
How the Approach of Digital Tools
in Architecture Has Developed: The Case

of Creative Programming

Patricia Domínguez(B) , Flavio Celis , and Ernesto Echeverría

Escuela de Arquitectura, Universidad de Alcalá de Henares, Alcalá de Henares, Spain
patricia.dominguez@uah.es

Abstract. The goal of this research is to figure out the different approaches to
digital tools in architecture during the technological evolution of the last decades,
which have determined the current coexistence of two kind of tools: the most
extended ones, which trend to monopolization, and the alternative tools, more
empowering, within which are the creative programming codes.

Thus, in a first phase of encounter with computational machines, designers,
who also had the role of programmers, asked themselves questions in terms of the
why and the what for of the use of tools in design. Subsequently, and because of
the rise of software for commercial designs, users specialized in learning about
them, focusing on the how, which in turn led to the separation of the designer-
programmer into two independent roles. After the 2008 crisis several previous
alternative tools used by a minority, such as Open-Source environments, caught
the attention of the designers: they could regain the design process control by
bridging programming, designing and execution with these technologies.

Despite many of these tools has already been included in design and archi-
tecture syllabi, the inclusion of creative programming codes is still an ongoing
process, because its learning involves a greater knowledge of the digital environ-
ment. Processing code is shown as an example, used in some pioneer schools with
the aim of enable future architects to understand digital environments from an
active and empowered position.

Keywords: Digital tools · Creative programming · Processing

1 Background: From the Why to the How

1.1 Theoretical Grounds and Basic Technical Development: 1955–1965

The use of digital tools in design processes dates back practically to the genesis of the
first computational machines, and its theoretical basis was strongly developed between
the years 1955 and 1965: Noam Chomsky’s theory on generative grammar and syntactic
structures (1957) directly influenced the evolution of the first programming languages.
Authors such as W. Ross Ashby (1956) introduced the concept of cybernetics, and
Christopher Alexander, in Notes on the Synthesis of Form (1964), highlighted, “we must

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. A. Ródenas-López et al. (Eds.): EGA 2022, SSDI 22, pp. 390–398, 2022.
https://doi.org/10.1007/978-3-031-04703-9_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04703-9_39&domain=pdf
http://orcid.org/0000-0001-8543-9896
http://orcid.org/0000-0003-3931-6056
http://orcid.org/0000-0002-6826-5756
https://doi.org/10.1007/978-3-031-04703-9_39

How the Approach of Digital Tools in Architecture Has Developed 391

face the fact that we are on the brink of times when man may be able to magnify his
intellectual and inventive capability, just as in the nineteenth century he used machines
to magnify his physical capacity” [1]. To find out how that intellectual capability might
be increased with the arrival of new computational machines, Alexander suggested a
rationalization of the design process, both in the definition of good design as well as
the way it adapts to a context, such as in the proposal to thresh out that context with the
mathematical theory of sets. The goal is always to limit and verbalize internal processes
that happen, whether conscious or unconscious, in the minds of creative designers.

In parallel, and not coincidentally, technological advances gave way to what became
known as CAD (Computer Aided Design) technology, which germinated at MIT in a
research project of the same name financed by the U.S. Air Force conducted between
1959 and 1967 [2]. The development team behind this technology (composed mostly of
engineers) understood that, on the one hand, there was a man-machine process in every
design (an idea closely related to the cybernetic theories of the time), and, on the other,
that the goal of CAD was not the representation of the designed object, as in traditional
graphic representation, but rather the construction in digital format of all the layers that
make it up (form, size, materials, weights, costs, etc.).

1.2 Man-Machine in Conversation

At the end of the sixties, when technological development was ripe enough to begin its
transfer to new disciplines and the main theoretic lines were underway, artistic, and aca-
demic circles witnessed the first results of practical experiments in the field of creativity
and computation.

For the most part, this contact with primitive computers took place in universities.
Thus,MIT continues to be the leading institution in the ongoing debate. In 1967Nicholas
Negroponte, a former student who participated in the CAD project founded the Archi-
tecture Machine Group. It was a multidisciplinary laboratory focused on the use of
computational machines in design processes. Far from studying automation to save time
and costs, it was about finding a true man-machine synergy that would elevate design
possibilities and take it to the next level. Thus, Negroponte defined the scope of the new
group as “the intimate association of two dissimilar species (man and machine), two dis-
similar processes (design and computation), and two intelligent systems (the architect
and the architecture machine)” [3].

Another instance of those first approximations to computationalmachines from intel-
lectual spheres was a seminar on Automatic Generation of Plastic Forms held at the
Computing Center of the Complutense University of Madrid (1968–1974), where study
was underway of the use of computers in design processes from a two-fold approach,
theoretical and practical. By employing primitive languages such as Fortran, the creators
and thinkers were simultaneously programmers.

