 
of geoheritage and geoconservation appear universal and straightforward. However, 
there are a  myriad of  tensions that can arise when defining landscape  heritage. 
These include defining where values, objectives and expertise belong, and whom 
the intended beneficiaries are for protecting it can be challenging to resolve (Graham 
et al., 2000; Rassool, 2013). Fortunately, there is no shortage of international agree-
ments or conventions and national regulations and guidelines for heritage manage-
ment in South Africa.

Many organisations, including the International Union for Conservation of 
Nature and Natural Resources (IUCN), the International Union of Geological 
Sciences (IUGS) and UNESCO, contribute to landscape conservation in various 
ways, including a geodiversity component. Specific to South Africa, two key parlia-
mentary statutes aim to regulate the utilisation and ownership of geological 
resources, i.e. the Geoscience Act (GSA, 2010) and the National Heritage Resource 
Act, 1999 (NHRA, 1999). The NHRA, in particular, aims to address South Africa’s 
imbalances in the representation and management of its heritage following apart-
heid and introduce a heritage management system that is reflective of its cultural 
diversity and constitutional democracy (Deacon, 2015). That being said, while the 
NHRA coordination, through the South African Heritage Resources Agency 
(SAHRA), serves to protect South Africa’s valuable cultural heritage resources, two 
notable caveats remain unresolved: first, if geological specimens cannot meet the 
criteria of being cultural heritage or rare artefacts, then ideally they cannot fall 
within the ambit of the NHRA (Cairncross, 2011). This, of course, limits the inter-
disciplinary contributions of geodiversity beyond archaeological and paleontologi-
cal considerations. Disciplines such as sustainable land management, natural 
resource management or even integrated environmental management would instead 
consider pedological and geomorphological diversity rather than cultural value and 
archaeological rarity high on the developmental agenda. In fact, S24(3) of the 
National Environmental Management Act (NEMA, 2008) has already made provi-
sion for identifying and managing geographical areas of importance in South Africa. 
Currently, NEMA only prioritises geographical regions for renewable energy pro-
duction. However, suppose a readily accessible, accurate and repeatable approach is 
demonstrated to provide a pragmatic solution to quantify geodiversity. In that case, 
a similar strategy may be considered a primer for prioritising regions with high-
value agricultural land, water catchment conservation or even ecosystem-based 
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services and resilience. For a synthesis of legislative and management context of 
landscapes and geoheritage sites in South Africa, readers are referred to Grab and 
Knight et al. (2015).

Generally, it is understood that geoheritage features must have unique geologi-
cal, cultural or geomorphological values (Gray, 2013). Although a descriptive ver-
sion of geodiversity is useful for geoconservation, all relevant management activities 
require a numerical expression of geodiversity quantification (Ruban, 2010). This is 
the second major limitation of geodiversity assessment in South Africa. No forma-
tive approach still exists to characterise priority patterns or exclusion patterns 
numerically or geospatially (Cocks et al., 2018), i.e. areas characterised by rich or 
poor geodiversity and low or high significance. Recently Kori et al. (2019) piloted 
the application of a Geomorphodiversity Index in the Soutpansberg range, South 
Africa, using the geodiversity assessment criteria proposed by Zwoliński et  al. 
(2018). Their geospatial quantification of geodiversity provides a baseline for the 
present study, with substantive semblances regarding the recognition of geodiver-
sity factors. The present and aforementioned referenced studies diverge, however, in 
the application concerning the quantification of geodiversity, i.e. geodiversity based 
on feature richness and abundance.

This divergence of methods remains a challenge to both geodiversity’s applied 
and theoretical unanimity and further extends to its valuation, both numerically and 
descriptively. Pereira et al. (2013) conveniently diagnose several key methodologi-
cal points that remain unresolved: these include which criteria to use to assess geo-
diversity? How to rationalise scale-factor dependencies, i.e. how does the size of the 
area under analysis influence the type of criteria, and how should the results for the 
given methodology then be presented? Following Ruban (2010), numerous quanti-
tative methods for geodiversity assessment have been proposed in the last decade. 
According to Zwoliński et al. (2018), geodiversity assessment procedures are rela-
tively subjective and informed by the observer’s knowledge and experience. Equally, 
these procedures can be selected and adapted to the object or phenomenon being 
analysed. Church (2011) further cautions that geodiversity studies are beset by the 
same methodological issues analogous to scientific observation in geomorphology: 
sampling, measurement, scales, scaling, classification and residual errors. Research 
out of South America (Serrano & Ruiz-Flaño, 2007; Benito-Calvo et  al., 2009; 
Pereira et al., 2013; dos Santos et al., 2020) and Europe (Zwolinski, 2018) present 
the most state-of-the-art interdisciplinary approaches for geospatial, mathematical 
and statistical geo-indexed geodiversity assessment and geo-visualisation. The ben-
efits of employing quantitative and geospatial methods to geodiversity assessment 
should be apparent. Melelli et al. (2017) conveniently outline these benefits: first, 
quantitative approaches are both repeatable and objective, allowing for valuable 
comparisons of areas in different geographical backdrops. Second, ranking geodi-
versity using a theoretical geodiversity index (GDIx) facilitates practical gridded 
planimetric geo-visualisation and cartographic approaches in a geographical infor-
mation system (GIS), allowing areas of similar GDIx values to be harmonised. By 
the same token, representing GDIx as a numerically ranked grid-based digital data-
set would allow overlaying the GDIx with other spatial covariate information of 
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identical grid size, reaching a GDIx value per areal sample unit and allowing the 
comparison of GDIx values in different cells of the grid as well as identifying areas 
of low or high geodiversity. Our point of departure for this research is the under-
standing that geodiversity is increasingly recognised to underpin and deliver essen-
tial ecosystem services (landscape functioning) linking people, landscapes and their 
heritage to the broader benefit of the natural and built environment as outlined in the 
MEA (2005). Comer et al. (2015) showcased that land units with high geodiversity 
are relatively resistant to degrading living conditions and well equipped to cope 
with disturbances such as climatic changes than low-geodiversity land units. 
Therefore, most important to decision-makers is prioritising the endogenous link-
ages and mapping the spatial variability between geodiversity and geological, 
hydrogeological, topographic, climatic, geomorphological and pedological covari-
ates. This presents a far more holistic approach to mitigating cross-cutting issues of 
current concern, including habit loss and food insecurity in the face of increased 
natural and anthropogenic pressures linked to economic development (Grab & 
Knight, 2015).

In fact, Lilburne et  al. (2020) poignantly reaffirm this didactic outlook. They 
state that the growing demand on land-based industries and land managers to bal-
ance the need for economic prosperity with a greater focus on sustainable landscape 
management is best achieved through the use of comprehensive land information 
systems that can assess the benefits, impacts and trade-offs of land use decisions at 
varying temporal and spatial scales. While the authors are aware of the numerous 
geodiversity studies conducted internationally (see Zwoliński et  al. (2018) for a 
thorough review), only a select few have attempted to quantify South Africa’s geo-
diversity importance, notably the work by Kori et al. (2019). Typically, most national 
studies on geodiversity have focused heavily on the importance of geosite (Ruban, 
2010) diversity for heritage preservation (Knight et al., 2015). Therefore, the pres-
ent work aims to perform a semi-quantitative assessment of geodiversity in the 
entire uThukela District Municipality located in KwaZulu-Natal, South Africa. The 
specific application of quantitative geodiversity assessment is yet to be fully 
explored in the Southern Africa context, where various landscape pattern-process 
functions inevitably influence a unique set of soil-landscape and pedo-hydro-
geomorphic processes (Partridge et al., 2010; Grab & Knight, 2015; Holmes et al., 
2016). Foremost this work seeks to provide a first approximation methodology for 
geodiversity assessment adapted to the regional context with possible scaling-up 
potential to a national level. We present a proper application by producing a GDIx 
map highlighting the richness of selective (limited) abiotic elements at a landscape 
scale. The GDIx digital dataset would then be a flexible decision support tool, even 
for the most agnostic users, allowing straightforward interpretation regardless of 
specialist background. A key consideration of our research is thus ensuring synoptic 
replicability across the landscape. In this regard, we attempt to control model sim-
plicity at minimal expense to represent each input element (partial index) diversity. 
We apply a modified methodology developed by Pereira et al. (2013) and further 
refined by Araujo and Pereira (2018). Our methodology describes the degree of 
geodiversity as objectively as possible and then maps its distribution from a panop-
tic context. More specifically, we employ a two-pronged approach as follows: first, 

J. T. Atkinson and W. P. De Clercq



25

we leverage a suite of geospatial analytical tools offered by GIS platforms to over-
lay a regular grid onto different thematic covariate categories that consider hydro-
graphic, geological, pedological, climate, topographic, atmospheric and 
geomorphological information to obtain a final GDIx calculated from these partial 
thematic indexes.

Beyond the relative regional merits for decision-makers and practitioners, the 
novelty of this research is possibly its contribution to unravelling certain application 
enigmas for the discipline. We aim to cement specific affirmations regarding opti-
misation gained with GIS, outline limitations due to feature scale, define appropri-
ate abiotic feature selection and highlight ease of cartographic interpretability. The 
authors believe that the study’s findings are pursuant to the broader international 
discussion on the evolution of quantitative geodiversity assessment methods as a 
valuable, holistic and replicable spatial decision support tool.

2.2 � Materials and Methods

2.2.1 � Regional Settings

The study site is the entire uThukela District Municipal area located between the 
Kingdom of Lesotho and the western boundary of the coastal Province of KwaZulu-
Natal (KZN), South Africa, with the seat for the municipality situated in the town of 
Ladysmith (28°33′35″S 29°46′50″E) (Fig.  2.1). Approximately 11,500  km2 in 
extent, the UTDM provides a valuable case for designing a geodiversity assessment 
map in a mesoscale context. The region presents an eclectic combination of high-
value natural resources with competing demands at different scales. Cox et  al. 
(2015) highlight the competition for using resources between local users (liveli-
hoods) and agricultural production and international demands from the tourism sec-
tor and biodiversity conservation necessary for maintaining sound natural systems. 
Furthermore, the area also includes a rich cultural heritage left by the indigenous 
San People. The rock art of the Maloti-Drakensberg Park is the largest and most 
concentrated group of rock paintings in Africa, south of the Sahara. It is outstanding 
both in quality and diversity of subject (UNESCO, 2000). The region is almost 
entirely rural. The dominant land use in private and tribal lands is commercial and 
small-scale agriculture, respectively (EKZNW, 2010). Most small-scale farmers 
practise extensive livestock grazing, dryland cropping and some vegetable garden-
ing, while private agricultural operations are of large scale, more diverse, more pro-
ductive and strongly commercially oriented.

The topographic expression of the UTDM is broadly diversified from high 
mountains in the southwestern region of the province, becoming more undulating as 
it forms part of the Thukela catchment and drains to marine estuaries and coastal 
dunes towards the Indian Ocean in the east. The Drakensberg, the highest lying 
component of the study domain, includes three altitudinal zones (the Montane zone, 
the Subalpine zone and the Alpine zone) extending from approximately 1300–3500 m 
above sea level, which encompasses the steepest altitudinal gradient in the District. 
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Fig. 2.1  (a) Map showing the uThukela District Municipality (UTDM) situated in the western 
region of KwaZulu-Natal, South Africa (DEM Source: CGIAR, 2014). (b) The conceptual work-
flow uses gridded datasets to derive geodiversity sub-index data layers for the UTDM region over-
laid with the 2.5 × 2.5 km sample grid

Elliot and Escott (2015) characterise the landscape as an assortment of gently undu-
lating hills through to a rolling and partly broken landscape across a notable altitu-
dinal gradient extending through the district (600–1300 m). In the higher altitude 
regions, typical terrain morphological features include rocky, rugged slopes and 
terraces, including mountainous areas incised by river gorges, a variety of narrow 
and broad valleys, plateaus with sharp hills, steep ravines and escarpment slopes, 
high mountain ridges separated by cavernous valleys, prominent cliff faces, com-
plex mountain topography and steep basalt rock faces and terraces. In the lower 
declivity regions, meandering stream channel and paludal floodplains with drier 
ephemeral stream and semi-arid alluvial fans and aeolian dunes are most prevalent 
(Botha & Singh, 2012).

The Drakensberg mountain range encompasses a wide range of geological for-
mations. These include a diversity of Karoo Supergroup rocks, including Stormberg 
basalts, tillite of the Dwyka formation, as well as Ecca and Beaufort Group forma-
tions. Geological formations are typically either sedimentary or igneous in origin. 
The region is mainly dominated by sandstone, shale, mudstone, dolerite, quartzite, 
dolomite, granite, diabase and basalt saprolitic material. Moreover, altitudinal varia-
tions highly influence geological exposure, especially for the well-layered Karoo 
Supergroup (Elliot & Escott, 2015). The geological and geomorphological diversi-
ties are reflected in the pedodiversity of the area in terms of pedon-depth, topsoil 
depth, drainage, fertility and soil texture. Typical soil groups include, in varying 
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spatial assemblages and without limitation: Histosols, Gleysols, Vertisols, 
Umbrisols, Fluvisols, Luvisols, Lixisols, Planosols, Plinthosols, Ferralsols, 
Arenosols, Leptosols, Cambisols and Stagnosols. The district is also strategically 
significant as it makes up the principal catchment area for the Thukela River. Two 
major impoundments occur along the Thukela River within the central-western 
regions: Woodstock Dam and Spioenkop Dam. Another critical natural impound-
ment, namely, Wagendrift Dam, occurs along the Boesmans River within the south-
ern area of the UTDM. This rich biodiversity and cultural value of the Drakensberg 
is the basis for its World Heritage Status and includes both the uKhahlamba National 
Park and the Maloti-Drakensberg Trans-frontier Peace Park between Lesotho and 
South Africa, not to mention wetland areas of Ramsar Conservation status as well. 
It’s worth noting that all World Heritage sites are designated as Protected Areas, 
which means that mining or prospecting are not permitted within the property or 
proclaimed buffer zone. Further, any unsuitable development that may adversely 
affect the property is prohibited by the South African and Lesotho Ministers respon-
sible for Environment and Culture (UNESCO, 2000).

2.2.2 � Geodiversity Classification

Digital inventories of landscape resources are vital for landscape management, as 
one cannot protect that which is unknown (Jackson et al., 2019). The quantification 
of geodiversity for UTDM is calculated using the geodiversity index (GDIx) meth-
odology developed by Araujo and Pereira (2018) with minor modifications. The 
approach is based on the theoretical definition of partial numerical indices estimated 
from selected thematic geo-informational coverages representing the main (direct 
and indirect) geodiversity elements segmented within a regular grid overlay. The 
grid-based framework provides a simple solution for assessing the degree of geo-
richness. It avoids the ordinal classification and overrating of any element by con-
sidering each part’s quantification as equally important aggregates to the final GDIx. 
Holistically then, the GDIx is estimated from the sum of the partial indices calcu-
lated from the discrimination of occurrences (count) in each grid cell. Hjort and 
Luoto (2010) further emphasise the benefits of a grid-based GDIx approach in that 
it enables an objective subdivision of geospatial richness, creating units of identical 
dimensions, allowing direct comparison of results to explore the relationship of 
geodiversity with a diverse range of spatial abiotic or biotic variables. The imple-
mentation of the GDIx assessment is further explained in the forthcoming subtopics.

2.2.2.1 � Grid Resolution

Geodiversity cannot be understood without the proper definition of scale relating to 
the areas under observation and the elements targeted for assessment (Serrano & 
Ruiz-Flaño, 2007). For this study, we applied a regular Cartesian grid of 
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2500  ×  2500  m resolution using ArcGIS Desktop 10.5 (ESRI, 2021), hereafter 
ArcMap, generating 2042 grid squares. This approach is considered the most prag-
matic parametrisation for optimal differentiation of maximum range between the 
highest and lowest partial indices and ultimately GDIx values for the 
UTDM. Moreover, the grid resolution of the GDIx map is defined considering the 
map scale(s)/resolution of the input geospatial layers used to perform the assess-
ment and enabled the inclusion of coarse-scaled thematic map data (Table  2.1). 
Similarly to Kozlowski (2004) and Benito-Calvo et  al. (2009), the mesoscale 
(1:750000 map scale) application of data is based on prioritising the minimum 
detectable feature range of elements of geodiversity as well as the overall extent of 
the UTDM study area. Due to the significant diversity within a landscape, finding an 
objective measurement unit of geodiversity quantification and at the same time giv-
ing comparable results remains an ongoing subject in the study of geodiversity. The 
grid resolution selected for quantifying geodiversity in the UTDM follows the rec-
ommended grid resolution of 100–2500 m (with a map scale of between 1:500000 
and 1:1000000) for regions between 2500 and 10,000 km2.

2.2.2.2 � Geodiversity Partial Index Classification

After using the vector (polygon) grid design, we implemented an overlay function 
to calculate seven theoretical numerical partial indices based on the following geo-
diversity elements: hydrographic, geological, pedological, geomorphological, cli-
matic, atmospheric and topographic diversity within the UTDM region. Broadly, we 
applied a bilateral approach to separately quantify each sub-partial index on the 
format of each geospatial data layer, i.e. raster or vector format. This step is manda-
tory considering the differences in quantifying phenomena of either a discrete or 
continuous nature. All datasets analysed in the diversity quantification were re-
projected to transverse Mercator projection with a 31° meridian and WGS 84 
Datum. For the vector-based sub-partial datasets, the quantification is based on the 
variety (richness) and count (abundance) (Ruban, 2010) of the different elements 
representing geodiversity (Serrano et al., 2009; Araujo & Pereira, 2018). The pri-
mary assumption is that a higher occurrence or variety of features per grid cell 
would represent a corresponding degree of geodiversity. Importantly, we assessed 
the geodiversity classes directly by computing the primary indicators of geodiver-
sity such as geological classes and landforms and using surrogate factors that are 
considered reflections of geodiversity, such as topographical or climatic variability 
(Pellitero et al., 2015). The utility of the grid quantification approach is to express, 
in the most harmonious way possible, all of these aspects without overrating any 
particular sub-partial element (Araujo & Pereira, 2018). For the analysis of geodi-
versity, we considered only the count of relative frequency and the variety of each 
element within the sample area and avoided qualitative ranking, or weighting, based 
on the intrinsic, or perceived, importance of each landscape component. In doing so, 
we minimised the subjectivity of the final geodiversity output, a common caveat 
with many other evaluation methods (Silva et al., 2013).
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Furthermore, this provides a segway for the final geodiversity map to provide an 
objective and unprejudiced regional, albeit theoretical, interpretation of geodiver-
sity within the UTDM. For all contributing raster-format datasets, the challenge is 
defining a central measure of quantification to represent each sample unit, i.e. grid 
cell. Therefore, we use a Zonal Statistic geoprocessing approach, implemented in 
ArcMap Desktop, to determine each grid cell’s most commonly occurring (mode) 
aggregated value. This data generalisation approach provides a simplistic yet still 
regionally representative solution for aligning the various multi-resolution raster 
datasets to the unified geodiversity sample grid area.

While all elements are considered equal shareholders in the final diversity assess-
ment, each sub-partial index constitutes a distinct set of variables (Table 2.1): hydro-
graphic index (two sub-partial covariates), topographic index (two sub-partial 
covariates), lithological index (two sub-partial covariates), pedological index (two 
sub-partial covariates), geomorphological aspects (one sub-partial covariate vari-
ables), climatic index (two sub-partial covariates) and solar morphometric index 
(one sub-partial covariate). Therefore, each partial index combines either one or 
several geospatial layers normalised (Eq. (2.1)) to a scale of 0–0.5 or 0 and 1.0 
where single covariates are analysed.

	

X
X X

X Xnorm
i min

max min

�
�� �
�� � 	

(2.1)

A brief description of each of the seven partial indices, and their contributed sub-
partial indices, including the geoprocessing steps, are described in detail below and 
graphically represented in Figs. 2.2 and 2.3.

The hydrographic index (Hi) is evaluated by considering both surface and subter-
ranean hydrological contributions to geodiversity. For the sub-partial index diver-
sity calculation of surface waters, we used the 1:500000 national vector dataset 
(DWA, 2006) of the perennial stream network. We augmented this coverage with a 
higher resolution 1:50000 national vector river network (NGI, 2018) to include non-
perennial streams for quantifying drainage density (km/km2) for each grid cell. 
Drainage density is useful for describing drainage basin morphometry by estimating 
the stream channel’s length per unit area, indicating how well or how poorly a 
watershed is drained by stream channels (Horton, 1932). All values are then nor-
malised to a scale of 0 and 0.5. A score of 0 is assigned to squares, in which no 
hydrological elements are represented, while a score of 0.5 indicates high drainage 
density. To complement drainage density, mean annual baseflow (mm), i.e. the dry 
weather and non-rainy season streamflow sourced from the groundwater stores, was 
also assessed. The baseflow coverage has been empirically generated for South 
Africa on a 1′ × 1′ (1.7 × 1.7 km) spatial resolution using 50 years of historical cli-
mate data. We resampled the baseflow coverage to 90 m resolution using a bilinear 
interpolation approach in ArcMap to allow interoperability with the remaining data-
sets, specifically the topographic raster surface, derived from the three-arc second 
Shuttle Radar Transfer Mission (SRTM) DEM.  The ArcMap Zonal Statistic 

2  Unravelling Regional Geodiversity: A Grid-Mapping Approach to Quantify…



32

Fig. 2.2  Concept of the geodiversity quantification of vector datasets in the 2.5 × 2.5 km grid. (a) 
Overview map showing vector soil association(s) in a 3 × 3 window range. (b) Counting the num-
ber of soil forms per grid cell is too conservative with only three soil form features counted and full 
abundance of soil features not quantified. (c) Counting the number of vector features per grid cell 
is too liberal with a total of 9 soil form features counted. Duplication of similar features resulting 
in an overestimation of geodiversity per grid cell. (d) Counting the number of vector features per 
network cell per spatially contiguous element.: “Goldilocks case” of quantifying vector feature 
diversity resulting in four soil form features per grid

Fig. 2.3  Concept of the geodiversity quantification of raster datasets in the 2.5 × 2.5 km grid. (a) 
SRTM 90 m elevation for two grid cells (a1) having an elevation height range of 413 m and (a2) 
having an elevation height range of 345 m. Grids highlighted in (b1) and (b2) have been gener-
alised using the Zonal Statistical modal value for elevation calculated for each grid cell resulting 
in new elevation grid values of 375 m and 305 m, respectively, for the geodiversity index calculation

function was then used to calculate the modal raster baseflow within each 6.25 km2 
grid cell. Like drainage density, baseflow values were normalised to 0 and 0.5. The 
final Hi partial index value is calculated as the sum of the partial drainage density 
diversity and baseflow diversity with values ranging from 0 to1.

The lithological index (Li) is calculated as the sum of the lithostratigraphic and 
paleo-sensitivity sub-partial indices, both derived using a digitised 1:250,000 geo-
logical series map courtesy of the South African Council for Geoscience (CGS, 
2000) with minor modifications. The lithostratigraphic map is a special-purpose 
vector polygon dataset depicting the 12 dominant lithostratigraphic units and geo-
logic strata in the UTDM. Following the method outlined by Araujo and Pereira 
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(2018), the lithological units were first homogenised to eliminate duplication of 
polygons of the same classification within each cell. This was done using a unique 
numerical ID assigned to each lithological unit and then “exploding” the dataset 
before intersecting the layer with the spatial grid, with each grid cell itself having a 
unique identifier, finally “dissolving” on unique grid ID and summarising on feature 
count to calculate the sum of differentiated lithological features within each cell. 
The paleo-sensitivity and geological heritage (Lavin, 2013) sub-partial index pro-
vides a valuable assessment for tentatively outlining paleontologically sensitive 
areas in the UTDM and adds a necessary degree of quantification to the geological 
sub-index calculation and thus final GDIx. The paleo-sensitivity sub-partial dataset 
is based on the same 12 lithological classes as above but ranked according to their 
paleo-sensitivity using a six-class classification (unknown to very high). The paleo-
sensitivity diversity was computed by counting the number of occurrences of differ-
ent sensitivity classes within each grid cell, following the same procedures used to 
calculate the lithological heterogeneity. While this geoprocessing analysis was 
wholly automated in a GIS, a crucial step was the manual inclusion of same-ID and 
non-contiguous features as part of the feature count. This approach was considered 
a “goldilocks” approach to avoid over- or underestimating feature count per grid 
cell. Since the Li comprises two sub-partial vector layers, each layer was normalised 
to 0 and 0.5 and then summed to a scale of 0–1.0 for the final lithological index. 
Figure 2.2 outlines the geospatial approach used to derive the sub-partial indices for 
all vector datasets. Simultaneously, Fig. 2.2d represents the optimised estimation 
based on the goldilocks concept for each grid cell’s feature count and variety.

For the pedological index (Pi), two sub-partial indices, soil pattern and soil depth 
>800 mm, were analysed using the 1:250,000 Land Type Survey (LTS) digital soil 
inventory dataset (ARC, 2003). The land types of South Africa have been compre-
hensively mapped over South Africa for agricultural purposes. Each land type shows 
an accepted degree of uniformity concerning terrain form, soil pattern and climate. 
In total, the LTS contains information for 28 broad soil pattern groups (association) 
classified according to the Soil Classification: A Binomial System for South Africa 
(MacVicar et  al., 1977). The soil pattern sub-partial index facilitates tracing the 
pedological diversity in the UTDM. Following the same grid-geoprocessing proce-
dure, as outlined for Li, the information for 15 soil patterns for the entire UTDM 
was analysed with the count of soil class per grid normalised to 0 and 0.5. The soil 
depth sub-partial index was derived by selecting all soils with a depth >800 mm 
(given to a depth of 1500 mm) in the LTS dataset.

Soil depth refers to total profile depth and not effective rooting depth highlight-
ing limitations due to physical rather than chemical impediments (Schulze et al., 
2007). This definition, therefore, denotes the depth to which plant roots can be 
active. Polygons where soil depth is >800  mm were all equally weighted and 
assigned the maximum value of 0.5. All remaining polygons were assigned a value 
of 0 and then summed with soil pattern index scores for the combined final Pi values 
ranging from 0 to 1.

The climatic index (Ci) assessed the contribution of two sub-partial indices: rain-
fall and temperature diversity. Rainfall diversity was evaluated by rainfall 
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concentration and rainfall variability, while daily max-min temperature variability 
was considered a suitable surrogate contributor to geodiversity in the UTDM. Rainfall 
concentration, instead of MAP, is a good determinant of how concentrated (severe) 
rainfall events are throughout the year, which provides a complete perspective of the 
influence of events on the landscape. Schulze and Maharaj (2007) represent rainfall 
concentration, calculated per quaternary catchment, for South Africa on a 1′ × 1′ 
(1.7 × 1.7 km) spatial resolution using 50 years of historical data. The raster cover-
age delineates high rainfall regions as locations that receive all their rainfall in 
1 month. In contrast, low rainfall concentration regions receive the same rain for 
each month of the year. Therefore, the higher the concentration index, the less 
spread the rainfall season is over time (whether it is a high or low rainfall area or in 
a winter or summer rainfall region). To complement the effects of rainfall concen-
tration, we likewise quantified the coefficient of variation (CV) of annual precipita-
tion for the UTDM. MAP maps do not showcase the natural year-to-year rainfall 
variability within a region. The CV (%) is a more suited index to express precipita-
tion with high/low CV values corresponding to high and low inter-annual rainfall 
variability, respectively. The sub-partial temperature diversity was represented by 
the regional diurnal temperature range (Schulze & Maharaj, 2007). Very simply, the 
diurnal temperature range is the difference between the maximum and minimum 
temperatures on a given day. Unlike MAT, which is a reasonable indicator for con-
tinentality, the selection of mean monthly diurnal temperature range is a valuable 
index to assess the influence of temperature diversity related to a broad range of 
local anthropocentric and natural process phenomena such as inter alia, land cover/
use change, climate change, thermoperiodism and photosynthesis, i.e. the response 
of plants to diurnal temperature ranges (Schulze & Maharaj, 2007). As with Hi, both 
Ci sub-partial indices were resampled to 90 m and using the Zonal Statistics to cal-
culate the modal rainfall concentration per grid cell. The rainfall concentration and 
rainfall CV were first normalised to a scale of 0 and 0.25 and then combined to 
derive an index of 0–0.5. The geoprocessing of the diurnal temperature range fol-
lowed suit with Zonal Statistic values rescaled to 0 and 0.5. Both rainfall diversity 
and temperature diversity sub-partial indices were tallied resulting in a final Ci 
diversity score between 0 and 1.

Topographic index (Ti) is calculated as a collective of the terrain ruggedness 
index (TRI) and terrain surface texture (TST) sub-partial indices with both datasets 
derived from two mosaiced and void-filled three-arc second SRTM DEM V4.1 
(Jarvis et al., 2008) scenes with a resolution of 90 m for the entire UTDM region. 
The simplest definition of TST (Bennett & Mattsson, 1999) is that it represents the 
amplitude and frequency of topographic relief features of a surface and provides 
one of many useful surrogates for assessing topographic diversity (Benito-Calvo 
et al., 2009). Consequently, large roughness diversity values indicate a substantial 
dispersion of slope gradient and slope aspect with short slope lengths. In contrast, 
small values indicate a homogenous orientation of slopes with minor variations and 
long slope lengths (Hjort & Luoto, 2010). At the same time, Riley et al. (1999) con-
sider TRI an expression of terrain heterogeneity, quantitatively indicating how 
undulated, broken, rugged or dissected the landscape is between a grid cell and its 
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eight neighbouring cells and an ideal indicator for assessing land surface rugged-
ness. The inclusion of TRI and TST is supported by the decisive role of both param-
eters on the energy flows (exposure to sunlight, humidity) and material flows (water, 
sediments on the slopes) and the diversity and distribution of landforms and pro-
cesses (Serrano & Ruiz-Flaño, 2007). These two sub-partial indices collectively 
provide a far more pragmatic contribution of topographic variability to geodiversity 
than only evaluating solitary altitudinal and declivity gradients. To quantify the 
resulting Ti, we calculated the Zonal Statistics for each sample grid resolution as 
outlined before. Using Eq. (2.1), we rescaled the modal values for TRI and TST to 
0 and 0.5 respectively. Both sub-partial indices were then summed representing the 
final Ti diversity between 0 and 1 per grid cell.

For the geomorphometric index (Gi), we leveraged the utility of the geomorphon 
(geomorphological phonotypes) mapping approach to provide a general-purpose 
geomorphometric map for the UTDM using the previously processed 90 m resolu-
tion SRTM DEM. Moving beyond simple topographic heterogeneity measures, the 
geomorphon approach’s utility (Jasiewicz & Stepinski, 2013) is the low-cost char-
acterisation of landform features, which we consider a reasonable standard of land-
form richness. Geomorphons are analogous to textons (Julesz, 1981) of a landscape. 
Their extraction from a DEM comes at a small computational cost considering that 
they simultaneously represent quantitative and stratified terrain attributes and land-
form types. The geomorphon approach’s product is the stratification of the land-
scape into ten unique but recognisable landform elements: Peak, Ridge, Shoulder, 
Spur and Slope, Hollow, Foot slope, Valley, Pit and Flat terrain morphological 
units. Recently, Atkinson et  al. (2020) successfully applied the geomorphon 
approach to soil-landscape characterisation to a smaller region within the UTDM.

For this reason, we decided to implement the scale-independent approach to a 
larger regional area such as the UTDM. Similar to Bailey et al. (2017) and Atkinson 
et al. (2020), we used the geomorphometric algorithm “r.geomorphon” extension in 
GRASS GIS 7.4.1 (GRASS Development Team, 2016) to delineate the landform 
coverage data from the SRTM DEM using the pattern recognition approach. 
Geomorphon features were then vectorised to polygons and then further homogenised 
to eliminate duplication of the same feature with multiple polygons of the same 
geomorphon unit “dissolved” to eliminate redundant features from the diversity 
quantification. The quantification of the geomorphon sub-partial index followed the 
same methodology as previously outlined for vector datasets, namely, that of soils 
and geological material, except for the single sub-partial Gi values normalised 
directly to 0 and 1.

Finally, we evaluated solar morphometric diversity (Si) through the contribution 
of monthly mean solar radiation variability (MJ/m2/day), using the solar radiation 
raster grid developed by Schulze and Chapman (2007) at 1′ × 1′ (1.7 × 1.7 km) reso-
lution using 50 years of historical data for South Africa. Solar radiation, the exog-
enous component of the surface thermal regime, is a suitable morphometric 
replacement for slope aspect with added computational benefits. First, the estima-
tion of solar radiation is more sophisticated. It considers inputs such as latitude, 
atmospheric properties and temporal frequency, which account for differences in 
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topographic shadowing (from adjacent hills) and slope gradient (Thompson et al., 
2012). Second, Van Niel et  al. (2004) demonstrated that solar radiation derived 
directly from a DEM is less affected by DEM error than aspect and slope. Finally, 
unlike the slope aspect, solar radiation considers the measurable quantity of direct 
sunlight rather than merely the cardinal representation of solar insolation. Schulze 
and Chapman (2007) record solar radiation as monthly means of daily solar radia-
tion variability. To derive a yearly average, we used the ArcMap Raster Calculator 
(Spatial Analyst Tools) to cascade the 12-monthly datasets and calculate the annual 
average for the UTDM region. The solar radiation sub-partial index followed the 
same geoprocessing protocol applied to the previous raster datasets: first generalis-
ing the solar radiation dataset from 1700  m to 90  m and then summarising the 
sample grid values by Zonal Statistics to calculate the modal radiation variability 
per 2500  m grid cell. The solar radiation sub-partial index was then normalised 
directly to 0 and 1.0 with grid cells approaching 1.0 displaying higher Si diversity.

The final GDIx score for each grid square is the sum of the seven sub-partial 
indices of diversity (Eq. (2.3)). Following Araujo and Pereira (2018), we reclassi-
fied the resultant seven-class GDIx grid values to an equal interval five-class model 
using, Eq. (2.2), to distinguish the following GDIx classes: Class 1 (0–1) = very 
low; class 2 (1–2) = low; class 3 (2–3) = medium; class 4 (3–4) = high; and class 5 
(4–5) = very high based on the minimum and maximum values obtained (Betard & 
Peulvast, 2019) (Fig. 2.4h).
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2.2.2.3 � Geodiversity Partial Index Classification

While the final grid map may be functional as a regional representation of geodiver-
sity, the tessellated grid results do not offer further opportunity to interrogate the 
geodiversity-landscape relationships within the UTDM.  To better visualise the 
GDIx as a smooth continuous surface, we followed a similar protocol to Argyriou 
et al. (2016) and Araujo and Pereira (2018) with modifications as follows:

	1.	 We resampled our original 2500 m grid to 500 m, generating a centroid for each 
new grid cell. This resulted in 25 centroids at 500 m compared to 1 centroid at 
2500 m grid resolution.

	2.	 We then used the centroid points in an optimised ordinary kriging interpolation 
method (with standard model parametrisation) in ArcMap Geostatistical Wizard, 
using a maximum of five and a minimum of two neighbours within a four-sector 
range to generate intermediate values between the geodiversity centroid values.

	3.	 The final output is a more detailed spatially continuous raster surface of geodi-
versity distribution for the UTDM.
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Fig. 2.4  Calculation of geodiversity index applied to UTDM as the sum of seven sub-indices: Hi, 
Pi, Li, Ci, Ti, Gi and Si. The final thematic geodiversity layer is interpolated using a geostatistical 
interpolation approach to provide a smooth surface of diversity and rescaled and classified to a 
five-class scale of theoretical geodiversity index. (a) Hydrographic diversity index. (b) Lithographic 
diversity index. (c) Pedological diversity index. (d) Climatic diversity index. (e) Topographic 
diversity index. (f) Geomorphometric diversity index. (g) Solar morphometric diversity index. (h) 
GDIx grid. (i) Modelled GDIx

	4.	 To further capitalise on the spatially detailed interpolated geodiversity surface, 
we generated a histogram to highlight the distribution, range and class intervals 
of the GDIx values for the UTDM.
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2.3 � Results and Discussion

2.3.1 � UTDM Sub-partial Diversity Quantification

The final geodiversity map resulting from the interaction of the seven partial diver-
sity index datasets evaluated for the entire UTDM is presented in Fig. 2.4h. The 
methodology used for quantifying the partial index diversity for both vector and 
raster datasets proved to effectively highlight the richness and abundance of features 
for the respective partial sub-indices. In particular, the topographical, pedological 
and geological diversity estimation, as well as the geomorphometric diversity quan-
tification, all showed strong associations with regions in the northern, southern and 
western areas of the UTDM characterised by the Drakensberg mountain range, 
higher altitude, complex terrain and associated increased diversity of soil and geo-
logical material. Consequently, these partial index covariate datasets strongly influ-
ence the final GDIx map with medium partial index diversity areas randomly 
distributed throughout the UTDM.  Notably, despite using a moderate-resolution 
spatial layer of soil association, the pedological partial index displayed a surpris-
ingly high pedological diversity. The eastern and western regions of the UTDM are 
known to be pedologically diverse, predominantly due to topographic and climatic 
influence. Our findings are aligned with similar findings by Kori et al. (2019), who 
found that their final geomorphological diversity map was strongly influenced by 
geology, slope and soils in the Soutpansberg range in South Africa. This would sug-
gest that despite differences in the quantification approaches to geodiversity estima-
tion, i.e. factor maps (Kori et al., 2019) or partial index maps, as presented in this 
study, the influence of selected covariates for driving geodiversity remains relatively 
systematic regardless of regionality. These results present inspiring opportunities 
for further testing the quantification approach to geodiversity mapping in other 
country regions to further validate the influence of physical environmental covari-
ates. Identifying landscape units is an integral part of understanding a given portion 
of land’s behaviour, functioning and dynamics and how these interrelationships 
drive geodiversity in the landscape. Specifically, this study has shown that the topo-
graphical (terrain character), pedological (soil character) and lithostratigraphic 
(geological and paleo-sensitivity character) diversity, as well as the geomorphomet-
ric (landform character) diversity quantification, are all highly invested in the final 
GDIx valuation, having a distinctive spatial clustering in the northern, southern and 
western areas of the UTDM.

The climatic and solar morphometric partial indices exhibited a categorical clus-
tering of high diversity regions closest to the Drakensberg with a gradual decrease 
in diversity clustering in an easterly direction towards the lower altitude homoge-
nous coastal region. The pockets of high solar and climatic diversity in the central 
and eastern areas of UTDM may be attributed to the known seasonal climatic vari-
ability associated with the humid coastal region and the adjacent interior Mist belt, 
which forms a band through the entire KZN Midlands, and consequently a central 
region of the UTDM.  Surprisingly, the hydrographic partial index layer did not 
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perform as expected, considering the high stream density calculated for the region. 
An average stream density of 2.3 km per grid (6.25 km2), with a maximum density 
of 7.46 km, was recorded for the UTDM with the highest values conditioned by the 
Drakensberg catchment basin(s) and fluvial drainages within closed valleys in the 
central and eastern regions of the study site. Like Betard and Peulvast (2019), sur-
face waters’ contribution dominates the diversity estimation in areas of high stream 
density and baseflow and show less influence in low baseflow regions. Likewise, 
Manosso and de Nóbrega (2016) highlight that, indirectly, sets of elements with the 
highest number of variables significantly influence the overall quantification index 
process. This is an unavoidable caveat of the numerical method of counting feature 
richness and abundance using a grid-based approach. By default, features with the 
most occurrence (count) will register as more diverse, while other elements become 
reflections of conditions contributing to the overall diversity. The major drawback 
of numerical approaches is the lack of distinction between the description and the 
evaluation of nature. The valuation of nature must be defined in its own right. 
Likewise, indicators of diversity may be of great interest as value criteria. Additional 
value criteria should be included if these indicators are designed to measure a part 
of the total variety. For quantitative approaches, it is particularly problematic when 
the absence/presence of a limited set of value indicator(s) is exclusively used to 
represent the lack/abundance of geodiversity value.

A pragmatic solution for future geodiversity estimations using a gridded approach 
may need to avoid using sub-partial indices altogether to derive partial indexes of 
geodiversity and instead use individual datasets, i.e. soil form, geology, baseflow 
and stream density, independently as partial index layers. This may resolve the 
shortcomings of the obligatory normalisation approach between datasets of varying 
scales (spatial and measurement) while maximising the representation of diversity 
features at a partial index level for overall geodiversity representation. Similar 
methods were adopted by Hjort and Luoto (2010), who evaluated 74 different types 
of elements of geodiversity in Northern Finland and Manosso and de Nóbrega 
(2016), who considered 15 features of geodiversity to calculate the geodiversity 
from landscape units of the Cadeado Region in Paraná, Brazil. Alternatively, future 
analyses may further benefit from introducing a weight factor for each sub-partial 
index, particularly for those sub-index features used for Hi, where there is an appar-
ent spatial bias of feature richness and abundance that influences feature diversity. 
The introduction of an attribute weighting factor may also address the “edge effect” 
limitations expected from coarse resolution datasets that do not necessarily show 
much diversity over small distances within the landscape, i.e. Koppen-Geiger cli-
mate classification (Conradie, 2013). In these instances, the diversity quantification 
is limited to the adjoining climatic-class boundaries with a minimal intra-feature 
variation. However, as Santos et al. (2017) point out, introducing a weighting factor 
for each element may be challenging without introducing subjectivity into the diver-
sity analysis leading to an imbalance in the final results. Qualitative assessment 
methods based on knowledge and expert experiences such as descriptive documen-
tary (Panizza, 2009), expert classification (Kozlowski, 2004) and values and bene-
fits (Gordon & Barron, 2013) have successfully been used for systematic geodiversity 
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evaluation, albeit with limited applicability and repeatability beyond the spatial 
regions of interest. The solution to these limitations is to ensure maximum data 
representation and a more detailed spatial variation of parameters at minimal 
expense to data quality. In regard to climatic diversity, rather than introducing a 
weighting’s factor to the methodology, the authors applied a rudimentary but effec-
tive downscaling approach, suggested by Vajda and Venäläinen (2003) and Hjort 
et al. (2012), to resample the 1.7 × 1.7 km resolution climatic sub-partial indices to 
a 90 × 90 m resolution using a bilinear interpolation approach with an overall R2 
prediction of 96%. Rescaling the sub-partial climatic index to a more acceptable 
resolution allowed for improved climatic diversity representation with higher-
density natural class breaks (Jenks) for each respective sub-partial climate variable.

2.3.2 � Geodiversity Index Map for UTDM

Despite particular methodological challenges, which represent similar issues of the 
current discourse on geodiversity quantification (Santos et al., 2017), the final geo-
diversity map presents an exciting product that highlights the integrated analysis of 
the physical environment and the richness in abiotic elements distributed through-
out the UTDM area. The components of geodiversity were analysed using two sets 
of informative diversity indices: feature richness representing the number of funda-
mental elements within the feature space or sample grid and feature abundance 
representing the frequency of sub-partial diversity elements within each grid cell 
(Ferrer-Valero, 2018). The GDIx score of each grid square is the sum of all the pre-
viously outlined partial indices: Hi, Pi, Li, Ci, Ti, Gi and Si, with each index repre-
senting an element of geodiversity with values of the final GDIx in the range of 1 
and 5 (Fig. 2.4) based on the minimum and maximum values categorised into five-
class equal intervals.

The areas with the highest geodiversity concentration are in the eastern, central 
and western parts of the UTDM, with smaller pockets of high diversity scattered 
throughout the region. In the west region, the Drakensberg mountain range stands 
out as the dominant feature of Li, Gi, Ti, Pi and surprisingly Si diversity, where there 
are diverse landforms and many exposed lithostratigraphic features. More precisely, 
the highest values of the topographic, geomorphometric, pedological and solar mor-
phometric partial indices (3–5 points) are associated with the ensuing morphologi-
cal contrast between the central region and the diversified relief of the Drakensberg 
mountain range in the west. Similarly, the diverse lithostratigraphic and paleo-
sensitivity variety justifies the high geodiversity values east of the UTDM. A total 
of seven of the eleven lithostratigraphic elements were identified in the eastern 
region of the UTDM comprised of a mix of alluvial and colluvial material as well 
as agglomerates of Masotcheni Basalt and Karoo Dolerite with sedimentary surface 
intrusions of shale, sandstone, siltstone and mudstone of the Vryheid, Estcourt and 
Volksrust formations, respectively. In such areas, the regions of high paleo-
sensitivity (fossil heritage) were positively associated with the corresponding 
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lithological diversity signalling that the eastern part of the UTDM is characterised 
by diverse fossil heritage from geological formations.

