
Fabrizio Montesi
George Angelos Papadopoulos
Wolf Zimmermann (Eds.)

LN
CS

 1
32

26

9th IFIP WG 6.12 European Conference, ESOCC 2022
Wittenberg, Germany, March 22–24, 2022
Proceedings

Service-Oriented 
and Cloud Computing



Lecture Notes in Computer Science 13226

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693
https://orcid.org/0000-0003-0848-0873


More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558


Fabrizio Montesi ·
George Angelos Papadopoulos ·
Wolf Zimmermann (Eds.)

Service-Oriented
and Cloud Computing
9th IFIP WG 6.12 European Conference, ESOCC 2022
Wittenberg, Germany, March 22–24, 2022
Proceedings



Editors
Fabrizio Montesi
University of Southern Denmark
Odense, Denmark

Wolf Zimmermann
Martin Luther University Halle-Wittenberg
Halle (Saale), Germany

George Angelos Papadopoulos
University of Cyprus
Nicosia, Cyprus

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-04717-6 ISBN 978-3-031-04718-3 (eBook)
https://doi.org/10.1007/978-3-031-04718-3

© IFIP International Federation for Information Processing 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-4666-901X
https://orcid.org/0000-0001-9250-4916
https://doi.org/10.1007/978-3-031-04718-3


Preface

Service-oriented and cloud computing have made a huge impact both on the software
industry and on the research community. Today, service and cloud technologies are
applied to build large-scale software landscapes as well as to provide single software
services to end users. Services today are independently developed and deployed as
well as freely composed while they can be implemented in a variety of technologies,
a quite important fact from a business perspective. Similarly, cloud computing aims at
enabling flexibility by offering a centralized sharing of resources. The industry’s need
for agile and flexible software and IT systems has made cloud computing the dominating
paradigm for provisioning computational resources in a scalable, on-demand fashion.
Nevertheless, service developers, providers, and integrators still need to create methods,
tools, and techniques to support cost-effective and secure development as well as the
use of dependable devices, platforms, services, and service-oriented applications in the
cloud.

The European Conference on Service-Oriented and Cloud Computing (ESOCC) is
the premier conference on advances in the state of the art and practice of service-oriented
computing and cloud computing in Europe. The main objectives of this conference are
to facilitate the exchange between researchers and practitioners in the areas of service-
oriented computing and cloud computing, as well as to explore the new trends in those
areas and foster future collaborations in Europe and beyond. The 9th edition of ESOCC,
ESOCC 2022, was supposed to be held at LutherstadtWittenberg, Germany, fromMarch
22 untilMarch 24, 2022.Due to theCOVID-19 pandemic situation it was held as a virtual
conference.

ESOCC 2022 was a multi-event conference aiming at covering both an academic
and an industrial audience. The main event mapped to the main research track which
focused on the presentation of cutting-edge research in both the service-oriented and
cloud computing areas. In conjunction, an industrial track was also held to bring together
academia and industry through showcasing the application of service-oriented and cloud
computing research, especially in the form of case studies, in industry. Overall, 17
submissionswere received out ofwhich eight outstandingwere accepted—six full papers
and two short papers.

Each submission was peer-reviewed by three main reviewers, comprising either
Program Committee (PC) members or their colleagues. The PC chairs would like to
thank all the reviewers that participated in the reviewing process. Their comments were
essential for improving the quality of the received manuscripts and especially for giving
constructive comments to the authors of papers that, in their current forms, were rejected
for ESOCC 2022.

The attendees of ESOCC had the opportunity to follow an outstanding keynote that
was part of the conference program. The keynote was conducted by Uwe Assmann,
professor and former dean of the Faculty of Computer Science at Dresden University of
Technology,Germany.This keynote introduced an exciting applicationof fog computing:
a gas sniffing sensor network for remote operation in dangerous areas.
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The additional events held at ESOCC 2022 included the PhD symposium, enabling
PhD students to present their work in front of real experts, as well as a projects track,
providing researchers with the opportunity to present the main research results that they
have achieved in the context of currently operating EU projects and national projects.
Further, ESOCC 2022 included the organization of satellite workshops. All these events
will be accompanied by respective proceedings which will be published separately.

The PC chairs and the general chair would like to gratefully thank all the people
involved in making ESOCC 2022 a success. This includes both the PC members and
their colleagues who assisted in the reviews, as well as the organizers of the industry
track, the PhD symposium, the projects track, and the workshops. A special applause
should also go to Maik Boltze, Mandy Weissbach, and Ramona Vahrenhold for their
administrative support and for managing the virtual conference rooms. Finally, a special
thanks goes to all the authors of the manuscripts submitted to ESOCC 2022, the presen-
ters of the accepted papers who made interesting and fascinating presentations of their
work, and the active attendees of the conference who initiated interesting discussions
and gave fruitful feedback to the presenters. All these people have not only enabled the
successful organization and execution of ESOCC 2022 but also an active and vibrant
community which continuously contributes to the research in service-oriented and cloud
computing. This also encourages ESOCC to keep supporting and enlarging its commu-
nity, by providing a forum inwhich new research outcomes can be shared and discussions
on how to achieve greater impact can be held.

March 2022 Fabrizio Montesi
George A. Papadopoulos

Wolf Zimmermann
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Sniffbots to the Rescue – Fog Services
for a Gas-Sniffing Immersive Robot

Collective

Uwe Aßmann1(B) , Mikhail Belov1, Thanh-Tien Tenh Cong1,
Waltenegus Dargie1 , Jianjun Wen1, Leon Urbas2, Candy Lohse2,

Luis Antonio Panes-Ruiz3 , Leif Riemenschneider3 , Bergoi Ibarlucea3 ,
Gianaurelio Cuniberti3 , Mohamad Moner Al Chawa4 ,

Christoph Grossmann5, Steffen Ihlenfeld5, Ronald Tetzlaff4 ,
Sergio A. Pertuz1 , and Diana Goehringer1

1 Fakultät Informatik, Technische Universität Dresden, Dresden, Germany
{uwe.assmann,mikhail.belov,thanh-tien.tenh cong,waltenegus.dargie,

jianjun.wen,sergio.pertuz,diana.goehringer}@tu-dresden.de
2 Fakultät Elektrotechnik und Informationstechnik, Technische Universität Dresden,

Dresden, Germany
leon.urbas@tu-dresden.de

3 Fakultät für Maschinenwesen, Technische Universität Dresden, Dresden, Germany
{luis antonio.panes-ruiz,leif.riemenschneider,bergoi.ibarlucea,

gianaurelio.cuniberti}@tu-dresden.de
4 Institute of Circuits and Systems, Technische Universität Dresden,

Dresden, Germany
{mohamad moner.al chawa,ronald.tetzlaff}@tu-dresden.de

5 Institute of Mechatronic Engineering, Technische Universität Dresden,
Dresden, Germany

steffen.ihlenfeldt@tu-dresden.de

http://sniffbot.inf.tu-dresden.de

Abstract. Gas accidents frequently turn industrial or civil structures
into extremely dangerous environments. Disasters like the Ahrtal flood
in summer 2021 destroy infrastructures such as the gas grid and the
power grid, so that people loose control and suddenly find themselves
confronted with explosions, suffocation, and death. This paper presents
a case study of a robot collective identifying gas leaks with a gas-sniffing
wireless sensor network, while providing immersive inspection and tele-
operation in the dangerous areas. So-called Sniffbots work in a minimal
communication infrastructure, construct world maps autonomously, use
them to find gas leaks, remotely inspect, and attempt to close them.
To this end, the fog of a Sniffbot should offer services, such as sniff-
sensor data aggregation, calculation of points of interest in 2-D and 3-D,
virtual reality immersion, remote gripping, as well as autonomous control
of flying and driving. While this paper discusses a prototype system
still under development, the experiments show the fantastic capabilities
of modern gas-sniffing sensors in an immersive robotic fog. Sniffbots,
though, at this moment in time, being very expensive robot collectives,

c© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
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will be a very valuable aid in the future to save the life of people in gas
disasters.

Keywords: Cyber physical systems · robotics · UAV · wireless sensor
networks · tele-operation · immersion · gas sensors

1 Introduction

Every year several chemical accidents occur around the world, turning inhabit-
able regions into places dangerous to work and to live in, at least temporarily.
Some work environments, such as chemical factories, underground mining, and
oil exploration, inherently expose employees to dangerous gases even when there
are no conspicuous accidents. Understandably, operating in these environments
require stringent safety regulations to prevent detrimental accidents and loss of
human lives.

As an example, consider the flood of summer 2021 in the Ahrtal in Ger-
many [44] (Fig. 1). Within several hours, a complete valley of more than 30 km
length was flooded and destroyed. Not only houses, bridges and streets were
overwhelmed by a ferocious river, but also vital infrastructure was instantly dis-
rupted, including 113 km of gas pipelines and 250 house gas ports, revealing
many gas leaks at the same time. This created very dangerous situations: More
than 150 people were killed while sleeping, fleeing, or trying to rescue household
items or other persons. 17,000 others are still grappling with damaged houses
or destroyed properties. The repair of the gas infrastructure took more than 4
months and cost more than 25Me [37]. Though the German parliament initially
approved 30 billion Euros to support the people who are affected by the damage,
it has already become clear that the reconstruction of the region will cost much
more.

Similarly, in various chemical industries and oil refineries, toxic gases are
produced as by-products and transported from one place to another. Some of
them, such as Ammonia and Hydrogen Sulphide, belong to the most difficult
gases to handle [1]. While leaking gases cause a considerable harm to employees
and the environment, damages in pipelines are difficult to locate and to repair
due to the considerable length of the pipelines.

Is it possible to monitor disaster areas and large chemical plants alike with
the aid of state-of-the-art technology and fix gas pipeline damages as swiftly as
possible? Such questions can be answered in the affirmative with the advent of
Immersive Robot Collectives (IRCs) carrying out several of the required tasks at
the same time: inspect the area of interest from remote; localise and estimate the
extent of damage; determine rescue paths and entries into facilities; and carry
out actual repair operations.

The purpose of this paper is to present the prototype of such a system –
a tele-operated, sniffing, multi-robot collective – and report initial results. The
Sniffbot robot collective, built at the Technische Universität Dresden, provides
immersion to orient, monitor, and recognize remote events and situations. It
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Fig. 1. Destroyed infrastructure in the Ahrtal, an adequate field for a sniffing IRC
(source: https://de.wikipedia.org/wiki/Datei:Hochwasser in Altenahr Altenburg.jpg)

enables remote sniffing of dangerous gases to identify important points of interest
in an area, tele-inspection, as well as tele-operated gripping. While Sniffbot
is certainly not the first robot collective for sniffing dangerous gases, it offers
four major innovations: (a) a big artificial nose enabled by a Wireless Sensor
Network (WSN), (b) a nano-nose sensing with nano-materials, (c) a 3-D nose by
enabling 3-D identification of gas leak positions, (d) and a mobile human avatar
for tele-inspection and -manipulation. This paper discusses the problem area, the
distributed cloud and fog services that are required for these three innovations,
and reports an initial implementation and experimental results.

The remaining part of this paper is organized as follows: In Sect. 2, we unfold
the top-level components of the Sniffbot IRC. In Sect. 3, we propose a service
architecture of a Sniffbot collective and discuss their interactions. In Sect. 4, we
present the results of several experiments in the field, in particular about sniffing
and immersion. Section 5 compares to related work, and Sect. 6 wraps up.

2 Sniffing Immersive Robot Collectives

In the context of the project Sniffing Dangerous Gases with Immersive Robots
(SNIFFBOT), we are developing an IRC for remotely discovering and monitor-
ing toxic gases, such as Ammonia (NH3) and Hydrogen Sulfide (H2S), both in
disaster regions (Fig. 1), as well as industrial complexes, such as oil refineries.
The distributed software architecture of Sniffbot is organized as a fog with four
subnetworks. For sniffing the gases, the Sniffbot collective uses novel highly-
sensitive nanosensors, which are integrated into nodes of a self-organizing WSN

https://de.wikipedia.org/wiki/Datei:Hochwasser_in_Altenahr_Altenburg.jpg
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to support in-network processing, high spatio-temporal sensing, and multi-hop
communication (Fig. 2, left). The network interacts with mobile land robots and
drones (henceforth, mobile agents), both to minimize human involvement and
to extend the communication range of the sensing system (Fig. 2, middle). The
mobile agents can be used to connect the WSN with a remote control station, as
can be seen in Fig. 5. The WSN regularly sends partially processed data to a fog
service on the remote control station, which analyzes the data, generates candi-
date positions for gas leaks, Point of Interest (PoI), and coordinates with mobile
agents to localize and navigate to the region of interest. An additional wireless
Positioning Network serves for navigation (Fig. 2, right). In the surrounding of
a Point of Interest (PoI), i.e., on the last mile1, the robot collective is designed
to provide immersive experience for a remote human immersion operator who
need not enter the monitored region (Fig. 2, lower part). Since all sensor nodes
and robots in the fog are operated on batteries, no global communication infras-
tructure is required.

In a disaster scenario, without any global infrastructure available, the Sniff-
bot immersive robot collective must master a number of tasks structured into
6 phases:

1. In the first phase, a land robot constructs a 2-D world map of the environment
using SLAM algorithms, e.g., 20 m around the center focal point (localization
phase).

2. Using the world map, the drones deploy the sensor nodes in the environment
(dropping phase).

3. Then, the sensor net attempts to find interesting gas leaks in the area and
generates PoI on the world map (PoI identification phase).

4. The land robot navigates to the PoI (navigation phase)
5. and enables a human operator to inspect the surrounding of the PoI (last-mile

immersive inspection phase).
6. The operator may use the gripper of the land robot to attempt to close the

gas leak (repair phase).

In the second scenario, the regular monitoring of the structural health of
pipelines in a chemical industry complex, there is a global infrastructure avail-
able, so that localization and navigation tasks are simplified. Moreover, workers
can deploy the sensor network permanently, so that the dropping phase can
be spared. In both scenarios, the drones can be equipped with sniffing sensors
themselves so that they can attempt to discover the gas leak (flying exploration
phase [36]).

The following discusses the sub-networks of the Sniffbot fog and their rela-
tionships in more detail (Fig. 2). All components take over some services for the
Sniffbot innovations and the overall task, the localization and repair of gas
leaks (Sect. 3).

1 Actually, it is the area of the last meters.
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Fig. 2. The networks of the Sniffbot fog, their interfaces, services and interactions.

2.1 The Robot Network

Immersive mobile manipulation in dangerous work environments requires several
sensoric and actuatoric components, as we have shown in previous work [3,4,42].
At the moment, the Robot Network consists the following specific configuration.

The Land Robot for Tele-Inspection and Tele-Manipulation. The land robot
(Fig. 3 right) is a four-wheel drive Warthog outdoor robot2, on which three
robot arms have been mounted to enable immersion (2 UR5e arms to the left
and right and 1 UR3 arm in the middle). The middle UR3 arm carries a camera
whose stream is displayed in the VR glasses of the remote immersion operator.
This camera is controlled by the head of the immersion operator, following its
movements, and enables her to guide the immersion and change the direction of
inspection, as in [42] (Sect. 3.4). This enables the immersion operator to orient
herself easily when inspecting different corners of the remote area. Using a 3-D-
Environment Model (Sect. 3.3), the land robot is able to approach a PoI either
autonomously or by human navigation (navigation phase). For local detection of
the environment, the land robot is additionally equipped with Light Detection
And Ranging (LiDAR) sensors and other camera systems. Once, a PoI is reached,

2 https://www.clearpathrobotics.com; arms mounted by https://mybotshop.de.

https://www.clearpathrobotics.com
https://mybotshop.de
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Fig. 3. Left: Deployment of the Sniffbot IRC and its WSN in the field. Right: Mod-
ified Warthog land robot for tele-inspection and tele-manipulation.

the immersion operator orients herself, positions the robot in the scene (last-mile
immersion), and uses the two other arms of the land robot enable tele-gripping
and -manipulation, in order to close or cover the gas leak that had been identified
(repair phase).

Drones Discovering Gas Leaks. The land robot can communicate with drones
surveying the area from above. On these drones, gas sensors can be mounted
so that peak points in the distribution of the target gas can be identified in
the Environment Model (Fig. 4). One unique selling point of our sensors is that
they employ nanomaterials as sensing elements enabling the integration of a
lightweight and versatile gas sensing platform (Sect. 3.2). While we have experi-
mented mainly with Ammonia and Hydrogen Sulfide, many other molecules can
be sensed after a specification, sensor chip design, and testing phase.

Fig. 4. Drones for finding gas leaks from above. Spectrometer-based sensor board
(green) is mounted on the drone. FPGA controller on top (pink board). (Color figure
online)
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The drone system should be able to explore large areas. As large-bandwidth
real-time wireless communication can become very expensive in terms of energy
consumption, an edge-controller computer on the drone is desirable. However,
this poses a significant challenge since the drone controller system integrates
many algorithms, including sensing, perception, localization, decision making,
control, etc., for which large amounts of data in real-time need to processed.
This data is highly heterogeneous and requires accurate spatial and temporal
synchronization as well as pre-processing. Additionally, the space and energy
available onboard the drone are limited which significantly restricts the drone’s
capabilities for 3D sensing, localization, navigation, and path planning tasks.

It is, therefore, essential to choose an energy-efficient edge-controller com-
puter for the drone. FPGAs provide the energy-efficient task processing required
for the drone [16,19,21,41]. FPGAs are often built into small systems with few
memory. They can process massively parallel computations and make use of the
properties of perception (e.g., ICP for LiDAR scan matcher [7]), localization
(e.g., Kalman filter), and controlling kernels (e.g., autonomous flight controller)
to remove additional logic and simplify the implementation. FPGAs can, there-
fore, meet real-time requirements while achieving high energy efficiency com-
pared to CPUs and GPUs (Sect. 4.2).

One of the novelties of the Sniffbot is that it combines a WSN for sniffing
and positioning with drone services and land robots. To autonomously navigate
to a PoI, the IRC uses the PoI calculation service, which, in turn, relies on the
WSN (Fig. 2, left) and the Positioning Network (Fig. 2, right) to work prop-
erly. We have explored three scenarios how the drones communicate with these
networks in the Sniffbot fog:

Singular Sniffing. The chemiresistive-based nano-sensor is a drone component,
but is not a node of the WSN. Then, the drone is solely integrated in the
Positioning Network (Sect. 4.2).

Sensor node dropping. A node of the WSN is loosely attached to the drone,
but independent of the drone. Then, the drone is integrated in the Positioning
Network, while the sensor node is integrated into the WSN, but they are
coupled by their common position in space. In this scenario, the drone could
drop the sensor node into the field (dropping phase), deploying the WSN
permanently into the field (Sect. 4.2).

Sensor-drone integration. The WSN node is integrated as a drone device, and
the drone is integrated in the Positioning Network. Then, communication and
services run via the drone, and serve WSN as well as Positioning Network.
(Sect. 3.1).

2.2 The Self-organizing, Sniffing Wireless Sensor Network

In recent years, WSNs are broadly used in different applications, such as industry
monitoring [27,45], disaster detection and rescue [11,13], and health care [12,28].
Especially in hazardous environment, combined with Unmanned Aerial Vehicless
(UAVs) and robots, a WSN can cover large area and provide multi-dimensional
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views of PoI, which cannot be achieved by a single or few UAVs and robots
alone.
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Fig. 5. Drones and WSN complement each other for sniffing and localization. Gateway
sensor nodes in green. (Color figure online)

Before starting to sniff, the Sniffbot sensor nodes have to self-organize to
set up a well-connected WSN. To this end, they run a self-organization proto-
col. During self-organization, the topology of the WSN depends on the nodes’
communication range as well as the deployment environment, but the predom-
inant traffic flow is directed towards a single base station. As far as multi-hop
communication is concerned, the network can be organized either flat – where
all nodes play similar roles (namely, sensing and packet forwarding) – or hierar-
chical, where the nodes are organized into multiple clusters and in each cluster,
one of the nodes is designated as a cluster head. A flat topology is easier to set
up but it is inefficient, as communication is carried out hop-by-hop, involving
packet flooding or gossiping [10]. A hierarchical topology, on the other hand, is
difficult to set up, requiring global decisions to be made pertaining to the num-
ber of cluster heads needed to connect the entire network and the duration of a
period during which nodes serve as cluster heads. For our case, neither model is
optimal due to the involvement of the mobile agents. To speed up data collec-
tion, it is more feasible to dynamically designate one or more nodes as gateways
with which the robots and UAV interact, as shown in Fig. 5, in which case the
remaining nodes should forward packets to these gateways.

2.3 The Positioning Network

According to the current state of the art, no localization technology is suitable
for both indoor and outdoor environments.

Outdoor. In outdoor mode, Global Positioning System (GPS) modules are
attached to the exploration mobile agents for field operations. When placing
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a WSN node in the field during the dropping phase, its position can be com-
puted from and permanently fixed to the GPS position. On the other hand,
during exploration with a sniffer drone, the sensor position varies with the drone
position. In outdoor mode, Simultaneous Localisation and Mapping (SLAM)
algorithms and PoI calculation are computed in the same GPS coordinate sys-
tem, which, however, lacks precision for fine-grain operations. To increase the
accuracy from a few meters to 1–3 cm, Sniffbot uses the service “Hochpräzise
Echtzeit-Positionierungs-Service (HEPS)”, available via ntrip.de from Staats-
betrieb Geobasisinformation und Vermessung Sachsen (GeoSN). In addition,
the position of the WSN node can be calculated via the Robot Operating Sys-
tem (ROS) service Transform (TF) with an accuracy of few millimeters.

Indoor. In buildings, we use SLAM with autonomous Ultra-wideband (UWB)
transceivers from decawave.com equipped with rechargeable batteries. Using a
fixed UWB positioning network for emergency scenarios is discussed in [23].
The UWB modules calculate distances to each other in 3 dimensions. Thus,
both UWB and WSN nodes must be placed in the building for navigation and
monitoring. When the land robot is equipped with a UWB node, it can navigate
in the UWB coordinate system and create maps with SLAM algorithms.

2.4 The Immersion Network

Immersion in the Sniffbot collective consists of two tasks, tele-inspection and
tele-operation. To this end, a specific immersion network is realized in the Sniff-
bot fog. The success of the tele-operations depends on the quality of the data
extracted from the physical environment, the quality of the Virtual Reality (VR),
and the quality of the coordination between the human operators and the robots.
In particular, the robots must have precise, sensitive, and stable end manipula-
tors that enable force-dependent operations, and their force-feedback mechanism
should provide real-time and intuitive experience. Mimicking the movements of a
human by a remote robot can be seen as human avatars with tactile abilities [14].
In Sniffbot IRC, the robotic avatars possess human-sized limbs which facili-
tates remote sensing and control (Sect. 4.3).

2.5 Coordination of the Sniffbot IRC via Dashboard

When the facility to be monitored is complex, employing a large number of
mobile agents is critical. For example, significant gas leaks at multiple locations
require multiple interventions. Likewise, the physical environment may be too
large to be monitored with a single or a handful of mobile agents. Consequently,
an efficient and seamless coordination between the mobile agents and the remote
human operators is critical. In this regard, the IRC dashboard can be useful to
provide an overview of environmental monitoring and analysis, as well as to help
to decide when to switch between different robot control techniques. Therefore,
the Sniffbot collective has a desktop-based dashboard to be inspected by a
second operator, the dashboard operator, who talks to the immersion operator
to manage all situations in the field of operation.

http://www.ntrip.de
http://www.decawave.com
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Fig. 6. Overview of the service architecture.

3 Service Architecture of a Sniffing Immersive Robot
Collective

This section presents several of the basic services that support the 4 major
innovations of the Sniffbot collective in more detail (Fig. 6): (a) the big arti-
ficial nose is enabled by a self-organizing sniffing WSN, built from sensor nodes
(Sect. 3.1), (b) the nano-nose is a sensor array sensing with nano-materials
(Sect. 3.2), (c) the 3-D nose needs a 3-D Environment Model service (Sect. 3.3)
with a PoI discovery service, (d) and the mobile human avatar relies on the
Immersive Control service for tele-inspection and -manipulation (Sect. 3.4).

3.1 The Big Nose: Sniffing Services of Wireless Sensor Network

In the following, we describe the most important services of the WSN and its
sensor nodes to establish a big nose for the Sniffbot collective. Every sensor
node contains gas nano-sensors described in Sect. 3.2. The gas sensors could be
heterogeneous and may have different configurations, like measurement time and
sampling rates.
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Fig. 7. Left: Nano-sensor array to detect Ammonia gas. Right: Wireless sensor node
integrating an array of nano-sensors to detect Ammonia.

The Sensor Node. The sensor node is responsible for managing the gas sensors.
It implements a simple threshold-based alarm algorithm to alert the event of a
gas leakage. The main functionality of the sensor node platform is to periodically
report sensor data via multi-hop communication, via the gateways, to the base
station, a remote server in the Sniffbot Dashboard (Sect. 3.3). To address the
link dynamics, an efficient link quality estimation and topology control algorithm
is employed in the communication protocol. During the network setup phase, the
network management component is responsible for constructing the topology of
the sensor network autonomously.

Besides the nano-sensor array (Fig. 7 left and Fig. 7 right, bottom), the sensor
node is equipped with wireless communication services (Fig. 7 right), a battery
(on top), and the microcontroller module (in the middle). The microcontroller
is responsible for sensor fusion, i.e., for aggregating, pre-processing and sending
the sensor data (e.g., visual data, temperature, or gas concentration) to the PoI
calculation service (Sect. 3.3).

Detecting Gases with the WSN in Time. The time elapsed from the detection of a
concentration of toxic gas surpassing a predefined threshold to the notification of
this event to the control station is defined as the System’s Response Time (SRT).
Most oil refinaries set this limit to 20 s [9]. This time is affected by the efficiency
of the data collection algorithm, the time the mobile agents take to establish
contact with the remote control station, and the quality of the wireless link
between the mobile agents and these stations. The time a source node takes to
report an interesting event is a function of the hop-distance of the source node
from the nearest gateway and can be known only in a probabilistic sense, as the
interesting event may occur anywhere in the deployment environment. The data
collection algorithm should prioritize packet transmission to give precedence to
nodes which detect interesting events, thereby minimizing the overall delay. The
time a mobile agent takes to report the interesting event to a remote control
station is also a random variable, since the mobile agent may not be located at
or near a gateway.
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An upper limit on the SRT influences how many mobile agents should be
dispatched to interact with the wireless sensor network. An important factor
in this sense is the size and complexity of the civil structure to be monitored.
If multiple mobile agents are deployed, multiple gateways should be designated
and a more complex coordination is required to aggregate the sensor data. On
the other hand, using higher number of mobile agents, the resolution of gas
dispersion and concentration can be refined so that more accurate and faster
identification of PoIs is possible.

3.2 The Nano-Nose: Sensing with Nano-Sensors

The nano-nose of Sniffbot, available in every sensor node, relies on an array of
gas sensors integrated in multiplexing circuits for multiple and reliable detection
facilitate sensing. It can be mounted on a sniffing mobile robot, a sniffing drone,
or deployed at fixed locations.

Fig. 8. (a) Operating principle of CNT based chemiresistive gas sensor and (b) elec-
trical resistance monitoring.

Regarding high sensitivity needs, nanomaterials are ideal candidates to be
used as sensing material in an electrical format due to their high surface-to-
volume ratio, which allows conductivity modulation of the complete bulk of the
material as a result of the attachment of few gas molecules on the surface which
can be tailored for each specific gas. CNTs have been used in a chemiresistor
format, given their excellent electron transport [15] and mechanical properties
that enable the fabrication of highly sensitive sensors on flexible and light-weight
supports, appropriate for the integration on small robots with low loading capac-
ity. In this context, chemiresistive sensing is an appropriate format due to its low
power consumption and simplicity in structure and fabrication. The operating
principle is based on the modification of CNTs’ electrical properties as a result of
the interaction with gas molecules. A low voltage is applied between two metal
electrodes connected by a CNT network while the change in electrical resistance
is monitored upon exposure to the target gas (Fig. 8).

In this project, we have demonstrated the highly sensitive, selective and
self-validating detection of target gases ( NH3 and H2S) using a small foot-
print multichannel sensing platform based on Single-Walled Carbon NanoTubes
(SWCNTs) (Fig. 7 left) [31,32]. Binding of NH3 on the CNT’s sidewall defects
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causes a charge carrier depletion and therefore an increase of electrical resistance.
In the case of H2S detection, a prior functionalization of the CNTs with gold
nanoparticles creates binding points for interaction with the sulfur atom of the
gas. The binding lowers the work function of the gold nanoparticles [29], resulting
in an electron donation into the CNT and ultimately affecting its conductivity.

As the requirement for precision increases, the needed spatial resolution
becomes smaller, while the mathematical complexity, physical detail, and com-
putational cost required to perform accurate simulations increase. Many models
have already been proposed in the literature to describe the function of a CNT
sniffing process. For instance, the resistance of a CNT in [8] is modeled as

R =
L

S · σ
(1)

where L is the length of the CNT, σ is the conductivity and S is the section of the
CNT. The conductivity can be written as a function of the carrier concentrations
n & p and mobilities μn & μp as follows:

σ = q(nμn + pμp) (2)

We have proposed a signal processing Cellular Nonlinear Network (CNN)
for the detection and classification of experimental measurements resulting from
manufactured memristive gas sensor matrix. The developed CNN with the gas
sensors together forms an intelligent selective gas sensors system that can dis-
criminate between hazardous Ammonia and Hydrogen Sulfide gases. This system
can not only classify the detected gases reliably but also helps to determine their
concentration levels.

3.3 The 3-D Nose: The Environment Model Service

Navigating in complex environments requires two things: Firstly, the environ-
ment must be captured in sufficient detail, whereby the most varied sensor infor-
mation, including our sniffing sensors, must be bundled in a spatial model. Sec-
ondly, for precise robot manipulation tasks (such as gripping objects) or using
fine-grained objects), precise movements must be made. Both models consist of
3-D point clouds, whose individual entries correspond to details from the envi-
ronment.

Rough 3-D Environmental Model. The rough environmental model is required
by almost all sub-tasks for autonomous navigation. In general, a spatial model
can be created by recognizing pre-specified, coded targets from several images by
reconstructing a scene in three dimensions via triangulation. This procedure cor-
responds to a passive stereo/multi-image acquisition and processing. The result is
a minimalistic but highly accurate point cloud [34]. However, for the rough envi-
ronment model no coded targets are available, because the Sniffbot wheeled
robot manoeuvers in unknown terrain. The rough environment model with



16 U. Aßmann et al.

Fig. 9. The online inspection 3-D Environment Model of Sniffbot.

the corresponding point cloud for navigation will be calculated, for all our com-
ponents, on a single ROS node. Therefore, the point cloud will be limited to
absolutely necessary information and will not be suitable for immersive visual-
ization. For an immersive parallel or subsequent assessment of the environment
by experts with a state-of-the-art VR goggle, a dense and, if possible, meshed
and textured environment model is helpful. Details of a scene not covered by the
rough environment model, or details whose uncertainties are still very large, can
be investigated in this way. Additionally, sensor information for gases and noises
has to be integrated into the VR information. For such an inspection environ-
ment model (Fig. 9), the computational effort is much higher compared to the
rough environment model, so that the data must be calculated separately.

