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Chapter 5
Wearables and Remote Monitoring

Raza Ali

Abstract  Sensors have become embedded in modern life—powering our personal 
electronics devices and environments. In this chapter, we examine how hybrid 
healthcare can leverage these sensors for a wide range of applications. We outline 
the trends and opportunities for these devices in healthcare and also the particular 
challenges imposed by the domain. We then review two key areas for healthcare 
using wearable and remote monitoring: activity recognition and profiling and apps 
for personalised medicine and lifestyle monitoring.

Keywords  Wearable sensors · Ambient sensors · Hybrid healthcare · Activity 
recognition · Behaviour profiling · Machine learning

�The Growing Prevalence of Sensing Technology

Sensing technology has been driven by advances in the semi-conductor industry and 
has become a mainstay of modern life. Modern sensors are small, affordable and 
have powerful computing built-in. This allows development of devices that are not 
simply for data collection but can process data onboard. It opens up options for sen-
sors transforming data before transmission for example to enhance privacy and 
improve context. Figure 5.1 illustrates a well-established and steadily growing mar-
ket for personal, wearable devices with sensors built-in, colloquially termed wear-
ables—driven in particular by smart watches and specialist devices for health and 
fitness.

Another trend enabling the hybrid healthcare environment is the rise of spaces 
and devices with sensing built-in. Ambient or environmental sensors such as 

R. Ali (*) 
Nabta Health, London, UK
e-mail: raza@nabtahealth.com

© The Author(s), under exclusive license to Springer Nature 
Switzerland AG 2022
M. Al-Razouki, S. Smith (eds.), Hybrid Healthcare, Health Informatics, 
https://doi.org/10.1007/978-3-031-04836-4_5

mailto:raza@nabtahealth.com
https://doi.org/10.1007/978-3-031-04836-4_5#DOI


46

2014

Smart Watches Augmented Reality Fashion

Medical Hearables Sports & Fitness

Kids & Pets

$0

$5

$10

$15B
ill
io
n
s $20

$25

$30

$35

2015 2016 2017 2018 2019 2020

Fig. 5.1  Wearables market over the last 5 years [4]

location and cameras can combine with sensors residing in objects such as smart 
speakers, lightbulbs, thermostats, robot vacuums and more to both enable data col-
lection and provision of contextual, personalised environments. Smart-homes [1] 
have long been studied in research environments with healthcare as a target applica-
tion. This includes projects such as MavHome [2] and MIT’s PlaceLab [3]. The 
home may also facilitate the operation of devices in the house based on sensed 
information. The sensors utilised in these projects include temperature, water flow 
and utility usage sensors as well as pressure sensors on furniture, proximity sensors 
for tracking user position in rooms as well as devices for monitoring vital signs. 
These technologies are now available through commercial technology providers 
including Google Nest™, Amazon Alexa™ and Samsung SmartThings™, which 
have created eco-systems for smart devices.

Wearable and ambient sensing can provide detailed pictures of many aspects of 
human life. Table 5.1 lists some of the commonly used sensors in commercial and 
research settings, along with an indication of their frequency of use.

Unsurprisingly, the potential of these technologies is maximised when leverag-
ing more of them [5]. Ambient sensors impose the least burden on users once in-
place—whereas wearables often offer the highest fidelity information. Multiple, 
independent sources of information increase not just the quantity of information 
but also the reliability of it, the resilience in the face of device failure and the ability 
of intelligent algorithms to make inferences from the data. An enabling technology 
for connecting multiple sensors is extensible, open-standards for connectivity set-
ting up the potential for the ‘Internet-of-Things’ (IoT). These can emphasise low-
power, local networking as in the ZigBee standard [6] or can allow ubiquitous 
wearable and ambient devices access to high-speed internet with the emerging 5G 
standard [7].
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Table 5.1  Commonly used sensors with potential for use in hybrid healthcare

