
David Clark
Hector Menendez
Ana Rosa Cavalli (Eds.)

LN
CS

 1
30

45

33rd IFIP WG 6.1 International Conference, ICTSS 2021
London, UK, November 10–12, 2021
Proceedings

Testing Software
and Systems

Lecture Notes in Computer Science 13045

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

David Clark • Hector Menendez •

Ana Rosa Cavalli (Eds.)

Testing Software
and Systems
33rd IFIP WG 6.1 International Conference, ICTSS 2021
London, UK, November 10–12, 2021
Proceedings

123

Editors
David Clark
University College London
London, UK

Hector Menendez
Middlesex University
London, UK

Ana Rosa Cavalli
Telecom SudParis
Evry Cedex, France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-04672-8 ISBN 978-3-031-04673-5 (eBook)
https://doi.org/10.1007/978-3-031-04673-5

© IFIP International Federation for Information Processing 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-7004-934X
https://orcid.org/0000-0002-6314-3725
https://doi.org/10.1007/978-3-031-04673-5

Preface

This volume contains the proceedings of the 33rd IFIP International Conference on
Testing Software Systems (ICTSS 2021). This event is a well-established conference of
Working Group 6.1 of the International Federation for Information Processing (IFIP).
The conference was organized at University College London in the UK but conducted
online because of the prevalence of the Delta variant of the SARS-CoV-2 virus. The
conference took place during November 10–11, 2021.

ICTSS addresses multiple topics related to software systems, ranging from theo-
retical concepts for testing to practical testing frameworks. These include communi-
cation protocols, services, distributed computing, embedded systems, cyber-physical
systems, security, infrastructure evaluation, applications of artificial intelligence to
testing, and more. The conference engages both academic researchers and industrial
practitioners, providing a forum for reviews and discussions on new contributions to
the testing field in the form of methodologies, theories, tools, and use cases.

This year, the conference received a total of 36 submissions consisting of regular
papers, short papers, and project reports. From these submissions 10 were accepted as
full papers, seven as short papers, and six as project reports. These papers cover
multiple topics including artificial intelligence in testing, security of programs, moni-
toring and performance, and use cases. In this edition there is a strong emphasis on
Finite State Machine (FSM)-based testing.

ICTSS 2021 created a forum to share experiences between existing research projects
related to the conference topics. Projects from both academia and industry were rep-
resented and several European funded projects were brought to the discussion table,
hopefully seeding future collaborations among the attendees. Reports from some
of these are presented in the appendix.

We want to thank University College London for support in organizing the con-
ference, the authors who submitted their insightful contributions, the reviewers who
provided their time and expertise and helped to ensure the quality of the accepted
papers, the session chairs who managed the sessions, the keynote speakers, Mohammad
Reza Mousavi and Konstantin (Kostya) Serebryany, and, finally, the Program Com-
mittee for their participation and advice along with the local organization team for
running the conference and handling every specific detail.

We would like to thank the ICTSS Steering Committee who gave support and
advice when decisions were tricky. We especially thank Ilaria Pia de la Torre, Dan
Blackwell, Dan Bruce, Afnan Alsubaihin, and Bill Langdon from the Organizing
Committee who underpinned the conference organization and were always available to
solve problems, whether of advertising, finance, the webpage, the online delivery
platform, or technical support during the conference. In addition we would like to thank
IFIP for their ongoing support for this and earlier conferences in the series, as well as
our publishers, Springer.

On behalf of the ICTSS 2021 organizers, we hope that you find the conference
proceedings useful, interesting, and challenging.

November 2021 David Clark
Héctor D. Menéndez

Ana Cavalli

vi Preface

Organization

General Chair

David Clark University College London, UK

Program Committee Chairs

Héctor D. Menéndez Middlesex University London, UK
Ana Cavalli Telecom SudParis, France

Steering Committee

Rob Hierons University of Sheffield, UK
Ana Cavalli Telecom SudParis, France
Andreas Ulrich Siemens AG, Germany
Nikolai Kosmatov CEA List, France
Christophe Gaston CEA List, France
Pascale Le Gall CentraleSupelec, France
Inmaculada Medina-Bulo University of Càdiz, Spain
Mercedes Merayo Universidad Complutense de Madrid, Spain
Francisco Palomo-Lozano University of Càdiz, Spain
Valentina Casola University of Napoli Federico II, Italy
Massimiliano Rak Università della Campania Luigi Vanvitelli, Italy
Alessandra De Benedictis University of Napoli Federico II, Italy

Program Committee

Héctor D. Menéndez Middlesex University London, UK
Antonio Pecchia Università degli Studi del Sannio, Italy
Burkhart Wolff Paris-Saclay University, France
Natalia Kushik Telecom SudParis and Paris-Saclay University, France
Roland Groz Grenoble INP - LIG, France
Jorge Lopez Airbus Defence and Space, Spain
Antoine Rollet University of Bordeaux, France
Ana Cavalli Telecom SudParis, France
Porfirio Tramontana University of Naples Federico II, Italy
David Clark University College London, UK
Manuel Núñez Universidad Complutense de Madrid, Spain
Nikolai Kosmatov CEA List, France
Stephane Maag Telecom SudParis, France
Christophe Gaston CEA List, France
Alessandra De Benedictis University of Naples Federico II, Italy

Radu Mateescu Inria, France
Roberto Natella University of Naples Federico II, Italy
Wissam Mallouli Montimage, France
Justyna Petke University College London, UK
Roberto Pietrantuono University of Naples Federico II, Italy
Sergio Segura University of Seville, Spain
Hüsnü Yenigün Sabanci University, Turkey
Antonia Bertolino ISTI-CNR, Italy
Inmaculada Medina-Bulo Universidad de Càdiz, Spain
Mercedes Merayo Universidad Complutense de Madrid, Spain
Gunel Jahangirova Università della Svizzera Italiana, Switzerland
Rob Hierons University of Sheffield, UK
Teruo Higashino Osaka University, Japan
Ferhat Khendek Concordia University, Canada
Robert Feldt Blekinge Institute of Technology, Sweden
Jan Peleska Universität Bremen, Germany
Umberto Villano University of Sannio, Italy
Delphine Longuet Paris-Saclay University, France
Franz Wotawa Technische Universitaet Graz, Austria
Thierry Jéron Inria, France
Pedro Delgado-Pérez Universidad de Càdiz, Spain
Valentina Casola University of Naples Federico II, Italy
Moez Krichen University of Sfax, Tunisia
Angelo Gargantini University of Bergamo, Italy
Khaled El-Fakih American University of Sharjah, UAE
Shin Yoo Korea Advanced Institute of Science and Technology,

South Korea
Mike Papadakis University of Luxembourg, Luxembourg
Luis Llana Universidad Complutense de Madrid, Spain
Juergen Grossmann Fraunhofer FOKUS, Germany
Bernhard K. Aichernig TU Graz, Austria
Sébastien Salva LIMOS, France
Andreas Ulrich Siemens AG, Germany
Kelly Androutsopoulos Middlesex University London, UK

Additional Reviewers

Huu Nghia Nguyen
Daniel Blackwell
Ilaria La Torre
Renzo Degiovanni
Guillaume Haben
Vinh Hoa La

viii Organization

Contents

Finite State Machine-based Testing

libfsmtest An Open Source Library for FSM-Based Testing 3
Moritz Bergenthal, Niklas Krafczyk, Jan Peleska, and Robert Sachtleben

Mining Precise Test Oracle Modelled by FSM . 20
Omer Nguena Timo

Reverse-Engineering EFSMs with Data Dependencies 37
Michael Foster, John Derrick, and Neil Walkinshaw

Testing Against Non-deterministic FSMs: A Probabilistic Approach
for Test Suite Minimization . 55

Natalia Kushik, Nina Yevtushenko, and Jorge López

Test Generation and Selection

Automatic Test Generation with ASMETA for the Mechanical Ventilator
Milano Controller . 65

Andrea Bombarda, Silvia Bonfanti, and Angelo Gargantini

Locality-Based Test Selection for Autonomous Agents 73
Sina Entekhabi, Wojciech Mostowski, Mohammad Reza Mousavi,
and Thomas Arts

Improving Model Inference via W-Set Reduction . 90
Moritz Halm, Rafael S. Braz, Roland Groz, Catherine Oriat,
and Adenilso Simao

Using Ant Colony Optimisation to Select Features Having Associated Costs . 106
Alfredo Ibias, Luis Llana, and Manuel Núñez

Initial Results on Counting Test Orders for Order-Dependent Flaky Tests
Using Alloy . 123

Wenxi Wang, Pu Yi, Sarfraz Khurshid, and Darko Marinov

Metamorphic Testing of Logic Theorem Prover . 131
Oliver A. Tazl and Franz Wotawa

AI-based Techniques

Creation of Human-friendly Videos for Debugging Automated GUI-Tests . . . 141
Jianwei Shi and Kurt Schneider

Combining Holistic Source Code Representation with Siamese Neural
Networks for Detecting Code Clones . 148

Smit Patel and Roopak Sinha

Robustness Analysis of Deep Learning Frameworks on Mobile Platforms . . . 160
Amin Eslami Abyane and Hadi Hemmati

Use Cases

Specification and Validation of Numerical Algorithms with the Gradual
Contracts Pattern. 181

René Fritze and Stephan Rave

Solving the Instance Identification Problem in Micro-service Testing 189
Theofanis Vassiliou-Gioles

On the Quality of Network Flow Records for IDS Evaluation: A
Collaborative Filtering Approach. 196

Marta Catillo, Andrea Del Vecchio, Antonio Pecchia, and Umberto
Villano

GROOT: A GDPR-Based Combinatorial Testing Approach 210
Said Daoudagh and Eda Marchetti

Appendix – Project Reports

H2020 DIGITbrain – Advanced Digital Twins for Manufacturing 221
Antonio M. Ortiz, Jeanett Bolther, Carolina Salas, Luong Nguyen,
and Monika Rakoczy

Definition and Assessment of Security and Service Level Agreements
(Project Report) . 224

Huu Nghia Nguyen and Edgardo Montes de Oca

Attack Configuration Engine for 5G Networks . 227
Zujany Salazar, Huu Nghia Nguyen, Wissam Mallouli, Ana R. Cavalli,
and Edgardo Montes de Oca

x Contents

The BIECO Conceptual Framework Towards Security and Trust
in ICT Ecosystems . 230

Ricardo Silva Peres, Lilian Adkinson, Emilia Cioroaica, Eda Marchetti,
Enrico Schiavone, Sara Matheu, Ovidiu Cosma, Radosław Piliszek,
and José Barata

Industrial Machine Learning for Enterprises (IML4E) 233
Jürgen Großmann and Jukka K. Nurminen

NLP-based Testing and Monitoring for Security Checking 235
Andrey Sadovykh, Zujany Salazar, Wissam Mallouli, Ana R. Cavalli,
Dragos Truscan, Eduard Paul Enoiu, Rosa Iglesias, and Olga Hendel

Author Index . 239

Contents xi

Finite State Machine-based Testing

libfsmtest
An Open Source Library
for FSM-Based Testing

Moritz Bergenthal , Niklas Krafczyk , Jan Peleska(B) ,
and Robert Sachtleben

Department of Mathematics and Computer Science,
University of Bremen, Bremen, Germany

{mbergent,niklas,peleska,rob sac}@uni-bremen.de

Abstract. In this paper, the open source library libfsmtest is pre-
sented. It has been developed to support model-based testing with finite
state machine (FSM) models. The library is provided as a collection of
C++ classes, each class supporting specific aspects of FSM creation and
transformation, and test generation from FSM models. Additionally, the
library provides main programs for test generation with the methods
realised in the library and for testing ‘implementation FSMs’ with suites
generated from ‘reference FSMs’. Moreover, a generic test harness is pro-
vided for running test suites against C++ libraries. We explain the unique
selling points of this library and compare it to competing approaches.

1 Introduction

Model-Based Testing with FSMs. Model-based testing has become one of
the most important testing methods: it has been thoroughly investigated in
the research communities [17], and it has been successfully applied in industrial
practise [16]. One of the most widely researched areas of model-based testing uses
FSM models. Of particular interest for testing safety-critical systems are the so-
called complete testing methods. These accept correct implementations (relative
to a reference model and a given conformance relation) and reject faulty ones,
provided the latter fulfil some hypothesis about the maximal number of states
needed to model the implementation behaviour as an FSM. While complete
methods were mostly of theoretical interest in the early years of FSM-based
testing [3] and thought to be of infeasible size in practice, the interest in practical
application of complete methods has grown more recently, due to their optimal
test strength. It has been shown that more complex systems can be abstracted to
FSMs using input equivalence class testing methods, and these result in complete
test suites of manageable size [9,11].

Funded by the Deutsche Forschungsgemeinschaft (DFG) – project number 407708394.

c© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
D. Clark et al. (Eds.): ICTSS 2021, LNCS 13045, pp. 3–19, 2022.
https://doi.org/10.1007/978-3-031-04673-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04673-5_1&domain=pdf
http://orcid.org/0000-0002-0785-4725
http://orcid.org/0000-0003-0475-4128
http://orcid.org/0000-0003-3667-9775
http://orcid.org/0000-0001-5514-7593
https://doi.org/10.1007/978-3-031-04673-5_1

4 M. Bergenthal et al.

The Open Source Library libfsmtest and Its Main Contributions. The
practical generation of complete test suites from FSM models requires recur-
ring application of non-trivial standard transformation algorithms for FSMs.
Moreover, the proper test case generation algorithms associated with the known
complete methods are quite complex and leave room for optimisations regarding
the creation of complete test suites with preferably low numbers of test cases.
Therefore, an open source library providing standard algorithms for FSM trans-
formations and reference implementations of complete testing methods is helpful
for researchers trying to improve algorithms and experiment with novel FSM-
based testing methods, as well as for tool builders and practitioners wishing
to experiment with complete testing methods before integrating them in their
verification and validation (V&V) processes.

We consider the following features of the libfsmtest1 to be of particular
value for researchers and practitioners. (1) The libfsmtest is a thorough re-
design of its predecessor fsmlib-cpp.2 This re-design is focused on user-friendly
APIs and ease of extendability, allowing researchers to add their own algorithms.
(2) The library contains several test methods that are not available elsewhere.
These comprise variants of reduction testing and a method for property-oriented
testing. (3) Conformance relations between FSMs can be checked by running
associated test suites generated from a reference FSM against an implementation
FSM. This results in a model checker for conformance relations. (4) A C++-code
framework is provided to generate test harnesses for running test suites generated
from FSM models against software (class) libraries programmed in C/C++.

Overview. In Sect. 2, basic definitions about FSMs are introduced, in order to
make this paper self-contained. In Sect. 3, the main features of the libfsmtest
are described. A comparison to other open-source libraries for FSM-based testing
is given in Sect. 4. Section 5 contains a conclusion and describes future work.

2 Basic Facts About FSMs

An FSM is a 5-tuple M = (S, s0, ΣI , ΣO, h) with finite state space S, initial
state s0 ∈ S, finite input and output alphabets ΣI , ΣO, and transition relation
h ⊆ S × ΣI × ΣO × S. An FSM is completely specified if for every pair (s, x) ∈
S × ΣI , at least one output y and target state s′ exist, such that (s, x, y, s′) ∈ h.
Otherwise, the FSM is called partial. An FSM is deterministic (abbreviated as
DFSM), if for every pair (s, x) ∈ S ×ΣI at most one output y and target state s′

satisfying (s, x, y, s′) ∈ h exist. Otherwise the FSM is nondeterministic. An FSM
is observable if for every triple (s, x, y) ∈ S ×ΣI ×ΣO, at most one target states
s′ satisfying (s, x, y, s′) ∈ h exists. An FSM is initially connected if every state of
it can be reached from the initial state via a sequence of successive transitions.

A trace of an FSM M is a finite sequence of input/output pairs, such that
this sequence can be produced by M , starting in the initial state and successively
1 Licensed according to MIT license https://opensource.org/licenses/MIT. Source

code available under https://bitbucket.org/JanPeleska/libfsmtest.
2 https://github.com/agbs-uni-bremen/fsmlib-cpp.git.

https://opensource.org/licenses/MIT
https://bitbucket.org/JanPeleska/libfsmtest
https://github.com/agbs-uni-bremen/fsmlib-cpp.git

libfsmtest 5

applying the transition relation. The language L(M) of an FSM M is the set
of its traces. Given an input sequence x = x1 . . . xk, we say that M produces
trace τ = x1/y1 . . . xk/yk as reaction to input sequence x, if τ is in L(M). For
nondeterministic FSMs, M may produce several different traces in reaction to
x. An FSM M ′ defined over the same alphabets as M is equivalent to M if
L(M ′) = L(M) holds. An FSM is minimal of no equivalent FSM with fewer
states exists. An observable, minimal FSM is called a prime machine. In [8],
we have introduced a more relaxed equivalence relation for deterministic FSMs,
where expected outputs may be replaced in the implementation by others that
are considered to be at least as safe as the outputs specified in the reference
model. This so-called safety equivalence may require considerably fewer test cases
than the full language equivalence.

If L(M ′) ⊆ L(M) is satisfied, M ′ is called a reduction of M . For partial
FSMs, the reduction variant quasi-reduction has been introduced in [7]: FSM
M ′ is a quasi-reduction of M , if, for all traces in L(M ′) ∩ L(M), M ′ accepts at
least the inputs that are accepted by M , and the associated outputs produced
by M ′ for these inputs can also be produced according to M . For inputs not
defined for M , the FSM M ′ can exhibit arbitrary behaviour. The strong reduc-
tion relation [20] complements quasi-reduction in the following sense: In contrast
to quasi-reduction, the implementation must always be a reduction of the refer-
ence model, and after having run through an input/output trace, the implemen-
tation is required to accept exactly the same inputs accepted by the reference
model in the associated state. Quasi-reduction is the relation of choice when
dealing with incomplete reference models. In contrast to this, strong reduction
is the appropriate relation for systems whose inputs may be disabled or enabled,
depending on the internal system state, such as graphical user interfaces or sys-
tems with interfaces that are mechanically enabled or disabled during system
execution [20].

The variants of equivalence and reduction listed above are called conformance
relations between FSMs. A fault domain F(m) for given input and output alpha-
bets ΣI , ΣO is the set of all FSMs over the same alphabets that have at most m
states. Depending on the test generation method, the fault domains are further
restricted to deterministic, observable or completely specified FSMs. Given a
reference FSM M and a conformance relation ≤, a test suite is complete with
respect to (M,≤,F(m)) if and only if (a) every FSM M ′ satisfying M ′ ≤ M
passes every test of the suite (soundness), and (b) every FSM M ′ violating the
conformance relation will fail at least one test cases, provided that M ′ ∈ F(m)
(exhaustiveness).

3 Library Overview

The libfsmtest is structured into a (1) class library, (2) two main programs
for test generation and model checking, and (3) a model-based test execution
framework for running tests generated from FSMs against software modules
programmed in C/C++.

6 M. Bergenthal et al.

3.1 The Class Library

The class library is structured as follows. (1) The core classes Fsm, Ofsm, and
Dfsm for arbitrary, observable, and deterministic state machines, respectively.
Machines are allowed to be partial and need not be initially connected. These
classes contain test-independent essential operations for checking their proper-
ties, simulating their behaviour for given inputs and checking language contain-
ment for given I/O-traces. (2) Creator classes implement factory methods for
creating FSMs from files, by transformation of existing FSMs (e.g. minimisa-
tion), or by random generation. (3) Test generation methods are implemented
as visitors to the main classes. Therefore, new methods can be added without
having to change the core classes, just by adding another visitor. A test genera-
tion framework is instantiated with a concrete generation visitor. This instance
activates the generation process and stores the results in a test suite. (4) Auxil-
iary classes are used for representing states, transition, and test suites, and for
storing FSMs in different formats (e.g. as GraphViz graphs).

The following test generation methods are provided in the current version of
libfsmtest: T-Method [15], W-Method [3], Wp-Method [13], HSI-Method [18],
H-Method [5], SPYH-Method [24], Safety-complete H-Method (SH-Method) [8]
and support for property-oriented testing [10], State Counting Method for reduc-
tion testing [6], grey-box state counting method for Strong Reduction test-
ing [20].

Listing 1.1 shows the application of the Wp-Method on an FSM which is
instantiated from a CSV-file (transition table representation). Here, variable
numAddStates, whose value is passed to the constructor of the WP-Method
(line 14), is required to fix the fault domain. It specifies the maximal number
of additional states that the prime machine representing the true behaviour of
the system under test (SUT) might have, in comparison to the reference model’s
prime machine.

To the best of our knowledge, the SH-Method and the support for property-
oriented testing, as well as the Strong Reduction test method have not been
implemented in any open source library before. Therefore, more details will be
given below for these strategies.

Property-Oriented Testing and the SH-Method. The Safety-complete
H-Method (SH-Method) had originally been introduced as a new conformance
testing strategy, where output faults can be tolerated as long as they are not
safety-relevant [8]. It turns out, however, that this can be interpreted as a spe-
cific variant of property-oriented testing [14]. A more general approach to the
latter which contains the SH-Method as a special case has been investigated
in [10]. Therefore, we focus on property-oriented testing and its support in the
libfsmtest in this section.

In the context of property-oriented testing, we are no longer focused on
verifying a conformance relation between reference model and implementation.
Instead, it has to be tested whether the SUT fulfils certain properties that are

libfsmtest 7

Listing 1.1. Application of the Wp-Method to a deterministic FSM instance.
1 #include "..."

2 using namespace std;

3 ...

4 int main(int argc , char* argv []) {

5 // Declare creator and instantiate fsm from csv -file

6 FsmFromCsvCreator creator(RESOURCEPATH+"garage -door -controller.csv");

7 unique_ptr <Fsm > fsm = creator.createFsm();

8

9 // Declare test generation frame

10 int numAddStates = 1;

11 TestGenerationFrame

12 genFrame("SUITE -GDC -WP", // Test suite name

13 move(fsm), // Generate test cases from this FSM

14 make_unique <WPMethod >(numAddStates) // Use Wp -Method visitor

15);

16 // Generate the tests and write the suite to file

17 genFrame.generateTestSuite ();

18 genFrame.writeToFile ();

19 return 0;

20 }

also fulfilled by the reference model. Properties are conditions about inputs, out-
puts, and their causal ordering. In practical applications, properties are often
equivalent to, or derived from requirements to be fulfilled by the implementa-
tion. The most general way to specify properties is by means of a temporal logic
such as LTL [19]. This, however, is currently not yet supported by libfsmtest.

A slightly less general, but still quite powerful way is to specify properties
by means of FSM abstractions. The theory behind this has been investigated
in [8,10]. Note that it is applicable to deterministic, completely specified FSMs
only. We introduce the – quite intuitive – concept here by means of an example.

Example 1. Consider the completely specified DFSM A = (S, s0, ΣI , ΣO, h)
shown in Fig. 1 with input alphabet ΣI = {c1, . . . , c6} and output alphabet
ΣO = {d0, . . . , d4}. Suppose we wish to test whether the implementation satis-
fies the following property which is obviously fulfilled by A.

Property 1. If the inputs are always in range {c1, c2, c3} then the outputs
will always be in range {d0, d1}. (*)

Expressed in LTL, this property is specified by G(c1 ∨ c2 ∨ c3) ⇒ G(d0 ∨ d1),
but we will not need this for the FSM abstraction approach. Instead, we specify
an abstracted FSM α(A) as follows:

1. The input alphabet of α(A) equals that of A, that is, {c1, . . . , c6},
2. the output alphabet of α(A) is {e0, e1}, where e0 stands for A“-output is in

{d0, d1}” and e1 stands for A“-output is not in {d0, d1}”,
3. the states of α(A) and the initial state are the same as in A, and
4. the transition relation α(hA) of α(A) is obtained from the transition relation

hA of A as

α(hA) = {(s, x, e0, s
′) | ∃y ∈ {d0, d1} � (s, x, y, s′) ∈ h} ∪

{(s, x, e1, s
′) | ∃y ∈ {d2, d3, d4} � (s, x, y, s′) ∈ h}.

8 M. Bergenthal et al.

s0 s1

s2

s3s4

c3/d1

c1, c2/d0

c4,
c5,

c6/
d2

c4 , c5 , c6/d2

c5, c6/d3 c1, c2, c3, c4/d2

c6/d4

c1, c2, c3, c4, c5/d3

c1, c2/d0 c3/d1

c1 , c2 , c3 , c4/d2

c5/d3

c6/d4

Fig. 1. FSM A with different regions: once state s2 has been reached, the FSM will
only visit states in {s2, s3, s4}; it will never return to s0 or s1.

Intuitively speaking, α(A) has the same transition graph topology as A, and
the transitions are labelled by the same inputs as in A. The outputs, however,
are abstracted to the new values e0, e1, depending on whether the corresponding
A-output is in {d0, d1} or not.

Since the abstracted FSM has fewer outputs, it distinguishes fewer states
than A: indeed, the minimised machine of α(A) only has two states, as shown
in Fig. 2. Obviously, α(A) fulfils the abstracted property

Property 1a. If the inputs are always in range {c1, c2, c3} then the output
will always be e0. (**)

Now the theory developed in [8,10] states that we can apply the generation
algorithm of the SH-Method to derive an exhaustive test suite which is guaran-
teed to fail on an implementation violating property (*), because the abstraction
FSM consistently abstracts this property to the one specified in (**). The SH-
Method differs from the H-Method in the fact that distinguishing traces γ are
appended to certain traces α, β already contained in the test suite only if the
states reached by α and β, respectively, are also distinguishable in the abstracted
FSM. The “normal” H method appends γ to α and β already if these reach states
that are distinguishable in A3.

As a consequence, the SH-Method may result in significantly fewer test cases
than the H-Method. For the FSM example A discussed here, the SH-Method and
the conventional H-Method produce the following numbers of test cases, depend-
ing on the maximal value a of additional states assumed for the implementation.

3 States q, q′ that are distinguishable in α(A) are by construction also distinguishable
in A, but not every pair of states distinguishable in A is distinguishable in α(A).

libfsmtest 9

a = 0 a = 1 a = 2 a = 3

SH-method test suite size 21 126 756 4536

H-method test suite size 28 158 982 5888

Ratio 0.75 0.79 0.77 0.77

Further examples are presented in [8,10].

{s0, s1} {s2, s3, s4}

c1, c2, c3/e0

c4, c5, c6/e1

c1, c2, c3, c4, c5, c6/e1

Fig. 2. Minimised FSM associated with α(A).

The abstraction concept described above is implemented by the SH-Method
(class SHMethod). When using abstraction machines, the test generation frame
is created with an additional parameter:
1 // ... read reference FSM and abstraction FSM ...

2 // referenceFsm is a unique pointer to the reference FSM.

3 // abstractionFsm is a unique pointer to the abstraction FSM.

4 TestGenerationFrame

5 genFrame("SAFETY -H-METHOD -FSBRTSX",

6 move(referenceFsm),

7 make_unique <SHMethod >(numAdditionalStates),

8 move(abstractionFsm));

9

10 // Generate the test suite and write it to file

11 genFrame.generateTestSuite ();

12 genFrame.writeToFile ();

Observe that the SH-Method is exhaustive, but not sound. This means that
an implementation can fail a test suite even though it correctly implements the
property for which the abstraction FSM has been created. In this case, the test
suite has uncovered a violation of language equivalence, which we consider as
a good thing, because in principle, the SUT should really be equivalent to the
reference model, though we are currently only interested in a certain property.
Test suites generated by the SH-Method will never fail for implementations that
are language equivalent to the reference model. In [10] it has been shown for
a specific type of properties that it is possible to create complete (i.e. exhaus-
tive and sound) test suites that only fail if the specified property is violated.
This insight, however, is of theoretical value only, because these test suites may
become larger than suites establishing language equivalence.

10 M. Bergenthal et al.

The fact that two FSMs are required for the SH-Method deserves an expla-
nation. In principle, it would be possible to use the abstracted model itself as
reference machine. However, the difference a between the potential number of
states in the minimised DFSM representing the true implementation behaviour
and the number of states in the minimised abstraction machine would be larger
than this difference built with the original reference machine. The test suite
size, however, grows exponentially in a. Therefore, it is better to use the original
machine (A in the example above) with a smaller value of a.

Furthermore, note that it is not always the case that utilisation of an abstrac-
tion FSM will reduce the test suite size in comparison to testing for language
equivalence. The following heuristics is applicable to decide this.

– The SH-Method never produces more test cases than the H-Method.
– If the prime machine of the FSM abstraction still has the same size as the

prime machine of the reference model, then no reduction is to be expected.
– If all states of the reference model’s prime machine can be distinguished by

very few very short traces, then the test case reduction to be achieved by the
SH-Method can be expected to be quite small, even if the prime machine of
the FSM abstraction has fewer states than that of the reference model.

– If the reference FSM contains a region that is of no relevance for the property
to be checked, and if this region can never be left once entered, the test suite
size reduction achieved by the SH-Method grows with the size of this region.

– The ratio “number of test cases generated by SH-Method/number of test cases
generated by H-Method” does not change significantly with the number a of
potential additional states in the implementation.

In any case, the test suites can be calculated beforehand, and if their size is
nearly identical, it is more advisable to test for language equivalence, since this
guarantees that all properties fulfilled by the reference model are also fulfilled
by the implementation.

Finally, note that the FSM abstraction and the resulting test suite created by
the SH-Method are not only applicable to a single property, but to all properties
captured by the same abstraction FSM. This fact is well-known from the field of
model checking. If a Kripke structure has a labelling function L mapping concrete
states s to sets L(s) ⊆ AP of atomic propositions that are fulfilled in this state,
then the resulting Kripke structure can be used for property checking of all
temporal formulas (LTL, CTL, CTL*) over atomic propositions from AP [4].

Example 2. Consider the following property of A from Example 1 which is cap-
tured by the same FSM abstraction α(A).

Property 2. After an output in {d2, d3, d4} has been produced, there will
never be another output from {d0, d1}.

Using LTL, this property would be expressed as G
(
(d2 ∨ d3 ∨ d4) ⇒ G(¬d0 ∧

¬d1)
)
. This property is encoded in α(A) as well, since it can be expressed by

Property 2a. After output e1 has been produced, there will never be
another output e0.

libfsmtest 11

The test suite created by the SH-Method for Property 1 from Example 1 is also
exhaustive for Property 2.

Grey-Box Testing for the Strong Reduction Relation. As stated in
Sect. 2, there are two complementary conformance relations for partial, poten-
tially nondeterministic FSMs: quasi-reduction should be applied for reference
models due to a lack of knowledge about the expected behaviour for certain
(state, input) pairs, whereas strong reduction is the conformance relation of
choice if missing (state, input) pairs indicates that this input is impossible in the
specified state. This may happen in the case of graphical user interfaces, where
an input widget is not displayed in a certain state, in the case of mechanical
interfaces that may be physically blocked, or in case of communication protocols
where certain communication endpoints do not yet or no longer exist in a specific
state of the protocol execution.

The investigation of the strong reduction relation has only recently been
started [20]. It requires a grey-box testing strategy: it is assumed that – apart
from the SUT outputs produced in reaction to the inputs received – also the
accepted inputs in each SUT state can be observed by the test environment.
This assumption is frequently fulfilled: for testing graphical user interfaces, for
example, it is possible to query the interface software whether certain widgets are
visible or not. For mechanical interfaces, their blocked state might be detected
by sensors or even by image recognition procedures (think of a credit card slot
in an ATM which is mechanically blocked if one card has already been inserted).
A communication socket could be checked by using the ping program checking
its existence.

With this grey-box information at hand, a test oracle for strong reduction
testing first checks in each state of the test execution whether the inputs accepted
by the SUT coincide with the inputs to be accepted according to the reference
model. If this condition is violated, the test execution is FAILED. Otherwise,
inputs are passed to the SUT, and the associated outputs are checked against
the reference model as in ordinary reduction testing. This alternating check of
accepted inputs and produced outputs is performed by the test oracle throughout
the entire test execution.

3.2 The Main Programs

The libfsmtest comes with two main programs: the generator produces test
suites for given FSM model files, selected method, and fault domain (see Exam-
ple 3 below), and checker performs FSM model checking by running a confor-
mance test suite generated from a reference model against another FSM consid-
ered as implementation. Both main programs use the library classes to perform
their services. Users only interested in test suite generation and FSM model
checking can apply these programs, without having to build their own executa-
bles and associated library calls.

12 M. Bergenthal et al.

3.3 The Test Harness

A test harness is a program which exercises a given test suite on a software under
test (SUT). The libfsmtest comes with a test harness, which allows to execute
test suites generated by means of one of the FSM-based methods described
above against a C/C++ library consisting of one or more operations to be tested.
The re-usable test harness requires input refinement (each input alphabet value
of the test case needs to be mapped to a concrete SUT operation call with
input parameter values and presets of attributes) and output abstraction (the
effect of each operation call on return value, reference parameters and attributes
needs to be abstracted to the corresponding value of the reference FSM’s output
alphabet).

The connection between the predefined test harness and the SUT is estab-
lished via an SUT wrapper, as shown in Fig. 3. This is a C++-source frame to
be completed for each test campaign, comprising three functions with fixed sig-
natures to be accessed by the test harness. The first of the functions, void
sut init(), is called once by the test harness before the other functions and
should initialise the state of the wrapper and the SUT. The second function, void
sut reset(), is called once before each test case and should reset the SUT into
an initial state. Finally, function std::string sut(const std::string& x) is
called by the test harness to apply a single input of a test case. The SUT wrap-
per then maps input string x, which represents a value of the input alphabet,
to concrete input data (parameters and attributes) of the SUT and with this
data calls the associated operation of the SUT. Thereafter, the SUT wrapper
abstracts the observed response of the SUT to a value of the output alphabet,
again represented as a string. Finally, this abstracted value is compared by the
test harness to the expected response to the input as defined in the reference
FSM. In order to obtain this expected response, the test harness simulates the
test suite’s reference FSM in back-to-back fashion during each test case. Since
the test harness accesses the SUT via functions provided in the SUT wrapper
only, it is the sole responsibility of the SUT wrapper to store and maintain any
state data necessary to communicate with the SUT. Examples of these state
data are session IDs, credentials, and message counters.

Example 3. To illustrate the preparation of an SUT wrapper and the usage of
the test harness, we consider the specification of a garage door controller (GDC)
which was originally introduced in [12]. This controller is a computer managing
the up and down movement of a garage door via an electric motor. Its operational
environment is shown in Fig. 4. The GDC transmits commands a1, a2, a3,
a4 to a motor, which serve to initiate down movement, up movement, stop the
motor, and reverse its down movement into up movement, respectively. Finally,
the GDC receives inputs from several sources. First, command “button pressed”
(e1) is received from a remote control device. Next, two events “door reaches
position down” (e2) and “door reaches position up” (e3) are received from two
door position sensors. Finally, a safety device is integrated by means of a light
sensor which transmits an event “light beam crossed” (e4) when movement of
an unexpected object is observed underneath the garage door while it is closing.

libfsmtest 13

Test Harness
harness

SUT Wrapper Software Under Test

void sut_init()

void sut_reset()

const string sut(const string& x)

provides

provides

providesuses

uses

uses

uses provides

SUT reset actions

performs

SUT initialisation actions

performs

Fig. 3. Test harness, SUT wrapper, and software under test.

Garage Door
Controller

Garage Door
Motor

Remote Control
Device

Light Sensor

Garage Door
Mechanics

e1

a1

a2

a3

a4

mechanical
interaction
up/down/stopped

e4

Door Position Sensor

e1, e2

Input Description Output Description

e1
Event

a1
Command

e2
Event

a2
Command

e3
Event

a3
Command

e4
Event

a4
Command

Fig. 4. Garage door controller and its operational environment.

14 M. Bergenthal et al.

The behaviour of the GDC can be modelled by the FSM shown in Fig. 5. In
its initial state Door Up, the door is expected to be in the UP position. The state
is only left via the “button pressed” event e1 from the remote control, which
triggers a “Start down movement” command a1 to the motor and a transit to
state Door closing. While in this state, a further occurrence of the e1-event leads
to a “Stop movement” command a3 to the motor, and the controller transits
to state Door stopped going down, from which downward movement is resumed
(output a1), after the next e1-command. Furthermore, in state state Door closing
an input e4 from the light sensor leads to an a4 command to the motor, which
effects a reversal of the door movement, leading to state Door opening. As soon as
the door sensor signals that the door has reached the down position (via input
e2), the motor is stopped with command a3 and state Door down is reached.
From this state, another e1-event triggers upward movement of the door analo-
gous to the downward movement, with the exception that inputs from the light
sensor are ignored during this movement. Note here that missing transitions in
the states are interpreted as “self-loop-with null output” (null). For example,
applying input e2 in the initial state results in response null and no change in
state.

To create a test suite from the GDC model shown in Fig. 5, using, for example,
the H method, we call the generator program of libfsmtest as follows (assume
that a CSV model of the GDC is contained in file gdc.csv).
1 ./ generator -h -a2 -cself "gdc -suite -h" gdc

Fig. 5. Behaviour of the garage door controller, modelled by a DFSM.

libfsmtest 15

Option -h selects the generation method, option -a2 indicates that the test suite
shall be generated with the assumption that the DFSM representing the true
SUT behaviour has at most two additional states in comparison to the minimised
version of the GDC reference DFSM from Fig. 5. Option -cself indicates that
missing transitions for certain inputs should always be treated as self loops with
null output. The name of the test suite to be created shall be gdc-suite-h.txt.

Consider an SUT implementing the garage door controller using functions
void gdc reset() and gdc outputs t gdc(gdc inputs t x), the former reset-
ting the SUT into an initial state and the latter realising the input-output
behaviour of the GDC. Here types gdc inputs t and gdc outputs t are enu-
merations with values {e1, e2, e3, e4} and {nop, a1, a2, a3, a4}, respec-
tively, corresponding to the inputs and outputs of the GDC as introduced above
(“nop” corresponds to the null-output on implementation level). Assume that
this implementation does not require any additional initialisation before calls to
gdc reset(). Then Listing 1.2 shows an example implementation of an SUT
wrapper for this SUT. This wrapper is state-less: the transformation of FSM
input events to SUT data only depends on the actual event, and not on the
sequence of inputs processed so far. The same holds for outputs.

Finally, assume that the SUT accessed by this wrapper does not correctly
implement the GDC by sending a stop command (a3) if a door down input (e2)
is sent while the door is down, instead of the correct null. The test harness is
created by compiling and linking the harness main-file together with the SUT
wrapper and the SUT code. The resulting executable harness is called as follows
(it is assumed that the test suite generated before is available in the working
directory where the harness has been created).
1 ./ harness gdc -suite -h gdc

For passed test cases, the I/O trace performed is documented by the harness.
For failed test cases, the trace is documented up to its first output error. For the
faulty implementation assumed here, this leads to result
1 PASS: e1/a1 , e1/a3 , e1/a1 , e1/a3 , e1/a1

2 PASS: e1/a1 , e1/a3 , e1/a1 , e2/a3 , e1/a2

3 ...

4 FAIL after I/O trace: e1/a1 , e2/a3 , e2/ <ERROR >a3

5 ... further test cases ...

16 M. Bergenthal et al.

Listing 1.2. An SUT wrapper for the garage door controller.
1 #include <string >

2 #include <map >

3 using namespace std;

4

5 // Include header files of library to be tested

6 #include "gdclib.hpp"

7

8 // map translating input strings to concrete inputs

9 map <string ,gdc_inputs_t > fsmIn2gdcIn = {

10 {"e1",e1}, {"e2",e2}, {"e3",e3}, {"e4",e4}

11 };

12 // map translating concrete outputs to output strings

13 map <gdc_outputs_t ,string > gdcOut2fsmOut = {

14 {nop ,"null"}, {a1 ,"a1"}, {a2 ,"a2"}, {a3 ,"a3"}, {a4 ,"a4"}

15 };

16

17 // initialise SUT

18 void sut_init () {

19 // Maps are already defined above; no further initialisation required

20 }

21

22 // reset SUT to initial state

23 void sut_reset() {

24 gdc_reset ();

25 }

26

27 const string sut(const string& input) {

28 // empty string representing abstraction failure

29 string fsmOutputEvent;

30

31 // find the concrete input for the input string

32 map <string ,gdc_inputs_t >:: iterator inputIte = fsmIn2gdcIn.find(input);

33 if (inputIte == fsmIn2gdcIn.end()) return fsmOutputEvent;

34

35 // call the SUT with the concrete input

36 gdc_outputs_t y = gdc(inputIte ->second);

37

38 // find the string representation of the observed output

39 map <gdc_outputs_t ,string >:: iterator outputIte = gdcOut2fsmOut.find(y);

40 if (outputIte == gdcOut2fsmOut.end()) return fsmOutputEvent;

41

42 // return the string representation of the observed output

43 return outputIte ->second;

44 }

4 Related Work

We are aware of two libraries that are directly comparable to our libfsmtest:
the JPlavisFSM [1,22] and the FSMlib [23,25].

The JPlavisFSM [22] has been published as open source under the GNU
Public License GPL. It has been programmed in Java and supports test gen-
eration with methods W, UIO [2], HSI, and SPY. As a unique selling point,
the library also supports mutation testing : Given any test suite and a reference
model, JPlavisFSM can generate model mutants whose defects may or may not
be detected by the suite. For undetected errors, new test cases can be generated
to increase the fault coverage.

libfsmtest 17

The FSMlib [23] has been programmed in C++ and is also distributed under
GPL. It supports complete test generation methods for deterministic FSMs: W,
Wp, HSI, H, SPY, SPYH [24] and a variety of lesser known methods. A special
feature is that the author has set up a framework for supporting machine learning
by testing [25].

A noteworthy, if not directly comparable, software program supporting FSM-
based testing is the FSMTest tool [21]. It comes with a proprietary license
(all rights reserved by Tomsk State University) and has been designed as a
stand-alone tool programmed in C++. The tool is also accessible (with restricted
functionality) by means of a web interface.4 Just like the libraries discussed
above, FSMTest implements complete standard methods for test generation
(W-Method, H-Method,. . .). As a unique selling point, the tool supports EFSM-
based testing.

5 Conclusion

From the investigation of related libraries supporting FSM-based testing, we
conclude that each has its unique selling points. The unique features of our
libfsmtest are (a) the additional support of complete test suites for safety
equivalence and varieties of reduction testing, (b) its user-friendly API and easy
extendability by means of the visitor pattern, (c) the model checker for FSMs,
and (d) the test harness framework for running tests against C/C++ software
libraries. Finally, the very liberal MIT license under which libfsmtest is dis-
tributed facilitates its integration in commercial software.

For future enhancements, we plan to integrate property-based testing against
LTL formulas and testing against the conformance relations quasi-equivalence
and quasi-reduction according to the theory investigated in [7].

References

1. Ambrosio, A.M., Pinheiro, A.C., Simão, A.: FSM-based test case generation meth-
ods applied to test the communication software on board the ITASAT Univer-
sity satellite: a case study. J. Aerospace Technol. Manage. 6(4), 447–461 (2014).
https://doi.org/10.5028/jatm.v6i4.369

2. Chen, W., Tang, C.Y., Vuong, S.T.: Improving the UIOV-method for protocol
conformance testing. Comput. Commun. 18(9), 609–619 (1995). https://doi.org/
10.1016/0140-3664(95)99804-L

3. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans.
Softw. Eng. SE 4(3), 178–186 (1978)

4. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cam-
bridge (1999)

5. Dorofeeva, R., El-Fakih, K., Yevtushenko, N.: An improved conformance testing
method. In: Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp. 204–218. Springer,
Heidelberg (2005). https://doi.org/10.1007/11562436 16

4 http://fsmtestonline.ru.

https://doi.org/10.5028/jatm.v6i4.369
https://doi.org/10.1016/0140-3664(95)99804-L
https://doi.org/10.1016/0140-3664(95)99804-L
https://doi.org/10.1007/11562436_16
http://fsmtestonline.ru

18 M. Bergenthal et al.

6. Hierons, R.M.: Testing from a nondeterministic finite state machine using adaptive
state counting. IEEE Trans. Comput. 53(10), 1330–1342 (2004). https://doi.org/
10.1109/TC.2004.85, http://doi.ieeecomputersociety.org/10.1109/TC.2004.85

7. Hierons, R.M.: FSM quasi-equivalence testing via reduction and observing
absences. Sci. Comput. Program. 177, 1–18 (2019). https://doi.org/10.1016/j.
scico.2019.03.004

8. Huang, W., Özoguz, S., Peleska, J.: Safety-complete test suites. Softw. Qual. J.
27(2), 589–613 (2018). https://doi.org/10.1007/s11219-018-9421-y

9. Huang, W., Peleska, J.: Complete model-based equivalence class testing for nonde-
terministic systems. Formal Aspects Comput. 29(2), 335–364 (2016). https://doi.
org/10.1007/s00165-016-0402-2

10. Huang, W., Peleska, J.: Complete requirements-based testing with finite state
machines. CoRR abs/2105.11786 (2021). https://arxiv.org/abs/2105.11786

11. Hübner, F., Huang, W., Peleska, J.: Experimental evaluation of a novel equiva-
lence class partition testing strategy. Softw. Syst. Modeling 18(1), 423–443 (2017).
https://doi.org/10.1007/s10270-017-0595-8

12. Jorgensen, P.C.: The Craft of Model-Based Testing. CRC Press, Boca Raton (2017)
13. Luo, G., von Bochmann, G., Petrenko, A.: Test selection based on communicat-

ing nondeterministic finite-state machines using a generalized WP-method. IEEE
Trans. Softw. Eng. 20(2), 149–162 (1994). https://doi.org/10.1109/32.265636

14. Machado, P.D.L., Silva, D.A., Mota, A.C.: Towards property oriented testing.
Electron. Notes Theoret. Comput. Sci. 184(Suppl. C), 3–19 (2007). https://doi.
org/10.1016/j.entcs.2007.06.001, http://www.sciencedirect.com/science/article/
pii/S157106610700432X

15. Naito, S., Tsunoyama, M.: Fault detection for sequential machines by transition
tours. In: Proceedings of IEEE Fault Tolerant Computing Conference, pp. 162–178
(1981)

16. Peleska, J.: Model-based avionic systems testing for the airbus family. In: 23rd
IEEE European Test Symposium, ETS 2018, Bremen, Germany, May 28–June 1,
2018, pp. 1–10. IEEE (2018). https://doi.org/10.1109/ETS.2018.8400703, http://
ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8392663

17. Petrenko, A., Simao, A., Maldonado, J.C.: Model-based testing of software and sys-
tems: recent advances and challenges. Int. J. Softw. Tools Technol. Transf. 14(4),
383–386 (2012). https://doi.org/10.1007/s10009-012-0240-3

18. Petrenko, A., Yevtushenko, N., Lebedev, A., Das, A.: Nondeterministic state
machines in protocol conformance testing. In: Rafiq, O. (ed.) Protocol Test Sys-
tems, VI, Proceedings of the IFIP TC6/WG6.1 Sixth International Workshop on
Protocol Test systems, Pau, France, 28–30 September 1993. IFIP Transactions,
vol. C-19, pp. 363–378. North-Holland (1993)

19. van de Pol, J., Meijer, J.: Synchronous or alternating? In: Margaria, T., Graf, S.,
Larsen, K.G. (eds.) Models, Mindsets, Meta: The What, the How, and the Why
Not? LNCS, vol. 11200, pp. 417–430. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-22348-9 24

20. Sachtleben, R., Peleska, J.: Effective grey-box testing with partial FSM models.
CoRR abs/2106.14284 (2021). https://arxiv.org/abs/2106.14284

21. Shabaldina, N., Gromov, M.: Fsmtest-1.0: a manual for researches. In: 2015 IEEE
East-West Design Test Symposium (EWDTS), pp. 1–4 (2015). https://doi.org/10.
1109/EWDTS.2015.7493141

22. da Silva Simão, A.: Jplavisfsm (2021). https://github.com/adenilso/jplavisfsm.
Accessed 27 Aug 2021

https://doi.org/10.1109/TC.2004.85
https://doi.org/10.1109/TC.2004.85
http://doi.ieeecomputersociety.org/10.1109/TC.2004.85
https://doi.org/10.1016/j.scico.2019.03.004
https://doi.org/10.1016/j.scico.2019.03.004
https://doi.org/10.1007/s11219-018-9421-y
https://doi.org/10.1007/s00165-016-0402-2
https://doi.org/10.1007/s00165-016-0402-2
https://arxiv.org/abs/2105.11786
https://doi.org/10.1007/s10270-017-0595-8
https://doi.org/10.1109/32.265636
https://doi.org/10.1016/j.entcs.2007.06.001
https://doi.org/10.1016/j.entcs.2007.06.001
http://www.sciencedirect.com/science/article/pii/S157106610700432X
http://www.sciencedirect.com/science/article/pii/S157106610700432X
https://doi.org/10.1109/ETS.2018.8400703
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8392663
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8392663
https://doi.org/10.1007/s10009-012-0240-3
https://doi.org/10.1007/978-3-030-22348-9_24
https://doi.org/10.1007/978-3-030-22348-9_24
https://arxiv.org/abs/2106.14284
https://doi.org/10.1109/EWDTS.2015.7493141
https://doi.org/10.1109/EWDTS.2015.7493141
https://github.com/adenilso/jplavisfsm

libfsmtest 19

23. Soucha, M.: Fsmlib (2018). https://github.com/Soucha/FSMlib. Accessed 30 May
2021

24. Soucha, M., Bogdanov, K.: Spyh-method: An improvement in testing of finite-state
machines. In: 2018 IEEE International Conference on Software Testing, Verification
and Validation Workshops, ICST Workshops, Väster̊as, Sweden, 9–13 April 2018,
pp. 194–203. IEEE Computer Society (2018). https://doi.org/10.1109/ICSTW.
2018.00050

25. Soucha, M., Bogdanov, K.: Observation tree approach: active learning relying
on testing. Comput. J. 63(9), 1298–1310 (2020). https://doi.org/10.1093/comjnl/
bxz056

https://github.com/Soucha/FSMlib
https://doi.org/10.1109/ICSTW.2018.00050
https://doi.org/10.1109/ICSTW.2018.00050
https://doi.org/10.1093/comjnl/bxz056
https://doi.org/10.1093/comjnl/bxz056

Mining Precise Test Oracle Modelled
by FSM

Omer Nguena Timo(B)

Université du Québec en Outaouais,
Campus de Saint-Jérôme, Saint-Jérôme, QC, Canada

omer.nguena-timo@uqo.ca

Abstract. Precise test oracles for reactive systems such as critical con-
trol systems and communication protocols can be modelled with deter-
ministic finite state machines (FSMs). Among other roles, they serve in
evaluating the correctness of systems under test. A great number of can-
didate precise oracles (shortly, candidates) can be produced at the system
design phase due to uncertainties, e.g., when interpreting their require-
ments expressed in ambiguous natural languages. Selecting the proper
candidate becomes challenging for an expert. We propose a test-driven
approach to assist experts in this selection task. The approach uses a non
deterministic FSM to represent the candidates, includes the partitioning
of the candidates into subsets of candidates via Boolean encodings and
requires the intervention of experts to select subsets. We perform an
empirical evaluation of the applicability of the proposed approach.

Keywords: Test oracle mining · Finite state machine · Uncertainty ·
Distinguishing test · Constraint solver

1 Introduction

Test oracles (simply called oracles) are usually used to evaluate the correctness
of systems’ responses to test data. In black-box testing approaches, test data
are usually generated from machine-readable specifications which can also be
used in automating the evaluation of responses and the production of verdicts
on the presence of faults. In white-box testing approaches [8], test data serve to
cover some artifacts during executions of a system and an expert which plays
the role of the oracle evaluates the responses. Devising automated proper oracles
is needed; however it is a tedious task which almost always requires the human
expertise. Efforts are needed to facilitate this task [2,20] and to alleviate the
intervention of experts in recurrent test activities.

Our work consider a typical conformance testing scenario [11], where an
oracle is a deterministic finite state machine (DFSM). However, uncertainty can
occur in devising oracles. E.g., it can be a consequence of misunderstanding
or misinterpretation of requirements of systems often described with natural
c© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
D. Clark et al. (Eds.): ICTSS 2021, LNCS 13045, pp. 20–36, 2022.
https://doi.org/10.1007/978-3-031-04673-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04673-5_2&domain=pdf
https://doi.org/10.1007/978-3-031-04673-5_2

Mining Precise Test Oracle Modelled by FSM 21

languages [3,6,7]. As a result of the uncertainty, a set of candidate oracles can be
proposed. For example, machine learning-based translation approaches [7,18] for
reactive systems return the most likely DFSM, but the latter may be undesired
due to decisions made by automated translation procedures. Instead, they could
automatically return a set of candidate oracles of which the likelihood is above a
certain threshold. On the other hand when a candidate oracle is available (e.g., it
can be in the form of a Program under test), a set of its versions can be produced
mutating it with operations mimicking the introduction or the correction of
faults. Such a set can compactly be represented by a non deterministic finite state
machine (NFSM) thus modelling an imprecise oracle. The candidate oracles are
called precise in the opposite of the imprecise oracle defining them. Devising an
oracle then consists in mining the proper candidate from the imprecise oracle.

In this paper we propose an approach to mining the proper oracle from an
imprecise oracle represented with a NFSM. An expert can answer queries related
to the correctness of NFSM’s responses. An answer can be either yes or no. Based
on the answers, the proper DFSM is automatically mined. We assume that the
proper oracle is not available to the expert and the expert might have limited
time resources for answering the queries. In this context, the expert cannot check
the equivalence between a candidate oracle and the unavailable proper oracle; so,
polynomial time active learning approaches inspired by L∗ [1] are less adequate
for devising the proper DFSM. In our approach, distinct responses to the same
test data permit to distinguish between candidate oracles. Responses, as well
as the corresponding test data, are automatically computed. Our approach is
iterative and applies the “divide and conquer” principle over a current set of
“good” candidates. At each iteration step, the current candidate set is divided
into a subset of “good” candidates exhibiting “expected” responses to test data
and the complementary subset of “bad” ones. The approach uses a Boolean
encoding of the imprecise oracle; it takes advantage of the efficiency of constraint
solvers to facilitate the search of good candidates.

The paper is organized as follows. The next section provides preliminary
definitions. In Sect. 3, we describe the oracle mining problem and introduce the
steps of our solution to it. In Sect. 4 we propose a Boolean encoding for an
imprecise oracle and test-equivalent candidates; then we present the reduction
of an imprecise oracle based on the selection of expected responses by experts.
In Sect. 5, we propose a procedure for verifying the adequacy of a test data set
for mining an oracle and a mining procedure based on automatic generation
of test data. Experiments for promoting the applicability of the approach are
presented in Sect. 6. In Sect. 7, we present the related work. We conclude our
work in Sect. 8.

2 Preliminaries

A Finite State Machine (FSM) is a 5-tuple S = (S, s0,X, Y, T), where S is a
finite set of states with initial state s0; X and Y are finite non-empty disjoint
sets of inputs and outputs, respectively; T ⊆ S × X × Y × S is a transition

22 O. Nguena Timo

relation and a tuple (s, x, y, s′) ∈ T is called a transition from s to s′ with
input x and output y. The set of transitions from state s is denoted by T (s).
T (s, x) denotes the set of transitions in T (s) with input x. For a transition
t = (s, x, y, s′), we define src(t) = s, inp(t) = x, out(t) = y and tgt(t) = s′. The
set of uncertain transitions in an object A is denoted by Unctn(A). Transition
t is uncertain if |T (src(t), inp(t))| > 1, i.e., several transitions from the src(t)
have the same input as t; otherwise t is certain. The number Us,x = |T (s, x)|
is called the uncertainty degree of state s on input x. US = maxs∈S,x∈XUs,x

defines the uncertainty degree of S. We say that S is deterministic (DFSM) if it
has no uncertain transition, otherwise it is non-deterministic (NFSM). In other
words US ≤ 1 if S is deterministic. S is completely specified (complete FSM) if
for each tuple (s, x) ∈ S × X there exists transition (s, x, y, s′) ∈ T .

An execution of S in s, e = t1t2 . . . tn is a finite sequence of transitions
forming a path from s in the state transition diagram of S, i.e., src(t1) = s,
src(ti+1) = tgt(ti) for every i = 1...n − 1. Execution e is deterministic if every
ti is the only transition in e that belongs to T (src(ti), inp(ti)), i.e., e does not
include several uncertain transitions from the same state with the same input.
e is simply called an execution of S if s = s0. S is initially connected, if for any
state s′ ∈ S there exists an execution of S to s′. A DFSM has only deterministic
executions, while an NFSM can have both. A trace x/y is a pair of an input
sequence x and an output sequence y, both of the same length. The trace of e is
inp(t1)inp(t2) . . . inp(tn)/out(t1)out(t2) . . . out(tn). A trace of S in s is a trace of
an execution of S in s. Let TrS(s) denote the set of all traces of S in s and TrS
denote the set of traces of S in the initial state s0. Given a sequence β ∈ (XY)∗,
the input (resp. output) projection of β, denoted β↓X (resp. β↓Y), is a sequence
obtained from β by erasing symbols in Y (resp. X); if β is the trace of execution
e, then β↓X = inp(e) (resp. β↓Y = out(e)) is called the input (resp. output)
sequence of e and we say that out(e) is the response of S in s to (the application
of) input sequence inp(e). |X| denotes the size of set X.

Two complete FSMs are distinguished with an input sequence for which they
produce different responses. Given input sequence x ∈ X∗, let outS(s, x) denote
the set of responses which can be produced by S when x is applied at state s,
that is outS(s, x) = {β↓Y | β ∈ TrS(s) and β↓X = x}. Given state s1 and s2
of an FSM S and an input sequence x ∈ X∗, s1 and s2 are x-distinguishable,
denoted by s1 ��x s2 if outS(s1, x) �= outS(s2, x); then x is called a distinguishing
input sequence for s1 and s2. s1 and s2 are x-equivalent, denoted by s1 �x s2
if outS(s1, x) = outS(s2, x). s1 and s2 are distinguishable, denoted by s1 �� s2,
if they are x-distinguishable for some input sequence x ∈ X∗; otherwise they
are equivalent. Let a ∈ X. A distinguishing input sequence xa ∈ X+ for s1
and s2 is minimal if x is not distinguishing for s1 and s2. Two complete DFSMs
S1 = (S1, s

0
1,X, Y, T1) and S2 = (S2, s

0
2,X, Y, T2) over the same input and output

alphabets are distinguished with input sequence x if s01 ��x s02.
Henceforth, FSMs and DFSMs are complete and initially connected.
Given a NFSM M = (M,m0,X, Y,N), a FSM S = (S, s0,X, Y, T) is a

submachine of M, denoted by S ∈ M if S ⊆ M , m0 = s0 and T ⊆ N .
We will use a NFSM to represent a set of candidate DFSMs. We let Dom(M)

denote the set of candidate DFSMs included in NFSM M. Later, we will be

Mining Precise Test Oracle Modelled by FSM 23

interested in executions of M that are executions of a DFSM in Dom(M). Let
e be an execution of a NFSM M in m0. We say that e involves a submachine
S = (S, s0,X, Y, T) of M if Unctn(e) ⊆ T , i.e., all the uncertain transitions in e
are defined in S. The certain transitions are defined in each DFSM in Dom(M),
but distinct DFSMs in Dom(M) define distinct sets of uncertain transitions.

3 The Oracle Mining Problem and Overview
of the Proposed Solution

Oracles play an important role in testing and verification activities, especially
they define and evaluate the responses of implementations to given tests. The
evaluation serves to provide verdicts on the presence of faults in the implemen-
tations. Letting experts play the role of an oracle is expensive. The experts
will intervene in recurrent test campaigns for judging an important number of
responses. For these reasons, automated test oracles are preferred.

Devising precise oracles (shortly oracles) is a challenging task that might
require uncertainty resolution, as discussed in Sect. 1. Full automation of this
task might result in undesired oracles. Inspired by previous work [5,12], we
represent oracles with DFSMs and a test with an input sequence.

We propose a semi-automated mining approach for devising oracles. First we
suggest modelling uncertainties with non deterministic transitions in a NFSM.
This latter NFSM represents an imprecise oracle and it defines conflicting out-
puts for the same input applied in the same state. It also defines a possibly big
number of candidate oracles (shortly candidates) which are the DFSM included
in it. Secondly, experts can take useful decisions for the resolution of uncer-
tainties and the automatic extraction of the proper candidate. The decisions
concern the evaluation and the selection of conflicting responses. The fewer are
the decisions, the less is the intervention of experts in the mining process and
the recurrent testing activities with the selected oracle.

Let a NFSM M = (M,m0,X, Y,N) represent an imprecise oracle. We say
that S ∈ Dom(M) is the proper oracle w.r.t. experts if S always produces
the expected responses to every test, according to the point of view of experts;
otherwise S is inappropriate. Equivalent DFSMs represent an identical oracle. In
practice the uncertainty degree of M should be much smaller than its maximal
value |M ||Y |; we believe that it could be smaller than the maximum of |M | and
|Y |. The oracle mining problem is to select the proper oracle in M, with the
help of an expert. We assume that Dom(M) always contains the proper oracle.

The NFSM in Fig. 1a represents an imprecise oracle. It defines eight candidate
oracles with six uncertain transitions, namely t5, t6, t7, t8, t9, t10. Figure 1c and
Fig. 1d present two candidates; one of them is proper.

Mining the proper oracle is challenging even with the help of an expert,
especially when the NFSM for an imprecise oracle defines an important num-
ber of candidates. The one-by-one enumeration of the candidates might not
work because of the sheer number of candidates induced by an imprecise ora-
cle. A naive approach could consist to deactivate in each state of the NFSM,

24 O. Nguena Timo

1 2 3

4

a/0 [t2]

b/0 [t1]

b/0 [t4]

a/0 [t3]

a/0 [t8] a/1 [t7]

b/0 [t6]

b/0 [t5]

b/0 [t11]

a/1 [t9]

a/1 [t10]

(a) An imprecise oracle M

1 2 3

4

a/0 [t2]

b/0 [t1]

b/0 [t4]

a/0 [t3]

a/0 [t8] a/1 [t7]

b/0 [t5]

b/0 [t11]

a/1 [t9]

a/1 [t10]

(b) A reduced imprecise oracle M

1 2 3

4

a/0 [t2]

b/0 [t1]

b/0 [t4]

a/0 [t3]

a/0 [t8]

b/0 [t5]

b/0 [t11]

a/1 [t9]

(c) The proper oracle S

1 2 3

a/0 [t2]

b/0 [t1]

b/0 [t4]

a/0 [t3]

a/1 [t7]

b/0 [t6]

(d) An inappropriate oracle

Fig. 1. An imprecise oracle and two plausible oracles

the transitions producing outputs evaluated as unexpected by the expert. This
naive approach does not work. For example, the imprecise oracle in Fig. 1 has
four executions with input sequence baba, namely t1t3t5t9, t1t3t5t10, t1t3t6t8 and
t1t3t6t7. The two plausible responses for these executions are 0000 and 0001. The
latter is expected as it is produced by the proper oracle in Fig. 1c.