Fine-Grained 3-D Environmental Model. For the fine-grained, partial spatial
model, the movement of the robot arms can be measured, based on coded targets,
with micrometre accuracy using the self-developed photogrammetry toolkit [34].
Through the comparison with the executed motion path, corrections on positions
and movements can be implemented in the robot control system, which improves
the accuracy of the arm movement of the Sniffbot platform. From our point of
view, a precise movement within the surroundings requires a (dense) point cloud
of high accuracy. For this purpose, specific algorithms for pattern projection are
required whose results should be compared with passive and evenly-illuminated
stereo-image systems, as well as a mono-image system on axis six of a handling
robot arm.

Services for Discovering PoIs. Based on the received sensor data and the Map-
ping Service, the PoI calculation service computes suitable simulation models to
create heat and gas dispersion maps. Using these simulation-generated maps, it
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Fig. 10. Left: Using with SLAM created map. Center: While creating a map with
SLAM. Right: PoI on the 2-D GPS-based world map from openstreetmap.org, with
the sensed intensity of gas.

returns resulting PoIs to the drones and robots. The simulation models will be
updated continuously as new data arrives. Two main services are delivered:

Detection. By collecting sensor readings in heat maps and complementing them
with simulated data, hot spots representing PoIs can be identified in the environ-
ment. In chemical production plants, current anomalies as well as alerting gas
concentrations and simulation-based dispersion forecasts can be reported early
to trigger appropriate reactions. Hence, further damage and hazardous accidents
are prevented.

Reaction. The PoI calculation service will also recommend actions by sending
PoIs to the robot network. Investigating these points will improve maps and sim-
ulations, thereby contribute in forecasting the dispersion of gases and tracking
their sources. In case of detected anomalies, appropriately prioritized notifica-
tions will be sent to the Immersive Control and the Dashboard. Then, the human
operators can decide whether the Warthog land robot should be sent out to fix
the leaks and malfunctions [24].

The Mapping and Navigation Service of the Robot Collective. Using the WSN
and the Positioning Network, the Mapping Service can calculate a 2-D world map
using a SLAM algorithm (Fig. 10 left, center). On this map, PoI can be entered
by the Positioning Network (Fig. 10 right). In outdoor mode, also GPS-world
maps may be used for coarse-grain localization.

To navigate to the PoIs in the environment, the land robot has three possible
options:

Manual navigation. The land robot is manually moved by the dashboard
operator,

Manual navigation by immersion operator. The land robot is manually
moved by the immersion operator,

Autonomous navigation. The robot navigates autonomously to the PoIs.

In the first and second case, the maneuvering will be coordinated with the
video stream by one of the operators, while the Environment Model (Sect. 3.3)

http://www.openstreetmap.org
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Fig. 11. An immersion operator with its sensors.

will only be used for collision avoidance. In the third case, the 2-D world map
and the 3-D Environment Model will be used for navigation (Sect. 3.3). In the
third case, the search for a route can be supported by an existing 2-D world map,
e.g., a map of an industrial plant. In any case, positions should be calculated as
precise as possible to enable precise last-mile immersion.

The Navigation of the Sniffbot Drone System. The Sniffbot’s drone subsys-
tem needs an off-board and on-board component to work. The former consist
on the communication of the PoI Discovery Service, as well as a ground station,
with a monitoring display and a manual controller in the hands of an opera-
tor. Safety rules requires that, when the drone is in autonomous-flight mode,
an operator must use a manual controller to monitor and safeguard the drone.
The on-board module is in charge of the drone’s planning and control which
discharges wireless communication. The autonomous navigation services consist
of two back-end localization modules; the ICP scan matcher, which uses only
data from the LiDAR, and the EKF (Extended Kalman Filter) that fuses all the
data to get a correct 3-D localization. At the moment, the drone is only capable
of relative positioning for indoor navigation. Some of the on-board services are
offloaded on the drone’s FPGA, which is explained in Sect. 4.2.

3.4 The Mobile Human Avatar: Services for Immersive Control

The specific field of robot control embedded in VR is still young [26], in particular
if an avatar should be mobile. A human operator shall “dive” into a remote envi-
ronment by tele-inspecting it, tele-operating a remote robot and tele-controlling
its movements. The more seamless the audio-visual interaction, the deeper is the
immersion experience [38].
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Immersive Control of Robots. In Sniffbot, immersion is achieved with a VR
application that uses one or several video streams from cameras placed on the
middle robot arm of the Sniffbot mobile platform. If the immersion operator
wish to see a different perspective, she may turn her head which causes the cam-
era to be turned in the same way (Fig. 11, upper left). The Sniffbot operator
is equipped with Oculus Rift S VR glasses3. To track head motion, the pose of
the VR glasses is used. We use as input from the remote scene the image stream
and pointcloud of a Rubedos VIPER camera4. The VIPER camera is mounted
on the middle UR3 arm of the Warthog and mimics the movement of the head
of the immersion operator.

Additional sensors, such as wearable sensors attached to the operator’s arms,
body and head, are useful for tracking the movements of the operator and for
guiding the movement of the robot arms [42] (Fig. 11, upper right). We use 3
Bosch XDK sensors5 each on the left and right arm of operator to calculate
poses of the palms of the hands. On the remote scene, the trajectories calculated
from these poses mimick the operator’s movements by two UR5e arms. For
instance, to enable accurate manipulation of objects, the immersion operator
can be equipped with haptic output devices providing feedback from the remote
scene. HaptiGuard are belts with vibration motors placed on the arms [33] that
provoke tactile sensing on the skin of the immersion operator, for instance, if she
moves too fast (Fig. 11, upper right).

For tele-manipulation, to carry out precise mechanical tasks with variable
force, such as to grip the lock a valve, to fix a screw, or to check a mechanical
connection for its stability, tele-manipulation capabilities are essential. Figure 11,
lower left, shows a immersive operator with SenseGlove6 gloves on, closing a
Robotiq 2F7 and 3F gripper8 mounted on the arms of the Sniffbot. In addition
to tracking finger position, these gloves also enable haptic feedback in form of
varying resistance to finger movements. The movement of the fingers of the
operator are recognized and transported to the gripper, where they are replayed.
Figure 11, lower right, shows a immersive operator with gloves on, closing a
gripper around a plastic bottle.

Simulation Service for Immersion Control. For stability, every bit of the imple-
mentation must first be thoroughly tested in a simulation with software-in-the-
loop (SIL). For this purpose, existing simulation tools for ROS can be used, e.g.,
Gazebo or MoveIt [17, Chapter 4,6]. In our case, almost all immersion control
robot components had ready-made Gazebo configurations. The challenge, how-
ever, was to compose these components into an overall robotic software system.
Another challenge was to integrate motion planning with ROS MoveIt for the
3 https://www.oculus.com/rift-s/features/.
4 https://rubedos.com/solutions/viper.
5 https://developer.bosch.com/products-and-services/sdks/xdk/develop/c/technical-

information.
6 https://www.senseglove.com/developer/.
7 https://robotiq.com/products/2f85-140-adaptive-robot-gripper.
8 https://robotiq.com/products/3-finger-adaptive-robot-gripper.

https://www.oculus.com/rift-s/features/
https://rubedos.com/solutions/viper
https://developer.bosch.com/products-and-services/sdks/xdk/develop/c/technical-information
https://developer.bosch.com/products-and-services/sdks/xdk/develop/c/technical-information
https://www.senseglove.com/developer/
https://robotiq.com/products/2f85-140-adaptive-robot-gripper
https://robotiq.com/products/3-finger-adaptive-robot-gripper
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robot arms with the immersion control system. This is necessary for collision
detection when several arms are controlled simultaneously. With this configura-
tion we are now able to simulate the immersive control system under development
without having to adapt the simulation.

4 Experiments with the IRC Fog Services

To evaluate the feasibility of the Sniffbot innovations and the approach in
general, we experimented with the service architecture after deploying the IRC
on an open field (Fig. 3 right).

4.1 Sniffing with a Big Nose

The current implementation of Sniffbot consists of the Warthog robot (Fig. 3
left), a WSN with sensor nodes with arrays of high sensitive Ammonia nano-
sensors, and a Positioning Network. The WSN is able to achieve a high degree
of spatio-temporal sensing, whereas the mobile robot sniffs dangerous gases in
its immediate environment. The Positioning Network analyses data according to
its deployment and identifies a PoI. Also, it coordinates with the mobile robot
to navigate to the region of interest.

The WSN consists of 5 Zolertia RE-Mote revision B motes9, forming a rect-
angular topology with one of the sensor nodes deployed at the center of the
rectangle. To each sensor node, a 64-channel Ammonia nano-sensor is connected
via a serial communication bus (Fig. 7). The sensor nodes are powered by a power
bank and sample their environment at a rate 1 Hz. The node in the middle of the
field serves as a gateway between the sensor network and the PoI Calculating
Service using the MQTT protocol [22] over a WiFi link.

Fig. 12. Left: Samples of NH3 measurements. Right: The end-to-end communication
latency of the wireless sensor network.

9 https://zolertia.io/product/re-mote/.

https://zolertia.io/product/re-mote/
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Latency. We placed a bottle containing Ammonia at one of the sensor nodes.
Figure 12 shows the gas fluctuation when a significant Ammonia concentration
was released into the air. We set up a threshold of 40% relative resistance change
to trigger a PoI event and defined the end-to-end communication latency as
the difference between the time at which the gas sensors detect an interesting
event and the time at which the events arrive at the PoI Detection Service.
Figure 12 shows the boxplot of the end-to-end communication latency for the
5 sensor nodes. The green dash lines represent the mean value and the orange
lines denote the median. We observed that on average, the end-to-end latency
was below 750 ms.

Figure 13 shows the overall system response latency, which is defined as
the time elapsed between the first gas sensor reading an interesting event and
a mobile agent received the corresponding PoI event. The maximum system
response latency was ca. 1600 ms, while the minimum was ca. 678 ms.

Fig. 13. The overall system response latency.

4.2 Sensing with a Drone

The SWCNT-based sensing platform was successfully integrated into the drone
system and the sensing performance in real operational conditions was tested
using a 25% Ammonia solution as gas source. The results are presented in Fig. 14.
The sensing response showed good stability while the drone was standing on the
floor with the propellers on and a slight drift while approaching the gas source
(Fig. 14a). A noticeable increase of around 50% was observed when the drone
approached the gas source indicating the interaction of Ammonia gas molecules
with SWCNTs (Fig. 14b). Then, the sensing response fluctuated while the drone
hovered on top of the gas source demonstrating a reliable detection despite the
air vortex created by the propellers (Fig. 14c). Finally, the response decreased
when the drone was flown away from the gas source (Fig. 14d).

FPGA-based Drone Flying. Sniffbot’s drone system implements several robust
localization and controller algorithms for stable flight operation using a PYNQ-
Z1 board with a Xilinx Zynq-7000 SoC device combining the programmable logic
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Fig. 14. Average sensing response of the SWCNT-based sensors at different stages
during the drone sensing experiment. (a) Drone flying statically before sensing. (b)
Drone flying directly on top of the gas source. (c) Drone hovering above the gas source.
(d) Drone flying away from the gas source.

of an FPGA with a dual-core ARM Cortex-A9 processor. The heavy computa-
tional loads of this system are the ICP scan matcher and the Model Predictive
Controller (MPC) [20]. The latter has a continuous model (nonlinear system) and
uses a simultaneous solution and optimization approach to determine, at each
sampling time, an optimal trajectory of the open-loop variable of the model.
The parallelism of the FPGA is exploited to comply with the drone’s real-time
constraints, achieving a control loop frequency 5 Hz and a mean execution time
of ≈180 ms. Compared to software-only solutions, this is quite favorite: a 5 Gen
i3 processor needs 162 ms and an ARM-A9 core 6 s, while both processors run
at a higher clock frequency than the FPGA accelerator and spend much more
energy.
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4.3 Coupling Autonavigation and Last-Mile Immersion

During our experiments with indoor and outdoor navigation, the hypothesis
could be validated that last-mile immersion is quite important because it is not
easy to autonomously position the Warthog in front of the gas leak so that,
subsequently, it can also autonomously repair the leak. One reason is that the
position needed for repair is not always known at PoI identification time. Also,
if obstacles have to be bypassed during robot navigation, the orientation at
the physical PoI may be different from the orientation calculated, and another
autonomous navigation for correction might delay the start of the repair con-
siderably. Also, it is may not possible to automatically position the actuators at
the PoI because the leak consists of a larger slit or several holes in a pipe, for
which several different Warthog poses for manipulation are required. For these
reasons, we interrupt the navigation 1 m before the PoI and let the immersion
operator control the Warthog with a joystick for the last mile.

Fig. 15. Immersion View. a) View of the stream screen in VR glasses, b) Screen with
human recognized bounding boxes

VR-based Tele-Inspection. Figure 15 a) shows the operator’s perception during
tele-inspection. The observed image rotates in the VR scene depending on the
pose of the VIPER camera and the head of the operator. As VIPER moves,
the viewed image also shifts in the operator’s vision. This enables her to intu-
itively estimate the pose of camera in the remote environment. In addition, the
operator can recognize humans in the remote environment more quickly with
help of bounding boxes, e.g., when searching for injured persons in a buried area
(Fig. 15 b)). For the VR, we need minimum quality requirements of 1280×360 px
and 30 fps. Network configurations and image compression allow us setup a sta-
ble video stream from the VIPER camera to the VR goggles with our minimum
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requirements. Image compression reduces the network bandwidth consumption
by 93% to 96%.

Fig. 16. Delay of UR5e arm on movement of XDK sensor. XDK Pose shows the sensor
data from tracking, UR pose shows the delayed UR5e movement. Data is recorded
synchronously on the operator-PC connected to XDK and UR5e via WLAN.

Tele-Operating the Arms. Tele-operation should not be delayed too much, in
order to keep local and remote scene in synchronisation. Therefore, we have mea-
sured the delay of move-and-replay during arm positioning. Figure 16 shows the
deviation of the movement of an UR5e arm from the movement of an XDK sen-
sor value. The measurement includes motion tracking, data transmission of the
control command to the Warthog, control robot and data transmission of robot
pose back to the operator PC; motion planning and delays from accelerations are
not considered here. Thus, the measurement indicates how an immersion opera-
tor perceives the delay. Figure 16 shows a rotation of one UR5e joint, showing a
movement in one direction (X-axis from 0–5 s) and then in the opposite direction
(5–9 s), with an angle depicted in the Y-axis. In the sequence 0–4.5 s of Fig. 16
an average deviation of the robot to the operator arm position is ≈2.5◦ with an
approximated linear motion of 12◦/s. This results in a delay of approx. 210 ms.
In addition to this delay, there is the delay for the data transport from the XDK
tracking sensor to the operator PC. For sending XDK data, we use the clock
rate of 40 ms at which a stable data transmission could be guaranteed. If we add
the data transmission delay of 50 ms (ping value), the total delay is ≈300 ms,
which is a quite encouraging result for a non-optimized implementation.

5 Comparison to Related Work

Several tasks of a Sniffing IRC have been documented in the literature, but most
approaches do not yet use immersion into remote areas. The task of mobile robot
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olfaction has been recognized widely as important application of outdoor robotic
systems. Several projects and industrial products illustrate sensoric drones for
different gases [30]. Snifferrobotics is a company selling a drone sniffing
methane gas as Technology as a Service (TaaS) [36]. Scentroid offers several
more environmental monitoring services [35], as well as ULC Robotics [40].

Projects combining land robots and drones are less frequent. [5] is a project
on sniffing robots, not only for detection of gas leaks, but also for measuring
gas distribution. The projects, however, do not enclose a human operator in the
loop. The project RoboGasInspector uses a land robot for sniffing gases [6],
but lacks the connection to a WSN as well as immersion. Using a WSN, however,
separates the task of sniffing from the tasks of mapping and navigation, which
has the advantage that several gas leaks can be located at the same time. [39]
reports about a WSN sensing radiation that is deployed by robots in the field.

Immersive telepresence is, for example, investigated in [2]. Tele-robotics is a
specific immersion field with applications in dangerous scenarios. Also the inte-
gration of WSN and tele-robots has been attempted before [43], but not for
sniffing applications. [18] presents an immersive sniffing system for manufactur-
ing, but does not include mobile agents.

6 Conclusion

In this paper, we have investigated a gas-sniffing immersive robot collective com-
bined with a wireless sensor network for tele-monitoring and tele-operating in
dangerous and inaccessible places. In this combination, Sniffbot shows how
future disaster tele-management systems will look like: Sniffbot has a big nose
in form of a self-organizing wireless sensor network, it offers nano-material sens-
ing of Ammonia and Hydrogen Sulfide, it can identify gas leaks in a 2-D and 3-D
environment model, provides autonomous navigation to these points, and enables
the operators to immersively inspect, navigate, and manipulate in the area of
danger. The secret of this disaster tele-management system are several innovative
fog services which even work without a global infrastructure or power grid. We
have presented several experiments with these fog services in the field, showing
that sniffing, navigation, tele-inspection and -operation work fine. With regard
to toxic gas detection, initial results suggest that the system’s overall response
time (SRT ≤ 2 s) is much shorter than the time recommended by the Work
Health and Safety Act for Mines and Petroleum Sites of 2013 (SRT ≤ 10 s) [25].
Alas, since the sniffing IRC is a complex distributed system, many things remain
to be investigated. For example, the initialization of the IRC is a very compli-
cated task which is not automated yet, so that experiments with it are difficult
to conduct, and studies about the operations of the entire collective are missing.
This is an important future work.
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Abstract. Cloud data centres require efficient management of resources
and robust methods that consider SLA violations, node utilisation and
simplify the adaptation decision making process. Thus resource man-
agement should be ideally solved in an online manner. To address this,
approaches have been presented in the literature to set thresholds that
trigger VM migration. One challenge with these approaches is they typ-
ically use node metrics (e.g., CPU and memory) as an indicator of VM
performance and do not factor in VM performance metrics when setting
the CPU migration threshold. A hypothesis is that migrating VMs with-
out factoring in VM performance metrics, e.g., response time can lead
to either early or delayed migration of VMs. We present an approach to
discover the CPU utilization level for VM migration dynamically. This
approach monitors VM response time and discovers the CPU threshold
where response time would increase beyond a defined SLA level and uses
this threshold for VM migration. We use reinforcement learning (RL) to
learn when it is rewarding to migrate a VM. The RL reward function
drives a policy towards high CPU utilisation and attaches a penalty to
overachieving SLAs. We use simulation to evaluate the approach and
compare it to 4 heuristics: Static, Interquartile Range, Median Absolute
Deviation, Local Regression. The results show a significant reduction in
SLA violations and an increase in CPU utilization of active nodes.

Keywords: Dynamic CPU threshold · Reinforcement Learning · VM
Migration threshold

1 Introduction

Platform as a service (PaaS) is a service model where Cloud Providers (CPs) pro-
vide hardware, software stacks and runtime environments for application devel-
opment. Customers have control over the development environment, including
configuration. CPs host the hardware and software on its infrastructure and
remove the need for customers to maintain the application stack, runtime envi-
ronments, operating systems and databases. To provide high levels of availability
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and reliability, CPs need to adapt the infrastructure regularly, which is typically
comprised of VMs.

However, the VM migration process can be expensive, and thus there is a need
to balance the benefit with the cost of the migration. This raises the challenge
of deciding when VM migration should be invoked to achieve this balance. The
constituent parts of VM migration include: (i) node overload detection, (ii) VM
selection for migration from the overloaded node, and (iii) VM placement on
a different target node. This is shown in Fig. 1. From our earlier work [19], we
have assumed that a Management Algorithm (MA) is responsible for deciding
how incoming workloads are assigned to infrastructure resources by regularly
assessing the satisfaction of such assignments in achieving a given SLA. The time
complexity of the MA influences the frequency of this assessment; the lower the
complexity, the more frequently the algorithm can be executed. The Management
Framework (MF) enables the MA to execute by providing standard functionality,
such as hierarchy level management, the scope of the infrastructure under control
or aggregation of utilisation metrics. The combined functionality of the MA
and MF results in workloads executing on infrastructure nodes and dynamic
reassignment of workloads to resources. In this paper, we focus on node overload
detection.

Fig. 1. Cloud Resource Management process

The overload detection methods used in the literature fall onto reactive,
proactive and hybrid engagement [20]. Reactive approaches [2,14,30] invoke
adaptation when a monitored metric, e.g. CPU utilisation, reaches a specific
threshold or when an event is received, such as new VM placement or termina-
tion request. Proactive approaches [5,24,33] predict what demands will be placed
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on the infrastructure and invoke adaptation ahead of the expected resource con-
tention point. Hybrid approaches [4,22] utilise proactive methods and combine
these with reactive methods to engage adaptation for long and short term time
scales.

The challenge we focus on is in reactive approaches, and these typically use
ad hoc manually determined policies, such as threshold-based that are popular
due to their simplicity. A key element to the threshold-based approach is the
assumption there is a high chance that an overload occurs when a node’s uti-
lization exceeds the set threshold [1,3,15,25,29,39]. Thus, the threshold level
creates an association between a node metric, e.g. CPU utilization, and SLA
violation. However, the threshold where SLA violations can occur varies based
on the application and the node configuration. Creating a single threshold for
all applications and node configurations is incredibly difficult [13]. While the
current approaches can reduce overload, they can limit the utilization gains that
can be achieved as they leave unused slack for each node. Additionally, thresh-
old approaches can trigger unnecessary migrations as exceeding the set threshold
does not necessarily equate to an SLA violation [12]. In addition to heuristics,
other techniques have been used for node overload detection; [36] propose a
multiobjective optimization that considers the CPU and memory utilization of
VMs and nodes. The authors in [37] propose a bio-inspired method based on
node susceptibility for host overload detection, and the authors in [29] propose
a classical control theory approach.

Application performance is a measure of how well a service performs, and the
metrics for measuring this include response time [16,18]. Several CPs have mon-
itoring services, including AzureWatch from Microsoft and CloudWatch from
Amazon, that enable monitoring of VM performance hosted on their computing
and storage cloud services [16]. We focus on cases where the response time of
web-based applications forms part of the SLA between the customer and the CP.
The response time can be measured and reported on using the CPs monitoring
services.

We hypothesise that including VM performance in the migration decision
making will lower the number of SLA violations. In this paper, we incorporate
VM response time in a dynamic threshold detection approach and use RL to
detect a rewarding threshold level to use by receiving feedback from the VM
migration process. The main contributions of this paper are the following:

1. A coordinated migration method that automates the setting of CPU thresh-
old, achieving lower SLA violations and increasing node utilization.

2. A model-free reinforcement learning algorithm for online VM migration that
incorporates VM response time in decision making and removes human knowl-
edge to set CPU threshold.

3. Evaluation of the proposed approach using simulation, appropriate workloads
and a performance comparison against other approaches in the literature.

The rest of this paper is organised as follows. Section 2 describes related work.
Section 3 describes the proposed reinforcement learning algorithm. Section 4
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presents an evaluation of our implementation and compares it to four other
heuristic dynamic threshold approaches. In Sect. 5, we conclude and discuss
future work.

2 Related Work

Reactive approaches are typically implemented using threshold techniques
[12] by triggering adaptation when a node’s utilization reaches a given level.
Beloglazov and Buyya [9] proposed a collection of adaptive policies for set-
ting the upper thresholds: Interquartile Range, Median Absolute Deviation,
Local Regression, and Robust Local Regression. The thresholds can be calcu-
lated through statistical analysis of historical node utilisation metrics. Other
approaches include adaptive heuristic algorithms [39]. The authors in [26] pro-
posed an overload and underloaded node detection. A node is deemed overloaded
if the actual and the predicted total CPU usage of 7-time intervals ahead exceed
the defined overload threshold. The authors in [25] propose multiple exponen-
tial weighted moving average algorithms to detect overloaded nodes. The authors
also incorporated a probabilistic approach to counter the uncertainty of the long-
term predictions and the cost of applying the VM migration. Other proposals
include a regression-based algorithm to create an upper threshold for detecting
overload [39]. The approach automatically adjusts the upper CPU utilization
threshold based on the historical CPU utilization of the nodes. The authors in
[15] use three upper CPU utilization thresholds that are set dynamically based
on the conditions of CPU utilization. Other approaches attempted to create a
composite metric for overload detection, that combines additional metrics to
CPU utilization, such as memory and network BW utilization [1].

However, these approaches did not incorporate VM performance, such as
response time in setting the node CPU threshold.

Cloud environments are dynamic and exhibit regular changes in the structure
of workloads and access patterns. Aptly, Reinforcement learning (RL) can oper-
ate online, learn dynamically from interacting with a changing environment, and
use new information to enhance decision making. RL approaches do not require
prior knowledge of the optimization model and are not coded explicit instruc-
tions relating to which action to take next; instead, they learn actions through
feedback from the environment. These features make RL well suited to cloud
resource management [27]. RL is utilized in multiple approaches related to cloud
resource management [6,10,28,31], and here we focus on some of the approaches
in the literature that use RL to reduce the complexity of setting adaptation
thresholds.

The authors in [23] aim to remove the need for human knowledge to define
adaptation rules by using using a fuzzy rule-based RL algorithm that learns and
modifies fuzzy rules at runtime. The author’s approach combines Q-learning, an
RL algorithm, with fuzzy control where the fuzzy control facilitates human rea-
soning and the Q-learning allows dynamic rules adjustment. The authors in [7]
also aim to adapt the configuration of an application dynamically. They propose
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to use RL to manage threshold-based rules, where one controller modifies an
application configuration, and another monitors the adaptation reward. In con-
trast to the approach in [23], the author’s approach requires human knowledge
to initialise the rules.

The authors in [32] propose to manage VM resource configurations by mon-
itoring performance feedback from each VM. The authors aim to optimize the
VM performance by learning the VM resource allocation that enhances metrics
such as VM response time and throughput by using RL. The reconfiguration
process happens periodically on a predefined time interval. A controller fetches
the VMs current state and computes valid actions. The RL state is defined as
a composite of VM memory size, scheduler credit and the number of virtual
CPUs assigned to each VM. The RL method chooses an action and monitors
the reward. Actions adjust resources such as the CPU and memory assigned
to a VM. The work in [11] proposes CoTuner, for coordinated configuration of
VM resources and parameters of their applications. Each VM has an agent that
monitors the VM and adapts its configuration to the environment. Reconfigura-
tion actions take place periodically at predefined time intervals. The RL method
receives performance feedback and updates the VM and application configura-
tion. For VM configuration, CoTuner can adjust both CPU and memory VM
assignments. For applications, CoTuner can change parameter settings.

Similar to our proposed approach, the discussed methods use RL to dynami-
cally change a threshold configuration to optimise performance and reduce SLA
violations. In contrast, our approach uses a reduced RL state instead of tracking
each VM CPU and memory configuration. We track the node CPU utilization
as our primary RL state, resulting in a smaller RL state space and faster con-
vergence compared to approaches with a more dense RL state.

This paper develops an RL-based controller to solve the challenge of deter-
mining a node CPU utilization threshold for VM migration and combine Q-
Learning with an aggregated state action space to address the curse of dimen-
sionality in Q-learning. We focus on node overload detection and aim to find
the CPU utilization at which VM response time will start to degrade beyond a
defined SLA target.

3 Proposed Reinforcement Learning Management
Algorithm

In our previous work [19], we presented a novel hybrid hierarchical decentralized
management framework that rapidly provides the information needed for scale
decision making. In this hybrid architecture, higher-level controllers assist lower
decentralised controllers. The lowest level controller manages a single node and
enables it to be completely autonomous and cooperate with other autonomous
nodes to facilitate VM migration. Nodes can receive escalation requests from
higher-level controllers to accommodate a migration, and each node can choose
to accept or reject these requests.
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In this paper, we add an agent that implements our RL approach to each
node in the infrastructure and combines this with our previously proposed hybrid
hierarchical architecture. This creates RL agents that are both autonomous and
cooperate in managing the data centre infrastructure.

Fig. 2. Granular CPU utilization state

3.1 State

Our goal is to address the challenge of setting a CPU threshold to invoke VM
migration. We aim to regularly discover the node CPU utilization that returns
the highest reward for performing a VM migration. To achieve this, we need to
track nodes CPU state and associate a reward for migrating at each CPU state.
However, the granularity of capturing the CPU state is crucial in avoiding the
high dimensionality challenge in RL.

We use a state reduction approach and aggregate node state to groups, with
each group based on their CPU utilisation, as shown in Fig. 2. By default, we
start by creating ten groups, 10% each, using Eq. 1, which creates groups from 0
to 9. For example, State1 means the node state has an average CPU utilisation
of 10% to 19%. State6 means the node has an average utilisation between 60%
and 69%.

stateGroup =
avgCpuUtilization(node)

stateGroups
(1)

We hypothesise that a fine-grained tracking of CPU utilization between 90% and
100% will enable our RL approach to detect a more optimal migration threshold,
compared to a single group for the 90%+ CPU utilization. We apply the fine-
grained approach on 90% and above to avoid an increase in the RL state space,
which could impact convergence speed.

Periodically, each node additionally classifies the state for all running VMs
as Normal or Stressed, and we use response time as a measure for application
performance [17]. To account for variation in response time during the lifetime
of an application, we use an approach similar to [28] and apply linear regression
on collected response time during each monitoring period. A VM is classed as
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stressed when the 95th percentile of response time during a monitoring period
is above a defined SLA threshold that by default is 500 ms. We categorise the
state of VMs as Normal when the 95th percentile of the response time is below
the defined SLA level. The classification of state occurs during the regular node
check. When a VM is stressed, the RL agent always engages the migration mech-
anism and chooses an action, using the method described in the next section.
When VMs are in a normal state, the agent will choose an action using an ε-
greedy policy [34] to decide if migration should be performed on this node state.
This means with a small probability of ε, the agent will choose to explore and
not exploit by randomly selecting an available action. This leads the agent to
learn the node CPU utilization with the highest reward for migration, which the
agent exploits in future cycles.

3.2 Actions

Each node contains an RL agent in our architecture that carries out decision
making. The RL agent performs actions to achieve QoS metrics and increase
infrastructure utilization. As part of the decision making process, an RL agent
needs to identify a new target node for the VM being migrated. The RL agent
aims to find the actions that maximise reward and chooses a target node based
on a CPU utilization group 0 to 9, based on [21]. When the RL agent chooses
an action target2, it means migrating the VM to a node with CPU utilisation
of 20% to 29%. Once an action is selected, we use a greedy policy to select
the first available node that fits the action group. Typically, the agent chooses
an action that maximises future reward from the available actions. The agent
receives a reward after each action, which is described in the following section.
This reward is used to update the node’s state-action value pair using Eq. 2 [38],
where α is the learning rate and determines how the agent learns from recent
updates. γ is the discount factor used to dampen the reward’s effect on the
agent’s choice of action. MaxQ(st+1, at+1) returns the maximum estimate for
the future state-action pair.

Q(st, at) ← Q(st, at) + α[rt + γMaxQ((st+1, at+1) − Q(st, at))] (2)

3.3 Reward

The goal for RL is to maximise rewards through incrementally mapping states
to actions. We track the achieved response time when the agent takes action
at varying levels of CPU utilization and calculate a reward post-action using
Algorithm 1. When currentRT is a value below or equal to the TargetRT and
thus satisfying SLA (line 2), we assign varying reward levels. When the action is
a no-action (line 3), we give the maximum reward of 1 as no migration cost was
incurred and SLA is met. This helps the agent learn that no-action is reward-
ing for the given node state and dynamically learn the threshold to perform a
migration.
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When the VM was not meeting its SLA target, as in stressed (line 5), and
is now meeting SLA, we want to assign a utility that reflects this as a positive
action. Additionally, we want the agent to increase the utilization of target nodes
by choosing a target that can host additional VMs and meet SLA. For example,
when the TargetRT is 0.5 and the currentRT is 0.4, the reward will be 0.8.
When currentRT is 0.3, the reward is 0.6, meaning a higher reward where VMs
response time is closest to the target SLA. This has the effect of the RL agent
choosing higher utilization target groups.