Sensor Type Information Applications Usage

Accelerometer, 
Gyroscope

Wearable Movement, Activity, 
Posture

Behaviour profiling, 
Activity tracking, Fitness 
applications

High

GPS Wearable Location Fitness applications, 
Behaviour Profiling

High

Passive Infrared 
(PIR), Contact

Ambient Location Indoor location tracking, 
Object usage tracking

High

Image/Camera Ambient Audio-visual Location, activity Medium
Flow Ambient Ambient Water usage, leaks Low
Temperature Wearable Core body 

temperature, Skin 
Temperature

Physiology, Fertility Medium

Blood Oxygenation Wearable Blood oxygen Respiratory health Medium
Pulse Wearable Heart rate Physiology, Fitness High
Pressure Ambient Location, body 

posture and 
orientation

Sleep quality, posture Low

Sweat Wearable Analytes from sweat 
e.g. electrolytes

Physiology, Fitness Low

�Challenges for Sensing in the Healthcare Domain

One of the most important areas for sensing is healthcare and as a result it has been 
an area of significant research focus. Chapter 7 outlines in more detail the factors 
driving this—including the growing healthcare needs of ageing demographics, 
reducing hospital admissions and the potential for patient centered care and the 
opportunity to provide better quality care with lower cost. Successful interventions 
in healthcare leveraging sensors must however overcome serious challenges.

A primary challenge for wearables and remote monitoring is incorporating pri-
vacy. The nature of the data imposes a significant cost if privacy is not taken seri-
ously. In conventional healthcare there are stringent standards for storing and 
transmitting patient data—these must be adhered to [8]. Extensive meta-data about 
users can be valuable for analytical purposes—however each data source imposes 
regulatory constraints varying by region. Healthcare frameworks leveraging sensing 
[9, 10] have proposed addressing this through high security data transmission, 
leveraging anonymisation when possible, customising software architectures to 
regional and national regulations, adopting analysis that preserves privacy, and let-
ting users control what information is collected and for what purpose—with conser-
vative defaults.

To move hybrid healthcare into the mainstream it must cater for a wide range of 
healthcare needs and lifestyles. Individuals with chronic, non-communicable dis-
eases (NCDs) such as heart disease will require different sensing modality and 
device type compared to women seeking fertility treatment. Lifestyle context—in 
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addition to the underlying data requirements need to be factored into the system 
design and analysis [11]. The varied contexts for sensors pose challenges to algo-
rithm development as well—it is often difficult to capture these in lab environments 
where sensors are calibrated and algorithms developed. Adaptive learning algo-
rithms, along with the ability to re-calibrate sensors based on environment are key 
to overcoming this challenge [12].

Hybrid healthcare must also economically scale to potentially millions of users 
to deliver on its potential. Systems for hybrid healthcare must be designed with scal-
ability in mind—from how data is transmitted and stored, to how it is visualised [9]. 
The rapid gains in computing power for small devices offers the potential of pro-
cessing data on-board. A useful idea here is incremental processing: a substantial 
gain in performance can be achieved by processing the data as it arrives on devices 
and transmitting the information derived [13]. This is typically lower in volume and 
the data would otherwise require server-side computation. This can also be a pri-
vacy preserving strategy—for example in the case of vision sensors [14]. Avoiding 
the transmission, server-side computation and storage of data also has an unex-
pected environmental benefit—the internet is responsible for an estimated 3.7% of 
global carbon emissions [15] partially through the need to transmit and store huge 
amounts of data.

The rapidly standardised technology stack for cloud computing serves as a good 
foundation for flexible software architectures that can handle information from 
sensing devices scalably. Services for streaming data [16] for example can process 
data as it arrives and minimise the need to process at query time. Responsiveness 
can be enabled in these systems by leveraging events—allowing sensor devices to 
publish and subscribe to events that influence their behaviour [17]. Commercial 
standards such as SmartThings™ and IFTT™ make available these technologies for 
processing sensor data to consumers without requiring deep technical knowledge. 
To make sensing further accessible it must be available to end-users on personal 
devices such as smartphones and TVs—where powerful user interfaces leveraging 
chatbots and augmented reality can accessibly offer users context and explanation 
about their information [18].

Hybrid healthcare systems must not become the repositories of unutilised and 
uninformative personal information. Many sources of data will not offer useful 
information most of the time. This can be filtered at source—for example in natu-
rally event-based sensors such as PIR.  Alternatively, when information is fused, 
algorithms may analyse which dimensions of data offer the most information and 
choose to keep this at the highest resolution while discarding or archiving useless 
data. Dimensionality reduction techniques [19] such as Principal Components anal-
ysis (PCA) and Manifold embedding can represent information from very many 
sources in just a few dimensions. Alternatively—feature selection [20] can be used 
to identify the information most relevant to the context of the user’s activity and 
only transmit and store this [21]. A further tool available to reduce storage and com-
pute costs is compression and synopsis data structures [22]. Strategies can include 
downsampling, representation of statistical summaries and leveraging more 
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advanced techniques like wavelet filtering [23] to preserve only the signal relevant 
to healthcare—not the noise of everyday life.