All but one executions produce the desired output 1 in state 3 on the last
input a. One could deactivate or remove the transition t8 based on the fact that it
produces the last undesired output in the unexpected response. In consequence
the reduction of the imprecise oracle will result in an oracle not defining t8.
Any candidate not defining t8 is not equivalent to the proper oracle. This naive
approach of selecting some transitions from transition sequences fails in mining
the proper oracle. This is because entire sequences of transitions used to reach
states (and so their input-output sequences) define the proper candidate.

Our oracle mining approach relies on the evaluation by experts of responses
(instead of isolated outputs) of the candidates to tests. The principle of the app-
roach is iterative and quite simple. At each iteration step, first we use pair of
candidates to generate tests. Next, we generate the plausible responses for gener-
ated tests. Then we let experts select expected responses. Eventually we remove
from the candidate set, the ones producing unexpected responses; this can be
done by deactivating transitions in imprecise oracle and removing candidates

Mining Precise Test Oracle Modelled by FSM 25

from the set of solutions of the Boolean formulas. The iteration process con-
tinues if two remaining candidates are distinguishable. A lot of memory can be
needed to store each and every candidate, especially if a great number of them
is available. To reduce the usage of the memory, we encode candidates with
Boolean formulas and we use a solver to retrieve candidates from the Boolean
encodings. The Boolean encoding is also useful for representing the candidates
already used to generate distinguishing tests.

In the next section we propose Boolean encodings for the DFSMs including
in a NFSM and the test-equivalent DFSMs. We also present how to deacti-
vate/remove transitions in a NFSM for modelling reduced candidate sets.

4 Boolean Encodings

Let M = (M,m0,X, Y, T) be an imprecise oracle. Dom(M) represents a set
of candidate oracles, i.e., a set of DFSMs. We encode candidates with Boolean
formulas over variables representing the transitions in M. A solution of a formula
determines the transitions corresponding to the variables it assigns to “true”.
An FSM is determined (encoded) by a formula if exactly all its transitions are
determined by a solution of the formula.

4.1 Candidates in an Imprecise Oracle

Let τ = {t1, t2, . . . , tn} be a set of variables, each variable corresponds to a
transition in T . Let us define the Boolean expression ξτ as follows:

ξτ =
∧

k=1..n−1

(¬tk ∨
∧

j=k+1..n

¬tj) ∧
∨

k=1..n

tk

It holds that every solution of ξτ determines exactly one variable in τ . Indeed,
ξτ assigns True if both

∧
k=1..n−1(¬tk ∨ ∧

j=k+1..n ¬tj) and
∨

k=1..n tk are True.∨
k=1..n tk is True whenever at least one ti is True. If some ti is True, then every

tj , i �= j must be False in order for
∧

k=1..n−1(¬tk ∨ ∧
j=k+1..n ¬tj) to be True.

So every solution of ξτ determines exactly one transition in T ; this transition
corresponds to the only variable in τ that the solution assigns to True.

We encode the candidates in Dom(M) with the formula

ϕM =
∧

(m,x)∈M×X

ξT (m,x)

For every state m ∈ M and every input x ∈ X, every solution of ϕM determines
exactly one transition in M, which entails that a solution of ϕM cannot deter-
mine two different transitions with the same input from the same state. So ϕM
determines exactly the candidates in Dom(ϕM).

For the imprecise oracle M in Fig. 1a, T (1, b) = {t1}, T (3, a) = {t7, t8},
ξT (1,b) = t1 and ξT (3,a) = (¬t7 ∨ ¬t8) ∧ (t7 ∨ t8). Then, the formula ϕM :=
t1 ∧ t2 ∧ t3 ∧ t4 ∧ t11 ∧ ((¬t7 ∨ ¬t8) ∧ (t7 ∨ t8)) ∧ ((¬t5 ∨ ¬t6) ∧ (t5 ∨ t6)) ∧ ((¬t9 ∨
¬t10) ∧ (t9 ∨ t10)) encodes all the DFSMs included in M. In other words, ϕM
determines all the candidates defined by M. The DFSM in Fig. 1c is determined
by ϕM.

26 O. Nguena Timo

4.2 Candidates Involved in Executions of an Imprecise Oracle

An execution e = t1t2 . . . tn of M involves a FSM S ∈ Dom(M) if every ti is
defined in S. Recall that all the certain transitions are defined in every candidate.
Let us define the formula ϕe =

∧
i=1..n,ti∈Unctn(e) ti. Clearly ξe determines every

uncertain transition in e, so it determines the deterministic and non deterministic
FSMs involved in e. However we are interested in DFSMs in Dom(M) only.
Remark that if DFSM S is involved in e, then e is deterministic. Conversely, e
is deterministic if Dom(M) includes a DFSM involved in e. An execution of M
must be deterministic for a DFSM to be involved in it. So ϕe determines the
DFSMs involved in e if e is deterministic. Let E = {e1, e2, . . . , em} be a set of
deterministic executions of M and let us define the formula ϕE =

∨
i=1..n ϕei

.
The formula ϕE ∧ ϕM determines the DFSMs involved in an execution in E.

Consider the NFSM in Fig. 1a and a set E = {e0 = t1t3t6t8t8t6, e1 =
t1t3t5t9t2, e2 = t1t3t5t10t3t5, e3 = t1t3t6t7t7t6} consisting of four executions
e1, e2 and e3. Remark that the executions are deterministic and they have the
same input sequence babaab but distinct responses, namely 000000 for e0, 000100
for e1 and e2 and 000110 for e3. The formula ϕE = (t1 ∧ t3 ∧ t6 ∧ t8) ∨ (t1 ∧ t3 ∧
t5 ∧ t9 ∧ t2) ∨ (t1 ∧ t3 ∧ t5 ∧ t10) ∨ (t1 ∧ t3 ∧ t6 ∧ t7) ∧ ϕM encodes the DFSMs
involved in the three executions.

4.3 Test-Equivalent Candidate

Let x be a test. To determine the x-equivalent DFSMs, we can partition
Dom(M) into subdomains. The DFSMs in each subdomain produce the same
response to test x. Our encoding of each subdomain with a Boolean formula
works as follows.

Let YM,x = {y1, y2, . . . yn} be the set of responses the DFSMs in Dom(M)
to test x. Each response yi, with i = 1...n, corresponds a maximal set of
deterministic executions of M with input sequence x. We denote by Ex/yi

=
{ei1 , ei2 , . . . , eim} the set of deterministic executions producing yi on input
sequence x. Clearly Ex/yi

characterizes a subdomain of x-equivalent DFSMs.
The maximal size of YM,x equals |x||Y | and it is reached when the imprecise
oracle is the universe of all DFSMs, which is not the practical context of our
work with imprecise oracles having reasonable uncertainty degrees.

Let Px/yi
denote the set of DFSM in M involved in an execution in Ex/yi

. It
holds that Px/y1

, Px/y2
, . . . Px/yn

constitutes a partition of Dom(M), i.e., every
deterministic submachine of M exactly belongs to one Px/yi

, i = 1..n and every
DFSM in Px/yi

is a submachine of M for every i = 1..n.
For each y ∈ YM,x, we define the formula ϕEx/y

. It holds that ϕM ∧ ϕEx/y

encodes the maximal set of DFSMs indistinguishable by x. Indeed, ϕEx/y
deter-

mines exactly the x-equivalent FSMs involved in deterministic executions in Ex/y

and ϕM determines the DFSMs in M. We can show that every DFSM included
in M is determined by the formula ϕM ∧ ϕEx/y

for exactly one y ∈ YM,x. Fur-
thermore, if x is not distinguishing for the DFSMs in Dom(M), then ϕM∧ϕEx/y

and ϕM are equivalent, i.e., they determine the DFSMs in Dom(M).

Mining Precise Test Oracle Modelled by FSM 27

Table 1. Partitioning of M into Subdomains w.r.t input sequence x = babaab

Response y Subdomain for ϕM Size Precise oracles in the
subdomain Px/yi

000100 ϕx/000100 = ((t5 ∧ t9) ∨ (t5 ∧ t10)) 4 {t1, t2, t3, t4, t5, t7, t10, t11},
{t1, t2, t3, t4, t5, t7, t9, t11},
{t1, t2, t3, t4, t5, t8, t9, t11},
{t1, t2, t3, t4, t5, t8, t10, t11}

000110 ϕx/000110 = t6 ∧ t7 2 {t1, t2, t3, t4, t6, t7, t10, t11},
{t1, t2, t3, t4, t6, t7, t9, t11}

000000 ϕx/000000 = t6 ∧ t8 2 {t1, t2, t3, t4, t6, t8, t9, t11},
{t1, t2, t3, t4, t6, t8, t10, t11}

where, ϕM = t1 ∧ t2 ∧ t3 ∧ t4 ∧ t11 ∧ ((¬t7 ∨ ¬t8)∧ (t7 ∨ t8))∧ ((¬t5 ∨ ¬t6)∧ (t5 ∨ t6))∧ ((¬t9 ∨
¬t10) ∧ (t9 ∨ t10))

Considering our running example and the test x = babaab, we have that
YM,babaab = {e0 = t1t3t6t8t8t6, e1 = t1t3t5t9t2, e2 = t1t3t5t10t3t5, e3 =
t1t3t6t7t7t6}. Since the four executions have distinct responses (i.e., out-
put sequences), we get Ebabaab/000000 = {e0}, Ebabaab/000100 = {e1, e2} and
Ebabaab/000110 = {e3}. Table 1 presents the corresponding subdomains and the
number of oracles in each subdomain. The two oracles in the subdomain for
response 000000 are equivalent. The same for response 000110. The subdo-
main for response 000100 defines four babaab-equivalent candidate oracles. Later,
experts are invited to select the expected response that will serve to reduce the
imprecise oracle.

4.4 Reducing an Imprecise Oracle

The selection of test-equivalent candidates renders useless transitions of the
imprecise oracle unused in the selected candidates. These transitions can be
deactivated for obtaining a reduced imprecise oracle.

Let M = (M,m0,X, Y,N) be an input complete NFSM and x/y be a trace.
Dom(M) is partitioned into the set Dom(M)x/y of DFSMs producing y on x
and the set of DFSMs not producing y on x. We say that a transition t ∈ N is
eligible for a candidate involved in e if e uses t or t′ �∈ N(src(t), inp(t)) for every
t′ used in e.

Lemma 1. There is a submachine Mx/y of M such that Dom(Mx/y) =
Dom(M)x/y.

Proof. Let e be a deterministic execution e in Ex/y. Remark that all the tran-
sitions in e are eligible for the candidates involved in e. Moreover e is the only
execution with input sequence x and response y in each of these candidates.

We build Mx/y = (S, s0,X, Y, T) with T ⊆ N by deactivating (deleting) non
eligible transitions for candidates in Dom(Mx/y). Formally t ∈ N belongs to T
if it is eligible for a candidate involved in some deterministic execution e ∈ Ex/y.
m ∈ M belongs to S if m is used in a transition in T . Clearly, Mx/y is a complete

28 O. Nguena Timo

and initially connected submachine of M; Mx/y is not necessarily deterministic
because several executions in Ex/y can use several uncertain transitions defined
in the same state and with the same input; these transitions belong to T .

First we show that Dom(Mx/y) ⊆ Dom(M)x/y by contradiction. Assume
that there is P in Dom(Mx/y) but not in Dom(M)x/y. P is deterministic and by
construction it defines all the transitions in a deterministic execution e ∈ Ex/y of
M. This implies the response of P on x is y, which is a contradiction with hypoth-
esis P �∈ Dom(M)x/y. Secondly, we show that Dom(M)x/y ⊆ Dom(Mx/y). Let
P ∈ Dom(M)x/y. P produces y on x with exactly one of its execution e. The
transitions eligible for P are defined in Mx/y. So P ∈ Dom(Mx/y). 	

Consider Table 1 and assume experts choose the expected response 000100.
The reduced imprecise oracle for babaab/000100, Mbabaab/000100 is the imprecise
oracle in Fig. 1b which was obtained by removing transition t6 from M in Fig. 1a.
This is because among the two transitions t5 and t6 from state 3 with input b,
the executions in Ebabaab/000100 only use t5.

Reducing an imprecise oracle permits to speed up the computation of execu-
tions with given tests. Indeed, once it becomes clear that passing some transitions
in the imprecise oracle leads to the production of undesired responses, one does
not need to consider these transitions in determining new execution sets.

Let S be a candidate in Dom(M) and x/y be a test-response pair.

Lemma 2. S ∈ Dom(Mx/y) if and only if S is determined by ϕM ∧ ϕEx/y
.

Remark that in some circumstances Mx/y is the same as M. This happens
when the union of eligible transitions over a set of executions equals the set of
transitions of M. Such a case will be presented in Sect. 5.2. Uncertain transitions
in M but not in Mx/y are not determined by ϕM∧ϕEx/y

because other uncertain
transitions are determined by ϕEx/y

and a solution of ϕM cannot determine two
uncertain transitions from the same state with the same input.

5 Mining an Oracle

To mine an oracle represented with a DFSM, we apply a test set TS on an
imprecise oracle M. We say that TS is adequate for mining the proper oracle
from M if TS is distinguishing for some S ∈ M and every other candidate in M
that is not equivalent to S; moreover S is proper. Verifying the mining adequacy
of TS is the first step in mining the proper oracle. In case TS is not adequate,
new tests can be generated.

5.1 Verifying Adequacy of a Test Set for Mining the Proper Oracle

Our method of verifying the adequacy of a test is iterative. At each iteration
step, a test is randomly chosen and the corresponding plausible responses are
computed with the imprecise oracle. Then experts select an expected response
and send it to an automated procedure. The automated procedure reduces the

Mining Precise Test Oracle Modelled by FSM 29

Algorithm 1: Verifying Test Adequacy For Mining an Oracle.
Input-Output: M an imprecise oracle
Input: ϕM the boolean encoding of DFSM included in NFSM M
Input: a test set T S
Input: a DFSM S emulating the expert for the response selection
Output: verdict, is true or false on whether T S enables mining a DFSM.
Output: ϕ the Boolean encoding of DFSM consistent with expert knowledge
Output: xd a test that distinguish two DFSM

1 Procedure verify test adequacy for mining (M, ϕM, T S, S):
2 Set ϕ = ϕM
3 Set verdict = true if ϕ does not select at least two non equivalent DFSMs;

otherwise set verdict = false
4 while T S �= ∅ and verdict == false do
5 Let x be a test in T S.
6 Remove x from T S.
7 Determine YM,x the set of outputs of deterministic executions in Ex of

M with input x
8 Show YM,x to experts and let y ∈ YM,x be the output such that

y = outS(s0, x), (→ choice of the expected response by experts)
9 Determine Ex/y ⊆ Ex the deterministic executions of M which produce

y on test x
10 Determine Mx/y

11 Set ϕ = ϕ ∧ ϕEx/y
the Boolean encoding of DFSMs in M which produce

y on test x
12 Set M = Mx/y

13 if ϕ encodes at two non equivalent DFSMs then
14 Set xd to a minimal distinguishing test for two non equivalent

DFSMs
15 else
16 Set verdict = true

17 return (verdict, M, ϕ, xd)

imprecise oracle, i.e., deactivates some transitions from the imprecise oracle. The
procedure stops when the responses for every test are examined or no imprecision
remains. The procedure verify test adequacy for mining scripted in Algorithm 1
returns a verdict of the verification.

Procedure verify test adequacy for mining takes as inputs an imprecise oracle
represented by a NFSM, a test set and the expert knowledge about the expected
outputs for the tests. We represent the expert knowledge with a DFSM. It uses
Boolean encoding presented in the previous section. The procedure ends the
iteration if all the tests were visited or the Boolean encoding defines a single
DFSM. If the Boolean encoding of the test-equivalent DFSMs defines two non
equivalent DFSMs then the tests do not enable mining an oracle; otherwise one
of the remaining equivalent DFSMs is mined. The procedure also returns the

30 O. Nguena Timo

Algorithm 2: Mining an Oracle by Test Generation.
Input: ϕM the boolean encoding of DFSM included in a NFSM M
Input: a test set T S
Input: a DFSM S emulating the expert for the response selection
Output: T Sm a test set that enables mining a DFSM.
Output: P the proper oracle

1 Procedure precise oracle mining (M, T S, S):
2 Set ϕ = ϕM
3 Set T Sm = T S
4 (verdict, M′, ϕ′, xd) = verify test adequacy for mining(M, ϕ, T S, S)
5 while verdict == false do
6 Set T Sm = T Sm ∪ {xd}
7 ϕ = ϕ′

8 M = M′

9 Set T S = {xd}
10 (verdict, M′, ϕ′, xd) = verify test adequacy for mining(M, ϕ, T S, S)

11 Let P be the DFSM obtained from a solution of ϕ′

12 return (T Sm, P)

Boolean encoding of the selected DFSMs for the tests, i.e., the DFSMs which
produce the expected output on every test.

Consider the original imprecise oracle M in Fig. 1a. For verifying whether
the test babaab is adequate for mining an oracle, verify test adequacy for mining
determines the plausible responses (see Table 1) for the deterministic execu-
tion M on babaab. Assume that experts choose expected response 000100. The
procedure determines Ebabaab/000100 as we discussed in Sect. 4.3; then it builds
ϕbabaab/000100 in Table 1 and the reduced imprecise oracle in Fig. 1b as discussed
in Sect. 4.4. The formula ϕ := ϕM ∧ ϕbabaab/000100 determines four babaab-
equivalent candidates presented in Table 1. Two of these candidates are dis-
tinguished with test babaaa, namely the oracle in Fig. 1c and the one defining
the transition set {t1, t2, t3, t4, t5, t7, t10, t11}. This latter oracle provides response
000101 whereas the former provides 000100 for test babaaa. In conclusion the
procedure returns verdict = false indicating that test babaab is not adequate for
mining the proper oracle in Fig. 1c; it also returns the reduced imprecise oracle
and the encoding with ϕ of babaab-equivalent candidates.

5.2 Test Generation in Mining an Oracle

Procedure precise oracle mining in Algorithm 2 mines an oracle from an impre-
cise one by generating tests. The procedure makes a call to semi-automated
procedure verify test adequacy for mining in Algorithm 1. If given tests are not
adequate for the mining task, procedure verify test adequacy for mining returns
a Boolean encoding of a reduced set of test-equivalent candidates. Then, pro-
cedure precise oracle mining generates a distinguishing test for two candidates
in the reduced set. Such a test can correspond to a path to a sink state in

Mining Precise Test Oracle Modelled by FSM 31

the distinguishing product [15] of two candidates. The test generation stops if
the generated test is adequate for mining the proper oracle in the reduced set of
candidates; otherwise another test is generated. Procedure precise oracle mining
always terminates because at each iteration step, the set of candidates is reduced
after a call to procedure verify test adequacy for mining and the number of
DFSMs included in the original imprecise oracle is finite. On termination of
verify test adequacy for mining, the initial tests augmented with the generated
ones constitute adequate tests for mining the proper oracle determined by ϕ′.

Considering the running example, the first call to verify test adequacy
for mining in the execution of Procedure precise oracle mining permits estab-
lishing that the test babaab is not adequate for mining an oracle. This was
discussed at the end of the previous section where the test xd = babaaa was
generated as a distinguishing test for two candidates determined by ϕ′ :=
ϕM ∧ ϕbabaab/000100 and included in the reduced imprecise oracle M′ in Fig. 1b.
In the first iteration step of the while loop, Procedure precise oracle mining
makes a second call to verify test adequacy for mining for checking whether the
generated test babaaa is adequate for mining an oracle from the new context
M = M′ and ϕ = ϕ′. Here is what happens within this second call. The plausible
responses for babaaa belong to YM′,babaaa = {000100, 000101}; they are obtained
with deterministic executions of M′ in Ebabaaa = {e0 = t1t3t5t9t2t2, e1 =
t1t3t5t10t3t8, e2 = t1t3t5t10t3t7}. Computing executions having input sequence
babaaa and the plausible responses is more efficient with M′ than with M; this
is because M′ does not define t6. Assume that 000100 is the expected response
for babaaa. Then Ebabaaa/000100 = {e0 = e1 = t1t3t5t9t2t2, e2 = t1t3t5t10t3t8}
and ϕbabaaa/000100 = t9 ∨ (t10 ∧ t8). Using M′ in Fig. 1b, there are two candi-
dates involved in e0 and the eligible transitions for the two candidates include
all the transitions in M′ but t10. Remark that uncertain transitions t8, t7 are
eligible even if they are not used in e0. There is one candidate involved in e1
and the eligible uncertain transitions for this candidate are t8, t10. So, the set of
eligible transitions for the candidates involved in executions in Ebabaaa/000100 are
all the transitions in M′. In this particular case, M′ is not reduced with test-
response pair babaaa/000100. However the {babaab, babaaa}-equivalent candi-
dates are encoded with ϕ′ ∧ϕEbabaaa/000100 = ϕM ∧ϕEbabaab/000100 ∧ϕEbabaaa/000100 .
This latter formula determines two candidates distinguishable with babaaba in
the reduced imprecise oracle obtained from M′ by deactivating transition t10.
Eventually precise oracle mining generates the test baa, terminates and returns
adequate test set {babaab, babaaa, babaaba, baa} for mining the oracle in Fig. 1c.

6 Experimental Results

We evaluate whether the proposed approach is applicable for mining oracles from
imprecise oracles that define a big number of candidate oracles and whether it
requires a reasonable number of interventions of experts. For that purpose we
implemented a prototype tool, perform multiple atomic experiments, monitor
metrics and we compute some statistics. The prototype tool is implemented in

32 O. Nguena Timo

Java; it uses Java libraries of the solver Z3 version 4.8.4 and the compilation tool
ANTLR version 4.7.2. The computer has the following settings: WINDOWS 10,
16 Go (RAM), Intel(R) Core i7-3770 @ 3.4 GHz.

An atomic experiment works as follows. We automatically generate a com-
plete DFSM S for given numbers of states, inputs and outputs denoted by
|M |, |X| and |Y | respectively. S emulates the experts during the experiments.
We set the uncertainty degree U . For a value of U we randomly add transi-
tions to S for generating an imprecise oracle M. Eventually, we extract a DFSM
equivalent to S from M by making a call to our implementation of procedure
precise oracle mining in Algorithm 2.

The metrics we monitor in each atomic experiments are: |Dom(M)| the max-
imum number of candidate oracles in M; |TS|min and |TS|max the minimum
and the maximum numbers of generated tests; Lmin and Lmax the minimum
and the maximum lengths of the generated tests; and Tmin, Tmax and Tmed the
minimal, maximal and median processing times (in milliseconds) for the min-
ing procedure. We assumed that it takes almost zero millisecond for emulated
experts to select responses, which is insignificant in comparison to the processing
time for the plausible responses and solutions of Boolean formulas. We performed
30 atomic experiments to obtain the data in each row of Table 2 and Table 3.

In Table 2, we consider imprecise oracles with 10 states, 3 inputs and 2 out-
puts. We observe that the values of almost all the metrics augment when the
uncertainty degree U increases, especially Tmed. The generated imprecise ora-
cles in Table 3 have 3 inputs, 2 outputs and uncertainty degree equals to 3.
We also observe that almost all the metrics increase when the number of states
increases, especially Tmed. We notice that for (|M |, |X|, |Y |, U) = (10, 3, 2, 3),
the gap between the values for Tmed in Table 2 and Table 3 is minor, which let
us believe that Tmed is significant to evaluate the performance of our approach.

Let us provide a practical perspective on the results in Table 2 and Table 3.
Clearly, experts would have took more time than its emulation with a DFSM
to select expected responses. Let us assume that it takes on average 1 min to
experts for selecting the expected response for a test. Under this assumption
and considering the last row of Table 2, the extraction of an oracle over the
possible 2.21E23 candidates could last 106 min since the automated procedure
only lasts for 18.26 s. We advocate that if the extracted oracle serve in testing
a critical system, taking 106 min to extract the proper oracle is better than
using an undesired oracle. If the manual repair of the undesired oracle is not
trivial, mutation operations (taking inspiration from [10,19]) can apply to it for
generating an imprecise oracle and mining a proper oracle.

The proposed approach could also be lifted for the generation in a distributed
way of adequate test sets for mining each and every candidate. This can be done
by partitioning the candidate set into subsets, one subset per plausible response.
The constraints for each subset can be processed in parallel in other to generate
new tests. The generated test sets will be computed without any intervention of
experts. After the test set generation and the iterative partitioning of candidate
subsets, the experts could passively select expected responses for the generated
tests in a passive manner for mining the proper oracle.

Mining Precise Test Oracle Modelled by FSM 33

Table 2. (|M |, |X|, |Y |) = (10, 3, 2)

U |Dom(M)| |TS|min |TS|max Lmin Lmax Tmin (ms) Tmax (ms) Tmed (ms)

2 1.07E9 21 32 5 8 871 1619 1106.0

3 2.06E14 33 55 5 8 2128 115867 2865.0

4 1.15E18 40 78 5 7 3313 8626 4417.0

5 9.31E20 55 100 5 7 6334 35190 9618.0

6 2.21E23 64 106 5 7 9903 105994 18263.0

Table 3. (|X|, |Y |, U) = (3, 2, 3)

|M | |Dom(M)| |TS|min |TS|max Lmin Lmax Tmin (ms) Tmax (ms) Tmed (ms)

7 1.05E10 22 43 4 7 1008 2457 1220.0

8 2.82E11 24 53 4 8 1136 3199 2071.0

9 7.63E12 30 55 5 7 1575 4767 2056.0

10 2.06E14 33 53 5 7 1905 4237 2438.0

11 5.56E15 37 66 5 7 2109 4567 3053.0

12 1.50E17 41 71 5 8 2533 5588 5140.0

13 4.053E18 43 79 5 8 2837 7680 6381.0

7 Related Work

Metamorphic testing [4,16,17] applies in devising test oracle when it is difficult
to compare an expected response of a system under test with an observed one.
It consists in mutating original test input data to build a test set that violates
metamorphic relations. These relations can play the role of coarse specifications
and can serve to derive test sets. Building the relations requires the expert knowl-
edge and extra-skills. Our approach exonerates testers to building such relations.
Candidate oracles allow focusing on revealing deviations in the responses.

In [10,19] a test-response set is used to repair a system when its formal spec-
ification is unavailable. The approach consists in analyzing mutated versions of
an implementation (C program) until one is found that retains required func-
tionality and avoids a defect located by the tests. Mutated versions are generated
using genetic programming. In our work, the specification and the test-response
pairs are unavailable. We generate tests and we rely on experts and the imprecise
oracle to obtain the expected responses and to extract the oracle (specification).

In [9], a test set is generated to detect whether a DFSM implementation is
a reduction (i.e., is trace included) of a NFSM specification playing the role of
an oracle; if so the implementation conforms to the specification. This work pre-
sumes that any of the traces of the specification is expected. This differs from
our settings where responses from non deterministic executions in the impre-
cise oracle NFSM cannot be produced by the proper candidate DFSM; so any
implementation exhibiting these responses must fail the tests.

34 O. Nguena Timo

The work in [1] addresses the problem of learning a DFSM by using out-
put and equivalence queries to a teacher. The proposed polynomial time active
learning algorithm often requires a certain number of queries so that it wont be
effective for experts to play the role of the teacher. In practice, the teacher is a
black-boxed implementation one wants to infer a DFSM model. In our work, we
want to mine a DFSM from a given NFSM by using the expert knowledge. Such
a situation happens, e.g., when one needs to choose among multiple implemen-
tation models of the same system. In our settings, there is no equivalence query
and expert responds few queries on the selection of expected responses.

The work in [13,15] represents the fault domain for a DFSM specification
with a NFSM. Each DFSM in the domain represents a version of the specification
seeded with faults. The work addresses the problem of generating a test set [15]
or a single test [13] for distinguishing a the specification from the other DFSMs.
In this paper we address a different concern, which is selecting a yet unknown
oracle (specification) from a set of candidate oracles.

In [14], experts play the role of an ultimate oracle to select one precise oracle
from an imprecise oracle. The experts are requested to evaluate pairs of responses
produced from too many pairs of candidate oracles. In the current work, can-
didate oracles having produced unexpected responses are neither analysed, nor
compared to the others. The mining approach developed in this paper is clearly
more efficient than the one in [14].

8 Concluding Remarks

We have presented an approach to mining a precise oracle from an imprecise one
defining a set of candidate oracles. Precise oracles are represented with DFSMs
whereas NFSMs represent imprecise oracles. We compactly encoded candidate
precise oracles with Boolean formulas. We presented a method of reducing the
imprecise oracle for efficient computation of plausible response sets. The pro-
posed approach takes advantage of the efficiency of existing solvers and the
reduction of the imprecise oracle for efficient search of distinguishable precise
oracles, test generation. It requests experts to select one correct response per
test. The experimental results have demonstrated that few tests and few response
sets are needed for mining the proper precise oracle from many candidate precise
oracles. This indicates that the number of experts’ interventions is reasonable
and the approach is applicable.

We plan to lift the proposed approach for mining extended finite state
machines which are also used to represent test oracles. We also plan investi-
gating automatic construction of imprecise oracles from system requirements,
e.g., by modifying machine learning-based translation procedures or investigat-
ing mutation operators to be applied on generated “incorrect” oracles.

Acknowledgment. This work was partially supported by MEI (Ministère de
l’Économie et Innovation) of Gouvernement du Québec. The author would like to
thank Dr. Alexandre Petrenko and anonymous reviewers for their valuable comments.

Mining Precise Test Oracle Modelled by FSM 35

References

1. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

2. Barr, E.T., Harman, M., McMinn, P., Shahbaz, M., Yoo, S.: The oracle problem
in software testing: a survey. IEEE Trans. Softw. Eng. 41(5), 507–525 (2015)

3. Brunello, A., Montanari, A., Reynolds, M.: Synthesis of LTL formulas from natural
language texts: state of the art and research directions. In: 26th International
Symposium on Temporal Representation and Reasoning (TIME 2019). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik (2019)

4. Chen, T.Y., Cheung, S.C., Yiu, S.M.: Metamorphic testing: a new approach for gen-
erating next test cases. Technical report, HKUST-CS98-01, Department of Com-
puter Science, The Hong Kong University of Science and Technology (1998)

5. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans.
Softw. Eng. 4(3), 178–187 (1978)

6. Fantechi, A., Gnesi, S., Lami, G., Maccari, A.: Applications of linguistic techniques
for use case analysis. Require. Eng. 8(3), 161–170 (2003)

7. Fantechi, A., Gnesi, S., Ristori, G., Carenini, M., Vanocchi, M., Moreschini, P.:
Assisting requirement formalization by means of natural language translation. For-
mal Methods Syst. Des. 4(3), 243–263 (1994)

8. Fraser, G., Staats, M., McMinn, P., Arcuri, A., Padberg, F.: Does automated white-
box test generation really help software testers? In: Proceedings of the 2013 Inter-
national Symposium on Software Testing and Analysis, pp. 291–301. ISSTA 2013,
ACM, New York (2013)

9. Hierons, R.M.: Testing from a nondeterministic finite state machine using adaptive
state counting. IEEE Trans. Comput. 53(10), 1330–1342 (2004)

10. Le Goues, C., Dewey-Vogt, M., Forrest, S., Weimer, W.: A systematic study of
automated program repair: fixing 55 out of 105 bugs for $8 each. In: Proceedings
of the 34th International Conference on Software Engineering, pp. 3–13. ICSE
2012, IEEE Press, Piscataway (2012)

11. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines-a
survey. Proc. IEEE 84(8), 1090–1123 (1996)

12. Mavridou, A., Laszka, A.: Designing secure Ethereum smart contracts: a finite
state machine based approach. In: Meiklejohn, S., Sako, K. (eds.) FC 2018. LNCS,
vol. 10957, pp. 523–540. Springer, Heidelberg (2018). https://doi.org/10.1007/978-
3-662-58387-6 28

13. Nguena Timo, O., Petrenko, A., Ramesh, S.: Checking sequence generation for sym-
bolic input/output FSMS by constraint solving. In: Fischer, B., Uustalu, T. (eds.)
ICTAC 2018. LNCS, vol. 11187, pp. 354–375. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-02508-3 19

14. Nguena Timo, O., Petrenko, A., Ramesh, S.: Using imprecise test oracles modelled
by FSM. In: 2019 IEEE International Conference on Software Testing, Verification
and Validation Workshops, ICST Workshops 2019, Xi’an, China, 22–23 April 2019,
pp. 32–39. IEEE (2019)

15. Petrenko, A., Nguena Timo, O., Ramesh, S.: Multiple mutation testing from FSM.
In: Albert, E., Lanese, I. (eds.) FORTE 2016. LNCS, vol. 9688, pp. 222–238.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39570-8 15

16. Saha, P., Kanewala, U.: Improving the effectiveness of automatically generated test
suites using metamorphic testing. In: ICSE 2020: 42nd International Conference
on Software Engineering, Workshops, Seoul, Republic of Korea, 27 June–19 July
2020, pp. 418–419. ACM (2020)

https://doi.org/10.1007/978-3-662-58387-6_28
https://doi.org/10.1007/978-3-662-58387-6_28
https://doi.org/10.1007/978-3-030-02508-3_19
https://doi.org/10.1007/978-3-030-02508-3_19
https://doi.org/10.1007/978-3-319-39570-8_15

36 O. Nguena Timo

17. Segura, S., Fraser, G., Sanchez, A.B., Ruiz-Cortés, A.: A survey on metamorphic
testing. IEEE Trans. Softw. Eng. 42(9), 805–824 (2016)

18. Stahlberg, F.: Neural machine translation: a review. J. Artif. Intell. Res. 69, 343–
418 (2020)

19. Weimer, W., Nguyen, T., Le Goues, C., Forrest, S.: Automatically finding patches
using genetic programming. In: Proceedings of the 31st International Conference
on Software Engineering, pp. 364–374. ICSE 2009, IEEE Computer Society, Wash-
ington, DC, USA (2009)

20. Weyuker, E.J.: On testing non-testable programs. Comput. J. 25(4), 465–470
(1982)

Reverse-Engineering EFSMs with Data
Dependencies

Michael Foster(B) , John Derrick , and Neil Walkinshaw

Department of Computer Science, The University of Sheffield,
Regent Court, Sheffield S1 4DP, UK

{m.foster,j.derrick,n.walkinshaw}@sheffield.ac.uk

Abstract. EFSMs provide a way to model systems with internal data
variables. In situations where they do not already exist, we need to
infer them from system behaviour. A key challenge here is inferring the
functions which relate inputs, outputs, and internal variables. Existing
approaches either work with white-box traces, which expose variable val-
ues, or rely upon the user to provide heuristics to recognise and gener-
alise particular data-usage patterns. This paper presents a preprocess-
ing technique for the inference process which generalises the concrete
values from the traces into symbolic functions which calculate output
from input, even when this depends on values not present in the original
traces. Our results show that our technique leads to more accurate mod-
els than are produced by the current state-of-the-art and that somewhat
accurate models can still be inferred even when the output of particular
transitions depends on values not present in the original traces.

Keywords: EFSM inference · Model inference · Genetic programming

1 Introduction

Reactive systems – systems that respond to their environment, their users, or
other systems – are commonly modelled as Finite State Machines (FSMs). These
offer an intuitive basis upon which to model and reason about the sequential
behaviours of a wide range of systems from network communication protocols to
GUIs, and form the foundation of many verification and testing techniques [24].
Reactive systems that incorporate data (where computation requires a memory,
or where data can be supplied and received through inputs and outputs) can
be represented as Extended Finite State Machines (EFSMs) [14]. Despite their
utility, models can be neglected due to the pressures of system development.

The challenge of reverse-engineering FSMs and EFSMs has been the subject
of a considerable amount of research. Where the field of FSM inference is mature
and has produced many powerful approaches [11,22,38], current techniques to

Michael Foster and Neil Walkinshaw are funded by the EPSRC CITCoM project.

c© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
D. Clark et al. (Eds.): ICTSS 2021, LNCS 13045, pp. 37–54, 2022.
https://doi.org/10.1007/978-3-031-04673-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04673-5_3&domain=pdf
http://orcid.org/0000-0001-8233-9873
http://orcid.org/0000-0002-6631-8914
http://orcid.org/0000-0003-2134-6548
https://doi.org/10.1007/978-3-031-04673-5_3

38 M. Foster et al.

infer EFSMs tend to suffer from a variety of drawbacks. Some approaches pro-
duce results that are only partial, in that they do not infer how data variables
change throughout execution [26,39], or lack internal data variables entirely
[12,34]. Those approaches that do infer fully-fledged EFSMs are limited either
in terms of their practical applicability [6,10,13,18,35], or accuracy [37].

Inferring accurate, complete EFSMs is particularly challenging when the
update functions have interdependencies; when a function on one transition
depends on a value computed by another transition. Empirical work by Androut-
sopoulos et al. [7] suggests that these are widespread, arising in around a third
of the transitions in the models that they studied. Current inference approaches,
such as MINT [37], cannot handle such interdependencies because they infer
transition functions on an individual basis, without considering relationships to
other transitions. A further problem in the case of MINT is that it is incapable of
inferring variables that are not explicitly part of the execution trace. This means
that it is not a truly black-box technique. Finally, its update functions are only
inferred after the transition structure of the machine has been decided, which
is often too late because the underlying structural inference algorithm (which
is largely data-insensitive) can end up merging transitions together that should
remain separate because they should have different update behaviours [22].

In this work we present a technique that addresses these limitations. The key
contributions of this paper are as follows:

– An approach to infer update functions before any structural state machine
inference has taken place, instead of afterwards, so that transitions with dif-
ferent update functions that should remain separate can be kept apart.

– An approach based on Genetic Programming to infer hidden variables (as
part of update inference) using values observed in other transition update
functions. This captures interdependencies between transitions, enabling the
inference of state machines that are more precise than the state-of-the-art.

– An openly available [16] proof-of-concept implementation, along with the full
experimental data-set and scripts.

– A small empirical study that assesses the accuracy of our approach in com-
parison to the state-of-the-art, with respect to two systems.

The rest of this paper is structured as follows. Section 2 introduces a motivat-
ing example and gives some necessary background. Section 3 explains the details
of our technique, the implementation of which is discussed in Sect. 4. Section 5
evaluates our technique experimentally. Finally, Sect. 6 concludes the paper and
discusses possible future work.

2 Background

This section defines EFSMs and traces, and gives an overview of the current
state-of-the-art in EFSM inference. We then highlight the limitations of existing
techniques. Throughout this work, we draw from a toy example of a simple
vending machine. Users first select a drink. They then insert coins, with the total
balance being displayed as output on a small screen. Once sufficient payment
has been inserted, the machine vends the selected drink.

Reverse-Engineering EFSMs with Data Dependencies 39

2.1 Definitions

Traces. As systems execute, we can record the sequence of actions performed,
along with any inputs and return values. Figure 1 shows some traces of our simple
drinks machine. In our notation, coin(50)/[100] represents the event coin being
called with the input 50 and outputting 100. We delimit events with commas
and omit the outputs from events like select(“tea”) which do not produce any.

〈select(“tea”), coin(50)/[50], coin(50)/[100], vend()/[“tea”]〉
〈select(“tea”), coin(100)/[100], vend()/[“tea”]〉
〈select(“coffee”), coin(50)/[50], coin(50)/[100], vend()/[“coffee”]〉

Fig. 1. Exemplary traces of the vending machine.

EFSMs. An EFSM is a conventional FSM that has been extended to explicitly
model how a system handles data. While there are many different EFSM repre-
sentations in the literature [14,25], our technique is designed to work with the
inference process from [18], so we use that definition [17–20].

Definition 1. An EFSM is a tuple, (S, s0, T) where S is a finite non-empty
set of states, s0 ∈ S is the initial state, and T is the transition matrix T :
(S × S) → P(L × N × G × F × U) with rows representing origin states and
columns representing destination states. In T , L is a set of transition labels. N
gives the transition arity (the number of input parameters), which may be zero.
G is a set of Boolean guard functions G : (I × R) → B. F is a set of output
functions F : (I × R) → O. U is a set of update functions U : (I × R) → R.

In G, F , and U , I is a tuple [i1, i2, . . . , im] of values representing the inputs
of a transition, which is empty if the arity is zero. Inputs do not persist across
states or transitions. R is a mapping from variables [r1, r2, . . .], representing
each register of the machine, to their values. Registers are globally accessible
and persist throughout the operation of the machine. All registers are initially
undefined until explicitly set by an update expression. O is a tuple [o1, o2, . . . , on]
of values, which may be empty, representing the outputs of a transition.

This differs from the traditional EFSM definition [14] in several ways. In
[14], transitions take one literal input, produce one literal output. Our definition
assigns each transition an explicit label and allows multiple inputs and outputs
(or none at all). Transitions may also produce outputs as a function of input
and register values, which allows transition behaviour to be generalised.

Definition 1 technically only affords each transition one guard, output, and
update, but syntactic sugar allows a transition from state qm to qn to take

the form qm
label:arity[g1,...,gg]/f1,...,ff [u1,...,uu]−−−−−−−−−−−−−−−−−−−−−−−−→ qn in which guards g1, . . . , gg are

implicitly conjoined, output functions f1, . . . , ff are evaluated to produce a list
of outputs, and update functions u1, . . . , uu are executed simultaneously. We use
this notation throughout this work, for example in Fig. 3.

40 M. Foster et al.

2.2 Genetic Programming

The technique we present in Sect. 3 uses Genetic Programming (GP) [21] to infer
expressions which relate sets of input-output pairs from the traces. We therefore
provide a brief introduction to the essential notions of GP that we use in this
work. For a more comprehensive overview, we refer the reader to [31].

In (tree-based) GP, candidate functions are represented as syntax trees in
which branch nodes represent operators (“non-terminals”), and leaf-nodes rep-
resent variables and constants (“terminals”). GP is an approach to synthesise
these functions by evolution. The basic loop is as follows and iterates for a fixed
number of generations or until we find a function with optimal fitness.

1. Generate an initial population of random functions.
2. Evaluate each expression according to some fitness function.
3. Select the best individuals to continue to the next generation.
4. Create a new population by a process of crossover and mutation.
5. Repeat from step 2 until some stopping criterion is met.

The most important aspect of this for our purposes is the fitness function.
This provides a metric for the suitability of candidate functions. Fitness is eval-
uated by executing each candidate function on all available inputs and then
comparing the resulting set of outputs to the corresponding outputs in the trace
data. For numerical values, the fitness function is taken as the average distance
between the predicted and the actual values. For nominal outputs, the fitness is
calculated as the proportion of instances where the outputs were correct.

Another key step in the algorithm is the creation of a new population by
crossover and mutation. Crossover recombines desirable characteristics from
individuals in the population. Mutation simulates the small changes in DNA
which occur during natural reproduction, allowing us to introduce new charac-
teristics.

2.3 EFSM Inference

Model inference enables us to make statements about the overall behaviour of
a system by generalising from its traces. A popular way to do this [18,26,39]
is to convert the traces into a tree-shaped model called a prefix tree acceptor
(PTA) like in Fig. 2. States in the PTA which are believed to represent the same
program state are then merged, resulting in a smaller and more general model.

q0

q1

q2 q3 q4

q5 q6

q7 q8 q9 q10

select : 1[i0 = “tea”]
coin : 1[i0 = 50]/o0 := 50 coin : 1[i0 = 50]/o0 := 100 vend : 0/o0 := “tea”

coin : 1[i0 = 100]/o0 := 100 vend : 0/o0 := “tea”
select : 1[i0 = “coffee”] coin : 1[i0 = 50]/o0 := 50 coin : 1[i0 = 50]/o0 := 100 vend : 0/o0 := “coffee”

Fig. 2. The PTA of the traces in Fig. 1.

Reverse-Engineering EFSMs with Data Dependencies 41

As well as inferring the control flow, we also want to infer the functions that
transform inputs into outputs. For example, in Fig. 2, the output of each vend
event is the input of select, and the output of each coin event is a running total
of the inputs. To express such behaviour, we must use the internal data state of
the model. The EFSM in Fig. 3 uses a register, r1, to keep track of the inputs
to coin, and uses a second register, r2, to store the input of select for later use
as the output of vend. These registers affect the behaviour of the model, but do
not appear in its traces—they are latent.

2.4 Limitations of Existing Approaches

Figure 3 shows the ideal EFSM model of the drinks machine, but there are
currently no techniques in the literature which can infer this effectively from
the traces in Fig. 1. A major obstacle to overcome is that registers r1 and r2 are
latent variables, so their existence and usage must be inferred. One technique [18]
allows users to provide data abstraction heuristics to facilitate this. To provide
these heuristics, the user requires a prior understanding of the system, which
means that this technique cannot be applied to any realistic inference scenario.

q0 q1 q2
select : 1/[r1 := 0, r2 := i1]

coin : 1/o1 := r1 + i0[r1 := r1 + i0]

vend : 0/o1 := r2

Fig. 3. The EFSM representing the traces in Fig. 1.

MINT [37] is an alternative approach which uses GP to infer update functions
for variables. This is done as a postprocessing step for existing models. Having
inferred a model from a set of traces, the first stage of postprocessing is to execute
the model on these traces. For each transition, the anterior and posterior variable
values are recorded. These are then used as the inputs and outputs for GP to
evolve individual update functions for each variable of each transition.

Figure 4 shows a model MINT might infer of the traces in Fig. 1. Crucially,
the longitudinal dependency between vend and select is missed. There are two
reasons for this. Firstly, MINT infers data updates per-transition, so cannot dis-
cover relationships between different transitions. Secondly, a variable is required
to store the input to select for later reuse. Figure 3 uses r2 for this, but MINT
only considers variables that appear in the traces, so has no way to facilitate the
relationship. The technique we present in Sect. 3 overcomes these limitations to
enable Fig. 3 to be effectively inferred from the traces in Fig. 1.

This work tackles the problem of passive inference—inferring a model using
only the traces provided—but there is also much literature on active inference
[8]. Here, the learner asks questions about the system under inference of the form
“Is this trace acceptable behaviour?”. These are often answered by running the
proffered traces directly on the system under inference. There are many active

42 M. Foster et al.

q0 q1 q2
select(i0 ∈ {“tea”, “coffee”})

coin(i0 ≥ 50, o0 ≥ 50)/o0 := o0 + i0

vend(o0 ∈ {“tea”, “coffee”})

Fig. 4. An EFSM of the traces in Fig. 1 as might be inferred by MINT. MINT has no
notion of outputs, so o0 here represents an internal register.

EFSM inference techniques [5,6,10,13,35], but these do not support arithmetic
operations in data updates, only simple assignments. Functions that update
registers in terms of their anterior values, such as the coin transition in Fig. 3,
are beyond them. Another limitation of all active learners is the requirement to
run arbitrary traces to answer queries, which may not always be viable.

Another group of approaches [12,33] rephrase the EFSM inference problem as
an instance of SAT. The solution is then a set of boolean variables which together
represent the automaton. Unfortunately, these approaches only consider boolean
data values and do not support internal variables, so have limited applicability.

3 Inferring Output and Update Functions

This paper addresses the challenge of inferring EFSMs from truly black-box
systems where we cannot inspect the internal state or ask arbitrary queries.
Instead, we must reason about the system purely in terms of the observable
behaviour recorded in a fixed set of its traces. The key challenge here is to infer
the necessary internal variables that enable us to capture functionality where
there is a dependence on some input data that might have been provided several
steps previously, without relying on the visibility of the internal data state.

Our approach works by inferring the key internal variables and the functions
that update them during an execution. This allows for “longitudinal” depen-
dencies, where an input is provided at one point (e.g. the user selects a drink),
and referenced several steps later in the machine (e.g. the machine dispenses the
drink, but only after the user has paid for it). As established by Androutsopoulos
et al. [7], such dependencies are common in EFSM specifications.

To infer these functions accurately, we cannot adopt the approach of existing
techniques such as MINT, which infer the transition functions as a postprocess-
ing step after the transition structure has been inferred. The process of state
merging leads to a loss of information which is vital to track these longitudinal
dependencies. Hence, the situation in Fig. 4, where the inferred model allows for
the undesirable situation where a user selects tea but receives coffee.

To avoid this information loss, our approach operates as a preprocessing tech-
nique. We take advantage of the detailed trace-by-trace information in the PTA
before it is merged, inferring internal variables and associated update functions
directly from the prefix tree. We therefore retain flexibility as our approach does
not impose any restrictions on the state merging algorithm that is subsequently
used to infer the model structure. Our approach tackles three interdependent

Reverse-Engineering EFSMs with Data Dependencies 43

inference challenges: (1) the functions to compute output from transition inputs,
(2) the registers needed to support this, and (3) the functions required to update
register values to ensure they hold the correct values when evaluated.

Algorithm 1: Outline of our GP preprocessing technique.
Input: A set of traces T
Output: A prefix tree pta
// Generate a PTA from the traces using the conventional approach.

1 pta ← buildPTA(T);
/* Group transitions by their structure (label and arity) and history (to restrict the

inference challenge for each group to the same context). */
2 groups ← groupTransitions(pta);
3 for g1 ∈ groups do

/* Use GP to infer functions that accurately predict outputs for group, including
the ability to infer the presence of memory registers that can be presumed to
contain any missing values if required. */

4 fun ← inferOutputFun(g1);
// Replace literal outputs with inferred functions.

5 newPTA ← replaceLitWithFun(pta, g1, fun);
// Infer updates to the inferred memory registers.

6 for rn ∈ fun.latentVars do
7 for g2 ∈ groups do
8 newPTA ← inferUpdateFuns(g2, targetValues(pta, rn));

// Check that inferred functions are compatible with traces.
9 if accepts(newPTA, T) then

10 pta ← newPTA;

/* Combine functions for transitions that were put into separate groups because
they had different histories (line 2). */

11 pta ← standardise(pta);

12 pta ← dropGuards(pta);
13 return resolveNondeterminism(pta);

Algorithm 1 outlines our technique. We first group related transitions in
the PTA together (line 2). We then infer output and update functions for each
group using GP. This works in two steps. In the first step (line 4), the GP infers
functions to compute output from input and identifies the use of registers if
required (addressing challenges 1 and 2 above). In the second step (lines 6–8)
it ensures that these registers are correctly updated by other transitions in the
PTA before they are evaluated. The rest of this section elucidates the process.

GroupTransitions (line 2) forms groups of transitions that represent the same
behaviour. Transitions are grouped together if they have the same structure, i.e.
the same label, arity, and produce the same number and types of outputs. The
PTA in Fig. 2 has three structural transition groups: select, coin, and vend.

Latent variables can lead to side effects [7] such that transitions with the
same structure may be subject to different data states depending on where in a
trace they occur. To provide a degree of uniformity for the GP, we only place
transitions into the same group if they share the same history.

To account for contiguous blocks of the same event, we cannot simply look
at the previous transition. Instead, we look backwards in time until we find
one which is structurally different. For example, the most recent structurally

44 M. Foster et al.

different transition of all the coin transitions in Fig. 2 is select. Consecutive
structurally identical transitions (like q1

coin−−−→ q2
coin−−−→ q3 in Fig. 2) represent the

same behaviour so have consistent side effects. By contrast, if our simple drinks
machine had a refund event to reset the balance to zero, coins inserted after this
event would be grouped separately to those that follow select.

InferOutputFun (line 4) takes a set of input/output pairs and uses GP to
infer a function to relate them. The key challenge here is getting the GP to work
with latent variables; registers like r1 and r2 which are absent from the traces.
As mentioned in Sect. 2, this is not something which MINT can do. To infer
Fig. 3 from the PTA in Fig. 2, we need to be able to do this.

To introduce new registers, we simply add them to the set of variables used
by the GP, but this causes a problem. As discussed in Sect. 2, the fitness of
candidate functions is assessed by executing them on the inputs from the traces.
Unfortunately, register values do not appear in the traces, so we cannot evaluate
functions involving them. Our solution is to look to the inputs and outputs in
the traces, and assign each register the value that yields the closest output to
the target. The justification for this is that register values are usually either set
to a particular input or observed as an output. Full details can be found in [17].

Latent variables give the GP a lot of freedom when evolving expressions, so
we want to minimise their use. We expect transitions like coin to use their non-
latent inputs as part of the output, so want to find an expression involving them
if we can. Thus, we penalise the fitness of expressions which use latent variables
without using all the non-latent ones. In situations where ignoring inputs is the
correct solution, expressions cannot achieve optimal fitness but, since our GP
has a set maximum number of generations, this will not stop it from terminating.

To further limit the use of latent variables, we first call the GP without them.
If this fails, we add one latent register to the set of variables and run GP again. If
either attempt is successful, replaceLitWithFun (line 5) replaces the literal
outputs of the transition group with the inferred function. For example in Fig. 2,
the output behaviour of the coin transitions generalises to i0 +r1. Replacing the
concrete outputs with this function gives Fig. 5a. If the GP fails both attempts,
we keep the literal outputs from the PTA. We could continue adding registers
until the GP succeeds, but we here choose to stop after one.

Update Function Inference (lines 7–9). To ensure that registers introduced by
inferOutputFun hold the correct values when evaluated, we walk each trace
in the PTA annotating each state with target register values, as illustrated in
Fig. 5a. These are propagated backwards so every state in the prefix path has a
target value. This is what allows r2 in Fig. 3 to be initialised by select. Without
it, registers could only be initialised immediately prior to use, which would not
allow us to discover longitudinal relationships between transitions.

Starting at the root of the PTA, we call GP again (without latent variables)
for each group. The “inputs” are the transition input values and the anterior
register value, if defined. The “output” is the target register value. For example,
in q2 and q8 of Fig. 5a, we need r1 to hold the value 50. The input to the respective

Reverse-Engineering EFSMs with Data Dependencies 45

incident coin transitions is 50, and the anterior value of r1 must have been zero.
Thus, r1 := r1 + i0 works as possible update, as shown in Fig. 5b.

Accepts (lines 9–10). After inferring output and update functions for a transi-
tion group, we check to ensure that the new PTA still accepts the original traces
and produces the correct outputs. If not, we must reject our inferred functions
and default back to the literal outputs from the PTA for that particular group.

q0

q1

q2 q3 q4

q5 q6

q7 q8 q9 q10

select : 1[i0 = “tea”]
coin : 1[i0 = 50]/o0 := r1 + i0 coin : 1[i0 = 50]/o0 := r1 + i0 vend : 0/o0 := “tea”

coin : 1[i0 = 100]/o0 := r1 + i0 vend : 0/o0 := “tea”
select : 1[i0 = “coffee”] coin : 1[i0 = 50]/o0 := r1 + i0 coin : 1[i0 = 50]/o0 := r1 + i0 vend : 0/o0 := “coffee”

{r1 = 0}

{r1 = 0}

{r1 = 50}

{r1 = 50}

(a) The PTA after inferring output functions for the coin transitions.

q0

q1

q2 q3 q4

q5 q6

q7 q8 q9 q10

select : 1[i0 = “tea”]/

[r1 := 0]

coin : 1[i0 = 50]/

o0 := r1 + i0[r1 := r1 + i0]
coin : 1[i0 = 50]/

o0 := r1 + i0[r1 := r1 + i0] vend : 0/o0 := “tea”

coin : 1[i0 = 100]/
o0 := r1 + i0[r1 := r1 + i0] vend : 0/o0 := “tea”

select : 1[i0 = “coffee”]/[r1 := 0]

coin : 1[i0 = 50]/

o0 := r1 + i0[r1 := r1 + i0]

coin : 1[i0 = 50]/

o0 := r1 + i0[r1 := r1 + i0] vend : 0/o0 := “coffee”

(b) The PTA after inferring update functions for the coin transitions.

q0 q1 q2
q3

q4

q6

select : 1/
[r1 := 0, r2 := i0]

coin : 1/
o0 := i0 + r1[r1 := i0 + r1]

coin : 1/

o0 := i0 + r1[r1 := i0 + r1] vend : 0/o0 := r2

vend : 0/o0 := r2

(c) The PTA after inferring output and update functions for all transitions, dropping
guards, and resolving nondeterminism.

Fig. 5. Preprocessing the PTA in Fig. 2.

Standardise (line 11) takes a PTA and attempts to “standardise” output and
update functions between transitions with the same structure that were grouped
separately due to their histories. For example, in our refund ing vending machine
from earlier, we want our two groups of coin transitions to have the same output
and update functions. The full details of this process can be found in [17].

Generalisation (lines 12–13). Currently, the model has symbolic output and
update functions, but each transition still has its literal input guards. We want
our final model to be more responsive, so we drop these guards at this stage. This
can introduce nondeterminism, which is undesirable in a PTA as trace prefixes
no longer necessarily share a common path. In fact, this nondeterminism is
simply an indication that the model contains duplicated behaviour and is easily
resolved by merging states and transitions [18]. This results in Fig. 5c. This is
smaller than Fig. 2 as the top and bottom branches are “zipped” together.

Having processed the PTA, we then perform the conventional state merging
process [18] to produce Fig. 3. This perfectly models the drinks machine, cap-
turing data dependencies using internal registers. To the best of our knowledge,
this is the first technique to infer such relationships using only system traces.

46 M. Foster et al.

4 Implementation

We built our implementation on two frameworks. For the GP component, we sig-
nificantly enhanced the GP implementation used for MINT [37]. For the under-
lying PTA, we built upon our Isabelle/HOL state-merging framework [16,18].
This section provides details of these enhancements and adaptations.

4.1 Genetic Programming

The original GP implementation [37] follows the basic steps outlined in Sub-
sect. 2.2. An initial population is first generated by randomly combining termi-
nals and non-terminals1 to form syntactically valid expressions. These are then
evolved through crossover and mutation, with only the best surviving to the next
generation. Our main addition was a fitness function to enable latent registers
to be introduced, as discussed in Sect. 3. In addition, several other changes were
necessary to improve the performance of the GP in this new context.

The mutation operator used in [37] simply replaces a random node with
a new random subtree, but we found that this failed to produce satisfactory
outcomes. We created a richer set of mutation operators inspired by a different
open-source GP implementation [1] which offers more scope for useful mutations
during evolution (details in [17]). To further enhance the impact of mutation
operators, we also took inspiration from Doerr et al. [15] and apply up to three
mutations in sequence as making occasional large changes to individuals has
been shown to help escape local optima and avoid premature convergence.

Another implementational issue we faced was bloat [23]. While [37] applies
some basic simplification to expressions, it still yielded more complex expressions
than were desirable, often including redundant operations like +0. To mitigate
this, we used Z3 [30] to simplify our expressions. This can reveal semantic dupli-
cates in the population, which become identical when simplified. We replace
these duplicates with new random individuals to keep the population distinct
and diverse. To further manage bloat, we also use lexicographic parsimony pres-
sure [27] to break ties in fitness, favouring smaller expressions over larger ones.

4.2 PTA Preprocessing

Our technique is designed to work with the inference tool from [18], which
is implemented in Isabelle/HOL with executable Scala code exported using
Isabelle’s code generator. To incorporate Algorithm 1, we defined the functions
in Isabelle and then automatically generated the Scala code using the code gen-
erator. While [18] uses Isabelle to verify certain aspects of transition merging,
we here use Isabelle purely for compatibility reasons. Rather than formalis-
ing our GP in Isabelle, we specified inferOutputFun and inferUpdateFun

1 The inference tool we use here [18] currently supports only +, −, and × for integers,
and literal assignment for strings, although our GP has broader support [16,37].

Reverse-Engineering EFSMs with Data Dependencies 47

abstractly and hooked their Scala counterparts into our Java implementation
from Subsect. 4.1 using a thin wrapper function.

The implementation for this work comes to around 1000 lines of Java on top
of [37] to implement our GP (inferOutputFun and inferUpdateFun) and
an additional 551 lines of Isabelle code (translating to 2010 lines of automatically
generated Scala code) and 496 lines of manually written Scala code on top of
[18] to implement the rest of Algorithm 1. All of this code is available at [16].

5 Evaluation

This section describes a small experiment where we compare our approach
against MINT [37] (the current state-of-the-art of passive EFSM inference). For
our technique to be successful, we want to infer models which can correctly pre-
dict system outputs for unseen traces. We also want our technique to be robust to
data values being absent from the traces. Our research questions are as follows.

RQ1 Does the processing of the PTA by our technique prior to state merging
lead to more accurate models than the current state-of-the-art?

RQ2 How robust is our technique to latent variables?

5.1 Methodology

Metrics. Both our RQs are concerned with model accuracy. To evaluate this, we
use one set of traces (the training set) to infer a model and then use another set
of traces (the test set) to compute various accuracy metrics. In this evaluation,
we use the following two metrics, in which the accepted prefix is the first part of
the trace, where the outputs produced by the model match those of the system.

Sensitivity = number of accepted positive traces
total number of positive traces

Accepted prefix length = length of accepted prefix
length of trace

Sensitivity is the proportion of positive traces in the test set accepted by a
model. This is often paired with specificity, which is the proportion of negative
traces rejected by the model. Here though, we are more concerned with whether
our models correctly calculate the output values in response to the given inputs
than whether it can correctly classify traces as positive or negative. Our models
produce outputs in response to inputs, so traces are only accepted if the correct
outputs are produced. Thus, there is much less risk of overgeneralisation here,
making specificity an inappropriate metric for this evaluation.

Subject Systems. To illustrate the performance of our technique, we evaluate it
on the two published models summarised below. The first is a lift door controller
published in [32] and used in [17,37] to evaluate inference tools. The second
system [2] is a Java accompaniment to [28] based on the game Space Invaders.

48 M. Foster et al.

System States Variables Transitions Traces/Events

liftDoors [17,32,37] 6 timer 10 348/9333

spaceInvaders [17] 4 x, aliens, shields 7 100/2580

Our work is motivated by the fact that existing EFSM inference approaches
do not consider the possibility of internal variables which do not appear explicitly
as transition inputs. Thus, we chose our subject systems for their use of these
variables, and the relationships between data values used by different transitions,
rather than for the complexity of any individual function. We also chose systems
which differ in terms of the number of state variables as this is identified in [37]
as being a factor which has a significant effect on the accuracy of MINT.

To an extent, the values above mask the complexity of the two systems. lift-
Doors has only one system variable, but this is shared between and modified
by every transition. Despite the heavy data dependencies of liftDoors, it is
spaceInvaders which is the more complex case study. There are three state
variables here, and the system is much more reactive. All but one of the transi-
tions in this model emanate from the same state, giving a much greater variation
in the traces produced by this system. By contrast, liftDoors has only one or
two transitions from each state, so the traces are more constrained.

RQ1 (Assessing Accuracy). This RQ asks whether our preprocessing app-
roach infers more accurate models than the postprocessing used by MINT. This
work focuses on latent variables which do not appear in traces, allowing us to
infer models from traces that only contain information observable from outside
the system without probing the internal program state. MINT, however, is not
applicable to this scenario. To compare it to our technique, we must work with
traces where the output of each transition depends only on its input.