1.3 The Discourse Mutates

Starting in the 1980s there was a progressive change of attitude in the approach to
using digital tools in design and architecture. For illustrative purposes the authors have
performed a search in the Scopus (Fig. 1) scientific database. This was conducted by

392 P. Domínguez et al.

extracting the data of the number of publications of key topics (creativity, computation,
generative design, artificial intelligence, CAD and cybernetics) and comparing their
relative values (the absolute values evidently differ enormously when it comes to general
topics and specialized ones, therefore they were not considered valid for comparative
purposes). As can be observed, there is a considerable increase in the number of studies
on CAD technology followed by research on Artificial Intelligence, while more general
topics such as creativity and computation lose their priority over time, giving rise to
more specialized fields.

Fig. 1. Publications indexed in the Scopus database by year and topic, from 1940–2010 (relative
values). Source: prepared by the authors.

This specialization is what changed the discourse of the why and what for from
the preceding decades to the how narrative. The fundamental explanation of this phe-
nomenon lies in the technological development of computation, not just in terms of the
device (hardware) but also the content (software).

In the first years, companies that manufactured computers paid no special attention
to software. Each machine had its specific programs and operating system. The gradual
monopolization of the industry, however, (which enabled a certain standardization of
physical components) along with the development of programming languages with a
high degree of abstraction (which made them easier to understand and easier to use, and
hence, had greater possibilities for development), changed the course of the market. It
focused on the development of software andmore advanced programming languages as a
competitive strategy [4]. For example, C++ and Pythonwere developed in themid-to-late
eighties.

Large software corporations concentrated their efforts on developing increasingly
more complete and powerful applications, such as Autodesk and the release of Auto-
CAD in 1982. This signified a true paradigm shift in the production of engineers and
architects. These powerful tools, however, had a disadvantage. Previously persons who
used computers were also capable of programming them, or at least possessed basic

How the Approach of Digital Tools in Architecture Has Developed 393

knowledge of digital operation which enabled them to use the machines. But with the
advent of large programs, the complexity of their operation was such that users had to
devote all their time and energy to learn the use of the tools, putting aside the under-
standing of their programming and internal operation. Thus, there was a separation
of the user–programmer [5], and they became independent roles increasingly special-
ized in their respective fields. More and more, they grew distant from each other and
self-absorbed.

1.4 Does Form Follow Software?

This fixation on the how reached its zenith in the 1990s and in the first decade of the
21st century, in the years preceding the 2008 economic crisis. The gradual evolution of
computer technology (boom of personal computers, the Internet) spurred the growth of
increasingly gigantic design programs that required a staff with more qualifications and
heightened expertise of use. Authors such as Lawson [6] questioned the contribution of
CAD programs in creative discourse arguing that “the problem is that if the computer
uses the wrong metaphor (…), it can inhibit the creative integration.” Others the likes of
Terzidis [7] pointed out that a CAD application offers a limited quantity of operations,
hence it is not always possible to execute designers’ ideas with commands.

Adopting a more neutral approach, what appears evident is that the metaphor
employed by machines may delimit the creative process in some way.

Large architecture studios were aware of this condition and many chose a different
path. They implemented specialized groups in computation that developed a specific
software for the formal generation of each project. Some examples are the Specialist
Modelling Group of Foster and Partners, founded in 1998, the Digital Technology Group
at Herzog & de Meuron, and the Gehry Technologies company, which was founded as
a group within the Frank Gehry studio to develop formal designs and was consolidated
as an independent company in 2002, working not only for Gehry but also for other large
studios seeking to materialize singular computer-generated geometric shapes [8].

Thus, it was in these years that specialization reached its zenith. This approach,
focused on tools, brought about important advances in aspects such as BIM technology
and generative design tools where the designer no longer designed the end product.
Instead, it was designed by the digital tool. This self-preoccupation, however, also left
in its wake a formal pretense that disregarded the relationship between architecture and
its environment as “bubbles and bundles designed by computers” [9], and a theoretical
foundation in terms of the use of digital tools that were far too light and optimistic.

2 Turning Point

2.1 From the 2008 Crisis to the Present Day

The 2008 economic crisis signified a halt, especially for mass architecture, which was
left without resources to sustain and maintain itself over time. Joined with the notion of
the climate crisis, the revision of architecture projects from a standpoint of environmental
and economic sustainability necessarily caught up with the approach of what should be

394 P. Domínguez et al.

done in terms of the use of digital tools. Thus, they became demonized in a way, as they
had been an integral part of the formal definition of exorbitant works of architecture.

Someauthors, specialists in generative design, such asAsteriosAgkathidis, reminded
us that “tools and techniques are not to be blamed for unfortunate or irrelevant decisions
of the planner. Neither does the computer liberate architects from their responsibility to
the city and the society” [10].

