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Abstract. Serverless computing has emerged over the last couple of
years as a flexible paradigm for deploying cloud-based applications and
allowing developers to focus on their applications and reduce application
maintenance costs over the lifetime of an application. However, there
has not been an examination of whether a complex application can be
built and operated with high performance and low operating cost rely-
ing entirely on the serverless paradigm. This paper presents the design,
implementation, performance, and cost evaluation of what we believe to
be a representative kind of IoT application, a cloud-based energy data
management system named Upilio. Upilio is a versatile data collection
and analysis platform for IoT sensor data. Upilio’s functionality is imple-
mented entirely using AWS Lambda serverless functions and managed
services to store data, and even the graphical user interface does not
need a dedicated web server. Our empirical evaluation shows that the
system, including its serverless online analytics (OLAP) functionality,
is cost-effective, requiring only a fraction of the server cost necessary
for operating such a system using on-premise hardware. Thus, Upilio
demonstrates that complex IoT system scenarios can be implemented
successfully with good performance and cost characteristics leveraging
the serverless paradigm.
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1 Introduction

Over the past fifteen years, cloud computing has fundamentally changed the
computing landscape. Many applications that were traditionally run on-premises
have moved to the cloud and are now often delivered as Software-as-a-Service
(SaaS). Due to the unprecedented scale and elasticity of cloud computing
resources and the ensuing agility, many new and entirely cloud-based companies
have been created. While cloud computing has liberated those companies from
procuring, upgrading, and maintaining their hardware, they typically still need
to configure their servers and operating systems hosted by their cloud provider
of choice to be able to run their applications.
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Recently, serverless computing [16] has emerged as a new paradigm for
deploying cloud-based applications with the promise of unburdening applica-
tion developers even from configuring and scaling their cloud-based servers and
instead enabling them to concentrate entirely on their application. Additionally,
as computing time is only incurred when a function is performed, serverless com-
puting also comes closer to deliver the original promise of cloud computing of
paying only for actually used resources coupled with virtually infinite scalability.
Moreover, due to the event-driven programming model, serverless computing also
seems ideally matched to the implementation of IoT applications, which need to
perform computations whenever new sensor data is produced.

However, while this technology has enormous potential, there are also chal-
lenges. For instance, there has been concern about potentially high operational
costs due to the new billing model (e.g., [18]) and problems created due to
storage disaggregation [30]. This paper examines whether a practical IoT appli-
cation can be implemented with both good performance and cost-efficacy. We
investigate the efficacy of using AWS Lambda for building a practical applica-
tion that solves a vital real-world problem, namely energy (data) management.
More importantly for our purposes, in addition to its practical relevance, we also
believe that a cloud-based energy data processing system that collects, stores,
and enables manual and automatic analytical operations on energy-consumption
and production data is a good benchmark for evaluating the serverless paradigm
for its viability for building complex practical applications because it combines
continuous data collection from an IoT sensor system with analytical function-
ality and a graphical user interface to interact with the system.

To investigate how well the serverless paradigm can address these varied
demands, we designed and implemented Upilio.1 Upilio implements the data col-
lection and monitoring part of an energy management system (EMS) for build-
ings by combining various simple data ingest, storage, and processing functions
as AWS Lambda code to collect and store EMS data in real-time. It continu-
ously applies machine-learning algorithms to produce and update predictions of
energy consumption and production.

We evaluate the performance and cost-effectiveness of Upilio based on a work-
load that is typical for our university environment. We extract the relevant cost
components and extrapolate operating costs to both higher and lower demands
and show that Upilio operates cheaply even for large sites with many build-
ings and sensors with high data velocity. Combined with its extensibility and
easy deployment, we conclude that Upilio and similar IoT applications can be
implemented using the serverless paradigm with excellent cost and scaling char-
acteristics.

This paper makes the following contributions:

– It provides a demonstration of how a complex real-world application can be
implemented entirely using serverless technology.

1 Upilio is Latin for “shepherd”; the Upilio system takes care of the users’ sensor data
in the cloud.
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– It shows that with serverless technology combined with the infrastructure-as-
code approach, a sophisticated system can be deployed and operated without
first building a costly on-premise infrastructure and how updates to the edge
sensor configuration can be performed from the cloud.

– It shows how a versatile web-based graphical user interface that is available
24/7 can be realized without dedicated web server hardware, i.e., serverlessly.