To evaluate the accuracy of our models, we followed the standard procedure
of creating a training set and a test set, where the former is used to infer a
model and the latter is used to compare the predictions made by the model
to the ground truth. For liftDoors, we used the same traces [3] as [37]. For
spaceInvaders, we modified the code to log certain actions [17] and obtained
traces by manually playing the game. For each system, we then took random
samples of 60 traces and divided them in half to form the training and test sets,
each of 30 traces. These are available online alongside our implementation [16].

The accuracy of our inferred models depends on the selection of training
traces and the random seed passed to the GP. To control for these we ran the
inference tools with 30 seeds each for 30 sets of traces. Thus, we inferred a total
of 900 models for each technique. As well as the random seed, our GP technique

Reverse-Engineering EFSMs with Data Dependencies 49

has a number of configurable parameters. These are the population size, μ, the
number of new individuals per generation, λ, and the number of generations.
Here, we use μ = 100, λ = 10, and 100 generations. MINT has a similar set of
configurable parameters, all of which we left at their default values.

We anticipate that both techniques will perform well here but that our tech-
nique will outperform MINT. Because we infer output and update functions prior
to merging, they play an active role in the inference process and help to shape the
structure of the final model. By contrast MINT infers functions after state merg-
ing, when this structure has already been determined. MINT also requires every
event to report the value of every variable, so can be led astray by superfluous
information. Our technique does not require this, so is more targetted.

RQ2 (Assessing Robustness to Missing Variables). This RQ investigates
how robust our technique is to variables being absent from the traces. Such
variables indicate potential dependencies between the data values of different
transitions. To investigate this, we took the training and test sets we used for
RQ1 and elided one input at a time. For spaceInvaders, we also elided combi-
nations of two variables. Thus, we are no longer in the purely functional domain:
the output of certain events depends on values which are missing from the traces.
The main challenge here is inferring the correct use of internal registers as part
of the output functions, and then inferring suitable updates to facilitate this.

MINT has no notion of hidden variables, so is simply not applicable to sys-
tems where we cannot inspect the internal data state during execution. Thus,
we must evaluate our technique in isolation. We anticipate that obfuscating vari-
ables will lead to a drop in the accuracy of the models produced by our technique
since the GP has less information to guide it and must use latent variables in
expressions, which gives it much more freedom to produce esoteric functions
which do not properly generalise. It must also infer update functions in addition
to output functions, which gives it extra opportunities to make mistakes.

5.2 Results and Discussion

The raw data from all of our experiments is available online [4]. The distributions
of accuracy values, in terms of sensitivity and accepted prefix-lengths, are shown
in Fig. 6. We will proceed to answer both RQs in terms of these box-plots.

50 M. Foster et al.

Fig. 6. Accuracy metrics for the two systems.

RQ1 (Assessing Accuracy). This RQ concerns the GP and MINT plots.
Figure 6 shows that our technique (GP) achieves a perfectly accurate model in
all but a few outlying cases of spaceInvaders. MINT performs comparably for
liftDoors but only achieves a median sensitivity of 0.6 for spaceInvaders.

These results are not surprising. When we preprocess with GP, we generalise
concrete data values from the traces to symbolic functions. This is not a partic-
ularly difficult task in the purely functional scenario, and our GP is correct in
all but a few outlying cases of spaceInvaders. This then enables many states
to be merged, leading to a very accurate model. While MINT also uses GP to
infer functions, it does so after the structure of the model has been inferred. It
also tries to infer transition guards during inference to aggregate the observed
data values (where our technique simply discards them). This is a particular
problem for systems like spaceInvaders with multiple variables as these often
cause MINT to infer spurious guards, leading to an inaccurate model structure.

RQ2 (Assessing Robustness to Missing Variables). This RQ concerns all
plots except MINT. Since MINT has no notion of latent variables, it is simply not
applicable here. Figure 6 shows that obfuscating the system timer for liftDoors

has a relatively small effect on the accuracy of the models inferred by our system,
but that the effect of obfuscation is much greater for spaceInvaders.

Again, this is not surprising. The two contributing factors here are the two
calls to GP detailed in Sect. 3. Here, we must use latent variables in the output
functions as the result depends on variables absent from the traces. This gives
the GP much more freedom when inferring functions, so it is more likely to be

Reverse-Engineering EFSMs with Data Dependencies 51

incorrect. We also need to infer update functions for each latent variable. This
was not necessary in RQ1, so there is an extra opportunity to make mistakes.

For both subject systems, the main cause of inaccuracy is a failure to recog-
nise events rather than a failure to adequately calculate output from input. This
is because, if our GP makes a mistake or fails to come up with a function, the
dropping of transition guards in the generalisation step is detrimental to state
merging. More states must remain separate and share the underlying function-
ality between them. This leads to models that are both larger and less reactive.

For spaceInvaders, the variable we obfuscate has a huge effect on the accu-
racy of the model. The aliens and shields variables do relatively well when obfus-
cated, but the x variable leads to very poor models. There are two reasons for
this. Firstly, most events in the traces are movement events, which depend on
x, so any mistake with these is given much more opportunity to reveal itself.
Secondly, because our technique introduces one register per transition group
and there are two movement events (left and right) which both mutate x, our
technique struggles to work out what is going on here.

Discussion. While Fig. 6 shows that our technique infers more accurate models
than MINT, it does not show what these models actually look like. Figure 7 shows
a model of spaceInvaders inferred by our technique in the purely functional
setting of RQ5. This model concisely shows the behaviour of the system. By
contrast, most of the models inferred by MINT are too large to effectively display
here. The same is true for liftDoors. Where our technique drops the guards
on transitions before state merging, MINT tries to infer guards to aggregate the
observed data values. These are often overly specific, which leads to cluttered
and chaotic models, even if they are accurate in terms of traces.

q0 q1

q2

q3

start : 1/[r1 := 200, r2 := i0, r3 := 3]

moveWest : 1/o0 := i0 − 50[moveEast : 1/o0 := i0 + 50

shieldHit : 1/o0 := i0 − 1 alienHit : 1/o0 := i0 + 1

win : 0

lose : 0

Fig. 7. A model of spaceInvaders inferred by our technique.

5.3 Threats to Validity

This evaluation cannot be used to (and does not aim to) draw general conclusions
about the accuracy or scalability of either our technique or MINT. Our main
aim here is illustrate each technique performs “out of the box”, its applicability,
and factors which affect model accuracy. There are, however, certain aspects of
the study that must be taken into account when reviewing the results.

Choice of Systems. For this study we used two fully specified EFSMs.
Although these present us with valuable insights here, it will require a larger,
more diverse selection of systems to produce more generalisable results.

52 M. Foster et al.

Selection of Parameters. We did not spend time optimising the configura-
tion parameters used by either our technique or MINT. This avoids the threat of
overfitting values to these subject systems, biasing the results in favour of either
technique, but opens up the threat that there may be more suitable configura-
tions. A more specific selection of parameters may lead to more accurate results,
but parameter optimisation falls outside the intended scope of this investigation.

6 Conclusion

This paper presented a GP-based technique to infer functions that relate inputs,
outputs, and internal variables of EFSM models. We use this as part of prepro-
cessing step for the inference process to generalise the initial PTA before merging
states. To the best of our knowledge, this is the first technique to do this in a
truly black-box setting. Our results indicate that our technique leads to more
accurate models than those inferred by MINT [37], the current state-of-the-art.

A key aspect of our technique is the ability to infer output functions involving
variables which do not appear in the traces, and update functions to ensure these
variables hold the correct values when evaluated. While eliding variables from
the traces reduces the accuracy of the models we can infer, our technique still
improves upon MINT, which cannot be applied at all in this scenario.

There are many applications of GP [21], but [37] is the only work which
applies it to EFSM inference. Work in [9] applies similar techniques to learn
feature models, but these do not model control flow. Work in [10,18] considers
latent variables but relies on simple heuristics, which limits applicability. Active
techniques such as [6,13,35] build on the L∗ algorithm [8] to infer EFSMs with
data updates, but these techniques rely on submitting queries about the system
under inference. Our technique is entirely passive, using only on the traces pro-
vided. The field of process mining [36] has also produced various techniques to
infer models from traces. The main focus, though, is on control flow rather than
data usage. Research carried out in [29] considers the data perspective, but does
not attempt to infer models which can predict system behaviour for new traces.

One possible line of future work is to increase the set of operations for the
GP, including the ability to handle floating-point numbers. This would make our
technique applicable to a broader range of systems. Another line of work would
be a more comprehensive evaluation involving more systems, which would enable
us to draw more general conclusions about accuracy and scalability.

References

1. https://github.com/lagodiuk/genetic-programming. Accessed 03 Feb 2020
2. http://www.doc.ic.ac.uk/∼jnm/book/book applets/concurrency/invaders.

Accessed 15 May 2020
3. http://www.cs.le.ac.uk/people/nw91/Files/ICSMEData.zip. Accessed 15 April

2020
4. https://doi.org/10.15131/shef.data.15172969

https://github.com/lagodiuk/genetic-programming
http://www.doc.ic.ac.uk/~jnm/book/book_applets/concurrency/invaders
http://www.cs.le.ac.uk/people/nw91/Files/ICSMEData.zip
https://doi.org/10.15131/shef.data.15172969

Reverse-Engineering EFSMs with Data Dependencies 53

5. Aarts, F.: Tomte : Bridging the gap between active learning and real-world systems.
Ph.D. thesis, Radboud University Nijmegen (2014)

6. Aarts, F., Heidarian, F., Kuppens, H., Olsen, P., Vaandrager, F.: Automata Learn-
ing through Counterexample Guided Abstraction Refinement. In: Giannakopoulou,
D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 10–27. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-32759-9 4

7. Androutsopoulos, K., Gold, N., Harman, M., Li, Z., Tratt, L.: A theoretical and
empirical study of EFSM dependence. In: 2009 IEEE International Conference on
Software Maintenance, pp. 287–296 (2009)

8. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

9. Arcaini, P., Gargantini, A., Radavelli, M.: Achieving change requirements of feature
models by an evolutionary approach. J. Syst. Softw. 150, 64–76 (2019)

10. Berg, T., Jonsson, B., Raffelt, H.: Regular inference for state machines using
domains with equality tests. In: Fiadeiro, J.L., Inverardi, P. (eds.) Fundamen-
tal Approaches to Software Engineering. vol. 4961 LNCS, pp. 317–331. Springer,
Berlin (2008). https://doi.org/10.1007/978-3-540-78743-3 24

11. Biermann, A.W., Feldman, J.A.: On the synthesis of finite-state machines from
samples of their behavior. IEEE Trans. Comput. C-21(6), 592–597 (1972)

12. Buzhinsky, I., Vyatkin, V.: Automatic inference of finite-state plant models from
traces and temporal properties. IEEE Trans. Indust. Inf. 13(4), 1521–1530 (2017)

13. Cassel, S., Howar, F., Jonsson, B., Steffen, B.: Learning extended finite state
machines. In: Giannakopoulou, D., Salaun, G. (eds.) Software Engineering and
Formal Methods, pp. 250–264. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-10431-7 18

14. Cheng, K.T., Krishnakumar, A.S.: Automatic functional test generation using the
extended finite state machine model. In: Proceedings of the 30th International
Design Automation Conference, pp. 86–91. ACM Press (1993)

15. Doerr, B., Le, H.P., Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In:
Proceedings of the Genetic and Evolutionary Computation Conference, pp. 777–
784. Association for Computing Machinery (2017)

16. Foster, M.: EFSM inference (2020). https://github.com/jmafoster1/efsm-inference
17. Foster, M.: Reverse Engineering Systems to Identify Flaws and Understand

Behaviour. Ph.D. thesis, The University Of Sheffield (2020)
18. Foster, M., Brucker, A.D., Taylor, R., North, S., Derrick, J.: Incorporating data

into EFSM inference. In: Olveczky, P., SalaUn, G. (eds.) Software Engineering and
Formal Methods. SEFM 2019. LNCS, vol. 11724, pp. 257–272. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-30446-1 14

19. Foster, M., Brucker, A.D., Taylor, R.G., Derrick, J.: A formal model of extended
finite state machines. Archive of Formal Proofs (2020). https://isa-afp.org/entries/
Extended Finite State Machines.html, Formal proof development

20. Foster, M., Taylor, R., Brucker, A.D., Derrick, J.: Formalising extended finite state
machine transition merging. In: Sun, J., Sun, M. (eds.) Formal Methods and Soft-
ware Engineering. ICFEM 2018. LNCS, vol. 11232, pp. 373–387. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-02450-5 22

21. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press (1992)

22. Lang, K.J., Pearlmutter, B.A., Price, R.A.: Results of the Abbadingo One DFA
learning competition and a new evidence-driven state merging algorithm. In:
Grammatical Inference, pp. 1–12. Springer, Berlin (1998). https://doi.org/10.1007/
BFb0054059

https://doi.org/10.1007/978-3-642-32759-9_4
https://doi.org/10.1007/978-3-540-78743-3_24
https://doi.org/10.1007/978-3-319-10431-7_18
https://doi.org/10.1007/978-3-319-10431-7_18
https://github.com/jmafoster1/efsm-inference
https://doi.org/10.1007/978-3-030-30446-1_14
https://isa-afp.org/entries/Extended_Finite_State_Machines.html
https://isa-afp.org/entries/Extended_Finite_State_Machines.html
https://doi.org/10.1007/978-3-030-02450-5_22
https://doi.org/10.1007/BFb0054059
https://doi.org/10.1007/BFb0054059

54 M. Foster et al.

23. Langdon, W.B.: Quadratic bloat in genetic programming. In: Proceedings of the
2nd Annual Conference on Genetic and Evolutionary Computation, pp. 451–458.
GECCO’00, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2000)

24. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines-a
survey. Proc. IEEE 84(8), 1090–1123 (1996)

25. Lorenzoli, D., Mariani, L., Pezzè, M.: Inferring state-based behavior models. In:
Proceedings of the 2006 International Workshop on Dynamic Systems Analysis, p.
25. ACM Press (2006)

26. Lorenzoli, D., Mariani, L., Pezzè, M.: Automatic generation of software behav-
ioral models. In: Proceedings of the 13th International Conference on Software
Engineering, p. 501. ACM Press (2008)

27. Luke, S., Panait, L.: Lexicographic parsimony pressure. In: Proceedings of the
4th Annual Conference on Genetic and Evolutionary Computation, pp. 829–836.
Morgan Kaufmann Publishers Inc. (2002)

28. Magee, J., Kramer, J.: State Models and Java Programs, 2nd edn. Wiley Hoboken
(2006)

29. Mannhardt, F.: Multi-perspective process mining. Ph.D. thesis, TU Eindhoven
(2018)

30. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) Tools and Algorithms for the Construction and Analysis of Sys-
tems, pp. 337–340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78800-3 24

31. Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic programming
(2008). http://www.gp-field-guide.org.uk

32. Strobl, F., Wisspeintner, A.: Specifcation of an elevator control system. Technical
report, TUM (1999). https://wwwbroy.in.tum.de/publ/papers/elevator.pdf

33. Ulyantsev, V., Tsarev, F.: Extended finite-state machine induction using sat-solver.
In: 2011 10th International Conference on Machine Learning and Applications and
Workshops, vol. 2, pp. 346–349 (2011)

34. Ulyantsev, V., Buzhinsky, I., Shalyto, A.: Exact finite-state machine identification
from scenarios and temporal properties. Int. J. Softw. Tools Technol. Transfer
20(1), 35–55 (2016)

35. Vaandrager, F., Midya, A.: A Myhill-Nerode theorem for register automata and
symbolic trace languages. In: Holm, C., Kremer, K. (eds.) Theoretical Aspects of
Computing, vol. 221, pp. 43–63. Springer, Cham (2020). https://doi.org/10.1016/
j.tcs.2022.01.015

36. Van Der Aalst, W.: Process mining. Commun. ACM 55(8), 76–83 (2012)
37. Walkinshaw, N., Hall, M.: Inferring computational state machine models from pro-

gram executions. In: 2016 IEEE International Conference on Software Maintenance
and Evolution, pp. 122–132. IEEE (2016)

38. Walkinshaw, N., Lambeau, B., Damas, C., Bogdanov, K., Dupont, P.: STAMINA:
a competition to encourage the development and assessment of software model
inference techniques. Emp. Softw. Eng. 18(4), 791–824 (2013)

39. Walkinshaw, N., Taylor, R., Derrick, J.: Inferring extended finite state machine
models from software executions. Emp. Softw. Eng. 21(3), 811–853 (2016)

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
http://www.gp-field-guide.org.uk
https://wwwbroy.in.tum.de/publ/papers/elevator.pdf
https://doi.org/10.1016/j.tcs.2022.01.015
https://doi.org/10.1016/j.tcs.2022.01.015

Testing Against Non-deterministic FSMs:
A Probabilistic Approach for Test Suite

Minimization

Natalia Kushik1(B), Nina Yevtushenko2,3, and Jorge López4

1 Télécom SudParis, Institut Polytechnique de Paris, Palaiseau, France
natalia.kushik@telecom-sudparis.eu

2 Ivannikov Institute for System Programming of the Russian Academy of Sciences,
Moscow, Russia

evtushenko@ispras.ru
3 Higher School of Economics, Moscow, Russia

4 Airbus Defence and Space, Issy-Les-Moulineaux, France

jorge.lopez-c@airbus.com

Abstract. The paper is devoted to model based testing against non-
deterministic specifications. Such test derivation strategies are well devel-
oped, for example against non-deterministic Finite State Machines, how-
ever the length of the corresponding test suite can be exponential w.r.t.
the number of specification states. We therefore discuss how a test suite
can be minimized or reduced when certain level of guarantee concerning
its fault coverage is still preserved. The main idea behind the approach
is to augment the specification by assigning probabilities for the non-
deterministic transitions and later on evaluate the probability of each
test sequence to detect the relevant faulty implementation. Given a prob-
ability P which is user-defined, we propose an approach for minimizing
a given exhaustive test suite TS such that, it stays exhaustive with the
probability no less than P .

Keywords: Model based testing · Non-deterministic finite state
machines · Guaranteed fault coverage · Probabilistic approach

1 Introduction

Model based testing has been actively developing in the past decades; the inter-
ested reader can find various recent works, in particular, when checking the
proceedings of related conferences such as the International Conference on Test-
ing Software and Systems (ICTSS), the International Symposium on Software
Testing and Analysis (ISSTA), the Workshop on Model-Based Testing (MBT),
the International Conference on Software Testing, Verification and Validation
(ICST), etc. Finite State Machine (FSM) based testing assumes that the spec-
ification of the System Under Test (SUT) and its implementations are given

The work was partially supported by Erasmus program.

c© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
D. Clark et al. (Eds.): ICTSS 2021, LNCS 13045, pp. 55–61, 2022.
https://doi.org/10.1007/978-3-031-04673-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04673-5_4&domain=pdf
https://doi.org/10.1007/978-3-031-04673-5_4

56 N. Kushik et al.

as FSMs and usually the possible implementations share the same input/output
alphabets with this specification FSM. In this paper, we study non-deterministic
FSMs as related specifications. We note that various (preset and adaptive) test-
ing strategies have been previously proposed for such machines, considering not
only the test suite derivation but also learning the specification, test suite mini-
mization and complexity estimation for the aforementioned tasks (see for exam-
ple, [2,4,5,10]).

In this paper, we consider a white box testing approach, where all the possible
faulty implementations are explicitly enumerated [4,7]. A complete test suite
is built in such a way that each faulty implementation is killed (detected) by
some test case of the test suite (test suite exhaustiveness). Such a test suite
can be derived, for example, via adding to the test suite each sequence that
distinguishes a potential faulty implementation from the specification machine.
However, when the conformance relation is represented by non-separability1,
the length of a separating sequence can be exponential (w.r.t. the number of
the specification states) [8], and this makes the approach unpractical, even if
the fault coverage can be guaranteed. We propose to preserve the fault coverage
up to a given level of certainty through augmenting the specification FSM with
probabilities. Indeed, whenever for a given input at a given state two or more
outputs are possible, these outputs can appear with certain probability. Note
that in this paper, we do not discuss how such probabilities are assigned or
obtained; they can be provided due to some additional knowledge of an SUT,
or its stochastic behavior which can be revealed, for example, during the system
monitoring. We only assume that the augmentation of the specification with
probabilities is possible.

Once the specification FSM is augmented with probabilities for each non-
deterministic transition, a given complete test suite can be filtered, i.e., the
sequences that are derived for detecting some faulty implementations can be
deleted depending on the likelihood of being detected by other test sequences.
The level of such likelihood is determined by a user defined probability P . We
propose a method for calculating the related likelihood and also discuss how a
given exhaustive test suite can be minimized in such a way that it stays exhaus-
tive at least with probability P . Note that we are not aware of any works for
test suite minimization with guaranteed fault coverage against probabilistic non-
deterministic FSMs and this is thus, the first attempt.

2 Preliminaries

When testing against FSMs, guaranteed fault coverage can be achieved when
a corresponding fault model is properly defined. A fault model [6] is a triple
〈S,@, FD〉 where S is the specification of the system behavior, @ represents the
conformance relation between an implementation Ij under test and the specifi-
cation S, while FD is a fault domain which limits the set of possible implementa-
tions, i.e., Ij ∈ FD. We are interested in an exhaustive test suite, i.e., a test suite

1 There exists an input sequence such that output responses of the specification and
an implementation to this sequence do not intersect.

A probabilistic approach for test suite minimization against NFSMs 57

that detects each implementation Ij ∈ FD that is not conforming to S (Ij �@ S).
Moreover, we work under the white box testing methodology, which means that
the implementations from FD are explicitly enumerated, FD = {I1, I2, . . . , Ik}.
Usually, each Ij ∈ FD corresponds to a potential faulty implementation and
thus, represents a mutant (transfer and/or output) of the specification S. In this
work, @ is the non-separability relation (∼=) which we further adjust to proba-
bilistic non-separability while the specification is represented by an initialized
complete non-deterministic observable FSM S.

An FSM is a 5-tuple S = 〈S, I,O, hS , s0〉 where S is a finite nonempty set
of states with the designated initial state s0 ∈ S, I and O are finite input and
output alphabets, and hS ⊆ S × I × O × S is a transition relation. The FSM
S is non-deterministic if for some pair (s, i) ∈ S × I, there exist several pairs
(o, s′) ∈ O × S such that (s, i, o, s′) ∈ hS ; otherwise, the FSM is deterministic.
The FSM S is observable if for every two transitions (s, i, o, s1), (s, i, o, s2) ∈ hS

it holds that s1 = s2; otherwise, the FSM is non-observable. The FSM S is
complete if for every pair (s, i) ∈ S × I, there exists a transition (s, i, o, s′) ∈ hS ;
otherwise, the FSM is partial (partially specified).

Let each Ij ∈ FD and S share the same input alphabet I. We say that Ij �@ S
if there exists a separating sequence α ∈ I∗ for Ij and S, i.e., the set of output
reactions of Ij and S to α do not intersect, i.e., out(Ij , α)∩out(S, α) = ∅, where
out(Ij , α) (resp. out(S, α)) is the set of output responses on α at the initial
state of the FSM Ij (resp. FSM S). Otherwise, Ij is non-separable from the
specification machine S. Note that TS is an exhaustive test suite w.r.t. the fault
model 〈S,∼=, FD = {I1, I2, . . . , Ik}〉, if for each Ij ∈ FD, there always exists
such αj ∈ TS that separates Ij from S.

Deriving such complete test suite TS is possible and this problem has been
well studied previously (see, for example [4,10]). However, the length of the
corresponding separating sequence (even for a given mutant) can be exponential
w.r.t. the number of states of the specification FSM S. Therefore, an iterative test
suite derivation even for the white box testing approach can return a test suite
of exponential length. Correspondingly, in this paper, we discuss how such test
suite (length) can be reduced via introducing probabilities to the specification
FSM and a given level of certainty about the TS exhaustiveness.

3 Introducing the Probabilities in the Specification

Given the specification machine S = 〈S, I,O, hS , s0〉, we augment each non-
deterministic transition (s, i, o, s′) ∈ hS with the probability p. The probabilistic
specification is thus the FSM S = 〈S, I,O, hS , s0, pr〉, where pr is the function
that defines the probability for the output o to be produced at state s under
input i, pr : S × I × O −→ [0, 1]. Note that, we restrict the assignation of pr
in such a way that ∀s ∈ S ∀i ∈ I

∑
o∈O pr(s, i, o) = 1. The function pr can

be extended over input/output sequences from (IO)∗; given an input/output
sequence α/β = (α′/β′).(i/o), pr(s0, α, β) = pr(s0, α′, β′) ∗ pr(s, i, o), where s is
the α′/β′-successor of the state s0 of the specification FSM S; if the trace α′/β′

58 N. Kushik et al.

is not defined at state s0 then this probability equals 0. Note also, that for the
defined sequence γ such a successor is unique due to the observability of the
specification FSM S. Note as well, that as usual pr(s, ε, ε) = 1.

As an example, consider the FSM in Fig. 1 where transitions at states 1 and
2 are non-deterministic and augmented with probabilities.

1 2

3

i2/o2
i1/o1 (p = 0.2)

i1/o2 (p = 0.8)

i1/o3 (p = 0.85)

i1/o2 (p = 0.15), i2/o1

i1/o1

i2/o1

Fig. 1. An example probabilistic FSM S

The notion of a probabilistic FSM has been introduced before, as well as
the notion of distinguishability (as non-equivalence) for such machines (see for
example, [1,3,9]). However, in this work, we consider the non-separability con-
formance relation that we adjust, having such an augmented probabilistic spec-
ification FSM S.

For a fault model 〈S,∼=, {I1, I2, . . . , Ik}〉 we thus define a probabilistic sep-
arability for a given implementation Ij from the specification S. Given P as a
user defined probability2, a sequence α ∈ I∗ is a P -probably separating sequence
for Ij and S, if

∑
β∈out(Ij ,α)∩out(S,α) pr(s0, α, β) ≤ 1 − P . Note that Ij is not

probabilistic, and pr(s0, α, β) is the probability to observe β when α is applied
at the initial state s0 of S. For the considered example FSM S (shown in Fig. 1),
and a potential implementation I1 shown in Fig. 2, by direct inspection one can
observe that α = i1i2 is a 0.8-probably separating sequence.

1 2

i2/o2
i1/o1

i2/o1

i1/o2

Fig. 2. An implementation FSM I1 ∈ FD

2 A level of certainty that a sequence separates the specification and an implementa-
tion.

A probabilistic approach for test suite minimization against NFSMs 59

For a fault model 〈S,∼=, FD = {I1, I2, . . . , Ik}〉, we say that the test suite
P -TS is P -probably exhaustive if ∀Ij ∈ FD ∃α ∈ P -TS such that α is a P -
probably separating sequence for Ij and S. We aim at deriving such test suites
for user defined probabilities via filtering a given exhaustive test suite TS for
the fault model 〈S,∼=, FD = {I1, I2, . . . , Ik}〉.

4 Minimizing an Exhaustive Test Suite Against
〈S,∼=, {I1,I2, . . . , Ik}〉

Given an exhaustive test suite TS = {α1, . . . , αl} derived for the fault model
〈S,∼=, FD = {I1, I2, . . . , Ik}〉, given also a user defined probability P , we pro-
pose to derive a test suite P -TS ⊆ TS, aiming at reducing |P -TS| (in size),
and which is P -probably exhaustive for 〈S,∼=, FD = {I1, I2, . . . , Ik}〉. In order
to do so, we propose to build a matrix M whose rows correspond to the test
sequences of TS while columns correspond to all the implementations from
FD. mi,j contains the maximal guaranteed probability pi,j for the sequence
αi (in lexicographical order) to separate the implementation Ij (also in lexico-
graphical order) from the specification FSM S. This probability is calculated as
pi,j = 1 − ∑

β∈out(Ij ,αi)∩out(S,αi)
pr(s0, αi, β).

Note that, by construction, each column of the matrix M contains at least
one 1, as the test suite TS is exhaustive. After M is derived what is left to
do is to build a minimal cover of it, such that a subset P -TS corresponding to
the rows covers all columns {I1, I2, . . . , Ik}, where each probability pi,j ≥ P .
The latter means that for each potential faulty implementation from FD there
exists at least one test sequence from P -TS that P -probably separates it from
the specification S.

We omit the discussion about how such a row cover can be constructed -
it can be done through an explicit combinatorial enumeration or various (com-
binatorial) optimization strategies can be applied. The solution to the problem
always exists and in the worst case scenario, when nothing could be minimized,
P -TS = TS.

Consider again the example FSM S, and the FD = {I1, I2, I3}, where I1

is the mutant from Fig. 2; it is separated from S via α = i1i2i1 ∈ TS. I2

shown in Fig. 3 is separated from S via the application of α = i1i1, and 0.2-
probably separated via α = i1i2. Finally, the mutant I3 is shown in Fig. 4. The
corresponding separating sequence is α = i1i2.

Assume that the TS = {i1i1, i1i2, i1i2i1}; the matrix M for the example

FSM, mutants I1, I2 and I3 and this test suite is the following:

⎛

⎝
0.97 1 0.2
0.8 0.2 1
1 0.36 1

⎞

⎠.

As an example, note that the M cover that only consists of first two rows
provides 0.97-probably exhaustive3 P -TS = {i1i1, i1i2}. The last test sequence
thus can be omitted, preserving the exhaustiveness with the probability 0.97.
3 This is just an illustrative example; some other pair of rows can even return an
exhaustive test suite, nonetheless longer.

60 N. Kushik et al.

1 2

3

i2/o2

i1/o2

i1/o2 i2/o1

i1/o2

i2/o1

Fig. 3. An implementation FSM I2 ∈ FD

1 2

3

i2/o2

i1/o2

i1/o3

i1/o2, i2/o1

i1/o1

i2/o2

Fig. 4. An implementation FSM I3 ∈ FD

5 Conclusion

In this paper, we discussed a possibility of reducing an exhaustive test suite
built for a non-deterministic specification, via augmenting this specification with
probabilities. The proposed technique relies on a user defined probability P that
each potential faulty implementation will be detected (with this probability).
The same approach can be applied for a test suite with adaptive separating
sequences. In this case, the probability of a test case is the minimum probability
of all test case traces. Note also that the proposed approach can also be applied
for filtering a non-exhaustive test suite, as long as the sequences left, respect the
P -separability relation with the specification.

As a future work, we plan to extend this short paper by considering other
fault models, as the proposed technique only considers the non-separability con-
formance relation and only relies on the white box testing assumption. At the
same time, we plan to investigate the model learning strategies for obtaining the
probabilities of interest. Finally, as for test derivation, it is interesting to con-
sider how an augmented specification can be used for choosing input sequences,
which are more efficient for distinguishing faulty implementations from the spec-
ification.

A probabilistic approach for test suite minimization against NFSMs 61

References

1. Alur, R., Courcoubetis, C., Yannakakis, M.: Distinguishing tests for nondeterminis-
tic and probabilistic machines. In: Leighton, F.T., Borodin, A. (eds.) Proceedings
of the Twenty-Seventh Annual ACM Symposium on Theory of Computing, 29
May–1 June 1995, Las Vegas, Nevada, USA, pp. 363–372. ACM (1995). https://
doi.org/10.1145/225058.225161

2. El-Fakih, K., Hierons, R.M., Türker, U.C.: K-branching UIO sequences for par-
tially specified observable non-deterministic FSMS. IEEE Trans. Softw. Eng. 47(5),
1029–1040 (2021). https://doi.org/10.1109/TSE.2019.2911076

3. Hierons, R.M., Merayo, M.G.: Mutation testing from probabilistic and stochastic
finite state machines. J. Syst. Softw. 82(11), 1804–1818 (2009). https://doi.org/
10.1016/j.jss.2009.06.030

4. Kushik, N., Yevtushenko, N., Cavalli, A.R.: On testing against partial non-
observable specifications. In: 9th International Conference on the Quality of Infor-
mation and Communications Technology, QUATIC 2014, Guimaraes, Portugal,
23–26 September 2014, pp. 230–233. IEEE Computer Society (2014). https://doi.
org/10.1109/QUATIC.2014.38

5. Petrenko, A., Avellaneda, F.: Learning and adaptive testing of nondeterministic
state machines. In: 19th IEEE International Conference on Software Quality, Reli-
ability and Security, QRS 2019, Sofia, Bulgaria, 22–26 July 2019, pp. 362–373.
IEEE (2019). https://doi.org/10.1109/QRS.2019.00053

6. Petrenko, A., Yevtushenko, N., von Bochmann, G.: Fault models for testing in
context. In: Gotzhein, R., Bredereke, J. (eds.) Formal Description Techniques IX:
Theory, application and tools, IFIP TC6 WG6.1 International Conference on For-
mal Description Techniques IX/Protocol Specification, Testing and Verification
XVI, Kaiserslautern, Germany, 8–11 October 1996. IFIP Conference Proceedings,
vol. 69, pp. 163–178. Chapman & Hall (1996)

7. Poage, J.F., McCluskey, E.J.: Derivation of optimum test sequences for sequen-
tial machines. In: 1964 Proceedings of the Fifth Annual Symposium on Switching
Circuit Theory and Logical Design, pp. 121–132 (1964). https://doi.org/10.1109/
SWCT.1964.7

8. Spitsyna, N., El-Fakih, K., Yevtushenko, N.: Studying the separability relation
between finite state machines. Softw. Test. Verif. Reliab. 17(4), 227–241 (2007).
https://doi.org/10.1002/stvr.374

9. Vidal, E., Thollard, F., de la Higuera, C., Casacuberta, F., Carrasco, R.C.: Proba-
bilistic finite-state machines-part I. IEEE Trans. Pattern Anal. Mach. Intell. 27(7),
1013–1025 (2005). https://doi.org/10.1109/TPAMI.2005.147

10. Yenigün, H., Kushik, N., López, J., Yevtushenko, N., Cavalli, A.R.: Decreasing the
complexity of deriving test suites against nondeterministic finite state machines.
In: 2017 IEEE East-West Design and Test Symposium, EWDTS 2017, Novi Sad,
Serbia, September 29–October 2, 2017, pp. 1–4. IEEE Computer Society (2017).
https://doi.org/10.1109/EWDTS.2017.8110091

https://doi.org/10.1145/225058.225161
https://doi.org/10.1145/225058.225161
https://doi.org/10.1109/TSE.2019.2911076
https://doi.org/10.1016/j.jss.2009.06.030
https://doi.org/10.1016/j.jss.2009.06.030
https://doi.org/10.1109/QUATIC.2014.38
https://doi.org/10.1109/QUATIC.2014.38
https://doi.org/10.1109/QRS.2019.00053
https://doi.org/10.1109/SWCT.1964.7
https://doi.org/10.1109/SWCT.1964.7
https://doi.org/10.1002/stvr.374
https://doi.org/10.1109/TPAMI.2005.147
https://doi.org/10.1109/EWDTS.2017.8110091

Test Generation and Selection

Automatic Test Generation with ASMETA
for the Mechanical Ventilator Milano Controller

Andrea Bombarda , Silvia Bonfanti(B) , and Angelo Gargantini

Dipartimento di Ingegneria Gestionale, dell’Informazione e della Produzione,
Università degli Studi di Bergamo, Bergamo, Italy

{andrea.bombarda,silvia.bonfanti,angelo.gargantini}@unibg.it

Abstract. This paper presents an automatic test cases generation method from
Abstract State Machine specifications. Starting from the ASMETA specification,
the proposed approach applies the following steps: 1. Generation of abstract tests
from a ASMETA model; 2. Optimization of the abstract tests; 3. Concretization
of the abstract tests in GoogleTest; 4. Execution of the concrete tests on C++
code. We have applied this approach to the Mechanical Ventilator Milano (MVM)
project, which our research group has contributed to develop, test, and certify
during the Covid-19 pandemic.

1 Introduction

In response to the lack of ventilators due to Covid-19, a group of physicists, engi-
neers, physicians, computer scientists, and others from 12 countries around the world
has developed a simplified mechanical lung ventilator, called MVM (Mechanical Ven-
tilator Milano)1. The project started from an idea of the physicist Cristiano Galbiati,
who was also the leader, and our research group has been involved in the development
and testing of the device, in order to get the certifications from local authorities and
distribute the MVM in the hospitals of different countries. In only 42 d from the initial
prototype production to the demonstration of performances, the FDA (Food and Drug
Administration) declared that the MVM falls within the scope of the Emergency Use
Authorization (EUA) for ventilators and, during the following months, it has obtained
the Health Canada and the CE marking as well. Thanks to these achievements, the
MVM can be sold and used in the USA, but also in Canada and Europe.

During the development, as required by the standards, we (together with other col-
leagues) started to design the MVM controller (more details can be found in [1]) and
we have used the Yakindu Statechart Tool. Regarding unit testing, since Yakindu does
not provide an automatic test generator, tests were manually written and we were able
to test the entire machine in a satisfactory way, enough to obtain the required certifi-
cations. As well known, writing tests manually should be discouraged, especially if a
model is present, since it requires a significant amount of time and can be an error-prone
activity. Therefore, after the completion of the development and certification process,
we have wondered if test generation starting from formal specifications would have

1 https://mvm.care/.
c© IFIP International Federation for Information Processing 2022

Published by Springer Nature Switzerland AG 2022
D. Clark et al. (Eds.): ICTSS 2021, LNCS 13045, pp. 65–72, 2022.
https://doi.org/10.1007/978-3-031-04673-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04673-5_5&domain=pdf
http://orcid.org/0000-0003-4244-9319
http://orcid.org/0000-0001-9679-4551
http://orcid.org/0000-0002-4035-0131
https://mvm.care/
https://doi.org/10.1007/978-3-031-04673-5_5

66 A. Bombarda et al.

Test Case Generator with
Model Checker

Abstract Tests
in Avalla

ASM
Specification Test Optimizer

Optimized
Tests

Avalla to
GoogleTest

Concretized
GoogleTestTest executor

Test results +
Code coverage

C code json conf file

Fig. 1. Test generation and execution process

been applicable in this case and since we still have access to the source code of the
MVM, we decided to apply a Model-based-testing (MBT) method to this project. We
have decided to use the ASMETA [2] framework which we are familiar with and which
offers all the necessary techniques (including those for V&V, missing in Yakindu).

We have started from the ASM specifications of the MVM controller and we have
validated and verified our formal specification. Using a model checker we have gener-
ated abstract test sequences, that have been optimized and, then, concretized in order
to be executable on the C++ implementation of the MVM controller. By evaluating the
coverage reached with this testing process, we have obtained better results than the one
got with manual tests. The entire process is presented in the following sections.

2 Test Generation

The testing process applied to the case study is depicted in Fig. 1. It starts from the ASM
specifications, which have been validated, and verified - but the modeling activity is not
reported here for brevity. Starting from the ASM model, abstract tests are generated by
the ATGT tool, exploiting the counterexample generation of the model checker. Tests are
saved in Avalla, the language used to write scenarios in ASMETA [2]. In this paper, we
extend the approach presented in [11] by generating test sequences using the bounded
model checker (BMC) and Linear Temporal Logic (LTL) properties. ATGT generates
the test predicates which are then translated to suitable LTL temporal properties, called
trap properties whose counterexamples generated by the BMC are the tests we are
looking for. Test predicates are generated by applying the following coverage criteria:
1. Basic rule (every rule ri is executed at least once), 2. Complete rule (every rule is
executed and performs a non trivial update), 3. Rule update (every update is performed
once and it is not trivial), 4. Rule guard (every guard is evaluated true at least once, and
false at least once), 5. MCDC (Modified Condition Decision coverage of the guards), 6.
2-wise (pairwise testing of all the inputs - with a limited domain).

In this case study, tests are generated using the monitoring optimization: when a
test sequence ts is generated for a test predicate yet to cover, the algorithms checks if ts
covers accidentally other test predicates and it skips the test predicates already covered.

Moreover, we have introduced a timeout: for every test predicate tp to be covered,
the model checker is interrupted if it reaches the timeout before producing a test, either
because the test that covers tp exists but the model checker is unable to find it or because
tp is unfeasible, i.e. there is no test that covers it and the trap property is actually true.
However, because ATGT uses the classical bounded model checking, it is unable to
distinguish the two cases by proving test predicates unfeasibility.

Automatic Test Generation with ASMETA 67

Table 1. Comparison between different criteria for automatic test cases generation

Criteria #Tps Timeout 10 min Timeout 40 min

#Tests #Time-outs Generation #Tps %Tps #Tests #Time-outs Generation #Tps %Tps

time [min] covered covered time [min] covered covered

Basic rule 72 13 29 345 43 60% 24 11 773 61 85%

Complete rule 2 0 0 0 2 100% 0 0 0 2 100%

Rule guard 124 1 60 601 64 52% 1 27 1080 97 78%

Rule update 89 0 52 520 37 42% 0 25 1000 64 72%

MCDC 148 10 55 581 93 63% 9 24 997 124 84%

2-wise 420 77 0 1 420 100% 73 0 1 420 100%

All criteria 853 101 196 2048 659 77% 107 87 3852 768 90%

Code 1. Original scenario
scenario
check apneaAlarm = false;
check iValve = CLOSED; ...
set respirationMode := PCV; ...
step
check apneaAlarm = false;
check iValve = CLOSED; ...
set respirationMode := PCV; ...
step
check iValve = OPEN; ...

Code 2. Check Opt.
scenario
check apneaAlarm = false;
check iValve = CLOSED; ...
set respirationMode := PCV; ...
step ...
set respirationMode := PCV; ...
step
check iValve = OPEN; ...

Code 3. Set Opt.
scenario
check apneaAlarm = false;
check iValve = CLOSED; ...
set respirationMode := PCV; ...
step ...
step
check iValve = OPEN;

Table 1 reports the comparison in terms of test predicates, number of generated
tests, number of timeouts, generation time, and number of test predicates covered for
each coverage criteria by setting two different timeouts of 10 and 40 min.

We can observe that by increasing the timeout, the total number of covered test pred-
icates increases (from 77% with timeout 10 min to 90% with timeout 40 min) as well as
the number of generated tests and the generation time. For each coverage criterion, the
number of tps covered increases from 10 min timeout to 40 min timeout, except for com-
plete rule and 2-wise criteria. Considering complete rule, no test is generated because,
due to the monitoring optimization, all tps are already covered by tests generated with
basic rule criteria. For the 2-wise criterion, in both cases all the tps are covered. There
is a difference in the number of generated tests that is greater with 10 min timeout. This
is because of the lower timeout, fewer tests are generated before trying to cover 2-wise,
so more tps will result uncovered and they will need more tests.

Remark: We suspect that many of the uncovered test predicates are unfeasible. Being
able to prove unfeasible test requirements is necessary to give complete information
about the real coverage of the specification. We plan to extend ATGT in order to support
proof by induction using the IC3 algorithm (as we did for property verification).

Test Optimization. Once the abstract tests are generated, we perform the following
(optional) test optimizations, which do not change the semantic of the tests but improve
the readability and the translatability of the abstract tests to concrete ones.

1. Check optimization: This operation removes unchanged controlled locations. If a
controlled location in state si has not changed w.r.t. state si−1, the corresponding check

68 A. Bombarda et al.

[{”asmName”: ”startVentilation”,
”cName”: ”startVentilation”,
”commandType”: ”IN EVENT”

},{”asmName”: ”time”, ”cName”: ”time”,
”commandType”: ”TBD”

},{”asmName”: ”iValve”,

”cName”: ”defaultMock−>getInValveStatus”,
”commandType”: ”OPERATION”

},{”asmName”: ”state”, ”cName”: ”state”,
”commandType”: ”STATE”

},{”asmName”: ”mode”, ”cName”: ”mode”,
”commandType”: ”VAR”}]

Code 4. JSON file for function mapping

is removed, if present. For instance, in Code 1 check command on the location iValve
is repeated, so it is possible to remove the second one (see Code 2).
2. Set optimization: It aims to remove set commands of monitored variables in state
si−1 if they are not actually asked to compute the update set for state si. In Code 2, the
second instance of set respirationMode = PCV is removed in Code 3 since it is useless.

The average number of check and set per state in the generated scenarios without
optimization is respectively 37 and 15. By applying the check optimization technique
the optimized scenarios have an average of 11.22 check per state, while by applying the
set optimization the average of set per state became 3.31.

3 Test Concretization

We have concretized Avalla tests as unit tests in the GoogleTest framework, in order to
be executed on the C++ code of the MVM controller generated by Yakindu. The con-
cretization process consists of the following three consecutive steps explained below.

1. Mapping of ASMETA functions to state machine variables. To map each ASM func-
tion with the corresponding function in C++ code, we introduce a configuration file in
the JSON format. It is automatically generated and filled with all the functions set or
checked in the Avalla scenarios which can be adjusted manually.

For each function, the JSON file contains: • asmName, i.e., the name of the function
in the ASMETA model; • cName, representing the name of the corresponding func-
tion in C++ code; • commandType indicating the type of the function chosen between
IN EVENT, VAR, OPERATION, STATE, and TBD (TBD is the default type and TBD
functions are ignored during test concretization).

An example of the JSON file is reported in Code 4. The functions startVentilation is
IN EVENT since it is raised by the user. mode is VAR because it represents an internal
field of the state machine, and iValve is OPERATION function type because it interacts
with hardware components, i.e. the input valve. Functions used only in the ASMETA
model but not in the C++ code (e.g. time) are set to be ignored (TBD type).

2. Hardware mocking: Since the MVM state machine interacts with hardware, during
test concretization we needed to append in the generated C++ test file some hardware
mock. It has been written using the same interface as the real classes of the hardware
components and it is included automatically by the scenario concretization process.

3. GoogleTest code generation: Starting from the Avalla scenarios and using the JSON
configuration and the mocking files, we have concretized the tests in GoogleTest. MVM
has been developed as a cycle-based state machine. For this reason, we have defined the

Automatic Test Generation with ASMETA 69

set mode := PSV;
set startVentilation := true;
step
check time = 3;
check oValve = CLOSED;
check iValve = OPEN;
check state =

MAIN REGION PSV R1 INSPIRATION;

sm−>setMode(PSV);
sm−>raiseStartVentilation();
runner−>proceed time(100);

EXPECT EQ(valveMock−>getOutValveStatus() , CLOSED);
EXPECT EQ(valveMock−>getInValveStatus() , OPEN);
EXPECT TRUE(sm−>isStateActive(

MAIN REGION PSV R1 INSPIRATION));

Code 5. Test concretization from an Avalla scenario fragment to a GoogleTest test case

main cycle duration of 100 ms as in the C++ implementation, which is used to con-
vert the step command in proceed time(100) command in GoogleTest. The other Avalla
commands are concretized as explained in Table 2. Code 5 shows a test concretization
example of an Avalla scenario. IN EVENT functions (such as startVentilation) are raised
only when they are set to true in the Avalla scenario. VAR functions, like mode, are set in
the GoogleTest test case when there is a corresponding set in the Avalla scenario, while
OPERATION functions, such as iValve, are translated in method calls. VAR and OPER-
ATION functions are controlled when they are checked in the Avalla scenario. Finally,
the STATE function represents the active state of the machine.

4 Test Execution

Having concretized the optimized tests, we have tested the C++ code of the MVM con-
troller with them. Table 3 reports the incremental coverage reached with the tests. These
results confirm those reported in Table 1: increasing the timeout leads to an increment
of the covered test predicates and the code. The table shows that every criterion, except
complete rule and rule update for which no test is generated, improves the code cover-
age, so we cannot claim that any criterion could have been skipped.

We believe that higher values of coverage are difficult to be obtained since we
started from the code generated by Yakindu SCT and many parts of the code are only
used by Yakindu itself and can not be mapped in external calls.

Remark: Generating code automatically may hinder testers in reaching a complete
code coverage because some code could never be covered or because it would require
adding ad hoc tests that can not be easily derived from the behavior specifications.

With automatic test case generation, we are able to improve the coverage of the
controller compared to the coverage obtained with handwritten test cases. Neverthe-
less unit testing the MVM controller was not mandatory in order to obtain the safety

Table 2. Translation rules between Avalla and GoogleTest instructions (sm is the generic name
used to indicate the state machine object in Yakindu)

Function type Set Check

STATE // EXPECT TRUE(sm->isStateActive([stateName]))

IN EVENT sm->raise[cName]() //

VAR sm->set[cName]([value]) EXPECT EQ(sm->get[cName](),[value])

OPERATION [cName]([value]) EXPECT EQ([cName](),[value])

70 A. Bombarda et al.

Table 3. Coverage reached using different timeouts and coverage criteria

Criteria Timeout 10 min Timeout 40 min

Statement cov. Branch cov. Function cov. Statement cov. Branch cov. Function cov.

Basic rule 65.69% 63.48% 59.46% 80.97% 81.32% 79.05%

Complete rule 65.69% 63.48% 59.46% 80.97% 81.32% 79.05%

Rule guard 66.19% 63.91% 60.47% 81.48% 81.74% 80.07%

Rule update 66.19% 63.91% 60.47% 81.48% 81.74% 80.07%

MCDC 70.24% 69.85% 65.54% 81.48% 81.74% 80.07%

2-wise 70.24% 69.85% 65.54% 81.98% 82.17% 81.08%

All criteria 70.24% 69.85% 65.54% 81.98% 82.17% 81.08%

certification, it is important, since its behavior affects the valves position. However,
these tests can be used for integration testing, which is mandatory for the certification.

5 Related Works

In this paper, we generate concrete tests starting from the formal specification of the
MVM controller. In [5,6], from an ASMETA specification, C++ unit tests are automat-
ically generated (using the Boost Test library) and they are executed against the C++
code automatically generated from the ASMETA specification. The main difference
with the approach presented in this paper is that the code is already available and a
map between ASMETA functions and C++ functions is required. This is a widely used
methodology, especially when the formal model of the SUT is available [10,12]. In this
work and in [4], we start from the ASM specification of the SUT, but many other tech-
niques have been used in the literature. For example, in [3] tests are generated off-line,
starting from a Timed Output Input Symbolic Transition System. This process is known
as conformance testing since the testers want to check the conformance between for-
mal specifications and the actual system [8]. FSMs, or their extensions, are often used
for this purpose [9,13,14]. However, the concretization of the generated tests has to be
performed in different ways in order to be executed against the actual implementation.
In this paper, we propose a test concretization methodology starting from Avalla sce-
narios and resulting in a collection of GoogleTest test cases. Other approaches exploit
different tools, such as the ACT one [7] that can be used for concretizing abstract tests
from formal specifications of web applications. Though Yakindu does not have an inte-
grated model checker, other tools like Gamma [15] provide an environment to verify
properties but they do not generate automatically an entire test suite.

6 Conclusion

In this paper, we have presented an approach to automatically generate test cases from
ASMETA specification. The ATGT tool generates abstract tests by means of the model
checker and then they are concretized into GogoleTest cases. The unit tests are then
executed on C++ code and test results and code coverage are collected. This approach

Automatic Test Generation with ASMETA 71

has been successfully applied to the MVM case study, the code coverage is increased
compared to the one obtained with handwritten tests. As future work, we plan to com-
pare probabilistic random test generation instead of using the model checker, since the
counterexample generation is very time-consuming.

References

1. Abba, A., et al.: The novel mechanical ventilator milano for the COVID-19 pandemic. Phys.
Fluids 33(3), 037122 (2021). https://doi.org/10.1063/5.0044445

2. Arcaini, P., Bombarda, A., Bonfanti, S., Gargantini, A., Riccobene, E., Scandurra, P.: The
ASMETA approach to safety assurance of software systems. In: Raschke, A., Riccobene, E.,
Schewe, KD. (eds.) Logic, Computation and Rigorous Methods. Lecture Notes in Computer
Science(), vol. 12750, pp. 215–238. Springer, Heidelberg (2021). https://doi.org/10.1007/
978-3-030-76020-5 13

3. Bannour, B., Escobedo, J.P., Gaston, C., Le Gall, P.: Off-line test case generation for timed
symbolic model-based conformance testing. In: Nielsen, B., Weise, C. (eds.) Testing Soft-
ware and Systems. ICTSS 2012. Lecture Notes in Computer Science, vol. 7641. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-34691-0 10

4. Bombarda, A., Bonfanti, S., Gargantini, A., Radavelli, M., Duan, F., Lei, Y.: Combining
model refinement and test generation for conformance testing of the IEEE PHD protocol
using abstract state machines. In: Medina-Bulo I., MerayoRobert, M.G., Hierons, R. (eds.)
Testing Software and Systems, Lecture Notes in Computer Science book series (LNCS), vol.
11146, pp. 67–85. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-31280-
0 5

5. Bonfanti, S., Gargantini, A., Mashkoor, A.: Generation of C++ unit tests from abstract state
machines specifications. In: 2018 IEEE International Conference on Software Testing, Ver-
ification and Validation Workshops (ICSTW). IEEE (2018). https://doi.org/10.1109/icstw.
2018.00049

6. Bonfanti, S., Gargantini, A., Mashkoor, A.: Design and validation of a C++ code generator
from Abstract State Machines specifications. J. Softw. Evol. Process 32(2) (2019)

7. Bubna, K., Chakrabarti, S.: Act (abstract to concrete tests) - a tool for generating concrete test
cases from formal specification of web applications. In: ModSym+SAAAS@ISEC (2016)

8. Cavalli, A.R., Maigron, P., Kim, S.U.: Automated protocol conformance test generation
based on formal methods for LOTOS specifications. In: Proceedings of the IFIP TC6/WG6.1
Fifth International Workshop on Protocol Test Systems V, pp. 237–248. North-Holland Pub-
lishing Co., NLD (1992)

9. Dorofeeva, R., El-Fakih, K., Maag, S., Cavalli, A.R., Yevtushenko, N.: FSM-based confor-
mance testing methods: a survey annotated with experimental evaluation. Inf. Softw. Tech-
nol. 52(12), 1286–1297 (2010). https://doi.org/10.1016/j.infsof.2010.07.001

10. Fraser, G., Wotawa, F., Ammann, P.E.: Testing with model checkers: a survey. Softw. Test.
Verific. Reliabil. 19(3), 215–261 (2009). https://doi.org/10.1002/stvr.402

11. Gargantini, A., Riccobene, E.: ASM-based testing: coverage criteria and automatic test
sequence generation. JUCS - J. Univ. Comput. Sci. 7(11), 1050–1067 (2001). https://doi.
org/10.3217/jucs-007-11-1050

12. Hong, H., Lee, I., Sokolsky, O.: Automatic test generation from statecharts using model
checking. Technical Reports (CIS) (2001)

13. Kalaji, A., Hierons, R.M., Swift, S.: A search-based approach for automatic test generation
from extended finite state machine (EFSM). In: 2009 Testing: Academic and Industrial Con-
ference - Practice and Research Techniques, pp. 131–132 (2009). https://doi.org/10.1109/
TAICPART.2009.19

https://doi.org/10.1063/5.0044445
https://doi.org/10.1007/978-3-030-76020-5_13
https://doi.org/10.1007/978-3-030-76020-5_13
https://doi.org/10.1007/978-3-642-34691-0_10
https://doi.org/10.1007/978-3-030-31280-0_5
https://doi.org/10.1007/978-3-030-31280-0_5
https://doi.org/10.1109/icstw.2018.00049
https://doi.org/10.1109/icstw.2018.00049
https://doi.org/10.1016/j.infsof.2010.07.001
https://doi.org/10.1002/stvr.402
https://doi.org/10.3217/jucs-007-11-1050
https://doi.org/10.3217/jucs-007-11-1050
https://doi.org/10.1109/TAICPART.2009.19
https://doi.org/10.1109/TAICPART.2009.19

72 A. Bombarda et al.

14. Merayo, M.G., Núñez, M., Rodrı́guez, I.: Formal testing from timed finite state machines.
Comput. Netw. 52(2), 432–460 (2008). https://doi.org/10.1016/j.comnet.2007.10.002

15. Molnár, V., Graics, B., Vörös, A., Majzik, I., Varró, D.: The Gamma statechart composition
framework: design, verification and code generation for component-based reactive systems.
In: Proceedings of the 40th International Conference on Software Engineering: Companion
Proceeedings, pp. 113–116. ACM (2018). https://doi.org/10.1145/3183440.3183489

https://doi.org/10.1016/j.comnet.2007.10.002
https://doi.org/10.1145/3183440.3183489

Locality-Based Test Selection
for Autonomous Agents

Sina Entekhabi1(B), Wojciech Mostowski1, Mohammad Reza Mousavi2,
and Thomas Arts3

1 Halmstad University, Halmstad, Sweden
{sina.entekhabi,wojciech.mostowski}@hh.se

2 King’s College London, London, UK
mohammad.mousavi@kcl.ac.uk

3 Quviq AB, Gothenburg, Sweden
thomas.arts@quviq.com

Abstract. Automated random testing is useful in finding faulty corner
cases that are difficult to find by using manually-defined fixed test suites.
However, random test inputs can be inefficient in finding faults, partic-
ularly in systems where test execution is time- and resource-consuming.
Hence, filtering out less-effective test cases by applying domain knowl-
edge constraints can contribute to test effectiveness and efficiency. In
this paper, we provide a domain specific language (DSL) for formalising
locality-based test selection constraints for autonomous agents. We use
this DSL for filtering randomly generated test inputs. To evaluate our
approach, we use a simple case study of autonomous agents and evaluate
our approach using the QuickCheck tool. The results of our experiments
show that using domain knowledge and applying test selection filters
significantly reduce the required number of potentially expensive test
executions to discover still existing faults. We have also identified the
need for applying filters earlier during the test data generation. This
observation shows the need to make a more formal connection between
the data generation and the DSL-based filtering, which will be addressed
in future work.

Keywords: Test input generation · Domain specific languages · Test
selection · Autonomous agents · Scenario-based testing · Model-based
testing

1 Introduction

It is well-known [22] that testing and debugging account for more than half
of the development costs. Test automation, e.g., using Model-Based Testing
(MBT) [16], mitigates this problem by generating tests at low additional cost
once a model is in place. However, in some application areas, test execution is
very time- and resource-intensive. In particular, this applies to our research
c© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
D. Clark et al. (Eds.): ICTSS 2021, LNCS 13045, pp. 73–89, 2022.
https://doi.org/10.1007/978-3-031-04673-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04673-5_6&domain=pdf
https://doi.org/10.1007/978-3-031-04673-5_6

74 S. Entekhabi et al.

project SafeSmart1, where we consider cooperative (semi-)autonomous vehi-
cles supported by V2X communication [29]. In our project, testing cooperative
behaviour in complex urban traffic scenarios requires full simulation cycle for
each test and is hence, extremely resource consuming. Our main objective is
thus to identify interesting tests, i.e., ones that can effectively provide challeng-
ing scenarios that may stress the system under test and reveal severe faults by
triggering failures.

To address this objective, we introduce a Domain Specific Language (DSL)
for defining locality-based constraints for our autonomous agents moving on a
grid. We implement this DSL for filtering the test cases randomly generated by
the QuickCheck tool that we use in our project. To evaluate our approach, we
implement and use a downsized form of the project case study, namely a set
of autonomous agents moving in a grid, which we call SafeTurtles [8]. We use
SafeTurtles for conducting an experiment with a few filtering constraints, defined
by our DSL, and analyse and compare the results of testing with and without
filters. This analysis is mainly in terms of the most expensive task in our testing
approach, i.e., the number of test executions until a failure is found. Using this
experiment, we answer the following two research questions:

Q1 Can filtering test inputs make fault detection more efficient?
Q2 Can filtering test inputs lead to a more efficient process for finding the most

concise failing test input?

The answers to these research questions have a significant impact on reducing
the test execution time: Q1 implies that we can find challenging test cases more
efficiently and Q2 implies that we can close up on the “causes” for such failures
more efficiently.

Finally, we also discuss the need of having a tailored data generator in the
first place for the approach to be meaningful, while the natural step of deriving
test cases directly from the DSL is a topic for future work.

In the remainder of this paper, we present a brief overview of our context
in Sect. 2. Our testing methodology and our proposed DSL for formalising test
selection constraints are explained in Sect. 3 and Sect. 4, respectively. To evaluate
our approach, an experiment is designed, carried out, and its results are analysed
in Sect. 5. Finally, related work is discussed in Sect. 6, and the paper is concluded
in Sect. 7.

2 Context

2.1 SafeSmart Project

The wider context of our work is the SafeSmart project [29] that investigates
Safety of Connected Intelligent Vehicles in Smart Cities from different angles,
including vehicle-to-X (V2X) communication, localisation of objects on the road,

1 https://hh.se/safesmart.

https://hh.se/safesmart

Locality-Based Test Selection for Autonomous Agents 75

and control of vehicles. These topics are investigated in the context of dense
urban traffic, and the primary technique to validate the developments is simula-
tion. Our particular objective is the application of model-based techniques [16]
for testing systems in this domain. We start off by using Property-Based Testing
(PBT) with random test data generation.

2.2 QuickCheck

In the context of the SafeSmart project, we use an advanced PBT tool Quick-
Check2 [1]. Random input data generation in QuickCheck is supported by ded-
icated data generators for different data types (numbers, lists, vectors) with
capping and distribution parameters, and the ability to combine the generators
to build more complex data structures.

In QuickCheck, when a generated test fails, to ease debugging, the tool looks
for and reports the most concise test failing input to report by modifying a
failing test input into a “smaller” input and retrying the test. The way the data
is modified is inherent in each particular data generator following a data type
specific heuristic. This process is called shrinking. If a smaller test still fails,
QuickCheck has gotten one step closer to the most concise failing input; this is
called a successful shrinking step. Otherwise, if a smaller input data does not
lead to a failed test, the process may back-track and try other ways of reducing
the test input. This is called a failed shrinking step. This process continues up to
the point, where no more successful shrinking is possible, and the last modified
input is reported as the most concise input.

3 Methodology

While automated random testing can be useful in generating unforeseen sce-
narios, the test execution cost can become prohibitive in using it for embedded
autonomous systems. Hence, we propose to exploit domain knowledge in select-
ing tests along with having the randomness factor. In our methodology, we first
define a random data generator and use a DSL to formalise the domain knowl-
edge for filtering the uninteresting cases from test execution. Filtering, hence,
aims to increase the fault detection capability of the generated test cases.

Our target domain for SUTs is the domain of autonomous agents moving
on a grid. Each of these agents has a goal coordinate on the grid and plans a
path to reach the goal, including some forced waiting steps. However, the agents
do not have to follow the planned path, if they need to avoid a collision. The
input of the test process is the grid size (X,Y), the number of agents within the
grid, and the number of the their waiting and displacement (action) steps. The
output is the sequence of actual movement steps of the agents in response to
the planned paths. The testing property of concern is the existence of a collision
event in the system execution output, see Fig. 1.

2 http://www.quviq.com/products.

http://www.quviq.com/products

76 S. Entekhabi et al.

Fig. 1. The SUT of autonomous agents and the testing property

3.1 Testing Module

In our methodology, the testing module generates random inputs, filters them
based on the given constraints, and executes the selected tests (after filtering)
on the SUT. After executing each selected test input, the existence of collisions
is checked. If no collision is detected another set of inputs is generated in the
next attempt.