To learn a dynamic threshold, the RL agent will perform exploratory actions,
including no-action and VM migration, using an ε-greedy policy to Q. When the
agent migrates a VM that is not stressed (line 8), we want to assign a reward
that represents closeness to targetRT, with the agent receiving a higher reward
when the previousRT of the VM is closest to TargetRT. As we use previousRT in
the reward, this iteratively helps the agent learn the node state that maximises
reward and thus a threshold for migration. For example, if the agent migrates a
non-stressed VM and the previousRT is 0.4, TargetRT is 0.5, then reward is 0.9.
This would be a rewarding action for the given node’s state. However, a reward
of 1 would have been given in a no-action. This would iteratively help the agent
discover a dynamic threshold by choosing the more rewarding action.

When currentRT is above the TargetRT for the VM, thus causing SLA vio-
lation, we penalise the action (line 10) by using a clamp function to a maximum
of −1. This helps the agent learn the actions that can cause SLA violations, such
as migrating to a highly loaded target node or performing a no-action when the
source is highly loaded. By receiving a negative reward, the agent learns the
node state, thus threshold, that cause SLA violation.

Algorithm 1 helps the agent to learn actions that maximise the reward for a
given node state, rewarding actions that meet SLAs, increasing CPU utilization
and penalising actions that violate SLAs.

Algorithm 1. VM Reward
1: procedure VMreward(VM)
2: if currentRT ≤ TargetRT then
3: if VM.action == NoAction then
4: reward ← 1
5: if VM.wasStressed() then
6: reward ← currentRT

TargetRT

7: else
8: reward ← previousRT

TargetRT

9: else
10: reward ← clamp(TargetRT − currentRT, -1)
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4 Experimental Setup and Evaluation

We use simulation to facilitate the rapid development of experiments of large
data centres. We have selected DCSim [35] because of its extensibility. We utilise
the hybrid hierarchical decentralized architecture from our earlier work [19], and
combine it with a new dynamic threshold detection using RL.

4.1 Experiments

This section evaluates our proposed dynamic threshold discovery approach and
its ability to improve SLA violations and node CPU utilization. We consider
our proposal under varying workloads and compare our proposal to several over-
load detection approaches that are effective in the literature. These are Static,
Interquartile Range, Median Absolute Deviation, Local Regression. Each of the
dynamic threshold approaches [9] is combined with a VM and target selection
policy. We additionally compare the proposed approach to our earlier work [21]
(RL1). Table 1 shows how we combine these in our experiments.

For workloads, we use public traces included in DCSim: Google 1 and Google
3. Additionally, we use a mixed workload, which comprises traces from Google
1, Google 3, Clarknet and EPA, which are included traces in DCSim. For the
RL parameters in Eq. 2, we use α = 0.5, and γ = 0.7 [8].

Table 1. Approaches used in experiments

Comparison
Approach

Overload Detection VM Selection Target Selection

Static Static [9] Highest CPU Heuristic [9]

IQR IQR [9]

MAD MAD [9]

LR LR [9]

RL 1 VM Response Time [21] Stressed VM RL 1

RL 2 VM Response Time &
Dynamic Threshold
(Proposed)

Stressed VM &
Highest CPU

RL 2

4.2 SLA Violations

SLA is the agreement between a CP and a customer and typically specifies a
minimum quality of service threshold. In our case, this is VM response time,
which we regularly collect for all VMs, and we use it to evaluate if VMs are
meeting their SLA targets.

This experiment runs the Google 1, Google 3 and Mixed workloads [35] to
evaluate how the stress detection approaches perform on SLA violations. We use
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Fig. 3. Number of SLA violations: a) Google 1, b) Google 3, c) Mixed workload

an arrival rate of 90 new applications per hour for this experiment, with each
application running for 10 h before shutting down. The experiment simulates
24 h of elapsed time, and we use 500 nodes in this experiment.

The results for Google 1, Google 3 and a mixed workload are shown in Fig. 3a,
3b and 3c respectively and show RL significantly reducing the number of SLA
violations for all workloads. On the Google 1 workload, RL2 achieved fewer
migrations against all approaches as it incorporates the VM response time and
thus directly focuses on controlling the VM performance and migrates VMs
when it is close to entering a stressed state. On the Google 3 workload, RL2
achieved fewer migrations than all approaches except RL1, by 12%. On the
Mixed workload, RL2 achieved fewer migrations than all approaches except RL1,
where it has a comparable number of migrations. The additional migrations in
RL2 are due to the exploratory discovery of the migration threshold. They occur
at a low probability (ε) and tend to be distributed throughout the lifecycle of a
VM, and therefore have no impact on SLA violations.
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Fig. 4. Energy consumption (KWh): a) Google 1, b) Google 3, c) Mixed workload

4.3 Energy Consumption

The workloads and VM arrival rates, described in the previous section, create a
load that requires more than 70% of the CPU resources of active nodes. DCSim
can track total energy consumption within the simulated data centre by mapping
CPU utilisation of a node to a defined energy consumption amount and tracking
this accumulatively for all nodes. The energy consumption results for Google
1, Google 3 and Mixed workload are shown in Fig. 4a, 4b and 4c respectively
and show the proposed approach consistently consumed less energy compared
to the dynamic threshold heuristics. On the Google 1 workload, our approach
(RL2) used 20% less energy than RL1. However, RL2 used 7.9% more energy on
the Google 3 workload. This difference is likely due to the number of performed
migrations, where RL2 consumes more energy when it performs more migrations,
which is the case on the Google 3 workload. This hypothesis is further supported
by the result for the mixed workload, where RL1 and RL2 have comparable
energy consumption and number of migrations. RL 2 performs some migrations
to discover a dynamic threshold, and while these do converge, the discovery
process will cause some migration and powering on some nodes, leading to energy
consumption. The agent behaviour typically offsets this to increase the utilization
of nodes and delay VM close to SLA violations, as exhibited in Google 1, where
RL 2 used 27% fewer active nodes than RL1.
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4.4 Learning Threshold Assessment

Our approach aims to discover a dynamic threshold for migrations, which delays
the migration close to the point where SLA violations would start to occur. Our
RL agent aims to perform no-action on VMs up to the point they would enter
a stressed state and accumulate reward as described in Sect. 3.3. Figure 5 shows
the accumulated learning of agents during the Google 3 workload for different
states and actions. The RL agent accumulates Q-value through being in a state
and executing a particular action, thus a Q-value for every state-action pair at
any given time. States visited less frequently will accumulate rewards slower than
more frequent states. Figure 5a shows the agent reward for a no-action at CPU
utilization 91% and 92%. These are typically higher than the reward the agent
receives for migrating at the same CPU utilization, shown in Fig. 5d, and this
leads the agent to perform more no-action. As the CPU utilization increases,
we examine some variability on the received reward, shown in Figure 5b. This
becomes more pronounced on higher CPU utilization levels of 97% and 98%
suggesting this is the threshold during this experiment, shown in Fig. 5c. At
99% CPU utilization, the agent receives a negative or low reward for a no-action
and a higher reward for performing a migration, and will choose the migration
at this CPU utilization.

Fig. 5. Q-value for different actions at various CPU utilization levels: a) no-action 91%
& 92%, b) no-action 93% & 94%, c) no action 97% to 99%, d) migrations at 90%+
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Due to limited space on the paper, we have omitted the results for utilization
0 to 80%. These levels occur more frequently and converge rapidly within a few
hours of the learning. This leads our RL agent to execute more no-action and
results in fewer VM migrations than the dynamic heuristics.

5 Conclusion and Future Works

This paper proposes a dynamic approach to setting the CPU threshold level
used to migrate VMs, using RL. Our approach can learn the migration point
dynamically based on the current environment and adjust the migration point
when there are changes in the managed environment. Through experimentation,
we have shown that the approach can reduce SLA violations and can typically
find a more optimal migration point and increase node utilization, compared
to four other heuristics from the literature: Static, Interquartile Range, Median
Absolute Deviation and Local Regression.

Our approach does not require a model of the environment or managed VMs,
making it likely to perform well in executing a range of VMs. However, it is
currently limited by using a single dynamic threshold for the entire node, irre-
spective of the specific behaviour of the individual VMs running on the node.
A more robust approach could extend our mechanism and track VMs CPU to
relate the properties of the individual VMs to the node’s CPU. This could further
optimise our proposed method by discovering lower CPU utilization points that
reduce SLA violations and higher CPU utilization points that further increase
node utilization. We aim to investigate this in future work.
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Abstract. The security of Cloud applications is always a major con-
cern for application developers and operators. Protecting their users’
data confidentiality requires methods to avoid leakage from vulnerable
software and unreliable cloud providers. Recently, hardware-based tech-
nologies emerged in the Cloud setting to isolate applications from the
privileged access of cloud providers. One of those technologies is the Sep-
aration Kernel which aims at isolating safely the software components
of applications. In this article, we propose a declarative methodology
supported by a running prototype to determine the partitioning of a
Cloud multi-component application in order to allow its placement on
a Separation Kernel. We employ information-flow security techniques to
determine how to partition the application, and showcase the method-
ology and prototype over a motivating scenario from an IoT application
deployed to a central Cloud.

Keywords: Data Confidentiality · Separation Kernel ·
Information-flow Security

1 Introduction

The security aspects of Cloud Computing represent a major concern of both
fundamental research and development, aiming at protecting data confidential-
ity and integrity of the applications running on the Cloud [21,28]. Some of those
applications are composed of large codebases that rely on third-party software
subject to frequent updates or short time-to-market. This makes it difficult to
verify or certificate the security assurances of the released software, also expos-
ing it to bugs that lead to exploitable vulnerabilities. Moreover, application
operators exploiting the Cloud rely on cloud providers. Cloud providers deliver
hardware and software infrastructure capabilities maintaining high privileges on
the access to the infrastructure [8]. From the data security point of view, cloud
providers cannot be considered fully reliable, e.g. a malicious insider could abuse
its access rights to steal secret information [29].
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To protect applications data we consider the following scenario to place a
multi-component application on the Cloud. On one hand, we want to isolate
the components of an application in order to avoid leak of sensitive data by
exploiting vulnerabilities of some components. On the other, we want to prevent
access to the data of the application by unreliable cloud providers. To fulfill
those requirements, application developers can exploit Trusted Execution Envi-
ronments (TEEs) [1,2,7] to isolate the components of applications in domains
allowing the data flow only using explicit communication channels and to elude
the privileges of the hardware platform providers. TEEs provide in the Cloud
the same memory and register isolation that is given by the Separation Kernel
(SK) technology [23] In order to use these technologies, developers must decide
which components should be grouped in the same domain, i.e. how to find a
partitioning of the application to avoid data leaks. Given that the problem of
how to partition an application is not dependent on the hardware that isolates
the domains, in the rest of our discussion we refer to SKs as the supporting
technology that comprehends TEEs and other similar technologies.

In this article, we tackle the partitioning problem employing information-flow
security [24] methodologies (i) to understand whether the software components
leak sensitive data outside the SK and (ii) to partition the application in order
to avoid data leaks between components hosted on the same SK domain. We
call partitionable those applications that do not leak data outside the SK, and
we aim at finding a minimal eligible partitioning of such applications, namely a
partitioning with the minimum number of domains that avoid data leaks.

Our contribution consists of:

(a) The definition of a declarative model to represent a multi-component applica-
tion exploiting information-flow security to discriminate data confidentiality
and to check whether the components manage their data without leaks,

(b) The (formal) definition of partitionable application and of the eligible parti-
tioning problem, and

(c) A prototype of the above, SKnife1, implemented in Prolog, to determine the
minimal eligible partitioning of a partitionable application and an exten-
sion of the prototype capable of determining relaxed constraints of a non-
partitionable application in order to be able to find the eligible partitioning.

The rest of this article is organised as follows. After giving background infor-
mation and describing our motivating example (Sect. 2), we illustrate SKnife

methodology and implementation (Sect. 3), which is then used to solve and dis-
cuss the motivating example (Sect. 4). After discussing some closely related work
(Sect. 5), we conclude by pointing to some directions for future work (Sect. 6).

2 Background and Motivating Example

In this section, we first introduce basic notions behind the methodologies
employed in our work and our motivating example.
1 Open-sourced and freely available at: https://github.com/di-unipi-socc/sk.

https://github.com/di-unipi-socc/sk
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2.1 Background

Scenario. We consider the public Cloud setting, where the cloud providers
deliver hardware and software infrastructure to their customers. The applica-
tions are multi-components. Each software component of the application has a
set of security-relevant characteristics, properties or software dependencies of the
component, e.g. the use of a non verified third-party library. Those character-
istics determine the degree of trust of a component in order to establish if the
component can manage its data without leaks. The usage of software with a low
degree of trust can lead to attacks that compromise the confidentiality of the
data of an application. Hence, application developers need mechanisms (i) to
identify how reliable software manage sensitive data, and (ii) to securely isolate
components in order to avoid data leaks from unreliable software and (iii) to be
protected by unreliable cloud providers.

Separation Kernels. An SK is a security kernel that creates an environ-
ment that is indistinguishable from a distributed system, where information can
only flow from one isolated machine to another along explicit communication
channels [23]. SKs are hardware or software mechanisms that partition avail-
able resources in isolated domains (or partitions), mediate the information flow
between them, and protect all the resources from unauthorized accesses. In the
Cloud setting, hardware-based technologies (TEEs) [1,2,7] are emerging to allow
cloud providers customers to create isolated memory domains for code and data,
which are also not accessible by the privileged software that is controlled by the
cloud provider. Our approach is focused on the data separation given by SKs,
we do not consider other sophisticated mechanisms offered, like the separation
of resources and the timed scheduling of domains.

Information-Flow Security. In information-flow security, labels are assigned
to variables of a program to follow its data flow in order to verify desired prop-
erties (e.g. non-interference [25]) and avoid covert channels. Labels are ordered
in a security lattice to represent the relation of the labels from the highest ones
(e.g. top secret) to the lowest ones (e.g. public data). Our goal is to prevent that
data with a certain label (e.g. high) do not reach an external component that
has a lower label (e.g. low). A violation of this security property indicates a data
leakage.

Threat Model. Our goal is to protect the data confidentiality of multi-
component Cloud applications. Vulnerable software components can be attacked
by external attackers and by unreliable cloud providers that can exploit their
superuser privileges on the infrastructure. Application developers are assumed
trusted, the information they give about the application to protect is consid-
ered reliable. Our Trusted Computing Base (TCB) leverages on the SK technol-
ogy to isolate the software components of the application in separate domains,
guaranteeing that the information flows only along the explicit communication
lines given by the application developers and avoiding other side channels. This
model is consistent with threat model of several Trusted Execution Environments
(e.g. [26]).
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2.2 Motivating Example

We consider a Cloud centralised Internet of Things (IoT) system that collects
data sampled by the sensors and send to the Cloud application, where data
is stored and used to decide which commands to issue to the actuators. The
users of this application can make requests on the status of the devices and can
configure remotely the application. Nowadays, those kinds of applications are
well established in the home automation field [5], services-devices composition [6]
and platforms offered by Cloud providers [3,4].

Fig. 1. Application architecture.

The architecture of the example application is depicted in Fig. 1. We consider
six software components and two hardware components – depicted in grey – that
are used by the application.

All the inbound communication passes through the Network Interface and
is received by the API Gateway. Authenticator decrypts and authenticates
the inbound data and forwards it to the intended recipient. Application users
can send General requests and configuration requests. The former are
requests of explicit actuation or data previously sampled and are delivered to the
App Manager, which is the main component of the application that implement
the business logic. The latter are requests of reading or updating the current
application configuration and are delivered to the User Configuration com-
ponent, which manages the configuration of the application. The IoT devices
send either sampled data or events, which are dispatched to the App Manager
component. The outbound communication consists of responses to the users
based on their requests or IoT commands from the App Manager toward the IoT
devices. To store the relevant data of the application – IoT Measurement and
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User Preferences – the application relies on the component DB, a database
that is the only one connected to the Disk. Finally, AI Learning is a machine
learning module that uses IoT Measurement and User Preferences to perform
predictions and support the decision making of the App Manager.

Each component has explicit links to other components, its own data –
depicted in the lower boxes of the components –, and its relevant character-
istics – depicted in the upper boxes of the components. For instance the compo-
nent AI Learning has data IoT Measurement and User Preference, its rele-
vant characteristic is AI Framework and it is linked to App Manager and User
Configuration. The characteristics are properties, third-party libraries etc., all
things that impact on the trust of the components. For instance, the Disk is
owned by the Cloud provider that in our setting make the component unreli-
able. The measure of the trust level of components is mandatory to determine
if they can manage their data in order to avoid leaks. For instance, the API
Gateway must be able to manage its data to avoid the leak of such data toward
the Network interface. The dotted arrow between User Config and Disk rep-
resent a link consisting of an alteration of the application architecture. Figure 1
represents two different application architectures with only that link as a differ-
ence. The base application – identified as iotApp1 – does not have the dotted
link. The modified application – identified as iotApp2 – has the dotted link. We
will use those two slightly different architectures in Sect. 4 when discussing the
partitioning of the two applications.

This application results in a large codebase, which includes the operating
system, communication stacks, AI frameworks, etc. It may also require frequent
updates or short time-to-market. These factors make it hard to verify or certifi-
cate the security of the released software. Here, we propose to assign labels to
the relevant characteristics of the application to determine the level of trust of
software components. We also use the labels for the data of the application in
order to establish a direct relationship between data and the trust of the software
components. Here we adopt the security lattice of Fig. 2, modelling the labels
pertaining to certain sensitive data from top (i.e. secret) to low (i.e. public), and
trusted characteristics from top (i.e. highest trust) to low (i.e. not reliable). The
labelling is represented in Fig. 1 by the letters between brackets placed near the
data and characteristic names, where L stands for low, M stands for medium, and
T stands for top.

Fig. 2. Example security lattice.

A component having characteristics con-
sidered unreliable by the application devel-
oper is not able to manage secret data.
This could cause a leak of its data toward
the directly connected components or toward
the software components hosted in the same
isolation environment, i.e. container, virtual
machine, SK domains. For instance, if the
DBMS used by DB is not reliable – either because it is malicious or because it
has vulnerabilities – the data of DB can leak toward the Disk, component owned
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by the Cloud Provider. Furthermore, if DB is isolated in the same SK domain of
API Gateway (assuming a unreliable Net Library), the leak of data could flow
from the DB to the Network Interface through the API Gateway.

We emphasise again that we aim at protecting data confidentiality of appli-
cations placed on the Cloud finding eligible partitionings, i.e. grouping the soft-
ware components in non-empty subsets that allow placing the application in SK
domains in such a way that the data and trust of the components are homoge-
neous in every domain, avoiding that less trusted components share the envi-
ronment with components that manage sensitive data. For instance, we already
discussed that AI Framework is a library of AI Learning considered not reli-
able, it may contain malicious code or its vulnerabilities may be exploited by
an external attacker. Placing all the software components in the same environ-
ment (e.g. domain or virtual machine) exposes the data of the application to be
read by AI Framework and sent outside the environment. Partitioning the appli-
cation components to isolate their data and exploiting SKs isolation mitigates
those kinds of threats.

Moreover, we want to reduce the number of domains used by the eligible
partitioning to reduce the SK overhead that can heavily impact the application
performance. For example, switching domain during the execution has a cost in
terms of time that is influenced by the sanitising of used resources and by the
domains scheduling algorithm of the SK. This kind of situation discourages the
creation of a high number of domains. For this reason, we aim at finding the
minimal partitioning, the eligible partitioning that creates the lowest number of
domains.

3 Methodology and Prototype

This section describes the methodology which allows us to determine an eligible
partitioning of an application onto an SK. We also discuss the Prolog2 prototype
SKnife supported by the methodology through simple examples excerpted from
Sect. 2.2.

3.1 Modelling Applications and Labelling

Application developers model their application as in

application(AppId, ListOfHardware, ListOfSoftware).

where AppId is the application identifier, ListOfHardware is the list of hardware
components interacting with the application, and ListOfSoftware is the list of
software components to place on the SK.

Example. The iotApp1 application of our motivating example is declared as
2 A Prolog program is a finite set of clauses of the form: a :- b1,...,bn. stating that
a holds when b1 ∧ · · · ∧ bn holds, where n≥ 0 and a, b1, ..., bn are atomic
literals. Clauses with empty condition are also called facts. Prolog variables begin
with upper-case letters, lists are denoted by square brackets, and negation by \+.
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application(iotApp1, [network, disk],[userConfig, appManager,
authenticator, aiLearning, apiGateway, db]).

Software and hardware components are declared as in

software(SwId, ListOfData, ListOfCharacteristics, [LinkedHW, LinkedSW] ).
hardware(HwId, ListOfData, ListOfCharacteristics, [LinkedHW, LinkedSW]).

where SwId and HwId are the unique identifiers of each component,
ListOfData is the list of names of the data managed by the component,
ListOfCharacteristics is the list of names of the component characteristics,
LinkedHW is the list of linked hardware components and LinkedSW is the list of
linked software components.
Example. The db and disk components are declared as

software(db, [iotMeasurements, userPreferences, cryptedData],
[dbms], ([disk],[userConfig, managementLogic])).

hardware(disk, [cryptedData], [fromProvider],([],[db])).

Application developers must also declare a security lattice formed by ordered
labels and they have to label the relevant data of the application and the relevant
characteristics of the components. The higher is the label of data, the higher is
the secrecy of the data. Similarly, the higher is the label of a characteristic,
the higher is the trust of the characteristic. We call the labels assigned to data
secrecy labels and the labels assigned to characteristics trust labels.

Every data and characteristic can be labelled using

tag(Name, Label).

where Name is the name of the data or characteristic to be labelled and Label is
the assigned label. Obviously, the labels must be part of the lattice.

Example. The security lattice of Fig. 2 and the label of the data and the char-
acteristics of the Disk are declared as

tag(cryptedData, low).
tag(fromProvider, low).

which represents cryptedData data with low secrecy label and fromProvider
characteristic with low trust label.

3.2 Eligible Partitioning

Our methodology and SKnife as well assign to every component a pair of labels,
one indicating its secrecy level and one indicating its trust level. A component
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is trusted if its trust label is greater or equal3 than its secrecy label, otherwise,
it is considered untrusted. A trusted component is able to manage its data with-
out the risk of leaking them. The labelling of a component is performed by the
predicate labelC/3 of Fig. 3, using the lists of data and characteristics of the
component. The secrecy label is determined by the highest label of its data in
order to consider the most critical data managed by the component. The trust
label is determined by the lowest label of its characteristics because the worst
characteristic could compromise the trust of the component, e.g. a component
using a simple logging library and a certified encryption software could be endan-
gered by a bug in the former one. A component without relevant characteristics
is considered reliable and its trust label is the highest one of the security lattice.
We choose this level of granularity (i.e., the developer labels data and charac-
teristics instead of directly labeling the components) to have a better insight of
the application and to allow advanced features as the one that will be described
in Sect. 3.3.

Fig. 3. The labelC/3 predicate.

Untrusted components can leak their data to directly linked components. If
such components have a trust label lower than the leaked data they can propa-
gate the leakage through their links. If such data reach a hardware component,
then an external leak occurs. An external leak is a path from an untrusted soft-
ware component to a hardware component where all the components of the path
have the trust label lower than the secrecy label of the first software component
of the path. The presence of such paths indicates the potential for a data leakage
from an untrusted component toward the outside of the SK that is not avoidable
by the partitioning.

We say that an application is called partitionable is there is no leakage out-
side the SK: i.e., all its hardware components are trusted and all its untrusted
software components do not have an external leak of data.

The predicate hardwareOk/1 of Fig. 4 checks that all the hardware compo-
nents of the application are trusted, which avoids hardware attacks that cannot
be countered by the SK partitioning. The predicate recursively scans the list of
hardware components to check their labelling. Initially, information of a single
component is retrieved (line 2), then the labelling of the hardware component
is determined (line 3). The predicate checks for the component trustability (line

3 All the comparisons between labels are based on the ordering of the security lattice.
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4), where gte/2 checks if the trust is greater or equal than the secrecy. Finally,
hardwareOk/1 recurs on the rest of the list (line 5) until it is empty (line 6).

Fig. 4. The hardwareOk/1 predicate.

The predicate softwareOk/1 of Fig. 5 checks that no software components
(line 2) that is untrusted (line 3) has an external leak toward an untrusted
hardware component (line 4).

Fig. 5. The softwareOk/1 predicate.

The software components of a partitionable application can be split and
placed on SK domains. A domain is a triple (DTData, DTChar, HostedSw)
where DTData is the secrecy label of the domain, DTChar is the trust label of
the domain, and HostedSw is the list of the software components hosted by the
domain. Inside a domain, software components share the same environment. To
avoid placing components in an environment containing data that they are not
able to manage, a domain must be data consistent :

∀software(Sw, Data,Characteristics, ) ∈ HostedSw :
labelC(Data, Characteristics,(CTData, )) → PTData = CTData

meaning that in a domain there is no software component with a secrecy label
different from the domain secrecy label, i.e. all the software components hosted
by a domain have the same secrecy label of the domain. This property avoids that
a software component is placed in a domain that contains data more sensitive
than the ones the component is supposed to deal with.

Another aspect to consider is that untrusted components bring out the risk
to leak sensitive data to other components of the domain or to linked compo-
nents outside the domain. In order to isolate such components, domains must
be reliable:
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∀software(Sw, Data,Characteristics, ) ∈ HostedSw :

labelC(Data, Characteristics,(CTData,CTChar)) → CTData ≥ CTChar

∨
∀software(Sw, Data,Characteristics, ) ∈ HostedSw :

labelC(Data, Characteristics,(CTData,CTChar)) → CTChar = PTChar

meaning that all the software components of a domain are either trusted or have
the same trust label of the domain. Domains hosting only trustable software
components are considered secure from data leaks. Every component can manage
its data and can exchange it outside the domain without risk of leaks, according
to the trust assigned by the developer. Untrusted components must be isolated
strongly, they can share a domain only with other untrusted components having
the same trust label, in order to have a homogeneous level of trust inside the
domain and mitigate the danger of data leak.

Eligible partitionings split a partitionable applications into a set of data con-
sistent and reliable domains. The top-level sKnife/2 (Fig. 6) finds the eligible
partitioning of a partitionable application. After retrieving the application infor-
mation (line 2), it basically performs two main steps, first it checks whether the
application is partitionable (lines 3–5) and second it creates the set of data con-
sistent and reliable domains splitting the software component across them (line
6), starting from en empty partitioning ([] of line 6).

The partitioning/3 predicate is listed in Fig. 7 and it has the task to
split labelled software components placing them in data consistent and reliable
domains. The predicate recursively scans the list of labelled software components
(first argument) to place every component starting from a partitioning (second
argument) that will be updated in the resulting partitioning (third argument).
The domains of the resulting partitioning are data consistent and reliable by
construction. Every software component is placed in a domain with the same
secrecy label to satisfy the data consistency of the domain. Trusted components
are placed together in domains with the trust label named safe, indicating that
all the hosted components are trusted. Untrusted components are placed in the
domain with the same trust label, in order to create reliable domains. If the
domain needed by a component is not in the starting partitioning, it is created
with correct labels and added to the partitioning. partitioning/3 has two main
clauses (lines 1 and 6) plus the empty software list case that leaves the parti-
tioning unmodified (line 11). The first case describes the situation in which a

Fig. 6. The sKnife/2 predicate.
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Fig. 7. The partitioning/3 predicate.

software element can be placed on a domain already created. After determin-
ing the labelling of the hosting domain (line 2), the library predicate select/3
checks if such domain is already created in the partitioning (line 3) and extract
it. Then, an updated domain is created by adding the current software compo-
nent (line 4). Finally, partitioning/3 recurs on the rest of the software list
giving as starting partitioning the old partitioning with the updated domain
([DNew|TmpPartitioning] of line 5).

The second clause of the predicate (line 6) describes the situation in which
the domain that has to host the software component is not already in the input
partitioning. The initial step to determine the hosting domain labelling is the
same as the previous clause (line 7). Then, there is an explicit check that such
domain is not already in the partitioning (line 8). At this point, the new domain
is created (line 9) and it is included in the partitioning during the recursive call
([DNew | Partitioning] of line 10).

As mentioned in Sect. 2.2 it is important to reduce the number of domains
of a partitioning as much as possible. We emphasise that SKnife main predicate
outputs as unique solution the minimal eligible partitioning of the application,
if it exists4.

3.3 Labelling Suggestions

Not all the existing applications are partitionable, precluding the possibility to
find an eligible partitioning. To assist application developers in those situations
we added the feature to suggest relaxed labellings on data or characteristics of
the applications. Those suggestions reduce the secrecy or increase the trusta-
bility of components relaxing the labelling of an application in order to find an
eligible partitioning. This feature is intended to help the review of an applica-

4 The extended version of this article with full proofs and other aspects is freely avail-
able at https://github.com/di-unipi-socc/sk/tree/main/Examples/CloudExample.

https://github.com/di-unipi-socc/sk/tree/main/Examples/CloudExample
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tion preventing the risk of leaking the confidentiality of data. Because of space
limitations, we do not include code snippets of this version of SKnife5.

The basic version of SKnife either finds the minimal partitioning or fails if
there is a risk of data leak given by untrusted components. To support the
suggestions feature, we suitably modified SKnife to individuate the source of a
failure and to retry the partitioning after relaxing the labelling of such a source.

As aforementioned, the predicates that check if an application is partitionable
are hardwareOk/1 and softwareOk/1. Those predicates are modified in order
to return every single component responsible for a failure when the application
is not partitionable. Then, the labelling of those components are relaxed, i.e.
the data labels are decreased or the characteristics labels are increased. After
that, the application is labelled with the relaxed labels and a new search for an
eligible partitioning of the application starts. This retry mechanism is repeated
until both the check predicates do not find a failure. The search eventually finds
suggestions for an eligible partitioning. In the worst case scenario, the data labels
will be relaxed to the lowest label of the lattice or the characteristics label will
be relaxed to the highest label of the lattice.

The main predicate of the refinement of SKnife is sKnife/3. It has as the first
argument the application identifier, as in the base version. The second argument
is the list of relaxed labelling, pairs of data/characteristics names and the new
relaxed label. The third argument is the eligible partitioning found with the
relaxed labelling. Note that this predicate does not compute a unique solution.
Indeed, for every query different relaxed labelling with the relative eligible par-
titioning are computed. This allows SKnife to give to the developer different
suggestions.

4 Motivating Example Revisited

In this section, we will solve the partitioning problem of the architecture iotApp1
of the motivation example6 of Sect. 2.2 given a suitable set of labels for every
data and characteristic. Then, we will consider the slightly different iotApp2
architecture showing that it is not partitionable and we will apply the relaxed
labelling feature of SKnife. In both cases the application architecture, the (soft-
ware and hardware) components and the security lattice can be expressed as per
the modelling of Sect. 3. Data and characteristics are labelled as indicated by
the letters between brackets in Fig. 1 using the tag/2 predicate.

4.1 Finding the Minimal Partitioning

To find the minimal partitioning of iotApp1 we can simply query the sKnife/2
predicate as sKnife(iotApp1, Partitioning). Initially, SKnife labels all the
5 Full code of the prototype extension at https://github.com/di-unipi-socc/sk/blob/
main/Examples/CloudExample/skplacerRecommend.pl.