Large portions to the northeast and southeast regions of the UTDM are charac-
terised by low to medium geodiversity, with primary diversity influenced by the Gi 
partial index of varying geomorphon abundance. Consequently, this same region 
was marked by a moderate to intermittent high surface water sub-partial index nor-
malised score (0.4–0.5) and low underground sub-partial index normalised score 
(0.1–0.25), resulting in the low-medium final Hi partial index scores due to the 
scale-abundance-quantification paradox of selected sub-partial indices outlined in 
the previous section. A key observation regarding the GDIx for the UTDM is an 
association of medium-high index values (>3) for higher altitude regions above 
1450  m a.s.l. with lower index values characterised by lower-lying areas below 
1220  m a.s.l. For these regions, the results suggest that the GDIx distribution is 
closely linked to the topographic arrangement of the UTDM: where the amplitude 
of terrain relief is high, GDIx shows the highest values; in contrast, the lowest GDIx 
values uniformly define the dominant flat areas of the region. Pellitero et al. (2015) 
observed similar trends in glacial landforms and attributed this relationship to the 
increasingly active landform, geological and soil processes at higher altitudes.

The entire UTDM region of approximately 11,500 km2 was divided into 2042 
separate 6.25 km2 grids (Fig. 2.4h). However, while the grid format may be useful 
for block diversity quantification, it is not readily applicable to visualise the final 
GDIx results as a continuous surface or interoperable with other spatial datasets for 
supplementary spatial analysis. Following the methodology outlined by Santos 
et al. (2017), we performed grid-to-point conversion of the GDIx values, after which 
these points were interpolated using an ordinary kriging approach, resulting in a 
predicted continuous surface (R2 = 0.96) of GDIx class distribution throughout the 
UTDM region (Fig. 2.4i). The results presented in Table 2.2 have been derived from 
the interpolated GDIx surface and provide the most meaningful outcomes of key 
descriptive metrics related to the frequency distribution and selected fragmentation 
class metrics for each GDIx class. The first significant observation is that low-
medium GDIx areas cover approximately 600,000  ha (or 60%), while high-very 
high GDIx occupies almost 400,000 ha (14%) of the study area. This result suggests 
that while there are specific features of high diversity – geodiversity hotspots or 
loci – the region is dominated by low-medium overall geodiversity. These results 
are further contextualised by considering the outputs of selected patch metrics 
(McGarigal et al., 2009) calculated for each GDIx class. A total of 131 low diversity 
patches compared to 77 high and 70 very high GDIx classes were detected within 
the UTDM.

Interestingly, despite the lower patch number for the high-very high GDIx 
classes, the higher GDIx classes recorded larger mean patch sizes, by a factor of 2, 
compared to the lower-valued GDIx class. Moreover, the mean perimeter-to-area 
ratio, which represents shape complexity, suggests that the high-very high GDIx 
patches are less complex in shape, or the amount of patch area exposed to edges is 
lower, not as pronounced as the low-medium GDIx class. The perimeter-to-area 
ratio values for the low-medium GDIx values also suggest that these regions are 

2  Unravelling Regional Geodiversity: A Grid-Mapping Approach to Quantify…



42

Table 2.2  Categorisation of frequency of selected landscape metrics summarised by 
geodiversity class

Geodiversity 
index

Geodiversity 
class

Area 
(ha)

Mean 
patch 
size 
(ha)

Mean 
perimeter/area 
ratio (shape 
complexity)

Number 
of 
patches

Area 
ratio 
(%)

Cumulative 
frequency 
(%)

0–1 Very low 92 
452

1 566 80.4 59 8.1 8.1

1–2 Low 252 
339

1 926 166.7 131 22.2 30.4

2–3 Medium 343 
644

3 818 150.9 90 30.3 60.7

3–4 High 288 
287

3 743 70.6 77 25.4 86.1

4–5 Very high 156 
387

2 234 49.8 70 13.8 100

characterised by GDIx patches with elongated shapes or indented and are generally 
small patches and therefore have higher perimeter-to-area ratios than the larger-
shaped and unbroken edges of the high GDIx patches (Helzer & Jelinski, 1999).

2.4 � Future Work

The methodology presented in the study is, in fact, a subnational adaptation of the 
method(s) proposed by Araujo and Pereira (2018). Our findings, therefore, confirm 
the application of their approach within a regional southern Africa, something 
which has not been tested before. A significant advantage of our study is that we 
introduce additional sub-index covariates to detail a richer perspective of local geo-
diversity in the UTDM. We propose a methodology that simultaneously considers 
abiotic feature richness and abundance that can be readily developed and deployed 
in many proprietary or open-source GIS platforms. While this chapter aims not to 
describe the full geodiversity of the UTDM, the approach developed in this work 
has one main disadvantage: the quantification and prediction of geodiversity do not 
consider the combined geovalues and products of the regions’ physical resources. 
This study has focused on limiting any considerations of geodiversity’s intrinsic 
value, i.e. the belief that some things (in this case, nature’s geodiversity) are of value 
simply for what they are rather than what they can be used for by humans (utilitarian 
value). Both Gray (2013) and Wilson (1994) point out that it is the most challenging 
value to describe since it involves ethical and philosophical dimensions of the rela-
tionships between society and nature. Instead, this study aimed to highlight the 
utility of adopting an objective quantitative approach to geodiversity valuation 
based on the functional value, or utilitarian interpretations, of the supporting surro-
gates that contribute to landscape diversity. Nevertheless, to fully meet end-user’s 
needs, it may be necessary to translate this kind of quantitative geodiversity 
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information into qualitative maps that explicitly address the importance of geoher-
itage and geoconservation of geotopes or geomorphological features within 
UTDM. Therefore, in addition to functional and scientific values of geodiversity, 
future studies may consider evaluating other overlapping potentialities such as cul-
tural, aesthetic and economic values of geodiversity, which are equally as important 
and may provide a full range of local and regional geodiversity (Gray, 2013; Araujo 
& Pereira, 2018). Nevertheless, the evaluation of geodiversity should focus on the 
conservation of resources and their management, which are vital to the development 
of human activities (Benito-Calvo et  al., 2009). In this context, the method pre-
sented herein provides a reliable and user-friendly approach to unravelling geodi-
versity in KZN, but there is still much left to do.

The links between geodiversity and biodiversity are irrefutable (Melelli et al., 
2017). However, these links must be adequately understood in developing effective 
management responses to human pressures and climate change (Gordon & Barron, 
2013). What is exceptionally high on the development agenda is better understand-
ing the interrelationship between geodiversity and biodiversity in dynamic environ-
ments, where natural processes (e.g. floods, erosion and deposition) maintain habitat 
diversity and ecological functions and how these links can drive environmental 
policy reforms in South Africa. South Africa is known for its progressive and inno-
vative environmental legislation that reflects the natural, physical, economic and 
psychological importance of the environment to humans (Grab & Knight, 2015). An 
exciting approach to evaluating geodiversity importance may need to consider how 
an ecosystem-based approach to resource management can provide a framework for 
developing a much better integration of geodiversity, biodiversity and landscape 
management. This will provide a means of realising geodiversity’s broader values 
and benefits through its contribution and functionality in delivering ecosystem ser-
vices. From a national perspective, including areas of high geodiversity into system-
atic conservation planning may also provide a useful platform to address a range of 
contemporary policy, strategy and landscape-action sustainability issues: What geo-
diversity does a country have and can we map it? What is the condition of geodiver-
sity across the landscape? Where and how should a country act first to manage and 
mitigate geodiversity importance? The concept of “conserving natures stage” is 
defined by Lawler et al. (2015) as a concept that encapsulates the idea that maintain-
ing a varied physical landscape will enable diverse ecological processes to operate, 
protecting and promoting landscape diversity. Failure to acknowledge such 
responses may cross essential geomorphic and ecological thresholds that initiate 
land degradation and increase human risk and vulnerability to natural hazards.

2.5 � Conclusion

To date, only one other landmark study has successfully investigated the influence 
of environmental factors on geodiversity mapping in South Africa (Kori et  al., 
2019). This work was the first attempt KZN to produce a full extent geodiversity 
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map for the uThukela District Municipality (UTDM) using a geospatial index 
approach to objectively quantify the influence of physical environmental factors on 
landscape geodiversity. The proposed contribution of partial environmental indices, 
readily obtained from various open-source platforms (Table 1.1) and harmonised to 
a spatial resolution of 90 m to successfully produce a 90 m geodiversity map for 
UTDM, can become a reference for inclusive geomorphological mapping for KZN.

This study assessed and mapped geodiversity by quantifying seven primary com-
ponents of geodiversity importance based on the hydrographic lithostratigraphic, 
pedological, climatic, topographic, atmospheric and geomorphological diversity 
across the landscape. The semi-quantitative methodology for assessing geodiversity 
relies heavily on the approach outlined by Araujo and Pereira (2018), with minor 
modifications related to sample grid resolution (resolution of 2500 m × 2500 m) and 
the specific quantification of feature richness and abundance from varying spatial 
data formats, using a data scale of 1:250,000. The methodology used in this study 
relies on the input of numerous spatial datasets of varying data format, scale and 
measurement scale. The results of this study provide a valuable resource to evaluate 
the limitations of data normalisation necessary for geodiversity score standardisa-
tion when constructing the geodiversity analysis.

By adapting well-known methods of numerical geodiversity quantification, this 
study attempted to provide a regional GDIx map for the entire UTDM.  In the 
regional approach, surrogate partial indices are evaluated as explanatory variables 
for the contributions to the GDIx rankings on a spatial basis. The methodology used 
for quantifying the GDIx, using both vector and raster datasets, proved to be effec-
tive in highlighting the richness and abundance of features for the respective partial 
sub-indices. The main results of the geodiversity analysis are categorised and graph-
ically represented into five classes from very low to very high geodiversity. The 
topographical, pedological and geological diversity estimation and the geomorpho-
metric diversity quantification showed strong associations with regions in the north-
ern, southern and western areas of the UTDM characterised by the Drakensberg 
mountain range, higher altitude, complex terrain and associated increased diversity 
of soil and geological material. A key finding is that these partial indices conse-
quently strongly influence the final regionalisation of geodiversity with areas of 
medium partial index diversity randomly distributed throughout the UTDM. These 
high-index-value regions of geodiversity indicate that these areas should be priori-
tised from a land management perspective. A key consideration of this research is 
highlighting a simplistic, objective and replicable numerical approach for deriving 
a GDIx product at a landscape level, with rudimentary technical expectations placed 
on the end-user, at minimal expense to representing the reality of each input element 
(partial index) diversity.

There is no superior approach to geodiversity quantification and representation. 
While the methodology presented in this study provides a pragmatic approach for 
geodiversity assessment, further adaptions based on personal user preference and 
research objectives such as sampling grid resolution, method of geodiversity assess-
ment and quantification, spatial data analysis, the scale of analysis and application 
of the final product provide an opportunity for further exploration. Importantly, it 
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must be emphasised that the present study’s geodiversity results merely represent 
the diversity (richness and abundance) concerning the observed partial indices for 
the region where no other studies on geodiversity have been undertaken from this 
perspective. Therefore, the concept of geodiversity is somewhat “flexible” in that 
future studies may indeed consider a new suite of partial indices for geodiversity 
quantification. We must point out that geodiversity assessment’s future adaptations 
may benefit from systematic improvements to the present methodology. Firstly, the 
inclusion of other surrogate elements of intrinsic geodiversity importance, such as 
detailed lithostratigraphic resource data or improved soil classifications for the 
region or further, includes climatic variables, beyond those applied in this study, 
since increasingly more studies on climate change vulnerability assessment and 
adaptive management are being conducted at the scale of landscapes.

The last decade has seen a significant increase in the quality of landscape indices 
through the application of geoinformatics research aimed directly at assessing geo-
diversity. Over this period, land surface analysis and classification have seen rapid 
improvements in the rate and quality of geomorphometric computational approaches, 
a key factor for the utility of digital geomorphic mapping. In truth, the substantive 
contribution of geographical information systems (GIS) and remote sensing (RS) 
has provided a platform for users to digitally access environmental information 
readily at different spatial scales and levels of sophistication. This has contributed 
significantly to providing new information about the mechanisms that underlie the 
current patterns of geodiversity. RS further provides a segway to endless opportuni-
ties to merge knowledge from different domains (e.g. software, mathematics, engi-
neering, geomorphology) to study landscapes in a more interdisciplinary manner. 
GIS systems provide a solid platform to synoptically explore the parameters driving 
geodiversity and promote a systematic digital approach to accurately mapping land-
forms and geomorphic systems with different climate, geological and topographic 
settings. Specifically, advances in RS of land surface terrain features and geospatial 
modelling systems that support numerical modelling of surface biophysical pro-
cesses have reformed traditional geomorphic analyses and mapping. Pioneering 
techniques, such as these, may benefit future geodiversity research since the focus 
is on integrating quantitative topographic information, on a cell-by-cell (gridded 
format) basis, with some form of geospatial platform with an ever-increasing reli-
ance on geostatistical approaches and artificial intelligence to describe the dynamic 
landscape and topographic change, patterns and complexity. These digital systems, 
data and tools, often referred to as geomorphic decision support systems (GDSS), 
are increasingly favoured for their contributions to diagnostic assessments and ter-
rain modelling to achieve enhanced interpretations of scale, patterns, processes and 
diversity of landscape features and systems. A final consideration beyond the pres-
ent study’s scope is the possible application of digital hexagonal grids, rather than 
the standard fishnet grid, for the numeric quantification of the GDIx in a GIS envi-
ronment. A significant advantage of using hexagonal grids is that they offer reduced 
edge effect since they provide the lowest perimeter-to-area ratio of any regular tes-
sellation of a sampled plane. Hexagonal sampling may offer increased benefit to 
users’ intent on using vector-based abiotic variables for geodiversity quantification 
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since hexagons can better fit curved surfaces than squares across large areas such as 
landscapes. This may regulate the independencies and respective influences of abi-
otic variables on overall geodiversity contributions.

The present study is expected to intellectually incentivise future studies on geo-
diversity in South Africa as persistent environmental pressures will soon demand 
maps that express this concept to become more frequent as decision support tools. 
If prioritised as a significant element for adaptive management, the GDIx assess-
ment presented in this study can inform many kinds of planning and decision-
making supporting sustainable development. It implicitly considers the diversity 
contributions of seven critical abiotic components related to geology, soils, climate, 
hydrology, atmospheric, topography and geomorphology to overall landscape geo-
diversity importance. One of the primary outputs is a simple cartographic represen-
tation of ranked diversity importance of the quality of geodiversity for the entire 
UTDM that is easily understandable by a varied audience. Therefore, the GDIx 
map(s) should be considered first as a tool for integrated natural resource manage-
ment, monitoring and reporting at a regional level. Given the structural ties between 
geodiversity and biodiversity, this will facilitate leveraging usable land and biodi-
versity management recommendations and action programmes in an integrated 
approach to environmental management and geoconservation.
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Chapter 3
Monitoring the Wildfire Activity 
and Ecosystem Response on Mt. 
Kilimanjaro Using Earth Observation 
Data and GIS

Priyanko Das, Zhenke Zhang, and Hang Ren

Abstract  Forest fires play an important role in environmental problems that influ-
ence climate change. It is essential to map the burnt areas and monitor vegetation’s 
regrowth to investigate the relationship between climate change and wildfire events 
in the mountain area. The present study provides remote sensing technology to 
monitor the extent of wildfire and vegetation reconstruction on Mt. Kilimanjaro. 
Active fire information on 11 October 2020 was obtained from MODIS optical sen-
sor and masked the burn area. Estimating NBR, dNBR, and BAIS2 using Sentinel-2 
data provides detailed information of active fires and burn severity concerning 
MODIS imagery. Results indicate that 398.89  ha is in higher severity condition 
within the burn area of 7011.30 ha. LAI and NDVI were used to detect the damage 
of vegetation in this reserve forest. LAI and NDVI report that a large area of vegeta-
tion was lost, where LAI decreased from 0.83 to 0.34 and NDVI decreased from 
0.28 to 0.22, respectively, in this fire event. After the post-fire, the time series of LAI 
showed a positive vegetation reconstruction trend, which also depends on the cli-
matic condition. We conclude that the dry climatic condition and local human activ-
ity cause this wildfire event. However, human activity management and control will 
reduce the forest fire events in this reserve forest.
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3.1 � Introduction

Forest fire is crucial for short and long-term changes in the forest ecosystem, vege-
tation structure modification, and significant greenhouse gas sources (Poletti et al., 
2019). The forest fire has a global impact on damages to our livelihood, such as 
desertification, soil erosion, and landslide (Kurnaz et al., 2020). Also, the burning of 
forests can damage the various ecosystem components such as plant species, soil 
organic layer, increased landslide, animal death, and pollution (Oliveira-Júnior 
et al., 2020). Drought severity may trigger the fire regimes worldwide under the 
climate change condition (Filipponi, 2018). Since 1992 (Rio earth summit), many 
countries have adopted forest fire management strategies and balanced ecological 
factors to reach sustainable development goals (Hislop et al., 2020).

Satellite earth observation data is commonly used to detect the burn area infor-
mation based on the vegetation fire reflectance (Roteta et  al., 2019). Several 
researchers (Fornacca et al., 2018; Scholtz et al., 2020; Veraverbeke & Hook, 2013; 
Wu et al., 2020) adopted different satellite data from various sensors such as AVHRR 
(Advanced Very High-Resolution Radiometer), MODIS (Moderate Resolution 
Imaging Spectroradiometer), Medium Resolution Imaging Spectrometer (MERIS), 
or SPOT to monitor the regional and global forest fire activity (Shan et al., 2017). 
Liu et al. (2020) analyzed the GEOS-Chem chemical transport model to detect the 
smoke-induced health impact using five global inventories datasets – GFAS (Global 
Fire Assimilation system), GFED (Global Fire Emission Database), FINN (Fire 
Inventory from NCAR), FEER (Fire Energetics and Emission Research), and QFED 
(Quick Fire Emissions datasets) for equatorial Asia. Recent studies by Seydi et al. 
(2021) reported that wildfires affected areas and classified the land cover map with 
91.02% accuracy using MODIS Sentinel-2 imageries. Similarly, Liu et al. (2019) 
collected the MODIS product (MCD64A1) with a 500 m resolution to detect the 
small burned area with 40% accuracy. Most of the satellite data are based on coarse 
resolution sensors, including MODIS (250–500 m), and it is challenging to detect 
the small fires using the size of the pixels. However, high-resolution satellite sensors 
such as LANDSAT-OLI (30 m) and Sentinel-2 (10 m) make possible to estimate the 
burn area information on a smaller region.

In general, several methods have been developed for mapping the burn areas 
from these medium and high-resolution satellite images (Govedarica et al., 2020). 
Most previous studies used vegetation indices (e.g., NDVI – Normalized Difference 
Vegetation Index) to discriminate the burn areas from vegetation (González-Alonso 
& Merino-de-Miguel, 2009). However, these indices could not differentiate carbon 
to charcoal from fire-affected regions and may not be applicable for burnt area map-
ping. The use of near-infrared (NIR) and shortwave infrared (SWIR) reflectance is 
more appropriate for burn mapping and provides more substantial burn area dis-
crimination (Fernández-Manso et  al., 2016). Therefore, Normalized Burn Ratio 
(NBR) (Carlà et al., 2009) and threshold-based classification of Normalized Burn 
Ratio difference (dNBR) (Govedarica et al., 2020) were developed and widely used 
for burn severity mapping. Burn Area Index (BAI) also detects the charcoal signal 
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in post-fire images and discriminates the burn areas compared to other indexes 
(González-Alonso & Merino-de-Miguel, 2009). Filipponi (2018) presented the 
newly developed Burn Area Index for Sentinel-2 (BAIS2) based on the spectral 
properties of Sentinel-2 bands. The BAIS2 detects the post-fire mapping at 20 m 
resolution and shows good performance on a small scale. However, this work aims 
to evaluate the capabilities of MODIS and Sentinel-2 imagery for burn severity 
mapping and vegetation reconstruction on Africa’s highest mountain (Mt. 
Kilimanjaro).

The fire activity in Africa from the last millennium provides the origin of more 
fire-tolerant flora. Without it, the African savannas may develop woodlands 
(Catarino et al., 2020). According to the national park service (TANAPA), the wild-
fire incident on 11 October 2020 at Mt. Kilimanjaro has destroyed most vegetation 
and threatened the mountain ecosystem (Hemp, 2020). Mt. Kilimanjaro forest is an 
important natural resource providing ecological services such as tourism, honey 
collection, and other economic activity (Poletti et al., 2019). In this contrast, moni-
toring wildfire activity, damage assessment, and vegetation reconstruction on Mt. 
Kilimanjaro is essential. The increasing human population living in the mountain-
surrounding region depends on natural forest resources (Poletti et al., 2019). This 
population creates more pressure on Mt. Kilimanjaro for driving forest products 
during the dry season, which later causes a forest fire. A few studies from the local 
survey found that the higher temperature and dry climatic conditions increased for-
est fire intensity (Kilungu et al., 2019).

This paper adopted a newly developed burned area index (BAIS2) algorithm 
estimated from Sentinel-2 imagery for active fire detection in Kilimanjaro Mountain. 
Also, this study presents the capabilities of MODIS and Sentinel-2 imagery for burn 
severity mapping. Pre- and post-fire NBR algorithm is applied to Sentinel-2 data 
and estimate the Differenced Normalized Burn Ratio (dBNR). The Leaf Area Index 
(LAI) and Normalized Difference Vegetation Index (NDVI) are estimated to moni-
tor damage assessment and post-fire vegetation recovery after the wildfire incident.

3.2 � Study Area

Africa’s highest mountain, Mt. Kilimanjaro (5895 meters), is located in the border 
of Kenya and Tanzania with an extent from 2°50′–3°20’S to 37°00′–37°35′E 
(Fig. 3.1). Hans Meyer is the first geographer who reached the mountain summit in 
1889 and was a famous tourist spot for hiking. The forest area was declared a 
national park in 1973 and UNESCO’s World Heritage site in 1989. However, forest 
ecosystems and biodiversity are important habitats for species diversity in this 
reserve belt. There are 900 species in the forest belt and 2500 species in the whole 
mountain.

The climate condition is affected by two rainy seasons – short rain (March to 
May) and long rain (November to December). The forest belt received 3000 mm, 
where the lower slope received 1500–2000  mm and southern 900  mm (Hemp, 
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Fig. 3.1  Location map of Mt. Kilimanjaro

2006). Also, the savanna plain’s annual temperature is more than 25 °C, and it’s less 
than −5 °C on the Mt. summit (Detsch et al., 2016).

3.3 � Materials and Methods

3.3.1 � Datasets

The vegetation zonation information is obtained from the European Space Agency 
(ESA) website (https://www.esa.int/SPECIALS/Eduspace_Global_EN/). The 
boundary layer for Reserve Forests and National Parks was taken from the follow-
ing webpage. This boundary was a mask with the final output to determine the burn 
area and vegetation recovery monitoring.

The Moderate Resolution Imaging Spectroradiometer (MODIS) collection of six 
burn area products (MCD64A1) was obtained to monitor fire activity in the small 
region (Giglio et al., 2018). The sensor provides daily global fire monitoring ser-
vices based on surface reflectance. The product is grided with a 500 m resolution 
containing information per pixel burn area (Table 3.1) compared to collection 5 (C5 
MCD64A1) (Scholtz et  al., 2020). Giglio et  al. (2009) improved the burn area 

P. Das et al.

https://www.esa.int/SPECIALS/Eduspace_Global_EN/


55

Table 3.1  Properties of Sentinel-2 and MODIS satellite data used in this study

Sentinel-2 MODIS

Band no
Band 
name

Central 
bandwidth

Resolution 
(m)

Product 
name

Retrieved 
data

Resolution 
(m)

B01 C/A 0.421 60 MCD64A1 Burn area 
monthly

500

B02 Blue 0.490 10
B03 Green 0.560 10 MCD15A2H LAI 500
B04 Red 0.665 10
B05 Red-

edge 1
0.705 20 MOD 13A1 NDVI 500

B06 Red-
edge 2

0.740 20

B07 Red-
edge 3

0.783 20

B08 NIR 0.842 10
B8a NIR 

narrow
0.865 20

B11 SWIR 1 1.610 20
B12 SWIR 2 2.190 20

approach to observe fire activity using MODIS channels 5 and 7 and estimate tem-
poral texture. In addition, Leaf Area Index (LAI) datasets are obtained from MODIS 
level 4 (version 6) 8-day composite with 500 m spatial resolution (MCD15A2H) 
(Myneni et  al., 2015). Similarly, the Normalized Difference Vegetation Index 
(NDVI) was retrieved from the MODIS Level 3 composite with 500 m resolution. 
This dataset is freely available and downloaded from the NASA lpdaac website 
(https://lpdaac.usgs.gov/) (Table 3.1). Although the algorithm (MODIS LAI/FPAR 
algorithm) combines the best pixel available from the sensor, the study used MODIS 
LAI and NDVI products to monitor the post-fire vegetation recovery.

The high-resolution Sentinel-2 image was used in this study to identify the burn 
area and obtained from ESA (European Space Agency), Sentinel Scientific Data 
Hub (https://scihub.copernicus.eu/). This Multispectral Instrument (MSI) includes 
an optical sensor with 13 spectral bands at different spatial resolutions (10–60 m) 
(Table  3.1). The datasets provide accurate post-fire mapping and analysis of the 
wildfire extent in a small area. The two Sentinel-2 images are selected from 08 
October 2020 (pre-fire) and 15 October 2020 (post-fire).

3.4 � Method

The monthly MODIS burnt area product (MCD64A1) was used to determine the 
burn area and mask this area at Mt. Kilimanjaro reserve forest. The algorithm gener-
ated a burn-sensitive vegetation index (VI) (Eq.  3.1) and created a dynamic 
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threshold value in the composite data (Giglio et al., 2009). Afterthought, the burn 
area was classified into an active fire region and unburned in October 2020. The VI 
is defined

	
VI � � � �� �band band band band5 7 5 7– /

	
(3.1)

where band 5 and band 7 are atmospherically corrected surface reflectance in 
MODIS infrared channels.

In the second stage, the two Sentinel images with less cloud were pre-processed 
in QGIS. The semi-automatic plugin separated the actual reference from the atmo-
spheric reflectance by applying the DOS atmospheric correction. The cloud mask 
tool was used to mask the cloud pixel from the NBR and dNBR images. The cor-
rected bands were processed to estimate the Normalized Burn Ratio (NBR) pre- and 
post-fire (Eq. 3.2).

	
NBR

nir swir
nir swir

� �� �
�� �

� �
� �

	
(3.2)

where the ρnir represents the near-infrared (NIR) band and ρswir represents the 
shortwave infrared (SWIR) in respected satellite data (Sentinel-2).

After estimating the pre- and post-fire NBR, it is necessary to calculate their dif-
ference to obtain the dNBR (Difference Normalized Burn Ratio) value (Eq. 3.3). 
However, the dNBR image is classified into unburned to high severity based on their 
spectral reflectance value. After estimating the dNBR, we will mask the cloud and 
remove it to calculate the burn severity area.

	
dNBR Post� � �� �Pre NBR NBR–

	
(3.3)

The study also introduces the new burned area index from Sentinel-2 (BAIS2) 
for burnt area mapping (Eq. 3.4). This new method uses high-resolution S2 MSI 
characteristics and, combined with the band, is suitable for post-fire monitoring 
(Filipponi, 2018). The BAIS2 was estimated using the following equation

	
BAIS2 1 06 07 8

04
12 8

12 8
1� � � �� �� �

�
��

�
�

�
�
�B B B A

B
B B A

B B A 	
(3.4)

where the B06 and B07 represent the red-edge-2 and red-edge-3 and 8A represents 
the NIRn2. Similarly, the B04 defines the red band, and B12 presents the SWIR 2 
band in Sentinel-2 image.

The MODIS Leaf Area Index (LAI) product defines the one-sided green leaf area 
per unit ground area. Similarly, the NDVI product provides greenness and mini-
mizes canopy-soil variation. MODIS vegetation indices (LAI, NDVI) were derived 
from daily bidirectional surface reflectance and atmospherically corrected and 
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removed pixels with no data. This vegetation index monitors vegetation damage and 
post-fire vegetation recovery from September to February.

3.5 � Results and Discussion

3.5.1 � Active Fire Detection on Mt. Kilimanjaro

The reserve forest reported fire on 11 October 2020 and monitored this fire activity 
using MODIS MCD64A1 product. Detecting the active fire in the mountain region 
is a key component for managing biomass loss (Szpakowski & Jensen, 2019). The 
MCD64A1 detects the most burnt area (approximately 90%) compared with other 
products throughout the year (Humber et al., 2019). The spatial plot (Figure 3.3a) 
shows the active fire region, where the Julian days range between 291 and 297. The 
total 7011.30 hectors burn area was obtained from the MCD64A1 product and 
masked this area to estimate the dNBR and vegetation indices.

The output of dNBR and BAIS2 was estimated from high-resolution Sentinel-2 
imagery. The Sentinel-2 image showed better severity classification and burn area 
compared to MCD64A1 due to spatial differences. Therefore, high-resolution imag-
ery gives good performance for burn area classification in a small region. The band 
8 (NIR) of the Sentinel-2 image shows the high spectral reflectance before the fire 
event and down significantly after the event. Similarly, the lower spectral reflectance 
of the unburned area shown in band 12 (SWIR) increased after the fire (Fig. 3.2). 
Figure 3.3b describes the burn severity classes based on the indices using Sentinel-2 
bands. The dNBR severity classes for Sentinel-2 were retrieved and classified based 
on the dNBR scale range (Table 3.2) with a reference image of MCD64A1. The 
figures show the large proportion of burn area is moderate to very high severity, and 
few pixel areas are unburned to low severity (Fig. 3.3b). Due to TOA’s (Top of the 
Atmosphere) correction, the burn area’s missing pixel value is present. The statistic 
of each severity class (Table 3.2) indicates that the 1890.211 ha unburned area only 
remains in the total area of 7011.30 ha.

The present BAIS2 (Burn Area Index Sentinel-2) is a novel method for post-fire 
monitoring and discriminating burn severity levels at a small scale (Filipponi, 2018). 
The vegetation red-edge spectral is the best radiance-based descriptors of chloro-
phyll in vegetation. The BAIS2 is calculated based on the B05 (red-edge 1), mainly 
associated with chlorophyll content. Similarly, B07 and B08 (red-edge 2 and 3) are 
closed to NIR, representing the leaf structure. The BAIS2 (Fig. 3.3c) results show 
the fire-affected area, where the highest value of 1.72 indicates the active fire on the 
studied region. The value nearby 1 demonstrates the high severity burn area as per 
the classification of dNBR (Fig. 3.3b). This spectral information also allows moni-
toring fire active regions in Mt. Kilimanjaro.

Monitoring the small fire using high-resolution Sentinel imagery, the SWIR is 
the most helpful band to obtain the fire changes region and lowest reflectance value 

3  Monitoring the Wildfire Activity and Ecosystem Response on Mt. Kilimanjaro…



58

50

40

30

20

10

0
0.45 0.69 0.75

VISIBLE NEAR INFRARED (NIR)

EXPLOITING SPECTRAL RESPONSE CURVES
R

E
F

LE
C

T
A

N
C

E
 (

%
)

ELECTROMAGNETIC SPECTRUM (Wavelength �m)

SHORTWAVE INFRARED (SWIR)

HEALTHY
VEGETATION

BURNED
AREAS

0.90 2.09 2.35

Fig. 3.2  Spectral reflectance curve for comparison of healthy vegetation and burned areas. 
(Source: US Forest service)

in healthy plants (Fig. 3.2). However, the red-edge spectral band shows burn sever-
ity classification and active fire monitoring (Fernández-Manso et al., 2016). To esti-
mate burn area, severity classes using MODIS data could not classify the severity 
index. The resulting output from high-resolution Sentinel-2 imagery showed a rea-
sonable separation and more detail of the burn area than MODIS 500 m product at 
a small region.

3.6 � Post-fire Monitoring and Vegetation Loss 
at Mt. Kilimanjaro

The vegetation recovery after the fire must be investigated to determine the long-
term impact on the forest ecosystem (Szpakowski & Jensen, 2019). Vegetation 
recovery after the fire event depends on the soil, temperature, precipitation, and 
vegetation structure. The LAI (Leaf Area Index) and NDVI (Normalized Difference 
Vegetation Index) responses were used to determine the temporal pattern of vegeta-
tion dynamics. However, vegetation recovery takes a long time, which differs from 
the burning season (Lacouture et al., 2020).

The LAI is an important ecological parameter and vegetation indices (VIs) for 
post-fire vegetation loss and recovery assessment. The spatial image of LAI 
(Fig. 3.4) describes the two conditions – before the fire event (20–30 September 
2020) and after the fire (8–15 October 2020). It clearly showed on the map that the 
LAI was reduced significantly after the fire event. The results indicate that LAI’s 
mean value declined from 0.83 (before the fire) to 0.34 (after the fire) in the 
burn area.
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Fig. 3.3  Mt. Kilimanjaro 
Forest fire 11 October 
2020. (a) MODIS burnt 
area and Julian days 
detected by MCD64A1 
during 01 October 2020 to 
31 October 2020 and true 
color composite Sentinel-2 
image on 17 August 2017. 
(b) dNBR (difference 
normalized burn ratio) for 
burn severity classes 
during 08 October 2020 to 
15 October 2020 and true 
color composite Sentinel-2 
image on 17 August 2017. 
(c) Monitoring burn area 
after the post-fire event by 
BAIS2 (burn area index 
from Sentinel-2) on 15 
October 2020
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Table 3.2  dNBR classification and statistic estimated from the Sentinel-2 during 08 October 2020 
to 15 October 2020

Segment classes [dNBR] Area [ha] dNBR spectral range

Unburn 1890.211 < 0.1
Low severity 2719.1 0.1–0.269
Moderate severity 1929.01 0.27–0.439
High severity 398.89 0.44–0.659
Very high severity 74.09 0.66–1.3

Fig. 3.4  Eight-day composite of LAI at Mt. Kilimanjaro. (a) Before fire (22–30 September 2020). 
(b) After fire event (8–15 October 2020) and burn area retrieved from MODIS (MCD64A1)

Vegetation present on the earth’s surface is measured by various vegetation indi-
ces such as NDVI, LAI, Enhanced Vegetation Index (EVI), Global Environmental 
Monitoring Index (GEMI), etc. (Das et al., 2020). However, green vegetation has 
strong absorption of radiant energy in the red band and high reflectance in the NIR 
band (Fornacca et al., 2018). Therefore, NIR reflectance was used for detecting the 
damage of vegetation loss and regeneration of vegetation. Calculating the NDVI is 
more accessible compared with other vegetation indices such as GEMI, EVI, etc. 
There was a significant difference between NDVI spatial imagery on 7 October 
2020 and 15 October 2020 (Fig. 3.5). Spatial variation of NDVI showed a large area 
of green vegetation was lost after the fire event concerning MODIS burn product. 
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Fig. 3.5  Eight-day composite of NDVI at Mt. Kilimanjaro. (a) Before fire (22–30 September 
2020). (b) After fire event (8–15 October 2020) and burn area retrieved from MODIS (MCD64A1)

The results demonstrate that the mean value of NDVI decreased from 0.28 (before 
the fire) to 0.22 (after the fire).

Although the growth of NDVI is significantly affected by temperature, this NDVI 
increased faster at a higher temperature and is delayed at a lower temperature 
(Lacouture et al., 2020). It is also noted that the NDVI cannot differentiate the dif-
ferent plant spices at moderate resolution. However, high-resolution satellite-
derived NDVI can recognize the diverse plant diversity and loss of every species.

It is important to estimate the vegetation re-growth rates and how they vary with 
the burn area index (Franks et al., 2013). This study extracted the burn area’s pixel 
value from BAIS2 and VIs using MODIS 500 m resolution. Figure 3.6 demonstrates 
the negative correlation between the burn area index (BAIS2) and vegetation indices 
(LAI and NDVI), retrieved from the MCD64A1 burn area patches. The correlation 
between the BAIS2 and VIs was relatively strong, with the value of R2 = 0.8 and 
R2  =  0.63.These results from the MCD64A1 burn area patches suggest that the 
intensity of vegetation indices declines with an increased burn area rate, which iden-
tifies the damage of forest and vegetation re-growth (Fig. 3.7a).
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Fig. 3.6  Correlation between burn area index (BAIS2) and vegetation indices (VIs). (a) NDVI vs 
BAIS2. (b) LAI vs BAIS2 during 1 September 2020–10 February 2020

3.7 � Vegetation Reconstruction

The methodology was adopted to monitor vegetation reconstructing for the studied 
area under the time series shown in Fig. 3.7. Implementing MODIS 8-day compos-
ite vegetation indices (LAI) showed gradual changes in the time series analysis 
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Fig. 3.7  Mt. Kilimanjaro Leaf Area Index LAI trend from 7 October 2020 to 2 February 2021

(Fig.  3.7). The temporal changes in vegetation recovery are detectable at all the 
MODIS VIs images. The sudden drop was reported in the LAI time series from 7 
October to 2 December (due to the fire event). Although the results demonstrate the 
significant increasing linear trend in LAI values after the post-fire event, the result-
ing output indicates that the diverse vegetation loss and vegetation recovers after the 
fire event take a long time (at least 100 years) to grow. However, human activity can 
affect vegetation reconstruction of the burn area at the upper site.

Global climate change increased the temperature, which developed the dry cli-
matic condition to dry vegetation more quickly and later the fire. Also, the wildland-
urban interface (WUI) or urban exposer on this dry vegetation has great concern for 
wildfire activity (Turco et al., 2019). The fire intensity also depends on the regional 
weather condition, such as declining moisture rate, increased wind speed, or fuel 
load (Flannigan et al., 2006). Chen et al. (2014) developed a drought index to deter-
mine the number of dry days from the total precipitation, significantly impacting a 
forest fire. Similarly, Abatzoglou and Williams (2016) found the anthropogenic cli-
mate change effect on forest fire and estimated the human-made climate change 
contribution on 4.2 million ha of forest fire across the United States. In this similar 
contrast, the dry climatic condition and human activity on Mt. Kilimanjaro increased 
wildfire frequency. From the last century, climate change has affected Mt. 
Kilimanjaro with the changes in precipitation and higher temperature (Kilungu 
et al., 2019). Previous studies suggest that the precipitation on Mt. Kilimanjaro has 
declined by 600–1200  mm from the last 100  years (Hemp, 2009). Therefore, a 
declining rainfall pattern and increasing temperature create a drier climatic condi-
tion on this mountain region, impacting a forest fire. Hemp (2005) found that the 
fire intensity has increased under the drier climatic condition on the slope of 

3  Monitoring the Wildfire Activity and Ecosystem Response on Mt. Kilimanjaro…



64

Kilimanjaro and changed the vegetation dynamics. However, the results indicate 
that the most fire event on Mt. Kilimanjaro results from human activity such as 
honey collectors and tourism.

3.8 � Conclusion and Recommendation

This paper estimates the burn area trend and vegetation reconstruction using freely 
available satellite data in a small-scale region. The novel methodology (BAIS2) is 
based on a spectral index with active fire at Mt. Kilimanjaro, demonstrated in previ-
ous research (Filipponi, 2018). These high-resolution satellite imageries detected 
the burn area in a small region of the mountain ecosystem and found a real-time 
solution. Although, the Sentinel-2 imagery did not find the specific species in the 
diverse ecosystem. The thermal character was detected in the proposed algorithm, 
which takes place on the active fire. The estimation of burn severity from high-
resolution imagery allows for the assessment of fire damage. The monitoring of 
vegetation degradation and re-growth using MODIS vegetation indices (NDVI, 
LAI) was also presented in this study. In addition, long time series for burn area 
detection will improve the understanding of spatial features in the reserve forest. 
However, including field data enhanced the wildfire information.

It is important to isolate and incorporate the deep river valley below the national 
park to protect the diverse ecosystem. Also, it is essential to connect the wildlife 
corridor between Amboseli, Kenya, and Mt. Kilimanjaro, which helps the migration 
of animals and controls wildfire (Hemp, 2009). This work suggests that prevention 
of fire activity is more reliable than fighting with fire.
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Chapter 4
Ecological Vulnerability Assessment 
to Grassland Fires in a Protected 
Mountainous Area Using Remote Sensing 
and GIS

E. Adagbasa, Samuel Adelabu, and T. W. Okello

Abstract  Natural disturbances such as wildfire can be a major and positive driver 
of ecosystem dynamics by changing forest structure and altering species composi-
tion. However, depending on the fire’s magnitude and frequency of occurrence, it 
becomes negative to the ecosystem. This study, therefore, established a model to 
predict ecological vulnerability to fire in a protected mountainous ecosystem. The 
model assessed the ecosystem’s vulnerability to fire with the response of soil and 
vegetation. The response of soil was generated using a modified RUSLE model, 
while the vegetation response was derived from a vegetation response ability model 
developed by a previous study. Validation was done using correlation analysis 
between the presence and abundance of two known species (S. plumosum and 
E. curvula) and the vulnerability class. The correlation results showed a strong posi-
tive relationship of r = 0.68 for S. plumosum and r = 0.82 for E. curvula. The model 
results showed that 12% of the study area has high ecological vulnerability to fire 
and 60% and 26% have medium and low ecological vulnerability, respectively. The 
results indicate that about 74% of the park has medium to high vulnerability, which 
suggests the need for park managers to use post-fire restoration strategies in these 
areas to prevent long-term soil erosion and the loss of particular vegetation species.
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4.1 � Introduction

The state of the ecosystem is important for human survival and development (Qiu 
et al., 2007). However, the conditions of ecosystems around the world are gradually 
depleting due to natural and anthropogenic disturbances (Peters et  al., 2013). 
Natural and anthropogenic disturbances can be regarded as drivers of ecosystem 
change. Natural disturbances such as wildfire can be a major and positive driver of 
ecosystem dynamics, changing forest structure and altering species composition 
(Duguy et al., 2012; Peters et al., 2013). Conversely, depending on the magnitude 
and frequency, wildfire can become a negative driver of ecosystem dynamics (Cohen 
et al., 2016; Thompson et al., 2015).

Globally, 200–500 Mha of savannahs, woodland, shrubland, grassland, and other 
vegetation burn annually from wildfires (Goldammer & Mutch, 2001). The occur-
rence, spread, and magnitude of wildfires are influenced by climate, vegetation 
structure, and land use (Lavorel & Steffen, 2004), which can cause sizable varia-
tions in the construction and functioning of ecosystems (Dale et  al., 2001). 
Vegetation changes caused by fire might bring about ecological degradation, impact 
on the atmosphere, biogeochemical cycles, and various ecosystems services such as 
carbon sequestration, soil fertility, grazing value, biodiversity conservation, and 
tourism (Lavorel et al., 2007).

Fire limits sustainable economic development globally and in Southern Africa 
when little or no attention is paid to the challenges of fire management, which 
results in increasingly large losses (Dlamini, 2011). Most of South Africa has sea-
sonal precipitation and a dry time of year, which can last for five or more months 
(Forsyth et al., 2010). The eastern part of the country receives enough precipitation 
for grasses to grow and fuel to support fire every year or two. It implies that wild-
fires are frequent and inevitable (Forsyth et al., 2010).

Ecological vulnerability can be defined as the failure of an ecosystem to endure 
the effects of stressors over time and space (Williams & Kapustka, 2000). Forsyth 
et al. (2010) classified wildfire risk in South Africa into 13 fire-ecology types using 
ecological information from various studies and MODIS images. The authors 
focused on economic, social, and environmental vulnerability to produce a risk 
map. The economic and social vulnerability used vegetation as an indicator, while 
the consequences of frequent wildfires were used as an indicator of environmental 
vulnerability. They concluded that 40% of the eastern part of the country, which is 
grassland and savannah, had the highest risk from wildfires. The authors recorded 
the effect of frequent fire on the environment but did not take the effect of fire on the 
interaction of abiotic and biotic factors in the ecosystem into consideration. A com-
plete assessment of ecological vulnerability should take into consideration both the 
biotic and abiotic components and their interrelationships with the different organi-
zation levels (Ippolito et al., 2010). This type of assessment is impracticable, which 
reduces the assessments that have been conducted (Turner et al., 2003). The response 
and recovery time of two main ecosystem components have been used by serval 
studies (soil and vegetation) to model ecological vulnerability to fire (Chuvieco, 
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2012; Duguy et al., 2012; Rodrigues et al., 2014; Viedma et al., 1997). Viedma et al. 
(1997) estimated the ecosystem recovery rate on the Mediterranean coast of Spain 
using Landsat 5 TM satellite images. They observed that normalized differential 
vegetative index (NDVI) was suitable for mapping burnt areas, and they then used a 
nonlinear regression analysis between NDVI and the time elapsed since the fire to 
assess the recovery time. Chuvieco (2012), Duguy et al. (2012), and Rodrigues et al. 
(2014) focused on short-term and medium-term vulnerabilities to fire in the 
Mediterranean region of Spain. They attributed the short-term vulnerabilities to soil 
erosion and the medium-term to the recovery time of plant communities after wild-
fires. These studies estimated the time required to restore vegetation to pre-fire con-
ditions using map algebra, remote sensing, and a geographical information system.