The module presented in Mod. 1.1 is the specification for testing our SUT
using QuickCheck. The parameters of this module are respectively the grid
dimensions, the number of agents in the gird, the number of displacement and
waiting steps of each agent, and the filtering function (predicate) that is used for
selecting the generated set of test inputs. In this module, first, a set of random
paths is generated for the agents by a function which we named pathGenerator
(line 3). Then, the SUT is executed to move all the agents based on the sug-
gested generated paths in the given grid (line 6), and the existence of collisions
is checked in the output trace afterwards (line 7).

Module 1.1. QuickCheck module for testing the SUT of autonomous agents

1 testCollision(X,Y,AgentsNum , ActionSteps , WaitSteps , FilterFunc)->

2 ?FORALL(AgentsPaths ,

3 pathGenerator(X, Y, AgentsNum , ActionSteps , WaitSteps),

4 ?IMPLIES(FilterFunc(AgentsPaths),

5 begin

6 Trace = sut:run(AgentsPaths , X, Y),

7 not lists:keymember({event , collision}, 1, Trace)

8 end)).

3.2 Random Data Generation

Although randomness enables contrived corner case discovery, the whole process
is still likely to statistically produce much more passing test scenarios rather
than failing ones. Therefore, the way random inputs are generated can have

Locality-Based Test Selection for Autonomous Agents 77

a significant effect on fault detection capability and efficiency. In this work, a
random data generator is specified for paths of a given length (line 3 in Mod. 1.1).
In the remainder of this section, we discuss two approaches to generating random
paths.

Uniform Random Data Generator. A random path with displacement
length n can be generated by picking a random initial position in the grid,
such as (x, y), and picking n sequential random actions (by uniformly random
generators) from the Action list {Up,Down,Left ,Right}. Although at first this
may be a natural way of generating paths, in practice this method generates
clustered paths making them unsuitable for triggering collisions.

By definition, having a set of elements and a uniform random generator, in
random selection of n elements from this set when n is very large, the number
of each element of the set in the selected sequence is statistically the same.
Therefore, when n is very large, the number of Up-s and Down-s and the number
of Left-s and Right-s would be equal in a randomly selected sequence, the agents
would end up close to their initial position at the end of their travel. Therefore,
by testing the SUT with these generated paths, the collision avoidance feature
of the SUT is rarely tested, as illustrated in Fig. 2a.

0 20 40 60 80 100

0
20

40
60

80
10

0

x

y

(a) Uniform Path Generator

0 20 40 60 80 100

0
20

40
60

80
10

0

x

y

(b) Targeted Path Generator

Fig. 2. Examples of generating random paths of length 100 in 100 × 100 grid for 10
agents with the uniform- and targeted generators

Targeted Data Generation. To address the problem of generating more
diverse paths, we guide the path generation by defining and targeting random
endpoint N for paths. Namely, we first select a random endpoint that is reachable
in n moves from the initial state of the agent (i.e., a point in the circle centered
at M and with radius n). Then, we generate a random simple path that reaches

78 S. Entekhabi et al.

from M to N ; if the path involves less moves than n moves then random pairs of
{Left ,Right} and/or {Up,Down} are added to the path. Finally, the moves of
the planned path are shuffled to add more randomness to the moves. An outcome
of this strategy for data generation is illustrated in Fig. 3.

Fig. 3. The possible end points and some random paths with length 6 starting from
point M

Our targeted data generator resolves the problem of having compact paths in
the uniform data generator, as it can be seen in Fig. 2b. In a simple experiment,
we generated paths for 100 agents by these generators in a 1000 × 1000 grid
having displacement length 100. With the first generator, on average, the agents
move in squares of 11 × 10 area. However, this is extended to an average area of
42 × 43 by using the targeted generator.

4 Filtering DSL: Syntax and Semantics

In this section, we define a domain-specific language to specify filtering con-
straints on test cases. These constraints are supposed to capture the domain
knowledge regarding the fault-detection capability of test cases. This is akin to
the criteria used for test-case prioritisation [26].

4.1 Syntax

The syntax of our DSL is presented in Mod. 1.2. According to this syntax, a filter-
ing constraints can be specified as a simple area condition (in line 1 of Mod. 1.2)
or a logical combination of constraints NOT, and combination of Constraint-s
with AND and OR operators (in lines 2–4 of Mod. 1.2). An area constraint first
specifies an area, which can be defined as a circle with a specified radius or a
square with a specified side as an integer (in lines 6 and 7 of Mod. 1.2). The
second and final part involves locality conditions that specify a minimum num-
ber of agents at some arbitrary time in a given area (in line 9) and a minimum

Locality-Based Test Selection for Autonomous Agents 79

number “n” of path intersections of degree “d” (in line 10). The intersection
degree for a point is the number of agents that visit that point sometime in
their route in a given area. Similar to Constraint, locality conditions can also
be combined using logical connectives. This syntax can be extended with other
domain-specific objects of our target domain to cater for other notions of fault
detection capability.

Module 1.2. The DSL for locality-based test selection constraint
definition for autonomous agents

1 Constraint -> IN Area Condition |

2 AND Constraint Constraint |

3 NOT Constraint |

4 OR Constraint Constraint

5

6 Area -> Circle Integer |

7 Square Integer

8

9 Condition -> Count Integer |

10 Intersection Integer Integer |

11 And Condition Condition |

12 Not Condition |

13 Or Condition Condition |

To illustrate the syntax, a few test selection constraints are defined next
for the test input represented in Fig. 4, which includes the suggested movement
paths of four agents in a 7 × 7 grid. All the agents plan to start their moves at
the same time t = 0, and stop movement after 6 moves at time t = 6. The actual
running actions in different times will be obviously affected by the decisions of
the agents adapting to the traffic.

Fig. 4. Test input example including the suggested paths of four autonomous agents

80 S. Entekhabi et al.

– IN Square 2 Count 3: This constraint is satisfied for the test input since
there are three agents (i.e., agents 1, 2, 3) that in a particular time (t = 0)
could stand in positions that are included in a square with side length 2 (the
Z1 area).

– IN Circle 1 Intersection 1 2: This constraint is satisfied for the test
input since there is an occurrence of two agents (3 and 4) crossing a par-
ticular point ((4, 2)) and that the point is included in a circle with radius 1
(the Z2 area).

– IN Square 2 (Intersection 1 2 And Count 3): This constraint is not
satisfied for the test input since there is no square area with side length 2 that
both of the conditions “Intersection 1 2” and “Count 3” are satisfied in
that area.

4.2 Semantics

The formal semantics of our DSL is defined in Mod. 1.2 in terms of an eval func-
tion that maps every constraint and a list of paths to a Boolean. Our semantics
assumes a g × g grid containing m agents with l number of actions (including
waiting steps) in total. The only non-trivial case in the definition of eval , which
uses the auxiliary function evalCon; the application of the latter function checks
whether there exists an area that satisfies a constraint. The geometric definition
of the area is ascertained by function areaContains, while the condition to be
satisfied in the specified area is checked by function getCases; the latter func-
tion makes a case distinction based on the type of condition to be satisfied and
generates the associated constraint on the involved paths.

eval :: Constraint → [Path] → Boolean

eval (IN a c) P = ∃ x, y ∈ {0, . . . , (g − 1)} evalCon(AreaInstance a (x, y))) c P

eval (NOT f) P = ¬ eval(f P)

eval (f1 AND f2) P = (eval f1 P) ∧ (eval f1 P)

eval (f1 OR f2) P = (eval f1 P) ∨ (eval f1 P)

evalCon :: AreaInstance → Condition → [Path] → Boolean

evalCon (AreaInstance a (x, y)) c P = ∃ z ∈ (getCases c P)

areaContains (a (x, y)) z

evalCon (Not (i c P)) = ¬ evalCon(i c P)

evalCon (AreaInstance a (x, y)) (c1 And c2) P = ∃ z ∈ getCases (c1 P)

(areaContains (a (x, y)) z) ∧ (evalCon (AreaInstance a (x, y)) c2 P)

evalCon (AreaInstance a (x, y)) (c1 Or c2) P = ∃ z ∈ getCases (c1 P)

(areaContains (a (x, y)) z) ∨ (evalCon (AreaInstance a (x, y)) c2 P)

Locality-Based Test Selection for Autonomous Agents 81

getCases :: Condition → [Path] → [checkCase]
getCases (Count n) P = (S, n) where

S = { s | t ∈ {1, . . . , l} ∧ Q = {P [1][t], . . . , P [m][t]} ∧ s ⊆ 2Q ∧ |s| = n }
getCases (Intersection d n) P = (S, n) where

S = {s}, s = {(x, y) | ∃Q ⊆ P |Q| = d ∀q ∈ Q ∃t (x, y) = wi[t] }

areaContains :: AreaInstance → CheckCase → Boolean

areaContains (AreaInstance (Circle r) c) (S, n) = ∃Q ∈ S

∀q ∈ Q (qx − cx)2 + (qy − cy)2 ≤ r2

areaContains (AreaInstance (Square d) c) (S, n) = ∃Q ⊆ S[1] |Q| = n

∀q ∈ Q |qx − cx| ≤ d

2
∧ |qy − cy| ≤ d

2

Here are the used types:

type Point = (Integer, Integer)
type Path = [Point]
type CheckCase = ([Path], Integer)
newtype AreaInstance = AreaInstance Area Point

5 Experiments

In this section, we design and conduct an experiment to answer the research
questions set forth in the introduction, which we recall below:

Q1 Can filtering test inputs make fault detection more efficient?
Q2 Can filtering test inputs lead to a more efficient process for finding the most

concise failing test input?

QuickCheck is used for tool support in this experiment where the test inputs
are generated randomly with and without filters defined with our DSL, and the
results are compared with each other at the end. The chosen experiment size is
a 100 × 100 grid including 5 agents where each agent has 5 displacement steps
and 5 waiting steps in total.

The SUT instance of this experiment is a set of autonomous agents called
SafeTurtles [8], which are implemented in Erlang. The choice of language is
mainly dictated by the ease of interfacing to QuickCheck, but otherwise any
other programming language could be used for the SUT, as QuickCheck is very
flexible to make any kind of a connection to the SUT. In SafeTurtles, there are
a few agents, called turtles, that can move on the grid. Each turtle has a goal
and a planned path for reaching its goal. The control algorithm of each turtle
is supposed to observe the environment and autonomously avoid collisions with
other turtles. However, due to the intentional weakness of the collision avoidance

82 S. Entekhabi et al.

mechanism, the turtles do not take move prediction into account. Therefore, if
more than one turtle try to step onto the same position at the very same time,
they will collide.

In this experiment, the following filtering constraints F1, F2 and F3 are used
along with the targeted data generator (explained in Sect. 3.2), and for a better
evaluation of the results, the tests are repeated 100 times in each case to get
good statistics.

– F1: In Circle 5 Count 2
– F2: In Circle 3 Count 2
– F3: In Circle 1 Intersection 1 2

Among these filters, F2 is defined to be stricter than F1, i.e., for all sets
of test cases, F2 accepts a subset of those test cases accepted by F1. However,
rejecting many test inputs does not necessarily mean that the filter makes fault
detection more efficient. Among the mentioned filters, the concern captured by
F3 is different from both F1 and F2. Choosing these different types of filters is
expected to give us more insight on the effect of filtering the test cases.

5.1 Fault Detection Time

The total testing time comprises two major parts: test input generation time
and test execution time. Test execution requires execution or simulation of the
SUT and hence, the test execution time is expected to be significantly larger
than test input generation time. While, for the sake of completeness, we also
consider test input generation time, we expect test execution time to be much
more significant and hence, will be the focus of our experiment results.

Test Execution Time. Figure 5a represents the number of (passed) test cases
up to detecting the first fault by using different filters. To make a rigorous
analysis of the obtained results, statistical hypothesis testing is used. Here, the
considered statistical question concerns if the mean of one population is signifi-
cantly smaller than the other one. To start with, we applied the Kruskal-Wallis
test [19], to check if there is any significant difference in the mean of these four
populations; we got the p-value less than 2.2e−16; meaning with confidence level
99% the test detects that there is some significant difference among the groups.
To zoom into the differences, we next performed pairwise tests between all pairs
of populations (due to space restrictions, we report only some of them below
and in Table 1).

We first checked the normality of the data distributions. For this purpose,
Shapiro-Wilk test [27] is applied on the data, and since the calculated p-values
are below 0.05 (and even below 0.01) for the number of executed tests for each
of the filtering cases, the data are supposed not normal3. As a result, based on

3 The experimental data and the code of statistical tests are available in “exp” sub-
directory of [8].

Locality-Based Test Selection for Autonomous Agents 83

the required statistical question, one tailed Mann-Whitney-Wilcoxon u-test [30]
is selected for doing statistical analysis on the number of executed tests.

As shown in Table 1, having the alternative hypothesis “the number of
required test executions till reaching the failed test by having the filter F1 is
significantly smaller than the case of having no filter”, the p-value of the t-test
is less than 0.01 for our data. It means with confidence level 99% the supposed
alternative hypothesis is valid. Applying other u-tests for similar hypotheses also
show that with confidence level 99% the number of tests by having F2 is signif-
icantly smaller that F1, and the number of tests by having F3 is significantly
smaller than F2. These results indicate that having each of these filters lead to
detecting the intended fault with smaller number of test cases than having no
filter. However, for the particular fault of the system, the filter F3 has better
results than F2 and F1.

Figures 5b and 5c show the number of discarded test cases and the relative
portions of accepted and discarded cases for each case, respectively. In Fig. 5c, it
can be seen that from a total of over 400 generated test inputs, more than 300
were discarded by any filtering strategy.

Fig. 5. The number of executed (accepted) and discarded test cases up to detecting
the failure

Valid Test Input Generation Time. Test input generation time depends on
the complexity of the data generator. When applying filtering, the complexity
filtering can increase the test input generation time. However, there is a delicate
interaction between data generation and filtering: “smarter” data generation
schemes may take more time, but at the same time may lead to fewer ineffective
test cases; the latter will lead to fewer discarded test cases and hence, save some
time in the filtering phase. For instance, for the proposed generators of Sect. 3.2
and the SUT parameters of Fig. 2, to generate a single valid test input having
filter F3 with uniform data generator, about 87 test inputs are discarded on
average (calculated from 100 attempts). However, the targeted data generator
reduces this number to only 7 discarded cases for a single valid test input. This
shows that, as expected, the test data generator is much less costly than the

84 S. Entekhabi et al.

uniform data generator in generating valid test inputs when the test selection
constraint is a filter like F3.

Table 1. The p-values of applying statistical tests on our experiment results with the
alternative hypothesis that “applying no test input filter results in a higher number of
executed test-cases before reaching the first failure (resp. successful and failed shrinking
steps) than applying filters F1, F2, or F3”.

P-value

Executed test
cases (u-test)

Successful shrink
steps (t-test)

Failed shrink
steps (u-test)

F1 2.149e−08 0.3443 0.001143

F2 <2.2e−16 0.06088 4.426e−06

F3 <2.2e−16 0.0329 3.214e−09

5.2 Shrinking Time

In QuickCheck, shrinking is a mechanism to reduce a failing test case in order
to help the tester identify the root cause of failure. A successful shrinking step
indicates that the failed test cases involved steps that did not effectively con-
tribute to failure and hence, the test case could be shrunk by removing them.
Figures 6a and 6b show the number of successful and failed shrink steps in reach-
ing for the most shrunk failing test inputs in our experiment. As the p-values of
applying Shapiro-Wilk test on successful shrink step results are greater than 0.05
(meaning normal data) and on failed shrink steps are less than 0.05 (meaning
not normal data), t-test [28] is used for the comparison of successful shrink step
results and u-test for the failed ones.

We first applied the Anova test [9] for checking whether the four categories
show a significant difference in the means of successful shrinking steps. (In this
case, Bartlett test with p-value 0.43 indicated that the variances of the groups
are not significantly different and we can apply Anova test on them). It turns
out that the successful shrinking steps are not significantly different according
to the Anova test. Namely, the Anova test shows p-value 0.169 (greater than
0.01), meaning that at least with confidence level 95% the groups are not signifi-
cantly different than each other. As shown in Table 1, we also considered pairwise
differences, defining the alternative hypothesis to “having no filters leads to a
smaller number of successful shrink steps”; in this case, the p-values amount to
about 0.3, 0.06, and 0.03 for filters F1, F2 and F3, respectively. It means at least
with confidence level 95%, only the filter F3 significantly reduce the number of
successful shrink steps in this experiment.

On the other hand, the data indicates that the case for failed shrinking steps
is clearer: the Kruskal-Wallis test on the number of failed shrinking tests leads to
the p-value 1.345e−08 (less than 0.01); hence, with confidence level 99%, at least
one of the groups is significantly different than one other. Our pair-wise u-tests

Locality-Based Test Selection for Autonomous Agents 85

in the paper goes deeper into that and confirms this result as follows. As shown
in Table 1, for the target alternative hypothesis of “having significantly smaller
number of failed shrink steps by having filters”, it results in p-values less than
0.01 for each the filters F1, F2 and F3. It means that with confidence level 99%
there is a significant improvement in decreasing the number of failed shrink steps
by having these filters. This happens because the filtering constraints directly
eliminate the (modified) inputs from test execution that cannot result in failure.
In addition, doing u-test for a similar hypothesis shows that with confidence level
95% the number of failed shrink steps by F3 is significantly less than F1 and
F2 as well. Figure 6c shows the average number of successful and failed shrink
steps in this experiment. The average number of successful shrinking steps is
very close in all of the cases. Nevertheless, due to discarding some of the idle
test inputs by filtering in the shrinking process, smaller number of test execution
is required by having the filters on average in the shrinking process.

In order to analyse further the mutual effect of filtering and shrinking it is
useful to apply different strategies and constraints in initial data generation and
shrinking. However, QuickCheck does not support this feature yet.

Fig. 6. The number of shrinking steps

Threats to Validity. The subject system used in our experiments is an abstraction
of real-world autonomous systems. To address this threat, we plan to extend our
SUT to accommodate more domain concepts in our project and in tandem extend
our DSL to reflect the extended domain knowledge. Although our experiments
show promising results with our specific targeted data generator and filtering
constraints, the results cannot be generalised to other data generators or filtering
constraints. We would like to consider a wider variety of data generators and
incorporate filtering constraints in them, and also study the relative effect of
different data generators, filtering constraints and their complexity, and test
execution platforms in our future work.

86 S. Entekhabi et al.

6 Related Work

Random testing has been used as a lightweight method for testing systems,
particularly at their early stages of development and deployment [5,14,21]. To
mitigate the prohibitive cost of test execution, one could augment random test-
ing with either more intelligent test generation algorithms or filtering and test
selection criteria. From the former category, using constraint solvers and search-
based algorithms are prominent examples. The latter approach, i.e., filtering,
has the advantage of being compositional, i.e., different filters can be composed
to cover different aspects of test design. Furthermore, constraint solving would
typically lead to the same test values for a particular constraint, while random
data generation with filtering provides certain degree of test data variability each
time.

Considering code level constraints, TestEra [17] and Korat [3] are exam-
ples of having pure filtering style; ASTGen [6] has a pure generating style, and
UDITA [13] can be used for both filtering and generating of test cases. For defin-
ing test harnesses, TSTL [15] also provides a DSL for test data generation. Our
approach puts much more emphasis on embedding domain knowledge in filtering
rather than test generation. However, the principles of our approach can also be
applied to design intelligent generators and a thorough empirical comparison of
the two alternative approaches remains as future work, especially that we wit-
nessed a clear dependency of results on the link between the data generator and
the filter.

Scenario-based testing is a well-studied area in testing autonomous systems.
Concrete scenarios for testing can be designed by either analysing the crash
data [4,23] or naturalistic driving data (NDD) [18,25]. For analysis and simula-
tion of particular scenarios in cyber-physical systems (CPS), several DSLs are
designed [2,10,11,24]. Fremount et al. [12] used SCENIC [11] for defining para-
metric scenarios for testing autonomous vehicles and used VERIFAI toolkit [7]
for the analysis of the scenarios and generating concrete test case and used
SVL [20] simulator for executing test cases. Our main departure point from
much of the informal scenario-definition languages [2,10,24] is the rigorous geo-
metric and logical basis for our DSL. Compared to other languages that do have
a formal basis [7,12], our focus on locality of grid-based agents is a distinctive
feature of our DSL. We do expect that our DSL can be extended with other fea-
tures in the aforementioned languages and our concrete filters can be composed
with theirs to cover different aspects of the domain.

7 Conclusions and Future Work

In this paper, we proposed a methodology for filtering randomly generated test
cases in order to make fault detection more efficient. We have implemented our
methodology in QuickCheck and used a case study of autonomous agents to
empirically evaluate the proposed methodology. Our empirical results indicate
that filters reflecting domain knowledge can significantly reduce the time to reach

Locality-Based Test Selection for Autonomous Agents 87

failures. Also our results indicate that in the process of shrinking a failing test
case into a minimal one, using filters can lead to fewer failed shrinking attempts.

As a natural next step, we would like to incorporate the definition of filters
into the data generators. In other words, instead of generating and then filtering,
we would like to generate test data (also with possible randomness) from the DSL
specification. This would involve extending QuickCheck with new DSL-based
data generators that would also allow for better results in the test shrinking
process.

Finally, we would like to scale up our case study towards our demonstrator
within the SafeSmart project. The next step is using the existing Robot Oper-
ating System (ROS) version of our case study, which features more elaborate
decision making by the agents as well as continuous dynamics of agents. Fur-
ther, we shall apply our method in the context of SUMO/Veins simulations of
communicating vehicles (V2X). Our objectives will go beyond collision-freedom
and consider other dangerous or undesired configurations of the system, e.g.,
excessive braking of the vehicles [29]. The semantics of our DSL should also be
extended to not only consider possible failures, but also consider severity and
likelihood of undesired situations. This will lead to a model-based framework for
evaluating both safety and comfort of the autonomous system under test.

Acknowledgements. We thank Jan Tretmans, Verónica Gaspes, and the anonymous
reviewers of ICTSS for their valuable comments on this work. Our research has been
partially funded by the Knowledge Foundation (KKS) in the framework of “Safety
of Connected Intelligent Vehicles in Smart Cities – SafeSmart” project (2019–2023).
Mohammad Reza Mousavi has been partially supported by the UKRI Trustworthy
Autonomous Systems Node in Verifiability, Grant Award Reference EP/V026801/1.

References

1. Arts, T., Hughes, J., Johansson, J., Wiger, U.: Testing telecoms software with
QUVIQ quickcheck. In: Proceedings of the 2006 ACM SIGPLAN Workshop on
Erlang, pp. 2–10 (2006)

2. ASAM: ASAM openSCENARIO (2021). https://www.asam.net/standards/detail/
openscenario/

3. Boyapati, C., Khurshid, S., Marinov, D.: Korat: Automated testing based on java
predicates. ACM SIGSOFT Softw. Eng. Notes 27(4), 123–133 (2002)

4. Carsten, O., Merat, N., Janssen, W., Johansson, E., Fowkes, M., Brookhuis, K.:
Human machine interaction and safety of traffic in europe. HASTE final Report 3
(2005)

5. Chen, T.Y., Kuo, F.C., Merkel, R.G., Tse, T.: Adaptive random testing: the art
of test case diversity. J. Syst. Softw. 83(1), 60–66 (2010)

6. Daniel, B., Dig, D., Garcia, K., Marinov, D.: Automated testing of refactoring
engines. In: Proceedings of the the 6th Joint Meeting of the European Software
Engineering Conference and the ACM Sigsoft Symposium on the Foundations of
Software Engineering, pp. 185–194 (2007)

https://www.asam.net/standards/detail/openscenario/
https://www.asam.net/standards/detail/openscenario/

88 S. Entekhabi et al.

7. Dreossi, T., et al.: Verifai: a toolkit for the formal design and analysis of artifi-
cial intelligence-based systems. In: Dillig, I., Tasiran, S. (eds.) Computer Aided
Verification. CAV 2019. LNCS, vol. 11561, pp. 432–442. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-25540-4 25

8. Entekhabi, S., Arts, T.: Safesmartturtle (2021). https://github.com/ThomasArts/
SafeSmartTurtle

9. Fisher, R.A.: Xv.-the correlation between relatives on the supposition of mendelian
inheritance. Trans. Roy. Soc. Edinburgh 52(2), 399–433 (1919). https://doi.org/
10.1017/S0080456800012163

10. Foretellix Inc.: M-SDL (2021). https://www.foretellix.com/open-language/
11. Fremont, D.J., Dreossi, T., Ghosh, S., Yue, X., Sangiovanni-Vincentelli, A.L.,

Seshia, S.A.: Scenic: a language for scenario specification and scene generation. In:
Proceedings of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 63–78 (2019)

12. Fremont, D.J., et al.: Formal scenario-based testing of autonomous vehicles: from
simulation to the real world. In: 2020 IEEE 23rd International Conference on Intel-
ligent Transportation Systems (ITSC), pp. 1–8. IEEE (2020)

13. Gligoric, M., Gvero, T., Jagannath, V., Khurshid, S., Kuncak, V., Marinov, D.: Test
generation through programming in Udita. In: Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering-Volume 1, pp. 225–234 (2010)

14. Hamlet, D.: When only random testing will do. In: Proceedings of the 1st Inter-
national Workshop on Random Testing, pp. 1–9 (2006)

15. Holmes, J., et al.: TSTL: the template scripting testing language. Int. J. Softw.
Tools Technol. Transfer 20(1), 57–78 (2018)

16. Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (eds.): Model-
Based Testing of Reactive Systems. LNCS, vol. 3472. Springer, Heidelberg (2005).
https://doi.org/10.1007/b137241

17. Khurshid, S., Marinov, D.: Testera: specification-based testing of java programs
using sat. Autom. Softw. Eng. 11(4), 403–434 (2004)

18. Kruber, F., Wurst, J., Botsch, M.: An unsupervised random forest clustering tech-
nique for automatic traffic scenario categorization. In: 2018 21st International Con-
ference on Intelligent Transportation Systems (ITSC), pp. 2811–2818. IEEE (2018)

19. Kruskal, W.H., Wallis, W.A.: Use of ranks in one-criterion variance analysis. J.
Am. Stat. Assoc. 47(260), 583–621 (1952)

20. LG Electronics Inc.: SVL Simulator (2021). https://www.svlsimulator.com/
21. Liu, H., Xie, X., Yang, J., Lu, Y., Chen, T.Y.: Adaptive random testing through

test profiles. Softw.: Pract. Exper. 41(10), 1131–1154 (2011)
22. Myers, G.J., Sandler, C., Badgett, T.: The Art of Software Testing, 3rd edn. Wiley

Publishing (2011)
23. Najm, W.G., Toma, S., Brewer, J., et al.: Depiction of priority light-vehicle pre-

crash scenarios for safety applications based on vehicle-to-vehicle communications.
Technical report, United States. National Highway Traffic Safety Administration
(2013)

24. Queiroz, R., Berger, T., Czarnecki, K.: Geoscenario: an open DSL for autonomous
driving scenario representation. In: 2019 IEEE Intelligent Vehicles Symposium
(IV), pp. 287–294. IEEE (2019)

25. Roesener, C., Fahrenkrog, F., Uhlig, A., Eckstein, L.: A scenario-based assessment
approach for automated driving by using time series classification of human-driving
behaviour. In: 2016 IEEE 19th International Conference on Intelligent Transporta-
tion Systems (ITSC), pp. 1360–1365. IEEE (2016)

https://doi.org/10.1007/978-3-030-25540-4_25
https://github.com/ThomasArts/SafeSmartTurtle
https://github.com/ThomasArts/SafeSmartTurtle
https://doi.org/10.1017/S0080456800012163
https://doi.org/10.1017/S0080456800012163
https://www.foretellix.com/open-language/
https://doi.org/10.1007/b137241
https://www.svlsimulator.com/

Locality-Based Test Selection for Autonomous Agents 89

26. Rothermel, G., Untch, R.H., Chu, C., Harrold, M.J.: Test case prioritization:
An empirical study. In: Proceedings IEEE International Conference on Software
Maintenance-1999 (ICSM 1999). ‘Software Maintenance for Business Change’(Cat.
No. 99CB36360), pp. 179–188. IEEE (1999)

27. SHAPIRO, S.S., WILK, M.B.: An analysis of variance test for normality (complete
samples). Biometrika 52(3–4), 591–611 (1965). https://doi.org/10.1093/biomet/
52.3-4.591

28. Student: The probable error of a mean. Biometrika, pp. 1–25 (1908)
29. Thunberg, J., Sidorenko, G., Sjöberg, K., Vinel, A.: Efficiently bounding the proba-

bilities of vehicle collision at intelligent intersections. IEEE Open J. Intell. Transp.
Syst. 2, 47–59 (2021). https://doi.org/10.1109/OJITS.2021.3058449

30. Wilcoxon, F.: Individual comparisons by ranking methods. Biom. Bull. 1, 80–83
(1945)

https://doi.org/10.1093/biomet/52.3-4.591
https://doi.org/10.1093/biomet/52.3-4.591
https://doi.org/10.1109/OJITS.2021.3058449

Improving Model Inference via W -Set
Reduction

Moritz Halm1, Rafael S. Braz2, Roland Groz1, Catherine Oriat1(B),
and Adenilso Simao2

1 Univ. Grenoble Alpes, CNRS, LIG, 38000 Grenoble, France
moritz.halm@student.kit.edu,

{Moritz.Halm,Roland.Groz,Catherine.Oriat}@grenoble-inp.fr
2 Universidade de São Paulo, São Paulo, Brazil
rafaelbraz@usp.br, adenilso@icmc.usp.br

Abstract. Model inference is a form of systematic testing of black-box
systems while learning at the same time a model of their behaviour. In
this paper, we study the impact of W -set reduction in hW -inference, an
inference algorithm for learning models from scratch. hW -inference relies
on progressively extending a sequence h into a homing sequence for the
system, and a set W of separating sequences into a fully characterizing
set. Like most other inference algorithms, it elaborates intermediate con-
jectures which can be refined through counterexamples provided by an
oracle. We observed that the size of the W -set could vary by an order
of magnitude when using random counterexamples. Consequently, the
length of the test suite is hugely impacted by the size variation of the
W -set. Whereas the original hW -inference algorithm keeps increasing
the W -set until it is characterizing, we propose reassessing the set and
pruning it based on intermediate conjectures. This can lead to a shorter
test suite to thoroughly learn a model. We assess the impact of reduction
methods on a self-scanning system as used in supermarkets, where the
model we get is a finite state machine with 121 states and over 1800
transitions, leading to an order of magnitude of around a million events
for the trace length of the inference.

1 Introduction

Model inference derives state machine models of software systems, for various
tasks, such as verification [13], documentation, test generation or all sorts of
model-driven engineering tasks [2,17]. Active inference techniques for reactive
systems learn a model by interacting with the System Under Learning (SUL),
sending inputs and observing outputs. Thus, they can be seen as a form of
systematic testing of a system, as well as a machine learning activity.

Active inference algorithms rely on input sequences that can separate (i.e.,
distinguish) different states of the SUL. In algorithms based on observation
tables, such as L∗ [1] and Lm [15], such sequences appear in the columns. The
sequence or adaptive sequences as trees appear in algorithms based on tree struc-
tures, such as TTT [9] and ZQuotient [14]. Sequences separating states have been
c© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
D. Clark et al. (Eds.): ICTSS 2021, LNCS 13045, pp. 90–105, 2022.
https://doi.org/10.1007/978-3-031-04673-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04673-5_7&domain=pdf
https://doi.org/10.1007/978-3-031-04673-5_7

Improving Model Inference via W -Set Reduction 91

at the core of conformance testing methods [10]. Following the seminal paper by
Vasilievskii [18], a set of sequences that characterize all states of a finite state
machine (FSM) has been called a W -set.

hW -inference [6,7] is a recent algorithm that, contrary to other inference
algorithms, makes it possible to infer a SUL without resetting it. As its name
indicates, it is fundamentally based on the use of homing and characterizing
sequences. It learns a model by repeatedly homing into some state, transferring
to an unknown transition to be learnt, applying the input corresponding to
that transition, and applying one of the characterizing sequences to check the
transition’s tail (final) state. As in testing algorithms based on a W -set, the
number of sequences in the W -set acts as a multiplier on the length of the global
test, as the same preamble (homing and transfer) followed by the transition itself
has to be repeated as many times as there are sequences in W to be concatenated
at the end. A full discussion of hW -inference related to other inference methods
is outside the scope of this paper but can be found in [7].

In conformance testing, it is easy to optimize the use of sequences from W ,
such as in the Wp method [4], based on the knowledge of the reference state
machine (the specification). In the case of hW -inference, the W -set is learnt
incrementally, and it grows along the inference process. More precisely, W is
extended when processing counterexamples provided by an oracle, or when an
inconsistency called W -ND is detected. A counterexample is an input sequence
for which the model and SUL yield different outputs; when no such input
sequences, the oracle is expected either to confirm equivalence of the model
and the SUL.

In this paper, we propose to reassess and reduce the W -set learnt in the
course of inference, to limit its growth, while still trying to keep the level of
characterization reached, which we can assess thanks to intermediate conjec-
tures. Finding optimal preset W -sets for a given FSM is known to be a pspace-
complete problem [10]. Thus, we do not look for a minimal W -set that could be
computed from a conjectured machine, but we use sub-optimal W -sets that can
be efficiently computed with greedy heuristics. We assess the impact of several
reduction methods on the inference of a medium-sized model (121 states and 15
inputs), corresponding to a case study that has been used to compare various
machine learning techniques [16].

The remainder of this paper is organised as follows. We first give an overview
of hW -inference and the elements of the algorithm that are affected by modifi-
cations of W . Then, we present in Sect. 4 the reduction approaches we propose.
The results on our case study are in Sect. 5. Finally, perspectives are presented
in the conclusion.

2 Definitions

In this paper, an FSM is assumed to be a strongly connected complete deter-
ministic Mealy machine M = (Q, I,O, δ, λ), with finite state, input and output
sets Q, I,O, δ : (Q × I) → Q and λ : (Q × I) → O as transition and output

92 M. Halm et al.

mappings. We do not define an initial state in the absence of a reset operation.
We lift δ and λ to input sequences in the usual way.

Two states q, q′ ∈ Q are separable by a set H ⊂ I∗ if there exists a separating
sequence γ ∈ H such that λ(q, γ) �= λ(q′, γ). An FSM is minimal if all states
are pairwise separable. A set W of sequences of inputs (therefore conventionally
called a W -set) is a characterization set for an FSM M if each pair of states is
separable by W . An input sequence h is said to be homing for a Mealy machine
if the corresponding output sequence observed when applying it to the machine
uniquely determines the state reached at the end of the sequence, i.e., λ(q, h) =
λ(q′, h) implies that δ(q, h) = δ(q′, h).

3 Overview of hW -Inference

hW -inference is an active inference algorithm. Given a black-box system (SUL)
whose behaviour can be modelled by an FSM, it will produce an FSM that
is minimal and equivalent to the SUL. As other inference algorithms, it only
assumes that we know the full input set of the SUL, and that we can send to it
inputs and observe the outputs. Contrary to most inference algorithms, it does
not require the ability to reset the SUL.

Presenting the full hW -inference method has been done in [6]. Here, we
just provide a brief overview of it (as in [3]) focusing on the elements that are
impacted by the reassessment of W -sets.

Actually, hW -inference exists in two forms.

– Preset: using preset sequences [10]. This was presented and assessed in detail
in [7].

– Adaptive: using adaptive homing and characterization [6], so that trees are
used instead of sequences. This means that the next input to be applied while
homing or characterizing can depend on the outputs observed in response to
the prefix of the homing or characterizing sequence of inputs.

In this paper, we only consider the preset version, because W -sets are actually
sets of sequences.

hW -inference assumes that the SUL behaves as an unknown FSM, for which
I is known, and it will progressively build Q, δ and λ while observing outputs
in O.

3.1 Main Algorithm of hW -Inference

The core idea of the algorithm is to apply h to place the SUL in a recognizable
state. If the state reached is not fully characterized, we apply one sequence of
W to improve the characterization of the state. Otherwise, we learn transitions
by applying an input symbol and then applying a sequence of W to improve the
characterization of the tail state of the transition. A characterization of a state
is a mapping from W to output sequences. Thus, in our approach, states are
indeed just mappings from W to O∗, and Q is a set of such mappings.

Improving Model Inference via W -Set Reduction 93

The inner repeat loop of the algorithm iteratively starts by applying the
current homing sequence h. If the tail state of this homing sequence is not yet
known, we improve our knowledge of it with a further element w from the W -set,
until we can associate a full characterization of it by associating a state H(r) to
the response r of the SUL to the homing sequence. If the tail state is known (as
H(r)), then we can proceed with learning the next unknown transition from that
tail state. It is possible that the transition starts directly from the tail state of
h, but it may also be possible that all transitions from the tail state are known,
in which case we find a shortest α sequence leading to an unknown transition.

Algorithm 1. Simplified hW -inference (preset) algorithm [7]
1: procedure Infer
2: initialize : h ← ε; W ← {ε} � (equivalent to W ← ∅ here)
3: repeat
4: Q, λ, δ ← ∅
5: repeat
6: apply h and observe r ∈ O∗

7: if H(r) is undefined then
8: H(r) ← ∅
9: end if

10: if H(r) is undefined for some w ∈ W then
11: apply w, observe y, H(r) ← H(r) ∪ {w �→ y}
12: else
13: let q = H(r) be the state reached at end of h;
14: find shortest input sequence α ∈ I∗ leading from q to a state q′ ∈ Q

with incompletely known transition (q′, x);
15: apply α.x.w observe β.o.y;
16: λ(q′, x) ← o and δ(q′, x)(w) ← y
17: end if
18: until M = (Q, I, O, δ, λ) contains a strongly connected complete component
19: ask for a counterexample.
20: process counterexample as a W -ND inconsistency
21: until no counterexample can be found
22: end procedure

3.2 Refining h and W

hW -inference algorithm can start with any hint for a homing sequence and a
W -set, but is usually started with an empty homing sequence and an empty
characterization set. The algorithm will automatically refine them when there is
an indication that h is not homing or W is not characterizing the SUL, which
shows up as observable non-determinism. [6] categorizes several types of situa-
tions where h or W must be refined.

94 M. Halm et al.

– h-ND inconsistency: this occurs when after applying h and getting the same
response r in two different occasions, we have applied after h a same sequence
β of inputs, and we get different responses for β. This implies that h/r was
in fact ending in two different states that can be separated by β; thus, we
extend h to hβ.

– W -ND inconsistency is similar, except in the case we have come into a state
(defined by its characterization as a mapping from W to O∗) and we observe
different outputs on the same sequence from that state. The difference is that
we may have come to the state from two different homing responses. For-
mally, W -ND inconsistency occurs when the global trace contains a sequence
h/r.α/u.β/v and another sequence h/r′.α′/u′.β/v′ such that r �= r′ or α �= α′,
δ(H(r), α) = δ(H(r′), α′) and v �= v′. This implies that δ(H(r), α) and
δ(H(r′), α′) can be separated by β. So W can be enhanced with β or a sub-
sequence of β.

– Other types of inconsistencies are discussed in [6], which we do not detail
here, as they are not relevant for this paper.

3.3 Oracles and Counterexamples

Like most active learning algorithms, following L∗, hW -inference performs a
number of tests before being able to build a complete model, called a conjecture,
that could still be only an approximation of the real behavioural model of the
SUL: at this point, it will require a counterexample to refine that model by a
new round of tests to come up with a more precise conjecture.

This is why the outer repeat loop will use the inner loop to get a model
(called a conjecture) that is complete (all transitions known) and consistent
(resolving h-ND and W -ND and other inconsistencies), at which point it will
ask for a counterexample to refine the model if needed, until the model is found
equivalent to the SUL. Each round of the outer repeat loop is called a subin-
ference.

To decide whether the model is indeed equivalent to the SUL requires calling
an oracle. Such an oracle is expected either to confirm equivalence or to provide
a counterexample, i.e. an input sequence for which the model and the SUL do
not yield the same response. In the reset case, the counterexample is an input
sequence applied from the initial state. In our case, it has to be applied from the
current state reached at the end of the inner learning loop.

In our experiments for this paper, we used the simplest type of oracle: a
bounded random walk over the graph of the conjecture until an observed output
differs from the prediction of the conjecture (thus yielding a counterexample),
or the bound is reached; in the latter case, the conjecture is the final model
learnt. Randomness in the oracle implies that the trace to fully learn a model
of a system can be different depending on the seed provided to the random
generator. As shown in Fig. 1, the trace length can vary a lot between runs for
the same system.

Improving Model Inference via W -Set Reduction 95

3.4 Dictionary

hW -inference also incorporates a number of heuristics to improve the efficiency
of learning. They are detailed and evaluated in [7]. The most significant one, the
use of a dictionary, is heavily impacted by approaches that revise h or W in the
course of inference. A dictionary stores the output result of an input sequence
that has been applied in a subinference, so that later subinferences will not
query again the SUL for the same combination of homing, transfer, transition
and characterization. Dictionaries have proven quite efficient since they were
advocated by O. Niese for L∗ [12].

4 Approach

4.1 Motivation

In hW -inference, every refinement of W either through W -ND or counterexam-
ple processing either adds a new sequence into W or extends an existing one.
However, we never remove sequences in W that are separated by sequences that
were added later. The size of W thus increases monotonically. The idea explored
in this paper is to reassess W during inference and replace it by a smaller set
W ′ that separates the same states as W does. To this end, we require that W ′

is a characterization set for the conjecture inferred by hW -inference.
There are two measures implied by the term “size of W”: the number of

sequences in it and their average length. To learn a transition, we apply an input
sequence h.α.x.w for every sequence w ∈ W ; thus, the number of input-output
queries depends linearly on both measures.

Experiments confirm that the size of W varies a lot depending on the provided
counterexamples, as well as the order in which inputs or transfers are used.
This translates to a large variation regarding the length of the total trace. In
Table 1, we can observe that in a lucky case, the final W -set was made up of
6 sequences totalling 28 inputs1. However, on average (over 40 inferences with
different random seeds for the oracle), there were 26 elements in W (with average
total length of 236 inputs), with up to 62 sequences totalling 860 inputs. The
trace length varies from 3.33E5 inputs to 1.22E7, with an average of 3.09E6.
Figure 1 visualizes the correlation between the size of W and the trace length.

This shows that the size of the final W -set can be vastly greater than needed,
leading to a dramatic increase in the trace length.

4.2 Methods for W -Set Reduction

There are two possible approaches to compute a reduced W -set, based on the
current conjecture: either we just use the conjecture or we start from the existing
W . In both cases, we can recompute it every time a new conjecture is found (see
Sect. 4.7), or only from time to time.
1 Actually, the 121 states of the FSM can be characterized by a W -set with as few as

4 sequences totalling 11 inputs or 3 sequences totalling 23 inputs (and it might even
not be minimal).

96 M. Halm et al.

Algorithm 2. Generate W using partitions
1: procedure genWPart(conjecture M = (Q, I, O, δ, λ))
2: W ← ∅
3: D ← {(q, q′) �→ ⊥ | (q, q′) ∈ Q × Q ∧ q
= q′} � P1 are implicitly defined as the

partition induced by the equivalent relation q ≡ q′ ⇐⇒ D(q, q′) = ⊥. Similarly
for the other tables.

4: for all (q, q′) ∈ Q × Q do
5: if ∃y ∈ W : λ(q, y)
= λ(q′, y) then D(q, q′) ← y end if
6: end for
7: while ∃(q, q′) with D(q, q′) = ⊥ do
8: if ∃x ∈ I : D(δ(q, x), δ(q′, x)) = w
= ⊥ then
9: W ← W ∪ {x.w}

10: D(q, q′) ← x.w
11: end if
12: end while
13: end procedure

Compute from Scratch. We could compute a characterization set for the current
conjecture from scratch. Although the problem of finding a minimal charac-
terization set for an FSM is pspace-complete [10], there are many heuristic
algorithms to compute small W -sets for a given FSM, e.g. Pk approach in [5],
or via product machines [10]. The main drawback of these approaches is that
the computed W -set can be very different from the previous one. Since in hW -
inference there is an extensive caching of responses to sequences in W through
the dictionary, the positive impact of a smaller W -set on the trace length can be
effectively outweighed by the effect of cache misses.

Prune Existing W. To keep the benefits of caching in the dictionary, we propose
to take the current W as a starting point and greedily shrink it to find a smaller
characterization set (see Algorithm 4).

4.3 Partitions

The Pk approach (Algorithm 2) constructs a series of tables P1, P2, ..., Pk, where
the states are partitioned into classes so that two states are in the same class in Pi

if they cannot be separated by sequences of length i. Notice that in the algorithm,
the partitions are implicitly defined by the pairs of separated states. They can be
computed in the following way. In P1, the pairs of states which can be separated
by a single input, by looking in the output function λ, are put in separate classes.
For i > 1, in Pi, the pairs of states which lead to states in different classes in
Pi−1, by looking in the next state function δ, are put in separate classes. The
iterative process terminates when either all classes are singletons or, in case
the machine is not minimal, Pk = Pk−1. The characterization set is obtained by
collecting the sequences which determined that each pair of states are separated.

Improving Model Inference via W -Set Reduction 97

Algorithm 3. Generate W with a product machine
1: procedure genWProd(conjecture M = (Q, I, O, δ, λ))
2: QP ← Q × Q, λP ← ∅, δP ← ∅
3: for all q, q′ ∈ Qp, x ∈ I do
4: if λ(q, x) = λ(q′, x) =: o then
5: λP ((q, q′), x) ← o
6: else
7: λP ((q, q′), x) ← fail
8: end if
9: δP ((q, q′), x) ← (δ(q, x), δ(q′, x))

10: end for
11: W ← ∅
12: for all q, q′ ∈ Qp do
13: if �w ∈ W λ(q, w)
= λ(q′, w) then
14: t ← shortest t ∈ I∗ s.t. λP ((q, q′), t) =fail
15: W = W ∪ {t}
16: end if
17: end for
18: return W
19: end procedure

4.4 Computing from Product

The product machine approach (Algorithm3) starts by computing a product
machine M ×M = (Q×Q, I,O∪{fail}, δP , λP), where for every q, q′ ∈ Q,x ∈ I,
δP ((q, q′), x) = (δ(q, x), δ(q′, x)), and λP ((q, q′), x) = o, with o = λ(q, x), if
λ(q, x) = λ(q′, x), and o = fail , otherwise. The characterization set is obtained
by collecting, for each pair of states, the shortest path to a transition with output
fail .

4.5 Pruning

As W grows monotonically by adding new sequences to an existing set, it is often
the case that sequences that are included earlier during the learning process
become obsolete later. The pruning (Algorithm 4) is a simple approach to tackle
this problem. There are two cases. First, we test if there exists a sequence w ∈ W ,
such that W\{w} is characterizing. If so, then we remove w from W . Second,
we test if there exists a sequence w and an input x, such that w.x ∈ W and
W\{w.x} ∪ {w} is characterizing. If so, then we replace w.x by w, which means
that we have shortened one of the sequences in W . The pruning can continue as
long as one of the two cases applies. However, as a heuristic, we try the second
case when we have exhausted the possibility of applying the first case.

4.6 Combining Methods to Get a W -Set Reduction

Neither genWPart nor genWProd produces optimal W -sets, as they are
just greedy algorithms to address a pspace-complete problem. They can indeed

98 M. Halm et al.

Algorithm 4. W -set pruning
1: procedure pruneW(conjecture M′, current W -set W)
2: while ∃w ∈ W : W ← W\{w} is characterizing for M′ do
3: W ← W\{w}
4: end while
5: while ∃w.x ∈ W : (W\{w.x}) ∪ {w} is characterizing for M′ do
6: W ← (W\{w.x}) ∪ {w}
7: end while
8: return W
9: end procedure

produce sets with redundant sequences. So we can get smaller sets by systemat-
ically pruning the computed W -sets.

In our experiments, we assess the performance of 3 types of W -set reductions.

Pruning. This uses pruneW as the sole method for W -set reduction. In that
way, after reduction, all the sequences that are kept in the W -set had already
been applied at the tail of h.α.x.w sequences that have been cached in the
dictionary, thus saving on the next subinference.

PartR. Discards the previous W -set, computes a W ′ with genWPart followed
by pruneW applied to W ′ to get the new W .

ProdR. Discards the previous W -set, computes a W ′ with genWProd followed
by pruneW applied to W ′ to get the new W .

4.7 When to Apply W -Set Reduction?

We can reduce W every time the inner repeat-loop of the algorithm terminates
and before processing the counterexample (i.e. in line 19 of Algorithm 1). This
order is essential because the counterexample contradicts by definition the con-
jecture. The characterization sequence found by the counterexample thus would
be removed during the pruning, which uses the conjecture as a reference.

Moreover, the conjecture does not necessarily change after a refinement of
W . This can happen in particular for Moore locks [11]. In a Moore lock there
is a pair of states that can only be separated by one specific sequence. Because
in hW -inference W is extended by suffixes of counterexamples (the so-called
Suffix1by1 method for counterexample processing [8]), the separating sequence
may not be included in the first subinferences, until we include the separating
suffix in W . In this case, multiple counterexamples are needed until W separates
a new state and the conjecture changes. We address this issue by only deploying
W -set reduction when the conjecture has increased in size.

5 Experiments

In this section, we experiment with the proposed improvements and show how
the various approaches for W -set reduction impact the overall performance of

Improving Model Inference via W -Set Reduction 99

20 40 60

0

0.5

1

·107

|W |

tr
ac
e
le
ng

th

(a) number of sequences in W

5 10 15
0

0.5

1

·107

w∈W |w|/|W |

tr
ac
e
le
ng

th

(b) average length of sequences in W

Fig. 1. Relation between the size of W and the trace length for 40 inferences of
Scanette.

hW -inference. All experiments were repeated 40 times with different random
seeds (used by hW -inference for the random walk oracle), and Table 1, 2, 3, 4
and 5 analyze the results on the average values. For the record, we provide in
Table 6 results for the 40 seed values.

5.1 Case Study and Basic hW -Inference Without Reduction

We applied hW -inference on “Scanette”, a supermarket self-service scanning
system that has been used as a case study for other learning techniques. For a
precise description of it, we refer the reader to [16], a paper that presents both the
case study and results of statistical machine learning techniques on the reduction
of regression tests from analysis of logs (thus, this is a different goal that cannot
be compared to the active model inference we are doing in the present paper).
The full system includes counters (to count the number of each type of item
in the cart), as well as non-deterministic (random) checks on customers. We
reduced the counters and number of items to small values, and made checks
in a deterministic way (every other time a customer checks out). With those
necessary adaptations to make Scanette equivalent to an FSM, it has 121 states
and 15 inputs (totalling over 1800 transitions). Probably due to the presence of
counters, some states are hard to reach by random walk, so we had to give a
high bound (at least 3.0E5) for the maximal length of a walk before concluding
the conjecture was final and giving up searching for a counterexample.

The key measure for performance of an active inference algorithm is the trace
length, viz. the number of input symbols applied on the SUL. On average over 40
seeds, hW -inference had a trace length of 3.09E6 inputs, ranging from 3.33E5 to
1.22E7 with a standard deviation of 2.66E6. Thus, the trace length varies by an
order of magnitude depending on the counterexamples provided by the oracle.

100 M. Halm et al.

Table 1. Key figures of basic hW -inference on Scanette. From left to right: the effective
trace length, the number of subinferences, the number of sequences in the final W -set
and their total size, and the percentage of queries that found an answer in the dictionary
(so they did not add any length to the trace). We present figures for three sample
inferences (a), (b) and (c) and the mean and standard deviation over 40 inferences.
Tables 2, 3 and 4 have the same structure and (a), (b) and (c) correspond to the same
seeds for the random oracle.

Trace length #subinf. |W | (
∑

W |w|) Dict hits

(a) 4.45E+05 18 6 (28) 21.0%

...

(b) 2.51E+06 35 23 (143) 65.7%

...

(c) 5.83E+06 61 49 (544) 82.7%

Mean 3.09E+06 38.2 25.7 (236.0) 62.4%

Stddev. 2.66E+06 17.1 15.6 (240.3) 19.1%

Table 1 contains key figures for a representative sample of inferences and
the average over all 40 inferences. We see that longer inferences involve more
subinferences and also use a larger final W -set. Figure 1 plots the trace length of
all inferences over the number of sequences in W and their average length. There
is a linear correlation for the number of sequences (Pearson correlation coefficient
0.90) and the trace length, similar for the average length of the sequences in W
(PCC 0.83).

These correlations are expected, as for every sequence in W and every tran-
sition there is one iteration of the inner loop in hW -inference and a sequence
h.α.x.w is applied to the SUL. Moreover, the size of W also depends on the
number of subinferences. If a characterizing W -set is not found until a late
subinference, the tentative W is increased with every subinference.

5.2 Impact of W -Set Pruning

The impact of the W -set on the trace length motivates reducing the size of W .
To this end, we augmented the implementation of hW -inference in the SIMPA
framework2 with W -set reduction methods as described in Sect. 4.6.

W -set reduction was triggered sparsely (on average 6 times) during hW -
inference (see Table 2). Using W -set pruning as the sole reduction method
reduced the average trace length by 22.5% as compared to basic hW -inference.
This decrease is consistent, i.e., in almost all samples W -set pruning led to a
shorter trace length, although with a varying gain.

2 The SIMPA software can be downloaded from:
http://vasco.imag.fr/tools/SIMPA or directly from
https://gricad-gitlab.univ-grenoble-alpes.fr/SIMPA/SIMPA.

http://vasco.imag.fr/tools/SIMPA
https://gricad-gitlab.univ-grenoble-alpes.fr/SIMPA/SIMPA

Improving Model Inference via W -Set Reduction 101

Table 2. Key figures for W -set pruning. The trace length difference is in comparison
with basic hW -inference. #reduce indicates the number of times W -set pruning was
applied during inference.

Trace length (rel. diff.) #subinf. |W | (
∑

W |w|) Dict hits #reduce

(a) 3.71E+05 (−16.7%) 18 3 (23) 17.2% 3

...

(b) 2.18E+06 (−13.3%) 39 11 (64) 56.4% 8

...

(c) 2.73E+06 (−53.1%) 51 25 (302) 74.0% 4

Mean 2.40E+06 (−22.5%) 39.7 12.1 (100.4) 54.5% 6.0

Stddev. 1.92E+06 15.8 6.6 (89.7) 17.7% 2.2

Note that the number of sequences in the final W -set (and their total length)
is on average reduced by half from 26 to 12 (and 236 to 100 for the length). The
smaller W -set does not translate, however, proportionally to a shorter trace
length (as it does without pruning, cf. Fig. 1). This is expected, since intermedi-
ate W -sets before pruning can be larger than the final W -set.

Despite the general decrease in the size of W and the trace length due to
W -set pruning, both measures still vary significantly. The effect of pruning W
is limited to reducing the trace length per subinference, but not the number
of subinferences (although there are exceptions, such as seed (c), where hW -
inference with W -set pruning lowers the number of subinferences from 61 to 51).
On the contrary, pruning W decreases the number of states of the SUL that are
separated by W , which could slow down the convergence of W to characterization
set for the SUL. We observed only a small increase in the average number of
subinferences from 38.2 to 39.7 though.

This shows that the deployment of W -set pruning considerably decreases the
trace length of a single subinference but does not impact the total number of
subinferences.

5.3 Impact of W -Set Reduction Through Recomputation
from Scratch

As for PartR and ProdR (Tables 3 and 4) the average trace length is slightly
increased (by 4% and 9% respectively). In particular, on short inferences, i.e.
with less than a million input symbols, generating a new W -set leads to vast
increase of the trace length (e.g. by factor 5.5 for seed (a)). On the contrary, on
seeds with a trace length (significantly) above average for basic hW -inference
(such as (c)), genWPart and genWProd outperform basic hW -inference and
even pruning. However, the applicability and positive impact of the methods
cannot be predicted in advance, and their average impact remains negative.

These large differences in trace lengths indicate that generating W from
scratch discards advantages of the W -set found through random counterexample.

102 M. Halm et al.

Table 3. Key figures for PartR

Trace length (rel. diff.) #subinf. |W | (
∑

W |w|) Dict hits #reduce

(a) 2.88E+06 (547.9%) 39 24 (221) 67.8% 6

...

(b) 1.74E+06 (−30.6%) 30 8 (20) 30.7% 7

...

(c) 1.19E+06 (−79.6%) 23 8 (19) 31.1% 8

Mean 3.22E+06 (4.2%) 40.5 14.2 (94.1) 50.2% 6.5

Stddev. 2.23E+06 16.9 7.1 (87.6) 16.1% 1.9

Table 4. Key figures for ProdR

Trace length (rel. diff.) #subinf. |W | (
∑

W |w|) Dict hits #reduce

(a) 2.88E+06 (547.4%) 39 24 (221) 67.9% 6

...

(b) 2.47E+06 (−1.8%) 38 9 (25) 43.4% 6

...

(c) 1.20E+06 (−79.4%) 22 10 (27) 29.6% 7

Mean 3.36E+06 (8.8%) 41.6 14.1 (93.9) 51.8% 6.4

Stddev. 2.21E+06 16.9 7.2 (86.6) 14.6% 1.9

Table 5. Trace lengths of hW-inference with different reduction techniques. All num-
bers are multiples of 106.

Basic hW Pruning PartR ProdR

(a) 0.45 0.37 (−16.7%) 2.88 (547.9%) 2.88 (547.4%)

...

(b) 2.51 2.18 (−13.3%) 1.74 (−30.6%) 2.47 (−1.8%)

...

(c) 5.83 2.73 (−53.1%) 1.19 (−79.6%) 1.20 (−79.4%)

Mean 3.09 2.40 (−22.5%) 3.22 (4.2%) 3.36 (8.8%)

Stddev. 2.66 1.92 2.23 2.21

Moreover, since the sequences in a generated W can be entirely different from
the previous W , these approaches benefit less from the dictionary (50% and 51%
as opposed to 54% for pruning).

Table 5 compares the trace lengths for all three methods. From that table,
we can conclude that pruning is a winning heuristic, that can be safely added to
hW -inference. Conversely, the other two methods that recompute a new W -set
from the conjecture provide disappointing results, and should not be considered

Improving Model Inference via W -Set Reduction 103

Table 6. Data for 40 inferences of Scanette with different seeds, sorted by trace length
of the basic hW -inference. The samples in Tables 1, 2, 3, and 4 are marked with (a),
(b), and (c).