�Applications Enabled by Wearable and Remote Monitoring 
in Healthcare

�Analysing Activity and Behaviour to Improve Care Provision

Activity and behaviour are important clinical indicators of well-being. Activities of 
Daily Living (ADL) [24] can be used to infer the functional ability of people to live 
independently. Changes in frequency and performance of ADL may also signal the 
onset of disease, worsening of a condition [25] or be used to track recovery from 
surgery [26]. Recognising activities automatically is therefore an important and 
wide-ranging problem in the field of sensing [27]. A large range of sensors have 
been used for detecting and classifying activity—including cameras [28], wearables 
leveraging accelerometers and gyroscopes [29], activity information derived from 
smartphones [30] and combining ambient and wearable sensing [14].

The varied range of sensing technology offers the ability to customise applica-
tions to lifestyles, privacy priorities and health needs. For example, wearable sen-
sors are very effective at differentiating between activities of different physical 
intensity. Sensors placed on objects can offer location and contextual information 
without the privacy issues attendant on more powerful, but potentially intrusive sen-
sors like cameras. For example—sensors placed in drug dispensing boxes [31] can 
help track medication compliance. Cameras can offer the deepest degree of infor-
mation about the user state—and depending on placement context and how infor-
mation is extracted can be made palatable to end-users [32]. Infrared sensors offer 
an intermediate degree of information—these can track the movement of users 
across rooms. This can be used to generate a picture of an individual’s room occu-
pancy over the day, recognise activities from context (e.g. kitchen or toilet activity) 
and identify anomalous behaviour [9].

Activity analysis can be divided into two broad tasks—the first, termed ‘activity 
recognition’ deals with detecting the current user state in a typically small-time 
horizon. Building on this by incorporating temporal elements or sequencing is 
referred to as ‘activity modelling’. To some extent, the latter can also be used for 
modelling complex activities from simpler, ‘atomic’ activities e.g., inferring ‘food 
preparation’ from a sequence of movement activities and location events. Whereas 
activity detection typically relies on discriminative machine learning algorithms, 
activity modelling often leverages sequence modelling algorithms such as Hidden 
Markov Models [33] and Long-Short Memory Neural Networks [34].

The effectiveness of wearables to identify ADL, as well as the potential to mini-
mise the information extracted from the wearables is demonstrated in [35]. 
Figure 5.2 shows the data for several activities visualised in 2-D space using the 
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Fig. 5.2  Activities classified from sensor data in low-dimensional representation—blue points are 
from normal subjects, while red points are from impaired subjects [35]

feature selection algorithm Simba [36] and PCA. Both algorithms compress a large 
number of features extracted from the data in two dimensions, while still allowing 
the discrimination between impaired subjects (red) from normal subjects (blue).

ADLs and how they are performed can also offer insights around recovery from 
surgery. Current medical practice to assess recovery from surgery relies on patient 
questionnaires—for example the KOOS questionnaire for knee and mobility [37] 
and the CHAMPS physical activity questionnaire [38]. These questionnaires impose 
a compliance burden on patients, are difficult to control for subjectivity and there 
can be a significant delay between the onset of complications to the filling of ques-
tionnaires and subsequent analysis of it. Using sensors and remote monitoring 
allows for objective measures of recovery and timely interventions based on events 
automatically extracted from the data. Figure 5.3, taken from [35], shows the dis-
crimination between subjects in early recovery (1–6 weeks after surgery) from sub-
jects in late recovery (12–24 weeks after surgery) using accelerometer data collected 
while performing Step-up transitions (e.g. stepping onto stairs) and Stand-to-Sit 
transition (e.g. sitting into a chair). These activities are automatically identified in a 
continuous stream of sensor data by noting changes in data transformed into reduced 
dimensions using manifold embedding. The potential for this is to identify patients 
who do not follow the normal trajectory of recovery and direct care providers 
to them.