Analyzing different ecological processes requires various process-specific resil-
ience assessments with several temporal scales (Lavorel, 1999). Soil erosion by 
water is likely to occur some months after being exposed to fire, while vegetation 
cover recovery is still poor (Pausas & Vallejo, 1999). The soil is exposed to direct 
raindrops due to the loss of vegetation, which leads to an increase in soil erosion. 
The increased soil erosion will cause a decrease in soil organic matter and soil-rich 
nutrients necessary for vegetation recovery, also affecting other related ecosystem 
services. Re-establishing pre-fire plant communities takes a few years, even decades, 
depending on pre-existing vegetation, fire regime, and environmental conditions 
(Baeza et al., 2002; Keeley, 2009). Therefore, it is important for an integrated fire 
management strategy that brings together these factors to predict the vulnerability 
of the ecosystem in the short term after the fire.

Recently, several methods linking remote sensing and GIS have assessed particu-
lar post-fire processes (e.g., erosion) on a small scale to support post-fire manage-
ment (Adagbasa et al., 2020b; Bisson et al., 2008; Ruiz-Gallardo et al., 2004). The 
significance of remote sensing and GIS in post-fire vegetation recovery analysis 
using fire severity and environmental factors has also been explored in recent stud-
ies (Adagbasa et  al., 2018a; Rodrigues et  al., 2014; Viana-Soto et  al., 2017). 
Arianoutsou et al. (2011) presented a GIS-based multi-criteria evaluation approach 
for a comprehensive ecological knowledge-based assessment of the post-fire recov-
ery ability of Pinus halepensis forests. Adagbasa et al. (2020a) developed a vegeta-
tion response ability model from remote sensing data by integrating environmental 
factors (elevation, aspect, rainfall, land surface temperature, soil, and fire severity), 
vegetation adaptive strategies (flowering months, water requirements, resprouter/
seeders), and ecological class (increaser or decreaser). This study, therefore, pres-
ents a model adapted from Chuvieco (2012) and Duguy et al. (2012) for assessing 
short-term ecological vulnerability to wildfires in grassland through the responses 
of soil and vegetation using remote sensing and GIS. The model will be helpful for 
resource management and nature conservation decision-making because it will 
illustrate the ecological vulnerabilities to fires and contribute to environmental man-
agement plans. It will assist park managers in monitoring remote mountainous 
regions with limited ground monitoring coverage. The model will also aid in the 
development of suitable mitigation strategies against grassland fires that endanger 
biodiversity.
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Fig. 4.1  Study area

4.2 � Study Area

The study was conducted at the Golden Gate Highlands National Park (340 km2), in 
the Eastern Free State, South Africa (Fig. 4.1). The park is in the Eastern Highveld 
region with dry seasons from June to August, showers, hail, thunderstorms from 
October and April, snow in winter, and an annual rainfall of 800 mm. The park is 
also home to several endemic and threatened plant and animal species, making it an 
important biodiversity hotspot. Eragrostis and T. triandra are two of the most com-
mon plants in the park (Adagbasa et al., 2019; Sanpark, 2012). The montane biome 
provides a wide range of ecosystem goods and services to people inside and outside 
the region and local communities (Sanpark, 2012). Nevertheless, the park is threat-
ened by numerous problems, including veldt fires, invasive alien species (IAS), 
poaching, overgrazing, and overfishing of resources, especially medicinal plants.

4.3 � Methodology

This study adapt and integrated the vegetation response ability model of Adagbasa 
et al. (2020a), erosion susceptibility model by Adagbasa et al. (2020b), and invasive 
vegetation species extracted from vegetation species discrimination map by 
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Fig. 4.2  Ecological vulnerability model

Adagbasa et  al. (2019) to determine the ecological vulnerability using GIS and 
remote sensing as shown in Fig. 4.2.

4.3.1 � Erosion Sensitivity

The Universal Soil Loss Equation (USLE) is by far the most widely used soil ero-
sion modelling technique for any environment (Breetzke et al., 2013; Le Roux et al., 
2008; Vetter, 2007). The model estimates soil loss using a set of variables, including 
soil erodibility, slope length, slope steepness, and cover management practice. The 
model was modified by Renard et al. (1997), referred to as the Revised Universal 
Soil Loss Equation (RUSLE), and has been used with GIS for modelling soil loss in 
different areas (Bizuwerk et al., 2003; Breetzke et al., 2013; Le Roux et al., 2008). 
The USLE also accounts for differences in vegetation types and land management 
practices in estimating the quantity of soil that could be lost from a unit area. The 
RUSLE model adapted by Adagbasa et  al. (2020b) was used for this study. The 
model takes into account the same environmental factors of the RUSLE model, but 
with modifications to the crop management C-factor. The rainfall erosivity factor 
was based on the product of the total impact of the kinetic energy in MJ.mm/ha·h·yr. 
(E) of a raindrop and the (I30) maximum 30-minute rainfall intensity in mm/h for a 
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given storm. The EI30 was obtained from a local rainfall station located 165 km 
away from the study area with a similar climate and topography. Thirty years aver-
age annual rainfall data were obtained from the 500 m resolution Climate Hazards 
Group Infrared Precipitation with Stations daily dataset available on the Google 
Earth Engine (GEE) platform.

The soil erodibility factor (K) was computed using soil samples collected at a 
depth of 5 cm from 100 plots using stratified random sampling (Adagbasa et al., 
2020b). The soil samples were taken to a laboratory to determine soil particle sizes 
(Gee & Or, 2002) and organic matter content using the loss on the ignition process 
(Konen et al., 2002; Robertson, 2011; Schulte & Hopkins, 1996). The nomograph 
method (Wischmeier & Smith, 1978) was used to determine soil structure and per-
meability. The LS-factor was derived from a 30  m Shuttle Radar Topographic 
Mission (SRTM) using the stream power formula proposed by Moore & Burch  
(1986) and a later revised by Mitasova & Mitas (1999). Francis & Thornes (1990) 
stated that the minimum vegetation protective cover needed to protect soil from ero-
sion is about 40% below which high erosion process occurs. Therefore, the C-factor 
was computed by first using the formula proposed by (Lin et al., 2004) to determine 
the vegetation recovery rate (VRR) after fire using the red edge NDVI derived from 
Sentinel-2 image. Secondly, the equation proposed by Lin et al. (2002) was used to 
calculate the linear reverse of the red edge NDVI to derive the C-factor. The erosion 
sensitivity was categorized into soil-loss classes with 0–5 as very low, 5–12 as low, 
12–25 as moderate, 25–60 as high, 60–150 as very high, and greater than 150 as 
extremely high.

4.3.2 � Vegetation Response Ability

Vegetation response ability to fire is important for recovery. It determines how fast 
a plant species can sprout and recruit (Paula & Pausas, 2008). The ability for vegeta-
tion to return to its pre-fire condition after a fire is regarded as post-fire vegetation 
recovery (Bartels et al., 2016; Chuvieco, 2012). The adapted model from Adagbasa 
et al. (2020a) integrated environmental factors (elevation, aspect, rainfall, land sur-
face temperature (LST), and soil) and vegetation adaptive strategies (flowering 
months, water requirements, respouter/seeders, and ecological class (increaser or 
decreasers)) with five severity. The vegetation response ability was classified into 
low, medium, and high based on the adaptive vegetation strategy and favorable envi-
ronmental factors for plant growth. An adaptive strategy like facultative seeders was 
classified as having high response ability, because they recovered faster to pre-fire 
conditions compared to obligated seeders (medium) or resprouters (low) (Chuvieco, 
2012; Pausas & Keeley, 2014). Some grass species have adapted to flowering early 
and storing water underground to reduce the amount of water needed to regrow and 
recover, thus allowing them to flower earlier in spring than other plants (Wyk, 2003). 
Vegetation that flowered between August and April was classified as high, September 

E. Adagbasa et al.



73

and May as medium, and March and May as low. Locations with low, medium, or 
high response ability were classified according to Adagbasa et al. (2020a).

4.3.3 � Ecological Vulnerability

The ecological vulnerability was derived by integrating the vegetation response 
ability and erosion sensitivity. The resulting image was a 500 m resolution map, 
which classified ecological vulnerability into high (low response ability and high to 
extremely high soil loss), medium (medium response ability and medium to low soil 
loss), and low (high response ability and low to very low soil loss).

4.3.4 � Validation

Ecological models are generally difficult to validate (Rykiel & Edward, 1996), with 
the NDVI technique the most used (Bisson et al., 2008; Dı’az-Delgado et al., 2002, 
2003; Riaño et al., 2002; Viedma et al., 1997). Pe’rez-Cabello et al. (2002) recom-
mended that by assessing the reconstruction process of various forest communities, 
observations should be carried out on the NDVI changes in burned plots over 
3–5 years. Duguy et al. (2012) applied the same method to evaluate their model over 
3 years. However, this method may not work in a grassland ecosystem. Grass spe-
cies in South Africa have adapted to fire and require a few months to recover to 
pre-fire conditions (Forsyth et al., 2010), and the changes in mean NDVI may not 
show the true recovery. It is because recovery to pre-fire conditions in a grassland 
ecosystem depends on the vegetation species’ response ability and the influence of 
other factors like the rate of soil erosion and the succession of invasive and increaser 
species (Adagbasa et al., 2020a). Increaser and invasive species tend to suppress 
other species and regenerate to pre-fire conditions within 6 months after the fire. 
The NDVI values from the pre-fire and post-fire conditions may show full recovery, 
but an increaser or invasive species may have replaced the original plant commu-
nity. This study, therefore, used the spatial distribution of two known species, 
Seriphium plumosum and Eragrostis curvula, to evaluate the validity of the model. 
The study assumed that there would be a positive relationship between the spatial 
distribution of these species and the level of ecological vulnerability. Increasers and 
invasive vegetation species threaten native vegetation species and water resources, 
because they grow faster, consume more water, and spread more than the native spe-
cies (Curhes et al., 2009; Rebelo et al., 1997). The encroachment of these vegetation 
species tends to alter ecosystems’ balance, thereby making them more ecologically 
vulnerable to fire. Recent studies on grassland ecosystems have shown the impact of 
invasive plants such as S. plumosum, also known as “Slangbos” (Dubula et al., 2016; 
Mashalane & Adjorlolo, 2016; Snyman, 2009). The plant promotes fire, kills native 
grass species, and transforms grazing grasslands into degraded shrublands 
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(Mashalane & Adjorlolo, 2016; Snyman, 2009). E. curvula is termed an increaser II 
species, which increases profusely on overexploited soils (Mansour et al., 2012). It 
is the most dominant species within the study area, found around lower elevations 
(Adagbasa et al., 2019). E. curvula regenerates early and recovers to pre-fire condi-
tions after the fire and can survive for long dry seasons. It grows quickly, spreads 
fast, and can easily suppress other species by preventing their regeneration. This 
species usually increase fire frequency and severity because of its very high fuel 
load (Curhes et al., 2009; Firn, 2009).

S. plumosum and E. curvula were extracted from the vegetation species map of 
the study area created by Adagbasa et al. (2019) using the structured query language 
(SQL) tool of ArcMap 10.5. Their study applied a multi-layer perceptron (MLP) 
deep neural network and stratified K-fold to discriminate grass species using post-
fire Sentinel-2 MSI images from November 2017 to April 2018. All the bands of the 
Sentinel-2 images were resampled to 10 m resolution using the nearest neighbor 
resampling technique and linear mapping function. Fifty-three species were identi-
fied, and 12 were dominant and included E. curvula and S. plumosum. The abun-
dance of both species was calculated by counting the number of 10 m pixels for 
each species located within 500 m resolution for each ecological vulnerability class. 
Spearman’s correlation analysis was then used to determine the relationship between 
percentage species abundance and vulnerability categories. The strength of the rela-
tionship was gauged using Cohen’s standards, where coefficients between 0.10 and 
0.29 signified a small effect size, 0.30 and 0.49 signified a moderate effect size, and 
above 0.50 indicated a large effect size (Cohen, 1988).

4.4 � Results and Discussion

The study area experienced an average yearly soil erosion of 13 t/ha·yr., with about 
21% of the study area experiencing low to extremely high soil loss from water ero-
sion (Adagbasa et al., 2020b). The vegetation recovery index used as the C-factor 
showed that 34% of the vegetation was fully recovered to pre-fire conditions 
6 months after the last fire with medium to very low soil loss and that 48% of the 
vegetation had high response ability, 43% medium, and 9% low response ability 
(Adagbasa et al., 2020b).

Figure 4.3 shows the spatial distribution of S. plumosum with 5.3% coverage and 
E. curvula with 38% coverage, making up 43.3% of the study area. S. plumosum 
was mostly found in the northeastern and central parts of the study area, along the 
roads, northwestern boundary, and a few patches to the western part. It confirms the 
results of the predicted spatial distribution of the species done by Adepoju et al. 
(2019). These locations also experience high fire severity (Adagbasa et al., 2018b), 
low to medium vegetation response ability, and human activities. S. plumosum is not 
abundant in the west-central and southern part of the study area. These parts are 
predominantly mountain ridges with high elevations. E. curvula, which is the most 
dominant species, is found all over the study area, with the exception of high 
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Fig. 4.3  Spatial distribution of S. plumosum and E. curvula extracted from vegetation species map 
(Adagbasa et al., 2019)

elevations where it is sparse. Recent studies have revealed that an ecosystem with 
increaser species like E. curvula being the most dominant compared to other species 
indicates a degrading environment (Wet, 2017).

The results of the ecological vulnerability show that 14% of the study area had a 
high vulnerability, 60% with medium vulnerability, and 26% with low vulnerability, 
as shown in Fig. 4.4 and Table 4.1. The northeastern part has 31% of the high eco-
logical vulnerability, probably because that part experienced low to medium vegeta-
tion response ability and low to high soil loss. The vegetation recovery might be 
slow due to the effects of post-fire soil degradation resulting in soil nutrient losses 
(Duguy et al., 2012). The location also experienced less rainfall, high land surface 
temperature, and high fire frequency and severity (Adagbasa et al., 2020a). A quar-
ter (25%) of high ecological vulnerability was distributed around the southern part 
of the study area. The southern part also experienced low vegetation response abil-
ity and high to very high soil loss. Although it experienced high rainfall, it also 
frequently experienced high fire severity. Fire severity directly relates to high soil 
losses, increasing land degradation, potentially impacting the vegetation regenera-
tion process (De Luis et al., 2003; Scott et al., 2009).
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Fig. 4.4  Ecological vulnerability to fire

Table 4.1  Area coverage of ecological vulnerability in square kilometers

Category Km2

Low 80.14
Medium 186.53
High 44.00

4.5 � Ecological Vulnerability Validation

The correlations were examined at an alpha value of 0.05. A significant positive 
correlation was observed between S. plumosum and ecological vulnerability 
(rs = 0.68, p < .001). The correlation coefficient between S. plumosum and ecologi-
cal vulnerability was 0.68, indicating a large effect size (the confidence intervals 
were computed using α = 0.05; n = 193,762). This correlation indicated that as the 
abundance of S. plumosum increased, the ecological vulnerability from low to high 
tended to increase. Figure 4.5a presents the scatterplot of the correlation.

A significant positive correlation was also seen between E. curvula and ecologi-
cal vulnerability (rs = 0.82, p < .001). The correlation coefficient between E. curvula 
and ecological vulnerability was 0.82 (the confidence intervals were computed 
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Fig. 4.5  (a) Correlation between S. plumosum and ecological vulnerability. (b) Correlation 
between E. curvula and ecological vulnerability. The value on the Y-axis presents the vulnerability 
categories. 1.0 represents low vulnerability, 2.0 medium, and 3.0 high vulnerability. The X-axis 
represents the species abundance

using α = 0.05; n = 781479), indicating a great effect size. This correlation indicated 
that as E. curvula increased, the ecological vulnerability from low to high tended to 
increase (Fig. 4.5b).

It is clear from the correlation analysis that both species had a positive relation-
ship with the vulnerability of the areas they were present in abundance. It confirms 
that both species thrive in overexploited and degrading lands (Mansour et al., 2012; 
Mashalane & Adjorlolo, 2016; Snyman, 2009).

4.6 � Conclusion

This study developed a method to assess the ecological vulnerability of a protected 
mountainous ecosystem to wildfire. The response of soil and vegetation was used to 
evaluate the ecological vulnerability of the region to wildfire. A modified RUSLE 
model was utilized to create the soil response, whereas a vegetation response ability 
model designed by previous research was used to generate the vegetation response. 
This study showed that 12% of the study area had a high ecological vulnerability to 
fire, 60% medium, and 26% low ecological vulnerability. The ecological vulnerabil-
ity of the study area showed the urgency for park managers to carry out post-fire 
restoration management practices on the areas with medium to high vulnerability, 
which comprised 74% of the park. The risk of lasting soil erosion and the loss of 
some vegetation species should be prevented. Finally, the research findings have 
also shown the extent of the park’s ecological vulnerabilities to fires and can help 
with improving conservation environmental management plans. This study, there-
fore, recommends that park managers use the model to aid in creating biodiversity-
friendly mitigation strategies for grassland fires that endanger the ecosystem.
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Chapter 5
Natural Hazards Magnitude, Vulnerability, 
and Recovery Strategies in the Rwenzori 
Mountains, Southwestern Uganda

Bernard Barasa, Bob Nakileza, Frank Mugagga, Denis Nseka, Hosea Opedes, 
Paul Makoba Gudoyi, and Benard Ssentongo 

Abstract  Tropical mountain environments witness unprecedented occurrences of 
natural hazards that directly and indirectly threaten human lives and hard-earned 
properties. Existing literature reveals limited efforts underpinning the magnitude of 
natural hazards including the vulnerabilities and recovery efforts in the Rwenzori 
Mountain. This chapter aimed at examining the magnitude of natural hazards and 
prevailing vulnerability in Mt. Rwenzori. It also explored the possible recovery 
strategies that could be undertaken by local authorities and other stakeholders. The 
study adopted a multi-hazard approach. The main natural hazards considered in this 
chapter are drought, earthquake, floods, hailstorm, landslides, lightning, and wind-
storms. Different hazard severity methods were applied depending on the type of 
natural hazard analysed. Droughts were analysed using the Standard Precipitation 
Index. The earthquake hazard was computed using the Probabilistic Seismic Hazard 
Assessment (PSHA) technique. Landslide hazards were assessed using a Spatial 
Multi-Criteria Evaluation (SMCE) method to create a semi-quantitative landslide 
susceptibility index. Lightning hazard was assessed using the thunderstorm counts 
recorded at a local weather station. Windstorm studies relied on wind speed data for 
the period 2002–2018 obtained from a weather station. Similarly, records registered 
at this weather station were also used to estimate hailstorm incidences. Floods were 
mapped using the HEC-RAS model. Vulnerability was assessed qualitatively based 
on the elements exposed and the nature of hazard. The results revealed that the area 
experiences moderate to high intensity of earthquakes and landslides. Much of the 
area experiences low incidences of floods and droughts. However, high incidences 
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of flash floods have been witnessed in Kasese and Ntoroko districts. Hailstorms and 
windstorms are moderately intensive. The elements most affected by various natural 
hazards include people, buildings, schools, roads, and croplands. Continued occur-
rence of natural hazards will wreck more havoc and retard efforts towards achieving 
sustainable development in such a fragile mountain ecosystem. This result should 
trigger continuous debates on resettlement, disaster policy reforms, land use plan-
ning, early warning systems  and budgetary allocations.  Therefore, any recovery 
strategies under such complex multi-hazard scenario should involve balanced short- 
to long-term recovery planning.

Keywords  Drought · Earthquake · Flood · Hailstorm · Landslide · Lightning · Mt.
Rwenzori

5.1 � Introduction

Natural hazards constitute to the representation of an ever-present intrinsic force 
with threats to society. Although hazards and disasters have been used interchange-
ably, they are different. According to Montz et al. (2017), a natural hazard character-
izes the likelihood of an event (not the actual event itself) arising from natural 
processes and/or interaction of mankind and extreme natural events. For instance, 
by establishing settlements, infrastructure, and/or farmland on floodplains, human 
beings expose themselves to natural hazards. Upon occurrence is when these events 
become disasters (Twigg, 2015). A disaster is an event that overwhelms the com-
munity’s ability and capacity to cope, requiring external assistance (Montz et al., 
2017; Twigg, 2015). The extent of the impact of a disaster caused is determined by 
the level of vulnerability of communities.

Disasters manifest in different forms depending on the associated natural hazard 
events. Globally, these have been categorized as geophysical, climatological, mete-
orological, hydrological, and biological hazards. Disasters like landslides, drought, 
cyclones, floods, and disease epidemics respectively have been experienced across 
different timescales and space the world over. Over 83% of all natural disasters are 
triggered by extreme weather- and climate-related events, specifically, floods, 
storms, and heatwaves (IFRC, 2020). Though not the focus of this study, it is worth 
noting that man-made hazards such as conflicts arising from wars result in disasters 
like famine and human displacement (IFRC, 2019; Montz et al., 2017; Wisner et al., 
2014). Mountains including Rwenzori have not been spared from such man-made 
disasters.

The magnitude and intensity of losses accruing from natural hazards is alarming. 
More than 1.7 billion people around the world have been affected by climate-related 
disasters with more than 410,000 fatalities over the past 10 years (IFRC, 2020). 
Most of the fatalities have majorly been experienced in developing countries where 
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the level of disaster preparedness is very limited (Dilley et al., 2005; Guha-Sapir 
et al., 2004). The magnitude of disasters in Sub-Saharan Africa isn’t comparable to 
the huge losses experienced by the rest of the continent and Europe (Dilley et al., 
2005; Montz et al., 2017; Wisner et al., 2014). Nonetheless, Nigeria, Burkina Faso, 
Ethiopia, Kenya and Uganda have been reported to have a relatively high mortality 
risk from multiple hazards based on total area and percentage population in areas at 
risk (Dilley et al., 2005).

Like the rest of the East African mountainous environments, the frequency and 
rate of natural disaster occurrence in Uganda is on the rise with impacts weighing 
heavily on the livelihoods and economy (Bagonza, 2014; Scuderi et al., 2019). In 
Uganda, the long-term damage to buildings arising from landslides is highest in 
eastern and western mountainous areas which exceeds $850,000 annually and 
flooding that affects at least 45,000 people (World Bank, 2019). Mount Rwenzori 
situated in western Uganda is among the most affected regions in the country by 
natural disasters (Mertens et al., 2018). The major disasters recorded on the slopes 
of Mount Rwenzori included landslides, storms, floods, and drought in the dis-
tricts of Bundibugyo, Kasese, and Kabarole (Katutu et al., 2019; Mertens et al., 
2018). Several households were noted to be more vulnerable and lost a lot of 
property in terms of housing structures and farm plantations among other 
livelihoods.

Vulnerability refers to the unfavourable conditions, including physical, social, 
economic, and environmental factors that increase the susceptibility of elements at 
risk to the impact of hazards (UNISDR, 2015a, 2015b). Vulnerability is related to 
predisposition, susceptibilities, fragilities, weaknesses, deficiencies or lack of 
capacities that favour adverse effects on the exposed elements. Vulnerability assess-
ment is the systematic examination of elements at risk that are susceptible to dam-
age from the effects of natural hazards.

Several recovery strategies in response to natural hazards have been initiated by 
the local governments and other stakeholders. For instance, recovery strategies 
against landslides have been explored although with varying level of success. 
Efforts have been made in enhancing deeper infiltration of rain water through 
planting trees and reforestation on depleted slope zones of Mount Rwenzori and 
relocation of population from floodplains and other disaster-prone areas (Katutu 
et al., 2019). Existing literature reveals limited efforts underpinning the nexus of 
magnitude of natural hazards, the vulnerabilities, and recovery efforts in the 
Rwenzori Mountain. This chapter, therefore, aimed at examining the magnitude 
of natural hazards and prevailing vulnerability in Mt. Rwenzori region. It also 
explored the possible recovery strategies that could be undertaken by local and 
other authorities. The study adopted a multi-hazard approach in analysing the 
vulnerabilities of elements exposed to the hazards. The main hazards considered 
in this chapter were drought, earthquakes, floods, hailstorms, landslides, light-
ning, and windstorms. The objectives of this chapter were (i) to examine the mag-
nitude and vulnerability of natural hazards experienced in Mt. Rwenzori and (ii) 
to ascertain the appropriate disaster recovery strategies to natural hazards in the 
Rwenzori Mountains.
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5.2 � Materials and Methods

5.2.1 � Description of Study Area

The study was conducted in the Mountain Rwenzori region at the border between 
Uganda and the Democratic Republic of Congo (Fig. 5.1). The study area is situated 
between latitudes 0.3858° N and longitudes 29.8717° E. Mount Rwenzori traverses 
five districts, i.e. Bundibugyo, Bunyangabu, Kabarole, Kasese, and Ntoroko. The 

Fig. 5.1  Location of Mountain Rwenzori in Uganda
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topography of the mountain ranges between 653 m and 5239 m above sea level 
(Fig.  5.1). The major rivers that drain the mountain include Nyamwamba, 
Nyamagasani, Kanyampara, Mubuku, Ruimi, Kahera, Rukoki, and Lamia. The veg-
etation of the mountain is characterized by afro alpine moorland, Afromontane rain 
forest, combretum wooded grasslands, edaphic wooded grasslands, evergreen bush-
lands and thickets, montane ericaceous, Afromontane bamboo, and Hagenia abyssi-
nica forest. The mountain has unique alpine flora that includes many species 
endemic to the Albertine rift in the higher altitude zones, and these include giant 
heathers, groundsels, and lobelias.

The mountain experiences an alpine climate with high rainfall patterns ranging 
between 1000 mm and 2800 mm. The Ugandan part of Mt. Rwenzori can receive 
heavy rains any time of the year, but the rainiest periods are from Mid-March to 
May and from September to mid-December (Van Damme & Eggermont, 2011). 
Temperature and precipitation changes with altitude. For example, at the base of the 
mountain (1250 m.a.s.l), mean annual temperature and precipitation are about 24 °C 
and 1150 mm, respectively; at 3300 m.a.s.l, mean annual temperature and precipita-
tion are about 12.5 °C and 2600 mm, respectively; at 4000 m.a.s.l, temperature and 
precipitation drop to about 7 °C and 2000 mm, respectively; above 4300 m.a.s.l, 
precipitation is mainly received as snow and temperature drops further to about 4 °C 
and can reach 0 °C at 4600 m.a.s.l (Osmaston, 1989; Roller et al., 2012). The eco-
system is inhabited by about 1,665,900 people (Bundibugyo 263,800; Bunyangabu 
195,100; Kabarole 337,800; Kasese 793,200 and Ntoroko 76,000) as per 
UBOS (2020).

5.2.2 � Natural Hazards in Mountain Rwenzori

The main natural hazards considered for investigation were drought, earthquakes, 
floods, hailstorms, landslides, lightning, and windstorms. The data sources and 
methods for analysing each hazard are described below.

Drought Hazard  Drought occurs when there is an extended period of an abnormal 
deficiency in precipitation relative to what is considered normal (Eslamian et al., 
2017). Meteorological drought is the mostly experienced. Compounding factors 
such as poverty and inappropriate land uses increase the vulnerability of people to 
drought. In this study, drought was assessed using the Standard Precipitation Index 
(SPI). Precipitation data (1995–2018), used in the computation of SPI, was acquired 
from the Kasese weather station. This period was selected due to consistent data 
availability. The drought classification system developed by McKee et al. (1993) 
was used to define drought intensities resulting from the SPI (Table 5.1).

Earthquake  An earthquake is a result of a sudden release of energy in the Earth’s 
crust that creates seismic waves. At the Earth’s surface, earthquakes manifest them-
selves by shaking and sometimes displacement of the ground. Earthquakes can also 

5  Natural Hazards Magnitude, Vulnerability, and Recovery Strategies in the Rwenzori…



88

Table 5.1  Standard Precipitation Index and Drought Intensity Scale

SPI Index Drought Intensity Scale

2.0+ Extremely wet
1.5–1.99 Very wet
1.0–1.49 Moderately wet
−99 to 0.99 Near normal
−1.0 to −1.49 Moderately dry
−1.5 to −1.99 Severely dry
−2 and less Extremely dry

Source: Adopted from McKee et al. (1993)

trigger landslides and occasionally volcanic activity. The earthquake hazard was 
computed using the Probabilistic Seismic Hazard Assessment (PSHA) technique 
(Ordaz et al., 2013). The PSHA uses the Poisson distribution model and has been 
recognized as the most appropriate seismicity modelling tool in the context of insuf-
ficient data records in the region. This method involved building a catalogue from 
seismic data with a unified magnitude that provides information on the location and 
frequency of earthquake occurrence during the past 10 years and delineating seis-
mic source zones based on geological and seismological evidence (faults). The 
Modified Mercalli Intensity (MMI) was then used to standardize the earthquake 
hazard for Mt. Rwenzori.

Flood Hazard  A flood is a temporary overflow of a normally dry area due to sur-
face water run-off, abnormal erosion, and unusual built-up, among others. Mt. 
Rwenzori sometimes experiences floods that are riverine in nature. The rivers that 
experience high inundation levels include Nyamwamba and Mubuku. The flood 
inundation extents in Mt. Rwenzori were delineated using the HEC-GeoRAS tool 
using rainfall (2020), land use (2020), Digital Elevation Model (DEM) of 30  m 
spatial resolution, and stream geometry datasets. Efforts were made to make sure 
recent datasets were utilized. Rainfall data was obtained from the Uganda National 
Meteorological Authority, land use was created from downloaded Landsat 8 (20 m) 
imagery filtered and subjected to supervised classification algorithm, while the 
SRTM DEM was downloaded, filled, and used. The flood extents were then catego-
rized into flood hazard intensities based on water depth, i.e. very high (>2 m), high 
(1.5 m–2 m), moderate (1 m–1.5 m), and low (0.5 m–1 m). The results were vali-
dated by stakeholders in four regions of Uganda in well-organized workshops.

Hailstorm Hazard  Hail is a form of solid precipitation that occurs when rising air 
in a thunderstorm lifts water droplet high into the atmosphere where temperatures 
are below freezing. This causes the water droplets to turn into hailstones before fall-
ing down to earth. Data for the number of hail days between 2000 and 2018 was 
obtained from the Kasese weather station due to availability and appropriate consis-
tency. The incidences were collated with data from the DesInventar database 
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(https://www.desinventar.net/). The data was cleaned and processed using ordinary 
kriging interpolation technique to produce the spatial hailstorm hazard map of Mt. 
Rwenzori. The hailstorm hazard was categorized into intensities basing on the num-
ber of hail days in a year.

Landslide Hazard  Landslides are the sudden movement of soil material down a 
slope under the influence of gravity. Some of the triggering factors of landslides 
include rainfall, earthquakes, stream erosion, changes in groundwater, volcanic 
activity, and increased human activities, among others. In this study, landslides were 
assessed using a Spatial Multi-Criteria Evaluation (SMCE) method to create a semi-
quantitative landslide susceptibility index. The datasets/factors considered in the 
analysis included ASTER DEM (30 m), rainfall, land use/cover, lithology, and Peak 
Ground Acceleration (PGA). The factors were assigned a range of scores and 
weights to assess their influence in the occurrence of landslides. The landslide sus-
ceptibility index was used to standardize the landslide hazard of Mt. Rwenzori.

Lightning Hazard  Uganda has one of the highest rates of lightning strike deaths 
in the world (Mary & Gomes, 2012). The frequencies and severities of lightning 
incidences have increased, resulting in significant loss of life and property. Uganda 
is not equipped with lightning flash counter network or a lightning detection system, 
and thus the thunder-heard day is the most appropriate parameter that can be used 
in lightning-related studies. Thunder day is when thunder is heard at a given loca-
tion. Data on thunder days was obtained from the Kasese weather station for the 
period 2007 to 2018 due to availability and consistency. This data was supplemented 
with the Overshooting Tops (OT) data from the NASA Spin-Enhanced Visible 
Infrared Imager (SEVIRI). The interpolation technique was used to determine the 
OT counts and flash density in Mt. Rwenzori. The lightning hazard for Mt. Rwenzori 
was categorized basing on flashes per square kilometre per year.

Windstorm Hazard  A windstorm is a storm with very strong wind but little or no 
rain. Winds can be classified based on their strength and direction. To map the wind-
storm hazard in Mt. Rwenzori, wind speed data for the period 2002–2018 was 
obtained from the Kasese weather station due to data availability, and this was inter-
polated to assess the spatial distribution. The Beaufort wind scale was used to clas-
sify the windstorm hazard basing on the wind speed and the respective impact and 
severity.

5.2.3 � Elements at Risk in Mountain Rwenzori

The elements at risk in the Mt. Rwenzori that were considered for analysis included 
buildings, health centres, schools, police posts, road network, water sources, and 
croplands. These were selected due to data availability in the ecosystem. These are 
provided in Table 5.2 below and their sources.
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Table 5.2  Sources of data considered in the analysis

Elements Data types Data source

Buildings Polygon OpenStreetMap (2020)
Croplands Polygon National Forestry Authority (2020)
Police posts Point Uganda Police Force (2020)
Health centres Point Ministry of Health (2020)
Road network Line Uganda National Roads Authority (2020)
Schools Point Ministry of Education and Sports (2020)
Water sources Point Ministry of Water and Environment (2020)

Table 5.3  Elements at risk in Mountain Rwenzori ecosystem by districts

Elements at Risk

Buildings Croplands Road network Schools
Water 
sources

Districts No % Area (Km2) % Length (km) % No % No %

Bundibugyo 14,182 13.6 0.7 2.3 129.0 6.0 24 8.5 94 7.6
Bunyangabu 3530 3.4 2.4 7.6 25.1 1.2 9 3.2 38 3.1
Kabarole 3212 3.1 2.2 6.9 28.2 1.3 6 2.1 26 2.1
Kasese 81,402 78.0 24.5 78.7 1915.6 89.7 243 85.6 1052 84.7
Ntoroko 2075 2.0 1.4 4.4 36.6 1.7 2 0.7 32 2.6
Total 104,401 100 31.2 100 2134.5 100 284 100 1242 100

As per the elements at risk, a total of 104,401 buildings are situated on the slopes 
and foots of Mt. Rwenzori with the biggest portion of them in Kasese district (78%) 
and the least percentage (2%) in Ntoroko district (Table  5.3). There are about 
138,154 croplands covering an area of 31.2 km2 on the slopes of Mt. Rwenzori. 
Still, the biggest percentage portion of croplands, 78.7%, is located in Kasese dis-
trict, and the least portion, 2.3%, is in Bundibugyo district. A total of 32 health 
centres found in the Mt. Rwenzori region are situated in Kasese (30) and Bundibugyo 
(2) districts. There are eight police posts on the foot slopes of Mt. Rwenzori in 
Kasese (seven) and Bundibugyo (one) districts (Fig. 5.2). There is about 2134.4 km 
of road network that traverses the foot slopes of Mt. Rwenzori. Most of the road 
network (89.7%) on Mt. Rwenzori is found in Kasese district. There is also a total 
of 284 schools on the foot slopes mostly (243) situated in Kasese district. A total of 
1242 water sources were established on the foot slopes of Mt. Rwenzori with most 
of them, 84.7%, located in Kasese district. The types of water sources that exist in 
Mt. Rwenzori include deep boreholes, kiosks, protected springs, public stand posts, 
rainwater harvesting tanks, shallow wells, and yard taps for public use. Of these, 
protected springs are the most common (56.9%).
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5.2.4 � Disaster Recovery Assessment

Purposive key informant interviews were conducted at the regional and district lev-
els. These were selected because of their expertise and experience in post-disaster 
recovery assessment and management. As a first step, these were contacted, and 
meeting schedules were set for either face to face or virtual. In either case, a key 
informant guide was used to guide the interviewing process that lasted between 1 
and 2 hours. These were asked questions regarding the impacts of disasters, recov-
ery interventions implemented in the short and long terms, and lessons learned 
among others. The interviewed stakeholders were from government  ministries, 
departments, and agencies such as the Ministry of Works and Transport, Ministry of 
Health, and NGOs such as Red Cross and World Vision, among others.

The selection of disaster recovery interventions implemented in the short-, 
medium-, and long-term periods was based on the following criteria:

	1.	 Potential to cause humanitarian impact
	2.	 Potential to improve sustainable livelihoods
	3.	 Incorporation of marginal group (pro-poor, vulnerable, and gender) agendas
	4.	 Restoration and rebuilding of critical infrastructure and services
	5.	 Inclusiveness of public and private sector recovery needs

Fig. 5.2  Natural hazards experienced in Mountain Rwenzori
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5.3 � Results

5.3.1 � Spatial Exposure Profile of Hazards in Mt. Rwenzori

Mountain Rwenzori region is exposed to very low (1298.6 km2), low (536.6 km2), 
and moderate (70.5 km2) drought hazard (Fig. 5.3). The biggest part of the moun-
tain, 68.1%, is exposed to very low drought hazard; however, there is a portion in 
Kasese and Ntoroko districts that is exposed to moderate drought hazard (3.7%). 
The earthquake hazard coverage is characterized with Modified Mercalli Intensity 
(MMI) of VIII and Peak Ground Acceleration (PGA) range of 0.34–0.62. The eco-
system is exposed to low (4.2 km2), moderate (1.2 km2), high (2.9 km2), and very 
high (2.6 km2) flood hazard. Thirty-eight percent of Rwenzori Mountain is dispro-
portionately exposed to low and very high flood hazard intensity particularly in 
Kasese and Bunyangabu districts (Fig.  5.3). In Kasese district, the sub-counties 
exposed to very high flood hazard intensity include Bugoye, Bulembia Division, 
Bwesumbu, Kilembe, Kyarumba, Kyondo, and Maliba, whereas in the Bunyangabu 
district, Kabonero sub-county is exposed to very high flood hazard intensity.

Mountain Rwenzori is also exposed to moderate (1848.3  km2) and high 
(59.9 km2) hailstorm hazard of Uganda (Fig. 5.3). The biggest part of the mountain, 
96.9%, is exposed to moderate hailstorm hazard intensity in the districts of Kasese, 
Bunyangabu, Kabarole, and Bundibugyo. The biggest portion of the high hailstorm 
hazard intensity (71.8%) is located in Ntoroko district in the sub-counties of 
Butungama, Bweramule, Karugutu, and Karugutu town council. The mountain is 
exposed to low (26.9 km2), moderate (440.5 km2), and high (1425.1 km2) landslide 
hazard of Uganda (Fig. 5.3). However, 1.9 km2 of Rwenzori Mountain is not prone 
to landslides. The biggest part of the mountain, 75.2%, is exposed to high landslide 
hazard intensity majorly in Kasese, Bundibugyo, and Bunyangabu districts.

Rwenzori Mountain is exposed to very low (445.3 km2), low (1228.5 km2), mod-
erate (185.9 km2), and high (48.4 km2) lightning hazard of Uganda (Fig. 5.3). The 
biggest part of the mountain, 64.4%, is exposed to low lightning hazard intensity; 
however, there is a portion (2.5%) in Bundibugyo and Ntoroko districts that is 
exposed to high lightning hazard intensity. In Bundibugyo district, the sub-counties 
exposed to high lightning hazard intensity include Bukonzo, Burondo, Kasitu, 
Mabere, Ngamba, and Ntandi Town Council, while in Ntoroko, Karugutu sub-
county is exposed to high lightning hazard intensity of Uganda. Rwenzori Mountain 
is also exposed to high (47.6 km2) and very high (1858.3 km2) windstorm hazard of 
Uganda (Fig. 5.3). The biggest portion of the mountain (97.5%) is exposed to very 
high windstorm hazard intensity. The districts highly exposed are Kasese, 
Bunyangabu, Bundibugyo, and Kabarole.
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Fig. 5.3  Elements at risk in Mountain Rwenzori

5.3.2 � Vulnerability of Elements to Natural Hazards 
in Mt. Rwenzori

In this study, due to limited data on the elements at risk, vulnerability was computed 
basing on the location of the elements and the intensity of the hazard.

The sensitivity of elements at risk to hazards were defined in reference to hazard 
intensities. Elements located in “very low” and “low” were categorized to be with 
low vulnerability, whereas elements found in “moderate”, “high”, and “very high” 
intensities of any natural hazard were classified to be with high vulnerability. This 
vulnerability assessment methodological approach was adopted from the National 
Risk and Vulnerability Atlas of Uganda 2019. This is partly due to limited data 
available on the vulnerability status of elements at risk. Sensitivity of elements at 
risk is presented in Table 5.4.
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Table 5.4  Sensitivity of elements to natural hazards

Hazards Elements sensitive to the hazard
Drought Croplands and water sources
Earthquake Buildings, croplands, health centres, police posts, road network, schools, and 

water sources
Floods Buildings, croplands, health centres, police posts, road network, schools, and 

water sources
Hailstorms Croplands
Landslides Buildings, croplands, health centres, police posts, road network, schools, and 

water sources
Lightning Buildings, health centres, police posts, and schools
Windstorms Buildings, croplands, health centres, police posts, and schools

5.3.2.1 � Elements Vulnerable to Drought Hazard

About 2.6 km2 of croplands (translating into 9763 croplands) (7.1%) and 222 water 
sources (17.9%) are highly vulnerable to drought hazard in Mt. Rwenzori. Most of 
the highly vulnerable water sources are public stand posts (49.5%). The highly vul-
nerable water sources are found in Kasese district in the sub-counties of Bwera, 
Ihandiro, Karambi, Kisinga, Kitholhu, Mpondwe-Lhubiriha, Munkunyu, and 
Nyakiyumbu. The croplands that are highly vulnerable to drought are located in 
Bundibugyo, Kasese, and Ntoroko districts. In Bundibugyo district, they are found 
in Burondo sub-county, while in Kasese district, they are situated in Bwera, Ihandiro, 
Karambi, Kisinga, Kitholhu, Lake Katwe, Muhokya, Munkunyu, and Nyakiyumbu 
sub-counties; and in Ntoroko district, they are located in Bweramule and Karugutu 
sub-counties. Figure 5.4 shows the croplands and water sources that are vulnerable 
to drought hazard.

5.3.2.2 � Elements Vulnerable to Earthquake Hazard

A total of 104,401 buildings (100%), 138,154 croplands (31.2  km2) (100%), 32 
health centres (100%), 8 police posts (100%), 2134.4 km of road network (100%), 
284 schools (100%), and 1242 water sources (100%) are highly vulnerable to earth-
quake hazard on the slopes of Mt. Rwenzori. These elements are Kasese, 
Bunyangabu, Bundibugyo, Kabarole, and Ntoroko districts as shown in Fig. 5.5.

5.3.2.3 � Elements Vulnerable to Flood Hazard

The elements that are highly vulnerable to flood hazard in Mt. Rwenzori include 
1093 buildings (1.1%), 2318 croplands (0.3 km2) (1.7%), 3 health centres (9.4%), 1 
police station (12.5%), 33.3 km of road network (1.6%), 9 schools (3.2%), and 15 
water sources (1.2%). These elements are located in Bundibugyo, Bunyangabu, and 
Kasese districts (Fig. 5.6). In Bundibugyo district, the highly vulnerable elements 
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Fig. 5.4  Elements that are vulnerable to drought hazard in Mt. Rwenzori

Fig. 5.5  Elements that are vulnerable to earthquake hazard in Mt. Rwenzori
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Fig. 5.6  Elements that are vulnerable to flood hazard in Mt. Rwenzori

are located in Sindila sub-county, while in Bunyangabu district, they are situated in 
Kabonero sub-county; and in Kasese district, they are found in Bugoye, Bulembia 
division, Bwesumbu, Kilembe, Kyarumba, Kyondo, and Maliba.

The health centres that are highly vulnerable to floods include Kyondo Health 
Centre III, Kyarumba Health Centre III, and Kyarumba Phc Health Centre III, all 
located in Kasese district. The Kilembe police post is highly vulnerable to flood 
hazard and is located in Bulembia division, Kasese district. Seven (7) primary 
schools (Mughete, Kaghema, Road Barrier, Katiiri, Kyanjuki, Kyanya, and Kyanya 
SDA) and 2 secondary schools (Mt. Rwenzori Girls and Kilembe Senior) located in 
Kasese district are also highly vulnerable to flood hazard in Mt. Rwenzori. The 
highly vulnerable water sources in Mt. Rwenzori include protected springs (3), pub-
lic stand posts (11), and rainwater harvesting tank (1).