6 Full example code at https://github.com/di-unipi-socc/sk/tree/main/Examples/
CloudExample.

https://github.com/di-unipi-socc/sk/blob/main/Examples/CloudExample/skplacerRecommend.pl
https://github.com/di-unipi-socc/sk/blob/main/Examples/CloudExample/skplacerRecommend.pl
https://github.com/di-unipi-socc/sk/tree/main/Examples/CloudExample
https://github.com/di-unipi-socc/sk/tree/main/Examples/CloudExample
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application components as depicted in Fig. 8, where is assigned a pair of label
for each component, one for data and one for characteristics. For instance, App
Manager is labelled top for its data (the T above the component) and top for
its characteristics (the T below the component). Then, SKnife checks if the appli-
cation is partitionable. The application is partitionable because the hardware
components manage only low data and do not exist a path from AI Learning
(the only untrusted component) to the hardware components that can leak top
or medium data.

Fig. 8. Labelling of application components.

Figure 9 summarises the obtained result. The eligible partitioning is com-
posed of 4 domains, 3 with trusted components (D1–D3) and 1 with an untrusted
component (D4). It is a minimal partitioning because we have at least 3 software
components with different secrecy labels and only 1 untrusted component and it
is not possible to divide those components in less then 4 domains that are data
consistent and reliable.

As aforementioned, SKnife outputs only a solution because the minimal eligi-
ble partitioning is unique, i.e. do not exist a partitioning of the application with
a fewer or equal number of data consistent and reliable domains.

4.2 Relaxing the Labelling

To show the relaxing labelling feature we consider the architecture iotApp2 with
the additional link between the User Configuration and the Disk. This link
creates a path from the AI Learning to the Disk that can leak the top data
IoT measurements and medium data User Preferences, making the applica-
tion non partitionable. This happens because AI Learning is an untrusted com-
ponent and can leak its data via its explicit links. The linked component User
Configurations has trust label medium and it is not reliable to manage top
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Fig. 9. Minimal eligible partitioning.

data, thus IoT measurements can be leaked to the Disk with the newly added
link. In this situation, it is not possible to found an eligible partitioning.

To use the relaxing labelling feature on application iotApp2 we can query
sKnife/3 predicate as sKnife(iotApp2, S, Partitioning). As expected, the
check performed by softwareOk/2 founds a path with an external leak and indi-
viduate all the components involved in the path, triggering the retry behaviour
explained in Sect. 3.3.

For the sake of clarity we show only the results to the query for the suggestion
variable S, avoiding to display the eligible partitioning generated by applying the
suggestions. The obtained results are

S=[(iotMeasurements,low),(userPreferences,low)]; S=(aiFramework,top);
S=(dataLibrary,top); S=(iotMeasurements,medium);
S=(fromProvider,top); S=(iotMeasurements,low).

For this specific situation, we can see that the solution is either reduce the secu-
rity of IoT Measurements and User Preferences managed by AI Learning,
cutting the path toward the Disk. When is analysed AI Learning the sugges-
tion is to label low the data. When is analysed the second component of the
path – User Configuration –, the suggestion is to reduce IoT Measurements
to medium. Finally, when is analysed the last component of the path – Disk –,
the suggestion is to reduce IoT Measurements to low. The alternatives increase
the trust of each component of the path to cut the possible leak, increasing the
characteristics AI Framework, Data Library and From Provider to top.

Those suggestions can support application developers to change the labelling
if for instance the secrecy of IoT Measurements can be reduced. Otherwise,
the suggestions could lead to changing the characteristics involved in the leak,
for instance using a more reliable Data library for the component User
Configuration.
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Analysing each component of a path for every query can output overlapping
solutions. For instance, IoT Measurements reduce to low appear two times. This
can be avoided easily by searching all the suggestions at once and filtering the
results.

5 Related Work

To the best of our knowledge, there are currently no proposals that employ
information-flow security to place applications on SKs. Some approaches use
information-flow security to address problems that are complementary to our
techniques, for example checking the correct labelling of software or monitoring
inputs and storage accesses by the applications. Elsayed and Zulkernine [15]
propose a framework to deliver Information-Flow-Control-as-a-Service (IFCaaS)
in order to protect confidentiality and integrity of the information flow in a SaaS
application. The framework works as a trusted party that creates a call graph
of an application from the source code and applies information-flow security
based on dependence graphs to detect violation of the non-interference policy.
At Function-as-a-Service (FaaS) level, Alpernas et al. [9] present an approach for
dynamic Information-flow control monitoring the inputs of serverless functions
to tag them with suitable security labels, in order to check access to data storage
and communication channels to prevent leaks of data managed by the functions.
Similarly, Datta et al. [14] propose to monitor serverless functions by starting
to learn the information flow of an application, showing the detected flows to
the developers and enforcing the selected ones. In the Cloud-IoT continuum
scenario, our previous work [12] exploits information-flow security to place FaaS
orchestrations on Fog infrastructures. Functions are labelled with security types
according to input received and infrastructure nodes are labelled according to
user-defined security policies. The placements are considered eligible if every
node involved have the security type greater or equal than the security type of all
the hosted serverless functions. Developers assign a level of trust to infrastructure
providers that concurs to rank the eligible placements. Differently from SKnife,
all those proposals but [15] consider the cloud provider reliable, conflicting with
the threat model we introduced in Sect. 2. Recently, few proposals have leveraged
on information flow analyses to enforce data security in cloud applications when
the cloud provider is untrusted. For example, Oak et al. [22] have extended
Java with information flow annotations that allow to verify if partitioning an
application into components that run inside and outside a SGX enclave violate
confidentiality security policies. In this proposal partitioning is decided by the
programmer.

Other approaches aim at verifying the data separation and the data flow of
SKs [10,13,18,27]. SKnife does not require special assumption on the SK and can
be employed on all those SKs.

Similarly to SKnife, declarative techniques have been employed to resolve
different Cloud-related problems. There are proposals to manage Cloud resources
(e.g. [20]), to improve network usage (e.g. [19]), to assess the security and trust
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levels of different application placements (e.g. [16]), and to securely place VNF
chains and steer traffic across them (e.g. [17]). To the best of our knowledge,
there are currently no declarative proposals tackling our considered partitioning
problem.

6 Concluding Remarks

This article introduced a declarative methodology and its prototype, SKnife, to
protect the data confidentiality of Cloud applications from external attackers and
unreliable cloud providers. Our approach exploits the Separation Kernel tech-
nology as Trusted Computing Base. It also employs information-flow security
mechanisms to determine the eligible partitioning of a partitionable application
to assist the placement of its software components in the Separation Kernel
domains. To support the application developers, we extended SKnife with a fea-
ture that allows finding the eligible partitioning of non-partitionable applications
relaxing the information-flow constraints given by application developers.

Our methodology requires manual labelling of data and characteristics of
the application components. This limitation can be tackled using monitoring or
automatic techniques to track information flow [11,14]. At the current stage, the
flow of information is static, the data never change its labelling after the devel-
oper declaration. In our future work, we plan to support dynamic information
flow, based on the application input and the relations between the software com-
ponents. Moreover, we plan to support the labelling modification of an already
partitioned application, correcting only the partitioning of the involved compo-
nents, avoiding restarting from scratch the partitioning process. For instance,
when a bug in a library used by a component is discovered, the label of the
library can be reduced and the partitioning of the application can be changed
accordingly. Another interesting direction is to extend our methodology to sup-
port data integrity. In addition to tackling all aforementioned points, we also plan
to apply our methodology to different types of applications and to evaluate the
effectiveness and scalability of our approach with experimental results. Finally,
we plan to add a second feature to allow eligible partitioning of non-partitionable
applications. We intend to use software engineering techniques to suggest mod-
ification of the application architecture in order to correct data leakage without
changing the overall application behaviour.
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Abstract. Effectively managing decentralized applications in cloud
environments using a decentralized control paradigm is essential, as cur-
rent cloud providers usually only offer a control interface for monitoring
cloud infrastructures. This study proposes a decentralized service control
framework for implementing the control across various organizations and
coordinating collaboration among operators in a decentralized applica-
tion. The proposed framework allows a consortium of organizations to
control a shared distributed cloud infrastructure decentralized reliably.
A consensus mechanism within the framework enables mutual coordina-
tion between the operators. This mechanism also uses an incentive proto-
col to enforce pro-active behavior and collaboration. We implement the
framework with Hyperledger Fabric, and our experiments demonstrate
its usability, reliability, and acceptable performance.

Keywords: decentralized control · decentralized applications ·
consensus mechanism · collaboration protocol

1 Introduction

Recently, decentralized applications (dApps) have been employed in various
industrial sectors, such as car sharing [12], data management [2], and finance [17].
The enabling technologies for dApps, such as Blockchain-as-a-Service (BaaS),
have been included in numerous public cloud providers as part of their ser-
vice portfolio, e.g., in Azure and AWS [3]. BaaS provides dApps with elas-
tic distributed cloud infrastructures and often is operated using consortium
blockchains. Current cloud providers usually offer a control interface for moni-
toring the cloud infrastructure, which is only for individual cloud service levels
but not sufficient for dApps deployed by a consortium of organizations across
different providers. Moreover, for dApps in cloud environments, it is only pos-
sible to track a failing part of the system, but organizations have no collabora-
tive way to control the different cloud infrastructures. It is essential to imple-
ment the control across these various organizations and collaborate to achieve
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global control. Therefore, a collaborative, decentralized control system on cloud
infrastructures for a dApp is needed. In this research, we mainly focus on the
question: how to effectively manage a dApp in cloud environments with a decen-
tralized control paradigm? To answer this main research question, we analyze
the requirements for a dApp control framework and conclude that control archi-
tecture and governance architecture are responsible for meeting decentralized
requirements. In addition, coordination of decentralized control actions, includ-
ing significant aspects of the consensus between peers and how to incentive
collaboration between different peers, need to be investigated [14,15].

2 Decentralized Service Control Framework

In the literature, a variety of frameworks [6,7,10] for assessing the quality of ser-
vices offered by different software producing organizations has been introduced.
However, a control framework requires a peer-to-peer (p2p) control architec-
ture [1] and an on-chain governance architecture [11] to control shared cloud
infrastructures and maintain a high Quality of Service (QoS) of a dApp. In addi-
tion, a collaborative and proactive network in the control framework is needed.
This study introduces a decentralized service control framework (DSConf) and
elaborates on its architecture and constituent components.

2.1 Architecture Design

Operator agent, decentralized control consensus, and dApp/service control agent
are the main components of the DSConf (see Fig. 1). The operator agent repre-
sents the operator of each organization in a dApp network, and it invokes the
control layers which define different decentralized control patterns within the
decentralized service control agent. Multiple control layers can be considered in
a control architecture [16]. The lower-level control layer directly controls infras-
tructures/devices. The higher-level control layer is comprised of proposals and
followed by a reply to execute or not (remote operators service operation) [13].
We also sub-divided service invocations into two categories: local dApp service
invocations and remote dApp service invocations. Local dApp service invoca-
tions are performed by local services and consist of two control patterns: 1)
operations on local service invoked by a local operator; 2) operations on local
service invoked by remote operators. The Infrastructure as Code (IaC) service
is invoked by logic defined on-chain in the first control pattern. The operator
can call a local service function, and the function invokes the IaC service, which
changes the state of the concerned infrastructure. In the second control pattern,
a remote operator can propose a local dApp service invocation to one of the
participating operators in the network. Remote dApp service invocations are
performed on remote services (e.g., AWS). There are also two remote control
patterns: 1) operations on remote services invoked by a local operator; 2) oper-
ations on remote services. In the first control pattern, an operator invokes a
remote service. The second control pattern is a proposal sent to a global oper-
ator to invoke a remote service. We provide a global coordination mechanism
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for decentralized control consensus to achieve on-chain governance in a p2p net-
work. With the mechanism, an operator can vote on a particular proposal that
affects the whole network. Decentralized service control agent - In the
decentralized service control agent, the network operators can execute and pro-
pose different control patterns. The service operations can be invoked locally and
remotely. This decentralized service control agent uses the Co-util protocol to
incentivize operators to list/verify these service invocations and propose/execute
them. Local dApp service invocationcan be performed without a proposal
to DSConf and can act quickly if the QoS declines and concerns the operator’s
part of the shared infrastructures. The operator can invoke local services that
invoke the IaC service (scale VM, migrate services, etc.), which will change the
state of the infrastructure. Local dApp service invocations by remote operators
make use of a proposed mechanism. We suppose an operator from organization
X detects a decline in the QoS of the dApp caused by the infrastructure that
organization Y provided. In that case, the operator from organization X can
propose specific local dApp service invocations to organization Y. The operator
from organization Y can accept/decline this proposal. By accepting the pro-
posal, the IaC service will be invoked by the on-chain logic of the local service.
Remote dApp service invocation is a possibility that an operator performs
a remote dApp service invocation. For example, a service invocation on the AWS
platform is not implemented locally. After executing this service invocation, the
operator can list the performed remote dApp service invocation. The remote
dApp service invocation will be verifiable. The incentive for listing these invoca-
tions will be explained in Sect. 2.1. Remote dApp service invocations by remote
operators make use of remote operators (proposal). For instance, an operator
from organization X can send a proposal to organization Y to perform a remote
dApp service invocation. The operator replies to this request and performs the
specific operational invocation on a remote service. This reply triggers the oper-
ational invocation to get automatically listed to be verified by another operator.
The following types of the remote dApp service invocation by remote opera-
tors: Propose remote dApp service invocation. Define: proposal id, organization
id that proposes, organization id proposed to, service operation, description,
remote dApp service invocation bit (e.q. operator A proposes a remote dApp
service invocation to operator B). Reply to a remote dApp service invocation
proposal. Define: proposal id, reply (e.q. Operator B replies to the remote dApp
service invocation proposal. On agreement, the proposal gets listed to be veri-
fied by another operator. Operator B’s service invocation uses a different system
(e.q. AWS dashboard)).Verify listed service invocation. The collaboration pro-
tocol supports the decentralized service control agent to create a collaborative
p2p network of operators. Often peers in a network need an incentive to help
others. Our framework implemented a protocol that lets operators gain voting
power by helping others. Moreover, the voting power can be used in the global
coordination mechanism. The collaboration protocol exists in two parts: DSConf
introduces non-transferable tokens representing the network’s voting power. The
non-transferable token represents an operator’s voting power within the network.
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It can be used in the weighted voting of the global DSConf proposal mechanism.
An operator receives an initial amount of non-transferable tokens by joining the
network: Iamount. The Co-Util protocol is introduced to enforce the operators
to collaborate by increasing the operator’s utility when helping other operators
instead of displaying selfish behavior [4]. The action operators can take and the
corresponding pay-off. Following the pay-off matrix, operators get rewarded for
proposing, invoking, and verifying service invocations: the different operational
control patterns and the associated rewards/penalties.

Fig. 1. Architecture design DSConf

2.2 Decentralized Control Consensus

An on-chain voting mechanism can enable the consortium to change/maintain
the DSConf network. The global proposal module consists of four func-
tions:Create a vote, which is an index, title, description, creator, timestamp,
duration, list of operators that agree, list of operators that disagree, answer if is
passed or did not pass. Reply on a vote, which is an index of the vote someone
wants to reply to, the reply (agree/disagree).Close a vote, which is an index of
the vote someone wants to close. Get all votes.

In addition, vote options could be about the following topics: 1) creating new
control functions; 2) blocking operators; 3) onboarding operators.
Voting Incentivization Protocol. There is a need for a voting incentivization
protocol to incentivize operators to behave pro-actively in these votes. The voting
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mechanism will use non-transferable tokens that represent the voting power of
an operator. This voting power can be used in global proposals. Every peer in the
DSConf network will get an initial amount of Iamount by joining the network. The
stakes will be evenly distributed in the initial state of the DSConf network [5,9].
A Proof of Stake(PoS) mechanism will be used to incentivize operators to vote
on these proposals because choices often have to be made quickly. There has to
be an incentive for the operators to reply as soon as possible. A debating period
can be set for a vote in the voting process. When someone responds within the
debating period, her new stake will be Camount + REWARD. Where Camount

is the current amount of voting power the operator posses. If the participant of
the DSConf did not manage to vote within this period, the penalty would be
that they get slashed. This means that the new amount of their stake will be
Camount − PENALTY [8]. Development proposal. The DSConf network could
deploy new functionalities, update current functionalities, or change existing
governance mechanisms. One of the participating organizations/operators can
negotiate an off-chain deal to hire a developer. After that, the operator can vote
to decide if the DSConf agrees with the proposal and the negotiated terms. If the
DSConf agrees, everybody has to deposit the funds off-chain to the operator that
arranged the proposal. Granted that everybody deposits, the operators confirm
the proposal with the developer. Block/unblock malicious operator. A vote could
be about blocking malicious operators. If the malicious activity is monitored, an
operator can invoke a vote, report an operator, and describe the violation. If the
vote passes, the operator is blocked for a certain amount of time. On-boarding
proposal. The proposal could also be about onboarding an organization. There
can be a vote to decide if a new organization can be added to the DSConf
network.

3 Experiments

The purpose of our experiments is to verify the key performance indicators of the
DSConf. These indicators are 1) usability, 2) reliability, 3) time-critical perfor-
mance. The transactions to the DSConf chaincode contracts will be executed and
captured in a shell environment. We observe the operator states as the output
of the chaincode invocation for each control pattern.
Usability - In this section, the usability of DSConf is tested. We test the
operational action contracts, and there are four control patterns and a voting
mechanism that need to be tested. After every experiment of a control pattern,
the ledger is re-initiated and the contracts redeployed, so the results are more
straightforward to understand. Local dApp service invocation by local operator,
in which the operator Org1MSP invokes a local service operation, and it does
not need approval from others to invoke this operation. After executing the
invocation functions, we can retrieve the different operators to see if the reward
of +2 is assigned to Org1MSP. In Table 1, we can see that the reward is assigned
correctly.
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Table 1. Operators state with different control functions

Control pattern OclToken Reply

Org1MSP Org2MSP Org3MSP

Local-Local 202 200 200 –

Local-Remote 202 201 200 Agree

199 200.5 200 Disagree

Remote-Local 201 202 200 –

Remote-Remote 201 200 200 Agree

201 202 201 Disagree

Global 200 200 200 –

Reliability - The reliability of the DSConf network can be tested by experi-
menting with the disruption of the network. Experiments regarding the reliabil-
ity of the service invocations are performed by executing the different functions
implemented in the Global DSConf voting contract. Important to mention is the
Vmin variable that is set to 60. This means that 60% of the organization has to
reply on a vote to pass. Org2MSP will be the organization that is offline in this
experiment. Subsequently, Org1MSP will create a vote and immediately reply
to this vote. After that, Org3MSP will reply and close the vote. The reliability
results show that if a disturbance in the network arises, in this case, one orga-
nization node that is unreachable in a network of three organization nodes, the
network still functions. The decentralized control functions in the network are
still operational, and control invocations can still be proposed to the unreachable
node. However, the unreachable node first has to be reachable again to invoke
control actions.

Table 2. Time spend of service invocation

Execution time - Milliseconds(MS)

Functions Average (10x) Fastest Slowest

Action proposal 2.24 1.51 3.33

Execute action by proposal 16.31 10.73 29.83

Execute action without proposal 15.2516 10.48 25.12

List action 3.38 1.87 5.34

Reply proposal 16.18 14.21 20.11

Time Critical Performance. In the performance experiments, the execution time
of the different functions is measured. These measurements of the DSConf are
essential because of the time-critical nature of certain service invocations. The
execution measurement is performed from the beginning of the chaincode call
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until the end of the function executions, returning the return value and execution
time. Another critical aspect of the architecture is that functions within the
DSConf network are sequential. We measure the execution performance of the
chaincode functions. Every function is executed ten times to gather enough data.

We evaluate the performance of service invocation and the global DSConf
voting mechanism. The ’ Execute action’ function is the most crucial function to
measure execution time. This function has to perform time-critical operations
on the concerned infrastructure.

Table 3. Time spend of voting mechanism

Execution time - Milliseconds(MS)

Functions Average(10x) Fastest Slowest

Create vote 2.66 1.24 5.18

Reply vote 3.06 2.39 4.94

Close vote 6.42 5.81 7.93

In these experiments, the execution time of the different functions was mea-
sured. The essential functions to measure were the local dApp service invocation
functions. In Table 2, these functions take around 16ms to execute, which is
within a second. However, the execution time does not include the invocation
of the IaC service. The other DSConf functions lie within an execution time
of 2 to 30 ms, also within a second. In Table 3, we can see that the execution
time of each function in the voting mechanism is under 10 ms. So the overall
performance of this experiment seems good.

4 Conclusion

In this research, we focus on how to effectively manage a dApp in cloud envi-
ronments using a decentralized control paradigm. To conclude this question, we
provide a review of the decentralized control framework at first. The review
concludes that a p2p network and on-chain governance are essential for a decen-
tralized control framework. In addition, there is a need for an incentive to enforce
collaboration between operators in the p2p network.

To coordinate the decentralized control action within a p2p network and
achieve on-chain governance, we provide a decentralized service control frame-
work DSConf. In DSConf, a decentralized service control agent that uses a collab-
oration protocol to incentivize operators to collaborate is provided. In addition, a
consensus voting mechanism enables mutual coordination between the operators
in the DSConf network. This mechanism also uses an incentivization protocol to
enforce pro-active behavior.
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Abstract. The Internet of Things (IoT) is a constantly growing domain
in information technology that involves various hardware and software
layers and many different programming abstractions and paradigms. As
such, a large number of IoT middleware systems has grown together
with the IoT. Hence, selecting an IoT middleware is therefore a time-
consuming task, if the goal is to achieve interoperability between all
devices and retaining their functionality.

A systematics for classifying, comparing, and ranking various IoT mid-
dleware offerings reduces complexity in the selection process and provides
insights regarding a feature-wise comparison. In this paper, we introduce
such a systematics and apply it on a large set of open source middleware
systems orientated towards IoT. Concerning the best overall ranking,
ThingsBoard emerged as the candidate with the highest score.

Keywords: Internet of Things · Middleware · Evaluation · Ranking

1 Introduction

The IoT is semantically described as “A world-wide network of interconnected
objects uniquely addressable, based on standard communication protocols” [7].
Therefore, it covers a wide field that includes private projects like Smart Home
applications and large industrial projects with global reach. In all these cases,
the main aspect is the communication of devices which are commonly labelled
as things. These devices have many characteristics like heterogeneity, resource
constraints and spontaneous interactions [11,15].

This led to middleware systems, which address the interaction between het-
erogeneous devices and communication forms by abstracting from available
technologies. To achieve this, different integrated services for interconnection,
device discovery, management of resources, data, events and device code are
required [15].

As of today, only a combination of different middleware systems are able to
handle all the requirements of the IoT [15]. So far, there are only attempts to
achieve this by building a unified middleware solution from scratch [12]. This
architectural approach takes a lot of effort and so far no satisfying solution
has been created. This restriction implies that, based on the individual IoT use
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case, a proper middleware candidate must be chosen trying to fulfill most of the
associated requirements. As there is a vast number (our investigation yielded
135) of IoT middleware systems available on the market, there is a need to
first distill qualified candidates with moderate complexity. As will be shown and
motivated, one of the exclusion criterion was a non open source model for a
middleware. Second, there needs to be a formal mechanism enabling to map
properties, i.e. features, of the remaining candidates to the requirements of the
use case eventually giving the user the opportunity to make his final selection.

Therefore, our chosen approach is to investigate on already existing middle-
ware by evaluating them feature-wise in a quantitative fashion. Eventually this
leads to an absolute ordering in the case of considering and weighting all features
and to a relative ordering if only certain features are taken into account. As was
the given goal this provides opportunities and flexibility for selecting a middle-
ware tailored to a special use case or when individual features play a significant
role.

For this purpose, a system to select, compare, rank and evaluate middleware
systems is required. To define this system, already existing evaluation approaches
are taken as reference [3,11,13,15].

To investigate our system in practice, we applied it to a vast set of middleware
systems, of which some were not considered yet in related work. In conclusion,
the aim is to answer the following research questions:

– How can the approach be formalized with a sufficiently accurate mathematical
model?

– Compared to previous evaluations, which new middleware systems are there
and what capabilities do they offer?

– Can the approach be applied with moderate complexity to all findable mid-
dleware systems?

The reminder of this paper is structured as follows. Section 2 presents back-
ground information on IoT characteristics and associated middleware require-
ments. This is followed by a discussion on related work in Sect. 3. Section 4 covers
our three-step methodology by first describing our middleware selection proce-
dure, followed by the definition of a mathematical model to extract and quantify
features. Eventually it is shown how the results of the last step can be utilized
and evaluated. Section 5 applies the methodology and presents the results. In
Sect. 6 we draw our conclusions.

2 Background

In this Section, we discuss general IoT characteristics and use the results as a
foundation for defining requirements IoT middleware systems, respectively their
offered services, should satisfy.
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2.1 IoT Characteristics

Borgia [1] and Perera et al. [14] extract the following IoT characteristics relevant
for middleware systems:

Scalability: As there are billions of devices and objects attributable to the IoT
today, there need to be mechanisms able to manage and coordinate these vast
numbers.

Heterogeneity: Besides quantity in horizontal dimension, there is also quantity
in vertical dimension. This quantity can be described by heterogeneity of
device architectures and communication technologies. Again, there need to
be mechanisms considering and solving these issues.

Self-*: This characteristic encompasses concepts like self-configuration or self-
organization. Precondition to manage the aforementioned large scales is the
availability of automated mechanisms like self-discovering of entities and ser-
vices or self-processing of Big Data.

Everything-as-a-Service: As the IoT does not only scale geographically but
also in terms of domains (e.g. healthcare) and stakeholders (operators, devel-
opers, users, software entities), it needs to provide capabilities to satisfy the
respective needs. A popular solution for this is to offer respective capabilities
as services. For an operator this could mean, managing relevant resources in
an Infrastructure-as-a-Service (IaaS) fashion.

Secure environment: Due to worldwide device distribution, heterogeneity and
high amount of wireless communication, attack surfaces dramatically increase.
For this reason, it is crucial that mechanisms to secure the IoT environment
are employed.

2.2 IoT Middleware Requirements

IoT middleware systems are mostly deployed in an edge or fog environment [15].
The following general requirements can be attributed to them linked to the
aforementioned characteristics:

Device Discovery: This addresses the problem of finding useful devices in
order to accomplish a task [2]. Precondition for this is that the middleware
is able to exploit different heterogeneous technologies of communication like
Wi-Fi, Bluetooth or MQTT. This requirement is linked to the Scalability,
Heterogeneity and Self-* characteristics.

Resource Management: Generally, an IoT middleware should try to allocate
resources fairly and provide the tools to monitor resource consumption [11,
15]. Moreover, it should offer basic resilience mechanisms. This requirement
is linked to the Self-* and Everything-As-a-Service characteristics.

Data Management: This refers to the requirement of the IoT middleware to
store data and make it available to other devices. Additionally, it handles
data compression and aggregation [11,15]. This requirement is linked to the
Self-*, Everything-As-a-Service and Secure environment characteristics.
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Code Management: In general this requires the IoT middleware to deploy
software changes to devices. This allows to reprogram a device and therefore
improves maintenance [15]. This requirement is linked to the Heterogeneity,
Self-* and Secure environment characteristics.

3 Related Work

Razzaque et al. [15] start with a discussion on what fields are comprised by IoT.
It then steps over to the concept of middleware systems and divides them in seven
different design approaches and compares the 61 candidates. The comparison is
based on specific characteristics of IoT. In the end it discusses challenges related
to the different requirements that originate from the IoT characteristics. This
work provides an overview of available middleware systems and is a reference
to identify requirements and build a system to assess and evaluate middleware
systems. Their approach is similar to ours taken. However, by just describing and
not quantifying feature characteristics, a quantifiable comparison and ranking
of middleware candidates is not possible. Moreover, some recently emerged and
promising IoT middleware systems could not be taken into account in this work.

The work of Ngu et al. [13] focuses in the beginning on a case study to measure
blood alcohol content with different sensors in IoT. Then it compares service-
based, cloud-based and actor-based middleware systems. In the end it gives a
summary of challenges and theoretical solutions for discovery and security cases.
This reference provides insights into features of a domain specific middleware
and helps to differentiate between more general features. In the paper, there is
a summary of a small set of IoT middleware systems and associated provided
functionalities (e.g. Network Connectivity). Compared to our approach, only a
small set of systems is taken into account and just a description of the provided
functionalities, respectively features, is given.

Cruz et al. [3] discuss different communication methods that are all relevant
for the IoT. Then it splits different IoT middleware systems in categories. This
is followed by a discussion of some examples. In the end it gives some new ideas
on how to improve the security of IoT middleware systems. It is a relatively new
paper that again describes functionalities of relevant IoT middleware systems
however without quantification and comparison.

Marques et al. [10] compare different middleware systems and show which
features they support. Furthermore, they look specifically at the healthcare field.
There the different devices and protocols in use are shown. This reference pro-
vides an approach to compare protocols and gives insights on the healthcare
domain. Their approach is similar to the proposed one, with the distinctions
that only a small set, tailored to the healthcare domain, less features and no
quantification is presented.

The work of Nastic et al. [12] focuses on middleware for IoT cloud systems.
For this purpose it looks at a multitude of components in detail. They build a
prototype that achieves high scalability and state that it should be relatively easy
to extend it. This reference gives insights on the specific software components
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and services, a middleware could be created of. Furthermore, it gives a lot of
information about cloud based middleware systems.

4 Methodology

In order to find a suitable way to answer our first research question, we use
the following methodology. This methodology is derived from the approaches
in similar works and tailored to the discussed requirements of IoT middle-
ware systems. In particular, from related work we took into account the results
from [3,10,13,15] for the chosen features and for the formal representation of
feature-characteristics for considered features (cf. Sect. 4.2) we considered results
from [15]. The new contributions of our approach are first, a formal model for
quantifying IoT middleware systems feature-wise. Second, the presentation of
evaluation possibilities for the results of the quantification. Third an initial pre-
processing step to reduce the initial large pool of candidates to a feasible size
able to be quantified feature-wise.

We start with the preprocessing step and outline how the initial pool of
candidates can be found, followed by describing the steps that are taken to
reduce the initial pool. Next, we present the formal model, describing how to
quantify the remaining candidates feature-wise. Eventually we outline evaluation
possibilities for the results of the previous step.

4.1 Middleware Selection Process (Preprocessing)

To find an initial pool of candidates, the first step is to get an efficient overview
of relevant middleware systems. Therefore, a literature analysis is conducted.
The focus is laid on papers that investigated multiple middleware systems in
previous years. Afterwards, a more general search for publications referencing
newly released middleware systems is made, that so far were not yet covered
in papers analysing individual IoT middleware systems. Eventually, an inves-
tigation about software that offer similar services, e.g. IoT platforms with an
integrated middleware part, is conducted.