When wearable and ambient sensors are used to provide care to patients with 
chronic illnesses and requiring long-term care, an important aspect of behaviour to 
analyse is routine. Deviation from circadian rhythms in people can indicate a change 
in the state of health [39]. Furthermore, key indicators of wellbeing can be observed 
in daily routines for example sleeping habits, regular eating, exercise levels, routine 
social interactions. Typically, for this the sensors detecting movement and location 
both indoors and outdoors are important. As data accumulates rapidly over the 
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embedding of accelerometer data while patients performed Step-up transition (a) and Stand-to-Sit 
transition (b) [35]

longer-term, abstracted pictures of an individual’s routine allow the concise repre-
sentation of their typical behaviour and allow care-providers to more easily see 
deviations. An example for this comes from the SAPHE project [40]—which 
deployed smart-home technology in partnership with Liverpool Primary Care Trust. 
A range of sensors were used—including wearable sensors such as accelerometers, 
ambient sensors including PIRs and connected devices such as smart weight scales. 
The patient cohort was typically elderly and requiring long-term care from commu-
nity care providers who would otherwise prioritise their work using ad hoc means. 
Figure 5.4 shows the data abstracted about the individual’s routine behaviour and 
showing a change in their routine resulting from an intervention from the healthcare 
worker, taken from [35]. These changes in routine behaviour derived from acceler-
ometer and location sensors can allow timely interventions from care providers.

�Personalised and Preventative Medicine Through Sensing 
and Smartphones

Widely adopted consumer devices such as smartphones and smartwatches carry a 
wide range of sensors. Accelerometers, GPS and gyroscopes are almost universal, 
and physiological sensors such as heart rate and skin temperature are also not 
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Fig. 5.4  Changes in routine behaviour (in red) compared to normal behaviour (blue) observed in 
a patient in a smart-home environment. Routine information is extracted from sensor data and 
visualised in a reduced manifold space [35]

uncommon. These devices therefore offer immense potential for enabling person-
alised and preventative healthcare.

Relatively soon after sensors became crucial for powering smartphone features 
like managing the screen orientation researchers were interested in studying the 
potential for use for activity and routine behaviour analysis [30]. Smartphones pose 
particular challenges however—they may not always be on the user’s person and 
orientation and placement of the phone is often inconsistent. These factors are 
addressed—to an extent—in the ActiveMiles project, where rotation invariant fea-
tures are derived and then clustered to get a basic indication of the user’s activity 
levels. Combining with location data from GPS can give a rich picture of the user’s 
activities and behaviour over time. Alternatively, the app can be calibrated with the 
phones placement at fixed locations e.g. belt buckles or pockets and machine learn-
ing models can discriminate between different activities using the sensor data 
(Fig. 5.5).

Wearables such as smart-watches and fitness trackers do not have the same chal-
lenges as with data collected from smartphones. Furthermore, a wide range of sen-
sors are available as wearables—activity measures being the most common. These 
are widely used in the fitness tracking and sports markets and have extensive app 
eco-systems. More specialised sensors can be integrated into wearable and mini-
mally invasive sensors. An example of this are sensors designed to track period 
cycles in women. Devices such as the OvuSense sensor [41] measure Core Body 
Temperature (CBT), changes in which are strongly associated with the phases of the 
reproductive cycle. OvuSense can characterise typical and atypical fertility cycles 
in addition to helping predict period and ovulation days [42]. OvuSense is one of the 
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a b

Fig. 5.6  The OvuSense sensor designed to track menstrual cycle using Core Body Temperature 
(a) and a screen designed to convey information extracted from the sensor in the Nabta app (b)

sensors supported by the Nabta app and will be a part of an ecosystem of sensors 
that Nabta app can draw information from, in addition to logs added by users them-
selves that give context to sensor data including mood, medications taken, food and 
water intake and more (Fig. 5.6).
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�Conclusion

Wearable and ambient sensors are inexpensive, ubiquitous and increasingly power-
ful and easier to connect. A diverse set of healthcare and lifestyle monitoring use-
cases are enabled by these devices ranging from care of chronically ill patients and 
post-operative recovery to delivering personalised medicine and helping patients 
take control of their health through insights derived from their data. Challenges 
remain—the need for privacy, catering for lifestyle differences, increasing regula-
tory burdens and dealing with scale of data and more. Flexible, cloud-base software 
architectures, judicious data processing and use of compression and leveraging AI 
and machine learning can help address these challenges and deliver on the promise 
of sensing in healthcare.
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