5.3.2.4 � Element Vulnerable to Hailstorm Hazard

A total of about 138,154 croplands (100%) in Mt. Rwenzori in the districts of 
Bunyangabu, Bundibugyo, Kabarole, Kasese, and Ntoroko are highly vulnerable to 
hailstorm hazard (Fig. 5.7).
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Fig. 5.7  Croplands that are vulnerable to hailstorm hazard in Mt. Rwenzori

5.3.2.5 � Elements Vulnerable to Landslide Hazard

The elements that are highly vulnerable to landslides in Mountain Rwenzori include 
100,678 buildings (96.4%), 134,964 croplands (30 km2) (96.6%), 31 health centres 
(96.9%), 7 police posts (87.5%), 2044.9 km of road network (96.1%), 270 schools 
(95.1%), and 1178 water sources (94.9%). The highly vulnerable elements are 
spread across Mt. Rwenzori in the districts of Bundibugyo, Bunyangabu, Kabarole, 
Kasese, and Ntoroko (Fig. 5.8).

5  Natural Hazards Magnitude, Vulnerability, and Recovery Strategies in the Rwenzori…



98

Fig. 5.8  Elements that are vulnerable to landslide hazard in Mt. Rwenzori

5.3.2.6 � Elements Vulnerable to Lightning Hazard

The elements that are highly vulnerable to lightning hazard include 14,787 build-
ings (14.2%), 1 health centre (3.1%), 1 police post (12.5%), and 27 schools (9.5%) 
(Fig. 5.9). In Bundibugyo district, the highly vulnerable buildings are located in the 
sub-counties of Bukonzo, Burondo, Harugale, Kasitu, Mabere, Nduguto, Ngamba, 
and Ntandi Town Council, while in Kabarole district, they are found in Bukuuku, 
Karago Town Council, Karangura, and Kichwamba sub-counties. In Ntoroko dis-
trict, the highly vulnerable buildings are located in the sub-counties of Butungama, 
Bweramule, Karugutu, and Karugutu Town Council.

Kyondo Health Centre II situated in Kasitu sub-county; Bundibugyo district is a 
highly vulnerable health centre. Harugale police post is also highly vulnerable to 
lightning hazard, and this is located in Harugale sub-county, Bundibugyo district. In 
Bundibugyo district, the schools that are highly vulnerable to lightning hazard are 
found in the sub-counties of Bukonzo, Burondo, Kasitu, Mabere, Ngamba, and 
Ntandi Town Council; in Kabarole and Ntoroko districts, the highly vulnerable 
schools are located in Karangura and Butungama sub-counties, respectively.
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Fig. 5.9  Elements that are vulnerable to lightning hazard in Mt. Rwenzori

5.3.2.7 � Elements Vulnerable to Windstorm Hazard

The elements that are highly vulnerable to windstorm hazard in Mt. Rwenzori 
include 104,401 buildings (100%), 138,154 croplands (31.2 k m2) (100%), 32 health 
centres (100%), 8 police posts (100%), and 284 schools (100%). These elements in 
the districts of Kasese, Bunyangabu, Bundibugyo, Kabarole, and Ntoroko are shown 
in Fig. 5.10.
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Fig. 5.10  Elements that are vulnerable to windstorm hazard in Mt. Rwenzori

5.3.3 � Disaster Recovery Strategies to Natural Hazards 
in the Rwenzori Mountains

The strategies are a reciprocal of the elements at risk (buildings, croplands, police 
posts, health facilities, road network, schools, and water sources) affected by stud-
ied hazards in the Rwenzori mountains. The recovery strategies per element are as 
follows.

5.3.3.1 � Buildings

The housing sector is highly sensitive to flooding, landslides, and earthquake haz-
ards. There is a need to support the rapid disaster recovery assessments planned by 
the sector, improve the re-establishment of social networks and community hosting 
facilities, and build capacity of responsible authorities to promote, supervise, and 
guide planning and construction processes of recovery national structures.

In the long term, support the development of housing prototype plans to be used 
in the reconstruction of buildings that are disaster-resilient model houses; strengthen 
the quality control monitoring mechanisms in the house constructions; testing of 
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building materials and undertaking geotechnical designs and development of bills 
of quantities; support supervision of the contractors in the implementation recovery 
interventions; and ensure reconstruction of strong reinforced and retrofitted housing 
units. Support the operationalization of developed earthquake-resistant construction 
guidelines to strengthen buildings in the prone corridor; increase trainings for the 
skilled and unskilled labour in the earthquake disaster-prone areas to learn how to 
build resilient buildings; and strengthen awareness on the building and safety regu-
lations and construction of demonstration houses during the trainings. There is a 
need support the development of site master plans and detailed physical develop-
ment plans of the affected disaster areas to help communities build back better.

In addition, strengthen the housing development committees such as the Uganda 
National Building Review Board to ensure that housing activities are compliant 
with the established guidelines and engage local communities in the development 
schemes of hazard-proof construction if the modified disaster-resilient housing 
designs are to be accepted. There is a need to consider voluntary relocation of the 
most affected households and those in disaster-prone areas to avoid future calami-
ties and provide financing guarantees to secure and increase private sector invest-
ments in real estate and hence attract joint ventures and partnerships.

5.3.3.2 � Croplands

Ensure timely procurement and supply of production inputs for the affected enter-
prises in the affected communities; provide the affected communities with farm 
inputs like fertilizers, pesticides, and equipment like ox-ploughs, tractors, and spray 
pumps to boost production; procure and replace damaged beehives; planting of 
drought-tolerant and early-maturing crop varieties; and supply fast-maturing seed 
varieties mainly maize, beans, and sweet potatoes and agriculture inputs such as 
agrochemicals and fertilizers. Offer credit to poor agricultural households at afford-
able rates; provide technical and advisory support to the affected farmers; promote 
household implementation of small-scale irrigations facilities; and strengthen the 
already established or engage farmers using the farmer field schools model9+.

Construct silos to communities to increase food security; construct small-scale 
irrigation schemes; strengthen the provision of extension services; popularize gov-
ernment livelihood programmes such as Operation Wealth Creation, youth liveli-
hood fund, etc.; transport extension staff to offer technical services to the farmer 
communities; and protect, restore, and improve the livelihoods of affected commu-
nities. Sensitize communities about the Sustainable Land and Water Management 
(SLWM) techniques such as cover cropping, terracing, and mulching. Also, 
empower communities to establish firebreaks in areas prone to seasonal bushfires. 
Promote avenues for household income diversification, and support the implemen-
tation of soil and water conservation technologies that are climate-smart and inte-
grated pest management.

In the long term, strengthen the integration of disaster risk management into 
development plans and support the development of community resilience plans. 
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Financial/capital investments should support community engagement in the promo-
tion of climate-smart agriculture, particularly soil and water conservation struc-
tures. Support should also be extended to agricultural credit and insurance services 
and communities that require machinery for post-harvest handling, e.g. bean sorters 
and maize huller machines and maize mills to store farm produce. Strengthen com-
munity infrastructure through the construction of wells, dams, water ponds, etc. 
Enhance structures to enable farmers to adopt surface irrigation. There is a need to 
enforce the construction of contours to control water run-off in the areas that are 
fragile such as hilly area; support tree planting initiatives that can be integrated into 
farming systems to increase farm production; and provide support for improved 
breeding of pest- and disease-resistant seed varieties.

5.3.3.3 � Police Posts

Strengthen training on emergency response to equip the officers with the basic 
knowledge that is required to save life and property; engage in continuous monitor-
ing and sensitization engagements with members of the community; and support the 
engineering brigade of army, together with the construction unit of the Uganda 
Police Force and the Mechanical Unit of Uganda Prison Services, to increase their 
capability to construct houses and other infrastructure for the disaster victims. 
Strengthen the capacities of the national identification system to capture all and 
non-citizens of Uganda, births, and deaths; support the development of a village 
registration system to avoid false claims at the disaster recovery stage; and strengthen 
community policing initiatives and prosecution units so that the criminals are appre-
hended. Also, support security mechanisms to regularly enforce policies and ensure 
that there are adhered to.

5.3.3.4 � Health Facilities

There is gap to promote government’s initiative to distribute mosquito nets as one 
of the most cost-effective preventative measures for malaria control and advocate 
for an increase in the budget to the National Medical Stores and health supplies. In 
Uganda, the recommended government budget allocation is 7.2% which is still far 
from the 15% target. More support is needed to provide mobile toilets at evacuation 
centres, camps, and settlements, install community water and rainwater harvesting 
tanks, construct at least six stance latrines at the affected health facilities, and de-silt 
affected health facilities. Strengthen the development and dissemination of health 
standard operating materials astride the country. Many Standard Operating 
Procedures have already been established, however there is still limited implemen-
tation and adherence to them and development of procedures that support efficiency 
and smooth operations of multisectoral stakeholders during the handling of com-
plex disaster incidences. Restock affected health facilities with medical and 
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equipment supplies, deal with malnutrition, supply malaria treatment kits and mos-
quito nets to the most affected areas with higher malaria burden, supply temporary 
medical treatment facilities (tents), provide ambulances to health facilities (i.e. 
health centres and hospitals), set up tents, and provide emergency drugs.

Support the health sector in the training of staff, for example, surveillance, con-
tact tracing, quarantine, laboratory and border post health, and basic emergency 
care; restock affected health facilities with medical and equipment supplies; deal 
with malnutrition; supply malaria treatment kits and mosquito nets to the most 
affected areas with higher malaria burden; supply temporary medical treatment 
facilities (tents); and provide ambulances to health facilities (i.e. HCII, HCIII, and 
hospitals).

Plan and support the upgrading of the health facilities with better wage provision 
to attract and retain human resource personnel; support the recruitment of health 
workers because the health worker (doctors, nurse, and midwives) population ratio 
of 1.92 health workers per 1000 population is still below the World Health 
Organization recommendation of 2.8 per 1000 population to achieve healthcare. 
Strengthen household health inspections, recruit more health staff to strengthen psy-
chosocial support to communities and health workers, recruit more medical work-
ers, and conduct training and placement of volunteers. Support the enactment of the 
National Health Insurance Bill 2019 that seeks to create a National Health Insurance 
Scheme, and increase numbers of health facilities to increase access to quality 
health services; there is also need to renovate and expand regional health facilities 
to improve on the secondary care services and construct more modern pallet space 
warehouse for the National Medical Store. There is a need to establish specialized 
health rehabilitation centres, construct and rehabilitate completely damaged health 
facilities and staff houses, and relocate and construct hospitals in risky areas.

Advocate for the operationalization and maintenance of the National Laboratory 
Information Management System, develop a Comprehensive Community Health 
Promotion Program Strategy, support the development and implementation of a 
Comprehensive Health Communication Strategy for the Health Sector, and advo-
cate for more funding to be increased to improve research in the recovery of out-
breaks. Strengthen the integration processes of mainstreaming DRR in the District 
Development Plans, projects, and programmes, among others, and integrate health 
issues in disaster risk reduction strategies.

5.3.3.5 � Road Network

Provide support for full rehabilitation of the affected roads including drainage 
works; reconstruction of affected road sections; grading, reshaping, and gravelling 
of affected roads including drainage systems; desilting and removing boulders from 
the affected rivers; replacement of the broken and swept away timber bridges; repair 
of approaches and construction of gabion protection; replacement of the damaged 
guard rails; and removal of displaced material blocking watercourses. Strengthen 
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community sensitization on the dangers of over-cultivation along the slopes that are 
sensitive to landslides, and provide financial support to the emergency fund so that 
the recovery interventions are attended too within a short period.

There is need to increase district infrastructure development funding to facilitate 
the renovation of partially damaged roads caused by floods and other disasters. 
Additional support should be provided for the maintenance budgets for the already 
existing road equipment. Support carrying out detailed investigations and designs of 
new bridges and roads to be constructed, demarcation of road reserves and planting 
of trees, and repair of damaged water supply systems. Strengthen the localized mon-
itoring system of roads along with the mapped wetlands systems for easier recon-
struction and support the conducting of detailed road engineering designs to avoid 
duplication and waste of resources in reconstruction of damaged roads.

5.3.3.6 � Schools

Urgency is needed to improve academic and non-academic staffing in the affected 
schools; the communities in collaboration with the education department at district 
level should put in place an emergency committee to see how and where to relocate 
learners for continuity of learning. Mobilization of teachers to support the learners 
relocated to safer schools. Support relocation of learners to safer schools and flat 
areas so that learning can continue; establishment of tents and permanent and semi-
permanent structures for the affected learners; and coding of schools affected by the 
disasters. Supply lower and old-age dual desks for primary and secondary schools, 
procure assorted textbooks and chairs, supply assorted laboratory equipment and 
wooden cupboards destroyed, provide food and non-food items to the affected 
learners, and strengthen emergency funding structures especially at the districts to 
support implementation and monitoring of short-term recovery interventions in the 
education sector.

Support continued learning in established temporal structures established to 
ensure that the teaching syllabus is completed, set up school disaster management 
committees to empower the students about disaster mitigation and management in 
schools and communities, and support budgetary allocations meant to help the sec-
tor recovery from disasters and monitoring of funding initiatives especially at the 
district levels.

Provide additional funds to the sector, commit and set aside additional funding to 
address cases of collapsed and damaged structures in the short term, and provide 
funding for the dissemination of disaster risk information in lower, upper, and post-
primary schools. Increase rehabilitation, construction, and equipping of educational 
facilities with learning resources; construction of classrooms, laboratories, libraries, 
and offices affected and construction of stance VIP toilets and latrines affected; and 
installation of lightning arrestors on buildings in all schools. Strengthen the training 
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of teachers, pupils, and school managers on WASH issues and disaster risk manage-
ment and training teachers in psychosocial support for the affected schools. Support 
the integration of DRR in learning areas such as social sciences, geography, and 
science subjects like biology and training and capacity building of technical staff on 
mainstreaming disaster risk management and interpretation of disseminated early 
warning messages. Relocate schools to new safer and flat areas for landslide vic-
tims; in these new areas, more facilities should be established (primary, secondary, 
and vocational institutions), and the established structures should be strong and 
retrofitted.

5.3.3.7 � Water Sources

Strengthen already constructed floodwalls, construction, and rehabilitation of 
destroyed and damaged water sources to increase access to safe water services; 
rehabilitation of shallow wells, boreholes, and springs that were swept away by 
storms; and creation of bigger banks on the valley tanks to check storm waters. 
Strengthen enforcement of environmental laws, formulation of by-laws, and ordi-
nance enactment which will help in the enforcement of environmental laws and 
increase vigilance and law enforcement; support the review and enactment of wet-
land bill as well as the issuance of water permits.

Support sensitization of the communities on river bank restoration and manage-
ment; training on soil and water conservation programmes, e.g. construction of 
trenches and check dams; training of environmental inspectors in ecological integ-
rity and sustainability of the green and brown environment; mass mobilization of 
communities to plant trees; carrying out of regular water quality tests; conducting 
public radio talk shows on environmental protection and conservation; continuous 
community sensitization on disaster risk reduction measures, e.g. soil and land 
management in highland and low land areas; and training and empowering of com-
munities to use biogas as an alternative source of clean energy to prevent tree cut-
ting for charcoal burning. Support the development of wetland and catchment/
micro-catchment management plans and strengthen water user, wetland, and catch-
ment management committees. Promote construction of valley tanks and deep bore-
holes to conserve water for the dry season; formation of water user committees; 
installation of solar-powered water pumps to enable semi-automatic water distribu-
tion in the urban centres; protection of water sources; desilting of valley tanks; 
monitoring water sources for possible drying up; and planting of drought-resistant 
trees to moderate the microclimate.
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5.4 � Discussion

5.4.1 � The Magnitude and Vulnerability of Natural Hazards 
Experienced in Mt. Rwenzori

Study findings reveal that Mountain Rwenzori region is exposed to several potential 
hazard processes including droughts, earthquakes, floods, hailstorms, landslides, 
lightning, and windstorm hazards (Fig. 5.3). The findings are in line with several 
other studies which indicated landslides, droughts, severe flash flood, hailstorms, 
lightening, thunderstorms, and earthquakes, among others, as the dominant hazards 
within the Rwenzori region (Bwambale et al., 2018; Kabenge et al., 2017; Katutu 
et al., 2019). Exposure to hazards shows the degree to which the elements at risk are 
actually located in an area affected by a particular hazard event (Ronald & Mary, 
2016). In mountainous areas like the Rwenzori region, floods, landslides, earth-
quakes, and other hazards can occur and cause complex interactions (Cardona et al., 
2012). The two annual rainfall seasons received in the Rwenzori region during the 
months of March to May and September to December (NEMA, 2016) normally 
trigger landslides and floods (Jacobs et al., 2015; UNDP, 2013).

Although disasters such as droughts, floods, landslides, and hailstorms occur 
regularly in the Rwenzori region, the frequency and intensity of such weather-
related hazards is, however, increasing due to climate change (Jacobs et al., 2016). 
Due to the fact that most of these disasters are related to precipitation (NEMA, 
2018), this study establishes that there is high disaster occurrence during the months 
of heavy rainfall especially May and October. The major disasters associated high 
rainfall seasons in the region include flash floods, landslides, and storms (Mertens 
et al., 2018; Mathieu et al., 2019). On the other hand, the dry seasons which occurs 
during the months of January, June, and July are often associated with low disaster 
occurrence (NEMA, 2016). This study establishes that landslides, flash floods, and 
windstorms are the most frequent disasters in the Rwenzori region that cause a lot 
of damage to socioeconomic infrastructures and loss of lives. The management of 
these disasters should therefore be given top priority in solving. The elements at risk 
in Mt. Rwenzori that were considered for analysis included buildings, health cen-
tres, schools, police posts, road network, water sources, and croplands.

In this study, vulnerability was computed basing on the location of the elements 
and the intensity of the hazard. The sensitivity of elements to different natural haz-
ards in the Rwenzori region was established (Table 5.3). The vulnerability of the 
affected socioeconomic and ecological systems determines the actual amount of 
damage of a specific event (Cardona et al., 2012). The more exposed an element is 
to a hazard event, the more susceptible it becomes to its forces and impacts (Ronald 
& Mary, 2016). The vulnerability of a community to a hazardous event increases 
due to settlements along the hazard path, occurrence of vulnerable group, and culti-
vation along the hazard event path (Al Abdullah et al., 2020). The vulnerability of 
elements at risk is also high due to topographical position of elements at risk along 
the hazard path (Katutu et al., 2019; Mertens et al., 2018). This study establishes 
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that, due to the steep topography, intense rainfalls, deep soil profiles, and high popu-
lation densities, the Rwenzori region is highly vulnerable to geo-hazards.

5.4.1.1 � Elements Vulnerable to Drought Hazard

Globally, droughts cause significant property damage (Michael et al., 2019). In the 
Rwenzori region, drought is very severe in the area in the months of January, June, 
and July. Although the intensity and spatial character of drought event changes from 
month to month or season to season, they normally take 2 to 3 months to become 
established but may then persist for months or years (Mertens et al., 2018; Montz 
et al., 2017). The costs of drought are not evenly distributed between years because 
they frequently occur in clusters (Katutu et al., 2019; NEMA, 2018). Droughts are 
associated with diverse economic, social, and environmental impacts (Michael 
et al., 2019). Drought often results in mass displacements of population. The direct 
impacts of drought include shortage of water and food. It is likely to have a long-
term environmental, economic, and health impact on the population. This study 
establishes that community vulnerability to drought in the Rwenzori region is esca-
lating at a significant rate and therefore calls for urgent attention to increase their 
resilience.

5.4.1.2 � Elements Vulnerable to Earthquake Hazard

The study findings reveal that the most vulnerable elements to earthquake hazards 
in the Rwenzori region include buildings, croplands, health centres, police posts, 
road network, schools, and water sources (Fig.  5.5). According to the NEMA 
(2016), earthquakes have been more frequent in the Rwenzori region over the past 
10 years. Basing on the history, their destructive effects can greatly exceed the scale 
of the effects of landslides and windstorms. It has been reported that severe earth-
quakes occurred in the Rwenzori region during the years 1966 and 1994, causing 
loss of lives and destruction of socioeconomic infrastructures (NEMA, 2018). 
Earthquakes in the Rwenzori region are associated with secondary events such as 
landslides, debris flows, and flooding. According to Storchak et al. (2015), it is dif-
ficult for people to control earthquakes. Communities are, however, able to reduce 
the negative impact of secondary hazards that arise from this phenomenon espe-
cially landslides and flooding (Weatherill et al., 2016).

5.4.1.3 � Elements Vulnerable to Flood Hazard

The study established that flooding causes increased water levels in rivers of the 
region due to high precipitation amounts received throughout the year. In the 
Rwenzori region, flooding is often characterized by increased volumes of river 
water regime normally influenced by rain water accumulating in the catchment 
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during the wet season (Bwambale et al., 2018). This is in line with what has been 
reported elsewhere that flash floods result in an irregular transitory increase of water 
levels in rivers (Roxana et al., 2018). Flash floods are triggered by intensive precipi-
tation in catchments associated with comparatively high flow velocities (Al Abdullah 
et  al., 2020). Flash floods have been reported to be more frequent in Rwenzori 
slopes because of several flooding spots along rivers like Nyamwamba and Mubuku 
(Jacobs et al., 2017; Kabenge et al., 2017). According to Liesbet et al. (2016), flash 
flooding of river Nyamwamba has been attributed to diversion of the river course in 
the past to create space for infrastructure construction in Kilembe mines. This is a 
feedback mechanism, where the river normally regains back its natural course of 
flow during periods of heavy rains. Musoke (2015) further notes that continuous 
deforestation is another factor contributing to flooding in this region. There is need 
to, therefore, construct flood defence structures such as levees and reservoirs to 
prevent damage caused by such disasters.

5.4.1.4 � Element Vulnerable to Hailstorm Hazard

Hailstorms are a frequent phenomenon in the Rwenzori region (NEMA, 2016). The 
economic losses from hailstorms are very significant every year (NEMA, 2018). 
Hailstorms can destroy crops and damage buildings and cars (Cecil & Blankenship, 
2012; Munich, 2013). They also cause injury or kill humans and wildlife caught out 
in the open (Lamiur et al., 2020; Sioutas et al., 2009). Hailstorms are perceived as a 
potential threat to sustainable agriculture in the Rwenzori region (NEMA, 2016). 
This study established that due to the increased damage from hailstorms, farmers in 
Rwenzori region might stop farming and choose non-farming income sources as 
mitigation strategies. It can, therefore, be concluded that hailstorms pose a great 
obstacle to sustainable agriculture and hence a threat to poverty reduction in the 
Rwenzori region.

5.4.1.5 � Elements Vulnerable to Landslide Hazard

Landslides are the most common disasters in the Rwenzori region (NEMA, 2018). 
They pose the most frequent danger to communities in the region. This can be attrib-
uted to the interaction of natural factors including prolonged and heavy rainfall and 
its exceptionally steep topography associated with human activities especially con-
tinuous cultivation, deforestation, and poor construction designs. Because land-
slides often occur as a result of intense rainfall, they are often referred to as 
“secondary hazards” (Mertens et al., 2018). They are a major hazard in many moun-
tainous and highland regions (Jacobs et al., 2016). Their sizes and speed, the ele-
ments at risk, and the vulnerability of the affected populations quite often determine 
their impact on the environment and humans (Nseka et al., 2021). The study found 
out that landslides cause fatalities and functional damage to socioeconomic infra-
structure, as well as serious disruptions to community’s organization thus affecting 
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community livelihoods. Landslide risk is controlled by the vulnerability of people 
exposed and the hazard characteristics (Mertens et  al., 2016). In the Rwenzori 
region, the study established that community vulnerability is constrained by unsafe 
living conditions.

5.4.1.6 � Elements Vulnerable to Lightning Hazard

According to Altaratz et  al. (2010) and NEMA (2018), many forms of labour-
intensive work are far from lightning safety. Many people are involved in labour-
intensive agriculture, fishing in open boats, and walking to market or inside schools 
during daytime without recourse to safety in an appropriate building or vehicle 
hence making themselves vulnerable to lighting attacks. During the night, many 
people live in lightning-unsafe dwellings without adequate wiring, plumbing, or 
metal structural components that can carry lightning into the ground without affect-
ing individuals inside. One should always assume they are not lightning-safe (Clark 
et al., 2017; Finney et al., 2018). This is because they will likely not surround a 
person inside with a certain path for lightning to follow. A fire can be sparked when-
ever lightning strikes a natural or man-made feature (Bell et  al., 2009; Garolera 
et al., 2016; NEMA, 2016). The fire hazard can be increased when dry lightning 
sparks, and there is no rain falling to douse the flames (Altaratz et  al., 2017). 
Wildfires can be directly related to lightning and other weather-related elements, 
although they are not actual weather phenomenon (Finney et al., 2018).

5.4.1.7 � Elements Vulnerable to Windstorm Hazard

Windstorms are one of the most common and most noticeable weather events of our 
atmosphere. This study establishes that windstorms pose hazardous effects that 
most concern communities in the Rwenzori region compared to other natural haz-
ards. Windstorms can cause a tremendous amount of damage although they can be 
fairly small. Severe windstorms can cause injury or death and can also result in 
substantial property damage. Windstorms may cause power and telecommunication 
disruption which may seriously impair the emergency management capabilities of 
the affected communities.

5.4.2 � The Appropriate Disaster Recovery Strategies to Natural 
Hazards in the Rwenzori Mountains

Disaster recovery includes the coordinated efforts and processes to implement the 
immediate, medium, and long-term holistic regeneration of a community following 
a disaster (McEntire, 2015). In this study, disaster recovery interventions entail a 
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developmental as well as a remedial process consisting activities minimizing the 
spread, the impacts of the disasters, regeneration of social, emotional, economic, 
natural and built environments future needs (Norman, 2006). For the studied ele-
ments at risk, their recovery strategies are hereby discussed below:

5.4.2.1 � Buildings

The long-term recovery actions should be aimed at not only building community 
resilience, but also ensuring society housing sustainability (Adie, 2001; Ingram 
et al., 2006; Mikoš, 2013; Deshmukh and Hastak, 2014). Short-term recovery of 
buildings should include the  provision of temporary shelter, provision of shelter 
repair kits, and demolition of partially/totally destroyed houses, while medium- and 
long-term actions should focus on training to build back safer, shelter construction, 
awareness raising activities for housing construction in disaster-free areas, 
community-based disaster risk management, hazard mapping, early warning system 
training, and disaster risk awareness raising in disaster-prone communities, among 
others (Adie, 2001; Ingram et al., 2006; UN, 2017).

5.4.2.2 � Croplands

Recovery actions should aim at restoring vital production and supply chains in the 
shortest time possible. Under emergencies situation, recovery teams should ensure 
the food needs of the extremely vulnerable households, including orphans, those 
headed by a female and/or child, elderly, disabled (Katutu et al., 2019; Kumar et al., 
2020). The focus should be on livelihood re-establishment for resettled households, 
creation of community productive assets, agricultural inputs including seeds, fertil-
izers and tools, restocking lost livestock head, rebuilding productive assets and 
stocks to support the ability of affected individuals to earn a living in the longer 
term, training in non-environmentally degrading farming techniques, rehabilitation 
and creation of community assets in resettled areas and disaster-prone areas to sup-
port livelihoods and promote community-level resilience to flooding, augmented 
Social Safety Nets and support to revise the Government’s Social Protection Policy 
(Mikoš, 2013).

5.4.2.3 � Police Posts

The police force forms part of the search and rescue team following a disaster, cases 
of human rights violations like gender-based violence increase during disasters 
since people start to shelter in temporal houses and camps (Deshmukh & Hastak, 
2014; UN, 2017). Recovery actions should therefore aim at activating community-
based protection mechanisms for identification, referral of and response to child 
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protection cases in the communities, protecting the affected population particularly 
women and girls from Gender-Based Violence (GBV) in emergency situations and 
providing comprehensive and multi-sectoral services for the survivors, Short term 
measures can include establishment of temporal structures for coordinating police 
operations and activities while long-term actions should focus of rebuilding follow-
ing sustainability principles (Garnett & Moore, 2010).

5.4.2.4 � Health Facilities

In the health sector, it is necessary to conduct reorientation of rural public health 
emergency management committees on emergency management, procure vehicles 
and motorbikes for public health emergency response in the districts, organize safe 
collection and treatment of medical waste (infectious waste, human body parts, 
pharmaceuticals, sharps, and needles), and install treatment facilities for the above, 
e.g. incinerators, theatres etc (Garnett & Moore, 2010; UN, 2017). It is also impor-
tant to procure medical equipment and supplies to provide essential sexual and 
reproductive health services including equipment for emergency obstetric care, con-
duct mapping on human resources/health personnel in the health facilities and pro-
vide recommendations for health personnel distribution to provide services based 
on the facility type, and conduct trainings for the healthcare providers on the spe-
cific sexual and reproductive health services/intervention based on the needs. Ensure 
sector coordination for example WASH and infrastructure for provision of basic 
infrastructure facilities for the affected health facilities (electricity, running water, 
waste management), and conduct training of trainers on community-based surveil-
lance in districts affected (Rubin et al., 1985; Ingram et al., 2006; Paquay et al., 2021).

5.4.2.5 � Road Network

Both technical and non-technical skill teams are necessary to implement the various 
actions of recovery especially in the road network infrastructure (Mikoš, 2013; 
Paquay et al., 2021). Recovery actions for the road sector should thus be directed 
toward establishing a central technical capacity, undertaking slope stabilization 
works, implementing a build back better principles for the roads, and developing a 
master waste management plan for the road debris (Haigh & Sutton; Mair et al., 
2016; UN, 2017). Long-term recovery actions should begin with repair or replace-
ment of roads and bridges so that communities quickly, and with increasing resolve 
to re-establish utilities, provide access and create reconstruction policies (Garnett & 
Moore, 2010; Deshmukh and Hastak, 2014; Mair et  al., 2016; Singh & Bartlett, 
2018). Road network recovery actions need to be implemented by a technical team 
that should support the rehabilitation of prioritized roads and bridges in order to 
facilitate connectivity and accessibility between communities (UN, 2017).
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5.4.2.6 � Schools

The resilient recovery interventions ideal for this sector should include strengthen-
ing linkages with security forces to determine schools in safe areas for potential 
rehabilitation, placement of children attending camp schools into regular schools 
after relocation from the camp, rehabilitation, and supply of furniture to damaged 
schools. Given that children may be moving to various locations, it will be impor-
tant to determine how to fast-track their enrolment into their new schools, social 
mobilization to raise awareness for affected children to reintegrate into schools, 
placement of approved teachers from schools that are closed into other schools, 
psychosocial support for children and teachers, and early learning access for chil-
dren 3–5 years integrated into recovery interventions (Adie, 2001; UN, 2017).

5.4.2.7 � Water Sources

Recovery interventions should aim at trucking of safe drinking water to the dis-
placed people in the camp and affected communities, drilling of boreholes in the 
affected communities, construction/installation of households/communal rain water 
harvest system in the affected communities and institutions, support the rehabilita-
tion of WASH facilities and waste management services in healthcare facilities, and 
promotion of sanitation and hygiene practices in the affected communities (Mair 
et  al., 2016). Furthermore, care should be taken to ensure provision of adequate 
sanitation, hygiene promotion and sanitation, access to safe water for drinking and 
cooking, provision of adequate sanitation, hygiene promotion, and sanitation with a 
particular focus on the hygiene needs of women (McEntire, 2015; Mikoš, 2013; 
UN, 2017).

5.5 � Conclusion

Mt. Rwenzori experiences moderate to high intensity of earthquakes and landslides. 
Much of the area experiences low incidences of floods and droughts. However, high 
incidences of flash floods have been witnessed in Kasese and Ntoroko districts. 
Hailstorms and windstorms are moderately intensive. The elements most exposed 
and affected by various natural hazards included people, buildings, schools, roads, 
and croplands. Floods mostly impacted roads, croplands, and buildings, particularly 
those located adjacent to rivers in the mid- to low-lying areas. Landslides affected 
the population and residential buildings in highland areas. Continued occurrence of 
natural hazards will wreck more havoc and retard efforts toward achieving sustain-
able development in such a fragile mountain ecosystem. For instance, to reduce the 
vulnerability of buildings to hazards, there is a need to strengthen the housing devel-
opment committees such as the National Building Review Board to oversee if the 
housing activities are compliant with the established guidelines and engage local 
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communities in the development schemes of hazard-proof construction if the modi-
fied disaster-resilient housing designs are to be accepted. In crop production, sup-
port should be extended to agricultural credit and insurance services and communities 
that require machinery for post-harvest handling. In the health sector, support the 
upgrading of the health facilities at all levels with better wage provision to attract 
and retain human resource personnel.
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Chapter 6
Assessing the Vulnerability of the Eastern 
Africa Highlands’ Soils to Rainfall 
Erosivity

Seth O. Nyawacha and Viviane K. Meta

Abstract  The highland areas of the Eastern Africa region are the most productive 
areas agriculturally, acting as the main food basket for the region. Over the years, 
these areas have undergone increased population pressure coupled with urbaniza-
tion leading to substantive decline in agricultural land. The increased pressure on 
the productive areas is also threatening the existence of ecosystem and other natural 
habitats such as forests and wetlands. Ultimately, the over-cultivation of land is 
leading to loss of soil nutrients depended on by plants due to soil erosion and soil 
leaching. As a result, soil becomes degraded after losing its quality and productivity 
by reducing infiltration rates, water-holding capacity, nutrients, organic matter, soil 
biota, and soil depth. Soil erosion also has an impact on ecosystem services such as 
water quality and quantity, biodiversity, and agricultural productivity. This study, 
therefore, seeks to assert the hypothesis that African mountains are susceptible to 
soil erosion, as a result to rainfall erosivity, by modelling using the Revised Universal 
Soil Loss Equation (RUSLE). The model is developed using five variables, i.e. rain-
fall erosivity factor (R), soil erodibility factor (K), slope length and steepness factor 
(LS), cover management factor (C), and conservation practice factor (P) for the 
estimation of the areas susceptible to soil loss in the Eastern Africa Highlands 
(Fenta et al., 2020). This study seeks to answer the validity of the hypothesis that the 
Eastern African Mountains (highlands) are susceptible to high soil erosion levels 
contributed by the geomorphological nature, rainfall, soil, and the influence of veg-
etation cover using earth observation datasets within a GIS environment.
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6.1 � Introduction

Rainfall erosivity is a force that acts on soil particles to cause soil particle move-
ment through either creeping, saltation, or suspension, while soil erosion is the 
movement or abrasion of soil particles influenced by factors such as the physical 
properties of the soil particles including the weight and the chemical composition. 
External forces including wind and water as the major causes of soil particle move-
ment (Fenta et al., 2020). Notably, the movements of large herds of cattle causing a 
cloud of fine particle suspension in the air acts as soil-crust busters, thus this activity 
cannot be directly associated as a cause to soil erosion. 

Soil particles abrasion is dependent on the external forces, which combines with 
physical soil characteristics to cause motion in the direction of the force. The exter-
nal forces, i.e. wind and water, need to surpass the minimum threshold force to initi-
ate particle motion, while on the other hand, the soil particle has to be light enough, 
devoid of air spaces that causes floating tube effect, and the particles location be 
devoid of barriers such as vegetation and artificial blockages(Fryrear et al., 1994). 
Soil particles properties are a result of soil forming processes including weathering 
and tectonic movements influenced by anthropogenic factors. Anthropogenic fac-
tors influences the properties of soil over time, and as a result, affect soil particle 
strength to resist motion and infiltration (Djukem et al., 2020). Over time, the soil 
particle losses the resilience and coping mechanism to resist abrasion by the agents 
of erosion.

The East African Mountains represent the most arable areas of the continent with 
approximately 40% of the arable land between the tropics located on the mountain-
ous regions. These areas are prone to high amounts of rainfall characterized by 
bimodal rainfall patterns. The rainfall patterns experienced in these areas advance 
intensive agricultural activities with little or no soil care practices. Instead, the agri-
cultural areas have high levels of fertilization over time, increasing the acidity of the 
soil leading to loss of organic carbon content in the soil. This increases the carbon 
emission to the atmosphere, becoming one of the major contributors to cli-
mate change.

Agricultural practices have increased soil erosion and leaching in the mountain-
ous areas than in undulating terrains (Kadomura and Yamamoto, 1978). There is, 
however, an alarming concern for soil conservation in highland areas due to its 
dwindling ability of food production. The loss of soil fertility has affected the crop 
productivity over time with the world glaring at a possible global food shortage by 
2050 as soil productivity and arable lands continue to shrink (Kirui & Mirzabaev, 
2014; Tilahun, M. (2015)). (Developing countries lack deliberate focus in assessing 
the degradation extent and putting in place conservation measures or building resil-
ience that will exponentially reduce the adverse effects and reverse long-term soil 
leaching (Haregeweyn et al., 2015; Hurni et al., 2015).

Generally, forces that propagate soil erosion are influenced by different factors 
including climatic conditions, and in the case of the Eastern Africa Mountains, the 
amount of runoff water as well as the steep slope and terrain greatly influences soil 
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erosion. Other factors such as temperature, soil type as those endowed with organic 
matter are easily eroded downstream (Fenta et al., 2020). Other factors may also 
include the availability of opposing forces such as vegetation cover, artificial barri-
ers, and the soil crusting effect believed to be the coping mechanism of the soil 
particles to resist erosion, majorly affecting the arid and semi-arid areas, among 
others (Fryrear et al., 1994).

6.2 � Materials and Methods

6.2.1 � Data

The increased need for open and validated data is leading to the development and 
deployment of the various data cubes across the geospatial space; since Geospatial 
data is expensive to produce and maintain, there is a concerted effort among layers 
to develop data hub that simplifies the data access for retrieval and analysis (Fryrear 
et al., 1994). Analyzing and studying phenomenon such as land degradation and the 
effect of water on soil erosion was a costly venture, the application and use of Earth 
Observation techniques and Geographic Information Science (GIS) is gaining trac-
tion. The data access from platforms such as Google earth engine is easing complex 
environmental modelling.

Climaticdatasets was sourced from Terra Climatology using a direct Application 
Programming Interface, from Google earth engine (GEE) (http://www.climatology-
lab.org/terraclimate.ht ml) (Abatzoglou et al. 2018). Soil datasets, International Soil 
Reference Information Centre (ISRIC) produced the prerequisite soil texture datas-
ets (https://www.isric.org/). With GEE developed, it is easier to acquire and process 
dataset in the java script coding environment compared to initial raw soil data down-
load and processing.

Harmonized World Soil Database (HWSD) complimented the no data values, 
especially in the desert areas that are not recorded by the satellite sensors. The 
HWSD database is a database with over 15, 000 different soil mapping units that 
combines existing regional and national updates of soil information worldwide 
(SOTER, ESD, Soil Map of China, WISE) with the information contained within 
the 1:5 000,000 scale FAO-UNESCO Soil Map of the World (FAO/UNESCO Soil 
Map of the World | FAO SOILS PORTAL | Food and Agriculture Organization of 
the United Nations, 2022). The land cover dataset originated from the Climate 
Change Initiative (CCI) a sentinel 2-100 meter resolution product, with the most 
current available datasets of 2019, reclassified using C factor values (Fryrear et al., 
1994), also applied by (Fenta et al., 2020).

United Nations Convention to Combating Desertification (UNCCD) (https://
www.unccd.int/) provided the user manual to interpret the land-use land cover prod-
uct. The fractional cover data is product of ESA Proba V 100 meter resolution sensor.
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6.2.2 � Study Area

The Eastern Africa highlands exist within the Inter Convergence Tropical Zone, 
experiencing warm and temperate climatic condition. The higher altitude areas, 
however, also experience snowing. The higher the altitude of the mountains with 
constant change/variation in temperature, the snowy it becomes.

The Eastern Africa highlands have various volcanic mountains formed due to 
tectonic movements forming a complex structure at the intersection of fault lines in 
the Rift Valley. Some of these mountains are active volcanoes such as Mount 
Kilimanjaro, while others present a more dormant nature, e.g. mount Kenya, with 
Mount Ruwenzori’s peculiarity of not being a volcanic mountain standing out.

The Eastern Africa region is located between 21° west, 52° east, 12.5° south, and 
23° north of equator (Fig. 6.1). It is estimated to have between 350 million to 365 
million people (United Nation, 2019), with expectation of the population doubling 
by 2050, which is also consistent with the global population projection of 2050.

The impact of soil erosion due to water in these areas is under researched; thereby 
assessing the accurate amounts of soil loss due to water erosion is accurately not 
attainable but precisely computed.

However, studies have shown that the high precipitation levels, the slope dis-
tance, and degree immensely contribute to mass movement of soil by water down-
hill. This phenomenon has exposed the area to loss of nutrient-rich soil affecting the 
general productivity of the soils upstream.

This area exists within the Great Rift Valley belt, with a complex geomorpho-
logical structure and very high elevated areas such as Mt. Kenya and Mt. Kilimanjaro, 
as well as with steep valleys and extensive plains caused by the complex geomor-
phological processes such as tectonic plate movements (Freund & Merzer, 1976).

6.3 � Assessment of Soil Abrasion as a Result 
of Rainfall Erosivity

Soil erosion by water is dependent on several regional scales. The contemporary 
mode of assessing soil erosion by water and wind entails a process-based methodol-
ogy that assesses at field level (Morgan et al., 1998).

The ability to compute rasters in Geographic Information Systems has ensured 
successful modelling of the susceptible areas of soil loss by water using different 
models, among them being the GIS-based Revised Universal Soil Loss Equation 
(RUSLE).

The Revised Universal Soil Loss Equation (RUSLE) simplifies the process-
based models, while maintaining the authenticity and integrity of predicting vulner-
able areas to soil loss (Fenta et al., 2020)
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Fig. 6.1  Altitude map of the eastern Africa region, with an emphasis on the areas with high 
elevation

The RUSLE model ingest five factors including the rainfall erosivity, soil erod-
ibility factor, slope, and steepness of the surface, anthropogenic factors influenced 
by land use and the conservation management practices (Fenta et al., 2020) (Eq. 6.1).

	 RE R K LS C P= ∗ ∗ ∗ ∗ 	 (6.1)

R is the rainfall amount in millimeters, the influencing force to causing soil abra-
sion, K is the Soil Erodibility factor or the tendencies of soil to movement by a force 
of a certain magnitude, and LS is the slope length, while C and P are the surface 
cover factor and conservation management practices, respectively. However, it is 
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evidently difficult to assess the effect of management practices, as those practices 
are not documented. Assessing management practices P requires a rigorous field 
assessment and calibration for parameterizing the management practices in the 
field. This technicality led to most scholars applying proxy data such as vegetation 
cover, while developing a linear correlation management practice and its impact on 
soil conservation (Ligdi & Morgan, 1995).

For rainfall, it is more relevant when presented in millimeters, and the character-
ization of its intensity is possible. However, rainfall intensity is normalized through 
a transformation, and values rescaled between the values of one and two. With the 
latter representing the highest rainfall erosivity as shown in Fig. 6.2, soil erodibility 
factor, on the other hand, is directly proportional to the organic matter content and 
calcium carbonate content.

Soil movement by water is dependent on various properties including the soil 
moisture content, which influences the weight of the particle, with most mountain-
ous soil particles endowed with loam and sandy loam, with an approximate size of 
0.063–0.250 mm (M et al., 2004). The hydraulic conductivity properties of soils 
also affect the soil particle abrasion as well as the infiltration ability of a soil parti-
cle, with the clay soil having the lowest soil infiltration strength.

Soil erodibility in the mountainous  region is modelled using the Eq. 6.2. The 
model takes into account organic matter content in soil, s and p values based on the 
size of soil particle, where in Eastern Africa 2.5 diameter is used to develop the soil 
erodibility model (Fig. 6.3).

Equation 6.2: Soil Erodibility model.1

	

K
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=
∗ −( ) + −( ) + −( )
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.

77

	

(6.2)

It is worth noting that soil erodibility factor was also modelled based on soil color 
and soil types as highlighted by (Meshesha et al., 2012). The other modelling was 
based on geometric mean particle as demonstrated by Dangler and El-Swaify 
(1976). The cover management factor interrogates the effect of plant cover either 
crops or non-crops, while giving each category a cover factor (c-factor). The C fac-
tor values are different depending on the vegetation density. For instance, cereal 
grains have between 0.20 and 0.38 depending on the density of either maize, rice, or 
other cereal crops available. Leguminous crops have a c factor value of 0.32, while 
oil seed crops vary from 0.28 to 0.50. The tree cover crops such as tea and sugarcane 
have a value from 0.15 to 0.20 (Panagos et al., 2015).