The overall goal of the selection process is to find a set of relevant middle-
ware systems from a pool of potential candidates with moderate expenditure.
Therefore, the first goal is to efficiently reduce the possibly vast pool of candi-
dates. This is done by defining simple exclusion criteria. The reason behind this
is that the strict formal approach that a middleware can be excluded if another
middleware can be found which is quantitatively better or equal in all considered
aspects is not feasible as it requires in-depth knowledge about the middleware
and possible use cases. Therefore, easy to apply and reasonable elimination cri-
teria are chosen. As a boundary condition, we forced each elimination step to
reduce the remaining pool’s size by at least 1

5 in every iteration step.
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4.2 Feature Quantification Process

The previous process gives no information about a possible absolute or feature-
wise ordering of the middleware systems. Therefore, the remaining candidates are
scanned for implemented features that are in conjunction with the defined gen-
eral IoT middleware requirements. This resulted in a set of considered features
�x ∈ X, where xi ∈ Xi is the respective feature characteristic, of an inspected
feature Xi. A feature characteristic is always mapped to at most 4 distinct
symbol-values: xi ∈ {si,0, si,1, si,2, si,3}. To quantify the feature characteristic,
a single mapping function f is needed f : Xi �→ {0, 1, 2, 3}, where following
conditions always hold for every feature Xi:

f(si,0) = 0 (1)
f(si,1) = 1 (2)
f(si,2) = 2 (3)
f(si,3) = 3 (4)

which maps the extracted feature characteristic to a corresponding numerical
value. For illustration purpose, we look at the definition of a feature X1

X1 = {none, basic, advanced, custom} (5)

then for the feature-characteristic x1 holds:

x1 ∈ {none, basic, advanced, custom} (6)

and for the symbol-values of x1:

f({none}) = 0 (7)
f({basic}) = 1 (8)

f({advanced}) = 2 (9)
f({custom}) = 3 (10)

Eventually this formalism allows to compare the middleware systems feature-
wise.

4.3 Evaluation Process

The previous process in our approach builds the foundation for a flexible eval-
uation. If only a single feature is taken into account, a comparison and ranking
without further effort can be conducted. However, if more than one feature is
taken into account, one possibility is to define a score for the individual mid-
dleware systems by summing over weighted mapped feature characteristics as
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defined in the Quantification Process. This can be formalized as follows with N
being the total number of features:

Sk,�ω(�x) =
∑

i⊆{1..k}
ωif(xi) ; k ≤ N (11)

The values for the weight vector �ω entries are set to lower values if the feature
appears to be less relevant for the final evaluation. Of course this is a subjective
assumption and therefore needs to be justified for general use cases. If not directly
specified at respective places, features xi are assumed to have a weight ωi = 1.
Other possible weights ωi are 1

2 and 1
4 . This allows for two decrease options for

less relevant features and thus the ability to linearly scale results of the mapping
function f.

5 Application of the Approach

We now apply the proposed methodology to IoT middleware systems that were
traceable and attributable as of June 2021. In particular, the exclusion criteria
in the Selection Process, the quantifiable features and mappings in the Quan-
tification Step and the results in the Evaluation Process will be presented. As
will be shown, due to our proposed approach, it was possible to derive quantifi-
able results for evaluation with moderate effort, yielding an answer for research
question three.

5.1 Middleware Selection Process (Preprocessing)

As a starting point, middleware systems that were referenced in prior investiga-
tions [3,10–13,15] or that are popular for IoT applications were collected. This
resulted in a collection of 135 IoT middleware systems. Compared to the 61
candidates investigated in [15], we were able to drastically increase the initial
pool size and account for possible new functionality of the candidates.

Eliminate Middleware Systems not Being Open Sourced. A precondi-
tion for a better understanding of software architecture, implementation and
features is that the code is open sourced. Furthermore, for reasoning in the
Feature Quantification step, it is of great benefit, if all sources (code, documen-
tation) are publicly available. So, in this step, middleware systems not fulfilling
this criterion were excluded. A popular approach to share code is to publish it
on GitHub, where most of the open sourced initial candidates could be found.
Through this step, the middleware candidates could be reduced to 40.

Eliminate Inactive Projects. As technological and conceptual changes hap-
pen steadily in the IoT, so is the job of an IoT middleware to rapidly adapt to
those new realities. This means that middleware systems that do not adhere to
this process should be neglectable in the mid-term.

Under this assumption, we excluded middleware systems from further inves-
tigation with no release in the year 2020 or later. Through this step, the mid-
dleware candidates could be reduced to 17.
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Eliminate by Application Domain and Production Readiness. This step
eliminates middleware systems, if the application domain is too narrow or the
middleware is not ready for production. To check if the application domain is
too narrow its architecture is compared to the IoT middleware requirements in
Sect. 2 and typical IoT domains (Industrial, Consumer and Home, Healthcare,
Infrastructure, Transportation, Retail). To check if a middleware is ready for
production, it needs to fulfill two conditions: all named requirements need to be
addressed and continuous support should be available.

Under this assumption, we further excluded middleware systems and reduced
the pool of candidates to 9.

Eliminate Middleware with Low Popularity. The last elimination step is
based on an analysis of the community and the precondition that the remaining
middleware projects were all hosted on GitHub. For this purpose, the remaining
middleware systems were sorted in decreasing order for both the parameters
watch and star. Then, their average value for their ranking in both categories
was calculated to get a final ordering. From this, the two worst performing
middleware systems were excluded, as this fits the precondition of eliminating
at least 1

5 of the remaining candidates. At this point, the corner case of a popular
middleware of the past could come to mind with a high star and watch number
received years ago. The probability to make a flawed decision at this point was
tried to keep at a minimum by a priori executing the Inactive Projects and
No Continuous Support (cf. paragraph Eliminate by Application Domain and
Production Readiness) elimination steps.

Through this, we reduced the pool of candidates to 7.

Final Results of the Selection Process. With the help of our Selection Pro-
cess, we were able to reduce the original pool of 135 candidates to 7, which is
about 5% of the original population. This final number made a feasible investi-
gation in the upcoming Feature Quantification Process possible. The remaining
candidates after finalizing this step are listed in the following table (Table 1):

Table 1. Remaining middleware candidates after Selection Process

Name Source Code URL

Eclipse Kapua https://github.com/eclipse/kapua

Mainflux https://github.com/mainflux

OpenRemote https://github.com/openremote

SiteWhere https://github.com/sitewhere

ThingsBoard https://github.com/thingsboard

Fiware https://github.com/Fiware

Node-RED https://github.com/node-red

https://github.com/eclipse/kapua
https://github.com/mainflux
https://github.com/openremote
https://github.com/sitewhere
https://github.com/thingsboard
https://github.com/Fiware
https://github.com/node-red
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5.2 Feature Quantification Process

In the Quantification Process, the remaining candidates are rated feature-wise
based on the methodology described in Sect. 4. As a basis to define relevant
features served the results of Sect. 2, previous investigations on other middleware
systems [3,10,13,15] and common functionality patterns that emerged during the
investigation. Summarized, our methodology will be applied to following features
in this section:

– X1 : Abstraction and Model Terminology
– X2 : Connectivity
– X3 : Deployment
– X4 : Persistent Communication and Message Handling
– X5 : Security
– X6 : User Management - Authorization
– X7 : Data and Action Processing
– X8 : Resilience Mechanisms
– X9 : Scaling Technologies
– X10 : Cloud Hosting Support
– X11 : Data Visualization
– X12 : Data Analytics
– X13 : License Model
– X14 : Scalability and Stability Performance

Abstraction and Model Terminology. The terminology used by the middle-
ware systems is not always consistent, so an abstraction is required to compare
the capabilities. Prevalent terms are devices, assets or tenants. Other terms are
things, channels, agents, realms and nodes. In this context the capabilities to
model entity relationships are investigated as well as the possibilities to separate
and combine these components hierarchically. This led to following symbol-values
for X1:

X1 = {none, basic, advanced, custom} . (12)

The basic model allows no or only basic relationships and no methods to create
a hierarchy. The advanced model offers a certain predefined set of relationships
and allows hierarchy building. Finally, custom models allow free modelling that
integrates a hierarchy.

Connectivity. The network connectivity summarizes mainly different technolo-
gies and protocols supported for edge communication. It is quantified by inves-
tigating the versatility of the supported protocols. On the one hand, there are
REST APIs over HTTP(S) which are usually used for all other applications or
general access. Nevertheless, it can also be used for edge communication, which
is the typical realm for lightweight protocols. Examples would be MQTT, CoAP
or LoRa. This led to following symbol-values for X2:
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X2 = {specific, REST, lightweight, variety} (13)

Specific represents the case, where only custom, non-standard protocols are pro-
vided. REST and lightweight are used, when only REST respectively only REST
and one lightweight protocol is supported. Variety surpasses lightweight in the
sense that multiple lightweight protocols must be supported. The weight ω2 for
this feature is set to 1

2 because in our investigation, the usage of this feature
for a strict capability differentiation was not that meaningful as all middleware
systems provide a REST API and lightweight edge communication. The only
difference is the variety of supported edge protocols.

Deployment. Deployment assumes that it is possible for the middleware and
devices to discover each other e.g. over a broadcast and eventually establish
a connection over respective communication protocols. The main difference
between the remaining candidates is the degree of automation for handling of
large quantities of devices. Deployment is quantified according to registration
strategy for devices. This led to following symbol-values for X3:

X3 = {none, manual, self, bulk} (14)

As in IoT, large scale scenarios can be assumed, handling of large quantities
should get highest priority. Therefore, server-side bulk provisioning is the best
rated strategy, followed by the strategy for devices to self-register. Due to lack
of automation manual device registration is rated worst.

Persistent Communication and Message Handling. IoT middleware sys-
tems handle the communication of devices. Therefore, persistency, reliability
and transmission time are important aspects. There are various approaches to
communication handling, three popular solutions are used with the remaining
candidates, that are Apache Kafka, RabbitMQ and NATS (streaming). This led
to following symbol-values for X4:

X4 = {none, custom, standard, variety} (15)

None and custom are self-explanatory, whereas standard means that one of
the three mentioned options and variety that a combination of those is used.

Security. In this step there are two security aspects considered: authentication
and encryption. The main technologies are OAuth 2.0 for authentication and
TLS/SSL for encryption. Other frequently used technologies are tokens e.g. JWT
and certificates e.g. according to the X.509 standard.

This led to following symbol-values for X5:

X5 = {none, authentication, encryption, both} . (16)
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The values are self-explanatory, however the weight was chosen as ω6 = 1
2

for this feature, because again, the usage of this feature for a strict capability
differentiation was not that meaningful as the highest rated value was achieved
by all candidates except of one.

User Management - Authorization. User management handles organization
and access rights of users. In principle, a hierarchical organization by providing
e.g. self-organization of subgroups is possible. Also, security and privacy issues
can be addressed by customizing access rights and permissions of users, groups
and roles.

This led to following symbol-values for X6:

X6 = {none, single, multiple, groups} (17)

None represents an open system with no restrictions. Single stands for the
case of full authorization on all resources after successful authentication. Multiple
represents the case that between multiple users with different authorization capa-
bilities is distinguished. Eventually, groups extends this capability by enabling
to organize users in groups or attaching roles to them.

Data and Action Processing. Data and Action processing is commonly inte-
grated in form of a rule engine. This rule engine allows defining data flow con-
nections and conditions. A rule engine also allows filtering of data before trans-
mission [9]. This feature is usually implemented and configured centrally.

This led to following symbol-values for X7:

X7 = {not supported, closed source, third-party, integrated} . (18)

The selection of those values is based on the described elimination criteria
to prefer open source solutions. Further, the preference of integrated solutions
over third party components was chosen as compatibility issues are expected to
be less likely.

Resilience Mechanisms. Device failures or loss of connection are scenarios
that need to be considered as it is not possible to exclude them entirely. This
feature is focused on reliability mechanisms, that step in if earlier measures for
dependability fail [4]. Resilience mechanisms among other things consider failure
or faulty data and that is addressed by providing alternative procedures or data
sources. Options could be to increase physical devices [5] or communication links
by using multicasting.

This led to following symbol-values for X8:

X8 = {no information, errors, device states, digital twin} . (19)

The worst case is no information about the behaviour in a failure situation.
A better reaction is for the system to report, e.g. via logging, errors so that a
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supervising instance can react appropriately. As an improvement, device states
allow the system continue working with an alternative, possibly degraded, pro-
cedure. In general this requires human intervention. Presence of a digital twin
option in a candidate receives the best rating. Digital twins simulate physical
devices in the form of virtual replicas. This allows to make comparisons to pre-
dicted behaviour and detect faulty devices.

Scaling Technologies. Regarding scaling technologies, all suggested options in
documentations were based on container technologies. Popular implementations
are Docker with Kubernetes and Helm Charts, OpenShift or individual solutions
like the ThingsBoard clustermode.

This led to following symbol-values for X9:

X9 = {set up, containerize, deploy, manage} . (20)

Set up stands for no information about using container technologies. Con-
tainerize stands for official documentation on how to containerize special compo-
nents. Deploy stands for available documentation on how to use the operational
software (e.g. Kubernetes, Openshift) and manage for additional documenta-
tion about maintaining the operational software. The weight for this feature was
adjusted to ω9 = 1

4 as it can be classified experimental due to no official support
being available to integrate the managing technologies.

Cloud Hosting Support. Arguments supporting cloud hosting capabilities
encompass reducing expenditure of management or reducing unused hardware
capacities. To check for those capabilities, support for public cloud hosting plat-
forms like Amazon Web Services (AWS) or Microsoft Azure was checked. A
typical use case for this feature is to transfer centralized core components and
services that are not required at the edge to the cloud for more performant
execution and management.

This led to following symbol-values for X10:

X10 = {self, supported, managed, supported+managed} . (21)

Self stands for non-availability of cloud hosting support. Supported stands
for the possibility to integrate with a provider and have control over the offered
resources, while managed describes the case where the control is outsourced
to the provider. If both last named possibilities exist, then the value sup-
ported+managed is chosen.

Data Visualization. Visualizing data should comprise representing the gath-
ered data in a suitable way to monitor past and current developments. Further-
more, it should provide the possibility to interact with the devices over a central
interface. It is crucial that the middleware provides the possibility for customiz-
ing the interface according to individual requirements. This could range from
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simple capabilities like data plotting up to highly customizing the entire graph-
ical interface, also by integrating self-developed plug-ins, for larger projects.

This led to following symbol-values for X11:

X11 = {not supported, closed source, third-party, integrated} . (22)

The selection of those values is based on the described elimination criteria
to prefer open source solutions. Further, the preference of integrated solutions
over third party components was chosen as compatibility issues are expected to
be less likely.

Data Analytics. Data Analytics features allow getting further insights on the
collected data by employing methods like grouping, aggregating, clustering, fil-
tering or machine learning. A common approach for integration is to use open
source Apache software like Apache Spark, Apache Hadoop or Apache Storm.

This led to following symbol-values for X12:

X12 = {not supported, closed source, third-party, integrated} . (23)

The selection of those values is based on the described elimination criteria
to prefer open source solutions. Further, the preference of integrated solutions
over third party components was chosen as compatibility issues are expected to
be less likely.

License Model. The following feature describes the license model of the mid-
dleware systems. The license is usually included in the source code repository
and is valid for the entire content. Software usage comes with different legal obli-
gations and restrictions for developers, which are commonly called the risk of
infringement and risk of license restriction. Licenses that have low risks usually
just require to keep the copyright notice in place. Classified as medium risk are
licenses that additionally require to make the modifications open source. The
highest risk have licenses that might require releasing other proprietary software
under the same license as the open source license.

This led to following symbol-values for X13:

X13 = {missing, high, medium, low} . (24)

The selection of those values follows the ordering of decreasing restrictions
for modifications on the software.

Scalability and Stability Performance. The last investigated feature con-
cerned Scalability and Stability Performance. To quantify this, we had to rely on
previously conducted studies on solely 3 of the remaining candidates (Things-
board, Fiware and SiteWhere). The first study [8] investigated message rates
and error rates with different amounts of devices and parameters. The second
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study [6] is focused on the message rate, different amounts of publishing devices
and differing amounts of message parameters.

This led to following symbol-values for X14:

X14 ={no info, scalable (e), scalable (rc), scalable & stable} , (25)

The selection of those values is based on the fact that it is a more desirable
characteristic to scale the message rate without errors (e) and low resource-
consumption (rc). Due to insufficient data (only two references considered), the
weight was adjusted as follows: ω14 = 1

4 .

5.3 Evaluation of Middleware Parts

In this section, we will present and evaluate the results of the Quantification Pro-
cess. Table 2 shows the score for each feature for every individual middleware
candidate. In addition, in the last row, the weighted overall score is presented.
The evaluation of the 14 different features for Mainflux, OpenRemote and Kapua
enables us to answer the second research question as, to the best of our knowl-
edge, this was not done in related works.

Table 2. Quantitative evaluation of all features

Mainflux OpenRemote SiteWhere ThingsBoard Kapua Fiware Node-RED

f(x1) 1 2 2 2 2 3 1

f(x2) 3 3 2 3 2 3 3

f(x3) 3 1 2 3 3 2 1

f(x4) 3 1 2 3 1 2 1

f(x5) 3 3 1 3 3 3 3

f(x6) 2 3 3 3 3 3 1

f(x7) 0 3 3 3 0 2 3

f(x8) 3 1 2 2 3 3 3

f(x9) 3 2 3 3 2 3 2

f(x10) 2 2 1 3 2 0 3

f(x11) 2 3 1 3 2 2 3

f(x12) 2 0 1 1 2 2 2

f(x13) 3 1 2 3 2 1 3

f(x14) 0 0 1 3 0 2 0
∑

i ωif(xi) 24.75 20.5 21.5 30.5 23.0 24.25 24.5

These results enable to evaluate following aspects:

Best Overall Rating. If the question on What IoT middleware offers the best
total package with respect to capabilities or feature-richness? is posed, then our
results can be utilized for an answer as a total ordering of middleware systems
is provided. Our evaluation yields Thingsboard as the most promising candidate
in this respect.
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Selection Suggestion for Partial Aspect Prioritization. If a user is only
interested in partial aspects respectively supported features, he could scan for
individual feature ratings and prioritize them in his selection of a candidate. For
example, if a small, securely operated IoT setup with performant data processing
parts running in the cloud is required, then OpenRemote could be a fitting can-
didate. If a resilient solution, offering many Connectivity capabilities, is looked
for, then Node-Red could be the choice.

Potentials for Feature Improvements. If a single developer or a team is
eager to improve a special middleware, then our results give hints on which
functionality, respectively feature, is missing or can be improved. For example,
OpenRemote has a low resilience rating, which could be improved by providing
an implementation of a digital twin service.

6 Conclusion

There are hundreds of IoT middleware systems, with a significant part being
open sourced, available for operation today. If the application domain is not too
narrow, it is a time consuming task to find a solution that fits the boundary
conditions of the individual use case. We therefore presented a solution trying to
tackle these challenges. To that purpose, we first proposed an efficient Selection
Process which in the first step collected a vast number of IoT middleware sys-
tems before eventually iteratively reducing this number through simple binary
conditions to a manageable number of remaining candidates. These candidates
were then feature-wise quantified by a specially constructed mathematical model,
which also provides the possibility to calculate a weighted sum of those features.
The results of this quantification process can eventually be utilized to evaluate
the Best Overall Rating, Selection Suggestion for Partial Aspect Prioritization
and Potentials for Feature Improvements. Having successfully applied this app-
roach manually in practice shows the feasibility of our methodology regarding
complexity.

Opportunities for future work could comprise an in-depth comparison to
other evaluation approaches, which might not necessarily target IoT middle-
ware systems, but also software-frameworks from other operational domains.
Furthermore, the different mappings and weights could undergo a better plau-
sibility check by testing their individual functionality, though being complex, in
practice and subsequently adjusting them. Further, the individual weights and
mappings could be adjusted and more features added respectively removed if
special IoT domains are considered. Finally, some parts of our approach could
possibly be automated like the binary exclusion steps. Here, simple text-parsing
techniques could come to the aid.
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Abstract. Modern applications integrate various heterogeneous soft-
ware services, typically based on Enterprise Integration Patterns (EIPs).
At the same time, such applications can include hundreds of interact-
ing components, being these services or EIPs. This makes it complex
to manually check whether the typed messages sent by a component to
another are such that the latter can understand and suitably process
them. We propose a design-time methodology for automatically identi-
fying type mismatches in the messages exchanged among services and
EIPs in a multi-service application. Our methodology also recommends
how to refactor the architecture of a multi-service application to resolve
the type mismatches therein. We assess the practical applicability of our
methodology by presenting a proof-of-concept implementation, which we
used to run a case study based on an existing, third-party application.

1 Introduction

Modern enterprise applications, e.g., microservices, integrate various heteroge-
neous services to deliver their functionalities [3]. This can be realised through
the pipes and filters architectural pattern [11], due to which the overall applica-
tion logic is partitioned among a set of nodes (called filters) connected through
communication channels (called pipes). The nodes are not only the integrated
services, but also the integration components used to let them interoperate.

Integration components typically implement EIPs, which allow a message-
based integration of software services into an enterprise application [11]. For
instance, there may be components implementing the Recipient List EIP to
route the messages produced by a service to a set consumer services, or to select
a subset of such consumers based on the messages’ content, in accordance with
the Content-Based Router EIP. Other examples are components filtering out
some content from messages or translating it to match a different format, hence
realising the Content Filter or Message Translator EIPs, respectively. EIPs may
also be composed together, e.g., by exploiting a Recipient List to forward a
message to multiple Message Translators, each transforming the message in a
different format, which is that expected by the service that will consume it.

At the same time, modern enterprise applications may include hundreds of
interacting nodes, being them services or EIPs, and this makes it complex to
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check whether they are sending and receiving valid messages, viz., whether the
messages sent by a service to another are typed so that the receiver can under-
stand and process them. To determine whether this is the case, we must consider
the composition of EIPs the messages go through. We must check each commu-
nication channel in the composition, by verifying that the message sent by the
channel’s source is compatible with the format expected by the channel’s tar-
get. Due to the number and complexity of communication channels in modern
enterprise applications, manually enacting such a mismatch resolution is costly,
cumbersome, and time-consuming [23].

To this end, in this paper we propose a design-time methodology to identify
and resolve type mismatches in multi-service applications. More precisely, we
introduce a graph-based modelling for the architecture of an application, where
typed nodes represent the application’s filters (viz., its services and the EIPs
used to integrate them), and where oriented arcs represent the application’s
pipes (viz., the channels among services and EIPs). Arcs actually connect a typed
output of a node, representing the message it sends on the channel, to a typed
input of another node, representing the message it expects on the same channel.
Based on this, we define when a channel in an integration architecture denotes
a type mismatch, and we provide an algorithm automatically identifying type
mismatches. The algorithm also suggest refactorings enabling to resolve type
mismatches in an integration architecture, with mismatch resolution based on
replacing the channel denoting a mismatch with a composition of EIPs adapting
the messages sent by the channel’s source node to match the type of messages
expected by the channel’s target node, if possible.

We also present a proof-of-concept implementation enabling to identify and
resolve type mismatches in integration architectures written in Apache Camel
[2], the de-facto standard for enterprise application integration. We then show-
case the practical applicability of our methodology by illustrating how we used
its proof-of-concept implementation to run a concrete case study based on an
existing, third-party integration architecture.
The rest of this paper is organised as follows. Section 2 provides a motivating
scenario. Sections 3 and 4 introduce a modelling for integration architectures and
an algorithm to automatically identify and resolve the type mismatches therein,
respectively. Sections 5 and 6 present an implementation of our methodology and
its use in a case study, respectively. Finally, Sects. 7 and 8 discuss related work
and draw some concluding remarks, respectively.

2 Motivating Scenario

Consider the EIP-based loan broker proposed in [11], whose architecture is dis-
played in Fig. 1. The figure exploits the standard graphical notation for EIP-
based integration [11], by modelling entry and exit points of the application as
messages, and by exploiting coloured and white boxes to represent the involved
EIPs and services’ endpoints, respectively. The figure also displays the commu-
nication channels among such components, each drawn as an arrow to model the
flow of messages from the arrow’s source to its target.
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Fig. 1. An EIP-based loan broker [11].

The loan broker application starts with the loan request message received
from a customer service. It then exploits a Content Enricher to forward infor-
mation on the customer to the Credit Bureau service’s endpoint, which returns
the customer’s credit score and history from the credit agency. This informa-
tion, together with the information provided by the customer in her requests
is passed to another Content Enricher, which interacts with the Rule Base ser-
vice’s endpoint to retrieve the most appropriate banks to contact for the loan.
The Content Enricher then sends the original request together with the retrieved
information to a Recipient List, which forwards the request to the selected sub-
set of banks. More precisely, the Recipient List forwards the message to a set of
Translators, which transform the message received to the format required by the
selected Bank services. The Bank services’s responses are then collected by a Nor-
malizer, which transforms all responses to the format expected by the customer
service, and then passes them to an Aggregator. The latter collects all normalized
responses in a single message, which is finally returned to the customer service.

Consider now the very first channel in our EIP-based integration, which
models the flow of incoming messages to the leftmost Content Enricher. Suppose
that the received messages are structured as shown in Fig. 2a, whilst those that
can be processed by the Content Enricher must be structured as shown in Fig. 2b.
When looking for the occupation of a customer, the Content Enricher will not

find such information, despite the original message does include information on
the job and income of the customer. This would hence result in an error being
raised by the Content Enricher, which would stop the overall application’s process.
Currently, to discover such mismatch, we must manually compare the input
messages with those expected by the Content Enricher, as per the specifications
of both endpoints. We must then manually determine a suitable refactoring of our
EIP-based integration that enables resolving the mismatch, e.g., by introducing
additional EIPs to transform messages received on the entry point to match the
format expected by the Content Enricher. We must actually repeat this process for
identifying and resolving any possible mismatch in our application, by manually
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Fig. 2. Example of (a) message type received from the entry point and (b) message
type expected by the first content enricher.

checking the compatibility between the message sent by a component to another
and that expected by the latter, still relying on a manual inspection of the
specifications of their endpoints. We must also ensure that all the integration
components introduced to resolve identified mismatches are such that no new
mismatch gets introduced as well.

The resulting mismatch resolution process is cumbersome, costly, and time-
consuming [23]. To support developers in this direction, we hereafter present a
design-time support that automatically discovers mismatches in EIP-based appli-
cations, by also recommending the adaptations enabling to refactor an applica-
tion so that identified mismatches get resolved, if possible.

3 Modelling Integration Architectures

We hereafter introduce a formal modelling for integration architectures, which
sets the foundations to analyse and resolve mismatches like that described in
our motivating scenario. Mismatches occur when the type of a message sent
on a channel is not compatible with that expected by the software component
targeted by the channel. The messages flowing on a channel are indeed assigned
with a given named type, which can be either simple or composite. Simple types
are essentially assigning a name to an XML primitive type [18], whilst composite
types essentially consist of a named container for multiple named types.

Definition 1 (Named Type). Let X be the universe of XML primitive types.
A named type is a pair 〈n, x〉, where
– n denotes the type name and
– x ∈ X ∨ x = {t1, . . . , tn}, with each ti also being a named type.
We denote by T the universe of possible named types. We also denote by T s =
{〈n, x〉 ∈ T | n is a type name ∧ x ∈ X} the universe of simple types and by
T c = T − T s the universe of composite types.

Figure 3 provides an example of (a) simple and (b) composite types. The sim-
ple type models the names of multiple banks by exploiting the primitive XML
type string. The composite type instead models the information on a customer
of the loan broker application in our motivating scenario, with all such informa-
tion being given through a set of simple types contained in the composite type
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Fig. 3. Examples of (a) simple type and (b) composite type.

customer. Another example is given by the composite type customer in Fig. 2b,
which not only contains simple types, but also another composite type.

Figure 2b and Fig. 3b also show how composite types essentially define trees,
whose inner nodes are the names of composite types, and whose leaves are simple
types. In the following, we assume composite types to be finite. We also abstract
from the cardinality of inner types, assuming composite types constrain the inner
types that must appear therein, but not how many times they should appear. For
example, a message of type customer (Fig. 3b) must include at least an instance
of the inner type job (viz., a string specifying a customer’s job), but there can
also be multiple instances of job if a customer has multiple jobs.

Simple and composite types enable defining the inputs and outputs that can
be processed by the nodes in an integration architecture. An integration node is
actually defined by its sort (viz., entry or exit point, EIP, or service endpoint),
by the types of messages it expects on input channels, and by the types of the
messages it sends to other nodes on output channels.

Definition 2 (Integration Node). Let M be the set of message routing and
transformation EIPs [11]. An integration node is a triple 〈s, Ti, To〉, where
– s ∈ M ∪ {endpoint, entry, exit} is the sort of the node,
– Ti ⊆ T is the set of input types, and
– To ⊆ T is the set of output types.
We denote by N the universe of possible integration nodes.

An integration architecture is then modelled as a graph, whose nodes rep-
resent integration nodes. Each oriented arc instead models a channels, by con-
necting an output type t of a node to an input type u of another node. This is
intended to model that the source node sends a message of type t to the target
node on the corresponding channel, and that the target node is listening for
messages of type u on such channel.

Definition 3 (Integration Architecture). An integration architecture is a
pair 〈I, C〉, where
– I ⊆ N is a finite set of integration nodes and
– C is a finite set of oriented channels,
with 〈i, 〈t, u〉, j〉 ∈ C if i = 〈·, ·, T 〉 ∈ I, j = 〈·, U, ·〉 ∈ I, t ∈ T , and u ∈ U .

Figure 4 provides an example of integration architecture, by displaying that
of the application in our motivating scenario. For readability reasons, we omit
to explicitly represent the structure of all input/output types in the integration
architecture. Examples of such types are anyhow provided in Figs. 2 and 3, which
provide the (a) output and (b) input types connected by the channels between
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the entry point and the leftmost content enricher, and between the rightmost
content enricher and the recipient list, respectively. In both cases, we observe
that the output/input types connected by the two channels are different, hence
possibly causing type mismatches to be resolved.

recipient
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Fig. 4. Integration architecture of our motivating example.

To determine whether the difference between the output and input type
connected by a channel denotes a mismatch, we must check whether the output
type is compatible with the input type. Intuitively speaking, a type 〈n, x〉 is
compatible with another type 〈n, y〉 if they have the same name and if x is in
turn compatible with y. When x and y are both simple, they are compatible if
they correspond to the same primitive XML type. Instead, when x and y are
both composite, it must hold that, for each type in y, there must be a type in x
that is compatible with such type.

Definition 4 (Type Compatibility). Let 〈n, x〉 ∈ T and 〈n, y〉 ∈ T be two
types. 〈n, x〉 is compatible with 〈n, y〉 (written 〈n, x〉 ≥ 〈n, y〉) iff
– x ∈ T s ∧ y ∈ T s ∧ x = y or
– x = {t1, . . . , tn} ∧ y = {u1, . . . , um} ∧ (∀ui ∈ y .∃tj ∈ x . tj ≥ ui)

The notion of mismatch directly follows from that of type compatibility: if a
channel connects an output type t to an input type u, and if t is not compatible
with u, then the channel denotes a mismatch.

Definition 5 (Mismatch). Let 〈I, C〉 be an integration architecture. A channel
〈i, 〈t, u〉, j〉 ∈ C is a mismatch iff t �≥ u.

The notion of mismatch enables verifying whether an integration architecture is
“valid”, namely whether none of the channels therein denotes a mismatch. What
if, instead, an architecture includes some mismatches? Can we resolve them?

4 Resolving Mismatches in Integration Architectures

We now introduce a methodology for automatically identifying mismatches in an
integration architecture, and for resolving the mismatches occurring on channels
starting from output types that can be adapted to match the target input types.
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The idea is essentially the following: consider the mismatch denoted by a channel
connecting an output type t to an input type u, with t that is not compatible with
u. For the mismatch to be automatically resolved, it must be that t provides all
the simple types that appear in u, but named or structured in a different way. If
this is the case, we could resolve the mismatch by replacing the channel between
t and u with a composition of EIPs that extracts the simple types from t, and
which renames and reorganises such simple types to match type u.