Seed Trace length/106 (diff. to basic hW) #subinferences |W | (
∑

w∈W |w|/|W |) |h| Share of dictionary hits #reduce W

Basic Prune PartR ProdR Basic Prune PartR ProdR Basic Prune PartR ProdR Basic Prune PartR ProdR Basic Prune PartR ProdR Basic Prune PartR ProdR

23 0.33 0.28 (−16%) 2.65 (697%) 2.66 (698%) 17 17 39 39 7 (26) 4 (21) 22 (200) 22 (200) 10 10 18 18 45% 39% 67% 67% 0 4 6 6

13 0.45 0.37 (−17%) 2.08 (368%) 2.07 (366%) 18 18 32 32 6 (28) 3 (23) 16 (89) 16 (89) 19 19 18 18 21% 17% 53% 53% 0 3 6 6

24 0.45 0.37 (−17%) 2.42 (444%) 2.42 (444%) 18 18 36 36 6 (28) 3 (23) 16 (89) 16 (89) 19 19 18 18 21% 17% 55% 55% 0 3 6 6

8 0.45 0.37 (−17%) 3.23 (625%) 3.23 (625%) 18 18 44 44 6 (28) 3 (23) 18 (116) 18 (116) 19 19 18 18 21% 17% 62% 62% 0 3 6 6

(a) 16 0.45 0.37 (−17%) 2.88 (548%) 2.88 (547%) 18 18 39 39 6 (28) 3 (23) 24 (221) 24 (221) 19 19 18 18 21% 17% 68% 68% 0 3 6 6

26 0.69 1.99 (190%) 0.66 (−4%) 0.66 (−5%) 24 46 24 24 16 (69) 27 (342) 4 (11) 4 (11) 8 8 8 8 70% 80% 50% 50% 0 6 4 4

14 0.69 0.61 (−11%) 0.66 (−4%) 0.66 (−5%) 24 25 24 24 16 (69) 9 (39) 4 (11) 4 (11) 8 8 8 8 70% 57% 50% 50% 0 6 4 4

33 0.69 0.73 (6%) 0.66 (−4%) 0.66 (−5%) 24 28 24 24 16 (69) 10 (48) 4 (11) 4 (11) 8 8 8 8 70% 62% 50% 50% 0 7 4 4

36 0.98 0.88 (−10%) 4.33 (341%) 4.35 (342%) 28 28 56 56 17 (124) 15 (120) 21 (148) 21 (148) 10 10 18 18 73% 72% 75% 74% 0 4 6 6

10 1.22 1.17 (−5%) 1.05 (−14%) 0.92 (−24%) 23 31 20 19 11 (66) 4 (30) 8 (22) 7 (18) 30 17 22 22 35% 39% 26% 24% 0 4 7 7

7 1.51 1.39 (−8%) 3.27 (117%) 3.26 (116%) 35 35 45 45 25 (251) 22 (246) 24 (221) 24 (221) 10 10 18 18 80% 80% 68% 68% 0 4 6 6

3 1.59 1.41 (−11%) 2.73 (72%) 7.61 (380%) 35 36 38 66 24 (127) 10 (50) 10 (31) 10 (31) 15 15 25 25 74% 54% 48% 62% 0 5 8 6

18 1.60 1.27 (−20%) 1.78 (12%) 1.77 (11%) 42 52 60 60 32 (208) 19 (149) 19 (131) 19 (131) 9 9 12 12 84% 78% 70% 69% 0 11 16 16

31 1.94 1.60 (−18%) 2.49 (29%) 2.15 (11%) 24 23 31 28 12 (71) 7 (59) 13 (63) 13 (63) 37 37 27 27 37% 32% 36% 36% 0 4 4 4

37 2.07 1.68 (−19%) 1.51 (−27%) 1.92 (−7%) 31 39 27 30 19 (127) 13 (92) 11 (47) 10 (31) 30 17 22 22 57% 55% 37% 43% 0 4 7 8

17 2.18 1.94 (−11%) 1.56 (−28%) 4.69 (116%) 32 33 19 36 20 (127) 11 (78) 7 (15) 17 (102) 23 23 32 40 65% 55% 8% 35% 0 4 4 5

38 2.38 2.15 (−10%) 4.40 (85%) 2.72 (14%) 30 32 42 29 16 (105) 9 (34) 16 (101) 9 (27) 45 45 45 45 51% 39% 42% 30% 0 8 7 6

1 2.42 1.82 (−25%) 2.62 (8%) 2.49 (3%) 34 41 50 48 23 (156) 15 (117) 7 (17) 7 (17) 30 17 22 22 66% 59% 68% 69% 0 4 8 8

(b) 22 2.51 2.18 (−13%) 1.74 (−31%) 2.47 (−2%) 35 39 30 38 23 (143) 11 (64) 8 (20) 9 (25) 28 28 16 16 66% 56% 31% 43% 0 8 7 6

15 2.52 2.50 (−1%) 7.04 (179%) 6.94 (175%) 31 32 63 62 19 (117) 10 (47) 19 (117) 19 (117) 45 45 45 45 52% 37% 49% 50% 0 5 7 7

20 2.55 1.39 (−46%) 1.32 (−48%) 1.06 (−58%) 36 35 27 21 25 (144) 9 (54) 7 (17) 5 (15) 30 17 22 22 61% 48% 40% 28% 0 4 8 7

2 2.56 1.80 (−30%) 1.65 (−36%) 3.19 (25%) 35 41 35 42 23 (157) 15 (117) 13 (64) 5 (14) 30 17 22 22 65% 60% 58% 48% 0 4 7 8

21 2.72 2.35 (−13%) 3.69 (36%) 3.80 (40%) 30 33 32 33 17 (132) 15 (127) 18 (116) 18 (116) 22 22 33 33 53% 53% 42% 41% 0 6 5 5

39 2.75 2.38 (−13%) 4.65 (69%) 4.54 (65%) 33 38 46 46 19 (136) 7 (56) 5 (25) 5 (25) 45 45 45 45 48% 49% 48% 49% 0 8 7 7

34 2.76 2.34 (−15%) 2.92 (6%) 2.86 (4%) 45 46 46 46 32 (188) 13 (86) 14 (57) 14 (57) 18 18 18 18 78% 68% 59% 59% 0 9 8 8

29 2.90 1.97 (−32%) 1.46 (−50%) 1.36 (−53%) 38 43 25 24 26 (193) 17 (146) 8 (19) 8 (22) 30 17 22 22 68% 63% 31% 35% 0 4 7 7

30 3.02 2.30 (−24%) 1.44 (−52%) 3.53 (17%) 40 37 26 50 26 (167) 11 (54) 8 (20) 21 (180) 28 28 16 16 70% 52% 25% 62% 0 10 7 7

19 3.13 2.89 (−8%) 3.72 (19%) 3.77 (21%) 41 48 49 52 27 (162) 11 (61) 24 (240) 21 (180) 28 28 19 16 70% 60% 64% 61% 0 9 7 6

35 3.16 2.87 (−9%) 3.19 (1%) 3.22 (2%) 35 35 32 32 22 (164) 13 (90) 11 (33) 11 (33) 45 45 45 45 59% 44% 33% 34% 0 7 7 7

25 3.27 3.00 (−8%) 4.98 (52%) 5.10 (56%) 36 42 38 39 19 (177) 8 (78) 24 (221) 24 (221) 28 28 33 33 64% 56% 53% 52% 0 7 5 5

27 3.76 2.25 (−40%) 1.36 (−64%) 1.65 (−56%) 49 45 25 30 37 (558) 11 (61) 5 (17) 5 (17) 13 14 17 17 79% 65% 30% 37% 0 7 6 6

28 4.41 3.94 (−11%) 5.47 (24%) 5.11 (16%) 39 40 53 50 25 (205) 20 (188) 22 (182) 22 (182) 37 37 27 27 59% 56% 54% 55% 0 5 5 5

5 4.74 4.75 (0%) 5.58 (18%) 1.74 (−63%) 44 51 61 34 31 (387) 8 (70) 28 (334) 28 (334) 45 45 45 45 72% 68% 67% 57% 0 7 6 5

40 5.24 5.18 (−1%) 3.79 (−28%) 4.14 (−21%) 49 54 42 39 35 (273) 15 (110) 15 (98) 10 (39) 45 45 45 45 67% 47% 48% 41% 0 7 6 6

11 5.60 3.23 (−42%) 3.34 (−40%) 3.41 (−39%) 72 76 54 53 59 (709) 8 (58) 7 (17) 7 (17) 16 16 16 16 90% 84% 74% 73% 0 8 7 7

(c) 9 5.83 2.73 (−53%) 1.19 (−80%) 1.20 (−79%) 61 51 23 22 49 (544) 25 (302) 8 (19) 10 (27) 30 17 22 22 83% 74% 31% 30% 0 4 8 7

6 7.57 5.20 (−31%) 3.29 (−57%) 3.34 (−56%) 76 64 30 31 62 (860) 32 (434) 16 (89) 16 (89) 28 28 33 33 88% 74% 37% 38% 0 10 5 5

12 9.16 7.22 (−21%) 7.30 (−20%) 7.65 (−17%) 70 69 62 65 55 (776) 14 (114) 15 (79) 14 (77) 45 45 45 45 83% 72% 68% 68% 0 8 6 6

4 9.32 3.08 (−67%) 7.45 (−20%) 6.08 (−35%) 70 39 65 71 56 (739) 10 (90) 29 (319) 28 (314) 45 45 45 45 81% 55% 62% 74% 0 7 7 6

32 12.22 9.93 (−19%) 11.44 (−6%) 11.30 (−8%) 86 91 106 105 62 (836) 12 (93) 18 (116) 18 (116) 45 45 45 45 84% 69% 72% 72% 0 8 7 7

Mean 3.09 2.40 (−23%) 3.22 (4%) 3.36 (9%) 38 40 41 42 26 (237) 12 (100) 14 (94) 14 (94) 27 25 26 26 62% 55% 50% 52% 0 6 7 6

Median 2.54 2.07 (−18%) 2.81 (11%) 3.03 (20%) 35 39 38 39 23 (150) 11 (74) 15 (72) 14 (70) 28 19 22 22 66% 56% 50% 51% 0 6 7 6

Stddev. 2.66 1.92 (−28%) 2.23 (−16%) 2.21 (−17%) 17 16 17 17 16 (240) 7 (90) 7 (88) 7 (87) 13 13 12 12 19% 18% 16% 15% 0 2 2 2

for hW -inference. However, they might have some value for other methods of
testing or learning.

6 Conclusion

In this paper, we proposed three algorithms for computing reduced approximated
W -sets on a conjectured model (itself an approximation of a system). In many
testing or learning methods, the size of the set of sequences used to separate
states can play a significant role on the length of testing or learning sequences.
In the paper, we consider the impact on hW -inference, a learning algorithm, and
assess it on a typical medium-sized model of a software system.

First, we observe that the trace length is proportional to the size of the W -
set, even though heuristics such as dictionary caching are used in the learning
algorithm. This provides solid ground for assessing the impact of the proposed
reduction methods.

Using a reduced W -set can have conflicting effects. On the one hand, a shorter
W -set will reduce the test cases (related to assessing a single transition’s tar-
get state) where this set is used. On the other hand, since the W -set is only
approximated, by reducing it, we may lose sequences that seem redundant on a

104 M. Halm et al.

conjecture, but that would actually separate states of the real system. Another
adverse effect can come from the loss of cached test cases.

The results of our preliminary experiments show that reducing intermedi-
ate W -sets by simply pruning them is an efficient method when combined with
hW -inference: we observe a 22% gain on average in our experiments on a repre-
sentative case study. With the other two methods considered, the gain is often
outweighed by the loss of cached responses and the increase in the number of
rounds necessary to learn the whole system.

Based on those preliminary results, we propose to include the pruning heuris-
tic as an additional improvement on hW -inference. This should be comforted on
other types of case studies. As usual, this could be conducted on randomly gener-
ated machines of various sizes, but it is known that real systems have structures
that may not be well reflected by random machines. A better testbed will be to
use machines from the Radboud benchmark3.

Although pruning improves the performance of hW -inference, it does not
level the vast differences in trace length depending on the counterexamples pro-
vided by the oracles. A better understanding of how counterexamples facilitate a
fast convergence to a characterizing W -set could alleviate this issue. One direc-
tion for future work would be to revise the counterexample processing in order
to reduce the number of subinferences.

Finally, this preliminary study provides evidence for the proposed W -set
reduction methods in the particular context of hW -inference. It might be inter-
esting to assess those reduction methods in other testing or learning contexts.

Acknowledgments. The internship of the first author was funded by the French
National Research Agency: ANR PHILAE project (ANR-18-CE25-0013). The second
and the fifth authors were funded by Fundação de Amparo à Pesquisa do Estado de
São Paulo (FAPESP: 2013/07375-0).

References

1. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
2, 87–106 (1987)

2. Bennaceur, A., Hähnle, R., Meinke, K. (eds.): Machine Learning for Dynamic
Software Analysis: Potentials and Limits – International Dagstuhl Seminar 16172,
Dagstuhl Castle, Germany, April 24–27, 2016, Revised Papers, Volume 11026 of
Lecture Notes in Computer Science. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96562-8

3. Bremond, N., Groz, R.: Case studies in learning models and testing without reset.
In: 2019 IEEE International Conference on Software Testing, Verification and Val-
idation Workshops, AMOST 2019, ICST Workshops 2019, Xi’an, China, 22 April
2019, pp. 40–45 (2019)

4. Fujiwara, S., von Bochmann, G., Khendek, F., Amalou, M., Ghedamsi, A.: Test
selection based on finite state models. IEEE Trans. Softw. Eng. 17(6), 591–603
(1991)

3 http://automata.cs.ru.nl/Overview#Mealybenchmarks.

https://doi.org/10.1007/978-3-319-96562-8
https://doi.org/10.1007/978-3-319-96562-8
http://automata.cs.ru.nl/Overview#Mealybenchmarks

Improving Model Inference via W -Set Reduction 105

5. Gill, A.: Introduction to the Theory of Finite-State Machines. McGraw-Hill, New
York (1962)

6. Groz, R., Bremond, N., Simao, A.: Using adaptive sequences for learning non-
resettable FSMs. In: Unold, O., Dyrka, W., Wieczorek, W. (eds.) Proceedings of
the 14th International Conference on Grammatical Inference 2018, Volume 93 of
Proceedings of Machine Learning Research, pp. 30–43. PMLR, February 2019

7. Groz, R., Bremond, N., Simao, A., Oriat, C.: hW -inference: a heuristic approach
to retrieve models through black box testing. J. Syst. Softw. 159, 110426 (2020)

8. Irfan, M.N., Oriat, C., Groz, R.: Angluin style finite state machine inference with
non-optimal counterexamples. In: MIIT, pp. 11–19. ACM, New York (2010)

9. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: a redundancy-free app-
roach to active automata learning. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV
2014. LNCS, vol. 8734, pp. 307–322. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11164-3 26

10. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines -
a survey. Proc. IEEE 84(8), 1090–1123 (1996)

11. Moore, E.F.: Gedanken-experiments on sequential machines. In: Shannon, C.E.,
McCarthy, J. (eds.) Automata Studies (AM-34), vol. 34, pp. 129–154. Princeton
University Press (1956)

12. Niese, O.: An integrated approach to testing complex systems. Ph.D. thesis, Uni-
versity of Dortmund (2003)

13. Peled, D., Vardi, M.Y., Yannakakis, M.: Black box checking. In: Wu, J., Chanson,
S.T., Gao, Q. (eds.) Formal Methods for Protocol Engineering and Distributed
Systems. IAICT, vol. 28, pp. 225–240. Springer, Boston (1999). https://doi.org/
10.1007/978-0-387-35578-8 13

14. Petrenko, A., Li, K., Groz, R., Hossen, K., Oriat, C.: Inferring approximated models
for systems engineering. In: HASE 2014, Miami, Florida, USA, pp. 249–253 (2014)

15. Shahbaz, M., Groz, R.: Inferring mealy machines. In: Cavalcanti, A., Dams, D.R.
(eds.) FM 2009. LNCS, vol. 5850, pp. 207–222. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-05089-3 14

16. Utting, M., Legeard, B., Dadeau, F., Tamagnan, F., Bouquet, F.: Identifying and
generating missing tests using machine learning on execution traces. In: 2020 IEEE
International Conference On Artificial Intelligence Testing (AITest), pp. 83–90
(2020)

17. Vaandrager, F.: Model learning. Commun. ACM 60(2), 86–95 (2017)
18. Vasilievskii, M.P.: Failure diagnosis of automata. Cybern. Syst. Anal. 9, 653–665

(1973). https://doi.org/10.1007/BF01068590

https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-0-387-35578-8_13
https://doi.org/10.1007/978-0-387-35578-8_13
https://doi.org/10.1007/978-3-642-05089-3_14
https://doi.org/10.1007/BF01068590

Using Ant Colony Optimisation to Select
Features Having Associated Costs

Alfredo Ibias(B) , Luis Llana , and Manuel Núñez

Universidad Complutense de Madrid, Madrid 28040, Spain
{aibias,llana,manuelnu}@ucm.com

Abstract. Software Product Lines (SPLs) strongly facilitate the automation
of software development processes. They combine features to create programs
(called products) that fulfil certain properties. Testing SPLs is an intensive pro-
cess where choosing the proper products to include in the testing process can be
a critical task. In fact, selecting the best combination of features from an SPL
is a complex problem that is frequently addressed in the literature. In this paper
we use evolutionary algorithms to find a combination of features with low test-
ing cost that include a target feature, to facilitate the integration testing of such
feature. Specifically, we use an Ant Colony Optimisation algorithm to find one of
the cheapest (in terms of testing) combination of features that contains a specific
feature. Our results show that our framework overcomes the limitations of both
brute force and random search algorithms.

Keywords: Software Product Lines · Integration testing · Ant Colony
Optimisation · Feature selection

1 Introduction

Software Product Lines (SPLs) define generic software products, enabling mass cus-
tomisation. Generally speaking, SPLs provide a systematic and disciplined approach
to developing software. SPLs encode a set of similar (software) systems that can be
constructed from a specific set of features. These features can be combined according
to some specific rules defining which products (that is, which combinations of features)
are valid. In this paper we use FODA [22] to represent SPLs. In order to formally
reason about FODA diagrams, it is important to have a formal framework to repre-
sent FODA diagrams. In previous work, we introduced SPLA [1], an algebra that can
provide a precise semantics to these diagrams. The original framework was extended
to manage an important aspect of features: their costs. This is captured in the process
algebra SPLA-CRIS [4]. In this work, these costs will represent the cost of testing a
specific feature of the product. Testing SPLs is fundamental to ensure the quality and

This work has been supported by the Spanish MINECO/FEDER project FAME (RTI2018-
093608-B-C31); the Region of Madrid project FORTE-CM (S2018/TCS-4314) co-funded by
EIE Funds of the European Union; and the Santander - Complutense University of Madrid (grant
number CT63/19-CT64/19).
c© IFIP International Federation for Information Processing 2022

Published by Springer Nature Switzerland AG 2022
D. Clark et al. (Eds.): ICTSS 2021, LNCS 13045, pp. 106–122, 2022.
https://doi.org/10.1007/978-3-031-04673-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04673-5_8&domain=pdf
http://orcid.org/0000-0002-3122-4272
http://orcid.org/0000-0003-1962-1504
http://orcid.org/0000-0001-9808-6401
https://doi.org/10.1007/978-3-031-04673-5_8

Using Ant Colony Optimisation to Select Features Having Associated Costs 107

reliability of the products generated by them. When testing SPLs [26], it is crucial to
distribute the testing resources between the different features of the line in a smart way.
One way of distributing such resources is based on the probability of each feature being
requested [18]. However, if we do not have such probabilities, we can consider the
costs of testing each feature. The idea is that the products with the minimum cost will
be easier to test and, therefore, will consume less resources. This situation is ideal when
testing the integration of a specific feature into the SPL. For example, if we add a new
feature to an existing SPL and we want to test that its integration with the other features
does not produce any errors, then it is useful to have a product with lower testing cost
because the integration testing process will be faster and/or cheaper.

We are going to focus on the problem of Integration Testing of Software Compo-
nents [21]. Actually, software components can be seen as the features of an SPL. In
fact, integration testing within an SPL has gained attention from researchers [7,29,33].
One important aspect of integration testing is its cost: although testing each variant
of an SPL may be feasible, it is impossible to independently test all possible (maybe
redundant) products [24]. In our approach, we are interested in getting the product that
includes a particular feature having the smallest testing cost. Note that the order of the
features may be relevant in the complexity and costs of the testing process [34].

In general, testing cost can refer to multiple concepts: from actual monetary cost of
testing the integration of the feature into the product, to the necessary time to test such
integration, passing through the amount of resources needed to test that integration. In
our framework, we only need to know that such cost exists and that it represents the
same along all individual costs of the same SPL. Therefore, along this paper we will
be talking about testing cost in a broad sense and we will try to minimise it. Finally,
regarding the origin of such costs, we will assume that they are provided together with
the SPL. Ideally, such costs would be obtained through estimation, approximation or
empirical methods and added to the SPL before using the solution presented in this
paper.

It is important to clarify what we mean by computing a cheap (or expensive) product
of an SPL. In our context, a cheap product is a product that has a low total testing cost
compared to the cost of other products. For example, if the testing cost represents the
estimated time needed to test such product, then a cheap product would be one whose
aggregated time to test it is low compared with other products of the SPL (e.g. hours
vs. weeks). Note that cheaper to test products will not necessarily be the ones with a
smaller number of features.

Finally, we want to clarify that testing cost is not a proxy for fault detection effec-
tiveness. We are not looking for the product that will arise more faults, but for the one
that will be cheaper to test. This is so because our solution looks to fill a very specific
need: we have a feature to add to an SPL and we want to cheaply test its integration
into the SPL. The goal is not to find all the faults in the introduced feature, but instead
ensure that it can be included into products of the SPL. This is specially useful when
one has an SPL with hundreds or thousands of features and there is not enough time
or resources to test all the possible combinations. Therefore, it is useful to test that the
feature can be included into products and that there are no errors when used in combi-
nation with other features, what can be tested using any product. One example of such

108 A. Ibias et al.

situation appears when adding a new database to a server SPL. It is necessary to test
that the added database is correctly integrated with the other features of the SPL, but
the tester only needs to test the integration in one product because all the productions
might have the same integration faults.

In this paper we apply Ant Colony Optimisation algorithm (ACO) [9] to select a
combination of features from an SPL with the minimum testing cost that contains a
given feature. This combination will be later used to test the integration of such fea-
ture into the SPL. To the best of our knowledge, this is the first attempt to develop an
efficient solution to this problem if we rely on a formal approach (in our case, a pro-
cess algebra). To develop this algorithm we modify, enhance and extend our recently
developed framework [18] so that we select feature combinations with low testing cost
from SPLs including testing costs information, and so that we have the requirement of
including a given feature in the generated product.

In order to evaluate the quality of the solutions obtained by our ACO-approach, we
compare our framework with a brute force algorithm (computing all the combinations
of features and choosing one with the lowest cost) and a random algorithm (randomly
choosing features but such that they conform a valid product). We could not compare
our algorithm to other alternatives as there were no previous proposals addressing our
specific scenario. Our framework takes significantly less time to compute a solution than
the brute force algorithm (around a 99% saving), while obtaining total testing costs that
are not much higher (around a 25% increase). It also gets solutions with lower testing
cost than the ones obtained by the random algorithm (around a 15% cheaper). In order
to properly compare our ACO and the random approach, we allow the random approach
to run an equal amount of time as the ACO one. In conclusion, our approach represents
a preferable choice to these two alternatives.

The rest of the paper is organised as follows. In Sect. 2 we review related work. In
Sect. 3 we present background concepts that we use in our paper. In Sect. 4 we introduce
our feature selection framework. In Sect. 5 we present our experiments and discuss
the results. In Sect. 6 we briefly review some threats to the validity of our results. In
Sect. 7 we discuss some considerations concerning the different choices that we took
when defining our algorithm. Finally, in Sect. 8, we give conclusions and outline some
directions for future work.

2 Related Work

In this section we review previous work related to the research presented in this paper.
We have chosen FODA [22] to represent SPLs but there are other alternative

approaches such as RSEB [12] and PLUSS [10]. We think that FODA represents several
advantages: it is widely used and, more important, it is based on graphic models.

We are aware that we cannot compute the best, according to a given criteria, com-
bination of features due to the combinatorial nature of the problem. In fact, we per-
formed a small experiment to show that this is the case also in our framework. There-
fore, we have to rely on an heuristic approach. Our previous work on applying heuris-
tic approaches to testing [17,19,20] showed that Swarm Intelligence [36] was very
suitable. Among the different approaches to implement a swarm, in this paper we

Using Ant Colony Optimisation to Select Features Having Associated Costs 109

have decided to consider the Ant Colony Optimisation algorithm (ACO) [9] because
it allowed us to build on top of previous work, facilitating the implementation of the
approach. ACO is inspired by the behaviour of real ant colonies in nature and has been
successfully used in computationally hard classical optimisation problems such as the
travelling salesman problem but, to the best of our knowledge, the research presented in
this paper is a novel application of ACO. Although we have used ACO, other alternative
approaches in the broad field of evolutionary algorithms could have been selected. Evo-
lutionary algorithms are a family of meta-heuristics that base its intelligent behaviour in
the evolution of its population. Some approaches in the broad field of Artificial Intelli-
gence consider the combination of many individuals, usually with limited intelligence,
that work as a collective to either reach a goal or find a good enough solution to a
certain problem. In particular, there are several applications of these algorithms in test-
ing [3,5,30].

We have used an evolutionary computation approach to find cheap to test products
but a framework supporting constraint propagation could be used. In this case, we could
rely on tools like FaMa [2] and FeatureIDE [35]. However, we prefer to use the com-
bination of a process algebra and an evolutionary computation technique because they
allow us to work with a precise semantic description of each product, facilitating the
task of deciding the equivalence, up to a certain criterion, of different products.

There exist evolutionary approaches for test case selection and prioritisation in
SPLs [13,25]. Despite working on testing, these solutions cannot be easily adapted
to cope with our problem because we do not select/generate test cases: we select a set
of features such that testing the resulting product is as cheap as possible.

Finally, more related to our work, there are evolutionary computation approaches to
select features. A study [31] showed that the Indicator-Based Evolutionary Algorithm
(IBEA) was better than other evolutionary approaches dealing with high complexity
in the decision objective spaces. We cannot use this algorithm to solve our problem
because IBEA strongly depends on user preferences (we do not have them). In addition,
it seems like this algorithm performs better in a multi-objective optimisation problem:
we think that a simpler approach, like ours, might work better in our single-objective
optimisation problem but further experiments are needed to support this claim. Finally,
another important difference is that they define the set of rules from the SPL as an
objective of the optimisation problem because their solution can create non-valid prod-
ucts. In our case, we use a process algebra as the search space to ensure the correctness
of the generated products. Another related study [14] proposed the SIP method, which
improved previous proposals beating even the IBEA algorithm. The approach mainly
focused on enhancing the search through a novel representation that hard-codified some
constraints and through optimising first the constraints related to the generation of valid
products. They also used their approach over real-world SPLs. However, this approach
has the same concerns than the previous one: its problem is based on user preferences,
it is focused on multi-objective optimisation, and, furthermore, it can produce non-valid
products. All these differences make hard to adapt this kind of algorithms to our prob-
lem, as they rely on some assumptions that we do not consider and they can generate
non-valid products that our approach cannot generate.

110 A. Ibias et al.

A

B

A; B;

A

B

A; B;

A

B C

A; (B; ∨ C;)

A

B C

A; (B; ∧ C;)

A

B C

A; (B; ∧ C;)

A

B C

B C in A; (B; ∧ C;)

A

B C

B ⇒ C in A; (B; ∧ C;)

Fig. 1. Translation of FODA diagrams into SPLA.

3 Preliminaries

In this section we present notation and introduce concepts related to the main two lines
that we use in this paper: specification of Software Product Lines with costs and the Ant
Colony Optimisation algorithm.

3.1 SPLA-CRIS: SPLs with Costs

In this section we briefly review the formal language SPLA-CRIS. The interested reader
is referred to the original work [4] for more details.

Definition 1. We will assume that we have a finite set of features F and we will use A,
B, C. . . to denote single features. A Software Product Line is a term generated by the
following Extended BNF-like expression:

P ::= � | nil | A;P | A;P | P ∨ Q | P ∧ Q
A �⇒ B in P | A ⇒ B in P

where A, B ∈ F . We denote the set of terms of this algebra by SPLA.

Using Ant Colony Optimisation to Select Features Having Associated Costs 111

Next we describe the operators of the algebra. The term nil represents an SPL with
no products, while � is an SPL that has only the empty product; they are the terminal
elements of the syntax. Then the we have the mandatory prefix operator A;P (feature A
is mandatory) and the optional prefix operator A;P (A is optional). The binary operator
P ∨Q represents the choose-one. The binary operator P ∧Q represents the conjunction
operator. These operators are associative and commutative, so they can be extended
as n-ary operators. The operator A ⇒ B in P represents the require constraint. The
operator A �⇒ B in P represents the exclusion constraint. Figure 1 shows the relation
between these operators and FODA diagrams.

We can define an operational semantics. Given A ∈ F ∪{�}, we will write P A−−→ Q
if we can evolve from P to Q using the defined operational rules. It is important to
remark that � is not a feature and, as such, it is not included in the product. This
semantics is given as a set of SOS rules and the interested reader can find them, as well
as detailed explanations, in our previous work [1,4].

Single transitions can be sequentially executed to produce traces. We use ε to denote
an empty trace and consider the usual concatenation operator s1 · s2. Abusing the
notation, we will write A ∈ s is A appears in s. Traces ending with �, that we call
successful, are the only ones associated with valid products. It is irrelevant the order in
which the features of a trace are obtained. Given a successful trace s, [s] denotes the
set obtained from the elements of s.

Finally, given P ∈ SPLA, we define the products of P , denoted by prod (P), as
prod (P) = {[s] | s ∈ tr(P)}. 	

In order to define a cost model, we will have a cost function such that given a
sequence of features (representing the part of the product that we have defined so far)
and a single feature (representing the new feature that we would like to add), returns the
cost of testing this new feature in the given product. This cost can represent either time
and/or resources needed to perform the (integration) testing of this new feature, given
the previous ones. In our framework, we assume that costs can be represented by natural
numbers. Sometimes, we will not be able to compute the testing cost of integrating a
new feature with the ones already chosen. For instance, if the new one is incompatible
with the existing features or there are missing dependencies. Therefore, we extend the
set of costs with a new symbol ⊥ to represent indefiniteness.

Definition 2. The set of costs is given by IN⊥ = IN ∪ {⊥}. We extend arithmetic oper-
ations in the expected way: for any x ∈ IN⊥ we have x + ⊥ = ⊥ + x = ⊥ and
x ≤ ⊥.

A cost function is a function c : F∗ × F → IN⊥. 	

In order to compute the cost associated with a product we need to extend the oper-

ational semantics (see our previous work [4] for a complete definition). Intuitively, let
P ∈ SPLA be a process, c be a cost function and s be a successful trace of P . We denote
by tc(P, s) the cost associated with the set of features included in s according to c.

Finally, let us remind that the position of the features in the trace is not relevant to
define a product although it may have an impact in its costs. Therefore, different traces
can produce the same product but with different costs. As a consequence, we need to

112 A. Ibias et al.

Fig. 2. FODA app server feature diagram.

Fig. 3. SPLA term.

consider a set of costs for each product, because a product will be equivalent to a set of
sequences.

Definition 3. Let c be a cost function. We consider the function cSPLA : SPLA ×
P(F∗) → P(IN⊥) defined as follows:

cSPLA(P, p) = {tc(P, s) ∈ IN⊥|∃s trace of P : [s] = p}

	

Example. Let us illustrate the previous definitions with an example. Let us consider a
Server consisting of a Web Server and a Database. There are two possible environments
for the running server: the production environment and the developing environment.
There are two possibilities for the database: MySQL or SQLServer. For the Web server
we can use either Apache Web Server or Nginx. There are also two restrictions in the
case of the Production environment: First, the use of the New Relic monitor system is
forbidden. Second, the use of MySQL is mandatory. Figure 2 show the FODA diagram

Using Ant Colony Optimisation to Select Features Having Associated Costs 113

corresponding to this description. This FODA diagram is translated to the SPLA term
in Fig. 3 (left) to handle the system formally. The Integration Test costs appears in the
centre of Fig. 3. Formally, the cost function is defined as follows: for s ∈ F∗ and A ∈ F ,
c(s, A) = itc([sA]) if the product [sA] is listed in table and c(s, A) = 0 otherwise.

3.2 Ant Colony Optimisation

The Ant Colony Optimisation algorithm (ACO) [9] is a well-known algorithm in the
evolutionary algorithms field. It is a distributed algorithm to explore a graph-like search
space associated with a combinatorial optimisation problem. It consists of a set of ants,
which are the agents that explore the search space. Each ant looks for the shortest path
from the initial node to the target node, choosing their next move based on a random
choice modified by the weigh of each path and the pheromones released by other ants
that previously performed that move.

Definition 4. A model P of a combinatorial optimisation problem is a tuple (S, Ω, f),
where S is a search space defined over a finite set X1, . . . , Xn of discrete decision
variables, Ω is a set of constraints over the variables, and f : S → R+

0 is the objective
function to be minimised.

Each generic variable Xi takes values in Di = {v1
i , . . . , v

|Di|
i }. A feasible solution

s ∈ S is a complete assignment of values to variables such that all the constraints in Ω
are satisfied. A feasible solution s∗ ∈ S is called a global optimum if and only if for all
s ∈ S we have f(s∗) ≤ f(s). 	

Once we have a model of the problem that we would like to solve, we can generate
a construction graph. Artificial ants move from vertex to vertex along the edges of this
graph, incrementally building a partial solution. During this traversal of the graph, the
ants deposit a certain amount of pheromone on the edges that they traverse. The amount
of pheromone deposited by each artificial ant usually depends on the quality of the solu-
tion reached after that specific traversal. The idea underlying ACO and the simulation
of pheromone is that other ants will use the information concerning the concentration
of pheromone as a hint to further explore promising regions of the search space.

The ACO general scheme proceeds as follows. After a preliminary step, where the
main parameters and the pheromone trails are initialised, we have a main loop that iter-
ates until we reach the termination criterion. This criterion may be based on the numbers
of iterations of the loop or on the quality of the obtained solution. In each iteration of
the loop, each ant generates a solution. Then, the global state updates the pheromones
left by the ants in their solution path. This task consists of two main consecutive steps.

First Step of the Loop: Construct Ant Solutions. In each iteration, m ants generate solu-
tions from a finite set of available solution components C. The construction starts from
an empty solution set sP = ∅ and, in each step, the ant extends its partial solution by
adding a feasible solution element from the set of elements of C that can be added to
the partial solution sP without violating any constraint in Ω. The choice of a solution
component from this set is guided by a stochastic mechanism, which is biased by the
pheromone associated with each of the elements in it. The rule for the stochastic choice
of solution components varies across different ACO algorithms but they are always

114 A. Ibias et al.

inspired by the behaviour of real ants. This process can be seen as a traversal of the
construction graph.

Second Step of the Loop: Update Pheromones. The pheromone update aims to increase
the pheromone values associated with good or promising solutions and, in turn,
decrease those associated with bad ones. Usually, this is achieved by decreasing all the
pheromone values through pheromone evaporation and by increasing the pheromone
levels associated with a chosen set of good solutions.

4 ACO for Feature Selection Taking into Account Testing Costs

Our feature selection framework finds, for a given SPL and a selected feature, a com-
bination of features that contains said feature and such that the cost (in time and/or
resources) of testing the generated product is as low as possible. We will consider that
the SPL is formally defined as an SPLA-CRIS term. We use an ACO algorithm because
it is the most suitable one for this problem. A comprehensive discussion about this
choice can be found in Sect. 7. Next, we briefly describe the main components of our
framework:

– An SPL represented as an SPLA-CRIS expression.
– An SPLA-CRIS interpreter that allows us to explore the search space generated by

the SPLA-CRIS expression without fully computing it.
– An ACO to lead the search for a feature combination with low cost.

We combine these three components as follows. We consider an SPLA-CRIS
expression and derive the structure needed to execute our ACO over it with the goal
of finding a cheap to test product. However, we cannot compute the testing cost of all
the possible combinations of features of the SPLA-CRIS expression. We will rely on an
interpreter to compute the added testing cost after adding a new feature to the current
selection, but without constructing the full SPLA-CRIS expression tree.

As usual, our ACO needs to have a representation of our setting as a combinatorial
optimisation problem. We will define this problem as follows:

– Search space S. This is the full SPLA-CRIS tree. In addition, the associated decision
variables are associated to the feature that we have to choose next.

– Set of constraints Ω. We have three constraints.
• A constraint stating that the last symbol of a valid path must be �. Remind that

this is the special symbol that we use to denote successful termination, that is,
the last symbol of a successful trace.

• A constraint stating that a valid feature combination should contain the previ-
ously selected feature.

• A constraint stating that a valid path can be generated by the definition of the
SPLA-CRIS expression that we are considering.

– Objective function f . This function assigns its cost to each set of features that can
be produced from the SPLA-CRIS expression. The goal of our ACO is to minimise
the value of this function.

Using Ant Colony Optimisation to Select Features Having Associated Costs 115

Once we have our problem redefined as a combinatorial optimisation problem, our
ACO follows the general scheme presented in Sect. 3.2. The only adaption with respect
to this general scheme is that our ants generate on the fly the search space while explor-
ing it, instead of having all the information stored beforehand. Thus, our ACO has to
work together with our SPLA-CRIS interpreter in order to obtain the associated costs.

It is important to note that our algorithm does not use any additional heuristic opti-
misation. In the literature there are some common heuristics, like removing mandatory
features (i.e. computing atomic sets), that are usually used to simplify the problem at
hand. In our case, as the goal is to have a lower testing cost, we cannot consider such
heuristic optimisation as they would modify the obtained testing costs. For example, in
the case of removing the mandatory features, that heuristic would produce testing costs
that do not consider the additional testing costs that each mandatory feature would add
with each added feature, costs that are not constant neither uniform between different
features.

5 Experimental Results

In order to evaluate the usefulness of our ACO to find cheap (in terms of testing) combi-
nations of features, according to a certain set of constraints defined by the corresponding
SPL, we decided to initially compare it with a brute force algorithm. The brute force
algorithm will effectively compute a feature combination with the lowest testing cost at
the expense of a long execution time. In contrast, we will show that our framework can
give feature combinations with slightly higher testing costs but having (much) shorter
execution times.

We set our ACO algorithm with the following parameters:

– Number of ants: 10.
– Number of maximum iterations: 100.
– Pheromone constant: 1000.
– Pheromone evaporation coefficient: 0.4.
– α coefficient: 0.5.
– β coefficient: 1.2.

These parameters are typical parameters in the literature and they worked very well
in our previous work [18]. Moreover, we did small experiments to tune the parameters
and none of them show better performance than these ones.

For our experiments, we used 75 SPLA-CRIS expressions with between 10 and
85 features. These SPLA-CRIS expressions were generated using previous work with
SPLA-CRIS [4], automatically generating them using the BeTTy tool [32] and storing
them in an fodaA format in .xml files. The costs in these expressions are also automat-
ically generated, and thus we consider that they represent the additional testing costs
that a feature will add to the product if included in it.

In our first experiment we evaluated these expressions through our SPLA-CRIS
interpreter. Using this interpreter, we executed a brute force algorithm to compute all
the possible feature combinations as well as their costs. We also executed our ACO
algorithm using the SPLA-CRIS interpreter to obtain a feature combination with low

116 A. Ibias et al.

Table 1. Comparing our approach and brute force (time is measured in seconds).

Trial number Brute force cost ACO cost Cost increase Brute force time ACO time Time saving

1 27 36 33.33% 1.1713 4.5798 −291.01%

2 18 27 53.33% 6.5209 8.9389 −37.08%

3 36 45 25.00% 20.5985 9.8473 52.19%

4 63 72 14.29% 4,434.4519 14.8687 99.66%

Average 36 45 25.42% 1,115.6856 9.5587 99.14%

cost. Due to the randomisation involved in the ACO algorithm, we executed both algo-
rithms 15 times for each SPLA-CRIS expression and measured the mean of the results
of all the computations. Unfortunately, after running during 20 h the brute force algo-
rithm was able to compute the solution only for four expressions (note that the longest
time used by our ACO was less than 15 s). In Table 1 we compare the cost and compu-
tation time for these expressions.

As expected, the brute force algorithm was unable to compute, in a reasonable time,
the best feature selection for most of the experiments (in fact, it was only able to com-
pute it for the smaller expressions, the ones with less than 13 features) due to the com-
binatorial explosion underlying feature selection, aggravated with minimising the cost.
This leaves us with only four values to compare our ACO with the brute force algo-
rithm. In this comparison we can see that our algorithm obtains, on average, a solution
that it is 25.42% more expensive than the best features combination (computed by the
brute force algorithm). In contrast, it needs on average 99.14% less time to produce this
solution.

Here, it is important to note that for the simplest cases, the brute force algorithm
needs less time than our ACO algorithm. The reason is that the expressions are so simple
that our ACO algorithm is overpowered for this task. That means that, as the expression
is so small, brute force computes all the combinations quickly (because there are so
few) while the ACO algorithm not only has to explore the expression, but it also needs
to achieve convergence (what will take a while due to the required iterations). However,
as we increase the complexity of the expressions, the brute force algorithm quickly
raises its execution time a lot (due to its exponential nature), while our ACO algorithm
keeps its execution time in a reasonable value.

The comparison with the brute force algorithm leaves us with so few results that
we decided to perform a second experiment and compare our framework with a random
algorithm. This random algorithm will give us the feature combination with lowest costs
of a set of randomly generated feature combinations that represent valid products. The
number of feature combinations on this set of randomly generated feature combinations
will depend on how much time the algorithm is running. In our experiment, we first
run the ACO algorithm and then we run the random algorithm until it overcomes the
execution time the ACO algorithm needed. This way, the random algorithm always
has the same (or more) time to execute as our ACO and we compare the algorithms
performance, that is, the feature combination costs obtained.

Using Ant Colony Optimisation to Select Features Having Associated Costs 117

Table 2. Results of the experiment comparing with respect to random.

Trial Random ACO Cost
Number Cost Cost Saving (%)

1 52.2 52.2 0.00
2 36.0 34.8 3.33
3 50.4 50.4 0.00
4 73.8 73.8 0.00
5 63.6 63.6 0.00
6 70.2 69.0 1.71
7 63.6 61.2 3.77
8 73.2 70.8 3.28
9 67.8 67.2 0.88
10 75.0 70.8 5.60
11 63.6 63.6 0.00
12 62.4 57.0 8.65
13 91.8 87.0 5.23
14 81.6 77.4 5.15
15 70.8 66.0 6.78
16 58.2 54.0 7.22
17 83.4 79.2 5.04
18 99.6 79.8 19.88
19 78.0 76.8 1.54
20 99.0 81.0 18.18
21 80.4 79.2 1.49
22 111.0 96.6 12.97
23 70.8 67.8 4.24
24 96.0 80.4 16.25
25 76.8 69.0 10.16

Trial Random ACO Cost
Number Cost Cost Saving (%)

26 131.4 102.6 21.92
27 120.6 98.4 18.41
28 147.6 115.8 21.54
29 109.2 94.8 13.19
30 115.8 102.0 11.92
31 161.4 128.4 20.45
32 114.6 82.8 27.75
33 130.2 117.0 10.14
34 157.2 148.8 5.34
35 78.0 70.2 10.00
36 93.0 78.0 16.13
37 100.8 97.2 3.57
38 149.4 133.2 10.84
39 122.4 101.4 17.16
40 166.8 142.2 14.75
41 147.0 138.0 6.12
42 159.0 146.4 7.92
43 115.2 89.4 22.40
44 148.8 135.6 8.87
45 168.0 132.0 21.43
46 156.0 134.4 13.85
47 118.2 98.4 16.75
48 189.6 144.6 23.73
49 175.8 168.0 4.44
50 201.6 175.8 12.8

Trial Random ACO Cost
Number Cost Cost Saving (%)

51 221.4 159.6 27.91
52 136.8 120.6 11.84
53 176.4 142.8 19.05
54 151.2 123.0 18.65
55 142.2 96.0 32.49
56 208.8 176.4 15.52
57 166.8 139.8 16.19
58 145.2 105.0 27.69
59 166.8 135.0 19.06
60 175.2 135.0 22.95
61 178.2 139.2 21.89
62 185.4 167.4 9.71
63 199.2 171.0 14.16
64 254.4 171.6 32.55
65 168.6 121.2 28.11
66 173.4 146.4 15.57
67 238.8 187.8 21.36
68 210.0 191.4 8.86
69 226.2 129.0 42.97
70 201.0 133.2 33.73
71 209.4 163.8 21.78
72 309.6 196.8 36.43
73 340.8 207.0 39.26
74 285.6 150.6 47.27
75 197.4 143.4 27.36

We started with the same set of 75 SPLA-CRIS expressions and evaluated them
using our SPLA-CRIS interpreter. For each SPLA-CRIS expression, we also used this
interpreter to execute 15 times both our ACO algorithm and the random algorithm. We
computed mean costs and compared them (see Table 2).

In order to present an easy visualisation of all the results, we sorted the obtained
costs for the ACO approach, from lowest to highest, and produced the graphic shown
in Fig. 4. We also obtained the sorted percentage cost saving of the ACO algorithm
with respect to the random algorithm (see Fig. 5). In order to compute the cost saving
of our approach with respect to the random algorithm, we proceeded as follows. For
each SPLA-CRIS expression, we computed the cost using both our ACO and the ran-
dom algorithm and computed the percentage difference of the ACO with respect to the
random algorithm. For example, if the cost associated with the selected product by the
ACO is equal to 135.0 and the cost obtained by the random algorithm, most likely for a
different product but also fulfilling the constraints associated to the SPL, is 175.2, then
the cost saving is equal to 100 · (1 − 135.0

175.2) ≈ 22.95.
The analysis of the results shows that our ACO algorithm always finds feature com-

binations with lower costs than the random algorithm (or equal cost in the worst cases).
Therefore, our algorithm performs better than the random algorithm. On average, our
ACO computes solutions that are 14.87% cheaper.

We performed a statistical hypothesis test over the results, whose null hypothesis
was that the random algorithm and our framework give similar results, that is, both
obtain similar costs. We applied a one-way ANOVA test where we tested whether the
results of both algorithms are similar in average. Then, we computed the p-value for
the experiment, obtaining a p-value of 0.0037. This represents that there is a 00.37%

118 A. Ibias et al.

Fig. 4. Sorted obtained costs (blue = random, red = ACO). (Color figure online)

of probability that the null hypothesis is fulfilled. Therefore, we can reject the null
hypothesis for the experiment with a confidence higher than 99%, as its p-value is lower
than 0.01. In order to double-check our results, we also performed a t-test and obtained
the same p-value. Thus, the conclusion is that the performance of our ACO algorithm
is better than the random algorithm.

6 Threats to Validity

Threats to internal validity refer to uncontrolled factors that can affect the output of the
experiments, either in favour or against our hypothesis. The main threat in this category
is the possibility of having faults in the code of the experiments. We diminished this
threat by carefully testing the code, even using small examples for which we knew
the expected results. Additionally, in order to reduce the impact of the randomness
associated with our methodology, we repeated the experiments several times.

Threats to external validity refer to the generality of our findings to other situations.
The main threat in this category is given by the different possible SPLs to which we
could apply our framework. As the population of SPLs is unknown, this threat is not
fully addressable. In order to diminish this risk, we considered different SPLs in the
experiments.

Finally, threats to construct validity refer to the relevance of the properties we are
measuring for the extrapolation of the results to real-world examples. The main threat
in this category is what would happen if we use our framework with real-world SPLs
and/or with much more complex SPLs, which is a matter of future work.

7 Discussion About the Suitability of ACO

We have shown that our ACO achieves good solutions for this task. However, it is
possible that other heuristics could work better than ACO in this specific framework.
Although this comparison should be further investigated, and it will be indeed a mat-
ter of future work, we would like to briefly justify why we decided to use an ACO
algorithm.

Using Ant Colony Optimisation to Select Features Having Associated Costs 119

Fig. 5. Sorted cost saving.

Our main concern when developing the algorithm was that we needed to provide
a much faster solution than brute force while, at the same time, being able to obtain
good enough results. Therefore, we classified our problem as an exploratory problem.
We are aware that there are many evolutionary algorithms that usually work better than
a random based search. In our case, we needed a proposal able to search in a SPLA-
CRIS expression. Fortunately, this kind of syntactical expressions can be transformed
into a graph whose final states represent all the possible feature combinations that ful-
fil the expression restrictions. Since this graph can have cycles, we need to perform
an extra step to unfold these cycles in order to be able to use a Genetic Programming
based algorithm to search for feature combinations inside this graph. This operation
would increase the complexity of the approach. In addition, since we are working with
a search space based on a graph structure, an approach such as particle swarm optimi-
sation algorithms would suffer because it needs extra adaptation phases that also will
increase the complexity of the algorithm. In contrast, ACO can be easily applied to this
scenario because our search space is represented as a graph where we are looking for
a path from the root to a final state, representing a valid feature combination, with a
cost as low as possible. So, in order to put into practice our approach we only needed
an available interpreter [4] that transform the SPLA-CRIS expressions into appropriate
graphs.

8 Conclusions and Future Work

Software Product Lines are a useful tool for developing software systems in an auto-
matic way and testing them is a must. Integration testing is a process that SPLs should
overcome: we test how well a new feature is integrated with the already existing fea-
tures of the SPL. If we have the costs of testing each feature of the SPL, then we can
select the product that contains the new feature that has a lower testing cost, so we can
test its integration with the other features of the SPL in a quicker and/or cheaper way.

In this paper we have proposed a new framework for feature selection in SPLs
having testing costs associated with the combination of features. This feature selection
generates a product with low cost and a given feature. We have adapted ACO to deal
with an a priory unknown search space. Therefore, our framework is able to obtain
new feature combinations for a given SPL without computing all the possible feature

120 A. Ibias et al.

combinations, which is a time-consuming task. Besides, in order to assess the usefulness
of the new framework, we have reported on our most representative experiments. These
experiments show that our algorithm is well suited for this task and that it is preferable
than other simpler algorithms. Finding sub-optimal solutions in a shorter time can be
fundamental in some scenarios, as computing the optimal solution can require a huge
amount of resources and time. In fact, in our own experiments we were able to compute
the exact solution, by computing all the possible solutions, only for SPLs with a very
small number of features. In addition, our experiments show that our algorithm is better
than a random search, when giving the same time to both algorithms.

We have identified several research directions concerning applicability, scalability,
suitability and adaptability of our framework. Concerning scalability, we will consider
more complex SPLs and check whether our technique scales well. Although we will
not be able to compare our ACO with brute force, because the latter will not compute the
best solution, we want to explore the limit of our approach. In addition, we would like
to use current mutation testing approaches [11,28] to efficiently generate and process
big amount of mutants representing either non-optimal or faulty selections of features.

With respect to suitability, we will consider two unrelated lines of work. First,
although our ACO is well suited for this task, we would like to compare it with other
heuristics that could work better than our proposal in this specific framework. Specif-
ically, we would like to compare our ACO approach with other meta-heuristics based
on Bee Swarm [23]. A second line of work to analyse the suitability of our framework
is to consider SPLs with existing feature selections, produced by an expert, and com-
pare their costs and the ones produced by our framework. In addition, as suggested by
a reviewer, it would be interesting to take into account that products including features
interacting with the new feature will be more likely to expose bugs, than products run-
ning the feature in isolation. Finally, concerning adaptability, we would like to assess
the usefulness of our methodology in other frameworks. First, we would like to apply
our framework to study formal models of cloud [6,27] and distributed [15,16] systems.
We choose this type of systems because we are familiar with them and, more impor-
tantly, because they are highly configurable and, therefore, will induce SPLswith many
features. Finally, we would like to evaluate whether it is possible to integrate our feature
selection framework in existing tools like ProFeat [8].

Acknowledgements. We would like to thank the anonymous reviewers for the careful reading,
the many constructive comments and the useful suggestions, which have helped us to further
strengthen the paper.

References

1. Andrés, C., Camacho, C., Llana, L.: A formal framework for software product lines. Inf.
Softw. Technol. 55(11), 1925–1947 (2013)

2. Benavides, D., Trinidad, P., Ruiz Cortés, A., Segura, S.: FaMa. In: Capilla, R., Bosch, J.,
Kang, K.C. (eds.) Systems and Software Variability Management - Concepts, Tools and
Experiences, pp. 163–171. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
36583-6 11

https://doi.org/10.1007/978-3-642-36583-6_11
https://doi.org/10.1007/978-3-642-36583-6_11

Using Ant Colony Optimisation to Select Features Having Associated Costs 121

3. Benito-Parejo, M., Merayo, M.G.: An evolutionary algorithm for selection of test cases. In:
22nd IEEE Congress on Evolutionary Computation, CEC 2020, pp. E-24535: 1–8. IEEE
Computer Society (2020)

4. Camacho, C., Llana, L., Núñez, A.: Cost-related interface for software product lines. J. Log.
Algebraic Methods Program. 85(1), 227–244 (2016)

5. Campos, J., Ge, Y., Albunian, N., Fraser, G., Eler, M., Arcuri, A.: An empirical evaluation
of evolutionary algorithms for unit test suite generation. Inf. Softw. Technol. 104, 207–235
(2018)

6. Cañizares, P.C., Núñez, A., de Lara, J., Llana, L.: MT-EA4Cloud: a methodology for testing
and optimising energy-aware cloud systems. J. Syst. Softw. 163, 110522:1–25 (2020)

7. do Carmo Machado, I., da Mota Silveira Neto, P.A., Santana de Almeida, E.: Towards an
integration testing approach for software product lines. In: IEEE 13th International Confer-
ence on Information Reuse & Integration, IRI 2012, pp. 616–623. IEEE (2012)

8. Chrszon, P., Dubslaff, C., Klüppelholz, S., Baier, C.: ProFeat: feature-oriented engineer-
ing for family-based probabilistic model checking. Formal Aspects Comput. 30(1), 45–75
(2017). https://doi.org/10.1007/s00165-017-0432-4

9. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
10. Eriksson, M., Börstler, J., Borg, K.: The PLUSS approach – domain modeling with features,

use cases and use case realizations. In: Obbink, H., Pohl, K. (eds.) SPLC 2005. LNCS, vol.
3714, pp. 33–44. Springer, Heidelberg (2005). https://doi.org/10.1007/11554844 5

11. Gómez-Abajo, P., Guerra, E., Lara, J., Merayo, M.G.: Wodel-test: a model-based frame-
work for language-independent mutation testing. Softw. Syst. Model. 20(3), 767–793 (2020).
https://doi.org/10.1007/s10270-020-00827-0

12. Griss, M., Favaro, J., D’Alessandro, M.: Integrating feature modeling with the RSEB. In:
5th International Conference on Software Reuse, ICSR 1998, pp. 76–85. IEEE Computer
Society (1998)

13. Henard, C., Papadakis, M., Perrouin, G., Klein, J., Heymans, P., Le Traon, Y.: Bypassing the
combinatorial explosion: using similarity to generate and prioritize T-Wise test configura-
tions for software product lines. IEEE Trans. Softw. Eng. 40(7), 650–670 (2014)

14. Hierons, R.M., Li, M., Liu, X., Segura, S., Zheng, W.: SIP: optimal product selection from
feature models using many-objective evolutionary optimization. ACM Trans. Softw. Eng.
Methodol. 25(2), 17:1–17:39 (2016)

15. Hierons, R.M., Merayo, M.G., Núñez, M.: Bounded reordering in the distributed test archi-
tecture. IEEE Trans. Reliab. 67(2), 522–537 (2018)

16. Hierons, R.M., Núñez, M.: Implementation relations and probabilistic schedulers in the dis-
tributed test architecture. J. Syst. Softw. 132, 319–335 (2017)

17. Ibias, A., Griñán, D., Núñez, M.: GPTSG: a genetic programming test suite generator using
information theory measures. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2019. LNCS,
vol. 11506, pp. 716–728. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20521-
8 59

18. Ibias, A., Llana, L.: Feature selection using evolutionary computation techniques for soft-
ware product line testing. In: 22nd IEEE Congress on Evolutionary Computation, CEC 2020,
pp. E-24502:1–8. IEEE Computer Society (2020)

19. Ibias, A., Núñez, M.: Using a swarm to detect hard-to-kill mutants. In: 2020 IEEE Inter-
national Conference on Systems, Man and Cybernetics, SMC 2020, pp. 2190–2195. IEEE
Computer Society (2020)

20. Ibias, A., Vazquez-Gomis, P., Benito-Parejo, M.: Coverage-based grammar-guided genetic
programming generation of test suites. In: 23rd IEEE Congress on Evolutionary Computa-
tion, CEC 2021, pp. 2411–2418. IEEE (2021)

https://doi.org/10.1007/s00165-017-0432-4
https://doi.org/10.1007/11554844_5
https://doi.org/10.1007/s10270-020-00827-0
https://doi.org/10.1007/978-3-030-20521-8_59
https://doi.org/10.1007/978-3-030-20521-8_59

122 A. Ibias et al.

21. Jaffar-ur Rehman, M., Jabeen, F., Bertolino, A., Polini, A.: Testing software components for
integration: a survey of issues and techniques. Softw. Test. Verification Reliab. 17(2), 95–133
(2007)

22. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented domain
analysis (FODA) feasibility study. Technical report CMU/SEI-90-TR-21, Carnegie Mellon
University (1990)

23. Karaboga, D., Akay, B.: A survey: algorithms simulating bee swarm intelligence. Artif.
Intell. Rev. 31(1), 61–85 (2009). https://doi.org/10.1007/s10462-009-9127-4

24. Lachmann, R., Beddig, S., Lity, S., Schulze, S., Schaefer, I.: Risk-based integration test-
ing of software product lines. In: 11th International Workshop on Variability Modelling of
Software-Intensive Systems, VaMoS 2017, pp. 52–59. ACM Press (2017)

25. Lopez-Herrejon, R.E., Ferrer, J., Chicano, F., Egyed, A., Alba, E.: Comparative analysis of
classical multi-objective evolutionary algorithms and seeding strategies for pairwise testing
of software product lines. In: 16th IEEE Congress on Evolutionary Computation, CEC 2014,
pp. 387–396. IEEE (2014)

26. McGregor, J.D.: Testing a software product line. In: Borba, P., Cavalcanti, A., Sampaio,
A., Woodcook, J. (eds.) PSSE 2007. LNCS, vol. 6153, pp. 104–140. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14335-9 4

27. Núñez, A., Cañizares, P.C., Núñez, M., Hierons, R.M.: TEA-Cloud: a formal framework for
testing cloud computing systems. IEEE Trans. Reliab. 70(1), 261–284 (2021)

28. Papadakis, M., Kintis, M., Zhang, J., Jia, Y., Traon, Y.L., Harman, M.: Mutation testing
advances: an analysis and survey. In: Volume 112 of Advances in Computers, pp. 275–378.
Elsevier (2019)

29. Reis, S., Metzger, A., Pohl, K.: Integration testing in software product line engineering: a
model-based technique. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS, vol. 4422,
pp. 321–335. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71289-3 25

30. Rodrigues, D.S., Delamaro, M.E., Corrêa, C.G., Nunes, F.L.S.: Using genetic algorithms in
test data generation: a critical systematic mapping. ACM Comput. Surv. 51(2), 1–23 (2018).
Article 41

31. Sayyad, A.S., Ingram, J., Menzies, T., Ammar, H.H.: Optimum feature selection in software
product lines: let your model and values guide your search. In: 1st International Workshop on
Combining Modelling and Search-Based Software Engineering, CMSBSE 2013, pp. 22–27.
IEEE Computer Society (2013)

32. Segura, S., Galindo, J.A., Benavides, D., Parejo, J.A., Ruiz-Cortés, A.: BeTTy: benchmark-
ing and testing on the automated analysis of feature models. In: 6th International Workshop
on Variability Modeling of Software-Intensive Systems, VaMoS 2012, pp. 63–71 (2012)

33. Shi, J., Cohen, M.B., Dwyer, M.B.: Integration testing of software product lines using com-
positional symbolic execution. In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol.
7212, pp. 270–284. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28872-
2 19

34. Steindl, M., Mottok, J.: Optimizing software integration by considering integration test com-
plexity and test effort. In: 10th International Workshop on Intelligent Solutions in Embedded
Systems, WISES 2012, pp. 63–68. IEEE Computer Society (2012)

35. Thüm, T., Kästner, C., Benduhn, F., Meinicke, J., Saake, G., Leich, T.: FeatureIDE: an exten-
sible framework for feature-oriented software development. Sci. Comput. Program. 79, 70–
85 (2014)

36. Wang, D., Tan, D., Liu, L.: Particle swarm optimization algorithm: an overview. Soft. Com-
put. 22(2), 387–408 (2017). https://doi.org/10.1007/s00500-016-2474-6

https://doi.org/10.1007/s10462-009-9127-4
https://doi.org/10.1007/978-3-642-14335-9_4
https://doi.org/10.1007/978-3-540-71289-3_25
https://doi.org/10.1007/978-3-642-28872-2_19
https://doi.org/10.1007/978-3-642-28872-2_19
https://doi.org/10.1007/s00500-016-2474-6

Initial Results on Counting Test Orders
for Order-Dependent Flaky Tests

Using Alloy

Wenxi Wang1(B), Pu Yi2, Sarfraz Khurshid1, and Darko Marinov3

1 The University of Texas at Austin, Austin, USA
wenxiw@utexas.edu

2 Peking University, Beijing, China
3 University of Illinois Urbana-Champaign, Champaign, USA

Abstract. Flaky tests can seemingly nondeterministically pass or fail
for the same code under test. Flaky tests are detrimental to regression
testing because tests that pass before code changes and fail after code
changes do not reliably indicate problems in code changes. An important
category of flaky tests is order-dependent tests that pass or fail based
on the order of tests in the test suite. Prior work has considered the
problem of counting test orders that pass or fail, given relationships
of tests within a test suite. However, prior work has not addressed the
most general case of these relationships. This paper shows how to encode
the problem of counting test orders in the Alloy modeling language and
how to use propositional model counters to obtain the count for test
orders. We illustrate that Alloy makes it easy to handle even the most
general case. The results show that this problem produces challenging
propositional formulas for the state-of-the-art model counters.

1 Introduction
Flaky tests [15] can seemingly nondeterministically pass or fail for the same code
under test. Flaky tests are detrimental to regression testing because tests that pass
before code changes and fail after code changes do not reliably indicate problems in
code changes. For example, Harman and O’Hearn point out problems of flaky tests
at Facebook [5], and several other companies point out similar problems, including
Apple [11], Google [4,16,22], Huawei [9], and Microsoft [6,7,13,14].

An important category of flaky tests is order-dependent tests that pass or
fail based on the order of tests in the test suite. More specifically, the tests
deterministicaly fail in some test orders and deterministically pass in other test
orders. Before establishing that the tests depend just on the order, the developers
may view them as nondeterministically passing or failing in various runs.

Shi et al. [17] have categorized several roles for order-dependent tests. Each
order-dependent test itself can be either a victim, which passes when run by itself
but fails when run after some other tests in the test suite, or a brittle, which
fails when run by itself but passes when run after some other test in the test
suite. Each victim test fails when run after (not necessarily immediately after)
c© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
D. Clark et al. (Eds.): ICTSS 2021, LNCS 13045, pp. 123–130, 2022.
https://doi.org/10.1007/978-3-031-04673-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04673-5_9&domain=pdf
https://doi.org/10.1007/978-3-031-04673-5_9

124 W. Wang et al.

a polluter test, unless a cleaner test runs between the polluter and the victim.
Each brittle test passes when run after (not necessarily immediately after) a
state-setter test. We focus on victim tests, because the analysis for brittle tests
comes out as a special case.

Wei et al. [20] have recently considered the problem of counting the number
of test orders for which a victim fails. This problem is important because it allows
computing the flake rate, i.e., the probability that a test fails if the test order is
a uniformly sampled permutation of the test suite. In turn, the flake rate allows
developers to determine whether to fix the test or not, and it allows researchers
to compare various algorithms for detecting order-dependent tests [20]. Wei et
al. [20] have derived analytical formulas for some cases of victims, namely when
all polluters have the same set of cleaners, but have not addressed the most
general case, namely when two or more polluters have a different set of cleaners.

We show how to encode the problem of counting test orders in the Alloy
modeling language [8], and we use propositional model counters [12,18] to
count the test orders. Alloy has been used for many software analysis and
testing tasks [3,10], and model counters have seen wide applications in vari-
ous domains [1,2]. The Alloy toolset automatically translates the Alloy models
into propositional formulas that are fed into model counters to solve the count-
ing problems. Yang et al. [21] have presented AlloyMC that connects Alloy with
model counters. However, no prior work has used Alloy to count test orders.

We illustrate how Alloy makes it easy to handle even the most general case
of victims with polluters that may have different cleaners. We show a general
skeleton model to encode the problem of counting test orders; the skeleton can
be instantiated with the specific sets of polluters and cleaners. To evaluate cor-
rectness and scalability of our approach, we use 24 propositional formulas as our
benchmarks. The benchmarks consider a real scenario from the flaky test dataset
published by Wei et al. [20] with two polluters where one has a subset of cleaners
of the other. We instantiate our skeleton with an increasing number of cleaners.
We choose Alloy to translate this difficult problem into SAT formula, because
the Alloy analyzer employs the heavily optimized constraint solver Kodkod [19],
which efficiently translates Alloy specifications into simplified SAT formulas.
The SAT formulas can be counted using any off-the-shelf model counters. We
apply state-of-the-art model counters for both exact counting (ProjMC [12]) and
approximate counting (ApproxMC4 [18]).

The results show that the problem of counting test orders provides challeng-
ing propositional formulas for model counters. In addition, we found that the
exact counter generally runs faster than the approximate counter for all our
non-trivial benchmarks, which is a surprising result because it is unusual that
an exact model counter outperforms an approximate model counter [18].

In summary, this paper makes the following contributions:

– Encoding: We show how to encode the problem of test orders in Alloy.
– Evaluation: We evaluate our encoding on a number of challenging problems.

The initial results are promising but point out to scalability issues.
– Challenges: We obtain a number of interesting and challenging problems for

propositional model counters.

Initial Results on Counting Test Orders 125

Fig. 1. An example of modeling flaky test orders in Alloy

2 Modeling Flaky Test Orders Using Alloy

We illustrate our approach for modeling flaky test orders in Alloy using an exam-
ple. Through the example we also introduce the aspects of the Alloy language
required to understand the modeling. Figure 1 shows an example Alloy model
which encodes the problem of counting test orders.

