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Preface

This volume contains 17 extended abstracts and 23 short abstracts representing a total
of 40 proceedings papers presented at the 26th International Conference on Research
in Computational Molecular Biology (RECOMB 2022), hosted by the University of
California, San Diego. The conference took place at La Jolla, California, USA, during
May 22–25, 2022. These 40 contributions were selected by a rigorous peer-review
process from 188 submissions to the conference. Each of these 188 submissions received
reviews from at least three members of the Program Committee (PC) members or their
designated sub-reviewers. Following an initial process of independent reviewing, all
submissions were opened for discussion by their reviewers and the conference program
chair through the EasyChair Conference Management System. Final decisions were
made based on reviewer assessments with some adjustment to ensure the technical
diversity of the conference program.

RECOMB 2022 allowed authors an option to publish their full extended papers in
the conference proceedings or to provide short abstracts for the proceedings and pursue
alternative arrangements for publishing the full paper. In addition, the authors of a select
set of accepted papers were invited to submit revised manuscripts for consideration
for publication in the partner journals, Cell Systems and Genome Research. All papers
that appear as extended abstracts in the proceedings were invited for submission to the
RECOMB 2022 special issue of the Journal of Computational Biology.

RECOMB 2022 also featured highlight talks of computational biology papers that
were published in journals during the previous 18 months. Of the 38 submissions to the
highlights track, ten were selected for oral presentation at RECOMB.

In addition to presentations of these contributed papers, RECOMB 2022 featured
seven invited keynote talks given by leading scientists:

– Bing Ren (University of California, San Diego), “Single-cell analysis of epigenome
in health and disease”.

– Howard Chang (Stanford University), “Personal regulome navigation”.
– Lenore Cowen (Tufts University), “Pathways for Learning from Structure and
Organization of Protein Interaction Networks”.

– John Chodera (Sloan Kettering Institute), “The COVID Moonshot: Open science
discovery of a novel oral SARS-CoV-2 antiviral”.

– John Marioni (European Bioinformatics Institute), “Computational challenges in
single-cell genomics”.

– Wenyi Wang (MD Anderson Cancer Center), “Deciphering cancer cell evolution and
ecology”.

– Regina Barzilai (Massachusetts Institute of Technology), “Infusing Biology into
Molecular Models for Drug Discovery”.

RECOMB also featured a special invited workshop on genomic privacy, organized
by Gamze Gürsoy (Columbia University).



vi Preface

In addition, five topical RECOMB satellite meetings took place in parallel directly
preceding the main RECOMB meeting:

– The 19th RECOMB Satellite Conference on Comparative Genomics
(RECOMB-CG) co-chaired by Siavash Mirarab (University of California,
San Diego), Lingling Jin (University of Saskatchewan), and Dannie Durand
(Carnegie Mellon University).

– The 6th RECOMB Satellite Conference on Bioinformatics Education
(RECOMB-BE) chaired by Niema Moshiri (University of California, San Diego).

– The 10th RECOMB Satellite on Computational Methods in Genetics
(RECOMB-Genetics) co-chaired by Anna-Sapfo Malaspinas (Swiss Institute of
Bioinformatics), Sriram Sankararaman (University of California, Los Angeles), and
Gillian Belbin (Mount Sinai Institute for Genomics Health).

– The 12th RECOMB Satellite Workshop on Massively Parallel Sequencing
(RECOMB-Seq) co-chaired by Can Alkan (Bilkent University), Benjamin
Langmead (Johns Hopkins University), Paul Medvedev (Pennsylvania State
University), and Stefano Tonzani (Cell Press)

– The RECOMB Satellite Workshop on Computational Cancer Biology
(RECOMB-CCB) co-chaired by Hannah Carter (University of California,
San Diego) and Simone Zaccaria (University College London).

Two additional RECOMB satellite meetings were held in honor of members of
our community: Mike Waterman’s 80th birthday was celebrated in a satellite meeting
co-chaired by Remo Rohs and Fengzhu Sun (University of Southern California). Benny
Chor, who our community lost this year, was commemorated in a satellite meeting
co-chaired by Sagi Snir (University of Haifa) and Zohar Yakhini (Israel Institute of
Technology). We thank them for organizing these great companion meetings and they
and their Program Committees for their hard work in making them possible.

The organization of this conference was the work of many colleagues contributing
their time, effort, and expertise. I am especially grateful to the local organizing
committee, particularly Conference Chair Vineet Bafna (University of California,
San Diego) and co-organizers Vikas Bansal (University of California, San Diego),
Jocelyn Bernardo (University of California, San Diego), Melissa Gymrek (University
of California, San Diego), Siavash Mirarab (University of California, San Diego),
Glenn Tesler (University of California, San Diego), and Kaiyuan Zhu (University of
California, San Diego). I am grateful to the many others who volunteered their time
and work, including those whose names were not yet known to us at the time of this
writing. I also want to thank the Poster Chair, Yaron Orenstein (Ben-Gurion University,
Israel), Keynotes Chair, Ewa Szczurek (University of Warsaw), Satellites Chair, Sriram
Sankararaman (University of California, Los Angeles), and Highlights Chair, Sushmita
Roy (University of Wisconsin, Madison) for their efforts in ensuring a high-quality
technical program. I am further grateful to all of those PC members and sub-reviewers
who took time out of their busy schedules to review and discuss submissions on a very
tight schedule. I also thank the authors of the proceedings papers, the highlights, and
the posters for contributing their work to the meeting and for their attendance at the
conference.



Preface vii

Final thanks go to all our conference sponsors for their support, who at press time
for this volume included Akamai Technologies, Illumina, the University of California,
San Diego, and the Department of Computer Science and Engineering (University of
California, San Diego), and especially to the sponsors of our student travel awards, the
National Science Foundation (NSF) and the International Society for Computational
Biology (ISCB).

Beyond the formal details about the conference, and thanking all the direct
contributors, RECOMB 2022 represents a pivotal moment for our community, coming
together in person for the first time in three years. RECOMB 2020 was canceled in
physical form with only a few weeks’ notice - the 2020 template I was using for this
preface document had no idea a pandemic was coming, squeezing the conference into a
Zoomwindow.We have since all learned the extent to which in-person meetings provide
deeper engagement, greater value, and a more immersive sense of community. One of
the highlighted talks in RECOMB 2022 even made this point quantitatively. I would
thus like to express how honored I am to be ushering back participation in RECOMB in
person.

May 2022 Itsik Pe’er



To Benny, to the RECOMB Community in Memory
of Benny

This past year, 2021, sadly marked the passing away of Prof. Benny Chor, a scientist,
a pillar in the bioinformatics community and in RECOMB, a colleague and a friend.
Benny made significant contributions in cryptography, in computational biology, and to
the teaching of computer science at all levels.

Benny introduced all his students and many of his colleagues to seeing science in
the context of culture, of friendship and human interactions, as a lifestyle more than
as a vocation. For Benny, a student or a colleague was first a friend, a person with
a full life, maybe with a family, maybe with habits and ideas to explore and to learn
from. He was proud, for example, of a PhD student from the Technion who took his
complexity course and upon graduation opened a falafel shop. Bennywas an avid traveler
and sailor, taking his students on challenging adventures. He was an evangelist of high
standards and zero compromise morality in science. An outstanding characteristic of
Benny was his modesty. Few people know that he won the ACM award for his PhD,
due to its seminal founding contributions in cryptography. Only some colleagues in
the RECOMB community know of his theoretical computer science career, and his
remarkable achievements. To the privileged people who worked with him he conveyed
a culture of rigorous science in a pleasant atmosphere. Science with a smile.

In 1985 Benny and colleagues established the concept of verifiable secret sharing
and developed related methods and definitions that are still used in the field. In
1998 he started his work on private information retrieval (PIR), a fundamental topic
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of high importance in cryptography. His contribution to cryptography continued in
further developing techniques and theories related to PIR and other privacy primitives.
Among Benny’s most prominent contributions to computational biology is the
introduction of highly rigorous approaches from computer science and math to the study
of evolution, specifically to phylogenetics. This includes his dynamic programming
algorithm for quartet-based phylogenetics, the introduction of analytical, symbolic
algebra-based approaches to maximum likelihood phylogenetics, and his proof of
the NP-hardness of maximum likelihood phylogenetics. In recent years Benny also
worked on analyzing gene expression and genomics data, including studying techniques
and complexity results related to order-preserving submatrices, as well as developing
methods for analyzing HiC data and producing biologically interesting results. Benny
greatly contributed to computer science education. Benny once likened the use of Python
in teaching CS to the use of Toyota in driving lessons. One doesn’t learn how to drive a
Toyota – one learns the art and skills of driving.

We are grateful to have had the privilege to work with Prof. Benny Chor and to have
learned so much from him. We are grateful for having spent many fun science hours
with Benny on trails, in pubs and cafes, and on sailboats. He will always be remembered
for his great science and personality. He will always be remembered with a smile.

Sagi Snir
Zohar Yakhini
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Abstract. Integrated analysis of multi-omics data allows the study of
how different molecular views in the genome interact to regulate cellular
processes; however, with a few exceptions, applying multiple sequenc-
ing assays on the same single cell is not possible. While recent unsu-
pervised algorithms align single-cell multi-omic datasets, these methods
have been primarily benchmarked on co-assay experiments rather than
the more common single-cell experiments taken from separately sampled
cell populations. Therefore, most existing methods perform subpar align-
ments on such datasets. Here, we improve our previous work Single Cell
alignment using Optimal Transport (SCOT) by using unbalanced opti-
mal transport to handle disproportionate cell-type representation and
differing sample sizes across single-cell measurements. We show that our
proposed method, SCOTv2, consistently yields quality alignments on five
real-world single-cell datasets with varying cell-type proportions and is
computationally tractable. Additionally, we extend SCOTv2 to integrate
multiple (M ≥ 2) single-cell measurements and present a self-tuning
heuristic process to select hyperparameters in the absence of any orthog-
onal correspondence information.

Available at: http://rsinghlab.github.io/SCOT.

Keywords: Single-cell sequencing · Multi-omics · Data integration ·
Unsupervised learning · Optimal transport · Unbalanced alignment

1 Introduction

The ability to measure multiple aspects of the single-cell offers the opportunity
to gain critical biological insights about cell development and diseases. How-
ever, many existing single-cell sequencing technologies cannot be simultaneously
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
I. Pe’er (Ed.): RECOMB 2022, LNBI 13278, pp. 3–19, 2022.
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applied to the same cell, resulting in multi-omics datasets sampled from distinct
cell populations. While these measurements can be analyzed separately, inte-
grating them prior to analysis can help explain how different molecular views
interact and regulate cellular functions. Unfortunately, single-cell assays that
measure different molecular aspects in separately sampled cell populations lack
direct sample–sample and feature–feature correspondences across these measure-
ments. This lack of correspondences makes it hard to use integration methods
that require some shared information to perform single-cell alignment [4]. There-
fore, unsupervised single-cell multi-omics data alignment methods are crucial for
integrative single-cell data analysis.

Several unsupervised methods [4,10,12,15], including our previous work,
SCOT [9], have shown state-of-the-art performance for integrating different single-
cell measurement domains. Since these methods were mainly evaluated on real-
world co-assay datasets (with 1–1 correspondence between cells across domains),
our understanding of their performance on datasets obtained from experiments
that are not co-assays is limited. Such experiments perform separate sampling to
measure distinct genomic features, like gene expression and 3D chromatin confor-
mation. Therefore, their datasets can consist of varying proportions of cell-types
across different measurements, creating cell-type imbalance and lacking 1–1 cell
correspondences. We hypothesize that alignment methods that perform well on
co-assay datasets may not effectively handle the differences in cell-type propor-
tions of the commonly available non-co-assay datasets. Indeed, a recent method,
Pamona [5], extended our SCOT framework and used partial Gromov-Wasserstein
(GW) optimal transport to allow for missing or underrepresented cell-types in one
domain when performing alignment. It showed that current integration methods
[4,9,12,15] tend to perform worse under such settings.

We present SCOTv2, a novel extension of SCOT that can effectively align
both co-assay and non-co-assay datasets using a single framework. It uses unbal-
anced GW optimal transport to align datasets with disproportionate cell-types
while only introducing one additional hyperparameter. This unbalanced frame-
work relaxes the constraint that each point must be mapped with its original
mass during the optimal transport. Specifically, an underrepresented cell-type in
one domain can be transported with more mass to match the proportion of that
cell-type in the other domain and vice-versa. The SCOTv2 framework is sum-
marized in Fig. 1. We demonstrate that SCOTv2 aligns datasets with imbalance
in cell-type representations better than state-of-the-art baselines and computa-
tionally scales as well as the fastest methods. Furthermore, we extend SCOTv2
to integrate single-cell datasets with more than two measurements, making it a
multi-omics alignment tool. We perform alignments of five real-world single-cell
datasets, with both simulated and natural cell-type imbalance as well as two and
more than two domains (M ≥ 2), demonstrating SCOTv2’s applicability across
a wide range of scenarios. Finally, similar to the previous version, we present
a self-tuning heuristic process to select hyperparameters for SCOTv2 without
any corresponding information like cell-type annotations or matching cells or
features in truly unsupervised settings.
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Fig. 1. Overview of SCOTv2 on scNMT-seq dataset [8], which contains unbal-
anced cell-type representation across three domains - RNA expression, chromatin acces-
sibility, and DNA methylation. SCOTv2 selects an anchor domain (denoted with *)
and aligns other measurements to it. First, it computes intra-domain distances matrices
Dm for m = 1, 2, 3, which are used to solve for correspondence matrices between the
anchor and other domains. The circle sizes in the matrices depict the magnitude of the
correspondence probabilities or how much mass to transport. Unbalanced GW relaxes
the mass conservation constraint, so the transport map does not need to move each
point with its original mass. Finally, it either co-embeds the domains into a common
space or uses barycentric projections to project them onto the anchor domain.

2 Method

Optimal transport finds the most cost-effective way to move data points from one
domain to another. One can imagine it as the problem of moving a pile of sand to
fill in a hole through the least amount of work. Our previous framework SCOT
[9] uses Gromov-Wasserstein optimal transport, which preserves local geometry
when moving data points from one domain to another. The output of SCOT is a
matrix of probabilities that represent how likely it is that data points from one
modality correspond to data points in the other.

Here, we reintroduce the SCOT formulation to integrate M domains (or
single-cell measurements) Xm = (xm

1 , xm
2 , . . . xm

nm
) ∈ R

dm for m = 1, . . . M with
nm data points (or cells) each. For each dataset, we define a marginal distribution
pm, which can be written as an empirical distribution over the data points:

pm =
nm∑

i=1

pm
i δxi

. (1)

Here, δxi
is the Dirac measure. For SCOT, we choose these distributions to be

uniform over the data.
Gromov-Wasserstein optimal transport performs the transport operation by

comparing distances between samples rather than directly comparing the sam-
ples themselves [2]. Therefore, for each dataset, we compute the intra-domain
distance matrix Dm. Next, we construct k-NN graphs based on correlations
between data points and use Dijkstra’s algorithm to compute the shortest path
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distance on the graph between each pair of nodes. Finally, we connect all uncon-
nected nodes by the maximum finite distance in the graph and set Dm to be the
matrix resulting from normalizing the distances by this maximum.

For two datasets and a cost function L : R×R → R, we compute the fourth-
order tensor L ∈ R

nx×nx×ny×ny , where Lijkl = L(D1
ik,D2

jl). Intuitively, L quan-
tifies how transporting a pair of points x1

i , x
1
k onto another pair across domains,

x2
j , x

2
l , distorts the original intra-domain distances and helps to preserve local

geometry. Then, the discrete Gromov-Wasserstein problem is,

GW (p1, p2) = min
Γ∈Π(p1,p2)

∑

i,j,k,l

LijklΓijΓkl, (2)

where Γ is a coupling matrix from the set:

Π(p1, p2) = {Γ ∈ R
n1×n2
+ : Γ1n2 = p1, ΓT1n1 = p2}. (3)

One of the advantages of using optimal transport is the probabilistic interpreta-
tion of the resulting coupling matrix Γ , where the entries of the normalized row
1
pi

Γi are the probabilities that the fixed data point xi corresponds to each yj .
Each entry Γij describes how much of the mass of xi should be mapped to yj .

To make this problem more computationally tractable, we solve the entrop-
ically regularized version:

GWε(p1, p2) = min
Γ∈Π(p1,p2)

〈L(D1,D2) ⊗ Γ, Γ 〉 − εH(Γ ). (4)

where ε > 0 and H(Γ ) is the Shannon entropy defined as H(Γ ) =∑nx

i=1

∑ny

j=1 Γij log Γij . Larger values of ε make the problem more convex but
also lead to a denser coupling matrix, meaning there are more correspondences
between samples. In SCOT, we use the cost function L = L2.

2.1 Unbalanced Optimal Transport of SCOTv2

Our proposed solution to align datasets with different numbers of samples or pro-
portions of cell-types is to use unbalanced Gromov-Wasserstein optimal trans-
port, which adds divergence terms to allow for mass variations in the marginals
[11,16]. We follow Séjourné et al. [16], and use the Kullback-Leibler divergence,

KL(p||q) =
∑

x

p(x) log
(

p(x)
q(x)

)
, (5)

to measure the difference between the marginals of the coupling Γ and the input
marginals p1 and p2. Thus, we solve the unbalanced GW problem:

GWε,ρ(p
1, p2) = min

Γ≥0
〈L(D1, D2)⊗ Γ, Γ 〉 − εH(Γ ) + ρKL(Γ1n2 ||p1) + ρKL(Γ T1n1 ||p2), (6)

where ρ > 0 is a hyperparameter that controls the marginal relaxation. When ρ
is large, the marginals of Γ should be close to p1 and p2, and when ρ is small,
the marginals of Γ may differ more, allowing each point to transport with more
or less mass than it originally had. We detail the optimization procedure for
unbalanced Gromov-Wasserstein optimal transport (UGWOT) in Algorithm 3.



Aligning Single-Cell Multi-omics Datasets with Disproportionate Cell-Types 7

2.2 Extending SCOTv2 for Multi-domain Alignment

We provide the details of SCOTv2 in Algorithm 1. To align more than two
datasets (M > 2), we use one domain as an anchor to align the other domains.
The anchor should be the domain with the clearest biological structures, for
example, a dataset with the best-defined cell-type clusters. We propose selecting
the anchor via the kNN graph computed. For every node xm

i in the graph, we
calculate the average of the k neighboring node values Nk(xm

i ). We measure the
difference between this average and the true value of the node. This difference
reflects how well the averaged neighborhood represents the given node. We then
average these differences across the graph and select the domain with the lowest
averaged difference as the anchor. Intuitively, we select the anchor whose kNN
graph best reflects its dataset. Suppose X1 is the anchor dataset. Then, for
m = 2, 3, . . . , N , we compute the coupling matrix Γm according to Eq. 4.

To have all of the datasets aligned in the same domain, we can either use
barycentric projection to project each Xm for m = 2, 3, . . . ,M onto X1 or
find a shared embedding space as described in Sect. 2.3. In the first iteration of
SCOT, we used a barycentric projection to align and project one dataset onto the
other. Due to the marginal relaxation, we now search for a non-negative n1×nm

dimensional matrix Γ instead of Γ ∈ Π(p1, pm). Because of this change, the
adjusted barycentric projection is:

xm
i �→

∑n1
j=1 Γm

ij x1
j∑n1

j=1 Γm
ij

. (7)

2.3 Embedding with the Coupling Matrix

Other methods such as MMD-MA and UnionCom align datasets by embedding
them into a common latent space of dimension p ≤ minm=1,...,M dm. Here dm rep-
resents the original dimension size of measurement (or domain) m. Embedding
the datasets in a new space often leads to a better alignment as it introduces the
additional benefits of dimension reduction, allowing more meaningful structures
in the datasets such as cell-types to be more prevalent. Due to these benefits, we
also enable the embedding option through a modification of the t-SNE method
proposed by UnionCom [4]. For each domain m, we compute Pm, an nm × nm

cell-to-cell transition matrix; each entry Pm
j|i is the conditional probability that a

data point xm
i would pick xm

j as its neighbor when chosen according a Gaussian
distribution centered at xm

i . Similarly, for the lower-dimensional embeddings, we
compute a cell-to-cell probability matrix Qm′

through a Student-t distribution.
The full descriptions of Pm and Qm′

are given in Appendix.
Then, to jointly embed all domains through the anchor domain X1, the

optimization problem is:

min
X1′ ,...,XM′

M∑

m=1

KL(Pm||Qm′
) + β

M∑

m=2

||X1′ − Xm′
(Γm)T ||2F , (8)
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Algorithm 1: Pseudocode for SCOTv2 Algorithm
Input: Datasets X1, . . . , XM , number of graph neighbors k, entropic
regularization coefficient ε, mass relaxation coefficient ρ.

for m = 1, . . . , M do
// Initialize marginal probabilities: pm ← Uniform(Xm);
//Construct Gm, a k−NN graph based on pairwise correlations
// Compute intra-domain distances Dm with Dijsktra’s algorithm.
cm = 1

nm

∑nm
i=1

1
k

∑

xm
j ∈Nk(x

m
i )

corr(xm
j , xm

i ) //“neighborbood corr.

end
// Select an anchor domain Xm∗: m∗ = arg maxm=1,...M cm

for m = 1, . . . , M (m �= m∗) do
Γ m ← UGWOTε,ρ(p

m, pm∗) // Compute pairwise couplings w/ Xm∗:
if Barycentric projection then

xm′
i ←

∑n1
j=1 Γm

ij xm∗
j

∑n1
j=1 Γm

ij

end
else

X1′
. . . XM′ ←

minXm′
,...,XM′

∑M
m=1 KL(P m||Qm′

)+β
∑

m�=m∗ ||Xm∗′
−Xm′

(Γ m)T ||2F
// Find shared embedding

end

end

Return: Aligned datasets, X1′
. . . XM′

.

where Xm′
is the lower dimensional embedding of Xm, and Γm is the coupling

matrix from solving Eq. 6 for m = 2, . . . , M . These two terms seek to find an
embedding that both preserves the local geometry in the original domain and
aligns the domains according to the correspondence found by GW. The intuition
behind the term KL(Pm||Qm′

) is very similar to that of GW; if two points have
a high transition probability in the original space, then they should also have a
high transition probability in the latent space. The term ||X1′ − Xm′

(Γm)T ||2F
measures how well aligned the new embeddings X1′

and Xm′
are according to

the prescribed coupling matrix Γm. Finally, β > 0 controls the trade-off between
preserving the original geometry with the KL term and enforcing the alignment
found with GW. We solve this optimization problem using gradient descent from
UnionCom with a default latent space dimension size p = 3 [4].

2.4 Heuristic Process for Self-tuning Hyperparameters

SCOTv2 has three hyperparameters: (1) k for the number of neighbors to con-
sider in nearest neighbor graphs, (2) the weight of the entropic regularization
term, ε, and (3) the coefficient of the mass relaxation constraint, ρ. The barycen-
tric projection of one domain onto another does not require any hyperparameters.
However, jointly embedding the domains in a latent space requires selecting the
dimension p.
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Ideally, orthogonal correspondence information such as 1–1 correspondences
and cell-type labels can guide hyperparameter tuning as validation. However,
such information is hard to obtain in most cases. First, no validation data on cell-
to-cell correspondences exists for non-co-assay datasets. Second, it is challenging
to infer cell-types for certain sequencing domains such as 3D chromatin confor-
mation. Lastly, the cell-type annotations may not always agree across single-cell
domains.

We provide a heuristic to self-tune hyperparameters in the completely unsu-
pervised setting. We first choose a k for the neighborhood graphs that yields a
high average correlation value between the neighborhood predicted values and
measured genomic values of the graph nodes. This step is the same as the one
used to select the anchor domain for multi-omics alignment in Sect. 2.2. Next, we
choose ε and ρ values that minimize the Gromov-Wasserstein distance between
the aligned datasets. Algorithm 2 gives the details of this procedure.

Algorithm 2: Unsupervised hyperparameter search procedure
Input: Datasets X1, . . . , XM .
for m = 1, . . . , M do

km = argmax
k∈{10,20,...,150}

1
nm

∑nm
i=1

1
k

∑

xm
j ∈Nk(x

m
i )

corr(xm
j , xm

i ) // Find km’s

// Use km to compute Dm

end
for m = 2, . . . , M do

εm, ρm = arg minε,ρ GWε,ρ(1n1 ,1nm) // Use GW distance to pick ρ, ε

end
Return: km, εm, ρm.

3 Experimental Setup

3.1 Datasets

We evaluate SCOTv2 on single-cell datasets with disproportionate cell-types
using two schemes. (1) We subsample different cell-types in co-assay datasets to
simulate cell-type representation disparities between sequencing modalities. (2)
We select real-world separately sequenced single-cell multi-omics datasets, which
lack 1–1 cell correspondences and have different cell-type proportions across
modalities due to the sampling procedure. Additionally, we present results on
the original co-assay datasets with 1–1 cell correspondence to demonstrate the
flexibility of SCOTv2 across balanced and unbalanced single-cell datasets.

Co-assay Single-Cell Datasets with 1–1 Cell Correspondence. We use
three co-assay datasets to validate our model, sequenced by SNARE-seq, scGEM,
and scNMT technologies. SNARE-seq is a two-modality sequencing technol-
ogy that simultaneously captures the chromatin accessibility and transcrip-
tional profiles of cells [6]. This dataset contains a total of 1047 cells from
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four cell lines: BJ (human fibroblast cells), H1 (human embryonic cells), K562
(human erythroleukemia cells), and GM12878 (human lymphoblastoid cells)
(Gene Expression Omnibus access code: GSE126074). We follow the same data
preprocessing steps outlined by Chen et al. [6]. The scGEM technology is a
three-modality sequencing technology that profiles the genetic sequence, gene
expression, and DNA methylation states in the same cell [7]. The dataset we use
is derived from human somatic cell samples undergoing conversion to induced
pluripotent stem cells (Sequence Read Archive accession code SRP077853) [7].
We access the preprocessed data provided by Welch et al. [17], which only
contains the gene expression and DNA methylation modalities.1 The dataset
sequenced by scNMT-seq method [3] contains three modalities of genomic data:
gene expression, DNA methylation, and chromatin accessibility, from mouse
gastrulation samples, going through the Carnegie stages of vertebrate develop-
ment (Gene Expression Omnibus access code: GSE109262). We access the pre-
processed data through GitHub2. While the SNARE-seq and scGEM datasets con-
tain the same number of cells across measurements, scNMT-seq modalities contain
different cell-type proportions after preprocessing due to varying noise levels in
measurements (Table 1).

Single-Cell Datasets with Simulated Cell-Type Imbalance. To test align-
ment performance sensitivity to different levels and types of cell-type proportion
disparities across modalities, we generate simulation datasets by subsampling
SNARE-seq and scGEM co-sequencing datasets in two ways. (1) We remove a
cell-type from one modality. (2) We reduce the proportion of a cell-type in one
modality by subsampling it at 50% and another cell-type in the other modality
by subsampling it at 75%. We simulate this setting to test how the alignment
methods will behave when multiple cell-types have disproportionate represen-
tation at different levels (for example, half or quarter percentage of cell-types
missing) across modalities. For these cases, we uniformly pick at random which
cell-type to subsample or remove. Specifically, for scGEM in simulation case
(1), we remove “d16T+” cells in the DNA methylation domain while retaining
the original gene expression domain, and remove the “d24T+” cells in the gene
expression domain while retaining the original DNA methylation domain. For
the SNARE-seq dataset, we remove “GM” cells in the gene expression domain
and “K562” in the chromatin accessibility domain. In simulation case (2), we
subsample the “d8” cluster of the scGEM dataset at 75% in the gene expression
modality and the “d16T+” cluster at 50% in the DNA methylation modality.

1 Preprocessed data for the scGEM dataset accessed here: https://github.com/
jw156605/MATCHER.

2 Dimensionality reduced data, used by Pamona and us, here: https://github.com/
caokai1073/Pamona/tree/master/scNMT. Preprocessing scripts for the raw data pro-
vided by the authors here: https://github.com/PMBio/scNMT-seq/.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126074
https://www.ncbi.nlm.nih.gov/sra/?term=SRP077853
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE109262
https://github.com/jw156605/MATCHER
https://github.com/jw156605/MATCHER
https://github.com/caokai1073/Pamona/tree/master/scNMT
https://github.com/caokai1073/Pamona/tree/master/scNMT
https://github.com/PMBio/scNMT-seq/
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Table 1. Number of cells in (and percentages of) each cell-type across different modal-
ities in the scNMT-seq co-assayed dataset after quality control procedures and the
non-coassay datasets.

Modality #1
(Gene Expression)

Modality #2
(Chromatin Accessibility)

Modality #3
(DNA Methylation or
3D chrom. conform.)

scNMT
dataset

(n = 579)
E4.5: 76 (12.73%)
E5.5: 104 (17.42%)
Day6.5: 146 (24.46%)
E7.5: 271 (45.39%)

(n = 647)
E4.5: 63 (9.73%)
E5.5: 89 (13.76%)
E6.5: 220 (34.00%)
E7.5: 175 (42.50%)

(n =725)
E4.5: 65 (8.96%)
E5.5: 91 (12.55%)
E6.5: 278 (38.34 %)
E7.5: 291 (40.14%)

sciOmics
dataset

(n = 1,058)
Day0: 489 (46.22%)
Day3: 127 (12.00%)
Day7: 78 (7.37%)
Day11: 145 (13.71%)
NPC: 219 (20.70%)

(n = 1,296)
Day0: 164 (12.65%)
Day3: 702 (54.17%)
Day7: 77 (5.94%)
Day11: 175 (13.50%)
NPC: 178 (13.73%)

(n =2,154)
Day0: 987 (45.82 %)
Day3: 435 (20.19 %)
Day7: 243 (11.28 %)
Day11: 164 (7.61 %)
NPC: 325 (15.09 %)

MEC
dataset

(n = 26,273)
Basal: 11,138 (42.39 %)
L-Sec (Prog): 7,683 (29.24 %)
L-HR: 3,439 (13.09 %)
L-Sec (Mat): 2,869 (10.92 %)
L-Sec (Prolif): 758 (2.89 %)
Stroma: 386 (1.47 %)

(n = 21,262)
Basal: 13,353 (62.80 %)
L-Sec (Prog): 3,343 (15.72 %)
L-HR: 2,624 (12.34 %)
L-Sec (Mat): 1,165 (5.48 %)
L-Sec (Prolif): 7 (0.033 %)
Stroma: 770 (3.62 %)

N/A

For SNARE-seq, we subsample the “H1” cluster at 75% and the “K562” cluster
at 50% in the gene expression and chromatin accessibility domains, respectively.

Single-Cell Datasets Without 1–1 Correspondences. We also align non-
co-assay datasets, containing separately sequenced single-cell -omic measure-
ments. Bonora et al. generated the first dataset we use, “sciOmics” [1]. This
dataset consists of sciRNA-seq, sciATAC-seq, and sciHiC measurements, cap-
turing gene expression, chromatin accessibility, and 3D chromosomal confor-
mation profiles of mouse embryonic stem cells undergoing differentiation. The
measurements were taken at five stages: days 0, 3, 7, 11, and as fully differenti-
ated neural progenitor cells (NPCs). The second non-co-assay dataset, “MEC,”
contains gene expression and chromatin accessibility measurements taken using
the 10X Chromium scRNA-seq and scATAC-seq technologies on mouse mam-
mary epithelial cells (MEC). Since each modality consists of separately sampled
cell populations, these contain disparate cell-type proportions across modalities
(Table 1).

3.2 Evaluation Metrics and Baseline Methods

Although most of the datasets lack 1–1 cell correspondences, we can evaluate
alignment using cell-type labels through label transfer accuracy (LTA) as in
[4,5,9]. This metric assesses the clustering of cell-types after alignment by train-
ing a kNN classifier on a training set (50% of the aligned data) and then evaluates
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its predictive accuracy on a test dataset (the other 50% of the aligned data).
Higher values correspond to better alignments, indicating that cells that belong
to the same cell-type are aligned close together after integration. We benchmark
our method against the current unsupervised single-cell multi-omic alignment
methods, Pamona [5], UnionCom [4], MMD-MA [14], bindSC [10], Seuratv4 [15],
and the previous version of SCOT, which performs alignment without the KL
term [9]. Pamona [5], as previously discussed, uses partial Gromov-Wasserstein
(GW) optimal transport to align single-cell datasets. UnionCom [4] performs
unsupervised topological alignment through a two-step procedure that first finds
a correspondence between the domains, considering both global and local geome-
tries with a hyperparameter to control the trade-off between them, and then
embeds them in a new shared space. MMD-MA [14] uses the maximum mean
discrepancy (MMD) measure to align and embed two datasets in a new space.
BindSC [10] requires the users to bring input datasets to the gene expression
feature space by constructing a gene activity score matrix for the epigenomic
domains, then finds a correspondence matrix between samples through bi-order
canonical correspondence analysis (bi-CCA), and jointly embeds the domains
into a new space. Finally, Seuratv4 [15] also requires gene activity score matri-
ces for epigenomic domains and then identifies correspondence anchors via CCA.
Based on these anchors, it imputes one genomic domain based from the other
domain and co-embeds them into a shared space using UMAP.

Since bindSC and Seurat v4 require the creation of gene activity score matri-
ces for epigenomic datasets, they might be more difficult to use with certain
sequencing domains. For instance, gene activity scoring is challenging for 3D
chromosomal conformation. Of all the selected baselines, only Pamona and
UnionCom can align more than two domains, so we only use them as base-
lines for experiments with multiple domains (M > 2). For each benchmark, we
define a hyperparameter grid of similar granularity and perform extensive tun-
ing (see Appendix). We report the alignment results with the best performing
hyperparameter combinations in Sect. 4.1.

4 Results

4.1 SCOTv2 Gives High-Quality Alignments Consistently Across
All Single-Datasets

We first present the alignment results for real-world co-assay datasets with sim-
ulated cell-type imbalance. The results we present are obtained by the best
performing hyperparameter combinations for all methods compared in this
study. Figure 2(A) visualizes the barycentric projection alignments performed by
SCOTv2 plotted as 2D PCA for SNARE-seq and scGEM datasets, respectively.
We use barycentric projection for visualizations because we set this to be the
default projection method of our method since it does not require additional hyper-
parameters. Here, we integrate datasets under three different settings described in
the previous section: (1) Balanced datasets (or “full datasets” with no subsam-
pling), (2) Missing cell-type in the epigenomic domains, and (3) Subsampled cells
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Fig. 2. Alignment results for simulations and balanced co-assay datasets.
A visualizes the barycentric projection alignment on SNARE-seq and scGEM for the
full co-assay datasets, simulations with a missing cell-type in the epigenomic domain,
and subsampled cell-types in both domains. B compares the alignment performance of
SCOTv2 to the benchmarks through LTA. For SCOTvs, Pamona, and UnionCom, we
report results on both embedding into a shared space (solid bars) and the barycentric
projection (dotted bars).

in both domains (one cell-type at 50% in the epigenomic domains and another cell-
type at 75% in the gene expression domains). We include alignment results on the
full datasets with 1–1 sample correspondences to ensure that SCOTv2 performs
well for balanced cases as well.

Qualitatively, we see that SCOTv2 preserves the cell-type annotations after
alignment for all three settings. In Fig. 2(B), we report the quantitative perfor-
mance of SCOTv2 and all the other state-of-the-art baselines using the Label
Transfer Accuracy (LTA) scores. MMD-MA, UnionCom, Seurat, and bindSC fail
to reliably align datasets with disproportionate cell-type representation across
modalities. While Pamona tends to yield high-quality alignments for cases with
cell-type disproportion, it fails to perform well on the SNARE-seq balanced
dataset as well as its subsampling simulation.
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Fig. 3. Alignment results for multi-modal (M > 2) and separately sequenced
datasets. A visualizes the alignment of scNMT-seq, sciOmics, and MEC. All datasets
have unequal sample sizes and cell-type proportions across domains. B benchmarks
alignment performance through LTA. As in Fig. 2, we report results both by embed-
ding (solid bars) and barycentric projection (dotted bars) for the methods that allow for
both. For scNMT-seq and sciOmics, which are three-modal datasets, we only demon-
strate results for SCOTv2, Pamona, and UnionCom, which can handle more than two
modalities.

Among all methods tested, SCOTv2 consistently gives more high-quality
alignments across different scenarios of cell-type representation. It also demon-
strates a ∼22% average increase in LTA over the previous version of the algo-
rithm (SCOT) when comparing the barycentric projection results and ∼27%
for the embedding results. UnionCom, Pamona, and SCOTv2 allow us to per-
form both barycentric projections and embed the single-cell domains in a lower-
dimensional space. Overall, we observe that embedding yields higher LTA val-
ues than barycentric projection. Since the barycentric projection projects one
domain onto another, the separation of the domain being projected onto (or
anchor domain) limits the clustering separation after alignment. In contrast, the
embedding utilizes t-SNE to enhance cell-type separation, allowing for better-
separated clusters after alignment.

Next, we report the alignment performance of SCOTv2 on single-cell datasets
with disparities in cell-type representation due to sampling during experiments.
We include scNMT, a co-assay with varying levels of cells across domains due to
quality control procedures, along with sciOmics and MEC for this experiment.
Note that scNMT and sciOmics have three different modalities, and hence, we
can only report the baselines for methods that can align datasets with M > 2.
Figure 3(A) presents the qualitative alignment results for SCOTv2 with PCA.
SCOTv2 performs well on all three datasets, including the ones with three modal-
ities. The LTA scores in Fig. 3(B) demonstrate that SCOTv2 consistently yields
the best alignments on the three real-world datasets. These results highlight its



Aligning Single-Cell Multi-omics Datasets with Disproportionate Cell-Types 15

ability to reliably integrate separately sampled with disproportionate cell-type
representation and multiple (M > 2) modalities simultaneously.

4.2 Hyperparameter Self-tuning Aligns Well Without Depending
on Orthogonal Correspondence Information

The benchmarking results above present the alignment performance of each algo-
rithm at its best hyperparameter setting; however, users may not have 1–1 corre-
spondences to validate alignments, for the purpose of hyperparameter selection,
in real-world applications. While users may have access to cell-type labels, infer-
ring cell-types is highly difficult in specific modalities of single-cell sequencing,
such as 3D chromatin conformation. Additionally, different sequencing modali-
ties might disagree on cell-type clustering (as is often the case with scRNA-seq
and scATAC-seq datasets). In these situations, users might not have sufficient
validation data for tuning hyperparameters.

Table 2. Alignment performance benchmarking in the fully unsupervised
setting. We run SCOTv2 and SCOT using their heuristics to approximately self-tune
hyperparameters. We use default parameters for other methods due to a lack of similar
procedures for unsupervised self-tuning.

SNARE
(full
dataset)

SNARE
(missing
cell-type)

SNARE
(subsam.
dataset)

scGEM
(full
dataset)

scGEM
(missing
cell-type)

scGEM
(subsam.
dataset)

scNMT sciOmics MEC

SCOTv2 0.826 0.653 0.751 0.509 0.521 0.415 0.727 0.537 0.584

SCOT 0.852 0.572 0.588 0.423 0.323 0.314 N/A N/A 0.466

Pamona 0.554 0.423 0.419 0.385 0.414 0.308 0.588 0.329 0.417

MMD-MA 0.523 0.407 0.431 0.360 0.296 0.287 N/A N/A 0.233

UnionCom 0.411 0.406 0.422 0.332 0.315 0.276 0.474 0.306 0.349

bindSC 0.713 0.584 0.475 0.387 0.254 0.262 N/A N/A 0.412

Seurat 0.428 0.517 0.503 0.408 0.377 0.329 N/A N/A 0.387

We design a heuristic process (described in Sect. 2.4), as done previously for
SCOT, that allows SCOTv2 to select hyperparameters in a completely unsuper-
vised manner. Other alignment methods do not provide an unsupervised hyper-
parameter tuning procedure. Therefore, without validation data, a user would
have to use the default parameters. In Table 2, we compare alignment perfor-
mance for our heuristic against the default parameters of other methods. While
our heuristic does not always yield the optimal hyperparameter combination,
it does give more favorable results over the default settings of the other meth-
ods. Thus, we recommend using it in cases that lack orthogonal information for
hyperparameter tuning.
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4.3 SCOTv2 Scales Well with Increasing Number of Samples
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Fig. 4. Runtimes for SCOTv2, SCOT,
Pamona, UnionCom, and MMD-MA as
the number of samples increases.

We compare the runtime of SCOTv2 with
the top performing methods: Pamona,
MMD-MA, UnionCom, and the previous
version of SCOT by subsampling various
numbers of cells from the MEC dataset.
MMD-MA, UnionCom, and SCOTv2
have GPU versions, while Pamona and
SCOT only have CPU versions. We run
MMD-MA and UnionCom on a single
NVIDIA GTX 1080ti GPU with VRAM
of 11 GB and Pamona and SCOT on Intel
Xeon e5-2670 CPU with 16 GB memory.
We also run SCOTv2 on the same CPU to
give comparable results to Pamona’s run-
times. Figure 4 depicts that SCOT, MMD-MA, Pamona, and SCOTv2 show
similar computational scaling.

5 Discussion

We present SCOTv2, an improved unsupervised alignment algorithm for multi-
omics single-cell alignment. It extends the alignment capabilities of SCOT to
datasets with cell-type representation disproportions across different sequencing
measurements. It also performs alignment for single-cell datasets with more than
two measurements (M > 2). Experiments on real-world subsampled co-assay
datasets and separately sampled and sequenced single-cell datasets demonstrate
that SCOTv2 reliably yields high-quality alignments for a wide range of cell-
type disproportions without compromising its computational scalability. Fur-
thermore, SCOTv2’s flexible marginal constraints enable it to consistently give
good alignments results for both balanced and unbalanced single-cell datasets. In
addition to effectively handling cell-type imbalances and multi-omics alignment,
SCOTv2 can self-tune its hyperparameters making it applicable in complete
unsupervised settings. Therefore, SCOTv2 offers a convenient way to align mul-
tiple single-cell measurements without requiring any orthogonal correspondence
information.

In this second iteration of SCOT, we have utilized the coupling matrix in
a new way to find a latent embedding space. While this dimension reduction
improves cell-type separation, using the coupling matrix directly may offer even
more insights into interactions between the aligned domains. Future work will
consider how to use the probabilities in the coupling matrix directly for down-
stream analysis like improved clustering and pseudo-time inference. Though
SCOTv2 has runtimes that scale with other methods, it requires O(n2) memory
storage for the distance matrices, which may be an issue for especially large
datasets. One way to address this limitation would be to develop a procedure
to align a representative subset of each domain that can be extended to the
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entire dataset. Therefore, we will explore this direction to further improve the
scalability of SCOTv2.

Appendix

Embedding Method Details

The full details of t-SNE can be found in [13]. For each domain m, we compute
Pm, an nm × nm cell-to-cell transition matrix; each entry Pm

j|i is the conditional
probability that a data point xm

i would pick xm
j as its neighbor when chosen

according a Gaussian distribution centered at xm
i :

Pm
j|i =

exp(−||xm
i − xm

j ||2/2σ2
i )

∑
k �=i exp(−||xm

i − xm
k ||2/2σ2

i )
. (9)

The bandwidth σi is chosen according to the density of the data points through
a binary search for the value of σi that achieves the user-supplied perplexity
value. Pm is computed by averaging Pm

i|j and Pm
j|i to give more weight to outlier

points:

Pm
ij =

Pm
i|j + Pm

j|i
2nm

(10)

Then, to jointly embed all domains through the anchor domain X1, the
optimization problem is:

min
X1′ ,...,XM′

M∑

m=1

KL(Pm||Qm′
) + β

M∑

m=2

||X1′ − Xm′
(Γm)T ||2F , (11)

where Xm′
is the lower dimensional embedding of Xm, Pm is defined as in Eq. 9,

and Γm is the coupling matrix from solving Eq. 6 for m = 1, 2, . . . ,M , Xm′
. The

probability matrix Qm is computed through a Student-t distribution with one
degree of freedom:

Qm′
ij =

(1 + ||xm′
i − xm′

j ||)−1

∑
k �=l 1 + (||xm′

k − xm′
l ||)−1

. (12)

The intuition behind the cost KL(Pm||Qm′
) is very similar to that of GW; if two

points have a high transition probability in the original space, then they should
also have a high transition probability in the latent space.

Hyperparameter Tuning Procedure Details

For each alignment method, we define a grid of hyperparameters and choose
the best performing combination for each experiment. If methods share similar
hyperparameters in their formulation, we keep the range defined for these con-
sistent across all algorithms. We refer to the publication and the code repository
for each method to choose a hyperparameter ranges whenever possible.
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For Pamona, we search the number of neighbors in the cell neighborhood
graphs, k ∈ {20, 30, . . . , 150}, the entropic regularization coefficient, ε ∈ {5e−4,
3e−4, 1e−4, 7e−3, 5e−3, . . . , 1e−2}, geometry preservation trade-off coeffi-
cient, λ ∈ {0.1, 0.5, 1, 5, 10}, and lastly, embedding dimensionality, p ∈
{3, 4, 5, 10, 30, 32}, the output dimension for embedding. For UnionCom, we
search the trade-off parameter β ∈ {0.1, 1, 5, 10, 15, 20}, the regularization coef-
ficient ρ ∈ {0, 0.1, 1, 5, 10, 15, 20}, the maximum neighborhood size permitted
in the neighborhood graphs, kmax ∈ {40, 100, 150}, and embedding dimen-
sionality p ∈ {3, 4, 5, 10, 30, 32}. For MMD-MA:, we tune the weights λ1 and
λ2 ∈ {1e−2, 5e−3, 1e−3, 5e−4, . . . , 1e−9}, and the embedding dimensionality,
p ∈ {3, 4, 5, 10, 30, 32}. For bindSC, we choose the coefficient that assigns weight
to the initial gene activity matrix α ∈ {0, 0.1, 0.2, . . . 0.9}, the coefficient that
assigns weight factor to multi-objective function λ ∈ {0.1, 0.2, . . . , 0.9}, and the
number of canonical vectors for the embdedding space K ∈ {3, 4, 5, 10, 30, 32}.
Lastly, for Seuratv4, we tune the number of neighbors to consider when finding
anchors, k ∈ {5, 10, 15, 20}, co-embedding dimensionality, p ∈ {3, 4, 5, 10, 30, 32}
and the choice of the reference and anchor domains when finding anchors.

Algorithm 3: Pseudocode for Unbalanced GW Optimal Transport
(UGWOT)

Input: Marginal probabilities p1 and p2, intra-domain distance matrices D1

and D2, relaxation coefficient ρ, regularization coefficient ε
Initialize the coupling matrix: Γ = π = p1 ⊗ p2

while Γ not converged do
Γ(mass) ← ∑

i,j Γi,j ε̃ ← Γ(mass)ε, ρ̃ ← Γ(mass)ρ
// Compute cost C:
Γ 1 ← Γ1n2 , Γ 2 ← Γ T1n1

A ← (D1)◦2Γ 1, B ← (D2)◦2Γ 2

D ← D1ΓD2

E ← ε
∑

ij log

(
Γi,j

p1
i p2

j

)

Γi,j + ρ

(
∑

i log
(

Γ1
i

p1
i

)
Γ 1

i +
∑

j log

(
Γ2
j

p2
j

)

Γ 2
j

)

C ← A + B − 2D + E
while (u, v) not converged do

u ← − ε̃ρ̃
ε̃+ρ̃

log
[∑

i,j exp(vj − Cij)/ε̃ + log p2
]

v ← − ε̃ρ̃
ε̃+ρ̃

log
[∑

i,j exp(ui − Cij)/ε̃ + log p1
]

// Update: πij ← exp [ui + vj − Cij ] p
1
i p

2
j

// Rescale: π ← √
Γ(mass)/π(mass)π and set Γ ← π

Return: Γ
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11. Liero, M., Mielke, A., Savaré, G.: Optimal entropy-transport problems and a new
hellinger-kantorovich distance between positive measures. Invent. Math. 211(3),
969–1117 (2018)

12. Liu, J., Huang, Y., Singh, R., Vert, J.P., Noble, W.S.: Jointly embedding multiple
single-cell omics measurements. BioRxiv, p. 644310 (2019)

13. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn.
Res. 9(11) (2008)

14. Singh, R., Demetci, P., Bonora, G., Ramani, V., Lee, C., Fang, H., et al.: Unsuper-
vised manifold alignment for single-cell multi-omics data. In: Proceedings of the
11th ACM International Conference on Bioinformatics, Computational Biology
and Health Informatics, pp. 1–10 (2020)

15. Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., III, W.M.M.,
et al.: Comprehensive integration of single-cell data. Cell 77(7), 1888–1902 (2019)
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Abstract. The emergence of single-cell co-assays enables us to learn
to translate between single-cell modalities, potentially offering valuable
insights from datasets where only one modality is available. However, the
sparsity of single-cell measurements and the limited number of cells mea-
sured in typical co-assay datasets impedes the power of cross-modality
translation. Here, we propose Polarbear, a semi-supervised translation
framework to predict cross-modality profiles that is trained using a com-
bination of co-assay data and traditional “single-assay” data. Polar-
bear uses single-assay and co-assay data to train an autoencoder for
each modality and then uses just the co-assay data to train a transla-
tor between the embedded representations learned by the autoencoders.
With this approach, Polarbear is able to translate between modali-
ties with improved accuracy relative to state-of-the-art translation tech-
niques. As an added benefit of the training procedure, we show that
Polarbear also produces a matching of cells across modalities.

Keywords: Single cell · Cross-modality translation · Cross-modality
alignment · Semi-supervised learning

1 Introduction

Single-cell measurements are immensely valuable for quantifying the variance
of certain forms of molecular activity within the cell and for identifying and
characterizing cell subpopulations within complex tissues. However, a weakness
of most single-cell assays is that only a single form of activity can be measured
for each cell.

Consequently, a variety of machine learning methods have been proposed to
translate between different types of single-cell measurements [1–6]. Typically, co-
assay data is used to train such models in a fully supervised fashion. However, in
practice co-assay measurements are often more challenging to produce and lower
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throughput than standard single-cell measurements. Furthermore, co-assays have
only been developed relatively recently and thus are less abundant than single-
assay data. Although the recently released Cobolt [7] and MultiVI [6] meth-
ods incorporate single-assay data into model training, neither directly assessed
whether adding single-assay data from unrelated public datasets improves cross-
modality translation. We hypothesize that training a translation model using
both labeled data (co-assay data) and unlabeled data (single-assay data) from
unrelated studies will result in more accurate translation performance than train-
ing from co-assay data alone.

Fig. 1. Polarbear’s semi-supervised framework. A In stage 1, Polarbear trains
an autoencoder for each data modality, using both single-assay and co-assay data. B
In stage 2, the encoder from one modality is stitched together with a decoder from the
other modality (and vice versa), and the translation layers are trained in a supervised
fashion using co-assay data.

Here we propose Polarbear, a semi-supervised approach that learns to trans-
late between single-cell modalities by leveraging both single-assay and co-assay
data. We focus on translation between scRNA-seq and scATAC-seq; i.e., given
a scRNA-seq profile of a cell, Polarbear will produce as output the scATAC-seq
profile of that same cell, and vice-versa. Polarbear is applicable to several types of
co-assays that measure expression and chromatin accessibility within single cells,
including CAR-seq [8], SNARE-seq [9], and Paired-seq [10]. Polarbear operates in
two phases (Fig. 1). In the first phase, we train two deep variational autoencoder
(VAE) neural networks that learn, in an unsupervised fashion, to reduce each
given type of data to a latent representation (the encoder) and then expand that
representation to recover the original data (the decoder). (V)AEs have already
been successfully applied to scRNA-seq and scATAC-seq data, primarily for the
purpose of de-noising [11–17]. Polarbear trains one VAE for each type of data,
while taking into consideration sequencing depth and batch factors [15,16]. In
phase two, we stitch together the encoder for one data type with the decoder of
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a second data type, interposing between them a single, fully connected “trans-
lator” layer. During this phase, the parameters of the encoder and decoder are
frozen, and the translator parameters are trained in a supervised fashion using
co-assay data. Repeating this procedure in reverse, Polarbear allows for bidirec-
tional translation between scRNA-seq and scATAC-seq data. In principle, our
method can also be applied to co-assays operating on other data modalities.

In order to evaluate the performance of Polarbear, we propose a set of evalu-
ation metrics for single-cell translation tasks, with the aim of teasing out several
important aspects of translation performance. A drawback of current methods
lies in the choice of evaluation metrics used for cross-modality profile prediction.
Many previous methods report the correlation (for scRNA-seq) or area under
the receiver operating characteristic curve (AUROC, for scATAC-seq) between
the overall observed and predicted profiles. However, these performance mea-
sures can be strongly driven by the average profiles across cells, failing to reflect
whether the prediction method accurately captures cell-to-cell variation. While
MultiVI systematically demonstrates that the proposed method can predict dif-
ferential expression between cell clusters or cell types, it does not address whether
the model accurately captures differences among single cells.

Using our expanded set of performance measures, we demonstrate that Polar-
bear’s translation performance improves when we add single-assay data to the
training procedure in the first phase. We also show that Polarbear outperforms
BABEL [2], a state-of-the-art translation method, using several different perfor-
mance measures. Finally, we demonstrate that Polarbear can be used to accu-
rately match cells between modalities. Overall, our work illustrates the utility of
exploiting single-assay data to aid in the prediction of cross-modality profiles.

1.1 Related Work

Several previous methods have been developed for cross-modality prediction
(Table 1). TotalVI builds a VAE that takes as input the concatenation of gene
and protein expression profiles from the CITE-seq co-assay. The autoencoder
learns to impute missing protein expression profiles based on scRNA-seq pro-
files [1]. BABEL translates between single-cell modalities by joining two autoen-
coders, one from each data domain [2]. The scMM method uses a mixture-of-
experts multimodal deep generative model to learn a joint embedding between
modalities and predict missing modalities [3]. Seurat predicts the missing domain
profile of a cell by identifying neighboring cells in co-assay data and then com-
puting the average profile of those neighbor cells in the second modality [4].
Multigrate jointly embeds data from two or more modalities and uses the joint
embedding to infer profiles in each domain [5]. MultiVI embeds scRNA-seq and
scATAC-seq profiles into a shared space by joining two VAEs. The trained model
is then able to take single-assay data as input and predict the missing modal-
ity [6].

Polarbear differs from previous translation models in several ways. First,
Polarbear uses a stepwise optimization approach to first learn embeddings with
both single and co-assay data and then translate between embeddings across
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Table 1. Method comparison

totalVI BABEL scMM Seurat Multigrate MultiVI Polarbear

scRNA → scATAC � � � �
scATAC → scRNA � � � �
Batch correction � � � � � �
Uses single-assay data � �
Neural network model � � � � � �

Uses a joint or shared embedding for prediction � � � � �
Translates between embeddings �

Peak-wise evaluation �∗ �
Gene-wise evaluation �∗ �
Cluster matching evaluation � � � �
Cell matching evaluation � �

∗Evaluation is done across cell types per-peak or per-gene, rather than across individual
cells.

modalities based on co-assays, whereas other methods optimize the entire model
jointly with a weighted sum of losses for each task. The separate optimization
steps make Polarbear less likely to be biased toward optimization of a specific
task and requires less hyperparameter tuning. Second, previous models generate
predictions based on a joint or shared embedding of both modalities. Polarbear
does not require a shared or joint embedding; instead, it adds a translation
layer between the embeddings across modalities based on co-assay data. Thus
Polarbear is more flexible at leveraging single-assay data and incorporating pre-
trained models from new data modalities.

More importantly, Polarbear is able to use single-assay data collected from
public datasets to improve its translation performance. Although MultiVI
can learn from single-assay data, the question of whether adding single-assay
data from unrelated datasets improves translation performance has not been
addressed.

In this study, we choose to compare our method with BABEL, for several
reasons. First, BABEL directly addresses the task of translating between scRNA-
seq and scATAC-seq, and it has been applied to the SNARE-seq co-assay data
we use in this study, so it is most likely we can make a fair comparison with
BABEL. We attempted to run multiVI, which was published on bioRxiv very
recently, but it ran out of memory when trained on the SNARE-seq data. Second,
because the focus and novelty of Polarbear is the semi-supervised framework
that leverages single-assay data from unrelated studies, instead of comparing
extensively with current methods that are not specifically designed for this task,
we demonstrate the power of our semi-supervised framework leveraging single-
assay data (“Polarbear”) by comparing it with a Polarbear model that is only
trained on co-assay data (“Polarbear co-assay”). We foresee that Polarbear’s
semi-supervised framework could be adapted to other existing architectures to
boost their translation performance.
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2 Methods

2.1 Polarbear Model

Polarbear’s autoencoder model adopts ideas from scVI and peakVI [15,16], which
take into account sequencing depth and batch factors. Specifically, Polarbear has
the following architecture (Fig. 2). One of Polarbear’s encoders takes gene expres-
sion raw counts as input and assumes they follow zero-inflated negative binomial
(ZINB) distributions. The other encoder takes in binarized scATAC counts and
assumes they follow Bernoulli distributions. To save memory for the scATAC parts
of the model, we only allow for within-chromosome connections in the first two
encoder layers and the last two decoder layers. We first specify the latent dimen-
sion of each autoencoder, and then we define the dimension of each hidden layer
as half of the geometric mean between the input and latent dimensions. To cor-
rect for batch effects, we one-hot encode batch factors and concatenate them to
the input and embedding layers. To correct for sequencing depth differences across
cells, Polarbear includes a sequencing-depth factor as the sum of counts per cell,
which is used to calculate the ZINB loss (for scRNA-seq) and binary cross entropy
loss (for scATAC-seq), together with other distributional variables learned from
the embedding layers in the corresponding modality. The loss of each VAE is the
sum of the reconstruction loss and a weighted KL divergence loss.

After the autoencoders in both domains are optimized, we learn a single trans-
lation layer between the embedding layers of the scRNA-seq and scATAC-seq,
supervised by co-assay data, to minimize the translation loss on each modality.

In both translation directions, since the distributional variables are indepen-
dent of sequencing depth, the size-normalized expectations of the distributions
(i.e. the “norm estimation” in Fig. 2) can be directly used for subsequent tasks
such as differential expression analysis. Because the true scATAC-seq profiles
used for evaluation are unnormalized binarized counts, we further generate an
“unnormalized” prediction so that we can evaluate on the true profiles and make
a fair comparison to methods that do not take into account sequencing depth.
Since there is a clear correlation between the scATAC-seq and scRNA-seq depth
factor when both modalities are observed, which may capture both technical
(e.g. batch effect) and biological (e.g. cell cycle) effects, we predict the scATAC-
seq depth factor in the translation task based on the known scRNA-seq profile.
Specifically, we use ridge regression for this prediction task, with a penalty term
determined by cross-validation within the training set. Finally, we multiply the
learned sequencing depth with the normalized predictions to generate unnormal-
ized predictions in the test set.

2.2 Hyperparameter Tuning

The Polarbear neural network architecture has two primary hyperparameters:
the latent dimensions of the autoencoders, and the weight of the KL divergence
term in each VAE. In this study, we use the validation set to choose hyperpa-
rameters, selecting the number of latent dimensions ({10, 25, 50}) and the KL



Semi-supervised Single-Cell Cross-modality Translation Using Polarbear 25

divergence weight ({0, 0.5, 1, 2}). In the random test set setup, we randomly split
the SNARE-seq dataset, assigning 60% of cells to the training set, 20% to the
validation set, and 20% to the test set. In the unseen cell type scenario, we use
the same validation and test set as BABEL, where the validation and test set
are the largest two cell clusters based on the SNARE-seq scRNA-seq dataset.
The rest of cells are used as the training set.

We downloaded BABEL’s scripts and followed the instructions to generate
predictions on SNARE-seq [2]. We verified that we are able to reproduce the
performance reported in the paper. In all scenarios, we make sure that BABEL’s
train/validation/test splits are the same as Polarbear’s. BABEL has proposed
a set of default parameters (latent dimension: 16, weight factor: 1.13); however,
for a fair comparison we tune the following 2D grid of hyperparameters: number
of latent dimensions in {10, 16, 25, 50} and weight factor to balance scATAC loss
in {0.2, 1.33, 5}. We then select BABEL’s best performing model based on each
task’s performance on the validation set.

2.3 Performance Measures

In designing performance measures for cross-modality translation, we tried to
place ourselves in the shoes of a prospective end user of our predictive model.
Imagine a scenario in which we are interested in leveraging an existing scRNA-
seq dataset to predict chromatin accessibility in a particular biological system,
applying our trained model to the scRNA-seq matrix to yield a predicted matrix
of scATAC values. Given the predicted peak activations, we can imagine trying
to solve two different problems.

In the first setting, we begin by identifying cell types using the original
scRNA-seq data or identifying cell groups based on the experimental design
(e.g. disease and control groups). We may then be interested in the pattern of
predicted chromatin peak activations within each cell type or group. In this set-
ting, a classifier-based measure such as AUPR or AUROC, computed separately
for each peak, would accurately capture the per-peak predictive behavior across
single cells and thus be indicative of per-peak predictive power across clusters
or groups. Each of these two measures has advantages. The AUPR emphasizes
enriching the top of the ranked list of predictions with positives. On the other
hand, AUROC explicitly corrects for differences in “skew” (i.e., differences in the
number of non-zero values) for each peak. To correct for the skew in AUPR mea-
surement toward peaks with large positive proportions (PP defined as #(cells
with peak expressed)/#cells), we calculate AUPRnorm = (AUPR-PP)/(1-PP),
where 0 represents the behavior or a random predictor and 1 indicates perfect
predictor. In this work, we use AUROC and AUPRnorm as performance mea-
surements.

In the second setting, we can use the profile of predicted peak activations
across each cell to match scRNA-seq profiles to corresponding scATAC-seq pro-
files. In this setting, we identify these matches based on Euclidean distance.
We want to ensure that each predicted profile’s nearest neighbor is the correct
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match; hence, we can use the fraction of samples closer than the true match
(FOSCTTM) as a performance measure [18].

Based on these scenarios, we report here the average per-peak AUROC and
AUPRnorm, as well as the FOSCTTM. Similarly, when predicting gene expres-
sion from scATAC-seq, we report the average per-gene Pearson correlation (on
log-scaled expression) and the FOSCTTM. We do not foresee a scenario in which
the overall “flattened” performance of the model, in which we treat all values
in the matrix as a single list and compute a single score (Pearson correlation,
MSE, AUPR, or AUROC), will be of primary interest to an end user.

2.4 Single-Cell Data Pre-processing

Table 2. Data sets

Data set Cells Assay Platform

SNARE-seq ∼10k Co-assay Illumina HiSeq 2500/4000

Li et al. ∼800k snATAC-seq Illumina HiSeq 2500

Fang et al. ∼55k scATAC-seq Illumina HiSeq 2500

Zeisel et al. ∼160k scRNA-seq 10× Genomics

For co-assay data, we use SNARE-seq data from mouse adult brains (∼10k cells)
[9]. We filter out peaks that occur in fewer than 5 cells or more than 10% of cells,
and we filter out genes that are expressed in fewer than 200 cells or more than
2500 cells, as in the original SNARE-seq paper. To learn robust representations
of each domain, we first train the autoencoders using the SNARE-seq data com-
bined with publicly available scRNA-seq and scATAC-seq profiles from adult
mouse brains [19–21]. We collected scRNA-seq profiles from ∼160k cells and
scATAC-seq profiles from ∼855k cells, and we randomly downsampled the latter
dataset to ∼170k cells for use in training (Table 2).

For scRNA profiles, we use SNARE-seq genes as a reference, map genes in
the other datasets to the gene symbols in the SNARE-seq data, and further filter
out non-protein-coding genes based on Gencode annotations [22]. We remove sex
chromosome genes for consistency across datasets. In this way, 17,271 genes are
maintained for input to Polarbear. For the scATAC profile, we first lift all peaks
to mm10 [23]. Because the ATAC-seq peak locations vary across datasets, we
use the SNARE-seq peaks as a reference and map features from other datasets
to SNARE-seq peaks if there is an overlap of 1 bp or more. Peaks from sex
chromosomes are again filtered out. In the end, 220,526 peaks are input to the
Polarbear model.
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2.5 Cluster-Level Analysis

A common task in single-cell analysis is to cluster the cells according to the sim-
ilarity of their scRNA-seq or scATAC-seq profiles; accordingly, a good translator
should be able to produce predicted profiles that yield clusters similar to the
clusters produced by the observed data.

An important task for our predicted profile is to be able to predict cell-type
specific marker genes. To evaluate this, we use the clustering analysis performed
in the original SNARE-seq study, which yielded an expert-curated list of marker
genes for each cell cluster [9]. This analysis also identified genes and peaks that
are significantly highly expressed in each cell type. To calculate whether a gene
or a peak is specifically expressed in a specific cell type, we label cells in the
corresponding cell type as positive and cells in other cell types as negative.
We then calculate the AUROC of the predicted gene/peak-wise profile relative
to these labels. A high AUROC score suggests the gene/peak is specifically
expressed in the corresponding cell type.

To calculate differentially expressed genes for a cell type, we perform a one-
sided Wilcoxon rank-sum test between the expression pattern in the correspond-
ing cell type and that in unrelated cell types, and we control the FDR using the
Benjamini-Hochberg procedure. To validate differential expression predictions,
we label differentially expressed genes derived from the true profile (FDR ≤
0.01) as positive and other genes as negative, and we calculate a precision-recall
curve using the predicted differential expression p-value.

3 Results

3.1 Polarbear Accurately Translates Between Single-Cell Data
Domains

We begin by testing Polarbear’s ability to translate between scRNA and scATAC
profiles in a SNARE-seq adult mouse brain co-assay dataset. To learn robust rep-
resentations of each domain, we train the autoencoders with large-scale, publicly
available scRNA and scATAC single-assay profiles, also derived from adult mouse
brains (see Sect. 2.4). We then train Polarbear’s translator layer in a supervised
fashion using a training set of 80% of the cells from the SNARE-seq dataset,
evaluating translation performance on the test set comprised of the remaining
20%.

To evaluate the performance of our model, we measure how well the pre-
dicted scRNA-seq profiles allow us to recapitulate gene expression differences
across cells. To do this, we calculate the gene-wise correlation between the pre-
dicted profile and the true normalized profile [24]. In this analysis, Polarbear
outperforms BABEL, yielding an improved correlation for 1067 out of 1205 genes
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Fig. 2. Polarbear’s semi-supervised framework and applications. Left: Polar-
bear’s semi-supervised framework. In Phase 1, Polarbear trains a variational autoen-
coder for each data modality, using both single-assay and co-assay data. In Phase
2, the encoder from one modality is stitched together with a decoder from the other
modality (and vice versa), and the translation layers are trained in a supervised fashion
using co-assay data. Specifically, the VAEs take into account sequencing depth (D) and
batch effects (B). The scRNA-seq VAE assumes that counts are drawn from a zero-
inflated negative binomial distribution, and the scATAC-seq VAE assumes a Bernoulli
distribution. Right: Sampled applications of Polarbear. Polarbear can predict missing
domain profiles based on the known domain, capturing individual cell-level differences
and group-level signatures in the missing domain. Furthermore, Polarbear can match
single cell profiles across modalities.
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Fig. 3. Cross-modality prediction on the random test set. A,B: Gene-wise
correlation between the true and predicted profile, comparing Polarbear with BABEL
(A) or with Polarbear co-assay (B), only showing genes that are differentially expressed
across cell types. BABEL performance is reported based on the best performing model
in each task after a hyperparameter grid search. Each dot is a gene, and numbers
indicate the number of dots above and below the diagonal line. P-values are calculated
by one-sided Wilcoxon rank-sum test. “Polarbear co-assay” only uses co-assay data
to train the model. C,D: Peak-wise AUROC, comparing Polarbear with BABEL (C)
or with Polarbear co-assay (D). Each dot represents a peak, only peaks differentially
expressed across cell types are shown. E,F: Gene-wise AUROC. For each marker gene,
we calculate the AUROC of its prediction to be higher in cells in corresponding cell
type compared to unrelated ones. Polarbear with BABEL (E) or with Polarbear co-
assay (F).

(Wilcoxon rank-sum test p-value 4.51×10−33, Fig. 3A, Table 3). We also observe
that Polarbear strongly outperforms a Polarbear variant (“Polarbear co-assay”)
that is trained only with co-assay data (Fig. 3B). For translation in the opposite
direction (scRNA-seq → scATAC-seq), we calculate the peak-wise area under
the receiver operating characteristic curve (AUROC) of the predicted profile rel-
ative to the observed, binarized scATAC-seq profile. Polarbear outperforms both
competing methods in this scenario (Fig. 3C–D, Fig. 6A–B, Table 3).
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Polearbear will be particularly useful if its predictions can be used to derive
biological insights, such as predicting genes specific to each cell ltype. Accord-
ingly, we use a predefined sets of cell-type signature genes that are annotated
in the SNARE-seq study [9], as a gold standard, and ask whether Polarbear’s
predictions allow us to rediscover these gene to the corresponding cell types.
To do so, we calculate the AUROC for a gene’s predicted expression in a one-
vs-all fashion for one cell type versus all others. Polarbear is able to predict
the gold standard cell type markers correctly with a median AUROC of 0.936.
This performance is significantly better than both BABEL (median AUROC =
0.869; Fig. 3E) and the co-assay variant of Polarbear (median AUROC = 0.910;
Fig. 3F).

Polarbear also predicts cell-type specific genes that are not captured based
on the true scRNA-seq profiles. Here we focus on the microglia cell type, which
consists of only 91 cells in the SNARE-seq dataset. Based on scATAC-seq pro-
files in the test set, we predict microglia specific genes by calculating AUROC for
each gene’s predicted expression in microglia cells against all other cells. Based
on Polarbear’s prediction, the Sall1 gene is specifically expressed in microglia
(AUROC = 0.851), but this gene is not highly expressed in microglia based
on the observed scRNA-seq profiles (AUROC = 0.498). Interestingly, Sall1 has
been found previously to be a microglia signature gene, and it encodes the tran-
scription factor, Sall1, that maintains microglia identity [25].

Table 3. Translation performance represented by median and interquartile range
(IQR).

Test set Evaluation metric BABEL Polarbear co-assay Polarbear

Median (IQR) Median (IQR) Median (IQR)

Random 20% Gene-wise correlation 0.131 (0.141) 0.146 (0.147) 0.195 (0.185)

Peak-wise AUROC 0.636 (0.0872) 0.647 (0.0839) 0.663 (0.0845)

Peak-wise AUPRnorm 0.0136 (0.0153) 0.0156 (0.0167) 0.0190 (0.0199)

Unseen cell type Gene-wise correlation 0.0701 (0.0667) 0.0561 (0.0985) 0.122 (0.0999)

Peak-wise AUROC 0.560 (0.0871) 0.564 (0.0784) 0.592 (0.0876)

Peak-wise AUPRnorm 0.00795 (0.0128) 0.00896 (0.0133) 0.0132 (0.0183)

3.2 Polarbear Generalizes to New Cell Types

Because the amount of available co-assay data is limited relative to single-assay
data, a common challenge for models such as Polarbear is to translate between
modalities in cell types for which no training data is available. The authors of
the BABEL model simulated this scenario by creating a train/test split in which
an entire SNARE-seq cell cluster is held out for testing. Accordingly, we also
investigate this setting, using BABEL’s train/test split.
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Fig. 4. Cross-modality prediction on an unseen cell type. A,B: Gene-wise cor-
relation between the true and predicted profile, comparing Polarbear with BABEL (A)
or with Polarbear co-assay (B). Each dot is a gene, and numbers indicate the number of
dots above and below the diagonal line. P-values are calculated by one-sided Wilcoxon
rank-sum test. “Polarbear co-assay” only uses co-assay data to train the model. C,D:
Peak-wise AUROC, comparing Polarbear with BABEL (C) or with Polarbear co-assay
(D). E: Precision-recall curve on prioritizing the true set of differentially expressed
genes based on differential expression pattern on the predicted profiles.

First, we investigate whether Polarbear predictions can capture variations
within this unseen population. Because the scRNA-seq and scATAC-seq profiles
within a cell type are expected to be relatively homogeneous, successfully trans-
lating across modalities in this scenario requires the model to capture differences
between individual cells, not just differences across cell types. We observe that
Polarbear consistently outperforms BABEL and Polarbear co-assay in transla-
tion in both directions, suggesting that Polarbear predictions are able to recapit-
ulate meaningful variations across cells within a cell type (Fig. 4A–D, Fig. 6C–D,
Table 3).

Next, we test Polarbear’s ability to predict gene expression signatures of the
unseen cell population, based only on the scATAC-seq profiles. For this step,
we derive the gene signatures for the unseen cell type by identifying genes with
significantly higher expression in the unseen cell type compared to cells in the
SNARE-seq training set (see Sect. 2.5) We then calculate a precision-recall curve
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relative to these cell labels, ranking genes by their differential expression from the
predicted profiles. Polarbear’s predictions are able to recapitulate differentially
expressed genes, significantly outperforming other methods (Fig. 4E). These
results suggest that Polarbear can correctly predict intra- and inter- cell type
variations, even for cell types for which no co-assay data is available to train the
model.

3.3 Polarbear Can Match Corresponding Cells Across Modalities
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Fig. 5. Evaluation of cross-modality matching. The FOSCTTM score for Polar-
bear (solid line), Polarbear trained only with co-assay data (dashed line), as well as
BABEL (dotted line). Cells are sorted based on FOSCTTM score for each method.
A,B: Matching performance on the random 20% test set, using either scRNA-seq (A)
or scATAC-seq (B) as queries. C,D: Matching performance on the unseen cell type,
using either scRNA-seq (C) or scATAC-seq (D) as queries.

Polarbear can also be used to match corresponding cells from different modali-
ties. Given unpaired single-assay profiles in each modality, we can use Polarbear
to match those cells between modalities, supervised by the co-assay data. To
simulate this setting, we project the scRNA-seq and scATAC-seq profiles in the
held out test set to the bottleneck layer of the Polarbear model, and we match
cells from different modalities in a greedy fashion based on Euclidean distance in
the latent space. To assess the matching performance, we calculate for each cell
the fraction of samples closer than the true match (FOSCTTM) [18]. Polarbear
achieves a lower FOSCTTM score than the competing methods in matching
cells in the random test set (Fig. 5A–B) as well as matching cells within the
unseen cell type (Fig. 5C–D), suggesting that adding single-assay data improves
cross-modality matching.

4 Discussion

We propose Polarbear, a semi-supervised framework that leverages both co-
assay and publicly available single-assay data to translate between scRNA-seq
and scATAC-seq profiles. We demonstrate that Polarbear improves upon meth-
ods that only train on co-assay data. Polarbear predictions are able to capture
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cell-type and individual cell-level differences, and can predict missing domain
knowledge for cell types without any co-assay data available. Polarbear can be
used to generate biological hypotheses in the missing domain, such as inferring
differentially expressed genes/peaks between cell types or experimental groups.
We expect Polarbear to be used to facilitate biological discoveries on unchar-
acterized domains at the single-cell level, such as identifying individual cell or
subclone specific regulatory elements based on scRNA-seq profiles in tumor sam-
ples.

Currently, Polarbear predictions do not improve scATAC-seq predictions as
much as scRNA-seq predictions. Possible reasons for this difference are that
scATAC-seq profiles are sparse and noisy, and scATAC-seq potentially contains
more information than scRNA-seq because a single gene can be regulated by
multiple scATAC-seq peaks. We foresee that models taking into account prior
knowledge (e.g. DNA-sequence features or regulatory region annotations) may
further improve scATAC-seq predictions.

Polarbear can also match single cells across modalities with improved accu-
racy. We envision that our semi-supervised matching framework could be
adapted for aligning the large compendium of publicly available single-assay pro-
files, so that we can generate new hypothesis (e.g. gene-peak relationships and
cell clustering based on joint features) based on the predicted paired scRNA-seq
and scATAC-seq profiles.

Thanks to the flexible training framework, the current Polarbear model could,
in the future, be combined with pre-trained models from other data domains by
learning the translation layer based on a limited number of co-assay data, and
thus be generalized to translate between multi-modalities.

Polarbear code and data used in this study can be found on https://github.
com/Noble-Lab/Polarbear.

Fig. 6. Evaluation of predicted scATAC-seq profile by peak-wise
AUPRnorm. A,B: Peak-wise AUPRnorm on the random test set, comparing Polar-
bear with BABEL (A) or with Polarbear co-assay (B). Each dot represents a peak, only
peaks differentially expressed across cell types are shown. C,D: Gene-wise AUPRnorm
on an unseen cell type, comparing Polarbear with BABEL (C) or with Polarbear co-
assay (D). Only peaks highly expressed in the unseen cell type compared to other cell
types are shown.

https://github.com/Noble-Lab/Polarbear
https://github.com/Noble-Lab/Polarbear
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Abstract. Recent efforts to sequence the genomes of thousands of
matched normal-tumor samples have led to the identification of millions
of somatic mutations, the majority of which are non-coding. Most of these
mutations are believed to be passengers, but a small number of non-coding
mutations could contribute to tumor initiation or progression, e.g. by lead-
ing to dysregulation of gene expression. Efforts to identify putative regu-
latory drivers rely primarily on information about the recurrence of muta-
tions across tumor samples. However, in regulatory regions of the genome,
individual mutations are rarely seen in more than one donor. Instead of
using recurrence information, here we present a method to prioritize puta-
tive regulatory driver mutations based on the magnitude of their effects on
transcription factor-DNA binding. For each gene, we integrate the effects
of mutations across all its regulatory regions, and we ask whether these
effects are larger than expected by chance, given the mutation spectra
observed in regulatory DNA in the cohort of interest. We applied our app-
roach to analyze mutations in a liver cancer data set with ample somatic
mutation and gene expression data available. By combining the effects of
mutations across all regulatory regions of each gene, we identified dozens
of genes whose regulation in tumor cells is likely to be significantly per-
turbed by non-coding mutations. Overall, our results show that focusing
on the functional effects of non-coding mutations, rather than their recur-
rence, has the potential to prioritize putative regulatory drivers and the
genes they dysregulate in tumor cells.
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1 Introduction

Studies of somatic mutations in cancer genomes are generally focused on muta-
tions that alter the amino acid sequences of protein-coding genes. However,
whole-genome sequencing of human tumors has revealed that the vast majority
of somatic mutations in cancer are non-coding [1], suggesting that they could
play a role in cancer initiation and development. Tumorigenesis is thought to
be due to the accumulation of multiple drivers that confer a growth advantage
to the tumor cells; some of these driver mutations may be non-coding [2]. But
only a small proportion of the mutations present in cancer cells are drivers, so
it is important to accurately identify them and distinguish them from the much
larger number of passenger mutations [3].

Given that driver mutations are expected to be under positive selection, their
identification is generally based on patterns of recurrence among tumor samples.
Several recent studies have attempted to discover non-coding driver mutations
in regulatory DNA sites using recurrence information (e.g. [4–7]). Such stud-
ies usually involve the identification of genomic regions with high mutational
frequency (i.e. hotspots) by comparing the mutation rate within a DNA win-
dow to a background distribution. However, it is generally challenging to pre-
cisely estimate the background mutation rate in small genomic regions, given
the heterogeneity across different patients and across the genome [8]. A recent
meta-analysis of methods for predicting regulatory driver mutations reported
that hotspot-based methods can generate large sets of candidate drivers, many
of which are false positives [9]. To narrow down the list of candidates, one can
also incorporate information on the functional impacts of putative non-coding
driver mutations, in particular their effect on transcription factor (TF) binding.
One of the most widely used approaches to prioritize mutations in regulatory
regions involves the identification of TF binding sites created or disrupted by
the mutations, which can be predicted using position weight matrices and motif
prediction algorithms [10–12]. However, these methods are limited by the high
false positive and false negative rates of binding site prediction algorithms.

In addition, Rheinbay et al. [9] have recently reported that non-coding reg-
ulatory driver mutations are much less frequent than protein-coding drivers,
with the only notable exception being driver mutations in the TERT gene pro-
moter [13,14]. Moreover, some non-coding drivers identified in previous studies
were found to be the result of poorly-understood localized hypermutation pro-
cesses such as mutations originating from differential DNA damage [15] or dif-
ferential DNA repair [16,17]. On the other hand, recent studies of cancer drivers
have shown that mutations do not have to be highly recurrent in order to be
true drivers [18]; in fact, even mutations that occur in individual tumor samples
can drive tumorigenesis.

Here, we describe a new method for analyzing non-coding cancer mutations
in regulatory genomic regions (i.e. promoters and enhancers) with the goal
of prioritizing mutations based on their effects on TF binding. Unlike previ-
ous methods for prioritizing putative non-coding drivers, our method does not
rely on the recurrence of mutations across tumor samples. Instead, we consider
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mutations to be potentially ‘significant’ if they lead to larger changes in TF bind-
ing affinity than expected by chance in that particular genomic region. Thus, the
magnitude of the mutations’ effects, rather than their recurrence, is the basis for
prioritizing mutations and regulatory regions for further studies.

To predict the quantitative effects of non-coding variants on TF binding
we use QBiC-Pred [19], a computational method based on regression models
of TF-DNA binding specificity trained on high-throughput in vitro data [20].
We focus on single-nucleotide mutations, since they are the dominant type of
somatic mutation identified in cancer genomes [2]. Importantly, our method links
enhancers and promoters to the genes they are likely to regulate, and it combines
evidence from all regulatory regions of each gene in order to infer whether a gene
is potentially dysregulated due to non-coding mutations. Finally, we use gene
expression data from donors with versus without mutations in promoters and
enhancers in order to validate that our method prioritizes biologically relevant
mutations and regulatory regions.

2 Data and Methods

2.1 ICGC Simple Somatic Mutations and Gene Expression Data

To develop and test our new method for prioritizing putative regulatory driver
mutations, we used the Liver Cancer-RIKEN, Japan (LIRI-JP) project from the
International Cancer Genome Consortium (ICGC) [1]. We chose this project
because it has a large number of donors with whole-genome simple somatic
mutation (SSM) data (258 donors), as well as gene expression data (RNA-seq)
for 230 out of the 258 donors with SSM data. The study reported a total of ∼3.8
million mutations, most of which are single nucleotide mutations (∼3.5 million).

2.2 Promoter and Enhancer Data

We focused our analyses on mutations within promoter and enhancer regions,
as TF binding sites are located in these regions. We defined promoters as the
genomic sequences within ±1000 bp of each RefSeq [21] transcription start
site (TSS), excluding any RefSeq exon sequences. We focused on promoters of
protein-coding genes, using only TSSs that map to genes within the HUGO gene
nomenclature (HGNC) [22]. These criteria resulted in a set of 21,543 promoters.

For enhancers, we used the experimentally determined enhancers from the
FANTOM5 project [23,24], which are frequently used in studies of non-coding
mutations (e.g. [2,7]). Importantly, the FANTOM consortium provides informa-
tion about the linkage between enhancers and associated TSSs, which is critical
for being able to connect our enhancer results to gene expression data. After
removing enhancers that overlapped with promoter regions, we obtained a total
of 41,254 enhancers.

We further filtered the 21,543 promoters and the 41,254 enhancers to keep
only those that contain mutations. Since most enhancers are hundreds of base
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pairs long (median = 254bp) and promoters are ∼2,000 bp, the majority of
enhancers and a fair number of promoters do not contain any mutations (Figure
S1). Thus, after removing these regions without mutations, we obtained a set of
12,612 promoters and 9,018 enhancers with mutations in the LIRI-JP study.

2.3 Defining the Effects of Mutations on TF Binding,
and the Significance of These Effects

We use TF binding changes to prioritize mutations that might act as drivers
within each regulatory region (enhancer or promoter). For each region, we ask
whether the mutations detected in that region lead to larger TF binding changes
than expected by chance, i.e. according to a background model of random muta-
tions (Fig. 1A). To assess the effect of non-coding mutations on TF-DNA binding
we use QBiC-Pred [19], a method we recently developed to quantify TF binding
changes based on regression models trained on high-throughput in vitro binding
data. While other binding specificity models can be used to predict the effects
of mutations on TF binding, here we use QBiC-Pred because it performed bet-
ter than methods based on position weight matrix or deep learning models of
specificity [19,20].

For each mutation of interest, QBiC-Pred reports its predicted effect on the
binding specificity of 582 human TFs, based on models derived from 667 uni-
versal protein binding microarray (PBM) data sets. The effect of a mutation m
on TF T is reported in terms of the difference (Δm) in the logarithm of the
PBM binding intensity signal for the mutated sequence relative to the wild-type
sequence according to the binding model for TF T [19]. Positive values repre-
sent increased TF binding, while negative values represent decreased binding.
Although here we focus on binding changes predicted with QBiC-Pred, our app-
roach can directly use other binding specificity models, as long as they accurately
reflect the quantitative TF binding changes induced by DNA mutations.

For a transcription factor T and a regulatory region R that has one or more
mutations in the data set of interest, we compute the largest effect on TF bind-
ing (either positive or negative) over all mutations in R (ΔR,T , Fig. 1A). Next,
to determine if this effect is significant, we compare it against the distribution
of effects expected by chance, according to a background model that takes into
account: 1) the mutation spectra in that particular cohort, and 2) the particular
DNA sequence of regulatory region R. Conceptually, if there are k total muta-
tions in region R (k = 3 in Fig. 1A), the full distribution of possible binding
effects will be computed taking into account all possible sets of k mutations
across the region. Each set i of k mutations will have a particular effect on TF
binding (Di) and will occur with a particular probability (Pi) (Fig. 1B). The
effect Di is computed by taking the largest effect over the k mutations, similarly
to the case of the real mutations. The probability Pi of a particular set of k
mutations is computed as described below.

Using all single-nucleotide somatic mutations reported in the LIRI-JP study,
we computed the mutation spectra for this cohort, analyzing mutations in their
trinucleotide contexts [25]. As in previous studies [25,26], we consider 6 mutation
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Fig. 1. TF-centric approach to prioritize genes based on mutations in their regulatory
regions. (A) For each regulatory region R and TF T , we aggregate the mutations
across all patients in the cohort of interest, and compute the largest effect (either
positive or negative) across all mutations. This effect, ΔR,T , is then compared to the
distribution of effects computed for all possible sets of k mutations, where k is the
number of actual mutations observed in region R (here, k = 3). (B) For any set i of
k mutations, we compute the binding change with the largest magnitude among these
k mutations (Di), and the probability of that set of k mutations (Pi), as described
in Data and Methods. (C) Comparison of p-values computed for mutation effects on
MYC binding, for 9,018 enhancers. Plot shows the high correlation between p-values
calculated using the analytical versus the simulation-based approach. (D) For genes
with multiple regulatory regions, we compute the combined significance of the TF
binding changes for TF T across all regions Ri by combining their p-values pRi,T using
Liptak’s method, also known as weighted Stouffer’s method, as described in Data and
Methods. We then use the combined p-values, adjusted for multiple hypothesis testing,
to rank genes according to the smallest p-value across all TFs.
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types (C >A, C >G, C >T, T > A, T >C, T > G) each in 16 possible contexts,
based on the nucleotide right before and right after the mutated position. Muta-
tions and their reverse complements (e.g. ATG > ACG and CAT > CGT) are
counted together. For each trinucleotide, we estimate the probability of mutat-
ing the central base (i.e. P (t �= w|w = ATG), where t is the trinucleotide in the
tumor sample and w is the trinucleotide in the corresponding normal sample)
by taking the ratio between how many times that base was mutated in that
context and how many times the wild-type trinucleotide occurs in regulatory
regions (enhancers or promoters) across all normal samples. We calculate muta-
tion probabilities separately for enhancers versus promoters, since they may be
affected differently by mutagenic processes; indeed, we saw significant differences
between the mutation spectra at enhancers versus promoters (Figure S2).

When the central nucleotide of a trimer is mutated, i.e. t �= w, there are
three possible mutations, e.g. ATG to AAG, ACG, or AGG. We estimated the
probability of each mutation type (e.g. ATG to AAG) given that a mutation
exists at the central nucleotide, i.e. P (t = AAG|w = ATG,w �= t), as the
number of times we observed that particular mutation type divided by the total
number of times the central nucleotide was mutated in that context, in the
regulatory regions of interest. Next, to calculate the probability of a particular
mutation in a particular trinucleotide context, we multiply the probability that
the trinucleotide is mutated with the probability of the specific mutation, e.g.:

P (t = AAG|w = ATG) = P (w �= t|w = ATG) × P (t = AAG|w = ATG,w �= t)
(1)

which can be simplified to the number of ATG to AAG mutations in enhancers
divided by the total number of ATG in enhancers across all normal samples.

We note that the k mutations aggregated over region R are typically from
different samples in our cohort, and can thus be considered independent. There-
fore, for a set i of k mutations we compute the overall probability Pi of that
particular set by multiplying the individual probabilities P (t|w) for each of the
k mutations, as illustrated in Fig. 1A, B. Finally, to assess the significance of
ΔR,T , we compare this value against the distribution of effects for random sets
of k mutations in region R, with the p-values being computed efficiently from
Pi and Di values using either an analytical or a simulation-based approach, as
described below.

2.4 Analytical and Simulation-Based Approaches to Compute
the Significance of Mutation Effects on TF Binding

Our simulation-based approach uses the mutation probabilities described in
Sect. 2.3 to repeatedly sample mutations in the regulatory region of interest.
Let us consider a regulatory region R of length L that contains k mutations
across all patients in our cohort. Since there are 3 possible mutations for each
position in R, we have a total of 3L mutations to consider in this region. At each
iteration of our simulation-based approach, we randomly sample k out of the
3L possible mutations, with replacement. We do the sampling with replacement
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because the exact same mutation can occur in two or more patients. For this
sampling process, the probability of selecting a particular set i of k mutations
(Pi) is computed as described in Sect. 2.3. The TF binding change for this set
of mutations (Di) is computed by taking the maximum effect over the k ran-
domly chosen mutations, as described in Sect. 2.3 and illustrated in Fig. 1B. By
repeatedly sampling sets of k mutations using this procedure, we can approxi-
mate the distribution of mutation effects on TF binding (Fig. 1A), and use it to
compute empirical p-values for ΔR,T , taking the sign of the effect into account.
This simulation-based approach is simple to understand and implement. How-
ever, simulations are time consuming and unfeasible for generating background
distributions of mutations effects for all regulatory regions (totalling 12,612 pro-
moters and 9,018 enhancers) and all TFs (totalling 582 TFs with 667 binding
models available).

Alternatively, we can use an analytical approach to directly compute the p-
value for the effect ΔR,T . Conceptually, the p-value of interest is the probability
of obtaining an effect on TF binding at least as large as ΔR,T when we randomly
choose k of the 3L possible mutations in the regulatory region R. For simplicity,
let us consider these effects in absolute value. For a set i of k mutations, if at
least one of the mutations leads to an absolute change in binding of TF T that
is ≥ |ΔR,T |, then |Di| ≥ |ΔR,T |. On the other hand, if all the k mutations
lead to absolute binding changes < |ΔR,T |, then we have |Di| < |ΔR,T |. Thus,
focusing on the absolute values of the effects of mutations on TF binding, we
can compute our p-value of interest as:

P (|effect of random set of k mutations| ≥ |ΔR,T |) = (2)

1 − P (|effect of random set of k mutations| < |ΔR,T |) = 1 −
∑

Sets i of k mutations
s.t.|Di|<|ΔR,T |

Pi

The total number of possible sets i of k mutations in regulatory region R is(
3L+k−1

k

)
, which is the number of possible unordered outcomes when sampling

k out of 3L mutations with replacement. Even when choosing only the sets for
which all k mutations have absolute binding changes < |ΔR,T |, the number of
possibilities can be very large and not feasible to compute explicitly. To overcome
this problem, we compute a vector π = (π1, π2, . . . , πl), 0 ≤ l < 3L, with the
probabilities of all individual mutations m in region R for which |Δm| < |ΔR,T |.
The sum in Eq. 2 can then be written in terms of the vector π, as the sum of the
all elements in the outer product of π with itself, taken k times. For example, for
k = 3, each element Pi in Eq. 2 is an element of π⊗π⊗π. Importantly, we do not
need to compute this outer product explicitly, as we are only interested in the
sum of all elements in the product, which can be written as (π1 +π2 + . . .+πl)k.
Thus, our p-value of interest can be calculated as:

P (|effect of random set of k mutations| ≥ |ΔR,T |) = 1−(π1+π2+. . .+πl)k (3)
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Finally, since we want to take into account the directionality of the effect of
mutations on TF binding, i.e. decreased binding (ΔR,T < 0) or increased binding
(ΔR,T > 0), we calculate the one-sided p-value as pR,T = (1 − (

∑l
j=1 πj)k)/2.

We confirmed that the results from our analytical and simulation-based
approaches agree with each other (Fig. 1C). For this test, we randomly picked
one of the TFs, MYC, and we calculated the p-values for changes in MYC bind-
ing specificity for all 9018 mutated enhancers, using a simulation process with
one million iterations. Since the simulation-based approach is more time consum-
ing and has limited precision in estimating the p-values of interest (due to the
limited iterations), we used the analytical approach for all subsequent analyses.

2.5 Integrating Results Across All Regulatory Regions of a Gene

Genes encoded in the human genome typically have multiple regulatory regions
(enhancers and promoters); mutations in either of these regions could affect a
gene’s expression. Thus, it is of interest to integrate the effects of mutations
across all regulatory regions of each gene. As detailed in Sect. 2.2, we define
gene promoters based on TSS coordinates in the RefSeq database [21], and we
leverage TSS-enhancer links from the FANTOM consortium [24], considering all
the cell types and tissues with available data. In other words, if a genomic region
has been identified as an enhancer for gene G in one tissue, then we consider that
region as part of the regulatory landscape of gene G, in order to be as inclusive
as possible. On average, each TSS is associated with 4.9 enhancers according to
the FANTOM data. For genes that have multiple TSSs in RefSeq, we consider
each TSS separately. Thus, some genes may appear multiple times in our final
results, with different p-values that correspond to its different TSSs.

Given a transcription factor T and a gene G with r regulatory regions con-
taining at least one mutation in our cohort of interest, we can use the approach
in Sect. 2.4 to calculate the significance pRi,T of the effects (ΔRi,T ) of muta-
tions in each regulatory region Ri on the binding specificity of TF T . Next, we
want to integrate these effects over all r regulatory regions by combining their
p-values. Intuitively, our null hypothesis (H0) is that the effects for all regulatory
regions (ΔRi,T ) come simply from the background distribution of effects due to
random mutations. The alternative hypothesis (H1) is that at least one regula-
tory region of gene G has an effect ΔRi,T significantly larger than expected by
chance according to the background model of mutations in regulatory regions.
Importantly, as the promoter and enhancer regions used in our analysis do not
overlap, we can consider the p-values pRi,T as coming from independent tests.