Following the above idea, we first show how to determine whether a mismatch
is “resolvable” (Sect. 4.1). We then show how to concretely adapt an integration
architecture to resolve all resolvable mismatches (Sect. 4.2).

4.1 Resolvable Mismatches

To determine whether a mismatch is resolvable, we must determine whether the
simple types in the available output type can be adapted to match those in the
target input type. More precisely, for each simple type of the target input type,
we must determine whether there exists a simple type in the available output
type that represents the same concept with a compatible primitive XML type.
We hence first introduce a function σ to denote the simple types contained in
a type t. σ(t) returns the singleton set {t} when t is a simple type, whilst it
returns the set of “leaves” of the tree defined by t when t is a composite type.

Definition 6 (Function σ). Let t ∈ T be a type. The simple types in t are
obtained with the function σ defined as follows:

σ(t) =

⎧
⎨

⎩

{t} ift ∈ T s

⋃

u∈x
σ(u) ift = 〈n, x〉 ∈ T c

We can now formalize how to determine whether the mismatch denoted by
a channel connecting an output type t to an input type u can be resolved. This
essentially holds when each of the simple types in u can be mapped to at least
one of the simple types in t, viz., when t is adaptable to u.
Notation. We write n  m to denote that the type name n is semantically
compatible with the type name m.1 We also write x � y to denote that the
primitive XML type x can be casted to y [18].

Definition 7 (Adaptability). Let t, u ∈ T be two types such that t �≥ u. t is
adaptable to u (written t � u) iff

∀〈n, x〉 ∈ σ(u) .∃〈m, y〉 ∈ σ(t) . n  m ∧ x � y

1 A type name is semantically compatible with another if it represents the same con-
cept or a sub-concept. We here rely on existing approaches to determine semantic
compatibility between, like those surveyed in [5], for instance.



100 J. Soldani et al.

Algorithm 1: ResolveMismatches(〈I, C〉)
1 〈I ′, C′〉 ← 〈I, C〉;
2 for 〈io, 〈to, ti〉, ii〉 ∈ C do
3 if to �≥ ti ∧ to � ti then
4 〈I ′, C′〉 ← ResolveMismatch(〈I ′, C′〉, 〈io, 〈to, ti〉, ii〉);
5 return 〈I ′, C′〉;

Algorithm 2: ResolveMismatch(〈I, C〉, 〈io, 〈to, ti〉, ii〉)
1 I ′ = ∅;
2 C′ = ∅;
3 if ti ∈ T s then
4 t = π(to, ti);
5 n = 〈translator, {t}, {ti}〉;
6 I ′ = {n};
7 C′ = {〈n, 〈ti, ti〉, ii〉};
8 if to ∈ T s then
9 C′ = C′ ∪ {〈io, 〈to, t〉, n〉};

10 else
11 m = 〈content filter, {to}, {t}〉;
12 I ′ = I ′ ∪ {m};
13 C′ = C′ ∪ {〈io, 〈to, to〉, m〉, 〈m, 〈t, t〉, n〉};
14 else
15 T = {π(to, u) | u ∈ σ(ti)};
16 m = 〈content filter, {to}, {〈filtered, T 〉〉};
17 n = 〈translator, {〈filtered, T 〉}, {〈translated, σ(ti)〉〉};
18 p = 〈translator, {〈translated, σ(ti)〉}, {ti}〉;
19 I ′ = {m, n, p};
20 C′ = {〈io, 〈to, to〉, m〉, 〈m, 〈〈filtered, T 〉, 〈filtered, T 〉〉, n〉,

〈n, 〈〈translated, σ(ti)〉, 〈translated, σ(ti)〉〉, p〉, 〈p, 〈ti, ti〉, ii〉};
21 return 〈I ′ ∪ I, C′ ∪ (C − {〈io, 〈to, ti〉, ii〉})〉;

4.2 Resolving Mismatches

Resolvable mismatches, viz., mismatches on channels starting from an output
type that is adaptable to the targeted input type, can be resolved by exploiting
the algoritm ResolveMismatches (Algorithm 1). The algorithm essentially
computes a refactoring 〈I ′, C ′〉 of the integration architecture 〈I, C〉 by iterating
over all its channels (line 2). If a channel c = 〈io, 〈to, ti〉, ii〉 denotes a mismatch
(viz., to �≥ ti), whilst at the same time connecting an output type that is adapt-
able to the target input type (viz., to � ti), ResolveMismatches resolves the
corresponding mismatch (lines 3–4). This is done by passing the architecture
〈I ′, C ′〉 and the channel c whose mismatch must be resolved to the algorithm
ResolveMismatch. The latter returns an updated architecture 〈I ′, C ′〉 where
the mismatch denoted by c is resolved (line 5).
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ResolveMismatch (Algorithm 2) enables resolving the resolvable mismatch
denoted by a channel c in an architecture 〈I, C〉. The algorithm essentially
returns the original architecture, where the channel c denoting the mismatch
has been removed, and where new nodes and channels (contained in sets I ′ and
C ′, respectively) have been included to resolve the mismatch (line 21). Which
nodes and channels to include actually depends on the target input type ti,
namely on whether ti is simple (lines 3–13) or composite (lines 14–20).

When the target type is simple, viz., ti ∈ T s (line 3), ResolveMismatch
introduces two new nodes, viz., a content filter m and a translator n, to obtain
such simple input type from the available output type to. This is guided by
the choice of the simple type in to selected to adapt to to match ti, which
in Algorithm 2 is modelled by a function π (line 4).2 Intuitively, the content
filter is used to extract from to the simple type selected to adapt to to match
ti, which is then renamed and/or casted by the translator to exactly match
ti. Whilst the translator is always introduced (lines 5–7), the content filter is
introduced only if the output type is composite (line 10–13), as no filtering is
needed if the available output type already consists of a simple type (lines 8–9).
An example of application of ResolveMismatch is shown in Fig. 5a, where a
channel connecting a composite output type to a single input type (in black)
is replaced by a pipeline composed by a content filter followed by a translator
(in grey). The figure also shows how the introduced content filter extracts the
simple type value from the available output type price, and how the translator
then renames value into cost to exactly match the input type expected by the
receiver.

Instead, when the target type is composite (line 14), ResolveMismatch
introduces a pipeline composed by a content filter m and two translators n and
p, which adapt the available output type to to match the target input type ti.
This is again guided by the choice of the simple types in to selected to adapt to
to match the simple types in ti (line 15). The content filter m is introduced to
obtain from to the set of filtered types selected to match the simple types in ti
(line 16). The translator n then generates a set of translated types, essentially
by renaming and casting the filtered types to exactly match those in ti (line
17). Finally, the translator p combines the simple types forming the translated
types into a composite type structured in the very same way as the target type
ti (line 18). The nodes m, n, and p then constitutes the nodes I ′ to be added
to 〈I, C〉, together with the channels C ′ used to structure the above described
pipeline (lines 19–20). An example of use of ResolveMismatch to resolve the
mismatch denoted by a channel connecting two composite types is shown in
Fig. 5b. The figure shows how ResolveMismatch replaces a channel denoting a
mismatch (in black) with a pipeline formed by a content filter and two translators.
The figure also shows how the introduced content filter extracts the filtered
types from manual, which are then suitably renamed by the leftmost translator

2 π may be implemented by asking the developer to explicitly make the choices, or by
picking the “most suited” simple type in to for each simple type in ti based on some
heuristics, e.g., based on the semantic similarity approaches surveyed in [5].
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to obtain the translated types. The latter are then composed to obtain the
target type guide by the rightmost translator.

Fig. 5. Examples of mismatch resolution on channels targeting (a) simple and (b)
composite input types. For readability reasons, refactorings are highlighted in grey,
and the structure of composite types appearing multiple times is depicted only once.

The algorithm ResolveMismatches is proved to be terminating, sound, and
complete. Intuitively, soundness and completeness mean that whenever there is a
mismatch on a channel connecting a node’s output type to another node’s input
type, if such output type is adaptable to the input type, the mismatch gets
resolved, whilst still preserving the connection between the two nodes and with-
out introducing additional mismatches. In addition, the algorithm Resolve-
Mismatches is proved to also be deterministic: independently from the order
with which it considers the channels in the input architecture, it always computes
the same refactored architecture.

5 Proof-of-Concept Implementation

We developed an open-source proof-of-concept implementation of our methodol-
ogy, called MR3 (Mismatch Resolver), which enables automatically identifying
and resolving mismatches in the architecture of multi-service applications. MR
essentially consists of an Angular-based GUI interacting with a Spring-based
backend API. The latter implements all the logic for parsing EIP-based inte-
grations programmed in Apache Camel [2], which are translated to the model
presented in Sect. 3 and then analysed as described in Sect. 4. The GUI instead
provides a graphical environment where to provide the necessary inputs, and it
visualises the results of the analysis performed by the backend API.

Snapshots of MR’s GUI are displayed in Fig. 6. It enables parsing an inte-
gration architecture, being this written in the Java DSL specified by Apache
CAMEL [2]. The parsed architecture is then visualised, with integration nodes

3 https://github.com/di-unipi-socc/MR.

https://github.com/di-unipi-socc/MR
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(a)

(b)

Fig. 6. Snapshots of MR’s GUI, showing (a) a mismatch identified in an integration
architecture and (b) the refactoring enabling to resolve such mismatch.
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displayed as green boxes and channels displayed as arrows (Fig. 6a). The types
being source and target of displayed channels are listed in a table below the
visualised architecture, and they can be edited by opening ad-hoc dialogs.

With the above information, MR enables checking whether the architecture
is valid. If this is not the case, the channels denoting mismatches and their cor-
responding source and target types are highlighted in red. MR also enables auto-
matically determining how to resolve resolvable mismatches, which are resolved
as described by ResolveMismatch (Algorithm 2). The refactoring enabling to
resolve resolvable mismatches are highlighted by colouring in yellow the newly
introduced nodes and channels, as well as the source and target types of such
channels (Fig. 6b). The highlighted information provides application developers
with a specification of the refactoring that should be implemented to resolve
resolvable mismatches in their integration architectures.

6 Motivating Example Retaken

To assess the practical applicability of the proposed methodology, we exploited
its proof-of-concept implementation to run a case study based on the loan bro-
ker application mentioned in our motivating scenario (Sect. 2). In particular,
we artificially injected three mismatches in the specification of the loan bro-
ker application, two of which were resolvable, whilst one cannot be resolved.
The resolvable mismatches were that between the Entry Point and the leftmost
Content Enricher already described in Sect. 2, and one between the Normalizer
and the Aggregator, for which we specified that the channel between them was
connecting the output type in Fig. 7a to the input type in Fig. 7b. We instead
injected a non-resolvable mismatch between the rightmost Content Enricher and
the Recipient List, stating that the channel between them was connecting the
output type in Fig. 3a to the input type in Fig. 3b. The latter mismatch is not
resolvable since the output type is simple and lacking the information needed to
reconstruct the target input type, which is instead composite.

Fig. 7. Mismatch injected between the Normalizer and the Aggregator in Fig. 4, viz.,
(a) available output type and (b) expected input type.

The implementation of the loan broker application in Camel’s Java DSL
is publicly available on GitHub, together with the JSON representation of the
types connected by its channels.4 We loaded such implementation in the textbox
4 https://github.com/di-unipi-socc/MR/UseCase.

https://github.com/di-unipi-socc/MR/UseCase
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at the top of MR’s GUI, and we specified the channel types by means of the
dialog opened by clicking on the JSON button. We then clicked on Validate
Architecture, which effectively identified only the three mismatches we injected.
We then clicked on Resolve Mismatches, obtaining that only the two resolvable
mismatches were resolved, with the suggested refactoring (viz., the nodes and
channels to include to replace the channels denoting the two mismatches) high-
lighted in yellow. The non-resolvable mismatch was instead left unmodified, but
still highlighted in red to notify that it was still present.

7 Related Work

Type mismatch resolution has been widely studied in literature, with various
existing techniques proposed to resolve mismatches in different contexts, e.g.,
[10] for programs, [4] for data-aware processes, or [16] for databases. Most of
such techniques however differ from ours as they focus on nominal types, being
these considered as singletons or in a list. Instead, in the context of EIP-based
service integration, data assumes a tree-like format, amenable to a structural
treatment, like those enacted in, e.g., [7,9], or [12]. Such a structural treatment
inspired our solution to identify type mismatches in EIP-based multi-service
applications, which we however aim at resolving by relying on EIPs themselves.

To this end, it is worth relating our solution to the existing solutions for rig-
orously engineering EIP-based multi-service applications. For instance, [1,8,13],
and [24] propose four different solutions for obtaining multi-service applications
by integrating different services through EIPs. [1] and [8] exploit model-driven
engineering to compose EIPs to integrate the services forming an application,
with [8] also enabling to automatically marshal the obtained integration archi-
tectures into executable Java programs. [13] introduces a planning-based method
for integrating multiple services by generating executable compositions of EIPs.
[24] proposes an unified modelling for the services and EIPs forming an applica-
tion, by also allowing to transform modelled applications into executable appli-
cation deployments. The above listed solutions however differ from ours since
they focus on generating the compositions of EIPs allowing to integrate dif-
ferent services into a multi-service application. We instead enable analysing an
EIP-based multi-service application to identify/resolve the mismatches therein.

In this perspective, [6,19], and [21] are closer to our proposal, as they all
allow to analyse the EIP-based integration architecture of a multi-service appli-
cation. They all share the baseline idea of mapping EIPs to an existing com-
positional modelling, viz., coloured Petri nets in [6], BPMN [17] in [19], and
timed-DB nets [15] in [21]. [6] exploits coloured Petri nets to simulate an inte-
gration architecture, analyse its performances, and to verify whether it satisfies
user-defined temporal properties. [19] instead shows how the mapping to BPMN
allows to verify that messages effectively flows from a source to a target, passing
through the EIPs used to integrate them. Finally, [21] analyses the timed-DB
nets obtained from an integration architecture to check time-based properties
and nets’ safety and reachability. [6,19], and [21] hence complement the anal-
ysis we proposed, as they allow analysing different aspects of the design of an
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EIP-based integration architecture, whilst abstracting from the actual types of
messages exchanged among the services and EIPs forming the corresponding
application. We instead focus on identifying and resolving the type mismatches
in the messages exchanged among the services and EIPs in an application.

Differently from the above listed works, [20] explicitly takes into account the
messages exchanged among the services and EIPs forming an application. [20]
models EIP-based integration architectures with an extended version of control
flow graphs, whose nodes model services or EIPs. Each node is also associated
with its own outbound and inbound pattern contracts, describing the format of
data it can send and receive, respectively. This information is then exploited to
analyse runtime statistics and data flows. The analysis results are then used to
estimate model complexity and to propose optimisations for an integration archi-
tecture, e.g., reducing the number of EIPs by replacing them with equivalente
pattern compositions. [20] hence differs from our proposal in the objective, viz.,
optimising integration architectures, whilst we focus on identifying and resolving
type mismatches in the messages among the EIPs and services therein.

In summary, there exist solutions for analysing multi-service application
obtained by integrating multiple services through EIPs. These however either
validate an integration by abstracting from the types of messages exchanged
among services and EIPs [6,19,21], or consider such types but enact other analy-
ses than mismatch resolution [20]. To the best of our knowledge, ours is hence the
first solution enabling to identify and resolve type mismatches in the messages
exchanged among the services and EIPs forming a multi-service application.

8 Conclusions

We presented a design-time methodology enabling to automatically identify and
resolve type mismatches in multi-service applications. Our methodology is based
on analysing a graph-based representation of the integration architecture of an
application to automatically identify channels denoting type mismatches, and
to resolve them by replacing their corresponding channels with compositions of
EIPs, if possible. To assess the feasibility of our methodology, we also presented
a proof-of-concept implementation of our methodology, which we then used to
run a case study based on an existing application.

It is worth highlighting that our methodology currently enables identifying
and resolving type mismatches in the architecture of a multi-service applica-
tion. It indeed enables identifying the type mismatches in the communication
channels of an application, by also suggesting the EIP compositions that can be
used to resolve a mismatch by replacing the corresponding channel. The actual
implementation of a mismatch resolution, that is, the concrete updates to be
applied to the application sources, is left to application developer, much in the
same way as the actual implementation of a design pattern is left to developers.

We anyhow plan to investigate how to exploit the semantics of EIPs to auto-
matically generate the code implementing the refactorings resolving identified
mismatches in an integration architecture. This could be done, e.g., by automat-
ically generating the services implementing the logic for filtering/transforming
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the content of messages to match a target type. The Camel implementation of
an integration architecture could then be automatically updated to include the
newly generated services, hence finalizing the application refactoring.

Other directions we plan to pursue are performing a more thorough assess-
ment of our methodology by applying to real-world, industrial case studies, and
enhancing its usability (and that of its available implementation). As for the
latter, we actually plan to enable automatically extracting the specification of
the input/output types associated with each node. This can be done by relying
on existing technologies for describing service interfaces, e.g., OpenAPI [14] or
Swagger [22], which allow to determine the messages expected/returned by their
endpoints, and by relying on the semantics of EIPs to determine how message
flow and get transformed when passing through a composition of EIPs.
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Abstract. Cloud-native is a recent paradigm for web-based service-
oriented applications. Because it covers a wide range of concepts and
lacks a commonly accepted definition, evaluating software architectures
according to it is difficult. Therefore, a quality model is presented, aligned
with the Quamoco meta model and based on both practitioner books and
scientific literature. It focuses on the design time and considers multiple
quality attributes in relation. This initial quality model together with
an evaluation of already existing measures is intended as a basis for
approaches aiming to evaluate cloud-native application architectures.

Keywords: Quality Model · Cloud-native · Quality Attributes ·
Service-oriented

1 Introduction

Cloud-native as a software engineering paradigm for web-based service-oriented
applications is popular nowadays as indicated by a recent survey [9]. Mentioned
advantages of cloud-native include improved scalability, shorter deployment time,
improved availability or cost savings [9]. To benefit from these advantages, devel-
opers need to understand what cloud-native means and be able to evaluate soft-
ware architectures according to characteristics of the cloud-native paradigm.
However, this is difficult, because cloud-native covers a broad range of aspects
considering application design, development, deployment, and operation. Exist-
ing definitions of cloud-native applications [8,13,21,26,27,33] emphasize this
breadth as they frequently contain enumerations of technologies, tools, design
patterns, and development practices to apply. Even for the most notable defini-
tion of cloud-native applications by Kratzke and Quint [21], the authors state
that it “... can only be understood in a context of further terms...” [21]. Our
aim therefore is to conceptualize cloud-nativeness in the form of a quality model
which structures the technologies, tools, design patterns, and development prac-
tices mentioned in the context of cloud-native applications by the quality aspects
they impact (e.g., maintainability, reliability, or performance efficiency). This
would enable developers to evaluate how design decisions impact quality aspects
and highlight relationships between different quality aspects which has been
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identified as important by Li et al. [23]. The goal of this work, constructing a
quality model for cloud-native applications, is captured by the following two
research questions:

RQ1: Which quality attributes can be assigned to cloud-native applications
and structured in the form of a quality model?

RQ2: Which measures that have already been introduced can be used to
measure the quality of a cloud-native software architecture?

With the first research question we want to derive the general quality
attributes and their hierarchy. To apply the model, measures are needed, which
are the aim of the second research question. We want to gain an overview of
existing measures and map them to the derived quality attributes. This lays the
foundation for future work in which we want to validate, refine and apply the
model.

In the following, we describe related work in Sect. 2 and our methodology
in Sect. 3. Resulting from that, our quality model is presented in Sect. 4 based
on which we also evaluate the existence and need for measures. We discuss our
findings and future work in Sect. 5, before ending with a conclusion in Sect. 6.

2 Related Work

An example of work focused on quality evaluations is the one of Ovaska et al.
[25] who evaluate the quality in terms of reliability and security for single com-
ponents based on their internal architecture. In contrast, our work aims at the
level of several components interacting with each other. A more closely related
topic therefore is that of the microservices architectural style [7]. In fact, from
our point of view the topic of cloud-nativeness encloses the topic of microser-
vices: The microservices architectural style focuses on the business domain of an
application while cloud-nativeness also encloses additional cloud-focused, tech-
nical aspects. For evaluating the architecture of microservices-based systems,
Cardarelli et al. [7] present an approach using a custom quality model focused
on maintainability, however, without describing their measures in detail. A more
detailed description of measures and their impacts on quality attributes is pre-
sented by Bogner et al. [6] who have used the Quamoco model to review and
refine measures to evaluate the maintainability of microservices-based systems.
Apel et al. [3] and Engel et al. [11] propose measures to rate the quality of
microservices-based systems based on typically attributed characteristics, but
with direct impacts from measures to high-level quality aspects, instead of an
hierarchy of quality aspects. And Zdun et al. [37] define measures based on a
formally defined representation of microservices-based systems to assess their
quality based on the presence of typical microservices patterns. Finally, also
focusing on cloud-native applications, Alonso et al. [2] describe the DECIDE
H2020 project. However, their approach is based on recommending patterns for
specified non-functional requirements [2] without a hierarchy of quality aspects
or an explicit architectural model. The main difference of our work compared to
the presented work is therefore that we propose an explicit quality model with a
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quality aspects hierarchy specific to the scope of cloud-native applications. Nev-
ertheless, our work is interrelated especially with the work on microservices and
we aim to also include their findings into our quality model for a solid foundation.

3 Methodology

In order to cover the thematic breadth of cloud-native, we started our quality
model creation process (see Fig. 1) in a top-down manner with existing defi-
nitions for cloud-native applications [8,12,13,21,26,27,32,33,36] from both the
academic literature and the industry. We extracted distinct statements about
cloud-native characteristics (A) and mapped them to suitable quality aspects
(B) of the ISO25010 standard [20] as a familiar and proven basis.

Quamoco Model

A Defini�ons

Statements B

ISO25010 
a�ributes

Quality 
aspects D Product

factors

Prac��oner
Books

E

Scien�fic 
literature Quality model with:

• Quality aspects
• Product factors
• MeasuresProposed

En��es

Statement 
mapping C

Iterate Iterate

Fig. 1. Our approach for defining the quality model

As a foundation for our quality model we chose the Quamoco Quality Meta-
Model [34,35]. Its core element is a factor being either a higher level quality
aspect [35] (e.g., maintainability) or a product factor [35] which is an iden-
tifiable characteristic of a software system. Factors are ordered hierarchically
so that multiple product factors can contribute to a quality aspect. We there-
fore transformed the statements into more specific quality aspects by combining
similar statements and distinguishing separate concerns (C). As the topic of
cloud-native is mainly driven by practice, we then scanned practitioner books
[1,4,5,10,14,15,18,19,28–31] on the topic, because in contrast to other grey lit-
erature, they are at least to some extent reviewed before publishing. To derive
product factors we mapped statements or chapters from the books to suitable
quality aspects and iteratively refined our hierarchy of factors (D). Each factor
characterizes an entity [35] of a software system which is in turn described as a set
of interrelated entities. Measures [35] make product factors quantitatively mea-
surable. In a bottom-up approach, we therefore proposed a set of entities suitable
to capture the factors (E). And we performed a search of the scientific literature
to find existing measures and evaluate their suitability to our model (E). Our
criteria for selecting measures as suitable are that (1) a measure must consider
the right level of abstraction, namely that of components and their interactions
together with their technological basis (This explicitly excludes internal source
code level measures) and (2) a measure must be calculable based on characteris-
tics of the proposed entities. The literature search (described together with the
whole methodology in more detail online1) lead to the identification of 61 papers
1 https://github.com/r0light/cna-quality-model/tree/0.1.

https://github.com/r0light/cna-quality-model/tree/0.1
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Fig. 2. A quality model for cloud-native application architectures

containing measures suitable to our model. We mapped these measures to the
product factors and iteratively refined the model by also adding subfactors to
product factors where measures revealed distinguishable factors within them.
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4 A Quality Model for Cloud-Native Applications

The quality aspects and product factors of our proposed quality model for cloud
native applications are shown in Fig. 2. The usage of the quality aspects from
the ISO25010 standard [20] provides orientation and familiarity. We have put
the top-most quality aspects at the edges with a black background for a bet-
ter visualization of the different factor hierarchies. It has to be noted that we
dropped the quality aspect of functional correctness, because it is not possible to
evaluate it from an architectural point of view and we dropped usability, because
our focus is on developers evaluating internal software architectures, instead of
end users who have an external view on an application through its interface.
Furthermore, we added a quality aspect named simplicity intended as the oppo-
site to complexity, to accommodate products factors which are mentioned for
reducing complexity.

Table 1. Number of measures proposed in the literature per product factor

Product Factor No. of Measures and example

Limited data scope 2 (e.g., Service Interface Data Cohesion [6])

Limited endpoint scope 4 (e.g., Service Interface Usage Cohesion [6])

Mostly stateless services 4 (e.g., Ratio of stateless components [17])

Asynchronous communication 6 (e.g., Number of asynchronous outgoing links [3])

Persistent communication 2 (e.g., Service Link Persistence utilization metric [24])

Separation by gateways 3 (e.g., Externally available endpoints [38])

Distributed tracing of invocations 1 (Distributed Tracing Support [24])

Use infrastructure as code 1 (Lines of code for deployment configuration [22])

Low coupling 28 (e.g., Services Interdependence in the System [6])

Functional decentralization 10 (e.g., Service Criticality [6])

Limited request trace scope 3 (e.g., Service composition scope [38])

Backing Service decentralization 4 (e.g., Shared Storage Backing Service Interactions [24])

Sparsity 6 (e.g., Average Number of Endpoints per Service [6])

Service replication 2 (e.g., Service Replication level [16])

Horizontal data replication 1 (Storage Replication level [16])

Cloud vendor abstraction 1 (Service portability [16])

Isolated configuration 1 (Configuration externalization [3])

Immutable artifacts 1 (Number of Deployment Target Environments [3])

Physical Data distribution 1 (Number of Availability Zones used [16])

Physical Service distribution 1 (Number of Availability Zones used [16])

Retries for safe invocations 1 (Number of Links with retry logic [3])

Circuit breaked communication 1 (Number of Links with Complex Failover [3])

Mediated communication 3 (e.g., Service Interaction via Central Component [24])

Addressing abstraction 1 (Service Discovery Usage [3])
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The impacts between factors are acyclic, as required by the Quamoco model
[35], no factor occurs twice in the same hierarchy, and all factors that are not
impacted by others are product factors. So far we only consider positive impacts,
which is partly due to our analyzed literature where mostly desirable characteris-
tics of cloud-native applications are discussed. As already mentioned, our quality
model focuses on the design time of a cloud-native application, therefore we did
not include product factors which can only be evaluated by analyzing the behav-
ior of a system at runtime or factors considering aspects out of the core scope
of an architectural point of view, such as the deployment process. This focus is
expressed by two main aspects. One aspect is the choice of components and how
they interact with each other. For example, Limited functional scope captures
how services are designed in terms of how business functionality is distributed
among services to ensure modularity. The other main aspect is how a system is
designed to be deployed, that means on which kind of cloud infrastructure it is
designed to run and how components are provisioned. For example, the factor
Automated infrastructure captures how well the infrastructure on which compo-
nents run is automated so that automated restarts are enabled to recover from
a failure. We omit a detailed description of all factors and the entities which
they characterize due to space constraints and refer the interested reader to our
online representation of the quality model2.

In addition to the factors and entities, measures are needed for an actual
evaluation. In total, we found 88 suitable existing measures in the literature
which we assigned to fitting product factors of our model. An overview is given
in Table 1 which shows that we could assign measures to only 24 out of 53 product
factors. Most measures that we found in the literature evaluate maintainability
through the product factors Low coupling or Functional decentralization.

5 Discussion and Future Work

The quality model presented in Sect. 4 provides an overview on the desirable
quality aspects and product factors of a web-based service-oriented application
and how they can be achieved in a cloud-native architectural style, therefore
answering RQ1. It provides a novel point of view, because multiple quality
aspects are considered in combination. To use the model for a quantitative eval-
uation, however, measures are needed for which we provide an overview of suit-
able measures already presented in literature. As an answer to RQ2 we can state
that there is an imbalance in focus of existing measures, as there are numerous
measures to evaluate maintainability in terms of coupling and cohesion, while
for other aspects less measures exits. In future work, we therefore plan to pro-
pose and validate additional measures suitable to the product factors of our
quality model. Furthermore, a threat to the validity of our model is that the
relationships between factors of the model are based on our interpretation of
the literature describing them. Additional work that validates the factors and

2 https://r0light.github.io/cna-quality-model/.

https://r0light.github.io/cna-quality-model/
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their interrelations would improve the validity and may uncover additional rela-
tions. Empirical approaches, such as practitioner surveys or expert interviews
are suitable approaches in this regard. Finally, the model should be used to eval-
uate software architectures in order to test its effectiveness and investigate the
suitability of measures based on architectural models, because as also stated by
Zimmermann: “...it is an open research question how the usefulness [...] of archi-
tectural metrics in general could be evaluated.” [38] An additional difficulty in
this regard is the scope of our model. Because it currently comprises 103 factors,
the outlined future work should also consider techniques to reduce complexity,
for example by focusing evaluations on certain factor hierarchies or allow for
setting parts of an architecture representation invisible when they are not in
focus.

6 Conclusion

In this work, we present a quality model for architectures of cloud-native appli-
cations that is based on both practitioner books and scientific literature. It
is a foundation for developing an approach to evaluate the quality of cloud-
native application architectures. We found that there is an imbalance of quality
attributes targeted by existing architectural measures for cloud-focused service-
oriented software in the scientific literature and additional suitable measures are
needed. But recent publications do address this topic and we think that it is
a relevant field of research to which we want to bring more structure so that
quality can be ensured in modern web-based service-oriented software.

References

1. Adkins, H., Beyer, B., Blankinship, P., Lewandowski, P., Oprea, A., Stubblefield,
A.: Building Secure and Reliable Systems. O’Reilly, Sebastopol (2020)

2. Alonso, J., Stefanidis, K., et al.: Decide: an extended DevOps framework for multi-
cloud applications. In: 3rd ICCBDC, pp. 43–48 (2019)
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Abstract. Serverless computing has emerged over the last couple of
years as a flexible paradigm for deploying cloud-based applications and
allowing developers to focus on their applications and reduce application
maintenance costs over the lifetime of an application. However, there
has not been an examination of whether a complex application can be
built and operated with high performance and low operating cost rely-
ing entirely on the serverless paradigm. This paper presents the design,
implementation, performance, and cost evaluation of what we believe to
be a representative kind of IoT application, a cloud-based energy data
management system named Upilio. Upilio is a versatile data collection
and analysis platform for IoT sensor data. Upilio’s functionality is imple-
mented entirely using AWS Lambda serverless functions and managed
services to store data, and even the graphical user interface does not
need a dedicated web server. Our empirical evaluation shows that the
system, including its serverless online analytics (OLAP) functionality,
is cost-effective, requiring only a fraction of the server cost necessary
for operating such a system using on-premise hardware. Thus, Upilio
demonstrates that complex IoT system scenarios can be implemented
successfully with good performance and cost characteristics leveraging
the serverless paradigm.