(Ligdi & Morgan, 1995) generated a linear correlation between the cover man-
agement factor and Normalized Difference Vegetation Index (NDVI), developing an 
equation of the form as highlighted in Eq.6.3. The equation acknowledges the role 
that vegetation plays in curbing or promoting any form of soil abrasion.

	 C = − ∗1 02 1 21. . NDVI 	 (6.3)
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Fig. 6.2  Rainfall erosivity in the Eastern Africa

The above model is used in assessing the cover management factor in Eastern Africa 
as shown in Fig. 6.4

The P factor, which represents various soil erosion management for conservation 
purposes, has a high correlation with the Slope length (LS) and aspect. The various 
LS percentages are reclassified to a P factor value representing the management 
practices.
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Fig. 6.3  Soil erodibility in the Eastern Africa Area in 2020

(Lufafa et al., 2003) developed a linear correlation model that relates the conser-
vation practices to percentage slope as is highlighted in Eq. 6.4. Conservation man-
agement practice linear correlation eq. 6.4.
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Fig. 6.4  C factor in the Eastern Africa region

	 P = − ∗0 2 0 03. . Percent Slope 	
(6.4)

The management factor is high in areas surrounding the highland regions 
(Fig.  6.5). These areas experiences intensive agricultural practices and depict an 
inverse correlation to the C factor. The areas of high C factor are characterized with 
low agricultural practices, with desert-like climatic condition.
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Fig. 6.5  The management conservation practices in the Eastern Africa region

6.4 � Results and Discussion

6.4.1 � Spatial Distribution of Rainfall Erosivity Risk Areas

The attribution of soil erosion to water is mainly visible in the high-elevated areas 
of the region, with rainfall intensity, slope length, and aspect being the major driv-
ing factors to soil particle movement (Fig. 6.6).
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Fig. 6.6  Water erosion risk areas in the Eastern Africa in 2020

The spatial distribution is concentrated around the rift valley and the high-
land areas.

The results of areas depicting high rainfall erosivity coincide with high altitude 
areas, with part of Ethiopian highlands, Kenyan Rift Valley highlands, Rwanda and 
Burundi Hills showing high rainfall sensitivity. Countries like Burundi show sensi-
tivity of above 80% of susceptibility. The combination of the factors to model 
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rainfall sensitivity depicts areas that are not only affected by the surface ruggedness 
and steep slope, but also factors such as soil physical and chemical properties.

Rainfall erosivity high sensitive areas are around the highlands and mountainous 
regions, confirming the hypothesis that the Eastern African Mountains are vulnera-
ble to soil erosion and mass wasting caused by erosive force of water.

The Ethiopian highlands, where agriculture is practiced, presented approxi-
mately 15% of areas susceptible to water erosion. However, from the management 
practice modelled, the areas showed high conservation practices such as contour 
farming, which is attributed to high level of agricultural activities in the highly ele-
vated areas (Fig. 6.5).

The South Eastern Tanzanian Highlands, with fairly a high elevation value, has 
approximately 5% of the areas susceptible to water erosion. This is influenced by 
the nature of agricultural practices (unsafe practices) or pure management practices. 
However, these areas also present the highest level of rainfall erosivity (Fig. 6.2).

Generally, around Eritrea and Djibouti, the soil particle and the climatic condi-
tions contribute to the susceptibility to water erosion. These areas do have high-
elevated areas, although rainfall annual average is low, the areas have soil particle 
that are susceptible to abrasion (Fig. 6.7).

Rwanda, with more than 85% of the areas susceptible to water erosion, is 
endowed with rugged terrain and high rainfall amount annually. The surface steep-
ness and the slope length factor plays a major role in contributing to the high and 
runoff erosivity in the areas.

Kenya has approximately 5% pockets of susceptible areas around the Rift Valley 
Highlands and the Central highlands region, areas that practice intensive agricul-
ture. The high rainfall capacity received as well as the slope length and aspect con-
tributes immensely to the susceptibility of these areas to water erosion.

The other areas such as South Sudan and Sudan are generally flat and may not be 
subject to highland type of climatic and topographical conditions. The area west and 
south of Sudan, with a pocket of high-elevated areas, shows a 2% susceptibility to 
water erosion confirming the hypothesis that high areas are under constant threat to 
land degradation by water.

Fig. 6.7  Graph showing the statistics distribution of risk areas to water erosion in Eastern Africa
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6.5 � Conclusion and Recommendations

This study has asserted the hypothesis that the Eastern Africa Mountains experi-
ences high risk to soil erosion and mass wasting as a result of high rainfall amount 
and other factors such as soil structure, soil texture, vegetation cover, and manage-
ment practices.

It is the study’s recommendation that more conservation measures and manage-
ment practices be initiated in order to conserve the soil nutrients for a fortunate 
agricultural practice in the Eastern African Mountains.
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Chapter 7
Development of Lightning Hazard Map 
for Fire Danger Assessment Over 
Mountainous Protected Area Using 
Geospatial Technology

Dipuo Olga Mofokeng, Adeyemi Olusola, and Samuel Adelabu

Abstract  Lightning is regarded as a leading cause of fatalities, injuries, property 
damages, and interruptions to businesses. As against some other tropical countries, 
especially around the equator in Africa and South America, South Africa does not 
experience as much lightning activity; however, it is still considered a lightning-
prone country. With the advent of remote-sensing technology and its capabilities, 
the world can detect nearly all lightning strikes in real-time with the ability to also 
geolocate the strike with high temporal and spatial accuracy. This study aims to 
advance the understanding of the geography of CG lightning activity in South Africa 
through the application of geospatial technology. Using spatial analysis techniques, 
this research evaluated 11-year lightning data (2007–2017) to develop a lightning 
hazard map for Golden Gate Highlands National Park. The monthly strike count of 
lightning increases from the minimum value in July (0.08%) and displays a peak in 
December (23.80%). The average diurnal variation (2007–2017) suggests that light-
ning is more prevalent in terms of occurrence from 14:00 to 18:00 SAST with two 
clear maxima at 15:00 SAST and 17:00 SAST. The lowest lightning activity is dur-
ing the morning hours at 05:00 and 06:00 SAST, and yet again at hour 08:00 
SAST. The average diurnal variation (2007–2017) suggests that lightning is more 
prevalent in terms of occurrence from 14:00 to 18:00 SAST with two clear maxima 
at 15:00 SAST and 17:00 SAST.  The lowest lightning activity is during the  
morning hours at 05:00 and 06:00 SAST, and yet again at hour 08:00 SAST.  
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Spatial autocorrelation analysis revealed that the clustering of lightning strikes at 
the park is at the distance of about 1.2 km. This connotes that strikes clustered with 
other strikes are not likely to strike an individual specific location from centre of 
cluster of strikes much beyond a circle with a radius of 1.2 km.

Keywords  Lightning · Spatial Statistics techniques · Remote Sensing · Fire 
Danger Assessment

7.1 � Introduction

Lightning as an activity most likely predates human existence (Gijben, 2012, Rakov 
and Uman, 2003) and even a critical meteorological phenomenon. Lightning is 
regarded as a leading cause of fatalities, injuries, property damages, and interrup-
tions to businesses (Cha et al., 2017, Gijben et al., 2017). By definition, lightning 
can be described as the release of static electricity in the sky or between the clouds 
and the ground (Gijben, 2012, Rakov and Uman, 2003). On a global scale, lightning 
is responsible for not more than 24,000 deaths and 240,000 injuries on an annual 
basis (Blumenthal et  al., 2012). From Earth Observation Satellites (EOS), about 
39–49 lightning flashes are captured around the globe per second. This is translated 
to about 1.4billion flashes per day on a Cloud-to-Ground (CG) scenario (Christian 
et al., 2003, Gijben et al., 2017).

As against some other tropical countries, especially around the equator in Africa 
and South America, South Africa does not experience as much lightning activity; 
however, it is still considered a lightning-prone country (Bhavika, 2007, Gijben, 
2012). Yearly death rates from lightning in South Africa is 6.3 per million of the 
population, which is 15 times more than the global average (Gill, 2009). This figure 
is presumed to be underestimated per actual mortality rate. This underestimation is 
likely to be because lightning deaths are not rigidly reported in rural areas (Gijben 
et al., 2017). As a natural ignition source for global fire, lightning activities were 
recently operationalized as one of the driving factors in fire danger or risk modelling 
(Chuvieco et al., 2014, 2010, Eskandari and Chuvieco, 2015, Huang et al., 2015). 
According to Cha et al. (2017), an average of 816 fires were ignited by lightning 
each year globally.

During 2005, lightning fire burnt a large area of fynbos and commercial timber 
plantation in Tsitsikamma, Western Cape Province of South Africa (Durrheim, 
2010). According to the Council for Scientific and Industrial Research (CSIR) 
report on the Elandskraal fire that ravaged approximately 9440 hectares, it was 
revealed that the positive lightning strike observed on the 22 March 2017 was 
responsible for the fire which started on the 07 June 2017 (Frost et al., 2018).

With the advent of remote-sensing technology and its capabilities, the world can 
detect nearly all lightning strikes in real-time with the ability to also geolocate the 
strike with high temporal and spatial accuracy. Numerous studies have focused on 
understanding lightning activities in many countries using different lightning 
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location systems (Christian et  al., 2003; Rakov and Uman, 2003; Kigotsi et  al., 
2018). Most of the lightning systems detect electromagnetic reading using Time of 
Arrival (ToA) and Magnetic Direction Findings (MDF) methods or a combination 
of ToA and MDF. A summary of literature relating to the methods can be found in 
(Gill, 2009). These systems are either ground-based or satellite lightning sensors. 
The latter detects lightning from space through the earth-orbiting satellite which 
either detects light or electromagnetic waves from lightning discharge (Rakov and 
Uman, 2003). The well-known satellite-lightning sensors include National 
Aeronautical & Space Administration (NASA) Optical Transient Detector (OTD) 
and Lightning Imaging Sensors (LIS) on-board the Tropical Rainfall Measuring 
Mission (TRMM) (1997–2014) (Christian et  al., 2003, Kigotsi et  al., 2018). 
Formerly, sensors which detect electromagnetic pulse in very low frequency (VLF) 
or low frequency (LF) include regional Lightning Detection Network (LDN) such 
as United States of America National Lightning Detection Network (USA NLDN) 
and Southern African Lightning Detection Network (SALDN) in South Africa. 
Global LDN includes World Wide Lightning Location Network (WWLLN) and the 
Global Lightning datasets (Kigotsi et al., 2018).

The spatio-temporal lightning flash density and occurrence have been investi-
gated in the United States (Bentley and Stallins, 2005); Canada (Cha et al., 2017), 
Europe (Anderson and Klugmann, 2014), Mediterranean (Price and Federmesser, 
2006), India (Dewan et al., 2018), Africa (Kigotsi et al., 2018, Mayet et al., 2016) at 
the global scale (Cecil et al., 2014, Christian et al., 2003). According to Evert and 
Schulze (2005), studies on lightning have been in existence for about eight decades. 
However, in the past couple of years, there has been tremendous growth in South 
Africa as a result of the introduction of the National System (see Gill, 2009). Gill 
(2009) was the first to utilize the 2006 SALDN data in the development of the cli-
matology of South Africa. This was later updated by Gijben (2012) using the 
2006–2010 dataset. Recently, Evert and Gijben (2017) utilized the 2006–2017 
SALDN data to update the national lightning flash density map over South Africa. 
In their study, Evert and Gijben (2017) observed that the highest flash density occurs 
along the eastern escarpment of the country with values exceeding 15 flashes 
km−2 yr.−1.

Despite the availability of geo-coordinated lightning data, most CG lightning 
studies found within the country (South Africa) typically only focus on visualizing 
the distribution of CG lightning activity as a flash density for the simple purpose of 
identifying areas of high flash density rate. These forms of studies often do little in 
explaining the observed spatial patterns of flash density. Furthermore, based on the 
uniqueness of the country’s physiography, there are landscapes across the country 
that are unique to lightning activities, such as montane environments. Montane 
environments within South Africa are unique, in that they serve as places of water 
towers for South Africa and some neighbouring countries, also these areas preserve 
very unique grasslands that are endemic to South Africa and of global interest. Also, 
montane environments in South Africa are witnessing the impact of the changing 
climate through the emergence of invasive species and incessant lightning strikes. 
Therefore, this study aims to advance the understanding of the geography of CG 

7  Development of Lightning Hazard Map for Fire Danger Assessment…



134

lightning activity in South Africa through the application of geospatial technology. 
Using spatial analysis techniques, this research evaluated 11-year lightning data 
(2007–2017) to develop a lightning hazard map for Golden Gate Highlands National 
Park by examining the statistical spatial and temporal patterns of lightning activity 
of Golden Gate Highlands National Park and their relationship with environmental 
characteristics, namely, elevation, slope, aspect, fire scars, and the vegetation type.

7.2 � Material and Methods

7.2.1 � Study Area

As a protected montane area, the Golden Gate Highland National Park (GGHNP) 
lies between 1657 m and 2797 m above sea level north-eastern of the Free State 
Province in South Africa (South African National Parks, 2013) (Fig. 7.1). The park 
is a unique Grassland Biome in South Africa and is situated in the summer rainfall 
region. The rainfall here is characterized by seasonal stretching from September to 
April with a mean annual value between 1800 mm and 2000 mm. The area is cate-
gorized as a dry sub-humid region. Summers are temperate with mean temperature 
(13 °C–26 °C) and winters are cold with mean temperature (1 °C–15 °C). In essence, 

Fig. 7.1  Location of the study area (GGHNP)
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the fire season starts in May and lasts till September. Despite numerous fire mitiga-
tion and management strategies (Strydom and Savage, 2016), this region is still 
highly vulnerable to wildfire which is in part due to its rugged terrain. On average, 
the park has lost 6809  ha of vegetation to fire accounting for 20% of the area 
(Govender, 2011).

7.2.2 � Material

7.2.2.1 � CG Lightning Data

CG lightning data was acquired from the Southern African Lightning Detection 
Network (SALDN) of the South African Weather Services (SAWS). The SALDN 
became operational in 2005 and underwent a series of upgrades. From 2015, the 
network consisted of 25 Vaisala CG lightning sensors that can detect all cloud-to-
ground lightning discharges with a 90% efficiency measure (Evert and Gijben, 
2017). The SALDN is capable of detecting lightning with a location accuracy of 
~0.5 km (500 m) covering all of South Africa, Lesotho, and Swaziland (Bhavika, 
2007, Evert and Gijben, 2017, Gijben et al., 2017). The network records lightning 
events chronologically. The attribute information of each lightning strike is recorded 
including date and time, latitude, longitude, peak current with negative(−) or posi-
tive (+) polarity, major and minor ellipsoid angle, and the number of direction find-
ers that sensed the event (Bhavika, 2007). As recommended by International 
Electrotechnical Commission Standards (IEC 62858), lightning data for at least 
10 years is required to ensure that short-term scale variation in lightning parameters 
due to a variety of meteorological oscillations are accounted for (Javor et al., 2018). 
Therefore, in this study, lightning strike data for 11 years from January 2007 to 
December 2017 was utilized.

7.2.2.2 � Terrain Elevation, Slope, and Aspect

Advanced Spaceborne Thermal Emission and Reflection Radiometer-Digital 
Elevation Model (ASTER-DEM) data at 30 meters freely obtained from USGS 
EarthExplorer (http://earthexplorer.usg.gov) was used for retrieval of elevation, 
aspect, and slope values. These values were selected due to its known role of oro-
graphic lifting to the enhancement of convection and consequently to lightning 
(Kotroni & Lagouvardos, 2008).

7  Development of Lightning Hazard Map for Fire Danger Assessment…
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7.2.2.3 � Vegetation Type

Vegetation plays a pivot role in the universal climatic variation together with the 
convective growth and lightning activity (Dissing and Verbyla, 2003; Mushtaq 
et al., 2018). Vegetation type of GGHNP was attained from Fire Ecology Department, 
South Africa National Park, in the polygon shapefile providing GIS coverage that 
shows vegetation types in community and habitat.

7.2.2.4 � Historical Fire

Historical fire scar/spot data was received from the Fire Ecology and Biogeochemistry 
Department, South Africa National Parks, with their geographical coordinates in 
polygon shapefile format. The significance of these data in lightning activity is that 
a possible-induced thunderstorm can be conceived from all sides of fire scars (Kilinc 
and Beringer, 2007).

7.2.3 � Methods

Lightning data was provided in a formatted text (.cvs) that was first parsed and 
saved in a spreadsheet and then converted into a point vector layer in a GIS environ-
ment using Microsoft Excel and ArcMap 10.2. software, respectively. The geo-
reference UTM Zone 35S was used as the projection. A Clip Tool was employed to 
extract the study area. Databases of lightning activity by year, monthly, and hourly 
were then created by using the Select by Attributes tool.

7.2.3.1 � Temporal Distribution of Lightning Strikes Activity

Lightning strikes counts were analysed to explore temporal patterns of lightning 
activities over GGHNP. Annually, monthly, seasonal, and diurnal distributions were 
calculated with the summation of counts for respective periods. To evaluate the 
influence of season on lightning activity, monthly data was summarized according 
to four seasons: summer (Dec, Jan, Feb), autumn (March, April, May), winter (June, 
July & August), and spring (Sept, Oct, Nov). For diurnal, a series of graphs and 
tables were created using Excel to visualize the temporal distribution of lightning 
activity of the park.

D. O. Mofokeng et al.
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7.2.3.2 � Spatial Distribution of Lightning Strikes Activity

To capture the spatio-temporal distribution of lightning activity, maps for visualiza-
tion showing the individual CG lightning strikes as points and density were created. 
In this study, the Hex binning analysis was employed. This analysis helps in aggre-
gating spatially lightning strike data. The reason here is that the Hex binning as used 
in this study will help to spatially aggregate the dataset (lightning strike) in a hex-
agonal manner. The assumption stems from studies (Carr et al., 1992; Genton et al., 
2006) that have posited that hexagons are visually appealing and have better sym-
metry of nearest neighbour than square or rectangular bins. The hex grid (100 m) for 
each of the dataset (lightning) were created using MMQGIS plugin version 2018.1.2 
and the lightning data was spatially joined to the hex grid using the join by location 
attribute in QGIS 2.18.5. The lightning flash density attribute was added to the new 
feature table and calculated using the Field Calculator tool by dividing the ‘count’ 
by cell area and then by the number of years spanning the dataset resulting in a 
count per km2 per year (Ng).

Hot Spot Analysis was employed to determine whether or not there is clustering 
and also to measure the degree of spatial autocorrelation of CG lightning in the 
study area. Hot Spot Analysis was performed using lightning strikes density data as 
an input. Several analyses or processes precede hotspot analysis. First, we deter-
mined the specific threshold distance or distance band for neighbouring feature, 
which is called neighbourhood. The neighbourhood consists of features that are 
analysed together to assess local clustering and this is made possible through the use 
of a threshold distant band (TDB). To determine the TDB, the Incremental Spatial 
Autocorrelation (ISA) tool in ArcGIS was conducted.

ISA is a measure of spatial autocorrelation. The Z-score here depicts the spatial 
clustering intensity and statistically significant peak z-score indicates where spatial 
processes promoting clustering are most pronounced. These peak distances were 
used to determine a distance band or threshold distance band for hot spot analysis 
using Getis–Ord Gi* (ArcGIS, 2013, Cha et al., 2017).

Furthermore, Incremental Spatial Autocorrelation calculates Global Moran 
I. Moran’s I is a measure of the correlation where negative correlation indicates the 
dispersion of similar values, positive correlation indicates clustering of similar val-
ues (either high or low), and zero correlation indicates complete spatial random-
ness. It informs us whether a set of features is clustered, dispersed, or random. It is 
based on spatial covariation divided by total variation as shown in Eq. 7.1 (Amrhein, 
2017, Moran, 1950).
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From Eq. (7.1), n is the total number of features, wij is the spatial weight matrix 
between feature i and j, the variable y is the features attribute value.

Values for Moran’s I range from −1 (dispersion) to +1 (clustered). A Z-score and 
p-value are also calculated for Moran’s I statistic. For statistically significant posi-
tive Z-scores, the null hypothesis of spatial randomness is rejected, and the high and 
low values in the dataset are considered to be more clustered than expected. For 
statistically significant negative Z-score, the spatial distribution of high and low 
values is considered dispersed and the null hypothesis is rejected (Amrhein, 2017, 
Moran, 1950). Results were represented in the form of line graphs of Moran I and 
Z-score vs distance.

To explain a spatial pattern of the CG lightning strike density, hotspot analysis 
was eventually performed using Hot Spot Analysis Getis–Ord Gi* Tool of ArcMap. 
Getis–Ord Gi* evaluates the spatial correlation from a local scale perspective. The 
Gi* as a statistic helps in determining areas of high and low clusters by looking at 
local averages to global averages. The Gi*statistic ranges in values from −3 to +3 
and is calculated for each feature and produces a Z-score indicating the intensity of 
the high or low clustering with respect to its neighbourhood depending on the sign 
of Z-score. A statistically significant ‘hot spot’ is one where a feature with high 
value is surrounded by other features with high values (positive Z-score). Likewise, 
a ‘cold spot’ is one where a feature with low value is surrounded by other features 
with low values (ArcGIS, 2013, Cha et al., 2017, Getis and Ord, 1992). The Gi* is 
calculated using Eq. 7.2.
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where xj is the attribute value for feature j, wi,j, is the spatial weight between i and j, 
and n is equal to the total number of features. Also, X and S are shown in Eqs. 7.3 
and 7.4, respectively.
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7.3 � Development of Lightning Hazard Map

For the spatial distribution of Lightning Hazard Map (LHM), the Inverse Distance 
Weighted (IDW) technique of ArcMap 10.2 was employed. LHM was developed 
from the Z-score of the Hot Spot Analysis. The output of the IDW was normalized 
to range between 0 and 1 using the Raster normalization tool (ArcGIS), while the 
Reclass tool was used to stratify the entire data layer into five classes based on light-
ning potential risk of lightning activities guided by previous researches. These 
classes are categorized as follows: almost danger-free (0–0.2), minimal danger 
(0.2–0.35); moderate danger (0.35–0.50); severe danger (0.50–0.75); and extreme 
Danger (0.75–1).

7.3.1 � Relationship of Lightning Hazard Map with Topography 
(Elevation, Slope, Aspects, Vegetation Types, 
and Fire Scar)

Regression analysis was undertaken to explore the relationship of LHM with terrain 
parameters, (elevation, slope, and aspect), vegetation types, and fire scars. Statistical 
analysis of the data, namely, Coefficient, Probability or Robust Probability, and 
Variance Inflation Factor (VIF), as well as t-test were used to assess each variable. 
In preparing the data for statistical analysis, the study area elevation data was pre-
pared using methods by Adelabu et al. (2018). Slope and aspect were calculated 
using the Surface Tool. All raster layers were converted into vector layers (poly-
gons) to align with vegetation types and fire scar layers and resampled to 1000 m. 
All six (6) layers were overlaid using the Spatial Join Tool of ArcMap. Regression 
analysis was performed using Ordinary Least Squares (OLS) Modelling spatial 
relationship Tool of ArcMap 10.2 software. The diagnostic results were displayed in 
the form of a table.

7.4 � Results

7.4.1 � CG Lightning Strike Events and Density Maps

Within the GGHNP, a total of 114,720 lightning strikes were recorded between 
January 2007 and December 2017. About 94.86% were of negative polarity and 
5.14% of positive polarity. In general, most of the previous studies showed a similar 
pattern of positive polarity accounting for less than 10% of total CG activities 
(Dewan et al., 2018). Since the CG lightning point event map is difficult to visually 
interpret, a lightning flash density map on the hexagon polygon grid for the entire 
11-year period is displayed in Fig. 7.2. The map showed that the density of lightning 
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Fig. 7.2  Map depicting the spatial density of CG lightning flashes within GGHNP between 2007 
and 2018. Lightning density (Ng) displayed the number of CG lightning events per km2 per year

Fig. 7.3  Graph of lightning events by year and hour

strikes is not uniform throughout the park. Areas of high density (in red) can be seen 
throughout the park. These observed variations in the CG lightning pattern follow 
the topography of GGHNP. The highest density was prominent at a highly elevated 
area within the park.
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7.4.2 � Temporal Analysis

From Fig. 7.3, it can be observed that the GGHNP experienced the highest number 
of lightning events during 2016 (16,365). The distribution shows that the years 2015 
(7071 events) and 2017 (7067 events) witnessed the lowest number of individual 
lightning strikes in the park. Based on the inter-annual variability (Fig.  7.3 and 
Table 7.1), there is a possibility that the occurrence of these strikes is related to a 
large-scale climate phenomenon, such as the ElNino Southern Oscillation (ENSO) 
and the Southern Annular Mode (SAM) (Dowdy, 2016, Guha et al., 2017, Mariani 
et al., 2016). However, there is still the need to carefully unravel this relationship 
using standard climatic procedures.

Fig. 7.4 shows the seasonal variation of lightning strikes over the GGHNP for the 
period between 2007 and 2018. It was evident that maximum lightning strikes were 
observed in summer. The decrease of lightning activity observed on the onset of 
autumn to the winter season is consistent with the results of (Gill, 2009). Gill (2009) 
also observed a shift in lightning activity with the change in season in South Africa. 
Regularly in summer, a surface trough (an elongated area with relatively low pres-
sure values when reduced to sea level) associated with the deep intrusion of well-
defined easterly wave that will result in the development of a line of convection 
extending from northwest towards the southeast over the country. Such line thun-
derstorms are well organized and moved from west to east bringing rain and accom-
panied lightning to the most of the Free State province (Gill, 2009). Low lightning 
activity in the winter season could be attributed to the less vegetation cover and 
more bare-ground. The study by Kotroni and Lagouvardos (2008) revealed that over 
a bare ground, the lightning yield is low. Changes in the surface temperature from 
minimum in winter followed by maximum on the onset of springs may lead to fluc-
tuation of lightning activity. Moreover, high lightning activity in summer could be 
attributed to cloud cover during late springs.

Table 7.1  Percentage of lightning strikes count by month and season between 2007 and 2017

Month Percentage Season Percentage

Dec 23.80% Summer 56.26%
Jan 17.57%
Feb 14.89%
Mar 10.71% Autumn 14.22%
Apr 2.82%
May 0.69%
Jun 0.47% Winter 0.68%
Jul 0.08%
Aug 0.13%
Sep 1.90% Spring 28.84%
Oct 13.38%
Nov 13,56%
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Fig. 7.4  Seasonal variation lightning strikes over GGHNP

In addition, Fig.  7.4 illustrates the diurnal variation of lightning activity on a 
seasonal basis. It revealed that majority of lightning activity occurred in the after-
noon to the early evening across all four seasons. The diurnal pattern described the 
influence of solar radiation on the development of thunderstorms. The observed 
afternoon peak in lightning activity correlates to the peak in solar radiation and 
subsequently high energy levels during this time of the day (Bhavika, 2007). Gill 
(2009) demonstrated that heat-generated, isolated, or scattered thunderstorm activ-
ity is also common in the late afternoon. However, an abnormal observation was 
made during winter season with peak in early hours of the morning (02:00). This 
diurnal pattern indicated that winter lightning is not sensitive to solar heating, and 
thus frontal activity is the dominant factor influencing thunderstorm development in 
this season (Bhavika, 2007).

7.5 � Spatial Pattern Analysis

7.5.1 � Global Moran 1

Output from Moran I analysis on the monthly scale, as depicted in Fig. 7.5a, revealed 
that the Moran I values are greater than 0 ranging from 0.01 to 0.49 throughout the 
year, with the exception of July. This indicates positive spatial autocorrelation of 
clustering of either high or low values of CG lightning density. However, the Moran 
I value of July is smaller than 1 indicating that the spatial pattern is randomly dis-
tributed. In winter months (June, August, and September), Moran I values range 
from 0.01 to 0.07, which reveals that spatial pattern is close to the random distribu-
tion pattern of CG lightning density. The z-score values are above zero (see 
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Fig. 7.5  Global Moran I statistic results for monthly data (a) Moran I vs Distance, (b) Z-score vs 
Distance

Fig. 7.5b) and observed p-values are low, therefore, the spatial pattern is statistically 
significant and rejected the null hypothesis that lightning density is randomly dis-
tributed except in the month of July. The CG lightning density and the Moran I 
curves show the bias of lightning density with distance. From Fig. 7.5a, b, the CG 
lightning density shows a persistent decrease with distance for afternoon and eve-
ning hours ranging from 0.00 to 0.48 at 1.2 km to values less than 0.0 at 8.3 km. 
From Fig.  7.5, it can be posited that the spatial distribution of lightning density 
within the protected area is clustered at a distance of about 1.2 km which becomes 
closer to random as the neighbourhood distance increases. On the other hand, the 
Moran I curve for late morning hours suggests a random pattern since the morning 
hours is less than zero and negative for 06:00 SAST and 09:00 SAST (Fig. 7.6a).

From Fig. 7.6b, the observed Z-score (Z > 0 and positive) curves for early morn-
ing, afternoon, and evening hours are above zero and are positive signalling a posi-
tive spatial auto-correlation and an indication of a significant clustered pattern 
(p < 0.5). Based on Fig. 7.6b, the Z-score (Z < 0 and negative) for late morning 
hours 06:00 and 08:00 SAST suggests a negative non-significant spatial correlation, 
hence, lightning activities within GGHNP during 06:00 and 08:00 are likely to 
be random.
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Fig. 7.6  Global Moran I statistic diurnal data (a) Moran I vs Distance, (b) Z-score vs Distance
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Fig. 7.7  GGHNP lightning strike density showing hot and cold spots

7.5.2 � Hotspot Analysis Getis–Ord Gi
*

The map of Hotspot Analysis Getis–Ord Gi
*statistic using the 11-year lightning 

activity is presented in Fig. 7.7. It illustrates the regions of a statistically significant 
cluster of high and low values (hot and cold spots) presented in shades of red and 
blue based on the calculated Z-score and p-values. From Fig. 7.7, the main clusters 
are large and are identified as hot spots. These are at a higher elevation within the 
park such as in the south-western through the north-western and eastern part of the 
park. These hotspot areas cover 23.76% of the study area. Clusters of statistically 
significant low values or cold spots are mainly located in the northern part of the 
park. While 13.43% was found as statistically significant and identified as a cluster 
of low values (cold spot).

The results of the Getis–Ord Gi
*statistic for aggregated monthly data are revealed 

in Fig. 7.8. It showed that July and August (winter months) have a smaller area of 
coverage of high values of clustering and non-existing low values of clustering. 
Large coverage is identified as clusters of high values for all months between 
September and June. Table 7.2 showed the percentage of the area identified as clus-
ters of high values (hotspot) and low values (cold spot), as well as non-significant 
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Fig. 7.8  GGHNP monthly lightning strike density showing hot and cold spots

for the monthly dataset. February and March have the largest coverage identified as 
clusters of high values (hotspot). During winter months when the lightning activity 
is at least, the largest area of coverage of hotspot is located in June (18.27%) fol-
lowed by August (12.38%) and July (10.36%) and located in the south-western part 
of the park and a small portion at the centre of the park.

During summer months when lightning activity is at its peak, the largest areas of 
coverage of hotspots are observed in February (23.70%) located in north-east and 
eastern parts of the park, followed by January (23.21%) and December showing the 
least (19.36%) and concentrated more in the south-west part of the park. During the 
autumn season, March (23.70%) contributed the highest area of coverage of hotspot 
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Table 7.2  Summary of monthly Getis–Ord Gi
*result showing the percentage of area identified as 

clusters of high values (hotspot), low values (cold spot), and non-significant

Month High Low Non-Significant Month High Low Non-significant

Jan 23.21 13.03 63.76 Jul 10.36 0 89.64
Feb 23.7 18.86 57.44 Aug 12.38 0 87.62
Mar 23.7 23.25 53.05 Sept 14.75 3.64 81.62
Apr 19.32 19.91 60.77 Oct 21.6 10.99 67.41
May 15.43 7.12 77.44 Nov 21.4 9.24 69.62
Jun 18.27 0.96 80.77 Dec 19.36 13.43 67.21
All 23.76 12.85 63.4

located extremely at the central part followed by April (19.32%) located in south-
western and May (15.43%) located in the eastern part of the park. The high values 
of the cluster during the spring season are high in October (21.60%) concentrated 
mostly in the south-western region and less in the eastern part of the park and fol-
lowed by November (21.14%) located in the north-west portion, September with the 
least (14.75%) in north and south-western part of the park. The cold spots of light-
ning strike density are large in coverage during April and non-exist in July 
and August.

The hotspot coverage appears to be at its greatest during 22:00 SAST (30.08%), 
03:00 SAST (26.19%) and 17:00 SAST (25.75%) as shown in Fig. 7.9 and Table 7.3. 
The north-western, south-western, and central mountains have a consistently high 
level of hotspot during these time periods and through 06:00 SAST (3.33%) where 
it is almost non-existence. In the mountains of north-eastern and eastern GGHNP, 
the hotspot coverage in this region of the park is consistent but relatively smaller in 
coverage expect during 01:00, 04:00, 12:00, 16:00, and 19:00 SAST. Cold spot 
coverage appears to be at its greatest during 03:00 SAST (38.11%) and occurs 
mostly over the north-eastern flat terrain region of GGHNP. Therefore, the results of 
the Getis–Ord Gi

* test reveal localized hot and cold spots of CG lightning activity 
within GGHNP and vary with the seasons on the monthly time scale as well as 
diurnally hour of the day. The hot spots are generally located in or near the moun-
tains while most of the cold spots are located in the flat terrain of GGHNP.

7.5.3 � Development of Lightning Hazard Map

The development of LHM was drawn from the Z-score of Hotspot analysis, interpo-
lated, normalized, and classified according to the potential of lightning hazard. The 
map showing coverage extent of hazard severity is illustrated in Fig. 7.10. It revealed 
that 48.76% of the entire landmass of the GGHNP falls under the severe danger 
zone. Two patches of the extreme danger zone are seen on the map towards the 
southwestern part and north-central portion of the map. Only very few portions of 
the entire landmass fall under almost danger-free zone, suggesting that the entire 
landmass of the GGHNP is largely prone to lightning hazard (Fig. 7.11).
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Fig. 7.9  GGHNP average hourly lightning strike density showing hot and cold spots

7.5.4 � Regression Analysis

In order to explore the relationship between the developed LHM and the terrain 
parameters (aspect, slope, and elevation), vegetation type, and fire scars, the regres-
sion analysis was executed. OLS regression (Table  7.4) yielded a model that 
explained 77% of the variation in lightning hazard map as explained by R2 value of 
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Table 7.3  Summary of hourly Getis–Ord Gi
*result showing the percentage of area identified as 

clusters of high values (hotspot), low values (cold spot), and non-significant

Hour High Low Non-significant Hour High Low Non-significant

00 18 10.25 71.75 12 22.14 22.43 55.47
01 18.14 15.61 66.25 13 12.51 9.26 78.22
02 16.03 7.77 76.2 14 24.46 20 55.54
03 26.19 38.11 35.69 15 22.25 8.33 69.4
04 21.32 5.98 72.7 16 23.03 18.9 58.06
05 16.39 0 83.61 17 25.75 21.24 53.75
06 3.33 0 96.6 18 20.86 14.98 64.16
07 13.56 3.71 82.73 19 18 15.99 66.01
08 7.8 0 92.2 20 16.17 8.55 75.28
09 17.61 0 82.39 21 22.25 14.09 63.77
10 12.6 6 81.4 22 30.08 13.29 56.63
11 23.4 17.08 59.52 23 19.1 12.62 68.28

0.77. The coefficient statistic which explains the type and strength of co-relationship 
showed negative relationship between LHM and aspect (−0.0424). However, posi-
tive and statistically significant relationship was found on fire scars (4.5668), slope 
(0.683), vegetation (0.021), and elevation (0.0029). These results are in agreement 
with the study conducted in Yellowstone National Park (Amrhein, 2017), whereby 
there was no relation of any aspect with lightning activity. The predictor variables 
used to predict spatial clustering all have variable inflation factor (VIF) less than 7.5 
(Table  7.4) indicating little redundancy amongst variables except fire scars. 
However, fire scars have a robust relation with LHM.

The model was identified as statistically significant owing to the very low value 
of Joint F- and Wald-Statistic that is smaller than 0.05. With the Koenker (BP) sta-
tistics showing no statistical significance indicate that the model is consistent in data 
space, the variation in the relationship between predicted lightning strike density 
and explanatory variables does not change within explanatory variable magnitude. 
Therefore, there is no heteroscedasticity (non-constant variable or non-stationary) 
in the model. The Jarque–Bera Statistic test was also not statistically significant 
indicating that the regression residuals are normally distributed with a p-value 
higher than 0.05, therefore the model is unbiased. The adjusted R2 and AICs values 
of the model are 0.63 and 73.66, respectively, validating the sound performance of 
the predicted model.

7.6 � Discussion

The study revealed the outcomes in assessing the spatio-temporal patterns of CG 
lightning activity over the GGHNP. The application of statistical spatial autocorre-
lation and clustering techniques such as Global Moran I and Getis–Ord Gi

* was 
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Fig. 7.10  GGHNP average hourly lightning strike density showing hot and cold spots (contd)

effective in delineating the LHM, identifying what areas of the park experience 
clusters of lightning activity. The regression analysis was performed testing the rela-
tionship between the developed LHM and physical properties of GGHNP terrain.

The monthly strike count increases from the minimum value in July (0.08%) and 
displays a peak in December (23.80%) as shown in Table 7.1. It is observed that the 
maximum lightning strikes count occurred in the summer months (DJF), accounting 
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Fig. 7.11  Lightning hazard map for GGHNP (2007–2017) showing coverage extent of hazard 
severity

Table 7.4  OLS regression diagnostic for the entire dataset

Dependent variable Lightning hazard map
Variables Coefficient Std. error t-Statistic Probability Robust_Pr VIF

Aspect −0.0424 0.0606 −0.6949 0.4970 0.4884 1.41
Elevation 0.0029 0.0008 3.5989 0.0024* 0.0003* 2.14
Slope 0.0683 0.0699 0.9773 0.3429 0.2706 1.72
Vegetation 0.0211 0.0676 0.3125 0.7586 0.6393 1.35
Fire 4.5668 6.1007 0.74857 0.4649 0.008631* 37.164
R-Squared 0.770884 Wald-

Statistic
0.000000*

Adjusted 
R-Squared

0.670646 Koenker 
(BP)

0.415350

(AICc) 73.663751 Jarque–
Bera

0.789538

F-Statistic 0.000382*
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for 56.26% of the total lightning strikes. This is followed at a distance by the spring 
(SON) and  autumn (MAM) months. SON and MAN accounted for 28.84% and 
(14.22%), respectively, with the lowest count in the winter (JJF) months (0.68%). 
Also, we observed that as the winter season progresses, that is April upwards, light-
ning strikes count showed a decreasing trend. This decreasing trend during the 
autumn season moving into the winter season is constituent with Dewan et  al. 
(2018) who reported a shift in lightning strikes count with the change in season in 
Bangladesh. The summer peaks and the consistent monthly variability are consis-
tent with Bhavika (2007) and Mayet et al. (2016). The lightning strikes observed 
during summer months are associated with the nature of the terrain leading to oro-
graphic forcing; the increase in the total precipitable water column as a result of 
abundant moisture in the atmosphere;  an increased surface temperature due to 
intense solar heating leading. The persistent heating of the land atmosphere creates 
instability in the atmosphere, by enhancing convection activities leading to severe 
storms heralded by lightning.

The average diurnal variation (2007–2017) as depicted in Fig. 7.3 suggests that 
lightning is more prevalent in terms of occurrence from 14:00 to 18:00 SAST with 
two clear maxima at 15:00 SAST and 17:00 SAST. The lowest lightning activity is 
during the morning hours at 05:00 and 06:00 SAST, and yet again at hour 08:00 
SAST. A 24-h distribution of lightning activity was divided by 6-h periods revealed 
the following pattern: early mornings (00–05:59) 7.82%, late morning (06:00–11:59) 
3.72%, afternoon (12:00–17:59) 55.60%, and evening (18:00–23:59) 32%. From 
the foregoing, within the GGHNP, the lightning activity follows an afternoon–eve-
ning maxima. A comparison of diurnal variation across the seasons reveals that 
lightning activity is predominantly late afternoon-type, although it is not evident in 
the winter season. Both summer and autumn have prominent peak at 17:00 SAST 
and spring at 15:00 SAST. During winter, lightning activity is greatly diminished, 
however, there is a prominent peak at 02:00 SAST. The diurnal variability and inter-
seasonal diurnal variability observed in Figs. 7.3 and 7.4 are in agreement with the 
study by Dewan et  al. (2018), which found that peak lightning activity usually 
occurs during the afternoon-evening hour.

Number of factors may be related to this type of diurnal variation; these include 
diurnal solar cycle leading to destabilisation of the atmosphere and development of 
convective particular in springs and summer seasons (Williams, 1994). In south-
western and north-central part of GGHNP, topography forcing the Thaba Bosiu 
Plateau and the foothills of Maluti Mountains allow convection and associate light-
ning to develop. Thus, topography in conjunction with synoptic system may lead to 
convective development (Qie et al., 2003) subsequently to the development of thun-
derstorm and lightning. Early morning peaks observed in winter season might be 
attributed to land and sea breezes circulation, nocturnal valley wind which promotes 
convection to early mornings and vertical wind shear for local convection (Dewan 
et al., 2018).

Regional road that passes through the GGHNP may enhance aerosol in atmo-
sphere caused by increased anthropogenic activities within and adjacent to the park. 
The study by Mushtaq et  al. (2018) showed that presence of aerosol in the 
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atmosphere may affect the lightning activity. South-western and northern central 
part of GGHNP support the notion that mesoscale convective is higher in the moun-
tainous area. Qie et al. (2003) articulated three trigger mechanisms of such concept 
as orographic and terrain effects, presence of wind discontinuity line or dry line, and 
availability of vegetation moisture. Since these areas of the park are dominated by 
moderate height terrain, orographic lifting with respect to complex terrain could 
initiate conditional instability of atmosphere which favours the development of 
thunderstorm  – facilitated lightning. Therefore, these mechanisms influence the 
spatial clustering of lightning activity over the study area.

Spatial autocorrelation analysis revealed that the clustering of lightning strikes at 
the park is at a distance of about 1.2 km. This connotes that strikes clustered with 
other strikes are not likely to strike an individual specific location from centre of 
cluster of strikes much beyond a circle with radius of 1.2 km. Spatial regression 
analysis (OLS) identified that elevation, slope, vegetation type, and fire scars are as 
statistically significant and positive in predicting the development of LHR.  The 
vegetation-type variable was statistically significant showing a positive relation 
with LHM. This relation of vegetation type with LHM could be viewed in light of 
the vegetation of the study area. GGHNP is predominantly an Afromontane grass-
land park. There is a conjecture that grassland has much higher sensible heat flux 
because they have senesced during dry season, and an increased sensible heat flux 
may drive thermal convection and increase lightning activity. Although fire scars 
were found to be the only variable with the highest IVF values, which is responsible 
for multicollinearity and the most variables with the robust correlationship with the 
LHM. This multicollinearity is due to the fact that the short-period dataset (I year 
dataset) was used for this variable; therefore, increasing the sample size or long-
period dataset could be a solution (ArcGIS, 2013). A small fire scar will show an 
increase in heating, but its impact on the heating of the boundary layer will be mini-
mal (Kilinc and Beringer, 2007).