– It presents a blueprint for building scalable and versatile serverless IoT appli-
cations.

– Finally, the paper demonstrates that the system, including serverless OLAP
functionality is cost-effective, requiring only a fraction of the server cost for
operating the system on-premise hardware.

The remainder of the paper is structured as follows: after reviewing back-
ground and related work, Sect. 3 provides an overview of the Upilio system
and its operating environment and provides details on how the analytics oper-
ations for OLAP and the graphical user frontend are implemented serverlessly.
Section 4 provides an experimental evaluation demonstrating the benefits and
cost-effectiveness of our approach and Sect. 5 provides conclusions.

2 Background and Related Work

Serverless computing has been receiving much attention recently as a potential
fulfillment of cloud computing’s original promise of liberating users from the
burden of procuring and managing hardware and software (operating) systems
and letting them instead focus entirely on their application-level code. Besides
some open-source approaches, which still require someone to host and run the
platform, many commercial offerings have emerged over the past years; for a
comparison consult for instance [24]. Castro et al. [16] offer the following defi-
nition: “Serverless computing is a platform that hides server usage from devel-
opers and runs code on-demand automatically scaled and billed only for the
time the code is running.” They distinguish this general definition from a spe-
cific embodiment, namely Function-as-a-Service (FaaS), which however is often
used interchangeably in the literature but, which narrowly defined, is a subset
of serverless computing where the unit of computation are functions, which are
executed typically in response to some event. AWS Lambda [11] is a commercial
offering of a FaaS platform on top of which we have built Upilio. Using AWS
Lambda, developers write code without considering on what hardware it will be
executed.

Applications are broken into separate functions, which can be implemented
in a variety of programming languages, e.g., Javascript, Java, Go, or Python; for
Upilio, we have used the Python language. Users are billed in 100 ms-increments
for actual compute resource usage and a Lambda function can execute for at
most 900 s. The maximum memory available to the function has to be specified
when a Lambda function is deployed; the selected memory determines the billing
rate. The more memory is configured, the higher the CPU performance that the
function is executed on; an independent selection of the two is impossible.
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These Lambda functions are executed in lightweight containers [1] provid-
ing portability and security, as well as virtually unlimited scalability since the
functions can be executed on as many machines as are available, and the user is
willing to pay for. Other commercial cloud providers besides Amazon offer sim-
ilar FaaS offerings, e.g., Google Cloud Functions [19] or Microsoft Azure Func-
tions [14]. A primary advantage of the FaaS model is its simple event-driven
programming model.

One recent development in IoT data processing is applying the FaaS model to
the IoT domain to take advantage of the convenient programming model and the
excellent scalability properties. Open-source offerings such as Apache Whisk [4]
and commercial platforms such as AWS Greengrass [10] provide an execution
environment for specific edge devices, thereby making it possible to execute func-
tions that were initially written for the FaaS cloud platform at the edge. AWS
Greengrass is a framework with a collection of software libraries that enables the
execution of Lambda functions on IoT devices that are Greengrass-enabled. In
Upilio, we run the Greengrass core system on Raspberry PI single-board com-
puters that serve as data collectors at the edge (cf. Sect. 3.1). Greengrass pro-
vides the software engineering benefit of code reuse, as many Lambda functions
written for the cloud can be executed unchanged on the edge devices. Lambda
functions running on IoT devices can process data, execute cloud messaging
operations and even perform learning inference operations and AWS Greengrass
provides some prebuilt components to facilitate the development of such edge
functionalities.

One additional advantage of the AWS Greengrass platform is that Lambda
functions and configuration files can be deployed and updated from the Green-
grass cloud service. This capability frees developers of edge applications from
writing their own software management and update platform and from the time-
consuming process of manually updating the software and configuration settings
at multiple edge devices whenever a change is required, thereby increasing the
agility of edge applications and reducing operational costs.

Aslanpour et al. [5] have looked more generally at the opportunities and
challenges of applying the serverless paradigm to edge computing and, therefore,
to IoT scenarios. Like others, they also point out the excellent match between the
event-driven nature of IoT applications and the serverless programming model.
However, on the downside, they also point out that high latency due to cold-start
issues can be problematic for some applications.