One approach to combine the r p-values computed for gene G is Fisher’s
method [27], which is often used in meta-analyses, including analyses of non-
coding mutations in cancer [9,28,29]. However, Fisher’s method would not take
into account the fact that different regulatory regions have different lengths and
different probabilities of harboring mutations. If a regulatory region Ri is very
long, then the number of possible mutations, and thus the number of possible
effects on TF T , is also large. In comparison, a shorter regulatory region, Rj ,
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will have fewer possible mutations and fewer possible effects on TF T . If the
two regions have the same p-value, i.e. pRi,T = pRj ,T , we might still consider,
intuitively, that the mutation effect in Ri is more significant because for Ri it
would be easier to achieve a large effect on TF binding, since more mutations
can occur in Ri than Rj . This is similar to meta-analyses of studies with very
different sample sizes, where a weighted version of Stouffer’s method, developed
by Liptak [30] and also known as the weighted Z-method or weighted Z-test,
was found to be superior to Fisher’s method when combining p-values from
independent tests [31,32].

Here, we use Liptak’s method [30] to combine the p-values of all regulatory
regions of a gene, with the weights computed based on the mutations probabili-
ties in each region, combined using Shannon’s entropy. Specifically, for a regula-
tory region R of length L we compute its weight as wR = −∑3L

m=1 pmlog(pm),
where pm is the probability of the mth possible mutation, computed according
to the trinucleotide centered at that position (see Fig. 1B). We note that weights
computed in this manner are overall correlated with the length of the regulatory
regions, but avoid giving an out-sized importance to very long regions (Figure
S3). Thus, for TF T and gene G with r regulatory regions, we compute the
weighted test statistic

∑r
i=1 wRi

zRi,T , where zRi,T = Φ−1(pRi,T ) and Φ−1 is
the inverse of the standard normal cumulative distribution function, as initially
proposed by Liptak [30,33]. Under the null hypothesis (H0), this test statistic
follows a normal distribution N(0,

∑r
i=1 wRi

), for any choice of weights [33,34].
This allows us to compute the p-value of the combined test, PG,T , as follows:

ZG,T =
∑r

i=1 wRi
zRi,T√∑r

i=1 w2
Ri

and PG,T = 2 × (1 − Φ(|ZG,T |)) (4)

where Φ is standard normal cumulative distribution function. Finally, we used
the Benjamini-Hochberg correction [35] to adjust for multiple hypothesis testing
across all genes and all TFs. We then ranked genes according to the smallest
p-value across all TFs, and we analyzed the top genes for differences in gene
expression. In total, we analyzed 5,336 genes with mutations in enhancers, 11,721
genes with mutations in promoters, and 13,982 genes with mutations in at least
one regulatory region (enhancer or promoter).

3 Results

3.1 Integrated Analysis Across Regulatory Regions Identifies 54
Genes with Significant TF Binding Changes Due to Mutations
in Regulatory DNA

Using the single nucleotide mutation data from the LIRI-JP study, we identified
13,982 genes with mutations in either the promoter or the enhancer regions.
For each of these genes, we analyzed all 582 human TFs for which QBiC-Pred
models are available [19], and we computed the smallest p-value PG,T across all
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TFs, adjusted for multiple testing, as described in Data and Methods (Fig. 1).
We chose to take the minimum p-value, rather than integrate the p-values across
factors, because TF binding specificities are oftentimes highly correlated, espe-
cially for closely-related paralogous TFs. Next, we ranked genes according to the
smallest adjusted p-value across all TFs, and we identified 54 genes for which
this p-value was < 0.05 (Fig. 2, Table S1). In other words, for each of these
54 genes, our analysis revealed at least one TF for which the mutations in the
regulatory regions of the gene have larger effects on TF binding specificity than
expected by chance based on the mutation spectra in our cohort.

To determine if these 54 prioritized genes are potentially relevant in cancer,
we first asked whether this set is enriched for cancer prognostic genes. Using
pathology data from The Human Protein Atlas [36], we found that 33 out of the
54 prioritized genes are indeed prognostic markers in at least one cancer type
(Fig. 2B). This represents a significant enrichment (p = 0.095, Fisher’s exact
test) when compared to genes ranked in the bottom half of our ranked list.

We performed similar analyses focusing only on promoters or only on
enhancer regions. For the enhancer-only analysis, we identified 5 significant genes
(at a minimum adjusted p-value cutoff of 0.05) among the 5,336 genes with
enhancer mutations (Table S1). For the promoter-only analysis, we identified 73
significant genes among the 11,721 genes with promoter mutations (Table S1),
none of which were also prioritized in the enhancer-only analysis. These results
are not surprising, given that some genes only have either enhancer or promoter
mutations, but not both. In addition, here we use a stringent set of enhancers, as
reported by the FANTOM consortium, in order to limit the number of false posi-
tive enhancer calls; however, there are likely a large number of false negatives, i.e.
enhancers that are missing from our data. Among the 54 genes identified in the
combined analysis of promoters and enhancers, 4 of them are also prioritized in
the enhancer-only analysis, and 47 of them are prioritized in the promoter-only
analysis (Figure S4). Three genes, ETS1, CELF6, and PALT1 were identified
only in the combined analysis (Fig. 2B).

We also found a significant enrichment of cancer prognostic genes in the set of
73 genes prioritized in the promoter-only analysis (44 of the 73 prioritized genes
are prognostic markers, Fisher’s exact test p = 0.084). For the enhancer-only
analysis, we found that 3 of the 5 prioritized genes are prognostic markers. How-
ever, given the small number of genes prioritized in this analysis, the enrichment
in prognostic markers was not significant.

3.2 Genes with Significant Mutations in Their Regulatory Regions
Show Large Expression Differences in Mutated Versus
Non-mutated Samples

For the 54 genes prioritized based on mutations in enhancers and promoters, we
also asked whether the mutations are likely to affect gene expression. To test this,
we leveraged the gene expression data (EXP-S) available in ICGC for our cohort
of interest (Sect. 2.1). For each gene, we compared its expression level (i.e. nor-
malized read counts, or normalized TPM values) for donors with versus without
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Fig. 2. Genes prioritized based on mutations in their regulatory regions. (A) Top genes
with the smallest adjusted p-values. The table shows each gene’s name, the number of
mutations in all its regulatory regions, the minimum p-value after adjusting for multiple
testing, and the TF with the most significant binding changes for that gene. (B) Barplot
shows the top 54 prioritized genes from our combined promoter-enhancer analysis. Y-
axis shows the negative logarithm of the minimum adjusted p-value. Cancer prognostic
markers, as reported in The Human Protein Atlas, are shown in yellow. (Color figure
online)

mutations in the regulatory regions of that gene, and we used a Wilcoxon rank-
sum test to assess the significance of the observed gene expression differences.
Our analysis revealed that the difference in gene expression between donors with
vs. without mutations in regulatory regions are much more significant for the set
of 54 prioritized gene (i.e. those with minimum adjusted Liptak’s test p < 0.05)
compared to a control set of genes (i.e. those with p ≥ 0.1) (Fig. 3A). Gene with
intermediate p-values (0.05 ≤ p < 0.1) also showed significant gene expression
differences (Fig. 3A).

We note that gene expression analyses could not be performed for all genes,
as for some genes with mutations in regulatory regions there was no expression
data available from the donors where the mutations were observed. Among the
54 prioritized genes, 43 genes had expression data for one or more donors with
mutations in enhancers or promoters, and in most of those cases the number of
such donors was one, making it difficult to reach statistical significance. Never-
theless, we found significant gene expression differences for 8 of the 43 prioritized
genes with available data (Fig. 3B–H).

Among these genes, TM4SF18 and CENPA (Fig. 3B, C) are prognostic mark-
ers in liver cancers according to The Human Protein Atlas [36]. In addition,
CENPA has been shown to be aberrantly expressed in hepatocellular carcino-
mas (HCCs) compared to non-tumor tissues [37]. Another one of the significant
genes, CTNNA3, is a tumor suppressor in HCCs [38]; according to our analysis,
its expression is very low in the only donor with mutations in the regulatory
regions of CTNNA3 (Fig. 3D), which is consistent with the gene’s role as a
tumor suppressor. Gene DPM3 is part of the DPM family, whose members were
found to be significantly correlated with shorter overall survival in liver cancer
patients [39]; in our analysis, the only donor with mutations in the regulatory
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Fig. 3. Analysis of differences in gene expression for genes with mutations in enhancer
and promoter regions, comparing donors with vs. without mutations in regulatory
DNA. (A) Genes prioritized by our analysis (minimum adjusted Liptak’s test p < 0.05)
have larger expression differences due to mutations in regulatory regions compared to
intermediate (0.05 ≤ p < 0.1) and control (p ≥ 0.1) genes. To represent the expression
differences (y-axis), we show the negative logarithm of the Wilcoxon rank-sum test p-
values between the gene’s expression level in the two donor groups, i.e. with vs. without
mutations in regulatory regions. (B-H) Boxplots showing the 8 prioritized genes with
significant gene expression differences. The y-axes show the gene expression levels, as
normalized read counts, as reported in ICGC. P-values are calculated using a two-sided
Wilcoxon rank-sum test, with ** denoting p < 0.05 and * denoting 0.05 ≤ p < 0.1.

regions of DPM3 had a very high DPM3 expression level (Fig. 3E). Genes C1R,
CEBPD, and ZNF561 (Fig. 3F, G, H) are prognostic markers in renal cancers,
which have been shown to metastasize to liver [40].

The remaining prioritized gene with significant expression differences,
ATXN3 (Fig. 3I) was interestingly not among the genes characterized as prog-
nostic markers in cancer. ATXN3 plays important roles in several tumours, e.g.
by deubiquitinating PTEN in lung cancer [41] and KLF4 in breast cancer [42],
although a role for ATXN3 in liver cancer has not yet been reported. Accord-
ing to our analysis, mutations in the ATXN3 enhancers result in significant
gain-of-binding mutations for RUNX1 (Fig. 4), a TF involved in tumour initia-
tion and development in hematopoietic cells and several tissues [43]. Among the
eight donors with mutations in ATXN3 enhancers, five have mutations that lead
to significant changes in RUNX1 binding specificity, and for these five donors
the expression level of ATXN3 is significantly higher than for all other donors
(p = 0.011, Wilcoxon rank-sum test), despite the small sample size. Overall,
these results show that our method is able to identify and prioritize relevant
genes that are likely to be significantly affected by mutations in their regulatory
regions.

We also analyzed the expression levels of genes prioritized in the promoter-
and enhancer-only analyses. For the 5 genes prioritized according to mutations
in enhancers, we found more significant expression differences (between donors
with vs. without regulatory mutations) than in the control gene set (p = 0.03,



48 J. Zhao et al.

GT GTWT

GT GTDonor 1

Donor 2 GC GT

p=0.011

p = 0.0013
= 1.823

n=5

n=230. . .

0

1

2

3

4

5

ATXN3 expression for donors with vs. without 

With mutations Without mutations

GC GT ATXN3

p = 0.0014
= 2.501

N
or

m
al

iz
ed

 c
ou

nt
s

T=RUNX1

Fig. 4. Mutations in the ATXN3 enhancers that alter the binding specificity of TF
RUNX1. Out of 8 donors with ATXN3 regulatory mutations, 5 have significant (p < 0.1,
one-sided Wilcoxon rank-sum test) mutations in enhancers which result in the gain
of binding of TF RUNX1. Two enhancers where RUNX1 has the most significant
binding changes among all TFs are shown. Donors with significant RUNX1 mutations
(orange boxplot) have higher ATXN3 expression compared to donors without ATXN3
regulatory mutations (grey boxplot), p < 0.011 two-sided Wilcoxon rank-sum test.
(Color figure online)

one-sided Wilcoxon rank-sum test; Figure S6B). Interestingly, the set of 73 genes
prioritized in the promoter-only analysis (Figure S5) did not differ significantly
from a control set (p = 0.231; Figure S6A). Of these 73 genes, 47 were also pri-
oritized in the combined analysis of promoters and enhancers, while the remain-
ing 26 genes appeared only in the promoter-only analysis, suggesting that the
promoter-only analysis may be more prone to false positive, i.e. prone to priori-
tizing genes for which promoter mutations do not correspond to changes in gene
expression. To further investigate this, we focused on the 26 genes, and found
that only one of them (DDX21) has significant expression differences between
donors with vs. without mutations (Figure S6C). This suggests that integrat-
ing regulatory mutations over enhancers and promoters, rather than promoters
alone, has the best potential to prioritize genes that are dys-regulated in cancer.

4 Discussion

In summary, we developed a new approach to prioritize putative regulatory
driver mutations in cancer, based on quantitative predictions of the effects of
single nucleotide variants on TF binding [19]. Our method is orthogonal to exist-
ing tools (e.g. [4–7]), in that it does not require the putative driver mutations to
be highly recurrent; instead, we assess the significance of the mutations by test-
ing whether they cause larger TF binding changes than expected in the case of
completely random mutations. Using this approach, we identified 54 potentially
dysregulated genes (Fig. 2) by prioritizing genes for which mutations in their
enhancers or promoters lead to significant changes in TF binding specificity.
Our analyses show that these genes are enriched for cancer prognostic markers,
and they have higher differences in expression levels between donors with vs.
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without mutations in regulatory regions, compared to control gene sets (Fig. 3).
We also linked the potentially dysregulated genes with the TFs whose binding
events are altered the most by putative regulatory mutations (Fig. 4).

Our approach can be applied to any somatic mutation data. Here, we used
single nucleotide mutations; however, our method can also be applied, with
minor modifications, to small indels. In addition, our method can be adapted for
patient-level analyses. Current driver identification approaches combine muta-
tions from different patients to gain more statistical power to identify significant
regulatory mutations. However, a disadvantage of such approaches is that they
may not work well on small cohorts or on cohorts that are highly heterogeneous.
For approaches that identify drivers based on recurrence, it is impossible to run
the analysis for individual patients. However, since our method does not require
the driver mutations to be recurrent, it can be applied to identify potentially
dysregulated genes for each patient, using our simulation-based approach, with
minor modifications to the resampling process. Briefly, instead of using sam-
pling with replacement, we would sample without replacement for patient-level
analyses because a patient cannot have the same mutation more than once. The
patient-level analysis would need to be further refined so that it has more coher-
ent evidence to prioritize genes for follow-up experimental validations; however,
it would provide a very different perspective than the cohort-level approaches.

Overall, the TF-centric approach described here uses a distinctive pipeline
to prioritize putative regulatory driver mutations in cancer, by focusing on the
magnitude of the effect of the mutations. Our approach is orthogonal to existing
methods and thus serves to complement existing tools and resources for ana-
lyzing and prioritizing putative non-coding drivers (e.g. [44]). Our results show
that most of the potentially dysregulated genes prioritized by our method either
have large expression differences in donors with vs. without mutations, or are
cancer prognostic genes, or both. While experimental validations are needed to
determine whether these genes actually contribute to cancer development, our
results suggest that regulatory mutations should be investigated further, not just
based on their recurrence, but also based on their functional effects, in order to
uncover dysregulated genes that may drive tumorigenesis.
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Abstract. Minimizers are k-mer sampling schemes designed to gener-
ate sketches for large sequences that preserve sufficiently long matches
between sequences. Despite their widespread application, learning an
effective minimizer scheme with optimal sketch size is still an open ques-
tion. Most work in this direction focuses on designing schemes that work
well on expectation over random sequences, which have limited appli-
cability to many practical tools. On the other hand, several methods
have been proposed to construct minimizer schemes for a specific tar-
get sequence. These methods, however, require greedy approximations
to solve an intractable discrete optimization problem on the permuta-
tion space of k-mer orderings. To address this challenge, we propose: (a)
a reformulation of the combinatorial solution space using a deep neural
network re-parameterization; and (b) a fully differentiable approximation
of the discrete objective. We demonstrate that our framework, Deep-
Minimizer, discovers minimizer schemes that significantly outperform
state-of-the-art constructions on genomic sequences.
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1 Introduction

Minimizers [15,16] are deterministic methods to sample k-mers from a sequence
at approximately regular intervals such that sufficient information about the
identity of the sequence is preserved. Sequence sketching with minimizers is
widely used to reduce memory consumption and processing time in bioinfor-
matics programs such as read mappers [7,10], k-mer counters [3,5] and genome
assemblers [17]. Given a choice of k-mer length k and window length w, a min-
imizer selects the lowest priority k-mer from every overlapping window in the
target sequence according to some total ordering π over all k-mers. Minimizer
performance is measured by its density [12] on a target sequence, which is pro-
portional to the induced sketch size.
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Depending on the choice of π, the resulting density can significantly vary.
The theoretical lower-bound of density achievable by any minimizer scheme is
given by 1/w [12]. On the other hand, a random initialization of π will yield an
expected density of approximately 2/w [16], which is frequently used as a baseline
for comparing minimizer performance. This motivates the question: How do we
effectively optimize π to improve the performance of minimizers?

An exhaustive search over the combinatorial space of π suffices for very small
k, but quickly becomes intractable for values of k used in practice (i.e., k ≥ 7)
(Sect. 3.1). To work around this, many existing approaches focus on constructing
minimizer schemes from mathematical objects with appealing properties such as
universal hitting sets (UHS) [4,11,12,14,19]. While these schemes provide upper-
bound guarantees for expected densities on random sequences, they only obtain
modest improvements over a random minimizer when used to sketch a specific
sequence [19].

The idea of learning minimizer schemes tailored towards a target sequence
has been previously explored, although to a lesser extent. Current approaches
include heuristic designs [1,8], greedy pruning [2] and construction of k-mer sets
that are well-spread on the target sequence [20]. However, these methods only
learn crude approximations of π by dividing k-mers into disjoint subsets with
different priorities to be selected. Within each subset, the relative ordering is
arbitrarily assigned to recover a valid minimizer, hence they are not necessarily
optimal. We give a detailed overview of these methods in Sect. 2.

This paper instead tackles the problem of directly learning a total order
π. The hardness of solving such a task comes from two factors, which we will
review in detail in Sect. 3.1: (1) the search space of k-mer orderings is very
large; and (2) the density minimizing objective is discrete. To overcome the
above challenges, we propose to reformulate the original problem as parameter
optimization of a deep learning system. This results in the first fully-differentiable
minimizer selection framework that can be efficiently optimized using gradient-
based learning techniques. Our contributions are:

– We define a more well-behaved search space that is suitable for gradient-based
optimization. This is achieved by implicitly representing k-mer orderings as
continuous score assignments. The space of these assignments is parameter-
ized by a neural network called PriorityNet, whose architecture guarantees
that every output assignment is consistent (i.e., corresponding to valid mini-
mizer schemes). The modelling capacity of PriorityNet can be controlled
via increasing its architecture depth, which implies a mild restriction on the
candidate space in practice (Sect. 3.2).

– We approximate the discrete learning objective by a pair of simpler tasks.
First, we design a complementary neural network called TemplateNet,
which outputs potentially inconsistent assignments (i.e., template) with guar-
anteed low densities on the target sequence (Sect. 3.4). We then search for
consistent assignments (i.e., valid minimizers) around these templates, which
potentially will yield similar densities. This is achieved via a fully differen-
tiable proxy objective (Sect. 3.3) that minimizes a novel divergence (Sect. 3.5)
between these networks.
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– We compare our framework, DeepMinimizer, against various state-of-the-
art benchmarks and observe that DeepMinimizer yields sketches with sig-
nificantly lower densities on genomic sequences (Sect. 4).

2 Related Work

UHS-Based Methods. Most existing minimizer selection schemes with per-
formance guarantees over random sequences are based on the theory of universal
hitting sets (UHS) [11,14]. Particularly, a (w, k)-UHS is defined as a set of k-
mers such that every window of length w (from any possible sequence) contains
at least one of its elements. Every UHS subsequently defines a family of corre-
sponding minimizer schemes whose expected densities on random sequences can
be upper-bounded in terms of the UHS size [12]. As such, to obtain minimizers
with provably low density, it suffices to construct small UHS, which is often the
common learning objective of many existing approaches [4,12,19].

In the context of sequence-specific minimizers, there are several concerns
with this approach. First, the requirement of UHS to “hit” all windows of every
possible sequence is often too strong with respect to the need of sketching a
specific string and results in sub-optimal universal hitting sets [20]. Addition-
ally, since real sequences rarely follow a uniform distribution [18], there tends to
be little correspondence between the provable upper-bound on expected density
and the actual density measured on a target sequence. In practice, the latter
is usually more pessimistic on sequences of interest, such as the human refer-
ence genome [19,20], which drives the development of various sequence-specific
minimizer selection methods.

Heuristic Methods. Several minimizer construction schemes rank k-mers
based on their frequencies in the target sequence [1,8], such that rare k-mers
are more likely to be chosen as minimizers. These constructions nonetheless rely
on the assumption that rare k-mers are spread apart and ideally correspond to
a sparse sampling. Another greedy approach is to sequentially remove k-mers
from an arbitrarily constructed UHS, as long as the resulting set still hits every
w-long window on the target sequence [2]. Though this helps to fine-tune a given
UHS with respect to the sequence of interest, there is no guarantee that such an
initial set will yield the optimal solution after pruning.

Polar Set Construction. Recently, a novel class of minimizer constructions
was proposed based on polar sets of k-mers, whose elements are sufficiently
far apart on the target sequence [20]. The sketch size induced by such a polar
set is shown to be tightly bounded with respect to its cardinality. This reveals
an alternate route to low-density minimizer schemes through searching for the
minimal polar set. Unfortunately, this proxy objective is NP-hard and currently
approximated by a greedy construction [20].
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Remark. In all of the above methods, the common objective to be optimized
can be seen as a partition of the set of all k-mers into disjoint subsets. For
example, frequency values are used to denote different buckets of k-mers [1,8].
Others [2,4,19,20] employ a more fine-grained partitioning scheme defined by the
constructed UHS/polar set. Each subset has an assigned priority value, such that
k-mers from higher priority subsets are always chosen over k-mers from lower
priority subsets. However, it remains inconclusive how k-mers from within the
same subset can be optimally selected to recover a total ordering π. Practically,
these methods resort to using a pre-determined arbitrary ordering to resolve
such situations. In contrast, our work investigates a novel approach to directly
learn this ordering.

3 Methods

3.1 Background

Let Σ be an alphabet of size |Σ| = σ and S be a sequence containing exactly l
overlapping k-mers defined on this alphabet, i.e., S ∈ Σl+k−1. For some w ∈ N

+

such that l ≥ w, we define a (w, k)-window as a substring in S of length w+k−1,
which contains exactly w overlapping k-mers. For ease of notation, we further
let lw � l − w + 1 denote the number of (w, k)-windows in S. For the rest of
this paper, we assume that w and k are fixed and given as application-specific
parameters.

Definition 1 (Minimizer). A minimizer scheme m : Σw+k−1 → [1..w] is
uniquely specified by a total ordering π on Σk. Here, we encode π as a function
ρ : Σk → N

+ that maps k-mers to its position in π. Given a (w, k)-window ω,
m then returns the smallest k-mer in ω according to ρ:

m(ω;π) � argmin
i∈[1..w]

ρ(ω[i];π) ≡ argmin
i∈[1..w]

∑

s∈Σk

I(s <π ω[i]) , (1)

where I denotes the indicator function, ω[i] denotes the i-th k-mer in ω, and
s <π ω[i] implies s precedes ω[i] in π. We break ties by prioritizing k-mers that
occur earlier in (i.e., to the left of) the window.

When applied to a sequence S, the above scheme selects one k-mer position
from every overlapping window to construct the sequence sketch L(S;m) =
{t+m(ωt) | t ∈ [1, lw]}, with ωt denoting the tth window in S. Naturally, a smaller
sketch leads to more space and cost savings. As such, we measure minimizer
performance by the density factor metric D(S;m) � |L(S;m)|×(w+1)/lw, which
approximates the number of k-mers selected per window [12]. The minimizer
selection problem is then formalized as density minimization with respect to π:

π∗ = argmin
π

D(S;m(·;π)) ≡ argmin
π

|L(S;m(·;π))| . (2)

This objective, however, is intractable to optimize for two reasons. First, the
number of all k-mer permutations scales super-exponentially with k and σ (i.e.,
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σk!), thus renders any form of exhaustive search on this space impossible under
most practical settings. Furthermore, the set counting operation |L(S;m(·;π))| is
non-differentiable even if the solution space is continuous, which makes efficient
gradient-based optimizers inaccessible. The remainder of this section therefore
proposes a deep-learning strategy to address both these challenges, and is orga-
nized as follows.

Section 3.2 describes a unifying view of existing methods as reparameteriza-
tions of ρ (Definition 1). We then propose a novel deep parameterization called
PriorityNet, which relaxes the permutation search space of Eq. 2 into a well-
behaved weight space of a neural network.

Section 3.3 shows that density optimization with respect to PriorityNet
can be approximated by two sub-tasks via introducing another complementary
network, called TemplateNet. This approximation can be formalized as a fully-
differentiable proxy objective that minimizes divergence between TemplateNet
and PriorityNet.

Section 3.4 and Sect. 3.5 then respectively discuss the parameterization of
TemplateNet and the divergence measure in our proxy objective, thus com-
pleting the specification of our framework, DeepMinimizer. An overview of our
framework is given in Fig. 1.

Fig. 1. Our DeepMinimizer framework employs a twin network architecture. Pri-
orityNet generates valid minimizers, but has no guarantee on density. In contrast,
TemplateNet generates low-density templates that might not correspond to valid
minimizers. We minimize the divergence between these networks to arrive at consensus
minimizers with low densities on the target sequence.

3.2 Search Space Reparameterization

We first remark that many existing methods can be seen as different re-
parameterizations of ρ in Definition 1. For example, ρ can be parameterized
with frequency information from the target sequence [1,8], i.e., ρ(ωi;S) ∝∑lw

j=1 I(ωj = ωi); or instantiated with a UHS υ [4,19], i.e., ρ(ωi; υ) = I(ωi �∈ υ).
Similar set-ups have been explored in the context of sequence-specific minimizers
using a pruned UHS υ(S) [2] and a polar set ζ(S) [20] constructed for the target
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sequence. We note that there are fewer discrete values potentially assigned by ρ
than the total number of k-mers in all these re-parameterizations. As such, these
methods still rely on a pre-determined arbitrary ordering to break ties in win-
dows with two or more similarly scored k-mers. When collisions occur frequently,
this could have unexpected impact on the final density.

DeepMinimizer instead employs a continuous parameterization of ρ using
a feed-forward neural network parameterized by weights α, which takes as input
the multi-hot encoding of a k-mer (i.e., a concatenation of its character one-
hot encodings) and returns a real-valued score in [0, 1]. This continuous scheme
practically eliminates the chance for scoring collisions. Furthermore, the solution
space of this re-parameterization is only restricted by the modelling capacity
encoded by our architecture weight space. This limitation quickly diminishes as
we employ sufficiently large number of hidden layers in the network. We can
subsequently rewrite Eq. 2 as optimizing a neural network with density as its
loss function:

α∗ = argmin
α

D(S; ρ(·;α)) . (3)

Applying this network on every k-mer along S can be compactly written as
a convolutional neural network, denoted by f , which maps the entire sequence
S to a score assignment vector. We require this score assignment to be consis-
tent across different windows in order to recover a valid ordering π from such
implicitly encoded ρ. Specifically, one k-mer can not be assigned different scores
at different locations in S. To enforce this, we let the first convolution layer of
our architecture, PriorityNet, have kernel size k, and all subsequent layers
to have kernel size 1. An illustration for PriorityNet when k = 2 is given in
Fig. 2.

Fig. 2. Our PriorityNet architecture for k = 2, parameterized by weights α, maps
sequence multi-hot encoding to priority scores through a series of 3 convolution layers
with kernel size [k, 1, 1] and [256, 64, 16] embedding channels respectively. Fixing net-
work weights α, the computation of assigned priority score to any k-mer is deterministic
given its character one-hot encodings.

3.3 Proxy Objective

The density computation in Eq. 3, however, is not differentiable with respect to
the network weights. As such, α cannot be readily optimized with established
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gradient back-propagation techniques used in most deep learning methods. To
work around this, we introduce a proxy optimization objective that approximates
Eq. 3 via coupling PriorityNet with another function called TemplateNet.
Unlike the former, TemplateNet relaxes the consistency requirement and gen-
erates template score assignments that might not correspond to valid minimizer
schemes. In exchange, such templates are guaranteed to yield low densities by
design.

Intuitively, the goals of these networks are complementary: PriorityNet
generates valid minimizer schemes in the form of consistent priority score assign-
ments, whereas TemplateNet pinpoints neighborhoods of low-density score
assignments situated around its output templates. This reveals an alternative
optimization route where these networks negotiate towards a consensus solution
that (a) satisfies the constraint enforced by PriorityNet; and (b) resembles a
template in the output space of TemplateNet, thus potentially yielding low
density. Let f and g denote our proposed PriorityNet and TemplateNet,
respectively parameterized by weights α and β, we formalize this objective as
minimizing some divergence measure Δ between their outputs:

(α∗, β∗) = argmin
α,β

Δ (f(S;α), g(S;β)) . (4)

In the remainder of this paper, we detail the full specification of our proxy
objective, which requires two other ingredients. First, Sect. 3.4 discusses the
parameterization of our TemplateNet g to consistently generate templates
that achieve the theoretical lower-bound density [12] on the target sequence.
Furthermore, we note that the proxy objective in Eq. 4 will perform best when
the divergence measure Δ reflects the difference in densities of two score assign-
ments. Section 3.5 then discusses a practical choice of Δ to accurately capture
high-performing neighborhoods of minimizers. These specifications have strong
implications on the expressiveness of the solution space and directly influences
the performance of our framework, as shown in Sect. 4.

3.4 Specification of TEMPLATENET

The well-known theoretical lower bound 1 + 1/w for density factor [12] implies
that the optimal minimizer, if it exists, samples k-mers exactly w positions apart.
As a result, we want to guarantee that the output of TemplateNet approxi-
mates this scenario given any weights initialization. Without loss of generality,
we impose that TemplateNet is given by a continuous function g : R → [0, 1],
such that its output template v = [g(i)]i∈[l] consists of evaluations of g restricted
to integer inputs (i.e., k-mer positions). Then, Proposition 1 below shows a suf-
ficient construction for g that approximately yields the optimal density.

Proposition 1. Let g : R → [0, 1] be a periodic function with minimal period
w, such that g has a unique minimum value on every w-long interval. Formally,
g satisfies:

(1) : ∀t ∈ R : g(t) = g(t + w)
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(2) : ∀i, j ∈ arginf
t

g(t), ∃u ∈ N : |i − j| = uw .

Then, the template generated by g induces a sketch with density factor 1+1/w+
o(1) on S when S is sufficiently long (i.e., lw 
 w2).

Proof. We give a detailed proof of Proposition 1 in Appendix A.

Note that the resulting sketch induced by g does not necessarily correspond
to a valid minimizer. While this sketch has low density, it does not preserve the
sequence identity like a minimizer sketch, hence is not useful for downstream
applications. However, it is sufficient as a guiding template to help PriorityNet
navigate the space of orderings.

Proposition 1 leaves us with infinitely many candidate functions to choose
from. In fact, TemplateNet can be as simple as g(t) = sin(2πt/w) to gener-
ate a near-optimal score assignment. This näıve specification, however, encodes
exactly one template (i.e., one that picks k-mers from the set of interval posi-
tions {w, 2w, . . . }), whose proximal neighborhood might not contain any valid
minimizer scheme. For example, consider a sequence S in which some particu-
lar k-mer occurs exactly at positions t ∈ {

1
2w, 3

2w, . . .
}
. Ideally, we would want

to align the template minima with these locations, which is not possible given
the above choice of g. As such, it is necessary that the specification of Tem-
plateNet is sufficiently expressive for Eq. 4 to find an optimal solution.

In particular, we want to construct a parameterized function such that every
k-mer position can be sampled by at least one sketch encoded in its parame-
ter space. Furthermore, we note that the periodic property is only a sufficient
condition to obtain low-density sketches. In practice, we only want the template
minima to periodically occur at fixed intervals. Enforcing the scores assigned at
all positions to exactly follow a sinusoidal pattern is restrictive and might lead
to overlooking good templates. To address these design goals, we propose the
following ensemble parameterization:

g(t) = σ

⎛

⎝
w−1∑

φ=0

βφ sin
(

2π

w
(t + φ)

)⎞

⎠ , (5)

where σ denotes a sigmoid activation function, which ensures that g(t) appropri-
ately maps to [0, 1]; β = {βφ}w−1

φ=0 are optimizable parameters such that βφ ≥ 0
and

∑w
φ=1 βφ = 1.

Optimizing β has two implications. First, by adjusting the dominant phase
shift φmax = argmaxφ βφ, we can control the offset of the periodic template min-
ima, which leads to good coverage on the target sequence. Second, by adjusting
the magnitudes of the remaining phase shifts {βφ}φ�=φmax , we can have more
degrees of freedom to assign scores outside the template minima. Lastly, the
non-negative and sum-to-one constraints help to avoid the trivial assignment
of squashing all magnitudes to 0 and are easily guaranteed by letting β be the
output of a softmax layer.
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3.5 Specification of the Divergence Measure Δ

As standard practice, we first consider instantiating Δ with the squared 2-
distance. Specifically, let vf = f(S;α) and vg = g(S;β) denote the score assign-
ments respectively output by PriorityNet and TemplateNet given S, then
Δ�2(vf ,vg) �

∑l
i=1(vf [i] − vg[i])2. This divergence measure, however, places

an excessively strict matching objective at all locations along vf and vg. Such
a perfect match is unnecessary as long as the k-mers outside sampled locations
are assigned higher scores, and will take away the degrees of freedom needed for
the proxy objective to satisfy the constraints implied by PriorityNet.

Consequently, we are interested in constructing a divergence that: (a) strate-
gically prioritizes matching vf to the minima of the template vg; and (b) enables
flexible assignment at other positions to admit more solutions that meet the con-
sistency requirement. To accomplish these design goals, we propose the following
asymmetrical divergence:

Δ(vf ,vg) �
l∑

i=1

[
(1 − vg[i]) · (vf [i] − vg[i])2 + λ · vg[i] · (1 − vf [i])2

]
. (6)

Specifically, the idea behind the first component (1 − vg[i]) · (vf [i] − vg[i])2

in the summation is to weight each position-wise matching term (vf [i] − vg[i])2

by its corresponding template score: the weight term (1−vg[i]) implies stronger
matching preference around the minima of vg where the template scores vg[i]
are low, and vice versa weaker preference at other locations. Furthermore, to
ensure that f properly assigns higher scores to the locations outside the minima
of vg, the second component vg[i] · (1 − vf [i])2 subsequently encourages f to
maximize its assigned scores wherever possible, again weighted by the relative
relevance of each location. The trade-off between these components is controlled
by the hyper-parameter λ. Finally, we confirm that this divergence measure is
fully differentiable with respect to α and β, hence can be efficiently optimized
using gradient-based techniques. Particularly, the parameter gradients of both
networks are given by:

∂

∂α
Δ(vf ,vg) =

∑l
i=1 ai · ∂

∂αvf [i]

∂

∂β
Δ(vf ,vg) =

∑l
i=1 bi · ∂

∂βvg[i] , (7)

where the gradients of network outputs are obtained via back-propagation and
their respective constants are given by ai = 2·(1−vg[i])·(vf [i]−vg[i])+2λ·vg[i]·
(vf [i]−1) and bi = 2·(vg[i]−1)·(vf [i]−vg[i])−(vf [i]−vg[i])2+λ·vg[i]·(vf [i]−1).
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4 Results

Implementation Details. We implement our method using PyTorch and
deploy all experiments on a RTX-2060 GPU. Due to limited GPU memory, each
training epoch only computes a batch divergence which averages over N = 10
randomly sampled subsequences of length l = 500 × (w + k). We set λ = 1 and
use architectures of PriorityNet and TemplateNet as given in Fig. 2 and
Sect. 3.4 respectively. Network weights are optimized using the ADAM optimizer
[9] with learning rate η = 5 × 10−3. Our implementation is available at https://
github.com/Kingsford-Group/deepminimizer.

Comparison Baselines. We compare DeepMinimizer with the following
benchmarks: (a) random minimizer baseline; (b) Miniception [19]; (c) PASHA
[4]; and (d) PolarSet Minimizer [20]. Among these methods, (d) is a sequence-
specific minimizer scheme. For each method, we measure the density factor D
obtained on different segments of the human reference genome: (a) chromosome
1 (Chr1); (b) chromosome X (ChrX); (c) the centromere region of chromosome
X [13] (which we denote by ChrXC); and (d) the full genome (Hg38). We used
lexicographic ordering for PASHA as suggested by [19]. Random ordering is used
to rank k-mers within the UHS for Miniception, and outside the layered sets for
PolarSet.

Visualizing the Mechanism of DEEPMINIMIZER. First, we show the trans-
formation of the priority scores assigned by ScoreNet and TemplateNet
over 600 training epochs. Figure 3 plots the outputs of these networks evalu-
ated on positions 500 to 1000 of ChrXC, and their corresponding locations
of sampled k-mers. Initially, the PriorityNet assignment resembles that of
a random minimizer and expectedly yields D = 2.05. After training, the final

Fig. 3. Visualization of PriorityNet and TemplateNet score assignments on posi-
tions 500–1000 of ChrXC with w = 13, k = 8. Left: Initial assignments (D = 2.05);
Right: Final assignments after 600 training epochs (D = 1.39). The bottom plots show
corresponding locations of sampled k-mers: a value of 1 means selected, and 0 otherwise.

https://github.com/Kingsford-Group/deepminimizer
https://github.com/Kingsford-Group/deepminimizer
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TemplateNet assignment converges with a different phase shift than its initial
assignment, but its period remains the same. Simultaneously, the PriorityNet
assignment learns to match this template, hence induces a visibly sparser sketch
with D = 1.39. This result clearly demonstrates the negotiating behaviour of
our twin architecture to find optimal neighborhood of score assignments.

Convergence of Our Proxy Objective. We further demonstrate that our
proxy objective meaningfully improves minimizer performance as it is optimized.
The first two columns of Fig. 4 show the best density factors achieved by our
method over 600 epochs on two scenarios: (a) varying k with fixed w; and (b)
varying w with fixed k. The experiment is repeated on ChrXC and Hg38. In
every scenario, DeepMinimizer starts with D � 2.0, which is only comparable
to a random minimizer. We observe steady decrease of D over the first 300 epochs
before reaching convergence, where total reduction ranges from 11–23%.

Generally, larger k values lead to better performance improvement at con-
vergence. This is expected since longer k-mers are more likely to occur uniquely
in the target sequence, which makes it easier for a minimizer to achieve sparse
sampling. In fact, previous results have shown that when k is much smaller
than log w, no minimizer will be able to achieve the theoretical lower-bound
D [19]. On the other hand, larger w values lead to smaller improvements and
generally slower convergence. This is because our ensemble parameterization of
TemplateNet scales with the window size w and becomes more complicated
to optimize as w increases.

Evaluating Our Proposed Divergence Measure. The last column of Fig. 4
shows the density factors achieved by our DeepMinimizer method, respectively
specified by the proposed divergence function in Eq. 6 and 2-divergence. Here,
we fix w = 14 and vary k ∈ {6, 8, 10, 12, 14} and observe that with the 2-
divergence, we only obtain performance similar to a random minimizer. On the
other hand, with our divergence function, DeepMinimizer obtains much lower
densities on all settings, thus confirming the intuition in Sect. 3.5.

Comparing Against Other Minimizer Selection Benchmarks. We show
the performance of DeepMinimizer compared to other benchmark methods.
DeepMinimizer is trained for 600 epochs to ensure convergence, as shown
above. Figure 5 shows the final density factors achieved by all methods, again
on two comparison scenarios: (a) fix w = 13, and vary k ∈ {6, 8, 10, 12, 14}; and
(b) fix k = 14, and vary w ∈ {10, 25, 40, 55, 70, 85}.
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Fig. 4. Best density factors obtained by DeepMinimizer on Hg38 (above) and ChrXC
(below) over 600 training epochs. Left: fix w = 13, and vary k ∈ {6, 8, 10, 12, 14};
Center: fix k = 14, and vary w ∈ {10, 25, 40, 55, 70, 85}; Right: Comparing proposed
Δ-divergence and �2-divergence.

DeepMinimizer consistently achieves better performance compared to non-
sequence-specific minimizers (i.e., PASHA, Miniception) on all settings. We
observe up to 40% reduction of density factor (e.g., on ChrXC, w = 70, k = 14),
which clearly demonstrates the ability of DeepMinimizer to exploit sequence-
specific information. Furthermore, we also observe that DeepMinimizer out-
performs our sequence-specific competitor, PolarSet, in a majority of settings.
The improvements over PolarSet are especially pronounced for smaller k val-
ues, which are known harder tasks for minimizers [19]. On larger w values, our
method performs slightly worse than PolarSet in some settings. This is likely
due to the added complexity of optimizing TemplateNet, as described in con-
vergence ablation study of our method.

In addition, we also conduct investigation on the centromere region of chro-
mosome X (i.e., ChrXC), which contains highly repetitive subsequences [6] and
has been shown to hamper performance of PolarSet [20]. Figure 5 shows that
PolarSet and the UHS-based methods perform similarly to a random minimizer,
whereas our method is consistently better. Moreover, we observe that Deep-
Minimizer obtains near-optimal densities with ChrXC on several settings. For
example, we achieved D = 1.22 when k = 14, w ∈ {40, 70}, which is significantly
better than the results on Chr1 and ChrX. This suggests that ChrXC is not
necessarily more difficult to sketch, but rather good sketches have been excluded
by the UHS and polar set reparameterizations, which is not the case with our
framework.

Runtime Performance. DeepMinimizer runs efficiently with GPU comput-
ing. In all of our experiments, each training epoch takes approximately 30 seconds
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to 2 minutes, depending on the choice of k and w, which controls the batch
size. Performance evaluation takes between several minutes (ChrXC) to 1 hour
(Hg38), depending on the length of the target sequence. Generally, our method
is cost-efficient without frequent evaluations. Our most cost-intensive experiment
(i.e., convergence ablation study on Hg38) requires a full-sequence evaluation
every 20 epochs over 600 epochs, thus takes approximately 2 days to complete.
This is faster than PolarSet, which has a theoretical runtime of O(n2) and takes
several days to run with Hg38. A more detailed runtime ablation study on Chr1
is provided in Appendix B.

Fig. 5. Density factors obtained by DeepMinimizer (600 training epochs), Ran-
dom Minimizer, PASHA, Miniception and PolarSet on Chr1, ChrX and ChrXC.
Above: fix w = 13, and vary k ∈ {6, 8, 10, 12, 14}; Below: fix k = 14, and vary
w ∈ {10, 25, 40, 55, 70, 85}.

5 Conclusion

We introduce a novel framework called DeepMinimizer for learning sequence-
specific minimizers. This is achieved via casting minimizer selection as optimizing
a k-mer scoring function ρ. We propose a more well-behaved search space for
minimizers, given by a neural network parameterization of ρ, called Priori-
tyNet. Then, we introduce a complementary network, called TemplateNet
which pinpoints optimal scoring templates and guides PriorityNet to the
neighborhood of low-density assignments around them. Coupling these net-
works leads to a fully differentiable proxy objective that can effectively leverage
gradient-based learning techniques. DeepMinimizer obtains better performance
than state-of-the-art sequence-agnostic and sequence-aware minimizer selection
schemes, especially on known hard tasks such as sketching the repetitive cen-
tromere region of Chromosome X. However, we also observe mild limitations
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in several settings with large window length w, which hampers the perfor-
mance of DeepMinimizer. This is likely due to the heuristic construction of
our TemplateNet component, which we will investigate in our future work.
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A Proof of Proposition 1

We first re-express the density factor of S in terms of a priority score assign-
ment v ∈ [0, 1]l. Note that this expression will hold regardless of whether
v satisfies the consistency constraint (Sect. 3.2). Particularly, let γ1 = 1 and
γt = I

(
argmin

j∈ωt

v[j] �= argmin
j′∈ωt−1

v[j′]
)

indicate the event the t-th window picks a

different k-mer than the (t − 1)-th window, we have:

D(S;v) =
w + 1

lw
× |L(S;v)| =

w + 1
lw

lw∑

t=1

γt . (8)

Without loss of generality, we assume 0 ∈ arginf
t

g(t) since this can always

be achieved via adding a constant phase shift to g. As g has a fundamental
period of w, this implies {uw | u ∈ N} ⊆ arginft g(t), which further reduces to
{uw | k ∈ N} = arginft g(t) when condition (2) holds.

Let us now derive the values of γt for t ∈ Iu � [(u − 1)w + 1, uw], u ∈ N
+.

We have:

– uw ∈ arginf g(t),
– ∀t ∈ Iu such that t �= uw, we have t /∈ arginf

t
g(t), and

– ∀t ∈ I(u) : uw ∈ ωt, which follows from the above argument and the definition
of window ωt.

Together, these observations imply that ∀t ∈ Iu : argminj∈ωt
v[j] = uw

and consequently γt = 0 for all values of t ∈ Iu except t = (u − 1)w + 1.
For u = 1, we trivially have γ(u−1)w+1 = 1 by definition of γ1. For u > 1, we
have argminj∈ω(u−1)w

v[j] = (u − 1)w �= argminj∈ω(u−1)w+1
, which also implies

γ(u−1)w+1 = 1. Following the above derivations, we have:

D(S;v) =
w + 1

lw

lw∑

t=1

γt =
w + 1

lw

⎛

⎝c +
� lw

w �∑

u=1

∑

t∈Iu

γt

⎞

⎠ =
w + 1

lw

(
c +

⌊
lw
w

⌋)
,

(9)
where the third equality follows from the derived values γt for t ∈ Iu. Finally,
using the fact that c =

∑lw
t=� lw

w �w+1
γt < w and the sufficient length assumption
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lw 
 w2, we have:

w + 1
lw

(
c +

⌊
lw
w

⌋)
≤ w2

lw
+

w + 1
w

= 1 +
1
w

+ o(1) , (10)

which concludes our proof. ��

B Other Empirical Results

This section contains extra experiments that showcase various aspects of our
DeepMinimizer framework. For all experiments, we use the same implementa-
tion, benchmarks and settings as detailed in Sect. 4.

Density Performance of DEEPMINIMIZER on More Sequence Baselines.
We deploy DeepMinimizer on Chr1 and ChrX. For both sequences, we
observe the best density factor obtained over 600 training epochs for various
values of k and w. Figure 6 shows that DeepMinimizer consistently improves
density factors until convergence, which tends to happen between 200–300 train-
ing epochs for all experiments.

Fig. 6. Demonstrating convergence of DeepMinimizer on Chr1 (left) and ChrX
(right) with different w, k values.
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Fig. 7. Comparing performance of DeepMinimizer with other benchmarks on Hg38
for different values of w, k.

Fig. 8. Best density obtained (left) and runtime (right) of DeepMinimizer for k ∈
{10, 20, 40, 80, 160, 320} on Chr1.

DEEPMINIMIZER Outperforms Other Baselines on Large Sequences.
Figure 7 compares the performance of DeepMinimizer and various comparison
baselines on the entire human genome Hg38. We measure the best density factor
obtained over 600 training epochs for various values of k and w and observe that
DeepMinimizer consistently achieves the best performance among comparison
baselines.

Density Performance of DEEPMINIMIZER on Large Values of k. Figure 8
(left) showcases the performance of DeepMinimizer on Chr1 with large values
of k. We fix w = 13 and observe the best density factor obtained over 600 training
epochs for various values of k up to 320. We show that DeepMinimizer behaves
similarly for large k, and achieves the best density D = 1.22 with k = 160.

Runtime Performance of DEEPMINIMIZER on Large Values of k. Figure 8
(right) measures runtime (in seconds) of DeepMinimizer on Chr1 over 600
epochs. Larger k values require PriorityNet to have more parameters. Expect-
edly, we observe runtime for k = 40, 80, 160, 320 to increase in the same order. For
k = 10 and 20, however, the runtimes are approximately the same as k = 80. We
note that a smaller k value means there are more k-mers in the same sequence.
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As such, even though PriorityNet is more compact for these values of k, we
will incur some overhead from querying it more often.
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20. Zheng, H., Kingsford, C., Marçais, G.: Sequence-specific minimizers via polar sets.
Bioinformatics 37, i187–i195 (2021)



MetaCoAG: Binning Metagenomic
Contigs via Composition, Coverage

and Assembly Graphs

Vijini Mallawaarachchi and Yu Lin(B)

School of Computing, Australian National University, Canberra, Australia
{vijini.mallawaarachchi,yu.lin}@anu.edu.au

Abstract. Metagenomics has allowed us to obtain various genetic mate-
rial from different species and gain valuable insights into microbial com-
munities. Binning plays an important role in the early stages of metage-
nomic analysis pipelines. A typical pipeline in metagenomics binning is to
assemble short reads into longer contigs and then bin into groups repre-
senting different species in the metagenomic sample. While existing bin-
ning tools bin metagenomic contigs, they do not make use of the assem-
bly graphs that produce such assemblies. Here we propose MetaCoAG, a
tool that utilizes assembly graphs with the composition and coverage infor-
mation to bin metagenomic contigs. MetaCoAG uses single-copy marker
genes to estimate the number of initial bins, assigns contigs into bins iter-
atively and adjusts the number of bins dynamically throughout the bin-
ning process. Experimental results on simulated and real datasets demon-
strate that MetaCoAG significantly outperforms state-of-the-art binning
tools, producing similar or more high-quality bins than the second-best
tool. To the best of our knowledge, MetaCoAG is the first stand-alone
contig-binning tool to make direct use of the assembly graph information.

Availability: MetaCoAG is freely available at https://github.com/
Vini2/MetaCoAG.

Keywords: Metagenomics · Binning · Contigs · Assembly graphs

1 Introduction

The development of high-throughput sequencing technologies has paved the way
for metagenomics studies to analyze microbial communities without the need
for culturing, especially in large scale metagenomics studies such as the Human
Microbiome Project [39]. These microbial communities consist of a large number
of micro-organisms including bacteria. Samples obtained directly from the envi-
ronment can be sequenced to obtain large amounts of sequencing reads. In order
to characterize the composition of a sample and the functions of the microbes
present, we perform metagenomics binning where we cluster sequences into bins
that represent different taxonomic groups [36].
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Next-generation sequencing (NGS) technologies such as Illumina allow us
to sequence microbial communities and obtain highly accurate short sequences
called reads. These reads can be binned [1,8,12,22,29,34,41] prior to assembly,
but results can be less reliable due to their short lengths [47]. Hence, a widely
used pipeline for metagenomics analysis is to first assemble reads into longer
sequences called contigs and then bin these assembled contigs into groups that
belong to different taxonomic groups [36]. Current contig-binning approaches
fall into two broad categories [48]: (1) reference-based binning approaches [16,
25,29,43] which classify contigs into known taxonomic groups by comparing
against a reference database and (2) reference-free binning approaches which
cluster contigs into unlabeled bins based on genomic features of these contigs.
Reference-free binning approaches [3,14,42,44,45] have become more popular
as they enable the identification of new species that are not available in the
current databases. Reference-free contig-binning tools mainly make use of two
features to perform binning: (1) composition, obtained as normalized frequencies
of oligonucleotides (also known as k-mers) of a given length and (2) coverage,
considered as the average number of reads that map to each base of the contig.
These tools achieve improved performance by combining both the composition
and the coverage information. However, it still remains challenging for these
binning tools to accurately reconstruct microbial genomes of species with similar
composition and coverage profiles.

Another challenge in metagenomics binning is to estimate the number of
species present in a given sample. Recent binning tools have made use of single-
copy marker genes (appear only once in the genome and are conserved in the
majority of bacterial genomes [2,10,45]) to estimate the number of species. In
tools such as MaxBin/MaxBin2 [44,45], only one marker gene is utilized to
estimate the number of initial bins which may lead to an underestimation of the
number of species. Hence, it is worth investigating how to make use of multiple
single-copy marker genes together to obtain a better estimate for the number of
bins and to explore more features of contigs that can improve the binning result.

Contigs are obtained by assembling reads into longer sequences, and there
are many tools to perform assembly. Most existing metagenomic assemblers [19,
28,31] use assembly graphs as the key data structure (e.g., simplified de Bruijn
graph [32]) to assemble reads into contigs. Previous studies indicated that contigs
connected to each other in the assembly graph are more likely to belong to the
same taxonomic group [5,23]. Although popular metagenomic assemblers such
as metaSPAdes [28] output contigs along with their connection information in
the assembly graph, most existing binning tools ignore the valuable connection
information between contigs. More recently, bin-refinement tools such as Graph-
Bin [23], GraphBin2 [24] and METAMVGL [49] have been developed to refine
existing binning results using assembly graphs. These tools rely upon the bins
produced by an existing binning tool and cannot dynamically adjust the num-
ber of bins. Moreover, metabinners such as DAS tools [38] and MetaWRAP[40]
have been introduced to integrate and optimize the results of multiple binning
approaches. Although these tools achieve improved binning performance, they
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still require initial binning results obtained from other existing binning tools and
some tools cannot dynamically adjust the number of bins. Hence, it is worth
exploring methods to develop a stand-alone contig-binning tool that makes use
of the assembly graph information.

In this paper, we introduce MetaCoAG, a reference-free stand-alone approach
for binning metagenomic contigs. In addition to composition and abundance
information, MetaCoAG makes use of the connectivity information from assem-
bly graphs for binning. To the best of our knowledge, MetaCoAG is the first
contig-binning tool to make direct use of the assembly graph information. We
benchmark MetaCoAG against state-of-the-art contig-binning tools using simu-
lated and real datasets. The experimental results show that MetaCoAG signifi-
cantly outperforms other contig-binning tools, e.g., improving the completeness
of bins while maintaining high purity levels and producing more high-quality
bins.

2 Methods

Figure 1 shows the overall workflow of MetaCoAG. Each step of MetaCoAG is
explained in detail in the following sections.

Fig. 1. MetaCoAG workflow
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2.1 Step 0: Assemble Reads into Contigs and Construct
the Assembly Graph

This preprocessing step is carried out to assemble the reads into contigs and
obtain the assembly graph. Metagenomic assemblers first use graph models to
connect overlapping reads or k-mers and to infer contigs as non-branching paths.
After graph simplification, the vertices represent contigs and edges represent
connections between contigs in the assembly graph. Here we use the popular
metagenomic assembler metaSPAdes [28] to derive input contigs and assembly
graphs. Note that the assembly graphs can also be obtained similarly using other
metagenomic assemblers such as MEGAHIT [19] and metaFlye [17].

2.2 Step 1: Identify Contigs with Single-Copy Marker Genes

Single-copy marker genes appear only once in a bacterial genome and are con-
served in the majority of bacterial genomes [2,10,45]. For each single-copy
marker gene, we use FragGeneScan [33] and HMMER [11] to identify the con-
tigs which contain this marker gene. A single-copy marker gene is considered
to be contained in a contig if more than 50% of the gene length is aligned to
this contig. Similar to approaches such as MaxBin [45] and MaxBin2 [44], Meta-
CoAG uses single-copy marker genes to distinguish contigs belonging to different
species (i.e., if these contigs contain the same single-copy marker gene).

2.3 Step 2: Order Single-Copy Marker Genes and Estimate
the Number of Initial Bins

For a given single-copy marker gene, the contigs containing this marker gene
should come from different species (e.g., if two contigs contain the same marker
gene, then the two contigs should belong to two different species). In the ideal
case, if we have a near-perfect assembly, the number of contigs that contain the
same single-copy marker gene should be equal to the number of species present
in the sample. However, in reality, assemblies can be fragmented and erroneous,
which may make it challenging to recover all single-copy marker genes and hence,
lowering the counts of contigs containing each single-copy marker gene.

To get a better estimation of the number of species, we obtain the counts of
contigs containing each single-copy marker gene. We also record the single-copy
marker genes found in each contig. For a single-copy marker gene, the number
of contigs that it can distinguish is the number of contigs containing this gene.
Therefore, we order all the single-copy marker genes according to the descending
order of the number of contigs containing them. We refer to this list of ordered
marker genes as SMG where a single-copy marker gene gi has a set of contigs
C(gi) containing gi. The number of initial bins is empirically set to be the number
of contigs that contain the first gene in SMG, in order to recover the maximum
number of species possible from the marker gene information.
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2.4 Step 3: Bin Contigs with Single-copy Marker Genes

Step 3a: Initialize Bins. We initialize the bins using the contigs of the first
single-copy marker gene g1 in SMG; i.e., we initialize a new bin B for each
contig in C(g1) (as shown in Step 3a of Fig. 1). We define the initialized set of
bins as BINS. Please note that the number of bins |BINS| may change during
the binning process.

Calculating Composition and Coverage Similarities. Previous studies
on metagenomics binning have used genomic signatures as they follow species-
specific patterns [9,45]. The most commonly used genomic signatures to char-
acterize composition information are tetranucleotide frequencies (136 canoni-
cal 4-mers, also known as tetramers) [3,14,27,42,44,45]. For each contig c, we
normalize the tetranucleotide frequencies using its total number of tetranu-
cleotides to obtain the normalized tetranucleotide frequency vector, tetra(c).
We obtain the tetranucleotide composition distance between contigs c and c′ as
dtetra(c, c′) = distE

(
tetra(c), tetra(c′)

)
where distE is the Euclidean distance

function.
We use the same formula proposed by Wu et al. [45] to estimate how similar

c and c′ are (i.e. belonging to the same species) based on their composition,
Scomp(c, c′) as shown in Eq. 1.

Scomp(c, c′) =
Nintra

(
dtetra(c,c′)|μintra,σ2

intra

)

Nintra

(
dtetra(c,c′)|μintra,σ2

intra

)
+Ninter

(
dtetra(c,c′)|μinter,σ2

inter

) (1)

Nintra and Ninter are Gaussian distributions with μintra, σintra, μinter and
σinter set according to the latest values of MaxBin 2.2.7 [44] which have been
calculated by analysing the Euclidean distance between the tetranucleotide fre-
quencies of pairs of sequences sampled from the same genome (intra) and dif-
ferent genomes (inter). If the distance is lower between two sequences, they are
more similar, and are more likely to belong to the same genome.

We use the coverage information of the contigs as coverage carries impor-
tant information about the abundance of species and has been used in previous
metagenomics binning studies [2,14,27,42,45]. Shotgun sequencing has shown to
follow the Lander-Waterman model [18] and the Poisson distribution has been
used to obtain the sequencing coverage of nucleotides and applied in metage-
nomics binning [45,46]. Modifying the definition found in Wu et al. [45], we
estimate how similar c and c′ are in terms of their coverage values in each sam-
ple, Scov(c, c′) as shown in Eq. 2.

Scov(c, c′) = min

(
∏M

n=1 Poisson
(
covn(c)|covn(c′)

)
,
∏M

n=1 Poisson
(
covn(c′)|covn(c)

)
)

(2)

Here covn(c) and covn(c′) refer to the coverage values of the contigs c and c′

respectively in the sample n where M is the number of samples. Poisson is the
Poisson probability mass function.
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Step 3b: Construct a Weighted Bipartite Graph and Find a Minimum-
Weight Full Matching. In the previous steps, we have used single-copy marker
genes to identify pairs of contigs that belong to different species. Remind that
contigs in different bins in BINS are expected to belong to different species
and contigs in C(gi) are also expected to belong to different species. However,
there is no measurement to measure how likely a contig c in C(gi) belongs to
an existing bin B in BINS. Therefore, we introduce a bipartite graph between
C(gi) and BINS and propose a weight wc2B(c,B) between a contig c in C(gi)
and an existing bin B in BINS as shown in Eq. 3.

wc2B(c,B) =
∑

c′∈B wc2c(c, c′)
|B| (3)

In Eq. 3, wc2c(c, c′) is the weight that measures how likely a pair of contigs c
and c′ belong to the same species and is computed using Eq. 4. Scomp(c, c′) and
Scov(c, c′) are calculated according to Eqs. 1 and 2 resp.

wc2c(c, c′) = −(
log(Scomp(c, c′)) + log(Scov(c, c′))

)
(4)

Now we find a minimum-weight full matching (minimum-cost assign-
ment) [15] for the above bipartite graph between C(gi) and BINS where every
contig c in C(gi) will get paired with exactly one bin B in BINS. For this pur-
pose, we use the minimum-weight full matching algorithm implemented in the
NetworkX python library which is based on the algorithm proposed by Karp [15]
and the time complexity is O(|C(gi)| × |BINS| × log(|BINS|)).

In the next step, we will see how we can assign the contigs to existing bins
based on the minimum-weight full matching we have obtained.

Step 3c: Assign Contigs to Existing Bins and Dynamically Adjust
Bins. Previous studies have observed that contigs connected to each other in
the assembly graph are more likely to belong to the same taxonomic group [5,23].
While wc2B(c,B) considers both composition and coverage information, the
assembly graph has not yet been incorporated into the binning process. There-
fore, we introduce dgraph(c,B) to measure how well contig c is connected to
contigs in bin B within the assembly graph. Specifically, dgraph(c,B) is defined
as the average length of the shortest-path distances between contig c and all
the contigs in bin B in the assembly graph. Note that both wc2B(c,B) and
dgraph(c,B) will be used to assign contigs to existing bins or dynamically adjust
the bins.

We define the thresholds intra-species weight wintra = −(
log(pintra)

) × M

and inter-species weight winter = −(
log(pinter)

) × M where M is the number of
samples in the dataset. Each candidate pair (c,B) obtained from the minimum-
weight full matching falls under one of the following three cases (refer Fig. 2).

– Case 1: If the weight of the candidate pair wc2B(c,B) is less than or equal
to wintra and the average distance dgraph(c,B) is less than or equal to dlimit,
then contig c will be assigned to bin B, i.e., B ← B ∪ {c} (e.g., contig 4 and
Bin 1 in Fig. 2).
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– Case 2: If the weight of the candidate pair wc2B(c,B) is greater than winter

and the average distance dgraph(c,B) is greater than dlimit, then a new bin
B′ is created and contig c is assigned to that new bin, i.e., B′ = {c} and
BINS ← BINS ∪ {B′}. (e.g., contig 21 in Fig. 2).

– Case 3: If wc2B(c,B) and dgraph(c,B) satisfy neither Case 1 nor Case 2, then
contig c will not be assigned to any bin (e.g., contig 14 in Fig. 2).

Fig. 2. Cases 1, 2 and 3 in assigning contigs to existing bins or adjusting bins

The default values for parameters pintra, pinter, dlimit were chosen empirically
and set to 0.1, 0.01 and 20 respectively. Now we iteratively perform Steps 3b and
3c to process all the contigs containing single-copy marker genes. The remaining
challenge is to bin the contigs which do not contain single-copy marker genes
which will be addressed in Step 4.

2.5 Step 4: Bin Remaining Contigs Using Label Propagation

After we bin the contigs with single-copy marker genes, each such contig receives
a label corresponding to its bin. Now we will propagate labels from these contigs
to other unlabeled contigs within the same connected component.

Step 4a: Propagate Labels Within Connected Components. MetaCoAG
uses composition, coverage and distance information from the assembly graph to
propagate labels from labeled contigs to the unlabeled contigs located within the
same connected components. More specifically, for each unlabeled long contig c
(at least 1,000 bp long because short contigs result in unreliable composition
and coverage information) directly connected or connected via short contigs
to a labeled contig c′, MetaCoAG computes a candidate propagation action
(c′, c, d(c, c′), wc2B(c,B′)) where d(c, c′) is the shortest distance between c and
c′ using only unlabeled vertices and wc2B(c,B′) is computed according to Eq. 3
where B′ is the bin to which contig c′ is assigned. Given two candidate propa-
gation actions (a, b, d, w) and (a′, b′, d′, w′), (a, b, d, w) has a higher priority than
(a′, b′, d′, w′) if d < d′ or (w < w′ and d = d′). MetaCoAG iteratively selects the
candidate propagation action with the highest priority and executes the corre-
sponding label propagation. If a contig to be labeled contains single-copy marker
genes, the relevant candidate propagation action is executed if the single-copy
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marker genes of the contig are not present in the intended bin. We restrict the
depth of the search for labeled contigs in this step to 10.

Step 4b: Propagate Labels Across Different Components. Note that
some components in the assembly graph may not have any labeled contigs and
we need to propagate labels from labeled bins to unlabeled contigs across com-
ponents. Calculating pair-wise weights wc2c(c, c′) for all the remaining contigs
becomes time consuming. Hence, for each bin B we create a representative contig
c(B) which has a composition profile and a coverage profile calculated by averag-
ing the normalized tetranucleotide frequency vectors and coverage vectors of all
the contigs in bin B, respectively. These profiles will provide a better representa-
tion of the composition and coverage of the bins. Then, for each unlabeled contig
c, MetaCoAG identifies a bin B that minimizes wc2c(c, c(B)) which is calculated
according to Eq. 4, and assigns contig c into that bin B. This propagation is
limited to long contigs (at least 1,000 bp long by default). If an unlabeled con-
tig contains single-copy marker genes, it is assigned to bin B that minimizes
wc2c(c, c(B)) if the single-copy marker genes of the contig are not present in bin
B. Then, Step 4a is performed again to further propagate labels.

Step 4e: Postprocessing. In this step, we will make final adjustments on the
current bins. Two bins B and B′ are mergeable if they have no common marker
genes and wc2c(c(B), c(B′)) (calculated by Eq. 4) is upper bounded by wintra

(defined in Step 3c). Then, MetaCoAG creates a graph where vertices denote
current bins and edges between two vertices denote that the corresponding two
bins are mergeable. Now we use the implementation of python-igraph library
to find maximal cliques (igraph maximal cliques) in this graph and merge the
bins found in each maximal clique. After merging bins, we also remove the bins
which contain less than one third (set by default) of the single-copy marker genes.
Finally, MetaCoAG outputs the bins along with their corresponding contigs.

3 Experimental Setup

3.1 Datasets and Tools

Simulated Datasets. We evaluated the binning performance on the simulated
simHC+ dataset [45] which consists of 100 bacterial species. Paired-end reads
were simulated using InSilicoSeq [13] with the predefined MiSeq error model.

Real Datasets. We used three real datasets to evaluate the binning perfor-
mance on real-world metagenomic data: (1) Preborn infant gut metagenome [37]
with 18 samples (NCBI accession number SRA052203 ), referred as Sharon,
(2) Metagenomics of the Chronic Obstructive Pulmonary Disease (COPD)
Lung Microbiome [6] with 18 samples (NCBI BioProject number PRJEB9034 ),
referred as COPD and (3) Human metagenome sample from tongue dorsum
of a participant from the Deep WGS HMP clinical samples [21] with 8 samples
(NCBI accession number SRX378791 ), referred as Deep HMP TD.

https://igraph.org/c/doc/igraph-Cliques.html#igraph_maximal_cliques
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Tools Used. We used the popular metagenomic assembler metaSPAdes [28]
(from SPAdes version 3.15.2 [4]) to assemble reads into contigs and obtain the
assembly graphs. For the datasets containing multiple samples, the contigs and
assembly graph were obtained by co-assembling the reads from all the samples
together. The mean coverage of each contig in each sample was calculated using
CoverM (available at https://github.com/wwood/CoverM).

MetaCoAG was benchmarked against the binning tools MaxBin2 (version
2.2.7) [44] in its default settings, MetaBAT2 (version 2.12.1) [14] with -m 1500
and Vamb (version 3.0.1) [27] in co-assembly mode (for a fair comparison with
other tools) with the parameter --minfasta 200000 as per authors.

The binning results were evaluated using the tools AMBER [26] (version
2.0.2), CheckM [30] (version 1.1.3) and GTDB-Tk [7] (version 1.5.0).

3.2 Evaluation Metrics

Since the ground truth species for the simHC+ dataset were available, we
used Minimap2 [20] to map the contigs to the reference genomes and deter-
mine the ground truth. With this ground truth annotation of contigs, we used
AMBER [26] to assess the binning results of the simHC+ dataset. We set the
recall as AMBER completeness and precision as AMBER purity and calculated
the F1-score as 2 × (precision × recall)/(precision + recall) for each bin/species.

For all the datasets, we determined the completeness and contamination of
all the bins using CheckM [30]. We define purity as 1/(1 + CheckM contamina-
tion). Then, we set the recall as CheckM completeness and precision as purity,
and calculate F1-score as 2 ×(precision×recall)/(precision+recall) for each bin.
Furthermore, we counted the number of high-quality bins (bins with >80% com-
pleteness and >90% purity), medium-quality bins (bins with >50% completeness
and >80% purity) and low-quality bins (bins which are not considered as high-
quality or medium-quality).

4 Results and Discussion

4.1 Benchmarks Using SimHC+ Dataset

We first benchmarked MetaCoAG against two popular contig-binning tools,
MaxBin2 [44] and MetaBAT2 [14] on the simulated dataset simHC+ [45]1. We
evaluated the binning results of the simHC+ dataset produced by all the tools
using the two popular evaluation tools AMBER [26] and CheckM [30]. AMBER
assesses the quality of bins based on the ground truth annotations provided and
CheckM assesses the quality of bins based on sets of single-copy marker genes. We
analyzed the purity, completeness and F1-score of the binning results calculated
by AMBER (at the nucleotide level) and CheckM (refer to Appendix Table 2).

1 Please note that the recently published tool Vamb [27] was not used to evaluate the
simHC+ dataset as the number of contigs was less than the number recommended by
the authors (https://github.com/RasmussenLab/vamb#recommended-workflow).

https://github.com/wwood/CoverM
https://github.com/RasmussenLab/vamb#recommended-workflow
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MetaCoAG has recovered bins with a better trade-off between purity and com-
pleteness when compared to other binning tools (Fig. 3(a)). This better trade-off
is demonstrated from the best F1-score results produced by MetaCoAG with
a median F1-score of 95.69% from AMBER and a median F1-score of 98.48%
from CheckM (Fig. 3(b) and (c) respectively, where each point denotes a bin)
when compared with other binning tools. Furthermore, MetaCoAG has recov-
ered the highest number of high-quality bins (69 bins) and the lowest number of
low-quality bins (13 bins) (Refer to Appendix Table 3).

(a) (b) (c)

Fig. 3. Binning results of the simHC+ dataset: (a) Average completeness per bin vs.
average purity per bin from AMBER and CheckM results of each binning tool, (b)
Swarm plot with overlaid box plot for the AMBER F1-score of the bins produced by
each binning tool and (c) Swarm plot with overlaid box plot for the CheckM F1-score
of the bins produced by each binning tool.

A major challenge faced by most existing binning tools is how to accurately
separate contigs of species belonging to the same genus, where such species tend
to have similar oligonucleotide composition and appear in similar abundances.
For example, the three species, S. pneumoniae, S. thermophilus and S. suis
from simHC+ belong to the Streptococcus genus, and they have very similar
oligonucleotide composition and coverage values (Refer to Fig. 4(a)). Not sur-
prisingly, contigs from these three species were incorrectly binned by MaxBin2
and even ignored by MataBAT2 because they share similar composition and
coverage profiles (Refer to Fig. 4(b)). On the contrary, MetaCoAG was able to
accurately bin most of the contigs from these three species because they naturally
form three subgraphs in the assembly graph (Refer to Fig. 4(b)), thus improving
the F1-scores of S. pneumoniae from 46.51% to 93.40%, S. thermophilus from
49.97% to 95.67% and S. suis from 72.39% to 95.95%. Figure 4(b) demonstrates
that the use of assembly graph in MetaCoAG can assist in separating species,
despite the high similarity in oligonucleotide composition and coverage of certain
species. Furthermore, we observed that the assembly graphs help MetaCoAG to
bin species with high variance of intra-species oligonucleotide composition and
coverage profiles while most existing tools suffer from the assumption that the
oligonucleotide composition and coverage are conserved within the same species.
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Fig. 4. Visualization of the (a) tetranucleotide composition and (b) binning results of
three Streptococcus genomes in the simHC+ dataset

4.2 Benchmarks Using Real Datasets

We benchmarked MetaCoAG against MaxBin2 [44], MetaBAT2 [14] and
Vamb [27] on three real metagenomic datasets; Sharon [37], COPD [6] and
Deep HMP TD [21]. Similar to the simHC+ dataset, we again use CheckM [30]
to evaluate the bins produced by all the binning tools and identify high-quality
bins. Figure 5 shows that MetaCoAG has also achieved the best binning result
in terms of the median F1-score for the real datasets. For the Sharon dataset,
MetaCoAG records a median F1-score of 99.24% while the second-best tool
(Vamb) has a median F1-score of 83.88%. For the COPD dataset, MetaCoAG
records a median F1-score of 75.68% while the second-best tool (MaxBin2) has a
median F1-score of 25.13%. For the Deep HMP TD dataset, MetaCoAG records
a median F1-score of 76.34% while the second-best tool (MaxBin2) has a median
F1-score of 37.40%. Furthermore, MetaCoAG has produced the highest number
of high-quality bins for all the real datasets (Please refer to Appendix Table 3).

We used GTDB-Tk [7] to annotate all high-quality bins produced by the three
best-performing tools; MetaCoAG, MaxBin2 and Vamb for the real datasets.
Then we compared such taxonomic annotations (up to the species level) with
the results in original publications for these datasets as shown in Table 1. The
comparisons show that MetaCoAG achieves the best consistency with the com-
prehensive analysis results in original publications. These results demonstrate
that MetaCoAG has been able to recover species in real metagenomics samples
that are ignored by other binning tools, as well as recover more species correctly
with respect to the original analysis of these real datasets.
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(a) (b) (c)

Fig. 5. Swarm plots with overlaid box plots for the F1-score from CheckM results of
the real datasets. Each point denotes a bin.

Table 1. GTDB-Tk annotations of high-quality species for the real datasets

Dataset Species MaxBin2 [44] Vamb [27] MetaCoAG Present in original
analysis

Sharon [37] Cutibacterium avidum ✓ ✓ ✓ ✓

Enterococcus faecalis ✓ ✓ ✓ ✓

Peptoniphilus lacydonensis ✓ ✓ ✓ ✓

Staphylococcus aureus ✓ ✓ ✓ ✓

Staphylococcus epidermidis ✓ ✓ ✓ ✓

Staphylococcus hominis ✓ ✗ ✓ ✓

Leuconostoc citreum ✗ ✗ ✓ ✓

COPD [6]* Peptostreptococcus sp ✓ ✓ ✓ ✓

SR1 bacterium human oral taxon HOT-345 ✓ ✓ ✓ ✗†

Prevotella pallens ✗ ✓ ✓ ✓

Haemophilus sputorum ✗ ✓ ✓ ✓

Herbaspirillum huttiense ✗ ✓ ✓ ✓

Capnocytophaga gingivalis ✓ ✗ ✓ ✓

Capnocytophaga leadbetteri ✓ ✗ ✓ ✓

Lancefieldella sp000564995 ✓ ✗ ✓ ✓

Actinomyces graevenitzii ✓ ✗ ✗ ✓

Actinomyces oris ✓ ✗ ✗ ✓

Anaeroglobus micronuciformis ✓ ✗ ✗ ✗

Eubacterium sulci ✗ ✗ ✓ ✓

Prevotella shahii ✗ ✗ ✓ ✓

Prevotella histicola ✗ ✗ ✓ ✓

Lachnospiraceae bacterium oral taxon 096 ✗ ✗ ✓ ✗†

Deep HMP TD [21]* Actinomyces graevenitzii ✓ ✓ ✓ ✓

Saccharimonadaceae TM7x sp900557595 ✓ ✓ ✓ ✗†

Neisseria subflava C ✓ ✗ ✓ ✓

Prevotella pallens ✓ ✗ ✓ ✓

Anaeroglobus micronuciformis ✓ ✗ ✓ ✗

Actinomyces sp. ICM47 ✓ ✗ ✓ ✓

Lancefieldella sp000564995 ✓ ✗ ✗ ✗

Eubacterium B sulci ✗ ✗ ✓ ✓

✓ denotes that the species is present and ✗ denotes that the species is absent in the
result/analysis. Green colored items match the original analysis whereas the red colored
items do not match the original analysis.
* The species were determined based on the most abundant genera presented.
† These species were added to NCBI taxonomy in year 2020 [35] which is after the
relevant analysis [6,21].
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5 Discussion and Conclusion

Metagenomic sequencing and de novo assembly, coupled with binning meth-
ods have facilitated the characterization of different microbial communities. The
majority of existing metagenomic contig-binning tools do not make use of the
valuable connectivity information found in assembly graphs from which the con-
tigs are derived. Furthermore, existing tools do not make use of multiple single-
copy marker genes throughout the entire binning process.

MetaCoAG is a tool for binning metagenomic contigs that makes use of com-
position, coverage and assembly graphs simultaneously. The use of connectivity
information from the assembly graphs makes the binning process of MetaCoAG
robust against similar inter-species oligonucleotide composition and coverage
(among species within the same genus) as well as high variance of intra-species
oligonucleotide composition and coverage (within the same species). Experimen-
tal results on both simulated and real datasets show that MetaCoAG achieves
the best binning results compared to state-of-the-art tools, especially in terms of
bin quality. However, assembly issues such as misassemblies can be challenging
to handle and requires further investigation.

MetaCoAG can be easily extended to work with other metagenomics assem-
blers. In the future, we plan to extend MetaCoAG to support overlapped bin-
ning [24] (i.e., contigs may belong to multiple species) and multi-sampled bin-
ning [27] (i.e., integration across multiple samples instead of co-assembly). Fur-
thermore, we plan to incorporate MetaCoAG with assembly pipelines that may
lead to more efficient and accurate analysis for metagenomic datasets.

Acknowledgments. This research was undertaken with the assistance of resources
and services from the National Computational Infrastructure (NCI), which is supported
by the Australian Government.

A Appendix

Table 2. AMBER and CheckM evaluation results for the simHC+ dataset.

Evaluation criteria MaxBin score (%) MetaBAT2 score (%) MetaCoAG score (%)

Average purity per bin (AMBER) 90.36 98.30 91.07

Average purity per bin (CheckM) 97.25 100.0 97.55

Average completeness per bin (AMBER) 79.34 13.02 82.73

Average completeness per bin (CheckM) 77.51 29.59 87.17

F1-score per bin (AMBER) 84.50 23.00 86.70

F1-score per bin (CheckM) 80.64 37.25 89.44

Accuracy (AMBER) 77.07 14.38 84.46

Binned fraction (AMBER) 84.90 14.79 92.04
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Table 3. The number of high-quality, medium-quality and low-quality bins.

Dataset Binning tool No. of bins detected High-quality Medium-quality Low-quality

simHC+ [45] MaxBin2 95 59 11 25

MetaBAT2 32 4 4 24

MetaCoAG 90 69 8 13

Sharon [37] MaxBin2 14 6 2 6

MetaBAT2 24 2 2 20

Vamb 10 5 1 4

MetaCoAG 10 7 3 0

COPD [6] MaxBin2 156 9 24 123

MetaBAT2 76 0 2 74

Vamb 61 6 7 48

MetaCoAG 68 17 25 26

Deep HMP TD [21] MaxBin2 69 8 15 46

MetaBAT2 61 0 1 60

Vamb 29 2 3 13

MetaCoAG 27 8 9 10
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that are used across a wide range of areas including machine learning, multivari-
ate statistics, and many others. These tools return a set of orthogonal vectors of
decreasing importance that are often interpreted as fundamental latent factors
that underlie the observed data. Even though the vectors returned by PCA and
SVD have strong optimality properties, they are notoriously difficult to inter-
pret in terms of the underlying processes generating the data [18], since they
are linear combinations of all available data points or all available features. The
concept of Sparse Principal Components Analysis (SPCA) was introduced in the
seminal work of [11], where sparsity constraints were enforced on the singular
vectors in order to improve interpretability; see for example, document analysis
applications in [11,18,22].

Formally, given a positive semidefinite (PSD) matrix A ∈ R
n×n, SPCA can

be defined as the constrained maximization problem:1

Z∗ = max
x∈Rn, ‖x‖2≤1

x�Ax, subject to ‖x‖0 ≤ k. (1)

In the above formulation, A is a covariance matrix representing, for exam-
ple, all pairwise feature or object similarities for an underlying data matrix.
Therefore, SPCA can be applied to either the object or feature space of the
data matrix, while the parameter k controls the sparsity of the resulting vector
and is part of the input. Let x∗ denote a vector that achieves the optimal value
Z∗ in the above formulation. Intuitively, the optimization problem of Eq. (1)
seeks a sparse, unit norm vector x∗ that maximizes the data variance. It is well-
known that solving the above optimization problem is NP-hard [20] and that
its hardness is due to the sparsity constraint. Indeed, if the sparsity constraint
were removed, then the resulting optimization problem can be easily solved by
computing the top left or right singular vector of A and its maximal value Z∗

is equal to the top singular value of A.
In this work, we explore the potential of SPCA in the analysis of genetics

data leveraging a provably accurate thresholding algorithm for SPCA. In genet-
ics, PCA is a tool of paramount importance and is ubiquitously used to estimate
population structure and extract ancestry information [23]. It is well-known that
genome-wide association studies (GWAS) that attempt to identify genetic mark-
ers that are associated with complex traits in a typical case/control setting can be
grossly confounded by the underlying population structure, due to the presence
of subgroups in the population that belong to different ancestries in both the
case and control groups [24]. To account for such population stratification and
to minimize the underlying spurious associations, researchers typically use the
top few principal components as covariates in the underlying model. However,
the principal components are linear combinations of all available genetic markers
and, therefore, are not interpretable. SPCA is an obvious remedy towards that
end, since one can use it to identify Single Nucleotide Polymorphisms (SNPs)

1 Recall that the p-th power of the �p norm of a vector x ∈ R
n is defined as ‖x‖p

p =∑n
i=1 |xi|p for 0 < p < ∞. For p = 0, ‖x‖0 is a semi-norm denoting the number of

non-zero entries of x.
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or genetic markers carrying information about the underlying genetic ancestry.
See also [12,13,16] for prior work motivating and using SPCA in the context of
human genetics data analysis.

1.1 Our Contributions

Thresholding is a simple algorithmic concept, where each coordinate of, say, a
vector is retained if its value is sufficiently high; otherwise, it is set to zero.
Thresholding naturally preserves entries that have large magnitude while cre-
ating sparsity by eliminating small entries. Therefore, it seems like a logical
strategy for SPCA: after computing a dense vector that approximately solves a
PCA problem, perhaps with additional constraints, thresholding can be used to
sparsify it.

We present a simple, provably accurate, thresholding algorithm (ThreSPCA,
Sect. 2.1) for SPCA that leverages the fact that the top singular vector is an
optimal solution for the SPCA problem without the sparsity constraint. Our
algorithm actually uses a thresholding scheme that leverages the top few singu-
lar vectors of the underlying covariance matrix; it is simple and intuitive, yet
offers tradeoffs in running time vs. accuracy, the first of its kind. Our algorithm
returns a vector that is provably sparse and, when applied to the input covari-
ance matrix A, provably captures the optimal solution Z∗ up to a small additive
error. Indeed, our output vector has a sparsity that depends on k (the target
sparsity of the original SPCA problem of Eq. (1)) and ε (an accuracy parameter
between zero and one). Our analysis provides unconditional guarantees for the
accuracy of the solution of the proposed thresholding scheme. To the best of
our knowledge, no such analyses have appeared in prior work (see Sect. 1.2 for
details). We emphasize that our approach only requires an approximate SVD
and, as a result, ThreSPCA runs very quickly. In practice, ThreSPCA is much
faster than current state-of-the-art and at least as accurate in the analysis of
human genetics datasets. An additional contribution of our work is that, unlike
prior work, our algorithm has a clear trade-off between quality of approximation
and output sparsity. Indeed, by increasing the density of the final SPCA vector,
one can improve the amount of variance that is captured by our SPCA output.
See Theorem 1 for details on this sparsity vs. accuracy trade-off for ThreSPCA.

Importantly, we evaluate ThreSPCA on the genotype dataset from 1000
Genomes (1KG) Project [10] and on simulated genotype data in order to prac-
tically assess its performance. ThreSPCA identifies functionally relevant, inter-
pretable SNPs from the 1KG data and, from an accuracy perspective, it per-
forms comparably to current state-of-the-art SPCA algorithms while being much
faster than its competitors.

1.2 Prior Work

SPCA was formally introduced by [11]; however, previously studied PCA
approaches based on rotating [14] or thresholding [7] the top singular vector
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of the input matrix seemed to work well, at least in practice, given sparsity con-
straints. Following [11], there has been an abundance of interest in SPCA, with
extensions based on LASSO (ScoTLASS) on an �1 relaxation of the problem [15]
or a non-convex regression-type approximation, penalized similar to LASSO [28].

Prior work that offers provable guarantees, typically given some assumptions
about the input matrix, includes [22], which analyzed a specific set of vectors in a
low-dimensional eigenspace of the input matrix and presented relative error guar-
antees for the optimal objective, given the assumption that the input covariance
matrix has a decaying spectrum. The time complexity of the algorithm of [22]
is given by O(nd+1 log n) (due to solving an exact SVD), where d is the low
rank parameter that affects the accuracy of the output. Even for d = 1, the
theoretical time complexity boils down to O(n2 log n) and it is not clear how to
make use of an approximate SVD algorithm to improve this running time with-
out affecting its theoretical bound. Furthermore, for a high precision output, one
generally needs d to be larger than one, in which case the practical running time
also increases drastically. [1] gave a polynomial-time algorithm that solves sparse
PCA exactly for input matrices of constant rank. [8] showed that sparse PCA
can be approximated in polynomial time within a factor of n−1/3 and also high-
lighted an additive PTAS of [2] based on the idea of finding multiple disjoint
components and solving bipartite maximum weight matching problems. This
PTAS needs time npoly(1/ε), whereas ThreSPCA has running time that depends
on the sparsity of the input data.

SPCA has been applied in the context of human genetics before, in the form
of sparse factor analysis (SFA) [12] and with a penalty term in LASSO (L-PCA)
or Adaptive LASSO (AL-PCA) [16]. However, there are a number of aspects that
our work improves compared to prior studies. First, unlike ThreSPCA, the SFA
method used some prior assumptions on the genotype matrix and none of these
previous studies come with a theoretical guarantee showing a clear sparsity vs.
accuracy trade-off.

Second, prior work has to tune the penalty parameter in [16] several times in
order to achieve a specific sparsity value in practice, which increases the running
time of the method. Third, the convergence of the SPCA algorithm proposed
by [16] depends on an initial PC score, which typically relies on the top right
singular vector of the data and necessitates the computation of an exact SVD,
which is expensive. It is not clear whether replacing the exact SVD with a fast
approximate SVD would affect the results of [16].

2 Materials and Methods

2.1 The THRESPCA Algorithm

Notation. We use bold letters to denote matrices and vectors. For a matrix
A ∈ R

n×n, we denote its (i, j)-th entry by Ai,j ; its i-th row by Ai∗, and its j-th
column by A∗j ; its 2-norm by ‖A‖2 = maxx∈Rn, ‖x‖2=1 ‖Ax‖2; and its (squared)
Frobenius norm by ‖A‖2F =

∑
i,j A2

i,j . We use the notation A � 0 to denote that
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the matrix A is symmetric positive semidefinite (PSD) and Tr(A) =
∑

i Ai,i to
denote its trace, which is also equal to the sum of its singular values. Given a PSD
matrix A ∈ R

n×n, its Singular Value Decomposition is given by A = UΣUT ,
where U is the matrix of left/right singular vectors and Σ is the diagonal matrix
of singular values.

Our Approach: SPCA via SVD Thresholding. To achieve nearly input
sparsity runtime, our thresholding algorithm is based upon using the top � right
(or left) singular vectors of the PSD matrix A. Given A and an accuracy param-
eter ε, our approach first computes Σ� ∈ R

�×� (the diagonal matrix of the top
� singular values of A) and U� ∈ R

n×� (the matrix of the top � left singular
vectors of A), for � = 1/ε. Then, it deterministically selects a subset of O (

k/ε3
)

rows of U� using a simple thresholding scheme based on their squared row norms
(recall that k is the sparsity parameter of the SPCA problem). In the last step,
it returns the top right singular vector of the matrix consisting of the columns
of Σ1/2

� U�
� that correspond to the row indices of U� chosen in the thresholding

step. Notice that this right singular vector is an O (
k/ε3

)
-dimensional vector,

which is finally expanded to a vector in R
n by appropriate padding with zeros.

This sparse vector is our approximate solution to the SPCA problem of Eq. (1).
This simple algorithm is somewhat reminiscent of prior thresholding

approaches for SPCA. However, to the best of our knowledge, no provable a
priori bounds were known for such algorithms without strong assumptions on
the input matrix. This might be due to the fact that prior approaches focused
on thresholding only the top right singular vector of A, whereas our approach
thresholds the top � = 1/ε right singular vectors of A. This slight relaxation
allows us to present provable bounds for the proposed algorithm.

In more detail, let the SVD of A be A = UΣUT . Let Σ� ∈ R
�×� be the

diagonal matrix of the top � singular values and let U� ∈ R
n×� be the matrix

of the top � right (or left) singular vectors. Let R = {i1, . . . , i|R|} be the set
of indices of rows of U� that have squared norm at least ε2/k and let R̄ be its
complement. Here |R| denotes the cardinality of the set R and R∪R̄ = {1, . . . , n}.
Let R ∈ R

n×|R| be a sampling matrix that selects2 the rows of U� whose indices
are in the set R. Given this notation, we are now ready to state Algorithm 1.
Notice that Ry satisfies ‖Ry‖2 = ‖y‖2 = 1 (since R has orthogonal columns)
and ‖Ry‖0 = |R|. Since R is the set of rows of U� with squared norm at least
ε2/k and ‖U�‖2F = � = 1/ε, it follows that |R| ≤ k/ε3. Thus, the vector returned
by Algorithm 1 has k/ε3 sparsity and unit norm. (See the Appendix for more
details.)

Theorem 1. Let k be the sparsity parameter and ε ∈ (0, 1] be the accuracy
parameter. Then, the vector z ∈ R

n (the output of Algorithm 1) has sparsity
k/ε3, unit norm, and satisfies

z�Az ≥ Z∗ − 3εTr(A).
2 Each column of R has a single non-zero entry (set to one), corresponding to one of

the |R| selected columns. Formally, Rit,t = 1 for t = 1, . . . , |R|; all other entries of
R are set to zero.
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Algorithm 1. ThreSPCA: fast thresholding SPCA via SVD
Input: A ∈ R

n×n, sparsity k, error parameter ε > 0.
Output: y ∈ R

n such that ‖y‖2 = 1 and ‖y‖0 = k/ε2.
1: � ← 1/ε;
2: Compute U� ∈ R

n×� (top � left singular vectors of A) and Σ� ∈ R
�×� (the

top � singular values of A);
3: Let R = {i1, . . . , i|R|} be the set of rows of U� with squared norm at least

ε2/k and let R ∈ R
n×|R| be the associated sampling matrix (see text for

details);

4: y ∈ R
|R| ← argmax‖x‖2=1

∥
∥
∥Σ1/2

� U�
� Rx

∥
∥
∥
2

2
;

5: return z = Ry ∈ R
n;

The optimality gap of Theorem 1 depends on Tr(A), which is the sum of
the eigenvalues of A and can also be viewed as the total variance of the data.
Therefore, if we divide both sides of the bound in Theorem 1 by Tr(A), the
resulting bound is given by (prop∗ − p̃rop) ≤ 3ε, where for a given k, p̃rop is
the proportion of the total variance explained by the output of ThreSPCA and
prop∗ is the proportion of the total variance explained by the optimal Sparse
PC. Now, trivially, we have (prop∗ − p̃rop) ≥ 0, since prop∗ is the maximum
variance explained by Sparse PC for a given sparsity value. Thus, combining
these two yields 0 ≤ (prop∗ − p̃rop) ≤ 3ε, which can be interpreted as the
quality-of-approximation in terms of the proportion of total variance explained
by ThreSPCA.

The proof of Theorem 1 is deferred to the appendix. See Sect. 1.A for the
proof of Theorem 1 as well as an intermediate result (Lemma 1) that leads to
the final bound in Theorem 1. The running time of Algorithm 1 is dominated
by the computation of the top � singular vectors and singular values of the
matrix A. One could always use the SVD of the full matrix A (O (

n3
)

time)
to compute the top � singular vectors and singular values of A. In practice, any
iterative method, such as subspace iteration using a random initial subspace
or the Krylov subspace of the matrix, can be used towards this end. We now
address the inevitable approximation error incurred by such approximate SVD
methods below.

Using Approximate SVD Algorithms. Although the guarantees of Theo-
rem 1 in Algorithm 1 use an exact SVD computation, which could take time
O (

n3
)
, we can further improve the running time by using an approximate

SVD algorithm such as the randomized block Krylov method of [21], which
runs in nearly input sparsity running time. Our analysis uses the relation-
ships ‖Σ1/2

�,⊥‖22 ≤ Tr(A)/� and σ1(Σ�) ≤ Tr(A). The randomized block Krylov
method of [21] recovers these guarantees up to a multiplicative (1 + ε) factor, in
O (log n/ε1/2 · nnz(A)) time. Here nnz(A) denotes the number of non-zero entries
of the matrix A, which is O (

n2
)

for dense matrices.
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Extracting Additional Sparse PCs. To get multiple sparse PCs using Algo-
rithm 1, we remove the top principal component from the data and run ThreSPCA
on the residual dataset. In other words, let X ∈ R

m×n be the mean-centered data
matrix corresponding to A, i.e., A = X�X. Let v ∈ R

n be the top right singular
vector of X; then, in order to get the second sparse PC, we run ThreSPCA on
the covariance matrix A1 = X�

1 X1, where X1 = X − Xvv�.

2.2 Data

1000 Genome Data. In order to evaluate the speed and accuracy of ThreSPCA
as well as to interpret its output, we first analyzed data from the 1000 Genome
Project (1KG) [10], which contained genotype data from 2,503 individuals with
39,517,397 SNPs sampled from 26 different populations across all continents.
After performing Quality Control (QC) with minor allele frequency below 5%
and, subsequently, pruning related genotypes for Linkage Disequilibrium (LD)
using a window size of 50 kb and r2> 0.2, we finally retained 360,498 variants.

Simulated Data. We generated simulated data emulating real-world popula-
tions to evaluate whether ThreSPCA can correctly identify markers which con-
tribute to the genetic differences between and within the populations. Based
on previous work [4], we simulated two datasets varying m = {5000, 10000}
SNPs genotyped across n = {500, 1000} individuals based on the Pritchard-
Stephens-Donelly (PSD) model [25] with the mixing parameter between popula-
tions, α = 0.01. The allele frequencies were simulated based on real-world data
from three divergent populations, namely CEU (Utah residents with Northern
and Western European ancestry), ASW (African ancestry in Southwestern US),
and MXL (Mexican ancestry in California) from the HapMap Phase 3 data [17].
We selected a threshold t and varied it across the range t = {100, 250, 500}, rep-
resenting the number of SNPs which contribute to population structure between
the populations (true positives); the remaining m − t genotypes were simulated
such as they had minimal genetic differences between populations (false posi-
tives). We simulated 200 data sets (100 each for values of m and n) and applied
ThreSPCA, L-PCA and AL-PCA for comparative analyses to evaluate their efficacy.