7.7 � Conclusion

To the best of our knowledge, this is the first study of its kind to make use of SALDN 
data over the mountainous protected area to explore the statistical spatial and tem-
poral patterns of lightning activity: the first to employ spatial analysis techniques to 
determine the clustering of CG lightning within the GGHNP. Global clustering spa-
tial pattern was calculated using Global MoranIemployed on lightning-strike for the 
entire dataset (2007–2017), and monthly and hourly data revealed that there is 
strong evidence of global clustering and spatial patterns are statistical spatially sig-
nificant and appear to be clustered except in July, late morning hour of 06:00, 08:00, 
and 09:00 SAST.  The study demonstrated that the overall spatial pattern of CG 
lightning activity varies with time due to regional and local weather patterns as 
influenced by a large scale of climatic nodes (ENSO and SAM). This relationship 
still needs to be explored. Monthly variation revealed that lightning activities are at 
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peak during summer, in December, while diurnal variation revealed afternoon-
evening maxima attributed to orographic effect, availability of abundant moisture, 
and diurnal solar heating cycle. The developed LHM revealed that almost 16% of 
the study area is at risk of lightning. OLS helped to identify the key factors contrib-
uting to the lightning threat being elevation. The study is a step towards new infor-
mation regarding the spatio-temporal distribution of CG lightning. The data derived 
from this study would be of significance for wildfire models used to predict, moni-
tor, and assess the lightning-induced wildfire. Knowing where and when lightning 
is mostly to cluster will allow managers to preposition suppression, plan for fuel 
treatment, and prepare fire prevention and public safety (Van Wagtendonk and 
Cayan, 2008). Although this study furnished some initial results, incorporating 
strikes characteristics (polarity, multiplicity, and strength), regional climate condi-
tions and local weather patterns that result from physical geography of GGHNP 
would advance the understanding of spatio-temporal distribution of CG lightning 
activity. Knowledge of why positive or negative clusters occur in the study area can 
be used to improve lightning-induced wildfire models.
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Chapter 8
Water Resources Monitoring Over 
the Atlas Mountains in Morocco Using 
Satellite Observations and Reanalysis Data

Abdelghani Boudhar, Wassim Mohamed Baba, Ahmed Marchane, 
Hamza Ouatiki, Hafsa Bouamri, Lahoucine Hanich, 
and Abdelghani Chehbouni

Abstract  The Atlas Mountains cover a large area in the Moroccan territory, with an 
extent of about 800 km in length and 60 km in large, including various summits 
above 3000 m of altitude. From these high areas originate the main rivers that sup-
ply an important amount of surface water for domestic, agricultural, and industrial 
use, and it also significantly contributes to groundwater recharge. Due to its com-
plex topography, the observation network in the high mountains is very sparse and 

A. Boudhar (*) · H. Ouatiki 
Data Science for Sustainable Earth Laboratory (Data4Earth),  
Sultan Moulay Slimane University, Beni Mellal, Morocco 

Center for Remote Sensing Application (CRSA), Mohammed VI Polytechnic University,  
Ben Guerir, Morocco
e-mail: ab.boudhar@usms.ma 

W. M. Baba · A. Marchane 
Center for Remote Sensing Application (CRSA), Mohammed VI Polytechnic University,  
Ben Guerir, Morocco 

H. Bouamri 
Data Science for Sustainable Earth Laboratory (Data4Earth),  
Sultan Moulay Slimane University, Beni Mellal, Morocco 

L. Hanich 
Center for Remote Sensing Application (CRSA), Mohammed VI Polytechnic University,  
Ben Guerir, Morocco 

Faculty of Sciences and Techniques, Cadi Ayyad University, Marrakech, Morocco 

A. Chehbouni 
Center for Remote Sensing Application (CRSA), Mohammed VI Polytechnic University,  
Ben Guerir, Morocco 

Centre d’Études Spatiales de la Biosphère (CESBIO), University of Toulouse,  
CNRS/CNES/IRD/UPS, Toulouse, France

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Adelabu et al. (eds.), Remote Sensing of African Mountains, 
https://doi.org/10.1007/978-3-031-04855-5_8

mailto:ab.boudhar@usms.ma
https://doi.org/10.1007/978-3-031-04855-5_8


158

most of the streams are ungauged or in the best of cases have a short time series of 
data records. Moreover, climatic conditions in this scarcely gauged environment 
show a considerable spatial variation (e.g., altitude, exposition, ocean and desert 
effects) and temporal variability (e.g., interannual and seasonal). This spatio-
temporal dynamic is currently not well studied and understood.

Geospatial technics could offer an opportunity to better understand the water 
cycle components over a large zone, and therefore lead to an efficient management 
of water resources. In this perspective, the present chapter gives an overview of the 
spatio-temporal dynamics of the main water resources indicators across the Atlas 
ranges. To this end, multi-source datasets (MODIS, ERA5, PERSIANN-CDR, 
GPM IMERG v6, SRTM-DEM) are used and combined through different work-
flows to produce long time series to analyse the behaviour of snow, precipitation, 
and temperature patterns at various time steps. Such information is of crucial impor-
tance for basin-scale modelling to assess hydrological response to snow dynamics 
and thus water resources along the Atlas.

Keywords  Atlas Mountains · Water · Climate · Remote sensing · Re-analysis data

8.1 � Introduction

The Atlas Mountains in Morocco represents an important water reservoir for popu-
lations living downstream lands and surrounding arid plains. The major rivers in the 
country originate from these mountains and their flows, used directly or from reser-
voirs, are mainly associated to precipitations amount that fall in the high altitudes. 
In addition, the principal aquifers adjacent to the mountain chains are generally 
recharged by streamflow, via wadis or underground dugouts, produced from the 
headwater basins in high altitudinal zones (N’da et al., 2016; Hssaisoune et al., 2020).

Due to the orographic effect, head watersheds with elevations above 1400 m are 
seasonally covered by snow (Boudhar et al., 2010; Marchane et al., 2015). They 
receive an enhanced rate of precipitation in the form of snowfall during the cold 
season (Baba et al., 2019). Moreover, they have lower temperatures, generally nega-
tive or nearing the zero Celsius, which permits to preserve the snowfall in a snow-
pack form during the winter, and early spring for the high elevated areas. As 
measured on the southern (Mgoun sub-catchment) and the northern (Ourika sub-
catchment) slopes of the High Atlas range, snowfall represents between 20% and 
80% of total precipitation depending on elevations and season (Schulz, 2006; 
Boudhar et  al., 2016). Across the Tensift headwater basin, meltwater from snow 
constitutes approximately a rate between 25% and 50% of the total annual runoff 
volume (Boudhar et al., 2009).

Furthermore, it is worldwide known that topography, particularly elevation, 
strongly affects the spatial distribution of rainfall (Duckstein et al., 1973; Liao et al., 
2007; Qing et al., 2011). It acts by disturbing the local wind patterns and enhancing 
the condensation process through the orographic uplift (Bonacina, 1945; Qing et al., 
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2011). The latter can be responsible for more than 30% of the spatial variability of 
annual and seasonal rainfall totals (Spreen, 1947; Sevruk, 1997; Qing et al., 2011). 
This variability is often translated by an increase in rainfall with elevation, which 
can be in terms of the number of events, the magnitude of the events, or the combi-
nation of both (Pedgley, 1970; Duckstein et al., 1973; Salles et al., 2001). However, 
the rainfall–elevation relationship, more apparent for coarse time scales (monthly 
onwards) (Salles et al., 2001; Song et al., 2019), can be inverted in some contexts 
exhibiting strong negative correlations (Lu et al., 2008). For these reasons, water 
resources availability in mountain part is vital for various socio-economic activities 
in lowlands. This dependency on the upstream surface water and snowpack storage 
is becoming more important during last decades as a result of climate change and 
anthropic effects.

Climatic regional studies in Morocco project an increase in dry periods by 2050 
that could dramatically impact water resources availability (Driouech et al., 2010; 
Jaw et al., 2015; Khomsi et al., 2015; Driouech et al., 2020). Future climate sce-
narios in the Mediterranean context, including the Atlas Mountains, indicate an 
increase in temperature, and driers conditions will induce a decline in snow accu-
mulation and duration (Fayad et al., 2017; López-Moreno et al., 2017; Polo et al., 
2019). As such, changes in precipitation’s amount and phases will significantly 
affect basin’s hydrological response and seasonal rivers regimes. It could also influ-
ence water balance and other physical processes that control fluxes exchanges 
between streamflow, reservoirs storages, groundwater table, and soil moisture.

In this context of water shortage and climate change constraints, a good under-
standing of the hydrological functioning in mountain basins, to quantify water 
redistribution at the catchment scale, is of a significant importance for water man-
agement purpose. To this end, field measurements are the optimal manner to obtain 
real information on water and climate parameters, which are very scarce in the 
Atlasic basins due to the rugged terrain and inaccessibility. To overcome this limita-
tion, datasets from Earth Observations and climate models are useful for retrieving 
information related to water cycle. The aim of this chapter is to monitor and charac-
terize the spatio-temporal behaviour of the main water and climate-related param-
eters over the whole Atlasic Mountains using large-scale satellite products and 
Reanalysis models.

8.2 � The Atlas Mountains Context

This study focuses on the Atlas Mountains range located in central Morocco, north-
western part of Africa, over an extent of about 800 km in length and 60 km in large 
(Fig. 8.1). This area is distributed from south to north into three broadly parallel 
ranges: The Middle Atlas, the High Atlas, and the Anti-Atlas. Altitudes for these 
chains range from 1000 m to a culminating point on the Jbel Toubkal, the highest 
summit of North Africa at 4167 m, followed by the Megoun massif at 4068 m, both 
located in the High Atlas. As illustrated in Fig. 8.1, the Atlas Mountains host the 
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Fig. 8.1  Localization of the Atlas chain and the main supplied river basins in Morocco

headwater part of the main river basins of Morocco: Moulouya, Oum Er-Rbia, 
Sebou, Tensift, Draa, Ziz-Rheris, and Souss.

In term of topography, physiographic parameters are extracted from an SRTM 
(The Shuttle Radar Topography Mission) digital elevation model (DEM), consider-
ing pixels above 1000 m for the followed analysis (Fig. 8.2). Overall, the lower 
elevations (Z < 1400 m) represent a large portion (up to 50%) of the total area, with 
an overall mean of 1500 m. Slope distribution varied largely with a mean of ~20°. 
Generally, the Atlas features take a mean direction of (NW-SE) and 70% of total 
surface is covered by north and east aspects.

Regarding climate, the Atlas region is under the combined influence of the 
Atlantic Ocean to the west, the Mediterranean Sea to the north and the desert Sahara 
to the south (Knippertz et al., 2003). It presents a great climatic barrier between the 
north of the country and the desert in the south. We can therefore find a wide variety 
of climates going from moderate humid and sub-humid climates at the northern 
slope of the High Atlas to semi-arid and arid climates in south of the Atlas.

8.3 � Snow Cover Duration from MODIS Snow Product

Seasonal and interannual variations of snow cover across the Atlas chain have been 
previously derived from various spatial satellite data (e.g. SPOT-VEGETATION, 
MODIS, Landsat, Formosat, Sentinel-2A) through numerous works (Baba, 2018; 
Boudhar et al. 2009; Chaponnière, 2005; Ahmed Marchane et al., 2015). They were 
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Fig. 8.2  Hypsometric curve, aspect rose diagram, and percentages of slope band’s area of the 
Atlas Mountain (elevation > 1000 m)

interested on mapping and monitoring the basic characteristics of snow cover area 
(SCA) at various scales over the Atlas in Morocco (Boudhar et al., 2010; Boudhar 
et al., 2007; Marchane et al., 2013, Marchane et al., 2015).

The signal of SCA dynamic exhibits a high spatio-temporal heterogeneity, espe-
cially from year to year based on the topographic effect. An example of the temporal 
variability over a pilot sub-catchment in the Tensift river basin is shown in Fig. 8.3, 
where the time series of daily fractional snow cover (fSCA) shows significant intra- 
and inter-annual variability over the period 2003–2016. In other investigations, 
SCA chronological series were used as input to evaluate snowmelt contribution to 
streamflow even if empirically (Boudhar et al., 2020) or through hydrological mod-
els (Boudhar et al., 2009; Ouatiki et al., 2020). Also, this information was served to 
calibrate, assess, and improve snow models and thus quantify snow water equiva-
lent (SWE) at local and basin scales (Boudhar et al., 2016; Bouamri et al., 2018; 
Baba et al., 2019).

Long-term SCA series over 17 years period, obtained from Moderate Resolution 
Imaging Spectroradiometer (MODIS) snow products, and pre-processed for cloud 
filtering by (Marchane et  al., 2015), were used to analyse snow cover duration 
(SCD) variability. Figure 8.4 (top) shows the annual changes of the median SCD for 
the entire Atlas area that varies from 18 days per season in 2016 to 73 days in 2009 
with an average of 46 days. This SCD rate is strongly associated to the topographic 
features, principally the altitude, and varies from 20 days to 140 days for low and 
high elevation zones, respectively (Fig. 8.4, bottom left). The relationship between 
SCD median for each altitudinal zone (step of 200 m), during 2000–2016 period, 
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Fig. 8.3  Time series of mean SCA (fractional snow cover area: fSCA) MODIS over the entire 
period 2003–2016 in the Rheraya sub-catchment

Fig. 8.4  Annual average of snow cover duration (SCD) (median value over whole Atlas area per 
season) variability (Top), boxplot of SCD by altitudinal band (period: 2000–2016), (Bottom Left) 
SCD median (2000–2016 mean) vs elevation (Bottom Right)
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and elevation are significantly correlated with a mean Pearson coefficient (r = 0.97) 
(Fig. 8.4, bottom right). It is revealed that the topographic gradient of SCD is about 
1  day/100  m for elevation under 2500  m and 5  days/100  m for the part upper 
to 2500 m.

8.4 � Precipitation Variability Over the Atlas as Seen 
from Space

In this section, we discuss the spatial variability of rainfall over the seven Atlasic 
river basins. To do so, we employed rainfall estimates from PERSIANN-CDR and 
IMERG-v6 gridded satellite products. While PERSIANN-CDR is a model devel-
oped by the CHRS at the University of California Irvine, GPM is a space mission 
fully dedicated to precipitation monitoring under the joint control of NASA and 
JAXA (Ashouri et  al., 2015; Huffman et  al., 2019). The first uses Geostationary 
Infrared (IR) observations, and the second combines IR, Passive Microwave (PMW), 
and Radar data to produce near-global gridded rainfall products. These are freely 
provided as sub-daily estimates at 0.25° (PERSIANN-CDR) and 0.1° (GPM 
IMERG) spatial resolutions. The two products were chosen based on the findings 
from an unpublished study conducted over the Oum Er-Rbia river basin. In the 
study, eight rainfall gridded datasets (ARC, CHIRPS at a 25 km resolution, CHIRPS 
at a 5  km resolution, CMORPH-CRT; IMERG v6, PERSIANN-CDR, RFE, and 
TRMM 3B42 v7) were evaluated against in situ measurements at different time 
scales. IMERG and PERSIANN were found to provide the best performance com-
pared to all of the considered products, in terms of both correlation and bias. In 
particular, IMERG significantly outperformed its predecessor TRMM and showed 
great potential for rainfall monitoring at regional scales.

Figure 8.5 displays the mean interannual rainfall calculated based on PERSIANN 
and IMERG estimates for the seven Atlasic river basins. It can be clearly seen that 
both products capture the north-to-south gradient that characterizes the spatial dis-
tribution of rainfall over the Moroccan territory (Filahi et al., 2016). The Sbou river 
basin, which is subject to strong influences from the Mediterranean sea and the 
Atlantic ocean (Knippertz et al., 2003), appears to receive the highest amounts of 
rainfall with a regional average of 481  mm.y−1 (PERSIANN) and 603  mm.y−1 
(IMERG). The Daraa river basin, on the other hand, is the driest with a regional 
rainfall average of 125 mm.y−1 (IMERG) and 150 mm.y−1 (PERSIANN). Moreover, 
the effect of the atlas mountain on the spatial distribution of rainfall over northern 
Morocco is obvious, particularly in the IMERG estimates. The latter shows more 
zonal contrast compared to PERSIANN, which can be relative to its finer spatial 
resolution in conjunction with the high sensitivity of its radar system to a wider 
range of water droplet sizes. Overall, the Atlas Mountains play the role of an obsta-
cle that holds most of the western advections, the main source of humid air masses 
for the majority of the studied region (Knippertz et al., 2003). It stimulates the gen-
eration of rainfall on its western slope more often than on the eastern one. Hence, 
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Fig. 8.5  Mean interannual rainfall calculated using PERSIANN and IMERG estimates for the 
period 2000–2019. The solid black lines represent the limits of the Atlasic river basins

the Sbou, Oum Er-Rbia, Tensift river basins appear to be wetter than the others. In 
particular, we note that the wetness of the western river basins, at the regional scale, 
can be largely attributed to the grid cells of high elevations, which tend to accumu-
late more rainfall than those covering the lowlands. This holds true for all the stud-
ied river basins, except for Sbou where the rainfall totals are relatively and evenly 
distributed.

Generally, it is widely known that the rainfall occurrence and magnitude tend to 
increase with elevation. However, the nature of this relationship may differ with 
regions, depending on their climatic regimes and geomorphologic characteristics. 
Thus, in the following, we investigate the spatial variability of rainfall with respect 
to the changes in elevation, over the seven Atlasic river basins individually. 
Figures 8.6 and 8.7 display the scatter points of the mean interannual rainfall versus 
median elevation of the grid cells situated within each of the river basins for 
PERSIANN and IMERG, respectively. The scattered points are classified according 
to the latitudes representing the centre of the grid cells. In each subplot, the red and 
the blue points refer to the grid cells located near the northern and southern limits of 
the corresponding basin, respectively. By comparing Figs. 8.6 and 8.7, we can see 
that PERSIANN is unable to clearly describe the dual between rainfall and elevation 
compared to IMERG. This can be due to the features that characterize the algo-
rithms of each of the two products, including the used data sources and the adopted 
spatial resolutions. For instance, the combination between IR, PMW, and Radar data 
sources, in IMERG, allows more realistic, and thus less biased, estimates of rainfall 
compared to the IR-only process involved in PERSIANN.  This can explain the 
strongly dampened estimates in PERSIANN relative to IMERG. Additionally, the 
finer spatial resolution in IMERG allows better sampling of studied basins, with 
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Fig. 8.6  Scatter plots of the mean interannual rainfall versus elevation using the PERSIANN 
estimates. Each subplot refers to an Atlasic river basin

Fig. 8.7  Scatter plots of the mean interannual rainfall versus elevation using the IMERG esti-
mates. Each subplot refers to an Atlasic river basin

more grid cells per unit than what PERSIANN provides. According to Fig. 8.3, dif-
ferent behaviours can be depicted. While no clear tendency can be concluded from 
the scattered point of the Sbou, the rainfall in the large majority of the grid cells that 
cover Moulouya and Souss-Massa seem to decrease with elevation. The mean inter-
annual rainfall ranges from around 440 mm.y−1 (250 mm.y−1) for Moulouya (Souss-
Massa) at low elevations, near the coastal line of the Mediterranean Sea, to around 
210 mm.y−1 (150 mm.y−1) at regions of 1500 m a.s.l. Still, some high elevated grid 
cells show rainfall magnitudes larger than those of the coastal regions. They are 
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mainly located in the middle of Moulouya, near its limit with Sbou, and in the north 
of Souss-Massa, near its limit with Tensift (Fig. 8.5). In Daraa, Tensift, and Oum 
Er-Rbia, there are two different tendencies with elevation. We observe a decreasing 
tendency for the grid cells lying between the outlet, at the shore of the Atlantic 
Ocean and the regions of 500 m a.s.l. or less. An increasing tendency takes place 
starting from 500 m a.s.l., as the rainfall magnitudes correlate positively with eleva-
tion and become relatively more consistent above 1000 m a.s.l. Furthermore, basins 
such as the Oum Er-Rbia can be divided into two sub-regions with even two differ-
ent increasing trend lines (regression lines) that can be drawn. A northern region 
with wetter conditions (represented with the red points) and a southern region that 
is relatively drier (represented with the blue points).

8.5 � ERA5 Temperature Reanalysis Data

Due to the lack or the absence of meteorological stations and in-situ measurements 
in most of the Atlas basins, different studies were based on meteorological reanaly-
sis data to monitor the snowpack state in the Mediterranean mountains (Fayad et al., 
2017; Baba et al., 2018, 2019). ERA5 reanalysis data are the one of the reanalyses 
of the highest spatio-temporal resolution (hourly temporal resolution and ~30 Km 
of spatial resolution). For these reasons, we distribute ERA5 temperature by using 
SRTM (The Shuttle Radar Topography Mission) digital elevation model (DEM) 
over the mountainous areas. This enables us to study and analyse the air temperature 
evolution spatially and temporally. The distribution has been carried out by using 
the Barnes objective analysis scheme, which applies a Gaussian distance-dependent 
weighting function to interpolate the station data to the model grid resolution. This 
method is integrated in MicroMet (Liston & Elder, 2006). MicroMet outputs are 
daily rasters, with each pixel (200 m × 200 m) representing the temperature at given 
location. The distribution was performed from 1st January 1981 to 31st December 
2019. A quantitative assessment of ERA-5 parameters against ground measurement 
over a pilot basin in Moroccan High Atlas (Rheraya) showed a good correlation, 
especially for air temperature (Baba et al., 2021). Following this approach, air tem-
perature maps were produced over the whole Atlas, which cover the mountainous 
regions over 1500.m.a.s.l.

Different products were derived from these daily temperature maps, namely, the 
winter mean temperatures from 1981 to 2019 (Fig. 8.8) which show that a big part 
of the mountains is characterized by a freezing winter (<5 °C). This increases the 
potential for getting snow when it rains. Moreover, these low ambient temperatures, 
especially in the high elevated regions, are an important element to preserve the 
snow cover and delay its melting until spring.

Figure 8.9 shows that the mean temperatures in the mountainous region have a 
positive growing trend. More specifically, the two warmest winters during the last 
four decades are observed during the last 10 years. This growth in temperature has 
a significant impact on the evolution of the snowpack and the extension of the snow 
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Fig. 8.8  Mean winter temperatures (°C) over the Moroccan mountains from 1981 to 2019. 
Regions below 1500.m.a.s.l were masked. Projection: UTM-29 N

cover. As an example, it is very clear that 2008–2009 is the coldest winter during the 
last four decades (Fig. 8.9), and similarly, from remote-sensing data we can observe 
that 2009 year had the largest snow cover durations during the last two decades 
(Fig. 8.9). Otherwise, 2009–2010 winter is one of the warmest winters with 0.2 °C 
over the mean of temperature during last four decades (Fig.  8.9). This is also 
expressed in term of snow cover duration: 2010 is the second lowest year (Fig. 8.9).

8.6 � Conclusion

In this chapter, we have examined the usefulness of remote sensing and global 
reanalysis data to characterize water and climate parameters over the whole Atlas 
Mountains where ground observations are scarce. These chains play a vital role by 
supplying fresh water for agriculture, domestic, hydroelectric production, and 
industrial uses and also for eco-hydrological systems control.

Interannual fluctuations of all analysed parameters (Snow Cover Duration, 
Precipitation, and Air temperature) are marked by a strong variation, whether in 
temporal or spatial scale, that characterizes the Mediterranean climate and associ-
ated with a high dependency to elevation.

8  Water Resources Monitoring Over the Atlas Mountains in Morocco Using Satellite…
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Fig. 8.9  Evolution of mean temperature (°C) during the winter in the Atlas Mountain from 1981 
to 2019 (red fit). The grey line represents the trend line during the same period

Both remote sensing and reanalysis datasets show that the Atlas Mountains are 
increasingly warmer, and their snow cover decreases in term of duration. Therefore, 
we believe that it is necessary to seek with care the climate projections in the moun-
tainous areas. This will allow us to have a wide view on the impact of climatic 
changes in the future on snowpack and therefore snowmelt distribution spatially and 
temporally.

This summarizing work is essential for understanding the global situation of 
water and climate associated parameters over the Atlas Mountains. Taking advan-
tage of both geospatial and the existing in situ data, results and approaches here 
could be used for multiple applications. Regarding the freely access and quasi real-
time availability of these data, the operational character could be developed over 
each river basin to support water resource management strategies.
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Chapter 9
Evaluating Settlement Development 
Change, Pre, and Post-1994 in the 
Drakensberg Mountains of Afromontane 
Region, South Africa

T. F. Onaolapo, T. W. Okello, and S. A. Adelabu

Abstract  Human settlement development is a predominant form of land cover 
change in any part of South Africa. This chapter provides an outline of the develop-
ment pattern changes in three settlements of Thabo Mofutsanyana municipality in 
Drakensberg mountains, South Africa, for the past 30  years (1989–2019), with 
emphasis on 1994, the year when governance changed from minority to majority 
rule in South Africa. This research aims at understanding settlement pattern change 
in the selected settlement. Landsat images of 1989, 1999, 2009, and 2019 were 
downloaded from satellite images through remote-sensing method from Thematic 
Mapper. Classification and Regression Tree algorithm was used in classifying the 
land-use land cover, and the results of the study revealed that the settlements (built-
up) Harrismith, Ladybrand, and Vrede experienced increase in all the years under 
study. The built-up area of Harrismith increased from 3.82% to 9.06% from 1989 to 
1999, and also from 11.15% to 19 68% from 2009 to 2019. Also, Ladybrand’s built-
up increased from 5.03% to 12.53% in 1989 and 1999 and from 13.0% to 17.35% 
from 2009 to 2019, while Vrede’s built-up increased from 1.06% to 3.37% in 1989 
to 1999 and from 3.39% to 10.17% from 2009 to 2019. The spatial pattern of devel-
opment that was observed in the study areas as revealed in the transition maps 
helped in establishing development trends. The main findings of the study reveal 
that the land area for settlement development (built-up) in the selected settlements 
of the study area has increased rapidly with the proportional loss of other land uses 
from 1989, 5 years before the change in government to 1999, 5 years after the 
change. This is related to various policies such as the Development Facilitation Act 
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of 1995 and Housing Acts 107 of 1997, which enabled land and homeownership by 
all South Africans. Statistics South Africa’s (Statistics SA) demographic data that 
was available also confirmed a population increase for the study area for the years 
under study. The research serves as a basis for sustainable settlement development 
in mountainous areas.

Keywords  Settlement development · Remote sensing · Apartheid · Spatial pattern 
· Sustainable development

9.1 � Introduction

Recent changes in human settlement development and their effects on the environ-
ment call for serious environmental concerns by experts and the human population (Li 
et al., 2020). The effects include climate change, land degradation, loss of biodiver-
sity, air and water pollution. Loss of agricultural land to human settlement develop-
ment was noted as the highest form of land cover change in South Africa (Musakwa 
& Van Niekerk, 2013). The topography of the area is characterized by low/high moun-
tain and irregular land, which occurs above 1500 m elevation near the equator (Brand 
et al., 2008). Although there is no universally accepted definition for mountains, con-
tinuity, positioning, relief, altitude, slope, and size are criteria that have been used to 
define mountains. A mountain is defined in Ireland and the United Kingdom as any 
peak equal or above 610 m high (Nuttall & Nuttall, 2008; Wilson, 2001). The United 
Nations Environmental Programme’s definition of a mountain includes elevation of at 
least 300  m and could even be as high as 2500  m or above (Blyth et  al., 2002). 
However, this study defines the Afromontane region according to UNEP’s definition 
as a region of high lands which occur above 300 m elevations.

Human settlements refer to ‘the totality of the human community, whether city, 
town or village with the social, material, organizational, spiritual and cultural ele-
ment to sustain it’ (Habitat, 1976). Settlement development change, as well as 
urbanization, are global phenomena that are important developmental procedures 
impacting the physical environment via numerous socioeconomic and ecological 
procedures (Basiago, 1998). Settlement can be divided into two types: urban and 
rural settlement. Urban settlements such as towns, cities, informal settlements, and 
peri-urban areas are usually characterized by high populations. In contrast, rural 
settlements are areas in which people depend directly on their immediate environ-
ments through agriculture, fishing, and the collection of resources for their daily 
needs and are usually characterized by a low population (Habitat, 1976). Settlement 
patterns all over the world differ from one place to another at different times (Hui & 
Moyse, 2018). Thus, the study of spatial analysis is of great importance to human 
beings and environmental sustainability. The spatial relationships between and 
amongst settlements are shaped by commerce, people’s ideas, government policies, 
and the processing of raw materials into finished products (Cannon, 1990; Owusu, 
2005). Thus, settlement patterns influence the environment, population distribu-
tions, the use of natural resources, which can generate economic prosperity (Sarkar, 
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2010). Settlement development (built-up area) is an apparent land cover change in 
the area as compared with other land uses in the study areas; this implies that the 
environment is much affected by human activities in settlement expansion. Few 
works of literature have highlighted physical factors like geographical location, 
topography, and water bodies, or economic, political, and social reasons as forces 
behind settlement development patterns and forms (Berry, 2015).

The history of socio-political change in the South African government is greatly 
connected with urbanization, which is a major force in settlement development. The 
change from the minority rule of government to the majority is perceived to have 
brought up a different situation that poses challenges before key players in the envi-
ronment (Madlingozi, 2007). The change in governance informs the pattern of 
development in most communities in South Africa (Pallister-Wilkins, 2011; Turok, 
2014). Some of the effects of the changes are haphazard development in the form of 
shacks and other informal settlements in and around cities (Onaolapo et al., 2020), 
and one of the major ways to monitor such land cover changes is through the use of 
satellite data from remote sensing (Coppin et al., 2004; Kleynhans et al., 2012; Lu 
et al., 2004).

The use of GIS and remote sensing to monitor land-use patterns and develop-
mental change requires downloading two or several images with different resolu-
tions (high, medium, or low) at different times, compilation and arrangement of the 
images, and grouping of each pixel, which enables to put into different classes 
(Moser et  al., 2007; Radke et  al., 2005). Land-use patterns and developmental 
changes in small and large settlements have been successfully monitored using dif-
ferent geospatial techniques, such as Change Detection, Moderate Resolution 
Imagine Spectrometer (MODRIS), (Wang et al., 2021; Wulder et al., 2018, Coops 
et al., 2009; Hansen et al., 2003, 2000; Mildrexler et al., 2007, 2009). These meth-
ods of geospatial techniques data collection have less human involvement and also 
enable the processing of large datasets in less time.

Mapping land use changes through remote sensing are time-saving, cost-saving, 
and resource-effective (Mahabir et al., 2018). High, medium, or low-spectral help in 
mapping out of old or new settlements, comparison of images taken at different 
periods helps in determining the changes over time as well as the emergence of new 
settlements (AbuHafeetha, 2014). Lloryd et al. (2016) emphasized the need for GIS 
tools to monitor and plan for land-use development of Monrovia in Liberia after the 
civil war in 2003. They discovered that haphazard development, which happened 
during the war, created a problem of development control in which 1.2 million peo-
ple spread over a large space of land without any restriction (Lloyd et al., 2016). 
Sang et al. (2019) in Tianjin, northern China, studied and analysed the intensity and 
stationarity of land-use change; they used thematic mapper images of 1995, 2000, 
2005, and Operation Land Imager (OLI) image 2015. They classified the land-use 
land cover using Classification and Regression Tree Table Algorithm. Their results 
showed that the increase of 7.5% in land-use change during 1995 to 2015 was due 
to rapid urban development (Sang et al., 2019).

Drastic land use and socioeconomic changes have led to urbanization and envi-
ronmental concerns (Dadashpoor et  al., 2019). Such a change in population and 
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environment coupled with less functional land-use planning and lack of develop-
ment control results in environmental decline, indiscriminate landscape develop-
ment, misuse of land, and strain on the ecosystem structure (Güneralp et al., 2017). 
Consequently, more forest areas and farmland have changed to built-up areas and 
other urban development in recent years (Coppin et al., 2002). This is also the case 
of Thabo Mofutsanyana municipality in the Afromontane region (Krannich et al., 
2011; McGranahan, 1999; Urban et al., 2016). Mountainous areas received little or 
no attention when it came to spatial planning. Its unique nature demands adequate 
monitoring and planning, hence, the need for an in-depth study of the land-use pat-
terns and assessing developmental trends over the period of time, which is impor-
tant for future development and management. This study determines the changes in 
human settlement developments in the three selected settlements, Harrismith, 
Ladybrand, and Vrede, in Thabo Mofutsanyana municipality of Drakensberg moun-
tain, Free State province using remote sensing and GIS. This study is important 
because of its peculiarity of settlement development in the mountainous area of 
Drakensberg mountain of the Afromontane region.

9.2 � Description of the Study Area

Thabo Mofutsanyana municipality is within Drakensberg mountain, the Free State 
province of South Africa (Fig. 9.1). It is one of the five municipalities that exist 
within the province. The municipality has a total population of 769,761 people with 
a population density of 28.9 people per km2; the majority of its people speak Sesotho 
and a land surface area of 33,269 km2 (Statistics, 2012). The primary function of the 
municipality is agriculture, with an administrative office at Phuthaditjhaba (Denoon-
Stevens & Mocwagae, 2019). The municipality is bounded by Maluti, Drakensberg, 
and Eastern Free State mountains and by the Eastern Cape, KwaZulu-Natal, and 
Lesotho, which project a charming and beautiful scenery for tourism in the region 
(Statistics, 2012). The municipality makes the second smallest contribution to the 
GDP of the Free State, with trade, retail, wholesale, financial, and community ser-
vices being the core contributing sectors (Kalane, 2015). Furthermore, its annual 
importing and exporting value is the second smallest amongst the five municipali-
ties (Statistics, 2012).

The municipality is situated in a rural area in the eastern Free State, and it 
includes the former homeland of Qwaqwa (Mangope, 2015). It was also declared a 
Presidential Node in the early 2000s. The topography of the study area is a low 
mountain and irregular shapes. It has six local municipalities: Maluti-A-Phofung, 
Phumelela, Nketoana, Dihlabeng, Setsoto, and Mantsopa. Maluti-A-Phofung con-
tains 55.5% of the municipality’s total population and is the most populated. Three 
settlements were selected from three local municipalities For this research, three 
settlements, Harrismith, Ladybrand and Vrede, were selected from three local 
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Fig. 9.1  Map of South Africa showing Free State Province and Thabo Mofuntsanyane municipality

municipalities, Maluti-A-Phofung, Mantsopa, and Phumelela, respectively. Maluti-
A-Phofung local municipality – Highest population/almost the lowest land area in 
the municipality; and Harrismith, which is strategically placed between two promi-
nent cities of South Africa, which are Johannesburg and Durban, it represents the 
urban settlement out of the three settlements understudy, it has a population of 
27,869 (Statistics, 2012). Phumelela local municipality has the lowest population 
and largest land area, Vrede has a small population below 2000 people with a large 
area for farming; it represents the least in the hierarchy of the three settlements 
under study (Statistics, 2012). Mantsopa has the average land extent and population, 
it is located at the southern part of the municipality and Ladybrand is a close town 
to the Lesotho border, Maseru, this is very significant to the town’s development 
pattern, and it represents an average town between the three settlements under study. 
It had a population of 4218 in 2011 (Statistics, 2012). Years were chosen at an inter-
val of 10 years. (i.e. 1989, 1999, 2009, & 2019) for even monitoring; the first year 
represents 5 years before the change, while the second year represents 5 years after 
the change of government from minority to majority rule.
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9.3 � Methodology

In this research, temporal changes in the patterns of the landscape were identified 
using 30 m resolution LANDSAT TM and OLI. Table 9.1 contains a list of data 
employed for this research.

A preliminary survey was done to gather data for the classification of scheme’s 
development and to serve as physical data validation for the classification and 
assessment of the images that were classified. Four scenes of Landsat4–5 Thematic 
mapper (TM) for 1989, 1999, and 2009 images and Landsat-8 Operational Land 
Imager (OLI) images for 2019 (Table 9.1) were used. The land-use maps for the 
research covered the years before and after the major event of a change in the politi-
cal system of the country, and the images were downloaded based on the clearest 
visibility (free from being blurred by cloud) as they appeared on the satellite within 
the same season of the same year. Imageries were pre-processed; six image bands 
used for this study were geometrically rectified to Geographic Coordinate System.

Landsat images of 1989, 1999, 2009, and 2019, an interval of a decade was cho-
sen to monitor a continuous change in the human settlement; also the first 2 years 
represented 5 years before and 5 years after 1994, the eventful year of transitioning 
from minority to majority rule (i.e. 1989 and 1999), respectively. These periods of 
interval enabled balance means of measuring changes, as 1999 was the end of the 
first term of office of elected politicians.

9.3.1 � Image Pre-processing, Processing, and Classification

The images appear in distinct datasets as tiles for the same coverage of the same 
year and therefore mosaicked together with others to form a unified dataset that was 
assessed to detect the changes. The study was located on path 170, row 081 in the 
worldwide reference system type 2. These scenes were already georeferenced in the 
UTM (Universal Transverse Mercator) image projection Zone 35S with Datum 
WGS84 (Khan & Aaqib, 2017).

After pre-processing, every mosaicked image was classified into four land cover 
and land-use classes, which are built-up vegetation, bare surface, and water. Several 

Table 9.1  Sources of study data downloaded from the United States Geological Survey (USGS) 
Glovis website

Date of Acquisition Source/Sensors Resolution

03/1989 Landsat 4–5TM 30 m
03/1999 Landsat 4–5TM 30 m
02/2009 Landsat 4–5TM 30 m
02/2019 Landsat 8 OLI 30 m
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researchers have used the application of remote sensing to settlement studies, and 
many studies have been done using different image classification algorithms such as 
Classification and Tree Table Algorithm and Random Forest (Blaschke et al., 2008; 
Lu et al., 2006; Sinha et al., 2015). Both unsupervised and supervised methods of 
land-use classification were used for this research. The unsupervised classification 
was done for the years 1989, 1999, 2009, and 2019 using visual interpretations on 
Landsat images. For an improvement in the visual interpretation, the images were 
enhanced, their contrasts stretched, and false-colour composites were generated to 
increase the distinctions between their features. Initially, association analysis, tex-
ture, and knowledge-based visual interpretation were performed, followed by a 
careful analysis of the Landsat and OLI images while working on the land-use 
classes. The visual interpretation is able to identify real land use to a large extent but 
to further increase the accuracy of what was identified visually; reference data 
points were created randomly to identify the true land use of the points created 
based on visual interpretation on the satellite images. Create Random Point Pool of 
ArcGIS was used to establish 100 random points.

For supervised classification, the CART (Classification and Regression Tree) 
classifier, which is a non-parametric method, was used for the classification with 
70% training data and 30% test data. CART describes how one can predict a target 
variable based on other values. The accuracy assessment was calculated for each 
settlement using a cross-tabulation matrix (Foody, 2002). This type of supervised 
classification was used because of the issue of mixed pixel (different land-use 
classes within the 30/ 30 m resolution); for example, Harrismith has some built-up 
and vegetation together. In order to avoid the issue of abnormal training data, the 
CART classifier was used because it is the most appropriate in situations where 
there are mixed pixels and gives better accuracy (Hong Wang et al., 2020). Lawrence 
and Wright (2001), in their study of land-use classification in rocky mountain prov-
inces of Idaho, Montana, and Wyoming in the United States of America, used CART 
analysis to classify two TM scenes from 1994 images. They highlighted that CART 
analysis was easy to be implemented using commonly available image processing 
and statistical software because of its ability to resolve class overlap with the spec-
tral and GIS layers. They emphasized the importance of the CART classifier, which 
is the ability to automatically pick the useful layers from and also its sensitivity to 
huge inconsistencies in the training samples within the classes, as well as the ability 
to avoid misclassification of training dataset (Lawrence & Wright, 2001). CART 
analysis can provide a low-cost and high-quality alternative result with less stress 
(Herold et al., 2003). Chen et al. (2017) recognized CART in their study at Long 
Country, China, as one of the models that is useful for spatial analysis and predic-
tion of landslide susceptibility where they randomly selected 171 landslide loca-
tions and divided them into two groups of 70/30 training and test dataset and 
validation purpose (Chen et al., 2017).

Using CART involves the selection of input variables and split points on the 
variables until a suitable tree is created. This is done using a predefined stopping 
criterion, such as a minimum number of training instances assigned to the leaf 
model of the tree (Jena & Dehuri, 2020). The CART classifier method was used to 
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Table 9.2  Error matrix of accuracy assessments for Harrismith, Ladybrand, and Vrede

Classified 
Data

Reference Data
Settlement Built-up Vegetation Bare 

Surface
Water Total

Harrismith Built up 24.00 0 1.00 0 25.00
Vegetation 0 11.00 0 0 11.00
Bare surface 4.00 1.00 4.00 0 9.00
Water 1.00 0 0 5.00 6.00
Total 29.00 12.00 5.00 5.00 44.00
Omission 0.17 0.083 0.20 0 51.00
Commission 0.040 0 0.56 0.17
Producer 
accuracy

0.83 0.92 0.80 1.

User accuracy 0.96 1.00 0.45 0.83
Total accuracy 86%

Ladybrand Built-up 11.00 1.00 1.00 0 13.00
Vegetation 1.00 5.00 0 0 6.00
Bare surface 2.00 0 5.00 0 7.00
Water 0 0 0 2.00 2.00
Total 14.00 6.00 6.00 2.00 23.00
Omission 0.22 0.17 0.17 0 28.00
Commission 0.15 0.17 0.29 0
Producer 
accuracy

0.79 0.83 0.83 1

User accuracy 0.85 0.83 0.72 1.00
Total accuracy 82%

Vrede Built up 4.00 0 1.00 0 5.00
Vegetation 0 12.00 0 0 12.00
Bare surface 1.00 0 3.00 0 4.00
Water 0 0 0 1.00 1.00
Total 5.00. 12.00 4.00 1.00 20.00
Omission 0 0 0.25 0 22.00
Commission 0.20 0 0.25 0
Producer 
accuracy

0.80 1. 0.75 1.

User accuracy 0.80 1.00 0.75 1.00
Total accuracy 91%

minimize errors that may come up because of heterogeneous land use during clas-
sification. Error matrix results were obtained using 100 training pixels (25 pixels 
per class) after cross-validation; this is generally accepted as a tool for land-use 
classification accuracy (Li & Song, 2019). Table 9.2 shows the results of the error 
matrix of accuracy assessments using the OLI image of 2019.

Accuracy assessment was done so as to validate the result of the classification; 
the first assessment was done through the historical information gathered from the 
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community leaders at the study areas who have been residing in the areas for over 
four decades. These leaders were able to attach some of the major events that hap-
pened, which led to settlements development and landmark transformation. These 
pieces of information helped in the establishment of majority results of the research. 
The other assessment was done through the quantitative method; the area ratio of 
the produced map was compared with the area ratio of the reference data; this vali-
dation method could only be done on the current image with the collected field data. 
The research assumption made here was that the previous years were correct based 
on the accuracy of the recent image. The quantitative accuracy involves the classifi-
cation of all reference sites, which provide basic information about assessment of 
the map user and producer. The accuracy assessment done is hereby presented in 
Table 9.2.

The results of supervised classification, when compared with the unsupervised 
classification, give an accuracy of between 82% and 92% of the computed sample 
size after performing an accuracy assessment. Generally, an accuracy of between 80 
and 85% is acceptable for land cover maps (Foody, 2002). The overall accuracy of 
classification was 86% for Harrismith, 91% for Vrede, and 82% for Ladybrand.

9.4 � Results

Each of the classified images produced a noticeable land-use land cover change in 
Harrismith with various increases and decreases for all the years (Fig. 9.2). The 
built-up areas proliferated progressively in those years with a consistent increase 
from 3.82% to 9.06% and to 11.15%, then to 19.68% in the years 1989, 1999, 2009, 
and 2019. There was a little increase in vegetation area coverage from 44.83% in 
1989 to 47.79% in 1999 but later decreased drastically by 2009 to 32.40% and later 
to 16.88% in 2019. The bare surface varies with decreases and increases from 
50.47% to 41.65% and to 54.29%, then to 60.97% in 1989, 1999, 2009, and 2019, 
respectively. Water bodies increased slightly in the first 3 years under study, i.e. 
1989, 1999, and 2009 with 0.88%, 1.47%, and 2.59% but later decreased to 2.48% 
in 2019; the level of increase or decrease in the level of water bodies at any given 
time usually depends on climate elements such as temperature, rainfall, humidity. 
Free State is often associated with low precipitation areas and, therefore, usually 
prone to drought (Hlalele, 2019). Accuracy assessment of Harrismith maps was 
86%. The map of Harrismith showing land-use land cover classifications is pre-
sented in Fig. 9.2.

The classified images produced a noticeable land-use land cover change in 
Ladybrand with various increases and decreases for all the years (Fig. 9.3). The 
built-up areas proliferated progressively from 5.03%, 12.53%, 13.0%, and 17.35% 
in those years, with a stable and rapid increase in vegetation area coverage from 
41.13%, 44.87%, 66.51%, and 69% in the years 1989, 1999, 2009, and 2019, 
respectively. Bare surface constantly decreases from 53.42%, 42.51%, 20.45%, and 
13.62% in the years, respectively, while water bodies decreased drastically from 
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Fig. 9.2  The map of Harrismith showing the land-use land cover classifications

0.42%, 0.092%, 0.092%, and later 0.074%; this might have indicated a period of 
drought during the years (Ngaka, 2012). The accuracy assessment of Ladybrand 
maps was 82%. The analysis of the images for the Ladybrand map is presented in 
Fig. 9.3.