Baresi et al. [15] propose a serverless architecture for a specific edge com-
puting use case, namely mobile augmented reality. Using IBM’s OpenWhisk
serverless framework [23] in locally located servers, they compare the latency
and general performance of their augmented reality application when execut-
ing the functions that provide a reality augmentation serverlessly in the cloud
or at the edge. As expected, the latencies at the edge are lower than in cloud-
based FaaS systems. However, their approach required them to set up their own
edge serverless environment. In our approach, we are leveraging AWS Lambda’s
Greengrass integration, which allows the execution of serverless functionality at
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the edge, on Greengrass-enabled devices, Raspberry PI single-board computers
in our setup.

Wang et al. [31] present LaSS, an architecture for running latency-sensitive
serverless applications at the edge. They use a queuing-theoretic framework to
allocate resources to containers executing serverless functions to ensure that
latency goals are met. They used OpenWhisk to implement a prototype of their
system and evaluated it using a benchmark consisting of a handful of different
latency-critical applications. Their work should be valuable to cloud providers
for extending existing public clouds to support latency-critical serverless func-
tions, precisely when those can be executed at the edge, such as AWS Green-
grass or Azure IoT. There were no aggressive latency demands in our examine
use case requiring edge execution. However, some IoT application scenarios do
require ensuring maximum latencies. Currently, in AWS Greengrass edge execu-
tion, this can only be achieved by proper provisioning at the edge and potential
overprovisioning as you would when operating a serverful application.

One step towards solving this overprovisioning problem for a public cloud is
Pelle et al.’s work [26]. They propose a middleware layer for AWS Greengrass,
which receives application-specific performance metrics and uses this information
to change the edge configuration, e.g., by changing the placement of Lambda
function execution on edge devices. They evaluate their system using simulations.
However, how well the (positive) simulation results translate to an implemented
system needs to be evaluated.

An actual prototypical serverless platform specifically for edge computation
is presented and evaluated by Pfandzelter and Bermbach [27]. Their design is
specifically geared towards resource efficiency and meant to run on single-board
computers. They present a prototype implementation using Docker containers
to place function handlers and a management service running on each edge host
directly. To reduce resource requirements and latency, clients perform requests
using the CoAP protocol, which is used in many IoT systems, rather than HTTP
resulting in lower latency as CoAP is based on UDP transport rather than
TCP. Their experimental comparison found that their platform introduced only
minimal overhead compared to native Node.js execution.

Upilio, like many IoT scenarios, also requires performing analytics operations
on the acquired sensor data. There has been a fair amount of work looking at
serverless analytics. For instance, Nastic et al. [25] present a combined cloud
and edge real-time data analytics platform that can perform analytics both at
the edge and in the cloud. Simpler and latency-critical functions are executed
at the edge, while more complex analytics can be executed in the cloud. Their
model proposes processing the edge real-time data serverlessly. To facilitate that,
they propose an extension of what they label the traditional streams model
by adding serverless data analytic functions into the data stream. In contrast
to some of their application domains, e.g., vital signs monitoring in a medical
context, the latency imposed by transmission to the cloud is generally immaterial
for a cloud-based energy management system such as Upilio. However, their
proposal is similar to Upilio’s approach since we also execute simple processing
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functions at the edge using the AWS Greengrass core as described in Sect. 3.1.
Simple anomaly detection methods can be executed at the edge so that energy
consumption anomalies can also be detected directly at the edge without data
transmission to the cloud.

3 Upilio: Design and Implementation

In order to make our results as generalizable as possible, Upilio’s architecture
follows these design goals. First, the system had to be able to accommodate
heterogeneous sensor equipment, as is typically found when buildings are instru-
mented with energy sensors and are not built with instrumentation from scratch.
However, even in the latter case, being able to switch suppliers to avoid provider
lock-in is desirable. Moreover, since our architecture is built for heterogeneity, it
also applies to other IoT sensor scenarios. Second, the system has to be easy to
deploy without expensive capital investments and minimal operational demands.
While automated control was not a requirement for our pilot system, the design
still has to be extensible to allow for automated control, which motivated our
choice of leveraging the AWS IoT Greengrass platform for our data collection
operations as it enables us to execute some analyses, e.g., anomaly detection, at
the edge as well; a requirement that many general IoT applications share as well.
In addition, it is desirable that the fleet of IoT devices can be (re-) configured
and updated from the cloud to minimize personnel costs.