2.3 Experiments

We performed QC on the 1KG data, including LD pruning using PLINK2.0 [9].
PCA was performed using TeraPCA [5]. Annotation of ThreSPCA derived vari-
ants were performed in Ensembl Variant Effect Predictor (VEP) [19]. We per-
formed Gene Ontology (GO) pathway analyses using clusterProfiler [27] in
R. We ran ThreSPCA, with the threshold parameter �, fixed to one.

3 Results

3.1 ThreSPCA Reveals Genetic Diversity Across the World

We applied ThreSPCA with a sparsity threshold of k = 500 on the 1KG data after
quality control and pruning for correlated SNPs. We obtained sets of informative
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markers of cardinality k from each of the PCs. We restricted our analysis to the
top three PCs, resulting in a total of 1,500 SNPs, which explained approximately
83% of the variance. Thus, we performed PCA on a reduced 1KG data with
2,503 individuals and 1,500 SNPs. We observed that both the PCA plot and the
allele frequency bar plot, grouped by populations across the world, are almost
identical. The squared Pearson correlation coefficient (r2) between the top two
PCs from the original 1KG data and ThreSPCA informed variants are very high,
equal to 0.98, 0.97 and 0.94 for PCs 1, 2 and 3 respectively. Thus, the PCA
plot of the informative markers clearly preserves the clusters of each subgroup
(Fig. 1) and reveals fine-scale population structure among the groups.

Fig. 1. Population structure of world populations from: A. pruned 1KG data with
360,498 SNPs, and B. 1KG data with 1,500 ThreSPCA derived variants corresponding
to the top three PCs, captured by (i) PCA plot and (ii) mean allele frequency bar plots
colored by continental populations arranged in order from Africa (AFR), Americas
(AMR), East Asia (EAS), Europe (EUR) and South Asia (SAS).

Examining each of the three PCs closely shows that the mean allele frequency
distribution (Appendix Figs. 5) from PC1 is skewed towards the African popula-
tions and also from the mixed ancestry populations of ASW (Africans in South-
western US) and ACB (African Caribbeans from Barbados). SNPs obtained from
PC2 were almost equally distributed across the continental populations with a
slightly higher frequencies in East Asians. PC3 shows a skewness towards South
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Asian populations. To make an informed choice of the sparsity threshold k, we
computed the PC scores from the top two PCs by projecting the sparse vectors
obtained from ThreSPCA on the original pruned 1KG data for a range of values
of k = {500, 1000, 5000}.

We computed r2 between the PC scores obtained from each PC for each value
of k and the original PC obtained from the pruned 1KG data. We observe high
correlation values for the top two PCs, cumulatively reaching their peak when
the sparsity parameter k is set to approximately 500 (Appendix Fig. 7 (left)).

3.2 Interpretability of ThreSPCA Informed Variants

Annotating the Selected Variants. To understand whether the variants derived
from ThreSPCA for each PC are functionally relevant and biologically inter-
pretable, we annotated them using VEP [19]. We also explored whether these
variants were mapping to a trait or disease in the GWAS catalog [6]. Most of the
variants were introns with some intergenic and small number of Transcription
Factor binding sites, upstream and downstream gene variants, etc. Interestingly,
among the coding consequences, 58 variants were missense and likely disease
causing and further statistics revealed that there are seven variants which are
deleterious and nine probably or possibly damaging variants (Fig. 2). We also per-
formed GO pathway analyses on ThreSPCA informed variants and found signifi-
cantly enriched pathways common to humans across the world, such as pathways
related to synapses and potassium, cation and ion channels, transporter com-
plex, among others (Appendix Fig. 6a). We found the calcium signaling pathway
from KEGG (Kyoto Encyclopedia of Genes and Genomes) to be significantly
enriched (Appendix Fig. 6b).

Mapping the Selected Variants to Traits. Mapping these variants in GWAS
catalog, we found that variants from PC1 mapped to skin pigment measure-
ment (Appendix Table 2), justifying our observation from the PCA plot and
mean allele frequency distribution. This is concordant with our observation
that ThreSPCA observed variants from PC1 were skewed towards populations of
African ancestry (Appendix Fig. 5), who are darker skinned than the rest of the
world. PC2 and PC3 on the other hand mapped to various traits which are com-
monly found to be varying in populations across the world such as body height,
BMI, hip and waist circumference, circadian rhythm, gut microbiome, smoking
status, cardiovascular diseases, calcium channel blocker use (concordant with
calcium signaling pathway found in GO analyses), blood measurements, among
others.

3.3 Comparing ThreSPCA to State-of-the-Art

Simulation Studies. We designed a simulation study to evaluate the correct-
ness of ThreSPCA and compare it with the state-of-the-art SPCA methods in
genetics, namely, L-PCA and AL-PCA from [16]. The population structure of the
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Fig. 2. Pie charts showing the percentage of variants from A. (i) most severe conse-
quences and (ii) coding consequences obtained from VEP. B. Deleterious and probably
damaging from (i) SIFT and (ii) PolyPhen.

(a) True positives (b) False positives

Fig. 3. Box and whisker plots comparing between ThreSPCA, L-PCA and AL-PCA for
true and false positives obtained from the simulated dataset of m = 10,000 and n =
1,000 and varying values of t, i.e., the number of SNPs which contribute to population
structure.

simulation shows three distinct clusters for each population with signs of admix-
ture between them (Appendix Fig. 4). Applying ThreSPCA on the simulated
dataset with 10,000 markers and 1,000 individuals, we observed that ThreSPCA
identified similar numbers (mean) of true positives, i.e., markers contributing to
the genetic diversity between and within the populations when compared to its
counterparts L-PCA and AL-PCA, while identifying a significantly smaller number
of false positives, i.e., noisy markers which have no difference in allele frequencies
between populations (Fig. 3b).
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Table 1. Running time comparisons between ThreSPCA and other state-of-the-art
sparse PCA solvers. All times are in seconds except CWPCA, which is in hours.

k ThreSPCA AL-PCA CWPCA SPCA-Lowrank

150 117.3016 2287.224 3253.057

800 126.8674 2473.908 3152.857

1000 120.9341 2442.435 3121.234

1500 119.6183 2715.581 > 5hrs 3408.294

6000 123.2763 2440.104 3319.691

12000 126.3872 2451.353 3071.864

Real Data. We applied both ThreSPCA and AL-PCA3 on the 1KG data with
k = 500 and compared the PC1 scores vs. PC2 scores generated from the outputs
of the aforementioned methods. ThreSPCA and AL-PCA are almost identical to the
corresponding standard PC plot, clearly preserving the clusters of each subgroup.
We observed a near-linear relationship between the two SPCA algorithms for
both PCs with r2 = 0.9808 and 0.9426 for PC1 & PC2, respectively and with
varying k. This validates that ThreSPCA and AL-PCA are qualitatively very similar
to each other in inferring genetic structure.

Running Time. ThreSPCA clearly outperforms AL-PCA. In particular, for any
given k, while ThreSPCA takes less than two minutes in 1KG data, AL-PCA takes
about 15 minutes to do the same for a given penalty parameter λ > 0, since
it needs a full SVD. Moreover, as already mentioned in Sect. 1.2, λ is a hyper-
parameter which needs to be tuned with many cross-nested runs of the data in
order to achieve a desired sparsity value. In our case, for the sparsity parameter
set to 500, it took at least six runs for each PC. Therefore, the resulting speed-
up achieved by ThreSPCA is more than 45x for real data set and around 80x for
simulated data.

Finally, we also compare the output of our algorithm against other state-of-
the-art SPCA approaches, including the coordinate-wise optimization algorithm
of [3] (cwpca), and the spannogram-based algorithm of [22] (spca-lowrank). To
measure the accuracy of the of various SPCA algorithms, we first looked at the
term z�Az (for varying k), which is nothing but the total variability explained
(VE) by the sparse output z. In terms of VE, we noticed that ThreSPCA matches
that of the other state-of-the-art SPCA solvers for all the sparsity values observed,
which are much larger than that of AL-PCA (Appendix Fig. 7 (right)). In addi-
tion, we also found that ThreSPCA is not only among the most accurate algo-
rithms, but also is the fastest (Table 1) among all (takes about 100 s to 120 s
3 Results from L-PCA are qualitatively very similar to AL-PCA and we only report

results for the latter.
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to run for each k, while other solvers including AL-PCA run in time at least 2,200 s
for each k. See details in Appendix Sect. 1.B.3).

4 Discussion

We present ThreSPCA, a simple and intuitive approximation algorithm for SPCA,
based on a deterministic thresholding scheme, without imposing any restrictive
assumption on the input covariance matrix. ThreSPCA comes with a provable
accuracy guarantee and provides a clear sparsity vs. accuracy trade-off. In prac-
tice, it is much faster than the other state-of-the-art SPCA methods and indeed,
can be implemented in nearly input sparsity time.

Applying ThreSPCA on the 1KG data, we observed that the set of derived
SNPs accurately approximates the genetic diversity across world populations.
For each PC, the derived set of k SNPs (we used k = 500 throughout the
analyses) captured genetic structure within different continental populations.
Together, the top three PCs which explain most of the variance in the 1KG
data, we observed that ThreSPCA selected 1500 meaningful, ancestry information
preserving SNPs which leads to similar inference of population structure across
the world as the original 1KG data with 360,498 SNPs. Annotating ThreSPCA
derived variants further showed that they are interpretable and mostly missense
in nature, thus likely disease causing. To interpret this, we mapped these vari-
ants to various traits in GWAS catalog and found that indeed these variants were
mapped to different common traits such as body height, BMI, etc. which vary
within and between populations across the world, sometimes leading to spu-
rious associations due to population structure among populations [26]. These
variants also mapped to various diseases, which vary across populations such as
cardiovascular diseases. Although the scale of the data used in this analysis is
small when compared to large-scale genomic data, we observe that ThreSPCA is
designed to handle biobank-scale datasets since it only need to run a random-
ized SVD/PCA analysis, which can be implemented efficiently in out-of-core
settings [5]. ThreSPCA can also be used in GWAS as a population stratification
correction step by identifying informative markers which highlight the ancestry
stratification of cases/controls with fine-grained details which is often overlooked
by a standard PCA.

In summary, ThreSPCA provides a fast and provably accurate approximate
method for computing SPCA. It provides a method to find interpretable markers
in population genetics, which can immensely help understand population strat-
ification, a major cause of spurious associations in GWAS. Also, it highlights
the genetic sub-structure among different populations and the ThreSPCA derived
variants are likely disease causing, often mapped to potential diseases and traits.
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Appendix 1.A SPCA via Thresholding: Discussions
and Proofs

The intuition behind Theorem 1 is that we can decompose the value of the
optimal solution into the value contributed by the coordinates in R, the value
contributed by the coordinates outside of R, and a cross term. The first term
we can upper bound by the output of the algorithm, which maximizes with
respect to the coordinates in R. For the latter two terms, we can upper bound
the contribution due to the upper bound on the squared row norms of indices
outside of R and due to the largest singular value of U being at most the trace
of A.

We highlight that, as an intermediate step in the proof of Theorem 1, we need
to prove the following Lemma 1, which is very much at the heart of our proof
of Theorem 1 and, unlike prior work, allows us to provide provably accurate
bounds for the thresholding Algorithm 1. At a high level, the proof of Lemma 1
first decomposes a basis for the columns spanned by U into those spanned by
the top � singular vectors and the remaining n − � singular vectors. We then
lower bound the contribution of the top � singular vectors by upper bounding
the contribution of the remaining n − � singular vectors after noting that the
largest remaining singular value is at most a 1/�-fraction of the trace. We look
at the detailed proof of Lemma 1 below where we use the notation of Sect. 2.1.
For notational convenience, let σ1, . . . , σn be the diagonal entries of the matrix
Σ ∈ R

n×n, i.e., the singular values of A.

Lemma 1. Let A ∈ R
n×n be a PSD matrix and Σ ∈ R

n×n (respectively, Σ� ∈
R

�×�) be the diagonal matrix of all (respectively, top �) singular values and let
U ∈ R

n×n (respectively, U� ∈ R
n×�) be the matrix of all (respectively, top �)

singular vectors. Then, for all unit vectors x ∈ R
n,

∥
∥
∥Σ1/2

� U�
� x

∥
∥
∥
2

2
≥

∥
∥
∥Σ1/2U�x

∥
∥
∥
2

2
− εTr(A).

Proof. Let U�,⊥ ∈ R
n×(n−�) be a matrix whose columns form a basis for the

subspace perpendicular to the subspace spanned by the columns of U�. Similarly,
let Σ�,⊥ ∈ R

(n−�)×(n−�) be the diagonal matrix of the bottom n − � singular
values of A. Notice that U = [U� U�,⊥] and Σ = [Σ� 0; 0 Σ�,⊥]; thus,

UΣ1/2U� = U�Σ
1/2
� U�

� + U�,⊥Σ1/2
�,⊥U�

�,⊥.

https://github.com/aritra90/ThreSPCA
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By the Pythagorean theorem,
∥
∥
∥UΣ1/2U�x

∥
∥
∥
2

2
=

∥
∥
∥U�Σ

1/2
� U�

� x
∥
∥
∥
2

2
+

∥
∥
∥U�,⊥Σ1/2

�,⊥U�
�,⊥x

∥
∥
∥
2

2
.

Using invariance properties of the vector two-norm and sub-multiplicativity, we
get

∥
∥
∥Σ1/2

� U�
� x

∥
∥
∥
2

2
≥

∥
∥
∥Σ1/2U�x

∥
∥
∥
2

2
−

∥
∥
∥Σ1/2

�,⊥
∥
∥
∥
2

2

∥
∥U�

�,⊥x
∥
∥2

2
.

We conclude the proof by noting that
∥
∥Σ1/2U�x

∥
∥2

2
= x�UΣU�x = x�Ax and

∥
∥
∥Σ1/2

�,⊥
∥
∥
∥
2

2
= σ�+1 ≤ 1

�

n∑

i=1

σi =
Tr(A)

�
.

The inequality above follows since σ1 ≥ σ2 ≥ . . . σ� ≥ σ�+1 ≥ . . . ≥ σn. We
conclude the proof by setting � = 1/ε.

Theorem 1. Let k be the sparsity parameter and ε ∈ (0, 1] be the accuracy
parameter. Then, the vector z ∈ R

n (the output of Algorithm 1) has sparsity
k/ε3, unit norm, and satisfies

z�Az ≥ Z∗ − 3εTr(A).

Proof. Let R = {i1, . . . , i|R|} be the set of indices of rows of U� (columns of
U�

� ) that have squared norm at least ε2/k and let R̄ be its complement. Here
|R| denotes the cardinality of the set R and R∪ R̄ = {1, . . . , n}. Let R ∈ R

n×|R|

be the sampling matrix that selects the columns of U� whose indices are in the
set R and let R⊥ ∈ R

n×(n−|R|) be the sampling matrix that selects the columns
of U� whose indices are in the set R̄. Thus, each column of R (respectively
R⊥) has a single non-zero entry, equal to one, corresponding to one of the |R|
(respectively |R̄|) selected columns. Formally, Rit,t = 1 for all t = 1, . . . , |R|,
while all other entries of R (respectively R⊥) are set to zero; R⊥ can be defined
analogously. The following properties are easy to prove: RR� + R⊥R�

⊥ = In;
R�R = I; R�

⊥R⊥ = I; R�
⊥R = 0. Recall that x∗ is the optimal solution to the

SPCA problem from Eq. (1). We proceed as follows:

∥
∥
∥Σ1/2

� U�
� x∗

∥
∥
∥
2

2
=

∥
∥
∥Σ1/2

� U�
� (RR� + R⊥R�

⊥)x∗
∥
∥
∥
2

2

≤
∥
∥
∥Σ1/2

� U�
� RR�x∗

∥
∥
∥
2

2
+

∥
∥
∥Σ1/2

� U�
� R⊥R�

⊥x∗
∥
∥
∥
2

2

+ 2
∥
∥
∥Σ1/2

� U�
� RR�x∗

∥
∥
∥
2

∥
∥
∥Σ1/2

� U�
� R⊥R�

⊥x∗
∥
∥
∥
2

≤
∥
∥
∥Σ1/2

� U�
� RR�x∗

∥
∥
∥
2

2
+ σ1

∥
∥U�

� R⊥R�
⊥x∗∥∥2

2

+ 2σ1

∥
∥U�

� RR�x∗∥∥
2

∥
∥U�

� R⊥R�
⊥x∗∥∥

2
. (2)

The above inequalities follow from the Pythagorean theorem and sub-
multiplicativity. We now bound the second term in the right-hand side of the
above inequality.
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∥
∥U�

� R⊥R�
⊥x∗∥∥

2
= ‖

n∑

i=1

(U�
� R⊥)∗i(R�

⊥x∗)i‖2

≤
n∑

i=1

‖(U�
� R⊥)∗i‖2 · |(R�

⊥x∗)i| ≤
√

ε2

k

n∑

i=1

|(R�
⊥x∗)i|

≤
√

ε2

k
‖R�

⊥x∗‖1 ≤
√

ε

k

√
k = ε. (3)

In the above derivations we use standard properties of norms and the fact that
the columns of U�

� that have indices in the set R̄ have squared norm at most
ε2/k. The last inequality follows from ‖R�

⊥x∗‖1 ≤ ‖x∗‖1 ≤ √
k, since x∗ has at

most k non-zero entries and Euclidean norm at most one.
Recall that the vector y of Algorithm 1 maximizes ‖Σ1/2

� U�
� Rx‖2 over all

vectors x of appropriate dimensions (including Rx∗) and thus

‖Σ1/2
� U�

� Ry‖2 ≥
∥
∥
∥Σ1/2

� U�
� RR�x∗

∥
∥
∥
2
. (4)

Combining Eqs. (2), (3), and (4), we get that for sufficiently small ε,
∥
∥
∥Σ1/2

� U�
� x∗

∥
∥
∥
2

2
≤ ‖Σ1/2

� U�
� z‖22 + 2εTr(A). (5)

In the above we used z = Ry (as in Algorithm 1) and σ1 ≤ Tr(A). Notice that

U�Σ
1/2
� U�

� z + U�,⊥Σ1/2
�,⊥U�

�,⊥z = UΣ1/2U�z,

and using the Pythagorean theorem we get

‖U�Σ
1/2
� U�

� z‖22 + ‖U�,⊥Σ1/2
�,⊥U�

�,⊥z|22 = ‖UΣ1/2U�z‖22.
Using the unitary invariance of the two norm and dropping a non-negative term,
we get the bound

‖Σ1/2
� U�

� z‖22 ≤ ‖Σ1/2U�z‖22. (6)

Combining Eqs. (5) and (6), we conclude
∥
∥
∥Σ1/2

� U�
� x∗

∥
∥
∥
2

2
≤ ‖Σ1/2U�z‖22 + 2εTr(A). (7)

We now apply Lemma 1 to the optimal vector x∗ to get
∥
∥
∥Σ1/2U�x∗

∥
∥
∥
2

2
− εTr(A) ≤

∥
∥
∥Σ1/2

� U�
� x∗

∥
∥
∥
2

2
.

Combining with Eq. (7) we get

z�Az ≥ Z∗ − 3εTr(A).

In the above we used ‖Σ1/2U�z‖22 = z�Az and
∥
∥Σ1/2U�x∗∥∥2

2
= (x∗)�Ax∗ =

Z∗. The result then follows from rescaling ε.
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Appendix 1.B Additional Experiments

Fig. 4. PCA plot of the simulated data with three distinct populations simulated from
the PSD model with an α = 0.01, n = 1,000, m = 10,000 and t = 100

Appendix 1.B.1 Simulated Studies

The genotype matrix X ∈ R
m×n consisting of the simulated allele frequencies

was generated using the algorithms of [25]. More specifically, we set F = TS,
where T ∈ R

m×d and S ∈ R
d×n, where d ≤ n is the number of population

groups. S is the indicator matrix that encapsulates structure with n individuals
and contained in d populations. On the other hand, T characterizes how the
structure is manifested in the allele frequencies of each SNP. Finally, projecting
S onto the column space of T, we obtain the allele frequency matrix F. We
sample X as a special case of F for the Pritchard-Stephens-Donelly (PSD) model.
We simulate S using i.i.d draws from the Dirichlet distribution with varying
values of α, which denotes the parameter influencing the relatedness between
the individuals and is directly proportional to the admixture of populations.
Appendix Fig. 4 shows the population structure observed in this simulated data.

As it is difficult to establish notions of statistical significance in ThreSPCA
capturing the ancestry informative markers from the original data, we simulated
data sets with varying numbers of individuals (n) and SNPs (m) and allowed
t true SNPs that contribute to genetic ancestry. For the random markers that
do not contribute to the genetic differentiation, we sampled the Fst distances
between the individuals from a uniform distribution in the range {0, 0.005},
which indicates minimum difference in populations. Thus, with this step we
achieve the “true” markers contributing to genetic difference are the t SNPs and
the remaining m − t SNPs, we conclude, are noise.
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Appendix 1.B.2 Experiments on 1KG data

Population Structure Captured by PCA Plots. We filtered the original 1KG data
for the ThreSPCA derived k = 500 SNPs for each of the first three PCs and
in the PCA plots we observe the population structure and the allele frequency
distribution captured by each of the PCs. We clearly see that the SNPs from
PC1 loadings are most frequent in the African populations or mixed populations
of African ancestry (Appendix Fig. 5). The PC2 SNPs are most frequent in East
Asians, although commonly found in other populations as well and the third PC
SNPs are most frequent in South Asian populations (Appendix Fig. 5)). Thus,
the SNP loadings from the top three PCs accurately captures the population
structure across the world and merging them together, we not only capture
the entire population structure in the PCA plot but also discover fine-grain
substructure of populations (Fig. 1).

Fig. 5. Mean allele frequencies obtained from the first three PCs from ThreSPCA with
k = 500.

Tuning Input Sparsity k. We tried a range of k’s varying it from 50 to 1500 and
observed the r2 between the PCs derived from the original 1KG data and the
1500 SNPs derived from ThreSPCA. We observed that for the top two PCs the r2

is high from 0.96 to 0.99 wit the peak for both the PCs reaching around k = 500.
PC1 continues to increase by two decimal points before saturing at k = 1000.
Thus, we selected k = 500 for all the experiments as both the PCs reached their
respective peaks (Fig. 6).
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(a) Significant pathways from GO (b) Significant pathways from KEGG

Fig. 6. GO pathway analyses of the ThreSPCA informed variants, colored by p-values.

Fig. 7. Left: Line plot between the r2 between the PC scores of each PC obtained from
ThreSPCA and the original PC from 1KG data with varying values of sparsity, k. Right:
Variance explained by ThreSPCA, AL-PCA, and other state-of-the-art SPCA solvers for
varying k.

Appendix 1.B.3 Comparing ThreSPCA with the State-of-the-Art

Simulated Data. We observed that increasing the threshold of true positives
(markers that contribute to genetic structure) t led to an increase of the number
of true positives observed in ThreSPCA.

Real Data. For k = 500, on 1KG data we found perfect correlation with
ThreSPCA and AL-PCA for PC1 and PC2 with r2 = 0.97 and 0.94 respectively.
We also observed similar trends for k = 1000 and k = 1500 (squared correlations
larger than 0.9 for both PC1 and PC2).

Comparing the output of ThresPCA against other state-of-the-art SPCA
approaches, we compare the greedy coordinate-wise (GCW) method of cwpca
and set the low-rank parameter d of spca-lowrank to one. We performed these
evaluations on an Intel Xeon Gold 6126 processor running at 2.6 GHz with 96
GB of RAM and a 64-bit CentOS Linux 7 OS.
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Table 2. Traits and genes mapped in GWAS catalog from ThreSPCA informed variants.

PCs SNP CHR POS MAPPED
GENE

MAPPED TRAITS

PC1 rs35399673 5 104529307 RAB9BP1 skin pigmentation measurement
PC2 rs11556924 7 129663496 ZC3HC1 coronary artery disease, diastolic and systolic

blood pressure, myocardial infarction, platelet
count, parental longevity, testosterone
measurement, Agents acting on the
renin-angiotensin system use, Calcium channel
blocker use, hematocrit, hemoglobin count,
myeloid white cell count, body height, leukocyte
count, cardiovascular disease age at menarche

rs12525051 6 151913710 CCDC170 heel bone mineral density
rs1938679 11 69272096 MYEOV -

LINC02747
body height

rs196052 6 22057200 CASC15 Corneal astigmatism
rs2069235 22 39747780 SYNGR1 primary biliary cirrhosis rheumatoid arthritis
rs4714599 6 42285815 TRERF1 eosinophil percentage of granulocytes, neutrophil

percentage of granulocytes, eosinophil percentage
of leukocytes

rs5747035 22 17718606 ADA2 word list delayed recall measurement, memory
performance

rs7714191 5 131341541 ACSL6-AS1,
ACSL6

cortical surface area measurement

rs7901883 10 103186838 BTRC smoking behavior smoking status measurement
rs7976816 12 124315343 DNAH10 BMI-adjusted waist circumference waist

circumference
rs8002164 13 58248732 PCDH17 upper aerodigestive tract neoplasm
rs847888 12 112151742 ACAD10 diastolic blood pressure
rs907183 8 8729761 MFHAS1,

MFHAS1
Calcium channel blocker use measurement

PC3 rs10164546 2 106141004 FHL2 pursuit maintenance gain measurement
rs1020410 2 176784138 EXTL2P1 - LNPK physical activity
rs10896109 11 66080023 TMEM151A -

CD248
circadian rhythm

rs1264423 6 30571471 PPP1R10 mean corpuscular volume
rs12679528 8 15566164 TUSC3 body mass index
rs16942383 15 89405052 ACAN BMI-adjusted hip circumference
rs2988114 13 80870878 SPRY2 gut microbiome measurement
rs34672598 20 7884260 HAO1 QT interval
rs3828919 6 31466057 MICB platelet count
rs41492548 9 130607359 ENG monocyte count
rs4679760 3 155855418 KCNAB1 birth weight, parental genotype effect

measurement
rs744680 10 131741695 EBF3 visual perception measurement
rs76496105 2 110447667 BMS1P19 -

SRSF3P6
platelet count platelet crit
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Abstract. The transcriptome association study has helped prioritize
many causal genes for detailed study and thus further helped the devel-
opment of many therapeutic strategies for multiple diseases. How- ever,
prioritizing the causal gene only does not seem always to be able to offer
sufficient guidance to the downstream analysis. Thus, in this paper, we
propose to perform the association studies from another perspective: we
aim to prioritize genes with a tradeoff between the pursuit of the causal-
ity evidence and the interest of the genes in the pathway. We introduce
a new method for transcriptome association study by incorporating the
information of gene regulatory networks. In addition to directly building
the regularization into variable selection methods, we also expect the
method to report p-values of the associated genes so that these p-values
have been empirically proved trustworthy by geneticists. Thus, we intro-
duce a high-dimension variable selection method with the following two
merits: it has a flexible modeling power that allows the domain experts
to consider the structure of covariates so that prior knowledge, such as
the gene regulatory network, can be integrated; it also calculates the p-
value, with a practical manner widely accepted by geneticists, so that
the identified covariates can be directly assessed with statistical guar-
antees. With simulations, we demonstrate the empirical strength of our
method against other high-dimension variable selection methods. We fur-
ther apply our method to Alzheimer’s disease, and our method identifies
interesting sets of genes.

1 Introduction

While genome-wide association studies (GWAS) have identified many genetic
variants significantly associated with diseases, they face the challenge of the
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result interpretation due to linkage disequilibrium. Transcriptome-wide asso-
ciation studies (TWAS) have been introduced as a response to this challenge
(Gamazon et al. 2015; Gusev et al. 2016; Barbeira et al. 2018). TWAS typi-
cally involves three steps: the training of expression-prediction model from SNPs
based on reference data, the prediction of expression from SNPs in the GWAS
data, and the association mapping between the predicted gene expression and
the traits (Wainberg et al. 2019).

In this paper, we only focus on the last step, i.e., the association between
the gene expression and the trait. Usually, this last step is completed using
conventional statistical tools for association study, such as univariate heritability
estimation (Gusev et al. 2016) or multivariate regression (Gamazon et al. 2015),
where conventional Wald test sometimes plays the central role in testing for
the significantly associated variant (Feng et al. 2021a, b). In this project, to
facilitate our method development specially designed for the last step, we directly
work with collected gene expression data, instead of the ones that are predicted
from models trained on reference panels. Therefore, it is worth noting that the
association between the transcriptomes and the traits has been studied for a
long time with collected gene expressions, especially on the statistics side of the
community (e.g., Zou and Hastie 2005; Ding and Peng 2005; Meinshausen and
Bühlmann 2010).

From GWAS to TWAS, statistical methods have helped prioritize multiple
genetic factors that leads to significant achievements in understanding the under-
lying mechanism of certain diseases and the follow-up development of therapies
(Visscher et al. 2017). However, in other times, the pinpoint of the one causal
gene may not always be helpful in the downstream study. For example, mul-
tiple statistical methods have repeatedly identify the gene APOE for sporadic
Alzheimer’s disease (e.g., Bertram and Tanzi 2009; Tost and Reitz 2013), leading
to a reasonably well understanding of the disease mechanisms at different levels
(e.g., Zetterberg and Mattsson 2014; Masters et al. 2015; Fan et al. 2020), yet
the community is still in an active search of effective treatment of this disease
(e.g., Yiannopoulou and Papageorgiou 2020).

This disparity encourages us to conjecture that prioritizing only the genes
with the most causality evidence may not always be the best strategy. Instead,
prioritizing a set of genes with a tradeoff between the emphasis on the causality
evidence and the interests in the regulatory structure may help the downstream
analysis further. The interests of the association study of gene sets has been
explored in the context of GWAS previously (de Leeuw et al. 2015), sometimes
with the concept of epistasis (Crawford et al. 2017; Wang et al. 2019), validating
that our conjecture is worth further exploration.

Therefore, motivated by the lack of statistical methods designed to take into
account characteristics of the gene expression data, e.g., the co-regulatory net-
work structure of genes (Wainberg et al. 2019) and the belief that accounting
for this structure can potentially improve the power of the association study at
a significant scale (Gamazon et al. 2015; Lonsdale et al. 2013), we aim to intro-
duce a statistical method that can incorporate the regulatory network and can
prioritize genes together with ones in its regulatory network.



Gene Set Priorization Guided by Regulatory Networks 109

A number of statistical methods have been developed to allow one to incor-
porate various structural knowledge of the data in the regression analysis. For
example, (Li and Li 2008) introduced the network-constrained regularization
that incorporates the graph of covariates while performing regression; (Kim and
Xing 2010) proposed the tree-structured regularization that integrates the graph
of responses while performing multi-response regression; (Puniyani et al. 2010)
introduced a multi-population regularization that accounts for the heterogeneity
of samples; (Wang et al. 2018) leveraged the precision matrix of covariates to
account for the dependencies between genes. While these regularization-based
methods have the flexibility of incorporating all kinds of structural knowledge,
they are limited by the lack of the ability to provide p-values, therefore, lim-
ited due to the shortage of direct measurement in assessing the reliability of the
findings.

On the other hand, regarding the calculation of the p-value, the statistics
community has pushed the frontier with high-dimension models using a fam-
ily of methods (e.g., Bühlmann 2013; Zhang and Zhang 2014; Lockhart et al.
2014; Javanmard and Montanari 2014). While these methods have delivered the
promises of assembling the advantages of regularization and p-value calculation,
they have not entered the phase of incorporating all kinds of structural knowledge
as the previous methods incorporated yet. Also, these methods typically involve
the calculation of the precision matrix of covariates, which can be forbiddingly
expensive in terms of the computational power for whole-genome studies.

Thus, we will introduce a new statistical tool that can test for the association
between gene expression and the trait in a multivariate regression manner, while
incorporating the regulatory network structure as prior knowledge, and report-
ing p-values that can be used by geneticists as a reference to analyze their results.
Our method is built upon the success of how the linear mixed model calculates
p-values, which is proven trustworthy empirically (e.g., Kang et al. 2008, 2010;
Lippert et al. 2011; Yang et al. 2014). The central idea of our method relies on the
resemblance between the linear mixed model and Ridge regression (Wang et al.
2022). Following the simulation setup in (Li and Li 2008), we test our method
against multiple competing methods that can either incorporate the graph of
covariates as prior knowledge or perform high-dimension variable selection with
p-values. The simulations endorse the strength of our method empirically. We
further apply it to Alzheimer’s disease and report the findings. Our results sug-
gest that there are also interesting connections between genes in the cerebellum
and Alzheimer’s disease, aligning with previous questions raised (Jacobs et al.
2018).

Finally, to summarize the three major contributions of our work:

• We propose that the association study of gene sets is also important in TWAS,
and we propose to prioritize the genes considering its regulatory networks.

• We introduce a statistical method for this goal, which can incorporate the
network structure as prior knowledge as flexible as regularized regression
methods, while reporting p-values empirically trustworthy to geneticists.
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• We apply our methods to study Alzheimer’s disease and notice that: although
the cerebellum is less believed to play a role in Alzheimer’s disease, our results
suggest interesting mechanisms in this tissue.

2 Method

To introduce our method, we will first introduce the connections between linear
mixed model and Ridge regression as background. Then, we will introduce our
design rationales building upon this connection, and the design rationales will
lead to the discussion of our main model. Finally, we will introduce the overall
algorithm for the method.

Notations. We use X ∈ Rn×p to denote the data of n samples and p covariates,
y ∈ Rn×1 to denote the response variable, C ∈ Rp×p to denote the closeness of
covariates (e.g. one closeness measure can be the gene network), x ∈ Rn×1 to
denote one gene (e.g. x can be the ith column of X, denoted as x = Xi), and βi

to denote the corresponding effect size to be estimated.

2.1 Background

We consider the setup of a high-dimension linear regression

y = Xβ + ε,

where ε ∼ N(0, Iσε) and denotes the noises. We are given X and y and we aim
to estimate β.

We first consider using Ridge regression with the optimization goal of

βrr = arg min
β

‖y − Xβ‖22 + λ‖β‖22, (1)

where λ is the regularization weight.
Without loss of generality, we pay a particular attention to ith column of X

and we use x to denote that column, and we use X−i to denote the remaining
columns. Correspondingly, we use α = βi and β−i to denote the effect sizes.
Thus, we can rewrite (1) to

βrr = arg min
β

‖y − xα − X−iβ−i‖22 + λ1‖α‖22 + λ2‖β−i‖22, (2)

where we can allow λ1 and λ2 to be different.
Conveniently, we can have the closed form solution of (2) as

α̂rr =
xT (I − X−i(XT

−iX−i + λ2I)−1XT
−i)y

xT (I − X−i(XT
−iX−i + λ2I)−1XT

−i)x + λ1
, (3)
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On the other hand, if we are only interested in x and its effect size, we can
consider estimating it through linear mixed model, which assumes the generation
of data as

y = xα + X−iu + ε, (4)

where u ∼ N(0, Iσ2
u) and denotes the random effects, and the dimension of I

can be inferred from context.
If we aim to estimate the parameters by maximizing the likelihood of (4), a

commonly used estimator (Lippert et al. 2011) will lead us to

α̂lmm =
xT (δI + K)−1y
xT (δI + K)−1x

,

where K is the kinship matrix used to estimate the parameters. In practice, K
is often set to be K = X−iXT

−i, thus, together with the Woodbury identity, we
will have:

α̂lmm =
xT (I − X−i(XT

−iX−i + δI)−1XT
−i)y

xT (I − X−i(XT
−iX−i + δI)−1XT

−i)x
, (5)

where δ is the REML estimation of σ2
ε /σ2

u (Thompson et al. 1962).
By comparing (3) and (5), we can see that linear mixed model (4) will lead

to the same solution of Ridge regression (2) if we are only interested in the effect
size of x and we set λ1 = 0 (Maldonado 2009; Heckerman 2018; Wang et al.
2022).

2.2 Method

With the background above, we start to introduce our method: we consider
an extension of Ridge regression by leveraging the closeness information C to
regularize the effect sizes. For example, to regularize that the genes nearby shall
have similar effect sizes, we can solve the following problem:

β = arg min
β

‖y − Xβ‖22 + λ
∑

i,j

Ci,j(βi − βj)2 (6)

where λ is again the regularization weight.
(6) can be equivalently re-written into (Li and Li 2008):

β = arg min
β

‖y − Xβ‖22 +
λ

2
βT Lβ (7)

where L is the Laplacian matrix, defined as L = D − C, where D is a diagonal
matrix and Di,i =

∑p
j Ci,j .

Further, the connections between LMM and Ridge regression offer us a conve-
nient way of extending (7) and formalize the extended equation into the solution
of LMM. Specifically, we first extend (7) to be:

β = arg min
β

‖y − xα − X−iβ−i‖22 + λβT
−iL−iβ−i (8)
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where we drop the 1
2 because it only affects the scale of the regularization weight.

Then we write out the closed form solution of α:

α̂ =
xT (I − X−i(λL−i + XT

−iX−i)−1XT
−i)y

xT (I − X−i(λL−i + XT
−iX−i)−1XT

−i)x
(9)

Notice that the (7) is not written into (8) because they are equivalent. It is only
written into (8) as how LMM resembles ridge regression. Fortunately, the esti-
mated coefficients with (8) are close to those with (7) with bounded differences,
as shown by (Wang et al. 2022).

Now, if we consider the below model,

y ∼ N(xβi,X(I + H + H2)XT σ2
u + Iσ2

ε ) (10)

where H denotes the normalized network, calculated by:

H = D−1/2CD−1/2

We use J to denote I+H+H2 for simplicity. We use the P3D method (Zhang
et al. 2010) and the re-parametrization trick (Lippert et al. 2011) for estimation
of parameters, which leads to the following solution for α:

α̂ =
xT (̂δI + XJXT )−1y

xT (̂δI + XJXT )−1x
(11)

which is the solution of a linear mixed model whose kinship matrix is set to be
K = XJXT , and the ̂δ is estimated through maximum likelihood estimation.

Notice that with Woodbury identity we can show that (9) and (11) are the
same if J ∝ L−1 and λ is chosen accordingly.

Therefore, we have demonstrated how we can simply use a linear mixed model
with a designed kernel matrix to replace the network regularized multivariate
regression method (Li and Li 2008). Our method also have two additional merits:
it can calculate p-values in a manner that is accepted by geneticists; it is free of
the hyperparameter λ as the regularization weight. However, these merits come
at a price, through some approximations that may not be considered rigorous
by statisticians. Fortunately, these approximations have been widely used in
the study of GWAS and have been proven efficient in identifying associated
covariates.

For example, after we estimate α, p-values can be calculated following stan-
dard hypothesis procedure, such as Wald Test, as conducted by a variety of
genetics studies (e.g., Kang et al. 2008, 2010; Lippert et al. 2011; Yang et al.
2014).

Another challenge is that L is likely to be singular so the inverse does not
exist. Despite that there are many methods to approximate the Moore-Penrose
inverse of a Laplacian matrix (Bozzo and Franceschet 2012; Bozzo 2013; Van
Mieghem et al. 2017), we notice a simple solution that does not involve the
decomposition of L.
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Algorithm 1: Algorithm of the proposed method KMM
Input: gene expressions X, traits y, the network of gene closeness (e.g.,
regulary network) C, correlation threshold τ ;
Output: test statistics of genes p;

Calculate the Di,i =
∑p

j Ci,j and H = D−1/2CD−1/2;

Calculate K = X(I + H + H2)XT ;
for every gene x in X do

Calculate its correlation with every other gene in X, denote the correlation
as tx;
Index the genes c(x) = {i|tx(i) ≥ τ};

K′ = K − Xc(x)(I + H + H2)c(x)X
T
c(x);

Estimate δx with K′, X, and y following (Thompson et al., 1962);
Estimate βx with (11);
Calculate px as the p-value for x through Wald test.

end
Report p as the p-value for all the genes;

We consider the normalized Laplacian matrix defined as L′ = I − H, where
H is defined in preceding texts. We notice that the normalization leads to a
convenient property about the eigenvalues e of H that |ei(H)| < 1. Therefore,
we can approximate the inverse of L′ with (Petersen et al. 2008):

L′−1 = (I − H)−1 ≈ I + H + H2.

Finally, while the kinship matrix is ideally constructed with K = X−iXT
−i

when we study x (i.e., Xi), which means that for every covariate we study, we
need to construct the kinship matrix and estimate δ once, and this repeated
procedure will introduce additional computational load. A convenient way to
circumvent the computational load is to construct K once only with K = XXT

which is used by multiple genetic studies (e.g., Kang et al. 2008, 2010; Lippert
et al. 2011; Yang et al. 2014). Regarding this approximation, (Yang et al. 2014)
empirically showed that the statistical power in terms of p-value will be reduced if
the covariate of interest x is included in the kinship matrix over SNP data, while,
on the other hand, (Wang et al. 2022) showed an statistical argument that the
approximation barely degrades the performance for high-dimension data when
the covariates are independent.

However, due to the correlated expressions of the genes, the inclusion of the
gene of interest (x) and its correlated genes will significantly degrade its per-
formances in identifying associated genes (as we tested empirically). To counter
this, we introduce to construct K with K = X−c(x)XT

−c(x), where −c(x) denotes
all the genes there are not correlated with x. We define the not correlated as
the Spearman correlation smaller than a threshold. This threshold is introduced
as a hyperparameter of our method. Intuitively, the higher this threshold is set,
the less effect it has in filtering genes, thus the less power the method has in
countering the effects introduced by correlated genes during proritization. On
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the other hand, the lower this threshold is set, the less genes will remain in the
construction of kinship matrix, thus the more similar the method will be with
vanilla marginal regression.

In summary, we formally introduce our method in Algorithm 1.

3 Simulation Experiments

3.1 Competing Methods

We consider the following competing methods:

• KMM: our proposed method, which we name kernel mixed model to describe
the fact that the essential idea is to add a kernel function on the kinship
matrix of linear mixed model.

• LMM: linear mixed model (e.g., Lippert et al. 2011), which can be seen as
our method without the network structure.

• NCL (Network-constrained Lasso) (Li and Li 2008): an extension of Lasso
that regularizes the coefficients to follow network structure.

• Wald Test: Standard Wald test with the standard FDR control using the
Benjamini-Hochberg (BH) procedure (Benjamini and Hochberg 1995).

• Lasso: Linear regression with �1 norm regularizations.
• AL (Adaptive Lasso): an extension of Lasso that weighs the regularization

term (Zou 2006) (enabled by the method introduced in (Huang et al. 2008)
for high-dimensional data).

For models that do not report p-value, we consider the variables with non-zero
estimated coefficients as identified ones. For regularized regression methods, the
hyperparameters are chosen with a prior knowledge of the number of associated
genes following (Wang et al. 2018). Due to the statistical limitation of selecting
hyperparameters using cross-validation and information criteria in high dimen-
sional data (e.g., see discussions in (Wang et al. 2018)), in practice, it is arguably
more reliable for the practitioners to provide the expected number of variables
to be selected.

3.2 General Data Generation Process

We follow the simulation set-up in (Li and Li 2008) to simulate data and to test
the performance of our method KMM. (Li and Li 2008) assumed that genes that
are regulated by the same Transcription Factor (TF) will either have or not have
causal effects consistent with the causality of their regulating TFs.

Following (Li and Li 2008), we defined the parameters that will be used in
our simulation studies and introduced how they were simulated as follows:

• First, we denoted the sample size as n , the number of TFs as t, the number
of total covariates (i.e. including all genes and TFs) as p. We assumed that
each TF regulates a fixed number of genes. Thus, there will be pg = p

t − 1
genes regulated by one same TF. Also, we assumed that in all t TF groups,
there will be exactly c groups of causal TFs and genes.
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• X is an n × p feature matrix, where we assumed that each row Xi: (i.e.
each sample) is independently distributed. We assumed that any pairs of TFs
will follow an identical independent normal distribution as XTF ∼ N(0, 1).
Each gene was assumed to be jointly distributed with its corresponding TF,
which was indicated by a bivariate normal with a correlation of r. Such a
bivariate normal distribution can be converted into a conditional distribution
as N(XTF × r, 1 − r2) . Thus, we simulated TFs first, based on which we
simulated the rest of all genes using above conditional distribution.

• β is a p × 1 vector such that,

βi =

{

wj , if the ith covariate is the jth TF
wj√
pg

, if the ith covariate is regulated by the jth TF

where w is a vector of length t and wj is none-zero only when the jth TF and
genes regulated by it all have causal effects.

• The input regulatory network N will be a p×p symmetric matrix, where Nij

= 1 only when either the ith covariate is a TF that regulates the jth covariate,
or the jth covariate is a TF that regulates the ith covariate. Otherwise, Nij

= 0. The gene regulatory networks are known prior to the methods.
• The response vector y is given as y = Xβ + ε, where the random noise ε was

simulated following a normal distribution that guarantees the signal to noise
ratio to always be 30.

Further, we extend the detailed configurations of (Li and Li 2008) to more
challenging and diverse scenarios, with which, we can better understand the
strength and limitations of our methods. For example, we consider a more chal-
lenging configuration where n = 500 and p = 8800 (800 TFs) as we believe this
configuration is closer to the configurations of the real data we have. We set
r = 0.7 so that regulated genes are correlated with the TF strongly (we will also
explore different choices of r and how it affects our model).

In (Li and Li 2008), the values of w are either 3 or 5 with sign flips. Since
ε will be calculated according to the effect size w to maintain a fixed signal to
noise ratio of 30, the effects of choices of values of w seems negligible. However,
we notice that different choices of w will lead to a different level of diversity of
the effect sizes (as the standard deviation of w will change), so we also explore
the different choices of w and the effects on the performances. Further, we also
explore how different choices of r will affect the performances. Finally, as our
method will rely on a good choice of the network known in prior, we also test
the different scenarios where the network is not always correct.

3.3 Results

To introduce a diverse of magnitudes of w, we configure the data generation
process with six non-zero values of the vector w (effect sizes of the TF), with
the first three of them set to be 3, 3,−3, and the remaining three of them set to
be v, v,−v. The rest of the data generation process are the same as the general
data generation above.
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Fig. 1. ROC curve of competing methods over different magnitude choices of the effect
sizes

We repeat the experiments three times and plot the ROC curve with standard
deviation plotted as the shady areas in Fig. 1. The greater the v is, the larger
the deviation of the effect sizes will be (because we fix three effect sizes to be 3
and allow the remaining ones scaled with v.)

As Fig. 1 shows, when v is small (i.e., when the deviation of the effect sizes
are small), most hypothesis testing method can solve the problem well enough.
However, as v increases, our methods start to show the advantages over previous
hypothesis testing methods. We conjecture this is because the previous method
tend to identify the genes with larger effect sizes and our regularization helps
deemphasize these TFs and force the model to focus more on the regulated genes.

This experiment is mainly designed to test the methods for varying magni-
tudes of effect sizes in the simulation data. For further empirical evidence over
other different configurations of the simulation of the data, we direct the readers
to the appendix. In summary, our proposed methods outperform the competing
methods in different setups, even when the network structure as prior knowledge
is misspecified.

4 Study of Transcriptome Association of Alzheimer’s
Disease

In the real data application, we compare our method KMM with the Wald test.
We do not show the results of the LMM method because it does not report any
significant genes, and we do not compare the other methods we assessed in the
simulation experiment due to their lack of ability to report p-values for identified
associations.

Data and Preprocessing. We apply our method and the Wald test to the
late-onset Alzheimer’s disease (AD) dataset provided by Harvard Brain Tis-
sue Resource Center and Merck Research Laboratories (Zhang et al. 2013). The
gene expression profiling data are collected over three different brain regions,
namely dorsolateral prefrontal cortex (PFC), visual cortex (VC), and cerebel-
lum (CB). There are 230 samples, 101 of which are diagnosed with AD, and
the rest are normal controls. We first filter the data and consider only the genes
usually expressed in brain, as collected in the Human Protein Atlas database
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(Pontén et al. 2008). Then we use the protein-protein interaction networks from
BioGRID (Oughtred et al. 2018) as the networks of genes to be incorporated
into the model as prior knowledge.

Also, we adjust the gene expression data for age and gender. We demonstrate
the effectiveness of correcting the age and gender confounding effects by com-
paring and showing the differences of correlations between expression levels of
genes and these covariates before and after the regression in the appendix.

Gene Sets of Interest. The definition of gene sets can vary dependent on the
context (Uffelmann et al. 2021). Here, as one of the strengths of our method is the
incorporation of the network structure of the genes in the association model, we
are interested in finding out whether this would facilitate us to identify disease-
associated genes within an interacting network. In order to do so, we first identify
around 5000 gene interaction groups, which we will name after the hub gene in
each group, in the BioGrid Protein-protein interaction database (Oughtred et al.
2018). Since we would like to focus on those gene interaction groups most likely
implicated in Alzheimer’s disease, we design a scoring system to rank the gene
interaction groups in terms of their relevancy to AD. With the help of GeneCards
(Safran et al. 2010), which can inform us how strongly the community believes
each gene is associated with Alzheimer’s disease, we retrieve the ranks of the
genes in each group believed to be associated with Alzheimer’s disease. Then
by comparing the average rank for all the genes in each group, we are able to
identify the top 10 gene interaction groups implicated in AD, which are known to
play key roles in AD, and thus we will focus on these groups in the downstream
analysis.

Table 1. Hypergeometric test of the overlap of genes identified by the methods and
the interacting genes denoted by the hub gene.

hub gene APOE APP BACE1 CASP1 CASP4 CASP6 MAPT NCSTN PSEN1 SNCA

PFC WALD 0.382 0.011 0.921 0.021 0.962 0.392 0.068 0.445 0.195 0.075

KMM 0.064 0.012 0.194 0.144 0.552 0.003 0.084 0.552 0.043 0.033

CR WALD 0.896 0.204 0.59 0.311 0.947 0.557 0.193 0.993 0.782 0.275

KMM 0.378 0.231 0.02 0.105 0.038 0.717 0.545 0.008 0.029 0.706

In order to test how well the compared methods can identify the AD-
associated genes in a gene interaction group, we use the following procedure.
We first apply each method to test whether each gene in a gene interaction
group is associated with the AD phenotype with a p-value. Then a gene with a
p-value smaller than the threshold of 0.05 is considered as significantly associated
with AD. Finally, for each gene interaction group, we conducted a hypergeomet-
ric test to assess whether the identified AD-associated genes are significantly
enriched in this group (i.e., p-value from the hypergeometric test < 0.05)

We applied our method KMM and the conventional Wald test to the gene
expression data collected from all the three available compartments: PFC, CR,
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Table 2. Enrichment analysis for the identified genes in the network with hub CASP6.

Significant results p-value genes

GO Glial cell development 4.89E−02 APP, VIM, MAPT

Intermediate filament cytoskeleton
organization

1.44E−02 PPL, KRT18, VIM

Positive regulation of neuron death 4.47E−02 APP, EIF2S1, MAPT

Positive regulation of NF-kappaB

transcription factor activity

1.31E−02 CFLAR, APP, PRKCZ, TRAF1

Memory 4.85E−02 APP, MAPT, PRKCZ

Pathway Alzheimer disease-amyloid
secretase pathway

2.06E−03 APP, PSEN2, PRKCZ

Table 3. Enrichment analysis for the identified genes in the NCSTN subnetwork.

Significant results p-value Genes

GO amyloid-beta formation 3.15E−08 PSEN1, BACE1, APH1B, NCSTN

T cell activation 1.93E−02 PSEN1, ALB1, NCSTN

regulation of long-term synaptic
potentiation

3.74E−02 ALB1, NCSTN

regulation of synaptic plasticity 1.10E−02 PSEN1, ALB1, NCSTN

glial cell differentiation 9.63E−03 PSEN1, ALB1, NCSTN

cerebellum development 3.53E−03 PSEN1, ALB1, NCSTN

Pathway Notch signaling pathway 1.23E−05 PSEN1, APH1B, NCSTN

Alzheimer disease-amyloid
secretase pathway

3.23E−07 PSEN1, BACE1, APH1B, NCSTN

Alzheimer disease-presenilin
pathway

1.94E−06 PSEN1, BACE1, APH1B, NCSTN

and VC. Table 1 reports the p-values of the hypergeometric tests for the top-10
AD-implicated gene interaction groups. We notice that our method can iden-
tify more gene interaction groups significantly enriched with the AD-associated
genes than what the Wald test can identify. In particular, KMM reported four
significant networks in PFC and CR each, while Wald testing reported two sig-
nificant networks only in PFC. Neither of these methods report any networks in
VC. Next, we will examine our findings in the PFC and CR more closely.

Findings in the PFC Region. PFC is known to play key roles in Alzheimer’s dis-
ease (Salat et al. 2001). We first investigate the gene interaction group with the
most significant p-value in PFC (Table 1): the CASP6 subnetwork. Our method
identifies 18 AD-associated genes in this subnetwork. Functional GO and path-
way enrichment analysis of these genes suggests that they are clearly impli-
cated in Alzheimer’s disease, as shown in Table 2. For example, recent studies
have found AD-associated loci in or near genes that are expressed in microglia
(Hemonnot et al. 2019; Efthymiou and Goate 2017), suggesting that the bio-
logical process of glial cell development may play a role in the development of
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Table 4. Enrichment analysis for the identified genes in the PSEN1 subnetwork.

Significant results p-value Genes

GO amyloid-beta formation 3.19E−06 PSEN1, BACE1, APH1B, NCSTN

Notch receptor processing 9.17E−05 PSEN1, ALB1, NCSTN

positive regulation of response
to stimulus

3.53E−03 DLL1, PRKACA, CASP1, CTNNA1,
CTNNB1, CASP4, PSEN1, CIB1,
TCF7L2

positive regulation of skeletal
muscle tissue development

1.62E−02 DLL1, CTNNB1

astrocyte development 1.23E−03 DLL1, GFAP, PSEN1

glial cell differentiation 2.05E−04 DLL1, GFAP, PSEN1, CTNNB1,
NCSTN

cellular response to
amyloid-beta

1.35E−03 CASP4, PSEN1, BACE1

cell fate determination 1.65E−03 DLL1, CTNNB1, NOTCH4

angiogenesis 1.43E−03 DLL1, CTNNB1, NOTCH4,
PRKACA, CIB4

Pathway neuron projection regeneration 2.81E−02 GFAP, CTNNA1

neuron death 3.57E−03 PSEN1, CASP7, NCSTN

cerebellum development 1.15E−02 DLL1, NCSTN, PSEN1

regulation of synaptic plasticity 4.43E−02 GFAP, NCSTN, PSEN1

lymphocyte activation 2.94E−02 DLL1, PSEN1, CTNNB1, NCSTN

positive regulation of MAPK
cascade

4.87E−02 PRKACA, CTNNB1, PSEN1, CIB1

Alzheimer’s disease. With evidence suggesting the linkage between neurodegen-
eration the progressive accumulation of abnormal filamentous protein (Cairns et
al. 2004), the biological process intermediate filament cytoskeleton organization
is probably implicated with Alzheimer’s disease. Neural cell death and mem-
ory are clearly linked to Alzheimer’s disease (e.g., Niikura et al. 2006). Recent
evidence also suggests that the transcription factor nuclear factor-kappa B as a
major risk factor in cellular, invertebrate and vertebrate models of AD (Jones
and Kounatidis 2017).

Findings in the CR Region. Interestingly, we notice that our method also reports
genes in four networks in Table 1. Even though the understanding of function
relevance in the cerebellum is still in the early stage (Jacobs et al. 2018), our
results lead us to inspect further in this region. We examine the identified AD-
associated genes in two of the subnetworks, NCSTN and PSEN1, and the results
are reported in Tables 3 and 4, respectively. Similarly, these biological processes
and pathways are clearly implicated in the development of Alzheimer’s disease.

The functional enrichment analysis of the identified AD-associated genes in
the NCSTN subnetwork is reported in Table 3. The role of amyloid-beta forma-
tion plays in Alzheimer’s disease has been widely studied with a large body of
evidence (e.g., Murpy and LeVine III 2010; Sadigh-Eteghad et al. 2015). The
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activities of T-cells have been a putative factor for Alzheimer’s disease for a
long time (Town et al. 2005), although recent evidence starts to raise alternative
thoughts (Dhanwani et al. 2020). There is also plenty of evidence suggesting
that the dynamic gain and loss of synapses is linked to Alzheimer’s disease (e.g.,
Subramanian et al. 2020)

The enrichment analysis of the identified AD-associated genes in the PSEN1
network is reported in Table 4. Evidence suggests that the dysfunction of Notch
signaling could play a critical role in the development of Alzheimer’s disease
(Kapoor and Nation 2020). Astrocyte development is clearly linked with the
development of Alzheimer’s disease (González-Reyes et al. 2017; Perez-Nievas
and Serrano-Pozo 2018). Angiogenesis is also hypothesized to be implicated with
Alzheimer’s disease (Vagnucci Jr and Li 2003).

5 Conclusion

In this paper, we aim to improve the existing methods used for understanding
the association between transcriptome and phenotype. By allowing the incorpo-
ration of gene network structures in the association model, our method can facil-
itate the identification of the disease-associated genes with implications for the
disease mechanism. Our proposed method KMM combines the merits of several
previous methods such as being multivariate, regularized by network structures,
as well as reporting p-values in a manner accepted by geneticists. In particular,
KMM is built upon the connections between the linear mixed model and ridge
regression to further improve the linear mixed model’s modeling power with the
capability to incorporate of the network structures. After conducting simulation
experiments to verify the effectiveness of the proposed method, we apply our
method to real data collected from patients with Alzheimer’s disease. In our
application, we notice that the AD-associated genes reported by our method
in the CASP6, NCSTN, PSEN1 subnetworks are particularly interesting: our
enrichment analysis suggests these genes are implicated in Alzheimer’s disease.
Thus, we demonstrate the efficacy of our method, and our released software can
help the community identify the disease-associated genes with implications for
the disease mechanism in the future.

A Additional Simulation Experiments

Different Strengths of the Regulation. Further, we study how the strength
of regulation will affect the performances of our methods, and we model this shift
of strength with variations of the parameter r in the data generation process,
while the rest of the configurations remain the same as the data generation
process. Also, we continue to focus on the intermediate level of the previous
example where we set v = 16.

Similarly, we repeat the experiments three times and plot the ROC curve
with standard deviation plotted as the shady areas in Fig. 2.
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Fig. 2. ROC curve of competing methods over different regulation strength of the TF.

As Fig. 2 shows, our method is on par with previous hypothesis testing meth-
ods over most correlation levels. When r = 1, the regulated genes are distributed
in the same way as the TF, although are associated with smaller effect sizes.
Both LMM and KMM are good enough to uncover the associated genes in this
case. When r is smaller (0.5 or 0.3), the regulated genes are less dependent on
the TF, the hypothesis testing methods all perform similarly, probably because
that when the regulated genes are more independent from the TF, the network
structure does not introduce advantages. However, when r = 0.7, the KMM
method starts to show a clear advantage over other methods. In summary, our
proposed method can outperform other methods when there is a strong correla-
tion between the TF and regulated genes (but not too strong when the regulated
genes and TF are identically distributed). We believe this is the most frequently
seen scenarios in real-world data. In addition, in other scenarios, our method
does not perform worse than other methods, so there is no loss in using our
method in general. In fact, if one calculates the area under ROC curve for Fig. 2,
our method performs the best in all these four tested scenarios, although the
advantages of our method in the other three scenarios are marginal.

Misspecified Network Structure. Finally, as our method is built upon the
knowledge of network structure, we are interested in knowing what if the network
structure is misspecified since in practice, we may not always be able to obtain a
network structure faithful to the underlying regulatory mechanism. To simulate
this, we introduce another hyperparameter q in the data generation process.
When we generate the network structure N , we drop the edges in the network
structure with the probability 1 − q. The rest configuration of data generation
is the same as the general one introduced in the preceding texts.

Again, we repeat the experiments three times and plot the ROC curve with
standard deviation plotted as the shady areas in Fig. 3.

As Fig. 3 shows, our method is surpringly robust to the misspefication of
the prior network structure. When q = 1, the input network is faithful to the
underlying regulatory network, and the KMM method certainly outperforms the
competing methods. Interestingly, the advantages of the KMM method maintain
even when half of the edges of the input network are missing (q = 0.5). When
q = 0.3, which means that 70% of the edges of the underlying regulatory network
are missing in the input network for the model, the proposed method start to
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Fig. 3. ROC curve of competing methods when the prior network is misspecified (the
edges of a network is dropped with probability 1 − q).

perform similarly to the previous hypothesis testing methods. Even this case, the
calculated area under ROC score of KMM will be higher than those competing
methods, although this advantage cannot be observed in the ROC curves.

B Covaraite Regressing

To demonstrate the success correction of these factors, we compared the Spear-
man’s correction between the expressions and the covariates before and after the
correction. Figure 4 shows the comparison of the Spearman’s correlation between
the gene expressions and the covariates before and after the regressing across the
three different compartments studied in this work, and we can see that the cor-
relation between each genes and the age covaraites drops significantly after the
regression.

Fig. 4. The comparison of the Spearman’s correlation between the gene expressions
and the covariates before and after the regressing.
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Abstract. Combinatorial group testing and compressed sensing both
focus on recovering a sparse vector of dimensionality n from a much
smaller number m < n of measurements. In the first approach, the prob-
lem is defined over the Boolean field – the goal is to recover a Boolean vec-
tor and measurements are Boolean; in the second approach, the unknown
vector and the measurements are over the reals. Here, we focus on real-
valued group testing setting that more closely fits modern testing pro-
tocols relying on quantitative measurements, such as qPCR, where the
goal is recovery of a sparse, Boolean vector and the pooling matrix needs
to be Boolean and sparse, but the unknown input signal vector and the
measurement outcomes are nonnegative reals, and the matrix algebra
implied in the test protocol is over the reals. With the recent renewed
interest in group testing, focus has been on quantitative measurements
resulting from qPCR, but the method proposed for sample pooling were
based on matrices designed with Boolean measurements in mind. Here,
we investigate constructing pooling matrices dedicated for the real-valued
group testing. We provide conditions for pooling matrices to guarantee
unambiguous decoding of positives in this setting. We also show a deter-
ministic algorithm for constructing matrices meeting the proposed con-
dition, for small matrix sizes that can be implemented using a laboratory
robot. Using simulated data, we show that the proposed approach leads
to matrices that can be applied for higher positivity rates than combi-
natorial group testing matrices considered for viral testing previously.
We also validate the approach through wet lab experiments involving
SARS-CoV-2 nasopharyngeal swab samples.
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1 Introduction

Widely-available, fast-turnover molecular testing for the presence of highly con-
tagious infectious diseases is considered a key tool in limiting their spread [36].
For newly emerging viral diseases, the gold-standard detection approach involves
molecular assays based on polymerase chain reaction (PCR) [10], which can
be quickly designed once the genetic sequence of the virus becomes available.
However, rapid scaling of testing to cover the affected communities may face
obstacles, leading to interest in pooling strategies that allow for using m tests
to screen many more than m samples, out of which up to k are expected to
be positive [13,29,30,33,34]. Traditional, adaptive pooling approaches, such as
Dorfman pooling [1,13] and its improved variants [21,30], combine biological
material from multiple individuals into pools, each tested using one test. This
allows for quickly eliminating a large fraction of virus-negative pools of sam-
ples. However, follow-up testing is required to confirm which individual samples
in the pools that tested positive are positive, introducing delays and requiring
protocols for storing and retrieving previously tested samples for re-testing.

Non-adaptive, single-step protocols in which tests do not depend on each other
and can be done in parallel have been studied under the umbrella of combinatorial
group testing [2,14] or Boolean compressed sensing [3,27], and also in informa-
tion retrieval [23]. The key challenge in non-adaptive group testing protocols is
the design of a binary measurement matrix A (see Fig. 1), which prescribes that
sample j should be assigned to pool i if Aij = 1. In many applications, the matrix
should be sparse, and several authors considered combinatorial group testing with
sparse matrices [17,18]. The matrix needs to guarantee that the identity of the
positive samples can be decoded from measurements of the sample pools. Prob-
abilistic group testing relaxes that requirement to allow the decoding guarantee
to fail with some low probability [7]. These approaches all share the underlying
Boolean algebra – the measurement result for each pool is binary, and only pro-
vides information whether the tested pool is all-negative or whether it contains at
least one positive sample. Combinatorial quantitative group testing [37] extends
this approach to measurements that provide the number of positive samples in the
pool. The focus on binary or integer measurements puts a limit on how small the
number of pools, m, can be for a given number of tests, n.

Contemporary molecular assays often provide more than a binary readout
– for example, cycle threshold (Ct) values in qPCR can be used to provide
an estimate of the quantity of the measured molecule – but the availability of
this quantitative information is underutilized in pooling matrix design. Com-
pressed sensing [4,6,9,11] approaches generalize group testing to quantitative,
real-valued measurements resulting from real-valued linear algebra involving A
and the unknown vector x∗, similar to how qPCR would provide an estimate of
the combined abundance of the molecule in the pool. However, matrices designed
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for compressed sensing typically involves real-valued elements, for example sam-
pled from a normal distribution, and thus are not feasible to implement for
laboratory pooling of samples. Compressed sensing also focuses on the quality of
approximating the real-valued unknown signal vector, instead of just its pattern
of nonzeros that indicates which samples are positive, and on applications with
high-dimensional signals, such as 3D imaging [26]. Nonnegative compressed sens-
ing [5,12,24,25] is more aligned with molecular testing by focusing on unknown
vectors that, like molecular abundance vectors, involve nonnegative reals, but is
still optimizing the matrix design towards approximating the vector x∗ instead
of recovering its pattern of nonzeros.

Combination group testing and compressed sensing have gained renewed
interest recently in the context of SARS-CoV-2 testing. It has been argued that
combinatorial, nonadaptive pooling designs become advantageous compared to
multi-step, adaptive pooling and to testing individual samples as the positiv-
ity rate, the fraction of samples in the tested group, increases [8]. One recent
nonadaptive pooling method, P-BEST, achieves 8-fold reduction in the num-
ber of tests for groups of samples with positivity rate of around 1% or less.
Another method, Tapestry [19], achieves 2.3-fold reduction for 1.9% positiv-
ity rates, extending to 10-fold reduction for 0.2% positivity rates. Both P-BEST
and Tapestry utilize quantitative measurements and employ decoding techniques
from compressed sensing domain, but both use matrix construction strategies
designed for Boolean-measurement combinatorial group testing: P-BEST relies
on Reed-Solomon codes, and Tapestry utilizes Kirkman Triple Systems result-
ing in 2-disjunct matrices. Neither of these approaches considered whether the
matrix design can be improved if measurements are assumed to be real-valued.

1.1 Problem Statement and Contribution

We introduce real-valued group testing: an approach that exploits the quantita-
tive nature of molecular assays and aims at recovering the nonzero patterns in
sparse vector. Consider an unknown nonnegative vector x∗ ∈ R

n
+ of molecular

abundances in samples from n individuals, with up to k positives; we call such
vectors k-sparse. Equal amounts of biological sample from individual i are placed
by a laboratory robot into di distinct testing pools, with pool j having material
from pj samples. The initial amount of sample, and the time it takes for the
laboratory robot to perform the work, puts limits on di and pj . The assignment
of samples to pools is given by a binary matrix A, where Aji = 1 indicates that a
portion of sample i is placed in pool j. The total abundances in the pools are then
equal to y∗ = Ax∗. In practice, to ensure that each sample has the same total
contribution to the measurement pools, we normalize each column of the binary
matrix by dividing it by the number of ones in it. The abundances are quantified
by a molecular assay, such as qPCR, leading to observed measurement vector
ŷ ∈ R

m. Readouts are estimated, from Ct values, on a logarithmic scale, leading
to noise that is approximately multiplicative; here, we assume that |ŷj −y∗

j | ∝ y∗
j .

The goal is to design matrix A that will allow us to uncover supp(x∗), the sup-
port of x∗, from ŷ, that is, find which samples are positive. Matrices designed
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Fig. 1. Conceptual illustration of the proposed real-valued group testing. A: According
to matrix A, genetic material from sample no. 1 (left-most column) goes into testing
pool 4 and 6, and testing pool no. 1 (top row) will contain genetic material from samples
6–10. B: A robot programmed according to matrix A will distribute samples to pools,
then qPCR assays will provide quantitative readout of the amount of viral genetic
material in each pool. A decoding algorithm will resolve which cases are positive.
C: Comparison of real-valued group testing with existing approaches. Note that in
our approach, we construct a binary matrix but we column-normalize it to have unit
column norms prior to use in testing; this ensures samples have equal contribution to
the measurement vector.

specifically for real-valued group testing allows for reducing the number of pools
for a given number of samples compared to matrices designed for Boolean com-
binatorial group testing. For example, for the matrix in Fig. 1, quantitative
measurements allow for distinguishing between the scenario with one positive at
the third column and a scenario with two positives, at first and third columns.
The matrix would not be appropriate for Boolean measurements, which would
not be able to distinguish between these two scenarios.

We show a new necessary and sufficient condition for normalized binary
matrices to guarantee unambiguous recovery of support of k-sparse nonnega-
tive signals. We also provide a deterministic method for constructing matrices
meeting the proposed condition, for small values of k, m, n that are relevant for
the viral testing setting. The approach is validated using simulated data as well
as limited laboratory experiments.

2 Methods

2.1 Notation

Let [n] = {1, ..., n}. Define support of a vector x by supp(x) = {i ∈ [n] : xi �= 0}.
The L0 pseudo-norm is ||x||0 = |supp(x)|. A vector is k-sparse if ||x||0 ≤ k, that
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is, if it has up to k non-zeros. For n-dimensional vector x, for S ⊂ [n], we use
xS to denote a vector of dimensionality equal to x, with entries xi taken from
vector x where i ∈ S, and with null entries elsewhere. By S̄ we will denote the
complement of S in [n].

By B
m×n we denote the space of m × n binary matrices normalized to have

unit sum of each column; we use B for brevity even though these matrices are
not binary, but instead have entries 1/||Ai||0 for each column Ai of matrix A. By
ker A we denote the nullspace of A, a set of solutions to Ax = 0. For m×n matrix
A, given S ⊂ [n], AS is a submatrix of A formed by its columns Ai = A(·, i),
where i ∈ S. Similarly, for T ⊂ [m], AT is a submatrix of A formed by its rows
Aj = A(j, ·), where j ∈ T . It will be clear from the context whether we are
considering a rows or columns.

2.2 Overview of the Matrix Design and Decoding Algorithms

Our approach to constructing pooling matrices is based on three observations.
First, in Sects. 2.3 and 2.3, we prove conditions that a matrix must meet to allow
for unambiguous decoding of the positive samples. Next, in Sect. 2.3, we show
that a matrix meeting the conditions can be obtained by starting with a wide
initial matrix and removing some columns. Finally, in Sect. 2.3, we show that
the computational cost of finding which columns to remove can be substantially
reduced by focusing on a series of submatrices instead of on the initial wide
matrix, and that all the submatrices are essentially the same up to permutation
of rows and columns, so in fact only one submatrix needs to be considered.

These observations together allow us to formulate a deterministic matrix
design method (Algorithm 1) and a corresponding algorithm for decoding posi-
tive samples from noisy measurements (Algorithm 2).

Algorithm 1. Pooling Matrix Design Algo-
rithm
Input: m - number of rows; k - sparsity; d -

maximum number of nonzeros per matrix
column

Output: A - pooling matrix
1: PoolingMatrix(m, k, d)
2: Dm = WidestBinaryMatrix(m, d)
3: Ddk = WidestBinaryMatrix(dk, d)
4: Vdk = ViolatingColumnSubsets(Ddk)
5: Vm = ∅
6: for all S : dk-row subset of Dm do
7: V ′

dk = MapColumnIDsDdk→Dm
(Vdk, S)

8: Vm = Vm ∪ V ′
dk

9: H = HittingSet(columns of Dm, sets Vm)
10: A = remove columns H from Dm

11: return column-normalized A

Algorithm 2. COMP-NNLS
Decoding Algorithm
Input: ŷ - measurements; A -

pooling matrix
Output: P - set of positives
1: COMP-NNLS(ŷ, A)
2: for all i do
3: if ŷi = 0 then
4: remove columns j

from A if Aij = 1
5: remove row i from

A, ŷ

6: x̂ = arg minx ||Ax −
ŷ||2 s.t. x ≥ 0

7: P = supp(x̂)
8: return P
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Pooling Matrix Design Algorithm. The pooling matrix construction pro-
ceeds in three broad steps. First, (ln. 2 in Algorithm 1), an initial wide binary
m-row matrix is constructed by concatenating all possible binary columns con-
taining between 2 and d nonzeros. This matrix will lead to many ambiguities if
used in group testing. Second (ln. 3–8), we analyze which sets of columns lead
to ambiguities – we perform the analysis on a smaller, dk-row binary matrix
(ln. 3–4), and translate the results to the initial matrix (ln. 5–8). These steps
rely on our main technical contribution, Theorems 2 and 4 and Lemmas 1 and 2
described below in Sects. 2.3–2.3. Each of these column sets needs to be broken
apart by removing at least one column from each set from the initial matrix,
which can be achieved (ln. 9) by solving an instance of the hitting set problem,
as described in Sect. 2.3.

Decoding Algorithm. The decoding algorithm (Algorithm 2) has two steps.
First, in a manner similar to combinatorial orthogonal matching pursuit
(COMP) [7], to simplify computations, we eliminate from A all columns that
have nonzero entry in rows with null measured yj , and we also eliminate these
rows from A and y (Algorithm 2, ln. 2–6). This leaves us with a smaller set of
possible positives. For pooling matrices constructed by the proposed approach,
in the noise-free case Theorem 2 shows that the set of positives can be unam-
biguously decoded from measurements y∗ by solving y∗ = Ax s.t. x ≥ 0 and
taking the support of the solution vector. When noisy measurements ŷ are avail-
able instead of y∗, this constrained linear system may have empty set of sparse
solutions. Indeed, the space of possible measurement noise vectors ŷ − y∗ is m-
dimensional, while the set of k-sparse nonnegative solutions to y = Ax s.t. ≥ 0
is a union of a finite number of k-dimensional sets, with m typically much higher
than k. Thus, to find a sparse x we use (Algorithm 2, ln. 7) nonnegative least
squares (NNLS), that is, we find the signal with the smallest, in the L2 sense,
change in ŷ needed to find a nonnegative solution. This approach is aligned with
the decoding guarantee for the noisy case provided by Theorem 4.

2.3 Constructing Matrices for Real-Valued Group Testing

Necessary and Sufficient Condition in Noise-Free Case. We will show
that any matrix with the following property allows for recovering the pattern of
non-zeros of any unknown nonnegative signal with sparsity k.

Definition 1. k-balanced nullspace property. Matrix A ∈ B
m×n has

k-balanced nullspace property if for all η ∈ ker A \ {0}, at least k + 1 entries
ηi are positive and at least k + 1 entries ηj are negative.

Intuitively (see Fig. 2), the property precludes having η = x′ − x′′ with a
k-sparse, nonnegative x′ and another nonnegative, nonzero x′′ with supp(x′) �=
supp(x′′) that could serve as an alternative set of positive cases. If we recover a
set of up to k positive cases from the measurement vector y∗, we are guaranteed
that there is no other set of positive cases, not just with up to k cases but
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of any cardinality, consistent with y∗. Thus, the guarantee is stronger than in
group testing based on k-disjunct matrices, where the guarantee is limited to
alternative sets of positives with cardinality up to k. The intuition is formalized
as follows.

Theorem 2. A matrix A ∈ B
m×n allows for decoding supp(x∗) from y∗ given

by y∗ = Ax∗ if and only if it meets the k-balanced nullspace property.

Proof. (⇐=): Let x∗ be a k-sparse vector with support S, let y∗ = Ax∗, and let
x �= x∗ be another nonnegative vector with different pattern of non-zeros (i.e.,
supp(x∗) �= supp(x)) such that y∗ = Ax. Take η = x∗ − x; then η ∈ ker A \ {0}.
Vector η constructed this way will have at most k positive entries, since −x only
contributes negative or null entries and x∗ is k-sparse nonnegative; k-balanced
nullspace property will not hold. Thus, the property implies no such x exists. The
unknown pattern of non-zeros in x∗ can be recovered from the unique solution
to the constrained linear system of equations y∗ = Ax, x ≥ 0.

(=⇒): Assume k-balanced nullspace property is violated. We will show that
recovering supp(x∗) unambiguously is not possible for some nonnegative x∗, that
is, k-balanced nullspace property is necessary for real-valued group testing. For
A with only positive entries, any η ∈ ker A \ {0} must have at least one positive
and one negative entry. Let S be the support of the positive entries in η, and −S
the support of the negative entries; both are nonempty. Both ηS and −η−S are
nonnegative, at least one of them is k-sparse, and supp(ηS) �= supp(−η−S). We
have Aη = AηS + Aη−S = 0. Both ηS and −η−S lead to the same measurement
vector y = AηS = A(−η−S); given y and A, S and −S resulting from η provide
two different, equally possible sets of positive cases.

Sufficient Condition for the Multiplicative Noise Case. The measure-
ments of y = Ax are expected to be noisy, with the observed ŷ �= y. For nonneg-
ative x and A, the true y is also nonnegative, and in qPCR and similar settings, ŷ
is also constrained to be nonnegative by the nature of the measurement process.
Often, with high probability, null yj leads to null ŷj . To fit these characteristics,
we focus on multiplicative noise.

Consider a k-sparse solution x ∈ R
n
+ resulting in noise-free measurement

y ∈ R
m. The observed results of the measurements is ŷ, with noise of magnitude

limited by δ > 0 in the sense |ŷi − yi| ≤ δyi. This noise bound is not symmetric,
that is, bound on ŷi/yi is 1 + δ while the bound on yi/ŷi is not 1/(1 + δ); for
small values of δ it approximates the symmetric multiplicative noise model that
captures qPCR noise well.

The bound on the magnitude of noise can help us establish how much the
measurement noise can impact the decoding of the positive cases from ŷ.
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Fig. 2. Illustration of k-balanced nullspace property for k = 2. A: Vector η that violates
it by having only k = 2 positive entries. B: The violation allows for two alternative
solutions, x∗ = ηS and x = −η−S , with the same measurement outcome.

Definition 3. k, l-sparse δ-robustness property. Matrix A ∈ B
m×n has k, l-

sparse δ-robustness property if for all k-sparse x′ ∈ R
n
+ with ||x′||1 = 1, for all

l-sparse x′′ ∈ R
n
+ with supp(x′) �= supp(x′′), we have ||Ax′ − Ax′′||2 > 2δ.

The δ-robustness property is an extension of the k-balanced property, which
is a special case for δ = 0 and l = n−1. The property guarantees, via Theorem 4,
that for two different sets of positives, the corresponding noise-free measurements
are so different that even in the presence of measurement noise, the two sets of
positives can be distinguished by the decoding algorithm (see Fig. 3).

Theorem 4. Consider A ∈ B
m×n, and noisy measurements such that for every

x ∈ R
n
+ we observe ŷ instead of y = Ax, with multiplicative error |ŷi − yi| ≤ δyi

of magnitude limited by a constant δ ∈ R+. Consider a k-sparse x∗ ∈ R
n
+ and a

set X ⊂ R
n
+ of alternative, l-sparse solutions with different support than x∗. If A

has k, l-sparse δ-robustness property, then supp(arg minx ||Ax − ŷ||2 s.t. x ≥ 0)
will correctly decode supp(x∗).

Proof. For any A ∈ B
m×n, we have ||y||1 = ||Ax||1 = ||x||1, since columns of

A ∈ B
m×n add up to one. Noise of the form |ŷi − yi| ≤ δyi guarantees that

||ŷ−y||2 ≤ δ||y||2 ≤ δ||y||1 = δ||x||1. Consider any x′ ∈ X and let y′ = Ax′; also,
let y∗ = Ax∗. For x′ to possibly be a solution x′ = arg minx ||Ax− ŷ||2 s.t. x ≥ 0
instead of x∗, we need ||y′−ŷ||2 ≤ ||y∗−ŷ||2. This implies ||y′−ŷ||2 ≤ δ||x||1. From
triangle inequality, it further implies ||y′−y∗||2 ≤ ||y∗−ŷ||2+||y′−ŷ||2 ≤ 2δ||x∗||1,
that is, ||Ax′ − Ax∗||2 ≤ 2δ||x∗||1. If A has k, l-sparse δ-robustness property, we
have a contradiction.

Fig. 3. Illustration of k, l-sparse δ-robustness property. A: Violation of the property
may lead to ambiguity in decoding noisy measurement ŷ. B: If the property holds, x∗

can be decoded from ŷ.
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Property-Violating Column Sets. To arrive with a matrix meeting the k-
balanced nullspace property and the k, l-sparse δ-robustness property, we can
start with a matrix that does not meet the property, and then trim the matrix,
as shown by the following result.

Definition 5. Violating set. A violating set of a matrix A ∈ B
m×n is a subset

V of columns of A such that submatrix AV does not meet k-balanced nullspace
property, or the k, l-order δ-robustness property. A minimal violating set is a
violating set that contains no smaller violating sets.

Lemma 1. For a matrix D, a submatrix A ∈ B
m×n, formed by eliminating

columns from D, meets the k-balanced nullspace property and the k, l-order δ-
robustness property if one column has been removed from all minimal violating
sets of D.

Proof. Removing columns from a matrix does not introduce new violating sets,
but removing even one column from a minimal violating set removes the violating
set. Thus, removing one column from each minimal violating set eliminates all
violating sets.

All minimal violating sets for the k-balanced nullspace property can be
obtained by enumerating all minimal linearly dependent sets of the matrix and
filtering them according to the number of positive and negative linear weights.
Finding minimal dependent sets is a special case of enumerating all circuits in
a matroid [22]. For our experiments, we use the implementation in the function
circuits of 4ti2 [35]. For the δ-robustness property, quadratic programming
iterated over sets of up to k + l columns can produce all minimal violating sets.

Reducing the Search for Property-Violating Sets to a Small Base
Problem. Detecting all minimal dependent sets for a large m × n matrix in
B

m×n has combinatorial complexity and is computationally infeasible. For matri-
ces A ∈ B

m×n with up to d non-zeros in each column, y = Ax will be sparse
for nonnegative, k-sparse x, and we have the following decomposition that can
make the search for testing matrices with m rows more efficient, by allowing us
to focus on a small submatrices with dk rows, irrespective of how large m is.

Lemma 2. Decomposition into Base Problem. Consider A ∈ B
m×n with

||Ai||0 ≤ d for each column i. The matrix meets the k-balanced nullspace property
or the k, l-sparse δ-robustness property if and only if for every dk-sized subset
T ∈ [m], the submatrix AT formed by taking only rows in T , and then eliminating
columns that have support extending beyond T , has those properties.

Proof. Whether a set of matrix columns violates either of the properties is not
affected by removing rows that have all-null values in these columns. If the prop-
erty is violated for AT , it is violated by some specific columns of AT . Extending
these columns by bringing back the remaining rows of A, which have all-null
values, does not remove the violation involving the columns, and A does not
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meet the property. Conversely, if A does not meet the property, then some k-
sparse vector x that leads to a measurement with at most dk nonzeros has an
alternative x′ that also has to lead to a measurement with up to dk nonzeros,
in the same set T , and the property that guaranties lack of ambiguity must be
violated for submatrix AT .

It is not necessary to detect all minimal dependent sets in all the subma-
trices AT , we only need to do it once, for a small matrix. Up to permutation
of columns and rows, all these submatrices are identical to, or a submatrix of,
of a single small matrix Ddk with dk rows and

∑d
i=2

(
dk
i

)
columns that results

from concatenating all possible binary columns with two ones, with three ones,
and up to dk ones. Given all minimal violating column sets in Ddk, a simple,
efficient procedure can compute column indices in A from indices in Ddk. We
can iteratively translate minimal violating sets of Ddk to minimal violating sets
of each kd-row subset of A, which together form all the minimal violating sets
of A.

Constructing the Pooling Matrix Based on Property-Violating Col-
umn Sets. For a given k and d, finding matrix A with the largest n for a given
m by starting from some initial matrix Dm and then removing smallest number
of columns that break up all minimal violating sets corresponds to the hitting set
problem. The hitting set problem involves a universe U , and a set Σ of subsets
of U . The goal is to select the smallest number of items from U such that each
set from Σ contains at least one of those items. Here, the initial matrix Dm is
an m-row matrix that has all N =

(
m
2

)
+ ... +

(
m
d

)
possible binary vectors with

2, ..., d ones as columns. Universe U is the set of columns of the initial matrix
Dm, and Σ are all the minimal violating sets of Dm. We aim to break each
minimal violating set by removing as few columns from Dm as possible. The
problem, through equivalence with set cover problem, is NP-hard. The trivial
approach of checking every subset of columns of Dm matrix has complexity of
|Σ|2N , and algorithms that require instead N |Σ|2|Σ| also have been formulated
[16], but in our case |Σ| > N . While an approximation algorithm can be used
for large set cover problems, for small values of m, k, and d considered here,
integer programming is effective. We used GUROBI [20] solver with the number
of threads limited to 32, limiting the time of calculations for each m to 500,000
s. All calculations were performed on a machine with 4 Intel Xeon E7-8894V4
2.4 GHz CPUs, with 24 cores per CPU, and 6 TB RAM.

3 Results

3.1 Comparison of Matrix Properties with Existing Approaches

We used the proposed approach to construct two k = 2, d = 3 testing matrices,
for m = 12 and m = 16. These two numbers of pools correspond well to the
standard dimensions of a 384 = 16 × 24 well plate. A robot with a multichannel
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pipette can work on multiple columns (for m = 16) or half-rows (for m =
12) in parallel. We used the noise limit of δ = 0.125 for m = 12 and δ =
0.15 for m = 16. The properties of the two pooling matrices are presented
in Table 1. For comparison, we also summarized the properties of matrices of
similar sizes resulting from existing approaches for combinatorial group testing
or nonnegative compressed sensing.

In combinatorial group testing, unambiguous decoding of k-sparse signals
from Boolean measurements is guaranteed for a binary pooling matrix if the
matrix is k-disjunct [15], that is, if for any set of k columns, every other column
has at least one non-zero element in a row where all the k columns are null. Reed-
Solomon codes [32] with Kautz-Singleton construction [23] are a popular way of
constructing k-disjunct matrices. The three RS/KS matrices with smallest m,
comparable to o m in our matrices, are 12×16 (RS code: [3, 2]4 ), 15×25 ([3, 2]5),
and 21 × 49 ([3, 2]7); these have lower compression rates than our matrices.

RS/KS construction is not optimal [31]. To find optimal codes for a given m,
we used integer programming to find 2-disjunct matrices with highest possible
n for values of m = 12, 16 used in our matrices. The resulting widest-possible
2-disjunct matrices are 12×20 and 16×37. These have much lower compression
rates n/m than matrices constructed using our approach that exploits the fact
that the matrices will be used with real-valued measurements instead of Boolean
measurements.

Table 1. Properties of pooling matrices resulting from our approach for k = 2, d = 3,
compared with existing methods for matrix construction. For each m × n matrix, we
provide the maximum number of non-zeros per column (dmax) and per row (pmax),
the maximum sample dilution dilmax resulting from dmax and pmax, maximum sparsity
assumed in matrix design, kmax, the maximum positivity rate, kmax/n the matrix is
designed for, and the testing compression rate, n/m.

Matrix Design method m n dmax pmax dilmax kmax kmax/n n/m

Proposed method 16 66 3 14 42 2 3.03% 4.13:1

Proposed method 12 36 3 10 30 2 5.55% 3.00:1

Combinatorial Group Testing Matrices

Tapestry [19] 45 105 3 8 24 2 1.90% 2.33:1

P-BEST [33] 48 384 6 48 288 4 1.04% 8.00:1

[3, 2]7 Reed-Solomon/Kautz-Singleton 21 49 3 7 21 2 4.08% 2.33:1

[3, 2]5 RS/KS [23,32] 15 25 3 5 15 2 8.00% 1.67:1

[3, 2]4 RS/KS [23,32] 12 16 3 4 12 2 12.50% 1.33:1

Optimal 2-disjunct [15] 16 37 3 7 21 2 5.40% 2.32:1

Optimal 2-disjunct [15] 12 20 3 5 15 2 10.00% 1.67:1

Nonnegative Compressed Sensing Matrices

Random-permutation [24] 16 66 3 15 45 – – 4.13:1

Random-permutation [24] 12 36 3 12 36 – – 3.00:1

Random-binomial [25] 16 66 7 17 119 – – 4.13:1

Random-binomial [25] 12 36 5 13 65 – – 3.00:1

One-sided coherence [5] 16 20 4 5 20 2 10.00% 1.25:1

One-sided coherence [5] 12 9 4 3 12 2 22.20% 0.75:1
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RS codes are better suited for larger m and n, and have been used recently
in SARS-CoV-2 testing for settings that involve lower positivity rates. P-BEST
[33], a method based on RS codes, involves a 48 × 384 matrix designed for
positivity rates up to 1%, much lower rate than our matrices; it also has much
higher sample dilution rate. However, it offers two-fold higher compression rate
than our matrices, and is a better choice in low-positivity scenarios.

Another method proposed for SARS-CoV-2 testing is Tapestry [19], which
relies on Kirkman Triple Systems [28] for constructing 2-disjunct matrices. The
45× 105 Tapestry matrix, while having lower compression rate than our 16× 66
matrix, also only has unambiguous decoding guarantees for positivity of up to
1.9%.

In addition to matrices used in combinatorial group testing, we also evalu-
ated matrix design approaches proposed in the nonnegative compressed sensing
domain which, unlike our matrices, are designed with the goal of recovering
the vector, not only its support. One-side coherence [5] has been proposed as a
computationally-efficient sufficient condition for sparse recovery of nonnegative
signals. It uses a condition ρ/(1 + ρ) < 1/2k with ρ = maxi�=j |AT

i Aj |/||Ai||22;
for k = 2, one needs ρ < 1/3. The condition was initially used for random [0, 1]-
uniform matrices, which have low AT

i Aj , but which are not feasible to use in
laboratory setting. For binary matrices, AT

i Aj reduces to overlap and ||Ai||22 to
||Ai||0; to have a chance of finding A with ρ < 1/3 we need ||Ai||0 ≥ 4, that is,
columns with at least four non-zeros. Maximum independent set on the graph
of all possible ||Ai||0 ≥ 4 columns, with edge if AT

i Aj > 1, is tractable for small
m, but highest-n-for-m matrices are very poor: 12 × 9, and 16 × 20.

Other approaches [24,25] for creating matrices for nonnegative compressed
sensing use random binary matrices. We tested matrices with entries sampled
from Bernoulli distribution, an approach that has been used previously to con-
struct sensing matrices that meet sparse recovery guarantees with high proba-
bility, including in the nonnegative case [25]. In order to increase the quality of
the random matrices we used as comparison to our approach, instead of single
random matrix, we sampled 100 Bernoulli matrices, and we picked the matrix
that has highest mean of sensitivity and specificity when tested on 100 random
2-sparse inputs x. Bernoulli matrices may have highly varying number of ones
between columns; as an alternative, we used a permutation approach that guar-
antees that the number of elements in each column is between 2 and 3, as in
matrices resulting from our method. A similar approach was used previously in
nonnegative sparse recovery [24]. Again, we picked the best of 100 random matri-
ces for comparison with our approach. Random matrices only provide probability
guarantees that hold with high probability for large n, large m. The small ran-
dom matrices used here do not come with guarantees for unambiguous recovery
for any sparsity value k, which is indicated by a dash in Table 1.

3.2 Effectiveness on Simulated Data

We have used synthetic, simulated data to evaluate the sensitivity and specificity
of decoding the positive cases from real-valued measurements using the matrices
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Table 2. Sensitivity and specificity of pooling matrices resulting from our approach
for varying positivity rates in simulated noise-free and noisy measurements scenarios,
for 10,000 simulated experiments. For each matrix, we provide its dimensions and its
compression rate. Maximum positivity rate for which the matrix was designed is marked
with an asterisk.

Positivity Noise-free measurements Measurements with

simulated noise

Matrix rate sensit. [%] specif. [%] sensit. [%] specif. [%]

Proposed 16× 66, 4.13 : 1 1.52% 100.0 100.0 100.00 99.99

Proposed 16× 66, 4.13 : 1 3.03% ∗ 100.0 100.0 99.48 99.18

Proposed 16× 66, 4.13 : 1 4.55% 100.0 99.25 98.06 96.50

Proposed 12× 36, 3 : 1 2.78% 100.0 100.0 100.00 99.91

Proposed 12× 36, 3 : 1 5.56% ∗ 100.0 100.0 99.26 97.88

Proposed 12× 36, 3 : 1 8.33% 100.0 97.39 97.72 92.36

in Table 1. For each m×n matrix, we simulated 10,000 random input vectors of
dimensionality n and with given number of nonzeros. The nonzero elements of
each vector were sampled uniformly at random from [1.0, 1000.0] range, that is,
from a range spanning around 10 qPCR Ct cycles. True, noise-free measurements
were obtained by setting y = Ax. To simulate noisy qPCR measurements ŷ, we
used a realistic model of qPCR noise [19], of the form ŷi = (1 + q)N (0,σ2)yi,
with the hyperparameters set to q = 0.95 and σ = 0.1. Given A and ŷ, we used
COMP-NNLS decoding algorithm (algorithm2) to identify the positive samples.

First, we focused on the matrices resulting from the proposed method, and
analyzed how they behave when the set of samples have varying positivity rates.
We used three positivity rates: two that are within the rate range for which the
matrix is designed for, and one that exceeds the rate by half. Results in Table 2
show that within the designed range of positivity rates, the matrices have high
sensitivity, above 99%, and high specificity, above 99% for the 16×66 matrix and
above 97% for the 14×36 matrix. When the maximum number of positives that
the matrix was designed for is exceeded by half, the sensitivity drops by about
1.5% and remains above 97%, while the specificity drops to between 92% and
96%, indicating a small increase in the number of false negatives and a moderate
increase in the number of false positives.

Next, we compared the proposed matrices with matrices from existing
approaches in experiments with k = 2 positives, that is, the highest number
of positives the matrices are designed for (only P-BEST is designed for higher
number of positives, kmax = 4). As Table 3 show, in the scenario with noise-
free measurements, all the matrices, with the exception of some of the random
matrices, exhibit perfect accuracy.

As expected, matrices originating from Boolean combinatorial group testing,
which are designed to work without quantitative information available for the
decoding process, are not significantly affected by the presence of multiplicative
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measurement noise. This comes at the cost of having relatively low compression
rates, (small m,n matrices) or being limited to low positivity rates (large m,n
P-BEST and Tapestry).

Random matrices originating from nonnegative compressed sensing
approaches are by design of the same shape as matrices from our approach,
with the same compression rates. Permutation-based matrices exhibit slightly
lower sensitivity than our deterministically-designed matrices, and show speci-
ficity lower by 0.78% for the 16 × 66 matrix, and by 1.44% for the 12 × 36
matrix – in both cases, this drop translates to almost doubling of the number
of false positives. Binomial random matrices have lower specificity and sensi-
tivity. Matrices based on one-sides coherence, while having high sensitivity and
specificity, achieve that by offering very low compression rate.