We model the order of tests in a test suite using the Alloy library
util/ordering, which defines a linear order (line 1). The signature (sig) Test

declares a set of atoms that represent tests (line 2). The set of tests is parti-
tioned (using keyword extends) into three subsets: a singleton (one) set for the
victim (line 3), a set of cleaners (line 4), and a set of polluters (line 5). Note that
we do not model neutral tests which do not have any impact on the the victim,
because their presence has no impact on the flake rate. The field cleaners in
sig Polluter introduces a binary relation cleaners: Polluter x Cleaner to rep-
resent the matrix that relate polluters to cleaners (line 5). A fact introduces a
constraint that must be satisfied in all models; the stated fact uses relational
composition (‘.’) to require that the relational image of Polluter under the

126 W. Wang et al.

relation cleaners equals the set of all cleaners, i.e., models have no extraneous
cleaners (line 6).

A predicate (pred) introduces a parameterized formula that can be invoked
elsewhere. The predicate Pollutes enforces two constraints on its parameter p

that is a polluter (lines 7–9). One, p appears before the victim in the test order;
prevs[i] (likewise, nexts[i]) is a library function that represents the set of atoms
in the linear order before (likewise, after) i, and in is the subset operator. Two,
no cleaner for p is between p and the victim; the quantifier no is the negation
of existential quantifier some, and ‘&’ is set intersection. A vertical bar “—”
indicates the start of a sequence of constraints. The predicate Fail defines the
failing test order using the existential quantification: there is some atom in the
set of polluters such that it pollutes (lines 10–12). The additional constraint
(line 12) requires that p be the last such test before the victim, which rules out
duplicate solutions where the difference is not based on the test order but based
on which polluter is a witness to failure. (More formally, this constraint ignores
from the model the new variable arising from Skolemization.) The predicate Pass

defines the passing test order as the negation of the constraints for failing test
order (lines 13–14). We also evaluate the predicate Pass2 that defines another
encoding for the passing test order, stating more directly that all polluters before
the victim have a cleaner between the polluter and the victim; we expect this
encoding to enable faster model counting.

The test suites in a general model contain 1 victim, n polluters, and k clean-
ers. Figure 1 (lines 18–22) shows one example containing 2 polluters and 3 clean-
ers. The Matrix (fact) states the cleaners for each polluter. In this example,
polluter p 1 has two cleaners c 1 and c 2, and polluter p 2 has three cleaners
c 1, c 2, and c 3. We can change the number of polluters and cleaners simply
by changing the declarations in lines 18–19, and change the relations between
polluters and cleaners by changing the Matrix. The run command defines the
constraint-solving problem, which is to solve the predicate Fail/Pass/Pass2 sub-
ject to all applicable constraints on the sets and relations declared in the Alloy
model (lines 23–25). Each model represents one test order, and counting the
number of models thus counts the number of test orders.

3 Experimental Evaluation

Fig. 2. The template for our benchmark generation

Initial Results on Counting Test Orders 127

Table 1. Counting results of our benchmarks (‘-’ denotes not applicable)

Benchmarks ProjMC ApproxMC

Time Count Time Count Error (%)

k = 1, Fail 0.01 15 0.00 15 0.00

k = 2, Fail 0.02 56 0.01 56 0.00

k = 3, Fail 0.09 270 0.21 260 3.85

k = 4, Fail 0.87 1800 1.22 1856 3.11

k = 5, Fail 6.79 12096 15.27 13056 7.94

k = 6, Fail 93.21 104832 204.67 110592 5.49

k = 7, Fail 937.31 907200 1040.32 884736 2.54

k = 1, Pass 0.01 9 0.00 9 0.00

k = 2, Pass 0.02 64 0.01 64 0.00

k = 3, Pass 0.13 450 0.45 496 10.22

k = 4, Pass 1.23 3240 5.21 3456 6.67

k = 5, Pass 13.71 28224 72.8 31744 12.47

k = 6, Pass 256.93 258048 547.6 278528 7.94

k = 7, Pass 3197.09 2721600 >5000 – –

k = 1, Pass2 0.01 9 0.00 9 0.00

k = 2, Pass2 0.02 64 0.01 64 0.00

k = 3, Pass2 0.14 450 0.44 496 10.22

k = 4, Pass2 1.22 3240 4.74 3456 6.67

k = 5, Pass2 12.33 28224 80.05 31744 12.47

k = 6, Pass2 217.80 258048 555.24 278528 7.94

k = 7, Pass2 2905.76 2721600 4700.48 2359296 15.36

3.1 Setup

Model Counters. We study how both exact model counting and approx-
imate model counting perform on the generated propositional formulas. We
apply ProjMC [12], which is the state-of-the-art exact model counter, and
ApproxMC4 [18], which is the state-of-the-art approximate model counter.

Benchmarks. As our benchmark, we want to generate propositional formu-
las for Fail, Pass, and Pass2 predicates introduced in the above Alloy model
(Fig. 1) with various test combinations. To do so, we replace lines 18–22 of our
Alloy model with a simple template shown in Fig. 2. The template introduces 2
polluters and k cleaners: the first polluter has half of all cleaners as its cleaners,
and the second polluter has all the cleaners as its cleaners. In our experiments,
we range k from 1 to 8, generating 8 propositional formulas for each predicate.
In total, we generate 24 benchmarks for our evaluation. We choose to use this
template because it is the most complicated case that exists in the real-world

128 W. Wang et al.

flaky test dataset published by Wei et al. [20]. Therefore, we think it represents
the most complicated model we can encounter in a real-life setting.

Metrics. The two key metrics we use in our evaluation are the model counts and
the actual wall time to compute them. In line with ApproxMC, we report the
error rate of the approximate model counting as max(approxexact ,

exact
approx) − 1, based

on multiplicative guarantees. We use timeout of 5000 s, as commonly done in
work on model counting [18].

Platform. All the experiments are conducted on a machine with Intel Core
i7-8700k CPU (12 logical cores in total) and 32-GB RAM.

3.2 Results

We apply both model counters on all the generated propositional formulas (with
k ranging from 1 to 8) for all the three predicates (i.e., Fail, Pass, and Pass2).
Our experimental results show that the limit of ProjMC for all three predicates
is k = 7; the limit of ApproxMC for Fail and Pass2 is k = 7 and for Pass is k = 6.
Thus, the propositional formulas generated with our Alloy model are generally
difficult, providing a challenging dataset for future work on model counters. For
formulas in many other domains, model counters can handle orders of magnitude
more models [18]. For formulas in many other domains, model counters can
handle many more models with orders of magnitude [18].

The detailed results of the benchmarks encoding all the three predicates with
k up to 7 are shown in Table 1. Our results provide a way to sanity check the
correctness of our proposed Alloy model: the exact counts of Pass/Pass2 should
be the same, and the sum of the exact count of Fail and the exact count of
Pass/Pass2 should be the total number of permutations of all the tests (i.e., k
cleaners, 2 polluters, and 1 victim), i.e., (k+3)!. With the exact counts reported
by ProjMC, we confirm that our proposed model passes the sanity check. We
also manually check that correct models (not just count) are generated for k = 1.

Moreover, the results show that ProjMC generally runs faster than
ApproxMC for all the non-trivial benchmarks (where k ≥ 3), which is quite
a surprising result. It is unusual that an exact model counter outperforms an
approximate model counter. Hence, our non-trivial benchmarks pose additional
value for model counting community. Our intuitive explanation for this phe-
nomenon is that the problem of counting the test orders for order dependent
flaky tests is generally hard and has little space for the optimization, which
may not favor the fancy tricks operated by the approximate model counters as
ApproxMC. We also did some preliminary experiments using the SAT encoding,
this phenomenon still exists. Therefore, we do not think it is the encoding Alloy
provides that causes this interesting results. Besides, we can also observe that
ApproxMC sometimes over-approximates and sometimes under-approximates,
with the error rate ranging from 0.00% to 15.36%; interestingly, ApproxMC
approximates with lower error for the Fail predicate than for the Pass/Pass2
predicates. Lastly, the results show that the Pass predicate is easier for both

Initial Results on Counting Test Orders 129

counters to solve, compared to the Pass2 predicate. Therefore, we confirm that
different encoding for the same problem can result in different counting efficiency.

4 Conclusions

This paper presents a general way of encoding the problem of counting flaky test
orders using the Alloy modeling language. We illustrate how Alloy makes it easy
to handle even the most general case of victims with polluters that have different
cleaners. We provide a general skeleton Alloy model that can be instantiated
with the specific sets of polluters and cleaners. To evaluate our encoding, we
generate 24 problems with various test combinations of different sizes. The results
show that our Alloy encoding provides interesting and challenging propositional
formulas that can be a useful resource to advance development of the state-of-
the-art model counters.

Our future work is to evaluate more encodings of passing and failing test
orders to try to improve scalability of the approach. We hope that we can push
the approach to k = 10. Such values would cover many real cases [20] and also
provide inspiration to develop analytical formulas for the number of test orders.

Acknowledgment. We thank Wing Lam and Anjiang Wei for discussions on counting
test orders. This work was partially supported by NSF grants CCF-1763788. We also
acknowledge support for research on flaky tests from Facebook and Google.

References

1. Aydin, A., Bang, L., Bultan, T.: Automata-based model counting for string con-
straints. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015, Part I. LNCS, vol.
9206, pp. 255–272. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21690-4 15

2. Bacchus, F., Dalmao, S., Pitassi, T.: Algorithms and complexity results for # SAT
and Bayesian inference. In: FOCS (2003)

3. Büttner, F., Egea, M., Cabot, J., Gogolla, M.: Verification of ATL transformations
using transformation models and model finders. In: Aoki, T., Taguchi, K. (eds.)
ICFEM 2012. LNCS, vol. 7635, pp. 198–213. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-34281-3 16

4. Google: Avoiding flakey tests (2008). http://googletesting.blogspot.com/2008/04/
tott-avoiding-flakey-tests.html

5. Harman, M., O’Hearn, P.: From start-ups to scale-ups: opportunities and open
problems for static and dynamic program analysis. In: SCAM (2018)

6. Herzig, K., Greiler, M., Czerwonka, J., Murphy, B.: The art of testing less without
sacrificing quality. In: ICSE (2015)

7. Herzig, K., Nagappan, N.: Empirically detecting false test alarms using association
rules. In: ICSE (2015)

8. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT
Press, Cambridge (2006)

9. Jiang, H., Li, X., Yang, Z., Xuan, J.: What causes my test alarm? Automatic cause
analysis for test alarms in system and integration testing. In: ICSE (2017)

https://doi.org/10.1007/978-3-319-21690-4_15
https://doi.org/10.1007/978-3-319-21690-4_15
https://doi.org/10.1007/978-3-642-34281-3_16
https://doi.org/10.1007/978-3-642-34281-3_16
http://googletesting.blogspot.com/2008/04/tott-avoiding-flakey-tests.html
http://googletesting.blogspot.com/2008/04/tott-avoiding-flakey-tests.html

130 W. Wang et al.

10. Kang, E., Jackson, D.: Formal modeling and analysis of a flash filesystem in alloy.
In: Börger, E., Butler, M., Bowen, J.P., Boca, P. (eds.) ABZ 2008. LNCS, vol.
5238, pp. 294–308. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-87603-8 23

11. Kowalczyk, E., Nair, K., Gao, Z., Silberstein, L., Long, T., Memon, A.: Modeling
and ranking flaky tests at Apple. In: ICSE-SEIP (2020)

12. Lagniez, J.-M., Marquis, P.: A recursive algorithm for projected model counting.
In: AAAI, vol. 33, pp. 1536–1543 (2019)

13. Lam, W., Godefroid, P., Nath, S., Santhiar, A., Thummalapenta, S.: Root causing
flaky tests in a large-scale industrial setting. In: ISSTA (2019)

14. Lam, W., Muşlu, K., Sajnani, H., Thummalapenta, S.: A study on the lifecycle of
flaky tests. In: ICSE (2020)

15. Luo, Q., Hariri, F., Eloussi, L., Marinov, D.: An empirical analysis of flaky tests.
In: FSE (2014)

16. Memon, A., Gao, Z., Nguyen, B., Dhanda, S., Siemborski, R., Micco, J.: Taming
Google-scale continuous testing. In: ICSE-SEIP, Eric Nickell (2017)

17. Shi, A., Lam, W., Oei, R., Xie, T., Marinov, D.: iFixFlakies: a framework for
automatically fixing order-dependent flaky tests. In: FSE (2019)

18. Soos, M., Gocht, S., Meel, K.S.: Tinted, detached, and lazy CNF-XOR SOLVING
and its applications to counting and sampling. In: Lahiri, S.K., Wang, C. (eds.)
CAV 2020, Part I. LNCS, vol. 12224, pp. 463–484. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-53288-8 22

19. Torlak, E., Jackson, D.: Kodkod: a relational model finder. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-71209-1 49

20. Wei, A., Yi, P., Xie, T., Marinov, D., Lam, W.: Probabilistic and systematic cov-
erage of consecutive test-method pairs for detecting order-dependent flaky tests.
In: TACAS 2021, Part I. LNCS, vol. 12651, pp. 270–287. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-72016-2 15

21. Yang, J., Wang, W., Marinov, D., Khurshid, S.: Alloy meets model counting. In:
FSE, AlloyMC (2020)

22. Ziftci, C., Reardon. J.: Who broke the build? Automatically identifying changes
that induce test failures in continuous integration at Google scale. In: ICSE (2017)

https://doi.org/10.1007/978-3-540-87603-8_23
https://doi.org/10.1007/978-3-540-87603-8_23
https://doi.org/10.1007/978-3-030-53288-8_22
https://doi.org/10.1007/978-3-030-53288-8_22
https://doi.org/10.1007/978-3-540-71209-1_49
https://doi.org/10.1007/978-3-030-72016-2_15

Metamorphic Testing of Logic Theorem
Prover

Oliver A. Tazl and Franz Wotawa(B)

Institute for Software Technology, Graz University of Technology, Graz, Austria
{oliver.tazl,wotawa}@ist.tugraz.at

Abstract. The use of Artificial Intelligence methodologies including
machine learning for object recognition and other tasks as well as reason-
ing has recently gained more attention. This is due to the fact of applica-
tions like autonomous driving but also apps for providing recommenda-
tions or schedules. In this paper, we focus on testing applications utilizing
logic theorem proving for implementing their functionalities. Testing logic
theorem prover is important in order to assure that the obtained results
are correct and complete as specified. We show how metamorphic testing
can be used in this context. In particular, the proposed method takes a
logic sentence and modifies it without changing its logical status, i.e., sat-
isfiability. The testing method can be applied to assure the correctness of
reasoning via generating logic sentences of arbitrary sizes, but also for per-
formance testing. We applied the presented testing method to 2 different
theorem provers and report on obtained results.

Keywords: Test automation · Theorem prover testing · Metamorphic
testing · Test case generation

1 Introduction

With the increasing interest in Artificial Intelligence (AI) and its sub-fields like
machine learning (ML) or knowledge-based reasoning (KBR), there is a need for
assuring that the implemented AI meets its requirements. This allows for gaining
trust in the implementation, which is the basis for successful and widely used
applications. For example, let us consider a decision support system for medical
doctors to be used in diagnostics. In any case, such a system must deliver a
reasonable diagnosis that does not harm the patient. Or let us have a look at a

ArchitectECA2030 receives funding within the Electronic Components and Systems For
European Leadership Joint Undertaking (ESCEL JU) in collaboration with the Euro-
pean Union’s Horizon2020 Framework Programme and National Authorities, under
grant agreement n◦ 877539. The work was partially funded by the Austrian Federal
Ministry of Climate Action, Environment, Energy, Mobility, Innovation and Technol-
ogy (BMK) under the program “ICT of the Future” project 877587.

c© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
D. Clark et al. (Eds.): ICTSS 2021, LNCS 13045, pp. 131–137, 2022.
https://doi.org/10.1007/978-3-031-04673-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04673-5_10&domain=pdf
http://orcid.org/0000-0002-3251-2233
http://orcid.org/0000-0002-0462-2283
https://doi.org/10.1007/978-3-031-04673-5_10

132 O. A. Tazl and F. Wotawa

car equipped with a diagnosis system that can adapt the vehicle’s behavior for
compensating a fault. A wrong diagnosis result, in this case, may cause severe
danger for the car’s passengers or other cars in close proximity. In any of these
cases, we have to assure that the AI part is working as expected without any
doubt.

In this paper, we contribute to testing AI-based systems focusing on KBR,
which relies on theorem proving. KBR has been successfully used for various
applications including recommender systems [5,6], to expert systems [11], and
diagnosis [3,12]. In particular, we introduce the application of metamorphic test-
ing [1,2] for generating tests in the context of theorem proving. In metamorphic
testing relations between two inputs are used to identify the correctness of an
implementation. For example, it is well known that sin(x) = sin(x + 2π) holds
for all values of x. Such metamorphic relations can be used as properties that
must always hold, i.e., to work as test oracles, or for generating new test cases.
Once, we know that the value of sin(x) is y, we can generate a new test case
using x + 2π as input and y as expected output.

The proposed metamorphic testing approach applied to theorem proving
makes use of the following underlying idea. If we have a theory Th, i.e., a logic
sentence representing knowledge, then we only need to apply change operators
that do not influence the status of the theory. In logic, every sentence can be
either satisfiable, i.e., there is an interpretation making the sentence true, or con-
tradicting, i.e., there is no such interpretation. Let us discuss the idea using the
following sentence: “It is raining, and if it is raining, then the streets are wet.”.
Obviously, this sentence is satisfiable. If we assume that it is raining and the
streets are wet, the sentence must be true. When adding “If it is raining, then
it is raining.”, the whole theory comprising both sentences is still satisfiable.

In case of a contradiction, we observe the same outcome. When adding “If it is
raining, then it is raining.” to the sentence “It is raining, and if it is raining, then
the streets are wet, and the streets are not wet”, which is obviously leading to a
contradiction, the resulting sentence is still not satisfiable, i.e., in contradiction.
Hence, this modification has no influence on the logic characterization of the
given theory. This idea can be used to come up with new test cases, i.e., theories
we want to check using a theorem prover. We only need to apply modifications
to a given sentences that are neutral with respect to the logic characterization.

The use of metamorphic testing in the domain of theorem prover testing is
not new. Wotawa [13] introduce the use of metamorphic testing in combination
with combinatorial testing [8,9] for checking that the theorem prover’s computed
result is not depending on the sequence of sentences added, e.g., that when
adding “it is raining” before adding “if it is raining, then the streets are wet.”
to the theorem prover delivers the same outcome than when adding the last
sentence first. This objective is different from ours where we want to extend any
logic theory such that we obtain new test cases. Using this approach, we are
able to check for faults that would only be visible when making use of large
logic theories, which are hard to obtain in practice. In addition, such theories
can be used for other purposes like testing the performance of theorem prover
implementations as a function of the size of the theory.

Metamorphic Testing of Logic Theorem Prover 133

This paper is organized as follows: In Sect. 2, we discuss the foundations
behind theorem proving focusing on propositional horn clause logic. Afterwards,
we summarize our approach and introduce the underlying modification rules
in Sect. 3. This is followed by a discussion regarding results obtained from an
initial experimental evaluation in Sect. 4. Finally, we summarize the content of
this paper.

2 Basic Foundations

To be self-contained, we briefly outline the underlying foundations behind logic
and metamorphic testing. In case of logic, we restrict our view to propositional
horn clause logic (PHCL). In propositional logic atomic entities are proposi-
tions that represent some information like “The streets are wet” that is either
true or false in a particular world. In addition to propositions, we have opera-
tors like negation (¬), conjunction (∧, i.e., logic and), disjunction (∨, i.e., logic
or), implications (→), or equivalence (↔) to combine propositions for coming
up with logic sentences. For example, using propositional logic, we are able to
formalize English sentences like “If it is raining, then the streets are wet” as
follows: raining → wet streets, where raining and wet streets are propositions
representing “it is raining” and “the streets are wet” respectively.

We now formally, define PHCL, where we only consider set of facts and rules.
A PHCL is a tuple (P, Th) where P is a finite set of propositions, and Th a finite
set of facts and rules defined as follows:

1. If p ∈ P is element of Th, then p is a fact, i.e., a proposition that is always
true.

2. If p1, . . . , pn+1 ∈ P , then any rule in Th is either of the form p1 ∧ . . . ∧ pn →
pn+1 or p1 ∧ . . . ∧ pn → ⊥, where ⊥ represents the contradiction, i.e., a
proposition that is always false. Note that ⊥ is not element of P .

We now formally define inference for a particular PHCL (P, Th). In partic-
ular, we want to infer a proposition in P from the theory Th. For this purpose,
we use the following inference rule. If p1, . . . , pn are facts, i.e., p1, . . . , pn ∈ Th,
and p1 ∧ . . . ∧ pn → p ∈ Th where p ∈ P or p ≡ ⊥, then we can infer p from the
theory Th. In this case, we write Th 	 p. In order to infer all possible facts, we
have to apply 	 on Th, add the inferred fact to Th and continue the process until
no more facts can be derived. This can be expressed using the fix-point equation
Th = Th∪{p|Th 	 p, p ∈ P ∪{⊥}}. Note that there must be a fix-point because
P is finite. This fix-point has also to be unique, because we consider all possible
inferences.

In the following we call the fix-point I(Th). If ⊥ ∈ I(Th) we call Th to be
contradictory. Otherwise, Th is satisfiable. Furthermore, we introduce a function
facts mapping fix-points to the set comprising all propositions or ⊥ that can
be inferred. Note that from here on, we write Th 	 p if p ∈ facts(I(Th)) for
simplification.

134 O. A. Tazl and F. Wotawa

x P

P ∪ {x}, Th ∪ {x} (1)

x ∈ Th

P, Th ∪ {x → x} (2)

r = (p1 ∧ . . . ∧ pi ∧ . . . ∧ pj ∧ . . . ∧ pn → pn+1) ∈ Th ∧ 1 ≤ i < j ≤ n

P, Th \ {r} ∪ {p1 ∧ . . . ∧ pj ∧ . . . ∧ pi ∧ . . . ∧ pn → pn+1} (3)

x ∈ Th ∧ r = (p1 ∧ . . . ∧ pn → pn+1) ∈ Th ∧ ∀i ∈ {1, . . . , n+ 1}x = pi
P, Th \ {r} ∪ {x ∧ p1 ∧ . . . ∧ pn → pn+1} (4)

x P ∧ r = (p1 ∧ . . . ∧ pn → pn+1) ∈ Th

P ∪ {x}, Th \ {r} ∪ {p1 ∧ . . . ∧ pn → x, x → pn+1} (5)

x, y P ∧ r = (p1 ∧ . . . ∧ pn → pn+1) ∈ Th ∧ 1 < k < n

P ∪ {x, y}, Th \ {r} ∪
⎧
⎨

⎩

p1 ∧ . . . ∧ pk → x
pk+1 ∧ . . . ∧ pn → y

x ∧ y → pn+1

⎫
⎬

⎭

(6)

Fig. 1. The modification rules for propositional theories.

Using the definition inference and the PHCL ({raining, wet streets},
{raining, raining → wet streets}), we are able to compute the fix-
point I = {raining, raining → wet streets, wet streets} and the facts
{raining, wet streets} that can be inferred.

Note that there are many algorithms available for checking satisfiability of
general theories, which is known to be NP-complete, e.g., the famous Davis-
Putnam-Logemann-Loveland (DPLL) algorithm [4]. For the restricted proposi-
tional horn clause logic, it is worth mentioning Minoux’s algorithm [10], which
has a linear runtime.

3 Metamorphic Theorem Prover Testing

As outlined in the previous section, a theorem prover takes a logic theory like a
PHCL (P, Th) and answers the question whether Th is contradictory or satisfi-
able, i.e., Th 	 ⊥ or Th �	 ⊥ respectively. In order to test a theorem prover using
metamorphic testing, we have to define metamorphic relations for theories. In
particular, we are interested in changing the theory, e.g., adding or modifying
facts or rule, such that the computed outcome, i.e., being able to derive ⊥ or
not, should not be changed.

Hence, we want to have (P ′, Th′) obtained from (P, Th) such that Th′ 	 ⊥
if and only if Th 	 ⊥. In the following, we discuss some rules modifying the set
of propositions and theories, where this metamorphic relation holds.

In Fig. 1 we summarize the modification rules. Modification Rule 1 formalizes
adding new facts to the theory. For this purpose a new proposition is generated,

Metamorphic Testing of Logic Theorem Prover 135

and added to P and Th. In modification rule 2 a given fact x is chosen, and a
rule x → x is added. Obviously, x → x does not change the status of the theory,
which is either contradiction or satisfiability. Modification rule 3 is introduced for
stating that arbitrary propositions occurring left from → can be interchanged,
i.e., the order of propositions on the left side of a rule does not influence inference.

Modification rule 4 introduces the case of adding a new fact to the left side
of a rule. Obviously, when adding a fact, we do not change the inference abilities
of a rule. A similar modification rule is 5, where we add a new proposition x and
use it to separate one rule into two. Again because of construction this does not
change the ability to infer pn+1. The final modification rule 6 is an extension
considering the separation of one rule into three rules. Because the propositions
x and y are required to be new, the inference of pn+1 is not influenced.

It is worth noting, that the modification rules change the proposition set and
the theory. Therefore, they change the set of facts to be able to be derived. But
the modification rules do not change the ability to derive ⊥.

After the definition of the metamorphic relations, we iterate to the next
two steps of a metamorphic testing approach, namely test generation and test
execution. Therefore, we use the algorithm MMTTP as shown in Algorithm 1.
This algorithm implements our whole test generation and execution approach.
The process starts with an initially empty test suite and executes the unmodi-
fied logic theory against the system under test (SUT), i.e., the theorem prover
implementation. The result of this execution is then recorded and functions as
the reference output we rely on later. Next, the process selects a metamorphic
relation from the available set and applies it to the theory. This theory is exe-
cuted and its result is compared to the result of the initial theory. In case of a
divergent result, the newly created theory is stored in the test suite. Otherwise,

Algorithm 1. MMTTP (Ops,Th)
Require: A set of modification operators Ops (i.e., metamorphic relations), and a

logic theory Th.
Ensure: A test suite comprising a set of theories that are considered failing test cases.

1: Let TS be the empty set.
2: Call TP(Th) and store the result in r.
3: repeat
4: Let o be any modification operator (randomly) selected from Ops.
5: Let Th′ = o(Th).
6: Call TP(Th′) and store the result in r′.
7: if r �= r′ then
8: Add Th′ to TS
9: end if

10: Let Th = Th′

11: until A stop criterion SC is fulfilled
12: return TS

136 O. A. Tazl and F. Wotawa

this theory becomes the basis for the next iteration of the process. The process
is iterated until a stop criterion SC is fulfilled.

For our experiments the defined stop criterion is a counter of the applied rela-
tions on the initial theory. After the repetitions, the process ends and provides
the theories with divergent results. This algorithm is used in our experiments.
In the next section, we discuss the obtain evaluation results.

4 Experimental Evaluation

In this section, we report on an initial evaluation of the proposed metamorphic
testing approach for theorem provers. We evaluated the approach using two dif-
ferent logic theorem provers. The first prover is a propositional logic theorem
prover (PLTP) (implementing the algorithm of Minoux [10]), and the second
one is an assumption-based truth maintenance system (ATMS) [7]. Both imple-
mentations are using Java as their programming language.

The implementations were executed on the AdoptJDK 16.0.1+9 Hotspot
JVM. All results of this study were obtained on an Apple MacBook Pro (2016)
with a 2.6 GHz Intel i7 Quad-Core processor and 16 GB RAM running macOS
Big Sur 11.4. For testing both theorem provers we used five different base test
cases of varying complexities. We used an implementation of the MMTTP
algorithm and the metamorphic relations described previously for the initial
experimental evaluation. As a stop criterion, we used 1,000 as the maximum
number of iterations.

For the two theorem provers, we obtained the following results of metamor-
phic testing:

– Both theorem prover implementations did not respond unexpectedly. Hence,
we were not able to generate failing test cases in this study.

– The only limitation, we faced when carrying out the evaluation, was a stack
overflow that was caused by the recursive nature of the implementations.

Hence, the experimental evaluation showed that the presented metamorphic
testing approach can be applied to theorem prover testing. The reason for not
being able to detect faults in the two implementations may be due to the simplic-
ity of the implementations. However, we also showed that metamorphic testing
in could find runtime limitations in the theorem provers. Hence, metamorphic
testing of theorem provers might be used for testing the performance and robust-
ness.

5 Conclusions

In this paper, we addressed the topic of testing logic theorem provers. For this
purpose, we introduced a metamorphic testing approach that allows generating
modifications of logic sentences that do not change the logic state of the sentence
to be passed to the theorem prover. Furthermore, we discussed the outcome of an

Metamorphic Testing of Logic Theorem Prover 137

initial experimental evaluation showing the applicability of metamorphic testing
for theorem provers. Future research will include extending the study to cover
other more complex theorem provers and constraint solvers.

References

1. Chen, T., Cheung, S., Yiu, S.: Metamorphic Testing: A New Approach for Gener-
ating Next Test Cases (1998)

2. Chen, T., Feng, J., Tse, T.: Metamorphic testing of programs on partial differ-
ential equations: a case study. In: Proceedings of the 26th Annual International
Computer Software and Applications Conference (COMPSAC 2002), pp. 327–333.
IEEE Computer Society, Los Alamitos, CA (2002)

3. Christopher S. Gray, Roxane Koitz, S.P., Wotawa, F.: An abductive diagnosis
and modeling concept for wind power plants. In: 9th IFAC Symposium on Fault
Detection, Supervision and Safety of Technical Processes (2015)

4. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Commun. ACM 5(7), 394–397 (1962). https://doi.org/10.1145/368273.368557

5. Felfernig, A., Friedrich, G., Jannach, D., Zanker, M.: An integrated environment
for the development of knowledge-based recommender applications. Int. J. Electr.
Commer. (IJEC) 11(2), 11–34 (2006)

6. Felfernig, A., Friedrich, G., Jannach, D., Stumptner, M.: An integrated develop-
ment environment for the design and maintenance of large configuration knowledge
bases. In: Proceedings Artificial Intelligence in Design. Kluwer Academic Publish-
ers, Worcester MA (2000)

7. de Kleer, J.: An assumption-based TMS. Artif. Intell. 28, 127–162 (1986)
8. Kuhn, D.R., Bryce, R., Duan, F., Ghandehari, L.S., Lei, Y., Kacker, R.N.: Combi-

natorial testing: theory and practice. In: Advances in Computers, vol. 99, pp. 1–66
(2015)

9. Kuhn, D., Kacker, R., Lei, Y.: Introduction to Combinatorial Testing. Chapman &
Hall/CRC Innovations in Software Engineering and Software Development Series,
Taylor & Francis (2013)

10. Minoux, M.: LTUR: a simplified linear-time unit resolution algorithm for horn
formulae and computer implementation. Inf. Process. Lett. 29, 1–12 (1988)

11. Plant, R.T.: Expert system development and testing: a knowledge engineer’s per-
spective. J. Syst. Softw. 19(2), 141–146 (1992)

12. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95
(1987)

13. Wotawa, F.: Combining combinatorial testing and metamorphic testing for testing
a logic-based non-monotonic reasoning system. In: Proceedings of the International
Workshop on Combinatorial Testing (IWCT) (2018)

https://doi.org/10.1145/368273.368557

AI-based Techniques

Creation of Human-friendly Videos
for Debugging Automated GUI-Tests

Jianwei Shi(B) and Kurt Schneider

Software Engineering, Leibniz University Hannover, 30167 Hannover, Germany
{jianwei.shi,kurt.schneider}@inf.uni-hannover.de

Abstract. Test automation can save time and identify failed test cases
instantly. However, these test cases run like a robot over Graphical User
Interface (GUI). Hence, it is difficult for test engineers to locate defects
precisely and quickly by using test automation software.

The following disadvantages of robot-like replay are observed in auto-
mated GUI-tests: (1) The mouse-pointer does not move continually;
(2) Interactions of certain GUI elements are not triggered; (3) The user
view changes abruptly without smooth transition. All this may distract
human attention and make debugging a time-consuming task.

For tackling this problem, this paper proposes to create human-
friendly videos for replaying automated tests. In these videos, the GUI
elements in interaction are highlighted. Our tool provides an intuitive
GUI to replay a video step by step. We believe that this automated
video creation and playback technique can make defect identification
easier than manual replay of original test cases.

Keywords: Video · GUI test · Debugging

1 Introduction

Testing is vital for successful software projects. Software testing has been dis-
cussed as a software engineering principle since the NATO Science Conference [9].
Tests detect defects before customers find them. In failed tests, the identification
and removal of faults reduce the risk of low customer acceptance.

In recent years, GUI testing and test automation have become popular topics
in the academy and industry. According to a literature review of Banerjee et al.
[1], three articles about GUI Testing have been published every three years on
average from 2003 to 2011. Furthermore, Kasurinen et al. [3] have interviewed
organisations and concluded that test automation was most widely used in qual-
ity control and quality assurance.

However, there have been challenges in GUI testing. Back to 1997, a workshop
on software testing was organised by Kaner [2]. He has summarised that (1) one
reason for failures of automation roll-out plan is using capture/playback for
creating test cases; (2) straight replay of test cases can only cover a low range

c© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
D. Clark et al. (Eds.): ICTSS 2021, LNCS 13045, pp. 141–147, 2022.
https://doi.org/10.1007/978-3-031-04673-5_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04673-5_11&domain=pdf
http://orcid.org/0000-0001-6228-2478
http://orcid.org/0000-0002-7456-8323
https://doi.org/10.1007/978-3-031-04673-5_11

142 J. Shi and K. Schneider

of defects; (3) the ability of logging the test execution is needed. For (3), there
are similar opinions in the new century. Memon [4] has suggested to generate
expected output which includes screen snapshots, window positions and titles.
In a bug reporting context, Zimmermann et al. [12] have claimed that steps to
reproduce errors are important.

Sadly, these challenges are still not completely solved, to our best knowledge.
In our previous work [10,11], we have proposed video as a documentation for
logging automated GUI tests. This paper updates our approach in video creation
and makes contribution for replay.

The structure of this paper is as follows. Technical disadvantages in replay are
investigated in state-of-the-art test automation tools in Sect. 2. The next section
lists relevant literature for advanced capture and replay. Section 4 proposes our
approach of video creation and replay techniques. The last section concludes and
ends with outlook.

2 Investigation of Robot-Like Replay

In order to investigate replay behaviours of automated GUI-Test, test cases are
designed and run on a web application SynchroPC. It is a platform for reviewing
papers in context of an online Program Committee meeting. Two test cases are
designed: select timezone and create agenda.

For the proposed test cases, two test automation tools (Selenium and
UiPath) are chosen. Selenium is an open source software for test automation in
browsers. We chose two variants for investigation: Selenium IDE1 and Selenium
WebDriver2. UiPath is a Robotic Process Automation (RPA) software suite. RPA
means that the robot can interact with digital systems just as human being.
According to reports for RPA3, UiPath is one of the leading software in the indus-
try. The product suite contains Task Capture, Studio, Orchestrator, etc. For our
context, UiPath Studio4 is investigated, which can automate interactions with
browser.

Test scripts are generated by recording test steps, according to the descriptions
of test cases. After that, test scripts are adapted on chosen test automation tools.

The following three aspects have been observed by executing test cases: (1) If
the mouse pointer moves continually; (2) If interaction of a drop down menu is
shown; (3) If the view is continually changed during test run. Table 1 gives a
summary of results. We describe and discuss results for aspects 1 and 3 in detail.

Aspect 1: In test automation software, the position of the mouse-pointer can
be set, e.g., by using function moveToElement in Selenium. In the real test case
development, this extra setting does not have to be implemented for finding

1 Version 3.17.0, as Google Chrome extension.
2 Version 3.141.0, as pip package.
3 Reports are available upon request on https://www.uipath.com/resources/automa

tion-analyst-reports, last accessed 06-Jan-2021.
4 Version 2020.10.2: Enterprise Trial License, as Windows application.

https://www.uipath.com/resources/automation-analyst-reports
https://www.uipath.com/resources/automation-analyst-reports

Creation of Human-friendly Videos for Debugging Automated GUI-Tests 143

Table 1. Results for replay in test automation tools

Selenium
IDE

Selenium
WebDriver

UiPath
Studio

(1) continuation of mouse movement No No Partly

(2) drop-down interaction No Yes Yes

(3) continuation of view changes No No No

faults. Hence, we have investigated aspect 1 without explicitly setting mouse
position. On UiPath Studio, mouse-pointer was partly moved in test run, but
it is not exactly located on the triggered GUI element. Without continuous mouse
movement, the triggered GUI element may be difficult to find in replay.

Aspect 3: It is observed that the user view changes suddenly without smooth
transaction in test runs. This phenomena can be observed clearly by replaying
test case 2. In test case 2, there are three subsequent actions: (1) Selecting papers
from paper list, (2) Entering values in enter fields and (3) Clicking a button. All
these actions are run on a web page, which contains a long paper list. The button
in action 3 is not visible on the first view and can be reached by scrolling down.
In automated test run, the view was firstly on the top part of the page and then
suddenly moved to position where the button is very near to the bottom edge of
the visible web page. The observed abrupt view change cannot tell test engineers
necessary context information, i.e., the selected papers in test case 2.

3 Related Work

To solve the mentioned issues in testing, possible solutions using videos have
been proposed. For finding causes of failures in test script, our previous work [10]
provides a solution: video as a documentation for GUI tests. An approach for
creating videos based on test execution has been introduced. During execution of
a test case, actions were recorded only if there was change in visible screen, which
is called output-driven screen capturing. In parallel, a matching relationship
between test code and action was created. This capturing method requires less
memory resource over traditional screen capturing method. Lastly, a side-by-side
viewer was used to replay the actions and corresponding line in test code. In this
work [10], we have concluded that tailored video-documentation helps to debug
GUI tests by applying this approach in a company and conducting a subsequent
survey.

Similar to video-medium for replaying test cases, Nass et al. [8] have defined
Augmented Testing (AT) as “testing the System Under Test (SUT) through an
Augmented GUI, which contains superimposed information on top of the SUT
GUI.” Text-boxes and rectangles have been augmented on the real GUI. These
additional information can give hints for current action (Superimposing) and
suggestions for next action (Observing), which are two core concepts of AT.

144 J. Shi and K. Schneider

In an earlier paper from Nass et al. [7], they have explained technical details
about this AT tool. Test actions are firstly conducted by tester and captured.
By replaying test sessions, the tool highlights possible next actions. These next
actions can be automatically triggered or selected from the tester. Comments,
such as textual information, can be added by the tester any time to make test
step more understandable.

In comparison with the tool from Nass et al. [7], our work has the following
novelties: (1) Our tool can capture test by replaying already existing test cases,
without extra human labour; (2) While Nass et al. focus on designing and captur-
ing GUI tests, we will investigate how to replay GUI tests for efficient debugging;
(3) In AT, human interactions (e.g., choose manual or automatic mode, add com-
ment) are required [7]. Our replay tool provides simpler interaction possibilities:
go to next or previous action, move to a certain action, play, and pause. These
interactions are intuitive, just as the ones in a video replay tool.

4 Approach

We have updated our tool ScreenTracer, which has been introduced in our
previous work [10]. We have enhanced video creation and replay techniques.
The workflow is illustrated in Fig. 1 as an UML activity diagram. In comparison
with the workflow in our previous versions of ScreenTracer [11], we have used
asynchronous programming to ensure live capturing and added a mechanism to
make replay human-friendly.

Fig. 1. The novel workflow in the new version of ScreenTracer

Creation of Human-friendly Videos for Debugging Automated GUI-Tests 145

Our previous work [11] found some screen changes were not exactly synchro-
nised with code tracing. This is in line with our current observation by using the
former ScreenTracer: screen was not captured in time when a change happened.
The reason of this delay is that capturing and handling of screen change were
performed in strict sequence. To solve this problem, we have used asynchronous
programming [6] for capturing screen and executing test in this work.

4.1 Asynchronous Screen Capturing and Test Execution

Firstly, screen capturing task and handling of screen change are run asyn-
chronously, hence a screen change can be captured immediately.

Secondly, we execute test asynchronously in the background. The test was
triggered via .Net reflection API. Instead of that, we have created a background
thread, i.e., BackgroundWorker [5], for running a test project in the background
after screen capturing starts. Using BackgroundWorker, the test automation
executes asynchronously in a separate thread, while the screen capture thread is
running. These two threads are scheduled by CPU in the same time period. For
the perspective of human, screen capturing and test execution run in parallel
(see the memo “4.1” in Fig. 1).

Fig. 2. ScreenTracer viewer and screen-
shots

After test ends, the captured con-
tents and returned test result (i.e.,
passed, failed) are stored in a special
video file, which can be replayed by
ScreenTracer Viewer.

4.2 Replay with Highlight

As investigated in Sect. 2, the mouse
pointer is not exactly positioned at
the GUI element where the interac-
tion is triggered. This problem can be
partly solved by highlighting GUI ele-
ments, which is realised in our appli-
cation, as Fig. 2 shows.

We have used two ways for high-
lighting. The first way is to add
JavaScript to test code, so the GUI
element in interaction is highlighted
in test execution: a red border
is added around it. Currently, the
JavaScript code is manually added.
We plan to conduct automatic code injection in the future. The second way
is to manipulate captured screen change. Changes from one video frame to the
next one are highlighted. A red rectangle is drawn around the screen change.
Tiny or big changes are filtered out and not highlighted, because they are view
changes or task bar changes. However, we have observed that there still exist

146 J. Shi and K. Schneider

highlights for view changes in real test cases. It is difficult to filter out all changes,
which are not relevant for GUI interaction. Hence, we prefer the first approach
because the GUI elements can be highlighted precisely.

Highlights can help test engineers to check which GUI element is triggered or
examined at a certain time. For example, Fig. 2 (enlarged pictures under GUI)
shows highlights chronologically from top to bottom. This test case checks if cer-
tain button is clickable or not: after “Next paper” is clicked, “Next paper” should
be not clickable, “Start discussion” should be clickable, “+5 min”, “Accept”, and
“Reject” should be not clickable. The test ended by highlighting “+5 min” but-
ton with result failed (shown on the right bottom on GUI). A test engineer could
then recognise the defect quickly from this information.

4.3 Concept: Code Injection and Frame Manipulation

Based on two approaches of highlighting, a concept for adding human-friendly
information to video is proposed, as two “4.3” memos in Fig. 1 show. In capture
phase, code injection can be used to adjust behaviours in test execution directly.
To adjust behaviours, functions (e.g., JavaScript, Selenium API) are injected
into the test code. In replay phase, video frames can be manipulated. Frames
can be added, and the changes from one frame to the next one can be modified.

For example, the continuous mouse movement could be simulated in two
steps: (1) Injection of code using Selenium API which controls the position of
the mouse pointer; (2) Adding continuous frames between two captured frames
where the mouse pointer is on different positions.

5 Conclusion and Future Work

Test automation has been widely applied, but there are still challenges that
make debugging difficult. We have investigated and listed these challenges in this
paper. Trying to overcome these challenges, we updated our tool ScreenTracer.
This tool creates and replays video with highlights as a documentation for auto-
mated GUI test execution.

Our contribution to previous work [11] is a minor but important increment.
We have used asynchronous programming to fix capture delay issue (cf. [11]).
Moreover, we have tried two approaches to highlight GUI elements in video:
JavaScript code injection in capture and frame manipulation in replay. Both
approaches are feasible, and the concept can be used in further development to
make video more human-friendly. A user study will be conducted to check if
the video with additional information helps to debug tests faster than manual
replay.

In summary, to help test engineers with debugging, we have proposed an
easy video creation method for documenting automated GUI-tests and a replay
concept. By creating human-friendly videos in GUI-test automation, debugging
will become more efficient.

Creation of Human-friendly Videos for Debugging Automated GUI-Tests 147

Acknowledgement. Thank Ms. Banik and Mr. Fahrmeier for implementing
SynchroPC. Thank Mr. Holzmann for implementing ScreenTracer in 2011. Thank
anonymous reviewers, Ms. Vercelli, Mr. Cai, and Mr. Kortum for their help and
comments.

References

1. Banerjee, I., Nguyen, B., Garousi, V., Memon, A.: Graphical user interface (GUI)
testing: systematic mapping and repository. Inf. Softw. Technol. 55(10), 1679–1694
(2013). https://doi.org/10.1016/j.infsof.2013.03.004

2. Kaner, C.: Improving the Maintainability of Automated Test Suites (1997). http://
www.kaner.com/pdfs/autosqa.pdf

3. Kasurinen, J., Taipale, O., Smolander, K.: Software test automation in practice:
empirical observations. Adv. Softw. Eng. (2010). https://doi.org/10.1155/2010/
620836

4. Memon, A.M.: GUI testing: pitfalls and process. Computer 35(8), 87–88 (2002).
https://doi.org/10.1109/MC.2002.1023795

5. Microsoft: Asynchronous programming with async and await (2020). https://
docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/.
Accessed 20 Aug 2021

6. Microsoft: BackgroundWorker Class (2021). https://docs.microsoft.com/en-us/
dotnet/api/system.componentmodel.backgroundworker?view=netframework-4.5.
Accessed 20 Aug 2021

7. Nass, M., Alegroth, E., Feldt, R.: Augmented testing: industry feedback to shape a
new testing technology. In: 2019 IEEE International Conference on Software Test-
ing, Verification and Validation Workshops (ICSTW), pp. 176–183. IEEE, April
2019. https://doi.org/10.1109/ICSTW.2019.00048

8. Nass, M., Alégroth, E., Feldt, R.: On the industrial applicability of augmented
testing: an empirical study. In: 2020 IEEE International Conference on Software
Testing, Verification and Validation Workshops (ICSTW), pp. 364–371 (2020).
https://doi.org/10.1109/ICSTW50294.2020.00065

9. Naur, P., Randell, B.: NATO Software Engineering Conference 1968. Technical
Report, Scientific Affairs Division NATO, January 1969. http://homepages.cs.ncl.
ac.uk/brian.randell/NATO/nato1968.PDF

10. Pham, R., Holzmann, H., Schneider, K., Brüggemann, C.: Beyond plain video
recording of GUI tests: linking test case instructions with visual response docu-
mentation. In: 2012 7th International Workshop on Automation of Software Test
(AST), pp. 103–109. IEEE, Zurich, Switzerland, June 2012. https://doi.org/10.
1109/IWAST.2012.6228977

11. Pham, R., Holzmann, H., Schneider, K., Brüggemann, C.: Tailoring video recording
to support efficient GUI testing and debugging. Softw. Qual. J. 22(2), 273–292
(2013). https://doi.org/10.1007/s11219-013-9206-2

12. Zimmermann, T., Premraj, R., Bettenburg, N., Just, S., Schroter, A., Weiss, C.:
What makes a good bug report? IEEE Trans. Softw. Eng. 36(5), 618–643 (2010).
https://doi.org/10.1109/TSE.2010.63

https://doi.org/10.1016/j.infsof.2013.03.004
http://www.kaner.com/pdfs/autosqa.pdf
http://www.kaner.com/pdfs/autosqa.pdf
https://doi.org/10.1155/2010/620836
https://doi.org/10.1155/2010/620836
https://doi.org/10.1109/MC.2002.1023795
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.backgroundworker?view=netframework-4.5
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.backgroundworker?view=netframework-4.5
https://doi.org/10.1109/ICSTW.2019.00048
https://doi.org/10.1109/ICSTW50294.2020.00065
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF
https://doi.org/10.1109/IWAST.2012.6228977
https://doi.org/10.1109/IWAST.2012.6228977
https://doi.org/10.1007/s11219-013-9206-2
https://doi.org/10.1109/TSE.2010.63

Combining Holistic Source Code
Representation with Siamese Neural
Networks for Detecting Code Clones

Smit Patel1(B) and Roopak Sinha2

1 Indian Institute of Technology Indore, Indore, India
smitpatel2360@gmail.com

2 IT & Software Engineering, Auckland University of Technology,
Auckland, New Zealand

rsinha@aut.ac.nz

Abstract. Code clones can be defined as two identical pieces of code
having the same or similar functionality. Code clone detection is criti-
cal to improve and sustain code quality. Current methods are unable to
extract semantic and syntactic features and classify code bases satisfac-
torily. We propose a novel two-stage machine-learning approach towards
code clone detection. Firstly, multiple intermediate representations of
source code are extracted and combined to generate a holistic embed-
ding based on a recently proposed technique. Next, we use these embed-
dings to train an Intermediate Merge Siamese Neural Network to detect
functional code clones. Siamese Neural Networks are a state-of-the-art
machine learning architecture particularly suited to code clone detection.
This novel combination allows for learning subtle syntactic and semantic
features and identifying previously undetectable similarities. Our solu-
tion shows a significant improvement in code clone detection, as shown
by experimental evaluation over the OJClone C++ dataset.

Keywords: Functional code clones · Abstract Syntax Tree (AST) ·
Control Flow Graph (CFG) · Deep learning · Siamese Neural Network

1 Introduction

There is increasing interest in detecting duplicate code. Duplicate code or
code clones are quite prevalent in software engineering, since engineers often
encounter situations where a snippet of code has to be replicated and used in
some other part of the program. They can either wrap the code to a module or
duplicate the code snippet directly [10]. However, due to time pressure, devel-
opers often just create code duplicates.

Even though many code clones are potentially harmless [5], they can affect
software maintainability [22] and increase bug propagation [9]. Code duplication
increases software maintenance costs that already account for a majority of expen-
diture in software development [13]. Manual code clone detection is impractical,
and so automatic code clone detection has become a widely studied problem [23].
c© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
D. Clark et al. (Eds.): ICTSS 2021, LNCS 13045, pp. 148–159, 2022.
https://doi.org/10.1007/978-3-031-04673-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04673-5_12&domain=pdf
http://orcid.org/0000-0002-2414-4469
http://orcid.org/0000-0001-9486-7833
https://doi.org/10.1007/978-3-031-04673-5_12

Detecting Syntactic & Semantic Code Clones Using Siamese Neural Networks 149

Code clones are segregated into 4 types according to the kind and level of
syntactic and/or semantic similarity [24]. Type 1 or exact clones are identical
copies except for whitespaces, blanks, and comments. Type 2 renamed clones are
syntactically similar except that they may use different names of variables, types,
literals, and functions. Type 3 gapped clones are similar but with modifications
such as added or removed statements, and the use of different identifiers, literals,
types, whitespaces, layouts, and comments. Types 1–3 imply textual/syntactic
similarity. Finally, type 4 semantic clones are functionally similar, without being
syntactically similar. An example of type 4 clones is a pair of for and while
loops that have the same functionality but use different loop structures [24].

In this paper, we focus on two key problems in using machine learning to
detect code clones, represented by the following research questions:

RQ1: Which techniques are best suited for extracting syntactic and semantic
features from source code for training classifiers for code clone detection?

RQ2: Which existing Artificial Neural Network types are well-suited to classify
code clones from source code representations selected in answering RQ1?

For RQ1, we reviewed existing code representation methods, categorised as
string-based, token-based, syntax-based and semantics-based. The first two are
useful only for detecting type 1 and type 2 (renamed) clones. Syntax based
approaches use structures like suffix tree [12] or, predominantly, Abstract Syn-
tax Tree (AST) for syntactic feature extraction [4]. ASTs convey the structure
of the source code and capture the syntax of every program statement. On
the other hand, semantics-based approaches use Program Dependency Graph
(PDG) [7] or Control Flow Graph (CFG) [14]. A PDG represents control and
data dependencies in a program. PDG is computationally expensive to compute
and so often a more efficient semantic representation like CFG is considered.
Unfortunately, neither ASTs or PDGs can individually capture all syntactic and
semantic features of code. A few hybrid approaches exist that combine AST and
CFG representations, but these have been shown to have limitations like the
inability to consider inter-code dependencies like in Fig. 1. Inter-function calls
have become increasingly important since software engineers constantly update
their code to adopt reusability and follow best practices.

For RQ2, we surveyed existing literature to compare existing classifiers for
code clone detection [23]. Using distance-based metrics like Cosine Similarity is
prone to errors as it requires manually reading vector representations of source
code and then choosing threshold values [20]. Bayesian Networks [21] fail to
determine the relative importance of various source code features, thereby pro-
ducing biased or skewed results. Deep Learning overcomes this limitation by
updating weights at every step through backpropagation. Nonetheless, challenges
like overfitting, vanishing gradient, etc., have also restricted the accuracy of deep
learning methods. Siamese Neural Networks (SNNs) are a variation of ANN’s
that use the same weights while working in tandem on two different input vectors
to compute comparable output vectors. They have also proved highly effective
in capturing similarity between code pairs [17,30] and other applications like

150 S. Patel and R. Sinha

(a) Without inter-functional calls (b) With inter-functional calls

Fig. 1. Code Clones (Nth Fibonacci number) having different functionalities

recognising handwritten checks [11] and face recognition [17]. Xie et al. [30]
used Word2vec [3] to represent code and SNNs for calculating code similarity.
Mahajan et al. [16] used AST and SNNs for the same purpose. We propose and
prototype a solution combining the representation approach in [4] and SNNs
(Sect. 2). We evaluated this prototype to show that this novel combination sig-
nificantly outperforms several existing approaches, including other SNN-based
solutions like [30] (Sect. 3). The primary contributions of our research are:

1. A novel conceptual design of our solution combining the representation app-
roach from [4] and Intermediate-Merge Fusional Siamese Neural Networks
and its prototype implementation.

2. Experimental validation, including a quantitative comparison between the
proposed approach and other Siamese architecture models as well as a no-
Siamese model using the OJClone dataset [18].

2 Conceptual Design

The overall solution includes two primary components: code representation and
duplicate code detection. Our entire work has been made publicly available for
future reference work.1

2.1 Code Representation

Figure 2 shows the conversion of pairs of source methods (step 1) into represen-
tations used to train the duplicate code detection component (step 5) through
intermediate steps 2–4. This method is adopted from [4].
1 All implementation artefacts are available from https://github.com/smit25/Code-

Clone-Detection-Using-Intermediate-Merge-Siamese-Network.

https://github.com/smit25/Code-Clone-Detection-Using-Intermediate-Merge-Siamese-Network
https://github.com/smit25/Code-Clone-Detection-Using-Intermediate-Merge-Siamese-Network

Detecting Syntactic & Semantic Code Clones Using Siamese Neural Networks 151

Initially, in step 1, the functionality of the source code is identified by extract-
ing its call graph and analysing the relevant caller-callee relationships. The call
graph represents the calling relationships between functions in the code. Each
node is a function and every edge (a, b) indicates that function a (caller) calls
function b (callee). Every statement in the entire dataset is marked with a glob-
ally unique identifier, regarded as the call identifier. The caller-callee relationship
is expressed as a triplet 〈callerId, statementid, calleeId〉. The callerId
and calleeId are the statement identifiers of the caller and the callee methods,
respectively. statementId represents the statement from id where the call to the
callee function is made. Using the call graph expression as a reference, all con-
nected methods are regarded and procured as a functionality. If a function does
not call any other function, it is regarded as a single standalone functionality.

Fig. 2. Capturing syntactic and semantic information in source method pairs

In step 2, we extract comprehensive syntactic and semantic information from
the methods in the form of AST and CFG, respectively. The Abstract Syntax
Tree representation of the source code snippet is generated. A traversal of the
tree in preorder is performed and the corresponding elements in each node are
stored in a identifier sequence.

Identifier Sequence = [node1, node2, node3, ..., noden]

This sequence captures symbols and variable names (identifiers), which are
preprocessed to eliminate distortion due to differing variable names; constants
and variables are replaced by their data types. The sequences of all ASTs in the

152 S. Patel and R. Sinha

dataset are acquired and the sequences capturing function calls are inserted in
a set to represent a singular functionality (step 3).

The source code is also transformed into its CFG representation which holds
comprehensive semantic information. Connection rules for functionalities have
been established in [4] corresponding to the structure of caller-callee relationship.
Since the representations obtained from step 2 and 3 have different structures, we
apply word embedding and graph embedding techniques to obtain fixed-length
vectors in step 4.

We use Word2vec with skip-o-gram [3] to encode the normalised sequences
of syntactic features into vectors. Word2vec uses a corpus of its training model,
which is obtained by putting together all sequence identifiers. A graph embedding
technique called Graph2vec [19] has been used to encode the CFG of every
method into feature vector. Graph2vec model generates vectors that reflect the
overall structure of the graph. It resulted in the best F1 value [4] and hence, is
the most suitable choice. For both Word2vec and Graph2vec, a feature vector
length of 16 is used. As reported in [4], the F1 scores attained stability when
both the feature vectors had 16 dimensions. Moreover, training the model on
16-dimensional vector is computationally optimal.

Lastly, in step 5 the syntactic and semantic vector representation vectors of
length 16 obtained from step 4 are fused. A 32 (16+16) dimension vector is used
as input for the Siamese Neural Network.

2.2 Duplicate Code Detection

We developed and prototyped a Siamese Neural Network model for code clone
detection. The two arms of the Siamese Neural Network have the same archi-
tecture and share weights, which enhances their capability to learn similarities
between the two inputs. The input to the Network are embeddings of dimen-
sion length 32 (16+16) of two code snippets, V 1 and V 2, which are be classified
as duplicates, and their corresponding label. The label is a Boolean value; 0
represents a non-clone pair and 1 represents a clone pair.

We experimented with the three types of Siamese Neural Network (SNN)
architectures as shown in Fig. 3 for duplicate code detection. Our choices for
various operations in the models are currently supported empirically by exper-
imentation. An early-merge SNN has an architecture that is very similar to a
Deep Neural Network having CNN [2]. We use a No-Siamese network to represent
early merge SNN. The input vectors V 1 and V 2 from Fig. 2 were concatenated
and fed into a No-Siamese model with the same layers. This setup uses Cross-
Entropy Loss function for updating the weights of the model.

In late-merge, the vectors V 1 and V 2 are processed independently by the
two arms of the SNN that produce distinct outputs O1 and O2, respectively.
We apply Contrastive loss function takes V 1 and V 2 as input and equates the
Euclidean distance between them if the code pairs are clones. Otherwise, it
behaves like the Hinge Loss Function.

Detecting Syntactic & Semantic Code Clones Using Siamese Neural Networks 153

Fig. 3. Different types of Siamese architectures

As discussed later in Sect. 3, we achieved the best performance from an
intermediate-merge SNN, illustrated in Sect. 4 and described in detail in subse-
quent paragraphs. The two inputs are given separately to the two identical arms
of the SNN. Each arms consists of two linked networks: ConvNet and Dense.
The arms share the same architectures and weights up until the penultimate
layer in Dense. The absolute difference of the two internal vectors is calculated
and then fed to the final output layer. A difference approach performed better
than a summation approach empirically. Since the output is a single vector, this
architecture also uses Cross-Entropy Loss for training.

ConvNet comprises Convolutional Neural Network (CNN) and Max Pooling
layers. CNNs have relatively higher feature compatibility compared to alterna-
tives like Recurrent Neural Networks (RNNs). Moreover, CNNs consider the local
coherence in the input [1] while RNNs process input data sequentially. Detecting
type 4 functional code clones requires considering the coherent spatial relation-
ship between statements, which CNNs provide. We trained an architecture with
Max Pooling and one without Max Pooling on 10 epochs, while retaining all
other hyperparameters. The architecture with Max Pooling performed better,
especially for extracting sharp features and providing translation invariance to
the internal representation.

Choosing the correct activation function was also crucial. We trained our
model using three widely-used activation functions, Tanh, ReLU (Rectified Lin-
ear Unit) and Leaky-ReLU, while keeping rest of the configuration the same.
The results concluded that ReLU performs better than Leaky-ReLU and Tanh.
ReLU’s gradient does not get saturated, and therefore the model does not suffer
from vanishing gradient. Also, this property accelerates the convergence gradi-
ent descent as compared to Tanh [15] and induces regularisation. Compared to
Leaky-ReLU, ReLU performs better in our model due to the presence of sparse
activations. Leaky-ReLU and Tanh have comparable performances on our model
(Fig. 4).

154 S. Patel and R. Sinha

Fig. 4. Duplicate code detection configured using an Intermediate-Merge SNN

Dense receives the flattened output generated by ConvNet. All the param-
eters of the model are optimized. For applying the model to detect code twins,
the source code snippets should be preprocessed, converted to embeddings and
fed into the model for classification. An output of 1 denotes clones and 0 denotes
non-clones.

3 Experimental Evaluation

We benchmarked our solution over the real-world OJClone dataset. OJClone
contains answers to a set of problems in a prominent online programming judge.
Since different entries submitted by students execute the same logic, we consider
all the codes for a problem statement as functional clones. We chose 15 problems
from the dataset, each with 100 C++ source code files.

300201 code clone pairs were generated and divided equally into 150100 clone
pairs and 150101 non-clone pairs using undersampling. We conducted experi-
ments with 10 epochs to choose the best performing train-validation-test split
for our approach. A 70-20-10 split exhibited overfitting [6], which affected the
trained model’s generalizing capability. Therefore we settled on 70-15-15 config-
uration.

The architecture of an arm is divided into two networks, ConvNet and
Dense. ConvNet has two convolution layers with 32 and 64 kernels, respec-
tively, and a Max-Pooling layer of size 2. We experimented with various kernel
sizes and found 3 to be the optimal size for our model. The input representa-
tion is flattened and then fed to the Dense network with 3 hidden layers with

Detecting Syntactic & Semantic Code Clones Using Siamese Neural Networks 155

dimensions 512, 256, 128 and an output layer. This network remained unchanged
while we compared the three SNN types. We use Adam Optimizer (learning rate
of 0.0001) and a batch size of 100 for the dataset. We notice saturation during
training at around 25 iterations; hence we fix the number of epochs to 30 and
train the model on a Tesla K80 GPU.

Table 1. Comparing our solution for different SNN configurations

SNN type Precision Recall F1 score

No Siamese 0.959 0.852 0.901

Intermediate-Merge 0.902 0.933 0.917

Late-Merge 0.437 0.831 0.595

Table 1 shows the Precision (P), Recall (R) and (F1) scores for comparing
the three SNN types for clone detection.

It can be observed that Intermediate Merge Siamese Network is the best
performing model with R and P scores of 0.933 and 0.902, respectively. We
believe this is because combining at an intermediate position enables the model
to capture patch-level variability and allows harnessing the capability of Cross-
Entropy Loss function. The Early-Merge or No Siamese architecture exhibits
results close to Intermediate-Merge SNN whereas Late-Merge SNN performs
poorly on the dataset with P and R scores 0.437 and 0.831, respectively.

We compare our results with several prominent approaches that have been
tested on the OJClone dataset. The work in [27] proposes a few baselines for
comparison. An AST based approach, Deckard [8], uses Euclidean distance for
detecting similarity. DLC [29] is a deep-learning approach where code is con-
verted into defined binary trees, and recursive neural networks are used to rep-
resent them. SourcererCC [25] is a token-based clone detector for large code-
bases. We also compare our model with CDLH [27] and CDPU [28]. CDLH is
a deep feature learning framework that detects duplicates by formulating them
as supervised learning to hash problem. CDPU is an unsupervised learning app-
roach that formulates code clone detection as Positive-Unlabeled (PU) learning
problem.