Upilio is used to collect, store and process energy- and resource-related data
from our university’s three campuses, the main campus located in Landshut and
two satellite campuses located in Lower Bavaria. To limit the number of data con-
nections from each site and provide an opportunity for trading off data freshness
and communication bandwidth, again a requirement shared by many IoT sce-
narios, measurement devices do not communicate directly with the Upilio cloud
backend. Instead, each site uses one (and, for large sites, potentially multiple
instances to avoid bottlenecks) data collector for which we use Raspberry Pi [28]
single-board computers. They also serve as Greengrass core devices as explained
in Sect. 3.1. Currently, at the main campus, Upilio is continuously ingesting data
from approximately one hundred sensors. They measure electricity consumption
in various buildings and laboratories, measuring both power consumption and
aggregate energy use, taking measurements every minute. Regional heat and
water consumption, again at building and sub-building levels, are measured in
15-min intervals. Besides, the university has solar panels and the electricity pro-
duction from this installation with a peak power of 100 kW is measured every
minute, as is weather data from an on-campus weather station, which measures
global irradiance, temperature, and relative humidity at several ground levels.

The remainder of this section describes how we leveraged the serverless
paradigm in Upilio’s design and implementation in more detail and presents the
reference architecture that should be usable as a blueprint for similar IoT sen-
sor scenarios. Section 3.1 describes how data is represented and collected at the
edge. Section 3.2 describes the data ingress APIs and Sect. 3.3 how the web-based
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Fig. 1. Upilio frontend architecture.
The serverless web frontend is imple-
mented with static Javascript code in
S3 buckets calling Lambda functions on
REST APIs.

Fig. 2. A view of Upilio’s analytics
dashboard showing a combination of
the photovoltaic energy produced at
the main campus on the selected 24 h
period overlayed with the global radia-
tion, both normalized to display them
at the same scale.

GUI was implemented serverlessly. Finally, Sect. 3.4 describes how analytics was
implemented.

3.1 Data Representation and Real-Time Collection

To enable the use of sensors from different manufacturers that represent data
in different formats and to be able to incrementally add new sensors to a run-
ning system without interrupting its operations, an essential requirement for our
Upilio design was for it to be extensible. Adding a new sensor type should not
require any code changes to the existing storage and processing backend. More-
over, it is essential to be able to change the frequency of measurements without
manually updating configuration files at each sensor site because typically, sen-
sors are located in utility tunnels or access-restricted locations so that updating
them in situ is cumbersome. Furthermore, there are bound to be many sensors,
and updating them all one by one would be laborious.

Data Representation. Interface definition languages (IDLs) are a well-known
mechanism for representing data types in an extensible and portable way. We
chose to use the Thrift IDL language [2], which is a language-neutral, platform-
neutral, and extensible mechanism for serializing structured data in a compact
and efficient form. Thrift comes with tools to automatically create serialization
and deserialization code stubs from the data type description. Data types can
be updated by adding additional (optional) struct fields without breaking the
existing processing code.

Every sensor device is assigned a unique device id and its measurement value
is represented as a double value. Also, two (Unix) timestamps are recorded:
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the sensor timestamp, a timestamp set by the sensor, which records when the
measurement was taken, and the reading timestamp, which records when the
collector node (=RPI) reads the sensor value from the sensor. We use the NTP
protocol to keep the clocks of our collector nodes synchronized to UTC so that we
can correlate measurements taken at different sensors based on their timestamp
within the NTP-synchronization accuracy, which is in the millisecond range more
than sufficient for the frequency at which energy consumption needs to be mea-
sured. From this primary data type, more complex data types, for instance, to
represent the collection of measurements of a weather station are composed. In
addition, all of our data type definitions carry a version number making rolling
updates to new definitions possible. This data representation should cover most
sensor IoT scenarios, not just our concrete use case.

Edge Data Collection in Upilio. Upilio uses the AWS Greengrass platform
to enable the execution of Lambda functions both in the cloud and at the edge.
At every campus location, at least one Raspberry PI device serves as a data
collector. Using the Greengrass platform provides two advantages: first, we can
avoid reimplementing functionality that can be useful both in the cloud and the
edge. For example, we can perform some simple anomaly detection both in the
cloud and at the edge, using Arima (cf. [22] for details on anomaly detection
in Upilio). The ability to perform monitoring or analysis operations at the edge
is crucial for detecting unusual operating conditions even when Internet con-
nectivity is lost or would have too high a latency. While Upilio does not drive
any automatic control systems, this capability would be indispensable in such a
case. Another crucial advantage afforded by Greengrass is that it enables us to
update both the function implementation and the configuration files from the
cloud. Furthermore, we can deploy updated code or configuration files reliably
without implementing our own update mechanism, which, for instance, enables
us to update the collection frequency in selected buildings without the need to
access the RPI computers, which are mostly co-located with sensors in utility
rooms and tunnels that are difficult to access and access-controlled.