Keywords: Serverless Computing · FaaS · IoT

1 Introduction

Over the past fifteen years, cloud computing has fundamentally changed the
computing landscape. Many applications that were traditionally run on-premises
have moved to the cloud and are now often delivered as Software-as-a-Service
(SaaS). Due to the unprecedented scale and elasticity of cloud computing
resources and the ensuing agility, many new and entirely cloud-based companies
have been created. While cloud computing has liberated those companies from
procuring, upgrading, and maintaining their hardware, they typically still need
to configure their servers and operating systems hosted by their cloud provider
of choice to be able to run their applications.
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Recently, serverless computing [16] has emerged as a new paradigm for
deploying cloud-based applications with the promise of unburdening applica-
tion developers even from configuring and scaling their cloud-based servers and
instead enabling them to concentrate entirely on their application. Additionally,
as computing time is only incurred when a function is performed, serverless com-
puting also comes closer to deliver the original promise of cloud computing of
paying only for actually used resources coupled with virtually infinite scalability.
Moreover, due to the event-driven programming model, serverless computing also
seems ideally matched to the implementation of IoT applications, which need to
perform computations whenever new sensor data is produced.

However, while this technology has enormous potential, there are also chal-
lenges. For instance, there has been concern about potentially high operational
costs due to the new billing model (e.g., [18]) and problems created due to
storage disaggregation [30]. This paper examines whether a practical IoT appli-
cation can be implemented with both good performance and cost-efficacy. We
investigate the efficacy of using AWS Lambda for building a practical applica-
tion that solves a vital real-world problem, namely energy (data) management.
More importantly for our purposes, in addition to its practical relevance, we also
believe that a cloud-based energy data processing system that collects, stores,
and enables manual and automatic analytical operations on energy-consumption
and production data is a good benchmark for evaluating the serverless paradigm
for its viability for building complex practical applications because it combines
continuous data collection from an IoT sensor system with analytical function-
ality and a graphical user interface to interact with the system.

To investigate how well the serverless paradigm can address these varied
demands, we designed and implemented Upilio.1 Upilio implements the data col-
lection and monitoring part of an energy management system (EMS) for build-
ings by combining various simple data ingest, storage, and processing functions
as AWS Lambda code to collect and store EMS data in real-time. It continu-
ously applies machine-learning algorithms to produce and update predictions of
energy consumption and production.

We evaluate the performance and cost-effectiveness of Upilio based on a work-
load that is typical for our university environment. We extract the relevant cost
components and extrapolate operating costs to both higher and lower demands
and show that Upilio operates cheaply even for large sites with many build-
ings and sensors with high data velocity. Combined with its extensibility and
easy deployment, we conclude that Upilio and similar IoT applications can be
implemented using the serverless paradigm with excellent cost and scaling char-
acteristics.

This paper makes the following contributions:

– It provides a demonstration of how a complex real-world application can be
implemented entirely using serverless technology.

1 Upilio is Latin for “shepherd”; the Upilio system takes care of the users’ sensor data
in the cloud.
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– It shows that with serverless technology combined with the infrastructure-as-
code approach, a sophisticated system can be deployed and operated without
first building a costly on-premise infrastructure and how updates to the edge
sensor configuration can be performed from the cloud.

– It shows how a versatile web-based graphical user interface that is available
24/7 can be realized without dedicated web server hardware, i.e., serverlessly.

– It presents a blueprint for building scalable and versatile serverless IoT appli-
cations.

– Finally, the paper demonstrates that the system, including serverless OLAP
functionality is cost-effective, requiring only a fraction of the server cost for
operating the system on-premise hardware.

The remainder of the paper is structured as follows: after reviewing back-
ground and related work, Sect. 3 provides an overview of the Upilio system
and its operating environment and provides details on how the analytics oper-
ations for OLAP and the graphical user frontend are implemented serverlessly.
Section 4 provides an experimental evaluation demonstrating the benefits and
cost-effectiveness of our approach and Sect. 5 provides conclusions.

2 Background and Related Work

Serverless computing has been receiving much attention recently as a potential
fulfillment of cloud computing’s original promise of liberating users from the
burden of procuring and managing hardware and software (operating) systems
and letting them instead focus entirely on their application-level code. Besides
some open-source approaches, which still require someone to host and run the
platform, many commercial offerings have emerged over the past years; for a
comparison consult for instance [24]. Castro et al. [16] offer the following defi-
nition: “Serverless computing is a platform that hides server usage from devel-
opers and runs code on-demand automatically scaled and billed only for the
time the code is running.” They distinguish this general definition from a spe-
cific embodiment, namely Function-as-a-Service (FaaS), which however is often
used interchangeably in the literature but, which narrowly defined, is a subset
of serverless computing where the unit of computation are functions, which are
executed typically in response to some event. AWS Lambda [11] is a commercial
offering of a FaaS platform on top of which we have built Upilio. Using AWS
Lambda, developers write code without considering on what hardware it will be
executed.

Applications are broken into separate functions, which can be implemented
in a variety of programming languages, e.g., Javascript, Java, Go, or Python; for
Upilio, we have used the Python language. Users are billed in 100 ms-increments
for actual compute resource usage and a Lambda function can execute for at
most 900 s. The maximum memory available to the function has to be specified
when a Lambda function is deployed; the selected memory determines the billing
rate. The more memory is configured, the higher the CPU performance that the
function is executed on; an independent selection of the two is impossible.
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These Lambda functions are executed in lightweight containers [1] provid-
ing portability and security, as well as virtually unlimited scalability since the
functions can be executed on as many machines as are available, and the user is
willing to pay for. Other commercial cloud providers besides Amazon offer sim-
ilar FaaS offerings, e.g., Google Cloud Functions [19] or Microsoft Azure Func-
tions [14]. A primary advantage of the FaaS model is its simple event-driven
programming model.

One recent development in IoT data processing is applying the FaaS model to
the IoT domain to take advantage of the convenient programming model and the
excellent scalability properties. Open-source offerings such as Apache Whisk [4]
and commercial platforms such as AWS Greengrass [10] provide an execution
environment for specific edge devices, thereby making it possible to execute func-
tions that were initially written for the FaaS cloud platform at the edge. AWS
Greengrass is a framework with a collection of software libraries that enables the
execution of Lambda functions on IoT devices that are Greengrass-enabled. In
Upilio, we run the Greengrass core system on Raspberry PI single-board com-
puters that serve as data collectors at the edge (cf. Sect. 3.1). Greengrass pro-
vides the software engineering benefit of code reuse, as many Lambda functions
written for the cloud can be executed unchanged on the edge devices. Lambda
functions running on IoT devices can process data, execute cloud messaging
operations and even perform learning inference operations and AWS Greengrass
provides some prebuilt components to facilitate the development of such edge
functionalities.

One additional advantage of the AWS Greengrass platform is that Lambda
functions and configuration files can be deployed and updated from the Green-
grass cloud service. This capability frees developers of edge applications from
writing their own software management and update platform and from the time-
consuming process of manually updating the software and configuration settings
at multiple edge devices whenever a change is required, thereby increasing the
agility of edge applications and reducing operational costs.

Aslanpour et al. [5] have looked more generally at the opportunities and
challenges of applying the serverless paradigm to edge computing and, therefore,
to IoT scenarios. Like others, they also point out the excellent match between the
event-driven nature of IoT applications and the serverless programming model.
However, on the downside, they also point out that high latency due to cold-start
issues can be problematic for some applications.

Baresi et al. [15] propose a serverless architecture for a specific edge com-
puting use case, namely mobile augmented reality. Using IBM’s OpenWhisk
serverless framework [23] in locally located servers, they compare the latency
and general performance of their augmented reality application when execut-
ing the functions that provide a reality augmentation serverlessly in the cloud
or at the edge. As expected, the latencies at the edge are lower than in cloud-
based FaaS systems. However, their approach required them to set up their own
edge serverless environment. In our approach, we are leveraging AWS Lambda’s
Greengrass integration, which allows the execution of serverless functionality at
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the edge, on Greengrass-enabled devices, Raspberry PI single-board computers
in our setup.

Wang et al. [31] present LaSS, an architecture for running latency-sensitive
serverless applications at the edge. They use a queuing-theoretic framework to
allocate resources to containers executing serverless functions to ensure that
latency goals are met. They used OpenWhisk to implement a prototype of their
system and evaluated it using a benchmark consisting of a handful of different
latency-critical applications. Their work should be valuable to cloud providers
for extending existing public clouds to support latency-critical serverless func-
tions, precisely when those can be executed at the edge, such as AWS Green-
grass or Azure IoT. There were no aggressive latency demands in our examine
use case requiring edge execution. However, some IoT application scenarios do
require ensuring maximum latencies. Currently, in AWS Greengrass edge execu-
tion, this can only be achieved by proper provisioning at the edge and potential
overprovisioning as you would when operating a serverful application.

One step towards solving this overprovisioning problem for a public cloud is
Pelle et al.’s work [26]. They propose a middleware layer for AWS Greengrass,
which receives application-specific performance metrics and uses this information
to change the edge configuration, e.g., by changing the placement of Lambda
function execution on edge devices. They evaluate their system using simulations.
However, how well the (positive) simulation results translate to an implemented
system needs to be evaluated.

An actual prototypical serverless platform specifically for edge computation
is presented and evaluated by Pfandzelter and Bermbach [27]. Their design is
specifically geared towards resource efficiency and meant to run on single-board
computers. They present a prototype implementation using Docker containers
to place function handlers and a management service running on each edge host
directly. To reduce resource requirements and latency, clients perform requests
using the CoAP protocol, which is used in many IoT systems, rather than HTTP
resulting in lower latency as CoAP is based on UDP transport rather than
TCP. Their experimental comparison found that their platform introduced only
minimal overhead compared to native Node.js execution.

Upilio, like many IoT scenarios, also requires performing analytics operations
on the acquired sensor data. There has been a fair amount of work looking at
serverless analytics. For instance, Nastic et al. [25] present a combined cloud
and edge real-time data analytics platform that can perform analytics both at
the edge and in the cloud. Simpler and latency-critical functions are executed
at the edge, while more complex analytics can be executed in the cloud. Their
model proposes processing the edge real-time data serverlessly. To facilitate that,
they propose an extension of what they label the traditional streams model
by adding serverless data analytic functions into the data stream. In contrast
to some of their application domains, e.g., vital signs monitoring in a medical
context, the latency imposed by transmission to the cloud is generally immaterial
for a cloud-based energy management system such as Upilio. However, their
proposal is similar to Upilio’s approach since we also execute simple processing
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functions at the edge using the AWS Greengrass core as described in Sect. 3.1.
Simple anomaly detection methods can be executed at the edge so that energy
consumption anomalies can also be detected directly at the edge without data
transmission to the cloud.

3 Upilio: Design and Implementation

In order to make our results as generalizable as possible, Upilio’s architecture
follows these design goals. First, the system had to be able to accommodate
heterogeneous sensor equipment, as is typically found when buildings are instru-
mented with energy sensors and are not built with instrumentation from scratch.
However, even in the latter case, being able to switch suppliers to avoid provider
lock-in is desirable. Moreover, since our architecture is built for heterogeneity, it
also applies to other IoT sensor scenarios. Second, the system has to be easy to
deploy without expensive capital investments and minimal operational demands.
While automated control was not a requirement for our pilot system, the design
still has to be extensible to allow for automated control, which motivated our
choice of leveraging the AWS IoT Greengrass platform for our data collection
operations as it enables us to execute some analyses, e.g., anomaly detection, at
the edge as well; a requirement that many general IoT applications share as well.
In addition, it is desirable that the fleet of IoT devices can be (re-) configured
and updated from the cloud to minimize personnel costs.

Upilio is used to collect, store and process energy- and resource-related data
from our university’s three campuses, the main campus located in Landshut and
two satellite campuses located in Lower Bavaria. To limit the number of data con-
nections from each site and provide an opportunity for trading off data freshness
and communication bandwidth, again a requirement shared by many IoT sce-
narios, measurement devices do not communicate directly with the Upilio cloud
backend. Instead, each site uses one (and, for large sites, potentially multiple
instances to avoid bottlenecks) data collector for which we use Raspberry Pi [28]
single-board computers. They also serve as Greengrass core devices as explained
in Sect. 3.1. Currently, at the main campus, Upilio is continuously ingesting data
from approximately one hundred sensors. They measure electricity consumption
in various buildings and laboratories, measuring both power consumption and
aggregate energy use, taking measurements every minute. Regional heat and
water consumption, again at building and sub-building levels, are measured in
15-min intervals. Besides, the university has solar panels and the electricity pro-
duction from this installation with a peak power of 100 kW is measured every
minute, as is weather data from an on-campus weather station, which measures
global irradiance, temperature, and relative humidity at several ground levels.

The remainder of this section describes how we leveraged the serverless
paradigm in Upilio’s design and implementation in more detail and presents the
reference architecture that should be usable as a blueprint for similar IoT sen-
sor scenarios. Section 3.1 describes how data is represented and collected at the
edge. Section 3.2 describes the data ingress APIs and Sect. 3.3 how the web-based
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Fig. 1. Upilio frontend architecture.
The serverless web frontend is imple-
mented with static Javascript code in
S3 buckets calling Lambda functions on
REST APIs.

Fig. 2. A view of Upilio’s analytics
dashboard showing a combination of
the photovoltaic energy produced at
the main campus on the selected 24 h
period overlayed with the global radia-
tion, both normalized to display them
at the same scale.

GUI was implemented serverlessly. Finally, Sect. 3.4 describes how analytics was
implemented.

3.1 Data Representation and Real-Time Collection

To enable the use of sensors from different manufacturers that represent data
in different formats and to be able to incrementally add new sensors to a run-
ning system without interrupting its operations, an essential requirement for our
Upilio design was for it to be extensible. Adding a new sensor type should not
require any code changes to the existing storage and processing backend. More-
over, it is essential to be able to change the frequency of measurements without
manually updating configuration files at each sensor site because typically, sen-
sors are located in utility tunnels or access-restricted locations so that updating
them in situ is cumbersome. Furthermore, there are bound to be many sensors,
and updating them all one by one would be laborious.

Data Representation. Interface definition languages (IDLs) are a well-known
mechanism for representing data types in an extensible and portable way. We
chose to use the Thrift IDL language [2], which is a language-neutral, platform-
neutral, and extensible mechanism for serializing structured data in a compact
and efficient form. Thrift comes with tools to automatically create serialization
and deserialization code stubs from the data type description. Data types can
be updated by adding additional (optional) struct fields without breaking the
existing processing code.

Every sensor device is assigned a unique device id and its measurement value
is represented as a double value. Also, two (Unix) timestamps are recorded:
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the sensor timestamp, a timestamp set by the sensor, which records when the
measurement was taken, and the reading timestamp, which records when the
collector node (=RPI) reads the sensor value from the sensor. We use the NTP
protocol to keep the clocks of our collector nodes synchronized to UTC so that we
can correlate measurements taken at different sensors based on their timestamp
within the NTP-synchronization accuracy, which is in the millisecond range more
than sufficient for the frequency at which energy consumption needs to be mea-
sured. From this primary data type, more complex data types, for instance, to
represent the collection of measurements of a weather station are composed. In
addition, all of our data type definitions carry a version number making rolling
updates to new definitions possible. This data representation should cover most
sensor IoT scenarios, not just our concrete use case.

Edge Data Collection in Upilio. Upilio uses the AWS Greengrass platform
to enable the execution of Lambda functions both in the cloud and at the edge.
At every campus location, at least one Raspberry PI device serves as a data
collector. Using the Greengrass platform provides two advantages: first, we can
avoid reimplementing functionality that can be useful both in the cloud and the
edge. For example, we can perform some simple anomaly detection both in the
cloud and at the edge, using Arima (cf. [22] for details on anomaly detection
in Upilio). The ability to perform monitoring or analysis operations at the edge
is crucial for detecting unusual operating conditions even when Internet con-
nectivity is lost or would have too high a latency. While Upilio does not drive
any automatic control systems, this capability would be indispensable in such a
case. Another crucial advantage afforded by Greengrass is that it enables us to
update both the function implementation and the configuration files from the
cloud. Furthermore, we can deploy updated code or configuration files reliably
without implementing our own update mechanism, which, for instance, enables
us to update the collection frequency in selected buildings without the need to
access the RPI computers, which are mostly co-located with sensors in utility
rooms and tunnels that are difficult to access and access-controlled.

Note that these two requirements of being able to perform latency-sensitive
operations and being able to operate when Internet connectivity is lost is shared
in many other IoT scenarios. Furthermore, configuration and code updates from
the cloud are an important requirement in many scenarios as well, therefore being
able to support them in Upilio makes the results reported in Sect. 4 generalizable
to a large class of IoT scenarios.

For our data collection, we execute two processing functions at the RPIs only:
a SensorReading function, which reads the measurements via the local network
from all sensors listed in a configuration file and a PackageAssembly function,
which assembles sensor measurements into larger data packets to send to the
Upilio cloud backend. Both are triggered periodically by an auxiliary timer task
also implemented as a Lambda function.

The TimerTask implementation initializes the reading of the sensors,
whereby sensor-specific data such as IP address, device ID, register address,
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and resource type are specified in a YAML [32] enabling Upilio to read different
resources at different time intervals. SensorReading is a generic component that
is specialized for the specific sensor type to acquire its data values. Finally, the
PackageAssembly potentially aggregates multiple sensor readings before sending
them to the backend allowing for tradeoffs between the number of data trans-
missions and freshness. In the case of network problems, the packets that are
not confirmed from the backend are persisted locally and sent again when the
connection is re-established.

3.2 Data Ingress APIs

Upilio provides two APIs for ingesting data into the system: the real-time data
ingress consisting of data collector computers at the edge (the RPIs in our current
setup), which transmit sensor data to Upilio as the measurements are being
produced. A second interface consists of a simple file drop mechanism, which
allows for the upload of current and historical data. This second mechanism is
helpful for two purposes. First, it allows for the integration of data collected
before real-time instrumentation as well as for backfilling data that was not
transmitted in real-time, e.g., due to more extended network connectivity issues.

Real-time Data Ingest API and Data Processing. The sensor data is
sent from the RPIs to the Upilio backend, which is running in the AWS cloud.
Our real-time data ingest API is built on top of the publisher-subscriber sys-
tem that is part of the AWS Simple Notification Service (SNS) service [12]. For
each resource type (electricity, gas, water, weather data, among others) there
is a corresponding SNS topic to which data of that type is sent (published) by
the RPIs running the edge sites. SQS queues [13] are configured as consumers of
the messages posted. Simple Queue Service (SQS) is a managed queuing service,
which can be used to decouple various components of a microservices architec-
ture, such as those employed by Upilio. Lambda functions can be configured to
be triggered by data becoming available at an SQS queue. Our primary Lambda
function, SqsToDdb, which is responsible for the data ingest, is triggered by data
becoming available at any of the SQS queues that correspond to the SNS topics.
SqsToDdb is configured to run with 128 MB, and for the sensor data we currently
process, executes on average for ca. 600 ms.

We use DynamoDB [29], a highly scalable key-value store with low write and
read latencies, to store all our sensor data. For the batch write that the SqsToDdb
function performs, we experience average latencies of only 7–8 ms. Due to the
low latency and high scalability properties, DynamoDB, and similar key-value
stores are very popular in IoT scenarios, where data volume, scalability, and
latency usually make relational databases impractical choices.

3.3 Serverless Frontend

Figure 1 shows a schematic representation of the Upilio serverless frontend. The
key to a serverless web-based graphical user interface without operating a perma-
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nently running server lies in the fact that AWS Simple Storage Service (S3) per-
mits making buckets word readable and that AWS buckets are addressable via web
URLs. The Upilio start page with some static content and Javascript is located
under a specific S3 bucket address. That page shows a login screen and requires
the user to log in to our systems. The user is authenticated using the Amazon
Cognito [9] identity service, in which we create a user pool to control access to
the Upilio frontend system. All accesses to frontend pages (all hosted in S3) are
access-controlled using that system, which hands out an access token after suc-
cessful authentication.

Once the user is logged on, they see a dashboard like the ones shown in Fig. 2.
On the navigation pane on the left, the user can select an overview over all con-
nected sites (campuses), a live data view, or the analytics dashboard (shown
in Fig. 2). Alternatively, the user can update their account settings or log out.
To perform Upilio operations, e.g., ask the system to display specific data and
perform analytics operations, we have designed a REST-interface, which was
implemented using the Chalice [6] framework and the Amazon API gateway [7].
Chalice is a collection of libraries and tools to make the development of serverless
micro-architecture applications easier. The Amazon API Gateway is an AWS ser-
vice that makes the operation of REST-ful web APIs possible without operating
your own server.

The live data view is generated via the AppSync component. AppSync
is an AWS service that provides an API compatible with the open-source
GraphQL [20] query language for querying and displaying graphical data, origi-
nally developed at Facebook. Upilio uses GraphQL to query DynamoDB for the
sensors’ current values selected in the dashboard.

Figure 2 shows the dashboard view when the user selects the option to per-
form OLAP-style analytics, explained in detail in Sect. 3.4. In Fig. 2 the user has
selected a slice of data from the main campus (HAW), the combined sensors of
all photovoltaic production at that site (labeled ‘A Gesamte Leistung PAC...’)
together with the global radiation, measured by the campus weather station
(labeled ‘Globalstrahlung‘), and a time range from November 11th, 00:00 h to
November 12th, 00:00 h. Since the two metrics produce values of very different
magnitudes, the dashboard user also selected the option to normalize the data
so that they can be displayed at the same scale. The graph very neatly illus-
trates that the photovoltaic installation was working as expected that day, as
the electric power generated almost perfectly overlays with the global radiation,
i.e., sunshine present during that day.2

3.4 Serverless Analytics

OLAP-style analytics in Upilio is also implemented, relying entirely on the
serverless paradigm. As reported in Sect. 4, this can be done efficiently and at

2 In fact, Upilio uses the difference between these two normalized values to detect
anomalies in the functioning of the PV inverters. Details can be found in [22].
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a low cost for Upilio’s use cases. Crucial in that effort is the efficient imple-
mentation of aggregation operations since they can be costly when performed
inefficiently. We chose two implementation approaches: first, we use a simple
aggregation approach that computes aggregations that are likely to be requested
by our system’s users, namely aggregations along the time dimension aggregated
in buckets of daily, monthly, and yearly intervals. Then, as a second approach,
we implemented the well-known blocked-range-sum algorithm [21] by Ho et al.,
and evaluated the performance of both (cf. Sect. 4).

Simple Data Aggregation. For the simple data aggregation implementation,
a separate DynamoDB table is created for the three aggregation levels “daily”,
“monthly”, and “yearly”, which are updated on the fly using an AWS Lambda
aggregation function. This function is triggered by DynamoDB Streams [3], a
DynamoDB service that provides a chronologically ordered sequence of item-level
changes in each DynamoDB table. The timestamp determines each granularity
level’s corresponding index for each record in the stream. It serves as the pri-
mary partition key for the corresponding table. For example, the timestamp is
converted into the number of days passed since the beginning of UNIX time
(January 1st, 1970) for the daily aggregation table. If there already is an entry
in that granularity bucket, its value is read and updated with the sum of the
new sensor value and the prior sum; otherwise, the new value becomes the initial
bucket value. To reduce write costs, all items from the DynamoDB stream are
processed first, and then the updated sum values are written back to DynamoDB
in one batched write operation.

As a more sophisticated alternative for computing aggregations that also
provides a mechanism of trading of aggregation speed versus additional storage,
we also implemented the Blocked Range-Sum algorithm developed by Ho et al.
We evaluate its cost implications in Sect. 4.2.

4 Experience and Experimental Evaluation

In this section, we first report some general experiences we had when building and
operating Upilio answering whether the serverless paradigm supports building
performant and cost-effective applications in the IoT domain. Then we evaluate
the cost and performance of the analytics operations.

4.1 General Observations

Confirming results by others, for instance, by Lee et al. [24], we were able to
observe easy deployment and provisioning of Upilio thanks to the serverless
model. We used AWS Cloud Formation templates [17] to define and deploy
the components of Upilio, e.g., the DynamoDB tables, SQS queues, or Lambda
functions. Cloud Formation templates are JSON files that define the AWS cloud
components and their connections in a scripting language. They can be used with
a command-line tool to bring up, update or turn off AWS cloud components. In
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Fig. 3. The graph shows three typical
months for Upilio’s operational cloud
computing costs. The “others” cate-
gory comprises SNS, Greengrass, SQS,
and S3 services.

Fig. 4. Latencies of executing queries
using the pywren engine. The queries
execute within an acceptable time
frame, however, the pywren engine
introduces some additional latency due
to the launching and warmup cost for
lambda functions and the data storage
in S3

one experiment, we were thus able to bring up another instance of Upilio at the
simple execution of a single CLI command resulting in a running instance ready
for data from the edge in approximately 15 min.

4.2 Experimental Results

General Operational Costs. Besides the benefits of easier deployment of
provisioning, for our university environment and its amount of data, our usual
operating costs for the data acquisition storage and the (at this point) low fron-
tend usage are on the order of 35–50$US per month. Figure 3 shows operational
costs for Upilio for a typical three-month period.

First, overall cloud computing costs for the current Upilio deployment with
roughy 100 sensors reporting data in minute intervals and usual analytic dash-
board use is usually around forty dollars a month. Five services, Cloudwatch,
AppSync, Lambda, DynamoDB, and AWS Greengrass (reported as IoT in the
AWS Cost Explorer graph in Fig. 3) account for approximately 85% of the total
cost, and the other services that Upilio relies on, namely SNS, SQS, and S3 com-
bined account for only 15%. Cloudwatch [8] is AWS’ service monitoring service,
which we use to monitor the correct functioning of Upilio to be notified, for
instance, if less than the expected number of sensor data packets arrive at the
Upilio cloud API.

The AppSync costs are incurred by frontend use when users display the
current live data. For the current Upilio dashboard use with a low number,
i.e., approximately 10 h of usage per week, these costs are under ten dollars
per month. DynamoDB costs generally vary between two and eight dollars, the
variation due to different frontend usage patterns: a higher number of analysis
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Table 1. Data aggregation cost for all
dimensions, block size of 4.

Block Size 4
Cost in $ per month

Devices Items/Month DynamoDB Lambda Total
10 432000 2.91 0.0 2.91
100 4320000 2.91 0.0 2.91
1000 43200000 49.68 0.0 49.68

Table 2. Data aggregation cost for a
block size of 1 (worst case) for 100,000
dimensions.

Block Size 1
Cost in $ per month

Devices Items/Month DynamoDB Lambda Total
10 432000 2.91 0.0 2.91
100 4320000 2.91 0.0 2.91
1000 43200000 18.56 0.0 18.56

operations or the use of operations resulting in more read operations will increase
the DynamoDB costs.

The Upilio computation costs, i.e., operations performed by the Lambda FaaS
service was approximately five dollars for the three service months in the graph.
Overall, the operational costs we have found are small, particularly considering
the overall functionality and the reliability of Upilio, which directly benefits from
AWS’ 99.99% availability of resources in a single region.

For comparison, assuming we could operate Upilio on a single server, the
hardware depreciation cost alone would already be higher. With electricity and
IT personnel costs, this relation tips even more in favor of a cloud-hosted server-
less architecture and, almost certainly, with higher availability and reliability of
the cloud-based solution.3

Evaluating Analytics Operations. Besides the empirically observed typical
operation costs, we also evaluated the costs incurred specifically for supporting
fast online analytics operations. As mentioned in Sect. 3.4, we implemented the
blocked-range-sum algorithm by Ho et al. [21] in addition to the simple aggre-
gation algorithm that aggregates daily, monthly, and yearly values to make the
answering of range queries fast in the time dimension. Note that the costs for
the simple aggregation algorithm are included in the graph in Fig. 3.

For our implementation of Ho et al.’s algorithm, we evaluated how the storage
and Lambda computation costs changed when varying the block aggregation
block size and number of sensors. In Ho’s algorithm, the larger the block size,
the less storage is needed for pre-aggregation at the expense of more on-the-fly
costs when answering queries. Therefore, a block size of one is the worst case in
terms of required storage and precomputation costs.

The cost calculations are derived from processing the data packets typically
produced by our concentrator nodes, i.e., We assume that each sensor is read
out once per minute and that the system is running 24/7. We assume an aver-
age length of 30 days per month to calculate the monthly costs, which leads
to 43200 measurement points per sensor. We use a singular Lambda instance
for data processing, which is triggered by DynamoDB Streams. The trigger is
configured so that the Lambda function is only triggered with a batch size of

3 Assuming a $5000 purchase cost and a five-year depreciation, the monthly cost would
come to $83.
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10 times the number of sensors, 1000 for our main university campus, which
reads out about 100 sensors. We are considering the worst case of computing all
possible aggregations, i.e., we aggregate values over 473200 possible dimensions,
consisting of four (time) granularity levels, 13 units, 13 buildings, 1 domain, 7
resource types, and 100 device ids (= 4× 13× 13× 1× 7× 100). Furthermore,
we make the worst-case assumption that all dimensions are updated in every
batch and that all device IDs occur in every dimension. In reality, most of these
aggregations would never be requested by users of our system, and as such, the
cost calculations represent a worst-case scenario. While we might know a pri-
ori for some aggregations to be helpful in practice, we cannot know what the
system’s users will do in practice. We consider implementing one approach to
start computing a particular aggregation only once requested, thereby adapting
to the typical usage dynamically. Furthermore, to save space, precomputing an
aggregation could be stopped again if that aggregation is not used for a certain
amount of time; we plan to implement and evaluate this approach in the future.

However, even for the worst-case scenario, the monthly costs were only about
$10 for the processing and persistence of the data with a block size of 1 for our
university scenario. Table 2 shows the costs for a varying number of sensors and
when aggregating not for all but a fixed 100,000 dimensions. When more sensors
are present and more data is produced, we keep the implementation cost-efficient
by making the batch size, which triggers Lambda processing, a function of the
system’s number of sensors. We use a linear relationship multiplying the number
of sensors with 10 to set the batch size. While this choice of batch size saves
computation cost, it also guarantees that the aggregations are fresh: N sensors
produce N data points per minute in our environment so that aggregation data
will be no more than 10 min old.

As mentioned, using a block size of one creates the worst-case for pre-
aggregation storage and computation costs. Table 1 shows the costs when com-
puting the blocked range sums using a block size of 4. The table shows that if we
use a block size of 4, we could even compute and store all possible aggregations
at an acceptable cost. However, even in this case, adapting the system to actual
usage patterns in the frontend would also save costs, as outlined above.

Besides the monetary cost of operating Upilio, performance in terms of
latency is also essential. Therefore, user queries should be executed with neg-
ligible latency. To evaluate the effectiveness of the aggregation algorithms, we
performed various queries over different lengths. The experiments compare the
simple data aggregation and the blocked range-sum algorithm with block sizes
1 and 4. Our experimental setup used the Pywren engine to execute multiple
lambda functions that combine the appropriate aggregation values to answer
user queries. The median query time was from 1 to 2 s, sufficient for our cur-
rent use cases (cf. Fig. 4). However, as others have observed before, launching
Lambda functions via Pywren introduces some startup latency, not least because
it uses S3 buckets to store code and data. S3 has a much higher latency for data
access than Dynamo DB. Therefore, as part of future work, we want to evaluate
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triggering the lambda functions directly from our frontend without using pywren
and “keeping them warm,” e.g., using a timer mechanism.

5 Conclusions

In building Upilio, we set out to examine if a scalable, cost-effective, and easily
portable data collection and analysis platform for IoT sensor data can be built
relying entirely on the serverless paradigm and using only off-the-shelf cloud
computing building blocks. Upilio is sufficiently similar to other IoT data ana-
lytics scenarios that the results demonstrated in this paper should generalize to
similar systems.