This critical revision explains the surge of alternative tools stemming from the Open-
Source and maker movements. Users, who extended beyond the so-called “nerd” com-
munity, found in these instruments and forms of production a path to empowerment and
control. This control implies being aware of the why and the what for of the tools used
in design, obtaining a holistic perspective of the creative process.

2.2 Incubation of the Open-Source Community

In parallel to the specialization phase of the nineties, some critical voices spoke against
software monopolies. They explored alternative paths based on open collaboration. The
Open-Source initiative, a methodology of creating programs free of charge, in an open,
transparent, and collaborative way arose in 1998. Its methodological, ethical, and legal
principals are mainly, the Free Software Foundation (FSF) founded in 1985 by Richard
Stallman (also connected to MIT) and the General Public License, a software license
promoted by the FSF to protect free software, andwhich has “an effect opposite to that of
traditional copyright: (…) it prevents anyone, even the author, from limiting distribution”
[4].

The structure of Open-Source projects brought about user empowerment, which, as
highlighted previously, was no longer a user-programmer and had become “someone
who uses software written by other” [5]. The new technological possibilities enabled a
role reversion, and not only in the field of programming. Thus, just as the role of the
user-programmer was recovered, a new role emerged in the field of design. It was the
maker, a concept with united conception (design) and execution (production). This idea
retrieved past roles: the artisans that had traditionally been designers and manufacturers,
just as those who erected the great medieval buildings were both architects and builders”
[11].

3 Creative Programming Language as Open-Source Tools

Of all the Open-Source tools used in design, creative programming codes are especially
interesting. This is because given their language nature, they cover aspects of basic
operation in digital environments. We are dealing with programming languages with
eminently visual or sound outputs so that the creations are not produced by employing
a sequence of commands but rather with an oftentimes written programming code.

3.1 Processing: A Creative Programming Language

Processing (Fig. 2) is an open code programming language that has its own programming
environment (IDE, Integrated Development Environment), focused on the generation

How the Approach of Digital Tools in Architecture Has Developed 395

of multimedia creations (images, sound, videos, etc.) and hugely popular in different
communities having no prior programming knowledge (students, designers, artists).
Thus, they can learn the basic tenants of the language with an exploratory methodology.
This “learning by doing” approach prevails in the maker movement, which is also an
Open-Source environment. Plus, this language constitutes one of themost powerful tools
in generative art.

Fig. 2. Example of a Processing application. A Processing language code is entered in the work
environment (IDE) to generate visual and/or sound results. Source: prepared by the authors.

Processing originated in a beta version at MIT in the year 2001 as a multifunctional
tool: programming language, software and learning system. After testing it for several
years at the university, Ben Fry, one of the authors of the project, said the following,
“I hope that it will also enable others to create new design tools that come not from
corporations or computer scientists, but from designers themselves” [12].

3.2 What it’s All About and What it Teaches

Processing is a text-based compiled language that feeds from Java (Fig. 3). When exe-
cuting a program written in Processing, “you are actually running a Java program. (…)
once you compile your code, the output is converted to Java class files (…) and the class
files are interpreted within the Java Virtual Machine as your program runs” [13]. That is,
while in themore popular CADdesign programs there is no connection between its inter-
nal structure (programming) and its external structure (user operation), in Processing it
is the same structure because the user (oftentimes designer) is also the programmer.

The approach to design using this tool deals with the analysis of the problem to solve
(design inputs) from a computable and mathematical perspective.

396 P. Domínguez et al.

Fig. 3. Comparison between Processing and Java codes for the same command: “if you press the
‘a’ key, …”. Source: prepared by the authors based on Reas & Fry, 2007 code.

3.3 Current Teaching Experiments

The possibilities of use within design imply user empowerment. Makers become
designers who also build and program their own design tools.

Although digital production has become a part of the teaching of architecture, pro-
gramming is a pending task in most higher education institutions. In Spain, although
there is a progressive inclusion in the curriculum of aspects related to digital tools,
programming is still assigned an insignificant place. At the European level there are,
however, some interesting examples (Fig. 4).

The University College of London (Bartlett School of Architecture) offers several
Masters degrees in programming applied to architectural design with courses such as
“Introduction to Programming for Architecture and Design.” This subject teaches the
basic tenants of programming applied to design using Processing.

Fig. 4. Subjects related to creative programming in architecture and design degrees of three
Europeanuniversities (ETHZurich,UniversityCollegeLondonandPolytechnic ofMilan). Source:
prepared by the authors.

How the Approach of Digital Tools in Architecture Has Developed 397

Another noteworthy example is that of the series of subjects entitled “Mathematical
Thinking and Programming” provided in the Architecture Bachelors program of ETH
Zürich. Led by professor Ludger Hovestadt, it has a more holistic and pragmatic app-
roach, “It’s not about the how but the what. It’s not about virtuosity in using digital tools
but about understanding the code” [14].