Table 3. Sensitivity and specificity pooling matrices resulting from our approach com-
pared to existing approaches in simulated noise-free and noisy measurements scenarios,
for 10,000 simulated experiments with k = 2 positive samples. For each matrix, we pro-
vide its dimensions and its compression rate.

Noise-free measurements Measurements
with simul. noise

Matrix sensit. [%] specif. [%] sensit. [%] specif. [%]

proposed method 16 × 66, 4.13 : 1 100.0 100.0 99.48 99.18

proposed method 12 × 36, 3 : 1 100.0 100.0 99.26 97.88

Tapestry 45 × 105, 2.33 : 1 100.0 100.0 99.93 100.0

P-BEST 48 × 384, 8 : 1 100.0 100.0 99.92 100.0

[3, 2]7 RS/KS 21 × 49, 2.33 : 1 100.0 100.0 99.87 100.0

[3, 2]5 RS/KS 15 × 25, 1.67 : 1 100.0 100.0 99.81 100.0

[3, 2]4 RS/KS 12 × 16, 1.33 : 1 100.0 100.0 99.84 100.0

Opt. 2-disj. 16 × 37, 2.31 : 1 100.0 100.0 99.85 100.0

Opt. 2-disj. 12 × 20, 1.67 : 1 100.0 100.0 99.79 100.0

Rand-Perm 16 × 66, 4.13 : 1 100.0 99.77 99.10 98.40

Rand-Perm 12 × 36, 3 : 1 100.0 99.19 98.87 96.44

Rand-Binom 16 × 66, 4.13 : 1 95.39 98.18 94.50 95.30

Rand-Binom 12 × 36, 3 : 1 100.0 97.57 99.00 93.09

1-sided coh. 16 × 20, 1.25 : 1 100.0 100.0 99.77 100.0

1-sided coh. 12 × 9, 0.75 : 1 100.0 100.0 99.76 100.0

3.3 Effectiveness in Wet Lab

To validate the proposed approach in a laboratory setting, we performed limited
testing of biological samples using qPCR assay. We focused on the 12×36 pooling
matrix that offers higher maximum positivity rate, k/n = 5.5%, than the 16×66
matrix. We used one set of 36 human samples: two samples were previously
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confirmed to be positive for SARS-CoV-2, and the remaining 34 were confirmed
negatives. Briefly, nasopharyngeal swabs were collected and immediately trans-
ferred to 3 ml of PrimeStore MTM medium to deactivate the virus. Nucleic acids
were purified using ThermoFisher MagMAX Viral/Pathogen Nucleic Acid Isola-
tion Kit. Nucleic Acid-extracts were stored at –80 ◦C. Virus detection and viral
loads were performed by qPCR using IDT 2019-nCoV CDC qPCR Probe Assay
targeting the SARS-CoV-2 nucleocapsid gene (N1 and N2). The human RNase P
gene was used as a control for sample integrity. Amplification was performed in
our ViiA7 Real-Time PCR System using the TaqMan Fast Virus 1-Step Master
Mix.

We randomly assigned the two positive samples to two columns of the pool-
ing matrix. Samples were thawed in ice and spun down for 5 s. We then prepared
12 master wells. For each Aij = 1 in the sensing matrix A, we pipetted 3µl of
biological material from sample j into master well i. We then pipetted 5µl of
volume from each master well into a separate testing well. The qPCR assay was
performed in a 20µl volume containing 5µl of 4×TaqMan Fast Virus 1-Step
Master Mix (Thermo Fisher Scientific), 1.5µl of primers/probe set, and 8.5µl
DEPC-treated water. The qPCR was performed using ViiA7 Real-Time PCR
System (Thermo Fisher Scientific) with the following cycling conditions: reverse
transcription at 50 ◦C for 15 min. and 95 ◦C for 2 min., followed by 40 cycles of
PCR at 95 ◦C for 3 s. and 55 ◦C for 30 s. We ran 12 individual qPCR assays,
one per testing well. Total viral load in each testing well was estimated from
the qPCR Ct value. Briefly, a standard curve was obtained by amplification of
known amounts of SARS-CoV-2 (IDT 2019-CoV Plasmid Controls). Five con-
secutive dilutions (dilution factor 1:10) were prepared containing from 104 to
1 copies/reaction. The amounts of SARS-CoV-2 in samples were obtained by
plotting Ct values onto the standard curve.

A second round of 12 qPCR assays was carried out using 5µl volume from
each master wells, leading to a second set of measurements, with the same under-
lying viral loads but differing due to technical variability of the qPCR assay.
Finally, we performed the same experiment on the same pooled master wells,
by diluting the master well 1:5, then pipetting 5µl of volume into a testing
well, and performing qPCR. This set of tests was again performed in duplicate,
resulting in two additional data sets differing due to technical variability. For all
four data sets, we used NNLS to recover the viral loads and, subsequently, the
sparsity pattern of the 36 samples. In all four data sets, the method correctly
identified both positive samples, and correctly labeled the remaining 34 samples
as negative.

4 Conclusion

We provided a theoretical and empirical exploration of real-valued group testing,
a setting that is relevant for improving efficiency of community testing for viral
diseases. The proposed approach is focused on small-to-medium sized matrices
that are convenient in a laboratory setting. The resulting matrices are useful
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for positivity rates below 5%, where they offer higher reduction in the number
of tests than matrices designed for Boolean combinatorial group testing while
maintaining high sensitivity and specificity. For higher positivity rates, the app-
roach is not recommended. For much lower positivity rates, up to about 1%,
existing approaches such as P-BEST offer higher reduction in the number of
tests.

Acknowledgement. T.A., G.A.B, and M.S. are funded by NSF grant CBET-
2034995.
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Abstract. We consider species tree estimation from multiple loci sub-
ject to intralocus recombination. We focus on R∗, a summary coalescent-
based method using rooted triplets. We demonstrate analytically that
intralocus recombination gives rise to an inconsistency zone, in which
correct inference is not assured even in the limit of infinite amount of
data. In addition, we validate and characterize this inconsistency zone
through a simulation study that suggests that differential rates of recom-
bination between closely related taxa can amplify the effect of incomplete
lineage sorting and contribute to inconsistency.

Keywords: Phylogenetics · Species tree estimation · Intralocus
recombination

1 Introduction

Species tree estimation from genomic data is complicated by various biologi-
cal phenomena which generate phylogenetic conflict, among them hybridization,
horizontal gene transfer, gene duplication and loss, and incomplete lineage sort-
ing (ILS) [23]. In particular, ILS may cause phylogenetic conflict in which a gene
tree exhibits a different topology from that of the species tree, and is of greatest
concern for species trees with short internal branches [23]. Of some interest is
the existence of an anomaly zone for species trees, in which the most probable
topology in the gene tree distribution differs from the topology of the species tree
[5,7,8] (see also [2,21] for a more recent discussion of these and other relevant
issues).

The existence of an anomaly zone has served as an impetus for the devel-
opment of summary coalescent-based methods, quartets, such as R∗, MP-EST,
BUCKy, ASTRAL, and others [6,15,16,20]. Some of these methods are based on
the fact that rooted triples and unrooted quartets are special cases in which no
anomaly zone exists [5,13] and also provide sufficient information to reconstruct
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the full phylogeny [24,27]. Provided that the gene trees are estimated without
error, such methods can provide statistically consistent methods of estimating
species tree topology [30].

A common assumption of coalescent-based models based on the multispecies
coalescent (MSC) [21,22] is that recombination occurs between genes (or loci)—
so that gene trees may be assumed unlinked or statistically independent—
but that intralocus recombination (i.e., recombination occurring within gene
sequences), does not occur [2,9]. The significance of the latter assumption—
that is, the impact of intralocus recombination on phylogenetic inference—is a
matter of present interest [2,32] and much debate about its significance when
unaccounted for [9,14,26]. One justification for assuming no intralocus recombi-
nation is that within-gene recombination may break gene function [23].

An influential simulation study argued that even high levels of intralocus
recombination do not present a significant challenge for species tree estimation
relative to other biological phenomena [14]. On the other hand, the authors of
[25] suggest the absence of intralocus recombination may be an unreasonable
assumption in real data, such as protein-coding genes in eukaryotes [2,19], and
particularly in the case of species phylogenies with many taxa [26]. In particular,
the potential for intralocus recombination to distort gene tree frequencies has
been recognized as a challenge to summary coalescent-based methods, and [14]
has been critiqued for its focus on shallow divergences and limitation to a low
number of loci and taxa [26].

In this paper we take an analytical approach to investigate the effect of
intralocus recombination. We prove that intralocus recombination has the poten-
tial to confound R∗, a summary coalescent-based methods based on inferring
rooted triples. That is, we show that correct inference of rooted triplets cannot
be guaranteed in the presence of intralocus recombination, assuming a distance-
based approach is used for gene tree reconstruction. We then present a simulation
study which characterizes the “inconsistency zone”, i.e. the regime of parameters
for S in which rooted triple inference does not converge to S as m → ∞. We
find that the effect arises when differential rates of recombination are exhibited
between closely-related taxa.

1.1 Key Definitions

A species phylogeny S = (VS , ES ; r, ρ̄, τ̄ , θ̄) is a directed binary tree with vertex
set VS , edge set ES , root r ∈ VS , and n labeled leaves LS = [n], such that each
edge e ∈ ES is associated with a length τe ∈ (0,∞), expressed in coalescent
units, a recombination rate ρe ∈ [0,∞), and a mutation rate θe ∈ [0,∞). It is
assumed that there exists an ancestral population common to all leaves of S,
i.e., a population above the root, with respective mutation and recombination
parameters. Mutation rates are assumed to be per site per coalescent unit (a
coalescent unit being 2Ne generations for diploid organisms, where Ne is the
effective population size); recombination rates are per locus per coalescent unit.

The general question considered here is how to reconstruct the topology
of the species phylogeny from gene sequence data sampled from its leaves.
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This sequence data takes the form of multiple sequence alignments; a multi-
ple sequence alignment (MSA) is an n × k matrix M whose entries are letters in
the nucleotide alphabet {A, T,C,G} such that entries in the same column are
assumed to share a common ancestor. The phylogenetic reconstruction problem
in this paper is to recover the topology of S from m independent samples of M .

We define a rooted triple to be a rooted binary phylogenetic tree with label
set of size three; we use the notation XY |Z (or equivalently Y X|Z) to denote a
rooted triple with leaves X,Y,Z having the property that the path from X to
Y does not intersect the path from Z to the root [24]. The term species triplet
refers to a restriction of S to three of its leaves. A rooted triple XY |Z is said to
be uniquely favored if it appears in more gene samples than either of the other
two rooted triples XZ|Y or Y Z|X.

1.2 Inference Methods

This paper considers Majority-Rule Rooted Triple, or R∗, a consensus-based
pipeline for species tree estimation. R∗ utilizes the fact that the full topology
of S is uniquely determined by, and hence can be recovered from, its rooted
triples [27]. The R∗ pipeline has three steps: first, for each gene, infer a rooted
triple for each triplet of leaves X,Y,Z ∈ LS . Second, make a list of uniquely
favored triples from the m sampled genes. Finally, construct the most-resolved
topology containing only uniquely favored triples. When gene trees are drawn
independently according to the MSC, it holds that for every set of three taxa,
the most probable rooted triple in the gene tree distribution matches the rooted
triple obtained by restricting the species tree S to that set of three taxa; for this
reason, the topology of the R∗ consensus tree converges to that of S [6].

Since we are interested in the inference of the species-tree topology from
sequence data, we consider a distance-based approach in which a species triplet
with leaves X,Y,Z is inferred to have topology XY |Z if

δXY < δXZ ∧ δY Z . (1)

where δXY = δXY (Mk) is the number of mismatching nucleotides between
sequences sX and sY (X,Y ∈ LS). We refer to this inference procedure as
R∗ with sequence distances.

1.3 Multispecies Coalescent with Recombination

The model considered here, which we term the Multispecies Coalescent with
Intralocus Recombination, or MSCR, uses the ancestral recombination graph
(ARG) model from [10] (see also [1]) within the framework of the multi-species
coalescent (MSC) [8,21,22]. In the single-population ARG [10], ancestors are
represented by edges in the graph (see Fig. 1a), and the number N of ancestors,
or gene lineages, at time t is a bottom-up birth-death process in which births
(recombination events) occur at rate ρN and deaths (coalescent events) occur
at rate N(N − 1)/2. When a coalescent event happens, two edges are chosen at
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(a) A single-population ARG
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(b) A multi-species ARG

Fig. 1. Two depictions of an ARG, in a single population (left) and in the multispecies
case (right). In Fig. 1a, two lineages enter the population at time 0 and three exit at time
tend. Coalescent events occurred at times t2 and t5. Recombinations with breakpoints
b1, b2, b2 occurred at times t1, t3, and t4. In Fig. 1b, the lineages of a multispecies ARG
are shown in blue within a 4-taxa species tree S (the thick tree) with fixed edge lengths
τA, τB , . . . , τABC . (Color figure online)

random and merged into one. When recombination occurs, a randomly chosen
lineage splits into two parent lineages. Each recombination vertex is labeled by
a number b, chosen uniformly on [0,1]; this number is the breakpoint of the
recombination.

The single-population ARG can be extended to multiple species in a manner
similar to the MSC: at time t = 0, each leaf of S begins with a single lineage,
and these lineages evolve in a bottom-up manner according to the ARG process
along each edge of a fixed species tree (see Fig. 1b). If G is a rooted directed
graph with edge lengths and leaf and breakpoint labels obtained in this manner,
then we say that G is generated according to the MSCR process on S . In
this scheme, the locus is modeled by the unit interval, and for each site x ∈ [0, 1],
a marginal gene tree T (x) can be obtained by tracing upward along the edges of
G starting from the leaves; if a recombination vertex is reached with breakpoint
b, take the left path if x ≤ b and the right path if x > b. This yields a collection of
rooted edge-weighted binary trees; a simple example is shown in Fig. 2. The set
of marginal gene trees M := {T (x) : 0 ≤ x ≤ 1} is almost surely finite [10]. For
each Tg ∈ M, define I(Tg) = {x ∈ [0, 1] : T (x) = Tg}, and define wg = |I(Tg)|,
where |·| denotes Lebesgue measure. In words, I(Tg) is the identical-by-descent
segment of the locus having genealogy Tg, and wg is the proportion of sites with
genealogy Tg.
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Fig. 2. On the left, an ancestral recombination graph (in blue) is shown within a 3-
taxa tree S (in black). The times of coalescence and recombination events are labeled
t1, . . . t4 on the time axis, and the breakpoint associated with the recombination event
is labeled b ∈ [0, 1]. On the right, the corresponding marginal gene trees T1 and T2

are shown. This particular example also illustrates how intralocus recombination may
contribute to phylogenetic conflict by allowing for ‘partial’ ILS, whereby one or more
of the marginal gene trees (in this case T1) exhibits a topology different from that of S.

Measuring time in coalescent units, this paper assumes that the per-site
mutation rate is given by a fixed number θ > 0 which does not vary on S.
For each x ∈ [0, 1], site x evolves independently according to the Jukes-Cantor
process [12,27] on the tree T (x). A somewhat more general description of this
algorithm can be found in [4].

Thus, to model the evolution of a genetic locus consisting of k sites in which
recombination breakpoints are distributed uniformly between them, a two-step
process is followed. First, a multispecies ARG G is generated according to the
MSCR process on S, from which a marginal gene tree T (x) is obtained for each
x ∈ [0, 1]. Second, for each x ∈ [0, 1] the Jukes-Cantor process is run with input
tree T (x) in order to generate a nucleotide N (i, x) ∈ {A, T,C,G} for each i ∈ LS .
The MSA Mk is then defined as the n × k random matrix with rows s1, . . . , sn

where for each X ∈ [n], sX = (sX(1), . . . , sX(k)) where sX(j) = N (X, j
k−1 ),

j = 0, 1, . . . , k − 1. In this case, we say that Mk is generated according to
the MSCR-JC(k) process on S .

In words, the MSCR-JC(k) process models the evolution of n homologous
genes situated at a common genetic locus consisting of k sites, and which may
have experienced intralocus recombination; these homologous genes are assumed
to have been drawn from n distinct species whose true species phylogeny is
represented by S. The resulting homologous aligned DNA sequences are the
rows of the n×k matrix Mk. The phylogenetic reconstruction problem considered
here pertains to whether the topology of S can be recovered from sequence data
generated in this manner, or more precisely:
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Problem: Let S be a species phylogeny with leaf labels LS = [n]. Fix
k ≥ 2. Given m independent samples M

(1)
k , . . . ,M

(m)
k , each generated

according to the MSCR-JC(k) process on S, recover the topology of S.

1.4 Estimating Sequence Distances

Let G be generated according to the MSCR process on S, and M the corre-
sponding set of marginal gene trees. Given a marginal gene tree Tg ∈ M, let
d

Tg

XY be the evolutionary distance between leaves X and Y on Tg, defined as the
expected number of mutations per site along the unique path between X and
Y . It follows from the assumptions about the mutation process that d

Tg

XY = 2θt,
where t is the time of the most recent common ancestor of X and Y on Tg. For
example in Fig. 2, dT1

AB = 2θt4 and dT2
AB = 2θt2. Define the breakpoint-weighted

uncorrected distance by

ΔXY :=
3
4

∑

Tg∈M
wg

(
1 − e− 4

3d
Tg
XY

)
. (2)

This formula, due to [28], generalizes the uncorrected Jukes-Cantor distance to
the setting of intralocus recombination; if no intralocus recombination occurs,
then the right-hand side has only a single summand and reduces to the inverse of
the Jukes-Cantor distance correction formula for a single non-recombining locus.

Our first lemma shows that δXY can be approximated by kΔXY when k is
large.

Lemma 1. If Mk is generated according to the MSCR-JC(k) process on S then
for all X,Y ∈ LS, conditioned on G, δXY (Mk) = kΔXY + o(k) almost surely as
k → ∞.

2 Inconsistency of R∗

2.1 Statement and Overview

The main result is the following:

Theorem 1. For k sufficiently large, R∗ using sequence distances is not statis-
tically consistent under the MSCR-JC(k) model. That is, there exists a species
phylogeny S such that the topology of the output of R∗ using sequence distances
does not converge in probability to the topology of the species tree.

To prove Theorem 1, it suffices to consider a species tree S with LS =
{A,B,C} and topology AB|C. Denote edges of S, or populations, by the letters
A,B,C,AB, and ABC as depicted in Fig. 3 where A,B,C correspond to the
leaf populations, AB is the parent edge of A and B, and ABC is edge extending
above the root. The key idea is to allow recombination only in population A. In
order to keep the analysis tractable, the recombination rate and length of edge A
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are chosen so that with high probability the number of recombinations is 0 or 1,
so that the number of lineages on the ARG exiting population A (backwards-in-
time) is either one or two. By choosing the internal branch length τAB sufficiently
small, ILS occurs along that edge with high probability, so that all coalescent
events on the ancestral recombination graph occur in the root population ABC.
In that case, as long as the mutation rate is not too large, we show that, on the
event R1C0 (see Fig. 3), taxa B and C are more likely to be inferred as more
closely related than taxa A and B, so that R∗ converges to the wrong topology
BC|A as the number m of samples grows.

The mutation rate θ is assumed to be the same in all populations. The vector
of recombination rates ρ̄ is defined by setting ρA = ρ > 0 and ρX = 0 for all
X �= A. Assume S to be ultrametric. The populations A and B have length
τA = τB > 0, the internal population AB has length τAB , the age of the root
troot is given by troot = τA + τAB = τC . For now assume that τAB > 0 and
τA > 0; their precise values will be determined later in the proof.

Let Mk be generated according to the MSCR-JC(k) process on S, and let
EXY |Z be the event that the rooted triple inferred from Mk using (1) is XY |Z.
The following lemma implies that to prove Theorem 1, it will suffice to prove

P[EY Z|X ] > P[EXY |Z ]. (3)

The consistency zone for R∗ with sequence distances under the MSCR-JC(k)
model is the set of species phylogenies S such that the topology of the R∗

consensus tree converges in probability to the topology of S as m → ∞.

Lemma 2. A necessary and sufficient condition for S to lie in the consistency
zone for R∗ with sequence distances under the MSCR-JC(k) model is that for all
XY |Z ∈ R(S),

P[EXY |Z ] > P[EXZ|Y ] ∨ P[EY Z|X ] (4)

Here R(S) = {S|J : J ⊆ LS , |J |= 3, and S|J is binary} is the set of restricted
rooted triples of S (see [24]).

By Lemma 1, with probability one, an ancestral recombination graph G
generated according to the MSCR process has the property that sequences of
increasing length k generated on it by the Jukes-Cantor process satisfy the
almost sure limit 1

k δXY (Mk) → ΔXY as k → ∞. Since almost sure conver-
gence implies convergence in distribution, it holds that under the joint process
which combines both genealogical and mutational processes, 1

k δXY (Mk) ⇒ ΔXY

as k → ∞ for all X,Y ∈ LS . Therefore, since the distribution function of
ΔXY is continuous, P[EXY |Z ] → P[E] and P[EY Z|X ] → P[F ] as k → ∞, where
E := [ΔAB < ΔAC ∧ΔBC ] and F := [ΔBC < ΔAB ∧ΔAC ]. Therefore inequality
(3) will hold for sufficiently large k provided that

P[F ] > P[E]. (5)

We detail the proof next.
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2.2 Key Lemmas

In what follows, set intersection is denoted with product notation (i.e. so that
XY = X ∩ Y for events X,Y ) and the important events to be considered are

Ri = [exactly i recombinations occur in the time interval (0, τA)]
Ci = [exactly i coalescences occur during the time interval (0, troot)]

C0,X = [no coalescence occurs in population X] .

Since recombination occurs only in population A, the number of recombination
events is governed by the recombination rate ρ and the duration τA of population
A. The following lemma shows that τA can be chosen sufficiently small that with
high probability, zero or one recombination occurs.

Lemma 3 (Recombination Probabilities). For all ρ, τA ≥ 0, P[R0] =
e−ρτA and P[R1] ≥ P[R1C0,A] ≥ ρτAe−(1+2ρ)τA . As τA → 0+, P[∪k≥2Rk] =
O(ρ2τ2

A).

For the case where no recombination occurs, the probabilities of E and F
are estimated in the following lemma using elementary MSC calculations.

Lemma 4 (No Recombination Case). P[E|R0] − P[F |R0] ≤ τAB.

For the case where exactly one recombination occurs, the following lemma
characterizes the behavior of coalescent events occurring below the root of S.
Intuitively, it says that coalescence in population AB is rare when τAB is small.

Lemma 5 (Effect of Small Internal Edge). As τAB → 0+, P[C0|R1] =
K + O(τAB), P[C0,A|R1C1] = O(τAB), and P[C2|R1] = O(τAB), where K =
P[C0,A|R1] ∈ (0, 1) depends only on τA and ρ, and satisfies limτA→0 K = 1 for
any fixed ρ > 0.

Next we apply Lemma 5 to show that P[E|R1C1]−P[F |R1C1] is small, tending
to zero as τAB → 0+.

Lemma 6. P[E|R1C1] − P[F |R1C1] = O(τAB) as τAB → 0+,

We now come to a key part of the calculation: the event R1C0, depicted
in Fig. 3. The next lemma demonstrates that as long as θ is not too large,
conditional on R1C0, the event F is more likely than E.

Lemma 7. The quantity ᾱ := P[F |R1C0] − P[E|R1C0] depends only on θ and
is positive if θ ∈ (0, 3/4).

Proof Sketch. We sketch the proof idea here. Conditional on R1C0, four distinct
lineages enter population ABC at time troot. Denote these lineages by A1, A2, B,
and C, as shown in Fig. 3. Since no recombination occurs in population ABC, the
order in which the lineages coalesce determines a labeled history (an ultrametric
rooted binary tree with labeled tips and internal nodes rank-ordered according
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Fig. 3. A depiction of the event R1C0. The portion of the ancestral recombination
graph more ancient than troot is not shown.

to age [21]), whose tips are taken to be the lineages A1, A2, B and C at time troot.
There are 18 such labeled histories γ1, . . . , γ18. Since pairs of lineages coalesce
uniformly at random under the coalescent, P[γj |R1C0] = 1

18 for all j, and hence

P[F |R1C0] − P[E|R1C0] =
1
18

18∑

j=1

(P[F |R1C0γj ] − P[E|R1C0γj ]) . (6)

Having conditioned a particular labeled history, the probabilities P[E|R1C0γj ]−
P[F |R1C0γj ] for j = 1, . . . , 18 are computed in a straightforward manner, so
that the right hand side of (6) is positive provided that not too much signal is
lost by a high mutation rate. In particular, since there are two lineages from A
and only one from each of B and C, at least one of the A lineages is more likely
to be included in the final coalescing pair, favoring greater pairwise distances
between A and the other two taxa than those between B and C. �

The next lemma applies Lemmas 5, 6, and 7 to show that P [F |R1] > P[E|R1]
when the internal branch length τAB is small and the mutation rate θ is not too
large.

Lemma 8. If θ ∈ (0, 3/4), then P[E|R1]−P[F |R1] = −ᾱK +O(τAB) as τAB →
0+ (where the term −ᾱK does not depend on τAB).

2.3 Proof of Theorem 1

Proof of Theorem 1. It suffices to prove (5) for some choice of parameters ρ, θ, τA,
and τAB . Let ρ > 0 and θ ∈ (0, 3/4) be arbitrary; we will show that τA, and τAB

can be chosen sufficiently small that (5) holds. Conditioning on the number of
recombination events in population A,

P[F ] − P[E] >

(P[F |R0] − P[E|R0])P[R0] + (P[F |R1] − P[E|R1])P[R1] − P[∪k≥2Rk].
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Therefore by Lemma 4 and the trivial inequality P[R0] ≤ 1,

P[F ] − P[E] > −τAB + (P[F |R1] − P[E|R1])P[R1] − P[∪k≥2Rk].

By Lemma 8, there exists δ > 0 such that P[F |R1] −P[E|R1] > ᾱK/2 whenever
0 < τAB < δ. Assume further that τAB ∈ (0, δ). Then

P[F ] − P[E] > −τAB +
ᾱK

2
P[R1] − P[∪k≥2Rk].

By Lemma 3, there exists constants C,D > 0 not depending on τAB such that
P[R1] ≥ CρτA and P[∪i≥2Ri] ≤ Dρ2τ2

A, so that

P[F ] − P[E] > −τAB +
(

1
2
ᾱKC − DρτA

)
ρτA.

Since K does not depend on τAB and K → 1 as τA → 0 by Lemma 5, there
exists τA > 0 sufficiently small that both K > 1/2 and ε := ᾱC/4 − DρτA > 0.
It follows that P[F ] − P[E] > −τAB + ερτA. Since ε does not depend on τAB , it
follows that P[F ] − P[E] > 0 for τAB sufficiently small. �

3 Simulation Study

We performed a simulation study to characterize the inconsistency zone estab-
lished in Theorem 1. Code and documentation can be found at https://github.
com/max-hill/MSCR-simulator.git. In all simulations, sequence data is gener-
ated according to the MSCR process on an ultrametric species phylogeny S with
three species A, B, C, and rooted topology AB|C. In all cases, k = 500, τA = 1
and θ does not vary among populations. We use the notation p̂XY |Z to denote
the proportion of the m samples from which the rooted triple XY |Z was inferred,
and t̂ to denote the R∗ uniquely favored rooted triple of the m samples. By the
strong law of large numbers, p̂XY |Z serves as an estimate of P[EXY |Z ] for large
m, where EXY |Z is defined as in Lemma 2.

The range of recombination rates considered in these simulations are com-
parable to those in [14], who suggest they encompass biologically plausible
values. As for mutation rates, typical rates in eukaryotes are on the order of
μ = 10−9 to 10−8 per site per generation [11,17] and effective eukaryotic popu-
lation sizes Ne range from 104 to 108 [18], making the values considered here of
θ = 2Neμ ∈ {0.01, 0.1} plausible as well. Computational constraints limited the
ability to consider mutation rates lower than these, as doing so would have neces-
sitated an increase in k or m to compensate; however the analytic results here
predict that the inconsistency zone will persist, and may grow, for smaller values
of θ: the computed difference ᾱ = P[F |R1C0] −P[E|R1C0] actually increases as
θ → 0, suggesting that phylogenetic conflict may be greater under regimes with
smaller mutation rates than those simulated here.

In the first experiment, we simulated the MSCR-JC(k) process under a vari-
ety of parameter regimes in order to characterize the anomaly zone and evaluate

https://github.com/max-hill/MSCR-simulator.git
https://github.com/max-hill/MSCR-simulator.git
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the robustness of triplet-based inference in the presence of intralocus recombina-
tion. In particular m = 105 replicates were generated independently under each
parameter regime, with the aim of estimating how frequently the correct topol-
ogy was inferred. The parameters used were θ = 0.1, τAB ∈ {0.01, 0.02, . . . , 0.15},
ρA ∈ {0, . . . , 20}, and ρX = for all X �= A, so that recombination occurred only
in population A. Figure 4 shows the value of t̂ for each simulated parameter
regime, and Fig. 5 plots the surface z = p̂AB|C − p̂BC|A as a function of ρA and
τAB , so that parameter regimes with negative z values indicates inconsistent
inference.

We also evaluated R∗ inference with rooted triples inferred not by equa-
tion (1), but rather by maximum-likelihood under the (false) assumption of
no intralocus recombination; in this mode, which we call R∗ with maxi-
mum likelihood, binary sequences were simulated and the maximum likeli-
hood rooted triple was computed analytically using the method in [31]. A plot
almost identical to Fig. 4 was obtained. For the very short internal branch length
τAB = 0.01, simulations were run with similar parameters and higher num-
ber of replicates (m = 15, 000), with inference performed using both R∗ with
sequence distances and R∗ with maximum likelihood. Figure 6 plots the differ-
ence y = p̂BC|A − p̂AB|C as a function of ρA obtained from these simulations.

These results show that the combination of intralocus recombination in pop-
ulation A along with a very short internal branch length τAB resulted in the
rooted triple BC|A being more slightly likely to be inferred than the correct
topology AB|C. Figure 6 shows clearly that this effect increases for larger values
of ρA. Nonetheless, as both Figs. 5 and 6 show, the magnitude of this effect is
relatively small: even when p̂BC|A−p̂AB|C is positive, it is never greater than 0.1.
Moreover, as Figs. 4 and 5 show, this effect disappears when τAB is increased

Fig. 4. R∗ inconsistency zone. The
color of each dot represents a simula-
tion of m = 105 replicates.

z

τAB
ρA

Fig. 5. The surface z = p̂AB|C − p̂BC|A
as a function of τAB and ρA.
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(ILS being less likely to occur on longer edges of S). Notably, even for high
rates of recombination, R∗ under both sequence distance mode and maximum
likelihood mode always correctly inferred the topology of S when τAB > 0.1
coalescent units.

In our second experiment, we relaxed the assumption that recombination
occurs only in population A by allowing for recombination in population B as
well. For this simulation, τAB = 0.01 and θ = 0.01, with inference performed
using R∗ with sequence distances. Figure 7 shows the uniquely favored rooted
triple for each choice of ρA and ρB , with each estimate obtained from m =
105 samples. When this experiment was repeated with τAB = 0.1, all but one
parameter regimes resulted in correct inference; the exception was when ρA = 0
and ρB = 20, in which case t̂ = AC|B. These results support the hypothesis
that taxa exhibiting higher rates of recombination relative to other taxa are
more likely to be inferred as more distantly related, but that the effect is small
and manifests only in species triplets with very short internal branches.

Fig. 6. The effect of increasing ρA on inference using R∗ with sequence distances and
maximum likelihood.

The third experiment tested the effect when all populations in S (excluding
the root population ABC) experience recombination at comparable rates. The
simulation parameters were ρ := ρA = ρB = ρC = ρAB ∈ {0, 1, . . . , 20} and
ρABC = 0, along with θ = 0.1, τAB = 0.01, and m = 106, with inference per-
formed using R∗ with sequence distances. The results, shown in Fig. 8, suggest
that when recombination rates are similar on the edges of S, greater recombi-
nation rates does not lead to incorrect inference of rooted triples: in all cases,
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Fig. 7. R∗ inference with recombination in both populations A and B.

Fig. 8. Equal recombination rates in A, B, C and AB.

p̂AB|C > p̂AC|B ∨ p̂BC|A, suggesting consistent inference despite the very short
internal branch length, a result which agrees with the conclusions of [14] that
even high recombination rates are not a significant source of error, at least when
rates are comparable across species. Thus, the existence of differential rates of
recombination between closely related taxa appears to be a necessary condition
for a species tree S to lie in the inconsistency zone.
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4 Discussion

The primary focus of this study is the effect of intralocus recombination on the
inference of rooted triples. In contrast to previous simulation studies [3,14,29],
the current work considers the effect of intralocus recombination on inference
of species phylogenies with recombination rate heterogeneity across taxa. Our
main result is a proof that within the parameter space of species phylogenies
there exists a subset—the inconsistency zone—in which phylogenetic conflict
between the topology of the species phylogeny and the topology of inferred gene
trees is of a sufficient level to render certain majority vote methods statisti-
cally inconsistent. We further quantify and characterize this inconsistency zone
through simulations, showing that it includes biologically plausible recombina-
tion and mutation rates for eukaryotes, and suggesting that it arises on species
phylogenies exhibiting both (1) very short internal branch lengths (less than
0.1 coalescent units) and (2) differential rates of recombination between closely
related taxa. These results highlight a way in which intralocus recombination
can exacerbate ILS and lead to overestimation of the divergence times of those
taxa exhibiting disproportionately high intralocus recombination rates relative
to other taxa.

These findings do not necessarily contradict the conclusions of [14] that the
effect of unrecognized intralocus recombination can be minor. Indeed, our sim-
ulation experiments provide further evidence that inference of rooted triples is
hampered by unrecognized intralocus recombination only in cases where the
internal branch length of the species tree is short, that is in cases where ILS is
already high. The size of the observed effect is also relatively small; even when
the uniquely favored rooted triple does not agree with the species tree, it is
usually only slightly more common than the true rooted triple. Furthermore,
if differential rates of recombination between closely-related taxa are rare, then
summary coalescent-based methods which take no account of intralocus recom-
bination may nonetheless indeed be robust even when recombination rates are
high.

Our results raise a number of questions for future study. Our analysis focused
on a simple idealized case consisting of a rooted ultrametric three-taxa species
phylogeny with mutations modeled by the Jukes-Cantor process. The nature and
significance of the inconsistency zone may be affected by factors such as variable
population sizes as well as elements of mutation and recombination rate hetero-
geneity not considered here. In addition, our theoretical results only consider
distance-based gene tree estimation. Extending these results to likelihood-based
inference would be of interest.
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Abstract. Species tree estimation is frequently based on phylogenomic
approaches that use multiple genes from throughout the genome. How-
ever, for a combination of reasons (ranging from sampling biases to more
biological causes, as in gene birth and loss), gene trees are often incom-
plete, meaning that not all species of interest have a common set of genes.
Incomplete gene trees can potentially impact the accuracy of phyloge-
nomic inference. We, for the first time, introduce the problem of imput-
ing the quartet distribution induced by a set of incomplete gene trees,
which involves adding the missing quartets back to the quartet distribu-
tion. We present QT-GILD, an automated and specially tailored unsuper-
vised deep learning technique, accompanied by cues from natural language
processing (NLP), which learns the quartet distribution in a given set of
incomplete gene trees and generates a complete set of quartets accord-
ingly. QT-GILD is a general-purpose technique needing no explicit mod-
eling of the subject system or reasons for missing data or gene tree hetero-
geneity. Experimental studies on a collection of simulated and empirical
data sets suggest that QT-GILD can effectively impute the quartet distri-
bution, which results in a dramatic improvement in the species tree accu-
racy. Remarkably, QT-GILD not only imputes the missing quartets but
it can also account for gene tree estimation error. Therefore, QT-GILD
advances the state-of-the-art in species tree estimation from gene trees in
the face of missing data. QT-GILD is freely available in open source form
at https://github.com/pythonLoader/QT-GILD.
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1 Introduction

High-throughput DNA sequencing is generating new genome-wide data sets for
phylogenetic analyses, potentially including hundreds or even thousands of loci.
The estimation of species trees from multiple genes is necessary since true gene
trees can differ from each other and from the true species tree due to vari-
ous processes, including gene duplication and loss, horizontal gene transfer, and
incomplete lineage sorting (ILS) [32]. ILS (also known as deep coalescence) is con-
sidered to be a dominant cause for gene tree heterogeneity, which is best under-
stood under the coalescent model [10,12,21,38,39,45,53,54]. In the presence of
gene tree heterogeneity, standard methods for estimating species trees, such as
concatenation (which combines sequence alignments from different loci into a
single “supermatrix”, and then computes a tree on the supermatrix) can be sta-
tistically inconsistent [9,44], and produce incorrect trees with high support [24].
Therefore, summary methods that operate by combining estimated gene trees
and can explicitly take gene tree discordance into account are gaining increas-
ing attention from the systematists, and some of the coalescent based summary
methods are statistically consistent [7,22,23,25,29–31,35,37,56]. Other coales-
cent species tree estimation methods include BEST [28] and *BEAST [19], which
co-estimate gene trees and species tree from input sequence alignments. These
co-estimation methods can produce substantially more accurate trees than other
methods, but are computationally intensive and do not scale up for genome-level
analyses [4,5,26,49].

There has been notable progress in constructing large scale phylogenetic trees
by analyzing genome-wide data, but substantial challenges remain. Assembling a
complete dataset with hundreds of orthologous genes from a large set of species
remains a difficult task which has downstream impact on species tree infer-
ence [20,51,59]. Gene trees can be incomplete due to various reasons ranging
from biological processes as in gene birth and loss [2] to biases in taxon and
gene sampling, stochasticity inherent in collecting data across thousands of loci,
and difficulty in sequencing and assembling the complete set of taxa of inter-
est (see [6,20,27,51] for more elaborate discussion). Incomplete gene trees may
decrease the species tree accuracy [4,40,59] and introduce ambiguity in the tree
search [15,46]. Indeed, as we will show in our experimental results, incomplete
gene trees substantially reduce the accuracy of the best existing coalescent based
summary methods.

We address the problem of missing data in phylogenomic data sets by for-
mulating the Quartet Distribution Imputation (QDI) problem, where we seek
to add the missing quartets to the quartet distribution induced by a given
set of incomplete gene trees. Quartet-based methods have gained substantial
interest as quartets (4-leaf unrooted gene trees) do not contain the “anomaly
zone” [10,11,13], a condition where the most probable gene tree topology may
not be identical to the species tree topology. ASTRAL [35], which is one of
the most accurate and widely used coalescent-based methods, seeks to infer a
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species tree so that the number of induced quartets in the gene trees that are
consistent with the species tree is maximized. Another approach is to infer indi-
vidual quartets (with or without weights), and then amalgamate them into a
single coherent species tree [1,7,33,41,42,48,50,52]. wQFM [33] and wQMC [1]
represent the latter category of quartet-based methods.

Existing methods for adding missing taxa to the gene trees use a “refer-
ence tree” and attempt to add the missing species in such a way that various
distance metrics (e.g., “extra-lineage score”, Robinson-Foulds distance) are opti-
mized with respect to the given reference tree [4,8]. However, obtaining a rea-
sonably accurate reference tree in the presence of missing data is difficult [8],
which subsequently affects the tree completion steps as the reference tree can be
far from the true tree. In this study, we present QT-GILD (Quartet based Gene
tree Imputation using Deep Learning) – a novel deep learning based technique
which learns the quartet distribution induced by the given set of incomplete gene
trees using an especially tailored autoencoder model, and subsequently gener-
ates a complete set of quartets. In doing so, it not only imputes the missing
quartets, but also attempts to correct the quartets present in the given set of
estimated and incomplete gene trees by leveraging the underlying quartet distri-
bution. Therefore, the complete set of quartets generated by QT-GILD is often
closer to the set of quartets present in the true gene trees than to those present
in the estimated gene trees. Thus, QT-GILD obviates the need for a reference
tree as well as accounts for gene tree estimation error. Our experimental results,
on a collection of simulated and real biological data sets covering a wide range of
model conditions, indeed show that amalgamating the imputed set of quartets
generated by QT-GILD can remarkably improve the accuracy of species tree
inference.

2 Quartet Imputation Problem

2.1 Problem Definition

Let G = {g1, g2, . . . , gk} be a set of k gene trees, where each gi is a tree on taxon
set Si ⊆ S (i.e., any gene tree gi can be on the full set S of n taxa or can be
on a subset Si of taxa, making the gene tree incomplete). For a set of four taxa
a, b, c, d ∈ S, the quartet tree ab|cd denotes the unrooted quartet tree in which
the pair a, b is separated from the pair c, d by an edge.

Let Qi be the set of quartets in gi. Therefore, Q = Q1 ∪ Q2 ∪ . . . ∪ Qk is the
multi-set of quartets present in G. Note that there are

(
ni

4

)
quartets in Qi, where

ni = |Si|. When all the trees in G are complete, |Q| = k
(
n
4

)
. Let MT i = S − Si

be the set of missing taxa in gi. Therefore, any quartet q involving any subset
of taxa in MT i is a missing quartet in gi. In the presence of missing taxa in
the gene trees, |Q| < k

(
n
4

)
. We now define the quartet imputation problem as

follows.
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Fig. 1. Overall pipeline of QT-GILD. (a) Generation of Quartet Encoding matrix
QEj for a set of four taxa, qsj . (b) Masking (in this example, taxon c was masked
out from gene tree gi). (c) Generation of masked quartet encoding matrix QEm

j from
the output of masking. (d) Positional encoding PEj generation from indices i, j, p,
which are the index of a gene tree, index of a set of four taxa, and index of a possible
quartet topology, respectively. (e) The reshaped version of the element-wise summation
of QEm

j and PEj (i.e., xr
j ) is passed through the autoencoder and the output is split

and normalized using softmax, generating QEpred
j . (f) Cross-entropy loss J is computed

between QEpred
j and QEj and optimized to update the parameters of the autoencoder

(the backward arrow represents backpropagation through the network).

Problem Quartet Distribution Imputation (QDI)
Input A set G of k gene trees and the multi-set Q = Q1∪Q2∪. . .∪Qk

of quartets induced by G such that |Q| < k
(
n
4

)
.

Output A multi-set Q′
= Q′

1 ∪ Q′
2 ∪ . . . ∪ Q′

k of quartets on S, where
Q′

i is a complete set of quartets on S generated for gi (i.e., for
every set of four taxa in S, there is a quartet topology qi ∈ Q′

i,
and therefore there is no missing quartet in Q′

i).

A natural optimization criteria to solve QDI is to impute the missing quartets
in G in such a way that the total number of consistent quartets in Q′ is maximized
(a set of quartets is consistent if they can co-exist in a single tree). In this study,
we do not approach QDI as a discrete optimization problem; instead, we propose
a machine learning approach to learn the underlying quartet distribution in G
and infer the missing quartets accordingly.

Masking for Self-supervision. We particularly aimed for developing an unsu-
pervised autoencoder based model, but in order to increase the learning capa-
bility of our model in a supervised manner, we make it a self-supervised model
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where a portion of the input is used as a supervisory signal to the autoencoder
fed with the remaining portion of the input. In this context, we leverage a tech-
nique called “masking”, which has been used in several state-of-the-art language
modeling approaches, where we mask out a certain percentage of non-missing
quartets in a quartet encoding matrix QEj , and ask the autoencoder to predict
the masked quartets.

We mask out randomly selected λ|S| (0 ≤ λ < 1) non-missing quartets by
replacing the one-hot encoded quartet vectors corresponding to the randomly
selected non-missing quartets by ( 13 , 1

3 , 1
3 ). In this study, we set λ = 0.1. Thus,

we create a masked quartet encoding matrix QEm
j from the original matrix QEj .

During the training, the autoencoder takes QEm
j as input and tries to predict

the masked quartet vectors. The corresponding cross entropy loss J as the recon-
struction loss (error) of predicting the masked entries with respect to the orig-
inal quartet encoding matrix QEj is computed and used as a feedback. Thus,
the autoencoder is trained iteratively by backpropagating the loss J within a
feedback-loop, transforming a fully unsupervised approach into a self-supervised
autoencoder and thereby helping the model to effectively learn the quartet dis-
tribution.

Positional Encoding. Masked quartet encoding matrices QEm
j , 1 ≤ j ≤

(
n
4

)

defined on
(
n
4

)
subsets of four taxa qs1, qs2, . . . , qs(n4) encode the information

regarding three possible quartets on different four taxa set across all the gene
trees in G. However, QEm

j does not encode any information about qsj , making it
impossible for the autoencoder to identify which set of four taxa is represented
by a particular QEm

j . In order to inject some information about different sets
of four taxa, we incorporate an extra non-learnable signal, positional-encoding
(PE) [57]. PE was originally proposed for NLP by Vaswani et al. [57] and is
widely used to encode positional information of the tokens in sequence data.
Recently, it has also been successfully applied to computational biology [55].
For the j-th four-taxa-set qsj , we generate a k × 3 positional-encoding matrix
PEj ∈ R

k×3 according to Eq. 1.

PEj(i, p) =

{
sin(j/10000i/k), if i is even
cos(j/10000(i−1)/k) if i is odd

(1)

Here, PEj(i, p) represents the positional-encoding of the p-th possible quartet
(1 ≤ p ≤ 3) on qsj for the i-th gene tree gi ∈ G and |G| = k. Note that
this function is constant with respect to p so that we get the same positional-
encoding for three possible quartets on qsj for a particular gene tree gi. The
output of positional encoding PEj is element-wise added with QEm

j , resulting
in new representations Xj ∈ R

k×3 which contain not only the information about
three possible quartets across all the gene trees, but also the information about
different sets of four-taxa qsj , 1 ≤ j ≤

(
n
4

)
(see Eq. 2 and Fig. 1(d)).

Xj = PEj + QEm
j (2)
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Deep Autoencoder. Autoencoder (AE) [17] is a type of artificial neural net-
work that learns to copy its input to its output. The deep autoencoder archi-
tecture consists of two modules – encoder and decoder – stacked one after the
other and built using fully-connected layers (Fig. 1(e)). The output Xj of the
element-wise summation of QEm

j and PEj (as discussed in Sect. 2.1) is reshaped
into a vector xr

j ∈ R
k∗3, which is used as the input of the encoder module.

By using subsequent LE fully-connected layers, the dimension of xr
j is reduced

and a condensed latent representation hj is generated, which is subsequently
used as the input of the decoder module. In the decoder, the dimension of hj

is expanded by LD fully-connected layers (here, LE and LD are two hyperpa-
rameters). The output of the LD-th layer is divided into k equal segments of
length 3 and softmax normalization is applied on each of them. Here, softmax
on the i-th segment generates the predicted quartet-vector q̂i,j , which is the esti-
mated probability distribution over the possible quartets on qsj for the gene-tree
gi. Thus, ∀gi ∈ G, we get QEpred

j = [q̂1,j , q̂2,j , . . . , q̂k,j ], which is the predicted
quartet-encoding matrix corresponding to qsj .

Overall Pipeline of QT-GILD. Figure 1 shows the overall end-to-end pipeline
of QT-GILD comprising the individual components described in Sections 2.2–2.5.
For each set of four taxa qsj , we first create a quartet encoding matrix QEj , which
is subsequently masked to produce QEm

j . Next, these masked encoding matrices
are added to positional encoding matrices and reshaped to generate the input xr

i

of the autoencoder. The autoencoder network produces the predicted quartet-
encoding matrix QEpred

j . During the training phase, considering QEpred
j as the

prediction and QEj as the ground truth, we compute the cross-entropy loss J as
the reconstruction loss for the non-missing quartets, i.e., for the quartet-vectors
{qi,j | qi,j ∈ QEj and qi,j �= (13 , 1

3 , 1
3 )}. The autoencoder is trained by backpropa-

gating this loss in a self-supervised fashion (see Fig. 1(f) and Sect. 2.1). This train-
ing with backpropagation is run for a predefined number of epochs. Finally, it is run
once without the loss function to produce the final encoding matrix QEpred

j . Next,
we generate the set of imputed quartets Q′

i – representing the quartets in the i-th
gene-tree gi – where the j-th quartet Q′

i(j) is computed according to Eq. 3. This
imputed set of quartets is subsequently used by quartet amalgamation techniques,
such as wQFM and wQMC.

Q′
i(j) =

{
quartet corresponding to Argmax(QE i(j)), if QE i(j) �= (13 , 1

3 , 1
3 )

quartet corresponding to Argmax(QEpred
i (j)), otherwise

(3)

3 Experimental Study

3.1 Datasets

We used previously studied simulated and biological datasets to evaluate the
performance of QT-GILD. We studied three collections of simulated datasets:
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one based on a biological dataset (37-taxon mammalian dataset) and a 15-taxon
dataset that were generated in some prior studies [3,34]. These datasets con-
sist of gene sequence alignments generated under a multi-stage simulation pro-
cess that begins with a species tree, simulates gene trees down the species tree
under the multi-species coalescent model (and so can differ topologically from
the species tree), and then simulates gene sequence alignments down the gene
trees. These datasets vary from moderately low to extremely high levels of ILS,
and also vary in terms of number of genes and gene-tree estimation errors (con-
trolled by sequence lengths). Thus, the simulated datasets provide a range of
conditions in which we explored the performance of QT-GILD and investigate
the impact of quartet distribution imputation in species tree inference. Table S1
in the Supplementary Material (available at https://doi.org/10.1101/2021.11.03.
467204) presents a summary of these datasets. We also evaluated QT-GILD on
a challenging biological dataset comprising 42 angiosperms from Xi et al. [60].

3.2 Generating Incomplete Gene Trees

We deleted taxa randomly, varying the number of taxa removed from each gene
tree, thus producing incomplete gene trees. Instead of a fixed number of taxa,
we removed different ranges of taxa. For a particular gene tree gi in the input
set G of gene trees and for a particular range x–y of missing taxa, we randomly
select an integer mt ∈ [x, y], and randomly select and delete mt taxa from gi. For
example, for a range of 3–4 missing taxa, we remove 3 or 4 (selected randomly)
from the gene trees in G. We varied the number of missing taxa (2–40%) for
different datasets – creating model conditions with 13%-80% missing quartets.
In all the datasets analyzed in this study, this random taxa deletion protocol did
not remove any particular taxa from all the gene trees, i.e., each taxa remained
present in at least one incomplete gene tree.

3.3 Species Tree Estimation Methods

We used wQFM [33], a highly accurate weighted quartet amalgamation tech-
nique, to estimate species trees from weighted quartets. We also used wQMC,
which is another well known weighted quartet amalgamation technique, in order
to show the usability of the imputed quartets generated by QT-GILD across
various quartet amalgamation techniques as well as to show that the improve-
ments in species tree inference resulting from amalgamating imputed quartets is
not due to wQFM, rather mostly due to the effective imputation of the quartet
distribution by QT-GILD. We ran wQFM and wQMC using the embedded quar-
tets in the gene trees with weights reflecting the frequencies of the quartets (i.e.,
number of gene trees that induce a particular quartet). We compared wQFM
with ASTRAL-III [35,61] (version 5.7.3), which is one of the most accurate and
widely used quartet amalgamation techniques. These methods were evaluated on
both complete and incomplete gene trees, showing the impact of missing data.
wQFM and and wQMC were also run on imputed set of quartets, generated

https://doi.org/10.1101/2021.11.03.467204
https://doi.org/10.1101/2021.11.03.467204
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by QT-GILD, to demonstrate the impact of quartet imputation on species tree
estimation. Therefore, we evaluated the following variants of different methods.

– ASTRAL-complete: ASTRAL, when run on a given set of complete gene trees.
– ASTRAL-incomplete: ASTRAL, run on a given set of incomplete gene trees.
– wQFM-complete: wQFM, run on the set of weighted quartets induced by a

given set of complete gene trees.
– wQFM-incomplete: wQFM, run on the set of weighted quartets induced by a

given set of incomplete gene trees.
– wQFM-imputed : wQFM, run on the imputed set of weighted quartets gener-

ated by QT-GILD from a given set of incomplete gene trees.
– wQMC-complete, wQMC-incomplete and wQMC-imputed: defined similarly

as wQFM-complete, wQFM-incomplete and wQFM-imputed.

Note that ASTRAL cannot take a set of quartets as input and as such we
cannot evaluate ASTRAL on imputed quartet distributions. For brevity, we
denote by complete quartet distributions and incomplete quartet distributions
the weighted quartet distributions induced by complete and incomplete esti-
mated gene trees, respectively. Because wQFM generally produces better trees
than wQMC [33] and to keep the figures and relevant discussion readable and
easy to follow, the results for ASTRAL and wQFM are presented here, while the
results for wQMC are presented in the Supplementary Material of the preprint
version of the paper available at https://doi.org/10.1101/2021.11.03.467204.

3.4 Measurements

We compared the estimated trees (on simulated datasets) with the model species
tree using normalized Robinson-Foulds (RF) distance [43] to measure the tree
error. The RF distance between two trees is the sum of the bipartitions (splits)
induced by one tree but not by the other, and vice versa. We also compared
the quartet scores (the number of quartets in the gene trees that agree with a
species tree) of the trees estimated by different methods. All the trees estimated
in this study are binary and so False Positive (FP), and False Negative (FN) and
RF rates are identical. For the biological dataset, we compared the estimated
species trees to the scientific literature. We analyzed multiple replicates of data
for various model conditions and performed two-sided Wilcoxon signed-rank test
(with α = 0.05) to measure the statistical significance of the differences between
two methods. We assessed the quality of the quartet distributions, induced by
complete, incomplete, and imputed gene tree distributions, by comparing them
with the true quartet distribution (i.e., the quartets induced by true gene trees).

4 Results and Discussion

4.1 Results on 15-Taxon Dataset

The average RF rates of different variants of ASTRAL and wQFM on various
model conditions in 15-taxon dataset are shown in Fig. 2. We have investigated

https://doi.org/10.1101/2021.11.03.467204
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the performance on varying gene tree estimation errors using 100bp and 1000bp
sequence lengths and on varying numbers of genes (100 and 1000). In general,
wQFM is more accurate than ASTRAL both on complete and incomplete gene
trees. For all levels of missing data, certain trends were clearly seen. As expected,
tree accuracy of ASTRAL and wQFM deteriorated in the presence of missing
taxa, and the RF rates increased with increasing levels of missing data. How-
ever, tree accuracy of ASTRAL is more impacted by increasing levels of miss-
ing data than that of wQFM as wQFM-incomplete was notably better than
ASTRAL-incomplete on most of the model conditions (especially, see the results
on 100gene-1000bp and 1000gene-100bp model conditions) and in many cases,
the differences are statistically significant (p � 0.05). ASTRAL and wQFM
improves in accuracy as the number of genes increased (from 100 to 1000) and
often achieved competitive tree accuracy (compared to the accuracy of the trees
estimated on complete gene trees) even when the amount of missing data was
large. This is mostly due to the fact that a large number of gene trees provide
more unique bipartitions (and hence more quartets) than a relatively smaller
number of genes. Similar trends were observed in case of wQMC (see Sect. 5 in
Supplementary Material). wQMC is, in general, less accurate than wQFM both
on complete and incomplete gene trees. Notably, WQMC-incomplete is slightly
better than ASTRAL-incomplete in some model conditions (e.g., 100gene–100bp
and 1000gene–100bp model conditions with 4–5 and 5–6 missing taxa in Sup-
plementary Fig. S3).

The most important and interesting results were observed on imputed
sets of quartets. wQFM-imputed substantially outperformed not only wQFM-
incomplete and ASTRAL-incomplete but also wQFM-complete and ASTRAL-
complete, showing the efficacy of QT-GILD in imputing quartet distributions.
The improvements are remarkable as in most of the model conditions, wQFM-
imputed returned the true species tree (RF-rate = 0), whereas ASTRAL-
incomplete and wQFM-incomplete incurred as high as ∼45% errors (note the
higher taxa removal rates on 100gene-100bp model condition). This dramatic
improvement was also observed in case of wQMC-imputed. Even though wQMC-
imputed is not as good as wQFM-imputed trees in some cases (see 100gene
and 1000gene-1000bp model conditions with smaller numbers of missing taxa
in Fig. S3 in the Supplementary Material), wQMC-imputed trees returned the
true species trees in most of the cases and consistently outperformed ASTRAL-
incomplete as well as ASTRAL-complete. Note that, even with a reasonably well
imputed set of quartets, the expected trend is for the accuracy of the tree esti-
mated on an imputed set of quartets to be higher than that of the tree estimated
on the corresponding incomplete quartet distribution but lower than or as good
as the tree accuracy obtained on the complete quartet distribution. But, sur-
prisingly, wQFM-imputed and wQMC-imputed improves upon wQFM-complete
and wQMC-complete (as well as ASTRAL-complete) on this particular dataset.
These results suggest, and as we will show in the following, that the imputed
quartet distributions are closer to true quartet distributions (i.e., the quartet dis-
tribution induced by true gene trees) than the complete and incomplete quartet
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distributions are to true distributions. Note that, on the 100gene–100bp model
condition, the RF rates of the trees estimated on imputed quartets with 1-2
missing taxa were higher than those with larger amounts of missing data. We
believe this is because there are only 18272.8 missing quartets with 1-2 missing
taxa, and thus QT-GILD could not account for gene tree estimation error (while
imputing the missing quartets) as much as it did in other model conditions with
larger numbers of missing quartets.

(a) (b)
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Fig. 2. Results on 15-taxon dataset. (a) Comparison of different variants of
ASTRAL and wQFM on 15-taxon dataset. We show the average RF rates with stan-
dard errors over 10 replicates. For each model condition, we varied the taxa removal
rate from ∼6% to ∼40%, resulting in 13–80% missing quartets. (b) Average numbers
of dominant quartets (out of

(
15
4

)
) in different quartets distributions that differ from

the true dominant quartets.

We performed a series of experiments to show the impact and quality of the
quartet distributions produced by QT-GILD. First, we measure the divergence
between true quartet distributions and different sets of quartet distributions in
estimated gene trees (e.g., complete, incomplete and imputed) in terms of the
number of “dominant” quartets that differ between two quartet distributions.
For a set of four taxa a, b, c, d, the dominant quartet (out of three possible quar-
tets ab|cd, ac|bd, and bc|ad) is defined to be the quartet with the highest weight
(i.e., the most frequent quartet topology). A dominant quartet topology is the
statistically consistent estimate for the true evolutionary history among a group
of four taxa since there are no anomalous 4-leaf unrooted gene trees [11,13].
For a set of n taxa, there are

(
n
4

)
different four-taxa sets, and thus

(
n
4

)
domi-

nant quartets. In Fig. 2(b), we show the numbers of dominant quartets (out of(
15
4

)
) in complete, incomplete and imputed set of quartets that differ from the

dominant quartets in true gene trees. Incomplete quartet distributions had the



QT-GILD: Quartet Based Gene Tree Imputation 169

highest numbers of mismatches, followed by complete quartet distribution and
the imputed sets of quartets incurred the lowest amount of mismatch (in most
cases, the numbers of mismatches are ∼0), explaining why the RF rates of the
trees estimated from imputed quartets are ∼0. The numbers of mismatches in
incomplete quartet distributions increased as we increase the amount of missing
data. In contrast, the numbers of mismatch in imputed quartet distributions
decreased with increasing amounts of missing data (especially on model condi-
tions with higher amounts of gene tree estimation error, i.e., the 100-bp model
condition). This is because, in the presence of higher numbers of missing quar-
tets, QT-GILD had the opportunity to impute more quartets and in doing so
it accounted for larger amounts of gene tree estimation error. This explains the
seemingly counter-intuitive trend that RF rates of wQFM-imputed decreased
with increasing amounts of missing data. Next, we measured the divergence
between the quartet distribution of estimated gene trees and the quartet distri-
bution of true gene trees using Jensen-Shannon divergence [16]. We represent
the gene tree distribution by the frequency of each of the three possible alter-
native topologies for all the

(
n
4

)
quartets of taxa. Jensen-Shannon divergence of

complete, incomplete and imputed quartet distributions from true quartet dis-
tributions are shown in Fig. S2 in Supplementary Material. The fact that the
difference (both in terms of numbers of mismatch in dominant quartet topologies
and Jensen-Shannon distance) between true and complete quartet distributions
is higher than the difference between true and imputed quartet distributions sug-
gests that QT-GILD not only imputes the missing quartets, but also accounts
for gene tree estimation error. Next, in order to show the efficacy of QT-GILD
in imputing missing quartets, we report the proportion of missing quartets that
were correctly imputed, with respect to both estimated and true gene trees, by
QT-GILD (see Table S2 in the Supplementary Material). QT-GILD was able to
correctly impute around 51–58% and 51–63% of missing quartets with respect
to estimated and true gene trees, respectively.

Finally, we computed the quartet scores of different species trees estimated by
different methods with respect to both estimated and true gene trees (see Sup-
plementary Tables S3 and S4). Interestingly, on estimated gene trees, although
ASTRAL obtained higher quartet scores than wQFM-incomplete, and wQFM-
imputed in most of the model conditions, the scores of wQFM-incomplete and
wQFM-imputed are closer to the true quartet score than the scores of ASTRAL-
estimated trees are to the true score. This is mostly a result of the presence of
gene tree estimation error. The statistical consistency of estimating species trees
by maximizing the quartet score criterion holds when we have a sufficiently large
number of true gene trees (with no estimation error). Unfortunately, in practice,
the number of genes is limited and the estimated gene trees are not error-free.
Therefore, the optimal tree with respect to the quartet score may not be the
true species tree. As such, quartet-based methods may “overshoot” the quar-
tet score as they return trees with higher quartet scores than the true quartet
score, especially when we have a limited number of estimated gene trees (with
estimation error) [15]. The improved performance of wQFM and the efficacy
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Fig. 3. Results on 37-taxon dataset. (a)–(b) We show the average RF rates with stan-
dard errors over 20 replicates. (a) The level of ILS was varied from 0.5X (highest) to
2X (lowest) amount, keeping the sequence length fixed at 500 bp and the number of
genes at 200. (b) The sequence length was varied from 250 bp to 1500 bp, keeping the
number of genes fixed at 200, and ILS at 1X (moderate ILS). We also analyzed the
true gene trees. (c)–(d) Jansen-Shannon divergence between true quartet distributions
and complete, incomplete and imputed quartet distributions.

of QT-GILD as an imputation method are even more evident from the quar-
tet scores when they are computed with respect to the true gene trees (i.e., no
estimation error). Across all the model conditions, wQFM-imputed obtained the
highest quartet scores (w.r.t true gene trees), followed by wQFM-complete and
ASTRAL-complete (Table S4 in Supplementary Material). The lowest scores
were obtained when the gene trees are incomplete. Notably, wQFM-incomplete
consistently achieved higher quartet scores than ASTRAL-incomplete. Note that
the quartet consistency score is a statistical consistent measure meaning that the
higher the quartet scores, the more accurate the species trees will be (given a
sufficiently large number of true gene trees). Therefore, these quartet scores with
respect to true gene trees support the trends observed in RF rates (see Fig. 2).

4.2 Results on 37-Taxon Mammalian Simulated Dataset

In the simulated mammalian data, we explored the impact of varying num-
bers of genes (25–800), varying amounts of gene tree estimation error (i.e., the
amount of phylogenetic signal by varying the sequence length for the markers:
250 bp–1500 bp). We also investigated three levels of ILS (shorter branches
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increases ILS) by multiplying or dividing all internal branch lengths in the model
species tree by two – producing three model conditions that are referred to as
1X (moderate ILS), 0.5X (high ILS) and 2X (low ILS). For each model condi-
tion, we varied the taxa removal rate from ∼2% to ∼10%, resulting in 6–25%
missing quartets. Because the number of quartets grows exponentially with the
number of taxa, even with 25% missing quartets, the 37-taxon dataset contained
a substantial number (∼7,00,000–∼33,00,000) of missing quartets.

Figure 3(a) shows the RF rates of various methods on varying ILS levels
(0.5X, 1X, 2X) with 200 genes and a fixed sequence length (500 bp). As expected,
species tree error rates of various methods increased as ILS level increased.
Similar to 15-taxon dataset, wQFM is better than ASTRAL (both on com-
plete and incomplete datasets), and wQFM-imputed is consistently better than
wQFM-incomplete. Remarkably, for moderate (1X) to low ILS (2X) datasets,
wQFM-imputed is substantially better than ASTRAL-complete and wQFM-
complete (except for 3-4 taxa removal rate on 2X model condition). On the
high-ILS dataset (0.5X), wQFM-imputed is better than wQFM-incomplete and
ASTRAL-incomplete. Moreover, for small amount of missing taxa (1-2), wQFM-
imputed is even better than ASTRAL-complete and wQFM-complete. In some
cases with small numbers of missing taxa, wQFM-incomplete is better than
wQFM-complete (albeit the differences are small and not statistically signifi-
cant). The improved performance resulting from the imputed set of quartets
was also observed for wQMC. wQMC-imputed was as good as or better than
wQMC-incomplete (see Fig. S4 in the Supplementary Material).

RF rates on varying gene tree estimation error (controlled by sequence length;
500–1500 bp) are shown in Figs. 3(b). All methods showed improved accuracy
with increasing sequence lengths, and best results were obtained on true gene
trees. These results clearly show that wQFM-imputed is better than wQFM-
incomplete and ASTRAL-complete and, in many cases, it is even better than
wQFM-complete and ASTRAL-complete. Similar to 15-taxon dataset, we inves-
tigated the divergence of various quartet distributions from true quartet distri-
butions (see Fig. 3(c)–(d)) and the quartet scores of different estimated species
trees with respect to both estimated and true gene trees (see Sect. 4.2 in Sup-
plementary Material) and observed similar trends, supporting our claim that
QT-GILD effectively imputes missing data and accounts for gene tree estima-
tion error while imputing the missing quartets.

4.3 Results on Biological Dataset

Angiosperm Dataset. We re-analyzed the angriosperm (the most diverse plant
clade) dataset from [60] containing 310 genes sampled from 42 angiosperms and
4 outgroups (three gymnosperms and one lycophyte). The goal is to resolve the
position of Amborella trichopoda Baill. This dataset has a high level of missing
data containing gene trees with as low as 16 taxa. On average, there are 12.9
missing taxa in the gene trees, resulting in a large number (30, 129, 163) of miss-
ing quartets. These missing quartets were imputed by QT-GILD. We estimated
trees using ASTRAL and wQFM (with and without imputation). These three
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Fig. 4. Analyses of the angiosperm dataset using ASTRAL and wQFM (with
and without imputation). Branch supports (BS) represent quartet based local pos-
terior probability [47] (multiplied by 100). All BS values are 100% except where noted.

trees (Fig. 4) are highly congruent and placed Amborella as sister to water lilies
(i.e., Nymphaeales) and rest of the angiosperms with high support. This relation-
ship is consistent to the tree estimated by concatenation using maximum like-
lihood (reported in [60] as well as other molecular studies [33,36,58,62]). How-
ever, alternative relationship (e.g., the placement of Amborella plus water lilies
as sister to all other angiosperms) have also been reported [14,18,60]. wQFM-
incomplete and wQFM-imputed recovered highly similar trees, differing only on
a few branches with low support (e.g., the relative position of Fabales (Glycine,
Medicago) and Fagales (Betula, Quercus) and the relationships within the clade
containing Musa, Phoenix, Oryza, and Sorghum). The fact that there were a
large proportion (71.33%) of missing quartets and QT-GILD imputes them by
leveraging remaining 28.66% quartets, and yet the imputed distribution resulted
in a meaningful angiosperm tree shows the efficacy of QT-GILD.

4.4 Running Time

The running time of QT-GILD mostly depends on the number of taxa, number of
genes and the predefined number of epochs. We ran QT-GILD for 2000 epochs
in our study. All analyses were run on the same machine with Intel Core i7-
10700K CPU (16 cores), 64GB RAM, NVIDIA GeForce RTX 3070 GPU (8GB
memory). For a single epoch, it takes 25 × 10−3 − 800 × 10−3 s on the 15-taxon
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dataset with varying numbers of genes. For 37-taxon datasets, it takes 1–6 s and,
on the 46-taxon angiosperm dataset with 310 genes, QT-GILD takes 10–11 s to
run (see Table S9 in Supplementary Material). The running time of QT-GILD is
more sensitive to the number of taxa, as the size of quartet distributions grows
exponentially with the number of taxa.

5 Conclusions

This study introduces the quartet distribution imputation problem and shows
the power and feasibility of applying deep learning techniques for imputing quar-
tet distributions. Our proposed QT-GILD not only imputes the missing quartets
but it can also “correct” the estimated quartets – resulting in a set of quartets
that is often closer to the quartet distribution of true gene trees than that of
the estimated gene trees, and thereby accounting for gene tree estimation error.
Experimental studies using both simulated and real biological dataset suggest
that QT-GILD may result in dramatic improvements in species tree accuracy.
Therefore, the idea of estimating species trees by imputing quartet distributions
has merit and should be pursued and used in future phylogenomic studies. As
an immediate extension of the current study we plan to evaluate QT-GILD on a
diverse set of real biological datasets as the pattern of missing data is sufficiently
complex and heterogeneous across various datasets. Automatic selection of vari-
ous hyper parameters of this architecture is another important research avenue.
Because QT-GILD tries to learn the overall quartet distribution guided by a self-
supervised feedback loop and correct for gene tree estimation error, investigating
its application beyond imputing incomplete gene trees where the goal would be
to improve estimated gene tree distributions is another interesting direction to
take. In this regard, we can mask a reasonably large number of quartets in the
estimated complete quartet distribution and then impute them with QT-GILD,
utilizing its error correcting utility. QT-GILD is currently not scalable to large
datasets (both in terms of the number of taxa and genes), therefore this study
was limited to small to moderate size datasets. Future study needs to develop a
scalable variant of QT-GILD and assess its performance on large datasets.
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26. Leaché, A.D., Rannala, B.: The accuracy of species tree estimation under simula-
tion: a comparison of methods. Syst. Biol. 60(2), 126–137 (2011)

http://view.ncbi.nlm.nih.gov/pubmed/15792224
https://doi.org/10.1093/sysbio/syab026
https://doi.org/10.1093/sysbio/syab026
https://doi.org/10.1093/sysbio/syab026


QT-GILD: Quartet Based Gene Tree Imputation 175

27. Lemmon, A.R., Brown, J.M., Stanger-Hall, K., Lemmon, E.M.: The effect of
ambiguous data on phylogenetic estimates obtained by maximum likelihood and
bayesian inference. Syst. Biol. 58(1), 130–145 (2009)

28. Liu, L.: BEST: Bayesian estimation of species trees under the coalescent model.
Bioinformatics 24, 2542–2543 (2008)

29. Liu, L., Yu, L.: Estimating species trees from unrooted gene trees. Syst. Biol. 60(5),
661–667 (2011). https://doi.org/10.1093/sysbio/syr027

30. Liu, L., Yu, L., Edwards, S.V.: A maximum pseudo-likelihood approach for esti-
mating species trees under the coalescent model. BMC Evol. Biol. 10, 302 (2010)

31. Liu, L., Yu, L., Pearl, D.K., Edwards, S.V.: Estimating species phylogenies using
coalescence times among sequences. Syst. Biol. 58(5), 468–477 (2009)

32. Maddison, W.P.: Gene trees in species trees. Syst. Biol. 46, 523–536 (1997)
33. Mahbub, M., Wahab, Z., Reaz, R., Rahman, M.S., Bayzid, M.S.: wQFM: highly

accurate genome-scale species tree estimation from weighted quartets. Bioinfor-
matics 37(21), 3734–3743 (2021)

34. Mirarab, S., Bayzid, M.S., Boussau, B., Warnow, T.: Statistical binning enables an
accurate coalescent-based estimation of the avian tree. Science 346(6215), 1250463
(2014)

35. Mirarab, S., Reaz, R., Bayzid, M.S., Zimmermann, T., Swenson, M.S., Warnow, T.:
ASTRAL: genome-scale coalescent-based species tree estimation. Bioinformatics
30(17), i541–i548 (2014)

36. Mirarab, S., Warnow, T.: Astral-ii: coalescent-based species tree estimation with
many hundreds of taxa and thousands of genes. Bioinformatics 31(12), i44–i52
(2015)

37. Mossel, E., Roch, S.: Incomplete lineage sorting: consistent phylogeny estimation
from multiple loci. IEEE/ACM Trans. Comput. Biol. Bioinf. 7(1), 166–171 (2011)

38. Nei, M.: Stochastic errors in DNA evolution and molecular phylogeny. In: Ger-
showitz, H., Rucknagel, D.L., Tashian, R.E. (eds.) Evolutionary Perspectives and
the New Genetics, pp. 133–147 (1986)

39. Nei, M.: Molecular evolutionary genetics. Columbia University Press, New York
(1987)

40. Nute, M., Chou, J., Molloy, E.K., Warnow, T.: The performance of coalescent-
based species tree estimation methods under models of missing data. BMC Genom.
19(5), 1–22 (2018)

41. Ranwez, V., Gascuel, O.: Quartet-based phylogenetic inference: improvements and
limits. Mol. Biol. Evol. 18(6), 1103–1116 (2001)

42. Reaz, R., Bayzid, M.S., Rahman, M.S.: Accurate phylogenetic tree reconstruction
from quartets: a heuristic approach. PLoS ONE 9(8), e104008 (2014)

43. Robinson, D., Foulds, L.: Comparison of phylogenetic trees. Math. Biosci. 53, 131–
147 (1981)

44. Roch, S., Steel, M.: Likelihood-based tree reconstruction on a concatenation of
aligned sequence data sets can be statistically inconsistent. Theor. Popul. Biol.
100, 56–62 (2015)

45. Rosenberg, N.: The probability of topological concordance of gene trees and species
trees. Theor. Popul. Biol. 61(2), 225–247 (2002)

46. Sanderson, M.J., McMahon, M.M., Steel, M.: Terraces in phylogenetic tree space.
Science 333(6041), 448–450 (2011)

47. Sayyari, E., Mirarab, S.: Fast coalescent-based computation of local branch support
from quartet frequencies. Mol. Biol. Evol. 33(7), 1654–1668 (2016)

https://doi.org/10.1093/sysbio/syr027


176 S. Mahbub et al.

48. Schmidt, H.A., Strimmer, K., Vingron, M., von Haeseler, A.: Tree-puzzle: maxi-
mum likelihood phylogenetic analysis using quartets and parallel computing. Bioin-
formatics 18(3), 502–504 (2002)

49. Smith, B.T., Harvey, M.G., Faircloth, B.C., Glenn, T.C., Brumfield, R.T.: Target
capture and massively parallel sequencing of ultraconserved elements for compar-
ative studies at shallow evolutionary time scales. Syst. Biol. 63(1), 83–95 (2013)

50. Snir, S., Rao, S.: Quartets MaxCut: a divide and conquer quartets algorithm.
IEEE/ACM Trans. Comput. Biol. Bioinf. 7(4), 704–718 (2010)

51. Streicher, J.W., Schulte, J.A., Wiens, J.J.: How should genes and taxa be sam-
pled for phylogenomic analyses with missing data? an empirical study in iguanian
lizards. Syst. Biol. 65(1), 128–145 (2016)

52. Strimmer, K., von Haeseler, A.: Quartet puzzling: a quartet maximim-likelihood
method for reconstructing tree topologies. Mol. Biol. Evol. 13(7), 964–969, e104008
(1996)

53. Tajima, F.: Evolutionary relationship of DNA sequences in finite populations.
Genetics 105(2), 437–460 (1983). http://www.genetics.org/cgi/content/abstract/
105/2/437

54. Takahata, N.: Gene geneaology in three related populations: consistency probabil-
ity between gene and population trees. Genetics 122, 957–966 (1989)

55. Uddin, M.R., Mahbub, S., Rahman, M.S., Bayzid, M.S.: SAINT: self-attention
augmented inception-inside-inception network improves protein secondary struc-
ture prediction. Bioinformatics 36(17), 4599–4608 (2020)

56. Vachaspati, P., Warnow, T.: Astrid: accurate species trees from internode distances.
BMC Genom. 16(10), S3, e104008 (2015)

57. Vaswani, A., et al.: Attention is all you need. In: NIPS (2017)
58. Wickett, N.J., et al.: Phylotranscriptomic analysis of the origin and early diversi-

fication of land plants. Proc. Natl. Acad. Sci. 111(45), E4859–E4868 (2014)
59. Xi, Z., Liu, L., Davis, C.C.: The impact of missing data on species tree estimation.

Mol. Biol. Evol. 33(3), 838–860 (2016)
60. Xi, Z., Liu, L., Rest, J.S., Davis, C.C.: Coalescent versus concatenation methods

and the placement of amborella as sister to water lilies. Syst. Biol. 63(6), 919–932
(2014)

61. Zhang, C., Rabiee, M., Sayyari, E., Mirarab, S.: Astral-iii: polynomial time species
tree reconstruction from partially resolved gene trees. BMC Bioinf. 19(6), 153,
e104008 (2018)

62. Zhang, N., Zeng, L., Shan, H., Ma, H.: Highly conserved low-copy nuclear genes as
effective markers for phylogenetic analyses in angiosperms. New Phytol. 195(4),
923–937 (2012)

http://www.genetics.org/cgi/content/abstract/105/2/437
http://www.genetics.org/cgi/content/abstract/105/2/437


Safety and Completeness in Flow
Decompositions for RNA Assembly

Shahbaz Khan1,2(B) , Milla Kortelainen2 , Manuel Cáceres2 ,
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Abstract. Flow decomposition has numerous applications, ranging
from networking to bioinformatics. Some applications require any valid
decomposition that optimizes some property as number of paths, robust-
ness, or path lengths. Many bioinformatic applications require the spe-
cific decomposition which relates to the underlying data that generated
the flow. Thus, no optimization criteria guarantees to identify the cor-
rect decomposition for real inputs. We propose to instead report the safe
paths, which are subpaths of at least one path in every flow decomposi-
tion.

Ma et al. [WABI 2020] addressed the existence of multiple optimal
solutions in a probabilistic framework, which is referred to as non-
identifiability. Later, they gave a quadratic-time algorithm [RECOMB
2021] based on a global criterion for solving a problem called AND-Quant,
which generalizes the problem of reporting whether a given path is safe.

We present the first local characterization of safe paths for flow decom-
positions in directed acyclic graphs, giving a practical algorithm for
finding the complete set of safe paths. We also evaluated our algorithm
against the trivial safe algorithms (unitigs, extended unitigs) and a pop-
ular heuristic (greedy-width) for flow decomposition on RNA transcripts
datasets. Despite maintaining perfect precision our algorithm reports
≈50% higher coverage over trivial safe algorithms. Though greedy-width
reports better coverage, it has significantly lower precision on complex
graphs. On a unified metric (F-Score) of coverage and precision, our algo-
rithm outperforms greedy-width by ≈20%, when the evaluated dataset
has significant number of complex graphs. Also, it has superior time
(3–5×) and space efficiency (1.2–2.2×), resulting in a better and more
practical approach for bioinformatics applications of flow decomposition.
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1 Introduction

Network flows are a central topic in computer science, that define problems with
countless practical applications. Assuming that the flow network has a unique
source s and a unique sink t, every flow can be decomposed into a collection of
weighted s-t paths and cycles [11]; for directed acyclic graphs (DAGs), such a
decomposition contains only paths. Such a path (and cycle) view of a flow is used
to optimally route information or goods from s to t, where flow decomposition is
a key step in problems such as network routing [13] and transportation [26]. Find-
ing the decomposition with the minimum number of paths and possibly cycles (or
minimum flow decomposition) is NP-hard, even for a DAG [37]. On the theoreti-
cal side, this hardness result led to research on approximation algorithms [13,30],
and FPT algorithms [17,34]. On the practical side, many approaches employ a
standard greedy-width heuristic [37], of repeatedly removing an s-t path carrying
the most flow. Another pseudo-polynomial-time heuristic called Catfish [32] tries
to iteratively simplify the graph so that smaller decompositions can be found.

However, for a flow network built by superimposing a set of weighted paths,
and one may seek the decomposition corresponding to that set of weighted paths.
Such a decomposition is used by the more recent and prominent application of
reconstructing biological sequences (RNA transcripts [34,35,40] or viral quasi-
species genomes [4,5]). Each flow path represents a reconstructed sequence, and
so a different set of flow paths encodes a different set of biological sequences,
which may differ from the real ones. If there are multiple optimal solutions,
then the reconstructed sequences may not match the original ones, and thus be
incorrect. While many popular multiassembly tools use minimum flow decom-
positions, Williams et al. [41] reported that in an error-free transcript dataset
20% of human genes admit multiple minimum flow decomposition solutions.

1.1 Safety Framework for Addressing Multiple Solutions

Motivated by such an RNA assembly application, Ma et al. [20] were the first to
address the issue of multiple solutions to the flow decomposition problem under a
probabilistic framework. Later, they [21] solve a problem (AND-Quant), which,
in particular, leads to a quadratic-time algorithm for the following problem: given
a flow in a DAG, and edges e1, e2, . . . , ek, decide if in every flow decomposition
there is always a decomposed flow path passing through all of e1, e2, . . . , ek. Thus,
by taking the edges e1, e2, . . . , ek to be a path P , the AND-Quant problem can
decide if P (i.e., a given biological sequence) appears in all flow decompositions.
This indicates that P is likely part of some original RNA transcript.

We build upon the AND-Quant problem, by addressing the flow decom-
position problem under the safety framework [36], first introduced for genome
assembly. For a problem admitting multiple solutions, a partial solution is said
to be safe if it appears in all solutions to the problem. For example, a path P
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is safe for the flow decomposition problem, if for every flow decomposition into
paths P, it holds that P is a subpath of some path in P. Further, P is called
w-safe if in every flow decomposition, P is a subpath of some weighted path(s) in
P whose total weight is at least w. Bioinformatics applications [17,32,35] com-
monly use a minimum cardinality path decomposition (or path cover [19]). We
consider any flow decomposition as a valid solution, not only the ones of min-
imum cardinality, which is motivated by both theory and practice. On the one
hand, since minimum-cardinality flow decomposition is NP-hard [37], we believe
that finding its safe paths is also intractable. On the other hand, given the issues
with sequencing data, practical methods usually incorporate different variations
of the minimality criterion [4,5]. Thus, safe paths for all flow decompositions are
likely correct for many practical variations of the flow decomposition problem.

Safety has precursors in combinatorial optimization, as persistency. Costa [10]
studied the persistent edges in all maximum bipartite matchings. Incidentally,
for the maximum flow problem persistent edges always having a non-zero flow
value in any maximum flow solution were studied [9]. In bioinformatics, safety
has been previously studied for the genome assembly problem which at its core
solves the problem of computing arc-covering walks on the assembly graph. Again
since the problem admits multiple solutions where only one is correct, practical
genome assemblers output only those solutions likely to be correct. The promi-
nent approach dating back to 1995 [14] is to compute trivially correct unitigs
(having internal nodes with unit indegree and unit outdegree), which can be com-
puted in linear time. Unitigs were generalised first in [29], and later [16,23] to be
extended by adding their unique incoming and outgoing paths. These extended
unitigs, though safe, are not guaranteed to report everything that can be cor-
rectly assembled, presenting an important open question [25] about the assembly
limit (if any). This was finally resolved by Tomescu and Medvedev [36] for a spe-
cific genome assembly formulation (single circular walk) by introducing safe and
complete algorithms, which report everything that is theoretically reported as
safe. Its running time was later optimized in [7] and [8]. Safe and complete algo-
rithms were also studied by Acosta et al. [1] under a different genome assembly
formulation of multiple circular walks. Recently, Cáceres et al. [6] studied safe
and complete algorithms for path covers in an application on RNA Assembly.

1.2 Safety in Flow Decomposition for RNA Assembly

In bioinformatics, flow decomposition is prominently used in RNA transcript
assembly, which is described as follows. In complex organisms, a gene may pro-
duce multiple RNA molecules (RNA transcripts, i.e., strings over an alphabet of
four characters), each having a different abundance. Given a sample, one can par-
tially read the RNA transcripts and find their abundances using high-throughput
sequencing [38]. This technology produces short overlapping substrings of the
RNA transcripts. The main approach for recovering the RNA transcripts from
such data is to build an edge-weighted DAG from these fragments, then to trans-
form the weights into flow values by various optimization criteria, and finally to
decompose the resulting flow into an “optimal” set of weighted paths (i.e., the
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RNA transcripts and their abundances in the sample) [22]. A common strategy
for choosing the optimal set of weighted paths is to look for the parsimonious
solution, i.e., the solution with the fewest paths. Since this problem is NP-hard,
in practice many tools use the popular greedy-width heuristic [28,35]. Greedy-
width is also used in the assemblers for the related problem of viral quasispecies
assembly [4]. Further, some tools attempt to incorporate additional informa-
tion into the flow decomposition process, such as by using longer reads or super
reads [28,41]. Despite the large number of tools and methods that have been
developed for RNA transcript assembly, there is no method that consistently
reports the correct set of transcripts [28,42]. This suggests that the addressing
the problem under the safety framework may be a promising approach. However,
while a safe and complete solution clearly gives the maximally reportable correct
solution, it is significant to evaluate whether such a solution covers a large part
of the true transcript, to be useful in practice. A possible application of such
partial and reliable solution is to consider them as constrains (see e.g. [41]) of
real RNA transcript assemblers, to guide the assembly process of such heuristics.
Another possible application could be to evaluate the accuracy of assemblers:
does the output of the assembler include the safe and complete solution?

1.3 Our Results

Our contributions can be succinctly described as follows.

1. Simple local characterization and optimal verification algorithm:
We characterize a safe path P using its local property called excess flow.

Theorem 1. For w > 0, a path P is w-safe iff its excess flow fP ≥ w.

The previous work [21] on AND-Quant describes a global characterization
using the maximum flow of the entire graph transformed according to P , requir-
ing O(mn) time. Instead, the excess flow is a local property of P which is com-
putable in time linear in the length of P . This also directly gives a simple veri-
fication algorithm which is optimal.

Theorem 2. Given a flow graph (DAG) having n vertices and m edges, it can
be preprocessed in O(m) time to verify the safety of a path P in O(|P |) = O(n)
time.

2. Simple enumeration algorithm: The above characterization also results in
a simple algorithm for reporting all maximal safe paths by using an arbitrary
flow decomposition of the graph.

Theorem 3. Given a flow graph (DAG) having n vertices and m edges, all its
maximal safe paths can be reported in O(|Pf |) = O(mn) time, where Pf is some
flow decomposition.

This approach starts with a candidate solution and uses the characterization
on its subpaths in an efficient manner (a similar approach was previously used
by [1,6,10]).
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3. Empirically improved approach for RNA assembly: On simulated
RNA splice graphs, safe and complete paths for flow decomposition provide
precise RNA assemblies while covering most of RNA transcripts. They have
≈50% better coverage over previous notions of safe paths, while maintain-
ing the perfect precision ensured by safety. Further, for the combined metric
of coverage and precision (F-Score), they outperform the popular greedy-
width heuristic significantly (≈20%) and previous safety algorithms appre-
ciably (≈13%). Though our approach takes 1.2–2.5× time than the previous
safety algorithms requiring equivalent memory, the greedy-width approach
takes roughly 3–5× time and 1.2–2.2× memory than our approach. The sig-
nificance of our approach in quality parameters increases with the increase in
complex graph instances in the dataset, with significantly better performance
over greedy-width, without losing a lot over previous safe algorithms.

2 Preliminaries and Notations

We consider a DAG G = (V,E) with n vertices and m edges, where each edge
e has a positive flow (or weight) f(e) passing through it. We assume the graph
is connected and hence m ≥ n. For each vertex u, fin(u) and fout(u) denote
the total flow on its incoming edges and outgoing edges, respectively. A vertex
v is called a source if fin(v) = 0 and a sink if fout(v) = 0. Every other vertex
v satisfies the conservation of flow fin(v) = fout(v), making the graph a flow
graph. For a path P , |P | denotes the number of its edges. For a set of paths P =
{P1, · · · , Pk} we denote its total size (number of edges) by |P| = |P1|+ · · ·+ |Pk|.

For any flow graph (DAG), its flow decomposition is a set of weighted paths
Pf such that the flow on each edge of the flow graph equals the sum of the
weights of the paths containing the edge. A flow decomposition of a graph can
be computed in O(|Pf |) = O(mn) time using the simple path decomposition
algorithm [3]. A path P is called w-safe if, in every possible flow decomposition,
P is a subpath of some paths in Pf whose total weight is at least w. If P is
w-safe with w > 0, we call P a safe flow path, or simply safe path. Intuitively,
for any edge e with non-zero flow, we consider where did the flow on e come
from? We would like to report all the maximal paths ending with e along which
some w > 0 weight always “flows” to e (see Fig. 1). A safe path is left maximal
(or right maximal) if extending it to the left (or right) with any edge makes it
unsafe (i.e. not safe). A safe path is maximal if it is both left and right maximal.
A set of safe paths is called complete if it consists of all the maximal safe paths.

Some previous notions of safety for other problems also naturally extend to
the flow decomposition problem as follows. The paths having internal nodes with
unit indegree and unit outdegree are called unitigs [14], which are trivially safe
because every source-to-sink path which passes through an edge of unitig, also
passes through the entire unitig contiguously. Further, a unitig can naturally be
extended to include its unique incoming path (having nodes with unit indegree),
and its unique outgoing path (having nodes with unit outdegree). This maximal
extension of a unitig is called the extended unitig [16,23], which is similarly safe.
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Fig. 1. The prefix of the path (blue) up to e contributes at least 2 units of flow to e, as
the rest may enter the path by the edges (red) with flow 4 and 2. Similarly, the suffix
of the path (blue) from e maintains at least 1 unit of flow from e, as the rest may exit
the path from the edges (red) with flow 5 and 2. Both these safe paths are maximal as
they cannot be extended left or right. (Color figure online)

For some graphs the above notions already define the safety of flow decompo-
sition completely. Millani et al. [24] defined a class of DAGs called funnels, where
every source-to-sink path is uniquely identifiable by at least one edge, which is
not used by any other source-to-sink path. Considering such an edge as a trivial
unitig (having a single edge), its extended unitig is exactly the corresponding
source-to-sink path, making it safe. Thus, in a funnel all the source-to-sink paths
are naturally safe and hence trivially complete. Moreover, it implies that a funnel
has a unique flow decomposition, making the problem trivial for funnel instances.

However, for non-funnel graphs unitigs and extended unitigs are safe but
potentially not complete. Note that both unitigs and extended unitigs are also
safe for problems dealing with unweighted graphs (e.g. path cover). Hence, they
do not use the flows on the edges of the graph, potentially missing some paths
that are safe for flow decomposition but not for problems like path cover.

3 Characterization of Safe and Complete Paths

Safety of a path can be characterized by its excess flow defined as follows.

Definition 1 (Excess flow). Excess flow fP of a path P = {u1, u2, ..., uk} is

fP = f(u1, u2) −
∑

ui∈{u2,...,uk−1}
v �=ui+1

f(ui, v) = f(uk−1, uk) −
∑

ui∈{u2,...,uk−1}
v �=ui−1

f(v, ui)

the former and later formulations are diverging and converging, respectively.

Remark 1. Alternatively, the converging and diverging formulations are

fP =
k−1∑

i=1

f(ui, ui+1) −
k−1∑

i=2

fout(ui) =
k−1∑

i=1

f(ui, ui+1) −
k−1∑

i=2

fin(ui).

The converging and diverging formulations are equivalent by the conservation
of flow on internal vertices. The idea behind excess flow fP (see Fig. 2) is that
even in the worst case, the maximum leakage , or the flow leaving (or entering) P
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Fig. 2. The excess flow of a path P (left) is the incoming flow (blue) that necessarily
pass through the whole P despite the flow (red) leaving P at its internal vertices.
Analogously (right), it is the outgoing flow (blue) that necessarily came through the
whole P despite the flow (red) entering P at its internal vertices. (Color figure online)

at the internal nodes, is the sum of the flow on the outgoing (or incoming) edges
of the internal nodes of P , that are not in P . Hence, if the value of incoming flow
(or outgoing flow) is higher than this maximum leakage, then this excess value
fP necessarily passes through the entire P . The following results give the simple
characterization and an additional property (see [15] for proof) of safe paths.

Theorem 1. For w > 0, a path P is w-safe iff its excess flow fP ≥ w.

Proof. The excess flow fP of a path P trivially makes it w ≤ fP -safe by def-
inition. If fP < w, we can prove that P is not w-safe by modifying any flow
decomposition having w flow on P to leave only fP flow (or 0, if fP < 0) on
P as follows. In Fig. 2 (diverging), consider a flow path P ′ entering P through
edge e1 (except first edge (blue)) and leaving P at an edge e2 (red) except last
edge of P . Since fP < w, it is not possible that every path leaving P using a red
edge starts at the first blue edge (by definition of fP ), hence P ′ always exists.
We modify P ′ by using flow on P to form two paths, which enter from e1 and
leave at the last edge, and which enter from the first edge and leave at e2. We
can repeat such modifications until flow on P is fP (or 0, if fP < 0) due to
conservation of flow. Additionally, for a path to be safe, it must hold that w > 0.

Lemma 1. Adding an edge (u, v) to the start or the end of a path in the flow
graph, reduces its excess flow by fin(v)−f(u, v), or fout(u)−f(u, v), respectively.

4 Simple Verification and Enumeration Algorithms

The characterization of a safe path in a flow graph (Theorem 1) can be directly
adapted to simple algorithms for verification and enumeration of all maximal
safe paths. We preprocess the graph to compute the incoming flow fin(u) and
outgoing flow fout(u) for each vertex u in O(m) time. Using Remark 1 we can
verify if a path P is safe in O(|P |) = O(n) time, proving the following theorem.

Theorem 2. Given a flow graph (DAG) having n vertices and m edges, it can
be preprocessed in O(m) time to verify the safety of a path P in O(|P |) = O(n)
time.
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For reporting the maximal safe paths we use a candidate decomposition of the
flow into paths, and verify the safety of its subpaths using the characterization
and a scan with the two-pointer approach. The candidate flow decomposition can
be computed in O(mn) time using the classical flow decomposition algorithm [11]
resulting in O(m) paths Pf each of O(n) length. Now, we use the two-pointer
scan along each path P ∈ Pf as follows. We start with the subpath containing
the first two edges of the path P . We compute its excess flow f , and if f > 0 we
append the next edge to the path on the right and incrementally compute its
excess flow by Lemma 1. Otherwise, if f ≤ 0 we remove the first edge of the path
from the left and incrementally compute the excess flow similarly by Lemma 1
(removing an edge (u, v) would conversely modify the flow by fin(v) − f(u, v)).
We stop when the end of P is reached with a positive excess flow.

The excess flow can be updated in O(1) time when adding an edge to the
subpath on the right or removing an edge from the left. If the excess flow of a
subpath P ′ is positive and on appending it with the next edge it ceases to be
positive, we report P ′ as a maximal safe path by reporting only its two indices
on the path P . Thus, given a path of length O(n), all its maximal safe paths
can be reported in O(n) time, and hence require total O(mn) time for the O(m)
paths in the flow decomposition Pf , resulting in the following theorem.