Note that these two requirements of being able to perform latency-sensitive
operations and being able to operate when Internet connectivity is lost is shared
in many other IoT scenarios. Furthermore, configuration and code updates from
the cloud are an important requirement in many scenarios as well, therefore being
able to support them in Upilio makes the results reported in Sect. 4 generalizable
to a large class of IoT scenarios.

For our data collection, we execute two processing functions at the RPIs only:
a SensorReading function, which reads the measurements via the local network
from all sensors listed in a configuration file and a PackageAssembly function,
which assembles sensor measurements into larger data packets to send to the
Upilio cloud backend. Both are triggered periodically by an auxiliary timer task
also implemented as a Lambda function.

The TimerTask implementation initializes the reading of the sensors,
whereby sensor-specific data such as IP address, device ID, register address,
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and resource type are specified in a YAML [32] enabling Upilio to read different
resources at different time intervals. SensorReading is a generic component that
is specialized for the specific sensor type to acquire its data values. Finally, the
PackageAssembly potentially aggregates multiple sensor readings before sending
them to the backend allowing for tradeoffs between the number of data trans-
missions and freshness. In the case of network problems, the packets that are
not confirmed from the backend are persisted locally and sent again when the
connection is re-established.

3.2 Data Ingress APIs

Upilio provides two APIs for ingesting data into the system: the real-time data
ingress consisting of data collector computers at the edge (the RPIs in our current
setup), which transmit sensor data to Upilio as the measurements are being
produced. A second interface consists of a simple file drop mechanism, which
allows for the upload of current and historical data. This second mechanism is
helpful for two purposes. First, it allows for the integration of data collected
before real-time instrumentation as well as for backfilling data that was not
transmitted in real-time, e.g., due to more extended network connectivity issues.

Real-time Data Ingest API and Data Processing. The sensor data is
sent from the RPIs to the Upilio backend, which is running in the AWS cloud.
Our real-time data ingest API is built on top of the publisher-subscriber sys-
tem that is part of the AWS Simple Notification Service (SNS) service [12]. For
each resource type (electricity, gas, water, weather data, among others) there
is a corresponding SNS topic to which data of that type is sent (published) by
the RPIs running the edge sites. SQS queues [13] are configured as consumers of
the messages posted. Simple Queue Service (SQS) is a managed queuing service,
which can be used to decouple various components of a microservices architec-
ture, such as those employed by Upilio. Lambda functions can be configured to
be triggered by data becoming available at an SQS queue. Our primary Lambda
function, SqsToDdb, which is responsible for the data ingest, is triggered by data
becoming available at any of the SQS queues that correspond to the SNS topics.
SqsToDdb is configured to run with 128 MB, and for the sensor data we currently
process, executes on average for ca. 600 ms.

We use DynamoDB [29], a highly scalable key-value store with low write and
read latencies, to store all our sensor data. For the batch write that the SqsToDdb
function performs, we experience average latencies of only 7–8 ms. Due to the
low latency and high scalability properties, DynamoDB, and similar key-value
stores are very popular in IoT scenarios, where data volume, scalability, and
latency usually make relational databases impractical choices.

3.3 Serverless Frontend

Figure 1 shows a schematic representation of the Upilio serverless frontend. The
key to a serverless web-based graphical user interface without operating a perma-
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nently running server lies in the fact that AWS Simple Storage Service (S3) per-
mits making buckets word readable and that AWS buckets are addressable via web
URLs. The Upilio start page with some static content and Javascript is located
under a specific S3 bucket address. That page shows a login screen and requires
the user to log in to our systems. The user is authenticated using the Amazon
Cognito [9] identity service, in which we create a user pool to control access to
the Upilio frontend system. All accesses to frontend pages (all hosted in S3) are
access-controlled using that system, which hands out an access token after suc-
cessful authentication.