Table 2 shows a comparison of our approach (last row) with several exist-
ing code clone detection approaches. The existing approaches include other
SNN-based approaches and employ a variety of encoding techniques. Our app-
roach outperforms most existing approaches that have been benchmarked on
the OJClone dataset. Our approach also provides a significant improvement
over other SNN-based methods such as [30]. The gains in our approach can be
explained through the holistic encoding of source code (Sect. 2.1) and a carefully
configured Intermediate-Merge SNN for classification (Sect. 2.2).

The deep fusion approach presented in [4] shows slightly better performance
than our approach on the OJClone dataset. We carried out a deeper qualitative
comparison between our approach and the deep fusion approach to investigate

156 S. Patel and R. Sinha

Table 2. Comparison of various approaches (SNN and non-SNN) benchmarked over
the OJClone dataset

Model Source Precision Recall F1 score

Word2vec [30] 0.79 0.42 0.55

Code2vec [30] 0.69 0.56 0.62

N-gram [30] 0.71 0.59 0.63

WICE-SNN [30] 0.67 0.83 0.74

Deckard [8] 0.99 0.05 0.10

DLC [29] 0.71 0.00 0.00

SourcererCC [25] 0.07 0.74 0.14

CDLH [27] 0.47 0.73 0.57

CDPU [28] 0.19 0.17 0.18

Deep fusion model [4] 0.97 0.95 0.96

Our approach – 0.90 0.93 0.92

this. It is important to note that our encoding technique is identical to the
method proposed in [4], indicating that the difference in performance comes
from the classification phase. Our SNN model is significantly more efficient in
terms of the number of epochs used for training. Our model required only 30
epochs to train, while the deep fusion network used in [4] required 10000 epochs
to train. In other words, our model achieves very similar performance while
requiring only 0.3% of epochs. In terms of time, our model required 337 s while
the deep fusion network in [4] took 8043 s, indicating that our approach exhibits
a speedup of 23.87. Figure 5 shows that our model approaches saturation with
30 epochs. Another probable reason for the lower performance of our approach
can be the lack of pre-training parameter tuning, which remains an interesting
future direction for our research.

Fig. 5. Train-validation loss plot for Intermediate-Merge SNN

Detecting Syntactic & Semantic Code Clones Using Siamese Neural Networks 157

As evident in Table 3, our model performs better in capturing hidden features
and predicting similarity between code snippets than other machine learning
techniques. LSTM and Bi-LSTM networks have much better recall, but they
have poor precision, and consequently, an overall lower F1 score.

Table 3. Comparison with standard ML techniques

Model Precision Recall F1 score

SVM 0.62 0.81 0.70

Logistic regression 0.66 0.71 0.68

LSTM 0.19 0.95 0.31

Bi-LSTM 0.68 0.97 0.32

Our approach 0.90 0.93 0.92

4 Conclusions, Limitations and Future Work

We presented an approach that first encodes syntactic and semantic informa-
tion from source code using a recently published approach [4] and then employs
Siamese Neural Networks to identify functional code clones. We have evaluated
our approach on popular C++ solutions from the OJClone dataset. The eval-
uation metrics indicate that this approach can even detect Type-3 and Type-
4 clones with great accuracy. A prototype of our solution shows a significant
improvement over existing methods, highlighting the benefits of this novel com-
bination.

A key limitation of this work is using a single benchmark (OJClone) and
exploring only a restricted number of SNN configurations. We have not incorpo-
rated other datasets such as BigCloneBench in our model. Moreover, we do not
tune model parameters before training which may result in a local optimum [26]
and affect overall performance.

Future directions include evaluating this solution over other benchmarks
such as BigCloneBench to incorporate Java and envisioning modifications in
the proposed model. Applying the transfer-learning technique and fine-tuning
the parameters for detecting code clones remains a viable future direction.

References

1. Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neu-
ral network. In: 2017 International Conference on Engineering and Technology
(ICET), pp. 1–6. IEEE (2017)

2. Chicco, D.: Siamese neural networks: an overview. In: Cartwright, H. (ed.) Artificial
Neural Networks. MMB, vol. 2190, pp. 73–94. Springer, New York (2021). https://
doi.org/10.1007/978-1-0716-0826-5 3

3. Church, K.W.: Word2Vec. Nat. Lang. Eng. 23(1), 155–162 (2017)

https://doi.org/10.1007/978-1-0716-0826-5_3
https://doi.org/10.1007/978-1-0716-0826-5_3

158 S. Patel and R. Sinha

4. Fang, C., Liu, Z., Shi, Y., Huang, J., Shi, Q.: Functional code clone detection with
syntax and semantics fusion learning. In: Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis, pp. 516–527 (2020)

5. Göde, N., Koschke, R.: Frequency and risks of changes to clones. In: Proceedings
of the 33rd International Conference on Software Engineering, pp. 311–320 (2011)

6. Hawkins, D.M.: The problem of overfitting. J. Chem. Inf. Comput. Sci. 44(1), 1–12
(2004)

7. Higo, Y., Kusumoto, S.: Enhancing quality of code clone detection with program
dependency graph. In: 2009 16th Working Conference on Reverse Engineering, pp.
315–316. IEEE (2009)

8. Jiang, L., Misherghi, G., Su, Z., Glondu, S.: DECKARD: scalable and accurate
tree-based detection of code clones. In: 29th International Conference on Software
Engineering (ICSE 2007), pp. 96–105. IEEE (2007)

9. Kapser, C.J., Godfrey, M.W.: “Cloning considered harmful” considered harmful:
patterns of cloning in software. Empir. Softw. Eng. 13(6) (2008). https://doi.org/
10.1007/s10664-008-9076-6

10. Kim, M., Bergman, L., Lau, T., Notkin, D.: An ethnographic study of copy and
paste programming practices in OOPL. In: Proceedings 2004 International Sym-
posium on Empirical Software Engineering, ISESE 2004, pp. 83–92. IEEE (2004)

11. Koch, G., Zemel, R., Salakhutdinov, R.: Siamese neural networks for one-shot
image recognition. In: ICML Deep Learning Workshop, Lille, vol. 2 (2015)

12. Koschke, R., Falke, R., Frenzel, P.: Clone detection using abstract syntax suffix
trees. In: 2006 13th Working Conference on Reverse Engineering, pp. 253–262.
IEEE (2006)

13. Krasner, H.: The cost of poor software quality in the US: a 2020 report. In: Pro-
ceedings of the Consortium For Information & Software QualityTM (CISQTM)
(2021)

14. Krinke, J.: Identifying similar code with program dependence graphs. In: Pro-
ceedings Eighth Working Conference on Reverse Engineering, pp. 301–309. IEEE
(2001)

15. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, vol. 25, pp. 1097–1105 (2012)

16. Mahajan, S., Abolhassani, N., Prasad, M.R.: Recommending stack overflow posts
for fixing runtime exceptions using failure scenario matching. In: Proceedings of
the 28th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/FSE 2020, pp.
1052–1064. Association for Computing Machinery, New York (2020). https://doi.
org/10.1145/3368089.3409764

17. Melekhov, I., Kannala, J., Rahtu, E.: Siamese network features for image matching.
In: 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 378–
383. IEEE (2016)

18. Mou, L., Li, G., Zhang, L., Wang, T., Jin, Z.: Convolutional neural networks over
tree structures for programming language processing. In: Proceedings of the Thirti-
eth AAAI Conference on Artificial Intelligence, AAAI 2016, pp. 1287–1293. AAAI
Press (2016)

19. Narayanan, A., Chandramohan, M., Venkatesan, R., Chen, L., Liu, Y., Jaiswal,
S.: graph2vec: learning distributed representations of graphs. arXiv preprint
arXiv:1707.05005 (2017)

https://doi.org/10.1007/s10664-008-9076-6
https://doi.org/10.1007/s10664-008-9076-6
https://doi.org/10.1145/3368089.3409764
https://doi.org/10.1145/3368089.3409764
http://arxiv.org/abs/1707.05005

Detecting Syntactic & Semantic Code Clones Using Siamese Neural Networks 159

20. Nguyen, H.V., Bai, L.: Cosine similarity metric learning for face verification. In:
Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010. LNCS, vol. 6493, pp.
709–720. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19309-
5 55

21. Pearl, J.: Bayesian Networks, pp. 149–153. MIT Press, Cambridge (1998)
22. Roy, C.K., Cordy, J.R.: A mutation/injection-based automatic framework for eval-

uating code clone detection tools. In: 2009 International Conference on Software
Testing, Verification, and Validation Workshops, pp. 157–166. IEEE (2009)

23. Roy, C.K., Cordy, J.R.: A survey on software clone detection research. Queen’s
School of Computing TR 541(115), 64–68 (2007)

24. Saini, V., Sajnani, H., Kim, J., Lopes, C.: SourcererCC and sourcererCC-I: tools
to detect clones in batch mode and during software development. In: Proceedings
of the 38th International Conference on Software Engineering Companion (2016)

25. Sajnani, H., Saini, V., Svajlenko, J., Roy, C.K., Lopes, C.V.: SourcererCC: scal-
ing code clone detection to big-code. In: Proceedings of the 38th International
Conference on Software Engineering, pp. 1157–1168 (2016)

26. Severyn, A., Moschitti, A.: Twitter sentiment analysis with deep convolutional
neural networks. In: Proceedings of the 38th International ACM SIGIR Conference
on Research and Development in Information Retrieval, pp. 959–962 (2015)

27. Wei, H., Li, M.: Supervised deep features for software functional clone detection
by exploiting lexical and syntactical information in source code. In: IJCAI, pp.
3034–3040 (2017)

28. Wei, H., Li, M.: Positive and unlabeled learning for detecting software functional
clones with adversarial training. In: IJCAI, pp. 2840–2846 (2018)

29. White, M., Tufano, M., Vendome, C., Poshyvanyk, D.: Deep learning code frag-
ments for code clone detection. In: 2016 31st IEEE/ACM International Conference
on Automated Software Engineering (ASE), pp. 87–98. IEEE (2016)

30. Xie, C., Wang, X., Qian, C., Wang, M.: A source code similarity based on Siamese
neural network. Appl. Sci. 10(21), 7519 (2020)

https://doi.org/10.1007/978-3-642-19309-5_55
https://doi.org/10.1007/978-3-642-19309-5_55

Robustness Analysis of Deep Learning
Frameworks on Mobile Platforms

Amin Eslami Abyane(B) and Hadi Hemmati

Department of Electrical and Software Engineering, University of Calgary,
Calgary, Canada

{amin.eslamiabyane,hadi.hemmati}@ucalgary.ca

Abstract. With the recent increase in the computational power of mod-
ern mobile devices, machine learning-based heavy tasks such as face
detection and speech recognition are now integral parts of such devices.
This requires frameworks to execute machine learning models (e.g., Deep
Neural Networks) on mobile devices. Although there exist studies on the
accuracy and performance of these frameworks, the quality of on-device
deep learning frameworks, in terms of their robustness, has not been
systematically studied yet. In this paper, we empirically compare two
on-device deep learning frameworks with three adversarial attacks on
three different model architectures. We also use both the quantized and
unquantized variants for each architecture. The results show that, in
general, neither of the deep learning frameworks is better than the other
in terms of robustness, and there is not a significant difference between
the PC and mobile frameworks either. However, in cases like Boundary
attack, mobile version is more robust than PC. In addition, quantization
improves robustness in all cases when moving from PC to mobile.

Keywords: Robustness · On-device learning · Deep learning
frameworks

1 Introduction

In recent years, advancements in hardware resources and demands from many
application domains have led to the growth and success of deep learning (DL)
approaches. Consequently, several deep learning frameworks, such as TensorFlow
[14] and PyTorch [29], have been introduced to improve DL developers produc-
tivity. These powerful frameworks have gained massive success and popularity
in academia and industry and are being used on a large scale every day. Among
the many application domains of DL systems, one particular domain that has
seen much interest is applying DL techniques on mobile devices (i.e., on-device
learning). In general, mobile devices’ collected or observed data are potentially
of great interest for many DL applications such as speech recognition, face detec-
tion, and next-word prediction. There are two generic solutions to utilize these
data. The first approach is to send the data from the mobile devices to a server
c© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
D. Clark et al. (Eds.): ICTSS 2021, LNCS 13045, pp. 160–177, 2022.
https://doi.org/10.1007/978-3-031-04673-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04673-5_13&domain=pdf
https://doi.org/10.1007/978-3-031-04673-5_13

Robustness Analysis of Deep Learning Frameworks on Mobile Platforms 161

to run the DL task (training or testing) and return the results. This approach
has some significant drawbacks. The first one is that in this communication with
the server, the user’s privacy might be threatened, and the second one is that
we are adding a network overhead and delay to the system. This overhead might
get very noticeable if the task is frequent, such as image classification using a
camera to process lots of images in a second.

The second approach is called on-device machine learning, which does not
have the privacy concerns and is the context of this paper. In an on-device
machine learning approach, the inference is made on the user’s device, and no
network communication is required. However, the mobile device’s computational
power (no matter how powerful the mobile device is) is much less than a server
or even a regular GPU-based PC, which is an obstacle for training in this fash-
ion. To help DL models inference possible on a mobile device, libraries such as
TensorFlow Lite [9] and PyTorch Mobile [2] have been proposed.

From the software engineering perspective, an important quality aspect of
DL-based software systems is their robustness, which is usually tested and ana-
lyzed against adversarial attacks [16,18,33]. Robustness is especially significant
in mobile apps given the amount of personal information that can be exploited
from cell phones, if an adversary gets access to the app. For instance, DL-based
face detection is a standard access control measure for cell phones these days.
Suppose an adversarial attack on the underlying DL model can misclassify a
specific image created by the adversary as the trusted class. In that case, the
attacker gets access to the mobile device.

There have been some limited studies in the recent literature that evaluate
DL frameworks both on PC and mobile [20,24,27], but only in terms of their
accuracy (effectiveness) and performance (efficiency). This has motivated us to
conduct this study with a software testing and analysis lens, on mobile and PC
DL frameworks in terms of their robustness.

We study two main on-device DL frameworks, TensorFlow Lite and PyTorch
Mobile, from Google and Facebook, respectively. We use image classification as
a common DL task to evaluate the robustness of the frameworks. Our controlled
experiment is designed to study the effect of the models, the adversarial attacks,
the quantization process [25], and the framework on robustness. We compare
two deep learning frameworks (TensorFlow and PyTorch) with three adversarial
attacks (both white-box and black-box) on three different model architectures,
both quantized and unquantized. This results in 36 configurations on mobile
devices and 18 configurations on PC, as our comparison baseline.

The results show that neither of the mobile deep learning frameworks is
better than the other in terms of robustness, and the robustness depends on the
model type and other factors, which is the case on PC as well. Moreover, there
is no significant difference in robustness between PC and mobile frameworks
either. However, cases like the Boundary attack on PyTorch, we see that the
mobile version is significantly more robust than the PC version (12.5% decrease
in attack success rate). Finally, we see that quantization improves the robustness
of both TensorFlow and PyTorch on all models and attacks when moving from

162 A. Eslami Abyane and H. Hemmati

PC to mobile (with median improvements between 2.4% to 23.8%, per attack
type). Note that all data and scripts are available for replication purposes1.

2 Background

2.1 Deep Neural Network (DNN)

A DNN is an artificial neural network consisting of many layers, and each layer
has multiple neurons. Each neuron performs a simple task, takes an input, and
gives an output based on a function. A simple combination of these layers is often
called multi-layer perceptron (MLP). However, DNNs are not limited to MLPs.
One of the most popular kinds of neural networks is called Convolutional Neural
Networks (CNNs). A convolutional layer is typically used in tasks that work with
images. A convolutional layer’s objective is to extract features from a picture and
reduce the problem’s dimensionality. Another group of neural networks is called
Recurrent Neural Networks (RNNs). This type of network has units that act as
memory. Thus they are often used in tasks that deal with language and speech.
Like a human being, DNN learns patterns in the training phase and can be used
for the designed task. DNNs are extremely powerful and are widely used for
image classification, face recognition, and speech recognition.

In the image classification domain, which is a common application domain of
DNNs and is the domain of our experiment, some very well-known models have
proven to be very effective:

MobileNetV2 [31]: This model is specially designed for mobile devices and
is more light-weight than the other models. It contains 32 convolutional filters
and 19 layers of residual bottleneck. The overall size of this model is around 14
MB. This model takes images of size 224 × 224 as input for classification.

ResNet50 [21]: This is one of the most influential models in the image
classification domain. It is much heavier than MobileNetV2 (it is close to 100
MB), but it is more accurate than MobileNetV2.

InceptionV3 [34]: Much like ResNet50, this model is another complex model
(close to 100 MB). It consists of inception blocks; Unlike the other two models,
which used 224 × 224 images, this one takes images of size 299 × 299, which is
one reason it is more complex than the previous ones.

2.2 Robustness and Adversarial Attacks

DNNs are known to be sensitive to corner case data (e.g., data items that are
close to decision boundaries). That means it is possible that a slight change in
the input can result in a corner case sample where the DNN will not perform
accurately (e.g., the item is misclassified if the task is classification). Suppose
this slight change of input is deliberate to fool the model. In that case, it is called
an adversarial attack, and the robustness of a DNN model is the extent that the
model can defend itself from such attacks (i.e., still generate correct outputs).
1 https://github.com/aminesi/robustness-on-device.

https://github.com/aminesi/robustness-on-device

Robustness Analysis of Deep Learning Frameworks on Mobile Platforms 163

Adversarial attacks were first introduced in the image processing tasks, where
images are easily manipulable, and the tasks (e.g., classification) are pretty sen-
sitive. However, these attacks have gone beyond the image domain and are now
being studied in other learning tasks, such as text and audio analysis domains.

Adversarial attacks can be categorized from several perspectives. Most com-
monly, they are categorized into two groups, based on their level of access to the
model details, which are white-box and black-box attacks. White-box attacks
require knowledge about the internals of the models they are attacking. For
instance, some attacks need the models’ gradient after the backpropagation step
to generate adversarial samples, whereas black-box attacks do not need such
information and are model-agnostic. Another standard categorization of attacks
is grouping them into targeted and untargeted attacks. Targeted attacks try
to fool the model into misclassifying data into a particular class. In contrast,
untargeted attacks just try to force the model to misclassify, no matter the
wrong output. Since most of the popular and well-known attacks are defined as
untargeted [19,26,28], in this study we focus on the following untargeted attacks
both from white-box and black-box categories.

Fast Gradient Sign Method (FGSM) [19] is perhaps the most famous
adversarial attack amongst these attacks. FGSM is a gradient-based white-box
attack, and it works by adding perturbations into the image following the formula
presented in Eq. 1. Where x and y are the input image and label respectively, Θ
represents model parameters, ∇ is gradient, J is the loss function, and ε is the
amount of perturbation.

adv = x + ε.sign(∇(J(θ, x, y))) (1)

Basic Iterative Method (BIM) [26] is an extension of FGSM attack, so
it is also a white-box attack. As its name suggests, it is iterative, and it does the
FGSM attack multiple times and updates the input in each iteration.

Boundary Attack [15] is a decision-based (it only uses the final decision of
model to create samples) black-box attack. It starts from an adversarial point,
and in each step makes a move randomly orthogonal to the image and a move
towards the image. Since it uses a small step size to get closest to the image
(while staying on the adversarial side), it requires many iterations.

2.3 DL Frameworks

Neural networks use complex mathematical equations that need to be imple-
mented in Libraries like TensorFlow and PyTorch that provide a set of simple
Application Programming Interfaces (APIs) for the machine learning developers.
Both these frameworks are implemented in python language for their high-level
APIs, and they use C++ for their low-level implementation to gain higher speeds.

With the advances in on-device learning, these frameworks are now coming
with mobile versions, making programming DL on mobile devices easier.

TensorFlow’s mobile variant called “TensorFlow Lite” is a cross-platform
(Android, iOS, and edge devices) library and supports languages such as Java

164 A. Eslami Abyane and H. Hemmati

and Swift, which is based on a cross-platform serialization library called Flat-
Buffers. In addition, it supports multiple quantization configurations and differ-
ent hardware such as CPU and GPU with various options, and on Android, it
supports Android Neural Networks API (NNAPI).

“PyTorch Mobile” is the other on-device DL library, which is similar to Ten-
sorFlow Lite in terms of functionalities. It works on the same platforms that Ten-
sorFlow Lite does and supports quantization but is less flexible in this aspect. At
the time of doing this experiment, PyTorch Mobile only supports CPU without
any additional options (e.g., thread count).

However, like any other software program, these implementations are not
flawless. There are also quite many different design choices and implementa-
tion differences between various frameworks. Especially, given the hardware and
operating systems differences, there might be many variations in terms of effec-
tiveness, efficiency, and robustness of the same model implemented on PC vs.
mobile in different frameworks.

2.4 Quantization

Quantization is the process of compressing a DNN implementation to speed
up the model execution, at the cost of its precision [8]. As we know, DNN
models’ implementations in DL frameworks include many matrices/tensors and
thus many matrix/tensor operations. The motivation behind quantization is to
reduce the complexity of matrix operations to be able to run more operations
with fewer resources [35]. Typically, all DNN model parameters, like weights and
activations, use a 32-bit floating-point precision. Since mobile devices have fewer
resources than PCs, the quantization idea has been proposed to slightly reduce
the model’s precision to make models smaller and infer faster. The quantization
target may be an 8-bit integer, or 16-bit floating-point, or any other precision
for the numerical data types.

Integer quantization is explored in [25]. In this work, they introduce a formula
for quantization to 8-bit integer, which is shown in Eq. 2. Key parameters here
are zero point and scale, which should be selected in a way that every possible
normal value can be mapped to an 8-bit fixed-point value.

normal value = (int8 value − zero point) × scale (2)

Although TensorFlow currently supports multiple precisions, PyTorch only
supports an 8-bit integer at the moment. There are different ways of quantiza-
tion, and we will briefly describe them in this section.

Post-training dynamic range quantization: This type of quantization
[5], as the name suggests, is done after the model is trained. A quantizer quantizes
all statically defined parameters, like weights using a formula like Eq. 2. So in
this approach, the activations are intact. According to [5], this approach works
best for language models. The name dynamic is used since the activation values
are quantized on the fly when the model is running.

Post-training static range quantization: This quantization approach
[5], like the previous one, is applied on a trained model. The difference is that

Robustness Analysis of Deep Learning Frameworks on Mobile Platforms 165

activations are pre quantized as well, making the model more compact and
faster. To find the best quantization, the quantizer should find the best scale
and zero point to ensure successful mapping to the target (e.g., int8), which is
not possible for something that is not statically defined like activations.

The solution is to calibrate the model with some image samples in the quanti-
zation step so that quantizer can see various possible dynamic values (activation
values in this case) and calculate appropriate scale and zero points for them.
This approach is more appropriate for image models compared to the previous
one as suggested by the literature [5].

Quantization aware training: This approach [5] is distinct from the other
two in that it tries to learn the effect of quantization in the training phase. It is
a more robust approach but costs more.

3 Experiments

Our objective is to quantitatively and systematically evaluate the robustness of
DL learning frameworks on mobile. To address this objective, we answer the
following research questions:

• RQ1: How robust DL frameworks are on mobile? This RQ aims to
compare TensorFlow Lite and PyTorch Mobile when running on mobile by
assessing their robustness against well-known adversarial attacks.

• RQ2: How does mobile DL frameworks’ robustness compare to their
PC equivalent? In this RQ, we compare the robustness results of DL frame-
works on PC vs. mobile platforms.

• RQ3: What is the effect of quantization on the robustness of mod-
els? In this RQ, we will study the quantization’s effect by repeating the
experiment designed for RQ1, but this time with the quantized models.

3.1 Experiment Design

Models Under Study and the Datasets: Image classification is one of the
main application domains of DL models these days. Especially in the mobile
application domain, some use cases such as access control, as discussed earlier,
are critical and can be heavily dependant on the trustworthiness of the underly-
ing classification models. Therefore, in this study, we focus on image classification
and use the three well-known image classification models explained in Sect. 2.1:
MobileNetV2, ResNet50, and InceptionV3. These models have been selected to
cover various models in terms of power and complexity (MobileNetV2: light-
weight, ResNet50: resource-demanding, and InceptionV3: the heaviest).

For TensorFlow models, we use pre-trained models on ImageNet from Keras
applications [6]. PyTorch models are all from torchvision [11] models packages
(for the sake of quantization, models are selected from quantization packages as
regular models are not quantizable).

For quantization, we use the second approach explained in Sect. 2.4, post-
training static range quantization, which is a decent fit for image data and still

166 A. Eslami Abyane and H. Hemmati

(a) Original (b) FGSM (c) BIM (d) Boundary

Fig. 1. A sample generated for TensorFlow MobileNetV2 model.

not very costly. For calibration of the models in the quantization mode, we use
1,000 random samples from our dataset.

We use ImageNet [3] as our main dataset. ImageNet is one of the biggest and
most well-known datasets in the image domain, and it uses WordNet [13] for
its label hierarchy. It consists of 1,281,167 training images and 50,000 validation
images with a total of 1,000 image classes. It is around 150 gigabytes in size.

Since our robustness analysis heavily depends on the ground truth for clas-
sification, we need to make sure that the original test set samples are correctly
classified. By doing this, we ensure that if an adversarial sample is misclassified,
it is due to perturbations and not intrinsic model errors.

To achieve this goal, we use the intersection of correctly classified validation
samples by all the models on all of our frameworks. Then we choose 3,000 samples
from these, randomly, to ensure we have enough unbiased samples.

Model Deployment and Inference: The procedure to deploy and test our
models on mobile frameworks is as follows:

1. Create a trained model on PC (by creating a new model or using a pre-trained
model or fine-tune a pre-trained models with transfer learning)

2. Convert the models into their mobile variant, using TensorFlow Lite and
PyTorch Mobile (optionally quantize the model (only in RQ2)).

3. Load the model and samples into memory and run the inference on mobile
to calculate the robustness.

Recall that this procedure is divided between PC (model training) and mobile
(model inference), since mobile devices alone are not powerful enough to do heavy
tasks such as training an extremely resource-intensive neural network.

Adversarial Attacks: As discussed in Sect. 2.2, we use the following three
famous untargeted attacks in this study: FGSM, BIM, and Boundary attack.
We utilize a python package for creating adversarial attacks called Foolbox [30].
For FGSM and BIM attacks, we use an ε of 0.005. For BIM attack, we choose
ten iterations which is the default value in Foolbox. For Boundary attack, both
orthogonal and towards steps are set to 0.01 (which are again the default values
in Foolbox), and the number of steps is set to 5000. A small number of steps
results in a very perturbed image, and a huge one is highly time-consuming and
does not always result in a better sample.

To generate adversarial samples, we follow these steps that produces visually
acceptable images (see Fig. 1):

Robustness Analysis of Deep Learning Frameworks on Mobile Platforms 167

Table 1. Input image normalization in preprocessing. (values are according to image
channels (B, G, R) for ResNet50 in TF and (R, G, B) for other configurations)

Framework model mean (μ) std (σ)

TensorFlow
MobileNetV2 (127.5, 127.5, 127.5) (127.5, 127.5, 127.5)

ResNet50 (103.939, 116.779, 123.68) (1, 1, 1)
InceptionV3 (127.5, 127.5, 127.5) (127.5, 127.5, 127.5)

PyTorch
MobileNetV2 (0.485, 0.456, 0.406) (0.229, 0.224, 0.225)

ResNet50 (0.485, 0.456, 0.406) (0.229, 0.224, 0.225)
InceptionV3 (0.485, 0.456, 0.406) (0.229, 0.224, 0.225)

1. Preprocess our carefully selected samples according to the model require-
ments, as follows: First Resize the image’s smallest dimension to 256 (299 in
case of InceptionV3) (This is the choice of both TensorFlow, and PyTorch
[4,12]). Then center crop the resized image according to input size of the
model. Afterwards for PyTorch, divide image pixel values by 255 to map the
values to [0, 1] range (TensorFlow uses (0, 255) range). For ResNet50 only in
TensorFlow, change image format from RGB to BGR. Finally normalize the
image channels based on the mean and standard deviation, in Table 1, which
is from TensorFlow and PyTorch documentations [7,12].

2. Pass the model and samples to an attacker to generate adversarial samples.
3. Convert adversarial samples to PNG images to use in mobile devices.

Note that we do not generate the adversarial samples on mobile for two
reasons: (a) the computation intensity of this task, and (b) models on mobile do
not provide essential information for white-box attacks. Another point is that
we convert images to PNG format, which is a lossless format. This format is
crucial since we want our image to be the same as one on PC to be able to
get reliable results. Also, note that for the Boundary attack, we may need to
rerun the algorithm several times until all adversarial samples are successfully
generated (in our case, we had to rerun three times).

Evaluation Metrics: To evaluate robustness, we use success rate, which mea-
sures the proportion of samples that could successfully fool the models. Since
our originally selected test set samples are all classified correctly on all configu-
rations on PC, the success rate of an attack has an inverse correlation with the
model’s robustness.

In RQ2, to better assess the differences between results, when comparing
success rates of quantized vs unquantized models, we run a non-parametric sta-
tistical significant test (Wilcoxon signed-rank) and report the effect size measure
(Vargha and Delaney A Measure), as well.

Execution Environment: We run our PC DL frameworks on a node from the
Compute Canada cluster with 32 gigabytes of RAM, an Nvidia V100 GPU, and
an Intel Gold 6148 Skylake @ 2.4 GHz CPU. We use a physical device for our
mobile device, an HTC U11 with a Qualcomm Snapdragon 835 chipset and 6

168 A. Eslami Abyane and H. Hemmati

gigabytes of RAM, running Android 9. We did not use multiple devices since
model robustness is independent of device type, given that implementations
are using the same library. It is worth noting that we do not use an emulator
as our mobile system. We started the project by testing TensorFlow with an
emulator, but surprisingly, we found that quantized models ran slower than
regular models in the emulator. It turned out that TensorFlow’s quantized kernel
is only optimized for mobile CPU. Thus quantized versions ran poorly on an
emulator. Therefore, we used a real device, as discussed before. We developed a
prototype mobile app (on both frameworks) that takes configuration and images
as input and calculates the success rate.

3.2 Results and Discussions

In this section, we present and discuss the results of RQ1 to RQ3.
RQ1 Results (TensorFlow Lite vs. PyTorch Mobile Robustness on

Mobile Platforms): Figure 2 reports the results for this RQ. The first obser-
vation is that in MobileNetV2 and ResNet50 models, TensorFlow Lite was more
robust against FGSM and BIM attacks (Fig. 2a and Fig. 2b). However, in the
Boundary attack, PyTorch Mobile was more robust. Also, Fig. 2c shows that, for
InceptionV3, PyTorch Mobile is more robust against FGSM and BIM attacks.
However, TensorFlow Lite is more robustness against the Boundary attack.

Thus, in mobile DL frameworks, the robustness depends on configurations,
and no learning framework among TensorFlow Lite and PyTorch Mobile domi-
nates the other one in terms of robustness.

It can also be seen that the more complex the model gets, the more robust it
will be against adversarial samples. For instance, In TensorFlow Lite, the success
rate of the FGSM attack on MobileNetV2, ResNet50, and InceptionV3 is 77%,
74.27%, and 55.8%, respectively.

Furthermore, both FGSM and BIM attacks are much more effective than the
Boundary attack. In addition, BIM attack always performs better than FGSM
as it tries to improve an FGSM sample iteratively.

Moreover, we can see that Boundary attack is less successful than FGSM
and BIM in all cases with a very low success rate. This seems contradictory
with the definition of Boundary attack, which was supposed to generate samples
always on the adversarial side. In other words, the success rate should have
always been 100%. The reason for lower success rates is that images are in 8-
bit unsigned integer (UINT8) format, but the neural networks work with 32-bit
floating-points (FP32). Therefore, when a sample is generated, it is in FP32
format and is always adversarial. However, the reduction of precision to UINT8,
in conversion to the image format, makes some samples cross the boundary, and
the success rate significantly drops.

Besides the attack success rate, another important factor is performance.
Table 2 shows the inference time for the mobile platform when running unquan-
tized models. As the table shows in terms of performance (run-time cost), Ten-
sorFlow Lite is much faster in all configurations (the slower framework is high-

Robustness Analysis of Deep Learning Frameworks on Mobile Platforms 169

(a) MobileNetV2 (b) ResNet50 (c) InceptionV3

Fig. 2. Success rate of adversarial attacks on mobile device

Table 2. Inference time in the mobile device for the entire test set (3,000 samples).
The bold cells represent the framework with faster inferences.

Inference time (s)
Model Attack TensorFlow Lite PyTorch Mobile

MobileNetV2
FGSM 157 276
BIM 174 301

Boundary 187 302

ResNet50
FGSM 1003 1583
BIM 1036 1504

Boundary 1093 1460

InceptionV3
FGSM 1617 1774
BIM 1626 1841

Boundary 1516 1820

lighted in the table) for regular models. This might be because PyTorch Mobile
uses fewer threads as the number of workers cannot be set on PyTorch.

Answer to RQ1: Neither PyTorch Mobile nor TensorFlow Lite is signifi-
cantly more robust than the other, in all cases. The choice of a more robustness
mobile framework depends on the model architecture and the attack itself. In
terms of performance, however, TensorFlow Lite is consistently faster!

RQ2 Results (TensorFlow and PyTorch Robustness on PC vs.
Mobile): To answer this RQ, we start by analyzing robustness on PC DL
frameworks as our baseline. Figure 3 report the success rates of three adversarial
attacks (FGSM, BIM, and Boundary) on three models (MobileNetV2, ReNet50,
and InceptionV3) over two PC frameworks (TensorFlow and PyTorch).

As it can be seen in Fig. 3a and Fig. 3b on MobileNetV2 and ResNet50 archi-
tectures TensorFlow is more robust against white-box attacks, while on Bound-
ary attack which is black-box, PyTorch is more robust. However, in InceptionV3
(Fig. 3c), it is the exact opposite, and TensorFlow is more robust against the
black-box attack. Also, PyTorch is more robust against white-box attacks. These
patterns were seen in our experiments on the mobile device (RQ1), as well.

170 A. Eslami Abyane and H. Hemmati

(a) MobileNetV2 (b) ResNet50 (c) InceptionV3

Fig. 3. Success rate of adversarial attacks on PC

Table 3. Adversarial generation time for the entire test sets (3,000 samples) reported
in hours:minutes:seconds.

Generation time (s)
Model Framework FGSM BIM Boundary

MobileNetV2
TensorFlow 00:02:20 00:04:13 01:01:46

PyTorch 00:03:35 00:04:16 01:26:04

ResNet50
TensorFlow 00:02:01 00:03:38 04:31:17

PyTorch 00:02:30 00:05:37 04:56:24

InceptionV3
TensorFlow 00:03:06 00:03:45 05:54:14

PyTorch 00:01:36 00:05:18 07:25:36

Table 3 reports adversarial sample generation cost on PC. As it can be seen,
the Boundary attack takes a significantly longer time to finish, with a much lower
success rate in the end. While white-box attacks finish in minutes, the Boundary
attack takes a couple of hours to complete, even in a high-end system, such as
Compute Canada cluster. This perfectly illustrates why it is almost impossible to
create samples using black-box techniques on mobile devices. Moreover, white-
box attacks need gradient, which is unavailable on mobile frameworks at the
moment. Thus they too cannot be run on mobile. Consequently, currently, there
is no easy way to generate adversarial samples on mobile devices. Finally, we
can see that TensorFlow is slightly faster than PyTorch, in most cases.

To better compare mobile and PC platforms, Fig. 4 reports the same raw
data as Figs. 2 and 3, but grouped by platforms. As Fig. 4a, 4b, and 4c show,
robustness is almost the same in all cases except on the Boundary attack on
InceptionV3, where we see a slight increase in robustness on mobile. We also see
similar patterns in Fig. 4d, 4e, and 4f, between mobile and PC for PyTorch where
the robustness on mobile is either the same or very close to the PC version in all
configurations. The exception is the Boundary attack on MobileNetV2, where
we see a sudden drop in success rate in PyTorch Mobile. This shows PyTorch’s
mobile version of MobileNetV2 is more robust against the Boundary attack.

Answer to RQ2: In most cases, switching platforms between PC and mobile
does not change the robustness drastically. This means that the implementation

Robustness Analysis of Deep Learning Frameworks on Mobile Platforms 171

(a) TensorFlow, MobileNetV2 (b) TensorFlow, ResNet50 (c) TensorFlow, InceptionV3

(d) PyTorch, MobileNetV2 (e) PyTorch, ResNet50 (f) PyTorch, InceptionV3

Fig. 4. Different attacks’ success rates on different platforms.

of models on both hardware and languages perform similarly, and they are almost
equivalent. However, in some cases, like on PyTorch when using Boundary attack
on MobileNetV2, we might get much higher robustness on mobile platforms.

RQ3 results (the quantization effect): To answer this RQ, we report the
results in Fig. 5. The results show that the attacks lose their initial effectiveness
in all cases and their success rate decreases. This shows that quantization can
increase the robustness of the model against attacks. In some cases, robustness
increases slightly, whereas in a case like a Boundary attack (which is trying to
create samples closest to the boundary), the slightest effect like quantization can
massively improve the robustness. In other words, these attacks are very depen-
dent on the model’s specifications. If model parameters change (as quantization
does), the attack will not be as effective as it was.

The median decrease of success rates per attack is 3.55% (FGSM), 2.43%
(BIM), and 23.77% (Boundary), with a minimum of 0.47% (for BIM om
PyTorch-ResNet50) and a maximum of 37.5% (For Boundary on PyTorch-
InceptionV3). This difference between the unquantized and quantized models’
robustness is statistically significant with a p-value less than 0.001 when running
a non-parametric statistical significant test (Paired Wilcoxon Signed-Rank test),
with the effect size measure (Paired Vargha and Delaney A Measure) is 0.608.

In terms of model performance, as Table 4 shows, quantization closes the
model inference time gap between the two frameworks, and in some models
like MobileNetV2, PyTorch Mobile even runs faster than TensorFlow Lite. As
expected, the speedup after quantization is significant, and it goes up to 2.87
times in some cases (e.g., MobileNetV2 in PyTorch).

Answer to RQ3: In addition to the speed and size reduction that quantiza-
tion provides, it can be a very low-cost and straightforward defense mechanism

172 A. Eslami Abyane and H. Hemmati

(a) TensorFlow, MobileNetV2 (b) TensorFlow, ResNet50 (c) TensorFlow, InceptionV3

(d) PyTorch, MobileNetV2 (e) PyTorch, ResNet50 (f) PyTorch, InceptionV3

Fig. 5. Effect of quantization on success rate

against adversarial attacks. Quantization increases the robustness with a median
up to 37.5% for some attacks (Boundary) over a distribution of three models and
two DL frameworks per attack.

3.3 Threats to Validity

In terms of the construct validity, the key to our success rate measure is knowing
the ground truth. However, we are only relying on the original classification
models to come up with the ground truth. That is, there might be cases where
the model is misclassifying, but the adversarial sample is correctly classified.
As discussed, we take the intersection of the three models’ correctly classified
samples to reduce the probability of having a misclassified ground truth.

In terms of the internal validity, our study design is pretty simple, with evalu-
ating the robustness of models using attacks success rate. We are using predefined
classification models and existing libraries to create attacks. Therefore, we are
not introducing confounding factors in our implementation or design.

In terms of conclusion validity and to address the randomness of the results,
we ran a non-parametric paired statistical significant test (Paired Wilcoxon
Signed-Rank test) and reported the effect size measure (Paired Vargha and
Delaney A Measure) when comparing the success rates in RQ3. In RQ1 and
RQ2, the results were mainly the same when comparing frameworks and plat-
forms. Therefore, our conclusions were the differences are practically insignificant
anyways, so there was no need to run any statistical significance tests.

Finally, regarding the external validity and generalizability of the study, one
potential validity threat is having limited datasets and models, which results in

Robustness Analysis of Deep Learning Frameworks on Mobile Platforms 173

Table 4. Effect of quantization on mobile inference time

Inference time (s)
Model Attack Framework Regular Quantized

MobileNetV2

FGSM
TensorFlow Lite 157 133
PyTorch Mobile 276 96

BIM
TensorFlow Lite 174 128
PyTorch Mobile 301 105

Boundary
TensorFlow Lite 187 132
PyTorch Mobile 302 112

ResNet50

FGSM
TensorFlow Lite 1003 534
PyTorch Mobile 1583 616

BIM
TensorFlow Lite 1036 531
PyTorch Mobile 1504 622

Boundary
TensorFlow Lite 1093 559
PyTorch Mobile 1460 554

InceptionV3

FGSM
TensorFlow Lite 1617 798
PyTorch Mobile 1774 942

BIM
TensorFlow Lite 1626 804
PyTorch Mobile 1841 982

Boundary
TensorFlow Lite 1516 808
PyTorch Mobile 1820 993

biased conclusions. We mitigate this threat by choosing one of the most exten-
sive datasets in the image domain. Furthermore, we used three state-of-the-art
models with different complexities to help generalize our results. Finally, we
used both white-box and black-box attacks, and all the attacks were some of the
best in their categories. However, still, all of these datasets and models are from
the domain of the image. Thus the results might not be generalizable to other
domains such as natural language processing. In addition, we only used Android
as our mobile platform. Therefore, the results might not be representative of
iOS.

4 Related Work

Luo et al. [27] made a comparison for classifiers between different mobile frame-
works like TensorFlow Lite PyTorch Mobile and Caffe 2 [1], which is now part of
PyTorch. They used many models such as ResNet50, InceptionV3, DenseNet121
[22], and compared all the models on all the mentioned frameworks. They also
compared the neural inference power of different mobile devices. Some of the
results were as follows: none of the platforms had a noticeable advantage in all
cases, TensorFlow Lite had a much faster model loading time compared to the
others, the same AI model on the different platform had different accuracy, and
Android Neural Networks API (NNAPI) did not constantly improve the infer-
ence time. This study was mainly focused on accuracy and performance but did
not have any robustness assessments, which our study covers.

174 A. Eslami Abyane and H. Hemmati

Ignatov et al. [24] made a benchmark consisting of multiple tests such as
image recognition, face recognition, image deblurring, image semantic segmen-
tation, image enhancement, and memory limitations. Then they compared the
performance of DNN models on different mobile phones. This paper’s main idea
was to measure the power of the CPU chipset; thus, there was no other compar-
ison in this work. They only used TensorFlow Lite as the DL framework, and
there was no comprehensive study on the impact of different models.

Guo et al. [20] presented a study on PyTorch Mobile, TensorFlow Lite and
TensorFlow.js [10], CNTK [32], MXnet [17]. The paper made a comparison on
PC and found that PyTorch and MXnet were more vulnerable in adversarial
attacks. It compared browsers using TensorFlow.js with PC for MNIST and
CIFAR-10 datasets using different models and found that TensorFlow.js suffered
from high memory usage and had meaningful lower accuracy ResNet model.
Android devices were faster in small models in inference time, whereas IOS
devices were better at large models. It used TensorFlow Lite to compare Android
and iOS devices with PC and found similar accuracy to PC. Finally, they found
that quantization did not affect accuracy much, and it made inference faster on
Android devices. Although there was some robustness analysis in this work, the
models were very simple and unrealistic, and evaluation was only on PC.

Huang et al. [23] made some interesting experiments on the robustness of
models on Android devices. They used TensorFlow Lite as the framework for
their study. Their approach had some key points. They extracted TensorFlow
Lite models from the Google Play store. Then based on some criteria, They found
similar pre-trained PC models available online and implemented the attacks on
similar models. Their results showed that their approach was more effective in
fooling the models than blind attacks (attacks without knowing the model).
However, this study was only focused on attacking a specific model on mobile,
and It did not look at different frameworks and the effect of platforms.

Given the related work, we see a gap in the literature for assessing the robust-
ness of mobile DL frameworks, which our study covers.

5 Conclusion and Future Works

In this paper, we conduct a comprehensive study on deep learning mobile frame-
works’ robustness with different configurations. We compare the two major
mobile frameworks (TensorFlow Lite and PyTorch Mobile), using 18 configura-
tions (36 configurations considering quantization): two frameworks, three mod-
els, and three adversarial attack techniques. Our results show that frameworks
are not necessarily superior in terms of robustness on the mobile platform, and
the more robust framework varies by model architecture and attack type. Fur-
thermore, changing the platform to mobile usually does not affect robustness
but in some cases results in a slight increase in robustness which is not signif-
icant. However, we also show that quantization is a very effective approach in
reducing the cost of model inference and making it more robust toward attacks
in DL frameworks, consistently improving the robustness of Mobile DL frame-
works (even up to 37.5% improvement when compared to regular models). In

Robustness Analysis of Deep Learning Frameworks on Mobile Platforms 175

the future, we plan to extend this study to other application domains (such as
textual data) and study other frameworks and platforms such as TensorFlow.js
and iOS devices.

Acknowledgement. This work was enabled in part by support from WestGrid (www.
westgrid.ca) and Compute Canada (www.computecanada.ca) and the Natural Sciences
and Engineering Research Council of Canada [RGPIN/04552-2020].

References

1. Caffe2—a new lightweight, modular, and scalable deep learning framework.
https://caffe2.ai/

2. Home—pytorch. https://pytorch.org/mobile/home/
3. Imagenet. http://www.image-net.org/
4. Inception v3—pytorch. https://pytorch.org/hub/pytorch vision inception v3/
5. Introduction to quantization on pytorch—pytorch. https://pytorch.org/blog/

introduction-to-quantization-on-pytorch/
6. Keras applications. https://keras.io/api/applications/
7. keras-applications/imagenet utils.py at 1.0.8. https://github.com/keras-team/

keras-applications/blob/1.0.8/keras applications/imagenet utils.py
8. Model optimization—tensorflow lite. https://www.tensorflow.org/lite/perfo-

rmance/model optimization
9. Tensorflow lite—ml for mobile and edge devices. https://www.tensorflow.org/lite

10. Tensorflow.js—machine learning for javascript developers. https://www.
tensorflow.org/js

11. torchvision—pytorch 1.7.0 documentation. https://pytorch.org/docs/stable/torch-
vision/index.html

12. torchvision.models—torchvision master documentation. https://pytorch.org/
vision/stable/models.html

13. Wordnet—a lexical database for English. https://wordnet.princeton.edu/
14. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: Pro-

ceedings of the 12th USENIX Conference on Operating Systems Design and Imple-
mentation, pp. 265–283. OSDI 2016, USENIX Association, USA (2016)

15. Brendel, W., Rauber, J., Bethge, M.: Decision-based adversarial attacks: reliable
attacks against black-box machine learning models (2018)

16. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In:
2017 IEEE Symposium on Security and Privacy (SP), pp. 39–57 (2017). https://
doi.org/10.1109/SP.2017.49

17. Chen, T., et al.: Mxnet: a flexible and efficient machine learning library for het-
erogeneous distributed systems (2015)

18. Fawzi, A., Moosavi-Dezfooli, S.M., Frossard, P.: Robustness of classifiers: from
adversarial to random noise. In: Proceedings of the 30th International Conference
on Neural Information Processing Systems, pp. 1632–1640. NIPS 2016, Curran
Associates Inc., Red Hook, NY, USA (2016)

www.westgrid.ca
www.westgrid.ca
www.computecanada.ca
https://caffe2.ai/
https://pytorch.org/mobile/home/
http://www.image-net.org/
https://pytorch.org/hub/pytorch_vision_inception_v3/
https://pytorch.org/blog/introduction-to-quantization-on-pytorch/
https://pytorch.org/blog/introduction-to-quantization-on-pytorch/
https://keras.io/api/applications/
https://github.com/keras-team/keras-applications/blob/1.0.8/keras_applications/imagenet_utils.py
https://github.com/keras-team/keras-applications/blob/1.0.8/keras_applications/imagenet_utils.py
https://www.tensorflow.org/lite/perfo-rmance/model_optimization
https://www.tensorflow.org/lite/perfo-rmance/model_optimization
https://www.tensorflow.org/lite
https://www.tensorflow.org/js
https://www.tensorflow.org/js
https://pytorch.org/docs/stable/torch-vision/index.html
https://pytorch.org/docs/stable/torch-vision/index.html
https://pytorch.org/vision/stable/models.html
https://pytorch.org/vision/stable/models.html
https://wordnet.princeton.edu/
https://doi.org/10.1109/SP.2017.49
https://doi.org/10.1109/SP.2017.49

176 A. Eslami Abyane and H. Hemmati

19. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learn-
ing Representations, ICLR 2015, 7–9 May 2015, Conference Track Proceedings,
San Diego, CA, USA (2015). http://arxiv.org/abs/1412.6572

20. Guo, Q., et al.: An empirical study towards characterizing deep learning devel-
opment and deployment across different frameworks and platforms. In: 34th
IEEE/ACM International Conference on Automated Software Engineering, ASE
2019, 11–15 Nov 2019, pp. 810–822. IEEE, San Diego, CA, USA (2019). https://
doi.org/10.1109/ASE.2019.00080

21. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, 27–30 June 2016, pp. 770–778. IEEE Computer Society, Las Vegas, NV, USA
(2016). https://doi.org/10.1109/CVPR.2016.90

22. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks (2018)

23. Huang, Y., Hu, H., Chen, C.: Robustness of on-device models: adversarial attack
to deep learning models on android apps (2021)

24. Ignatov, A., et al.: AI benchmark: running deep neural networks on android smart-
phones. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11133, pp.
288–314. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11021-5 19

25. Jacob, B., et al.: Quantization and training of neural networks for efficient integer-
arithmetic-only inference (2017)

26. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial examples in the physical world
(2017)

27. Luo, C., He, X., Zhan, J., Wang, L., Gao, W., Dai, J.: Comparison and bench-
marking of AI models and frameworks on mobile devices (2020)

28. Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P.: DeepFool: a simple and accurate
method to fool deep neural networks. In: 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 2574–2582 (2016). https://doi.org/
10.1109/CVPR.2016.282

29. Paszke, A., et al.: Automatic differentiation in pytorch (2017)
30. Rauber, J., Zimmermann, R., Bethge, M., Brendel, W.: Foolbox native: fast adver-

sarial attacks to benchmark the robustness of machine learning models in pytorch,
tensorflow, and jax. J. Open Source Softw. 5(53), 2607 (2020). https://doi.org/10.
21105/joss.02607

31. Sandler, M., Howard, A.G., Zhu, M., Zhmoginov, A., Chen, L.: MobileNetV2:
inverted residuals and linear bottlenecks. In: 2018 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2018, 18–22 June 2018, pp. 4510–4520.
IEEE Computer Society, Salt Lake City, UT, USA (2018). https://doi.org/10.1109/
CVPR.2018.00474

32. Seide, F., Agarwal, A.: CNTK: microsoft’s open-source deep-learning toolkit. In:
Krishnapuram, B., Shah, M., Smola, A.J., Aggarwal, C.C., Shen, D., Rastogi, R.
(eds.) Proceedings of the 22nd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, 13–17 Aug 2016, p. 2135. ACM, San Francisco,
CA, USA (2016). https://doi.org/10.1145/2939672.2945397

33. Su, J., Vargas, D.V., Sakurai, K.: One pixel attack for fooling deep neural net-
works. IEEE Trans. Evol. Comput. 23(5), 828–841 (2019). https://doi.org/10.
1109/TEVC.2019.2890858

http://arxiv.org/abs/1412.6572
https://doi.org/10.1109/ASE.2019.00080
https://doi.org/10.1109/ASE.2019.00080
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1007/978-3-030-11021-5_19
https://doi.org/10.1109/CVPR.2016.282
https://doi.org/10.1109/CVPR.2016.282
https://doi.org/10.21105/joss.02607
https://doi.org/10.21105/joss.02607
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1145/2939672.2945397
https://doi.org/10.1109/TEVC.2019.2890858
https://doi.org/10.1109/TEVC.2019.2890858

Robustness Analysis of Deep Learning Frameworks on Mobile Platforms 177

34. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. In: 2016 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2016, 27–30 June 2016, pp. 2818–2826.
IEEE Computer Society, Las Vegas, NV, USA (2016). https://doi.org/10.1109/
CVPR.2016.308

35. Wu, H., Judd, P., Zhang, X., Isaev, M., Micikevicius, P.: Integer quantization for
deep learning inference: principles and empirical evaluation (2020)

https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2016.308

Use Cases

Specification and Validation of Numerical
Algorithms with the Gradual Contracts

Pattern

René Fritze(B) and Stephan Rave

Applied Mathematics Münster, Westfälische Wilhelms-Universität Münster,
48149 Münster, Germany
rene.fritze@wwu.de

https://wwu.de/amm

Abstract. In this contribution we discuss the domain specific prob-
lems arising when implementing test suites for numerical algorithms.
We propose a design approach based on gradual contracts and a sup-
port library to alleviate some of these issues. Gradual contracts do not
need to represent a full specification of an algorithm’s interface and can
include untestable mathematical concepts. This encourages the devel-
oper to express their current, possibly incomplete, understanding of the
algorithm in code and allows them to use automatic test generation for
further insights. We demonstrate the applicability of our approach with
the example of the Newton-Raphson method.

1 Introduction

Testing numerical code is widely accepted as necessary to confidently publish
generated results, as evidenced by resources from the Software Sustainability
Institute [3], and others [7,9,11]. Undiscovered software faults can yield direct
consequences ranging from forced article retraction [19], to costly equipment
failure [12] and to wasted research effort trying to refine computation models to
fit simulation results [13]. Undetected bugs in foundational libraries like Open-
BLAS [20] can cause failed computations where a scientist might not even be
aware their NumPy-based [15] code is using OpenBLAS.

Despite the importance of extensively testing numerical algorithms, guid-
ance on implementing tests for such algorithms is scarce and often limited to
the documentation surrounding a project’s test harness or continuous testing
infrastructure [1,5,6], or to very basic advice, such as to take round-off errors
into account when comparing floating point numbers [2,8] or using fabricated
solutions [10] or the empirical convergence order to validate the algorithm.

We claim that this absence of guidance mostly stems from a lack of knowledge
about the exact properties of the implemented algorithms: due to the iterative
nature of most numerical algorithms, the influence of numerical round-off errors
and the high-dimensionality of the input space, is often hard to predict. Even

c© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
D. Clark et al. (Eds.): ICTSS 2021, LNCS 13045, pp. 181–188, 2022.
https://doi.org/10.1007/978-3-031-04673-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04673-5_14&domain=pdf
http://orcid.org/0000-0002-9548-2238
http://orcid.org/0000-0003-0439-7212
https://doi.org/10.1007/978-3-031-04673-5_14

182 R. Fritze and S. Rave

in exact arithmetic, the set of inputs for which an algorithm converges to the
desired solution is, in many cases, only partially known. Overall, writing “good”
tests for numerical software is a daunting, murky task. In this contribution we
hope to start to remedy this by proposing an improved development paradigm for
numerical algorithms which we call “Gradual Contracts Pattern”. This paradigm
encourages developers to formally express their partial knowledge of the algo-
rithm specification and shows how refining the implementation feeds back into
more complete tests and vice-versa.

In Sect. 2 we will explain the difficulties for writing new tests using the exam-
ple of a Python implementation of the Newton-Raphson algorithm. That algo-
rithm we will then gradually document and test using our proposed approach in
Sect. 3.

2 Testing a Newton-Raphson Algorithm

The well-known Newton-Raphson algorithm iteratively seeks a root of a given
differentiable function:

Definition 1 (Newton-Raphson algorithm). Let f : (xl, xr) �→ R, be a
differentiable function and x0 ∈ R. Then, under some conditions, the sequence

xn+1 = xn − f(xn)
f ′(xn)

(1)

is well-defined (i.e. xn ∈ (xl, xr) for all n) and converges to a root of f .

We will call this the mathematical language definition (MLD). A naive imple-
mentation in Python might be

def newton_raphson(func, derivative, x0, maxit, tolerance):

for it in itertools.count():

residual = f(x0)

if abs(residual) < tolerance:

return x0

if it == maxit:

raise NewtonError(x0, it, residual)

x0 -= residual*derivative(residual)

We will call this the programming code definition (PCD). We can then consider
what it means for this PCD to be a “correct” implementation of the MLD.

This PCD has 5 inputs and one output. The output is either a root of f (of
return value of func type) to within tolerance and after at most maxit iterations,
or an exception. The inputs however are not clearly defined. Following the duck
typing principle, func and derivative are only mandated to be callable. There
are no bounds checks for tolerance, x0 or maxit. To define a full contract for
the PCD, we would have to check for all inputs if they match the prerequisites of
the MLD. However, while using numerical differentiation we could try to verify

The Gradual Contracts Pattern 183

that derivative matches f ′ in a number of sampling points, it is not clear to
which accuracy this should be checked. We also have no means of verifying that
x0 lies within the domain of func (checking if evaluating (func(x0)) produces
a number, does not tell us, whether x0 is really within the domain or if the
implementation of func just produced a random number).

For any valid input, checking whether the output is correct seems straight-
forward for the case where a root was found. Simply evaluate func at point y
and compare if that is within tolerance range of 0. Yet this does not signify that
we correctly implemented the algorithm described by the MLD. For instance,
the actual implementation might be that of a completely different mathematical
method with, for instance, a slower convergence speed. For the case that an error
was returned, checking whether that is correct is also not simple. If any other
exception than NewtonError was raised, the input might have been invalid. The
func and derivative might not have been callable, or they might not accept
x0 for the evaluation. Maybe the tolerance was of a data type that could not
be compared with the residual. These error conditions, while tedious, are easy
to check. If a NewtonError was raised deciding its correctness is more difficult.
Needing more iterations than allowed could be a sign of numerical instability
stemming from suboptimal implementation, which needs fixing. If the initial
guess was not in the convergence ball or f has no roots at all, then getting an
error is correct and expected.

It is obvious that the test implementer needs to input varying data into the
function to properly test the algorithm. But how many different func instances
should they run the test with? After all, C1 is infinite dimensional. It needs to
be sampled. What should the strategy be? How to ensure the most “impactful”
representatives get chosen? How then to determine what the initial guess should
be? Do they need to check the same function and initial guess combination with
different tolerances?

These challenges for writing tests for the present PCD, and many more
similar ones, are ubiquitous for all test writing in numerical software. In [16]
Kanewala and Bieman have cataloged and categorized them by means of a sys-
tematic literature review. The number of interdependent, sometimes conflict-
ing, choices and considerations can appear so large and complex for a scientist-
developer they feel no test strategy will be good enough and as a consequence
might not test at all. A flexible testing methodology is required that encourages
and rewards incorporation of incrementally increasing knowledge about an algo-
rithm. It also needs to be able to express mathematical concepts and properties
which might not be checkable, but which are profoundly useful as documentation
and for domain specific test-input generation tools.

3 Gradual Contracts

3.1 General Considerations

In this section then we explain how the Gradual Contracts Pattern helps imple-
menters of numerical algorithms to document and test the properties of their

184 R. Fritze and S. Rave

@GCP.pre('func: Function(Interval, float, diff=1)',

'derivative: func.diff()',

'x0: float', 'maxit: int', 'tolerance: float')

@GCP.pre('maxit > 0', 'tolerance > 0')

@GCP.post('abs(func(ret)) < tolerance')

@GCP.raises(NewtonError, when='derivative(err.x0) == 0')

@GCP.implies(GCP.args(lambda x: 1, lambda x: 0, 1, 100, 1e-3),

GCP.post('almost_equal(ret, 0, 1e-15)'))

@GCP.implies(GCP.pre('func: Function(Interval, float, diff=2)',

'kantorovich(func, derivative, x0, maxit, tolerance, '

' func.domain, func.diff(2).sup_norm))',

GCP.no_error)

def newton_raphson(func, derivative, x0, maxit, tolerance):

...

Listing 1. Final contract specification for the Newton-Raphson algorithm

codes. Our approach is founded on the classical design-by-contract (DbC) [18]
with special considerations for the numerical code writing space.

Following the Newton-Raphson PDC example from Sect. 2, we demonstrate
how incrementally refining contracts and better testing form a feedback loop to
produce easier to reason about and more robust code.

We will pretend to have a support library called GCP available that provides
decorators to define pre and post conditions, can infer types and generate test
inputs from contracts. Our decorators will generally be using a domain spe-
cific language to better express concerns and concepts, without using too many
implementation-language specifics. As the first step we set type annotations for
our inputs and outputs.

3.2 Library Primitives

The GCP library has a collection of primitives available to make this more concise.
For instance, we are using the Interval primitive here to denote that func is a
function of a real number, which might only be defined on a certain interval.

@GCP.pre('func: Function(Interval, float)',

'derivative: Function(Interval, float)',

'x0: float', 'maxit: int', 'tolerance: float')

@GCP.post('ret: float')

def newton_raphson(func, derivative, x0, maxit, tolerance):

...

The library provides a method to exercise a PCD in a test harness. Specif-
ically GCP.test can introspect a given function object and its decorators to
generate tests with varying inputs.

GCP.test(newton_raphson)

The Gradual Contracts Pattern 185

Since we did not define any more input properties GCP.test might generate
this call

newton_raphson(lambda x:x, lambda x:0, 1, -1, -1)

which will raise a NewtonError right in the first iteration. Obviously we should
evolve our contract to describe reasonable input bounds and check if the return
value satisfies the convergence criterion.

@GCP.pre('maxit > 0', 'tolerance > 0')

@GCP.post('abs(func(ret)) < tolerance')

def newton_raphson(func, derivative, x0, maxit, tolerance):

...

Now a test call might instead be

newton_raphson(lambda x:x, lambda x:0, 1, 100, 1e-3)

which will result in a ZeroDivisionError because we did not consider the
f ′(x) = 0 case yet. Let us handle this case explicitly in the PDC and raise
a NewtonError if it occurs. We can then use the GCP.raises mechanism to
express when receiving an exception err is expected. In traditional DbC, reach-
ing this error state might be prevented using a pre-condition like f ′(x) �= 0.
In the context of numerical codes it is sometimes impossible to evaluate such a
condition due to dimensionality of the input space. So while the function here is
unable to fulfill its contract and raises an exception, if the when clause evaluates
to True the test harness will still mark this test a success. This way we do not
violate the second law of exception handling (Section 1.7.2, [18]).

@GCP.raises(NewtonError, when='derivative(err.x0) == 0')

def newton_raphson(func, derivative, x0, maxit, tolerance):

...

Now GCP.test recognizes that the input set results in a “correct” error and
continue to generate more inputs. Take

newton_raphson(lambda x:x, lambda x:-1, 1, 100, 1e-3)

as our next example. This function call will terminate unsuccessfully after 100
iterations. Clearly we need to generate an input for derivative that is actually
the derivative of func. Thankfully GCP includes primitives to describe relation-
ships between arguments:

@GCP.pre('func: Function(Interval, float, diff=1)',

'derivative: func.diff()',

'x0: float', 'maxit: int', 'tolerance: float')

def newton_raphson(func, derivative, x0, maxit, tolerance):

...