We have confirmed that developers can focus on designing and implementing
functionality specific to their problem domain thanks to the flexible deployment
model provided by a serverless platform like AWS Lambda. We found that the
serverless paradigm enables creating scalable and performant systems without
investing much time, money, or effort. Moreover, except for storage cost, which
is very low, Upilio operating costs are proportionate with usage. In addition,
performing operations mainly in the cloud was not a limitation for our system’s
data analytics use cases. Therefore, we have corroborated that creating appli-
cations using the serverless paradigm is particularly alluring for “small players”
since a comprehensive system can be built with a minimal upfront cost.

In the future, we would like to perform a more detailed evaluation of the
analytics operations, especially within the live system, i.e., based on typical
workload demands and frontend operations.
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Abstract. Function-as-a-Service (FaaS), a key enabler of serverless
computing, has been proliferating, as it offers a cheap alternative for
application development and deployment. However, while offering many
advantages, FaaS also poses new challenges. In particular, most commer-
cial FaaS providers still require users to manually configure the memory
allocated to the FaaS functions based on their experience and knowledge.
This often leads to suboptimal function performance and higher execu-
tion costs. In this paper, we present a framework called MAFF that auto-
matically finds the optimal memory configurations for the FaaS functions
based on two optimization objectives: cost-only and balanced (balance
between cost and execution duration). Furthermore, MAFF self-adapts
the memory configurations for the FaaS functions based on the changing
function inputs or other requirements, such as an increase in the number
of requests. Moreover, we propose and implement different optimization
algorithms for different objectives. We demonstrate the functionality of
MAFF on AWS Lambda by testing on four different categories of FaaS
functions. Our results show that the suggested memory configurations
with the Linear algorithm achieve 90% accuracy with a speedup of 2x
compared to the other algorithms. Finally, we compare MAFF with two
popular memory optimization tools provided by AWS, i.e., AWS Com-
pute Optimizer and AWS Lambda Power Tuning, and demonstrate how
our framework overcomes their limitations.

Keywords: serverless · cost optimization · memory optimization ·
duration optimization · Function-as-a-Service · memory allocation

1 Introduction

In recent years, the popularity of serverless computing technology has been
proliferating in different domains [12,17,25]. Cloud users profit from the auto-
matic scalability, faster deployments, and the possibility to outsource control
and maintainability over the underlying hardware infrastructure to the cloud
service providers [16,28]. Function-as-a-Service (FaaS) is a key enabler of server-
less computing [29]. In FaaS, a serverless application is decomposed into simple,
standalone functions uploaded to a FaaS platform such as AWS Lambda for
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execution [28]. The pricing is charged based on the number of requests to the
functions and the execution duration [9].

However, while offering many advantages, FaaS faces some challenges that
hinder its widespread adoption [10,15,27]. While most infrastructure manage-
ment is abstracted away from the user, major commercial FaaS providers still
require users to manually configure the amount of memory allocated to the FaaS
functions [26]. For most developers, this is often done by using their experience
and knowledge, leading to suboptimal function performance and higher func-
tion execution costs. Furthermore, the cost of the FaaS function depends on the
execution duration of the code and assigning the smallest or random memory
can be considered as an anti-pattern [9,14]. Thus, the user has to do a trade-
off analysis between them to define the suitable configuration for their required
SLOs [21,29], and it’s not trivial to find the optimal configuration where the
overall cost and execution duration are both optimal.

The importance of optimizing memory configuration for the FaaS functions
has already been described in various scientific works and implemented in prac-
tice [2,30]. However, the existing tools are either only implemented to be actively
invoking the analyzed functions [11] or require functions to have specific settings
and execution frequency to be able to provide the result [8]. To this end, we
develop MAFF (Memory Allocation Framework for FaaS functions), a python-
based framework for automatically finding the optimal memory configurations
for the FaaS functions. It is implemented in two execution modes – active and
passive, depending on the way of how the function execution information is
received. Our key contributions are as follows:

– We develop and present a framework called MAFF that automatically finds
the optimal memory configurations for the FaaS functions (Sect. 3). Further-
more, it automatically self-adapts the memory configurations for the FaaS
functions based on a change in the function input or other user requirements.

– We propose and implement three optimization algorithms – Linear, Binary,
and Gradient Descent, for the minimum cost optimization objective, and two
optimization algorithms – Optimization value, and Duration Change, for the
balanced (balance between cost and execution duration) objective (Sect. 2).

– Although our approach is generic and MAFF can be easily extended to sup-
port other commercial and open-source FaaS platforms, we demonstrate the
functionality of MAFF with AWS Lambda (Sect. 5) on four FaaS functions.

– We compare MAFF with other existing memory optimization tools: AWS
Lambda Power Tuning [11] and AWS Compute Optimizer [8].

2 Methodology

According to business requirements, there are different optimization objectives
when using FaaS functions. For example, it is essential to ensure a quick function
execution in some cases. In other, the balance between the function’s execution
and the cost plays a more significant role. Therefore, we have considered two
optimization goals:



MAFF: Self-adaptive Memory Optimization for Serverless Functions 139

Algorithm 1: Linear Algorithm
Input: start mem, step size, threshold count, function
Output: min cost mem

1 step count = 0, dur1 = getDuration(function, start mem); // get the

duration

2 min cost mem = start mem, min cost dur = dur1;
3 for step count ≤ threshold count do
4 old cost = (dur1 × start mem);
5 new mem = start mem + step size;
6 dur2 = getDuration(function, new mem);
7 new cost = (dur2 × new mem);
8 if new cost > old cost then
9 min cost = min cost mem × min cost dur;

10 if old cost ≤ min cost then
11 min cost mem = start mem, min cost dur = dur1;
12 else
13 step count += 1;
14 end

15 end
16 dur1 = dur2, start mem = new mem;

17 end
18 return min cost mem ; // return the min cost memory

– Cost-only: In this case, the users’ primary goal is to minimize the cost of
the function execution even if the duration is not the lowest.

– Balanced: It finds the balance between the cost and execution duration of
the function. Here the goal is to find the best possible performance for a fair
cost.

In the scope of this work, we developed multiple algorithms for each of the
optimization goals. In the following subsections, we describe each of the algo-
rithms.

2.1 Cost Optimization

Linear Algorithm: The main idea behind this algorithm is to continuously
increase the memory allocated to the function linearly and calculate the cost
for each memory configuration until a memory sweet spot is found where the
optimization goal, i.e., the cost, is minimum. The pseudocode for this algorithm
is shown in the Algorithm 1.

By default, it starts at the minimum memory configuration possible in AWS
- 128 MB (min mem) and increases the allocated memory with a pre-defined
step size of 128 MB (step size). Firstly, the memory of the function is set to
min mem and then the execution duration of the function at that memory is
determined (Line 1). We further determine the cost by multiplying the allocated
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memory and execution duration at min mem, since the cost is directly propor-
tional to them [9] (Line 4). We then continuously increase the function’s memory
by step size (Line 5) and determine the new execution duration of the function
at that memory, and then the cost (Lines 6–7). If the cost with the new memory
configuration is smaller than the previous one, the algorithm moves to the next
memory iteration (Line 16). If not (Lines 8–15), the previous memory point is a
minimal cost point, and the algorithm stops. However, in such a case, the algo-
rithm could stop in the local minima. Thus, the additional logic of overcoming
the local minima was added. The algorithm does not stop execution when the
first local minima is found, but continues for a few more iterations until a thresh-
old (threshold count) is reached. The higher the value of the threshold count,
the more precise result can be delivered, but at the same time, more iterations
will be performed.

Furthermore, typically the cost of the Lambda function stays the same with
minor fluctuations until some memory level, after which it starts increasing
almost linearly [19]. Following the Pareto optimization principle, when two
memory configurations have the exact cost, a memory with the bigger value
is selected, as it positively affects the function’s execution duration.

Binary Algorithm: This algorithm is based on the classical binary search
algorithm, which operates on a sorted list of numbers by iteratively comparing
the searched item to the middle element of the list and eliminating parts in
which the searched element can not be found. The same principle is borrowed
to create this algorithm.

For finding the optimal memory, this algorithm first calculates the execution
cost at the start and the middle memory configurations from the provided mem-
ory list. The user can define the memory list; by default, it is the whole range
of memory values available on AWS (from 128 MB to 10240 MB) [5]. Suppose
the cost at the start memory configuration is lower than the middle memory
configuration. In that case, the algorithm continues execution on the left part of
the memory array (from start to middle), otherwise on the right part. The stop-
ping criteria for the algorithm is when the memory at the start of the analyzed
memory interval is equal to the memory in its middle, meaning that the interval
consists of only one value.

Gradient Descent Algorithm: This algorithm is based on the popular Gradi-
ent Decent optimization algorithm in Machine Learning. The idea is to continue
finding the minimum of a metric by choosing the direction (left or right direction)
towards the minimum cost at each iteration until the minimum is reached.

In this algorithm, a random memory value from the provided memory list
is selected at which the cost metric is calculated along with the cost of its left
neighbor. If the cost of the neighbor is higher than the cost of the current point,
the algorithm continues execution on the right side of the current point (in the
direction of decreasing cost, otherwise on the left side. The minimum cost is also
updated if the current cost is less than the minimum cost.

The known issue with the Gradient Descent algorithm is that it can get stuck
in the local minimum [23]. To overcome this problem, an additional counter
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step count was added. The counter step count is updated when a local min-
imum is reached. It is used to control that the algorithm does not stop in
the first minimum that it encounters but continues execution until a thresh-
old threshold count is reached. The neighbors of the current memory configu-
rations are found by the addition or subtraction of the memory step size from
the current memory value.

2.2 Balanced Optimization

In the following paragraphs, we describe two algorithms for balanced optimiza-
tion goal.

Optimization-Values-Based Algorithm: The first approach to finding such
an optimal point is to transform cost and execution duration into percentage
format using the maximum value of cost and duration, respectively. To avoid
the exhaustive search of finding maximum values [11], it is assumed that the
function has maximum execution duration at the beginning of the memory list
(mem config list), i.e., 128 MB and the maximum cost at the end of the list,
i.e., 10240 MB. The assumption is based on the fact that increasing the allocated
resources does not negatively influence a function’s performance, but make its
execution faster [6,19] by having more underneath resources.

The algorithm starts analyzing memories starting from 128 MB and increases
memory allocated to the function with the defined memory step size. For each
memory configuration, the algorithm calculates a value called optimizationValue
shown in the Eq. 1. Memory configuration having the lowest optimizationValue
is selected as the optimal memory spot with the balanced optimization goal. As
part of Eq. 1, we introduce an additional parameter, α, by which the influence of
duration and cost on the final result can be adapted. The values of the parameter
can range between 0 and 1. When α is equal to 0, the algorithm goal corresponds
to the cost optimization, and when the α is set to 1, it will be optimizing the
duration. By default, the parameter value equals 0.5, which means that both
cost and duration are equally important, and a balance between them needs to
be found.

optimizationValue =
α × duration

maxDuration
+

(1 − α) × cost

maxCost
(1)

where α is the coefficient for adjusting the influence of optimization variable (cost
or duration) on the final result, and the other variables are self-explanatory from
their names. The algorithm operates similarly to the Linear Algorithm, but uses
optimizationValue as the optimization parameter. It also contains the logic of
overcoming local minimums, as explained in other algorithms.

Duration Change Algorithm: This algorithm is based on the fact that,
the optimal memory spot for balanced optimization goal is a point after which
any additional memory increase does not provide any significant performance
improvement [13]. So, the idea of this algorithm for balanced optimization is
to incrementally increase a function’s memory configurations until there is no
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significant improvement in its execution duration. In other words, we need to find
a vertex of a hyperbola, a point at which the logarithmic curve of the function’s
execution duration bends. This algorithm tries to find a memory configuration
after which the duration curve has flattened, and subsequent increases in memory
will not significantly improve the function’s performance.

The algorithm operates similarly to the Linear algorithm. By default, the
algorithm starts with memory 128 MB and compares execution duration at this
point to the execution duration of the next point on the right side. The memory
value of the right neighbor is equal to the current memory plus the defined
memory step size. If the duration of the right neighbor is decreased by more than
the defined change threshold percentage (γ), the algorithm continues execution
for the next iteration; otherwise, execution stops. The default value of the γ is
10%, the higher the value, the closer the memory will be selected to the hyperbola
vertex.

3 MAFF Framework

In this section, we present MAFF (Memory Allocation Framework for FaaS
functions), a python-based framework for automatically finding the optimal
memory configurations for the FaaS functions according to the defined opti-
mization goal.

Fig. 1. High-level system architecture and workflow of MAFF

Figure 1 shows the high-level system architecture of MAFF, its components,
and the workflow between them. All the components are developed in Python
and deployed on AWS infrastructure. On the high level, there are two main
approaches for executing MAFF – active and passive, differentiated by the
method of how the function’s execution information is gathered.

Active Approach: In the active approach, MAFF invokes function by itself.
A short execution log is returned synchronously after each execution. Blue lines
in Fig. 1 represent interactions between parties when using MAFF in the active
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approach. As can be seen, as soon as a trigger event is received by the Func-
tions Analyzer (Sect. 3.1) including the optimization goal (step 1 ), it performs
requests to the FaaS function to find out its execution duration and cost at dif-
ferent memory configurations (step 2 ). Then it collects execution logs and uses
different algorithms described in Sect. 2 for finding the optimal configuration
(step 3 ). Once the configuration is found, it is then saved for the function, and
Functions Analyzer stops its execution.

Passive Approach: In the passive approach, MAFF does not send requests to
the analyzed function but relies on the real user’s traffic to receive information
about the function’s execution. In this case, MAFF observes CloudWatch logs,
which are generated by the Lambda function, when users invoke it. The passive
approach of MAFF is developed for such scenarios, where it is not possible or
not cost-efficient to actively invoke the Lambda function (e.g., if the function
creates new products to the online store or adds the users to the database).
When executing MAFF in the passive approach, additional components such as
Start Analysis Event, Functions Collector, Functions Queue, are used. The flow
of the passive MAFF approach is marked with the green lines in the Fig. 1 and
starts automatically when the scheduled CloudWatch event containing optimiza-
tion goal is triggered (step 2 ). This event is configured to invoke the Function
Collector Lambda function (step 3 ), which gathers Amazon Resource Names
(ARNs) of stack functions and adds them into an Amazon Simple Queue Service
(SQS) queue (step 4 ). Every new item in the queue is processed by Functions
Analyzer Lambda for finding the optimal memory configuration at the defined
optimization goal (steps 5 – 7 ). If Functions Analyzer can identify the opti-
mal memory for the function, it adds a record into the DynamoDB database
to avoid unnecessary analysis in future iterations (step 8 ). Notification Sender
sends an email notification if the memory configurations proposed by MAFF are
significantly different from the initial configuration (step 9 ).

Both active and passive approaches can adapt memory of the analyzed func-
tion in real-time on AWS Lambda as soon as the optimal memory configuration
is found. Such self-adaptive configuration is performed with the help of AWS
SDK for Python (Boto3). MAFF is a language-agnostic tool, and it can analyze
any Lambda function, regardless of the programming language used for source
code.

3.1 MAFF Components

Internally, MAFF consists of several components, each of them is based on a
specific AWS service. In the following subsections, we describe its components
in more detail.

Function Analyzer: This component contains the main logic of the MAFF and
is used in both active and passive approaches. In the active approach, Function
Analyzer sends requests to the function to generate execution logs at different
memory configurations. In contrast, in the passive approach, it just reads all the
function’s logs created when users invoke the function. Further, it is responsible
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for analyzing those logs of the function and selecting its optimal memory con-
figuration based on the given optimization goal and the algorithms described in
Sect. 2. Function Analyzer itself is deployed as a Lambda function with 512 MB
memory and 10 min timeout. As input, it expects the Amazon Resource Name
(ARN) of the Lambda function to be analyzed.

Start Analysis Event: It is used to invoke MAFF in the passive approach.
It is implemented as a scheduled AWS CloudWatch event rule, which triggers
an analysis process based on the time interval specified by the user (e.g., every
four hours).

Functions Collector: It is responsible for gathering ARNs of the functions
which belong to a CloudFormation stack and need to be analyzed. This compo-
nent is also implemented as a Lambda function with 512 MB memory and 10 min
timeout. As input, this function receives the name of the CloudFormation stack.

Functions Queue: It stores the list of functions’ ARNs generated by Function
Collector before they are passed to Function Analyzer. It is implemented with
Amazon Simple Queue Service (SQS) and uses Function Analyzer as a Lambda
trigger.

Analyzed Functions Storage: This component stores the past optimal mem-
ory configurations of the functions found in the previous MAFF executions. It
is implemented using the AWS DynamoDB database with function name as the
primary key. This component acts as the cache, and if the function optimal
memory configuration exists in the database, then the unnecessary iterations of
the algorithm are avoided.

Notification Sender: It sends an email notification if the memory configura-
tions proposed by the MAFF are significantly different from the initial configu-
ration.

4 Evaluation Settings

We test the proposed MAFF framework for FaaS functions deployed on AWS
Lambda, a popular serverless cloud platform. MAFF framework itself was
deployed on AWS lambda as described in Sect. 3.1. Each of the algorithms
introduced in Sect. 2 are executed 5 times on each of four different benchmark
functions (Sect. 4.1). We also describe the evaluation scenarios conducted to
evaluate MAFF (Sect. 4.2).

4.1 Benchmark Functions

In the evaluation, we have considered four types of functions. All of them are
implemented in Python 3.8, which is one of the most popular languages used in
AWS [28]. Moreover, each function was configured with a three-minute timeout,
which allows them to finish execution with any memory configuration.
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CPU-Intensive Function: CPU intensive functions have a logarithmic depen-
dency between allocated memory and execution duration of the function [13].
For the test purposes of this work, a specimen CPU-bound function was created.
It calculates tangent and arctangent for the numbers between 0 and 87.

I/O-Intensive Function: I/O function used in this work is based on a popular
Linux utility for the file operations - dd [22]. Using dd, an input file /dev/zero
is copied to an output file /tmp/out using 50 blocks, each of 512 bytes size. The
file /dev/zero represents an unlimited flow of null characters.

Memory-Intensive Function: Memory bound function used in this work
consists of a for-loop iterating from 0 to, 100000. Every iteration adds a number
to the initially empty array, thus slowly filling up the memory.

Network-Intensive Function: Here a large JSON file over the Internet is
read.

4.2 Evaluation Scenarios

We design our experiments to answer the following questions:

Q1. Optimal configuration finding efficiency : how efficient are the MAFF
algorithms in finding the optimal memory configurations for various types of
functions?

Q2. Optimal configuration finding accuracy: how accurate are the MAFF
algorithms in finding the optimal memory configurations given the optimization
goal?

Q3. Active vs passive approach: how do the two approaches in MAFF com-
pare against each other in terms of accuracy?

5 Results

In this section, we present the results of the evaluation scenarios described in
Sect. 4.2.

5.1 Q1. Optimal Configuration Finding Efficiency

Algorithms are compared based on the number of iterations and time taken by
them.

Cost Optimization: Figure 2a shows the number of iterations that each of
the algorithms performed to identify optimal memory configuration with the
cost optimization as the minimization objective. For every function type, the
Linear algorithm managed to find a minimal cost point with the least number
of iterations. The Binary algorithm, in all cases, took the most steps to find a
memory sweet spot. It can be explained by the fact that memory points with
minimal cost for all function types lay in the region 128 MB–1280 MB. But Binary
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algorithm was executed on the whole memory range (128 MB–10240 MB), which
took more steps to narrow the search to the correct memory region. For every
function type, Gradient Descent required more steps than Linear algorithm and
less than Binary algorithm to find the optimal memory spot.

Fig. 2. The required number of iterations and the execution duration of the various
algorithms for the cost optimization objective.

Fig. 3. The number of iterations and execution duration for various algorithms for the
balanced optimization objective.

Additionally, from the Fig. 2b showcasing the average execution duration of
each algorithm, one can observe that the Binary algorithm has the highest exe-
cution duration for all function types. This also corresponds to the fact that this
algorithm requires the highest number of iterations to find an optimal memory
configuration. Linear algorithm performed better than the Gradient Descent in
terms of the required iterations. However, Gradient Descent algorithm outper-
formed the Linear one in terms of the execution duration. For all the functions,
Gradient Descent has the shortest execution duration.
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Fig. 4. Changes in different metrics with the iterations of the three algorithms for
balanced optimization objective concerning the CPU benchmark.

Table 1. Memory configurations selected for the cost optimization objective.

Function Type Optimal (in MB) Linear (in MB) Binary (in MB) GD (in MB)

CPU-Intensive <1280 845 1047 900

I/O-Intensive <1280 794 2071 767

Memory-Intensive <1152 947 1723 973

Network-Intensive <256 154 130 370

Binary algorithm shows the worst results; however, it can be explained by
the fact that optimal memory configuration was located closer to the beginning
of the memory interval. Thus, as the interval for the algorithm execution was
wide (128 MB–10240 MB), it took many iterations for the algorithm to find the
optimal memory configuration.

Balanced Optimization: As it can be seen from Fig. 3a, in general Duration
Change algorithm requires fewer iterations to find the optimal memory config-
uration compared to the Optimization Value algorithm. The Duration Change
algorithm uses the definition proposed by AWS, which says that the balance
between cost and duration is achieved at the memory, at which the duration
curve of the function bends [13]. In the Optimization Value algorithm, it is
assumed that the balance point of the function is such at which minimal dura-
tion can be achieved for the smallest cost, following Eq. 1. This algorithm usually
selects the higher memory values (on the right side of the duration curve’s knee).
From Fig. 3b, showing the average execution duration of both algorithms, one can
observe that, for all function types, the Optimization Value algorithm required
more time than the Duration Change algorithm, which is proportional to the
number of iterations required by them.

Furthermore, Fig. 4 shows how different parameters (cost, execution dura-
tion, and cost) behave for the CPU benchmark function when executed for the
two algorithms with the balanced optimization objective. The resulting optimal
configuration for each case is highlighted in all the three sub-figures.
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5.2 Q2. Optimal Configuration Finding Accuracy

As the duration and cost profiles of every test function are known, optimal
memory intervals for each of them are calculated manually (displayed under
optimal in Table 1). Thus, if the algorithm managed to find the memory in the
optimal interval, its result is assumed to be correct. However, in the case of
balanced optimization objective, estimating the correctness of the algorithms
is more challenging as there is no clear definition of the term “optimal mem-
ory spot”. Therefore, we only show accuracy measures for cost and duration
optimization objectives in the below paragraphs.

Cost Optimization: To evaluate the correctness of algorithms, the average
result of their five executions for every benchmark function was calculated and
compared to the correct memory intervals. Due to the variability of a cloud
environment and lack of user control over it, it is hard to predict the exact
memory configurations with which function will be executed with the lowest
cost. Thus, based on the data received from the function’s profiles (Sect. 4.1),
optimal memory interval is defined as an interval in which the optimal memory
spot can be located. The second column in Table 1 specifies the optimal memory
interval for every function type. The next columns show average memory levels
selected by each algorithm. If the selected memory level by the algorithm is inside
the correct interval, we consider its result to be correct, and the corresponding
table cell is marked green. Otherwise, the result is wrong and marked red.

For all function types, the Linear algorithm output results in the correct
memory interval. Binary and Gradient Descent algorithms managed to find opti-
mal memory configurations for two and three functions, respectively. To better
evaluate the accuracy of the algorithms for the cost optimization objective, we
conducted an experiment where each algorithm was executed five times for each
of the four example functions, so there are twenty executions in total. The experi-
ment concluded that, Linear algorithm has the highest accuracy - 95%, Gradient
Descent - 85%, and Binary - 55%.

5.3 Q3. Active vs Passive Approach

As part of this evaluation, we only discuss the results of the balanced opti-
mization goal deployed with the Duration Change algorithm. Figure 5 shows
the scheme of execution MAFF in the passive approach used as part of this
work for evaluation. Four test functions (CPU-, I/O-, memory- and network-
intensive) were deployed in one CloudFormation stack and invoked every 5 min
by a scheduled CloudWatch Event (Event A). This event was used to simulate
user invocations. After each execution, corresponding log data was generated and
stored in the CloudWatch service. In parallel to that, the analysis process for
finding optimal memory configuration was also executed. The process was trig-
gered by another CloudWatch scheduled event (Event B) with 30 min intervals.
Thus, there were six function executions between every analysis round. Event B
was configured to invoke the Function Collector Lambda function, which gath-
ered ARNs of stack functions and added them into the SQS queue. Every new



MAFF: Self-adaptive Memory Optimization for Serverless Functions 149

item in the queue was processed by Analyzer Lambda, which evaluated execu-
tion logs of the corresponding function. If Analyzer could identify the optimal
memory for the function, it added a record into the DynamoDB database to
avoid unnecessary analysis in future iterations. The whole experiment lasted for
6 h, during which every of the test functions was executed 72 times and the ana-
lyzer function 12 times. It was enough to find optimal memories for all functions
in the stack. As expected (Table 2), memory values selected by both approaches
are quite similar, with some minor differences due to fluctuations in the value of
the function’s execution duration.

6 Comparison to Analogs

In this section, MAFF was compared to two popular resource optimization
tools: AWS Compute Optimizer (ACO) [8] and AWS Lambda Power Tuning
(ALPT) [11]. All experiments were performed on CPU-intensive function and
the optimization objective was set to cost for MAFF and ALPT. MAFF was
configured to use Linear algorithm for active and passive approaches. Optimiza-
tion goal cannot be selected for ACO.

Fig. 5. Scheme of experiment on MAFF in passive approach.

Table 2 shows a comparison between MAFF in active and passive approaches
to its two analogs. Optimal memory suggested by the tools is quite different, but
for both MAFF approaches and ALPT, the resulting value lies in the correct
memory interval defined in Sect. 4.1. Memory suggested by ACO is below the
defined interval (initial memory was set to 128 MB). ACO has the most strict
requirements for its execution than all other tools. There must be at least 50
function invocations in the last 14 d, and memory allocated to the function must
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not be higher than 1792 MB [8]. For MAFF in the passive approach, the algo-
rithm should have enough log values to perform analysis, and the number can
vary depending on the function.

Execution duration for MAFF (active approach) and ALPT are similar -
around 3 min per analysis. ACO can take up to 12 h to find an optimal mem-
ory value. MAFF (passive approach) requires only 12 s for execution, on the
condition that enough log values are provided. ALPT uses exhaustive search
to identify optimal memory level for a cost, or execution duration. By default,
this tool will need to perform at least 225 requests to the function to identify
the optimal memory point. AWS Compute Optimizer is provided free of charge,
while other optimization tools incur additional costs. The cost per analysis pro-
vided in this table can vary depending on the analyzed function and amount of
steps the algorithm needs to perform, but in general, MAFF in both approaches
is cost-efficient than the others.

While performing experiments on AWS Compute Optimizer, an interesting
behavior of the tool was observed. To demonstrate it, a CPU-intensive function
was deployed on four separate Lambda instances in eu-central-1 AWS region.
Each of the functions was allocated different memories: 128 MB, 256 MB, 512
MB, and 1024 MB invoked every 5 min by the scheduled CloudWatch Event [7].
It was expected that the tool would suggest one optimal memory for the CPU-

Table 2. Comparison of MAFF to its analogs

M-Active M-Passive ACO ALPT

Suggested Memory 845 896 160 1024

Requirements None Approx. 20

function’s

invocations

Minimum 50 invocations, less

than 1792 MB allocated

None

Duration of Analysis 3min 16 s 11 s up to 12 h 2min 30 s

Cost 0.0025 0.0012 0 0.0131

Automatic Value Setup Yes Yes No Yes

Fig. 6. Experiment on AWS compute optimizer showcasing wrong optimal memory
suggested for the same function allocated with different initial memory configurations.
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intensive function regardless of the initial memory level with which the function
was created, as the application logic and workload for all functions is the same.
However, after 12 h of the experiment, AWS Compute Optimizer suggested dif-
ferent memories for each of the functions. Figure 6 shows the memory values
proposed by Compute Optimizer for each function. For all of them, the tool rec-
ommended increasing memory value. Thus, the tool does not suggest the optimal
memory configurations but relies on the initial memory allocated and increases
them always.

7 Related Work

With the advent of serverless computing, there is a significant amount of research
aimed at optimizing cloud computing resource utilization [2,3,11,20]. There
has been some work on the performance profiling of various FaaS platforms.
Wang et al. [28] performed an in-depth study of resource management and
performance isolation with three popular serverless computing providers: AWS
Lambda, Azure Functions, and Google Cloud Functions. Their analysis demon-
strates a reasonable difference in performance between the FaaS platforms. Fur-
thermore, Shahrad et al. [24] studied the architectural implications of serverless
computing and pointed out that the short function runtimes hamper exploita-
tion of system architectural features like temporal locality and reuse in FaaS.
Chadha et al. [13] examine the underlying processor architectures for Google
Cloud Functions (GCF) and determine the optimization of FaaS functions using
Numba can improve performance by and save costs on average.

Furthermore, a significant number of research works aim to optimize the
memory and cost for the FaaS functions. COSE [2] framework finds the optimal
configurations for a FaaS function using the Bayesian Optimization algorithm
while minimizing the total cost of execution. It models the behavior of a func-
tion and the environment (cloud, edge) in which those functions are deployed.
However, they optimized based on cost only, does not guarantee the accuracy
of the process, and can only be used in active mode. Bayesian Optimization
was also used in CherryPick [4] tool for creating performance models for differ-
ent cloud applications. The system provides 45-90% accuracy in finding optimal
configurations and decreases cost up to 25%. But, they focused on traditional
cloud applications. Another framework, Astra [18], is designed to optimize FaaS
function configurations for specifically map-reduce usecase.

Google has developed a recommendation system to help the users choose the
optimal virtual machine (VM) type [1]. It currently does not support Google
Cloud Functions. As discussed in Sect. 6, AWS Compute Optimizer [8] can only
be executed for the functions whose allocated memory level is less or equal to
1792 MB and invoked at least 50 times in the last two weeks. AWS Lambda
Power Tuning [11] tool uses exhaustive search to identify optimal memory level
for a cost or execution duration. AWS Lambda Power Tuning is quite similar to
MAFF in terms of lack of requirements, quick analysis time, and the possibility
to set up recommended memory automatically. But users can use the AWS
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Lambda Power Tuning tool only in active mode, which can be impossible or not
recommended for some business scenarios. Thus, the MAFF tool developed in
this work outperforms AWS Compute Optimizer in the time required for the
analysis, and provides a possibility to execute the tool in the passive approach.

None of the aforementioned research efforts address the issue of automatically
configuring the optimal memory of FaaS functions from different objectives. The
proposed tool MAFF fills that gap.

8 Conclusion

Serverless computing has abstracted most cloud server management decisions
away from the users but configuring the memory of FaaS functions: a low-level
configuration, which directly influences the performance and cost of the FaaS
functions, is still left up to the users. To solve this problem, we introduced
MAFF1 to find optimal memory configuration for the FaaS function based on
two optimization objectives: cost, and balanced (Sect. 2). For cost objective, it
was possible to achieve 90% of accuracy using the Linear algorithm with at
least two times smaller number of steps as compared to others. For achieving
the balanced optimization goal, Optimization Value and Duration Change algo-
rithms were used. We further introduced two different approaches for performing
memory optimization - active and passive, differs based on the method of collect-
ing the functions execution logs (Sect. 3). We also showcase MAFF advantages
over the others in terms of cost and finding the optimal memory configurations
(Sect. 6).

In the future, we plan to extend MAFF with other public serverless compute
providers. Adding the functionality of tracking updates in the program code of
the analyzed function is another prospect.
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