Once the user is logged on, they see a dashboard like the ones shown in Fig. 2.
On the navigation pane on the left, the user can select an overview over all con-
nected sites (campuses), a live data view, or the analytics dashboard (shown
in Fig. 2). Alternatively, the user can update their account settings or log out.
To perform Upilio operations, e.g., ask the system to display specific data and
perform analytics operations, we have designed a REST-interface, which was
implemented using the Chalice [6] framework and the Amazon API gateway [7].
Chalice is a collection of libraries and tools to make the development of serverless
micro-architecture applications easier. The Amazon API Gateway is an AWS ser-
vice that makes the operation of REST-ful web APIs possible without operating
your own server.

The live data view is generated via the AppSync component. AppSync
is an AWS service that provides an API compatible with the open-source
GraphQL [20] query language for querying and displaying graphical data, origi-
nally developed at Facebook. Upilio uses GraphQL to query DynamoDB for the
sensors’ current values selected in the dashboard.

Figure 2 shows the dashboard view when the user selects the option to per-
form OLAP-style analytics, explained in detail in Sect. 3.4. In Fig. 2 the user has
selected a slice of data from the main campus (HAW), the combined sensors of
all photovoltaic production at that site (labeled ‘A Gesamte Leistung PAC...’)
together with the global radiation, measured by the campus weather station
(labeled ‘Globalstrahlung‘), and a time range from November 11th, 00:00 h to
November 12th, 00:00 h. Since the two metrics produce values of very different
magnitudes, the dashboard user also selected the option to normalize the data
so that they can be displayed at the same scale. The graph very neatly illus-
trates that the photovoltaic installation was working as expected that day, as
the electric power generated almost perfectly overlays with the global radiation,
i.e., sunshine present during that day.2

3.4 Serverless Analytics

OLAP-style analytics in Upilio is also implemented, relying entirely on the
serverless paradigm. As reported in Sect. 4, this can be done efficiently and at

2 In fact, Upilio uses the difference between these two normalized values to detect
anomalies in the functioning of the PV inverters. Details can be found in [22].
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a low cost for Upilio’s use cases. Crucial in that effort is the efficient imple-
mentation of aggregation operations since they can be costly when performed
inefficiently. We chose two implementation approaches: first, we use a simple
aggregation approach that computes aggregations that are likely to be requested
by our system’s users, namely aggregations along the time dimension aggregated
in buckets of daily, monthly, and yearly intervals. Then, as a second approach,
we implemented the well-known blocked-range-sum algorithm [21] by Ho et al.,
and evaluated the performance of both (cf. Sect. 4).

Simple Data Aggregation. For the simple data aggregation implementation,
a separate DynamoDB table is created for the three aggregation levels “daily”,
“monthly”, and “yearly”, which are updated on the fly using an AWS Lambda
aggregation function. This function is triggered by DynamoDB Streams [3], a
DynamoDB service that provides a chronologically ordered sequence of item-level
changes in each DynamoDB table. The timestamp determines each granularity
level’s corresponding index for each record in the stream. It serves as the pri-
mary partition key for the corresponding table. For example, the timestamp is
converted into the number of days passed since the beginning of UNIX time
(January 1st, 1970) for the daily aggregation table. If there already is an entry
in that granularity bucket, its value is read and updated with the sum of the
new sensor value and the prior sum; otherwise, the new value becomes the initial
bucket value. To reduce write costs, all items from the DynamoDB stream are
processed first, and then the updated sum values are written back to DynamoDB
in one batched write operation.

As a more sophisticated alternative for computing aggregations that also
provides a mechanism of trading of aggregation speed versus additional storage,
we also implemented the Blocked Range-Sum algorithm developed by Ho et al.
We evaluate its cost implications in Sect. 4.2.

4 Experience and Experimental Evaluation

In this section, we first report some general experiences we had when building and
operating Upilio answering whether the serverless paradigm supports building
performant and cost-effective applications in the IoT domain. Then we evaluate
the cost and performance of the analytics operations.

4.1 General Observations

Confirming results by others, for instance, by Lee et al. [24], we were able to
observe easy deployment and provisioning of Upilio thanks to the serverless
model. We used AWS Cloud Formation templates [17] to define and deploy
the components of Upilio, e.g., the DynamoDB tables, SQS queues, or Lambda
functions. Cloud Formation templates are JSON files that define the AWS cloud
components and their connections in a scripting language. They can be used with
a command-line tool to bring up, update or turn off AWS cloud components. In
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Fig. 3. The graph shows three typical
months for Upilio’s operational cloud
computing costs. The “others” cate-
gory comprises SNS, Greengrass, SQS,
and S3 services.