Some university degrees have years of advantage in the inclusion of programming
applied to other areas of design. For instance, the Creative Coding course (which also
employs Processing as a learning instrument), offered by the Polytechnic of Milan as an
elective for students that pursue a variety of studies such as interior design.

In all these references, the goal is shared: to pursue a basic alphabetization of pro-
gramming by providing basic notions of the nature of computer operations, visualizing
them in creative processes.

4 Conclusions: Empowerment Alternatives to Flee the Swarm

To conclude, the development of computational technology has been accompanied by
diverse ways of approaching the technology from the fields of design and architecture
(Fig. 5). The questions have changed over the last decades: from the what to the what
for and finally the how, recovering the initial questions of a time where designers have
the necessary tools to become empowered and play a part of the global process, leaving
behind their role as passive users which characterized the intermediate phases.

Fig. 5. Summary of the different approaches and roles in using digital tools in architecture design.
Source: prepared by the authors.

398 P. Domínguez et al.

Of all the tools that make this holistic perspective possible, those that flee from soft-
ware monopolies are especially enriching. These are Open-Source projects and commu-
nities, which are more open to improvement and disseminating results. An innovative
approach that is already being tested in architecture schools is the inclusion in the teach-
ing curriculum of programming applied to design. Thus, future architects will possess
the necessary skills to understand the operation of digital environments and even be
capable of generating their own tools.

This maker approach in the training of new professionals also represents a certain
position against the digital swarmed coined by B.C. Han to describe societies immersed
in the digital environment [15]. An environment that is increasingly opaque to users,
whose empowerment is made possible thanks to learning and using alternative means
of programming.

References

1. Alexander, C.: Ensayo Sobre la Síntesis de la Forma, 5th edn. Infinito, Buenos Aires (1986)
2. Cardoso, D.: Algorithmic tectonics: how cold war era research shaped our imagination of

design. Archit. Des. 83(2), 16–21 (2013)
3. Negroponte, N.: The Architecture Machine. MIT Press, Cambridge (1970)
4. Fogel, K.: Producing Open Source Software: How to Run a Successful Free Software Project.

Sebastopol O’Reilly (2005)
5. Nyhoff, L.R., Nyhoff, J.L.: Processing: An Introduction to Programming. CRC Press, Boca

Raton (2017)
6. Lawson, B.: Cad and creativity: does the computer really help? Leonardo Int. Soc. Arts Sci.

Technol. 35(3), 327–331 (2002)
7. Terzidis, K.: Algorithms for Visual Design Using the Processing Language. Jossey-Bass, San

Francisco (2009)
8. Peters, B.: The Building of Algorithmic Thought. Archit. Des. 83(2), 8–15 (2013)
9. Fernández-Galiano, L.: Crítica y crisis. Cuaderno de Proyectos Arquitectónicos (1), 10–12

(2010)
10. Agkathidis, A.: Computational Architecture. BIS Publishers, Amsterdam (2012)
11. Sennett, R.: El artesano. Anagrama, Barcelona (2009)
12. Reas, C., Fry, B.: Processing a Programming Handbook for Visual Designers and Artists.

MIT Press, Cambridge (2007)
13. Greenberg, I.: Processing: Creative Coding and Computational Art. Friends of Ed, Berkeley

(2007)
14. Hovestadt, L.: Mathematical Thinking and Programming (Teaching Guide, ETH

Zurich). Zúrich, Suiza. http://www.vvz.ethz.ch/Vorlesungsverzeichnis/lerneinheit.view?sem
kez=2021W&ansicht=KATALOGDATEN&lerneinheitId=147470&lang=en. Accessed 28
Nov 2021

15. Han, B.-C.: En el Enjambre. Herder, Barcelona (2019)

http://www.vvz.ethz.ch/Vorlesungsverzeichnis/lerneinheit.view?semkez=2021W&ansicht=KATALOGDATEN&lerneinheitId=147470&lang=en

	How the Approach of Digital Tools in Architecture Has Developed: The Case of Creative Programming
	1 Background: From the Whyto the How
	1.1 Theoretical Grounds and Basic Technical Development: 1955–1965
	1.2 Man-Machine in Conversation
	1.3 The Discourse Mutates
	1.4 Does Form Follow Software?

	2 Turning Point
	2.1 From the 2008 Crisis to the Present Day
	2.2 Incubation of the Open-Source Community

	3 Creative Programming Language as Open-Source Tools
	3.1 Processing: A Creative Programming Language
	3.2 What it’s All About and What it Teaches
	3.3 Current Teaching Experiments

	4 Conclusions: Empowerment Alternatives to Flee the Swarm
	References