Theorem 3. Given a flow graph (DAG) having n vertices and m edges, all its
maximal safe paths can be reported in O(|Pf |) = O(mn) time, where Pf is some
flow decomposition.

5 Experimental Evaluation

We now evaluate the performance of our safe and complete algorithm by com-
paring it with the most promising algorithms for flow decomposition. Since the
performance of various algorithms closely depend on the input graphs, we con-
sider some practically relevant datasets to evaluate their true impact. As the
most significant application of flow decomposition derives from RNA assembly,
we consider the flow networks extracted as splice graphs of simulated RNA-
Seq experiments. That is, starting from a set of RNA transcripts, we simulate
their expression levels and superimpose the transcripts to create a flow graph.
Evaluating our approach in such perfect scenario allows us to remove the biases
introduced by real RNA-Seq experiments [33] and focus the features offered by
the each technique instead. Further, the performance of algorithms also closely
depend on the complexity k of a graph, that we measure as the number of paths
in the ground truth decomposition of the graph. Thus, we present our results
with regards to the complexity k of the input graph instances.

We first investigate the practical significance of safety by comparing our safe
solution to a popularly used flow decomposition heuristic that is also scalable.
The greedy-width [37] heuristic decomposes the flow by sequentially selecting the
heaviest possible path, resulting in a simple algorithm that is both scalable and
performs well in practice. However, any flow decomposition algorithm may not
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always report the ground truth paths that originally built the instance of the flow
graph. Thus, it is important to measure the reported solution using a precision
metric which evaluates the correctness of the solution. We thus investigate how
the precision of greedy-width varies particularly as the value of k increases.

We then investigate the practical significance of completeness as reported by
our solution, over the previously known safe solutions as reported by unitigs
and extended unitigs (recall Sect. 2). Note that every safe solution would always
score perfectly in a precision metric by definition. Hence, all safe solutions would
always outperform greedy-width (or any flow decomposition algorithm) in preci-
sion metrics. However, this perfect precision comes at the cost of the amount of
the solution that is reported. Intuitively, this can be measured using some cov-
erage metrics which describe how much of the ground truth sequence is included
in the reported paths. Note that any flow decomposition algorithm will perform
better than any safe algorithm by definition, as the safe paths are always sub-
paths of the paths reported by any flow decomposition algorithm. Further, the
extended unitigs would clearly outperform unitigs, and our safe paths would
clearly outperform both unitigs and extended unitigs. We thus investigate how
the coverage of various algorithms varies with respect to the greedy-width par-
ticularly as the value of k increases.

Finally, to understand the overall impact of different algorithms, where safe
algorithms as compared to greedy-width clearly outperform in precision metrics
and underperform in coverage metrics, we address both coverage and precision
measures using a single metric, i.e., F-score. We thus investigate the variation
in F-score over different values of k. In addition, to understand the practical
utility of the algorithms we also investigate their performance measures in terms
of running time and space requirements.

5.1 Datasets

We consider two RNA transcripts datasets, generated based on approach of Shao
et al. [32]. They create “perfect” flow graphs where the true set of transcripts
and abundances is always a flow decomposition of the graph (hence satisfy con-
servation of flow). They start with this flow decomposition and create the input
instances by superimposing them into a single graph, adding a single source s
(and sink t) with an edge to the beginning (and end) of each transcript.

Funnel Instances: In funnels [24] all paths are safe and the problem is trivial
(recall Sect. 2). Our evaluation thus ignores these trivial funnel instances. For
the sake of completeness we address the funnels in our full paper [15].

Catfish Dataset: We consider the dataset first used by Shao and Kingsford [32],
which includes 100 simulated human transcriptomes for human, mouse, and
zebrafish using Flux-Simulator [12]. Additionally, it includes 1,000 experiments
from the Sequence Read Archive, with simulated abundances for transcripts
using Salmon [27]. In both cases, the weighted transcripts are superimposed to
build splice graphs as described above. This dataset has also been used in other
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flow decomposition benchmarking studies [17,41]. There are 17,335,407 graphs
in total in this dataset, of which 8,301,682 are non-trivial (47.89%). However,
in this dataset the details about the number of bases on each node (exons or
pseudo-exons) are omitted, which results in an incomplete measure of coverage
and precision. Moreover, this dataset has negligible complex graph instances
(having large k). Hence, we do not include its evaluation in the main paper,
rather defer it to the full paper [15] for the sake of completeness.

Reference-Sim Dataset: We consider a dataset [39] containing a single simu-
lated transcriptome as follows. For each transcript on the positive strand in the
GRCh.104 homo sapiens reference genome, it samples a value from the lognor-
mal distribution with mean and variance both equal to −4, as done in the default
settings of RNASeqReadSimulator [18]. It then multiplies the resulting values
by 1000 and round to the nearest integer. Then it excludes any transcript that
is rounded to 0. There are 17,941 total graphs in this dataset, of which 10,323
are non-trivial (57.54%). In this dataset, we also have access to the genomic
coordinates (and hence number of bases) represented by nodes, allowing us to
compute more practically relevant coverage and precision metrics.

5.2 Evaluation Metrics

All metrics are computed in terms of bases for the Reference-Sim dataset. How-
ever, since the Catfish dataset omits the base information its metrics are com-
puted in terms of exons or pseudo-exons (vertices in the flow graph). For every
algorithm, R denotes a reported path (for Catfish) or a reported safe subpath
(for unitigs, extended unitigs, and safe complete) of the solution. In addition, T
denotes a path in the set of ground truth transcripts provided in the dataset.
For each graph, we compute the following metrics which were also used earlier
by [6] for safety in constrained path covers:

Weighted precision: We classify a reported path R as correct if R is a subpath
of some ground truth transcript T of the flow graph. Weighted precision is
the total length of correctly reported paths divided by the total length of
reported paths. The commonly used precision metric [28,31] for measuring
the accuracy of RNA assembly methods considers only those paths as correct
which are (almost) exactly contained in the ground truth decomposition.
Further, the precision is computed as the number of correctly reported paths
divided by the total reported paths. However, since all the safe algorithms
reports (possibly) partial transcripts, we use subpaths instead of (almost)
exactly same paths. To highlight how much is reported correctly instead of
how many, we use weighted precision to give a better score for longer correctly
reported paths.

Maximum relative coverage: Given a ground truth transcript T and a reported
path R, we define a segment of R inside T as a maximal subpath of R that is
also subpath of T . We define the maximum relative coverage of a ground truth
transcript as the length of the longest segment of a reported path inside T ,
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divided by the length of T . The corresponding value for the entire graph is the
average of the values over all T . While it is common in the literature [28,31]
to report sensitivity (the proportion of ground truth transcripts that are
correctly predicted), we measure correctness based on coverage since all the
safe algorithms report paths that (possibly) do not cover an entire transcript.

F-score: The standard measure to combine precision and sensitivity is using an
F-score, which is the harmonic mean of the two. In our evaluation we cor-
respondingly use the weighted precision and the maximum relative coverage
for computing the F-score.

5.3 Implementation and Environment Details

We evaluate the following algorithms in our experiments.

Unitigs: It computes the unitigs, by considering each unvisited edge in the topo-
logical order and extending it towards the right as long as the internal nodes
have unit indegree and unit outdegree. The result ignores single edges.

ExtUnitigs: It computes the extended unitigs, by considering each unitig and
single edges, and extending it towards the left and right as long as the internal
nodes have unit indegree and unit outdegree, respectively.

Safe&Comp: It computes the safe and complete paths for flow decomposition
using our enumeration algorithm described in Sect. 4. Since the metrics eval-
uation scripts uses each safe path individually (similar to other algorithms),
we output all safe paths completely which requires output size (and hence
time) of O(mn2) instead of O(mn) as stated in Theorem 1.

Greedy: It computes the greedy-width heuristic using Catfish [32] with the -a
greedy parameter.

All algorithms are implemented in C++, whereas the scripts for evaluating
metrics are implemented in Python. The Unitigs, ExtUnitigs, and Safe&Comp
implementations use optimization level 3 of GNU C++ (compiled with −O3
flag), whereas the Greedy uses the optimizations of the Catfish pipeline. The
Unitigs, ExtUnitigs, and Safe&Comp additionally require a post processing step
using Aho Corasick Trie [2] for removing duplicates, and prefix/suffixes to make
the set of safe paths minimal. However, the time and memory requirements are
evaluated considering only the algorithm, and not post processing and metric
evaluations which are not optimized. All performances were evaluated on a lap-
top using a single core (i5-8265U CPU 1.60 GHZ) having 15.3 GB memory. The
source code of our project is available on Github1 under GNU Genral Public
License v3 license.

5.4 Results

We first evaluate the significance of safety among the reported solution. Figure
3a compares the weighted precision of all the algorithms on the Reference-Sim
1 https://github.com/algbio/flow-decomposition-safety.

https://github.com/algbio/flow-decomposition-safety
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(a) Weighted Precision (b) Max Relative Coverage (c) F-Score

Fig. 3. Evaluation metrics on graphs w.r.t. k for the Reference-Sim dataset.

dataset distributed over k. All the safe algorithms clearly report perfect precision
as expected. However, the precision of the Greedy algorithm sharply declines
with the increase in k, almost linearly to 30% for k = 35. This may be explained
by the sharp increase in the number of possible paths in graphs with increase in k,
which can be used by any flow decomposition algorithm. Hence, the significance
of safety becomes very prominent as k increases.

We then evaluate the significance of completeness of the safe algorithms.
Figure 3b compares the maximum relative coverage of all the algorithms on the
Reference-Sim dataset distributed over k. As expected, Greedy outperforms all
the other, followed by Safe&Comp, ExtUnitigs and Unitigs. However, note that
as k reaches 20 Safe&Comp, ExtUnitigs and Unitigs sharply fall to 75%, 60%
and 40%, while Greedy maintains around 95% coverage. Overall, Safe&Comp
is almost always ≈85–90% of that of Greedy, whereas ExtUnitigs and Unitigs
falls to 60% and 40% respectively. Hence, the Safe&Comp manages to maintain
perfect precision without losing a lot on coverage, demonstrating the importance
of completeness among the safe algorithms.

Figure 3c supports the above inference by evaluating the combined metric
F-Score, where Safe&Comp dominates Unitigs and ExtUnitigs by definition.
Safe&Comp also dominates Greedy as k approaches 10. It is also important to
note that both ExtUnitigs and Unitigs eventually dominate Greedy for a slightly
larger value of k > 20 and k > 30, respectively. This shows the significance of
considering Safe algorithms for complex graphs. However, the significance of the
Safe&Comp as the number of graphs with such higher complexities also reduces
sharply (see full paper [15]).

Hence, we evaluate a summary of the above results averaged over all graphs
irrespective of k. Table 1 summarizes the evaluation metrics for all the algorithms
for simple graphs (k < 10) and complex graphs (k > 10), and both. While on the
simpler graphs Greedy dominates Safe&Comp mildly (≈3%), for complex graphs
it is dominated significantly (≈20%) by Safe&Comp and appreciably (≈8%) by
ExtUnitigs. However, despite the larger ratio of simpler graphs, the collective
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Table 1. Summary of evaluation metrics for the Reference-Sim dataset.

Graphs Algorithm Max. coverage Wt. precision F-score

k ≥ 2 (100%) Unitigs 0.51 1.00 0.66

ExtUnitigs 0.69 1.00 0.81

Safe&Comp 0.82 1.00 0.90

Greedy 0.98 0.81 0.86

2 ≤ k ≤ 10 (68%) Unitigs 0.55 1.00 0.70

ExtUnitigs 0.73 1.00 0.84

Safe&Comp 0.84 1.00 0.91

Greedy 0.99 0.91 0.94

k > 10 (32%) Unitigs 0.41 1.00 0.58

ExtUnitigs 0.61 1.00 0.75

Safe&Comp 0.76 1.00 0.86

Greedy 0.95 0.60 0.69

Table 2. Time (s) and Memory (MB) taken by different algorithms on datasets.

Algorithm Reference-Sim Catfish

Human Zebrafish Mouse Human Human (salmon)

25.6MB 122MB 137MB 157MB 2.5GB

Time Mem Time Mem Time Mem Time Mem Time Mem

Unitigs 0.68 3.58 13.82 3.51 15.62 3.53 18.22 3.54 303.72 3.66

ExtUnitigs 0.99 3.63 18.31 3.52 20.87 3.57 23.64 3.56 404.50 3.68

Safe&Comp 2.56 4.47 20.17 3.56 25.76 3.66 28.59 3.54 667.27 3.84

Greedy 7.71 4.88 108.30 6.00 127.38 6.29 148.46 6.34 2684.30 8.47

F-score over all graphs is still (≈4%) better for Safe&Comp over Greedy which
signifies the applicability of Safe&Comp over Greedy.

Finally, we evaluate the applicability of the above algorithms in practice,
by comparing their running time and peak memory requirements. Since all the
algorithms are implemented in the same language (C++) and evaluated on the
same machine, it is reasonable to directly compare these measures. In Table
2, we see that Unitigs clearly are the fastest, where ExtUnitigs takes roughly
1.3–1.5× time. Safe&Comp takes upto roughly 1.2–2.5× time than ExtUnitigs,
and Greedy requires roughly 3–5× time than Safe&Comp. The peak memory
requirements of the safe algorithms are very close (within 5%–25%), whereas
Greedy requires roughly 1.1–2.2× more memory than Safe&Comp. Overall, for
the performance measures Safe&Comp shows a significant improvement over
Greedy, without losing a lot over the trivial algorithms.
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6 Conclusion

We study the flow decomposition in DAGs under the Safe and Complete
paradigm, which has numerous applications including the more prominent multi-
assembly of biological sequences. Previous work characterized such paths (and
their generalizations) using a global criterion. Instead, we present a simpler
characterization based on a more efficiently computable local criterion, which
is directly adapted into an optimal verification algorithm, and a simple enumer-
ation algorithm. Intuitively, it is a weighted adaptation of extended unitigs which
is a prominent approach for computing safe paths.

Our experiments show that our algorithm outperform the popularly used
greedy-width heuristic for RNA assembly instances having significant complex
graph instances, both on quality (F-score) and performance (running time and
memory) parameters. On simple graphs, Greedy outperforms Safe&Comp and
Safe&Comp outperforms ExtUnitigs mildly (≈3–5%). However, on complex
graphs, Safe&Comp outperforms Greedy significantly (≈20%) and ExtUnitigs
appreciably (≈13%). While the Reference-Sim dataset shows the overall domi-
nance of Safe&Comp since complex graphs are appreciable (32%), Greedy domi-
nates Safe&Comp in Catfish dataset since complex graphs are negligible (≈2%).
Another significant reason for the dominance of Greedy over Safe&Comp on Cat-
fish datasets is the absence of base information on nodes (see full paper [15]).
Hence, the importance of Safe&Comp algorithms increases with the increase
in complex graph instances in the dataset, and prominently when we consider
information about the genetic information represented by each node. In terms of
performance, ExtUnitigs are 1.3–1.5× slower than the fastest approach (Unit-
igs), while Safe&Comp further takes roughly 1.2–2.5× time than ExtUnitigs,
both requiring equivalent memory. However, Greedy requires roughly 3–5× time
and 1.1–2.2× memory than Safe&Comp. Overall, Safe&Comp performs signifi-
cantly better than Greedy, without losing a lot over the trivial algorithms.
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Abstract. A standard paradigm in computational biology is to use
interaction networks to analyze high-throughput biological data. Two
common approaches for leveraging interaction networks are: (1) net-
work ranking, where one ranks vertices in the network according to both
vertex scores and network topology; (2) altered subnetwork identifica-
tion, where one identifies one or more subnetworks in an interaction
network using both vertex scores and network topology. The dominant
approach in network ranking is network propagation which smooths ver-
tex scores over the network using a random walk or diffusion process,
thus utilizing the global structure of the network. For altered subnet-
work identification, existing algorithms either restrict solutions to sub-
networks in subnetwork families with simple topological constraints, such
as connected subnetworks, or utilize ad hoc heuristics that lack a rig-
orous statistical foundation. In this work, we unify the network prop-
agation and altered subnetwork approaches. We derive a subnetwork
family which we call the propagation family that approximates the sub-
networks ranked highly by network propagation. We introduce NetMix2,
a principled algorithm for identifying altered subnetworks from a wide
range of subnetwork families, including the propagation family, thus com-
bining the advantages of the network propagation and altered subnet-
work approaches. We show that NetMix2 outperforms network prop-
agation on data simulated using the propagation family. Furthermore,
NetMix2 outperforms other methods at recovering known disease genes
in pan-cancer somatic mutation data and in genome-wide association
data from multiple human diseases. NetMix2 is publicly available at
https://github.com/raphael-group/netmix2.

Keywords: Interaction networks · Network anomaly · Network
propagation · Cancer · GWAS

1 Introduction

Biological systems consist of interactions between many components. These
interactions are often represented with networks, e.g., protein-protein interaction
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networks or gene regulatory networks. A standard paradigm in computational
biology is to use an interaction network as prior knowledge for interpreting high-
throughput, genome-scale data. Interaction networks have informed the analysis
of biological data in many different applications including protein function pre-
diction [19,26,60,68,72], differential expression analysis [17,25,28,43,79,85,88],
prioritization of germline variants [12,40,42,51,53,71], identification of driver
mutations in cancer [24,39,52,61,76,81], and more [9,15,20,21,33,35,38,51,56,
58,58,66,86].

Numerous methods that use interaction networks in interpreting high-
throughput omics data have been developed (reviewed in [9,23,24,27,45,59]).
While the algorithmic details of these methods are diverse, nearly all of them
employ one of two different strategies. The first strategy is network ranking,
where one is given either a subset of vertices (genes/proteins) or a score for
each vertex (gene/protein), and the goal is to rank all vertices according to both
the subset/scores and the positions of vertices in the network. Early network
ranking algorithms relied on the “guilt-by-association” principle, or the idea
that genes/proteins with similar functions are directly connected in the inter-
action network. These “direct connection” algorithms were typically applied in
semi-supervised settings, e.g., protein function prediction or disease-gene prior-
itization [48,87], where only a subset of vertices are known to have a specific
biological function. Later, inspired by the success of random walk, diffusion, and
graph kernel methods in statistics and machine learning (e.g., the PageRank
algorithm [63]), network propagation—also known as label propagation [89]—
became the dominant approach for network ranking [23]. Briefly, network prop-
agation involves using a random walk or diffusion process to “smooth” vertex
scores across a network. Following [23], we use the term network propagation to
refer to the broad class of methods that smooth scores over a network using a
random walk or diffusion process. This includes popular processes like the ran-
dom walk with restart (i.e., PageRank) [63], but also other processes including
diffusion state distance [13,22] or the heat kernel [81,82]. By using these random
walk/diffusion processes, network propagation methods simultaneously account
for all possible paths between vertices. Thus, in contrast to the early methods
which only use “direct connections” (edges) between vertices, network propaga-
tion methods fully utilize the global structure of the network. Indeed, network
propagation has even been shown to be asymptotically optimal for network rank-
ing for some random graph models [46].

The second strategy is the identification of altered subnetworks, also called
network modules or active subnetworks. Here, the input is a measurement or a
score for each vertex of the interaction network (e.g., p-values from differential
gene expression), and the goal is to identify subnetworks (modules) that con-
tain high scoring vertices that are “close” in the network1. Altered subnetwork
approaches rely on the specification of a subnetwork family, or a family of possible

1 A related problem is the identification of altered subnetworks according to network
topology alone. Many of the leading methods for this problem were benchmarked in
a recent DREAM competition [18].
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subnetworks; sometimes the family is stated explicitly – e.g., the early approaches
such as jActiveModules [44] or heinz [28] identify connected subnetworks—but in
other methods, the subnetwork family is implicitly specified—e.g., the optimiza-
tion problems of [5] and [55] penalize subnetworks with large cut-size and small
edge-density, respectively. The altered subnetwork approach is closely related to
the identification of network anomalies in the data mining and machine learning
literature [1–4,73–75]. In contrast to ranking algorithms that yield a ranking
of all vertices, altered subnetwork approaches output one or more subsets of
vertices, and thus explicitly estimate the number of vertices in the altered sub-
networks. A major challenge with altered subnetwork approaches is to choose an
appropriate subnetwork family. For example, connectivity is often too weak of
an assumption for biological networks, e.g., some methods that use connectivity
identify large subnetworks [62] because of a statistical bias in a commonly used
test statistic [16,69].

There have been a few attempts to bridge the gap between network propaga-
tion approaches and altered subnetwork approaches, combining the modeling of
global network topology from network propagation with the optimization over
subnetwork families from altered subnetwork approaches. For example, PRINCE
[83] first propagates the vertex scores and identifies altered subnetworks as edge-
dense subnetworks whose vertices have large network propagated scores. The
HotNet algorithms [52,70,80,81] identify altered subnetworks by finding clusters
in a weighted and directed graph derived from network propagation. TieDIE [65]
propagates two sets of vertex scores and aims to find high-scoring subnetworks
for both sets of propagated scores. More recently, the NetCore algorithm [7]
finds subnetworks whose vertices have large node “coreness” and large prop-
agated scores. However, none of these approaches give an explicit definition
of the subnetwork family, instead relying on heuristics to identify the altered
subnetwork after performing network propagation. Because of these heuristics,
network propagation approaches typically do not have provable guarantees for
altered subnetwork identification. In contrast, methods that explicitly rely on a
well-defined subnetwork family often have statistical or theoretical guarantees,
e.g., jActiveModules [44] computes a maximum likelihood estimator while our
recent estimator NetMix is asymptotically unbiased [16,69].

Another practical issue is the evaluation of altered subnetwork methods. Most
network algorithms demonstrate their performance by benchmarking their algo-
rithm against existing network algorithms. While these comparisons are useful,
they may also hide biases shared between algorithms. For example, Lazareva et
al. [50] observed that some well-known network algorithms have a bias towards
high-degree vertices in the interaction network, while Levi et al. [54] similarly
observed a bias in GO term enrichment. In order to quantify the potential biases
of altered subnetwork algorithms, these algorithms need to be compared against
carefully selected baselines, including baselines that do not use the interaction
network and baselines that do not use the vertex scores.

In this paper, we introduce NetMix2, an algorithm which unifies the net-
work propagation and altered subnetwork approaches. NetMix2 generalizes Net-
Mix [69] to a wide range of subnetwork families and vertex score distributions.
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Specifically, NetMix2 takes as input a wide variety of subnetwork families, includ-
ing not only the “connected family” used in existing altered subnetwork meth-
ods [28,43,69] but also any subnetwork family defined by linear or quadratic
constraints, such as subnetworks with high edge density or subnetworks with
small cut-size. We use this flexibility to investigate the topology of subnetworks
identified by network propagation methods. We show empirically that network
propagation does not correspond to standard topological constraints on altered
subnetworks such as connectivity [28,43,69], cut-size [5], or edge-density [55].
Instead, we derive the propagation family, a subnetwork family that we show
“approximates” the subnetworks identified by network propagation approaches
and thereby unifies the two major network approaches in the literature: network
propagation and altered subnetwork identification. NetMix2 also uses local false
discovery rate (local FDR) methods [30–32] to flexibly model vertex score dis-
tributions, in contrast to the strict parametric assumptions made by existing
methods [28,69].

On simulated data we show that NetMix2 outperforms network propagation
for subnetworks from the propagation family and other common subnetwork
families. Interestingly, NetMix2 outperforms network propagation by the largest
margin for the propagation family. We then apply NetMix2 with the propagation
family to cancer mutation data and genome-wide association studies (GWAS)
data from several complex diseases. On cancer data, we show that NetMix2
outperforms existing network propagation and altered subnetwork methods in
identifying cancer driver genes. On GWAS data, we demonstrate that network
propagation often has similar performance to simple baselines that only use the
vertex scores or only use the network. However, in cases where network propa-
gation outperforms these baselines, we show that NetMix2 outperforms network
propagation. The simulated data and GWAS experiments will be available in
the full version of the paper.

2 Methods

2.1 Altered Subnetwork Problem

We start by formalizing the problem of altered subnetwork identification. Let
G = (V,E) be an interaction network with a score Xv for each vertex v. We
assume there is an altered subnetwork A ⊆ V whose scores {Xv}v∈A are drawn
independently from a different distribution than the scores {Xv}v �∈A of vertices
not in the altered subnetwork A. The topology of the altered subnetwork is
described by membership in a subnetwork family S ⊆ P(V ), where P(V ) denotes
the power set of all subsets of vertices V .

Following the exposition in [16,69], we model the distribution of the scores
X = {Xv}v∈V as the Altered Subnetwork Distribution (ASD).

Altered Subnetwork Distribution (ASD). Let G = (V,E) be a graph, let
S ⊆ P(V ) be a subnetwork family, and let A ∈ S. We say X = (Xv)v∈V is
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distributed according to the Altered Subnetwork Distribution ASDS(A,Da,Db)
provided the Xv are independently distributed as

Xv ∼
{

Da, if i ∈ A,

Db, otherwise,
(1)

where Da is the altered distribution and Db is the background distribution.

The distribution ASDS(A,Da,Db) is parameterized by four quantities: the
altered subnetwork A, the subnetwork family S, the altered distribution Da, and
the background distribution Db.

Given the measurements X ∼ ASDS(A,Da,Db) and the subnetwork family
S ⊆ P(V ), the goal of the Altered Subnetwork Problem is to identify the altered
subnetwork A. We formalize this problem below.

Altered Subnetwork Problem (ASP). Given X ∼ ASDS(A,Da,Db) and
subnetwork family S, find A.

The ASP describes a broad class of problems that are studied in many fields
including computational biology [28,43,69], statistics [1,2,34,47] and machine
learning [10,16,73], with different problems making different choices for (1) the
distributions Da, Db and (2) the subnetwork family S. Two prominent exam-
ples of distributions Da, Db that have been previously studied in the biological
literature are the following.

– Normal distributions: Da = N(μ, 1) and Db = N(0, 1). Normal distribu-
tions are often used to model z-scores [11,29,57,64,69]. We call the ASP and
ASD with these distributions the normally distributed ASP and normally dis-
tributed ASD, respectively; for notational convenience, we use NASDS(A,μ)
to refer to the normally distributed ASD.

– Beta-uniform distributions: Da = Beta(a, 1) and Db = Uni(0, 1). Beta-
uniform mixture distributions are another common model for p-value distri-
butions [28,67]. We call the ASP, ASD with these distributions the Beta-
Uniform ASP and Beta-Uniform ASD, respectively.

We also list several examples of subnetwork families S, with each subnet-
work family corresponding to a different topological assumption on the altered
subnetwork A. Some of these families have been explicitly applied in biological
settings, while other families formalize topological constraints that are implicitly
made in the biological literature.

– S = CG, the connected family, or the set of all connected subgraphs S of an
interaction network G. [28,43,69] identify altered subnetworks by solving the
ASP for the connected family CG.

– S = EG,p, the edge-dense family, or the set of all subgraphs S of G with
edge-density E(S)

(|S|
2 ) ≥ p, where E(S) = |{(u, v) ∈ E : u ∈ S, v ∈ S}| is the

number of edges between vertices in S. The edge-dense family EG,p formalizes
the topological constraints made by [36,55,83], which identify subnetworks
with large edge-density.



198 U. Chitra et al.

– S = TG,ρ, the cut family, or the set of all subgraphs S of G with cut(S)
|S| ≤ ρ,

where cut(S) = |{(u, v) ∈ E : u ∈ S, v �∈ S}| is the number of edges with
exactly one endpoint in S. The cut family TG,ρ formalizes the topological
constraints made by [5], which identifies subnetworks with small cut.

We note that the ASP—with the subnetwork families S described above—
describes the problem of identifying a single altered subnetwork in a network
G. By creating a new subnetwork family consisting of the union of k disjoint
subnetworks in family S, the ASP also describes the problem of identifying mul-
tiple altered subnetworks.

Early methods for identifying altered subnetwork solved the ASP for the con-
nected family S = CG and different choices of vertex score distributions Da, Db.
For example, two seminal methods, jActiveModules [43] and heinz [28], solve the
normally distributed and Beta-Uniform ASP, respectively, with the connected
family S = CG. Recently we showed that many existing methods, including jAc-
tiveModules and heinz, are biased, in the sense that they typically estimate sub-
networks Â that are much larger than the altered subnetwork A [16,69]. To this
end, we derived the NetMix algorithm, which finds an asymptotically unbiased
ÂNetMix of the altered subnetwork A for the connected family S = CG. However,
as we demonstrate in [69] and Sect. 3 below, many of these methods—including
NetMix—have comparable performance to a naive “scores-only” baseline that
does not use the network G.

2.2 Network Propagation and the Propagation Family

Another strategy often used to incorporate interaction networks G with high
throughput biological data is network propagation. Network propagation involves
the use of random walk or diffusion processes to smooth or “propagate” vertex
scores Xv across a network [23]. Formally, given vertex scores Xv, the network
propagated scores Yv are computed as Yv =

∑
w∈V Mv,wXw where M ∈ R

|V |×|V |

is a similarity matrix on the vertices V typically derived from a random walk on
the network G. One popular choice for the similarity matrix M is the random
walk with restart (personalized PageRank) similarity matrix MPPR = r(I − (1−
r)P )−1, where r ∈ (0, 1) is the restart probability, I is the identity matrix, and
P is the transition matrix for a random walk with restart on G.

A few methods have attempted to use network propagation to identify the
altered subnetwork A from propagated scores Yv, e.g., PRINCE [83] finds edge-
dense subnetwork with large propagated scores Yv. These methods implicitly
assume that the propagated scores Yv are larger for vertices v ∈ A in the altered
subnetwork A compared to vertices v �∈ A not in the altered subnetwork A.
However, we empirically find that this assumption generally does not hold for
altered subnetworks A ∈ S from the connected family S = CG, the edge-dense
family S = EG,p and the cut family S = TG,ρ, which suggests that network
propagation methods do not solve the ASP with these subnetwork families S.

Thus, we derive a subnetwork family S that approximates the subnet-
works identified by network propagation methods. Informally, we first note that
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Fig. 1. Overview of the NetMix2 algorithm. The inputs to NetMix2 are a graph G,
gene scores {Xv}v∈V , and a subnetwork family S. First, NetMix2 computes an estimate

| ̂A| of the size |A| of the altered subnetwork A using local false discovery rate (local
FDR). Next, NetMix2 solves an optimization problem to identify the subnetwork S ∈ S
size |S| = | ̂A| from the input subnetwork family S and with the largest total vertex
score

∑

v∈S Xv. By default, NetMix2 uses the propagation family S = Mδ,p. In this
case, NetMix2 constructs an additional graph (the similarity threshold graph) based
on vertex similarities quantified by Personalized PageRank from the input graph. The
choice of subnetwork family S for NetMix2 is flexible and can be generalized to other
families defined by linear or quadratic constraints including the connected family CG,
edge-dense family EG,p, and cut family TG,ρ.

network propagation methods identify altered subnetworks A whose vertices
v ∈ A have large propagated scores Yv. We observe that—by making the simpli-
fying assumption that the vertex scores Xv = 1{v∈A} are binary—the propagated
score Yv =

∑
w∈A Mv,w of a vertex v is large if the similarities Mv,w is large for

many w ∈ A. Intuitively, one natural way to enforce that the similarities Mv,w

are large is to lower-bound them, i.e., require that Mv,w ≥ δ for many w ∈ A
and for some (large) constant δ > 0.

This intuition motivates the formal definition of the propagation family Mδ,p,
or the set of all subgraphs S with Mu,v ≥ δ and Mv,u ≥ δ for p fraction of tuples
(u, v) ∈ S. (Because the similarity matrix M may not be symmetric, we constrain
both Mu,v and Mv,u.) We note that the propagation family Mδ,p is equal to the
edge-dense family EGδ,ρ for the similarity threshold graph Gδ = (V,Eδ), which
has edge (u, v) ∈ Eδ if and only if Mu,v ≥ δ and Mv,u ≥ δ.

In the full version of the paper, we partially formalize our derivation of the
propagation family Mδ,p with a bound on the false discovery rate (FDR) of the
subnetwork consisting of the largest propagated scores.
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2.3 NetMix2

We derive the NetMix2 algorithm, which solves the ASP for a wide range of
subnetwork families S and distributions Da, Db (Fig. 1). In particular, NetMix2
solves the ASP for the propagation family Mδ,p, and thus bridges the gap
between the ASP and network propagation.

NetMix2 consists of two steps. As in our previous method NetMix [69], the
first step is to estimate the number |̂A| of vertices in the altered subnetwork A.
NetMix estimated |̂A| by fitting the vertex scores {Xv}v∈V to a Gaussian mixture
model (GMM), under strict parametric assumptions on the altered distribution
Da = N(μ, 1) and background distribution Db = N(0, 1). However, not all vertex
score distributions are well-fit by normal distributions of this form. Thus, in
NetMix2, we extend NetMix by using local false discovery rate (local FDR)
methods [30–32] to estimate α, as local FDR methods make mild assumptions
on the forms of the distributions Da, Db (further details will be available in the
full version of the paper).

The second step of NetMix2 is to compute the subnetwork S ∈ S with size
|S| = |̂A| and largest total vertex score Xv:

ÂNetMix2 = argmax
S∈S

|S|≤ ̂|A|

∑
v∈S

Xv. (2)

(2) can be computed using an integer linear program or integer quadratic pro-
gram solver (e.g., Gurobi [37]) for a number of subnetwork families, including
the edge-dense family EG,p, the cut family TG,ρ, the connected family CG, and
the propagation family Mδ,p. We note that for the propagation family Mδ,p,
the run-time for solving (2) depends on both the number |Eδ| of edges in the
similarity threshold graph Gδ and the density p.

Note that (2) involves maximizing the sum
∑

v∈S Xv of the vertex scores Xv,
while the objective in the NetMix optimization problem [69] is the sum

∑
v∈S rv

of the vertex responsibilities rv = P (v ∈ A | Xv). In practice, we observe that
maximizing the sum of the vertex scores Xv yields slightly better performance
than that of the responsibilities rv.

2.4 Scores-Only and Network-Only Baselines

When evaluating any algorithm for the identification of altered subnetworks,
we argue that it is essential to compare against two baselines: a “scores-only”
baseline that only uses the vertex scores Xv, and a “network-only” baseline
that only uses the interaction network G. These two baselines quantify whether
the altered subnetwork algorithm is outperforming simpler approaches that do
not integrate vertex scores with a network; moreover, these baselines should be
evaluated on each dataset and match as closely as possible the inputs to the
altered subnetwork problem. A scores-only baseline is straightforward: we rank
the vertices v by their vertex scores Xv. Because this baseline outputs a ranked
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list of all vertices in the graph, we threshold the ranking when evaluating against
other altered subnetwork algorithms by taking the k most highly ranked vertices
for some integer k.

Defining a network-only baseline is a more subtle issue, and was discussed
in two recent papers [50,54]. Levi et al. [54] benchmarks altered subnetwork
algorithms on randomly permuted vertex scores X̃v while keeping the network
G fixed. The authors find that many existing methods output similar altered
subnetworks (in terms of GO enrichment) on their permuted data, which suggests
that these methods are utilizing the network G more than the vertex scores Xv.
Lazareva et al. [50] benchmarks altered subnetwork algorithms on randomly
permuted networks with the same degree distribution as G while keeping the
vertex scores Xv fixed. The authors find that many existing algorithms output
similar altered subnetworks on permuted networks, indicating a degree bias in
these methods. We propose a more direct network-only baseline: we rank vertices
v by their network centrality score N(v) for a network centrality measure N
that is derived from the topological constraints used by the altered subnetwork
algorithm. For example, for an algorithm that relies on the connected subfamily,
we propose that degree centrality N(v) = dv is an appropriate measure, as in [50].
However, for network propagation algorithms that use random walk with restart,
we claim that the PageRank centrality N(v) = (MPPR · 1)v, where 1 ∈ R

n is an
all-ones vector, is the more appropriate network-only baseline. This is because
compared to degree centrality, PageRank centrality better captures how network
propagation methods use the interaction network G.

3 Results

We evaluated NetMix2 on simulated data, somatic mutations in cancer, and
genome-wide association studies (GWAS) from several diseases. Details of our
analyses on simulated data and GWAS data will be available in the full version
of the paper. Unless indicated otherwise, we ran NetMix2 with the propagation
family Mδ,p using the personalized PageRank matrix MPPR with restart proba-
bility r = 0.4. We solved the integer program in (2) using the Gurobi optimizer
[37]. We ran Gurobi for up to 24 h, which typically results in a near-optimal
solution. For all ranking methods (e.g., network propagation, scores-only, and
network-only baselines), we estimated the altered subnetwork Â as the |ÂNetMix2|
highest ranked vertices, where ÂNetMix2 is the output of NetMix2.

3.1 Somatic Mutations in Cancer

Next, we compared the performance of NetMix2 against several other methods
for identification of altered subnetworks [28,41,69,70] on the task of identifying
cancer driver genes. For each vertex (gene) v, the vertex score Xv is a z-score
computed from p-values from MutSig2CV [49], a statistical method that pre-
dicts cancer driver genes based on the frequency that the gene is mutated in a
cohort of cancer patients. We obtained these scores for 10,437 samples across
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Table 1. Results of altered subnetwork identification methods using MutSig2CV cancer
driver gene p-values from TCGA tumor samples. Subnetworks are evaluated using
reference sets of cancer genes from CGC, OncoKB, and TCGA. The best scores are
colored in bold red. ∗GMM from NetMix overestimated the size of the subnetwork, thus
we excluded genes with outlier scores as described in [69].

Method STRING network

Subnetwork size CGC OncoKB TCGA

Number F-measure Number F-measure Number F-measure

NetMix2 280 132 0.3 133 0.313 151 0.546

NetMix 313∗ 129 0.282 130 0.295 147 0.502

Heinz (FDR = 0.01) 335 139 0.297 138 0.306 156 0.513

NetSig 773 145 0.211 172 0.257 84 0.161

Hierarchical HotNet 246 73 0.172 70 0.172 74 0.285

Network propagation 280 86 0.195 89 0.210 98 0.354

Scores-only 280 126 0.286 127 0.3 145 0.524

Network-only 280 77 0.175 83 0.196 55 0.199

33 cancer types from the TCGA PanCanAtlas project [6]. We also compared
to three ranking methods: network propagation, scores-only, and network-only
(PageRank centrality). We ran each method using the STRING protein-protein
interaction network [77] and evaluated the performance by computing the over-
lap between genes in their reported subnetworks and reference lists of cancer
driver genes from the COSMIC Cancer Gene Census (CGC) [78], OncoKB [14],
and TCGA [6]. Further details on datasets and procedures for running each
method will be available in the full version of the paper.

We found that NetMix2 using the propagation family outperformed other
methods in F-measure for all three reference gene sets (Table 1). In addition,
comparing NetMix2 using the propagation family and NetMix2 using the con-
nected family (the second best method) shows that the altered subnetwork found
using the propagation family contains several genes that are not found by using
the connected family. For example, NetMix2 using the propagation family identi-
fies 9 CGC driver genes that are not found by using the connected family includ-
ing PDGFRA, an oncogene whose gain-of-function mutations promote cancer
growth [84] and NCOR2, a well-known tumor suppressor implicated in breast
and prostate cancers [8]; none of these genes are found by the baseline methods.

In the full version of the paper, we include a comparison against altered
subnetwork methods with different parameter settings as well as a network-only
baseline with degree centrality. We also observe that many network approaches,
including NetSig and Hierarchical HotNet, have lower F-measure than the scores-
only baseline. While it is possible we are not using the optimal parameters for
these methods, our results suggest that these methods are over-utilizing the
network compared to the vertex scores.
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4 Discussion

We introduced NetMix2, an algorithm that unifies the network propagation and
altered subnetwork approaches to analyze biological data using interaction net-
works. NetMix2 is inspired by network propagation, a standard approach for
solving the network ranking problem, and attempts to bridge the gap between
two paradigms for using networks in the analysis of high-throughput genomic
data—network ranking and the identification of altered subnetworks—in a prin-
cipled way by explicitly deriving a new family of subnetworks called the prop-
agation family that approximates the altered subnetworks found by network
propagation methods. We showed that NetMix2 is effective in finding disease-
associated genes using somatic mutation data in cancer. At the same time, our
evaluation revealed that simple baseline methods that use either only the vertex
scores or only the interaction network sometimes perform surprisingly well, often
outperforming more sophisticated network methods. While publications describ-
ing new network methods typically benchmark against other network methods,
they are wildly inconsistent in benchmarking against scores-only and network-
only baselines. It is rare to see a paper that benchmarks against both baselines.
Moreover, the network-only baseline should be calibrated to use the same net-
work information as the method under evaluation; e.g., PageRank centrality is
a more appropriate benchmark for network propagation methods than vertex
degree.

There are several directions for future work. The first direction is to extend
NetMix2 to identify multiple altered subnetworks simultaneously. This can be
done by running NetMix2 iteratively, or by modifying the integer program to
output multiple solutions. However, solving the corresponding model selection
procedure to choose the number and sizes of altered subnetworks without over-
fitting is a difficult problem. A second direction is to extend NetMix2 with an
appropriate permutation test to evaluate the statistical significance of the altered
subnetwork(s). Finally, while we evaluated several network methods and simple
baselines, there are numerous other network methods that could be included
in these benchmarks. However, there are few gold standards to perform such
a comprehensive evaluation as the reference disease gene sets remain relatively
limited and potentially biased by their source. Thus, a useful extension would
be deriving a reliable evaluation scheme for network methods that accounts for
various sources of bias including the ascertainment bias in current interaction
networks and disease gene sets.
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Abstract. In recent years, due to the advance of modern sensory
devices, the collection of multiple biomedical data modalities such as
imaging genetics has gotten feasible, and multimodal data analysis has
attracted significant attention in bioinformatics. Although existing mul-
timodal learning methods have shown superior ability in combining data
from multiple sources, they are not directly applicable for many real-
world biological and biomedical studies that suffer from missing data
modalities due to the high expenses of collecting all modalities. Thus, in
practice, usually, only a main modality containing a major ‘diagnostic
signal’ is used for decision making as auxiliary modalities are not avail-
able. In addition, during the examination of a subject regarding a chronic
disease (with longitudinal progression) in a visit, typically, two diagnosis-
related questions are of main interest that are what their status currently
is (diagnosis) and how it will change before their next visit (longitudinal
outcome) if they maintain their disease trajectory and lifestyle. Accurate
answers to these questions can distinguish vulnerable subjects and enable
clinicians to start early treatments for them. In this paper, we propose
a new adversarial mutual learning framework for longitudinal prediction
of disease progression such that we properly leverage several modalities
of data available in training set to develop a more accurate model using
single-modal for prediction. Specifically, in our framework, a single-modal
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model (that utilizes the main modality) learns from a pretrained multi-
modal model (which takes both main and auxiliary modalities as input)
in a mutual learning manner to 1) infer outcome-related representations
of the auxiliary modalities based on its own representations for the main
modality during adversarial training and 2) effectively combine them to
predict the longitudinal outcome. We apply our new method to ana-
lyze the retinal imaging genetics for the early diagnosis of Age-related
Macular Degeneration (AMD) disease in which we formulate prediction
of longitudinal AMD progression outcome of subjects as a classification
problem of simultaneously grading their current AMD severity as well
as predicting their condition in their next visit with a preselected time
duration between visits. Our experiments on the Age-Related Eye Dis-
ease Study (AREDS) dataset demonstrate the superiority of our model
compared to baselines for simultaneously grading and predicting future
AMD severity of subjects.

1 Introduction

Recent advances in multimodal biomedical imaging and high throughput geno-
typing and sequencing techniques allow us to study integrative imaging genetics
and provide exciting new opportunities to ultimately improve our understanding
of different disease mechanisms. Although many multimodal learning methods
have been developed and shown superior ability in integrative analysis of imaging
genetics data, the following two challenging problems are still desired to address
for practical applications:

Input Data with Missing Modalities: An ideal case is that the researchers
or clinicians have access to all of the informative data modalities for decision
making, i.e., be able to perform multimodal data based diagnosis. However,
due to the high cost of collecting all data modalities, typically, only a single
main modality that provides the majority of ‘signal’ about a subject’s status is
examined in practice. For instance, it has been established that genetic factors
play an essential role in the progression of Age-related Macular Degeneration
(AMD) pathogenesis [20,21,71,77]. Thanks to advances in sequencing technolo-
gies [1,48,49], the determination of whole-genome sequence is feasible nowadays
and can provide valuable information for AMD diagnosis, but AMD severity
score [19] is usually only determined by exploring characteristics of subjects’
Color Fundus Photographs (CFP) - that is the most accessible retinal image
modality globally - in practice due to lack of expensive facilities required for
sequencing, especially in low-resourced areas.

Diagnosis and Prediction of Longitudinal Outcome: Many diseases have
several stages in terms of severity, and a subject may progress to advanced ones
through time. Predicting the disease progression can help understand the dis-
ease’s dynamics and thus, advise physicians on medication intake. Two questions
of main interest when studying a subject’s condition in clinical practice are that
given their examination records, “how is current severity status of them?” (diag-
nosis), and “how will their disease severity change until their next visit?” (i.e.,
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longitudinal outcome prediction) Accurate answers to these questions can com-
prehensively predict a subject’s current status as well as their future disease
trajectory and enable clinicians to start early treatment for highly vulnerable
ones to decelerate their disease progression. However, it is often prohibited to
collect the time series biomedical data (from multiple years visits) to predict the
disease progression in practical applications, especially for low-resourced areas.
The researchers and clinicians often want to make the diagnosis and longitudi-
nal outcome prediction only using the data at the current visit, which makes the
disease progression prediction more challenging.

We aim to solve both challenging tasks in the second aspect while considering
the constraints mentioned in the first one. To do so, firstly, our intuition is that
single-modal input based models that benefit from the main and auxiliary data
modalities collected in multi-modal datasets during training and rely on the main
modality in their inference phase better mimic clinical practice. Therefore, we
train such a model in our framework. Secondly, we can overcome the longitudinal
prediction challenge by leveraging records collected at the current visit to make
predictions for the current and next visits if the time gap between them is not
too large compared to the typical pace of the disease progression.

Multimodal learning (MML) [22,23,44,69,79] and Deep Mutual Learning
(DML) [31,81] methods have shown significant results recently. On the one hand,
MML methods can effectively utilize the supervision from several modalities to
improve the classification performance in tasks such as visual question answer-
ing and video categorization. However, they require that all input modalities be
available for their inference, which limits their practicality for biomedical appli-
cations that usually suffer from missing modalities. On the other hand, DML
methods have demonstrated that two models that are trained together and get
feedback from their peers have better generalization performance compared to
their baseline models that are trained separately. Thus, our intuition is to over-
come the missing modality problem of multimodal learning methods for our
task by developing a single-modal model while leveraging the benefits of mutual
learning by training the model mutually with a multimodal one.

In this paper, we introduce a novel framework based on deep mutual learning
[31,81] in which a single-modal model – our model only need the main diagnostic
modality (e.g. CFP) of a target disease (e.g. AMD) to conduct the predictions –
and a pretrained multimodal model that takes the main and auxiliary (genetics
and age) data modalities as input evolve together during training. Both models
learn to solve our formulated classification problem to simultaneously 1) grade
the current disease status of a subject (Advanced or not) and 2) predict their
future condition in their next visit (Advanced or not, with a predefined time-gap
between visits, e.g. 3 years). Further, we hypothesize that genetics and demo-
graphics (age) information can provide ‘complementary knowledge’ for a model
for longitudinal outcome prediction, especially in the subjects with similar fun-
dus images that may have different future trajectories due to their genetic dif-
ferences. Therefore, we design our framework such that the single-modal model
learns to infer outcome-related representations of auxiliary modalities using its
representations for the main modality from its multimodal colleague using a
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Riemannian adversarial training scheme. After that, it combines them to make
the predictions. In addition, we use entropy regularization during the pretrain-
ing stage of the multimodal model to prevent it from neglecting noisy auxiliary
modalities and focusing only on the main one. Our contributions can be sum-
marized as follows:

– We introduce a new framework to simultaneously diagnose current status
and predict the longitudinal outcome of subjects for disease progression by
developing a model that only requires the main diagnostic modality – col-
lected at current visit – for its predictions while properly leveraging auxiliary
modalities available in the training set to enhance final model’s performance.

– We propose to model the complex relationship of representations of the main
modality and auxiliary ones by Riemannian Generative Adversarial Networks.

– We design a functional entropy regularized pretraining scheme for the mul-
timodal model to prevent it from shortcut learning to discard the auxiliary
modality and only use the more informative main modality.

2 Related Work

Multi-Modal Learning (MML): MML combines knowledge from several
modalities to enhance predictions for a target task. It has achieved significant
results in domains such as video understanding and visual question answer-
ing that leverage several types of visual, audial, or textual data [2,17,22–
24,28,35,39,44,50,56,67,70,79]. However, these works assume that all modalities
are present during training and inference which limits their direct application in
medical problems that missing modalities are a common challenge in them. A
popular workaround is to reconstruct and impute missing modalities using avail-
able ones [14,47,57,61,64,66,76]. However, reconstruction of extremely high-
dimensional modalities such as genetics (∼1.6 ×105 dimensional in our problem)
is not practical in healthcare problems with limited training data. Further, pre-
dicting some modalities from others may not always be feasible. For instance,
prediction of one of RGB and thermal images [76] from the other is sensible,
but reconstruction of whole-genome sequence from fundus images of eyes is not.
Another group of methods proposes variational approaches to deal with miss-
ing modalities and model the joint posterior of representations of modalities as a
product-of-experts [74]. Lee and Van der Schaar [42] use this method to integrate
multi-omics data and train modality-specific predictors to ensure representations
of individual modalities are learned faithfully. Nevertheless, a modality-specific
predictor is not reasonable in the longitudinal prediction of disease outcome for
modalities such as genetics that are static while the disease status of a subject
may change in time. This is the case for the method of Wang et al. [69] as well
that trains modality-specific classifiers with incomplete data pairs and train a
final multi-modal model using limited complete pairs while distilling [27,34,45]
the knowledge of pretrained models in it.

Deep Mutual Learning (DML): In a nutshell, two or several models are
trained simultaneously in DML such that each model gets supervision from
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training labels and predictions/representations of other models. Zhang et al. [81]
introduced DML and showed it has better image classification performance com-
pared to knowledge distillation [27,34,45] methods. Since then, different types
of DML for various applications such as image classification [31,41,59,73], semi-
supervised learning [75], self-supervised learning [8,68], and object detection [54]
have been proposed. These models are not suitable for our problem as they train
two models with the same input modality. Recently, Zhang et al. [80] proposed
a multimodal image segmentation model to train two single-modal models in a
DML manner. However, their multimodal DML idea is designed for problems
that their modalities are two ‘views’ of the same phenomenon, not ‘complemen-
tary’ modalities such as CFP and genetics for AMD that CFP contains the
majority of the diagnostic signal while noisy genetics input only complements
the knowledge from CFP.

Age-Related Macular Degeneration (AMD): In this paper, we analyze the
retinal imaging genetics data which were collected to study the AMD disease and
are a good testing platform to evaluate our new method. AMD is a chronic dis-
ease [46] that causes the progressive decline of vision due to the dysfunction of
the central retina in older adults and is the major root of blindness in elder
Caucasians [9,16,65]. Based on a scale called AMD severity score, three stages
are defined for AMD: early, intermediate, and late (advanced) [19]. The severity
score is determined by exploring characteristics of the Color Fundus Photographs
(CFP) of subjects. The main symptom of the early and intermediate stages is
the presence of yellowish deposits called ’drusen’ in the retina, and most patients
are asymptomatic in them [5,29]. The irreversible stage that is accompanied by
severe vision loss is late AMD that appears in two forms: ‘Dry’ and ‘Wet’. In
Dry AMD (Geographic Atrophy), accumulation of drusen in the retina decreases
its sensitivity to light stimuli and causes gradual loss of central vision. In Wet
AMD (Choroidal Neovascularization), the growth of leaky blood vessels under
the retina damages photoreceptor cells and affects visual acuity. GWAS studies
have shown that genetic and environmental factors are critical elements associ-
ated with AMD [20,21,71] and its progression time [77]. In recent years, multiple
deep learning based predictive models are proposed for AMD. They have two
categories: 1) diagnostic models that predict AMD severity of a subject based on
their CFP taken at their current visit [11–13,29,38,52]. Although these models
have shown convincing performance for the diagnosis task, they cannot predict
subjects’ longitudinal outcome that is crucial information for clinicians to start
preventive treatments for vulnerable subjects. 2) Models predicting whether a
subject progresses into late AMD in less than ‘n’ years [10,53,78], where ‘n’ is
a predefined value. Nonetheless, if their answer is yes, they do not provide any
information about whether the subject is already in advanced AMD or they will
progress to it in the future. Furthermore, the majority of previous works are
single-modal based on CFPs that waste genetic modality in training datasets
or they are multi-modal [53,78] taking CFPs and 52 AMD-associated variants
[77] which limits their practicality because they need genetic modality in their
inference phase.
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3 Proposed Method

We develop an adversarial mutual framework capable of utilizing auxiliary
modalities (genetics and age) available in training set to improve the training
of a single-modal model (using only main modality (CFP)) that simultaneously
addresses main queries regarding a subject’s status when a chronic disease is
concerned that are: 1) the current status of a subject (e.g., current AMD sever-
ity) and 2) how their status will change until their next visit (e.g., how their
AMD severity score will change in the near future, i.e., longitudinal outcome)
if they maintain their current lifestyle and disease progression trajectory. This
knowledge empowers practitioners to start early treatment to decelerate the dis-
ease progression for susceptible subjects. We explain the intuitions behind our
model step by step in the following subsections using AMD terminologies, but
as we noted, it is applicable for similar diseases as well. Our procedure can be
seen in Fig. 1.

Fig. 1. Overview of our framework. Left: pretraining of our multimodal M-model.
Color Fundus Photographs (CFP) and genetics information of subjects and are used
to train the model. CFP contains the majority of the ’diagnostic signal’ related to
AMD. Thus, to prevent the model to get biased toward CFP and discard the genetic
modality, we impose entropy regularization using a Gaussian measure on the model
during training. (Sect. 3.3) Right: mutual learning of our single-modal S-model (top)
with the pretrained M-model (bottom). S-model learns from the M-model to infer joint
AMD-related representations of the genetics and demographics modalities - using its
representations for an input CFP - using a Riemannian GAN model. The backbone
of the S-model gets initialized by the weights of the CFP-Net of the M-model, and
the M-model evolves during training by updating its CFP-Net using the exponential
moving average of the weights of the S-model’s backbone. (Sect. 3.3)
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3.1 Problem Formulation

We formulate our prediction task as a classification problem. Considering AMD
severity condition of a subject in their current and next visits (with a pre-defined
time gap Tgap between them e.g., Tgap = 3 years), we define three classes: 1)
y = 0 if a subject is not in the advanced AMD condition and will not progress
to it until their next visit. 2) y = 1 if they are not currently in the advanced
stage but will progress to advanced AMD until their next visit. 3) y = 2 if they
have already progressed to the advanced phase. As there is no treatment for late
AMD yet, [65] the fourth case for (current, next) ∼ (advanced, not advanced) is
not possible. Our goal is to develop a model that accurately classifies subjects
into one of the mentioned classes based on their current visit’s CFP images. This
formulation enables us to overcome the challenge of heterogeneity of time gaps
between consecutive visits for subjects in longitudinal datasets. For instance, we
can use records of a subject at visit numbers {1, 3, 7, 9} to train a model with
Tgap = 2 with pairs {(1, 3), (7, 9)}, but a sequence model should handle uneven
time gaps (2, 4, 2) between successive visits.

3.2 Notation

Let us assume that we have a longitudinal dataset such as AREDS [60] in which
each subject has a random number of records corresponding to the visit time
points that their data is collected during the study. We denote the training
dataset as D = {(xig , {(xif ,tj , yi,tj )})|i ∈ [N ], tj ∈ Ti, Ti ⊆ T} where N is the
number of subjects, T is the set of all possible visit indices during the study,
Ti is the set of available visit indices for the i-th subject, xif ,tj is the fundus
image of the subject taken during the visit with index tj , and xig is the genetic
modality of the subject, which is static. For example, in the AREDS dataset
[60], examinations are performed every six months, and the maximum follow-up
study length for a subject is 13 years (26 visits). Thus, T = {1, 2, · · · , 26} is the
set of all possible visit numbers. In addition, we denote our single-modal model
as S-model and multimodal on as M-model in the rest of the paper.

3.3 Longitudinal Predictive Model

We introduce an adversarial mutual learning framework in which the single-
modal S-model learns from a pretrained multi-modal M-model model to 1) infer
outcome-related joint representation of genetics and demographics (age) from
its representations for input CFPs using a Riemannian GAN model - inspired
by studies [20,21,71,77] that have established high association between these
modalities and AMD severity outcome that make it reasonable to incorporate
such prior in our model - and 2) combining the predicted representation and
the one for the visual modality to solve longitudinal outcome classification task
in the course of a mutual training scheme [31,81] that benefits both models. In
summary, our algorithm consists of pretraining the multimodal M-model and
Mutual training the S-model along with the M-model. We describe details of
each one in the following.
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M-model Pretraining: We use a multimodal M-model to guide the training
process of the S-model in a mutual learning fashion. The architecture of the M-
model is shown in Fig.1. It consists of two sub-networks: 1) CFP-net: ResNet
[33] backbone for CFP modality and 2) GD-net: a feed-forward model that
combines genetics as well as demographics (age) modalities to obtain a joint
outcome-related representation for them. Finally, obtained representations are
combined in an early fusion [7] scheme and passed to a classifier to perform
prediction.

As the number of samples in the case group (advanced AMD condition) is far
less than the control group in our problem, our classification problem is imbal-
anced. We use Focal loss [43] to train the M-model because it down-weights the
contribution of ’simple’ examples from majority classes (e.g., control cases with-
out any symptoms that the model can easily classify) in the loss function that
the model is already confident about them. Formally, given yi is the correct class
corresponding to a sample x and pi = Pmodel(y = yi|x = x) be the predicted
conditional probability of our teacher model for class yi given x, Focal loss for
the training sample (x, y) is calculated as

Lfocal(x, y) = −(1 − pi)γ log(pi) (1)

where γ is a hyperparameter controlling the down-weighting factor. As can be
seen, Focal loss is a scaled version of Cross-Entropy loss that has a lower value
for confident predictions of the model.

As we mentioned, the CFP of subjects contains the majority of the ‘diag-
nostic singal’ regarding their AMD status, and the genetics modality provides
complementary knowledge with a much lower signal-to-noise ratio compared to
the CFP modality. Therefore, directly training the model with Focal loss and
standard regularization schemes for deep learning training such as �2-norm of
weights that prefers networks with simpler structures may bias the model to dis-
card the genetic modality and only focus on the CFP one. This phenomenon has
been observed in the literature for domains such as visual question answering
[2,17,28]. To overcome this problem, we use functional entropy regularization
that balances the contribution of modalities. The intuition is that if our model’s
predictions show high entropy when we perturb a modality, then it is not bypass-
ing the modality. Formally, given a probability measure μ over the space of input
x of a non-negative function g(x), functional entropy of g is defined as [6]:

Ent(g) =
∫

g(x) log(g(x))dμ(x) −
∫

g(x)dμ(x) log(
∫

g(x)dμ(x)) (2)

However, the calculation of the RHS of this equation is intractable. As a
workaround, Logarithmic Sobolev Inequality [6,24] is calculated as an upper
bound of the functional entropy for Gaussian measures μ:

Ent(g) ≤ 1
2

∫ ||∇g(x)||2
g(x)

dμ(x) (3)

In our problem, we define g as a measure of a discrepancy between the softmax
output distribution of the M-model when the original genetics modality and its
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Gaussian perturbed version of it are inputted to the model while keeping the
input CFP fixed. In other words, given an input sample x = (xf , xg):

Pmodel(y|x = (xf , xg)) = (p1, · · · , pK)
Pmodel(y|x = (xf , xg + ε)) = (p′

1, · · · , p′
K), ε ∼ N (0, Σxg

),

g(x, ε) � 1
K

K∑
j=1

BCE(pj , p
′
j)

(4)

The function g defined in Eq. (4) can represent the sensitivity of the model’s
predictions to Gaussian perturbations of the genetic modality. Now, we plug g
into Eq. (3) and define a loss function Lent which encourages the model to have
high functional entropy w.r.t its genetics input:

Lent = −1
2

∫ ||∇g(x, ε)||2
g(x, ε)

dμ(ε) . (5)

In practice, we estimate the integral using Monte Carlo sampling, i.e., we approx-
imate it with one σ for each sample. In addition, we set Σxg

as a diagonal covari-
ance matrix with diagonal elements being the empirical variance of samples in
the batch in each iteration.

Mutual Learning of S-model and M-model: After pretraining the M-
model, we develop a training scheme based on mutual learning to train the
S-model. As shown in Fig. 1, S-model has a backbone identical to CFP-net in
M-model and a ‘predictor’ module. We aim to embed two prior medical knowl-
edge into the inductive bias of our model that are: 1) high association between
AMD severity and genetic variants [20,21,71,77]. 2) the ability of fundus images
to predict the age of subjects [72]. To do so, we use the predictor module inside
the S-model to predict representations of GD-net of the M-model. This predic-
tion will be in a much lower dimensional space than reconstructing/imputing
the whole genetic and age modalities together [14,47,57,61,64,76], and thus, is
more sample efficient. The distribution of joint representation of genetics and
age given the representation of CFP images may be multimodal, i.e., the map-
ping between them not necessarily be bijective. Thus, we train the predictor
sub-network of the S-model using Generative Adversarial Networks (GAN) that
are capable of modeling complex high dimensional distributions [3,26,30].

Modeling Interactions Between Representation of a CFP and Cor-
responding Joint Representation of Genetics and Age: We formulate
learning such complex interaction with Riemannian GAN [51,58] training. In
summary, GAN [3,26,30,51,58] models are trained using a two-player game in
which a generator model G aims to learn the underlying distribution of a set of
samples in the training set to trick a discriminator model D that distinguishes
whether its input is real or a fake one generated by G. As the training pro-
cess advances, the generator learns the distribution of training samples, and the
discriminator will not be able to differentiate between real and fake samples
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generated by G. Conventional GAN models’ discriminators [26] measure the dis-
tance between real and fake samples using Euclidean distance between their low
dimensional embeddings. However, it is shown that [4,18] such distance may not
faithfully reflect distances of data points as it is well-known that high dimen-
sional real-world data is not randomly distributed in the ambient space and
are often restricted to a nonlinear low-dimensional manifold [63] with unknown
intrinsic dimension. Therefore, Riemannian GAN models’ discriminators, project
low dimensional representations of samples on a Riemannian manifold such as
hypersphere [51,58] and calculate distances between them with the length of
geodesics connecting them on the manifold. Distances on hypersphere are lim-
ited which makes the training stable, and it is shown that [51] training GAN
with geodesic distances on hypersphere is equivalent to minimizing high order
Wasserstein distances between real and fake distributions and generalizes meth-
ods that minimize the 1-Wasserstein distance [3,30].

Formally, we define a unit hypersphere with a center c and the main axis
direction u (c, u ∈ R

d) that are learnable. Given a joint representation on genetics
and age (can be real predicted by GD-net of M-model or fake one by predictor
of S-model) input h ∈ R

D (D > d) to the discriminator, it projects h into a
d-dimensional space using nonlinear layers to obtain an embedding g. Then, it
projects g on the unit sphere with center c such that gproj = g−c

||g−c|| . Now, let’s
consider circular cross-sections of the hypersphere that the main axis u of the
hypersphere is the normal vector of the surface that they lie in. The idea is that
if the discriminator gets designed to distinguish between real and fake samples
based on the closeness of the cross-section that they lie on to the greatest circle
of the hypersphere - i.e., the larger the radius of the cross-section that a sample
lies on, more realness score is assigned to it - then the generator will attempt
to generate samples that are on the largest circle of the hypersphere. Therefore,
it will be able to generate more diverse samples, which prevents mode collapse.
Given a batch of samples H = {hi}B

i=1, we calculate gj
proj for each sample hj and

decompose it as gj
proj = gj

proj,u + gj
proj,u⊥ . The output score of the discriminator

for a sample hj is calculated as:

D(hj) = −||gj
proj,u||

σproj,u
+

||gj
proj,u⊥ ||

σproj,u⊥
(6)

where σproj,u and σproj,u⊥ are empirical variances of ||gj
proj,u|| and ||gj

proj,u⊥ ||
respectively. We use the relativistic objective [37] to train the GAN model. In
a nutshell, it is designed such that the generator not only attempts to increase
the score of the discriminator for fake samples, but also aims to decrease its
score for real samples. If we denote joint representations of GD-net in M-model
by h ∼ PGD and the ones predicted by the predictor model of S-model with
h′ ∼ Ppred, objectives of G (predictor in S-model) and discriminator D are as
follows:
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LD = max
D

Eh∼PGD
[log(f(D(h) − Eh′∼Ppred

[D(h′)]))]

+Eh′∼Ppred
[log(f(Eh∼PGD

[D(h)] − D(h′)))] (7)

LG = max
G

Eh′∼Ppred
[log(f(D(h′) − Eh∼PGD

[D(h)]))]

+Eh∼PGD
[log(f(Eh′∼Ppred

[D(h′)] − D(h)))] (8)

where f(z) = sigmoid(λz) calculates the discriminator’s estimated probability
that one/batch of real sample[s] is/are more realistic than a batch/one fake
one[s], and λ is a hyperparameter [37]. We train the parameters for the main
axis u and center c as follows. In each iteration, given a batch of real and fake
samples H = {hi}B

i=1, at first, we update the center parameter with:

Lc =
1

|B|
|B|∑
j=1

H(||gj
proj − c||2) (9)

H is the Huber function [36], and the objective estimates the center of the
hypersphere given a batch of samples. Then, we fix the center parameter, and to
make the training of the center parameter stable, we encourage the discriminator
to map samples to embeddings with similar distances relative to the center, i.e.,

Ldist =
1

|B|
|B|∑
j=1

H(||gj
proj − c||2 − σh) (10)

where σh is the empirical standard deviation of ||gj
proj − c||2 distances from pro-

jected embeddings to the center. Parameters of the main axis u and discriminator
are updated with backpropagated gradients from loss functions in Eqs. (7, 10).

We train the S-model’s classifier to combine its representation for CFP and
the predicted joint one for genetics and demographics modalities to accurately
classify subjects’ status. Firstly, we use Focal loss [43] defined in Eq. (1) to
leverage training labels. Secondly, we use a distillation loss [34] to guide the
S-model using predictions of the M-model:

Ldistill = KL(PS(y|x;T ),PM (y|x;T )) (11)

where the parameter T is a temperature parameter that controls the sharpness
of output softmax distributions of models. In summary, the training objective
for S-model’s training is:

LS = Lfocal + λ1Ldistill + λ2LG (12)

Before starting training the S-model, we initialize its backbone with the
weights of the pretrained M-model’s CFP-net to make the convergence faster.
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As adversarial training may cause instability and degradation of the backbone’s
representations [15,25,62], we do not backpropagate gradients from adversarial
training for the backbone’s weights. Instead, we train them using supervision
from Focal loss and distillation loss. Finally, as shown that mutual learning ben-
efits from both models getting feedback from their peers, we update M-model’s
CFP-net’s weights with exponential moving average (EMA) of the backbone of
the S-model, i.e., after each iteration, we update CFP-net’s weights as:

θCFP ← αθCFP + (1 − α)θBackbone (13)

Doing so prevents corruption of the weights of pre-trained M-model happening
when using well-known distillation loss from S-model to M-model [31,81] in
the starting phase of training as S-model’s predictions are not reliable yet. We
summarize our training algorithm in supplementary materials.

4 Experiments

In this section, we evaluate the effectiveness of our proposed adversarial mutual
learning method on the task of simultaneously grading the current AMD severity
of a subject as well as predicting their longitudinal outcome in their next visit
when the predefined time gap between visits are 2, 3, and 4 years respectively.
We compare our model with baseline methods, provide its interpretations, and
perform an ablation study to analyze the effect of its different components.

4.1 Experimental Setup

Data Description: We use Age-related Eye Disease Study (AREDS) dataset
[60] for our experiments, which is the largest longitudinal dataset available for
AMD collected and maintained by National Eye Institute (NEI). It is available
at the dbGaP1 AREDS contains longitudinal CFPs of 4628 participants, and a
subject may have up to 13-year follow-up visits since the baseline. For prepro-
cessing step, we cropped each CFP to a square that encompasses the Macula
[13,52] and resized it to 224×224 pixels resolution. As mentioned in Sect. 1, the
yellowish color of drusen in the Macula and the red color of leaky blood vessels
are important characteristics of dry and wet AMD respectively. Thus, we use
a nonlinear Bézier augmentation [82] - previously proposed for CT scans and
X-ray data - followed by random vertical and horizontal flip to augment CFPs.
In addition to CFPs, genome sequence of 2780 (∼60%) subjects is available in
AREDS. We use all the genetic variants that are in the 34 loci regions [21] asso-
ciated with advanced AMD with minor allele frequency (MAF) > 0.01 [21], and
156,864 SNPs remain after filtering. We then partition the AREDS dataset on
the subject level and take all subjects that their genetics information is available

1 https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study id=phs000001.
v3.p1.

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000001.v3.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000001.v3.p1


Multi-modal Genotype and Phenotype Mutual Learning 221

as our train set. We randomly partition the rest into two halves for our valida-
tion and test sets. We refer to supplementary materials for more details about
our data preparation.

Baselines: We compare our method against previous mutual learning and
knowledge distillation methods in the literature. DML [81] trains two mod-
els from scratch with different initialization such that each model is trained with
a loss function that is the sum of two terms, namely Cross-Entropy loss and
KL-divergence between the distributions predicted by the model and its peer.
KDCL [31] improves DML by using ‘ensemble’ of models’ predictions instead of
prediction of the peer model in the KL-divergence term. We use two ensemble
schemes for KDCL, namely ‘min-logit’ and ‘mean’. KD [34] distills the knowl-
edge in the powerful large pretrained model, called teacher model, into a model,
student, by training the student model using KL-divergence loss between its
predictions and the ones for the teacher model. In addition, to show the effec-
tiveness of leveraging ‘complementary’ knowledge in the genetics modality, we
compare our model with single-modal baselines such that we train a ResNet
architecture with Focal loss and Cross-Entropy loss. We denote these two cases
in our experiments as Base-Focal and Base-CE.

Training and Evaluation: We use multi-class Area Under Curve (AUC)
introduced by Hand and Till [32] as our evaluation metric because it is suit-
able for imbalance classification problems and has been used in AMD litera-
ture [13,52,53,78]. We pretrain our M-model for 10 epochs with batch size 128.
Then, we train S-model mutually with M-model for 10 epochs with batch size 32.
We use the same architectures for two sub-networks of all other mutual learning
and knowledge distillation methods, and we use the architecture of our S-model
for Base-CE/Focal. By doing so, we reduce the effect of architectural design and
can more readily compare the methods. For a fair comparison, we train all base-
line models for 20 epochs with batch size 128. We use Adam optimizer [40] with
learning rate 0.0003, exponential decay rates (β1, β2) = (0.9, 0.99), and weight
decay 0.0001 for all models except for the parameters of the S-model’s predictor
and discriminator that we set (β1, β2) = (0.5, 0.999), and also, initialize their
parameters with normal distribution with zero mean and std of 0.02. We refer
to supplementary materials for more details of experiments.

4.2 Experimental Results

Comparison with Baselines Models. Table 1 summarizes the performance
of baseline methods and our adversarial mutual learning scheme for simultane-
ously grading and longitudinal prediction of AMD status of subjects. We explore
baseline methods in two settings: 1) genetics modality is incorporated in their
training where a multimodal network is trained along with a single-modal one,
and we denote them with (M ↔ S). 2) only CFP is used in their training, and
two single-modal models are trained together that are shown by (S ↔ S). It can
be seen that mutual learning models consistently outperform knowledge distil-
lation and standard single-network training baselines Base-CE/Focal, which is
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consistent with observations for natural image classification tasks. [31,81] Inter-
estingly, Base-Focal has a competitive or even better performance compared to
KD (S ↔ S) and shows better results compared to Base-CE, which shows the
superior ability of the Focal loss [43] to handle long-tailed distributions com-
pared to Cross-Entropy loss. In all cases except KDCL-MinLogit with 2 years
gap, incorporating the genetics modality in the training procedure of the meth-
ods enhances the performance of the final single-modal model in inference, which
supports our hypothesis that the genetics modality can provide supervision that
is beneficial to the model’s training. Furthermore, our model outperforms mutual
learning models in all three cases of 2, 3, and 4 years gap between visits that
demonstrates our model can more effectively ‘denoise’ the highly noisy genetics
modality during training compared to other baselines and properly learn to pre-
dict AMD related joint representation of genetics and demographics modalities
from its own one for an input CFP and combine them to perform longitudinal
prediction.

Table 1. Comparison of our proposed method with baseline methods. Mean and stan-
dard deviation of 5 runs with different initialization are reported.

Time gap 2 years 3 years 4 years

Method Using auxiliary
modality

AUC

KDCL - MinLogit (M ↔ S) [31] � 0.882 ± 0.003 0.881 ± 0.004 0.889 ± 0.003

KDCL - MinLogit (S ↔ S) [31] × 0.883 ± 0.004 0.880 ± 0.003 0.886 ± 0.004

KDCL - Mean (M ↔ S) [31] � 0.876 ± 0.005 0.881 ± 0.003 0.889 ± 0.002

KDCL - Mean (S ↔ S) [31] × 0.869 ± 0.004 0.874 ± 0.003 0.886 ± 0.005

DML (M ↔ S) [81] � 0.879 ± 0.002 0.877 ± 0.004 0.898 ± 0.003

DML (S ↔ S) [81] × 0.872 ± 0.004 0.874 ± 0.004 0.896 ± 0.004

KD (M ↔ S) [34] � 0.872 ± 0.002 0.877 ± 0.003 0.888 ± 0.003

KD (S ↔ S) [34] × 0.867 ± 0.003 0.873 ± 0.001 0.884 ± 0.001

Base-CE × 0.862 ± 0.005 0.867 ± 0.005 0.877 ± 0.005

Base-focal × 0.866 ± 0.003 0.877 ± 0.005 0.881 ± 0.008

AdvML (ours) � 0.896 ± 0.001 0.899 ± 0.001 0.914 ± 0.001

Interpretation of S-model’s Predictions Figure 2 demonstrates Grad-CAM
[55] saliency maps of our S-model. As mentioned in Sect. 1, the main charac-
teristics of AMD in CFPs are the accumulation of yellow deposits called drusen
in the Macula of an eye as well as the growth of leaky blood vessels under the
retina that cause leakage of blood on photoreceptor cells. Saliency maps in Fig.
2 indicate that our S-model looks for these characteristics in the Macula for
decision making, which is aligned with the clinical practice.

Ablation Study: In this section, we perform an ablation study to explore the
effect of each component of our model. We remove entropy regularization in M-
model’s pretraining and the GAN training component in the mutual learning
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both separately and simultaneously. Table 2 summarizes the results. We can
observe that removing entropy regularization for the genetics modality causes
more severe performance degradation for our model, which highlights its impor-
tance to properly ‘debias’ the multimodal model to not neglect the genetics
modality and only rely on the CFPs and effectively denoise it to extract its
discriminative features for classification.

Fig. 2. Grad-CAM [55] saliency maps of our S-model’s decisions. It focuses on the
Macula region of the eyes and AMD symptoms, namely leaky blood vessels in the
retina and yellow deposits in the Macula called drusen, which is aligned with clinical
practice. Left: neither drusen nor leaky vessels are present in the Macula. Middle:
Small areas of accumulation of drusen are observable. Right: leaked blood in the retina
(top) and large areas of drusen (bottom) in the Macula exist.

Table 2. Ablation experiments’ results for different components of our method.

Time gap 2 years 3 years 4 years

Ablation experiment AUC

W/O Ent Reg 0.880 ± 0.000 0.885 ± 0.001 0.887 ± 0.002

W/O GAN 0.881 ± 0.001 0.889 ± 0.002 0.903 ± 0.002

W/O Ent Reg & GAN 0.871 ± 0.002 0.879 ± 0.003 0.882 ± 0.001

5 Conclusion

In this paper, we introduced a new adversarial mutual learning framework that
is capable of leveraging several auxiliary diagnostic modalities (containing com-
plementary diagnostic signals that are collected in the training set and missing
in inference) to train a more accurate single-modal model which uses the main
modality (that provides the majority of diagnostic signal and is available in both
training and inference) for inference. To do so, the single-modal model is trained
with a pretrained multimodal model in a mutual learning manner. We imposed
entropy regularization on the multimodal model during its pretraining to encour-
age it not to neglect the auxiliary modality in its decisions and learn to ‘denoise’
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them to keep their discriminative information. Our single-modal model learns
from the multimodal one to infer joint representation of the auxiliary modalities
from its representation for the main modality and effectively combine them for
its predictions. We modeled the complex interaction between modalities using
a Riemannian GAN model and defined our classification task as simultaneously
diagnosis of the current status of a subject as well as predicting their longitudi-
nal outcome. We applied our method to the problem of early detection of AMD
in which our experiments on the AREDS dataset and our ablation study demon-
strated the superiority of our model compared to baselines and the importance
of each component for our model.
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Abstract. Minimum flow decomposition (MFD)—the problem of find-
ing a minimum set of paths that perfectly decomposes a flow—is a classi-
cal problem in Computer Science, and variants of it are powerful models
in multiassembly problems in Bioinformatics (e.g. RNA assembly). How-
ever, because this problem and its variants are NP-hard, practical mul-
tiassembly tools either use heuristics or solve simpler, polynomial-time
solvable versions of the problem, which may yield solutions that are not
minimal or do not perfectly decompose the flow. Many RNA assemblers
also use integer linear programming (ILP) formulations of such practical
variants, having the major limitation they need to encode all the poten-
tially exponentially many solution paths. Moreover, the only exact solver
for MFD does not scale to large instances, and cannot be efficiently gen-
eralized to practical MFD variants.

In this work, we provide the first practical ILP formulation for MFD
(and thus the first fast and exact solver for MFD), based on encoding all
of the exponentially many solution paths using only a quadratic number
of variables. On both simulated and real flow graphs, our approach runs
in under 13 s on average. We also show that our ILP formulation can be
easily and efficiently adapted for many practical variants, such as incor-
porating longer or paired-end reads, or minimizing flow errors.

We hope that our results can remove the current tradeoff between the
complexity of a multiassembly model and its tractability, and can lie at
the core of future practical RNA assembly tools. Our implementations
are freely available at github.com/algbio/MFD-ILP.
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1 Introduction

Flow decomposition (FD), the problem of decomposing a network flow into a
set of source-to-sink paths and associated weights that perfectly explain the flow
values on the edges, is a classical and well-studied concept in Computer Science.
For example, it is a standard result that any flow in a directed acyclic graph
(DAG) with m edges can be decomposed into at most m weighted paths (see, e.g.,
[1]). However, finding an FD with a minimum number of paths (MFD) is NP-
hard [47], even on DAGs. This result was later strengthened by [14] who proved
that MFD is hard to approximate (i.e., there is some ε > 0 such that MFD cannot
be approximated to within a (1+ε) factor, unless P = NP). More recent work has
shown that the problem is FPT in the size of the minimum decomposition [21],
and that it can be approximated with an exponential factor [31]. It is also possible
to decompose all but a ε-fraction of the flow within a O(1/ε) factor of the
optimal number of paths [14]. Heuristic approaches to the problem have also
been developed, particularly greedy methods based on choosing the widest or
longest paths [47], which can be improved by making iterative modifications
to the flow graph before finding a greedy decomposition [40]. But despite this
history of work on algorithms for MFD, an exact solver that is fast for instances
with large optimal solutions or large flow values remains elusive.

FD is also a key step in numerous applications. For example, some network
routing problems (e.g. [7,14,15,31]) and transportation problems (e.g. [33,34])
require FDs that are optimal with respect to various measures. MFDs in
particular are used to reconstruct biological sequences such as RNA tran-
scripts [4,10,36,43,44,53], and viral quasispecies [3]. However, because MFD
is NP-hard, all of these tools in fact use heuristics or solve some simpler version
of the problem ignoring some information that is available from the sequencing
process, resulting in tools that may not reconstruct the correct sequence, even
if no other errors are present. More broadly, it has been noted [32] that the lack
of exact solvers for many of the sub-problems involved in DNA sequencing has
led to heuristic and ad hoc tools with no provable guarantees on the quality of
solutions. Additionally, some authors [4,6] have noted that there is a tradeoff
between the complexity of the model for RNA assembly (i.e., how much of the
true possible solution space that it supports) and its tractability. But if a fast
exact solver for MFD exists, this tradeoff may not be necessary.

1.1 Minimum Flow Decomposition in Multiassembly

The main bioinformatics motivation for this paper is multiassembly [55]. In this
problem, we seek to reconstruct multiple genomic sequences from mixed samples
using short substrings (called reads) generated cheaply and accurately from next-
generation sequencing technology. The two major multiassembly problems are
RNA assembly and viral quasispecies assembly, which we describe below.

One mechanism by which complex organisms create a vast array of proteins is
alternative splicing of gene sequences, where multiple different RNA transcripts
(that are then used to produce different proteins) can be created from the same
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gene [41]. In humans, over 90% of genes are believed to produce multiple tran-
scripts [51]. Reconstructing the specific RNA transcripts has proved essential in
characterizing gene regulation and function, and in studying development and
diseases, including cancer; see, e.g., [20,38]. A second multiassembly problem
is the reconstruction of viral quasispecies, for example, the different HIV or
hepatitis strains present in a single patient sequencing sample, or the different
SARS-CoV-2 strains present in a sewage water sample. Because viruses evolve
quickly, there can be many distinct strains present at one time, and this diversity
can be an important factor in the success or effect of the virus [48].

While the biological realities underlying the different multiassembly prob-
lems may yield some differences in how the problems can be solved, at their
heart many approaches contain the algorithmic step of decomposing a network
flow into weighted paths. The basic setup and approach for multiassembly is as
follows. Given a sample of unknown sequences, each with some unknown abun-
dance (for example, a set of RNA transcripts or virus strains), all sequences are
multiplied and then broken into fragments that can be read by next-generation
sequencers to produce millions of sequence reads ranging from hundreds to tens of
thousands DNA characters in length. Many approaches are reference-based (e.g.,
[4,22,24,30,36,43,46] for RNA assembly and [45,56] for viral quasispecies assem-
bly), meaning that they use a previously-constructed reference genome to guide
the assembly process. These approaches construct a graph using the sequences
contained in the reads where nodes are strings, edges represent overlaps, and
weights on edges give the counts of reads that support each overlap. Because a
reference is used, these graphs are always DAGs. In the non-reference case (called
de novo), graphs may have cycles; we address this further at the end of the paper.
If errors are minimal, the weights on the edges should form a flow on the network,
and the underlying sequences and their abundances must be some decomposi-
tion of the flow into weighted paths. For RNA assembly, recent work [21,54]
has confirmed the common assertion (e.g., by [22,26,28,29,39,43,58]) that the
true transcripts and abundances should be minimum flow decomposition. No
such study has been done for viral quasispecies assembly, but existing tools seek
minimum-sized decompositions [3,52]. However, while the abovementioned tools
seek minimum-sized flow decompositions, since MFD is NP-hard, they in fact
compute decompositions which are not guaranteed to be minimum (and thus
may not give the correct assembly, even if no other errors are present).

1.2 Limitations of Current ILP Solutions

One promising direction for fast exact solvers for MFD is integer linear program-
ming (ILP). Existing ILP solvers like Gurobi [11] and CPLEX [17] incorporate
optimizations that allow for fast runtimes in practice for problems that should
be hard in general (see also [12] for various applications of ILP in Bioinformat-
ics). Indeed, many existing multiassembly tools do use ILP to solve MFD as
one step in their process. The basic idea behind these existing formulations is to
consider some set of source-to-sink paths through the graph and assign each a
binary variable indicating whether or not it is selected in the optimal solution,
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along with constraints to fully encode the FD problem (i.e. that the selected
set of paths—with the weights derived for them by the ILP—form an FD) and
to model further practical aspects of the specific multiassembly problem. How-
ever, the number of paths in a DAG is exponential, meaning that if the tools
enumerate all paths (and thus can be guaranteed to find the true optimal solu-
tion) they are impractical for larger instances (e.g., Toboggan [21]). The most
common strategy is to pre-select some set of paths, either for all instances (e.g.,
vg-flow [3] and CLIIQ [26]), or only when the input is large (e.g., MultiTrans [58]
and SSP [37]). But by pre-selecting paths, these formulations may not find the
optimal MFD solution for the instance.

1.3 Our Contributions

We give a new ILP approach to the MFD problem on DAGs, and we show that it
can be used on both simulated and real RNA assembly graphs under conditions
used in many reference-based multiassembly tools. Our approach is:

Fast and Exact. We show in Sect. 3.1 that it is not necessary to enumerate all
paths in order to encode them in an ILP. The key idea is that any path must
have a conserved (unit) flow from its start to its end, and that this concept can
be encoded using only a number of variables that is linear in the size of the graph
(rather than exponential, as is the case when the model enumerates all possible
paths). This is a standard integer programming method for expressing paths in
DAGs, used for example in [42]. An implementation of our ILP formulation using
CPLEX finds optimal flow decomposition solutions on RNA assembly graphs
(simulated and assembled from real reads) in under 13 s on average, over all
the datasets tested. This is several times faster than the state-of-the-art MFD
solver Toboggan [21], depending on the dataset. While heuristic solvers such as
Catfish [40] or CoasterHeuristic [54] finish withing a few seconds, we show that
they do not provide optimum solutions. Another benefit of our ILP solutions is
that all optimum solutions can be reported by the ILP solver, thus potentially
helping in “identifying” the correct RNA multiassembly solution (practical issue
acknowledged by e.g. [18,27]).

Flexible. In practice, many multiassembly tools in fact solve variants of MFD.
For example, many tools account for paired-end reads by requiring that they be
included in the same path. Another common strategy is to incorporate longer
reads as subpath constraints or phasing paths [36,39,54] which again must be
covered by some predicted transcript (i.e. flow path). In Sect. 3.2, we give addi-
tional constraints that are expressive enough to not only encode paired-end reads
and subpath constraints, but also any generic set of edges that must be covered
by a single path (e.g., as when modelling the recent Smart-seq3 protocol produc-
ing RNA multi-end reads [13]). Additionally, due to sequencing or read mapping
errors, the weights on edges may not be a flow (i.e. flow conservation might not
hold). One approach in this case is to consider intervals of edge weights instead,
as in [37,53]. We give a formulation to handle this approach in Sect. 3.3. Our
implementation solves subpath constraint instances in similar time to standard



234 F. H. C. Dias et al.

instances, while the existing exact solver could not complete on many instances in
under 60 s. Moreover, while the existing interval heuristic is fast, it finds decom-
positions that are far from optimum. While all these additional constraints are
naturally expressed in ILP (further underlining the flexibility of our approach),
the novelty here is their integration with the ILP encoding of all possible paths
in the DAG from Sect. 3.1.

2 Preliminaries

Given a graph G = (V,E), with vertex set V and edge set E ⊆ V × V , we say
that s ∈ V is a source if s has no in-coming edges. Analogously, we say that
t ∈ V is a sink if t has no out-going edges. Moreover, we say that G is a directed
acyclic graph (DAG) if G contains no directed cycles.

Definition 1 (Flow network). A tuple G = (V,E, f) is said to be a flow
network if (V,E) is a DAG with unique source s and unique sink t, where for
every edge (u, v) ∈ E we have an associated positive integer flow value fuv,
satisfying conservation of flow for every v ∈ V \ {s, t}, namely:

∑

(u,v)∈E

fuv =
∑

(v,w)∈E

fvw. (1)

Given a flow network, a flow decomposition for it consists of a set of source-to-
sink flow paths, and associated weights strictly greater than 0, such that the flow
value of each edge equals the sum of the weights of the paths passing through
that edge. In other words, the superposition of the weighted paths of the flow
decomposition equals the flow of the network (see also Fig. 1). Formally:

Definition 2 (k-Flow Decomposition). A k-flow decomposition (P, w) for
a flow network G = (V,E, f) is a set of k s-t flow paths P = (P1, . . . , Pk) and
associated weights w = (w1, . . . , wk), with each wi ∈ Z

+, such that for each edge
(u, v) ∈ E it holds that: ∑

i∈{1,...,k} s.t.
(u,v)∈Pi

wi = fuv. (2)

Our above definitions assume integer flow values in the network and inte-
ger weights of the flow paths, as is natural since these values count the number
of sequenced reads traversing the edges, and are also consistent with previous
works such as [21]. However, in practical applications, one could have both frac-
tional flow values and flow path weights, as in e.g., [36]. Note also that the
integer and fractional decompositions to the problem may differ, for example
[47] observes that are integer flow networks which admit a k-flow decomposition
with fractional weights, but no k′-flow decomposition with integer weights, for
any k′ ≤ k.
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Fig. 1. Example of a flow network and of two flow decompositions of it.

3 ILP Formulations

3.1 Minimum Flow Decomposition

In this section we consider the following problem of finding a minimum-size flow
decomposition.

Problem 1 (Minimum flow decomposition (MFD)). Given a flow network G =
(V,E, f), the minimum flow decomposition (MFD) problem is to find a flow
decomposition (P, w) such that |P| is minimized.

Our solution for Problem MFD is based on an ILP formulation of a flow
decomposition with a given number k of paths (a k-flow decomposition). Using
this, one can easily solve the MFD problem by finding smallest k such that the
flow network admits a k-flow decomposition. Notice that any DAG admits a
flow decomposition of size at most |E|, see e.g., [1] (since one can iteratively
take the edge with smallest flow value and create an s-t path of weight equaling
this flow value). Moreover, if assuming integer weights, another trivial upper
bound on the size of any flow decomposition is |f |, namely the flow exiting s,
and there is always a flow decomposition with |f | paths of weight one. Thus,
if there is a k-flow decomposition, there is also a k′-flow decomposition, for all
k < k′ ≤ min{|E|, |f |} (just duplicate a path of weight greater than one, and
move weight one from the old copy to the new one). This shows that when
searching for the smaller k such that the graph admits a k-flow decomposition
we can either do a linear scan in increasing order, or binary search. Since k is
usually small in our applications, we just do a linear scan. As mentioned at the
end of Sect. 2, the problem can also be defined as allowing real flow values and/or
weights. Our ILP formulation can also handle this variant by just changing the
domain of the corresponding variables (in which case we will obtain a Mixed
Integer Linear Program (MILP))1.
1 We note that this version has one subtlety to address: as discussed below, it is

necessary to linearize products in the formulation to make it a true ILP (or MILP,
in this case). To linearize products of the real variables, it is required that the
real variables have closed bounds. However, if we solve k-FD for increasing k (and
not binary search), we can use wi ≥ 0, since no weight 0 path will be included.
This introduces the limitation that this formulation could not be used to solve flow
decomposition for a fixed k, but only if k is an upper bound on the solution size.
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Fig. 2. Example of the edge variables of the ith Eqs. (3a) to (3c).

We start by recalling the standard formulation of a path used for example
by [42] for the shortest path problem. If an s-t path repeats no edge (which is
always the case if the graph is a DAG) then we can interpret it simply as the set
of edges belonging to the path. If we assign value 1 for each edge on the path,
and value 0 for each edge not on the path, then these binary values correspond to
a conceptual flow in the graph (V,E) (different from the input flow). Moreover,
this conceptual flow induced by the (single) path is such that the flow out-going
from s is 1 and the flow in-coming to t is 1. It can be easily checked (cf. e.g., [42])
that if the graph is a DAG, then this is a precise characterization of an s-t path.

Thus, for every path i ∈ {1, . . . , k}, and every edge (u, v) ∈ E, we can
introduce a binary variable xuvi indicating whether the edge (u, v) belongs to
the i-th path. The above characterization of a path can be expressed by the
following equations (see also Fig. 2):

∑

(s,v)∈E

xsvi = 1, ∀i ∈ {1, . . . , k}, (3a)

∑

(u,t)∈E

xuti = 1, ∀i ∈ {1, . . . , k}, (3b)

∑

(u,v)∈E

xuvi −
∑

(v,w)∈E

xvwi = 0, ∀i ∈ {1, . . . , k},∀v ∈ V \ {s, t}. (3c)

Having expressed a set of k s-t paths with already known ILP constraints,
we need to introduce the new constraints tailored for the k-flow decomposition
problem. That is, we need to state that the superposition of their weights equals
the given flow in the network (2). Thus, for each path i we introduce a positive
integer variable wi corresponding to its weight, and add the constraint:

∑

i∈{1,...,k}
xuviwi = fuv, ∀(u, v) ∈ E. (4)

To get the ILP formulation, it remains to linearize equation (4), which is
nonlinear because it involves a product of two decision variables. Let us remark
that even though non-linear programming solvers exist (such as IPOPT [50]),
they are inefficient, do not scale to a large number of variables and are non-
professional grade. Instead, having an ILP formulation means that we can make
use of popular solvers such as CPLEX [17] and Gurobi [5].
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Since the decision variables involved in the product in Eq. (4) are bounded
(xuvi is binary and wi is at most the largest flow value of any edge), this equation
can be linearized by standard techniques as in e.g., [9] and [25]. For that, we
introduce the integer decision variable πuvi which represents the product between
wi and xuvi, and a constant w that is a large enough upper bound for any variable
wi (e.g., the largest flow value of any edge). As such, Eq. (4) can be replaced by
the following equations:

fuv =
∑

i∈{1,...,k}
πuvi, ∀(u, v) ∈ E, (5a)

πuvi ≤ wxuvi, ∀(u, v) ∈ E,∀i ∈ {1, . . . , k}, (5b)
πuvi ≤ wi, ∀(u, v) ∈ E,∀i ∈ {1, . . . , k}, (5c)
πuvi ≥ wi − (1 − xuvi)w, ∀(u, v) ∈ E,∀i ∈ {1, . . . , k}. (5d)

In these constraints, Eq. (5b) ensures that πuvi is 0 if xuvi is 0, and Eqs. (5c)
and (5d) ensure that πuvi is wi if xuvi is 1.

3.2 Subpath Constraints

In this section we consider the flow decomposition variant where we are also
given a set of subpath constraints that must appear (as a subpath of some path)
in any flow decomposition. Among all such decompositions we must find of one
with the minimum number of paths. In multiassembly, subpath constraints rep-
resent longer reads that span three or more vertices; they are used in popular
RNA assembly tools such as StringTie [22] and Scallop [39] and their usefulness
for that problem was confirmed empirically in [54]. Such subpath constraints can
also naturally model long RNA-seq reads, and we note that, as several authors
also acknowledge [2,49,57], long reads do not render the RNA assembly prob-
lem obsolete, because they do not always capture full-length transcripts (due
to the conversion from RNA to cDNA), and do not fully capture low-expressed
transcripts. Formally, the problem can be defined as follows (see also Fig. 3a).