Fig. 4. Latencies of executing queries
using the pywren engine. The queries
execute within an acceptable time
frame, however, the pywren engine
introduces some additional latency due
to the launching and warmup cost for
lambda functions and the data storage
in S3

one experiment, we were thus able to bring up another instance of Upilio at the
simple execution of a single CLI command resulting in a running instance ready
for data from the edge in approximately 15 min.

4.2 Experimental Results

General Operational Costs. Besides the benefits of easier deployment of
provisioning, for our university environment and its amount of data, our usual
operating costs for the data acquisition storage and the (at this point) low fron-
tend usage are on the order of 35–50$US per month. Figure 3 shows operational
costs for Upilio for a typical three-month period.

First, overall cloud computing costs for the current Upilio deployment with
roughy 100 sensors reporting data in minute intervals and usual analytic dash-
board use is usually around forty dollars a month. Five services, Cloudwatch,
AppSync, Lambda, DynamoDB, and AWS Greengrass (reported as IoT in the
AWS Cost Explorer graph in Fig. 3) account for approximately 85% of the total
cost, and the other services that Upilio relies on, namely SNS, SQS, and S3 com-
bined account for only 15%. Cloudwatch [8] is AWS’ service monitoring service,
which we use to monitor the correct functioning of Upilio to be notified, for
instance, if less than the expected number of sensor data packets arrive at the
Upilio cloud API.

The AppSync costs are incurred by frontend use when users display the
current live data. For the current Upilio dashboard use with a low number,
i.e., approximately 10 h of usage per week, these costs are under ten dollars
per month. DynamoDB costs generally vary between two and eight dollars, the
variation due to different frontend usage patterns: a higher number of analysis
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Table 1. Data aggregation cost for all
dimensions, block size of 4.

Block Size 4
Cost in $ per month

Devices Items/Month DynamoDB Lambda Total
10 432000 2.91 0.0 2.91
100 4320000 2.91 0.0 2.91
1000 43200000 49.68 0.0 49.68

Table 2. Data aggregation cost for a
block size of 1 (worst case) for 100,000
dimensions.

Block Size 1
Cost in $ per month

Devices Items/Month DynamoDB Lambda Total
10 432000 2.91 0.0 2.91
100 4320000 2.91 0.0 2.91
1000 43200000 18.56 0.0 18.56

operations or the use of operations resulting in more read operations will increase
the DynamoDB costs.

The Upilio computation costs, i.e., operations performed by the Lambda FaaS
service was approximately five dollars for the three service months in the graph.
Overall, the operational costs we have found are small, particularly considering
the overall functionality and the reliability of Upilio, which directly benefits from
AWS’ 99.99% availability of resources in a single region.

For comparison, assuming we could operate Upilio on a single server, the
hardware depreciation cost alone would already be higher. With electricity and
IT personnel costs, this relation tips even more in favor of a cloud-hosted server-
less architecture and, almost certainly, with higher availability and reliability of
the cloud-based solution.3

Evaluating Analytics Operations. Besides the empirically observed typical
operation costs, we also evaluated the costs incurred specifically for supporting
fast online analytics operations. As mentioned in Sect. 3.4, we implemented the
blocked-range-sum algorithm by Ho et al. [21] in addition to the simple aggre-
gation algorithm that aggregates daily, monthly, and yearly values to make the
answering of range queries fast in the time dimension. Note that the costs for
the simple aggregation algorithm are included in the graph in Fig. 3.

For our implementation of Ho et al.’s algorithm, we evaluated how the storage
and Lambda computation costs changed when varying the block aggregation
block size and number of sensors. In Ho’s algorithm, the larger the block size,
the less storage is needed for pre-aggregation at the expense of more on-the-fly
costs when answering queries. Therefore, a block size of one is the worst case in
terms of required storage and precomputation costs.