The built-up areas proliferated progressively in those years with percentages of 
1.06%, 3.37%, 3.39%, and 10.17%, respectively. There was also a decrease in veg-
etation area coverage from 48.46% to 35.79% in 1989 to 1999 but later increased 
greatly to 47.80% in 1999 and later to 74.03% in 2019. Bare surface fluctuated as it 
increased initially from 49.50% in 1989 to 60.16% in 1999 but gradually decreased 
to 48.20% in 1999 and 14.88% in 2019 while water bodies decreased drastically 
from 0.98% in 1989 to 0.68% in 1999 and further decreased slightly to 0.62% in 
2009 but later increased to 0.92% afterward. The accuracy assessment for Vrede 
maps was 91%. The analysis of the images for the Vrede map is presented in 
Fig. 9.4.
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Fig. 9.3  The map of Ladybrand showing the land-use land cover classifications

Table 9.3 shows the coverage for each land cover/land-use class on Harrismith, 
Ladybrand, and Vrede. In Harrismith, it presented a constant increase in settlement 
development from the year 1989 to the year 2019; bare surface and vegetation reveal 
fluctuating changes in those years. While in Ladybrand, it displayed a constant 
increase in settlement development from the year 1989 to the year 2019; bare sur-
face constantly declined while vegetation proliferated steadily, also water bodies 
constantly decreased. In Vrede, the table displayed a constant increase in settlement 
development from the year 1989 to the year 2019, bare surface and vegetation 
revealed a matching change, fluctuating over the years, and also water bodies 
decreased at first but later slightly increased in the year 2019.

Classification of every image generated an obvious change in land cover and 
land use, as shown in Figs. 9.2, 9.3, and 9.4, with their respective Tables 9.3 for the 
years under study. A noticeable increase of 163.5%, 149.45%, and 218.87% for 
built-up areas in Harrismith, Ladybrand, and Vrede, respectively, were observed 
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Fig. 9.4  The map of Vrede showing the land-use land cover classifications

from 1989 to 1999. On the other hand, between 1999 and 2009, Harrismith experi-
enced a moderate increase, Ladybrand experienced a relatively low increase, while 
Vrede had the lowest increase. In the years between 2009 and 2019, there was an 
average increase of 67.78% in the built-up area of Harrismith. Ladybrand had an 
increase of 24.43%, which is relatively low compared to the 1989–1999 increment 
and also amongst the three settlements under study. On the other hand, Vrede expe-
rienced an increase of 182.35%, which is considered most rapid out of the three 
settlements for the period between 2009 and 2019.

Table 9.4 shows the figures of the built-up area and their percentages in relation 
to the total area. It represents settlement development trend for the three settlements 
(Harrismith, Ladybrand, and Vrede) for the years under study (1989, 1999, 2009, 
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Table 9.3  Classification of the land-use land cover of Harrismith, Ladybrand, and Vrede in km sq. 
and percentages

Class 1989 1999 2009 2019
Area 
(km2)

Percentage
(%)

Area 
(km2)

Percentage
(%)

Area 
(km2)

Percentage
(%)

Area 
(km2)

Percentage 
(%)

HARRISMITH
Built up 3.9780 3.82 9.4545 9.06 11.6379 11.15 20.5482 19.68
Vegetation 46.8054 44.83 49.8859 47.79 33.3837 32.40 17.6246 16.88
Bare 
surface

52.6428 50.47 43.4745 41.65 56.6793 54.29 63.6573 60.97

Water 0.9216 0.88 1.5336 1.47 2.6469 2.59 2.5902 2.48
Total 104.4 100 104.4 100 104.4 100 104.4 100
LADYBRAND
Built-up 2.73 5.03 6.81 12.53 7.06 13.00 9.41 17.35
Vegetation 22.35 41.13 24.38 44.87 36.13 66.51 37.49 69.00
Bare 
surface

29.03 53.42 23.10 42.51 11.10 20.45 7.40 13.62

Water 0.23 0.42 0.05 0.092 0.05 0.092 0.040 0.074
Total 54.34 100 54.34 100 54.34 100 54.34 100
VREDE
Built up 0.53 1.06 1.69 3.37 1.70 3.39 5.10 10.17
Vegetation 24.29 48.46 17.94 35.79 23.96 47.80 37.11 74.03
Bare 
surface

24.81 49.50 30.16 60.16 24.16 48.20 7.46 14.88

Water 0.50 0.98 0.34 0.68 0.31 0.62 0.46 0.92
Total 50.13 100 50.13 100 50.13 100 50.13 100

Table 9.4  Classified settlement development between 1989 and 2019 (area in Km2)

Settlements 1989 1999 2009 2019
(Km2) (%) (Km2) (%) (Km2) (%) (Km2) (%)

Harrismith 4.0 3.82 9.46 9.06 11.64 11.15 20.55 19.68
Ladybrand 2.73 5.03 6.81 12.53 7.00 13.00 9.41 17.35
Vrede 0.53 1.06 1.69 3.37 1.70 3.39 5.10 10.17

and 2019). The figures showed an increase all along with the year intervals. (Here, 
values of the built up in the three settlements are put together to easily analyse the 
settlement development trend.)

Three built-up transition layer maps of the years’ interval for 1989–1999, 
1999–2009, and 2009–2019 are presented to show a detailed settlement develop-
ment change pattern. Figures  9.5a–c show the maps of settlement development 
(built-up). The spatiotemporal maps revealed an expansion in the built-up area of 
the study area within the years of study; years 1989, 1999, 2009, and 2019 maps 
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Fig. 9.5  (a) Spatial pattern of settlement development, Harrismith, (b) Spatial pattern of settle-
ment development, Ladybrand, (c) Spatial pattern of settlement development, Vrede

were overlaid. Figure 9.6 illustrates the percentage increase in built-up in the years 
under study (1989, 1999, 2009, and 2019) for the three settlements. The figure 
shows a growth in the percentage changes in the built-up area of the study areas 
within the years under study (i.e. years 1989, 1999, 2009, and 2019).
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Fig. 9.6  Percentage increase in built-up years under study

9.5 � Discussion

The post-classification change detection shown in Figs. 9.2, 9.3, and 9.4, with their 
respective Tables 9.3, established an increase for human settlements as coverage for 
the built-up areas as revealed from the analysed results showing a constant growth 
for the years under study. This estimated result from 1989 to 1999 showed the high-
est increment in built-up areas amongst the range of years considered. The built-up 
area of Harrismith, which occupied 3.82% of the total land area, increased to 9.06% 
in 1999, while Ladybrand increased from 5.03% in 1989 to 12.53% in 1999. Also, 
Vrede’s built-up area proliferated from 1.06% in 1989 to 3.37% of the total land 
area in 1999.

This analysis reveals the situation of settlement development 5 years before and 
after the 1994 transformation of government from minority to majority rule. After 
1994, various policies on human settlement development were put in place. Two 
such policies, which are very prominent, are the Development Facilitation Act of 
1995 and Housing Acts 107 of 1997. These two acts enabled land and house owner-
ship by any eligible citizen, to get debt relief and discount benefits, and also to 
register such property at the same time. Another important factor for the settlement 
expansion is that the African National Congress (ANC), the ruling political party in 
South Africa, proposed the construction of one million housing units all over the 
country every year since their resumption in office in 1994 (Thring, 2003). There 
were 235,635 housing units built by the RDP (Reconstruction and Development 
Programme) between 1998 and 1999, which is the highest number of housing units 
built so far. The numbers have been decreasing ever since then until 2017, according 
to the available record (Stats, 2018).

Usually, major political events such as independence, expiration of war, or new 
policy formulations are important factors for settlement development. AbuHaffetha 
(2014) examined the urbanization’s impact of the separation wall on the sustain-
ability of agriculture in Palestine; he discovered that this government policy led to 
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the loss of agricultural land and a major increase in built-up areas (AbuHafeetha, 
2014). Mansaray et al. (2016) used remote-sensing tools to map out urban expan-
sion and the rate of deforestation in Freetown, Sierra Leone, pre- and post-war 
(which occurred between 1999 and 2002). He classified land cover change between 
1986 and 2015 and discovered an increase in built-up at the loss of grassland; also, 
the rate of land cover change increased by 28.5% from 2001 to 2015 as against 
20.9% of 1986–2001. This happened because of the increase in population, infra-
structural development, and economic growth after the civil war in 2002 (Mansaray 
et al., 2016).

In the estimated result for the years 1999 to 2009, the increment experienced by 
the three settlements is the lowest as compared to other year ranges. Here Harrismith 
experienced a 23% increment, an increase in built-up areas from 9.46km2 in 1999 to 
11.64km2 in 2009. This is followed by Ladybrand with a 9.53% increment; an 
increase in built-up areas from 6.82km2 in 1999 to 7.17km2 in 2009, and lastly, 
Vrede with a 0.59% increment; an increase in built-up areas from 1.69km2 in 1999 
to 1.70km2 in 2009. Statistics reveal fluctuation in the number of housing units built 
by RDP between 1999 and 2009. The lowest number of houses built during this 
period (1999–2009) was between 2002 and 2003, which was 131,784. The number 
of houses built between 2009 and 2010 was 166,758 (Stats, 2012, 2018). This may 
be because there was less pressure on the political leaders as they had delivered and 
seemed to have improved on the minority government in delivering and meeting 
masses housing needs in the first 5 years of their rule. Then comes a time to relent 
and focus more on other aspects of the political campaign. There was also a case of 
HIV epidemics between 1999 and 2008 (Shisana et al., 2009), which claimed lots 
of lives and caused population decline. The government at this period needed to 
focus more on the health sector than housing. Therefore, the government diverted 
resources into curbing the HIV scourges, which was a pandemic at that period, and 
built fewer houses as a result.

The 2009–2019 built-up estimated results for the land-use area show average 
increment for the three settlements as compared to other year ranges. Vrede led in 
the increase with 200%, an increase in built-up areas from 1.70km2 in 2009 to 
5.10km2 in 2019. The main economic activity in this area is agriculture; the majority 
of the farmers are pastoral farmers (Olubode-Awosola, 2006); the increase in built-
up was evident in indiscriminate shacks around the settlement and grassland for 
cattle. This is followed by Harrismith with 76.55%, an increase in built-up areas 
from 11.64km2 in 2009 to 20.55km2 in 2019, and lastly, Ladybrand with 34.43%, an 
increase in built-up areas from 1.70km2 in 2009 to 10.17km2 in 2019. This was a 
pick-up period in the nation, and the battle of the epidemics seemed to have been 
won as 161,758 housing units were built in 2009; at this period, the housing activi-
ties were coming back to the public interest (Stats, 2018). Though it was noted from 
the Human Settlement Department’s record after 2010, the rate at which houses 
were built has continued to drop, and about 85,000  units were built in 2017 
(Stats, 2018).
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Turok assumed that statistics from the historic population in South Africa are 
unreliable, believing that minority governments did not take trustworthy statistics of 
the black population before 1994. As a result, getting an exact population figure of 
years before 1994 is almost impossible (Turok, 2012). However, the available data 
of 2001 and 2011 show a minimum and average increase in population figures. 
Population figures in Thabo Mofutsanyana increased from 725,932 to 736,238 with 
a population density of 21.8/km2 to 22km2, respectively, from 2001 to 2011. The 
available population figures revealed that Harrismith and Vrede’s figures increased 
by 6.82% and 32.68% from 2001 to 2011. The population figure from the Statistics 
SA shows different fluctuations that vary from year to year; this may be due to 
change in boundaries (administrative and political) from time to time and other 
factors.

A field survey was conducted which revealed that the rapid increase experienced 
by these three settlements is due to the new policies after 1994, which gave rights to 
both blacks and whites to own lands and have title deeds in any part of the country 
(James, 2007). This gave rise to tents dwellers before 1994 to register them by way 
of grants from Housing Acts 107 of 1997 (James, 2007). In developing countries, 
less attention has been given to settlement planning and development in and around 
the mountainous region, whereas mountains provide shelter, tourism, economy, 
energy source, water supply, and food (Romero-Lankao & Norton, 2018). The lib-
erty created by the majority rule to own land and houses, which in a way is pro-poor, 
seemed to be taken for granted, especially in the less urban areas in the municipal-
ity; this made development around these places to be less controlled and rendering 
the important feature (the mountain) to be misused and degraded. Effective and 
functional planning and development schemes need to be put in place to curb this 
misuse and preserve the essential features. These, in a way, will improve the liveli-
hood of the residents and help achieve sustainable mountain development, which is 
one of the United Nation’s goals on sustainable development (De Los Andes, 2012). 
The majority of the population are farmers of livestock and crops at both subsis-
tence and commercial scale. Though there is a notion that subsistence farmers are 
leaving farms for other low-cadre jobs like security works for lack of enough sup-
ports for farmers in terms of loans and training from the government (Myeni & 
Moeletsi, 2020; Hlongwane, 2015; Strydom et al., 2015). This accounts for the fluc-
tuations in the green areas (agriculture, grassland, and vegetation) in the study area.

Another major issue worthy of note is that grassland and forest areas within 
Drakensberg mountains in South Africa are generally dispersed in a fire-predisposed 
area, unlike the lowland vegetation, and most of the species are low in fire resistance 
(Adie et al., 2017). The study area is also associated with low precipitation of rain-
fall between 800 and 1200 mm per annum and sometimes drought (Brand et al., 
2008). These are responsible for the increase in the bare surface and fluctuation in 
land area for water bodies.
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9.6 � Conclusion and Recommendations

In this research, an evaluation of the importance of remote-sensing datasets as a tool 
in mapping land-use change, spatial changes in settlement development, land-use 
planning, and management have been demonstrated. The result of the accuracy 
assessment and information from the field showed a satisfactory classification. The 
present land-use results and the over-time changing patterns are essential in Thabo 
Mofutsanyana municipality, particularly for the spatial development, land distribu-
tion, management of resources, and future sustainable development plans. 
Furthermore, this study attached the change that occurred in land-use land cover of 
the nation to the transition of government from minority to majority rule, and this 
has in one way or the other affected the total landscape of the study area. Therefore, 
in this study, this phenomenon was confirmed using Harrismith, Ladybrand, and 
Vrede. Also, economic factors as a result of tourism attraction created by the moun-
tains could also be responsible for settlement development in terms of temporary 
homes and camps. Harrismith is a middle town between two major cities of South 
Africa, which are Johannesburg and Durban; this location factor may somehow be 
responsible for some people’s settling down. Ladybrand is a city that is very close 
to Maseru, which is the Lesotho border, migrants from Lesotho are likely going to 
settle at Ladybrand temporarily or permanently when they first get to South Africa. 
More research will be conducted on other possible reasons for settlement develop-
ment in the study area.

Some of these factors are also likely to be responsible for the patterns and forms 
of the settlements understudy. This study endeavoured to create awareness in the 
area of mountain development, sustainable settlement planning, as well as an all-
inclusive development control strategy to preserve the environment around the 
mountain.
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Chapter 10
Digital Soil Mapping for Hydropedological 
Purposes of the Cathedral Peak Research 
Catchments, South Africa

Rowena Harrison and Johan van Tol

Abstract  Conventional soil mapping in montane environments is often a difficult 
and laborious task, given access difficulties, the topography of the environment, and 
the time required to conduct the field investigation. Utilising a remote-sensing tool, 
such as the Arc Soil Inference Engine (ArcSIE), to map soils in these locations can 
add valuable information for land management. The ArcSIE tool was utilized in the 
Cathedral Peak research catchments, in KwaZulu-Natal, South Africa, with the aim 
of creating an understanding of the hydropedological behaviour of the soils of three 
research catchments. A rule-based approach was first undertaken, followed by a 
case-based validation. A fuzzy membership map of each soil group was produced 
which integrated all inputs. The overall Kappa coefficient for CP-III is 0.57, for 
CP-VI is 0.59, and for CP-IX is 0.74. The hydropedological soil group maps 
achieved an appropriate representation of the complex nature of the soil–landscape 
relationship, with changes between one soil group and the next being gradual and 
continuous. Accuracies and inaccuracies within the fuzzy membership maps can be 
quantified, allowing for a confidence rating in the use of these maps. These maps 
can therefore be used in further applications in water and land management for 
the area.
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10.1 � Introduction

Conventional soil mapping in montane environments is often a difficult and labori-
ous task, given access difficulties, the topography of the environment, and the time 
required to conduct the field investigation (Ismail & Yacoub, 2012; Martín-López 
et al., 2019). In recent years, thematic mapping has undergone a revolution as the 
result of advances in geographic information and remote-sensing techniques (Ismail 
& Yacoub, 2012), and this has brought about the use of Digital Soil Mapping (DSM) 
as a key tool in reducing the time and financial aspects of conventional soil-based 
mapping. DSM is the interpretation of spatial and temporal soil property variations 
using mathematical models based on quantitative relationships between environ-
mental information and soil measurements (Martín-López et al., 2019).

The use of DSM techniques is supported by the factors of soil formation, coupled 
with soil–landscape relationships (McBratney et al., 2003; Silva et al., 2019). Jenny 
(1941) used the well-known and widely accepted model as a mechanistic model for 
soil development; S = f (c, o, r, p, t), where S (soil) is a function of climate (c), 
organisms (o), relief (r), parent material (p), and time (t). However, since the late 
1960s, there has been an emphasis on more geographic, topographic, and spatial 
approaches to interpreting the position of soils in relation to the landscape 
(McBratney et al., 2003). This more recent interest is driven by an increasing recog-
nition of the ecological, economic, and societal benefits of understanding soil prop-
erties, their spatial distribution, and the value of this knowledge for use in the 
management objectives of a variety of industries and land uses (Kimsey, 2020).

The geographic and topographic nature of DSM makes it relevant to pedology 
and hydrology (Lin et al., 2006; Ma et al., 2019). Soil–water interactions across 
multiple scales control much of soil development, and this results in the spatial vari-
ability studied by pedologists. These interactions also control water quantity and 
quality in surface and groundwater systems, and thus are important to hydrologists 
(Lin et al., 2006). Combining pedologic and hydrologic expertise can be particu-
larly powerful in addressing complex environmental issues (Bouma, 2006; European 
Confederation of Soil Science Societies, 2004; Lin et al., 2006; van Tol et al., 2018), 
and thus the introduction of utilising DSM in hydropedology is an important com-
ponent in understanding and predicting soil variability within a landscape 
(Thompson et al., 2012).

A landscape can be divided into two hydrologic zones including the recharge 
zone and the discharge zone (Heath, 1980). A downward movement of water from 
the soil surface to the groundwater describes the recharge zone, while the opposite, 
a movement of water upwards from the groundwater towards the surface portrays 
the discharge zone. A lateral or flow through zone can also occur in certain land-
scapes with a shallow water table. Here the groundwater has reached the surface and 
runs parallel to the ground surface. Dissolved organic matter, sediment, and reduced 
Iron (Fe) and Manganese (Mn) are carried within this moving water (Lindbo & 
Richardson, 2000; Rhoton et al., 2002; Vepraskas & Lindbo, 2012).
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Research into the dynamics of hydropedology, particularly within South Africa, 
has shown that the placement of soils within a landscape are not randomly distrib-
uted but can be grouped into four hydropedological soil types, namely, recharge 
soils, interflow soils, responsive soils, and stagnating soils. These groups of soils 
convey water differently, and thus have different hydropedological behaviour (van 
Tol & Le Roux, 2019).

Previous studies have highlighted the effect of the landscape on the flow dynam-
ics of soils (Diek et  al., 2014; Grayson et  al., 1997; Mahmood & Vivoni, 2011; 
Penna et al., 2009; Teuling & Troch, 2005) with soil moisture varying with topogra-
phy under wet conditions, whereas under drier conditions, soil moisture has been 
shown to be associated with local soil and vegetation controls. So, although topog-
raphy, texture, and vegetation all influence soil moisture variability, the relative 
magnitude of these controls can vary strongly (Diek et al., 2014; Grayson et al., 
1997; Mahmood & Vivoni, 2011; Penna et al., 2009; Teuling & Troch, 2005). This 
is due to the complex and varied characteristics of soils which influence their ability 
to store and transmit water (van Tol et al., 2020).

The spatial distribution of soils within a landscape can also be described utilising 
the soil catena concept. Described by Milne (1936) as the association of the distri-
bution of soils with the topography of the hillslope, and later by Bushnell (1942) as 
the identification of the hydrosequence of soils along a hillslope from the ridgetop 
to the valley bottom or watercourse. The catchment’s hydrological response is the 
sum of the hydrological responses of the individual hillslopes within a catchment 
(van Zijl et al., 2019). Thus, the importance of grouping soils according to their 
hydropedological characteristics plays an important part in understanding water 
fluxes and flow pathways in landscapes (Lin et al., 2006; van Tol, 2020), as well as 
creating hydrosequences within a catchment. The use of DSM in determining the 
hydropedological grouping of soils is therefore important in assessing such proper-
ties of a catchment including soil water retention, flooding potential, erosion hazard, 
and depth to the seasonal high-water table (Thompson et al., 2012).

One of the baseline inputs in DSM is identifying where the wetlands and water-
courses are situated. Wetlands are a transitional ecosystem between terrestrial and 
open-water or aquatic environments (Mitsch & Gosselink, 2015). They therefore 
contain either open water bodies, dense vegetation, or a mixture of the two (Kaplan 
& Avdan, 2017). The use of satellite imagery has been successfully used in the past 
for open-water delineations, as well as for vegetation classification and change 
detection in wetland ecosystems. Several mapping studies have demonstrated the 
potential of applying remote-sensing methods to wetland identification (Berberoglu 
et  al., 2004; Frohn et  al., 2009; Klemas, 2005, 2011; Lunetta & Balogh, 1999; 
Phillips et al., 2005; Quinn & Epshtein, 2014). Further studies illustrate how vegeta-
tion characteristics such as density, vitality, and spatial extent serve as important 
ecohydrologic indicators (Kokaly et al., 2003; Lin & Liquan, 2006). Applying these 
indicators, one can use remote-sensing techniques such as Normalized Difference 
Vegetation Index (NDVI) analysis to gain an understanding of where the wetlands 
are situated within a catchment.
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This baseline information can then be utilized with topographical indices to 
determine the distribution of soils or the properties of soils within a catchment. 
Several studies have highlighted the use of DSM programmes for these mapping 
exercises (Behrens et  al., 2005; Lagacherie, 2008; McBratney et  al., 2003). One 
such programme is ArcSIE (Soil Inference Engine) which has been utilized in a 
number of studies across the globe focusing on both soil classification mapping as 
well as soil properties mapping (Ashtekar et al., 2014, de Menezes et al., 2014a, b; 
Silva, 2014; Smith et al., 2010). ArcSIE supports a knowledge-based approach to 
establish relationships between soils and the environment in which the soils are 
formed (Shi, 2013). It is thus ideally suited to mapping the hydropedological behav-
iour of soils within a catchment area.

The aims of this chapter are therefore to use remote-sensing techniques and 
DSM for hydropedological purposes on a catchment scale in order to understand the 
various flow dynamics of these catchments. The information obtained from the 
mapping of the hydropedological soil groups and the interactions between these 
groups aims to further enhance land use and water management planning in 
these areas.

10.2 � Methodology

10.2.1 � Study Site

This study took place within the Cathedral Peak experimental research catchment 
site, which is situated in the northern part of the uKhahlamba-Drakensberg escarp-
ment, KwaZulu-Natal, South Africa. The site is managed by Ezemvelo KZN 
Wildlife, while the South African National Environment Observatory Network 
(SAEON) undertakes the monitoring of the catchments. The catchments, of which 
there are 15, range in altitude from 1820 m.a.s.l to 2, 463 m.a.s.l. The geological 
formations of the Drakensberg are the Stormberg and Beaufort Series of the Karoo 
System. The basaltic lavas of the Stormberg Series overlie the cave sandstones and 
mudstones as well as the Beaufort Series sandstones, mudstones, and shales which 
make up the little berg in which the catchments are situated (Nanni, 1956; Toucher 
et al., 2016).

The research catchments are predominantly covered by grasslands of the 
uKhahlamba Basalt Grassland vegetation type interspersed with Northern 
Afrotemperate Forest patches and wetlands (Mucina et  al., 2006). Three similar 
catchments were selected for this study and are named CP-III, CP-VI, and CP-IX 
(Fig. 10.1). These catchments have been managed differently both in a historical 
context as well as currently. The first catchment, CP-III, has an area of 138.9 ha and 
a mean annual rainfall of 1564  mm. The catchment was used for an afforested 
experiment, in which Pinus patula was grown throughout the catchment in the 
1950s and 1960s. After an accidental fire, the trees were removed in 1981, and the 
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Fig. 10.1  Locality of the catchments selected for the study. (Adapted from Harrison et al. 2022)

catchment has become degraded over time. It is covered by Pteridium sp. (Bracken) 
and annually burned during spring. The second catchment, CP-VI, has an area of 
67.7 ha and a mean annual rainfall of 1340 mm. It is covered by grassland which is 
burned biennially during spring. The third catchment, CP-IX, has an area of 64.5 ha 
and a mean annual rainfall of 1257 mm. It has been completely protected from fire 
since 1952 but has experienced accidental burns and wildfires in some years. As a 
result of fire exclusion, this catchment is dominated by woody scrub (Leucasidea 
serica) (Toucher et al., 2016; Harrison et al., 2022).

10.2.2 � Classification of Hydropedological Soil Groups

The grouping of the hydropedological character of soils (based on the classifica-
tions from van Tol & Le Roux, 2019) were utilized in this study. The hydrope-
dological soil groups are defined for this study as (Harrison et al. 2022):

	1.	 Recharge Shallow Soils  – these are freely drained and are shallow in nature 
(<500 mm). The freely drained B horizon merges with fractured rock or a lithic 
horizon. These soils occur on steeper convex slopes in the higher lying parts of 
the catchments.
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	2.	 Recharge Deep Soils – these are freely drained and are deeper than the Recharge 
Shallow Soils (>500 mm). The freely drained B horizon merges into fractured 
rock or a lithic horizon. These soils were identified throughout the catchments on 
gentler convex and concave slopes.

	3.	 Interflow soils – these have a freely drained upper horizons which overlie rela-
tively impermeable bedrock. Hydromorphic properties are identified at this 
interface and signify periodic saturation associated with a water table. These 
soils occur on gentler concave slopes in areas delineated as wetlands as well as 
adjacent to watercourses.

	4.	 Responsive Saturated  – these display indications of long-term saturation and 
were identified in permanently saturated wetlands in the valley bottom positions 
of the catchments as well on gentle concave slopes. As these soils are close to 
saturation all year round, the respond quickly to rainfall events and generate 
overland as any additional precipitation will flow overland due to satura-
tion excess.

10.2.3 � Normalized Difference Vegetation Index Analysis

The first aim of the DSM study was to broadly identify and map the watercourses 
and wetlands located within each of the three catchment sites. In order to achieve 
this, the use of satellite imagery and the analysis of this imagery was undertaken. 
Imagery from the Sentinel-2 satellite was utilized. Sentinel-2 is an Earth observa-
tion satellite operated by the European Space Agency. It was launched on the 23rd 
of June 2015 as part of the European Copernicus Programme to perform terrestrial 
observations in support of services such as forest monitoring, land cover changes 
detection, and natural disaster management. Sentinel-2 records 13 bands in the vis-
ible, near infrared, and short-wave infrared part of the spectrum, and its images have 
a resolution of 10–60 m (Drusch et al., 2012; Kaplan & Avdan, 2017). The images 
can be downloaded free from the Copernicus Open Access Hub (https://scihub.
copernicus.eu/).

Sentinel-2 imagery from the 25th of June 2020 was used in this study to map the 
wetlands and watercourses within each of the catchments. This date was chosen as 
cloud cover over the selected catchments was 1.2%, and thus the area of study was 
clearly visible. Preprocessing of the data was undertaken utilising the semi-
automatic classification plugin for QGIS version 3.10.9. This allowed forv the indi-
vidual bands to be set according to their central wavelengths (Congedo, 2014).

After preprocessing, a Normalized Difference Vegetation Index (NDVI) analysis 
was conducted. The NDVI processing utilizes the following formula, for classifying 
different land covers within the catchments (Zhao et al., 2017).

	
NDVI Index ,RED

RED

RED
� � � � �

�
NIR

NIR

NIR 	
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Where NIR is the near infrared band and RED the red band, so for the Sentinel-2 
images the following applies:

	
Sentinel- imagesNDVI Index Band , Band

Band Band

Band
2 8 4

8 4

8
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� BBand4 	

According to the Earth Resources and Observation Science (EROS) Centre, val-
ues of the NDVI analysis range from −1 to 1. Areas of bare soil and/or open water 
have a very low NDVI value (i.e., 0.1 or less). Sparse vegetation results in moderate 
NDVI values (approximately 0.2–0.5), while high NDVI values (0.6–0.9) corre-
spond to dense vegetation.

Based on prior knowledge of the catchments, areas which are known to be wet-
lands and watercourses are associated with denser vegetation as compared to ter-
restrial areas. Therefore, initial classification of wetlands and watercourses within 
the catchments was taken as areas with NDVI values higher than 0.4.

10.2.4 � Rule-Based Digital Soil Mapping Utilising the Arc Soil 
Inference Engine (ArcSIE)

The creation of the digital soil maps for the three catchment areas utilized the 
ArcSIE (Soil Inference Engine) version 10.2.105. ArcSIE is a toolbox that functions 
as an Extension of ArcMap and generates soil maps based on the soil-
environment model:

	
S f E� � � 	

This model states that the information about soil (S) can be derived from the 
information about the soil formative environment (E), including topography, geol-
ogy, climate, and vegetation (Zhu et al., 2010).

ArcSIE was designed for creating soil maps using fuzzy logic in which DSM is 
performed according to existing relationships between soil attributes and landforms 
(de Menezes et al., 2014a, b). The fuzzy logic model is based on the concept of 
fuzzy sets (Zadeh, 1965) and the complex nature of soils and landscapes which cre-
ates a more gradual and continuous change in soils and their properties. This forms 
an uncertainty in the allocation of boundaries between one soil group and another 
and should therefore not be represented by the abrupt lines depicted in polygon-
based maps. Fuzzy logic therefore attempts to represent this uncertainty by predict-
ing the soil groups as an alternative that is more adapted to the reality of the 
environment (Martín-López et al., 2019). Unlike ordinary sets, fuzzy sets enable 
their elements to show a partial degree of membership in the range from 0 (no mem-
bership) to 1 (full membership). In this way, fuzzy logic models are capable of 

10  Digital Soil Mapping for Hydropedological Purposes of the Cathedral Peak…



200

representing continuous graduations from one class to another class (Hellwig et al., 
2016a; Shi et al., 2004).

A 5  m resolution Digital Elevation Model (DEM) (Ezemvelo KZN Wildlife 
et al., 2016) was utilized to create Digital Terrain Models (DTM) utilising ArcGIS 
version 10.2 and ArcSIE version 10.2.105 to represent the distribution of the topo-
graphical features across the three catchment sites. The slope, elevation, and plan-
form curvature were calculated directly from the DEM, while the wetness index was 
created from the filled DEM and a multipath flow accumulation raster.

A rule-based approach was undertaken. This involved understanding the rela-
tionships between the soil and landscape and was based on knowledge of the catch-
ments and previous soil surveys. Furthermore, the aim of this study was to group the 
identified soil types into hydropedological groups based on the behaviour of the 
soils in relation to the flow dynamics of the catchment. The hydropedological 
classes were therefore classified as (i) recharge shallow soils; (ii) recharge deep 
soils; (iii) interflow soils; and (iv) responsive saturated soils (van Tol & Le Roux, 
2019). The relationship between these hydropedology soil groups and the slope, 
elevation, topographical curvature, and inverse wetness index was identified.

A number of rules were applied to the inference engine within the ArcSIE tool. 
These rules were based on the outcome of the DTMs as well as knowledge of the 
catchments, with various parameters overlapping with each other due to the fuzzy 
logic nature of the rules applied. The following parameters were set for each of the 
DTMs within CP-III, CP-VI, and CP-IX (Table  10.1). Table  10.1 represents the 
information used to produce the optimal curves that describe quantitatively the rela-
tionships between soil type and a particular DTM (de Menezes et al., 2014a, b; Zhu 
et al., 1997). Furthermore, the wetness index was compared against the results of 
the NDVI analysis and mask polygons created where wetlands are known to occur. 
These mask polygons formed part of the input rules for the model.

Table 10.1  Environmental control variables of the hydropedological soil groups in CP-III, CP-VI, 
and CP-IX

Catchment
Hydropedological Soil 
Group

Wetness 
Index

Elevation 
(m)

Slope 
(%)

Planform 
Curvature

CP-III Recharge shallow <1 1900–2280 >30 <−5
Recharge deep 1–9 1848–2200 22–30 −5 – −0.6
Interflow 8–15 1848–2100 18–30 -0.6–2
Responsive saturated 15–21 1848–1956 <18 2–3.6

CP-IV Recharge shallow < 2 1860–2040 >80 <−2.3
Recharge deep 3–5 1830–2070 25–79 −2.3–0.4
Interflow –7 1830–2040 15– 0.4–3.6
Responsive saturated >8 1830–2000 <15 >3.6

CP-IX Recharge shallow <4 1838–1985 >29 >0
Recharge deep 3–8 1820–1985 1–28 −0.5–3.6
Interflow 7–10 1820–1930 14–28 −3.5–0.4
Responsive saturated 9–13 1820–1911 <15 −6.9–0.5
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After identifying the environmental control variables for each of the hydrologi-
cal soil groups in each of the catchments, the continuous function curves set by 
ArcSIE were utilized to precisely define each parameter. The continuous function is 
applicable to environmental features with interval or ratio values (e.g. elevation, and 
slope gradient) and these were utilized for each of the parameters defined in this 
study. ArcSIE provides three basic function curves, which are used to further fine-
tune the curve shape. These are the bell-shape curve, s-shape curve, and z-shape 
curve. These are described by Shi (2013) as follows.

The bell-shape curve optimality value decreases as the difference between the 
environmental feature and the central value increases (e.g. in CP-VI, the bell-shape 
curve defines that for the interflow hydropedological soil group a 15–25% slope is 
optimal, i.e. receiving the highest membership and the membership value decreases 
as the slope increases from 25% or decreases from 15%). The s-shape curve defines 
the optimality of the environmental variable will always get the maximum value if 
the environmental feature values are greater than a defined value (e.g. in CP-III, the 
s-shape curve defines that for the recharge shallow hydropedological group, a slope 
steeper than 30% is always optimal and thus receiving the highest membership). 
The z-shape curve defines that the optimality will always receive the maximum 
value if the environmental feature values are less than a defined value (e.g. in CP-VI, 
the z-shape curve defines that for the responsive saturated hydropedological group, 
a slope gentler than 21% are always optimal, and thus receiving the highest mem-
bership). Examples of these function curves are provided in Fig. 10.2.

Fig. 10.2  Examples of the bell-shape, S-shape, and Z-shape optimality curves utilized in the 
ArcSIE inference interface
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10.3 � Ground Truthing and Validation

The ArcSIE interface allows for the input of case-based features with the aim of 
adjusting the predictive models created within the rule-based phase, to better reflect 
the knowledge about a particular landscape. Cases are spatial features (points, lines, 
polygons, or raster cells) pinpointed, delineated, or derived by the soil scientist to 
express the knowledge of local soils (Shi, 2019). Existing soil maps and soil infor-
mation gathered at specific points within the catchments were added as individual 
cases to the ArcSIE interface and this information is utilized to refine the mapping 
rules. Forty-nine validation points were utilized for CP-III, 47 for CP-VI, and 27 for 
CP-IX. Soil sampling points were chosen to cover the range in altitude, planform 
curvature, slope, and topographical wetness of the individual catchment areas. The 
soils were classified as per the South African soil classification system (Soil Working 
Group, 2018) and their locations are displayed in Fig. 10.3.

The weighted average function was furthermore utilized in the validation pro-
cess. Under the weighted-average method, ArcSIE calculates a linear weighted 
average of the optimality values of individual environmental features to get the 
overall optimality value for the instance. It therefore assigns different weights to 
different environmental features utilising the Analytical Hierarchy Process, which 
uses a structured process to assign weights consistently (Shi, 2013, 2019). An exam-
ple of this is given in CP-III where slope is specified to be more important than 
elevation. The ArcSIE interface then quantifies this specification by assigning the 
score of slope against elevation.

Fig. 10.3  Location of the soil sampling points as well as the classification of the soils in (a) 
CP-III, (b) CP-VI, and (c) CP-IX
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10.3.1 � Statistical Validation

The performance of the ArcSIE interface to create the combined hydropedological 
maps for each of the catchments was analysed using the Kappa coefficient of agree-
ment. This was used to measure the accuracy of the classifications utilized in 
the maps.

This was first undertaken using the classification of the pixel values versus the 
ground-truthed results that were obtained during previous soil surveys. Following 
the identification of the accuracies presented for each hydropedological soil group 
in each catchment, the Kappa coefficient equation (Cohen, 1960) was calculated. 
For computational purposes, the following formula is presented:

	
K
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�
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Where

Po = sum of each hydropedological group accuracy/total number of variables
Pe = (sum of probability of a random raster pixel being in the correct hydropedologi-

cal group) – (sum of probability of a random raster pixel being in the incorrect 
hydropedological group)

10.4 � Results and Discussion

The results section follows the same sub-headings as set out in the methodology 
section. These sub-sections identify the hydropedological classification of the soils 
delineated within the three catchments, the results of the NDVI analysis, the ArcSIE 
rule-based and validation inputs, as well as the statistical analysis of the results 
obtained. A discussion of the results then highlights the effectiveness of utilising 
ArcSIE for the mapping of the hydropedological soil groups.

10.4.1 � Hydropedological Classification of Soils

Soil surveys to map the soils were undertaken within the three catchment areas. 
These soils were classified as per the South African soil classification system (Soil 
Working Group, 2018). The soils were then reclassified according to their hydrope-
dological character, based on the classifications from van Tol and Le Roux (2019). 
The hydropedological soil groups are defined for this study as per Table 10.2.
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Table 10.2  Hydropedological Soil Groups mapped in the catchments

Hydropedological 
Soil Group

Soil forms (Soil 
Working Group, 
2018) Characteristics of soils

Recharge shallow 
soils

Nomanci, 
Mispah, 
Graskop

These are soils that are freely drained and do not show 
any indication of saturation. They are typically shallow 
in nature (<500 mm). The freely drained B horizon 
merges with fractured rock or a lithic horizon. These 
soils typically occur on steeper convex slopes in the 
higher lying or steeper parts of the catchments.

Recharge deep 
soils

Kranskop, 
Magwa, Inanda, 
Longtom, 
Sweetwater, 
Gangala

These are soils that are freely drained and do not show 
any indication of saturation. They are typically deeper 
than the Recharge Shallow Soils (>500 mm). The freely 
drained B horizon merges into fractured rock or a lithic 
horizon. These soils were identified throughout the 
catchments on gentler convex and concave slopes and 
away from wetlands and watercourses

Interflow soils Dartmoor, 
Highmoor

These soils have a freely drained upper solum which 
overlies relatively impermeable bedrock. Hydromorphic 
properties are identified at this interface and signify 
periodic saturation associated with a water table. They 
typically occur on gentler concave slopes in areas 
delineated as wetlands, as well as adjacent to 
watercourses

Responsive 
saturated soils

Champagne, 
Katspruit

These soils display morphological indications of 
long-term saturation. They characteristically respond 
quickly to rainfall events and generate overland flow as 
they are typically close to saturation during the wet 
season, and therefore any additional precipitation will 
flow overland due to saturation excess. These soils were 
identified in the valley bottom positions of the 
catchments, in permanently saturated wetlands. They 
typically occur on gentle concave slopes

10.4.2 � NDVI Analysis

The results of the NDVI analysis are given in Fig. 10.4. The NDVI values vary from 
0 to 0.79 for all catchments with lower values indicating bare soil and higher values 
vegetation. The higher the value, the denser the vegetation. The CP-III NDVI values 
ranged from 0.05 to 0.79, CP-VI results ranged from 0.06 to 0.55 and CP-IX results 
varied from 0 to 0.64. Firebreaks, which had been burned around the boundary of 
each of the catchments are clearly visible, with these areas displaying low values 
(<0.2) due to the exposure of bare soil as a result of the fire. Based on knowledge of 
the catchments, areas which are known to be wetlands and watercourses displayed 
values in the mid to high value ranges and are displayed in Fig. 10.3 as areas with 
values higher than 0.4 (blue colouring). As CP-IX consists of denser vegetation as a 
result of the dominance of the woody scrub, Leucasidea serica, wetlands and water-
courses were classified as areas with a higher NDVI value, 0.5, compared to CP-III 
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Fig. 10.4  NDVI analysis results for the three catchments: (a) CP-III, (b) CP-VI, and (c) CP-IX
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and CP-IV. As the satellite imagery was taken in June (dry season), no areas of open 
water were identified.

The use of the NDVI analysis to form a basis for the location of wetlands and 
watercourses relied on the knowledge of the catchments and the use of previous soil 
survey work. Watercourses and wetland zones were defined in all three catchments 
in the NDVI analysis as areas with denser vegetation. Prior knowledge of these 
areas as well as the use of the topographical wetness index as part of the rule-based 
processing of the maps confirmed their classification as watercourses and wetland 
systems. It is therefore difficult to delineate watercourses and wetlands with the use 
of NDVI analysis alone. This is corroborated in various studies in which it was 
concluded that rule-based classifiers provide more accurate results if supported by 
ancillary data such as Digital Elevation Models (Lidzhegu et al., 2019; Ozesmi & 
Bauer, 2002; Quinn & Epshtein, 2014). The NDVI analysis results combined with 
the topographical wetness index and knowledge of the catchments, however, pro-
vided useful data in the creation of polygon masks which were input into the ArcSIE 
interface to aid in the correct prediction of areas as wetlands and watercourses.

10.4.3 � Rule-Based Digital Soil Mapping

Figure 10.5 shows an example of the fuzzy membership maps produced for the four 
hydropedological classes in CP-III. These were created according to the instances 
for each of these classes (Table 10.1) and the input of polygon masks where wet-
lands and watercourses are known to occur. Similar fuzzy membership maps were 
created for CP-VI and CP-IX. These maps are the first product generated by the 
inference engine and are used as the basis for the final map. Every pixel in each of 
the fuzzy membership maps is assigned a value ranging from 0 to 100 depending on 
the similarity of that pixel location to the hydropedology classes being mapped.

These maps reveal more details about the hydropedology classes than conven-
tional polygon maps because they are made at pixel size spatial resolution (de 
Menezes et al., 2014a, b). The ArcSIE interface then allows for the creation of a 
combined map in which the individual fuzzy membership maps are integrated and a 
draft map of the hydropedological classes for the catchments created (Fig. 10.5).

10.4.4 � Validation

Based on the specific locations of the soil points in each of the catchments, the 
results of the NDVI analysis, as well as the use of the linear weighted average, a 
finalized refined hydropedological soil group map was created. These are displayed 
in Fig. 10.6.
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Fig. 10.5  Fuzzy membership maps for each hydropedological soil group as well as the draft com-
bined map for CP-III
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Fig. 10.6  Refined hydropedological soil group maps for the three catchments: (a) CP-III, (b) 
CP-VI, and (c) CP-IX

10.4.5 � Statistical Analysis

The accuracy table displaying the classification of the pixel values versus the 
ground-truthed results of each catchment is presented in Table 10.3. Accuracy per-
centage values varied between catchments and between the different hydropedolog-
ical soil groups.

The overall Kappa coefficient for CP-III is 0.57, for CP-VI is 0.59, and for CP-IX 
is 0.74. These values range from a weak (CP-III and CP-VI) to a moderate (CP-IX) 
agreement between the predicted maps and the ground-truthed points (McHugh, 
2012). Various studies which utilize DSM for the prediction of both soil types and 
physical properties of soils within catchments have resulted in similar (weak to 
moderate) agreements (de Menezes et al., 2014a, b; Hellwig et al., 2016a, b; Silva 
et al., 2019).

The quality of the hydropedological soil group maps produced is determined by 
the method (rule-based versus case-based) and the environmental covariates used 
for the model predictions. The accuracy of the DEM utilized in the initial rule-based 
approach plays a large role in determining the effects of slope, elevation, planform 
curvature, and the wetness index on the modelled predictive maps for each hydrope-
dological soil group. Furthermore, inaccuracies and uncertainties in the input of the 
value ranges in the function curves as part of the rule-based approach, as well as the 
use of weighted average function in the case-based approach plays a role in deter-
mining the quality of the final maps produced. These inaccuracies and uncertainties 
were highlighted in various studies which recommended validation procedures to 
improve inaccuracies in the predictive models (de Menezes et al., 2014a, b; Hellwig 
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Table 10.3  Accuracies for modelled hydropedological group versus ground-truthed 
hydropedological group in CP-III, CP-VI, and CP-IX

Catchment
Hydropedological 
Soil Group

Ground-
truthed 
Recharge 
Shallow

Ground-
truthed 
Recharge 
Deep

Ground-
truthed 
Interflow

Ground-
truthed 
Responsive 
Saturated Total

Accuracy 
%

CP-III Recharge shallow 4 1 0 0 5 80
Recharge deep 4 21 1 2 28 75
Interflow 1 1 8 0 10 80
Responsive 
saturated

2 2 0 2 6 34

Total 11 25 9 4 49
CP-VI Responsive 

saturated
8 0 1 4 13 62

Recharge shallow 0 9 1 0 10 90
Recharge deep 1 0 11 5 17 65
Interflow 0 0 2 4 6 67
Total 9 9 15 13 46

CP-IX Recharge deep 9 0 1 1 11 82
Recharge shallow 2 5 0 0 7 71
Interflow 0 0 3 0 3 100
Responsive 
saturated

1 0 0 5 6 83

Total 12 5 4 6 27

et al., 2016b). The accuracy of the location of each individual hydropedological soil 
group also influences the overall accuracy of the final maps produced. This varied 
for each catchment and depended on the quantity of observation points made in 
previous soil surveys.