Definition 3 (Flow decomposition with subpath constraints). Let G =
(V,E, f) be a flow network. Subpath constraints are defined to be a set of simple
paths R = {R1, . . . , R�} in G (not necessarily s-t paths). A flow decomposition
(P, w) satisfies the subpath constraints if and only if

∀Rj ∈ R,∃Pi ∈ P such that Rj is a subpath of Pi. (6)

Problem 2 (Min. flow decomposition with subpath constraints (MFDSC) [54]).
Given a flow network G = (V,E, f) and subpath constraints R, the minimum
flow decomposition with subpath constraints problem is to determine if there
exists, and if so, find a flow decomposition (P, w) satisfying (6) such that |P| is
minimized.
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Eq. (7a)).

Fig. 3. The flow network from Fig. 1 with a subpath constraint (which is satisfied by
the 4-flow decomposition from Fig. 1c, but not by the one in Fig. 1b), and example of
a path satisfying the constraint.

For this, we can expand the previous ILP formulation for k-Flow Decomposi-
tion to incorporate the conditions necessary to represent the subpath constraints.
Let R be the set of simple paths that are required to be part of at least one path
of the flow decomposition. For each Rj ∈ R, we introduce an additional binary
variable rij denoting the presence of the subpath Rj in the ith path. It clearly
holds that rij = 1 if and only if for each edge (u, v) in Rj we have that xuvi = 1.
Let |Rj | denote the length (i.e., number of edges) of subpath constraint Rj ,
which is a parameter (i.e. constant). The following inequalities guarantee that
each subpath constraint is satisfied by the flow decomposition (see also Fig. 3b):

∑

(u,v)∈Rj

xuvi ≥ |Rj |rij , ∀i ∈ {1, . . . , k},∀Rj ∈ R, (7a)

∑

i∈{1,...,k}
rij ≥ 1, ∀Rj ∈ R. (7b)

Remark 1. In the above ILP formulation we do not use the fact that the edges
of subpath constraint Rj are consecutive (i.e., form a path). Thus, the same
formulation applies also if the constraint consists of a pair of edge-disjoint paths
that must all occur in the same transcript, modelling paired-end Illumina reads,
or if it consists of a set of edge-disjoint paths (or simply of a set of edges), mod-
elling multi-end Smart-seq3 RNA reads [13]. More specifically, Eq. (7a) simply
characterizes when all edges of constraint Rj are covered by some flow path i,
and Eq. (7b) requires that at least one flow path satisfies the constraint Rj .

3.3 Inexact Flow

Another variant of the flow decomposition problem is when the given values on
the edges of the flow network do not satisfy the conservation of flow property.
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Instead, they are required to belong to a given interval, for each edge. Thus,
we are looking for an inexact flow decomposition, namely one such that the
superposition of its weights belongs to the given interval of each edge. This
model was studied in [53] and is used in the practical RNA assembler SSP [37],
which seeks a set of transcripts explaining the read coverage within some user-
defined error tolerance (i.e., interval around the observed weights) on all edges.

The problem is formally stated as follows.

Definition 4 (Inexact flow network). A tuple G = (V,E, f, f) is said to
be an inexact flow network if (V,E) is a DAG with unique source s and unique
sink t, where for every edge (u, v) ∈ E we have associated two positive integer
values fuv and fuv, satisfying fuv ≤ fuv.

Problem 3 (Minimum inexact flow decomposition (MIFD) [53]). Given an inex-
act flow network G = (V,E, f , f) the minimum inexact flow decomposition prob-
lem is to determine if there exists, and if so, find a minimum-size set of s-t paths
P = (P1, . . . , Pk) and associated weights w = (w1, . . . , wk) with wi ∈ Z

+ such
that for each edge (u, v) ∈ E it holds that:

fuv ≤
∑

i∈{1,...,k} s.t.
(u,v)∈Pi

wi ≤ fuv. (8)

In this variant, the same formulation as presented k-Flow Decomposition can
be expanded to accommodate the inexact flow component. By simply replacing
the flow conservation expressed in Eq. (4) (in the linearized form in Eq. (5a)),
with the following two constraints:

fuv ≤
∑

i∈{1,...,k}
πuvi ≤ fuv, ∀(u, v) ∈ E. (9)

Remark 2. Notice that Eq. (9) can be combined with Eqs. (7a) and (7b) to obtain
a solution if one needs to solve an inexact flow decomposition with subpath
constraints problem, further underscoring the versatility of the ILP solution in
handling various practical variants of the flow decomposition problem.

4 Experiments

Solvers. We denote by StandardILP and SubpathConstraintsILP our ILP for-
mulations for Problems 1 (MFD) and 2 (MFDSC), respectively.2 We imple-
mented these using the Cplex Python API under default settings. We compare
StandardILP with Toboggan, the implementation by [21] for their exact FPT

2 We refer the reader to the full version of this paper [8] for experiments on Problem 3
(MIFD) in comparison with IFDSolver, which is an implementation of a heuristic
algorithm for MIFD by [53].
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algorithm for MFD, and with Catfish, the implementation by [40] of their heuris-
tic algorithm for MFD. We compare SubpathConstraintsILP with Coaster, the
implementation by [54] for MFDSC, which is an exact FPT algorithm extending
Toboggan, and also with CoasterHeuristic, which is a heuristic for MFDSC also
by [54]. Given the size of the datasets, we set a time limit for each graph, as also
done by [21,54] (we use 1 min in all cases, except that we also include a run of
Toboggan with a 5 min time limit). The runtimes of our ILP implementations
include the linear scan in increasing order to find the smallest k for which there
is a k-flow decomposition.

Datasets. To test the performance of the solvers under a range of biologically-
occurring graph topologies and flows weights, we used three human transcrip-
tomic datasets containing a perfect (i.e., the edge weights satisfy conservation
of flow) splice graph for each gene of the human genome. The first dataset, pro-
duced by the authors of [39] and also used in a number of flow decomposition
benchmarking studies [21,54], was built using publicly available RNA transcripts
from the Sequence Read Archive with quantification using the tool Salmon [35].
We use one of the larger transcriptomes3 and call this dataset SRR020730-
Salmon. We also produce perfect splice graphs by running HiSat2 [19] with
the provided GRCh38 reference index and then popular RNA assembly tool
StringTie [22] on real RNA reads from SRR307903, and superimposing the
resulting transcripts and abundances (after rounding abundances to the near-
est integer). We call this dataset SRR307903-StringTie. Finally, we create
another dataset by directly simulating expression values for all reference tran-
scripts of all genes in the reference genome GRCh.104 homo sapiens by sampling
weights from the lognormal distribution with mean and variance both equal to
−4, as in the default setting of the RNASeqReadSimulator tool [23]. We mul-
tiply the simulated values by 1000 and round to the nearest integer. We call
this dataset Reference-Sim. For both the Reference-Sim and SRR307903-
StringTie datasets, we use only genes on the positive strand.

For the subpath constraint experiments, we simulate four subpath constraints
in each graph as in [54]. For four of the groundtruth paths, we take the prefix
of the path that includes three nontrivial junctions (equivalent to three edges in
the contracted graph described in [21, Lemma 13]) as a subpath constraint. If
a splice graph has fewer than four groundtruth paths, it is excluded from this
experiment.

From all datasets, the trivial graphs made up of a single path (i.e. admitting
a trivial flow decomposition) are excluded.

Metrics. For each dataset and each FD variant, we report min k, the number
of paths in a minimum flow decomposition for each problem variant; Amount,
namely the number of graphs having that specifc value of min k; Avg., the
average time (in seconds) for each instance solved within the time limit; Σ, the
total time (in seconds) required to solve all instances (this included also the

3 The full dataset from [40] is available at https://zenodo.org/record/1460998. We use
the file rnaseq/sparse quant SRR020730.graph.

https://zenodo.org/record/1460998
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Table 1. Results for problem MFD.

min k Amount StandardILP Toboggan (1 min) Toboggan (5 min) Catfish

Avg. Σ Solved Avg. Σ Solved Avg. Σ Solved Avg. Σ Solved Diff.

SRR020730
Salmon

2–5 34371 0.091 4093 100 0.002 68 100 0.002 68 100 0.001 34 100 0.00

6–10 2291 0.204 458 100 0.023 52 100 0.024 54 100 0.031 71 100 0.00

11–15 95 4.692 448 100 2.361 225 100 2.612 248 100 3.582 342 100 2.85

16–20 16 5.891 97 100 10.453 287 86 22.531 671 93 8.451 139 100 3.75

21-max 7 10.222 75 100 16.564 281 50 33.221 643 78 11.621 85 100 4.56

Reference
Sim

2–5 14513 0.089 1300 100 0.002 28 100 0.003 43 100 0.058 14 100 0.00

6–10 1506 0.352 301 100 0.124 34 100 0.123 186 100 0.124 46 100 0.00

11–15 261 4.564 1225 100 24.132 4365 75 29.312 6575 92 1.299 935 100 2.79

16–20 63 10.332 375 100 36.344 1753 65 46.444 3759 83 10.45 538 100 3.75

21-max 41 12.833 419 100 54.732 1553 51 57.672 4268 73 31.65 478 100 4.56

SRR30790
StringTie

2–5 7335 0.122 660 100 0.022 14 100 0.022 212 100 0.029 7 100 0.00

6–10 768 1.051 153 100 1.191 17 100 1.191 911 100 0.172 23 100 0.00

11–15 133 4.855 625 100 5.063 2535 71 10.343 5998 88 3.871 447 100 2.53

16–20 55 6.895 328 100 12.451 1764 57 21.561 5167 74 5.452 471 100 3.75

21-max 37 10.512 384 100 20.562 1433 51 32.211 4362 68 9.651 437 100 4.56

running time of the instances that did not finish within the time limit); Solved,
the percentage all instances solved within the time limit; Diff., the average
difference between the number of paths obtained with a heuristic algorithm and
the optimum one.

Results. The results for Problem MFD are shown in Table 1. For all three
datasets, the average time and the total time of Toboggan and Catfish outper-
form StandardILP for less complex genes, where the number of flow-paths is at
most 10 or 15. However, as genes becomes more complex (larger optimum flow
decompositions), StandardILP is capable of solving all instances within an aver-
age of 10 s, while Toboggan and Catfish require on average 16 and 11 s for the
solved instances, respectively. In addition, Toboggan does not solve all instances
even within the 5 min time limit. Recall also that Catfish is a heuristic, and thus
it does not always return optimum solutions (see Diff.).

Among the different datasets, SRR020730-Salmon has fewer complex
genes and most instances are solved more easily. However for SRR307903-
StringTie (constructed from real RNA reads) and Reference-Sim datasets,
there is a larger amount of complex genes and consequently fewer instances
can be solved by Toboggan and Catfish, while StandardILP remains efficient and
scalable. In these results, although StandardILP does not perform as fast as on
SRR020730-Salmon, its runtime is still competitive, it can be scaled to graphs
with larger k without compromising its efficiency. On the other hand, Toboggan’s
runtime is exponential in the size of the optimum decomposition, which hinders
its usage on larger instances. Moreover, notice that in some applications (e.g.
cancer transcriptomics [16]) the graphs of interest do have a large number of
RNA transcripts because of the genetic mechanism driving the disease. Hence,
in such applications the need to find a flow decomposition is even greater for
large k.
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Table 2. Results for problem MFDSC.

min k Amount SubpathConstraintsILP Coaster CoasterHeuristic

Avg. Σ Solved Avg. Σ Solved Avg. Σ Solved Diff.

SRR020730
Salmon

4–10 5691 0.192 1082 100 30.123 196823 85 0.005 0.51 100 2.14

11–15 95 1.475 139 100 45.121 3367 44 0.014 1.42 100 3.04

16–20 16 3.461 55 100 60.000 960 0 0.025 2.51 100 3.91

21-max 8 10.452 83 100 60.000 480 0 0.067 6.73 100 4.51

Reference
Sim

4–10 6512 0.18 1367 100 37.132 263963 84 0.006 0.61 100 3.13

11–15 260 1.10 379 100 46.211 15097 14 0.031 3.12 100 4.12

16–20 78 2.58 303 100 60.000 4680 0 0.041 4.32 100 5.12

21-max 40 11.51 672 100 60.000 3000 0 0.064 6.54 100 8.13

SRR30790
StringTie

4–10 864 0.181 156 100 28.241 32013 86 0.006 0.61 100 2.98

11–15 104 1.124 115 100 45.142 7484 25 0.032 3.21 100 3.07

16–20 70 2.578 181 100 60.000 3240 0 0.083 8.31 100 4.14

21-max 27 11.51 321 100 60.000 2160 0 0.091 9.13 100 5.78

Lastly, one of the key steps in the Toboggan implementation is a reduction of
the graph (to simplify nodes with in-degree or out-degree equal to one, see [21]),
which is a key insight behind its efficiency. However, this observation is highly
tailored to the MFD problem, and cannot be easily extended to other FD variants
(in fact, it is not used by real RNA assemblers).

The results for Problem MFDSC are shown in Table 2. For all three datasets,
SubpathConstraintsILP is capable of solving instances of any size within a few
seconds. As an ILP formulation, the addition of the constraints corresponding
to the subpath constraints do not hinder its scalability or efficiency. On the other
hand, Coaster is both slow on small instances, and does not solve large instances.
This shows that the Toboggan implementation is optimized to use many prop-
erties of the standard MFD problem, that are not generalizable to variants of it
of practical applicability, such as Problem MFDSC. Moreover, similarly to the
Catfish heuristic, CoasterHeuristic does not return optimum solutions.

5 Conclusions

In this paper we showed an efficient quadratic-size ILP for MFD, avoiding for
the first time the current limitation of (exhaustively) enumerating candidate s-
t paths. Many constraints inside state-of-the-art RNA assemblers can be easily
modeled on top of our basic ILP (i.e. subpath constraints, inexact flows). Further
flexibility also comes from the fact that all our ILPs are based on modeling a
specific type of flow decomposition with a given, or upper bounded number k of
paths (thus, they do not need to solve the minimum version of the problem).
On both simulated and real datasets, our ILP formulations finish within 13 s on
average on any dataset, and within a few seconds on most instances.

On the practical side, we hope that our flexible ILP formulations can lie at the
core of future reference-based RNA assemblers employing exact solutions. Thus,
the current tradeoff between the complexity of the model and its tractability



Fast, Flexible, and Exact Minimum Flow Decompositions via ILP 243

might not be necessary anymore. On the theoretical side, our ILP formulation
represents the first exact solver for MFD scaling to large values of k, and it could
be a reference when benchmarking other heuristic or approximation algorithms.
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Abstract. Co-linear chaining has proven to be a powerful heuristic for
finding near-optimal alignments of long DNA sequences (e.g., long reads
or a genome assembly) to a reference. It is used as an intermediate
step in several alignment tools that employ a seed-chain-extend strat-
egy. Despite this popularity, efficient subquadratic-time algorithms for
the general case where chains support anchor overlaps and gap costs are
not currently known. We present algorithms to solve the co-linear chain-
ing problem with anchor overlaps and gap costs in Õ(n) time, where
n denotes the count of anchors. We also establish the first theoretical
connection between co-linear chaining cost and edit distance. Specifi-
cally, we prove that for a fixed set of anchors under a carefully designed
chaining cost function, the optimal ‘anchored’ edit distance equals the
optimal co-linear chaining cost. Finally, we demonstrate experimentally
that optimal co-linear chaining cost under the proposed cost function can
be computed orders of magnitude faster than edit distance, and achieves
correlation coefficient above 0.9 with edit distance for closely as well as
distantly related sequences.

Keywords: Edit distance · Alignment · Co-linear chaining

1 Introduction

Computing an optimal alignment between two sequences is one of the most fun-
damental problems in computational biology. Unfortunately, conditional lower-
bounds suggest that an algorithm for computing an optimal alignment, or edit
distance, in strongly subquadratic time is unlikely [3,10]. This lower-bound indi-
cates a challenge for scaling the computation of edit distance to high-throughput
sequencing data. Instead, heuristics are often used to obtain an approximate
solution in less time and space. One such popular heuristic is co-linear chain-
ing. This technique involves precomputing fragments between the two sequences
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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that closely agree (in this work, exact matches called anchors), then determining
which of these anchors should be kept within the alignment (see Fig. 1). Tech-
niques along these lines are used in long-read mappers [6,12,15,16,24,25,27] and
generic sequence aligners [2,5,14,19,23]. We will focus on the following problem
(described formally in Sect. 2): Given a set of n anchors, determine an optimal
ordered subset (or chain) of these anchors.

Several algorithms have been developed for the co-linear chaining [1,17,28,31]
and even more in the context of sparse dynamic programming [8,9,18,20,22,33].
Solutions with different time complexities exist for different variations of this
problem. These depend on the cost-function assigned to a chain and the types of
chains permitted. Solutions include an algorithm running in O(n log n log log n)
time for a simpler variant of the problem where anchors used in a solution must
be non-overlapping [1]. More recently, Mäkinen and Sahlin gave an algorithm
running in O(n log n) time where anchor overlaps are allowed, but gaps between
anchors are not considered in the cost-function [17]. None of the solutions intro-
duced thus far provide a subquadratic time algorithm for variations that use
both overlap and gap costs. However, including overlaps and gaps into a cost-
function is a more realistic model for anchor chaining. For example, consider
a simple scenario where minimizers [26] are used to identify anchors. Suppose
query and reference sequences are identical, then adjacent minimizer-anchors will
likely overlap. Not allowing anchor overlaps during chaining will lead to a penalty
cost associated with gaps between chained anchors despite the two strings being
identical. Therefore, depending on the type of anchor, there may be no reason
to assume that in an optimal alignment the anchors would be non-overlapping.
At the same time, not penalizing long gaps between the anchors is unlikely to
produce correct alignments. This is why both anchor overlaps and gap costs
are supported during chaining in widely-used aligners, e.g., Minimap2 [13,15],
Nucmer4 [19]. This work’s contribution is the following:

– We provide the first algorithm running in subquadratic, ˜O(n) time for chain-
ing with overlap and gap costs1. Refinements based on the specific type
of anchor and chain under consideration are also given. These refinements
include an O(n log2 n) time algorithm for the case where all anchors are of
the same length, as is the case with k-mers.

– When n is not too large (less than the sequence lengths), we present an
algorithm with O(n · OPT + n log n) average-case time where OPT is the
optimal solution value. This provides a simple algorithm that is efficient in
practice.

– Using a carefully designed cost-function, we mathematically relate the opti-
mal chaining cost with a generalized version of edit distance, which we call
anchored edit distance. This is equivalent to the usual edit distance with the
modification that matches performed without the support of an anchor have
unit cost. A more formal definition appears in Sect. 2. With our cost function,
we prove that the optimal chaining cost is equal to the anchored edit distance.

1
˜O(·) hides poly-logarithmic factors.
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– We empirically demonstrate that computing optimal chaining cost is orders
of magnitude faster than computing edit distance, especially in semi-global
comparison mode. We also demonstrate a strong correlation between optimal
chaining cost and edit distance. The correlation coefficients are favorable when
compared to suboptimal chaining methods implemented in Minimap2 and
Nucmer4.

A T T C A G A T A T C G A

A T T C A T A T C G A T T

A T T C A G A T A T C G A

A T T C A T A T C G A T T

Fig. 1. (Left) Anchors representing a set of exact matches are shown as rectangles.
The co-linear chaining problem is to find an optimal ordered subset of anchors subject
to some cost function. (Right) A chain of overlapping anchors.

2 Concepts and Definitions

For a given pair of strings S1 and S2, an anchor interval pair ([a..b], [c..d]) signifies
an exact match between S1[a..b] and S2[c..d]. For an anchor I, we denote these
values as I.a, I.b, I.c, and I.d. Here b − a = d − c and S1[a + j] = S2[c + j] for
all 0 ≤ j ≤ b−a. We say that the character match S1[a+ j] = S2[c+ j], 0 ≤ j ≤
b−a, is supported by the anchor ([a..b], [c..d]). Maximal exact matches (MEMs),
maximal unique matches (MUMs), or k-mer matches are some of the common
ways to define anchors. Maximal unique matches [7] are a subset of maximal
exact matches, having the added constraint that the pattern involved occurs
only once in both strings. If all intervals across all anchors have the same length
(e.g., using k-mers), we say that the fixed-length property holds.

Our algorithms will make use of dynamic range minimum queries (RmQs).
For a set of n d-dimensional points, each with an associated weight, a ‘query’
consists of an orthogonal d-dimensional range. The query response is the point in
that range with the smallest weight. Using known techniques in computational
geometry, a data structure can be built in O(n logd−1 n) time and space, that
can both answer queries and modify a point’s weight in O(logd n) time [4].

2.1 Co-linear Chaining Problem with Overlap and Gap Costs

Given a set of n anchors A for strings S1 and S2, we assume that A already con-
tains two end-point anchors Aleft = ([0, 0], [0, 0]) and Aright = ([|S1| + 1, |S1| +
1], [|S2|+1, |S2|+1]). We define the strict precedence relationship ≺ between two
anchors I ′ := A[j] and I := A[i] as I ′ ≺ I if and only if I ′.a ≤ I.a, I ′.b ≤ I.b,
I ′.c ≤ I.c, I ′.d ≤ I.d, and strict inequality holds for at least one of the four
inequalities. In other words, the interval belonging to I ′ for S1 (resp. S2) should
start before or at the starting position of the interval belonging to I for S1 (resp.
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S2) and should not extend past it. We also define the weak precedence relation
≺w as I ′ ≺w I if and only if I ′.a ≤ I.a, I ′.c ≤ I.c and strict inequality holds
for at least one of the two inequalities, i.e., intervals belonging to I ′ should start
before or at the starting position of intervals belonging to I, but now intervals
belonging to I ′ can be extended past the intervals belonging to I. The aim of
the problem is to find a totally ordered subset (a chain) of A that achieves the
minimum cost under the cost function presented next. We specify whether we
mean a chain under strict precedence or under weak precedence when necessary.

Cost Function. For I ′ ≺ I, the function connect(I ′, I) is designed to indicate
the cost of connecting anchor I ′ to anchor I in a chain. The chaining problem
asks for a chain of m ≤ n anchors, A′[1], A′[2], . . ., A′[m], such that the following
properties hold: (i) A′[1] = Aleft, (ii) A′[m] = Aright, (iii) A′[1] ≺ A′[2] ≺ . . . ≺
A′[m], and (iv) the cost

∑m−1
i=1 connect(A′[i],A′[i + 1]) is minimized.

We next define the function connect. In Sect. 4, we will see that this definition
is well motivated by the relationship with anchored edit distance. For a pair of
anchors I ′, I such that I ′ ≺ I:

– The gap in string S1 between anchors I ′ and I is g1 = max(0, I.a− I ′.b− 1).
Similarly, the gap between the anchors in string S2 is g2 = max(0, I.c−I ′.d−
1). Define the gap cost g(I ′, I) = max(g1, g2).

– The overlap o1 is defined such that I ′.b − o1 reflects the non-overlapping
prefix of anchor I ′ in string S1. Specifically, o1 = max(0, I ′.b − I.a + 1).
Similarly, define o2 = max(0, I ′.d − I.c + 1). We define the overlap cost as
o(I ′, I) = |o1 − o2|.

– Lastly, define connect(I ′, I) = g(I ′, I) + o(I ′, I).

The same definitions are used for weak precedence, only using ≺w in the place
of ≺. Regardless of the definition of connect, the above problem can be trivially
solved in O(n2) time and O(n) space. First sort the anchors by the component
A[·].a and let A′ be the sorted array. The chaining problem then has a direct
dynamic programming solution by filling an n-sized array C from left-to-right,
such that C[i] reflects the cost of an optimal chain that ends at anchor A′[i].
The value C[i] is computed using the recursion: C[i] = minA′[k]≺A′[i]

(

C[k] +
connect(A′[k],A′[i])

)

where the base case associated with anchor Aleft is C[1] =
0. The optimal chaining cost will be stored in C[n] after spending O(n2) time.
We will provide an O(n log4 n) time algorithm for this problem.

2.2 Anchored Edit Distance

The edit distance problem is to identify the minimum number of operations (sub-
stitutions, insertions, or deletions) that must be applied to string S2 to transform
it to S1. Edit operations can be equivalently represented as an alignment (a.k.a.
edit transcript) that specifies the associated matches, mismatches and gaps while
placing one string on top of another. The anchored edit distance problem is as
follows: given strings S1 and S2 and a set of n anchors A, compute the optimal
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edit distance subject to the condition that a match supported by an anchor has
edit cost 0, and a match that is not supported by an anchor has edit cost 1.

The above problem is solvable in O(|S1||S2|) time and space. We can assume
that input does not contain redundant anchors, therefore, the count of anchors
is ≤ |S1||S2|. Next, the standard dynamic programming recursion for solving the
edit distance problem can be revised. Let D[i, j] denote anchored edit distance
between S1[1, i] and S2[1, j], then D[i, j] = min(D[i − 1, j − 1] + x,D[i − 1, j] +
1,D[i, j − 1] + 1), where x = 0 if S1[i] = S2[j] and the match is supported by
some anchor, and x = 1 otherwise.

2.3 Graph Representation of Alignment

It is useful to consider the following representation of an alignment of two strings
S1 and S2. As illustrated in Fig. 2, we have a set of |S1| top vertices and |S2|
bottom vertices. There are two types of edges between the top and bottom
vertices: (i) A solid edge from ith top vertex to the jth bottom vertex. This
represents an anchor supported character match between the ith character in S1

and the jth character in S2; (ii) A dashed edge from the ith top vertex to the jth
bottom vertex. This represents a character being substituted to form a match
between S1[i] and S2[j] or a character match not supported by an anchor. All
unmatched vertices are labeled with an ‘x’ to indicate that the corresponding
character is deleted. An important observation is that no two edges cross.

In a solution to the anchored edit distance problem every solid edge must be
‘supported’ by an anchor. By ‘supported’ here we mean that the match between
the corresponding characters in S1 and S2 is supported by an anchor. In Fig. 2,
these anchors are represented with rectangles above and below the vertices. We
use M to denote a particular alignment. We also associate an edit cost with
the alignment, denoted as EDIT (M). This is equal to the number of vertices
marked with x in M plus the number of dashed edges in M.

S1

S2
x

xxx

xx

Fig. 2. The graph representation of an alignment. Solid edges represent anchor-
supported character matches, dashed edges represent substitutions and unsupported
matches, and x’s represent deletions. We use M to denote an alignment. Here
EDIT (M) = 7, the total number of x’s and dashed edges.
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3 Our Algorithms

Theorem 1. The co-linear chaining problem with overlap and gap costs can be
solved in time ˜O(n). In particular, in time O(n log2 n) for chains with fixed-
length anchors; in time O(n log3 n) for chains under weak precedence; and in
time O(n log4 n) for chains under strict precedence.

The proposed algorithm still uses the recursive formula given in Sect. 2.1.
However, it uses range minimum query (RmQ) data structures to avoid having
to check every anchor A[k] where A[k].a < A[i].a. We achieve this by considering
six cases concerning the optimal choice of the prior anchor. We use the best of
the six distinct possibilities to determine the optimal C[i] value. This C[i] value
is then used to update the RmQ data structures. For the strict precedence case,
some of the six cases require up to four dimensions for the range minimum
queries. When only weak precedence is required, we reduce this to at most three
dimensions. When the fixed-length property holds (e.g., k-mers), we reduce this
to two dimensions.

Algorithm for Chains Under Strict Precedence. The first step is to sort
the set of anchors A using the key A[·].a. Let A′ be the sorted array. We will next
use six RmQ data structures labeled T1a, T1b, T2a, T2b, T3a, T3b. These RmQ data
structures are initialized with the following points for every anchor: For anchor
I ∈ A′: T1a is initialized with the point (I.b, I.d − I.b), T1b with (I.d, I.d − I.b),
T2a with (I.b, I.c, I.d), T2b with (I.b, I.d), T3a with (I.b, I.c, I.d, I.d−I.b), and T3b

with (I.b, I.d, I.d − I.b). All weights are initially set to ∞ except for I = Aleft,
where the corresponding points are given weight 0. We then process the anchors
in sorted order and update the RmQ data structures after each iteration. On the
ith iteration, for j < i, we let C[j] be the optimal co-linear chaining cost of any
ordered subset of A′[1], A′[2], ..., A′[j] that ends with A′[j]. For i > 1, RmQ
queries are used to find the optimal j < i by considering six different cases. We
let I = A′[i], I ′ = A′[j], and C[I ′] = C[j].

The query for each RmQ structure is determined by the different inequalities
relating I.a, I.b, I.c, and I.d to previous anchors in the case considered. For
example, in Case 1.a (Fig. 3), it can be seen that I ′.b < I.a and I.a − I ′.b <
I.c− I ′.d, making I ′.b ∈ [0, I.a− 1] and I ′.d− I ′.b ∈ [−∞, I.c− I.a], motivating
the query input [0, I.a−1]× [−∞, I.c−I.a]. At the same time, the values stored
in these RmQ structures are determined by the expression for the co-linear
chaining cost in that case, C[I ′] + I.c − I ′.d − 1. Note that the values stored
in each RmQ structure depend only on previously processed anchors and are
combined with the values I.a, I.b, I.c, and I.d for the current anchor I being
processed to obtain the appropriate cost. Hence, for T1a we store values of the
form C[I ′] − I ′.d and combine this with I.c to obtain the cost. The other cases
can be similarly analyzed.



252 C. Jain et al.

I ′.a I ′.b

I ′.c I ′.d

I.a I.b

I.c I.d

I.a I.b
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I ′.c I ′.d

I ′.a I ′.b

I ′.c I ′.d

I.a I.b

I.c I.d

Fig. 3. (Left) Case 1.a. Colinear chaining cost is C[I ′] + g2 = C[I ′] + I.c − I ′.d − 1.
(Middle) Case 2.a. Chaining cost is C[I ′] + g1 + o2 = C[I ′] + I.a − I ′.b + I ′.d − I.c.
(Right) Case 3.a. Chaining cost is C[I ′] + o2 − o1 = C[j] + I ′.d − I.c − (I ′.b − I.a).

1. Case: I ′ disjoint from I.
(a) Case: The gap in S1 is less or equal to gap in S2 (Fig. 3 (Left)). The range

minimum query (query input) is of the form: [0, I.a−1]× [−∞, I.c− I.a].
Let the query response (weight) from T1a be v1a = min{C[I ′] − I ′.d :
(I ′.b, I ′.d−I ′.b) ∈ [0, I.a−1]× [−∞, I.c−I.a]} and let C1a = v1a+I.c−1.

(b) Case: The gap in S2 is less than gap in S1. The range minimum query is of
the form [0, I.c−1]× [I.c−I.a+1,∞]. Let the query response from T1b be
v1b = min{C[I ′]− I ′.b : (I ′.d, I ′.d− I ′.b) ∈ [0, I.c− 1]× [I.c− I.a+1,∞]}
and let C1b = v1b + I.a − 1.

2. Case: I ′ and I overlap in only one dimension.
(a) Case: I ′ and I overlap only in S2 (Fig. 3 (Middle)). The range minimum

query is of the form [0, I.a−1]× [0, I.c]× [I.c, I.d]. Let the query response
from T2a be v2a = min{C[I ′] − I ′.b+ I ′.d : (I ′.b, I ′.c, I ′.d) ∈ [0, I.a− 1] ×
[0, I.c] × [I.c, I.d]} and let C2a = v2a + I.a − I.c.

(b) Case: I ′ and I overlap only in S1. Since the anchors are sorted on A[·].a,
this can be done with a two dimensional RmQ structure. The range mini-
mum query is of the form [I.a, I.b]×[0, I.c−1]. Let the query response from
T2b be v2b = min{C[I ′] + I ′.b − I ′.d : (I ′.b, I ′.d) ∈ [I.a, I.b] × [0, I.c − 1]}
and let C2b = v2b + I.c − I.a.

3. Case: I ′ and I overlap in both dimensions.
(a) Case: Greater overlap in S2 (Fig. 3 (Right)). Here, |o1 − o2| = o2 − o1 =

I ′.d−I.c−(I ′.b−I.a). The range minimum query is of the form [I.a, I.b]×
[0, I.c] × [I.c, I.d] × [I.c − I.a + 1,∞]. Let the query response from T3a

be v3a = min{C[I ′] − I ′.b + I ′.d : (I ′.b, I ′c, I ′.d, I ′.d − I ′.b) ∈ [I.a, I.b] ×
[0, I.c] × [I.c, I.d] × [I.c − I.a + 1,∞]} and let C3a = v3a + I.a − I.c.

(b) Case: Greater or equal overlap in S1. Here, |o1 − o2| = o1 − o2 = I ′.b −
I.a − (I ′.d − I.c). If o1 ≥ o2 > 0, I ′.b ∈ [I.a, I.b], and I ′.a ∈ [0, I.a], then
I ′.c ∈ [0, I.c]. Hence, the range minimum query is of the form [I.a, I.b] ×
[I.c, I.d] × [−∞, I.c − I.a]. Let the query response from T3b be v3b =
min{C[I ′] + I ′.b − I ′.d : (I ′.b, I ′.d, I ′.d − I ′.b) ∈ [I.a, I.b] × [I.c, I.d] ×
[−∞, I.c − I.a]} and let C3b = v3b − I.a + I.c.

Finally, let C[i] = min(C1a, C1b, C2a, C2b, C3a, C3b) and update the RmQ
structures accordingly (see full version [11] for details and pseudocode). Every
RmQ structure T has the query method T .RmQ() which takes as arguments
an interval for each dimension. It also has the method T .update(), which takes
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a point and a weight and updates the point to have the new weight. The four-
dimensional RmQ structures for Case 3.a require O(log4 n) time per query and
update, causing an overall time complexity that is O(n log4 n). We defer the mod-
ifications for weak precendence and fixed-length anchors to the full version [11].

4 Proof of Equivalence

Theorem 2. For a fixed set of anchors A, the following quantities are equal:
the anchored edit distance, the optimal co-linear chaining cost under strict prece-
dence, and the optimal co-linear chaining cost under weak precedence.

The optimal co-linear chaining cost is defined using the cost function
described in Sect. 2.1. An implication of Theorems 1 and 2 is that if only the
anchored edit distance is desired (and not an optimal strictly ordered anchor
chain), there exists a O(n log3 n) for computing this value.

Theorem 2 will follow from Lemmas 1 and 2.

Lemma 1. Anchored edit distance ≤ optimal co-linear chaining cost under weak
precedence ≤ optimal co-linear chaining cost under strict precedence.

Proof. The second inequality follows from the observation that every set of
anchors ordered under strict precedence is also ordered under weak precedence.
We now focus on the inequality between anchored edit distance and co-linear
chaining cost under weak precedence. Starting with an anchor chain under weak
precedence, A[1], A[2], . . . with associated co-linear chaining cost x, we provide
an alignment with an anchored edit distance that is at most x. This alignment is
obtained using a greedy algorithm that works from left-to-right, always taking
the closest exact match when possible, and when not possible, a character sub-
stitution or unsupported exact match, or if none of these are possible, a deletion.
We now present the details.

Greedy Algorithm. Assume inductively that all symbols in S1[1,A[i].b] and
S2[1,A[i].d] have been processed, that is, either matched, substituted, or deleted
(represented by check-marks in Figs. 4, 5 and 6). The base case of this induction
holds trivially for Aleft. We consider the anchor A[i + 1] and the possible cases
regarding its position relative to A[i]. Symmetric cases that only swap the roles
of S1 and S2 are ignored. To ease notation, let I ′ = A[i] and I = A[i + 1].

1. Case I ′.b ≥ I.b and I ′.d ≥ I.c (Fig 4): To continue the alignment, delete the
substring S2[I ′.d+1, I.d] from S2. This has edit cost I.d−I ′.d. We can assume
both intervals of I ′ are not nested in intervals of I, hence connect(I ′, I) =
o1 − o2 = I ′.b − I.a − I ′.d + I.c ≥ I.c + I.b − I.a − I ′.d = I.d − I ′.d.

2. Case I ′.b ≥ I.b and I ′.d < I.c (Fig 4): Delete the substring S2[I ′.d + 1, I.d]
from S2, with edit cost I.d− I ′.d. Also connect(I ′, I) = o1 + g2 = I ′.b− I.a+
I.c − I ′.d ≥ I.c + I.b − I.a − I ′.d = I.d − I ′.d.
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Fig. 4. Cases in Proof of Lemma 1. The � symbol indicates symbols processed prior to
considering I. (Left) Case I ′, b ≥ I.b and I ′.d ≥ I.c (Right) I ′.b ≥ I.b and I ′.d < I.c.

3. Case I.b > I ′.b, I.a ≤ I ′.b, I.c ≤ I ′.d (Fig. 5): Supposing wlog that o1 > o2,
delete S2[I ′.d+1, I ′.d+o1 −o2], and match S1[I ′.b+1, I.b] and S2[I ′.d+o1 −
o2 + 1, I.d]. This has edit cost o1 − o2 and connect(I ′, I) = o1 − o2.

4. Case I.b > I ′.b, I.a ≤ I ′.b, I.c > I ′.d (Fig. 5): We delete S2[I ′.d + 1, I ′.d +
o1 + g2] and match S1[I ′.b + 1, I.b] with S2[I ′.d + o1 + g2 + 1, I.d]. This has
edit cost o1 + g2 and connect(I ′, I) = o1 + g2.

5. Case I.a > I ′.b, I.c > I ′.d (Fig. 6): Supposing wlog g2 ≥ g1, match
with substitutions or unsupported exact matches S1[I ′.b + 1, I ′.b + g1] and
S2[I ′.d + 1, I ′.d + g1]. Delete the substring S2[I ′.d + g1 + 1, I.c − 1]. Finally,
match S1[I.a, I.b] and S2[I.c, I.d]. The edits consist of g1 of substitutions or
unsupported exact matches and g2 − g1 deletions, which is g2 edits in total.
Also, connect(I ′, I) = max{g1, g2} = g2.

Continuing this process until Aright, all symbols in S1 and S2 become
included in the alignment. ��

Fig. 5. Cases in Proof of Lemma 1. (Left) Case I.b > I ′.b, I.a ≤ I ′.b, I.c ≤ I ′.d.
(Right) Case I.b > I ′.b, I.a ≤ I ′.b, I.c > I ′.d.

We delay the details of Lemma 2’s proof to Sect. 4.1.

Lemma 2. For a set of anchors A, optimal chaining cost under strict precedence
≤ anchored edit distance.

Proof. We start with an arbitrary alignment M supported by A. We will show in
Lemma 3 how to obtain a subset B ⊆ A totally ordered under strict precedence
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and supporting an alignment M′ where EDIT (M′) ≤ EDIT (M). We will then
show in Lemma 4 that the edit cost of M′ is greater or equal to the edit cost
of the alignment MG given by the greedy algorithm on B. Finally, in Lemma 5
we show that the co-linear chaining cost of B is equal to the edit cost of MG.
Combining, we have EDIT (M) ≥ EDIT (M′) ≥ EDIT (MG) = the co-linear
chaining cost on B ≥ optimal co-linear chaining cost under strict precedence for
A. The result follows from the fact that EDIT (M) equals the anchored edit
distance when M is an optimal alignment for A. ��

4.1 Details of Lemma 2 Proof

We apply Algorithm (i) followed by Algorithm (ii) to convert a supporting set
of anchors A for M into the totally ordered subset of anchors B supporting
M′. Note that these algorithms are only for the purpose of the proof. Moving
forward, we call an edge e = (S1[h], S2[k]) contained but not supported by I if
h ∈ [I.a, I.b] or k ∈ [I.c, I.d] and h − I.a 
= k − I.c. We define for e the two
edges e′ = (S1[h], S2[I.c+h− I.a]) and e′′ = (S1[I.a+ k− I.c], S2[k]), which are
supported by I.

Algorithm (i). Algorithm for Removing Incomparable Anchors. Let I
and I ′ be two incomparable anchors under weak precedence (Fig. 6). The anchor
that has the rightmost supported solid edge will be the anchor we keep. Suppose
wlog it is I. Working from right-to-left, starting with that rightmost edge, for
any edge e that is contained but not supported by I, we replace e with the
rightmost of e′ and e′′. Note that at least one side of every edge supported by
I ′ is within an interval of I. Hence, all edges supported by I ′ are eventually
replaced. We then remove I ′. This algorithm is repeated until a total ordering
under weak precedence is possible.

Algorithm (ii). Algorithm for Removing Anchors with Nested Inter-
vals. Consider two anchors I and I ′ where wlog I ′ has an interval nested in one
of the intervals belonging to I. Let eR be the rightmost edge supported by I.
Working from right-to-left, we replace any edge e to the left of eR that is con-
tained but not supported by I with the rightmost of e′ and e′′. Next, working
from left-to-right, we replace any edge e to the right of eR that is contained but
not supported by I with the leftmost of e′ and e′′. These procedures combined
will replace all edges supported by I ′ with those supported by I. We repeat this
until there are no two nested intervals amongst all remaining anchors. Finally,
remove all anchors that do not support any edge. We call such an anchor chain
where every anchor supports at least one edge minimal.
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Fig. 6. (Left) Case I.a > I ′.b, I.c > I ′.d. (Right) Anchors I and I ′ are incomparable.
The current alignment is shown with black solid and dashed edges. To remove I ′ we
sweep from right-to-left, replacing edges not supported by I with edges supported
by I. Here, e = (S1[h], S2[k]) is not supported by I and will be replaced with e′ =
(S1[h], S2[I.c + h − I.a]) (in red), which is supported by I.

Lemma 3. EDIT (M′) ≤ EDIT (M).

Proof. For Algorithm (i), suppose we are replacing an edge e not supported by
the anchor I, the anchor we wish to keep. Suppose wlog that e′ is the rightmost
of e′ and e′′, so we replace e with e′. Because the edge immediately to the right
of e is also aligned with I, deleting S2[k] and matching S2[I.c + h − I.a], does
not require modifying any additional edges. If e was a solid edge the edit cost
is unaltered, since the total number of deletions and matches is unaltered. If e
was a dashed edge, replacing e with e′ converts a substitution or unsupported
exact match at S2[k] to a deletion, and removes a deletion at S2[I.c + h − I.a],
decreasing the edit cost by 1. The same arguments hold for Algorithm (ii) when
we replace edges from right-to-left. In Algorithm (ii) when we process edges from
left-to-right, since any edges to left of the edge e being replaced are supported
by I, replacing e with the leftmost of e′ and e′′ does not require modifying any
additional edges. Again, if e is solid, the edit cost is unaltered, and if e is dashed,
the edit cost is decreased by 1. ��

Lemma 4. The greedy algorithm described in the proof of Lemma 1 produces
an optimal alignment for a ‘minimal’ anchor chain under strict precedence.

Proof. Similar to proof of Lemma 3 (see full version [11]). ��

Lemma 5. For an anchor chain under strict precedence, the edit cost of the
alignment produced by the greedy algorithm described in the proof of Lemma 1 is
equal to the chaining cost.

Proof. This follows from induction on the number of anchors processed, using
the same arguments used in the proof of Lemma 1. However, only I ′.b = I.b
needs to be considered in Cases 1 and 2 leading to equality in these cases. ��

5 Implementation

In multi-dimensional RmQs, O(nlogd−1 n) storage requirement and irregular
memory access during a query can limit their efficacy in practice [4]. We can



Co-linear Chaining with Overlaps and Gap Costs 257

take advantage of two observations to design a more practical algorithm. First,
if sequences are highly similar, their edit distance will be relatively small. Hence
the anchored edit distance, denoted in this section as OPT , will be relatively
small for MUM or MEM anchors. Second, if the sequences are dissimilar, then
the number of MUM or MEM anchors, n, will likely be small. These observa-
tions allow us to design an alternative algorithm (Algorithm 1) that requires
O(n) worst-case space and O(n · OPT + n log n) average-case time over all pos-
sible inputs where n ≤ max(|S1|, |S2|), i.e., the number of anchors is less than
the longer sequence length (proof is deferred to full version [11]). This property
always holds when the anchors are MUMs and is typically true for MEMs as
well. This makes the algorithm presented here a practical alternative.

As before, let A be the initial (possibly unsorted) set of anchors, but with
Aleft = A[1] and Aright = A[n]. We assume wlog |S1| ≥ |S2|. We begin by
sorting anchor set A by the component A[·].a and making a guess for the optimal
solution, B (Algorithm 1). The value B is used at every step to bound the range
of A[·].a values that need to be examined. This bounds the number of anchors
that need to be considered (on average). If C[n] is greater than our current guess
B after processing all n anchors, we update our guess to B2 · B.

Input: n anchors A and parameters B1 and B2.
Output: C[1, n] s.t. C[i] is optimal co-linear chaining cost for any

ordered subset of A[1, i] ending at A[i].
Let A′[1], ... A′[n] be the set of anchors A sorted on A[·].a;
Initialize array C of size n to 0 and B ← B1;
do

j ← 1;
for i ← 1 to n do

while A′[i].a − A′[j].a > B do
j ← j + 1;

end
C[i] ← min{C[k] + connect(A′[k],A′[i]) | j ≤ k < i and A′[k] ≺
A′[i]};

end
Blast ← B ;
B ← B2 · B;

while C[n] > Blast;
return C[1, n]

Algorithm 1: O(OPT · n + n log n) average-case algorithm.

Extending the above pseudo-code to enable semi-global chaining, i.e., free
anchor gap on both ends of reference sequences, is also simple. In each i-loop,
the connection to anchor Aleft must be always considered, and for last iteration
when i = n, j must be set to 1. Second, a revised cost function must be used
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when connecting to either Aleft or Aright where a gap penalty is used only for
anchor gap over the query sequence. The experiments in the next section use an
implementation of this algorithm.

6 Evaluation

There are multiple open-source libraries/tools that implement edit distance com-
putation. Edlib (v1.2.7) [29] uses Myers’s bit-vector algorithm [21] and Ukko-
nen’s banded algorithm [30], and is known to be the fastest implementation cur-
rently. In this section, we aim to show that: (i) the proposed algorithm as well as
existing chaining methods achieve significant speedup compared to computing
exact edit distance using Edlib, and (ii) in contrast to existing chaining methods,
our implementation consistently achieves high Pearson correlation (> 0.90) with
edit distance while requiring modest time and memory resources.

We implemented Algorithm 1 in C++, and refer to it as ChainX. The code is
available at https://github.com/at-cg/ChainX. Inputs are a target string, query
strings, comparison mode (global or semi-global), anchor type preferred, i.e.,
maximal unique matches (MUMs) or maximal exact matches (MEMs), and a
minimum match length. We include a pre-processing step to index target string
using the same suffix array-based algorithm [32] used in Nucmer4 [19]. Chaining
costs computed using ChainX for each query-target pair are provably-optimal.

Existing Co-linear Chaining Implementations. Co-linear chaining has
been implemented previously as a stand-alone utility [2,23] and also used
as a heuristic inside widely used sequence aligners [5,15,19]. Out of these,
Clasp (v1.1), Nucmer4 (v4.0.0rc1) and Minimap2 (v2.22-r1101) tools are avail-
able as open-source, and used here for comparison purpose. Unlike our algorithm
where the optimization problem involves minimizing a cost function, these tools
execute their respective chaining algorithms using a score maximization objective
function. Clasp, being a stand-alone chaining method returns chaining scores in
its output, whereas we modified Minimap2 and Nucmer4 to print the maximum
chaining score for each query-target string pair, and skip subsequent steps. To
enable a fair comparison, all methods were run with single thread and same min-
imum anchor size 20. Accordingly, ChainX, Clasp and Nucmer4 were run with
MUMs of length ≥20, and Minimap2 was configured to use minimizer k-mers of
length 20. For these tests, we made use of an Intel Xeon Processor E5-2698 v3
processor with 32 cores and 128 GB RAM. All tools were required to match only
the forward strand of each query string. ChainX and Clasp are both exact solvers
of co-linear chaining problem, but use different gap-cost functions. Clasp only
permits non-overlapping anchors in a chain, and supports two cost functions
which were referred to as sum-of-pair and linear gap cost functions in their
paper [23]. We tested Clasp with both of its gap-cost functions, and refer to
these two versions as Clasp-sop and Clasp-linear respectively. Both the versions
solve co-linear chaining using RmQ data structures, requiring O(n log2 n) and
O(n log n) time respectively. Both require a set of anchors as input, therefore, we

https://github.com/at-cg/ChainX
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supplied the same set of anchors, i.e., MUMs of length ≥20 as used by ChainX.
Minimap2 and Nucmer4 use co-linear chaining as part of their seed-chain-extend
pipelines. Both Minimap2 and Nucmer2 support anchor overlaps in a chain, as
well as penalize gaps using custom functions. However, both these tools employ
heuristics (e.g., enforce a maximum gap between adjacent chained anchors) for
faster processing which can result in suboptimal chaining scores.

Runtime and Memory Comparison. We downloaded the same set of query
and target strings that were used for benchmarking in Edlib paper [29]2. These
test strings, ranging from 10 kbp to 5000 kbp in length, allowed us to compare
tools for end-to-end global sequence comparisons as well as semi-global com-
parisons at various degrees of similarity levels. To test end-to-end comparisons,
the target string had been artificially mutated at various rates using mutatrix
(https://github.com/ekg/mutatrix), whereas for the semi-global comparisons, a
substring of the target string had been sampled and mutated. Table 1 presents
runtime and memory comparison of all tools. Columns of the table are organized
to show tools in three categories: edit distance solver (Edlib); optimal co-linear
chaining solvers (ChainX, Clasp-sop, Clasp-linear); and heuristic implementa-
tions (Nucmer4, Minimap2). We make the following observations here. First,
chaining methods (both optimal and heuristic-based) are significantly faster
than Edlib in most cases, and we see up to three orders of magnitude speedup.
Second, within optimal chaining methods, Clasp-sop’s time and memory con-
sumption increases quickly with increase in count of anchors, which is likely due
to irregular memory access and storage overhead of its algorithm that uses a
2d-RmQ data structure. Finally, we note that Minimap2 and Nucmer4 are often
faster than exact algorithms during global string comparisons due to their fast
heuristics.

All tools (except Edlib) use an indexing step such as building a k-mer hash
table (Minimap2) or computing suffix array (ChainX, Clasp-sop, Clasp-linear,
Nucmer4). Indexing time was excluded from reported results, and was found to
be comparable. For instance, in the case of semi-global comparisons, ChainX,
Nucmer4, Minimap2 required 590 ms, 736 ms, 236 ms for index computation
respectively.

Correlation with Edit Distance. We checked how well the chaining cost (or
score) correlates with edit distance. We use absolute value of Pearson correlation
coefficients for a comparison. In this experiment, we simulated 100 query strings
within three similarity ranges: 90–100%, 80–90% and 75–80%. Table 2 shows the
correlation achieved by all the tools. Here we observe that ChainX and Clasp-sop
are more consistent in terms of maintaining high correlation across all similarity
ranges. Between the two, ChainX was shown to offer superior scalability in terms
of runtime and memory usage (Table 1). Hence, ChainX can be useful in practice
when good performance and accuracy is desired across a wide similarity range.

2 https://github.com/Martinsos/edlib/tree/master/test data.

https://github.com/ekg/mutatrix
https://github.com/Martinsos/edlib/tree/master/test_data
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Table 1. Runtime and memory usage comparison of edit distance solver Edlib and co-
linear chaining methods ChainX, Clasp, Nucmer4 and Minimap2. Runtime is measured
in milliseconds across the columns, and memory usage (Mem) is noted in MBs. In
this experiment, ChainX, Clasp-sop, Clasp-linear and Nucmer4 used maximal unique
matches (MUMs) of length ≥20 as input anchors, while Minimap2 used fixed-length
minimizer k-mers of size 20.

Similarity No. of
MUMs

Edlib ChainX Clasp-sop Clasp-linear Nucmer4 Minimap2

Time (Mem) Time (Mem) Time (Mem) Time (Mem) Time (Mem) Time (Mem)

Semi-global pairwise sequence comparisons, sequence sizes 104 × 5 ∗ 106

99% 67 190 (17) 2.0 (57) 1.8 (57) 0.9 (57) 1.8 (60) 1.9 (75)

97% 160 642 (17) 2.9 (57) 4.8 (57) 1.8 (57) 4.1 (60) 2.3 (75)

94% 176 1165 (17) 3.0 (57) 5.9 (57) 2.1 (57) 3.2 (60) 1.6 (75)

90% 135 2168 (17) 5.6 (57) 4.7 (57) 2.0 (57) 5.5 (60) 1.9 (75)

80% 28 2360 (17) 4.2 (57) 2.5 (57) 2.2 (57) 3.4 (60) 4.3 (75)

70% 3 4297 (17) 3.7 (57) 2.2 (57) 2.3 (57) 5.5 (60) 1.1 (75)

Global pairwise sequence comparisons, sequence sizes 106 × 106

99% 7012 949 (8) 47.2 (24) 1236.8 (1800) 182.8 (257) 68.7 (26) 193.5 (35)

97% 15862 1308 (8) 490.4 (24) 5363.7 (8742) 765.4 (1278) 87.8 (26) 179.0 (36)

94% 18389 2613 (8) 677.9 (24) 11737.1 (20501) 1021.0 (1694) 113.5 (27) 116.9 (34)

90% 14472 6233 (8) 851.5 (24) 5110.3 (8277) 115.3 (27) 121.8 (26) 94.8 (33)

80% 2964 12506 (8) 158.8 (24) 504.8 (572) 133.7 (24) 148.9 (26) 69.5 (32)

70% 195 29602 (8) 136.5 (23) 140.6 (23) 139.6 (23) 167.3 (26) 55.6 (32)

Table 2. Absolute Pearson correlation coefficients of chaining costs (or scores) com-
puted by various methods with the corresponding edit distances. 100 query strings were
simulated and matched to the target string within each similarity range.

Seq. sizes Similarity Correlation coefficient

ChainX Clasp-sop Clasp-linear Nucmer4 Minimap2

Semi-global sequence comparisons

104 × 5 ∗ 106 90%–100% 0.996 0.994 0.986 0.968 0.995

104 × 5 ∗ 106 80%–90% 0.975 0.976 0.786 0.864 0.958

104 × 5 ∗ 106 75%–80% 0.927 0.915 0.732 0.733 0.808

Global sequence comparisons

106 × 106 90%–100% 0.999 0.997 0.994 0.991 0.999

106 × 106 80%–90% 0.998 0.998 0.922 0.955 0.996

106 × 106 75%–80% 0.992 0.993 0.871 0.907 0.952

Table 3. Effect of anchor pre-computation method on the performance of ChainX.
Total runtime to do 100 pairwise semi-global sequence comparisons (sequence size:
104 × 5 ∗ 106) is measured in seconds, and correlation (corr.) with the corresponding
edit distances is computed using Pearson correlation coefficient.

Similarity Using MUMs Using MEMs

len ≥ 20 len ≥ 10 len ≥ 7 len ≥ 20 len ≥ 10 len ≥ 7

Time (corr.) Time (corr.) Time (corr.) Time (corr.) Time (corr.) Time (corr.)

90%–100% 7.2 (0.996) 2.9 (0.997) 3.5 (0.997) 5.1 (0.996) 8.1 (0.997) 2652 (0.998)

80%–90% 4.5 (0.975) 5.6 (0.992) 3.2 (0.992) 4.5 (0.975) 7.4 (0.993) 5413 (0.995)

75%–80% 5.3 (0.927) 5.9 (0.977) 1.9 (0.977) 5.0 (0.927) 10.9 (0.987) 9221 (0.992)
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Effect of Anchor Type and Minimum Match Length. How many anchors
are given as input will naturally affect the performance and output quality
of a chaining algorithm. We tested runtime and correlation with edit distance
achieved by ChainX while varying the anchor type (MUMs/MEMs) and mini-
mum match-length lmin parameter (Table 3). When MUMs are used as anchors,
we observe good scalability, and lowering lmin from 20 to 10 improves the cor-
relation, but the correlation saturates afterwards. This is because very short
exact matches will unlikely be unique and won’t be selected as MUMs. How-
ever, when MEMs are used as anchors, correlation continues to improve with
decreasing minimum length parameter, however, runtime grows exponentially.
Excessive count of anchors improves the correlation but then anchor chaining
becomes computationally demanding.
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Abstract. Aligning a sequence to a walk in a labeled graph is a prob-
lem of fundamental importance to Computational Biology. For finding
a walk in an arbitrary graph with |E| edges that exactly matches a
pattern of length m, a lower bound based on the Strong Exponential
Time Hypothesis (SETH) implies an algorithm significantly faster than
O(|E|m) time is unlikely [Equi et al., ICALP 2019]. However, for many
special graphs, such as de Bruijn graphs, the problem can be solved in
linear time [Bowe et al., WABI 2012]. For approximate matching, the
picture is more complex. When edits (substitutions, insertions, and dele-
tions) are only allowed to the pattern, or when the graph is acyclic,
the problem is again solvable in O(|E|m) time. When edits are allowed
to arbitrary cyclic graphs, the problem becomes NP-complete, even on
binary alphabets [Jain et al., RECOMB 2019]. These results hold even
when edits are restricted to only substitutions. Despite the popularity of
de Bruijn graphs in Computational Biology, the complexity of approx-
imate pattern matching on de Bruijn graphs remained open. We inves-
tigate this problem and show that the properties that make de Bruijn
graphs amenable to efficient exact pattern matching do not extend to
approximate matching, even when restricted to the substitutions only
case with alphabet size four. Specifically, we prove that determining the
existence of a matching walk in a de Bruijn graph is NP-complete when
substitutions are allowed to the graph. In addition, we demonstrate that
an algorithm significantly faster than O(|E|m) is unlikely for de Bruijn
graphs in the case where only substitutions are allowed to the pattern.
This stands in contrast to pattern-to-text matching where exact match-
ing is solvable in linear time, like on de Bruijn graphs, but approximate
matching under substitutions is solvable in subquadratic Õ(n

√
m) time,

where n is the text’s length [Abrahamson, SIAM J. Computing 1987].
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1 Introduction

De Bruijn graphs are an essential tool in Computational Biology. Their role in
de novo assembly spans back to the 1980s [40], and their application in assem-
bly has been researched extensively since then [9,10,17,33,38,39,43,46]. More
recently, de Bruijn graphs have been applied in metagenomics and in the repre-
sentation of large collections of genomes [14,27,30,37,45] and for solving other
problems such as read-error correction [32,35] and compression [8,24]. Due to
the popularity of de Bruijn graphs in the modeling of sequencing data, an algo-
rithm to efficiently find walks in a de Bruijn graph matching (or approximately
matching) a given query pattern would be a significant advancement. For exam-
ple, in metagenomics, such an algorithm could quickly detect the presence of
a particular species within genetic material obtained from an environmental
sample. Or, in the case of read-error correction, such an algorithm could be
used to efficiently find the best mapping of reads onto a ‘cleaned’ reference de
Bruijn graph with low-frequency k-mers removed [32]. To facilitate such tasks,
several algorithms (often seed-and-extend type heuristics) and software tools
have been developed that perform pattern matching on de Bruijn (and general)
graphs [5,22,23,29,31,34,36,42].

The importance of pattern matching on labeled graphs in Computational
Biology and other fields has caused a recent surge of interest in the theoretical
aspects of this problem. In turn, this has led to many new fascinating algorithmic
and computational complexity results. However, even with this improved under-
standing of the theory of pattern matching on labeled graphs, our knowledge is
still lacking in many respects concerning specific, yet extremely relevant, graph
classes. An overview of the current state of knowledge is provided in Table 1.

Table 1. The computational complexity of pattern matching on labeled graphs

Exact matching Approximate matching

Easy Solvable in linear time Solvable in O(|E|m) time

• Wheeler graphs [16] • DAGs: Substitutions/Edits to graph [29]

(e.g. de Bruijn graphs, • General graphs:

NFAs for multiple strings) Substitutions/Edits to pattern [6]

• de Bruijn graphs: Substitutions to pattern

-No strongly Sub-O(|E|m) alg. (this paper)

Hard NO strongly sub-O(|E|m) Alg. NP-Complete

• General graphs [13,19] • General graphs:

(including DAGs with Substitutions/Edits to vertex labels [6,26]

total degree ≤3) • de Bruijn graphs:

Substitutions to vertex labels (this paper)

For general graphs, we can consider exact and approximate matching. For
exact matching, conditional lower-bounds based on the Strong Exponential Time
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Hypothesis (SETH), and other conjectures in circuit complexity, indicate that
an O(|E|m1−ε + |E|1−εm) time algorithm with any constant ε > 0, for a graph
with |E| edges and a pattern of length m, is highly unlikely (as is the ability to
shave more than a constant number of logarithmic factors from the O(|E|m) time
complexity) [13,19]. These results hold for even very restricted types of graphs,
for example, DAGs with maximum total degree three and binary alphabets. For
approximate matching, when edits are only allowed in the pattern, the problem
is solvable in O(|E|m) time [6]. If edits are also permitted in the graph, but
the graph is a DAG, matching can be done in the same time complexity [29].
However, the problem becomes NP-complete when edits are allowed in arbitrary
cyclic graphs. This was originally proven in [6] for large alphabets and more
recently proven for binary alphabets in [26]. These results hold even when edits
are restricted to only substitutions. The distinction between modifications to
the graph and modifications to the pattern is important as these two problems
are fundamentally different. When changes are made to cyclic graphs the same
modification can be encountered multiple times while matching a pattern with
no additional cost (see Section 3.1 in [26] for a detailed discussion). Furthermore,
algorithmic solutions appearing in [29,36,42] are for the case where modifications
are performed only to the pattern.

De Bruijn graphs are interesting from a theoretical perspective. Many graphs
allow for extending Burrows-Wheeler Transformation (BWT) based techniques
for efficient pattern matching. Sufficient conditions for doing this are captured
by the definition of Wheeler graphs, introduced in [16], and further studied in
[3,4,12,15,20]. De Bruijn graphs are themselves Wheeler graphs, hence on a
de Bruijn graph exact pattern matching is solvable in linear time. However,
the complexity of approximate matching in de Bruijn graphs when permitting
modifications to the graph or modifications to the pattern remained open [26].

We make two important contributions (see Table 1). First, we prove that
for de Bruijn graphs, despite exact matching being solvable in linear time, the
approximate matching problem with vertex label substitutions is NP-complete.
Second, we prove that a strongly subquadratic time algorithm for the approx-
imate pattern matching problem on de Bruijn graphs, where substitutions are
only allowed in the pattern, is not possible under SETH. This confirms the opti-
mality of the known quadratic time algorithms when considering polynomial fac-
tors. To the best of our knowledge, these are the first such results for any type
of Wheeler graph. Note that pattern-to-text matching (under substitutions) can
be solved in sub-quadratic Õ(n

√
m) time, where n is the text’s length [2].

1.1 Technical Background and Our Results

Notation for Edges: For a directed edge from a vertex u to a vertex v we will
use the notation (u, v). Additionally, we will refer to u as the tail of (u, v), and
v as the head of (u, v).

Walks Versus Paths: A distinction must be made between the concept of a
walk and a path in a graph. A walk is a sequence of vertices v1, v2, ..., vt such
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that for each i ∈ [1, t − 1], (vi, vi+1) ∈ E. Vertices can be repeated in a walk. A
path is a walk where vertices are not repeated. The length of a walk is defined
as the number of edges in the walk, t − 1, or equivalently one less than the
number of vertices in the sequence (counted with multiplicity). This work will
be concerning the existence of walks.

Induced Subgraphs: An induced subgraph of a graph G = (V,E) consists of
a subset of vertices V ′ ⊆ V , and all edges (u, v) ∈ E such that u, v ∈ V ′. This is
in contrast to an arbitrary subgraph of G, where an edge can be omitted from
the subgraph, even if both of its incident vertices are included.

de Bruijn Graphs: An order-k full de Bruijn graph is a compact representa-
tion of all k-mers (strings of length k) from an alphabet Σ of size σ. It con-
sists of σk vertices, each corresponding to a unique k-mer (which we call as its
implicit label) in Σk. There is a directed edge from each vertex with implicit
label s1s2...sk ∈ Σk to the σ vertices with implicit labels s2s3...skα, α ∈ Σ.
We will work with induced subgraphs of full de Bruijn graphs in this paper.
We assign to every vertex v a label L(v) ∈ Σ, such that the implicit label of
v is L(u1)L(u2)...L(uk−1)L(v) where u1, u2, ..., uk−1, v is any length k − 1 walk
ending at v. This is equivalent to the notion of a de Bruijn graph constructed
from k-mers commonly used in Computational Biology.

Strings and Matching: For a string S of length n indexed from 1 to n, we
use S[i] to denote the ith symbol in S. We use S[i, j] to denote the substring
S[i]S[i+1]...S[j]. If j < i, then we take S[i, j] as the empty string. As mentioned
above, we will consider every vertex v as labeled with a single symbol L(v) ∈ Σ. A
pattern P [1,m] matches a walk v1, v2, ..., vm iff P [i] = L(vi) for every i ∈ [1,m].

With these definitions in hand, we can formally define our first problem.

Problem 1 (Approximate matching with vertex label substitutions). Given a ver-
tex labeled graph D = (V,E) with alphabet Σ of size σ, pattern P [1,m], and
integer δ ≥ 0, determine if there exists a walk in D matching P after at most δ
substitutions to the vertex labels.

Theorem 1. Problem 1 is NP-complete on de Bruijn graphs with σ = 4.

Theorem 1 is proven in Sect. 2. Intuitively, our reduction transforms a general
directed graph into a de Bruijn that maintains key topological properties related
to the existence of walks. The distinct problem of approximately matching a
pattern to a path in a de Bruijn graph was shown to be NP-complete in [31].
As mentioned by the authors of that work, the techniques used there do not
appear to be easily adaptable to the problem for walks. Our approach uses edge
transformations more closely inspired by those used in [28] for proving hardness
on the paired de Bruijn sound cycle problem.

Problem 2 (Approximate matching with substitutions within the pattern). Given
a vertex labeled graph D = (V,E) with alphabet Σ of size σ, pattern P [1,m],
and integer δ ≥ 0, determine if there exists a walk in D matching P after at
most δ substitutions to the symbols in P .
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For Problem 2 we provide a hardness result based on SETH, which is fre-
quently used for establishing conditional optimality of polynomial time algo-
rithms [1,7,13,18,19,25]. We refer the reader to [44] for the definition of SETH
and for the reduction to the Orthogonal Vectors problem (OV), which is utilized
to prove Theorem 2.

Theorem 2. Conditioned on SETH, for all constants ε > 0, there does not exist
an O(|E|m1−ε + |E|1−εm) time algorithm for Problem 2 on de Bruijn graphs
with σ = 4.

Note that the order of the de Bruijn graphs used in ours proofs are Θ(log2 |V |)
for Theorem 1 and Θ(log |V |) for Theorem 2.

2 NP-Completeness of Problem 1 on de Bruijn Graphs

Our proof of NP-completeness uses a reduction from the Hamiltonian Cycle
Problem on directed graphs, which is the problem of deciding if there exists
a cycle through a directed graph that visits every vertex exactly once. It was
proven NP-complete even when restricted to directed graphs where the number
of edges is linear in the number of vertices [41]. To present the reduction, we
introduce the concept of merging two vertices. To merge vertices u and v, we
create a new vertex w. We then take all edges with either u or v as their head
and make w their new head. Next, we take all edges with either u or v as their
tail and make w their new tail. This makes the edges (u, v) and (v, u) (if they
existed) into self-loops for w. If two self-loops are formed, we delete one of them.
Finally, we delete the original vertices u and v.

Fig. 1. Gadget to remove cycles of
length 2 from the initial input graph.

Fig. 2. The transformation from edges
to paths used in our reduction.

Fig. 3. Vertices with the same implicit label are merged while transforming D to D′,
causing edges with shared vertices to become paths with shared vertices.
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2.1 Reduction

We start with an instance of the Hamiltonian cycle problem on a directed graph
where the number of edges is linear in the number of vertices. We can assume
there are no self-loops or vertices with in-degree or out-degree zero. To simplify
the proof, we first eliminate any cycles of length 2 using the gadget in Fig. 1.
We denote the resulting graph as D = (V,E) and let n = |V |.We assign each
vertex v ∈ V a unique integer L(v) ∈ [0, n − 1]. Let � = �log n�, bin(i) be
the standard binary encoding of i using � bits and Σ = {$,#, 0, 1}. Define
enc(i) = (02�1)2�bin(i), W = |enc(i)|, and k = 3W .

We construct a new (de Bruijn) graph D′ = (V ′, E′) as follows: Initially D′ is
the empty graph. For i = 0, 1, . . . , n−1, for each edge (u, v) ∈ E where L(v) = i,
create a new path whose concatenation of vertex labels is #Wenc(i)$Wenc(i). The
vertex u will correspond with a new vertex φ(u) at the start of this path, and
the vertex v will correspond with a new vertex φ(v) at the end of this path.
The vertex φ(v) has the implicit label enc(L(v))$Wenc(L(v)). The vertex φ(u) is
temporarily assigned the implicit label enc(L(u))$Wenc(L(u)). See Fig. 2. We call
vertices with implicit labels of the form enc(L(·))$Wenc(L(·)) marked vertices.
We use the notation φ((u, v)) to denote the path created when applying this
transformation to (u, v) ∈ E. After the path φ((u, v)) is created, vertices in V ′

having the same implicit label are merged, and parallel edges are deleted (Fig. 3).
See Fig. 4 for a complete example. Finally, let δ = 2�(n − 1) and

P = #Wenc(0)$Wenc(0)#Wenc(1)$Wenc(1)#W . . .

#Wenc(n − 1)$Wenc(n − 1)#Wenc(0)$Wenc(0).

We will show that there exists a walk in D′ matching P with at most δ vertex
label substitutions iff D contains a Hamiltonian cycle.

Proof of Correctness

Lemma 1. The graph D′ constructed as above is a de Bruijn graph.

Proof (Overview). Three properties must be proven: (i) Implicit labels are
unique, meaning for every implicit label at most one vertex is assigned that
label; (ii) No edges are missing, i.e., if the implicit label of y ∈ V ′ is Sα for
some string S[1, k − 1] and symbol α ∈ Σ, and there exists a vertex x ∈ V ′

with implicit label βS[1, k − 1] for some symbol β ∈ Σ, then (x, y) ∈ E′; (iii)
Implicit labels are well-defined, in that every walk of length k − 1 ending at
a vertex x ∈ V ′ matches the same string (the implicit label of x); The most
involved of these is proving property (ii), which requires analyzing several cases.
The complete proof is given in the full version [21]. �

The correctness of the reduction remains to be shown. Lemmas 2–4 estab-
lish useful structural properties of D′, Lemma 5 proves that the existence
of a Hamiltonian Cycle in D implies an approximate matching in D′, and
Lemmas 6–9 demonstrate the converse.
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Fig. 4. (Left) A graph before the reduction is applied to it. (Right) The transformed
graph. Implicit labels for marked vertices are shown and the path directions are anno-
tated by arrows beside each path.

Lemma 2. Any walk between two marked vertices φ(u) and φ(v) containing no
additional marked vertices has length 4W . Hence, we can conclude any such walk
is a path.

Proof (Overview). This is proven using induction on the number of edges trans-
formed. It is shown that for every vertex, a key property regarding the distances
to its closest marked vertices continues to hold after vertices on any newly cre-
ated path are merged. We defer the complete proof to the full version [21]. �

Lemma 3. For (u1, v1), (u2, v2) ∈ E, unless u1 = u2 or v1 = v2, φ((u1, v1))
and φ((u2, v2)) share no vertices.

Proof. In the case where {u1, v1} ∩ {u2, v2} = ∅ (Fig. 5 left), every implicit
vertex label in φ((u1, v1)) contains enc(L(u1)) or enc(L(v1)) (or both), and con-
tains neither enc(L(u2)) nor enc(L(v2)). Similarly, every implicit vertex label
in φ((u2, v2)) contains enc(L(u2)) or enc(L(v2)) (or both) and contains neither
enc(L(u1)) nor enc(L(v1)). This implies that none of the implicit labels match
between the two paths, thus no vertices are merged. In the case where v1 = u2

and u1 
= v2 (Fig. 5, right), the implicit labels of vertices φ((u1, v1)) not con-
taining enc(L(u1)) have # symbols in different positions than implicit labels
of vertices in φ((u2, v2)) not containing enc(L(v2)), and, since v1 
= v2, cannot
match the implicit labels of vertices in φ((u2, v2)) containing enc(L(v2)). Ver-
tices in φ((u1, v1)) with implicit labels containing enc(L(u1)) have # symbols in
different positions than implicit labels of vertices in φ((u2, v2)) not containing
enc(L(u2)), and, since u1 
= u2, cannot match the implicit labels of vertices in
φ((u2, v2)) containing enc(L(u2)). The case u1 = v2 and u2 
= v1 is symmetric.
The case u1 = v2 and v1 = u2 cannot happen since, by the use of our gadget in
Fig. 1, D cannot contain the edges (u1, v1) and (v1, u1). �
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Fig. 5. Examples where paths between marked vertex cannot share any vertex: (Left)
The case where {u1, v1} ∩ {u2, v2} = ∅. (Right) The case where v1 = u2 and u1 �= v2.

Lemma 4. There exists a path from a marked vertex φ(u) ∈ V ′ to a marked
vertex φ(v) ∈ V ′ containing no other marked vertices iff (u, v) ∈ E.

Proof (Overview). It is clear from construction that if (u, v) ∈ D, then such a
path exists in D′. In the other direction, we utilize Lemmas 2 and 3 to show that
such a path existing without a corresponding edge would create a contradiction.
The complete proof is provided in the full version [21]. �

Lemma 5. If D has a Hamiltonian cycle, then P can be matched in D′ with at
most δ substitutions to vertex labels of D′.

Proof. To obtain a matching walk, follow the cycle corresponding to a solution
in D starting with the marked vertex in V ′ corresponding to the vertex in V
with label 0. By Lemma 4, each edge traversed in D corresponds to a path in
D′. While traversing these paths, modify the vertex labels in D′ corresponding
to the substrings bin(i) to match P . Assuming no conflicting substitutions are
needed, this requires at most 2�(n − 1) substitutions.

It remains to be shown that no conflicting label substitutions will be nec-
essary. Consider the edges (u1, v1), (u2, v2) ∈ E used in the Hamiltonian cycle
in D. We will never have u1 = u2 or v1 = v2. Hence, by Lemma 3, the sets of
vertices on the paths φ((u1, v1)) and φ((u2, v2)) are disjoint. �

Lemma 6. If P can be matched in D′ with at most δ substitutions to vertex
labels of D′, then all $’s in P are matched with non-substituted $’s in D′ and
all #’s in P are matched with non-substituted #’s in D′. Consequently, we can
assume the only substitutions are to the vertex labels corresponding to bin(i)’s
within enc(i)’s.

Proof (Overview). We establish the existence of a long, non-branching path for
every marked vertex that can be traversed at most once when matching P . This,
combined with maximal paths of, $, #, and 0/1-symbols, all being of length W ,
makes it so that ‘shifting’ P to match a portion of D forces the shift to occur
throughout the walk traversed while matching P . Utilizing the large Hamming
distance between shifted instances of two encodings, we can then show that not
matching all non-0/1 symbols requires more than δ substitutions. The complete
proof is provided in the full version [21]. �
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Post-substitution to vertex labels, we will refer to a vertex as marked
if there exists a walk ending at it that matches a string of the form
enc(L(u))$W enc(L(u)), u ∈ V . Note that this definition does not require all
length k − 1 walks ending at such a vertex to match the same string.

Lemma 7. If P can be matched in D′ with at most δ substitutions to vertex
labels of D′, then no additional marked vertices are created due to vertex substi-
tutions.

Proof. Pre-substitution, only marked vertices have implicit labels of the form
S1$W S2 where S1 and S2 contain no $ symbols. Hence, the only way that a
vertex could have a walk ending at it that matches a pattern of that form post-
substitution is if either it was originally a marked vertex, or some non-0/1-
symbols were substituted in D′. However, by Lemma 6 the latter case cannot
happen, and only originally marked vertices have walks ending at them matching
strings of the form S1$W S2 post-substitution. �

Lemma 8. If P can be matched in D′ with at most δ substitutions to ver-
tex labels of D′, then each originally marked vertex in D′ is visited exactly
once, except for an originally marked vertex at the end of a path matching
enc(0)$W enc(0) that is visited twice.

Proof. First, we show that all marked vertices, except the one with implicit label
enc(0)$W enc(0), are visited at most once. Pre-substitution, a marked vertex with
implicit label enc(i)$Wenc(i) is at the end of a unique, branchless path of length
W matching enc(i). By Lemma 6, the only substitutions to this path made
while matching P are substitutions making it match enc(i′), i′ 
= i. If this path
were modified to match enc(i′), i′ > 0, then the only way the marked vertex
could be visited twice while matching P is if after traversing the path, another
path matching $W is taken back to the start of this enc(i′) path. However, any
edges leaving this marked vertex are labeled with #, making this impossible.
By similar reasoning, the path matching enc(0) ending at a marked vertex is
visited at most twice. We now show that each marked vertex is visited at least
once. Suppose some marked vertex is not visited. By Lemma 7, no additional
marked vertices are created. Hence, a marked vertex ending a path matching
enc(i), i > 0 is visited at least twice, or a marked vertex ending a path matching
enc(0) is visited at least three times, a contradiction. �

Lemma 9. If P can be matched in D′ with at most δ substitutions to vertex
labels of D′, then D has a Hamiltonian cycle.

Proof. By Lemma 4, the paths between marked vertices traversed while match-
ing with P correspond to edges between vertices in D. Combined with marked
vertices being visited exactly once from Lemma 8 (except the marked vertex
ending a path matching enc(0)), the walk matched by P in D′ corresponds to a
Hamiltonian cycle through D beginning and ending at the vertex labeled 0. �
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This completes the proof of Theorem 1. To see that k = Θ(log2 |V ′|), first
recall that |V | is the number of vertices in the original graph, where we assumed
|E| = O(|V |). At most 4W |E| = O(k|V |) vertices are created in the reduction.
Also, the proof of Lemma 6 establishes that there is a unique set of at least
Θ(k) vertices for every marked vertex, each one corresponding to a vertex in
the original graph. Combining, we have that |V ′| = Θ(k|V |). By construction,
k = Θ(log2 |V |), and since |V ′| = Θ(k|V |), k = Θ(log2 |V ′|) as well.

3 Hardness for Problem 2 on de Bruijn Graphs

Reduction. The Orthogonal Vectors Problem is defined as follows: given two
sets of binary vectors A,B ⊆ {0, 1}d where |A| = |B| = N , determine whether
there exists vectors a ∈ A and b ∈ B such that their inner product is zero.
Conditioned on SETH, a standard reduction shows that this cannot be solved
in time dΘ(1)N2−ε for any constant ε > 0 [44].

Fig. 6. An illustration of the reduction from OV to Problem 2.

Let the given instance of OV consist of A,B ⊆ {0, 1}d where |A| = |B| = N =
2m for some natural number m. Hence, we have �log(N + 1)� = log N + 1. This
will ease computation later. We also assume that d > log N . This is reasonable,
as if d ≤ log N , then |A| and |B| would contain either all vectors of length d or
repetitions.

We will next provide a formal description of the graph D our reduction
creates from the set A = {a1, a2, ..., aN} and the pattern P it creates from the
set B = {b1, b2, ..., bN}. The reader may find Fig. 6 helpful. The graph will consist
of four sections. We name these according to their function in the reduction: the
Selection fan-in, the Selection section, the Post-Selection merge section, and the
Synchronization loop.
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We start with the Selection fan-in. Let 2c be the smallest power of 2 such
that 2c ≥ N + 1. The Selection fan-in consists of a complete binary tree with
2c leaves where all paths are directed away from the root. The root is labeled 0
and the children of every node are labeled 0 and 1, respectively.

The Selection section consists of N + 1 paths. We first define the map-
pings fA and fB from {0, 1} to sequences of length four as fA(0) = 1100,
fA(1) = 1111, fB(0) = 0110, fB(1) = 0000. These mappings have the prop-
erty that dH(fA(0), fB(0)) = dH(fA(0), fB(1)) = dH(fA(1), fB(0)) = 2 and
dH(fA(1), fB(1)) = 4, where dH(x, y) is the Hamming distance between strings
x and y. We make the ith path for 1 ≤ i ≤ N a path of 4(d + 1) vertices
with labels matching the string fA(ai[1])fA(ai[2])...fA(ai[d])fA(0). We make the
(N + 1)th path have 4(d + 1) vertices and match the string fA(0)dfA(1). Let si

denoted the start vertex of path i. We arbitrarily choose N + 1 leaves, l1, l2,...,
lN+1, from the Selection fan-in and add the edges (li, si) for 1 ≤ i ≤ N + 1.

We define the implicit label size as k = �log(N +1)�+4(d+1) and � = k−1.
To construct the Post-selection merge section, we start with N + 1 length � − 1
paths, each matching the string 2�. For every path in the Selection section, we
add an edge from the last vertex in the path to one of the paths matching 2�.
This is done so that every path matching 2� in the Post-selection merge section
is connected to exactly one path from the Selection section. Next, we merge two
vertices if they have the same implicit label. This is repeated until all vertices
in the Post-selection merge section have a unique implicit label.

To construct the Synchronization loop we create a directed cycle with �+1 =
k vertices. One of these is labeled with the symbol 3, and the rest with the
symbol 2. Edges from each ending vertex in the Post-selection Merge section to
the vertex labeled 3 are then added. A final edge from the vertex labeled 3 to
the root of the binary tree in the Selection fan-in completes the graph, which we
denote as D.

Let t = 5d + �log(N + 1)�. To complete the reduction, we make the pattern

P = (2�3)t 2�log(N+1)�fB(b1[1])fB(b1[2]) . . . fB(b1[d])fB(1)

(2�3)t 2�log(N+1)� fB(b2[1])fB(b2[2]) . . . fB(b2[d])fB(1)
. . .

(2�3)t 2�log(N+1)�fB(bN [1])fB(bN [2]) . . . fB(bN [d])fB(1)

and the maximum number of allowed substitutions δ = N�log2(N + 1)� + 2(d +
1) + (2d + 4)(N − 1).

We call substrings in P of the form fB(bi[1])fB(bi[2]) . . . fB(bi[d])fB(1) and
paths in D matching strings of the form fA(ai[1])fA(ai[2])...fA(ai[d])fA(0) vector
gadgets. Note that |E| = O(dN) and m = |P | = O(d2N). Hence, an algorithm
for approximate matching running in time O(m|E|1−ε+m1−ε|E|) for some ε > 0
would imply an algorithm for OV running in time dΘ(1)N2−ε. This implies that
once the correctness of the reduction has been established, Theorem 2 follows.
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3.1 Proof of Correctness

Proofs of Lemma 10 and Lemma 11 are provided in the full version [21].

Lemma 10. The graph D is a de Bruijn graph.

Lemma 11. In an optimal solution, 3’s in P are matched with 3’s in D.

Lemma 12. In an optimal solution, vector gadgets in P are matched with vector
gadgets in D.

Proof. Suppose otherwise. By Lemma 11, this can only occur if some vector
gadget in P is matched against the Synchronization loop. This requires at least
4(d + 1) substitutions. We can instead match the �log(N + 1)� 2’s preceding
the vector gadget in P with the Selection fan-in and the vector gadget in P
with the (N + 1)th path in the Selection section. Due to dH(fA(0), fB(0)) =
dH(fA(0), fB(1)) = 2 and d(fA(1), fB(1)) = 4, this requires �log(N +1)�+2d+4
substitutions in P . Since, log N < d < 2d we have log N < 2d − 1. Using that N
is some power of 2, �log(N + 1)� + 2d + 4 = log N + 1 + 2d + 4 < 4d + 4. Hence,
the cost decreases by matching the vector gadget in P to a vector gadget in D
instead. �

Lemma 13. If there exists a vector a ∈ A and b ∈ B such that a · b = 0, then
P can be matched to D with at most δ substitutions.

Proof. Match the vector gadget for b in P with the vector gadget for a in the
Selection section of D. This costs 2(d + 1) substitutions. Match the remaining
N − 1 vector gadgets in P with the (N + 1)th path in the Selection section,
requiring (2d+4)(N−1) substitutions in total. The total number of substitutions
of 2’s in P to match the Selection fan-in is N�log(N + 1)�. Adding these, the
total number of substitutions is exactly δ. The synchronization loop can be used
for matching all additional symbols in P without any further substitutions. �

Lemma 14. If P can be matched in D with at most δ substitutions, then there
exists vectors a ∈ A and b ∈ B such a · b = 0.

Proof. By Lemma 12, we can assume vector gadgets in P are only matched
against vector gadgets in D. Suppose that there does not exist a pair of orthog-
onal vectors a ∈ A and b ∈ B. Then, which ever vector gadget in D we choose to
match a vector gadget in P to, matching the vector gadget requires at least 2d+4
substitutions. Hence, the total cost is at least (2d + 4)N + N�log(N + 1)� > δ,
proving the contrapositive of Lemma 14. �

4 Discussion

We leave open several interesting problems. An NP-completeness proof for Prob-
lem 1 on de Bruijn graphs when k = O(log n) and the alphabet size is constant is
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still needed. Additionally, we need to extend these hardness results to when sub-
stitutions are allowed in both the graph and the pattern, and when insertions and
deletions in some form are allowed in the graph and (or) the pattern. It seems
unlikely that adding more types of edit operations would make the problems
computationally easier, and we conjecture these variants are NP-complete on de
Bruijn graphs as well. It also needs to be determined whether Problem 1 is NP-
complete on de Bruijn graphs with binary alphabets, or whether the SETH-based
hardness results hold for Problem 2 on binary alphabets. A practical question
is whether these problems are hard for small δ values on de Bruijn graphs (the
problem for general graphs was proven to W [2] hard in terms of δ in [11]). In
applications, the allowed error thresholds are quite small. Clearly, the problems
are slice-wise-polynomial with respect to δ, i.e., for a constant δ it is solvable
in polynomial time via brute force, but are they fixed-parameter-tractable in δ?
The reduction presented here (as well as the reductions in [6,26]) is based on
the Hamiltonian cycle problem, where a large δ value is used. This makes the
existence of such a fixed-parameter-tractable algorithm a distinct possibility.
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Abstract. Accurately finding proteins and genes that have a certain function is the
prerequisite for a broad range of biomedical applications. Despite the encouraging
progress of existing computational approaches in protein function prediction, it
remains challenging to annotate proteins to a novel function that is not collected
in the Gene Ontology and does not have any annotated proteins. This limitation,
a “side effect” from the widely-used multi-label classification problem setting
of protein function prediction, hampers the progress of studying new pathways
and biological processes, and further slows down research in various biomedical
areas. Here, we tackle this problem by annotating proteins to a function only
based on its textual description so that we don’t need to know any associated
proteins for this function. The key idea of our method ProTranslator is to redefine
protein function prediction as a machine translation problem, which translates
the description word sequence of a function to the amino acid sequence of a
protein. We can then transfer annotations from functions that have similar textual
description to annotate a novel function. We observed substantial improvement in
annotating novel functions and sparsely annotated functions onCAFA3, SwissProt
and GOA datasets. We further demonstrated how our method accurately predicted
gene members for a given pathway in Reactome, KEGG and MSigDB only based
on the pathway description. Finally, we showed how ProTranslator enabled us to
generate the textual description instead of the function label for a set of proteins,
providing a new scheme for protein function prediction.We envision ProTranslator
will give rise to a protein function “search engine” that returns a list of proteins
based on the free text queried by the user.

Keywords: Protein function prediction · Natural language processing · Systems
biology

Availability: https://github.com/HanwenXuTHU/ProTranslator/

1 Introduction

Accurately identifying protein functions serves as the basis for studying a wide range of
biomedical problems [1–4], such as cell cycle regulation [5], neuronal morphogenesis
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[6], signal transduction [7] and drug discovery [8, 9]. Experimentally testing the func-
tions of millions of proteins across tens of thousands of functions is impractical. As a
result, many computational approaches have been proposed to predict protein functions
according to protein domains [1, 10], protein motifs [11, 12], protein sequence [13–17],
protein-protein interactions [18–20], protein text description [21], and protein struc-
tures [22, 23]. These features have also been integrated to jointly perform the prediction
[24–27].

The standard problem setting of protein function prediction is to form it as a multi-
label classification problem, where the input is the feature vector of a protein and the
output is a set of functions predefined as controlled vocabulary in the Gene Ontology
(GO) [28]. This problem setting enables protein function prediction to easily incorporate
new machine learning techniques in the feature extraction or the classification compo-
nent, but inevitably restricts the predicted function to be within the set of controlled
vocabulary. As a result, existing methods are not able to classify proteins into functions
that are not in the GO and do not have any annotated proteins. clusDCA is able to clas-
sify proteins to the function that do not have any annotated proteins [18], but it still
requires that function to be within the GO graph. This limitation substantially hinders
the progress towards understanding new molecular functions and biological processes,
further slowing down research in downstream applications.

We aim to develop an algorithm that enables us to classify proteins into any function
that does not have any annotated proteins and is not in GO. The only information we
need for that function is a textual description, which could be a few sentences describing
this function. The key idea of our method is to embed descriptions of all GO functions
into the same low-dimensional space, where similar functions are co-located. When we
need to annotate a new function that is not in GO, we will project this new function in
this low-dimensional space based on its textual description and then transfer annotations
from other GO functions. To embed the textual description, we used large-scale lan-
guage model PubMedBert [29], which is pre-trained on millions of scientific papers and
obtained the state-of-art performance on specialized biomedicine tasks. We then embed
proteins by integrating protein sequence, protein textual description and protein-protein
interaction network. Finally, we learnt a linear transformation from protein embedding
space to function embedding space according to known annotations.

We validated our method on CAFA3 [2], SwissProt [30], and GOA [28] datasets and
observed substantial improvement on functions that do not have any annotations and
functions that are sparsely annotated. We further demonstrated how our method could
predict gene members of pathways in Reactome [31], KEGG [32], MsigDB [33] by only
using the pathway description without seeing any specific gene belonging to it. Finally,
we showed how to generate sentences that can best describe the function of a set of given
proteins based on our method. We envision that our method enables us to build a “search
engine” for function prediction, where users only need to provide a few keywords or
sentences to describe the function that they want to annotate and then our system will
return the associated proteins and genes for this function.
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Fig. 1. a, Flowchart of ProTranslator. ProTranslator embeds proteins into the low-dimensional
space by integrating protein sequence, description and network features. It then embeds GO terms
according to the textual description. GO terms are then projected into the protein embedding
space according to known annotations. To annotate a new function, ProTranslator will project the
new function into this low-dimensional space according to its textual description and annotate it
using nearby proteins. b, c, Box plots comparing text-based GO similarity for GO terms that have
different distances on the graph (b) and annotation similarity (c).

2 Methods

2.1 Problem Definition

Previous studies modelled the protein function prediction as a multi-label classification
problem. They used features of proteins, denoted asX , to predict a subset Y of predefined
functions Y0 = {

y1, y2, ..., yz0
}
where z0 denotes the number of predefined functions.

For each function yj inY0, it has annotated protein feature set Xj collected for the model
training. However, this modelling approach restricts the scope of protein prediction
research to the function within the controlled vocabulary Y0. To tackle this problem,
we redefine this problem by considering the potential novel function set without any
annotated protein collected. The novel function set is defined as U0 = {

u1, u2, ..., uz1
}

and z1 denotes the number of novel functions. There is also a new protein feature set
XU
j for each uj and XU

j /∈ {
X1, ...,Xz0

}
. This problem is defined as: with only protein

features
{
X1, ...,Xz0

}
and their annotations

{
Y1,Y2, ...,Yz0

}
seen before, the prediction

method should learn to classify a new protein feature set XU
j into a novel function uj.
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2.2 Embedding GO Functions Based on the Textual Description

We use the textual description to embed GO functions. They are collected from the
“definition” field from the Gene Ontology. In order to embed a new function to the same
low-dimensional space only basedon textual description,wedisregard other information,
such as GO graph and protein annotations, when embedding GO functions. We obtain
the vector representation for each GO term using PubMedBert, which is pre-trained on
both the PubMed’s abstracts and PubMedCentral’s full-text articles [29]. The corpus
used by PubMedBert is best aligned with our task in comparison to other pre-trained
language models. To obtain a fixed-size feature vector for GO definitions with various
numbers of words, We average the last hidden states’ output on each dimension across
all tokens (words or subwords) to obtain the low-dimensional text representations. The
final representation vector for each GO term is dBert dimensions.

2.3 Embedding Proteins Based on Sequence, Description and Network

To embed proteins, we consider three widely-used features: sequence, description and
network.We followed the state-of-the-art approach DeepGOPlus to extract the sequence
features using convolutionneural networks (CNN) [14].Multiple 1-d convolutionkernels
with different sizes are used in the first layer and the size ranges from RD to RU with
step T , which results in e different sizes. The number of filters of each size is set to d0.
Then a max pooling layer is used to extract information across kernels.

FSt = f1(
[
ω1,t∗xs1:t,ω1,t∗xs2:1+t, ..., ω1,t∗xsL−t+1:L

]
), (1)

where ω1,t represents the 1-d convolution kernel in the first layer with the window size
t and xs ∈ R

n×21×L represents the input sequence one-hot encodings. n denotes the
number of proteins. f1 denotes the max pooling layer with the kernel size L− t + 1. We
then concatenate different FSt ∈ R

n×d0 together as the sequence features FS ∈ R
n×dseq .

FS = concat
(
FSt1 ,FSt2 , ...FSte

)
, t1 ≤ t2 ≤ ... ≤ te ≤ L. (2)

We embed the protein descriptions similarly to the process of embedding the tex-
tual description of GO functions. The description of each protein was obtained from
GeneCards [34, 35]. Each protein is then represented by a low-dimensional vector
FD ∈ R

dBert . The gene network data FN ∈ R
dMashup is provided by the pre-trained

Mashup representations of each protein according to their topology in multiple protein-
protein interaction networks [20]. Then we add one-depth fully connected layers to
reshape each kind of feature (FS, FD and FN ) and set the output dimension to h. The
fully connected layers are denoted as LayerFCN ,1, LayerFCN ,2, LayerFCN ,3:

MS ,MD,MN = LayerFCN ,1(FS),LayerFCN ,2(FD),LayerFCN ,3(FN ). (3)

MS , MD, MN denote the processed features vector of protein sequence, description and
network respectively, where MS , MD, MN are all n × h matrices. Then we concatenate
them together and denote it as MSDN , which is n × 3h.

MSDN = concat(Ms,MD,MN ). (4)
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2.4 Protein Function Prediction Based on GO Embeddings and Protein
Embeddings

Our model predicts the protein function by projecting GO terms and proteins into the
same low-dimensional space. Let FT ∈ R

z×dBert be the representation vectors of the
protein function text data, where z represents the number of protein functions. Let B be
the binary label matrix, which is n by z. Bi,j = 1 only if protein i has the function j. The
binary cross-entropy loss function is defined as:

L =
n∑

i=1

z∑

j=1

[
−Bi,j × log

(
1/1 + exp

(
MSDNW (FT )T

)))

−(
1 − Bi,j

) × log(exp
(
MSDNW (FT )T

)
/
(
1 + exp

(
MSDNW (FT )T

)]
(5)

where W ∈ R3h×dBert are learnable parameters. During the prediction process, we can
annotate a new protein using the following equation:

pj = 1/
(
1 + exp

(
mSDNW (FTj)

T
))

, (6)

where we use pj to represent the probability of the new protein has the function j and
mSDN denotes this protein’s concatenated features extracted by the method in Sect. 2.3.
Since our method utilizes the textual description of a new function to classify proteins, it
is able to annotate a new function even if it is not annotated to any protein in the training
data.