The cost calculations are derived from processing the data packets typically
produced by our concentrator nodes, i.e., We assume that each sensor is read
out once per minute and that the system is running 24/7. We assume an aver-
age length of 30 days per month to calculate the monthly costs, which leads
to 43200 measurement points per sensor. We use a singular Lambda instance
for data processing, which is triggered by DynamoDB Streams. The trigger is
configured so that the Lambda function is only triggered with a batch size of

3 Assuming a $5000 purchase cost and a five-year depreciation, the monthly cost would
come to $83.
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10 times the number of sensors, 1000 for our main university campus, which
reads out about 100 sensors. We are considering the worst case of computing all
possible aggregations, i.e., we aggregate values over 473200 possible dimensions,
consisting of four (time) granularity levels, 13 units, 13 buildings, 1 domain, 7
resource types, and 100 device ids (= 4× 13× 13× 1× 7× 100). Furthermore,
we make the worst-case assumption that all dimensions are updated in every
batch and that all device IDs occur in every dimension. In reality, most of these
aggregations would never be requested by users of our system, and as such, the
cost calculations represent a worst-case scenario. While we might know a pri-
ori for some aggregations to be helpful in practice, we cannot know what the
system’s users will do in practice. We consider implementing one approach to
start computing a particular aggregation only once requested, thereby adapting
to the typical usage dynamically. Furthermore, to save space, precomputing an
aggregation could be stopped again if that aggregation is not used for a certain
amount of time; we plan to implement and evaluate this approach in the future.

However, even for the worst-case scenario, the monthly costs were only about
$10 for the processing and persistence of the data with a block size of 1 for our
university scenario. Table 2 shows the costs for a varying number of sensors and
when aggregating not for all but a fixed 100,000 dimensions. When more sensors
are present and more data is produced, we keep the implementation cost-efficient
by making the batch size, which triggers Lambda processing, a function of the
system’s number of sensors. We use a linear relationship multiplying the number
of sensors with 10 to set the batch size. While this choice of batch size saves
computation cost, it also guarantees that the aggregations are fresh: N sensors
produce N data points per minute in our environment so that aggregation data
will be no more than 10 min old.

As mentioned, using a block size of one creates the worst-case for pre-
aggregation storage and computation costs. Table 1 shows the costs when com-
puting the blocked range sums using a block size of 4. The table shows that if we
use a block size of 4, we could even compute and store all possible aggregations
at an acceptable cost. However, even in this case, adapting the system to actual
usage patterns in the frontend would also save costs, as outlined above.

Besides the monetary cost of operating Upilio, performance in terms of
latency is also essential. Therefore, user queries should be executed with neg-
ligible latency. To evaluate the effectiveness of the aggregation algorithms, we
performed various queries over different lengths. The experiments compare the
simple data aggregation and the blocked range-sum algorithm with block sizes
1 and 4. Our experimental setup used the Pywren engine to execute multiple
lambda functions that combine the appropriate aggregation values to answer
user queries. The median query time was from 1 to 2 s, sufficient for our cur-
rent use cases (cf. Fig. 4). However, as others have observed before, launching
Lambda functions via Pywren introduces some startup latency, not least because
it uses S3 buckets to store code and data. S3 has a much higher latency for data
access than Dynamo DB. Therefore, as part of future work, we want to evaluate
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triggering the lambda functions directly from our frontend without using pywren
and “keeping them warm,” e.g., using a timer mechanism.

5 Conclusions

In building Upilio, we set out to examine if a scalable, cost-effective, and easily
portable data collection and analysis platform for IoT sensor data can be built
relying entirely on the serverless paradigm and using only off-the-shelf cloud
computing building blocks. Upilio is sufficiently similar to other IoT data ana-
lytics scenarios that the results demonstrated in this paper should generalize to
similar systems.

We have confirmed that developers can focus on designing and implementing
functionality specific to their problem domain thanks to the flexible deployment
model provided by a serverless platform like AWS Lambda. We found that the
serverless paradigm enables creating scalable and performant systems without
investing much time, money, or effort. Moreover, except for storage cost, which
is very low, Upilio operating costs are proportionate with usage. In addition,
performing operations mainly in the cloud was not a limitation for our system’s
data analytics use cases. Therefore, we have corroborated that creating appli-
cations using the serverless paradigm is particularly alluring for “small players”
since a comprehensive system can be built with a minimal upfront cost.

In the future, we would like to perform a more detailed evaluation of the
analytics operations, especially within the live system, i.e., based on typical
workload demands and frontend operations.
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