The determined quality of the final digital soil maps reinforces the need to com-
bine the knowledge of soil experts with soil–landscape relationships. This increases 
the accuracy of prediction models of soil properties within a landscape (de Menezes 
et al., 2014a, b).

Readily available soil information is increasingly being sought after as the 
importance of soil in ecosystem management is more widely recognized. The secu-
rity of soils including their capability, health, connectivity, and classification forms 
the basis of all spheres of land management from food and nutrition security, water 
security, energy security, climate change, and human health. With the use of DSM, 
our knowledge and understanding of future soil security can be enhanced for larger 
areas with the use of competitive budgets and timeframes (Searle et al., 2021; van 
Zijl, 2019).
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10.5 � Conclusion

Results indicate that while the use of ArcSIE is a powerful tool to be used to gain a 
general idea of the relationship between the soils and the landscape from a hydrope-
dological stance, the knowledge of the soil–landscape relationship, as with the tra-
ditional soil mapping exercise, is still necessary to improve the accuracy of the tool. 
The quality of the digital soil map produced is furthermore dependant on the method 
employed (rule-based versus case-based) as well as the environmental covariates 
used for the model predictions. This is true for all inputs to the prediction model. 
The results of the NDVI analysis, which were utilized as another input to improve 
the accuracy of the prediction model, identified that it is difficult to delineate the 
wetlands and watercourses without prior knowledge of the catchments. Therefore, 
the more knowledge one has of the landscape processes under study, the more accu-
rate the outcome of the digital soil mapping exercise will be.

However, the hydropedological soil group maps achieved an appropriate repre-
sentation of the complex nature of the soil–landscape relationship, with changes 
between one soil group and the next being gradual and continuous. These soil group 
correlations are not well represented in polygon-based maps and therefore require 
the fuzzy membership logic utilized by the ArcSIE interface to depict these relation-
ships. The use of the ArcSIE interface to derive the hydropedological soil group 
maps of the three different catchments provided adequate results with regard to 
understanding the overall behaviour of the soils in the catchments. Of importance is 
that the accuracies and inaccuracies within the fuzzy membership maps can be 
quantified, allowing for a confidence rating in the use of these maps. These maps 
can therefore be used in further applications in water and land management for 
the area.

Numerous studies have utilized ArcSIE to create not only soil classification maps 
but also more detailed studies of the properties of soils across the globe (Akumu 
et al., 2015; de Menezes et al., 2014a, b; Moonjun et al., 2020; Pittman et al., 2021), 
however the use of any DSM programme has rarely been applied in Africa and par-
ticularly in Afromontane environments, with the majority of studies coming out of 
South Africa and Kenya. These studies are furthermore aimed at agricultural stud-
ies, the mapping of soil organic carbon, clay percentage, and for industrial and com-
mercial developments (Mora-Vallejo et al., 2008; van Zijl, 2019).

Afromontane environments provide several ecohydrological services to down-
stream locations, including the ecological and physical processes that control the 
partitioning and routing of precipitation into evaporation, infiltration, transpiration, 
recharge, and runoff (Brooks & Vivoni, 2015). The characteristics of the soils of 
these catchments form the basis of these services. However, the remoteness and 
often inaccessible terrain associated with Afromontane environments often reduce 
the knowledge and understanding of these areas. The use of DSM which is suited to 
these types of environments would allow for more integration of soil knowledge 
into land management policies across the continent. Further training of DSM pro-
grammes in Africa would therefore lead to an improved understanding of the basis 
of ecohydrological processes.
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Chapter 11
Effect of Climate Variability and Change 
on Land Suitability for Irish Potato 
Production in Kigezi Highlands of Uganda

Nadhomi Daniel Luliro, Daniel Saul Ddumba, Irene Nammanda, 
and Yeeko Kisira

Abstract  The impact of climate variability and change on land suitability for crop 
growing is not clearly understood. Glaring evidence exists in temperate world where 
rising global mean temperatures will, most likely, improve crop production. This 
contravenes the evidences in the tropical environments where gross crop yield 
decline is a clear manifestation of the rising temperatures. This lacuna jeopardizes 
standardization on the adoption of appropriate climate change mitigation measures. 
The Kigezi Highlands are highly vulnerable to climate change impacts; of which, it 
is quite challenging for small scale farmers to identify suitable areas for Irish potato 
growing. Our objective was to identify suitable areas for Irish potato production 
under different climatic scenarios and strengthen the small scale farmers’ adaptabil-
ity to climate variability and change impacts in Kigezi Highlands. Using Agricultural 
Production Systems Simulator (APSIM) model, we simulated historical and future 
time scenarios, and using Spatial Multi Criteria Evaluation (SMCE) coupled with 
remote sensing of a Sentinel 2 image, we generated suitable areas for Irish potato 
production. The results showed that 30.8% of the site was under agriculture, of 
which 71.5% was under Irish potato. Of this 71.5%, the most suitable area was only 
1.95%, while 5.34% was completely not suitable, and the remaining areas were 
either moderately or marginally suitable. In the March–May (MAM) and September–
November (SON) seasons, the trend of minimum and maximum temperatures was 
significantly (P < 0.05) increasing. However, rainfall was not significant (P > 0.05), 
and its trend was decreasing in the MAM and increasing in the SON seasons. The 
yield of Irish potato was not significant (P > 0.05) and its trend was decreasing in 
MAM and SON seasons. We concluded that climate variability and change will 
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decrease land suitability for Irish potato; thus, appropriate soil and water conserva-
tion measures applicable to a highland environment need to be adopted.

Keywords  APSIM · Climate change · Yield · Irish potato · Highland · Uganda

11.1 � Introduction

Climate change and its variability is a world-wide reality whose impacts are threat-
ening the land suitability for many agricultural activities (Worqlul et  al., 2019). 
Global mean surface temperatures have increased by 0.8 °C over the last century 
(IPCC, 2018), and this has been largely blamed on unsustainable anthropogenic 
activities. The extreme events are expected to be more rampant and very severe in 
developing countries, most especially in Sub-Saharan Africa (SSA). Since agricul-
tural enterprises in SSA are rainfed and subsistence in nature, majority of the farm-
ers have limited adaptive capacity to cope with climate change and its impacts 
(Harvey et al., 2014). Due to these impacts, many communities are now facing food 
insecurity as a result of increasing unsuitable agrarian landscapes. The cardinal 
issue underlying this problem is limited farmers’ ability to identify the highly suit-
able areas with specific requirements in resonance to different crops for increased 
crop production (Daccache et al., 2012). With rapid population growth rates, the 
demand for food has drastically increased especially in SSA. Thus, to stop gap sub-
sistence, farmers tend to cultivate even on the most unsuitable landscapes such as 
the marginal and fragile mountain slopes (Bamutaze et al., 2021).

This, notwithstanding, climate change projections have shown that the moun-
tainous and other highland environments, which are affected by heavy and erratic 
rains, will have a decrease in crop yield (Gatiso, 2015). This is because the topo-
graphic factor coupled with high rainfall erosivity indices can lead to very high 
magnitudes of top soil and nutrient losses (Bamutaze et al., 2021). Vast highland 
areas of SSA, most especially those in Uganda, have become victims of land unsuit-
ability for certain essential food security crops due to soil and nutrient losses 
(Twagiramaria & Tolo, 2016). Thus, effort to evaluate the possible impacts of cli-
mate change on land suitability is pivotal in planning sustainable agricultural sys-
tems for adaptation to climate variability and change (Csillik & Belgiu, 2016).

Although Irish potato (Solanum Tuberosum) plays an important role in global 
food and nutritional security, its yield is highly sensitive to weather and climate 
variability. In Africa, where wide weather and climate uncertainties are a common 
phenomenon, the yield for Irish potato is as low as 535.9 t ha−1, and in East Africa, 
it is as low as 56.5 t ha−1 (FAO, 2015) In Uganda, Irish potato production is still 
poor. This country is ranked the third largest producer of the crop after Rwanda and 
Kenya (FAO, 2015). In general terms, this crop is mainly grown in the mountains of 
southwestern, and of the eastern parts of the country. These are areas which tend to 
receive heavy and generally reliable rains, with fertile soils deriving from igneous 
volcanic materials (Bonabana-Wabbi et al., 2013). Available historical climate data 
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show that the rainfall received in this country is more erratic, in and out of season 
and tending to be shorter in duration and in most cases extreme. Even within the 
traditionally recognizable seasons, unusual events such as heavier rains, long dry 
spells, and high temperature fluctuations are rampant (Hepworth & Goulden, 2008). 
This casts a gloomy situation in Uganda in the sense that the uptake for sustainable 
agricultural systems to cope with climate variability and change is still low.

While the mountainous and highland areas in Uganda are suitable for Irish potato 
growing, its distribution across this landscape is not evenly distributed due to land 
suitability differences (Akinci et al., 2013; Mwaura & Okoboi, 2014). Little work 
has been done on land suitability for Irish potato on a slope profile. Yet evaluating 
the potential land resources is crucial for sustainable agricultural activities in the 
face of climate change (Dawit et al., 2020). Land Suitability Analysis is a GIS-based 
approach used to define the suitability of a particular area for planned use by relat-
ing the suitability of an area with its characteristics (Jafari & Zaredar, 2010). Plenty 
of literature is available on land suitability with respect to different crops using the 
GIS approach (Kamau et al., 2015), but scanty information exists specifically on 
Irish potato.

By and large, a pragmatic analysis of land suitability for a specific crop under 
different climate scenarios is one of the essential ingredients for enhancing the resil-
ience of smallholder farmers to climate variability and change (Hood et al., 2006). 
It is not possible to influence rainfall and temperature trends of any region as a 
means of dealing with climate variability and change impacts (Nimusiima et al., 
2018). However, one of the most viable approaches can be equipping the small-
holder farmers with knowledge and skills on land suitability for improved crop pro-
duction if certain climatic trends are well understood. We assumed crop yield to be 
a key indicator of land suitability. Therefore, our objective was to identify suitable 
areas for Irish potato production under different climatic scenarios and strengthen 
the small scale farmers’ adaptability to climate variability and change impacts in 
Kigezi Highlands.

11.2 � Materials and Methods

11.2.1 � Study Location

This study was conducted in two administrative districts, namely, Kabale and 
Rubanda, covering the entire area of Kigezi highlands. This site is bordered by 
Uganda’s districts of Kisoro to the west, Kanungu and Rukungiri to the north, 
Ntungamo to the east, and the Republic of Rwanda to the south. As shown in 
Fig. 11.1, the Kigezi Highlands are located between Latitudes 1°00′ and 1°29′ south 
of the Equator and Longitudes 29°45′ and 30°15′ east of the Greenwich.
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Fig. 11.1  Uganda showing the location of Kigezi Highlands

11.2.2 � Site Description

11.2.2.1 � Geomorphology

The Kigezi Highlands are associated with the African Surface, which was formed 
during the Jurassic (180–135 million years B.P) and Cretaceous (135–65 million 
years B.P). Moveover, this surface was believed to be generally coherent and stable. 
However, during the mid-Tertiary period (35 million years B.P), a greater portion of 
the African Surface underwent numerous denudational forces that degraded it to 
form a distinctive peneplain. This peneplain was further subjected to regional uplift-
ment and dissection by erosion processes to form an accentuated topography. These 
highlands are characterized by distinctive advanced erosion surfaces which are rep-
resented by steeply rising slopes and flat-topped ridges that exist between 1500 and 
2600 metres above sea level (NEMA, 2010).

11.2.2.2 � Geology

The geology of Kigezi Highlands is generally composed of sedimentary rock sys-
tem of the Pre-Cambrian Era (Ollier, 1969). This area has isolated cases of volcanic 
rock system which underlay the volcanic mountains in the extreme southwest of 
Uganda. Besides there are metamorphosed rock products such as schists, gneisses, 

N. D. Luliro et al.



219

and granites (NEMA, 2010). These rocks belong to the Karagwe-Ankolean system, 
which is dominated by phyllite, shale, and quartzites. Occasional metamorphism 
also takes place in the site, a condition which has led to formation of strong schists 
along crested ridges of the Kigezi Highlands. The ridges are characterized by steep 
middle slopes and gentle pediments ending in flat valley bottoms. The phyllites and 
shales dominate the middle slopes; while on summits, the sediments are more are-
naceous and are overlain by thick sandstones and sandy micaceous shales (Bagoora, 
1989). Sandy alluvium and clay occupy valleys of these highlands. Coarse sand and 
fine sand occur in the down warped valleys which are underlain by gneisses and 
granites, while shales and phyllites dominate clay deposits in these valleys 
(NEMA, 2010).

11.2.2.3 � Soil

According to FAO (1990), the major soil of the Kigezi Highlands can be classified 
as Andosols (young soils formed from volcanic deposits), Histosols (soils which are 
highly composed of organic materials), Luvisols (soils with subsurface accumula-
tion of high activity clays and high base saturation), Acric Ferralsols (deep, strongly 
weathered soil with a chemically poor, but physically stable subsoil), and Dystric 
Regosols (soil with very limited soil development potential). While a greater por-
tion of the Kigezi Highlands soil are generally deep, they are highly susceptible to 
climate change impacts such as erosion due to runoff (Bagoora, 1993).This situa-
tion has rendered a huge percentage of the Kigezi Highlands unsuitable for crop 
farming. Thus, there is need to harness local-scale adaptive measures to cope with 
weather and climate uncertainties for improved livelihoods within and outside the 
local community.

11.2.2.4 � Climate

This area receives an annual rainfall between 1000 and 1500 mm. This rainfall is 
bimodal, occurring generally between August and December, and also between 
March and May. It also has two dry seasons, that is, in January and between June 
and July. The mean temperature is 18 °C with maximum of 24.4 °C and minimum 
of 10.9 °C. The relative humidity ranges between 90% and 100% in the mornings 
and decreases to 42–75% in the afternoons throughout the year.

11.2.2.5 � Vegetation

Due to high population, a serious modification of the indigenous vegetation cover 
has taken place. However, this site was predominantly having a montane type of 
vegetation. This vegetation was associated with numerous tree species, such as 
Acacia and Albizia spp., and grasses, such as Imperata, Cymbopogon, Hyparrhenia, 
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and Beckeropsis. The current situation is that altitudinal variation is one of the key 
factors influencing vegetation distribution in Kigezi Highlands (Katende et  al., 
1995). In light of this, a systematic analysis of the dominant trees and shrubs for this 
site can be presented as in Table 11.1.

Table 11.1  Variation of vegetation with altitude on Kigezi Highlands

Altitude 
(m a.s.l)

Tree species/shrub/
grass

Indigenous 
name Characteristics Uses

2700–
3000

Mountain Bamboo 
(Arundinaria 
alpina) and grasses

Migano (i) These are tree-like 
grasses
(ii) Found in moist areas
(iii) But can also grow 
in low area with water

(i) Timber
(ii) Charcoal and 
firewood
(iii) Construction

2000–
2700

Bersama abyssinica Mukaka (i) Occur in highlands 
and low lands
(ii) Woody species, well 
foliaged, and stand at 
7–15 m

(i) Timber
(ii) Firewood
(iii) Bee hives
(iv) Ornaments
(v) Mulches

1400–
2000

Catha edulis Munyaga (i) Evergreen shrub or 
tree
(ii) Stands at about 18 m
(iii) Has a compact 
crown

(i) Firewood and 
charcoal
(ii) Medicine 
especially fresh 
leaves
(iii) Stimulant
(iv) Mulches

1300–
1400

Celtis africana Nyabinunka (i) Wide spread from 
generally dry, rocky 
areas to moist evergreen 
especially near water 
bodies
(ii) Deciduous tree 
standing at about 12 m 
with spreading crown

(i) Browsed by 
animals including 
cattle
(ii) Leaves and 
fruits are essential 
diet of black-and-
white colobus 
monkeys
(iii) Mulches

1200–
1300

Cordia africana and 
woody shrubs called 
Cyphomandra 
betacea

Mujugangoma
Ekitunda

(i) Large-leaved tree
(ii) Deciduous with 
round crown standing at 
4–15 m
(iii) Umbrella-like 
shrubs with shiny stems 
when young and 
rounded leaf scars when 
old

(i) Mulching
(ii) Making drums, 
bee hives and 
furniture
(iii) Firewood and 
charcoal
(iv) Jam, fruits, 
vegetables

Source: Data were adapted from Katende et al. (1995)
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11.2.3 � Data Analytical Tools and Techniques

We employed the Agricultural Production Systems Simulator (APSIM) model and 
simulated historical and future time climate scenarios. Spatial Multi Criteria 
Evaluation (SMCE) basing on Weighted Linear Combination (WLC) coupled with 
GIS and remote sensing were used to generate maps showing suitable areas for Irish 
potato production in the Kigezi Highlands. Furthermore, we examined the climate 
trends against yields of Irish potato using Regression and Sen’s slope analysis.

11.2.3.1 � Data Sources

Land Mapping Units and Soil Data

The land mapping units (LUMs) and soil data were obtained from the soil map of 
Uganda which was found at http://www.fao.org/soils-portal/soil-survey/soil-maps-
and-databases/harmonized-world-soil-database-v12/en. The soil data included soil 
pH, soil texture, cation exchange capacity, soil drainage, organic matter, and total 
phosphorus. Table 11.2 shows a summary of the LUMs and mean values of soil data 
with spatial resolution of 30 by 30 m obtained for the study site.

Climate Data

The historical climate data for use in this study included mean temperature and 
mean rainfall over the baseline period of 1950–2000. These data were obtained 
from WorldClim found at https://www.worldclim.org/.

Table 11.2  Land mapping units (LMUs) and soil data

LMUs

Soil properties

Soil 
pH

% 
organic 
matter

Meq/100 g
CEC

Soil 
drainage

% Base 
saturation

% Total 
phosphorus

% 
Sand

% 
Clay Texture

Skeletic 
andosols

5.4 20.5 36.8 Well 
drained

39.1 11 83 6 Loamy
Sand

Histosols 7 4 18 Poor 
drained

44 25 0 67 Clay

Luvisols 5.5 11.9 44.6 Well 
drained

86.3 11 51 37 Sand 
clay

Acric 
Ferralsols

5 23.9 41.3 Well 
drained

28 15 74 6 Sandy 
loam

Dystric 
Regosols

4 1.76 8.79 Well 
drained

1 17 77 18 Sandy 
loam
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Slope Data

The slope data were obtained from a Shuttle Radar Topography Mission (SRTM) 
Digital Elevation Model (DEM) with spatial resolution of (90/90) metres. This 
DEM was downloaded from the following web site https://earthexplorer.usgs.gov/.

Remote Sensing Data

With a spatial resolution of (10/10) metres, an image from Sentinel 2 platform was 
obtained from Copernicus European Union website for March to July of 2017, to 
target the first Irish potato growing season in Kigezi Highlands. Sentinel 2 was used 
because it is a multi-spectral image which was developed by the European Space 
Agency for agricultural applications, such as crop monitoring and management, and 
for other uses (Nthuni et al., 2017).

11.2.4 � Identification of Irish Potato Production Areas

The Irish potato production areas were identified by using GIS and remote-sensing 
techniques. Using a supervised classification method in Arc GIS 10.2, appropriate 
bands were selected with definition of signature for training samples. The polygons 
of non-agricultural land were drawn out and merged as one polygon so as to mini-
mize the interference of non-agricultural with the agricultural land. The non-
agricultural land included the built-up areas, bare land, wetlands, water bodies, and 
forests. Field visits intended for ground truthing with the help of a Global Positioning 
System (GPS) were done. The Irish potato fields were selected at random and the 
GPS coordinates (X and Y) were taken at particular points in the Irish potato fields. 
The collected GPS coordinates were overlaid onto the Sentinel image which was 
classified in Arc GIS 10.2 using supervised classification method. This image was 
later on-screen digitized in ArcGIS 10.2 to create a shape file from which the Irish 
potato map was generated. Suitability maps were overlaid with the Irish potato dis-
tribution map and the total production area covered by the suitable and unsuitable 
soils of Kigezi Highlands was determined.

11.2.5 � Accuracy Assessment

During image classification, it is prudent to establish whether the classification 
result derived from the remote-sensing image has sufficient quality for operational 
application (Stehman & Czaplewski, 1998). Therefore, an accuracy assessment was 
undertaken on a Sentinel 2 image for this purpose. While there are several methods 
for accuracy assessment, namely, population-based statistical framework, 
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multiple-objective assessment, geographically weighted accuracy measures, and 
stratified random sample for National Land Cover Database (Stehman & Wickham, 
2011), for this site we used a confusion matrix. This matrix is more robust and was 
carried out to determine accuracy assessment and the error of commission, error of 
omission, overall classification accuracy, and kappa coefficient were obtained. A 
confusion matrix contains information about actual and predicted classifications 
done by a classification system. Performance of such systems is commonly evalu-
ated using the data in the matrix. The accuracy (AC) is the proportion of the total 
number of predictions that were correct. It was determined using Eq. 11.1:

	
AC �

�
� � �
a d

a b c d 	
(11.1)

where

a is the number of correct predictions that an instance is negative
b is the number of incorrect predictions that an instance is positive
c is the number of incorrect of predictions that an instance negative
d is the number of correct predictions that an instance is positive

11.2.6 � Suitability Rating

While there are several methods for land evaluation (Bodaghabadi et al., 2015), the 
land suitability rating for Irish potato production in Kigezi Highlands was based on 
the FAO standard rating structure (FAO, 1976). This structure seeks to match the 
land utilization types with the land use requirements across the land units, and it 
also requires a description of land in terms of its characteristics in order to under-
stand its intended use. This method differentiates the degree of suitability into four 
classes, namely, highly suitable (S1), moderately suitable (S2), marginally suitable 
(S3), and not suitable (N). Table 11.3 shows a summary of Irish potato soil condi-
tions as derived from reviewed literature.

11.2.7 � Spatial Multi-Criteria Evaluation (SMCE) 
and Weighted Linear Combination (WLC)

Using GIS, the soil map of the study site was clipped from that of Uganda and the 
data layers which included soil pH, soil texture, cation exchange capacity, soil 
drainage, organic matter, and total phosphorus were extracted. The layers were then 
converted into raster format. The raster layers were then reclassified according to 
the four suitability classes previously identified in Table 11.2. The topography of the 
area was obtained in raster format from the SRTM Digital Elevation Model (DEM) 
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Table 11.3  Factor rating of land-use requirements for Irish potato

Land use requirements Factor rating References

Land quality Diagnostic 
factor

Units >80 40–80 20–40 <20 FAO (1988)
S1 S2 S3 N

Nutrient 
availability

Soil pH Reaction 6.0–5.0 6.0–7.0
5.0–4.0

7.0–
8.0
4.0– 
3.5

>8.0
< 3.5

Kamau et al. 
(2015)

Organic 
matter

% >1.2 0.8–1.2 <0.8 – Smith et al. 
(1997)

Base 
saturation

% 65–50 50–35 <35 – Das (2015)

Total 
phosphorus

% >15 – – – Smith et al. 
(1997)

Nutrient 
retention 
capacity

Cation 
exchange 
capacity

Meq/100 g >16 16–5 <5 – Das (2015)

Oxygen 
availability

Soil drainage Class Well/
moderate

Imperfect Poor Very 
poor

Kamau 
et al., (2015)

Moisture 
availability

Mean rainfall mm ≥1000 1000–
800

800–
600

<600 Kamau et al. 
(2015)

Mean 
temperature

≤18 18–20 20–22 >220 Kamau et al. 
(2015)

Erosion 
hazard

Slope % ≤6 6–13 13–25 > 25 Kamau et al. 
(2015)

Soil texture Class Sand clay 
<15%

Loam 
clay
15–35%

Clay 
>35%

– Smith et al. 
(1997)

of the area, which was mosaicked to form a continuous layer. The percentage slope 
of the study area was later calculated. This slope was also then reclassified into four 
suitability classes, as in Table 11.2, for Irish potato growing.

Furthermore, climate data were downloaded as raster with 1 arc-second (30/30) 
metre resolution from WorldClim (http://www.worldclim.org/). Twelve tiles for 
each of mean precipitation, and of mean temperature with interpolations of observed 
data, as well as representative data of 1950–2000 were extracted for the study site. 
The temperature and rainfall raster files were then also reclassified into four suit-
ability classes of Table 11.2 for Irish potato growing. After reclassifying the SMCE 
maps, those areas that belonged to the same land quality were added using the 
Arithmetic Function which is embedded in ArcGIS (Wayne & Olympia, 2003). 
They were then standardized by the score range procedure, as in Eq. (11.2), which 
was developed by Malczewski (1999).

	

x
x

xij
ij x

jmax x

jmin

jmin

� �
�

� 	

(11.2)
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Table 11.4  Assigned weights by the Ratio Estimation Procedure

Criterion Ratio scale Original weight Normalized weight

Nutrient availability 100 1 0.2
Nutrient retention capacity 100 1 0.2
Oxygen availability 100 1 0.2
Moisture availability 100 1 0.2
Erosion hazard 100 1 0.2

Total 5 1

where

x′ij = standardized score for the ith object and the jth attribute
xjmin = raw score
xjmax = maximum score for the jth attribute
xjmin = minimum score for the jth attribute
xjmax − xjmin = range of a given criterion

Each of the standardized SMCE maps were then assigned equal weights. These 
weights were obtained using the ratios estimation procedure, whereby a score of 
100 was assigned to each of the land qualities. Ratios were calculated basing on the 
score assigned to the attributes. The weights were normalized by dividing each 
weight by the total (Malczewski, 1999) as indicated in Table 11.4.

The SMCE maps were combined by applying the normalized weight to each 
criterion followed by summation of the results using the Raster Calculator Function 
which is embedded in ArcGIS. The procedure used the Eq. (11.3) by Mahini and 
Gholamalifard (2006).

	 S w xi i� � 	 (11.3)

where

S = Suitability
wi= Weight of factor i
xi= criterion score of factor i

The weighted criterion maps were normalized and then overlaid together with 
extracted Irish potato production area map from a Sentinel 2 image; in order to 
generate a Suitability Map for Irish potato in the Kigezi Highlands.

11.2.8 � Climate Change Modeling and Irish Potato Production

We explored the Agricultural Production Systems Simulator (APSIM) to model his-
torical climate change trends and Irish potato production in Kigezi Highlands. 
According to McCown et al., 1996, APSIM model is described as a software tool 
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that permits sub-models or modules to be linked to simulate agricultural systems. 
Several modules are assembled and characterized as plant, management, and envi-
ronment. APSIM simulates the physical development of crops, soil processes, and 
variety of management practices while taking into account the cropping systems 
(Zeng et al., 2016). APSIM operates using input data namely, soil data, crop man-
agement data, and long-term daily climate data. Climate data required are daily 
rainfall (mm), daily temperatures (both minimum and maximum °C units) and solar 
radiation (MJ m−2). The important soil parameters for consideration are nitrogen 
and organic carbon. For the model to predict correctly, there is need to input accu-
rate data. Crop management data include crop type and variety, sowing dates, weed-
ing dates and fertilizer management with respect to type, amount, date of application 
(Holzwoth et al., 2014).

The APSIM-potato model is a comprehensive daily time step, deterministic 
potato crop model build in the APSIM Plant.Net Framework which integrates with 
the APSIM soil, management, and user interface components to provide a robust 
and user-friendly potato crop model. Predictions of yield are made daily based on 
the production of total dry matter (DM) and its partitioning and reallocation to plant 
organs. Equation (11.4) represents how total daily DM production can be calculated.

	

�DM I
I

fw ft fCO� � � � � �
�

�
�

�

�
�Radn RUE

o

2

	

(11.4)

where Radn is the daily solar radiation level (MJ m−2), 
I
Io

 is the fraction of radiation 

that the crop intercepts each day. This is calculated from crop cover, the proportion 
of the ground that the crops canopy is covering which is calculating using an extinc-
tion coefficient of 0.8.

RUE is the potential radiation use efficiency of the crop which is a constant value 
of 1.44 g/MJ and RUE is multiplied by adjustment factors to account for the effects 
of water (fw) and temperature (ft) stresses and atmospheric carbon dioxide concen-
tration (fCO2) (Brown et al. 2011).

11.2.9 � Climate Data Preparation

Meteorological (met) files were arranged in Microsoft Excel according to the 
APSIM model format requirements. These met files included daily values for solar 
radiation (MJ/m2), minimum and maximum temperatures (°C), and rainfall (mm). 
The Constants Average Ambient (Tav) and Average Amplitude (Amp) temperatures 
were calculated and inserted into the met files using the Tav Amp software.

N. D. Luliro et al.



227

11.2.10 � Model Calibration

The model was calibrated using control experiment observed data collected by 
(Lemaga et al., 2001). Experiments were conducted for three seasons, during 1998 
(A) spanning from May to August; 1998 (B) from October to January; and 1999 (A) 
from March to July. In the calibration process, the parameterized model was run for 
a chosen single year; then the simulated outputs were compared with observed val-
ues from the experiment. In case of any inconsistences, parameters were re-adjusted 
within tolerable limits, and the process would be repeated until an acceptable model 
performance was achieved.

11.2.11 � Sensitivity Analysis

In order to perform this function, the ‘Manager’ module and ‘Climate control’ mod-
ule embedded in APSIM model were used to determine the most sensitive parame-
ters influencing Irish potato yield. A sensitivity analysis was done on the climatic 
parameters, namely, temperature and rainfall. These two climatic parameters were 
the most critical elements that affect Irish potato growth (Hijimans, 2003). One 
parameter was adjusted at a time from the base year period. The maximum and 
minimum temperatures were simultaneously increased by 1 °C increments up to a 
total of 3  °C, while rainfall was increased and decreased by 5% up to 15%. 
Atmospheric CO2 concentration was kept fixed at 350 ppm. From these parameter 
adjustments in the Kigezi Highlands, Table 11.5 represents the results of APSIM 
model sensitivity analysis.

The interpretation of results in Table 11.3 is that an increase in minimum and 
maximum temperature of up to 3 °C led to a decrease in yield of 6.25%. Besides 
this, a gradual increase in rainfall from 5%, 10%, and 15% resulted into a gradual 
increase in yield of 1.17%, 2.03%, and 2.21%, respectively. While a gradual 
decrease in rainfall from 5%, 10%, and 15% resulted into a decrease in yield of 
2.73%, 5.88%, and 10.60%, respectively.

11.2.12 � Model Evaluation and Validation

The performance and efficiency of the APSIM model in simulating Irish potato 
yield was compared with the observed experimental data of 1998 (A), 1998 (B), and 
1999 (A) using the root mean square error (RMSE) as in Eq. (11.5), modelling effi-
ciency (EF) as in Eq. (11.6), standard deviation, and coefficient of determination 
(r2). The standard deviation and coefficient of determination (r2) were computed 
using Microsoft Excel, whereas for RMSE and EF the formulae as stated in Eqs. 
(11.5) and (11.6), respectively.
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Table 11.5  Sensitivity of Irish potato yield to temperature and rainfall

Parameter Climate scenarios
Yield (Kg 
ha−1)

Yield change 
(%)

Minimum and maximum temperature 
(°C)

Base scenario 0 °C 9781.81
Increase base by 
1 °C

9501.52 −2.87

Increase base by 
2 °C

9309.92 −4.82

Increase base by 
3 °C

9170.18 −6.25

Rainfall (mm) Base scenario 0% 9781.81
Increase base by 5% 9896.62 1.17
Increase base by 
10%

9980.76 2.03

Increase base by 
15%

9998.11 2.21

Decrease base by 
5%

9514.85 −2.73

Decrease base by 
10%

9206.18 −5.88

Decrease base by 
15%

8744.60 −10.60

	
RMSE yield simulated yieldobserved� � �� �2 / n

�
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where

n is the number of years in which data have collected from an experiment
Oi is the observed yield
Si is the simulated yield
Oi is the average observed yield

The interpretation of results in Eqs. (11.5) and (11.6) is that for both r2 and EF, a 
value of 0.65 is considered ‘satisfactory’, 0.8 as ‘good’, and 0.9 as ‘very good’. For 
agricultural models if RMSE between simulated and observed values is around the 
same value or slightly smaller than the standard deviation within the observed val-
ues, then this shows that the model is capable of simulating the observed behaviour 
(Wang et  al., 2019). The APSIM-potato model adapted was robust in simulating 
Irish potato yield in the Kigezi Highlands since a RMSE of 5621 Kg ha−1 with a 
standard deviation of 6609 Kg ha−1 were realized in model evaluation and validation 
exercise. Furthermore, the results of the coefficient of determination (r2) and the EF 
are good and satisfactory, respectively; thus proving its worthiness in simulating 
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Table 11.6  Evaluation of model performance in reproducing the observed data

Year and growing season Observed yield (Kg ha−1) Predicted yield (Kg ha−1)

1998 (A) (May to August) 3300 3814
1998 (B) (October to January) 9300 8014
1999 (A) (March to July) 16,500 7537
R2 0.94
RMSE (Kg/ha) 5621
Standard deviation (Kg/ha) 6609
EF 0.99

Irish potato yield in Kigezi Highlands. Table  11.6 represents a summary of the 
APSIM-potato model evaluation and validation results.

11.2.13 � Seasonal Climate Trend Analysis and Irish 
Potato Production

The Mann–Kendall test with 95% confidence limit was used to assess the seasonal 
trends for temperature, rainfall, and Irish potato yield. With Mann–Kendall test, two 
hypotheses were tested the null hypothesis, H0: there is no trend in the time series; 
and the alternative hypothesis, Ha: there is a significant trend in the series, for a 
given α significance level in this case (α = 5%). Probability (P) in percent was cal-
culated to determine the level of confidence in the hypothesis. If the computed 
p-value is greater than the significance level (α = 0.05, one cannot reject the null 
hypothesis H0 and if the computed p-value is lower than the significance level 
(α  =  0.05), one should reject the null hypothesis H0 and accept the alternative 
hypothesis Ha (Gavrilov et al., 2016). In addition, the magnitude of the trend was 
quantified using Sen’s slope method (Sen, 1968). The Sen’s slope is an index used 
to quantify the trend using the non-parametric analytical procedures. To achieve 
this, the XLSTAT software, which is embedded in Microsoft Excel, was used in 
establishing and computing this trend.

11.3 � Results and Discussion

11.3.1 � Land Cover Classification

A Sentinel 2 image of the study area was classified into six land cover classes: for-
est, water bodies, built-up area, wetland, bare land, and agricultural area. Values of 
the results are in Table 11.7 which showed that 7.6% of the study area is under water 
bodies, 23.5% is under forest, 3.2% is under built up, 24.1% is under wetland, 
10.8% is under bare land, and 30.8% is under agricultural land. Table 11.8 shows 
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Table 11.7  Area under different land cover

Land cover Area (hectare) Percent area coverage (%)

Water bodies 13,161 7.6
Forest 40,731 23.5
Built-up area 5523 3.2
Bare land 18,801 10.8
Wetland 41,775 24.1
Agriculture 53,482 30.8

Table 11.8  Satellite image classification accuracy assessment

Overall accuracy 0.73
Kappa coefficient 0.68

Fig. 11.2  Land cover of Kigezi Highlands

the image classification accuracy assessment results. However, the spatial distribu-
tion of these different land covers is shown in Fig. 11.2.
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11.3.2 � The Extent and Suitability of Irish Potato 
Production Area

After merging the non-agricultural area and digitizing Irish potato cultivation areas 
from the entire agricultural land, it was established that Irish potato cultivation cov-
ers 71.50% of the agricultural area (Fig. 11.3a and Table 11.9). Out of this area, 
5.3% is not suitable, 25.9% is marginally suitable, 66.8% is moderately suitable, 
and 1.9% is highly suitable as shown in Fig. 11.3b and Table 11.10.

Irish potato production area covers about three quarters of the total area under 
agriculture. Irish potato is mostly cultivated in areas around Lake Bunyonyi and in 
the wetland areas probably due to the huge concentrations of alluvia deposits. These 
deposits are usually rich in exchange bases, SOM, and other nutrients for plant 
growth. Strikingly, however, is the fact that not all the Irish potato production area 
is suitable for its cultivation. Figure 11.3b indicates that the moderately suitable 
(S2) class has the highest percentage (66.79%) as opposed to the highly suitable 
(S1) class which covers the smallest percentage (1.95%). The moderately suitable 
(S2) class covers more than half (1/2) of the Irish potato production area and is 
located in areas with high suitability with respect to moisture, nutrient and oxygen 
availability, nutrient retention capacity, and other diagnostic factors. Further 
research is needed to investigate more on the potential impact of these factors on 
land suitability for different crops in different ecological zones.

The areas under marginally suitable (S3) and not suitable (N) classes are gener-
ally poor in Irish potato production because of deficits in soil moisture available for 
plant growth. Moisture stresses due to increasing temperatures in the Kigezi 
Highlands can reduce total dry matter production, which in turn affects the propor-
tion of the matter that can be partitioned into tubers. Thus, strategies for improving 
soil moisture can potentially increase Irish potato yields in Kigezi Highlands.

11.3.3 � Temperature Trends and Irish Potato Production

The Man–Kendall test was used to determine the significance of the trend, and it 
was quantified using Sen’s slope. The results for this test are presented in the subse-
quent sections.

11.3.4 � Temperature Trend in March to May Season

The results showed that in the March to May (MAM) season, minimum and maxi-
mum temperature had significant increasing trend (P < 0.05), the Sen’s Slope value 
indicates an increase of 0.033 °C and 0.039 °C, respectively (Fig. 11.4).
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Table 11.9  The total production area of Irish potato

Land cover Area (hectare) Percent area coverage (%)

Agricultural area 53,482
Irish potato cultivation area 38,237 71.50%

Fig. 11.3  Spatial extent and suitability classes for Irish potato in Kigezi Highlands
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Table 11.10  The area of Irish potatoes under different suitability classes

Suitability class and code Area (hectare) Percent area coverage (%)

Not suitable (N) 2040 5.34
Marginally suitable (S3) 9914 25.93
Moderately suitable (S2) 25,539 66.79
Highly suitable (S1) 744 1.95

11.3.5 � Temperature Trend in September to November Season

The temperature trend results for September to November (SON) showed a signifi-
cant (P < 0.05) increase in minimum and maximum temperature by 0.042 °C and 
0.035 °C, respectively (Fig. 11.5). In the two seasons, MAM and SON, temperature 
showed an increasing trend, which was recognized to affect land suitability for Irish 
potato production.

11.3.6 � Rainfall Trends

While there was a significant increasing trend in temperature, the results for rainfall 
indicated an insignificant decreasing (P  >  0.05) trend in the MAM season with 
Sen’s slope value of −0.382  mm. Moreover in the SON season, rainfall had an 
insignificant increasing (P  >  0.05) trend with Sen’s slope value of 0.165  mm 
(Fig. 11.6).

11.3.7 � Irish Potato Yield Trends

In the MAM season, the yield trend was decreasing but it had not changed signifi-
cantly over time (P  >  0.05) with Sen’s slope magnitude of −5.87 Kg ha−1. 
Furthermore, in the SON season, the yield was insignificant (P > 0.05) and decreased 
over time by −38.16 Kg ha−1 (Fig. 11.7).

11.3.8 � Climate–Irish Potato Relationship

To test whether there is a functional relationship between Irish potato yield and the 
different climate variables (rainfall, minimum temperature, and maximum tempera-
ture), a regression analysis for both seasons (MAM and SON) was performed.
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(a) Minimum temperature trend

(b) Maximum temperature trend
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Fig. 11.4  (a) Mean minimum temperature trend in Kigezi Highlands (1980–2010), (b) Mean 
maximum temperature trend in Kigezi Highlands (1980–2010)

11.3.9 � Climate–Irish Potato Relationship in March to May 
Seasons (1980–2010)

Results of the linear regression analysis revealed that all climatic variables contrib-
uted significantly (P < 0.05) to the variations in Irish potato yield in MAM season. 
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Fig. 11.5  (a) Mean minimum temperature trend in Kigezi Highlands (1980–2010). (b) Mean 
maximum temperature trend in Kigezi Highlands (1980–2010)

Minimum temperature and maximum temperature contributed to 16.08% and 
13.38% of the variations in Irish potato yield, respectively. It was also established 
that both minimum and maximum temperature had a negative impact on Irish potato 
yield. For instance, an increase by 1 °C of the minimum temperature reduced the 
average Irish potato yield by 937.56 Kg ha−1 and an increase by 1 °C of the maxi-
mum temperature reduced this yield by 849.56 Kg ha−1, respectively (Fig. 11.8a).

On the other hand, in the MAM, rainfall accounted for 63.59% of the variation 
in Irish potato yield (Fig.  11.8b). Rainfall had a positive impact on yield. For 
instance, an increase by 1 mm of rainfall increased the average Irish potato yield by 
51.558 Kg ha−1. By and large, this is generally realistic as it is in line with literature 
on rainfall–crop productivity relationship.

11  Effect of Climate Variability and Change on Land Suitability for Irish Potato…
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(a) Mean rainfall trend in March to May season
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Fig. 11.6  (a) Mean rainfall trend in Kigezi Highlands (1980–2010), (b) Mean rainfall trend in 
Kigezi Highlands (1980–2010)

11.3.10 � Climate–Irish Potato Relationship in September 
to November Seasons (1980–2010)

In the SON season, the linear regression analysis results revealed that minimum 
temperature and maximum temperature contributed to 9.96% and 5.35% of the 
variations in Irish potato yield, respectively (Fig.  11.9a). While these variations 
were not significant (P > 0.05), both minimum temperature and maximum tempera-
ture had a negative impact on land suitability for Irish potato production. For 
instance, as according to available results, an increase by 1  °C of the minimum 
temperature reduced the average Irish potato yield by 554.4 Kg ha−1. However, an 
increase by 1 °C of the maximum temperature reduced the average Irish potato yield 
by 402.41 Kg ha−1.
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(a) Irish Potato yield trend in March to May season
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(b) Irish Potato yield trend in September to November season
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Fig. 11.7  (a) Yield trend for Irish potato in MAM seasons (1980–2010) (b) Yield trend for Irish 
potato in the SON seasons (1980–2010)

Much as temperature was not substantially important in this season, rainfall was 
a very critical factor (P < 0.05) that induced the variations in Irish potato yield. 
Rainfall accounted for 34.68% of the variation in Irish potato yield (Fig. 11.9b). 
Rainfall had a positive impact on Irish potato yield. For instance, results have shown 
that an increase by 1  mm of rainfall increased the average Irish potato yield by 
39.577 Kg ha−1.
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Fig. 11.8  (a) Irish potato yield in response to minimum and maximum temperature (b) Irish 
potato yield in response to rainfall

11.4 � Conclusions

11.4.1 � Conclusions Drawn for the Study

The different soils of Kigezi Highlands are still suitable for Irish potato production 
with a moderate rate and can be enriched through adoption of appropriate soil and 
water conservation technologies. The Irish potato production area covers about 
three-fourths of the total agriculture area of Kigezi Highlands. Not all the Irish 
potato production area is suitable for its cultivation; S2 (Moderately suitable) has 
the highest area percentage as opposed to S1 (Highly suitable) with the smallest 
area percentage; and seasonal variations greatly affected Irish potato yields. Thus, 
yield increase to sustain livelihoods amongst small-scale holder farmer communi-
ties can be anchored on proper soil fertility management.
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Fig. 11.9  (a) Irish potato yield in response to minimum and maximum temperature (b) Irish 
potato yield in response to rainfall

11.5 � Recommendations

We recommend the following:

	(a)	 Farmers can use the readily available organic residues from homesteads for soil 
organic amendments.

	(b)	 Given the rolling terrain, farmers should plant hedge rows, use alternative 
drainage diversion methods, construct runoff ditches and water storages to 
reduce runoff losses, and increase soil available water.

	(c)	 Farmers can adjust the timing of farm operations depending on the seasonal 
variability of rainfall in Kigezi Highlands.
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