2.5 Annotate Novel Functions, Sparse Functions and Gene Sets to Pathways

As for the terms seen in the training, we could combine the similarity based prediction
method usingDiamondScore [14, 36] to enhance ProTranslator, which is denoted as Pro-
Translator + DiamondScore. The previous prediction score SjProTranslator for function
j is the output of the deep learning model. Therefore we redefine the overall prediction
score of ProTranslator + DiamondScore on function j as:

SjProTanslator+DiamondScore = α × SjDiamondScore + (1 − α) × SjProTranslator, (7)

The DiamondScore is calculated as:

SjDiamondScore =
∑

xs∈E bitscore
(
xsq, x

s
)

× I(j ∈ Jxs)
∑

xs∈E bitscore
(
xsq, x

s
) , (8)

where xsq is the query sequence and E is the similar sequences set. Jxsi is the annotations
set of proteins with sequence feature xs. I is the identity function and bitscore is the
sequence similarity score predicted by BLAST [10].



284 H. Xu and S. Wang

2.6 Text Generation by the Protein Sequence Features

We develop a model to generate the description of proteins from the sequence features
based on the Transformer architecture [37]. For eachGO function, we average all the one
hot encodings of the sequences of its samples as the input in the text generation model.
We still leverage the convolutional kernels in DeepGOCNN [14] to process the sequence
features. Thenwe add themain Transformer architecture. Since theDeepGOCNNmodel
discards the positional information when setting the max pooling layer to the maximum
size, we remove the positional encodings at the encoder stack bottoms in Transformer.
The multi-head self-attention could be written as:

MultiHead
(
MSDN ,l,MSDN ,l,MSDN ,l

) = concat(head1, ..., heado)

headi = softmax

(
MSDN ,lA

Q
i (MSDN ,lAK

i )T√
dk

)

MSDN ,lA
V
i ,

(9)

whereMSDN ,l represents the input of the lth sub-layer. A
Q
i ,AK

i ,AV
i are learnable parame-

ters. Tomake the optimization process more stable, we adopt the pre-layer normalization
in the Transformer [38]:

MSDN ,l+1 = MSDN ,l + F(
LN

(
MSDN ,l; θl

))
, (10)

where SDNl and SDNl+1 represent the lth sub-layer’s input and output. LN denotes the
layer normalization and θl represents the parameters of the sub-layer F in the encoder
or decoder.

3 Experimental Setup

3.1 Calculating Similarities Between GO Functions

We calculated three kinds of similarities between two GO functions: text-based similar-
ity, GO graph-based similarity and annotation-based similarity. The text-based similarity
is calculated using the cosine similarity between the representation vectors of their textual
descriptions. We calculated the GO graph-based similarity using the shortest distance
between twoGO functions on the GO graph, which is built based on “is_a” and “part_of”
relationships. We calculated the annotation-based similarity by using the cosine similar-
ity between the binary annotation vectors of two GO functions. The binary annotation
vector Anntj ⊆ R

z of a GO function j is defined as Anntji = 1 if function j is i or one of

i s ancestor in the GO hierarchy otherwise Anntji = 0.

3.2 Datasets and Evaluation

Weused theGeneOntology (GO) that was released on June 16, 2021. The descriptions in
the ‘def’ field were used as the textual description.We considered three datasets: CAFA3
[2], SwissProt [30], and GOA(Human) [28]. The preprocessed CAFA3 challenge dataset
and SwissProt dataset were obtained from the online data files provided byDeepGOPlus.
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The pre-trained gene network features for humans were downloaded from STRING
database v9.1 [39]. We collected the gene descriptions from GeneCards [34, 35]. The
CAFA3 dataset was released in September, 2016. We selected the proteins from the
intersection of theCAFA3dataset, the gene network features file and the gene description
file and 11,679 proteins were finally selected. The SwissProt dataset was published in
January, 2016 and we finally selected 5,889 proteins. The annotations were propagated
according to the hierarchical structure ofGObased on “is_a” and “part_of” relationships.
We collected the annotations of the GOA(Human) dataset from the Gene Ontology
Consortium website. The annotation file was generated on May 1, 2021. We leveraged
3-fold cross-validiation to evaluate these datasets and selected10%of the leaf nodes in the
GOgraph as the novel functions in the zero-shot setting and excluded their annotations in
the training dataset. We investigated the performance of ProTranslator and current state-
of-art methods on annotating sparse functions with proteins less than 20 using the same
GOA(Human) dataset and additional GOA(Mouse) dataset. The 3-fold cross-validiation
was adopted. We calculated the area under the receiver of characteristic curve (AUROC)
[40] of our model on the novel and sparse functions. In the text generation, we used the
bilingual evaluation understudy (BLEU) [41] score as the metric. The BLEU score was
computed first between segments of generated texts and references and then averaged
over them.

To classify genes into pathways, we collected the Reactome [31] and KEGG [32]
pathways description and gene sets. We finally obtained 2,007 and 264 pathways in
Reactome and KEGG, the average gene number in each pathway is 4.6 and 22.6 respec-
tively.We also collected theMolecular Signatures Database (MSigDB) [33] for pathway
prediction. The text in “DESCRIPTION_FULL” was selected as the text data. We eval-
uated our approach on pathway C2, which has the most complete textual description.
There were 3,704 pathways and the average number of genes for each pathway is 3.7
in pathway C2. In each pathway, the genes in both the genesets and STRING database
for humans were selected for evaluation. In the text generation part, we leveraged the
GOA(Human) datasets. We select 70% functions in GO data as the training functions
and 30% function as validation functions.

The input length L of a protein was set to 2000 in annotating functions. We set the
range of convolutional kernel size RD and RU to 8 and 128, and the step T was 8. Then
we could get e = 16 different sizes of kernels. We set d0 to 512 and therefore dseq
was 8192. The dimension of PubMedBert representations dBert is 768. The dimension
of Mashup representations dMashup = 800 and dMashup = 1000 for GOA(Human) and
GOA(Mouse) datasets. The dimension hwas set to 1500.When combining the similarity
based prediction method, ProTranslator used the setting of DeepGOPlus, and α = 0.68,
α = 0.63, α = 0.46 for BP, MF and CC. In the Transformer architecture, we used 6
encoder layers and 6 decoder layers. We set the hidden dimension of the Transformer to
512. The attention layer heads number owas 8 and dk was 64.We also used the warm-up
stage during the training process. Here we set the warm-up steps to 2000. We used the
greedy decode strategy in the inference process.
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3.3 Comparison Approaches

We compared our method to two comparison approaches that have the same model
architecture while replacing the combined features with sequence features only. In one
comparison approach, we replaced the PubMedBert embedded text vectors with Term
Frequency–Inverse Document Frequency (TF-IDF) embeddings to investigate the influ-
ence of text embedding methods. In the other comparison approach, the text vectors
were replaced with the ontology network vectors to make comparison with the represen-
tations of topological features. We named these two comparison approaches ‘tf-idf’ and
‘Graph-based’. To investigate how our method performed compared with current state-
of-art methods when annotating sparsely annotated functions, we selected DeepGOPlus
as the comparison approaches since it has been shown to exceed multiple benchmarks
in the previous research [14]. DeepGOPlus used the latest released ‘alphas’ when con-
sidering similarity based predictions, which are 0.68, 0.63 and 0.46 for BP, MF and
CC.

4 Results

4.1 Gene Ontology Term Description Similarity Reflects Function Annotation
Similarity

The key idea of our method is to annotate a novel function by transferring annotations
from other functions that have similar textual description. Therefore, we first examined
the correlation between the text-based GO term similarity and the annotation-based GO
term similarity (see Experimental Setup). We observed a strong correlation between
these two similarities, indicating that GO terms with similar textual description tend to
have similar protein annotations (Fig. 1c). We next compared the text-based similarity
with GO graph-based similarity. We found that terms that are close on the graph have
much higher textual similarity (Fig. 1b). Since previous work has demonstrated how
GO graph can be used to assist function annotation, especially for sparsely annotated
functions [18, 42, 43], the strong consistency between text-based GO similarity and GO
graph-based similarity further raises our confidence that textual description can be used
to enhance protein function prediction.

4.2 ProTranslator Enables Protein Function Prediction in the Zero-Shot Setting

We next sought to examine whether ProTranslator can classify proteins in the zero-shot
setting where the test function does not have any annotated proteins in the training data.
We summarized the results of ProTranslator on three GO domains of biological process
(BP), molecular function (MF) and cellular component (CC) across three datasets in
Fig. 2. To simulate the zero-shot setting, we held out all protein annotations of test
functions from the training data. We first compared ProTranslator to TF-IDF, which
models the textual description using a frequency-based vector spacemodel, and observed
at least 13%, 11%, 14% improvements onBP,MF,CCdomains on three datasets by using
ProTranslator, indicating the superior performance of embedding text description using

https://doi.org/10.1007/978-3-031-04749-7_1
https://doi.org/10.1007/978-3-031-04749-7_1
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large-scale pre-trained language models. We then compared ProTranslator to a graph-
based approach, which embeds the GO graph structure to annotate novel functions.
ProTranslator also outperformed this graph-based approach by a large margin, which
demonstrates the advantage of using text data against GO graphs to annotate novel
functions.More importantly, the graph-based approach requires the function to bewithin
the GO graph, whereas ProTranslator supports the annotation of any function only based
on a short text description.

Fig. 2. Performance of ProTranslator in the zero-shot setting. Bar Plots comparing the AUROC
of ProTranslator, tf-idf and the graph-based approach on CAFA3, SwissProt, GOA(Human). We
held out all protein annotations of test functions from the training data.

4.3 ProTranslator Obtains Substantial Improvement in the Few-Shot Setting

After confirming the superior performance of ProTranslator in the zero-shot setting, we
next investigated whether ProTranslator can achieve better performance in the few-shot
settingwhere each test GO term only has very few annotated proteins.We compared Pro-
Translator to the state-of-the-art approachDeepGOPlus [14] onGOAHuman andMouse
datasets (Fig. 3). Similar to DeepGOPlus, we also incorporated the protein sequence
feature into our model to improve the performance and denoted it as ProTranslator +
DiamondScore. We observed substantial improvement of ProTranslator over DeepGO-
Plus when each GO term only has a limited number of annotation proteins between 1 to
20. We further found that the improvement of our method is larger for terms that have
fewer annotated proteins, indicating the more prominent performance of our method in
annotating new functions.

To further understand the effect of sequence-based features, we excluded the
sequence-based DiamondScore from both our method and DeepGOPlus. DeepGOCNN
[14] is the implementation of DeepGOPlus without using sequence-based Diamond-
Score. We observed a decreased performance for both our method and DeepGOPlus.
Nevertheless, ProTranslator still outperforms DeepGOCNN with a large margin. More-
over, ProTranslator without DiamondScore also outperforms DeepGOPlus on func-
tions that have less than 10 annotated proteins on GOA(Human), again indicating the
prominent performance of using textual description for protein function prediction.
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4.4 ProTranslator Annotated Genes to Pathways by Only Using the Pathway
Description

After observing the superior performance of ProTranslator on functions collected in
the Gene Ontology, we next evaluate ProTranslator on a more challenging setting of
classifying genes into a pathway without knowing any genes in that pathway. Since
ProTranslator could annotate any GO term as long as its textual description is available,
we hypothesized that ProTranslator could also predict genes of a given pathway by
only using the description of that pathway. Specifically, we trained ProTranslator using
the function annotation and text description of Gene Ontology and then applied this
model to pathways in Reactome, KEGG and MSigDB. Notably, even though graph-
based approaches, such as clusDCA, are able to annotate GO terms that do not have any
proteins, they cannot be applied to these pathways as they require the functions to be
within theGOgraph. In contrast, ourmethoddoes not have this restriction, as it only relies
on a short description of pathways.We summarized the performance of ProTranslator on
Reactome, KEGG and MSigDB pathway in Fig. 4a–c. To avoid potential data leakage
between pathways and GO terms, we excluded pathways that have more than 90%
shared genes with an existing GO term. We examined the performance of our method at
differentAUROC thresholds and found that ourmethod could annotate 81%ofReactome
pathwayswithAUROClarger than0.85 and84%ofKEGGpathwayswithAUROClarger
than 0.75, demonstrating the accuracy of annotating genes to pathways and functions
that are not collected in the GO.

Fig. 3. Performance of ProTranslator on sparsely annotated functions. Plots comparing the
AUROC of using ProTrainslator with sequence feature (ProTranslator + DiamondScore), Pro-
Translator, DeepGOPlus and DeepGOCNN on annotating functions with number of annotated
proteins from 1 to 20 in the training data in GOA(Human) (a–c) and GOA(Mouse) (d–f).

To better understand the prominent performance of ProTranslator on classifying
genes into these functions, we further investigated how the text information determined
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the performance of ProTranslator. We observed that the pathway descriptions of Reac-
tome and KEGG dataset were closer to the GO descriptions than those ofMSigDB in the
embedding space (Fig. 5a),which explains themore prominent performance of ProTrans-
lator on Reactome and KEGG than MSigDB. Then we plotted the three datasets sepa-
rately and colored each pathway using its AUROC during the cross-validation (Fig. 5b–
d). We observed a clear pattern that the pathway whose textual description is closer
to GO description tends to have a higher AUROC. This again indicates the substantial
contribution of textual description in classifying genes into pathways and shows that the
performance of our method depends on the quality of the textual description.

4.5 ProTranslator Generates Text Description for a Gene Set

The superior performance of ProTranslator comes from its novel setting of modeling
the protein function prediction as a machine translation problem. We have extensively
validated how to find associated proteins for a given function. Here, we aim to explore
whether we can also generate the functional textual description for a set of proteins. For
a given set of proteins, we used the average feature representations of them as input and
then generated a novel textual description using ProTranslator.We evaluated this method
on the GOA (Human) dataset by comparing the generated textual description to the
ground truth curated GO term description and obtained a 0.26 BLEU. To avoid potential
data leakage, we excluded the test term that has more than 0.5 Jaccard annotation-
based similarity with any training GO term. By further examining the generated text, we
observed that many of them are highly consistent with the curated GO term description
(Table 1), suggesting the possibility of using our method to automatically expand GO
and curate new functions.

Fig. 4. Classifying genes into pathways only based on pathway description. a–c, Bar plots
showing the percentage of pathways with AUROC greater than different thresholds (x-axis) on
Reactome (a) and KEGG (b) and MSigDB (c). We didn’t see any genes of these pathways in the
training stage. Pathways that have many overlapped genes with an existing GO term are excluded.

4.6 Ablation Experiment

ProTranslator integrated protein sequence, protein description and protein-protein net-
work as features to embed proteins. To understand the contribution of each kind of
feature, we conducted ablation studies on the GOA(Human) dataset to explore how the
performances would change with different feature combinations (Fig. 6). We found that
each of these three components makes an important contribution for the function annota-
tion. ProTranslator could achieve the best performancewith all the three features together
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Fig. 5. Visualization of the joint embedding space of pathways and GO terms based on
textual description. a, t-SNE plot showing the embedding space of GO terms and pathways in
Reactome, KEGG, and MSigDB dataset. 1500 randomly selected GO terms are shown here. GO
terms and pathways are embedded using their textual descriptions. b, c, d, t-SNE plots show the
co-embedding space of Reactome (b), KEGG (c), MSigDB (d) and GO term. Each pathway is
collected by its AUROC during the cross-validation. 500 randomly selected GO terms are shown
in each plot.

Table 1. GO term description generated by our method according to the annotated proteins. The
nearest text refers to the text of the training GO term that is closest to the test GO term.

GO:0032588

Generated text The lipid bilayer surrounding a vesicle transporting substances
between the trans - golgi network and other parts of the cell

Nearest text in the training The network of interconnected tubular and cisternal structures
located within the Golgi apparatus on the side distal to the
endoplasmic reticulum, from which secretory vesicles emerge.
The trans-Golgi network is important in the later stages of protein
secretion where it is thought to play a key role in the sorting and
targeting of secreted proteins to the correct destination

Ground truth text The lipid bilayer surrounding any of the compartments that make
up the trans - golgi network

GO:0048738

Generated text The process whose specific outcome is the progression of a
cardiac cell over time, from its formation to the mature state. a
cardiac cell is a cell that will form part of the cardiac organ of an
individual

Nearest text in the training The process in which a relatively unspecialized cell acquires the
specialized structural and/or functional features of a cell that will
form part of the cardiac organ of an individual

Ground truth text The process whose specific outcome is the progression of cardiac
muscle over time, from its formation to the mature structure

and the AUROC was lowest with only the sequence feature. This observation verified
that ProTranslator could be applied to cases where the protein sequence, description and
network data were not all available.
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Fig. 6. Ablations studies on contributions of different features. Bar plots comparing the
AUROC of using different feature combinations. S, D and N denote the protein sequence, descrip-
tion and network respectively. The tick label under each bar implies the combination, e.g., SN
means using protein sequence and network features.

5 Conclusion and Discussion

We have presented ProTranslator, a text based protein function prediction framework.
Through experiments on predicting GO terms in zero-shot and few-shot settings, we
have verified that our approach was able to annotate novel functions by only using
textual descriptions. We have further successfully applied ProTranslator to annotate
genes to pathways from Reactome, KEGG andMsigDB [31–33] using only the pathway
description. We observed that the performance of ProTranslator was better for functions
that have text descriptions similar toGO termdescriptions. Finally,wehavedemonstrated
how our method can be used to generate novel textual descriptions for a given set of
genes, offering the possibility to automatically curate new GO terms.

Despite the novelty and prominent performance of our method, there are still a few
limitations of our method. Firstly, textual description is required to annotate the new
function, which could be difficult to get for an under-studied new function. We plan
to incorporate genomics of these functions into our framework to supplement the text
information. We will also provide interactive interfaces for users to modify their text
based on the annotations provided by our method. Secondly, the AUROCs of these
novel functions are relatively lower compared to AUROCs of functions that have many
annotations. Predicting for densely annotated functions is known to be less challenging
[18]. Although AUROC values are not very high, our method can be used to narrow
down the candidate proteins for a given new function, thus substantially reducing the
experimental and other validation efforts.

This work is inspired by the decade-long attempts to automatically curate Gene
Ontology, includingNeXO[44] andCliXO [45]. The key difference between us and these
pioneering works is that they reconstructed the hierarchical structure and gene clusters in
the GO, whereas we generate the textual description of terms. These textual descriptions
play a key role in scientific communication and collaborations and their curation is often
most labor-intensive. Our method complements these existing efforts by using a novel
natural language processing perspective and fills in an important gap towards automating
GO curation. Another line of related works is automatically generating the term name
for a set of genes or proteins [46–48]. Compared to these approaches, we generate a
free text that contains a few sentences, which are more informative than a simple term
name. Moreover, these existing approaches restricted the generated term to be a known
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phrase in the existing literature, whereas the text generated by our method is de novo,
thus offering the unique description to a novel function or pathway.

References

1. Radivojac, P., Clark,W.T., Oron, T.R., Schnoes, A.M.,Wittkop, T., Sokolov, A., et al.: A large-
scale evaluation of computational protein function prediction. Nat. Methods 10, 221–227
(2013)

2. Zhou, N., Jiang, Y., Bergquist, T.R., Lee, A.J., Kacsoh, B.Z., Crocker, A.W., et al.: The CAFA
challenge reports improved protein function prediction and new functional annotations for
hundreds of genes through experimental screens. Genome Biol. 20, 244 (2019)

3. Jiang, Y., Oron, T.R., Clark, W.T., Bankapur, A.R., D’Andrea, D., Lepore, R., et al.: An
expanded evaluation of protein function prediction methods shows an improvement in
accuracy. Genome Biol. 17, 184 (2016)

4. Friedberg, I., Radivojac, P.: Community-wide evaluation of computational function predic-
tion. Methods Mol. Biol. 1446, 133–146 (2017)

5. Dick, F.A., Rubin, S.M.: Molecular mechanisms underlying RB protein function. Nat. Rev.
Mol. Cell Biol. 14, 297–306 (2013)

6. Freixo, F., Martinez Delgado, P., Manso, Y., Sánchez-Huertas, C., Lacasa, C., Soriano, E.,
et al.: NEK7 regulates dendrite morphogenesis in neurons via Eg5-dependent microtubule
stabilization. Nat. Commun. 9, 2330 (2018)

7. Pierri, C.L.: SARS-CoV-2 spike protein: flexibility as a new target for fighting infection. Sig.
Transduct. Target Ther. 5, 254 (2020)

8. Menche, J., Sharma,A.,Kitsak,M.,Ghiassian, S.D.,Vidal,M., Loscalzo, J., et al.:Disease net-
works. Uncovering disease-disease relationships through the incomplete interactome. Science
347, 1257601 (2015)

9. Cheng, F., Kovács, I.A., Barabási, A.-L.: Network-based prediction of drug combinations.
Nat. Commun. 10, 1197 (2019)

10. Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., et al.: Gapped
BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic
Acids Res. 25, 3389–3402 (1997)

11. Jones, P., Binns, D., Chang, H.-Y., Fraser, M., Li, W., McAnulla, C., et al.: InterProScan 5:
genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014)

12. Zohra Smaili, F., Tian, S., Roy,A., Alazmi,M., Arold, S.T.,Mukherjee, S., et al.: QAUST: pro-
tein function prediction using structure similarity, protein ınteraction, and functional motifs.
Genomics Proteomics Bioinform. (2021). https://doi.org/10.1016/j.gpb.2021.02.001

13. Kulmanov, M., Khan, M.A., Hoehndorf, R., Wren, J.: DeepGO: predicting protein functions
from sequence and interactions using a deep ontology-aware classifier. Bioinformatics 34,
660–668 (2018)

14. Kulmanov M, Hoehndorf R. DeepGOPlus: improved protein function prediction from
sequence. Bioinformatics (2021). https://doi.org/10.1093/bioinformatics/btaa763

15. Fa, R., Cozzetto, D., Wan, C., Jones, D.T.: Predicting human protein function with multi-task
deep neural networks. PLoS ONE 13, e0198216 (2018)

16. You, R., Zhang, Z., Xiong, Y., Sun, F., Mamitsuka, H., Zhu, S.: GOLabeler: improving
sequence-based large-scale protein function prediction by learning to rank. Bioinformatics
34, 2465–2473 (2018)

17. Strodthoff, N., Wagner, P., Wenzel, M., Samek, W.: UDSMProt: universal deep sequence
models for protein classification. Bioinformatics 36, 2401–2409 (2020)

https://doi.org/10.1016/j.gpb.2021.02.001
https://doi.org/10.1093/bioinformatics/btaa763


ProTranslator 293

18. Wang, S., Cho, H., Zhai, C., Berger, B., Peng, J.: Exploiting ontology graph for predicting
sparsely annotated gene function. Bioinformatics 31, i357–i364 (2015)

19. Vazquez, A., Flammini, A., Maritan, A., Vespignani, A.: Global protein function prediction
from protein-protein interaction networks. Nat. Biotechnol. 21, 697–700 (2003)

20. Cho, H., Berger, B., Peng, J.: Compact ıntegration of multi-network topology for functional
analysis of genes. Cell Syst. 3, 540–548.e5 (2016)

21. You, R., Huang, X., Zhu, S.: DeepText2GO: improving large-scale protein function prediction
with deep semantic text representation. Methods 145, 82–90 (2018)

22. Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., Zhang, Y.: The I-TASSER suite: protein
structure and function prediction. Nat. Methods 12, 7–8 (2014)

23. Whisstock, J.C., Lesk, A.M.: Prediction of protein function from protein sequence and
structure. Q. Rev. Biophys. 36, 307–340 (2003)

24. Borgwardt, K.M., Ong, C.S., Schönauer, S., Vishwanathan, S.V.N., Smola, A.J., Kriegel,
H.-P.: Protein functionpredictionvia graphkernels.Bioinformatics21(Suppl 1), i47-56 (2005)

25. Zhang, C., Freddolino, P.L., Zhang, Y.: COFACTOR: improved protein function prediction
by combining structure, sequence and protein–protein interaction information. Nucleic Acids
Res. 45, W291–W299 (2017)

26. You, R., Yao, S., Xiong, Y., Huang, X., Sun, F., Mamitsuka, H., et al.: NetGO: improving
large-scale protein function prediction with massive network information. Nucleic Acids Res.
47, W379–W387 (2019)

27. Yao, S., You, R., Wang, S., Xiong, Y., Huang, X., Zhu, S.: NetGO 2.0: improving large-
scale protein function prediction with massive sequence, text, domain, family and network
information. Nucleic Acids Res. 49, W469–475 (2021)

28. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., et al.: Gene
ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25,
25–29 (2000)

29. Gu, Y., Tinn, R., Cheng, H., Lucas, M., Usuyama, N., Liu, X., et al.: Domain-specific lan-
guage model pretraining for biomedical natural language processing. ACM Trans. Comput.
Healthcare 3, 1–23 (2021)

30. Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M.-C., Estreicher, A., Gasteiger, E., et al.:
The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic
Acids Res. 31, 365–370 (2003)

31. Fabregat, A., Jupe, S., Matthews, L., Sidiropoulos, K., Gillespie, M., Garapati, P., et al.: The
Reactome pathway knowledgebase. Nucleic Acids Res. 46, D649–D655 (2018)

32. Kanehisa, M., Goto, S.: KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids
Res. 28, 27–30 (2000)

33. Liberzon, A., Subramanian, A., Pinchback, R., Thorvaldsdóttir, H., Tamayo, P., Mesirov, J.P.:
Molecular signatures database (MSigDB) 3.0. Bioinformatics 27, 1739–1740 (2011)

34. Rebhan, M., Chalifa-Caspi, V., Prilusky, J., Lancet, D.: GeneCards: integrating information
about genes, proteins and diseases. Trends Genet. 13, 163 (1997)

35. Rebhan, M., Chalifa-Caspi, V., Prilusky, J., Lancet, D.: GeneCards: a novel functional
genomics compendium with automated data mining and query reformulation support.
Bioinformatics 14, 656–664 (1998)

36. Buchfink, B., Xie, C., Huson, D.H.: Fast and sensitive protein alignment using DIAMOND.
Nat. Methods 12, 59–60 (2015)

37. Vaswani, A., Shazeer, N., Parmar, N.: Attention is all you need. In: 31st Conference on Neural
Information Processing Systems (NIPS 2017) (2017)

38. Xiong, R., Yang, Y., He, D., Zheng, K., Zheng, S., Xing, C., et al.: On layer normalization in
the transformer architecture. In: Proceedings of the37thInternational Conference on Machine
Learning (2020)



294 H. Xu and S. Wang

39. Franceschini, A., Szklarczyk, D., Frankild, S., Kuhn, M., Simonovic, M., Roth, A., et al.:
STRING v9.1: protein-protein interaction networks, with increased coverage and integration.
Nucleic Acids Res. 41, D808–815 (2013)

40. Zou,K.H.,O’Malley,A.J.,Mauri, L.: Receiver-operating characteristic analysis for evaluating
diagnostic tests and predictive models. Circulation 115, 654–657 (2007)

41. Papineni, K., Roukos, S., Ward, T., Zhu, W.-J., Bleu: a method for automatic evaluation
of machine translation. In: Proceedings of the 40th Annual Meeting of the Association for
Computational Linguistics (2002)

42. Yu, G., Fu, G., Wang, J., Zhao, Y.: NewGOA: predicting new GO annotations of proteins
by Bi-random walks on a hybrid graph. IEEE/ACM Trans. Comput. Biol. Bioinform. 15,
1390–1402 (2018)

43. Zhao, Y., Fu, G., Wang, J., Guo, M., Yu, G.: Gene function prediction based on gene ontology
hierarchy preserving hashing. Genomics 111, 334–342 (2019)

44. Dutkowski, J., Kramer, M., Surma, M.A., Balakrishnan, R., Cherry, J.M., Krogan, N.J., et al.:
A gene ontology inferred from molecular networks. Nat. Biotechnol. 31, 38–45 (2013)

45. Kramer, M., Dutkowski, J., Yu, M., Bafna, V., Ideker, T.: Inferring gene ontologies from
pairwise similarity data. Bioinformatics 30, i34-42 (2014)

46. Wang, S., Ma, J., Fong, S., Rensi, S., Han, J., Peng, J., et al.: Deep functional synthesis: a
machine learning approach to gene functional enrichment. bioRxiv 2019:824086. https://doi.
org/10.1101/824086

47. Wang, S., Ma, J., Yu, M.K., Zheng, F., Huang, E.W., Han, J., et al.: Annotating gene sets by
mining large literature collectionswith protein networks. Pac. Symp. Biocomput. 23, 602–613
(2018)

48. Zhang, Y., Chen, Q., Zhang, Y., Wei, Z., Gao, Y., Peng, J., et al.: Automatic term name gener-
ation for gene ontology: task and dataset. In: Findings of the Association for Computational
Linguistics: EMNLP 2020 (2020)

https://doi.org/10.1101/824086


Short Papers



Single-Cell Multi-omic Velocity Infers
Dynamic and Decoupled Gene Regulation

Chen Li1, Maria Virgilio1,2, Kathleen L. Collins2,3,4, and Joshua D. Welch1,5(B)

1 Department of Computational Medicine and Bioinformatics,
University of Michigan, Ann Arbor, MI, USA

2 Department of Cellular and Molecular Biology, University of Michigan, Ann Arbor,
MI, USA

3 Department of Microbiology and Immunology, University of Michigan, Ann Arbor,
MI, USA

4 Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
5 Department of Computer Science and Engineering, University of Michigan,

Ann Arbor, MI, USA
welchjd@umich.edu

Abstract

Computational approaches can leverage single-cell snapshots to infer sequential
gene expression changes during developmental processes. For example, cell tra-
jectory inference algorithms use pairwise cell similarities to map cells onto a
“pseudotime” axis corresponding to predicted developmental progress. However,
trajectory inference based on similarity cannot predict the directions or relative
rates of cellular transitions. Methods for inferring RNA velocity [1,2] address
these limitations by fitting a system of differential equations that describes the
directions and rates of transcriptional changes using spliced and unspliced tran-
script counts. Crucially, the dynamical model of RNA velocity [1] also infers a
latent time value for each cell, providing a mechanistic means of reconstructing
the order of gene expression changes during cell differentiation.

Single-cell multi-omic measurements provide an opportunity to incorporate
epigenomic data into mechanistic models of trancription. The epigenome and
transcriptome both change during cellular differentiation, and thus the tempo-
ral snapshots in single-cell multi-omic datasets potentially reveal the interplay
among these molecular layers. For example, if epigenomic lineage priming occurs
at a particular genomic locus, single-cell multi-omic data could reveal a signif-
icant time lag between chromatin remodeling of a gene and its transcription.
Similarly, observing the dynamic changes in both the expression of a transcrip-
tion factor and the chromatin accessibility of putative binding sites could reveal
their temporal relationship.

Existing RNA velocity models assume that the transcription rate of a gene
is uniform throughout the induction phase of gene expression. However, epige-
nomic changes play a key role in regulating gene expression, such as tightening
or loosening the chromatin compaction of promoter and enhancer regions. For
example, a transition from euchromatin to heterochromatin significantly reduces
the rate of transcription at that locus, because transcriptional machinery cannot

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
I. Pe’er (Ed.): RECOMB 2022, LNBI 13278, pp. 297–299, 2022.
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access the DNA. Therefore, a more realistic model would reflect the influence of
enhancer and promoter chromatin accessibility on transcription rate.

MultiVelo describes the process of gene expression as a system of three ordi-
nary differential equations (ODEs) characterized by a set of switch time and rate
parameters. The time-varying levels of chromatin accessibility, unspliced pre-
mRNA, and spliced mature mRNA are related by ODEs describing the rates
of chromatin opening and closing, RNA transcription, splicing, and degrada-
tion or nuclear export. We assume that chromatin opening rapidly leads to full
accessibility and similarly that chromatin closing rapidly leads to full inaccessi-
bility. Each gene has distinct rate parameters describing its unique kinetics. We
assume that the transcription rate is proportional to the chromatin accessibility
and thus is time-varying, and we model the distinct phases or states that a cell
traverses as its time advances. There are two states each for chromatin accessibil-
ity and RNA: chromatin opening, chromatin closing, transcriptional induction,
and transcriptional repression. We hypothesize that multiple orders of events
are possible: chromatin closing can occur either before or after transcriptional
repression begins. We refer to the first ordering as Model 1 and the second order-
ing as Model 2. In addition, we refer to the time interval when chromatin opens
before transcription initiates as priming and the interval in which chromatin
accessibility and gene expression move in opposite directions as decoupling.

When being applied to real biological datasets, MultiVelo accurately fits
the observed chromatin accessibility, unspliced pre-mRNA, and spliced mRNA
counts in 10X Multiome embryonic mouse brain. MultiVelo identifies many clear
examples of genes that are best described by either Model 1 or Model 2. Statis-
tics of fitted genes show that most of the highly variable genes possess both
induction and repression phases (a complete trajectory), and for genes that only
have partial trajectories, induction-only phase portraits appear more often than
repression-only. MultiVelo also identifies epigenomic priming and decoupling in
the mouse brain dataset and predicts the four possible states for each cell in
each gene.

We used MultiVelo to quantify epigenomic priming in SHARE-seq [3] data
from mouse hair follicle. MultiVelo correctly identifies direction of differentiation
from TACs to IRS and hair shaft cells, consistent with the diffusion map analysis
reported in the initial paper. It also faithfully captures the priming state in genes
that show a clear time delay visually across modalities, such as Wnt3.

Not only can MultiVelo perform well on mono-lineage or bi-lineage differen-
tiation systems, but also in complex multi-lineage cell populations like human
hematopoietic stem and progenitor cells (HSPC). We found that incorporating
chromatin information significantly improves the local consistency and biological
accuracy of predicted cell directions. Moreover, we found that as with the mouse
brain dataset, Model 2 genes in the HSPC dataset are significantly enriched for
gene ontology terms related to the cell cycle.

Lastly, we applied MultiVelo to a 10X Multiome dataset from developing
human cortex [4]. As with the embryonic mouse brain dataset, MultiVelo inferred
velocity vectors consistent with known patterns of brain cell development.
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We again identified clear examples of both Model 1 and Model 2 genes. We used
the inferred global latent time to study the relationship between the expres-
sion of a transcription factor (TF) and the accessibility of its binding sites and
observed that the time of the highest RNA expression of the TF consistently
preceded the time of corresponding high accessibility of downstream targets. We
also collected a list of single-nucleotide polymorphisms (SNPs) associated with
brain disorders and distinguished three major groups based on whether their
maximum accessibility occurred early or late in latent time and before or after
the expression of the linked gene.

In this work, we presented MultiVelo, a computational approach for inferring
epigenomic regulation of gene expression from single-cell multi-omic datasets. We
extend the dynamical RNA velocity model to incorporate chromatin to more
accurately predict the past and future state of each cell, jointly infer the instan-
taneous rate of induction or repression for each modality, and determine the
extent of coupling or time lag between modalities. MultiVelo uses a probabilis-
tic latent variable model to estimate the switch time and rate parameters of
gene regulation, providing a quantitative summary of the temporal relationship
between epigenomic and transcriptomic changes. We expect that MultiVelo will
provide fundamental insights into the mechanisms by which epigenomic changes
regulate gene expression during cell fate transitions.

The full version of this manuscript is available on bioRxiv (https://www.
biorxiv.org/content/10.1101/2021.12.13.472472v1).
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The advent of high-throughput whole-genome mapping methods for the
three-dimensional (3D) genome organization such as Hi-C has revealed distinct
features of chromatin folding in various scales within the cell nucleus. These mul-
tiscale 3D genome features collectively contribute to vital genome functions such
as transcription. However, the variation of 3D genome features and their func-
tional significance in single cells remain poorly understood. The recent advances
of single-cell Hi-C (scHi-C) technologies have provided us with unprecedented
opportunities to probe chromatin interactions at single-cell resolution. These new
technologies and datasets have the promise to unveil the connections between
genome structure and function in single cells for a wide range of biological con-
texts. Unfortunately, existing scHi-C analysis methods are hindered by the tech-
nical noise, the sparseness of the data, and the complex chromatin interaction
patterns. The lack of computational scalability and interpretation in the current
methods poses further challenges for large-scale scHi-C analysis.

To directly address these important challenges, here we develop Fast-Higashi,
a novel interpretable and scalable framework for embedding and integrative
analysis of scHi-C data. Our proposed Fast-Higashi algorithm jointly produces
embeddings and meta-interactions (analogous to the definition of metagenes in
scRNA-seq analysis) for a given scHi-C dataset. As shown in Fig. 1a, the input of
Fast-Higashi consists of a collection of scHi-C contact maps. In our Fast-Higashi
formulation, every contact map can be approximated by a weighted sum of a
set of meta-interactions. The weights are then decomposed into the product of
single cell embeddings, a chromosome-specific transformation matrix, and meta-
interaction-specific bin weights. To mitigate the sparseness of the scHi-C contact
maps and improve the model robustness, we develop a new partial random walk
with restart (“Partial RWR”) algorithm and efficiently incorporate it into the
optimization procedure of Fast-Higashi (Fig. 1b). Crucially, Fast-Higashi simul-
taneously learns the underlying meta-interactions and the cell embeddings.

Applications to several scHi-C datasets from cell lines and complex brain
tissues demonstrate that Fast-Higashi is able to generate overall comparable or
even better embeddings than existing methods, but is also >40× faster than the
neural network-based baseline, enabling ultrafast analysis of scHi-C datasets.
Moreover, Fast-Higashi is able to infer critical chromatin meta-interactions that
define cell types with strong connections to cell type-specific transcription.
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Fig. 1. Overview of Fast-Higashi. a. Workflow of the Fast-Higashi algorithm. Given
an input scHi-C dataset of k chromosomes, Fast-Higashi models it as k 3-way tensors
X(c) where the first two dimensions correspond to genomic bins and the last dimension
corresponds to the single cells. Fast-Higashi then decomposes the tensors X(c) into four
factors: a set of meta-interactions (B(c)), a genomic bin weights indicating importance
for each bin (A(c)), the cell embedding matrix V that is shared across all chromosomes,
and a chromosome-specific transformation matrix D(c) that transforms the shared cell
embeddings into chromosome specific ones. b. Workflow of the partial random walk
with restart (Partial RWR) algorithm. The Partial RWR algorithm is integrated into
the tensor decomposition framework. When calculating the decomposed factors for
frontal slices of the tensor X(c), the corresponding slices would be imputed through
Partial RWR first. The impute process includes the calculation of local affinity, stan-
dard RWR algorithm, and information propagation using both sliced tensor and RWR
imputed affinity matrix.

Together, Fast-Higashi is a powerful and scalable framework for the anal-
ysis of large-scale scHi-C datasets, with the distinct advantage that it can
jointly unveil the finer cell types from complex tissues and infer interpretable
meta-interactions that provide biological insights. As the development of scHi-C
related technologies expands rapidly, Fast-Higashi has the potential to become
an essential method in the toolbox of single-cell epigenomic analysis to greatly
enhance the integrative analysis of 3D genome organization, genome functions,
and cellular phenotypes at single-cell resolution for a wide range of biological
applications.

Link to the bioRxiv preprint: https://www.biorxiv.org/content/10.1101/
2022.04.18.488683v1.
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The recent development of mapping technologies, such as Hi-C, that probes
the 3D genome organization reveals that a chromosome is divided into topolog-
ically associating domains (TADs). TADs are genomic regions where chromatin
loci are more frequently interacting with chromatin loci from the same TADs
rather than from other TADs. TADs are functional units for transcriptional
regulation, such as constraining interactions between enhancers and promoters.
Although earliest studies have found that TADs are stable, multiple recent stud-
ies found large-scale TAD reorganization in diseases, cell differentiation, somatic
cellular reprogramming, neuronal cell types, species, and individual cells. Thus,
it is important to identify reorganized TADs through comparative analysis to
improve understanding of the functional relevance of 3D genome organization, a
priority of current work in the field. However, random perturbations and varia-
tions in numbers of mapped reads pose computational challenges for identifying
reorganized TADs. Existing methods are highly dependent on changes at TAD
boundaries, challenged by low-resolution Hi-C data, and inferior in controlling
false positives. Importantly, methods using emerging single-cell Hi-C data are
under-explored.

To fill these gaps, we develop DiffDomain, an algorithm leveraging high-
dimensional random matrix theory to identify structurally reorganized TADs
between a pair of biological conditions. The inputs are two Hi-C contact matri-
ces of a given TAD region (Fig. 1A). The core of DiffDomain is that it formulates
the problem as a hypothesis testing problem. Intuitively, if a TAD is not struc-
turally reorganized, a properly normalized difference matrix D (Fig. 1B-D) would
resemble a Wigner random matrix (null hypothesis). P value is computed using
the asymptotic distribution of the largest singular value of D (Fig. 1E). DiffDo-
main identifies a reorganized TAD if the P value is less than 0.05. DiffDomain

D. Hua, M. Gu and Y. Du—These three authors contributed equally.
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Fig. 1. Workflow of DiffDomain. (A) Input of DiffDomain are Hi-C contact matrices
(A1 and A2) of a TAD. (B) Difference between log-transformed A1 and A2, denoted
as D. (C ) D is normalized by standardizing each of its k-off diagonal parts. (D) D
is transformed by dividing

√
N . Under null hypothesis, it is a Wigner random matrix.

(E) P value is calculated based on the fact that θN , normalized largest singular value
of D, follows Tracy-Widom distribution with β1 (denoted as T1 distribution). A TAD is
identified as a reorganized TAD if P value ≤ 0.05. (F ) Reorganized TADs are classified
into six subtypes. (G) Example of reorganized TADs. Top: Hi-C data in conditions 1
and 2; Bottom: normalized differential matrix D.

also classifies identified reorganized TADs into six subtypes to aid biological
analyses and interpretations (Fig. 1F). A few examples are shown in Fig. 1G.

Application to real Hi-C data reveals that DiffDomain outperforms alterna-
tive methods in false-positive rates (at least 41-fold decrease on average) and
accuracy in identifying truly reorganized TADs (at least 1.75 times increase).
We demonstrate the robustness of DiffDomain and its biological applications by
analyzing Hi-C data from different human cell types and disease states. It also
works on ultra-sparse pseudo-bulk Hi-C data created from single-cell Hi-C data.

In summary, DiffDomain is a statistically sound method for identifying struc-
turally reorganized TADs. DiffDomain could be a valuable method of an essential
toolkit for emerging comparative TAD analysis in health and disease and other
biological conditions.

Link to the bioRxiv preprint: doi: https://doi.org/.
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Cancer progression is an evolutionary process shaped by both determinis-
tic and stochastic forces. Recent advances in multi-region sequencing, single-cell
sequencing, and phylogenetic tree inference empower more precise reconstruction
of the mutational history of each tumor. At the same time, the increased resolu-
tion also highlights the extensive diversity across tumors and patients. Resolv-
ing the interactions among mutations and recovering the recurrent evolutionary
processes may offer greater opportunities for designing successful therapeutic
strategies.

Many cancer mutations do not appear independently of each other but rather
exhibit patterns of clonal exclusivity and co-occurrence. Existing cancer progres-
sion models that address the problem of inferring the temporal order of muta-
tions and predicting tumor progression can only handle binary genotypes derived
from cross-sectional bulk sequencing data. As such, they have not been designed
for tree-structured data as they cannot capture the subclonal structure within
a tumor nor utilize the existing order information from the tumor phylogenies.
Other methods that infer repeated mutational trajectories directly from phylo-
genetic trees are mostly based on pairwise ancestor-descendant relationships or
consensus trees. These methods do not explicitly utilize the pairwise frequen-
cies of mutational events between subclones and thus cannot account for clonal
exclusivity.

Here, we present a novel probabilistic framework, called TreeMHN, for joint
inference of repeated evolutionary trajectories and patterns of clonal exclusiv-
ity or co-occurrence from a cohort of intra-tumor phylogenetic trees. We denote
each subclone in a tree by the mutational pathway that runs from the root to the
node where the subclone is attached and assume an underlying tree-generating
process: the waiting times of the subclones are exponentially-distributed ran-
dom variables parameterized by a Mutual Hazard Network (MHN). The diag-
onal entries of an MHN represent the baseline rates of mutations, and the off-
diagonal entries correspond to the positive (co-occurring), negative (exclusive),
or zero (no) effects of a mutation on its downstream mutations. The observed
tree structures are jointly determined by the waiting times of subclones and
an independent sampling time. The marginal probability of observing a tree is
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
I. Pe’er (Ed.): RECOMB 2022, LNBI 13278, pp. 304–305, 2022.
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equal to the probability that all observed mutational events happen before the
sampling event, and all unobserved events that could happen next did not hap-
pen before the sampling event. Given an MHN, we can generate heterogeneous
mutation trees. Conversely, given a set of trees for a patient cohort, we can esti-
mate the underlying MHN. After estimating the MHN, we can also compute the
probability and the expected waiting time of different evolutionary trajectories.

To ensure the scalability of TreeMHN, we provide two inference methods
based on maximum likelihood estimation (MLE) and a hybrid Monte Carlo
expectation-maximization (MC-EM) algorithm. With our efficient parameter
estimation procedure, it is the maximum tree size, rather than the total number
of mutations, which is typically much larger, that limits the computation time of
TreeMHN. Through simulation experiments we demonstrated the superior per-
formance of TreeMHN over alternative methods in estimating both patterns of
clonal exclusivity or co-occurrence and the associated probability distribution of
the trajectories. Notably, TreeMHN does not rely on any particular phylogenetic
method and is robust against uncertainty in the phylogenetic trees.

We have applied our method to a real dataset containing single-cell muta-
tion trees for 123 acute myeloid leukemia patient samples. The inferred pat-
terns of clonal exclusivity are highly consistent with and enrich known statistical
and biological findings. Beyond detecting the existence of pairwise interactions,
TreeMHN estimates the baseline rates of mutational events, directional strengths
of the enabling or inhibiting effects, as well as the probabilistic temporal order-
ing among mutations. Moreover, conditioned on an observed tree structure and
the estimated MHN, we can predict the next most probable mutational event.
Given its flexibility, TreeMHN can be applied to tree data of different cancer
types and the results may be useful for further experimental studies as well as
treatment designs.

The link to the full preprint of this paper is https://doi.org/10.1101/2021.
11.04.467347. The R package TreeMHN is open-source and available at https://
github.com/cbg-ethz/TreeMHN.
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Abstract. We present a novel A� seed heuristic that enables fast and
optimal sequence-to-graph alignment, guaranteed to minimize the edit
distance of the alignment assuming non-negative edit costs.

We phrase optimal alignment as a shortest path problem and solve it by
instantiating the A� algorithm with our seed heuristic. The seed heuris-
tic first extracts non-overlapping substrings (seeds) from the read, finds
exact seed matches in the reference, marks preceding reference positions
by crumbs, and uses the crumbs to direct the A� search. The key idea is to
punish paths for the absence of foreseeable seed matches. We prove admis-
sibility of the seed heuristic, thus guaranteeing alignment optimality.

Our implementation extends the free and open source aligner and
demonstrates that the seed heuristic outperforms all state-of-the-art opti-
mal aligners including GraphAligner, Vargas, PaSGAL, and the pre-
fix heuristic previously employed by AStarix. Specifically, we achieve a
consistent speedup of >60× on both short Illumina reads and long HiFi
reads (up to 25 kbp), on both the E. coli linear reference genome (1 Mbp)
and the MHC variant graph (5 Mbp). Our speedup is enabled by the seed
heuristic consistently skipping >99.99% of the table cells that optimal
aligners based on dynamic programming compute.

AStarix Aligner and Evaluations: https://github.com/eth-sri/astarix.

Full Paper: https://www.biorxiv.org/content/10.1101/2021.11.05.467
453.

Keywords: Genome graph · Optimal alignment · Semi-global
alignment · Edit distance · Shortest path · Long reads · A� algorithm ·
Seed heuristic

1 Introduction

Alignment of reads to a reference genome is an essential and early step in most
bioinformatics pipelines. While linear references have been used traditionally, an
increasing interest is directed towards graph references capable of representing
biological variation [1]. Specifically, a sequence-to-graph alignment is a base-to-
base correspondence between a given read and a walk in the graph. As sequencing
errors and biological variation result in inexact read alignments, edit distance
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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is the most common metric that alignment algorithms optimize in order to find
the most probable read origin in the reference.

Suboptimal Alignment. In the last decades, approximate and alignment-free
methods satisfied the demand for faster algorithms which process huge volumes
of genetic data [2]. Seed-and-extend is arguably the most popular paradigm in
read alignment [3–5]. First, substrings (called seeds or kmers) of the read are
extracted, then aligned to the reference, and finally prospective matching loca-
tions are extended on both sides to align the full read.

While such a heuristic may produce acceptable alignments in many cases,
it fundamentally does not provide quality guarantees, resulting in suboptimal
alignment accuracy. In contrast, we demonstrate in this work that seeds can
benefit optimal alignment as well.

Key Challenges in Optimal Alignment. Finding optimal alignments is desir-
able but expensive in the worst case, requiring O(Nm) time [6], for graph size
N and read length m. Unfortunately, most optimal sequence-to-graph aligners
rely on dynamic programming (DP) and always reach this worst-case asymptotic
runtime. Such aligners include Vargas [7], PaSGAL [8], GraphAligner [9],
HGA [10], and VG [1], which use bit-level optimizations and parallelization to
increase their throughput.

In contrast, AStarix [11] follows the promising direction of using a heuristic
to avoid worst-case runtime on realistic data. To this end, AStarix rephrases
the task of alignment as a shortest-path problem in an alignment graph extended
by a trie index, and solves it using the A� algorithm instantiated with a problem-
specific prefix heuristic. Importantly, its choice of heuristic only affects perfor-
mance, not optimality. Unlike DP-based algorithms, this prefix heuristic allows
scaling sublinearly with the reference size, substantially increasing performance
on large genomes. However, it can only efficiently align reads of limited length.

This Work: Optimal Alignment for Short and Long Reads. In this work,
we address the key challenge of scaling to long HiFi reads, while retaining the
superior scaling of AStarix in the size of the reference graph. To this end,
we instantiate the A� algorithm with a novel seed heuristic, which outperforms
existing optimal aligners on both short and long HiFi reads. Specifically, the
seed heuristic utilizes information from the whole read to narrowly direct the A�

search by placing crumbs on graph nodes which lead up to a seed match, i.e., an
exact match of a substring of the read.

Overall, the contributions presented in this work are:

1. A novel A� seed heuristic that exploits information from the whole read to
quickly align it to a general graphs reference.

2. An optimality proof showing that the seed heuristic always finds an alignment
with minimal edit distance.

3. An implementation of the seed heuristic as part of the AStarix aligner.
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Fig. 1. Formal definition of alignment graph edges Eq
a ⊆ V q

a × V q
a × Σε × R≥0. Here,

u, v ∈ Vr, 0 ≤ i < |q|, � ∈ Σ, and ε represents the empty string, indicating that letter
� was deleted.

4. An extensive evaluation of our approach, showing that we align both short
Illumina reads and long HiFi reads to both linear and graph references ≥ 60×
faster than existing optimal aligners.

5. A demonstration of superior empirical runtime scaling in the reference size
N : N0.46 on Illumina reads and N0.11 on HiFi reads.

2 Prerequisites

We define the task of alignment as a shortest path problem (Sect. 2.1) to be
solved using the A� algorithm (Sect. 2.2).

2.1 Problem Statement: Alignment as Shortest Path

In the following, we formalize the task of optimally aligning a read to a reference
graph in terms of finding a shortest path in an alignment graph. Our discussion
closely follows [11, §2] and is in line with [12].

Reference Graph. A reference graph Gr = (Vr, Er) encodes a collection of
references to be considered when aligning a read. Its directed edges Er ⊆ Vr ×
Vr × Σ are labeled by nucleotide letters from Σ = {A, C, G, T}, hence any walk πr

in Gr spells a string σ(πr) ∈ Σ∗.
An alignment of a read q ∈ Σ∗ to a reference graph Gr consists of

(i) a walk πr in Gr and (ii) a sequence of edits (matches, substitutions, dele-
tions, and insertions) that transform σ(πr) to q. An alignment is optimal if
it minimizes the sum of edit costs for a given real-valued cost model Δ =
(Δmatch,Δsubst,Δdel,Δins). Throughout this work, we assume that edit costs are
non-negative—a pre-requisite for the correctness of A�. Further, we assume that
Δmatch ≤ Δsubst,Δins,Δdel—a prerequisite for the correctness of our heuristic.

We note that our approach naturally works for cyclic reference graphs.

Alignment Graph. In order to formalize optimal alignment as a shortest path
finding problem, we rely on an alignment graph Gq

a = (V q
a , Eq

a ). Its nodes V q
a

are states of the form 〈v, i〉, where v ∈ Vr is a node in the reference graph and
i ∈ {0, . . . , |q|} corresponds to a position in the read q. Its edges Eq

a are selected
such that any path πa in Gq

a from 〈u, 0〉 to 〈v, i〉 corresponds to an alignment of
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the first i letters of q to Gr. Further, the edges are weighted, which allows us to
define an optimal alignment of a read q ∈ Σ∗ as a shortest path πa in Gq

a from
〈u, 0〉 to 〈v, |q|〉, for any u, v ∈ Vr. Figure 1 formally defines the edges Eq

a .

2.2 A� Algorithm for Finding a Shortest Path

The A� algorithm is a shortest path algorithm that generalizes Dijkstra’s algo-
rithm by directing the search towards the target. Given a weighted graph
G = (V,E), the A� algorithm finds a shortest path from sources S ⊆ V to
targets T ⊆ V . To prioritize paths that lead to a target, it relies on an admissi-
ble heuristic function h : V → R≥0, where h(v) estimates the remaining length
of the shortest path from a given node v ∈ V to a target t ∈ T .

Algorithm. In a nutshell, the A� algorithm maintains a set of explored nodes,
initialized by all possible starting nodes S. It then iteratively expands the
explored state v with lowest estimated total cost f(v) by exploring all its neigh-
bors. Here, f(v) := g(v) + h(v), where g(v) is the distance from s ∈ S to v, and
h(v) is the estimated distance from v to t ∈ T . When the A� algorithm expands
a target node t ∈ T , it reconstructs the path leading to t and returns it. For
completeness, Appendix A.1 provides an implementation of A�.

Admissibility. The A� algorithm is guaranteed to find a shortest path if its
heuristic h provides a lower bound on the distance to the closest target, often
referred to as h being admissible or optimistic.

Further, the performance of the A� algorithm relies critically on the choice
of h. Specifically, it is crucial to have low estimates for the optimal paths but
also to have high estimates for suboptimal paths.

Discussion. To summarize, we use the A� algorithm to find a shortest path from
〈u, 0〉 to 〈v, |q|〉 in Gq

a . To guarantee optimality, its heuristic function h〈v, i〉 must
provide a lower bound on the shortest distance from state 〈v, i〉 to a terminal
state of the form 〈w, |q|〉. Equivalently, h〈v, i〉 should lower bound the minimal
cost of aligning q[i:] to Gr starting from v, where q[i:] denotes the suffix of q
starting at position i (0-indexed). The key challenge is thus finding a heuristic
that is not only admissible but also yields favorable performance.

3 Seed Heuristic

We instantiate the A� algorithm with a novel, domain-specific seed heuristic
which allows to quickly align reads to a general reference graph. We first intu-
itively explain the seed heuristic and showcase it on a simple example (Sect. 3.1).
Then, we formally define the heuristic and prove its admissibility (Sect. 3.2).
Finally, we adapt our approach to rely on a trie, which leads to a critical speedup
(Sect. 3.3).
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Fig. 2. A toy overview example using the seed heuristic to align a read q to a ref-
erence graph Gr. The read is split into four colored seeds, where their corresponding
crumbs are shown inside reference graph nodes as symbols with matching color. The
optimal alignment is highlighted as a green path ending with a tick ( ) and includes
one substitution (T→A) and one deletion (C). (Color figure online)

3.1 Overview

Figure 2 showcases the seed heuristic on an overview example. It shows a read q
to be aligned to a reference graph Gr. Our goal is to find an optimal alignment
starting from an arbitrary node v ∈ Gr. For simplicity of the exposition, we
assume unit edit costs Δ = (0, 1, 1, 1), which we generalize in Sect. 3.2.

Intuition. The A� search requires us to provide a lower bound of the remaining
path cost from a state 〈v, i〉 to a target state. Clearly, to align the whole query,
each of the remaining seeds (i.e. at or after position i in q) has to be eventually
aligned. The intuition underlying the seed heuristic is to punish the state for the
absence of any foreseeable match of each remaining seed. Notice that the order
of the seeds is not directly taken into account.

In order to quickly check if a seed s can lead to a match, we follow a procedure
similar to the one used by Hansel and Gretel who were placing breadcrumbs to
find their trail back home. Before aligning a query, we will precompute all crumbs
from all seeds so that not finding a crumb for a seed s on node v indicates that
seed s could not be matched exactly before the query is fully aligned continuing
from v. This way, assuming that a shortest path includes many seed matches,
the crumbs will direct the A� search along with it.

If a crumb from an expected seed is missing in node v, its corresponding seed
s could not possibly be aligned exactly and this will incur the cost of at least
one substitution, insertion, or deletion. Assuming unit edit costs, h〈v, i〉 yields
a lower bound on the cost for aligning q[i:] starting from v by simply returning
the number of missing expected crumbs in v.

Crumbs Precomputation Example. Figure 2 shows four seeds as colored
sections of length 2 each, and represents their corresponding crumbs as
and , respectively. Four crumbs are expected if we start at v2, but is missing,
so h〈v2, 0〉 = 1. Analogously, if we reach v2 after aligning one letter from the read,
we expect 3 crumbs (except ), and we find them all in v2, so h〈v2, 1〉 = 0. To
precompute the crumbs for each seed, we first find all positions in Gr from which
the seed aligns exactly. Figure 2 shows these exact matches as colored sections
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Fig. 3. Exploration of Gq
a , searching for a shortest path from the first to the last row

using the seed heuristic. The table entry in the ith row (zero indexed) below node v
shows g〈v, i〉+h〈v, i〉, where g〈v, i〉 is the shortest distance from any starting state 〈u, 0〉
to 〈v, i〉. States that may (Depending on how the A� algorithm handles tie-braking,
different sets of states could be explored. For simplicity, we show all states that could
potentially be explored) be expanded by the A� algorithm are highlighted in pink , and
the rest of the states are shown for completeness even though they are never expanded.
The shortest path corresponding to the best alignment is shown with green arrows (→→→).
(Color figure online)

of Gr. Then, from each match we traverse Gr backwards and add crumbs to
nodes that could lead to these matches. For example, because seed CC can be
matched starting in node v10, crumbs are placed on all nodes leading up to
v10. Similarly, seed AA has two exact matches, one starting in node v0 and one
starting in node v6. However, we only add crumbs to nodes v0, v1, and v3–v6,
but not to node v2. This is because v2 is (i) strictly after the beginning of the
match of AA at v1 and (ii) too far before the match of AA at v6. Specifically,
any alignment starting from node v2 and still matching AA at v6 would induce
an overall cost of 4 (it would require deleting the 4 letters A, G, T , and C).
Even without a crumb on v2, our heuristic provides a lower bound on the cost
of such an alignment: it never estimates a cost of more than 4, the number of
seeds.

Guiding the Search Example. Figure 3 demonstrates how h〈v, i〉 guides
the A� algorithm towards the shortest path by showing which states may be
expanded when using the seed heuristic. Specifically, the unique optimal align-
ment in Fig. 2 starts from node v1, continues to v2, and then proceeds through
node v10 (instead of v3).

While the seed heuristic initially explores all states of the form 〈v, 0〉 (we
discuss in Sect. 3.3 how to avoid this by using a trie), it skips expanding any
state that involves nodes v3–v8. This improvement is possible because all these
explored states are penalized by the seed heuristic by at least 3, while the shortest
path of cost 2 will be found before considering states on nodes v3–v8. Here, the
heuristic function accurately predicts that expanding v10 may eventually lead
to an exact alignment of seeds CC , GG and TT , while expanding v3 may not
lead to an alignment of either seed. In particular, the seed heuristic is not misled
by the short-term benefit of correctly matching A in v2, and instead provides
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a long-term recommendation based on the whole read. Thus, even though the
walk to v3 aligns exactly the first two letters of q, A� does not expand v3 because
the seed heuristic guarantees that the future cost will be at least 3.

3.2 Formal Definition

Next, we formally define the seed heuristic function h〈v, i〉. Overall, we want to
ensure that h〈v, i〉 is admissible, i.e., that it is a lower bound on the cost of a
shortest path from 〈v, i〉 to some 〈w, |q|〉 in Gq

a .

Seeds. We split read q ∈ Σ∗ into a set Seeds of non-overlapping seeds
s0, . . . , s|Seeds|−1 ∈ Σ∗. For simplicity, in this work we ensure that all seeds
have the same length and are consecutive, i.e., we split q into substrings
s0 · s1 · · · s|Seeds|−1 · t, where all sj are seeds of length k and we ignore the
suffix t of q, which is shorter than k. We note that our approach could be triv-
ially generalized to seeds of different lengths or non-consecutive seeds as long as
they do not overlap. An interesting future work item is investigating how differ-
ent choices of seeds affect the performance of our approach, and selecting seeds
accordingly.

Matches. For each seed s ∈ Seeds, we locate all nodes u ∈ M(s) in the reference
graph that can be the start of an exact match of s:

M(s) := {u ∈ Vr | ∃walk π starting from u ∈ Gr and spelling σ(π) = s}.

To compute M(s) efficiently, we leverage the trie introduced in Sect. 3.3.

Crumbs. For seed sj starting at position i in q, we place crumbs on all nodes
u ∈ Vr which can reach a node v ∈ M(sj) using less than i + ndel edges:

C(s) := {u ∈ Vr |∃v ∈ M(s) : dist(u, v) < i + ndel},

where dist(u, v) is the length of a shortest walk from u to v.

Later in this section, we will select ndel to ensure that if an alignment uses
more than ndel deletions, its cost must be so high that the heuristic function is
trivially admissible.

To compute C(s) efficiently, we can traverse the reference graph backwards
from each v ∈ M(s) by a backward breadth-first-search (BFS).

Heuristic. Let Seeds≥i be the set of seeds that start at or after position i
of the read, formally defined by Seeds≥i := {sj | 
i/k� ≤ j < |Seeds |}. This
allows us to define the number of expected but missing crumbs in state 〈v, i〉 as
misses〈v, i〉 :=

∣
∣ {v /∈ C(s) | s ∈ Seeds≥i}

∣
∣. Finally, we define the seed heuristic

as

h〈v, i〉 = (|q| − i) · Δmatch +misses〈v, i〉 · δmin , (1)
for δmin = min(Δsubst − Δmatch,Δdel,Δins − Δmatch), (2)
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Fig. 4. Reference graph from Fig. 2, extended by a trie of depth D = 2. For simplicity,
the reverse-complement reference graph and parts marked by “. . . ” are omitted.

Intuitively, Eq. (1) reflects that the cost of aligning each remaining letter from
q[i:] is at least Δmatch. In addition, every inexact alignment of a seed induces an
additional cost of at least δmin . Specifically, every substitution costs Δsubst but
requires one less match; every deletion costs Δdel; and every insertion costs Δins
but also requires one less match.

We note that h〈v, i〉 implicitly also depends on the reference graph Gr, the
read q, the set of seeds, and the edit costs Δ.

In order for an alignment with at least ndel deletions to have a cost so high
that the heuristic function is trivially admissible, we ensure ndel · Δdel ≥ h〈v, i〉
by defining

ndel :=
⌈ |q| · Δmatch + |Seeds | · δmin

Δdel

⌉

. (3)

In Theorem 1, we show that h〈v, i〉 is admissible, ensuring that our heuristic
yields optimal alignments.

Theorem 1 (Admissibility). The seed heuristic h〈v, i〉 is admissible.

Proof. We provide a proof for Theorem 1 in Appendix A.2. �

3.3 Trie Index

Considering all nodes v ∈ Vr as possible starting points for the alignment means
that the A� algorithm would explore all states of the form 〈v, 0〉, which imme-
diately induces a high overhead of |Vr|. In line with previous works [11,13], we
avoid this overhead by complementing the reference graph with a trie index to
produce a new graph G+

r = (V +
r , E+

r), where V +
r is the union of the reference graph

nodes Vr and the new trie vertices, and E+
r is the union of Er, the trie edges,

and edges connecting the trie leafs with reference nodes. Note that constructing
this trie index is a one-time pre-processing step that can be reused for multiple
queries.



314 P. Ivanov et al.

Since we want to also support aligning reverse-complement reads by starting
from the trie root , we build the trie not only from the original reference graph
and also from its reverse-complement.

Intuition. Figure 4 extends the reference graph Gr from Fig. 2 with a trie. Here,
any path in the reference graph uniquely corresponds to a path starting from
the trie root (the top-most node in Fig. 4). Thus, in order to find an optimal
alignment, it suffices to consider paths starting from the trie root , by using state
〈root , 0〉 as the only source for the A� algorithm. Note that if the reference graph
branches frequently, the number of paths with length D may rise exponentially,
leading to an exponential number of trie leaves. To counteract this exponential
growth, we can select D logarithmically small, as log4 N .

For a more thorough introduction to the trie and its construction, see [11].
Importantly, our placement of crumbs (Sect. 3.2) generalizes directly to reference
graphs extended with a trie (see also Fig. 4).

Reusing the Trie to Find Seed Matches. As a second usage of the trie, we
can also exploit it to efficiently locate all matches M(s) of a given seed s. In
order to find all nodes where a seed match begins, we align (without errors) s̄,
the reverse-complement of s. To this end, we follow all paths spelling s̄ starting
from the root—the final nodes of these paths then correspond to nodes in M(s).
We ensure that the seed length |s| is not shorter than the trie depth D, so that
matching all letters in s̄ ensures that we eventually transition from a trie leaf to
the reference graph.

Optimization: Skip Crumbs on the Trie. Generally, we aim to place as few
crumbs as possible, in order to both reduce precomputation time and avoid mis-
leading the A� algorithm by unnecessary crumbs. In the following, we introduce
an optimization to avoid placing crumbs on trie nodes that are “too close” to the
match of their corresponding seed so they cannot lead to an optimal alignment.

Specifically, when traversing the reference graph backwards to place crumbs
for a match of seed s starting at node w, we may “climb” from a reference graph
node u to a trie node u′ backwards through an edge that otherwise leads from
the trie to the reference. Assuming s starts at position i in the read, we have
already established that we can only consider nodes u that can reach w with less
than i + ndel edges (see Sect. 3.2). Here, we observe that it is sufficient to only
climb into the trie from nodes u that can reach w using more than i − nins − D
edges, for

nins :=
⌈ |q| · Δmatch + |Seeds | · δmin

Δins

⌉

. (4)

We define nins analogously to ndel to ensure that nins insertions will induce a
cost that is always higher than h〈u, i〉. We note that we can only avoid climbing
into the trie if all paths from u to w are too short, in particular the longest one.

The following Lemma 1 shows that this optimization preserves optimality.

Lemma 1 (Admissibility when skipping crumbs). The seed heuristic
remains admissible when crumbs are skipped in the trie.
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Proof. We provide a proof for Lemma 1 in Appendix A.2. �
In order to efficiently identify all nodes u that can reach w by using more than

i−D−nins edges (among all nodes at a backward-distance at most i+ndel from
w), we use topological sorting: considering only nodes at a backward-distance at
most i + ndel from w, the length of a longest path from a node v to w is (i) ∞
if v lies on a cycle and (ii) computable from nodes closer to w otherwise.

4 Evaluations

In the following, we demonstrate that our approach aligns faster than existing
optimal aligners due to its superior scaling. Specifically, we address the following
research questions:

Q1 What speedup can the seed heuristic achieve?
Q2 How does the seed heuristic scale with reference size?
Q3 How does the seed heuristic scale with read length?

The modes of operation which we analyze include both short (Illumina) and long
(HiFi) reads to be aligned on both linear and graph references.

4.1 Seed Heuristic Implementation

Both the seed heuristic and the prefix heuristic reuse the same free and open
source C++ codebase of the AStarix aligner [11]. It includes a simple imple-
mentation of a graph and trie data structure which is not optimized for memory
usage. In order to easily align reverse complement reads, the reverse complement
of the graph is stored alongside its straight version. The shortest path algorithm
only constructs explored states explicitly, so most states remain implicitly defined
and do not cause computational burden.

Both heuristics benefit from a default optimization in AStarix called greedy
matching [11, Section 4.2] which skips adding a state to the A� queue when only
one edge is outgoing from a state and the upcoming read and reference letters
match.

4.2 Setting

All experiments were executed on a commodity machine with an Intel Core i7-
6700 CPU @ 3.40GHz processor, using a memory limit of 20 GB and a single
thread. We note that while multiple tools support parallelization when aligning
a single read, all tools can be trivially parallelized to align multiple reads in
parallel.

Compared Aligners. We compare the novel seed heuristic to prefix heuristic
(both heuristics are implemented in AStarix), GraphAligner, PaSGAL, and
Vargas. We provide the versions and commands used to run all aligners and
read simulators in Appendix A.3. We note that we do not compare to VG [1]
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and HGA [10] since the optimal alignment functionality of VG is meant for
debugging purposes and has been shown to be inferior to other aligners [10,
Tab. 4], and HGA makes use of parallelization and a GPU but has been shown
to be superseded in the single CPU regime [10, Fig. 9]. PaSGAL and Vargas are
compiled with AVX2 support. We execute the prefix heuristic with the default
lookup depth d = 5.

Seed Heuristic Parameters. The choice of parameters for the seed heuristic
influences its performance. Increasing the trie depth increases its number of
nodes, but decreases the average out-degree of its leaves. We set the trie depth
for all experiments to D = 14 ≈ log4 N .

Shorter seeds are more likely to be matched perfectly by an optimal align-
ment, as they contain less letters that could be subject to edits. Thus, shorter
seeds can tolerate higher error rate, but at the cost of slower precomputation due
to a higher total number of matches, and slower alignment due to more off-track
matches. In our experiments, we use seed lengths of k = 25 for Illumina reads
and k = 150 for HiFi reads.

Data. We aligned reads to two different reference graphs: a linear E. coli genome
(strain: K-12 substr. MG1655, ASM584v2) [14], with length of 4 641 652 bp
(approx. 4.7Mbp), and a variant graph with the Major Histocompatibility Com-
plex (MHC), of size 5 318 019bp (approx. 5Mbp), taken from the evaluations of
PaSGAL [8]. Additionally, we extracted a path from MHC in order to create
a linear reference MHC-linear of length 4 956 648bp which covers approx. 93%
of the original graph. Because of input graph format restrictions, we execute
GraphAligner, Vargas and PaSGAL only on linear references in FASTA
format (E. coli and the MHC-linear), while we execute the seed heuristic and
the prefix heuristic on the original references (E. coli and MHC). This yields an
underestimation of the speedup of the seed heuristic, as we expect the perfor-
mance on MHC-linear to be strictly better than on the whole MHC graph.

To generate both short Illumina and long HiFi reads, we relied on two tools.
We generated short single-end 200bp Illumina MSv3 reads using ART simula-
tor [15]. We generated long HiFi reads using the script randomreads.sh1 with
sequencing lengths 5–25 kbp and error rates 0.3%, which are typical for HiFi
reads.

Edit Costs. We execute AStarix with edit costs typical to the corresponding
sequencing technology: Δ = (0, 1, 5, 5) for Illumina reads and Δ = (0, 1, 1, 1) for
HiFi reads. As the performance of DP-based tools is independent of edit costs,
we are using the respective default edits costs when executing GraphAligner,
PaSGAL and Vargas.

Metrics. We report the performance of aligners in terms of runtime per one
thousand aligned base pairs [s/kbp]. Since we measured runtime end-to-end
(including loading reference graphs and reads from disk, and building the trie

1 https://github.com/BioInfoTools/BBMap/blob/master/sh/randomreads.sh.

https://github.com/BioInfoTools/BBMap/blob/master/sh/randomreads.sh
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Table 1. Runtime and memory comparison of optimal aligners. Simulated Illumina
and HiFi reads are aligned to linear E. coli and graph MHC references. The runtime
of the seed heuristic is expressed as absolute time per aligned kbp, while the other
aligners are compared to the seed heuristic at a fold change. Additionally, the fraction
of explored states is shown for the seed heuristic and the prefix heuristic.

Illumina HiFi

Tool E. coli MHC E. coli MHC

Seeds heuristic 0.019 0.041 0.001 0.002 s/kbp
(this work) 2.4 2.6 2.4 1.7 GB (max used)

99.9996 99.9981 99.9989 99.9984 % skipped states

Prefix heuristic 269x 180x n/a n/a x slowdown
7.7 9.6 >20 >20

99.9501 99.9501 n/a n/a

GraphAligner 424x 212x 118x 64x
0.2 0.2 3.6 3.4

Vargas 133x 67x 1 413x 705x
<0.1 <0.1 7.3 7.3

PaSGAL 263x 130x 1 367x 736x
0.6 0.6 0.6 0.6

index for AStarix), we ensured that alignment time dominates the total run-
time by providing sufficiently many reads to each aligner. In order to prevent
excessive runtimes for slower tools, we used a different number of reads for each
tool and explicitly report them for each experiment.

Since shortest path approaches skip considerable parts of the computation
performed by aligners based on dynamic programming, the commonly used Giga
Cell Updates Per Second (GCUPS) metric is not adequate for measuring per-
formance in our context.

We measured used memory by max_rss (Maximum Resident Set Size) from
Snakemake2.

We do not report accuracy or number of unaligned reads, as all evaluated
tools align all reads with guaranteed optimality according to edit distance.
We note that Vargas reports a warning that some of its alignments are not
optimal—we ignore this warning and focus on its performance.

2 https://snakemake.readthedocs.io/en/stable/.

https://snakemake.readthedocs.io/en/stable/


318 P. Ivanov et al.

Fig. 5. Performance degradation with reference size for Illumina reads. Log-log plots
of total alignment time (left) and memory usage (right) show the scaling difference
between aligners.

4.3 Q1: Speedup of the Seed Heuristic

Table 1 shows that the seed heuristic achieves a speedup of at least 60 times
compared to all considered aligners, across all regimes of operation: both Illumina
and HiFi reads aligned on E. coli and MHC references.

In the Illumina experiments, the seed heuristic is given 100k reads, while the
other tools are given 1000 reads. In the HiFi experiments, the seed heuristic is
given reads that cover the reference 10 times, and the other tools are given reads
of coverage 0.1.

The key reason for the speedup of the seed heuristic is that on all four
experiments, it skips ≥ 99.99% of the Nm states computed by the DP approaches
of GraphAligner, PaSGAL, and Vargas. This fraction accounts for both the
explored states during the A� algorithm, and the number of crumbs added to
nodes during precomputation for each read.

The prefix heuristic exceeded the available memory on HiFi reads, as it is
not designed for long reads.

4.4 Q2: Scaling with Reference Size

In order to study the scaling of the aligners in terms of the reference size, we
extracted prefixes of increasing length from MHC-linear. We then generated
reads from each prefix, and ran all tools on all prefixes with the corresponding
reads.

Illumina Reads. Figure 5 shows the runtime scaling and memory usage for
Illumina reads. The seed heuristic was provided with 10k reads, while other
tools were provided with 1k reads. The runtime of GraphAligner, PaSGAL

and Vargas grow approximately linearly with the reference length, whereas the
runtime of the seed heuristic grows roughly with 2

√
N , where N is the reference
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Fig. 6. Performance degradation with reference size for HiFi reads. Log-log plots
of total alignment time (left) and memory usage (right) show the scaling difference
between aligners. Linear best fits correspond to polynomials of varying degree.

size. Even on relatively small graphs like MHC, the speedup of the seed heuristic
reaches 200 times. Note that the scaling of the prefix heuristic is substantially
worse than the seed heuristic since the 200 bp reads are outside of its operational
capabilities.

HiFi Reads. Figure 6 shows the runtime scaling and memory usage for HiFi
reads. The respective total lengths of all aligned reads are 5Mbp for the seed
heuristic, 500 kbp for GraphAligner, and 100 kbp for Vargas and PaSGAL.
We do not show the prefix heuristic, since it explores too many states and runs
out of memory. Crucially, we observe that the runtime of the seed heuristic
is almost independent of the reference size, growing as N0.11. We believe this
improved trend compared to short reads is because the seed heuristic obtains
better guidance on long reads, as it can leverage information from the whole
read.

For both Illumina and HiFi reads, we observe near-linear scaling for PaSGAL

and GraphAligner as expected from the theoretical O(Nm) runtime of the
DP approaches. We conjecture that the runtime of Vargas for long reads is
dominated by the dependence from the read length, which is why on HiFi reads
we observe better than linear runtime dependency on N but very large runtime.
The current alignment bottleneck of AStarix-seeds is its memory usage, which
is distributed between remembering crumbs and holding a queue of explored
states.

4.5 Q3: Scaling with Read Length

Figure 7 shows the runtime and memory scaling with increasing length of aligned
HiFi reads on MHC reference. Here we used reads with a total length of 100Mbp
for the seed heuristic and 2Mbp for all other aligners.
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Fig. 7. Performance degradation with HiFi read length. Log-log plots of total alignment
time (left) and memory usage (right) show the scaling difference between aligners.

The scaling of the seed heuristic in terms of read length is slightly worse
than that of other aligners. However, this is compensated by its superior scaling
in terms of reference size (see Sect. 4.4), leading to an overall better absolute
runtime. We note that the memory usage of the seed heuristic does not heavily
depend on the read length and for reads longer than 10 kbp, it is superior to
GraphAligner and Vargas.

5 Conclusion

We have presented an optimal read aligner based on the A� algorithm instan-
tiated with a novel seed heuristic which guides the search by preferring crumbs
on nodes that lead towards optimal alignments even for long reads.

The memory usage is currently limiting the application of AStarix for big-
ger references due to the size of the trie index. A remaining challenge is designing
a heuristic function able to handle not only long but also noisier reads, such as
the uncorrected PacBio reads that may reach 20% of mistakes. Possible improve-
ments of the seed heuristic may include inexact matching of seeds, careful choice
of seed positions, and accounting for the seeds order.

Acknowledgements. We want to thank the anonymous reviewers for the valuable
feedback. The first author is grateful for the Vipassana meditation which inspired the
idea to punish paths for the absence of foreseeable seed matches.
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A Appendix

Algorithm 1. A� algorithm
1: function A�(G : Graph, S : Sources, T : Targets, h : Heuristic function)
2: f ← Map(default = ∞) : Nodes → R≥0 � Map nodes from G to priorities
3: Q ← MinPriorityQueue(priority = f) � Priorities according to f
4: for all s ∈ S do
5: f [s] ← 0.0
6: Q.push(s) � Initially, explore all s ∈ S

7: while Q 
= ∅ do
8: curr ← Q.pop() � Get state with minimal f to be expanded
9: if curr ∈ T then

10: return BacktrackPath(curr) � Reconstruct a walk to curr

11: for all (curr ,next , cost) ∈ G.outgoingEdges(curr) do
12: f̂next ← f [curr ] + cost + h(next) � Candidate value for f [next ]
13: if f̂next < f [next ] then
14: f [next ] ← f̂next
15: Q.push(next) � Explore state next

16: assert False � Cannot happen if T is reachable from S

A.1 A� Algorithm

Algorithm 1 shows an implementation of the A� algorithm, taken from [11, §A.1].
We omit the implementation of BacktrackPath for simplicity.

A.2 Proofs

In the following, we provide proofs for Theorem 1 and Lemma 1, restated here
for convenience.

Theorem 1 (Admissibility). The seed heuristic h〈v, i〉 is admissible.

Proof. Let A be an optimal alignment of q[i:] starting from v ∈ Gr. We will
prove that the cost of A is at least h〈v, i〉.

If A contains at least ndel deletions, its cost is at least ndel · Δdel, which is at
least |q| ·Δmatch+ |Seeds | ·δmin by plugging in ndel from Eq. (3). This is an upper
bound for h〈v, i〉, which we observe after maximizing h〈v, i〉 by substituting i = 1
and misses = |Seeds | into Eq. (1), which concludes the proof in this case.

Otherwise, A contains less than ndel deletions. If we interpret A as a path
in Gq

a , we first observe that A must spell q[i:]. Thus, A must in particular also
contain all seeds sj ∈ Seeds≥i as substrings. We then split A into subalignments
A−1, A0, . . . , Ap, selected such that A0, . . . , Ap−1 spell the seeds sj ∈ Seeds≥i,
and A−1 and Ap spell the prefix and suffix of q[i:] which do not cover any full
seed.
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This ensures that we can compute a lower bound on the cost of A as follows:

cost(A) =
p

∑

j=−1

cost(Ak) (5)

≥
p

∑

j=−1

|σ(Ak)| · Δmatch +
p−1
∑

j=0

{
0 if v ∈ C

(

s�i/k�+j

)

δmin if v /∈ C
(

s�i/k�+j

)

}

(6)

= (|q| − i) · Δmatch +
∣
∣{v /∈ C(s) | s ∈ Seeds≥i}

∣
∣ · δmin (7)

= h〈v, i〉 (8)

Here, Eq. (5) follows from our decomposition of A. If we ignore the right-hand
side in Eq. (6) (right of “+”), the inequality follows because matching all letters
is the cheapest method to align any string. The right-hand side follows from a
more precise analysis for subalignments Ak that spell a seed s�i/k�+j without a
corresponding crumb in v. The absence of such a crumb indicates that no exact
match of s�i/k�+j in Gr can be reached within less than i + ndel steps from v.
However, because A contains less than ndel deletions, Ak must start within less
than i + ndel steps from v. Thus, Ak does not align s�i/k�+j exactly, meaning
that it introduces a cost of at least δmin .

Equation (7) follows from observing that A−1, . . . , Ap have a total length of
|q|−i, and observing that the right-hand sum adds up δmin for every expected but
missing crumb. Finally, Eq. (8) follows from our definition of h〈v, i〉, concluding
the proof. �
Lemma 1 (Admissibility when skipping crumbs). The seed heuristic
remains admissible when crumbs are skipped in the trie.

Proof. Consider a reference graph with a match of seed s starting in node w.
Now, consider a node v that cannot reach w using more than i−D −nins edges.
We can then show that a trie node v′ with a path to v does not require a crumb
for the match of s in node w.

Specifically, any path from root through nodes v′ and v to node w has total
length greater or equal i − nins. Thus, matching s at w requires at least nins
insertions. Hence, the cost of such a path is at least nins ·Δins = |q| ·Δmatch+n ·
δmin . Observing that this is an upper bound for h〈v, i〉 concludes the proof. �

A.3 Versions, Commands, Parameters for Running all Evaluated
Approaches

In the following, we provide details on how we executed the newest versions of
the tools discussed in Sect. 4:
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Executing AStarix
Obtained from https://github.com/eth-sri/astarix
Seed heuristic

Command astarix align-optimal -D 14 -a astar-seeds -seeds_len l -f reads.fq -g

graph.gfa >output

Prefix heuristic
Command astarix align-optimal -D 14 -a astar-prefix -d 5 -f reads.fq -g

graph.gfa >output

For aligning Illumina reads, astarix is used with additional -M 0 -S 1 -G 5 and for HiFi
reads with -M 0 -S 1 -G 1 which better match the error rate profiles for these technologies.

Executing Other Tools
Vargas

Obtained from https://github.com/langmead-lab/vargas (v0.2, commit b1ad5d9)
Command vargas align -g graph.gdef -U reads.fq -ete

Comment -ete stands for end to end alignment; default is 1 thread
PaSGAL

Obtained from https://github.com/ParBLiSS/PaSGAL (commit 9948629)
Command PaSGAL -q reads.fq -r graph.vg -m vg -o output -t 1

Comment Compiled with AVX2
GraphAligner

Obtained from https://github.com/maickrau/GraphAligner (v1.0.13, commit 02c8e26)
Command GraphAligner -seeds-first-full-rows 64 -b 10000 -t 1 -f reads.fq -g

graph.gfa -a alignments.gaf >output (commit 9948629)
Comment -seeds-first-full-rows forces the search from all possible reference posi-

tions instead of using seeds; -b 10000 sets a high alignment bandwidth;
these two parameters are necessary for an optimal alignment according to
the author and developer of the tool

Simulating Reads
Illumina

art_illumina -ss MSv3 -sam -i graph.fasta -c N -l 200 -o dir -rnd_seed

42

HiFi
randomreads.sh -Xmx1g build=1 ow=t seed=1 ref=graph.fa illuminanames=t

addslash=t pacbio=t pbmin=0.003 pbmax=0.003 paired=f gaussianlength=t

minlength=5000 midlength=13000 maxlen=25000 out=reads.fq

Comment BBMapcoverage, https://github.com/BioInfoTools/BBMap/blob/master/
sh/randomreads.sh (commit: a9ceda0)

A.4 Notations

Table 2 summarizes the notational conventions used in this work.

https://github.com/eth-sri/astarix
https://github.com/langmead-lab/vargas
https://github.com/ParBLiSS/PaSGAL
https://github.com/maickrau/GraphAligner
https://github.com/BioInfoTools/BBMap/blob/master/sh/randomreads.sh
https://github.com/BioInfoTools/BBMap/blob/master/sh/randomreads.sh


324 P. Ivanov et al.

Table 2. Notational conventions.

Object Notation

Queries Q = {qi|qi ∈ Σm}
Read q ∈ Q

Length m := |q| ∈ N

Position in read q[i] ∈ Σ, i ∈ {0, . . . , m − 1}
Reference graph Gr = (Vr, Er)

Size |Gr| := |Vr| + |Er| ∈ N

Nodes u, v ∈ Vr

Number of nodes N := |Vr| ∈ N

Edges e ∈ Er := Vr × Vr × Σ

Edge letter � ∈ Σ

Reference graph with a trie G+
r = (V +

r , E+
r)

Trie depth D ∈ N>0

Alignment graph Gq
a = (V q

a , Eq
a )

State 〈u, i〉 ∈ V q
a := V × {0, . . . , m}

Edges (〈u, i〉, 〈v, j〉, �, w) ∈ Eq
a ⊆ V q

a × V q
a × Σε × R≥0, Σε = Σ ∪ {ε}

Edge cost w ∈ R≥0

Alignment π ∈ E∗
e and σ(π) = q

Alignment cost cost(π) ∈ R≥0

Seed heuristic h〈u, i〉
State 〈u, i〉
Seed length k

Maximum number of deletions ndel

Maximum number of insertions nins

In all graphs G = (V, E) ∈ {Gr, Ge, Gq
a }

Walk π ∈ G : π ∈ E∗

Walk spelling σ(π) ∈ Σ∗

Path A walk without repeating nodes

A� A�(G, S, T, h)

Graph G = (V, E)

Nodes u, v ∈ V

Edges e ∈ E ⊆ V × V × R≥0

Source states S ⊆ V

Target states T ⊆ V

Heuristic function h : V → R≥0

Minimum cost to a target h∗(u)

Explored state A state pushed to the queue of Algorithm 1
Expanded state A state popped from the queue of Algorithm 1
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Abstract. The reconstruction of microbial genomes from large metage-
nomic datasets is a critical procedure for finding uncultivated micro-
bial populations and defining their microbial functional roles. To achieve
that, we need to perform metagenomic binning, clustering the assembled
contigs into draft genomes. Despite the existing computational tools,
most of them neglect one important property of the metagenomic data,
that is, the noise. To further improve the metagenomic binning step and
reconstruct better metagenomes, we propose a deep Contrastive Learn-
ing framework for Metagenome Binning (CLMB), which can efficiently
eliminate the disturbance of noise and produce more stable and robust
results. Essentially, instead of denoising the data explicitly, we add sim-
ulated noise to the training data and force the deep learning model to
produce similar and stable representations for both the noise-free data
and the distorted data. Consequently, the trained model will be robust to
noise and handle it implicitly during usage. CLMB outperforms the pre-
vious state-of-the-art binning methods significantly, recovering the most
near-complete genomes on almost all the benchmarking datasets (up to
17% more reconstructed genomes compared to the second-best method).
It also improves the performance of bin refinement, reconstructing 8–22
more high-quality genomes and 15–32 more middle-quality genomes more
than the second-best result. Impressively, in addition to being compatible
with the binning refiner, single CLMB even recovers on average 15 more
HQ genomes than the refiner of VAMB and Maxbin on the benchmarking
datasets. On a real mother-infant microbiome dataset with 110 samples,
CLMB is scalable and practical to recover 365 high-quality and middle-
quality genomes (including 21 new ones), providing insights into the
microbiome transmission. CLMB is open-source and available at https://
github.com/zpf0117b/CLMB/.
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1 Introduction

Studies of microbial communities are increasingly dependent on high-
throughput, whole-genome shotgun sequencing datasets [1,2]. General studies
assemble short sequence reads obtained from metagenome sequencing into longer
sequence fragments (contigs), and subsequently group them into genomes by
metagenome binning [3,4]. Metagenome binning is a crucial step in recovering
the genomes, which therefore provides access to uncultivated microbial popula-
tions and understanding their microbial functional roles.

In recent years, we have witnessed great progress in metagenome binning.
Firstly, the composition and the abundance of each contig are proved useful for
binning [5,6]. Secondly, several programs have been developed for fully auto-
mated binning procedures, which leverage both composition and abundance as
features. MetaBAT [7], MetaBAT2 [8], CONCOCT [5], and Maxbin2 [9] utilize
the composition and abundance information and take the metagenome binning as
the clustering task. VAMB [10] performs dimensionality reduction, encoding the
data using VAE first and subsequently conducting the clustering task. Thirdly, a
new approach ‘multi-split’ is developed and achieves great performance [10,11].
It gathers contigs from all the samples and calculates the abundance among
samples, clustering them into bins and splitting the bins by sample.

Earlier works on metagenomics binning achieved good performance by apply-
ing different strategies for clustering. However, they ignored the potential factors
in real-world conditions that influence the quality of metagenomic short reads,
such as the low total biomass of microbial-derived genomes in clinical isolates [12]
and the imperfect genomic sequencing process, for example, base substitutions,
insertions, and deletions [13]. As a consequence of the factors, metagenomic
sequences are susceptible to the noise issue, such as contamination noise and
alignment noise [12]. The potential noise can influence the quality of metage-
nomics sequences, and therefore make it difficult to distinguish whether certain
contigs come from the same type of or different bacterial genomes, impacting the
correctness of the formed draft genomes. Furthermore, all of the existing binners
are restricted by data volume.

To learn a high-quality draft genome for each bacterium, we design a novel
deep Contrastive Learning algorithm for Metagenomic Binning (CLMB) to han-
dle the noise (Fig. 1). The basic idea of the CLMB module is that, since the noise
of the real dataset is hard to detect, we add simulated noise to the data and force
the trained model to be robust to them. Essentially, instead of denoising the data
explicitly, we add simulated noise to the training data and ask the deep learning
model to produce similar and stable representations for both the noise-free data
and the distorted data. Consequently, the trained model will be robust to noise
and handle it implicitly during usage. By effectively tackling the noise in the
metagenomics data using the contrastive deep learning framework [14,15], we
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can group pairs of contigs that originate from the same type of bacteria together
while dividing contigs from different species to different bins. Moreover, CLMB
performs data augmentation before training and take the augmented data as
training data. Unlike other binners, CLMB uses the augmented data, instead
of the raw data, for training. Therefore, the data volume for training is largely
increased, which improves the representation of the deep learning model and pre-
vents overfitting. CLMB also keeps the ‘multi-split’ approach, which combines
the contigs of all the samples for binning, because the contrastive deep learning
benefits more from a larger data size [14].

On the CAMI2 Toy Human Microbiome Project Dataset [16], CLMB outper-
forms the previous state-of-the-art binning methods significantly, recovering the
most near-complete genomes on almost all the benchmarking datasets. Specif-
ically, CLMB reconstructs up to 17% more near-complete genomes compared
to the second-best method. We then investigate the recovered genomes under
different criteria and find that more information contained in data contributes
to the binning performance of CLMB. By involving CLMB, the performance of
bin refinement is improved, reconstructing 8–22 more high-quality genomes and
15–32 more middle-quality genomes more than the second-best result. Binning
refiner with CLMB and VAMB [10] achieves the best performance than any other
binners. Impressively, in addition to being compatible with the binning refiner,
single CLMB even recovers on average 15 more HQ genomes than the refiner
of VAMB and Maxbin on the benchmarking datasets. Furthermore, CLMB is
applied to a real mother-infant microbiome dataset with 110 samples and recov-
ers 365 high-quality and middle-quality genomes, including 21 new ones. As a
crucial step for metagenomic research, the genome recovered by CLMB provides
insights into the microbiome transmission.

Our contributions in this paper are summarized as follows:

• We propose a new metagenomic binner, CLMB, based on deep contrastive
learning. It is the first binner that can effectively handle the noise in the
metagenomic data. By implicitly modeling the noise using contrastive learn-
ing, our method can learn stable and robust representations for the contigs,
thus leading to better binning results.

• We propose a novel data augmentation approach for metagenomic binning
under the contrastive learning framework. Experiments suggest that it can
indeed help us model the noise implicitly.

• We carefully evaluate the contribution of different properties and features
to metagenomic binning using our method, including the sequence encoding,
dimension, abundance, etc. We also show how our method can be combined
with other binners to further improve the binning step. It can guide the users
to achieve a better binning result.
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Fig. 1. Overview of CLMB workflow. CLMB takes contigs from sampled micro-
biome as inputs. Then, the abundances and the per-sequence tetranucleotide frequen-
cies (TNF) are calculated, concatenated, and subsequently augmented to a pair of
distorted data. All the augmented data are passed through VAE to train it with con-
trastive learning. After training, the concatenated features of each contig are passed
through VAE to obtain the encoded data in the latent space as the representation.
Finally, a general clustering algorithm can be applied to the representations to obtain
binning results.

2 Methods

The key idea of CLMB is to involve explicitly modeled noise it in the data, to
learn effective contig representations, and to pull together the representations of
functionally similar contigs, while pushing apart dissimilar contigs. We achieve
the goal with deep contrastive learning.

The CLMB pipeline is shown in Fig. 1. The inputs of CLMB are the con-
tigs assembled from sequencing reads. For each contig, the abundances and the
per-sequence tetranucleotide frequencies (TNF) are respectively calculated and
transformed to numerical vectors of s-dimensional and 103-dimensional, denoted
Ain and Tin (Methods C.1 in Appendix, s denotes the number of samples), both
of which were concatenated as the input feature, denoted concat(Ain, Tin). Given
the feature, we simulate noise in different forms, such as Gaussian noise and ran-
dom mask, and add the noise to it, resulting in slightly distorted feature as the
augmented data. Specifically, for each contig, two random augmented data are
generated based on the feature data (Sect. 2.1) and used to train a neural net-
work with contrastive learning, i.e., contrasting the training pair of each contig
between each other and against other data pairs [14]. As for the neural network
model, we select the variational autoencoder (Sect. 2.2), due to its capability
of learning smooth latent state representations of the input data [17,18]. When
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training the VAE model (Sect. 2.4), we force the model to produce similar rep-
resentations for the augmented data of the same contig while distinct for those
of different contigs (contrastive learning). More specifically, by discriminating
the augmented data of the same contig from massive augmented data of the
other contigs, the deep neural network (VAE) parameterizes a locally smooth
nonlinear function fθ that pulls together multiple distortions of a contig in the
latent space and pushes away those of the other contigs. Intuitively, as the rep-
resentations of the augmented data from the same contig are pulled together by
fθ, contigs with similar feature data can be pulled together in the latent space,
which are more likely to be placed in the same cluster. After contrastive learning,
concat(Ain, Tin) of each contig can be encoded by the trained VAE to the mean of
their denoised distributions in the latent space (Sect. 2.5). The mean data of the
contigs are the representations that we learn, which are subsequently clustered
with the common clustering algorithms (e.g., minibatch k-means [19], DBSCAN
[20], iterative medoid clustering algorithm [7,10])1 and put into respective bins
(Sect. 2.5).

2.1 Data Augmentation

Data augmentation is essentially the process of modeling the noise explicitly. Any
noise in real-world conditions that influence the quality of metagenomic short
reads might result in the implicit change of feature data. For example, base
deletion during genomic sequencing causes a statistical error of the tetramer
frequencies and consequently the distortion of TNFs. Therefore, we perform
data augmentation to the feature data for interpretability and effectiveness. We
design three augmentation approaches for three noise cases, considering the real-
life metagenoimc sequencing and data analytic pipeline.

1. Gaussian noise. It simulates the unexpected noise in metagenomic sequences.
Assuming the features conform to Gaussian distribution with mean μ and
variance σ2, the noise obtained by sampling the Gaussian distribution
N(0, σ2) and scaled in 0.15μ is added to the feature data.

2. Random mask. This simulates undetected read mapping during the assembly.
Each dimension of the feature data might be masked with 0.01 probability.

3. Random shift. This kind of noise covers the imperfect genomic sequencing
process. Two dimensions, i and j, of the feature data are chosen, and the
number f [i] on dimension i turns into 9f [i]

10 while the number f [j] on dimension
j turns into f [j] + f [i]

10 . The total percentage of chosen pairs of dimension is
0.01.

For each data augmentation during training, Gaussian noise and one of the
other approaches are selected to generate training pairs for the feature data of
each contig. After this, a minibatch of N contigs generates the augmented data
with size 2N .
1 Minibatch k-means and DBSCAN are implemented by scikit-learn: https://scikit-

learn.org. Iterative medoid clustering algorithm are implemented by [10]: https://
github.com/RasmussenLab/vamb/blob/master/doc/tutorial.ipynb.

https://scikit-learn.org
https://scikit-learn.org
https://github.com/RasmussenLab/vamb/blob/master/doc/tutorial.ipynb
https://github.com/RasmussenLab/vamb/blob/master/doc/tutorial.ipynb
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2.2 Architecture of the VAE

We employ the VAE architecture constructed in [10]. For a minibatch of N
contigs, augmented data with size 2 ∗ N are passed through the VAE mod-
ule. Each (s + 103)-dimensional vector, generated from the augmentation of
concat(Ain, Tin), is firstly passed through two fully connected layers with batch
normalization [21] and dropout (P = 0.2) [22], termed the encoding layers,
parameterizing function fe. The output of the last layer, with Nh dimension, is
then passed to two different fully connected layers with Nh dimensions, termed
the μ and σ layers, parameterizing function fμ and fσ, respectively. The latent
layer, l, is obtained by sampling the Gaussian distribution using the μ and σ
layers as parameters, i.e., li ∼ N(μi, σi) for each neuron i = 1, 2, ..., Nh. The
sampled latent representation is then passed through the decoding layers, with
the same size as the encoding layers except for arranged in a reverse order,
parameterizing function fd. Followed by the last decoding layer is a fully con-
nected layer of s + 103 dimensions with function fs parameterized, in which the
vector is splitted into two output vectors of dimension s and 103, Aout and Tout,
as the output abundance and TNFs, respectively. We use linear activation for the
μ layer, softplus activation for the σ layer, and leaky rectified linear activation
[23] for the other layers.

2.3 Loss Function

The loss function of CLMB is a trade-off for three goals:

1. The decoded data should be similar to the input data, which is a requirement
of training autoencoder;

2. The Gaussian distribution dependent on the μ and σ layers for sampling is
constrained by a prior N(0, I), which is the prerequisite of VAE [17,18].

3. The decoded data for the augmented data of the same contig are as similar as
possible, while those of different contigs are as dissimilar as possible, which
is the terminal condition of contrastive learning [14].

To satisfy the first goal, we have

L1 = wA

∑
ln(Aout + 10−9) · Ain + wT

∑
(Tout − Tin)2, (1)

where the wA and wT are the weighting terms. We use cross-entropy to penalize
the abundance bias and the sum of squared errors to penalize the TNFs bias.

To satisfy the second goal, we have

L2 = −
∑ 1

2
(1 + ln(σ) − μ2 − σ) [24, 14]. (2)

We use the Kullback-Leibler divergence to penalize the deviance from this dis-
tribution.

To satisfy the third goal, we investigate the structure of each minibatch
of 2 ∗ N (distorted) augmented data, which are obtained by performing data
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augmentation to {concat(Ain, Tin)k}N
k=1 of N contigs. All the data are passed

through the VAE module, and we denote the output data from the decoding
layer as X = {xk ∈ Rs+103}2N

k=1. For a pair of positive data xi and xj (derived
from the feature data of the same contig), the other 2 ∗ N − 2 samples are
treated as negatives. To distinguish the positive pair from the negatives, we
define the cosine distance between two vectors cos(xi, xj) = xT

i ·xj

||xi||·||xj || and use
the normalized temperature-scaled cross-entropy loss:

li,j = −log
e

cos(xi,xj)
τ

∑2N
s=1,s �=i e

cos(xi,xs)
τ

, (3)

where the temperature τ is a parameter we can tune. Note that l(i, j) is asym-
metrical. Suppose all the pairs X = {xk ∈ Rs+103}2N

k=1 are put in an order, in
which x2k−1 and x2k denote a pair of positive data, the summed-up loss within
this minibatch is:

L3 =
1

2N

N∑

k=1

(l2k−1,2k + l2k,2k−1). (4)

Finally, the combined loss function is

LOSS = L1 + w2L2 + w3L3. (5)

The weighting terms are set as wA = 0.85ln(s)−1 and wT = 0.15/103 (in
accordance with [10]), τ = 0.1, w2 = L1(0)/L2(0)

2.75×105Nh
, w3 = 0.15L1(0)/L3(0), where

L1(0), L2(0), L3(0) indicate the value of L1, L2, L3 at the first epoch and are ini-
tially set to 1.

2.4 Training with Contrastive Learning

Here, we have modelled the noise explicitly, constructed the architecture, and
defined the loss function we should optimize. The contrastive learning algorithm
for training process will force the architecture to be robust to the noise we
modelled. The pseudocode for training is presented in Algorithm 1.

As shown in Algorithm 1, in each training epoch, the contigs are randomly
separated to several minibatches. The augmented data of each minibatch are
put into VAE for training. The loss function is determined after L1, L2, L3 are
calculated. We train VAE by optimizing LOSS using the Adam optimizer [25]
and using one Monte Carlo sample of the Gaussian latent representation.

Algorithm 1 trains VAE by discriminating the data in sampled minibatch.
However, due to insufficient memory capacity (either of CPU or GPU), a limited
proportion of data are sampled to a minibatch, which might lead to a problem
that the VAE fits well with the data in the minibatch rather than the whole
dataset. Therefore, contrastive learning can benefit from shuffled, larger batch
size and more epoches for training [14]. We train the model with minibatches of
4096 contigs for 600 epoches.
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Algorithm 1. The contrastive learning algorithm for training VAE
Input: batchsize N , constant parameter τ , structure of fe, fμ, fσ, fd, fs, feature data
concat(Ain, Tin)

1: for sampled minibatch {concat(Ain, Tin)k}N
k=1 do

2: select one data augmentation form pair with augmentation functions t1, t2;
3: for all k ∈ {1, 2, ..., k} do
4: Aug2k−1 = t1(concat(Ain, Tin)k); Aug2k = t2(concat(Ain, Tin)k) #Aug-

mentation
5: μ2k−1 = fμ(fe(Aug2k−1)); μ2k = fμ(fe(Aug2k))
6: σ2k−1 = fσ(fe(Aug2k−1)); σ2k = fσ(fe(Aug2k))
7: sample l2k−1, l2k from the multivariate gaussian distribution N(μ2k−1, σ2k−1),

N(μ2k, σ2k) respectively. #Rep-
resentation

8: x2k−1 = fd(l2k−1); x2k = fd(l2k) #Projection

9: Aout2k−1 , Tout2k−1 = fs(x2k−1); Aout2k , Tout2k =
fs(x2k) #Splitting

10: L1 = wA

∑2N
k=1 ln(Aoutk + 10−9) · Ain� k+1

2 �
+ wT

∑
(Tout − Tin� k+1

2 �
)2

11: L2 = − ∑2N
k=1

1
2
(1 + ln(σk) − μ2

k − σk)

12: L3 = 1
2N

∑N
k=1(l2k−1,2k + l2k,2k−1), where li,j is defined in Equation 3

13: if in the first epoch and w2 = w3 = 1 then
14: calculate w2, w3 based on the value of L1, L2, L3

15: LOSS = L1 + w2L2 + w3L3

16: update networks fe, fμ, fσ, fd, fs to minimize LOSS
17: return encoding structure fe, fμ

2.5 Productive Model

After training, we define the productive function fθ(x) = fμ(fe(x)), i.e., the
mapping parameterized by the encoder layers connected with the μ layers. There-
fore, given the feature data concat(Ain, Tin) of a contig, we obtain the represen-
tations fμ(fe(concat(Ain, Tin))) by passing the data through the encoder layers
and the μ layers. Once we obtain the representations of all the contigs, we clus-
ter them with the common clustering algorithms (e.g., minibatch k-means [19],
DBSCAN [20]). We find that the iterative medoid clustering algorithm devel-
oped by [10] is the state-of-art clustering algorithm specifically for metagenome
binning (Fig. 7 in Appendix). After clustering, contigs in the same cluster are
put into the same bin. Moreover, for the multisplit workflow, the contigs in the
same bin should also be separated based on their source samples [10].

3 Results

3.1 Datasets and Evaluation Metrics

Datasets. To show the performance of CLMB, we use the benchmarking
datasets, which are five synthetic datasets from the CAMI2 Toy Human Micro-
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biome Project Dataset [16]: Airways (10 samples), Gastrointestinal (GI, 10 sam-
ples), Oral (10 samples), Skin (10 samples), and Urogenital (Urog, 9 samples)2.
For each dataset, contigs < 2, 000 base pairs are discarded. We obtain the abun-
dance data in numpy3 format from the website of [10]4, which are calculated
using jgi summarize bam contig depths, implemented by [8] on BAM files cre-
ated with bwa-mem [26] and sorted with samtools [27].

Evaluation Metrics. We adopt the evaluation metrics for taxonomic binning
defined in [16] as done in previous work [8,10]. After the bins are obtained, we
match each bin with each reference genome. We define the number of nucleotides
in the genome covered by contigs from the bin as true positives (TP); the number
of nucleotides from other genomes covered by contigs in the bin as the false
positives (FP); the number of nucleotides in the genome covered by contigs in
the dataset, but not by any contig in the bin as the false negatives (FN). Then,
Precision = TP

TP+FP and Recall = TP
TP+FN are calculated. All the CAMI2

datasets have taxonomy files with the definition of strain, species, and genus
taxonomic levels.

3.2 CLMB Recovers More Near-Complete Genomes on Most
Benchmarking Datasets

We ran CLMB on the five CAMI2 datasets. For each dataset, the augmented
data serve as training data, while the original feature data serve as testing data.
Therefore, CLMB obtains a specific encoding function fθ parameterized by VAE
for each dataset. In addition, as the data augmentation is performed several times
during training, CLMB has a larger data volume for training than the input data
volume.

We also benchmarked VAMB [10], MetaBAT2 [7] and Maxbin2 [9] on the five
benchmarking datasets for comparison. We evaluated the binning performance
by the number of recovered Near-Complete (NC, recall > 90% and precision >
95%) genomes as the previous works [10,16,28]. Firstly, CLMB reconstructed 4–
21 more NC genomes at the strain level over the second-best binners on three of
the five benchmarking datasets (Airways, GI, Urog), and equivalent NC strains
to VAMB on Skin and Oral datasets (Fig. 2a and Table 2 in Appendix). Secondly,
the increased performance of CLMB relative to MetaBAT2 and Maxbin2 is very
significant. Moreover, the increased performance of CLMB to VAMB is positively
correlated with the difficulty of the CAMI2 datasets (which is defined as the recip-
rocal of the Shannon entropy of the datasets5 because higher Shannon entropy
indicates more information contained in the dataset and lower difficulty for

2 You can get the whole package data from https://data.cami-challenge.org/
participate, or get the contigs and calculated abundance from https://codeocean.
com/capsule/1017583/tree/v1.

3 https://numpy.org.
4 https://codeocean.com/capsule/1017583/tree/v1.
5 The Shannon entropy of the five datasets are calculated by [10] on their Supplemen-

tary Table 1.

https://data.cami-challenge.org/participate
https://data.cami-challenge.org/participate
https://codeocean.com/capsule/1017583/tree/v1
https://codeocean.com/capsule/1017583/tree/v1
https://numpy.org
https://codeocean.com/capsule/1017583/tree/v1
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Fig. 2. Performance comparison on benchmarking datasets. a. Number of NC
strains recovered from the five benchmarking datasets for CLMB, VAMB, MetaBAT2,
and MaxBin2. b. The linear fitting and 95% confidence interval of the difficulty of the
dataset and the increased number of NC strains recovered by CLMB relative to VAMB
(Pearson correlation coefficient = 0.85), MetaBAT2 (Pearson correlation coefficient =
−0.77) and MaxBin2 (Pearson correlation coefficient = −0.75). The difficulty is defined
as the reciprocal of the Shannon entropy (see Supplementary Table 1 from [10]) of the
dataset and is always positive. c. The ratio of recovered NC genomes to total reference
genomes (which is regarded as ideally recoverable genomes), divided by the ANI to the
most similar reference genomes across CAMI2 datasets. CLMB, pink; VAMB, yellow.
(Color figure online)

binning.) (Fig. 2b). That indicates that our method indeed resolves the bottle-
neck of the other methods when the dataset becomes more noisy and difficult.
More specifically, CLMB reconstructed more NC strains for most datasets com-
pared to MetaBAT2 and Maxbin2. Compared to VAMB, CLMB reconstructed
more NC strains for high-difficulty datasets and approximately equivalent NC
strains for low-difficulty datasets. Thirdly, CLMB reconstructed on average 10%
more species under any criteria for the GI and Urog datasets, and 8% more species
under stricter criteria (e.g., Recall > 0.90) for the Airways and Skin datasets.
However, if loosening the criterion (e.g., Recall > 0.70), CLMB reconstructed
1%–5% fewer species on Airways and Skin datasets than VAMB, which had similar
performance to CLMB on the Oral dataset with VAMB 0.5% better across all the
criteria except for Recall > 0.99 (Table 3 in Appendix). At the genus level, CLMB
outperformed VAMB on datasets Airways, GI, Oral, Skin under stricter criteria,
but on the contrary under looser criteria. On the Urog dataset, CLMB was the
second-best binner, recovering approximately 10% fewer genus than MetaBAT2
(Table 4 in Appendix).

We further mapped the recovered genomes to reference genomes and counted
the average nucleotide identity (ANI) between each reference genome. Ideally, all
the reference genomes are recovered after the sequencing, assembly, and binning
process, which is, however, extremely hard in real-world conditions. For each ref-
erence genome, we found the most similar genome and counted the ANI between
them. The NC genomes recovered by CLMB can be mapped to 6% of all reference
genomes having > 99.9% ANI to the most similar genome (Fig. 2c). Moreover,
compared to VAMB, the NC genomes recovered by CLMB were mapped to more
reference genomes across all the intervals of ANI except for 99.5%–99.9% ANI.
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3.3 The Performance of CLMB Benefits from Finding
the Information of Resemblance and Discrimination Within
Data

We conducted the data fusion experiment [29] on the five CAMI2 challenging
datasets, i.e., comparing the performance of the abundance, k-mer composi-
tion, or both concatenated. Because the representation of all the data encoded
by CLMB would be projected to 32-dimension space by fe, fμ (Fig. 1), we also
projected raw data to 32-dimension space using Principal Components Analysis
(PCA) [30], termed as ‘projected data’, to avoid the clustering results affected
by different dimensions. We tested the number of NC strains produced by bin-
ning with raw data, projected data, and CLMB-encoded data in the data fusion
experiment, respectively (Fig. 3).

Fig. 3. Results of data fusion experiments. Fusion test of 5 benchmarking datasets
for CLMB, precision = 0.95, recall range from 0.5 to 0.99. Color: Abundance (Yellow),
k-mer composition (Purple), both concatenated (Green) Linestyle: Raw data (Round),
Projected data (triangle), CLMB-encoded data (square). (Color figure online)

On datasets Airways, Oral, Skin, and Urog, the raw data of both concate-
nated did not achieve better results than the raw data of single abundance or
single k-mer composition, but the projected data of both concatenated yielded
5%–700% more genomes than that of single data. This interesting result proved
that the dimension of input data did affect the clustering and binning result,
and more information contained in the concatenated data was beneficial to the
clustering result after eliminating the variation of dimensionality. On dataset
GI, the raw data of both concatenated achieved worse results than the raw data
of single abundance, but the projected data of both concatenated yielded worse
results than the single k-mer composition. This might stem from the information
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conflict between k-mer composition and abundance. With contrastive learning,
the three CLMB-encoded data recovered 3–12 times more NC genomes than the
corresponding raw data. Moreover, the CLMB-encoded data of both concate-
nated and abundance also recovered on average 19% and 189% more than the
projected data ones, although the CLMB-encoded data of k-mer composition
had similar performance to the projected data. Most importantly, the CLMB-
encoded data of both concatenated achieved the best performance across all the
datasets, recovering on average 17% more genomes more than the second-best
results, no matter what performance the raw data or projected data of both
concatenated achieved.

We also visualized the raw data and CLMB-encoded data on dataset Skin,
using t-SNE [31] (Fig. 4). Firstly, the CLMB-encoded data of both concate-
nated appeared to have genomes more clearly separated than any other cases.
Figure 4a, 4c, and 4e showed that, more information contained in both con-
catenated contributed little to the cluster separation, which is similar to the
result of the data fusion experiment. However, Fig. 4b, 4d, and 4f showed that,
the CLMB-encoded data of both concatenated appeared to have genomes more
clearly separated than any other cases. It suggests that CLMB leverages the
information within data to achieve better performance.

Furthermore, the performance of CLMB-encoded data of both concatenated
was dependent on the number of selected samples (which decided the dimension
of the abundance) (Fig. 8 in Appendix). Another experiment tested the effect
of different k (2–5) for encoding k-mers composition, and showed that CLMB
could k = 4 assist to select the best kmer for or second performance on all the
datasets (Fig. 9 in Appendix).

Fig. 4. T-SNE visualiztion of data fusion experiments on Skin dataset. We
randomly selected 10 of 15 strains with maximum contigs from the CAMI2 Skin dataset.
Each point represents a contig from that strain, and points with same color means
originating from same strain (i.e., the same reference genome). a, b. Raw data (a) and
CLMB-encoded data (b) of abundance. c, d. Raw data (c) and CLMB-encoded data
(d) of both concatenated. e, f. Raw data (e) and CLMB-encoded data (f) of k-mer
composition.
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3.4 The Performance of the Ensemble Binning Is Improved
by Involving CLMB

The ensemble binning refinement method is popular after draft metagenome bin-
ning because they combine bins from multiple programs. To show that CLMB is
compatible with the ensemble binning tool, we ran MetaWRAP bin-refinement
[32,33] on the five CAMI2 challenging datasets by involving CLMB. Because
MetaWRAP bin refiner used CheckM [34] to assess the quality of recovered
genomes, we here evaluated the performance by the number of recovered high-
quality (HQ, completeness > 90% and contamination < 5%) genomes or
middle-quality (MQ, 50% < completeness < 90% and contamination < 5%)
genomes as the previous works [35,36]. The bin refiner of two binners usually
outperformed single binner, and the refiner of CLMB and VAMB performed
best, recovering 8–22 more HQ genomes and 15–32 more MQ genomes than
the second-best method. We also found that the refiner of CLMB and Maxbin2
outperformed that of VAMB and Maxbin2 on four of five datasets (Fig. 5a, b).
Moreover, CLMB and VAMB agreed on over a half of the HQ genomes and MQ
genomes, but CLMB recovered more unique HQ genomes on average (Fig. 5c, d).

Notice that the CheckM results are not equivalent to the benchmarking
results for each binner, which is due to different evaluation methods. We then
revisited the benchmarking experiments except for evaluating the performance
by the number of recovered HQ genomes and MQ genomes. On datasets GI,
Oral, and Urog, CLMB recovered 21–22 more HQ genomes or 6–18 more MQ
genomes than VAMB, which had similar performance to CLMB on Airways and
better performance than CLMB on Skin (Fig. 5e, f). Impressively, on datasets
Airways, GI, Oral, and Urog, single CLMB even recovered on average 15 more
HQ genomes than the refiner of VAMB and Maxbin (Fig. 5a, b).

In conclusion, the performance of binning refiner is highly dependent on the
performance of all the involved binners. As many metagenomics studies screen
the bins based on their quality after metagenome binning for future analysis, we
expect that more HQ and MQ genomes can be distinguished using CLMB and
the binning refinement methods.

3.5 The Genomes Recovered by CLMB Assist Analysis
for Mother-Infant Microbiome

Experiment Datasets. Unlike the above experiments on synthetic datasets,
we apply CLMB to real-world data to test the scalability and practicability in
this section. We use the longitudinally sampled microbiome of mother-infant
pairs across multiple body sites from birth up to 4 months postpartum from
[35], which are available at the NCBI Sequence Read Archive (SRA) [37] under
BioProject number PRJNA352475 and SRA accession number SRP100409. We
select 10 mother-infant pairs with 110 samples and 496342 contigs in total for
this experiment.

We ran CLMB on the dataset with default parameters. We recovered 373
(HQ+MQ) genomes, in which there are 24 new-found species consisting of 30
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Fig. 5. Quality assessment of genomes recovered by binners. a, b. The number
of high-quality (a) and middle-quality (b) genomes obtained using MetaWRAP binning
refinement tool. We used the binning result from 1) CLMB and VAMB (light cyan),
2) CLMB and MaxBin2 (purple), and 3) VAMB and MaxBin2 (green). The number of
high-quality (a) and middle-quality (b) genomes recovered by a single CLMB (pink)
is used for comparison. c, d. The source of the results of the MetaWRAP binning
refinement tool. We investigated the number of HQ (c) and MQ (d) genomes uniquely
from one of the two binners (dark pink, medium pink), found in both binners (light
pink), and the number of genomes that were not HQ (c) or MQ (d) in any binner but
were regenerated as HQ (c) or MQ (d) in the binning refinement output (lightest pink).
e, f. Number of HQ (e) and MQ (f) genomes recovered by single CLMB, single VAMB,
and single MaxBin2. (Color figure online)

bins. CLMB recover more bins compared to VAMB on this dataset (Fig. 6b). We
then reconstructed the phylogeny of all (HQ+MQ) genomes and obtained the
unrooted tree [38], which are annotated with the metadata file (Fig. 6a). The
new-found species, as annotated, are more from samples of mothers. We also
found that the microbiome of the infants shared more species. For example, 11
stool samples from 5 infants share strain Escherichia coli, and 8 samples collected
from stool and tongue dorsum of 4 infants contain strain Rothia sp902373285
across all ages. On the contrary, few species are shared among mothers in the
tree. Moreover, the range of species reconstructed in mothers’ samples overlaps
little with the range of species reconstructed in infants’ samples. More than
half of the bins are recovered from stool samples, probably because of the larger
sequencing files obtained from stool samples than those obtained from samples of
other sources (human body sites). We then counted the newly exclusive species
of the 10 infants. We found that the proportion of exclusive species has largely
changed as they grew up (Fig. 6c). At the age of 4 months, the proportions of
exclusive species are within a small range, indicating most infants contained
20%–30% exclusive species found in their microbiome.
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Fig. 6. Metagenomic analysis on mother-infant microbiome. a. Cladogram of
species tree of all the 365 bins generated. The annotation rings, from inner to outer:
1) the bins of new-found strains (green) or discovered before (light pink) in [35]; 2) the
sample is donated by mother (red) or infant (blue); 3) the age of infant donor, 1 day
(onion green), 3 days (dark green), 7 days (olive green), 1month (cyan) or 4 months
(yellow-green). Not applicable (dark) for mother donors; 4) which human body site
the sample is collected from, tongue dorsum (pink), vaginal introitus (lighter pink),
chest skin (vermeil), or stool (light cyan). The bins classified as strain Escherichia coli
and strain Rothia sp902373285 are marked red. b. Some bins that are recovered by
CLMB/VAMB are classified as strains by GTDB-tk, while the others are unknown
strains in GTDB-tk database. c. The ratio of exclusive species to the total number of
species in infants’ microbiome. The samples, which obtain 0 strain, are not considered.
(Color figure online)
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4 Discussions

Here, by conciously handling the noise occured in metagenome research, we show
improvements on both benchmarking datasets and real-world datasets, at similar
time cost (Table 1 in Appendix). The improvements, as we have shown, benefit
not only from the dimensionality reduction, but also from the model trained
by the contrastive learning framework and its robustness to noise. Furthermore,
experiments and applications on real-world datasets demonstrate the scalability
and practicability of CLMB.

From the algorithm perspective, CLMB can handle the numerical data that
potentially contain error [39], which is not limited to metagenome binning.
CLMB is promising to handle noise, a significant factor that interferes the data
precision. Therefore, we believe that our findings can inspire not only the field
of metagenomics [40], but also other related fields, like structural and functional
fields [41–44].

5 Appendix

A Figures

Fig. 7. Performance of different clustering algorithms based on five datasets.
Orange: DBSCAN Algorithm. Green: Exclude the outlier using DBSCAN first and
cluster the others points using minibatch k-means algorithm. Red: Iterative medoid
algorithm, which is developed by [10] and used by CLMB. (Color figure online)
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Fig. 8. Performance of CLMB with different samples. For any given number
of samples, samples were randomly drawn 3 times and executed independently. For
“single-sample”, all the samples were run independently. We note that for increasing
number of samples, the random subsets chosen is not independent, due to only having
9 (Urog) or 10 (Airways, GI, Skin, Oral) samples in total. Orange: Multi-split workflow
of CLMB, Green: Single sample workflow of CLMB. (Color figure online)

Fig. 9. Performance of CLMB with different k-mer length on different
datasets. It is assessed by the number of reconstructed NC strains. The performance
varies among the datasets.

B Tables

Table 1. Number of genomes at the strain level reconstructed with a precision of at
least 95%

Dataset CLMB (GPU) VAMB (GPU) MetaBAT2 (CPU) MaxBin2 (CPU)

Airways 40 35 44 545

Gastrointestinal 24 29 18 342

Oral 38 43 40 852

Skin 37 37 45 950

Urogenital 15 26 11 103

Mother-infant 145 100 N/A N/A
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Table 2. Number of genomes at the strain level reconstructed with a precision of at
least 95%

Dataset Binner RECALL

0.50 0.60 0.70 0.80 0.90 0.95 0.99

CAMI2 Airways MaxBin2 42 39 38 33 23 17 13

MetaBAT2 80 72 66 56 40 30 18

VAMB 125 123 120 113 79 60 41

CLMB 126 121 119 106 86 65 46

CAMI2 GI MaxBin2 64 63 63 60 53 50 45

MetaBAT2 99 97 94 87 76 68 58

VAMB 121 120 118 113 100 91 77

CLMB 129 128 127 123 115 105 85

CAMI2 Oral MaxBin2 64 61 55 46 39 31 21

MetaBAT2 88 86 84 79 73 58 38

VAMB 181 174 166 152 135 113 81

CLMB 173 169 164 151 135 114 84

CAMI2 Skin MaxBin2 56 53 50 46 34 30 27

MetaBAT2 106 98 93 76 65 53 42

VAMB 139 133 129 116 97 80 63

CLMB 140 130 126 119 96 81 69

CAMI2 Urog MaxBin2 37 36 36 35 34 29 26

MetaBAT2 77 74 71 70 69 61 44

VAMB 118 114 109 101 89 74 50

CLMB 120 118 111 105 94 83 56

Table 3. Number of genomes at the species level reconstructed with a precision of at
least 95%

Dataset Binner RECALL

0.50 0.60 0.70 0.80 0.90 0.95 0.99

CAMI2 Airways MaxBin2 41 38 37 32 22 16 12

MetaBAT2 76 69 63 53 38 28 17

VAMB 98 97 95 90 61 45 27

CLMB 95 92 91 85 66 47 30

CAMI2 GI MaxBin2 59 58 58 55 51 48 44

MetaBAT2 91 89 87 81 74 66 57

VAMB 89 88 88 85 80 74 63

CLMB 101 100 99 96 92 85 71

CAMI2 Oral MaxBin2 63 60 54 46 39 31 21

MetaBAT2 87 85 83 78 72 57 38

VAMB 129 126 124 116 103 84 58

CLMB 123 122 119 111 101 83 59

CAMI2 Skin MaxBin2 56 53 50 46 34 30 27

MetaBAT2 100 92 88 73 63 52 42

VAMB 107 103 100 87 69 59 48

CLMB 108 101 99 94 75 64 56

CAMI2 Urog MaxBin2 34 33 33 32 31 26 24

MetaBAT2 66 64 62 61 60 54 39

VAMB 69 69 67 64 59 53 39

CLMB 74 74 71 68 64 60 43
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Table 4. Number of genomes at the genus level reconstructed with a precision of at
least 95%

Dataset Binner RECALL

0.50 0.60 0.70 0.80 0.90 0.95 0.99

CAMI2 Airways MaxBin2 30 28 27 23 16 11 9

MetaBAT2 48 42 38 31 23 16 9

VAMB 52 51 50 49 33 19 8

CLMB 51 50 49 46 36 23 12

CAMI2 GI MaxBin2 38 37 37 35 32 31 29

MetaBAT2 56 54 53 48 42 37 34

VAMB 47 46 46 45 43 38 34

CLMB 50 50 50 49 46 43 40

CAMI2 Oral MaxBin2 42 41 40 37 32 25 18

MetaBAT2 55 54 52 50 47 41 28

VAMB 66 63 63 61 54 47 34

CLMB 62 62 61 59 53 45 37

CAMI2 Skin MaxBin2 46 44 41 38 30 27 24

MetaBAT2 64 61 61 52 46 39 33

VAMB 58 58 56 50 44 37 31

CLMB 57 55 55 54 48 41 36

CAMI2 Urog MaxBin2 28 28 28 27 26 23 21

MetaBAT2 35 34 33 32 32 29 23

VAMB 29 29 29 26 24 22 18

CLMB 33 33 31 30 29 27 21

C Methods

In this section, we show the methods and experiments in our research.

C.1 Feature Calculation of TNFs and Abundance

We use the same approach to calculate TNFs and abundance as the previous
work [10]. For each contig, we count the frequencies of each tetramer with definite
bases, and, to satisfy statistical constraints, project them into a 103-dimensional
independent orthonormal space to obtain TNFs [6]. As a result, the TNFs for
each contig are a 103-dimensional numerical vector. We also count the number
of individual reads mapped to each contig. More specifically, a read mapped to
n contigs counts 1/n towards each. The read counts are normalized by sequence
length and total number of mapped reads, which generates the abundance value
in reads per kilobase sequence per million mapped reads (RPKM). The resulted
abundance for each contig is a s-dimensional numerical vector, where s is the
number of samples. TNFs are normalized by z-scaling each tetranucleotide across
the sequences, and abundance are normalized across samples.
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C.2 Benchmarking

CLMB and VAMB [10] were run with default parameters with multi-split
enabled. MetaBAT2 [8] was run with setting minClsSize = 1 and other parame-
ters as default. MaxBin2 [9] was run with default parameters. The benchmark-
ing results were calculated using benchmark.py script implemented by [10]. The
mapping of the recovered genomes to the reference genomes was the intermedi-
ate result6 of benchmark.py script. FastANI [45] with default parameters was
used to calculate ANI between the reference genomes. For the binning refinement
experiment, we use metaWRAP bin refinement API [32,33] with parameters –c
50 and –x 10, indicating we keep the genomes qualifying completeness > 50%
and contamination < 10%. The completeness and contamination of the genomes
recovered by the bins are calculated using CheckM [34] with default parameters.
We use the pipeline integrated in MetaGEM [11] for binning refinement experi-
ment.

C.3 Data Fusion Experiment

We define the feature data as the raw data, and obtained the projected data by
projecting the feature data to 32-dimension space using PCA. For the CLMB-
encoded data, we obtained them by encoding the feature data to 32-dimension
space with the deep contrastive learning framework. We assess the perfor-
mance of these data by clustering them with the iterative medoid clustering and
obtained the benchmarking results. All the experiments on CAMI2 datasets were
run with default parameters with multi-split enabled, and the experiments on
MetaHIT datasets was run with default parameters with multi-split disabled. For
comparison to other clustering methods, we use MiniBatchKMeans (n clusters
= 750, batch size = 4096, max iter = 25, init size = 20000, reassignment ratio =
0.02) and DBSCAN (eps = 0.35, min samples = 2) implemented by scikit-learn.

C.4 Binning of the Mother-Infant Transmission Dataset

We downloaded the sequencing datasets of selected mother-infant pairs (marked
as 10001, 10002, 10003, 10005, 10006, 10007, 10008, 10009, 10015, 10019)
using SRA Toolkit and filtered them based on quality using fastp [46]. Then,
we assembled the short sequence reads into contigs using MEGAHIT [47,48]
and mapped the reads to the contigs using kallisto [49] in order to speed up
this process for large datasets. The coabundance across samples can be sub-
sequently calculated using kallisto quantification algorithm. With the assem-
blies and coabundances, we ran CLMB with default parameters and multi-split
enabled. Then, we splited the fasta file into bins based on the result of cluster-
ing using create fasta.py script. CheckM [34] on lineage specific workflow with
default parameters was applied to the resulting bins to calculate the completeness
and contamination, and only those with sufficient quality (completeness ≥ 50%,

6 The variable recprecof in class Binning.



346 P. Zhang et al.

contamination ≤ 5%) were considered for further analysis. Then, we use GTDB-
tk [38] on for taxonomic assignment of each bins and phylogeny inference. We
visualized the tree with iTOL [50].
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Introduction. One of the first steps in the analysis of single cell RNA-
Sequencing data (scRNA-Seq) is the assignment of cell types. While a number of
supervised methods have been developed for this, in most cases such assignment
is performed by first clustering cells in low-dimensional space and then manually
annotating each cluster using known marker genes or cluster specific differen-
tially expressed genes [1]. Several clustering methods have been developed and
used for scRNA-Seq data. However, to date, these methods have only relied on
the observed expression data [2–5]. There are several additional complementary
datasets that can be used to improve clustering and reduce noise related group-
ing. Specifically, gene sets [6] have been compiled to characterize many processes,
pathways and conditions. While the exact processes or functions that are acti-
vated in specific cells or clusters are unknown, we can use these sets to guide the
grouping of cells by placing more emphasis on co-expression of genes in known
sets when clustering single cell data. Since cells of the same type likely share
many of the biological processes, such design can both, improve the identifica-
tion of good clusters and help in annotating them based on the function of the
sets associated with each cluster.

Here we introduce UNIFAN (Unsupervised Single-cell Functional
Annotation) to simultaneously cluster and annotate cells with known biological
processes (including pathways). For each cell, we first infer its gene set activity
scores based on the co-expression of genes in known gene sets. Next, UNIFAN
clusters cells by using the learned gene set activity scores and a reduced dimen-
sion representation of the expression of genes in the cell. The gene set activity
scores are used by an “annotator” to guide the clustering such that cells shar-
ing similar biological processes are more likely to be grouped together. This
design allows us to use prior knowledge about gene membership to guide the
dimension reduction and cluster assignment. Gene sets selected as predictive
by the annotator, in turn, provide useful annotations for each cell cluster. To
allow the selection of marker genes, we also added a set of most variable genes
selected using Seuratv3 [3] as features of the annotator. See [7] for the specific loss
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functions we use, the model training process and how hyperparameter values are
selected.

Results. We first evaluated if UNIFAN can accurately cluster cells and reveal
key pathways and cellular functions activated in cells assigned to different clus-
ters. For this, we used a scRNA-Seq dataset [8], composed of 25,185 cells and
19,404 genes. UNIFAN clusters correspond well to the manually annotated cell
types (ARI: 0.81, NMI: 0.77). To annotate cell clusters, we examined the coef-
ficients assigned by the “annotator” to different gene sets for each cluster. We
found that UNIFAN correctly assigns gene sets based on the type of cells. For
cluster 0, the set “GOBP POSITIVE REGULATION OF T CELL RECEPTOR
SIGNALING PATHWAY” is assigned a large weight and this cluster is anno-
tated as CD4+ T cells in the original paper. For cluster 5 (which mainly contains
CD8+ T cells), one of the top scoring sets is “REACTOME NEF MEDIATED
CD8 DOWN REGULATION”. Cluster 3 and 6 correspond to classical mono-
cyte (cMonocyte) and non-classical monocyte (ncMonocyte), respectively. While
UNIFAN assigns processes related to “antigen presentation” and “inflammation”
to both clusters, the process related to wound healing “GOBP REGULATION
OF INFLAMMATORY RESPONSE TO WOUNDING” only appears in clus-
ter 6. One of the main differences between ncMonocyte and cMonocyte is their
role in wound healing [9] and so such assignment helps with correctly annotat-
ing these clusters. In addition to the gene sets, we also evaluated genes highly
weighted by the annotator by comparing them to known cell type marker sets
[6], which are not used in model learning. The most enriched cell type marker
sets for each cluster correspond well to the true labels, indicating that UNIFAN
can indeed identify the marker genes for each cell type (cluster). We observed
similar results for the other datasets as shown in [7].

We also compared UNIFAN’s clustering performance with prior methods pro-
posed for clustering scRNA-Seq data using several datasets. The number of cells
in these datasets ranges from 366 (Aorta in Tabula Muris [10]) to 96,282 (“Atlas
lung” dataset [11]) and so they can provide a good representation of current
scRNA-Seq datasets. The methods we compared to included two graph-based
methods Leiden clustering [2] and Seuratv3 [3], a kernel-based method SIMLR
[4] and a deep-learning based method DESC [5]. For each dataset, we ran each
method ten times using different initializations. The results show that, for all
datasets, UNIFAN outperforms all other methods (e.g., average ARI of UNI-
FAN and the best performing prior method on “HuBMAP Spleen”: UNIFAN-
0.75, DESC-0.31; on “Tabula Muris”: UNIFAN-0.70, SIMLR-0.53). The large
improvement may result from the ability of UNIFAN’s to focus on the more rel-
evant sets of co-expressed genes rather than on co-expression that may results
from noise. We observe the same results when using other metrics and we also
evaluate the different parts of UNIFAN to determine which input and processing
contributes the most to its success. See [7] for details.

Discussion. We presented UNIFAN which improves both clustering and cluster
annotations by using a large collection of gene sets [6]. UNIFAN infers gene set
activity scores and uses them to regularize the clustering of cells. Such design
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improves the ability to identify biologically meaningful co-expressed genes and to
use these to group cells. In addition to leading to improved clustering, UNIFAN
also assigns a subset of the gene sets to clusters which can help characterize their
cell types.

We compared UNIFAN to several popular methods for clustering scRNA-Seq
data using datasets spanning a large number of organs from both human and
mouse. As we show, UNIFAN consistently outperforms other methods across
these datasets. We also analyzed the gene sets selected by UNIFAN for various
clusters and demonstrated that they match well with the known cell types.

Analysis of UNIFAN identified the annotator and the gene sets and genes
it uses as the main sources for the improvement. The fact that adding variable
genes as input improves performance is likely the result of the fact that current
gene sets, while very useful, are incomplete. We may still be missing from current
collections sets of genes characterizing some less known biological processes. In
such cases, the selected genes capture groupings that are missed by the known
gene sets.

Code Availability: https://github.com/doraadong/UNIFAN.

Full-Text Preprint: https://www.biorxiv.org/content/10.1101/2021.11.20.
469410v1.
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Single-cell RNA sequencing (scRNA-seq) technologies enable gene expression
measurement at a single-cell resolution, and have opened a new frontier to under-
stand animal development, physiology, and disease-associated molecular mech-
anisms [1,2]. Rapid advances of scRNA-seq technologies have resulted in the
generation of large-scale single-cell gene expression datasets from different plat-
forms in different laboratories, using samples that span a broad range of species,
tissue types, and experimental conditions. The increasing number of scRNA-seq
datasets emphasizes the need for integrative biological analysis to help assess and
interpret similarities and differences between single-cell samples and to obtain
in-depth insights into the underlying biological systems. A fundamental goal in
integrative scRNA-seq data analysis is to jointly define cell clusters, obtain their
functional interpretation and annotation, and identify differentially activated
biological pathways in distinct cell types and biological conditions. However, a
key challenge for achieving this goal is the heterogeneity present in single-cell
gene expression data. As expression data from different sources are associated
with various types of technical effects [3], expression patterns of biological inter-
est need to be discerned from cell-specific and sample-specific effects in order
to compare single-cell transcriptomes across samples and biological contexts. In
addition to technical variability, genuine cellular heterogeneity is present in dif-
ferent cell types and cell states with distinct behaviors and functions, and in
response to different perturbations.

To help remove the batch effects emerging from scRNA-seq data gener-
ated by different sequencing platforms or library-preparation protocols, several
batch correction methods, including mnnCorrect, BBKNN, and BEER, have
been developed. However, batch correction methods assume that the differences
between the single-cell samples are purely technical and non-biological, and thus
are not appropriate for analyzing biologically different scRNA-seq datasets, such
as tissue biopsy data from different patients or data of the same tissue type
from related species. In practice, there are multiple integration methods that
have been used to analyze single-cell gene expression data from biologically
heterogeneous sources. For example, Seurat matches cell states across samples
by identifying the so-called anchor cells in a lower-dimensional space constructed
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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with canonical correlation analysis. Similarly, Scanorama matches cell clusters
by identifying mutual nearest neighbors in a lower-dimensional space constructed
with randomized singular value decomposition. scMerge performs clustering in
each sample, matches clusters across samples, and then uses control genes to
correct for inter-sample variation. In addition, LIGER identifies both shared
and dataset-specific metagene factors to enable integration of multiple single-
cell samples.

Even though the above methods have been shown useful in batch-effect
removal and integrative analysis of multiple single-cell samples, they do not
account for the situation where heterogeneous samples come from distinct bio-
logical conditions (e.g., different experimental groups or disease phases), and
thus may compromise the results. To address this challenge, we propose a novel
method named scINSIGHT to jointly model and interpret gene expression pat-
terns in single-cell samples from biologically heterogeneous sources. scINSIGHT
uses a new model based on non-negative matrix factorization (NMF) [4] to
decompose gene expression patterns of distinct cell types and biological condi-
tions. Compared with existing tools, scINSIGHT has the following advantages:
(1) it explicitly models coordinated gene expression patterns that are common
among or unique to biological conditions, enabling the decomposition of common
and condition-specific gene modules from high-dimensional gene expression data;
(2) it achieves precise identification of cell populations across single-cell samples,
using common gene modules that capture cellular identities; (3) it enables effi-
cient comparison between samples and biological conditions based on cellular
compositions and module expression; (4) it discovers sparse and directly inter-
pretable module expression patterns to assist functional annotation. We evalu-
ated the performance of scINSIGHT in both simulation and real data studies,
both of which demonstrated its accuracy and effectiveness for interpreting single
cell gene expression from biologically heterogeneous data.

We benchmarked the performance of scINSIGHT in both simulation and real
data studies, in comparison with analysis without integration or with six alter-
native integration methods. Using the ground truth information in simulation as
a reference, we confirmed scINSIGHT’s ability to accurately decompose common
and condition-specific gene modules, and to precisely identify cellular identities
based on the inferred expression of common gene modules. In the three real
data applications, scINSIGHT repeatedly demonstrated its effectiveness to ana-
lyze, compare, and interpret single-cell gene expression data across samples and
biological conditions. Based on its identified cell clusters and decomposed gene
modules, scINSIGHT is able to discover T cell states associated with response
to immunotherapy in melanoma patients, B cell types associated with disease
phase of COVID-19 patients, and dermal cell populations for murine skin wound
healing. In addition, scINSIGHT consistently showed higher accuracy and inter-
pretability than the other methods in the above real data studies.
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The scINSIGHT R package is freely available at https://github.
com/Vivianstats/scINSIGHT and https://cran.r-project.org/web/packages/
scINSIGHT/index.html. The full article is available at https://doi.org/10.1186/
s13059-022-02649-3.
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Generative models of genetic sequence data play a central role in population
genomics. By modeling dependencies across individuals and sites, these mod-
els have empowered genomic analyses such as genotype imputation, haplotype
phasing, and ancestry inference. Such models also form the basis for programs
that simulate artificial genomes (AGs) that, in turn, have played a critical role in
testing evolutionary hypothesis, inferring population genetic models, validating
empirical results, and benchmarking methods. The ability to accurately and effi-
ciently simulate AGs has been important. Classical probabilistic models based
on hidden Markov model (HMM) are tractable in computing likelihoods and
thus widely applied in genotype imputation, but they are not accurate enough
in modeling dependencies. While recently popularized deep learning methods
such as deep generative adversarial networks (GANs), variational autoencoders
(VAEs), and restricted Boltzmann machines (RBMs) are more expressive than
HMMs, they are limited in computing exact probabilistic likelihoods and chal-
lenging to train.

We propose a class of probabilistic models that can both give us those
tractability advantages and keep high expressiveness. To model the distribu-
tion over a sequence of variants, we propose a class of latent variable models
where each hidden variable is associated with a SNP and the hidden variables
are connected via a tree-structured graphical model. This model, termed the hid-
den Chow-Liu tree (HCLT), generalizes previously proposed HMMs. Although
HMMs also associate each hidden random variable with a SNP, the hidden vari-
ables are related by a chain (a special type of tree) with the restriction that the
only edges are present between consecutive SNPs along the genome. By allow-
ing for more general tree structures, the HCLT model can potentially capture
long-range correlations or linkage-disequilibrium (LD) among SNPs. While the
HCLT model is more expressive than HMMs, it is unclear if such a model can be
efficiently learned from data. A second contribution of our work is an affirmative
answer to this question by representing HCLTs as Probabilistic Circuits (PCs),
a large class of probabilistic models encoded using circuit representations. PCs
have been shown to permit tractable inference tasks (e.g., marginal likelihood
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computation) which are beyond the reach of most deep generative models. The
representation of HCLTs as PCs enables us to leverage recent advances in deep
learning such as stochastic learning algorithms and the use of GPUs to enable
efficient parameter estimation and inference. HCLT can scale to around 10,000
SNPs and 5,000 genotypes and learning converges in less than 2 h, and single
SNP imputation for all sites on such model takes around 5 s. We also leverage the
framework of PCs to explore more restrictive models including Markov models.

Finally, we perform extensive experiments to show that HCLTs generate more
accurate AGs relative to more restrictive models (fully factorized models and
Markov models) suggesting that the structure encoded by the HCLT captures
dependencies in genetic variation data. More interestingly, we find that HCLTs as
well as deep generative models (GANs and RBMs) preserve LD structure among
SNPs. When trained on a subset of individuals from the 1000 Genomes Project
(1KGP) across 805 SNPs that are distributed across the genome (and chosen to
capture global population structure) as well as a second dataset of 10K SNPs
from a contiguous region on chromosome 15, HCLTs greatly improved over exist-
ing methods. Compared to HMMs, averaged log-likelihoods of HCLTs improved
from –438 to –389 on the 805 SNPs setting and from –633 to –357 on 10K SNPs
setting, while results are evaluated on a distinct set of individuals not used in
training. We also evaluate the AGs generated by different models by comparing
the PCA plots, allele frequencies, and linkage disequilibrium (LD) patterns and
observe that the AGs generated by the HCLTs are substantially closer to the
patterns observed in real data. In comparison to the next-best method, GANs,
the Wasserstein 2D distances between the PCA representations of real versus
generated individuals are 0.0015 with a 62.5% improvement and 0.0029 with a
55.4% improvement on 805 and 10K data respectively. The R-squared correla-
tions between real and generated LDs are 0.99 and 0.95, while RBMs achieve
0.98 and 0.95 respectively. Our results suggest that the increased expressivity of
HCLTs leads to more accurate models of genetic variation. Furthermore, recent
advances in learning and inference enabled by PCs allows us to fully exploit this
increased capacity.
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Proper control of the replication timing (RT) program is of vital importance to
maintain genome integrity. However, the genome-wide sequence determinants
regulating RT remain mostly unclear. A major algorithmic challenge is to delin-
eate a series of potential sequence determinants in shaping the RT programs
over large-scale genomic domains.

Here, we develop a new computational method, named Concert, to simul-
taneously predict RT from sequence features and identify genomic sequence ele-
ments that modulate RT in a genome-wide manner. As shown in Fig. 1, Con-
cert integrates two functionally cooperative modules, a selector, which performs
importance estimation-based sampling of the genomic sequences to detect pre-
dictive elements, and a predictor, which incorporates the bi-directional recurrent
neural networks and the self-attention mechanism to perform selective learning
of long-range spatial dependencies across genomic loci. We apply Concert to
predict RT in mouse embryonic stem cells (mESCs) and multiple human cell
types with high accuracy. In particular, each of the five early replication con-
trol elements (ERCEs) in mESCs that were experimentally validated through
CRISPR-mediated deletions in a recent study by Sima et al. Cell (2019) can be
reliably identified by our method. Furthermore, by applying to multiple human
cell types, Concert reveals conserved and cell type-specific sequence elements
that may play key roles in RT regulation and maintaining nuclear organization.
The identified important genomic loci show novel connections with different
types of genomic and epigenomic features. Notably, Concert also identifies
sequence elements that may harbor under-explored roles for RT regulation. The
results suggest that the dependencies between RT and DNA sequences are likely
to only exist for a limited number of genomic loci, with variations across differ-
ent cell types. Our new method shows the potential for prioritizing experimental
characterizations of possible sequence determinants of RT.

Together, Concert is a generic interpretable machine learning framework
for predicting large-scale functional genomic profiles based on sequence features
and provides new insights into the potential sequence determinants of the RT
program.

Link to the bioRxiv preprint: https://www.biorxiv.org/content/10.1101/
2022.04.21.488684v1.
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Fig. 1. Overview of the Concert model. There are two connected primary functional
cooperative modules, the selector and the predictor, which are trained jointly within
one framework in modeling long-range spatial dependencies across genomic loci, detect-
ing predictive genomic loci, and learning context-aware feature presentations of the
genomic sequences. The input to both the selector and the predictor contains DNA
sequence features of the genomic loci within each context window, including K -mer
frequency-based features with dimension reduction and GC profile-based features. The
output includes both predicted genomic signals and locus-wise estimated importance
scores. The estimated scores can be further processed by filtering and local peak detec-
tion to delineate predictive sequence elements that are important for the genomic
signal prediction. The selector uses the Gumbel-Softmax trick to perform importance
estimation-based genomic loci sampling based on the sequence features. The normal-
ized importance scores of the genomic loci estimated by the selector are shared with
the predictor. The predictor is mainly constructed with the convolution layers, the
BiLSTM (bi-directional long-short term memory neural networks) layer, and the self-
attention layer. The predictor integrates the sequence features and the estimated locus-
wise importance scores as input to perform spatial dependency learning and RT profile
prediction across the genomic loci.
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Background. Coronaviruses are comprised of a single-stranded RNA genome
that is ready to be translated by the host ribosome. As their genomes are com-
prised of many genes, coronaviruses rely on transcription regulatory sequences
(TRSs) that occur upstream of genes and play a critical role in gene expression
via the process of discontinuous transcription [3]. In addition to being crucial
for our understanding of the regulation and expression of coronavirus genes, we
propose that TRSs can be leveraged to identify gene locations in the coronavirus
genome. However, current motif finding tools (e.g., MEME [1]) are not designed
for finding TRSs, and general-purpose gene-finding tools (e.g., Prodigal [2]) are
not designed to leverage the genomic structure of coronaviruses, specifically the
TRS sites located upstream of the genes in the genome, nor are they able to
directly identify these regulatory sequences.

Methods. Firstly, we introduce the TRS Identification (TRS-ID) problem
of identifying TRS given prescribed gene locations. Genomes of coronaviruses
can be split at the start of the first open reading frame (ORF) into two subse-
quences: the leader region and the body region, containing TRS-L and TRS-Bs
respectively. To find TRSs in these regions, we align all candidate regions pre-
ceding each gene and the leader region, and find the best TRS alignment. The
TRS alignment is a special multiple sequence alignment that contains no gaps
in the aligned TRS-L and no internal gaps in other aligned TRS-Bs for genes,
as template switching occurs due to complementary base pairing between them.
The total matching score between each TRS-B a1, . . . ,an and the TRS-L a0 is
the score s(A) of the TRS alignment A = [a0, . . . ,an]�, and the largest contigu-
ous subsequence c(A) of the leader sequence in the TRS alignment is referred to
as the core sequence. We introduce CORSID-A, a polynomial time algorithm.

Problem 1 (TRS Identification(TRS-ID)). Given sequences w0, . . . ,wn,
core-sequence length ω > 0 and score threshold τ > 0, find a TRS alignment

C. Zhang and P. Sashittal—Joint first authorship.
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A = [a0, . . . ,an]� such that (i) ai corresponds to a subsequence in wi for all
i ∈ {0, . . . , n}, (ii) the core sequence c(A) has length at least ω, (iii) the minimum
score smin(A) is at least τ , and (iv) the alignment has maximum score s(A).

We also formulate the TRS and Gene Identification (TRS-Gene-ID)
problem of simultaneously identifying TRS sites and gene locations in unanno-
tated coronavirus genomes. Without prescribed genes, ORFs split the genome
into many intervals. By associating putative TRS-Bs in each interval with the
immediate downstream ORF, we define the induced gene set of a TRS alignment.
Using the fact that genomes of coronaviruses are highly compact, we require the
induced gene set to be non-overlapping and cover most of the genome. This cor-
responds to finding a maximum weight independent set on the interval graph of
all ORFs, which we do in polynomial time using CORSID.

Results. We show that CORSID-A outperforms existing motif-based meth-
ods in identifying TRS sites in coronaviruses (Fig. 1b). CORSID outperforms
state-of-the-art gene finding methods in finding genes in coronavirus genomes,
achieving a higher precision and recall (Fig. 1b). CORSID is the first method
to perform accurate and simultaneous identification of TRS sites and genes in
coronavirus genomes without the use of any prior information.

Preprint: https://doi.org/10.1101/2021.11.10.468129

Fig. 1. (a) An example of the TRS alignment and bothCORSID-A (left) andCORSID
(right) use it to identify TRS and additionally genes. (b) Top left: CORSID-A finds
TRS-L more accurately than other motif finding methods. Top right and lower left:
CORSID achieves higher precision and recall than other gene identifiers.

https://doi.org/10.1101/2021.11.10.468129
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Summary. Knowledge of how proteins interact with DNA is essential for under-
standing gene regulation. While DNA-binding specificities for thousands of tran-
scription factors (TFs) have been determined, the specific amino acid-base inter-
actions comprising their structural interfaces are largely unknown. This lack of
resolution hampers attempts to leverage these data in order to predict speci-
ficities for uncharacterized TFs or TFs mutated in disease. Here we introduce
rCLAMPS (Recognition Code Learning via Automated Mapping of Protein-
DNA Structural interfaces), a probabilistic approach that uses DNA-binding
specificities for TFs from the same structural family to simultaneously infer
both which nucleotide positions are contacted by particular amino acids within
the TF as well as a recognition code that relates each base-contacting amino acid
to nucleotide preferences at the DNA positions it contacts. We apply rCLAMPS
to homeodomains, the second largest family of TFs in metazoans.

Methods. rCLAMPS takes as input a corpus of DNA-binding specificities (rep-
resented as position weight matrices, or PWMs) for a set of proteins from the
same DNA-binding family, along with co-complex structural data for that fam-
ily. Prior to running the procedure, analogous positions across the proteins are
known; however, the positions within the PWM that are contacted by these
amino acids are not known. rCLAMPS uses a Gibbs sampling approach to simul-
taneously infer which positions within each PWM are contacted by these amino
acids and a set of pairwise amino acid-to-base contact energy parameters that
combine linearly to form a protein-DNA recognition code for the protein family,
as detailed in Fig. 1.

Results. We apply rCLAMPS to a diverse set of 763 naturally occurring and
synthetic homeodomain proteins along with their DNA-binding specificities.
First, we show that the linear recognition code it learns can predict de novo
DNA-binding specificities for TFs with accuracy comparable to that of state-
of-the-art combinatorial predictors based on random forests, inferring over 91%
of PWM columns correctly on held out TFs. Next, we show that the inferred
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Fig. 1. Overview of rCLAMPS. (Top, middle) Our approach first analyzes
protein-DNA co-complex structural data for a TF family to determine commonly
observed pairwise contacts between positions in the protein (orange circles) and posi-
tions within DNA (blue circles) that together comprise a structural interface or “canon-
ical” contact map. Here we show such a contact map for the homeodomain TF family,
with protein positions corresponding to match states in Pfam homeodomain model
PF00046. (Left) Given a set of TFs and their corresponding DNA-binding specificities
as PWMs, the positions (and amino acids) within each TF that interact with DNA are
known (orange circles and amino acids above), but initially the positions within the
PWMs that are contacted by these amino acids are not known (dotted blue circles).
(Middle, bottom) We use a Gibbs sampling approach to map the PWM positions to
DNA positions within the contact map wherein base preferences at each nucleotide posi-
tion are described in terms of additive amino acid-to-base contacts energies. (Right)
After Gibbs sampling is complete, we have a mapping of each TF-PWM pair to the
TF family contact map, along with a linear recognition code for the TF family that
consists of pairwise energy estimates for each amino-to-base pairing in each of the (i, j)
amino acid-to-nucleotide position pairs in the contact map. (Color figure online)

amino acid-nucleotide contacts allow for accurate transfer of specificity informa-
tion from wildtype to mutant TFs at single base position resolution, enabling
improved inferences of DNA-binding specificities for mutant TFs beyond that
of de novo prediction. Finally, we show the set of contacts learned implies a
multiple PWM alignment that is in better agreement with ground truth than
that produced by a state-of-the-art multiple PWM alignment method that does
not consider protein sequence information.

Conclusion. We describe a novel probabilistic framework rCLAMPS that
enables fully automated analyses of large compendia of TF DNA-binding speci-
ficities to jointly discover mappings of underlying sets of amino acid-to-base
contacts and structure-aware TF family-wide recognition codes. Our approach
is an important step towards automatically uncovering the determinants of
protein-DNA specificity from large compendia of DNA-binding specificities, and
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inferring the altered functionalities of TFs mutated in disease. Software imple-
menting rCLAMPS is freely available at https://github.com/jlwetzel-slab/
rCLAMPS. A complete manuscript describing this work can be accessed at:
https://www.biorxiv.org/content/10.1101/2022.01.31.477772v1.

https://github.com/jlwetzel-slab/rCLAMPS
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Extended Abstract

Computing the distance between two genomes, often without using alignments or
even access to assembled sequences, is fundamental to many downstream analy-
ses. For example, biodiversity research increasingly relies on low-coverage whole-
genome sequencing to identify samples and their evolutionary relationships using
assembly-free and alignment-free methods that estimate genomic distances from
these genome skims [1]. However, the use of these alignment-free methods, includ-
ing in the fast-growing field of genome skimming [2,5], is hampered by a major
methodological gap. While accurate methods (many k-mer-based) for assembly-
free distance calculation exist, robust methods for measuring the uncertainty
of estimated distances and downstream analyses such as phylogenetic inference
have not been sufficiently developed.

Our results show that bootstrapping (i.e., resampling – sampling with
replacement), which is the standard non-parametric method of measuring phylo-
genetic uncertainty, is not a suitable solution for k-mer-based distance estimators
because resampling data can violate the fundamental assumptions of these meth-
ods. Building on a rich but underutilized literature in statistics [3], we propose
using subsampling (i.e., with no replacement) for estimating distance uncer-
tainty. Subsampling, unlike bootstrapping, artificially increases the variance of
the estimator distribution, necessitating an extra correction.
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Our proposed correction procedure computes a distribution of distances for
each pair of genomes or genome skims. More formally, input is a set of N genome
skims Si, each with n reads (can be extended to allow n to change). We choose
a constant α < 1 (default α = 9/10) to set b = nα noting b → ∞ and b/n → 0 as
n → ∞. We perform m (user-provided) rounds of subsampling. In each round r,
we subsample b reads uniformly at random for each skim i and compute distances
between these subsampled skims, giving us an estimate dr

ij for each pair i, j of
skims. These distances need to be next corrected and used for estimating a tree
per replicate. For getting the final tree, we can use either the main estimates with
no sub-sampling, d̂ij , or the related quantity dij , defined as the average distance
(mean estimate) across all m sub-sample replicates. Let dij be the true distance.
Under certain assumptions,

√
nα

/n(dr
ij − d̂ij),

√
nα

/n(dr
ij − dij), (d̂ij − dij), and

(dij − dij) all asymptotically converge to the same distribution. Accordingly,
we consider two expressions for correcting distance. First, when the final tree
is inferred from main estimates, we center all the subsampled distances around
zero, apply the correction, and then center them back around the main estimate:

yr
ij =

√
nα

n
(dr

ij − dij) + d̂ij (1)

The alternative is to use the extended majority rule (i.e., greedy) consensus of
the m replicate trees as the final tree. Since this final tree does not refer to the
main distances, we have no reason to use d̂ij in the correction and instead use:

xr
ij =

√
nα

n
(dr

ij − dij) + dij (2)

This procedure can be easily extended to assemblies by subsampling k-mers.
In simulations and on real data, we show that our subsampling procedure

paired with k-mer-based distance estimation method Skmer [4] produces reli-
able support values from both genome and genome skims. We evaluate the
method under conditions with model misspecification and show that while sup-
port is not always fully calibrated, it is predictive and distinguishes correct and
incorrect branches. The software is available publicly at https://github.com/
shahab-sarmashghi/Skmer. Raw data and summary of results are deposited in
https://github.com/noraracht/subsample support scripts. Complete version of
the manuscript is available at http://dx.doi.org/10.2139/ssrn.3986497.
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Abstract. Reconstruction of transmission networks from viral genomes
sampled from infected individuals is a major computational problem of
genomic epidemiology. For this problem, we propose a maximum like-
lihood framework SOPHIE (SOcial and PHilogenetic Investigation of
Epidemics) based on the integration of phylogenetic and random graph
models. SOPHIE is scalable, accounts for intra-host diversity and accu-
rately infers transmissions without case-specific epidemiological data.
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1 Introduction

Advances of sequencing technologies have a profound effect on epidemiology and
virology. In particular, genomic epidemiology is becoming a major methodology
for investigation of outbreaks and surveillance of transmission dynamics [1].

The hallmark of viruses as species is an extremely high genomic diversity
originating from their error-prone replication. First generation of genomic epi-
demiology methods largely ignored intra-host viral diversity, but later studies
demonstrated that taking it into account greatly enhances the predictive power of
transmission inference algorithms [2,3]. Despite the significant progress achieved
with the appearance of the next generation of transmission inference method, a
number of computational, modelling and algorithmic challenges still need to be
addressed. This includes development of scalable methodology based on maxi-
mum likelihood or Bayesian rather than maximum parsimony approach; prob-
lems with utilization of case-specific epidemiological information; accounting for
non-independence of transmission events.
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2 Methods

We propose to address aforementioned challenges by integrating two compo-
nents: the evolutionary relationships between viral genomes represented by their
phylogenies and the expected structural properties of inter-host social networks.
Frequently cited properties of social contact networks include power law degree
distribution, small diameter, modularity and presence of hubs. All of them are
reflected by network vertex degrees. Thus, we model social networks as random
graphs with given expected degree distributions (EDDs). The goal is to find
transmission networks that are consistent with observed genomic data and have
the highest probability to be subnetworks of random contact networks.

This methodology is implemented within a maximum likelihood framework
SOPHIE (SOcial and PHilogenetic Investigation of Epidemics). SOPHIE sam-
ples from the joint distribution of phylogeny ancestral traits defining transmis-
sion networks, estimates the probabilities that sampled networks are subgraphs
of a random contact network and summarize them accordingly into the con-
sensus network. This approach is scalable, accounts for intra-host diversity and
accurately infers transmissions without case-specific epidemiological data.

3 Results

We applied SOPHIE to synthetic data simulated under different epidemiological
and evolutionary scenarios, as well as to experimental data from epidemiologi-
cally curated HCV outbreaks. The experiments confirm the effectiveness of the
new methodology. We demonstrated that the proposed approach is capable of
achieving a substantial accuracy improvement over state-of-the-art parsymony-
based phylogenetic methods, while retaining their scalability and speed.

4 Disclaimer

The conclusions in this report do not necessarily reflect the official position of
the Centers for Disease Control and Prevention. Experimental data were used
as approved by the Institutional Review Board of the CDC (protocol 7270.0).
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Abstract. A major limitation in single-cell genomics is a lack of ability
to conduct cost-effective population-level studies. As a result, much of
the current research in single-cell genomics focuses on biological pro-
cesses that are broadly conserved across individuals, such as cellular
organization and tissue development. This limitation prevents us from
studying the etiology of experimental or clinical conditions that may
be inconsistent across individuals owing to molecular variation and a
wide range of effects in the population. In order to address this gap,
we developed “kernel of integrated single cells” (Keris), a novel model-
based framework to inform the analysis of single-cell gene expression
data with population-level effects of a condition of interest. By inferring
cell-type-specific moments and their variation across conditions using
large tissue-level bulk data representing a population, Keris allows us to
generate testable hypotheses at the single-cell level that would otherwise
require collecting single-cell data from a large number of donors. Within
the Keris framework, we show how the combination of low-resolution,
large bulk data with small but high-resolution single-cell data enables
the identification of changes in cell-subtype compositions and the char-
acterization of subpopulations of cells that are affected by a condition
of interest. Using Keris we estimate linear and non-linear age-associated
changes in cell-type expression in large bulk peripheral blood mononu-
clear cells (PBMC) data. Combining with three independent single-cell
PBMC datasets, we demonstrate that Keris can identify changes in cell-
subtype composition with age and capture cell-type-specific subpopu-
lations of senescent cells. This demonstrates the promise of enhancing
single-cell data with population-level information to study compositional
changes and to profile condition-affected subpopulations of cells, and pro-
vides a potential resource of targets for future clinical interventions.

A preprint of the full paper is available at https://www.biorxiv.org/content/
10.1101/2022.01.27.478115v1.
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Motivation: Spatially resolved transcriptomics (SRT) technologies simultane-
ously measure gene expression and spatial location of cells in a 2D tissue slice,
enabling the study of spatial patterns of gene expression. Current approaches to
model spatial variation in gene expression assume either that gene expression
is determined by discrete cell types or that gene expression varies continuously
across a tissue slice. However, neither of these modeling assumptions adequately
represent spatial variation in gene expression: the first assumption ignores con-
tinuous variation within a spatial region containing cells of the same type, while
the second assumption does not allow for discontinuous changes in expression,
e.g., due to a sharp change in cell type composition.

Results: We propose a model of spatial patterns in gene expression that incor-
porates both discontinuous and continuous spatial variation in gene expression.
Specifically, we model the expression of a gene in a layered tissue slice as a
piecewise linear function of a single spatial coordinate with potential disconti-
nuities at tissue layer boundaries. We formulate the problem of inferring tissue
layer boundaries and gene expression functions for all genes simultaneously. We
derive a dynamic programming algorithm to find the optimal boundaries of layers
when these boundaries are lines parallel to a coordinate axis. We generalize this
algorithm to arbitrarily curved tissue layers by transforming the tissue geometry
to be axis-aligned using the theory of conformal maps from complex analysis.
We implement these algorithms in a method called Belayer. Applying Belayer to
simulated data and to spatial transcriptomics data from the human dorsolateral
prefrontal cortex, we demonstrate that Belayer achieves both higher accuracy
in clustering tissue layers compared to state-of-the-art SRT clustering meth-
ods, and higher accuracy in identifying cortical layer marker genes compared to
commonly-used methods for identification of spatially varying genes.

Cong Ma and Uthsav Chitra contributed equally and author order was decided by a
coin toss.
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Availability: Software is available at www.github.com/raphael-group/belayer.

Preprint: A preprint of the full manuscript is available at https://doi.org/
10.1101/2022.02.05.479261.
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Motivation: High-throughput sequencing data is rapidly accumulating in pub-
lic repositories. Making this resource accessible for interactive analysis at scale
requires efficient approaches for its storage and indexing. There have recently
been remarkable advances in solving the experiment discovery problem and
building compressed representations of annotated de Bruijn graphs where k-
mer sets can be efficiently indexed and interactively queried [1–6]. However,
approaches for representing and retrieving other quantitative attributes such as
gene expression or genome positions in a general manner have yet to be devel-
oped.

Methods: In this work, we propose the concept of Counting de Bruijn graphs
generalizing the notion of annotated (or colored) de Bruijn graphs. Counting de
Bruijn graphs supplement each node-label relation with one or many attributes
(e.g., a k-mer abundance or its positions in a genome). To represent them, we
first observe that many schemes for the representation of compressed binary
matrices already support the rank operation on the columns or rows, which can
be used to define an inherent indexing of any additional quantitative attributes.
Based on this property, we generalize these schemes and introduce a new app-
roach for representing non-binary sparse matrices in compressed data struc-
tures (Fig. 1). Finally, we notice that relation attributes are often easily pre-
dictable from a node’s local neighborhood in the graph. Notable examples are
genome positions shifting by 1 for neighboring nodes in the graph, or expression
counts that are often similar in neighboring nodes. We exploit this regularity
of graph annotations and apply an invertible delta-like coding to achieve better
compression.

Results: We show that Counting de Bruijn graphs can index the abundance of
each k-mer in 2,652 human RNA-Seq read sets in a representation that is over
8× smaller and yet faster to query compared to state-of-the-art bioinformatics
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Fig. 1. The proposed representation of sparse matrices in compressed form. Panel A:
General scheme for sparse matrices with abstract attributes, where the non-assigned
attributes are eliminated by an indicator binary matrix stored in a compressed represen-
tation (e.g., Multi-BRWT) supporting the rank operation on its columns to enable the
access to the corresponding attribute for any given cell of the matrix. These attributes
are stored separately, typically in a form of compressed arrays. Panel B: The scheme
applied to a single column with integer values (e.g., k-mer counts) and the query algo-
rithm (e.g., the count of k-mer i is retrieved as A1[rank(B1, i)]). Empty cells in grey
represent zeros. Panel C: The scheme applied to a single column where each cell is a
set of numbers, or a tuple (e.g., representing k-mer coordinates). The “zero” attributes
(empty sets) are eliminated with an indicator bitmap and the non-empty sets are
encoded in an array that holds all numbers and a delimiting bitmap.

tools. It also takes less time and memory to construct. Furthermore, Counting
de Bruijn graphs with positional annotations losslessly represent entire reads
in indexes on average 27% smaller than the input compressed with gzip -9 for
human Illumina RNA-Seq and 57% smaller for PacBio HiFi sequencing of viral
samples. A complete joint searchable index of all viral PacBio SMRT reads from
NCBI’s SRA (152,884 read sets, 875 Gbp) takes only 178 GB. Finally, on the full
RefSeq collection, we generate a lossless and fully queryable index that is 4.4×
smaller compared to the respective MegaBLAST index. The techniques proposed
in this work naturally complement existing methods and tools employing de
Bruijn graphs and significantly broaden their applicability: from indexing k-mer
counts and genome positions to implementing novel sequence alignment algo-
rithms on top of highly compressed and fully searchable graph-based sequence
indexes.



376 M. Karasikov et al.

Implementation: The methods presented in this work are implemented within
the MetaGraph framework [4]. The resources and scripts are available at https://
github.com/ratschlab/counting dbg.

Full Version: See full version of this article available as a preprint from https://
www.biorxiv.org/content/10.1101/2021.11.09.467907.
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Summary: Recent assemblies by the T2T and VGP consortia have achieved
significant accuracy but required a tremendous amount of effort and resources.
More typical assembly efforts, on the other hand, still suffer both from mis-
assemblies (joining sequences that should not be adjacent) and from under-
assemblies (not joining sequences that should be adjacent). To better under-
stand the common algorithm-driven causes of these limitations, we investigated
the unitig algorithm, which is a core algorithm at the heart of most assem-
blers. The unitig algorithms returns, roughly speaking, all non-branching paths
in the assembly graph. It is already known that the unitig algorithm contributes
to under-assembly [1,2] and can trivially create mis-assemblies when there are
sequencing errors. However, it is widely assumed that if it were not for sequenc-
ing errors, unitigs would always be safe (i.e. substrings of the sequenced genome).
In this work, we prove that, contrary to popular belief, even when there are no
sequencing errors, unitigs are not always safe.

The unitig algorithm also needs to account for the fact that the strand from
which a read is sequenced is unknown. Most assemblers do so via two common
approaches to constructing the de Bruijn graph (dBG). In one, every k-mer is
“doubled” prior to constructing the dBG, i.e. for every k-mer in the input, both
it and its reverse complement is added to the dBG. In the other approach, edges
are given two instead of one orientation, thereby capturing the way that double-
stranded strings can overlap. This results in a bidirected dBG. In this work, we
prove that when the bidirected graph is used to model double-strandedness, the
unitig algorithm under-assembles by failing to merge the two halves of palin-
dromes. To the best of our knowledge, this paper is the first to theoretically
predict the existence of these assembler artifacts and confirm and measure the
extent of their occurrence in practice.

A full version of this paper is available as a preprint https://doi.org/10.1101/2022.01.
20.477068.
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Unitigs are not Safe: One of our two main theorems (Theorem 1 in the
full paper [3]) gives necessary and sufficient conditions for a unitig to be safe
in the directed dBG constructed from error-free reads. The technical nature of
the theorem requires that we only give an informal presentation of it here. To
formalize the concept of mis-assembly, consider a set of reads and the set of their
constituent k-mers K. A sequenced segment is defined as a maximal substring of
the genome whose constituent k-mers all belong to K. A set of reads therefore
induces a set S of sequenced segments. Figure 1 illustrates the concept. Given
S, we say that a unitig w in the dBG constructed from S is unsafe iff it is not
a subwalk of a walk that corresponds to a string in S. This definition of an
unsafe unitig captures the notion of a potential mis-assembly, as the unitig is
not present in the sequenced part of the genome.

Our Theorem 1 shows that w is unsafe iff for all S ∈ S, one of four cases
hold. We use Fig. 2 to illustrate this, focusing on the unitig w = ACT → CTT →
TTG. Consider a walk g corresponding to a sequenced segment. Clearly, if g does
not contain any k-mer from w (e.g. the green segment), then g cannot make w
safe (i.e. g does not contain w as a subwalk). If g starts in the middle of w and
does not visit its own starting vertex again (e.g. the red segment), then g cannot
make w safe. Similarly, if g ends in the middle of w and did not visit its own
ending vertex previously (i.e. the blue segment), then g cannot make w safe. If
g starts and ends in the middle of w, with the ending vertex to the right of the
starting vertex, and contains each of those vertices exactly twice (e.g. the orange
segment), then g cannot make w safe. Figure 2 shows the situation when all the
sequenced segments fall into these four cases, making w is unsafe in spite of it
being a unitig. Our Theorem 1 proves the other direction as well, i.e. that under
all other conditions, g makes w safe.

ACGTACTTAAACGGGGAATACCGCCTA

|||||CTAAA||||||||TACCG||||

|||||||||||||||||||||||||||
ACGTA||||||||GGGAA||||GCCTA
|||TACTT||||||GGAAT||||||||

Fig. 1. Illustration of sequenced segments.
The black text shows the reference genome
and the sever red sequences are reads
aligned to the reference. The green boxes
highlight the resulting sequenced segments
when k = 3. (Color figure online)

Fig. 2. Illustration of the three cases of
our Theorem 1. S has three segments,
each of which is marked by a dashed
line starting at a dot and ending at a
diamond.

Bidirected Graphs Result in Under-Assembly: The second of our two
main theorems states that naively using the bidirected graph actually contributes
to under-assembly, compared to the doubled graph. We prove there is a bijection
between maximal unitigs in the doubled dBG and in the bidirected dBG, except
that palindromic unitigs in the doubled dBG are split in half in the bidirected
dBG. To do so, we have given proper definitions for things like walks and unitigs
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in the context of bidirected graphs. Previous papers used these concepts some-
what informally; when definitions were given, they worked in the context of that
paper but failed to have more general desired properties.

Experimental Results: Using experimental simulations, we confirmed the
presence of these theoretically-predicted artifacts in real genomes and popular
assemblers. We simulated error-free reads from the T2T human reference chro-
mosome 1 and confirmed that the unitigs that were unsafe were exactly the
unitigs that satisfied the conditions of Theorem 1. We also demonstrated that
real assemblers like SPAdes and MEGAHIT output unsafe contigs that closely
match the unsafe unitigs that our theory predicts. We constructed both doubled
and bidirected de Bruijn graphs for varying k-mer size from human chromosome
21 to verify the validity of our second theorem. Since long palindromes are rare
in real genomes, we artificially introduced many palindromic regions in the ref-
erence genome (human chromosome 4), and observed the palindrome splitting
artifact in the assembled contigs generated by SPAdes and MEGAHIT.
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Cancer is an evolutionary process in which cells accumulate mutations and form
different subclones with potentially varying phenotypes. The diversity of cell
states that make up a tumor is caused by genomic and epigenomic changes,
as well as interactions with its microenvironment. The resulting intra-tumor
heterogeneity is a major cause of treatment failure and relapse. In particular,
the manner in which different genomic changes, as opposed to other factors,
contribute to cell-specific states is highly relevant in treatment decision making,
but remains an open question.

In the absence of reliable and scalable experimental platforms to obtain joint
RNA and copy number aberration (CNA) profiles from the same single cells,
computational approaches can be used to match cells derived from the same
sample but sequenced on separate platforms. Because single-cell CNA profiles
can be grouped into subclones, the most natural approach is to assign single-cell
transcriptomes to CNA subclones by assuming that gene expression is propor-
tional to copy number. However, this naive approach ignores the underlying
evolutionary history of the cancer cells. The phylogenetic relationships among
tumor clones can be inferred by a number of computational methods, includ-
ing for single-cell CNAs. Furthermore, cells within the same CNA subclone may
have different expression profiles and form different groups of cell states as a
result of other somatic mutations, epigenetic events, or environmental interac-
tions. While totally unsupervised clustering and trajectory inference methods for
single-cell RNA-sequencing (scRNA-seq) data may find spurious structure that
does not respect the underlying subclonal structure, fully supervised methods
are over-restrictive in forcing the clustering structure to be driven only by CNA
subclones.

Here, we present SCATrEx (Single-Cell Augmentation of CNA Trees with
gene Expression), a Bayesian model designed to find a hierarchical clustering
structure in scRNA-seq data on top of a CNA tree. SCATrEx uses a novel
nested tree structure based on the tree-structured stick breaking process to aug-
ment a given CNA tree with nodes corresponding to non-CNA events, such
as undetected mutations or epigenetic changes with consequences at the gene
expression level. Specifically, we model each node in the known CNA tree as
a tree-structured stick breaking process containing unobserved nodes with dif-
ferent gene expression states. This enables a joint analysis of CNAs and gene
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expression at single-cell level. In this model, the gene expression of a cell is pro-
portional to the copy number profile of the subclone it belongs to and influenced
by node-specific cell state factors that are propagated through the augmented
tree. Additional structured noise factors contribute to gene expression variability
that does not follow the tree structure. SCATrEx is a generative model of the
raw read counts, and so avoids issues related to normalization and pre-processing
that may result in removal of the signal of interest.

We employ a search-and-score approach to learn the augmented tree structure
and its parameters by maximizing the marginal data log-likelihood. At each step,
we propose either local changes to the tree structure or parameter updates, and
we approximate the new marginal log-likelihood by computing a variational lower
bound. To alleviate the computational cost of performing this approximation,
we use a fully factorized variational distribution. Our model is fully continuous,
enabling the use of automatic differentiation to optimize the variational lower
bound. Our implementation can run on GPUs to further decrease runtime.

We compared SCATrEx with fully unsupervised approaches to reconstruct
the clusters of cells in the data as simulated by an augmented CNA tree, as
well as with cell-to-clone assignment methods. Our simulations demonstrate that
SCATrEx’s joint approach is accurate in both clustering and cell-to-clone assign-
ment, and robust to various levels of noise in the data. In a real data example of
a mouse xenograft of triple-negative breast cancer, we obtained an augmented
tree and inferred gene expression states for the observed clones as well as for
clone-specific populations of cells. Even though these populations had the same
copy number states, they contained different expression levels for genes that are
associated with immune escape in cancer.

This paper is available at https://doi.org/10.1101/2021.11.04.467244. The
SCATrEx Python package is open-source and available at https://github.com/
cbg-ethz/SCATrEx.
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Introduction. The human immunoglobulin heavy chain (IGH ) locus on chro-
mosome 14 includes more than 40 functional copies of the variable gene (IGHV ).
These combine with the joining genes, diversity genes, constant genes and
immunoglobulin light chains to code for antibodies (Ab) and B cell receptors,
forming a critical part of the adaptive immune system due to their role in
identifying and neutralizing pathogenic invaders. Despite known associations
with clinical phenotypes, such as infectious disease and vaccine response [1,2],
autoimmune/inflammatory conditions [3,4], and cancer [5], our understanding
of population-level genetic diversity in the IGH locus and its contribution to
Ab function in disease remains limited [6,7], due primarily to the complexity of
the locus. IGH is known to contain many large structural variants, including
segmental duplications, large insertions and deletions, and other copy number
variants (CNVs) [8–10]. Of primary interest are the IGHV genes due to their
important role in defining epitope structure. The genes are short (mean of 291
bp) and have highly similar sequence, within and across different genes. To date,
there has been only one published computational pipeline for germline IGHV
genotyping using short read WGS data [11,12], which remain the most ubiqui-
tous and available genome sequencing data type.
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We present ImmunoTyper-SR, a novel computational approach for genotype
and CNV analysis of functional germline IGHV genes using short read WGS
data, using a database of known IGHV sequences as a reference. ImmunoTyper-
SR is based on a novel combinatorial optimization formulation that aims to
minimize the total edit distance between the reads and their assigned alleles
while maintaining additional constraints on the number and distribution of reads
across each allele identified. ImmunoTyper-SR is able to produce accurate IGHV
allele and CNV calls using short read WGS with moderate coverage, and was
tested on 12 individuals with diverse genetic backgrounds from the 1000 Genomes
Project [13] (1kGP), using independently-generated targeted long read-based
IGH assemblies as ground truth [10]. We also used ImmunoTyper-SR to inves-
tigate associations between IGHV genotypes, type I IFN autoantibodies and
COVID-19 disease severity using WGS data from a cohort of 542 individuals
from the NIAID COVID Consortium (“NIAID cohort”).

Methods. ImmunoTyper-SR functions in three main steps; first, by recruiting
reads that are likely to overlap with IGHV sequence from the input mapped
WGS BAM file; second, by assigning potential alleles as candidates for every
recruited read by mapping to an allele sequence database; and third, by assigning
reads to their best matched allele using a novel integer linear programming (ILP)
formulation.

The ILP formulation has an objective function that minimizes the total edit
distance between all reads and their assigned allele sequence, while allowing
reads to be discarded. It also contains constraints that ensure the reads will be
assigned in a way that is consistent with expected read depth and variance, while
allowing for multiple copies to be called for any given allele.

Results. We tested ImmunoTyper-SR calls from WGS sequences for 12 1kGP
individuals against independently generated IGH assemblies. The results demon-
strate that ImmunoTyper-SR is the first short read WGS-based IGHV genotyp-
ing tool with allele-level granularity, with a mean precision and recall values of
83.7% and 80% respectively for identification of each allele sequence and its copy
number exactly - significantly higher than the only other previously published
comparable method. Many of the miscalls are due to highly similar alleles; if calls
are allowed to be at most 3 bp from the ground truth allele, the mean F-score
increases to 87.9%.

We also applied ImmunoTyper-SR to a set of genome sequences from 542
COVID patients, nine of whom had been sequenced twice. We found genotypes
from these subjects had a 92.3% mean Jaccard similarity score between paired
samples, when ignoring CNVs, which demonstrates ImmunoTyper’s accuracy in
allele calls. This dataset was also used to investigate genetic associations to anti-
interferon type I (anti-IFN) antibodies, which have been previously associated
with COVID severity. We found two alleles had associations with p-values less
than 0.05, however we are unable to draw any conclusions about anti-IFN asso-
ciations, due to the alleles being very rare (present in at most 10 individuals),
and the case/control ratio in the dataset being heavily skewed.
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As the first short read WGS-based IGHV genotyping tool with allele-level
granularity, ImmunoTyper-SR opens the door to applying the power of the
largest WGS datasets available to uncover the mysteries of one of the least
understood loci in the human genome.
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Biomedical datasets that aim to collect diverse phenotypic and genomic data
across large numbers of individuals are plagued by the large fraction of miss-
ing data. The ability to accurately impute or “fill-in” missing entries in these
datasets is critical to a number of downstream applications. A notable example
of this problem arises in the context of the UK Biobank (UKBB) which contains
thousands of phenotypes in conjunction with genetic data for ≈500,000 UK indi-
viduals. Here, the presence of phenotypic measurements across individuals vary
drastically. Some traits exist for virtually all individuals (age, sex) while others
are majority unreported (addictions, self-harm > 99%). As a result, missingness
can substantially impact our ability to study clinically-relevant phenotypes or
diseases. However, current imputation methods fall short in one or more aspects
of being reliable or scalable in the domain of massive, highly incomplete, and het-
erogeneous biobank-scale data. Imputation methods have been developed which
leverage the correlation between the values at missing features and the observed
features (i.e., the conditional distribution of observed entries given values of the
observed features) to impute the missing features. While simple in principle,
challenges to this approach arise from the presence of large numbers of fea-
tures and observations in Biobank-scale data, the heterogeneous data types that
are measured, and the complex structure to the patterns of missingness. Thus,
imputation methods that can accurately impute heterogeneous data types in the
presence of complex patterns of missingness while being scalable are needed.

We propose AutoComplete, a deep-learning based imputation method based
on an auto-encoder architecture designed for highly incomplete biobank-scale
phenotype data. The method can impute binary and continuous phenotypes
while scaling with ease to incomplete datasets with half a million individuals and
millions of entries. To handle the absence of ground truth in incomplete datasets,
we developed a realistic procedure to simulate missing values as reflected in the
real data by implementing Copy-masking which propagates missingness pat-
terns already present in the data, from which AutoComplete learns imputation.
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Our approach is applicable to any complete or incomplete dataset and leverages
all available samples and all observed features. Using conventional computa-
tional hardware, AutoComplete can scale to ≈300,000 individuals and ≈400
phenotypes from the UKBB with ease converging within ∼6h.

To provide a realistic assessment, we evaluated AutoComplete on two cohorts
of UKBB phenotypes: a set of 86 blood lab and cardiovascular phenotypes and
a larger set of 372 phenotypes from an on-going study on mental health-related
traits, where the majority of the phenotypes of interest are missing. Each dataset
contains ≈300,000 unrelated individuals of white British ancestry. Across various
settings of missingness, AutoComplete greatly improved imputation accuracy
over existing methods. In comparison to the next-best method (SoftImpute), the
average squared Pearson correlation coefficient (r2) of AutoComplete improved
by +17.5% over all phenotypes across all tested settings. For binary pheno-
types, Precision-Recall also increased +7.2% on average and Receiver Operat-
ing Characteristic also increased +7.3%. AutoComplete improved r2 by +30%
over SoftImpute across mental health-related phenotypes while improving r2

by +5% across cardiovascular phenotypes. Beyond the aggregate improvements,
AutoComplete also improved imputation accuracy on clinically important phe-
notypes: improving r2 for psychotic.medicalhelp from 0.05 to 0.22 (+440%, 530
cases and 2068 controls, 94% missing in data) and anxiety.drugalcohol from 0.13
to 0.19 (+46%, 2726 cases and 6061 controls, 89% missing in data). Our results
illustrate the value of deep-learning based imputation where accurate imputation
of highly missing phenotypes can substantially improve the power of downstream
analyses.
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Resistor optimizes four objectives to find the Pareto frontier of these resistance-
causing criteria. The first two axes of optimization are provable approximations
to the relative change in binding affinity (ΔKa) of a drug and endogenous ligand
upon a protein’s mutation. These ΔKa predictions are made by the provable
thermodynamic- and ensemble-based multistate computational protein design
algorithm K∗ [3,5] after an initial sequence filter using the multistate design
algorithm Comets [4] from the computational protein design software OSPREY.
By virtue of pruning using Comets, Resistor inherits the empirical sublin-
earlity characteristics of the Comets sequence search, rendering Resistor, to
our knowledge, the first provable structure-based resistance prediction algorithm
that is sublinear in the size of the sequence space. This is important because the
size of sequence space is exponential in the number of residue positions that
can mutate to confer resistance. On the third axis Resistor uses empirically
derived mutational signatures [1,6] to determine the probability that each single-
or double-point mutation will occur in a given context. The fourth axis of opti-
mization is over “mutational hotspots”, viz. those locations in the protein where
multiple amino substitutions are predicted to confer resistance. Some highlights
of the algorithm are presented in Fig. 1.

As validation of the algorithm, we applied Resistor to a a number of kinase
inhibitors used to treat lung adenocarcinoma and melanoma through inhibition
of EGFR or BRAF kinase activity. In so doing, we searched over a set of 1257
sequences in EGFR and 1214 sequences in BRAF with an average conformation
space size of ∼5.9 × 1010, using experimental structures when available and
docked complexes when not. This search generated a set of predicted resistance
mutations that we compared to known resistance mutations in EGFR and report
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Fig. 1. Resistor finds the Pareto frontier from OSPREY positive and nega-
tive designs, mutational probabilities, and resistance hotspots. (left) To pre-
dict resistance mutations for EGFR (an example described in the manuscript) two
structures are required as input to OSPREY to compute positive (+) and negative
(−) design K∗ scores. The structure for positive design is EGFR (green) bound to its
endogenous ligand ATP (blue), for the negative design EGFR is bound to the drug
erlotinib (pink). The goal of positive (resp. negative) design is to improve (resp. ablate)
binding affinity. A mutation is a resistance candidate when its ratio of positive to neg-
ative K∗ scores increases. (right) Resistor computes mutational probabilities using
EGFR’s coding DNA along with lung adenocarcinoma-specific trinucleotide mutational
probabilities. It also generates a hotspot score representing how many different amino
acids at a given location are resistance mutation candidates. Finally, it uses Pareto
optimization on the positive and negative K∗ scores, the mutational probabilities, and
hotspot scores to identify the Pareto frontier of resistance mutations. (Color figure
online).

herein that Resistor correctly identified eight clinically significant resistance
mutations, including the “gatekeeper” T790M mutation to erlotinib and gefitinib
and five known resistance mutations to osimertinib. This demonstrates that by
exploiting the wealth of structural and sequence data available in the form of
molecular structures and mutational signatures, Resistor is a general method
for predicting resistance mutations that can be applied to a wide variety of
cancer, antimicrobial, antiviral and antifungal drug targets.

The source code for Resistor is part of the OSPREY protein redesign
software package available at https://github.com/donaldlab/OSPREY3. The
full manuscript is available on bioRχiv at https://doi.org/10.1101/2022.01.18.
476733.
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The successful discovery of novel biological therapeutics by selection requires
highly diverse libraries of candidate sequences that contain a high proportion
of desirable candidates. Here we propose the use of computationally designed
factorizable libraries, whose sequences are made of concatenated segments from
smaller segment libraries, as a method of creating large libraries that meet an
objective function at low cost.

Designing segment libraries that result in a factorizable library that meets
an objective function is a computationally difficult task. We present a compu-
tational method we call Stochastically Annealed Product Spaces (SAPS), which
optimizes segment libraries though iterative improvements with respect to an
objective function to design a full length factorizable library. Key to our method
is the reverse kernel trick, which allows us to efficiently evaluate an objective
over the full factorizable library by casting the objective function as an inner
product of feature vectors (see Fig. 1).

We show that SAPS outperforms five different benchmark sampling
approaches on simulated datasets. We next apply SAPS to design factorizable
libraries of the third complementarity determining region of antibody heavy
chains (CDR-H3s). We show that this framework can generate factorized CDR-
H3 segment libraries that, when joined combinatorially, contain ∼ 109 unique
sequences with highly specific and flexible design parameters. We compare these
libraries to a randomized library and show that SAPS designed libraries are more
diverse and more enriched in desirable sequences.

Applications of factorizable libraries include the discovery of biologics such
as monoclonal antibody therapeutics [5], discovery of adeno-associated vectors
(AAV) for gene therapy [1,8], T-cell receptor (TCR) discovery [2,4,7], and
aptamer libraries [3,6].

Full Text Preprint: https://www.biorxiv.org/content/10.1101/2022.01.17.
476670v1.
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Fig. 1. Factorizable library evaluation and optimization. A) Optimization is achieved
through iterative stochastic updates. An update step is performed by selecting a posi-
tion in a sequence in one of the libraries and generating all possible mutations for that
position. The mutated libraries are then scored, and then a Boltzmann distribution
over the libraries is generated using the negated scores as energy values. The update is
then sampled from the distribution. A full update sweep performs this for all positions
in all sequences in both libraries. Multiple sweeps are done and the temperature of the
Boltzmann distribution is lowered over time. For simplicity, the figure depicts this opti-
mization on small DNA libraries. B) The score of the factorizable library is evaluated
by mapping all the sequences in its prefix and suffix libraries to feature spaces. The
feature vectors are then aggregated, and an inner product is taken between them, which
by the distributive property produces the total score for the whole factorizable library.
We refer to this as the reverse kernel trick, since this optimization requires expressing
a “kernel function” that maps prefix suffix pairs to real values as an inner product. A
position based entropy term is evaluated to quantify the diversity of sequences in the
library, and a weighted sum of the two is then used to guide optimization.
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