186 R. Fritze and S. Rave

Here, diff=1 and func.diff() will not be used for runtime checking, but
are strictly for documentation and test input generation purposes. Similarly, GCP
includes primitives to specify matrices with given properties such as shape or
condition number. This description now allows GCP to generate a matching pair
of input functions:

newton_raphson(lambda x:x, lambda x:1, 1, 100, 1e-3)

3.3 Contingent Pre-/post-conditions

Another important feature of GCP is the ability to define output conditions which
only need to match when certain input conditions are satisfied. In particular, we
can use this to check the algorithm for explicit examples for which the correct
output of the algorithm is known:

@GCP.implies(GCP.args(lambda x: 1, lambda x: 0, 1, 100, 1e-3),

GCP.post('almost_equal(ret, 0, atol=1e-15)'))

def newton_raphson(func, derivative, x0, maxit, tolerance):

...

The final feature of GCP is the ability to encode knowledge of the algorithms
behavior in an input dependent function. For the Newton-Raphson algorithm
Kantorovich’s theorem [14] guarantees convergence of the algorithm, if certain
conditions on the input are satisfied. First we define a utility function to represent
the criterion and then use it to express that if our preconditions satisfy it we
expect no error (meaning the previously defined post-condition to be fulfilled).
We note that our primitives (Function) are designed such that their properties
(func.domain, func.diff()) can be referenced in the DSL.

def kantorovich(func, derivative, x0, maxit, tolerance, domain, L):

h_0 = -1/derivative(x0)*func(x0)

alpha_0 = L * abs(1 / derivative(x0)) * h_0

x_1 = x_0 - h_0

if alpha_0 > 0.5 or x_1 - h0 not in domain:

return False

max_residual = abs(func(x0)) * (0.25) ** maxit

return max_residual < tolerance

@GCP.implies(GCP.pre('func: Function(Interval, float, diff=2)',

'kantorovich(func, derivative, x0, maxit, tolerance, '

' func.domain, func.diff(2).sup_norm))',

GCP.no_error)

def newton_raphson(func, derivative, x0, maxit, tolerance):

...

We emphasize, that the conditions of Kantorovich’s theorem are restrictive,
and the algorithm converges in many cases where these conditions are not met.
As such, the final contract specification we have developed in this section (List-
ing 1) is still incomplete yet already gives extensive insights into the algorithm.

The Gradual Contracts Pattern 187

When generating random input data from these contracts, we may encounter
test failures due to insufficient numerical accuracy. From these failing examples,
we will then have to decide whether our implementation is flawed or whether we
need to add further restrictions on the input, further extending our understand-
ing of the algorithm.

4 Conclusion and Outlook

In this contribution we have shown how to gradually improve an algorithm’s
specification using GCP, after explaining the domain-specific challenges for test-
ing numerical codes by non-experts. A prototype implementation of the GCP
library for Python is currently work in progress. There we are leveraging the
capabilities of the existing icontract [4] library to setup the contracts frame-
work, while we use hypothesis [17] to generate test inputs from the primitives’
specification. Critical to community adoption of approach and library will be a
sufficiently large set of primitives and ease of adding new ones.

Acknowledgment. Funded by the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) under Germany’s Excellence Strategy EXC 2044 -
390685587, Mathematics Münster: Dynamics-Geometry-Structure and under RA
3055/1-1: pyMOR – Nachhaltige Software zur Modell-Ordnungs-Reduktion.

References

1. Astropy testing guidelines. https://web.archive.org/web/20210610143923/https://
docs.astropy.org/en/latest/development/testguide.html. Accessed 10 June 2021

2. The Boost Test documentation. http://go.wwu.de/5femy. Accessed 11 June 2021
3. How to write code like a scientist. http://go.wwu.de/xo8eu. Accessed 10 June 2021
4. icontract - design-by-contract in Python3 with informative violation messages and

inheritance. http://go.wwu.de/b2ws6. Accessed 19 Aug 2021
5. Numpy testing guidelines. http://go.wwu.de/9fzha. Accessed 10 June 2021
6. Petsc testing system. http://go.wwu.de/2mnad. Accessed 10 June 2021
7. Pragmatic unit testing for scientific codes. http://go.wwu.de/4o1tl. Accessed 10

June 2021
8. Stan’s user guide. http://go.wwu.de/mui45. Accessed 11 June 2021
9. Unit testing in R. http://go.wwu.de/qw4fl. Accessed 10 June 2021

10. Verify simulations with the method of manufactured solutions. http://go.wwu.de/
f7dzl. Accessed 11 June 2021

11. Writing tests for scientific code. http://go.wwu.de/qzi0t. Accessed 10 June 2021
12. Mishap Investigation Board: Mars climate orbiter mishap investigation board phase

I report (1999)
13. Dubois, P.F.: Testing scientific programs. Comput. Sci. Eng. 14(4), 69–73 (2012)
14. Gragg, W., Tapia, R.: Optimal error bounds for the Newton-Kantorovich theorem.

SIAM J. Numer. Anal. 11(1), 10–13 (1974)
15. Harris, C.R., Millman, K.J., et al.: Array programming with NumPy. Nature

585(7825), 357–362 (2020)

https://web.archive.org/web/20210610143923/https://docs.astropy.org/en/latest/development/testguide.html
https://web.archive.org/web/20210610143923/https://docs.astropy.org/en/latest/development/testguide.html
http://go.wwu.de/5femy
http://go.wwu.de/xo8eu
http://go.wwu.de/b2ws6
http://go.wwu.de/9fzha
http://go.wwu.de/2mnad
http://go.wwu.de/4o1tl
http://go.wwu.de/mui45
http://go.wwu.de/qw4fl
http://go.wwu.de/f7dzl
http://go.wwu.de/f7dzl
http://go.wwu.de/qzi0t

188 R. Fritze and S. Rave

16. Kanewala, U., Bieman, J.M.: Testing scientific software: a systematic literature
review. Inf. Softw. Technol. 56(10), 1219–1232 (2014)

17. MacIver, D.R., Hatfield-Dodds, Z., Contributors, M.O.: Hypothesis: a new app-
roach to property-based testing. J. Open Source Softw. 4(43), 1891 (2019)

18. Meyer, B.: Applying “design by contract”. Computer 25(10), 40–51 (1992)
19. Miller, G.: A scientist’s nightmare: software problem leads to five retractions (2006)
20. Wang, Q., Zhang, X., Zhang, Y., Yi, Q.: AUGEM: automatically generate high

performance dense linear algebra kernels on x86 CPUs. In: SC 2013: Proceedings
of the International Conference on High Performance Computing, Networking,
Storage and Analysis, pp. 1–12 (2013)

Solving the Instance Identification
Problem in Micro-service Testing

Theofanis Vassiliou-Gioles(B)

Weizenbaum Institute, Technische Universität Berlin, Berlin, Germany

vassiliou-gioles@tu-berlin.de

Abstract. Micro-service architecture has become a standard software
architecture style, with loosely coupled, specified, and implemented ser-
vices owned by small teams and independently deployable. In particular,
with the emergence of managed services, deployment aspects have to be
addressed explicitly. While tools and frameworks support micro-service
developers in developing and unit-testing their services, less attention
has been given to higher testing levels, particularly to the integration
testing phase. This paper identifies aspects that limit the expressiveness
of integration testing in the context of managed micros-services and func-
tion as a service. We propose the introduction of instance identification
to overcome these limitations and illustrate how instance identification
can be used to enhance integration testing’s expressiveness.

Keywords: Software testing · Integration testing · Micro-service ·
Web service · Functions as a service · TTCN-3

1 Introduction

Today’s standard way of using various IT resources is the availability over the
internet, collectively called cloud computing. From “classical” service-oriented
architecture (SOA) based application, using WSDL [16] and SOAP[15], this has
been extended to microservice-based software architectures based on RESTful
APIs (or REST API for short) [8] and HTTP [11] as transport protocol, in more
recent times. Testing and testing methodologies have to be adopted to facili-
tate the delivery of high-quality applications and services in highly distributed
service-oriented applications [4].

Canfora and Di Penta [5] identify five key issues that limit the testability of
service-centric systems. Addressing different challenges various approaches have
been proposed for testing service-centric software systems [6], as well as testing
micro-services based software systems [1,12,14].

In the context of serverless architectures with Functions as a Service (FaaS)
being their most prominent recent representative, two of the five key issues iden-
tified by Canfora, namely “lack of control” and “dynamicity and adaptiveness”,
limits the expressiveness of integration and regression testing. Lack of control
c© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
D. Clark et al. (Eds.): ICTSS 2021, LNCS 13045, pp. 189–195, 2022.
https://doi.org/10.1007/978-3-031-04673-5_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04673-5_15&domain=pdf
http://orcid.org/0000-0002-6990-242X
https://doi.org/10.1007/978-3-031-04673-5_15

190 T. Vassiliou-Gioles

because the services or functions are running on independently managed infras-
tructure, which limits the ability of testers to determine which services, or to be
more precise which concrete instance of service is being invoked.

This paper would like to close the gap and proposes the introduction of
instance identification for micro-services via HTTP header fields in Sect. 2. We
will discuss the relation to approaches like request-ids in Sect. 3 and reflect the
limitations of our proposal in Sect. 4. Finally, in Sect. 5 we will present some
lessons learned and gives a short outlook on future work.

2 Instance Identification and Integration Testing

2.1 Integration Testing

One of the testing phases is the integration testing phase. This phase tests
whether groups of components operate together as intended in the technical
system design or specification [10].

Fig. 1. Generic, abstract web-service archi-
tecture with three micro services µSA -
µSC accessible via a Gateway

So we speak of integration test-
ing if, in a generic web-service archi-
tecture as shown in Fig. 1, we inte-
grate, for example, µSC with µSA
and test them as a group. The empha-
sis of the integration test is the suc-
cessful communication between them,
as we assume that all services have
been thoroughly unit tested.

Integration testing of a group of
components is typically done via stim-
ulation of service-group at the edges,
thus triggering interaction between
the grouped components under test. In our case, we use F at µSA (via the
Gateway) and evaluate the response to F to conclude successful integration1.

A managed environment limits tester’s control on which instance of a service
will be used. The platform is under complete control, which deployed service
is used and when. Therefore a tester has to observe or infer the information
whether a deployed service under test has been used, or not.

If provided, this information can be retrieved by the tester directly from
the tested components. Alternatively, the tester could try to correlate generated
trace information with the test events to demonstrate successful integration.

We propose introducing an instance identification identifier in the communi-
cation of micro-services, thus enriching the communication between services for
testing purposes.

1 In this paper, we are not discussing test case generation or test case evaluation strate-
gies but concentrate on the minimum requirements that any testing strategy implies,
interacting with a group of components at the edges and evaluating observations.

Solving the Instance Identification Problem in Micro-service Testing 191

2.2 Identification of Micro-services as Software Components

Micro-services have to be identified on different levels, first on the service level,
defining which service to use and how to reach the named service. Second, we
identify a given service by the API version, defining which capability set is offered
by the named service. API versioning is typically but not necessarily defined and
documented in machine-processable formats like WSDL or OpenAPI specifica-
tions. Major or incompatible versions updates are often reflected on resource
level, i.e., as part of the URL. Last but not least, a service is identified by
the concrete implementation version, specified by build-version, or other means
if multiple instances of different implementation versions are accessible. While
the first two levels are well and understood and practiced, identifying concrete
instances, i.e., the precise identification of the communicating software compo-
nents at execution time, is heavily neglected. Still, the information is particularly
crucial in the testing of a micro-service-based application.

2.3 Micro-service Instance Identification

We propose the introduction of a micro-service instance identification (IID) as
an additional request and response header field in HTTP to increase their testa-
bility, in particular, their observability aspects as defined by Binder [3]2.

The primary purpose of our IID is to relate the result of an operation to the
contributing micro-services. Thus we define the following requirements for the
instance identification of micro-services

R1 The micro-service should be identifiable by name
R2 The micro-service’s version number should be exposed, which identifies the

version of the micro-service. This version is not related to the API version
the micro-service is exposing.

R3 Optionally, version control information that unambiguously identifies the
source file status of the build

R4 Information that describes the up-time of a service
R5 A returned IID should include the IIDs of micro-services that have been

called to implement the response to a request.
R6 To limit exposure of internal information, IIDs should be disclosed only on

request by the caller.
R7 Optionally, to request IIDs might require authorization

Figure 2a shows the proposed request header for HTTP. A client requests
the disclosure of the identity of the used services by sending the X-Instance-Id
header field with the value “empty” (R6) or, if authorization is being imple-
mented (see Sect. 4) <IIDkey>, with <IIDkey> as authorization key (R7)3.

2 While we do not limit the application of IIDs in different protocols, we are focusing
here on the HTTP.

3 The assignment and communication of authorization keys is outside the scope of this
paper and will be discussed in the future.

192 T. Vassiliou-Gioles

(a) Structure of an HTTP IID request
header

(b) Structure of an HTTP IID response
header

Fig. 2. HTTP header fields

A micro-service responding to a request which contains a valid
X-Instance-Id header field shall respond with the response header field
X-Instance-Idwith a complete IID (CIID) containing its own micro-service iden-
tifier (MIID) and a structured list of contributing MIIDs as shown in Fig 2b (R5).

A micro-service’s MIID shall contain the following elements

– <sN> representing the service name (R1)
– <vN> representing the version number of the microservice sN (R2)
– optionally, <vA> representing additional information like, for example, the

branch name used in the version control system and/or a commit identifica-
tion, for example, a potentially shortened git commit ID (R3)

– <t> the epoch time of the service, in seconds (R4)

1 X-Instance -Id: msA /1.1.3/ src %12s(msB /3.0/dev -9987 efa %12s+

msC /2.1.1%4071s(msD /5.2.x/main -unknown %12s))

Listing 1.1. Example of IIDs returned by the the called micro-service msA to the
tester client

As a result, if the IID request is forwarded to all contributing micro-services
and they respond with their IID, the resulting CIID describes the complete
micro-service graph for this request. Listing 1.1 shows a complete CIID with
various MIIDs as returned by µSA using micro-services µSB-µSD from Fig. 1.

3 Comparison with Other External Purpose Header
Fields

The requirement to expose and transfer internal server information to a request-
ing client is not uncommon with web services. Standard response header fields
like Server [7] or framework-specific header fields like Microsoft’s .NET frame-
work X-AspNet-Version are widely being used to communicate internal infor-
mation. We call this type of information external purpose header fields as they
carry information neither required for the remote API’s protocol implementation
nor required for the remote API.

Other examples of external purpose header fields are trace-id as
used by Amazon’s AWS X-Ray (X-Amzn-Trace-Id) [2] or Google Trace
(X-Cloud-Trace-Context) [9].

Solving the Instance Identification Problem in Micro-service Testing 193

The trace-ids have in common that they offer a proprietary way to trace
individual calls through the contributing services in a managed platform. The
primary purpose of these services is to support operations to log and monitor
distributed applications.

They also have in common that they do not contain any instance informa-
tion as defined above by default. While every platform supports the addition
of the necessary information, this must be performed individually and platform-
specific. Integration testing, performed via the edges, relying on trace-ids requires
additional integration efforts with the managed platforms to access and evaluate
logs or retrieve the correlated information per request.

4 Limitations and Other Considerations of the Presented
Approach

By using the presented IID approach, some limitations have to be taken into
account, which will be discussed in the following.

While not limited by the HTTP protocol, in practice servers might restrict
the length of header fields. Assuming a minimum header field length of 8190
bytes and an average IID size of 50–100 bytes, 80–160 IIDs could be carried by
a response header field which we consider sufficient in practical setups.

In asynchronous communication, where the result of an operation is com-
municated to the requesting client via other channels than the request, only the
request delivery is acknowledged in the response. Therefore, a response including
a CIID would typically contain the first contacted service only, which in general
is not sufficient. Depending on the selected method, different strategies are cur-
rently being analyzed to coherently correlate the operation request, the result,
and the participating services.

Exposing detailed internal information of software components, like version
numbers, is often considered bad practice from a security perspective. Attackers
could exploit this knowledge by creating precise attack vectors for specific ver-
sions of the software component. Thus we introduce the possibility to authorize
legitimate receivers only, by including authorization keys (key=<IIDkey>) when
requesting IIDs4.

Further, we consider the case where a micro-service-based application uses
authorization at the boundaries and no authorization inside. In this case, the
Gateway would validate a received IIDkey. After successful validation, it would
rewrite the header field indicating “no authorization” to the used services. This
centralization simplifies key management and concentrates it at the Gateway.
Also, it reduces the overhead by removing the necessity to validate the IIDkey
at every micro-service.

4 The assignment and communication of authorization keys is outside the scope of this
paper and will be discussed in the future.

194 T. Vassiliou-Gioles

5 Lessons Learned and Outlook

We have embedded instance identification capabilities into our services primarily
to facilitate integration testing. The overhead to support instance identification
was very low, both from an implementation and run-time perspective.

By implementing instance identification into our service as a standard pat-
tern, developers profit most from the continuous presence of this additional
information when developing each service. In particular, the epoch information
embedded in the services’ MIID reduced the round-trip time (developing, deploy-
ing, unit testing) by giving easy-to-access instance information. Furthermore, it
helped avoid situations where interacting with the wrong instance of a given
service happened due to wrong or incomplete deployment configurations - for
example, starting an updated version of a service while a previous service was
still alive. In such cases, experimenting (in the development phase) or testing
was done against the unexpected, previous service version, running, for example,
on the default port. In contrast, the updated service version has used a different,
dynamically allocated port. With the presence of the IID and its availability, the
impact of these situations could be minimized.

In the debugging phase, the CIID, more precisely the embedded call graph,
provided invaluable omnipresent information on the interactions of the services.
Omnipresent, as the X-Instance-Id header is visible immediately in various
tools that are being used to trigger and debug services. From simple tools like
curl to more visual tools like Postman.

For the integration testing phase in our CI/CD pipeline, we implemented
IID support in our TTCN-3 based test environment [13]. As <vA> element of the
IID, we have been using a combination of the current VCS-branch name and
a (short) commit-id, in the form master-60c74ad. General assertions on the
epoch time of the micro-services under test, as well as additional information
within the <vA> element, have added value to the test results, as we managed
to automatically assert that the latest committed version was interacting in the
integration test scenario.

While hiding the information contained in IIDs from end-users or clients in
production, embedding it and making it available at hand in the development
and testing phase reduces the development round-trip times. We are currently
investigating in a fintech environment how IIDs can be used in professionally
developed, large scale-microservice applications and extend the applicability to
asynchronous communication paradigms.

Acknowledgment. Funded by the Federal Ministry of Education and Research of
Germany (BMBF) under grant no. 16DII113. We are also grateful to the anonymous
reviewers for their valuable suggestions to improve the presented ideas in this paper.

Solving the Instance Identification Problem in Micro-service Testing 195

References

1. Ashikhmin, N., Radchenko, G., Tchernykh, A.: RAML-based mock service gen-
erator for microservice applications testing. In: Voevodin, V., Sobolev, S. (eds.)
Supercomputing. RuSCDays 2017. CCIS, vol. 793, pp. 456–467. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-71255-0 37

2. AWS: AWS X-Ray concepts - AWS X-Ray. https://docs.amazonaws.cn/en us/
xray/latest/devguide/xray-concepts.html

3. Binder, R.V.: Design for testability in object-oriented systems. Commun. ACM
37(9), 87–101 (1994). https://doi.org/10.1145/182987.184077

4. Bucchiarone, A., Severoni, F.: Testing service composition. In: ASSE: Proceedings
of the 8th Argentine Symposium on Software Engineering (2007)

5. Canfora, G., Di Penta, M.: Service-oriented architectures testing: a survey. In:
De Lucia, A., Ferrucci, F. (eds.) ISSSE 2006–2008. LNCS, vol. 5413, pp. 78–105.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-95888-8 4

6. Canfora, G., Penta, M.D.: SOA: testing and self-checking. In: Bertolino, A. (ed.)
Proceedings of International Workshop on Web Services - Modeling and Testing
(WS-MaTE), Palermo, Italy, pp. 3–11, June 2006

7. Fielding, R., Reschke, J.: Hypertext transfer protocol (HTTP/1.1): Semantics and
Content - RFC 7231, June 2014. https://tools.ietf.org/html/rfc7231. Library Cat-
alog: tools.ietf.org

8. Fielding, R.T.: Architectural styles and the design of network-based software archi-
tectures. Doctoral thesis. University of California, Irvine (2000). https://www.ics.
uci.edu/∼fielding/pubs/dissertation/top.htm

9. Google Cloud: Cloud Trace documentation—Google Cloud. https://cloud.google.
com/trace/docs

10. ISTQB.International Software Testing Qualifications Board: ISTQB Glossary.
https://glossary.istqb.org/en/search/

11. Reschke, J.F., Fielding, R.T.: Hypertext Transfer Protocol (HTTP/1.1): Message
Syntax and Routing - RFC 7230. https://tools.ietf.org/html/rfc7230#page-26

12. Savchenko, D., Radchenko, G.: Microservices validation: methodology and imple-
mentation. In: CEUR Workshop Proceedings. CEUR Workshop Proceedings, Yeka-
terinburg, Russia, vol. 1513, pp. 21–28 (2015). iSSN: 16130073

13. Vassiliou-Gioles, T.: A simple, lightweight framework for testing REST-
ful services with TTCN-3. In: 2020 IEEE 20th International Conference
on Software Quality, Reliability and Security Companion (QRS-C), QRS-
C 2020, Macao, China, pp. 498–505. IEEE, October 2020. https://doi.org/
10.1109/QRS-C51114.2020.00089. https://qrs20.techconf.org/QRSC2020 FULL/
pdfs/QRS-C2020-4QOuHkY3M10ZUl1MoEzYvg/891500a498/891500a498.pdf

14. Viglianisi, E., Dallago, M., Ceccato, M.: RESTTESTGEN: automated black-box
testing of restful APIs. In: 2020 IEEE 13th International Conference on Software
Testing, Validation and Verification (ICST), pp. 142–152, October 2020. https://
doi.org/10.1109/ICST46399.2020.00024. iSSN: 2159-4848

15. W3C: Simple Object Access Protocol (SOAP) 1.1 (2000). https://www.w3.org/
TR/2000/NOTE-SOAP-20000508/

16. W3C: Web Services Description Language (WSDL) Version 2.0 Part 1: Core Lan-
guage (2007). https://www.w3.org/TR/wsdl20/

https://doi.org/10.1007/978-3-319-71255-0_37
https://docs.amazonaws.cn/en_us/xray/latest/devguide/xray-concepts.html
https://docs.amazonaws.cn/en_us/xray/latest/devguide/xray-concepts.html
https://doi.org/10.1145/182987.184077
https://doi.org/10.1007/978-3-540-95888-8_4
https://tools.ietf.org/html/rfc7231
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://cloud.google.com/trace/docs
https://cloud.google.com/trace/docs
https://glossary.istqb.org/en/search/
https://tools.ietf.org/html/rfc7230#page-26
https://doi.org/10.1109/QRS-C51114.2020.00089
https://doi.org/10.1109/QRS-C51114.2020.00089
https://qrs20.techconf.org/QRSC2020_FULL/pdfs/QRS-C2020-4QOuHkY3M10ZUl1MoEzYvg/891500a498/891500a498.pdf
https://qrs20.techconf.org/QRSC2020_FULL/pdfs/QRS-C2020-4QOuHkY3M10ZUl1MoEzYvg/891500a498/891500a498.pdf
https://doi.org/10.1109/ICST46399.2020.00024
https://doi.org/10.1109/ICST46399.2020.00024
https://www.w3.org/TR/2000/NOTE-SOAP-20000508/
https://www.w3.org/TR/2000/NOTE-SOAP-20000508/
https://www.w3.org/TR/wsdl20/

On the Quality of Network Flow Records
for IDS Evaluation: A Collaborative

Filtering Approach

Marta Catillo(B), Andrea Del Vecchio, Antonio Pecchia, and Umberto Villano

Dipartimento di Ingegneria, Università degli Studi del Sannio, Benevento, Italy
{marta.catillo,andrea.delvecchio,antonio.pecchia,villano}@unisannio.it

Abstract. Network flow records consist of categorical and numerical
features that provide context data and summary statistics computed
from the raw packets exchanged between pairs of nodes in a network.
Flow records labeled by human experts are typically used in high speed
networks to design and evaluate intrusion detection systems. In spite of
the ever-increasing body of literature on flow-based intrusion detection,
there is no contribution that investigates the accuracy of flow records at
rendering the class of traffic of the original aggregation of packets.

This paper proposes a collaborative filtering approach to compute san-
itized labels for a given set of flow records. Sanitized labels are compared
with the labels assigned by human experts. Experiments are done with
CICIDS2017, i.e., an intrusion detection dataset that provides raw pack-
ets and labeled flow records obtained from benign operations and attack
conditions. Results indicate that around 3.61% flow records might fail
to render benign aggregations of packets; surprisingly, the percentage of
flow records, which fail to render aggregations of packets pertaining to
attacks, ranges from 5.39% to 27.18% depending on the type of attack.
These findings indicate the need for improving the features collected or
potential imperfections while computing the flow records.

Keywords: Network flows · Research datasets · Intrusion detection
systems · Collaborative filtering

1 Introduction

A network flow is an aggregation of packets exchanged between a source com-
puter and a destination across a network; a flow of packets is logically equivalent
to a “call” or a “connection” according to the RFC 27221. Network flows are
a common abstraction for analyzing network traffic. Network flows are conve-
niently represented by network flow records, which consist of categorical and
numeric features that provide context data and summary statistics computed

1 https://datatracker.ietf.org/doc/html/rfc2722.

c© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
D. Clark et al. (Eds.): ICTSS 2021, LNCS 13045, pp. 196–209, 2022.
https://doi.org/10.1007/978-3-031-04673-5_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04673-5_16&domain=pdf
https://datatracker.ietf.org/doc/html/rfc2722
https://doi.org/10.1007/978-3-031-04673-5_16

On the Quality of Network Flow Records for IDS Evaluation 197

from the headers of the packets pertaining to a flow. Commonly-used features
include, but are not limited to, source-destination IP address and port, dura-
tion, number and length of packets, flag counts, min, max, mean, and standard
deviation of the packet inter-arrival time. There exist many products –either
commercial or developed by the academic community– supporting the abstrac-
tion of flow and to compute flow records, such as Netflow2, CICFlowMeter3 and
Tranalyzer4. For example, CICFlowMeter generates fixed-length flow records (83
values per record, not including the label). It is worth noting that flow records are
used in high speed networks to overcome the limitations of payload inspection-
based methods [21]. Moreover, many existing public datasets are based on the
notion of flow records [16].

Nowadays, the research community leverages network flow records to develop
modern intrusion detection techniques. In fact, many detectors have spread in the
literature [5,8,13]. In this domain, intrusion detection consists in identifying the
flow records that point to aggregations of packets related to attack conditions.
In spite of the ever-increasing body of literature on the design and evaluation of
flow-based intrusion detection systems, to the best of our knowledge there is no
contribution that investigates the quality of flow records. By quality we mean
the accuracy of the flow records at rendering the class of traffic, i.e., benign or
attack, of the original aggregation of packets. It should be noted that there is an
information gap between the packets that pertain to a given flow and the high-
level –and occasionally aggregated– statistics of the corresponding flow record.
More importantly, many existing attacks rely on forging malicious headers and
packets: this bears the risk that flows and, in turn, the corresponding records
are misled by inherently corrupted data.

This paper proposes an approach to measure the quality of network flow
records. Our measurement study is based on publicly-available flow records
that pertain to both benign operations and Denial of Service (DoS) attacks
from CICIDS2017, i.e., a widely-used dataset for designing and evaluating IDS
techniques. The reference CICIDS2017 paper [17] is rapidly approaching 900+
Google scholar citations at the time of this writing; given the increasing attention
by the community, this dataset is strongly relevant in the context of our work.
Flow records were obtained with CICFlowMeter, i.e., a software tool developed
by the same research team proposing CICIDS2017.

Our approach is based on collaborative filtering. The approach relies on
the availability of two disjoint sets of labeled flow records, i.e., target set (R,LR)
and control set (C,LC): R and C are matrices of values, where rows represent
flow records, while LR and LC are column vectors providing the expert labels of
the records. Expert labels represent the “intended” class of traffic, i.e., BENIGN
or ATTACK (encoded with 0 and 1, respectively), of the packets summarized
by the flow records. As for CICIDS2017 –collected in a controlled environment

2 https://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.
html.

3 https://github.com/ahlashkari/CICFlowMeter.
4 https://tranalyzer.com/.

https://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html
https://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html
https://github.com/ahlashkari/CICFlowMeter
https://tranalyzer.com/

198 M. Catillo et al.

by means of simulated attacks– expert labels were manually established by the
domain experts based on the precise knowledge of attackers and victims nodes,
and the time the attacks were conducted. In this respect, expert labels represent
the true class of traffic of the records. We aim to measure whether the records,
consisting of summary features in lieu of the raw packets, do render the intended
class of traffic. Our approach is twofold: for each record/row r in R, we (i) deter-
mine its top-N closest neighbor rows in C based on the cosine similarity and
(ii) compute a supplementary label for r, i.e., the sanitized label, based on
the expert labels of the closest neighbors. Overall, we compute a supplement
column vector of labels for R, i.e., L′

R, aimed to assessing experts’ choices. By
comparing LR and L′

R we note that around 3.61% flow records might fail to ren-
der benign aggregations of packets; surprisingly, the percentage of flow records,
which fail to render aggregations of packets related to attacks, ranges from 5.39%
to 27.18% depending on the type of DoS attack. Moreover, we also note that
UDP flow records are less prone to errors when compared to TCP. These findings
indicate the need for improving the features collected, potential imperfections
while computing the flows, or specific behaviors of the attacks that distort the
computation of the flow records.

The rest of the paper is organized as follows. Section 2 presents related work
in the area. Section 3 describes our collaborative filtering approach to compute
the sanitized labels. Section 4 presents the results of our study, while Sect. 5
concludes the paper and provides future perspectives of our work.

2 Related Work

Nowadays intrusion detection datasets have become ubiquitous among
researchers and practitioners. They aim –at least in theory– to represent real-
world data, and sophistication and volume of security threats along with regular
network traffic behaviors. Customarily, network traffic is generated in synthetic
environments and captured in either packet-based or flow-based format. Packet-
based data encompass complete payload information, whereas flow-based data,
collected only from the packet headers, provide records of aggregate and sum-
mary statistics on the top of corresponding flows. It is worth pointing out that
traffic classification by using flow records is often proposed as an alternative
to payload inspection-based methods [21]. As a matter of fact, most intrusion
detection datasets are distributed as labeled network flow records, organized in
comma-separated values files specially crafted to apply modern machine learn-
ing techniques. In particular, each record is the representation of a flow and the
label states if it relates to benign or attack packets.

An example of flow-based intrusion detection dataset widely used in the lit-
erature is certainly CICIDS2017 [17]. Released by the Canadian Institute for
Cybersecurity (CIC) in 2017, it simulates real-world network data and uses the
tool CICFlowMeter to produce labeled flow records. The authors provide benign
traces to create profiles for synthetically generating HTTP, SMTP, SSH, IMAP,
POP3 (email), and FTP traffic, for 25 users. The range of threats includes:

On the Quality of Network Flow Records for IDS Evaluation 199

Brute Force FTP, Brute Force SSH, DoS, Heartbleed, Web Attack, Infiltration,
Botnet and DDoS. Another popular public intrusion detection dataset is
UGR’165 [14], proposed by the University of Granada. It contains netflow
records spanning more than four months of network traffic from an Internet
Service Provider (ISP) and comprises 16900 million unidirectional flow records.
An important feature of this dataset is that the background traffic was captured
from sensors located in an ISP network, which normally models heterogeneous
profiles of clients. A recent dataset is USB-IDS-16 [3]. It provides ready-to-use
labeled normal and abnormal network flow records and considers both network
traffic and application-level facets, such as defense modules of the victim server
under attack [6]. Other known flow-based intrusion datasets are CTU-137 [9],
TUIDS8 [2,10] and ISCX 20129 [18]. It is worth noting that in the last few
years papers that look more critically at these datasets have spread. For exam-
ple in [4] the authors analyze the representativeness of the data contained in
public intrusion detection datasets. They observe that public datasets do not fit
real-life conditions, and therefore the value of analysis performed against them
may be of questionable value.

Network flow records play a key role in many machine-learning based intrusion
detection systems. As mentioned above, thanks to the granularity of flow records,
distinguishing accurately and timely between normative and attack traffic is a
trivial task. Traditional network anomaly detection involves developing models
based on packet inspection [19]. However, the massive use of encrypted proto-
cols makes packet-based inspection unsuited for today’s networks. Therefore, flow-
based intrusion detection is an active research topic [7]. A detailed review of flow-
based detection is proposed by Sperotto et al. [20]. They focus on NetFlow data
and provide a detailed discussion of detection techniques. Umer et al. [21], instead,
summarize current available flow-based datasets used for evaluation of intrusion
detection methods and survey flow-based intrusion detection methods.

Typically, many intrusion detectors are implemented with well-known clas-
sifiers, which are able to detect almost all the anomalous records contained in
the dataset used for the training phase. For example, a comparative analysis
between different classifiers is reported in [1]. All algorithms are evaluated by
means of the CICIDS2017 dataset. In [11], instead, the authors describe a feature
reduction approach based on the combination of filter-based algorithms, namely
Information Gain Ratio (IGR), Correlation (CR), and ReliefF (ReF). In particu-
lar, they aim to reduce the number of features and exploit a rule-based classifier
called Projective Adaptive Resonance Theory (PART) in order to detect DoS
attacks. The classifier is evaluated on CICIDS2017 and achieves 99.95% accu-
racy. The detector proposed in [22] is specifically focused on DoS detection;
a neural-network based approach relying on the implementation of a simple

5 https://nesg.ugr.es/nesg-ugr16/.
6 http://idsdata.ding.unisannio.it.
7 https://www.stratosphereips.org/datasets-ctu13.
8 http://agnigarh.tezu.ernet.in/∼dkb/resources.html.
9 http://www.unb.ca/cic/datasets/ids.html.

https://nesg.ugr.es/nesg-ugr16/
http://idsdata.ding.unisannio.it
https://www.stratosphereips.org/datasets-ctu13
http://agnigarh.tezu.ernet.in/~dkb/resources.html
http://www.unb.ca/cic/datasets/ids.html

200 M. Catillo et al.

Multi-Layer Perceptron is compared to the Random Forest technique. Again
focused on DoS detection is the paper [12], where well-known machine learning
approaches (e.g., Näıve Bayes and Logistic Regression) are used to distinguish
normative conditions from malicious ones.

3 Proposed Approach

3.1 Collaborative Filtering

Our approach is based on a technique called collaborative filtering. This
technique is typically leveraged in the context of recommendation systems, which
aim to suggest items (e.g., books, movies, articles) to customers. These systems
attempt to compute the rating a user A would give to a certain item, based on
the ratings given to the same item by users deemed “similar” to A. Similar users
are selected among those who rated more or less analogously the same items
rated by A. The approach is composed by two steps:

– in the first step, users similar to A (also called neighbors) are identified
by computing a distance metric between A and the pool of users who rated
some items. The selected distance metric may be computed for all the
users; however, only the users whose distance from A is lower than a specific
threshold will be considered close enough to be deemed neighbors.

– given the closest neighbors, the rating for the item to be recommended to
A is computed based on the ratings provided by the closest neighbors. For
instance, the rating is computed as the mean of the ratings. If the rating is
higher than a certain threshold, then the item is recommended (there is a
high probability that A will like the item, just like his/her similar users); on
the contrary, if the rating is lower than the threshold, the item will not be
recommended.

The steps above are common for every collaborative filtering approach. How-
ever, distinct implementations may differ in some factors, such as the distance
(or similarity) metric, the threshold computation and, consequently, the way the
neighbors are identified. As for the latter, beside the aforementioned threshold
strategy, closest neighbors can be identified by sorting them according to the
computed distance/similarity metric and by selecting the top-N ones10.

Although our study does not pertain to recommendations, we adopt a similar
approach to compute the sanitized label (i.e., the “rating” in the recommenda-
tion terminology) for a given flow record; computation is done by relying on the
closest neighbor flow records based on a certain distance metric. This concept is
further elaborated in Sect. 3.3.

10 If a distance metric is adopted, the computed distances need to be sorted in ascending
order; on the other hand, sorting needs to be in descending order in case of similarity
metrics.

On the Quality of Network Flow Records for IDS Evaluation 201

3.2 Neighbors Selection Metrics

In spite of the variety of available metrics, these can be grouped into two cat-
egories: euclidean metrics and non-euclidean metrics. While the latter needs to
be used, for instance, when the observations encompass also categorical features,
the former is adopted when the observations belong to an R

n vector space, i.e.,
each observation can be shaped as a vector of n dimensions, each of which varies
in a range of real numbers.

One of the most known distance metric is the L2 distance, better known as
euclidean distance, which can be computed as:

L2(x, y) =

√
√
√
√

n∑

i

(xi − yi)2 (1)

where x and y represent the vectors between which the metric is computed. The
value computed by (1) represents the length of the difference vector obtained by
subtracting x from y (or viceversa), which is basically the vector that joins the
data points related to the vectors used for the calculation. This metric is widely
used because its underlying distance concept is simple and intuitive: two points
can be considered similar if they lie close to each other in the observation space,
i.e., the value of the metric is small.

On the other hand, an important similarity metric –although slightly more
difficult to grasp– is the cosine similarity. Just like the previously described
one, the cosine similarity can be leveraged in a euclidean space to estimate how
similar two data points are. The similarity can be computed as:

cosine similarity(x, y) =
x · y

‖x‖‖y‖ (2)

As for (2), the metric is equal to the cosine of the angle θ formed by the two
vectors, which can be computed as the ratio between the dot product of x and
y and the product of their norms. This means that the narrower θ, the more
similar x and y. It is worth noting that according to this metric, indeed, two data
points will appear closer to each other than the rest of the data observations, if
their vectors show a similar pattern in terms of relationship between features.

Because of this peculiarity and the specific structure of the dataset in hand,
we decided to adopt the cosine similarity for our experiments.

3.3 Computation of the Sanitized Labels

Collaborative filtering in our domain is applied as follows. We rely on two disjoint
sets of flow records labeled by domain experts: (i) the former contains the flow
records to be assessed, i.e., TARGET SET, and (ii) the latter provides the
pool of potential neighbors, i.e., CONTROL SET. We use two sets in order
to avoid any possible bias that could arise from computing a similarity metric
between instances included in the same set. The flow records (i.e., vectors of
features) are used to compute the similarity, while the labels are 0 or 1.

202 M. Catillo et al.

Fig. 1. Representation of the proposed approach.

Data: TARGET SET, CONTROL SET
Result: Sanitized labels for the flow records in the TARGET SET
for each flow record in TARGET SET do

determine the top-15 similar neighbors from the CONTROL SET;
compute the sanitized label of the flow record as the mean of the labels of
the similar neighbors;

end
Algorithm 1: Computation of the sanitized labels

Algorithm 1 formalizes the computation of the sanitized labels. For each flow
record in the TARGET SET, we determine its top-15 most similar neighbors.
We rely on 15 neighbors because this is a good trade-off between flexibility and
consistency. Indeed, if we considered too few similar instances, all the records
in the TARGET SET would appear as perfectly labeled, because neighbors
belonging to a different class –which unavoidably lie further in the observation
space– would be not taken into account. On the contrary, considering a wider
range of neighbors may cause the final score to suffer from the influence of
those records which, despite being far from the one under evaluation, were still
considered as close. It should be noted that the value of N is in line with other
approaches adopted for label sanitization [15].

As represented in Fig. 1, the sanitized label is given by the mean of the expert
labels of the top-N similar neighbors from the CONTROL SET . We leverage
the mean because it makes it possible to find out the cases where the expert
label is equal to or different from the sanitized label. In fact, when the sanitized
label equals 0 or 1 it implies that the batch of neighbors all belong to the same
class. We compute the cosine similarity between the records of the TARGET
SET and every record contained in CONTROL SET by means of the Python
library SciKit Learn11.

11 https://scikit-learn.org/stable/.

https://scikit-learn.org/stable/

On the Quality of Network Flow Records for IDS Evaluation 203

4 Experimental Results

4.1 Reference Dataset

CICIDS201712 is a public dataset created by the Canadian Institute for Cyber-
security (CIC) [17]. It consists of both benign and malicious traffic obtained by
means of state-of-the-practice attack tools. The dataset is based on a laboratory
environment with attacker and victim nodes; it contains both packet capture
files (pcap) and bidirectional flow records in the form of comma separated val-
ues files (csv). Each record –obtained from the network packets by means of
CICFlowMeter– is identified by 83 features. Records are accompanied by the
labels supplied by domain experts, i.e., either BENIGN or a given attack. The
data capture period started at 9 a.m., Monday, July 3, 2017 and ended at 5
p.m., Friday, July 7, 2017, for a total of 5 days. In the context of our study
we focus on flow records from Wednesday –named CICIDS2017-Wednesday in
the following– that pertains to Denial of Service (DoS) attacks in addition to
benign traffic. In particular, the attacker was a Kali Linux node and the victim
an Ubuntu 16.04 system with an Apache web server.

4.2 Data Preprocessing

We preprocess the CICIDS2017-Wednesday csv file to make it suitable for the
analysis. First, we remove non-relevant or biasing features, i.e., timestamp and
id of the flow records, source address and port, destination address and port,
which leads to total 78 remaining features (label included). According to the
method described in Sect. 3, flow records referring to different types of attacks
are considered as belonging to a generic class named ATTACK – encoded with 1
(one); BENIGN records are assigned the label 0 (zero).

Flow records in the aforementioned CICIDS2017-Wednesday file are split into
three disjoint subsets, i.e., model, control and target. While splitting the file,
we adopt a stratified sampling strategy with no replacement, which means that
(i) the ratio between benign and attack classes of the original file is preserved
in the output splits and (ii) each record from the original file is assigned to
a unique split. The original CICIDS2017-Wednesday file contains 692703 flow
records, where 1297 are discarded due to the presence of malformed or unsuitable
values (e.g., “Infinity” or “NaN”); moreover, we discard from the analysis the
Heartbleed attack class, which consists of only 11 records. The remaining 691395
records are divided as follows:

– TARGET SET: 15% of the total (i.e., 103706), divided into 65952 BENIGN
and 37754 ATTACK flow records;

– CONTROL SET: 15% of the total (i.e., 103706), divided into 65952 BENIGN
and 37754 ATTACK flow records;

– MODEL: 70% of the total (i.e., 483975) divided into 307778 BENIGN and
176197 ATTACK flow records.

12 https://www.unb.ca/cic/datasets/ids-2017.html.

https://www.unb.ca/cic/datasets/ids-2017.html

204 M. Catillo et al.

Fig. 2. Evaluation framework.

As a minor note, it can be noted that the three splits sum up to 691387, i.e.,
8 records less than the total. Occasionally, the chosen percentages did not return
an integer number of flow records to be assigned to a given split; in such cases,
the number is rounded down to the highest preceding integer.

Figure 2 provides a representation of the evaluation framework. TARGET
SET and CONTROL SET are used for the collaborative filtering approach in
order to gain insight into the quality of flow records at rendering the intended
class of traffic. After the application of the approach, for each flow record of the
TARGET SET we have both the expert label and its “paired” sanitized label.
The MODEL split is used to learn an IDS model for assessing the impact of the
quality of flow records on intrusion detection.

4.3 Quality Assessment and Impact on Intrusion Detection

Table 1 (all row) shows the number of flow records of the TARGET SET where
the expert label is equal to or different from the sanitized label, i.e., 98848
and 4858, respectively. It is worth noting that the two contributions sum up
to 103706, i.e., the total records (total column). According to the results, the
percentage of flow records that do not properly render the class of traffic intended
by the domain experts is thus 4858

103706 · 100, i.e., 4.68%. Through the rest of
this Section, percentage quantifies the quality of flow records at rendering the
expert label: the higher percentage, the lower the quality.

The breakdown of the all row by class of traffic is shown by BENIGN
and ATTACK rows in Table 1. As for the BENIGN records of the TARGET SET
there are 63574 equal and 2378 different labels, i.e., 3.61% different labels out
of total 65952 BENIGN. Interestingly, the percentage of different labels increases
up to 6.57% for ATTACK records, i.e., 2480 out of 37754. The difference can be
appreciated in Fig. 3a, where it can be noted that the percentage for ATTACK is
significantly higher than BENIGN. The finding indicates that flow records –mostly
computed from packet headers– may suffer from packet forging and specifically-
crafted HTTP interactions, such as for DoS attacks, that do not reflect into the
numeric features.

On the Quality of Network Flow Records for IDS Evaluation 205

Table 1. Breakdown of the collaborative filtering results by class of traffic and protocol.

equal different total percentage

all 98848 4858 103706 4.68%

breakdown by class of traffic

BENIGN 63574 2378 65952 3.61%

ATTACK 35274 2480 37754 6.57%

breakdown by protocol

TCP 68378 4710 73088 6.44%

UDP 30431 140 30571 0.46%

unspecified 39 8 47 17.02%

(a) class of traffic (b) protocol

Fig. 3. Percentage of different flow records by class of traffic and protocol.

Table 1 provides a further breakdown of the all row by protocol, i.e., TCP
and UDP rows13. One interesting outcome is that most of the cases where the
expert label differs from the sanitized label pertain to TCP, i.e., 6.44%; as for
UDP, the percentage is only 0.46%. Percentages are represented also in Fig. 3b. It
must be noted that all the attacks considered in this paper capitalize on various
weaknesses of TCP and HTTP; in consequence, UDP flow records are obtained only
from benign traffic. In spite of the lack of attack instances, it can be reasonably
claimed that UDP flow records are less affected by error when compared to TCP,
as it can be noted by looking at the percentage of the BENIGN row in Table
1, which encompasses both TCP and UDP. We hypothesize that UDP, which is a
stateless protocol, is much more easy to handle –and thus, less prone to errors–
when packets are grouped by flows and transformed into records.

Table 2 provides the breakdown of ATTACK flow records. To this aim, the
ATTACK row from Table 1 –reproduced in Table 2 as the all row– is divided
by type of DoS attack available in CICIDS2017-Wednesday. It can be noted
that the total number of records, i.e., 37754, is composed of 4 attacks whose

13 For a small number of flow records the protocol field is unspecified.

206 M. Catillo et al.

Table 2. Breakdown of the collaborative filtering results by type of DoS attack.

equal different total percentage

all 35274 2480 37754 6.57%

GoldenEye 1239 304 1543 19.70%

Hulk 32656 1862 34518 5.39%

Slowhttptest 600 224 824 27.18%

Slowloris 779 90 869 10.36%

Fig. 4. Percentage of different flow records by type of DoS attack.

cardinality ranges from 824 (Slowhttptest) to 34518 (Hulk) – total column.
For each type of attack we determine the number of flow records where the
expert label is equal to or different from the sanitized label; percentages shown
in the rightmost column of Table 2 measure the quality of flow records and are
given by different

total · 100.
The percentage of the all row –averaged across all the attacks– is 6.57%.

Surprisingly, a closer look at the data reveals that the percentages of individ-
ual attacks range from 5.39% (Hulk) up to 27.18% (Slowhttpest). Figure 4
provides a representation of the percentages, which allows appreciating the dif-
ference across the attacks. The percentages of GoldenEye and Slowhttpest are
significantly high (thus low quality of the flow records). In a previous replication
study [4], we demonstrate that Slowhttpest of CICIDS2017 has a bursty nature,
which means that it alternates activity and inactivity periods. We hypothesize
that the research group that published CICIDS2017, labelled as ATTACK all the
flow records collected during the progression of Slowhttpest, with no awareness
of activity and inactivity periods: in consequence, flow records from inactivity
periods –although labeled as ATTACK– tend to resemble benign operations. As
for GoldenEye, it aims to consume server-side sockets by means of KeepAlive
and Cache-Control options14: this subtle behavior does not properly reflect into
the numeric features of ATTACK flow records.

14 https://allabouttesting.org/golden-eye-ddos-tool-installation-and-tool-usage-with-
examples/.

https://allabouttesting.org/golden-eye-ddos-tool-installation-and-tool-usage-with-examples/
https://allabouttesting.org/golden-eye-ddos-tool-installation-and-tool-usage-with-examples/

On the Quality of Network Flow Records for IDS Evaluation 207

Impact on Intrusion Detection. To gain insights into the impact of low
quality flow records on intrusion detection, we develop an IDS on the top of
the MODEL split presented in Sect. 4.2, which accounts for 70% of records in
CICIDS2017-Wednesday. The IDS model is a supervised deep neural network
consisting of 6 hidden layers –each encompassing 100 neurons– and an output
layer consisting of 2 neurons, i.e., one per class (BENIGN or ATTACK), weighted
by means of the softmax activation function.

We use the IDS model to classify the flow records of the TARGET SET ; the
performance of the model is measured by the typical metrics of precision (P),
recall (R) and F-score (F). Metrics are computed from the total number of true
negative (TN), true positive (TP), false negative (FN) and false positive (FP).
For instance, a TN is a BENIGN record that is classified BENIGN by the model; a
FN is an ATTACK flow record that is deemed BENIGN by the model. Metrics are
computed as follows:

P =
TP

TP + FP
R =

TP

TP + FN
F = 2 · P ·R

P + R
(3)

The model achieves high P , R and F on the entire TARGET SET, i.e., 0.953,
0.975 and 0.964, respectively. Interestingly, if we narrow the IDS to the sole
records of the TARGET SET where the expert label differs from the sanitized
label, i.e., 4858 records – Table 1 (all row), P , R and F drop to 0.703, 0.808
and 0.752. This finding suggests that the quality of flow records plays a crucial
role for designing and evaluating modern intrusion detection systems.

5 Conclusion

The recent spread of machine learning techniques has boosted significantly the
performance of intrusion detection systems. Machine learning models can learn
normal and anomalous patterns from training data and generate classifiers that
are successively used to detect attacks. In spite of the ever-increasing body of
literature on the design and evaluation of flow-based intrusion detection systems,
to the best of our knowledge there is no contribution that investigates the quality
of flow records. This paper proposed an initial investigation on the topic by
analyzing DoS attacks of CICIDS2017. Most notably, we observe that while
quality issues of flow records are negligible for benign traffic, there exist major
issues with attack-related records. Our results are extremely relevant both for
the release of new datasets, automated data labeling and the implementation
IDS models.

In our future work, we will extend the analysis to other attack types, datasets
and existing products to export flow records. Our aim is also to analyze the
resilience of deep learning techniques with respect to the quality of network
records as far as their use on real-world data is concerned, since data may be
affected by the issues pointed out in this paper.

Acknowledgment. Andrea Del Vecchio gratefully acknowledges support by the “Orio
Carlini” 2020 GARR Consortium Fellowship.

208 M. Catillo et al.

References

1. Ahmim, A., Maglaras, L., Ferrag, M.A., Derdour, M., Janicke, H.: A novel hierar-
chical intrusion detection system based on decision tree and rules-based models. In:
Proceedings of the International Conference on Distributed Computing in Sensor
Systems, pp. 228–233 (2019)

2. Bhuyan, M.H., Bhattacharyya, D., Kalita, J.: Towards generating real-life datasets
for network intrusion detection. Int. J. Netw. Secur. 17, 683–701 (2015)

3. Catillo, M., Del Vecchio, A., Ocone, L., Pecchia, A., Villano, U.: USB-IDS-1: a pub-
lic multilayer dataset of labeled network flows for IDS evaluation. In: 51st Annual
IEEE/IFIP International Conference on Dependable Systems and Networks Work-
shops (DSN-W), pp. 1–6. IEEE (2021)

4. Catillo, M., Pecchia, A., Rak, M., Villano, U.: Demystifying the role of public
intrusion datasets: a replication study of DoS network traffic data. Comput. Secur.
108, 102341 (2021)

5. Catillo, M., Rak, M., Villano, U.: 2L-ZED-IDS: a two-level anomaly detector for
multiple attack classes. In: Barolli, L., Amato, F., Moscato, F., Enokido, T., Tak-
izawa, M. (eds.) WAINA 2020. AISC, vol. 1150, pp. 687–696. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-44038-1 63

6. Catillo, M., Pecchia, A., Villano, U.: Measurement-based analysis of a DoS defense
module for an open source web server. In: Casola, V., De Benedictis, A., Rak,
M. (eds.) ICTSS 2020. LNCS, vol. 12543, pp. 121–134. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64881-7 8

7. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Com-
put. Surv. 41(3), 1–58 (2009)

8. Cotroneo, D., Paudice, A., Pecchia, A.: Empirical analysis and validation of secu-
rity alerts filtering techniques. IEEE Trans. Dependable Secure Comput. 16(5),
856–870 (2019)

9. Garćıa, S., Grill, M., Stiborek, J., Zunino, A.: An empirical comparison of botnet
detection methods. Comput. Secur 45, 100–123 (2014)

10. Gogoi, P., Bhuyan, M.H., Bhattacharyya, D.K., Kalita, J.K.: Packet and flow based
network intrusion dataset. In: Parashar, M., Kaushik, D., Rana, O.F., Samtaney,
R., Yang, Y., Zomaya, A. (eds.) IC3 2012. CCIS, vol. 306, pp. 322–334. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32129-0 34

11. Kshirsagar, D., Kumar, S.: An efficient feature reduction method for the detection
of DoS attack. ICT Express 7, 371–375 (2021)

12. Lee, J., Kim, J., Kim, I., Han, K.: Cyber threat detection based on artificial neural
networks using event profiles. IEEE Access 7, 165607–165626 (2019)

13. Liu, H., Lang, B.: Machine learning and deep learning methods for intrusion detec-
tion systems: a survey. Appl. Sci. 9(20), 4396 (2019)

14. Maciá-Fernández, G., Camacho, J., Magán-Carrión, R., Garćıa-Teodoro, P.,
Therón, R.: UGR’16: a new dataset for the evaluation of cyclostationarity-based
network IDSs. Comput. Secur. 73, 411–424 (2017)

15. Paudice, A., Muñoz-González, L., Lupu, E.C.: Label sanitization against label
flipping poisoning attacks. In: Alzate, C., et al. (eds.) ECML PKDD 2018. LNCS
(LNAI), vol. 11329, pp. 5–15. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-13453-2 1

16. Ring, M., Wunderlich, S., Scheuring, D., Landes, D., Hotho, A.: A survey of
network-based intrusion detection data sets. Comput. Secur. 86, 147–167 (2019)

https://doi.org/10.1007/978-3-030-44038-1_63
https://doi.org/10.1007/978-3-030-64881-7_8
https://doi.org/10.1007/978-3-642-32129-0_34
https://doi.org/10.1007/978-3-030-13453-2_1
https://doi.org/10.1007/978-3-030-13453-2_1

On the Quality of Network Flow Records for IDS Evaluation 209

17. Sharafaldin, I., Lashkari, A.H., Ghorbani., A.A.: Toward generating a new intru-
sion detection dataset and intrusion traffic characterization. In: Proceedings of
the International Conference on Information Systems Security and Privacy, pp.
108–116. SciTePress (2018)

18. Shiravi, A., Shiravi, H., Tavallaee, M., Ghorbani, A.: Toward developing a system-
atic approach to generate benchmark datasets for intrusion detection. Comput.
Secur. 31, 357–374 (2012)

19. Smallwood, D., Vance, A.: Intrusion analysis with deep packet inspection: increas-
ing efficiency of packet based investigations. In: Proceedings of the International
Conference on Cloud and Service Computing, pp. 342–347. IEEE (2011)

20. Sperotto, A., Schaffrath, G., Sadre, R., Morariu, C., Pras, A., Stiller, B.: An
overview of IP flow-based intrusion detection. IEEE Commun. Surv. Tutor. 12(3),
343–356 (2010)

21. Umer, M.F., Sher, M., Bi, Y.: Flow-based intrusion detection: techniques and chal-
lenges. Comput. Secur. 70, 238–254 (2017)

22. Wankhede, S., Kshirsagar, D.: DoS attack detection using machine learning and
neural network. In: Proceedings of the 4th International Conference on Computing
Communication Control and Automation, pp. 1–5 (2018)

GROOT: A GDPR-Based Combinatorial
Testing Approach

Said Daoudagh(B) and Eda Marchetti

ISTI-CNR, Pisa, Italy
{said.daoudagh,eda.marchetti}@isti.cnr.it

Abstract. For replying to the strict exigencies and rules imposed by the
GDPR, ICT systems are currently adopting different means for manag-
ing personal data. However, due to their critical and crucial role, effective
and efficient validation methods should be applied, taking into account
the peculiarity of the reference legal framework (i.e., the GDPR). In this
paper, we present GROOT, a generic combinatorial testing methodol-
ogy specifically conceived for assessing the GDPR compliance and its
contextualization in the context of access control domain.

Keywords: Combinatorial testing · Data protection · GDPR

1 Introduction

Nowadays, quality of Information and Communication Technology (ICT) systems
and modern applications is strictly tied with the security and privacy. However,
most the times, due to the peculiarity of the General Data Protection Regulation
(GDPR) [8], effective and efficient validation methods have to be applied for avoid-
ing possible violations. In this paper, we present GROOT, a combinatorial testing
methodology specifically conceived for assessing the GDPR compliance of ICT sys-
tems in processing Personal Data. We specifically contextualize GROOT into the
Access Control (AC) domains, because they are the most promising approach for
taking in consideration the peculiarities of the GDPR [5,6]. Indeed, Access Con-
trol Systems (ACSs) aim to ensure that only the intended subjects (e.g., Data Sub-
ject, Controller and Processor) can access the protected data (e.g., Personal Data
or special Categories of Personal Data) and get the permission levels required to
accomplish their tasks and no much more.

The testing of ACSs represents a key activity to guarantee the trustworthi-
ness of (personal or sensitive) data and protect information technology systems
against inappropriate or undesired user access [4]. However, testing is still a time
consuming, error prone activity and a critical step of the development process.
Bad choices in each stage of the testing phase may compromise the entire pro-
cess, with the risk of releasing inadequate security and privacy solutions that
allow unauthorized access (security perspective) or unlawful processing (legal
perspective).

c© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
D. Clark et al. (Eds.): ICTSS 2021, LNCS 13045, pp. 210–217, 2022.
https://doi.org/10.1007/978-3-031-04673-5_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04673-5_17&domain=pdf
http://orcid.org/0000-0002-3073-6217
http://orcid.org/0000-0003-4223-8036
https://doi.org/10.1007/978-3-031-04673-5_17

GROOT: A GDPR-Based Combinatorial Testing Approach 211

Indeed, several strategies for the generation of test cases (i.e., access requests)
for access control systems have been defined in scientific literature. They lever-
age the application of combinatorial approaches to access control policies values
for generating test inputs [2]; or exploit data flow for test cases generation start-
ing from policies specification [17]; or are based on the representation of policy
implied behavior by means of models [1,9]. However, to the best of our knowl-
edge, there are few proposals for assessing the compliance with the GDPR [7,10],
and none targeting the testing access control systems in the context of the
GDPR. Therefore, our work aims at advancing the state-of-the-art by providing,
for the first time, the GdpR-based cOmbinatOrial Testing (GROOT) strategy,
i.e., a general combinatorial strategy for testing systems managing GDPR’s con-
cepts (e.g., Data Subject, Personal Data or Controller). To better illustrate the
GROOT procedural steps, an application example is also provided.

Outline: Section 2 provides an overview of the main concepts, Sect. 3 illustrates
the GROOT methodology and its application. Finally, Sect. 4 concludes the
paper and depicts future works.

2 Background

GDPR Concepts. The General Data Protection Regulation (GDPR) is the
currently European Regulation for the protection of Personal Data. In its Art. 4,
the GDPR defines Personal Data as “any information relating to an identified
or identifiable natural person (‘data subject’)”, whose data are managed by a
Controller. The purpose of the processing of Personal Data is determined by the
controller, and this “processing shall be lawful only if and to the extent that at
least one of the” six legal bases “applies” (Art. 6). In particular, one of those
legal bases is the consent given by the data subject “to the processing of his or
her Personal Data for one or more specific purposes” (Art. 6.1(a)). The GDPR
also sets other fundamental rights of the data subject, such as the right of access
(Art. 15) and the right to data portability (Art. 20).

Access Control. Access Control (AC), implemented through Access Control
Mechanism (ACM), provides a decision to an authorization request, typically
based on predefined Access Control Policy (ACP). This is a specific statement
of what is and is not allowed on the basis of a set of rules. For instance, a
policy contains a set of rules that specify who (e.g., Controller, Processor or
Data Subject) has access to which resources (e.g., Personal Data) and under
which circumstances (e.g., based on the Consent and Purpose) [15].

Representing the GDPR. Implementing the GDPR’s requirements is a chal-
lenging task, and a standardized solution is still missing. The most promising
approaches can be divided into: using Semantic Web technologies, i.e., ontolo-
gies, using UML representation and using access control policies specification.
Concerning the first group, recent proposals are [14], which models the legal
concepts through the Privacy Ontology (PrOnto), and the GDPR text exten-
sions [13] where the GDPR is represented as inked data resource. Works in

212 S. Daoudagh and E. Marchetti

the second group use the UML notation for representing the GDPR’s concepts.
Among them we refer to [16] where the authors use the UML model for design-
ing automated methods for checking the GDPR compliance, and [11] where the
authors use an educational e-platform paradigm for combining the regulation,
information privacy and best practices. The third group represents the legal
concepts through access control policies. In particular, authors in [6] propose
a semantic model to represent the GDPR consent customized for the XACML
reference access control architecture, whereas in [3] authors provide a life cycle
for the development of access control policies and mechanisms in reference to
the GDPR’s demands.

Our proposal requires (and exploits) the possibility of having a structured
and machine readable specification of the legal concepts. The aim is therefore
to provide a methodology independent from any GDPR representation. The
adaptation of the methodology to the different GDPR’s representations is left
and handled during the development stage of the GROOT proposal.

3 GROOT

GROOT is a general combinatorial testing approach, for validating systems man-
aging GDPR’s concepts (e.g., Data Subject, Personal Data or Controller). In
the following, we first illustrate the GROOT methodology, and then we show its
usage in the context of access control.

3.1 GROOT Methodology

In illustrating the GROOT methodology, we use the following definitions:

Definition 1 (GDPR-based SUT Model). A GDPR-based SUT Model is
a tuple ModelGDPR(PAR, V), where:

– PAR ⊆ {DS,PD,DC,DP,C, P, PA, TP} is the set of parameters that affect
the GDPR-based SUT, where DS = Data Subject, PD = Personal Data, DC
= Controller, DP = Processor, C = Consent, P = Purpose, PA = Processing
Activity, TP = Third Party, and

– V = {Vi | i ∈ PAR and Vi is the set of values for the parameter i}
is the set of sets of the values that can be selected for each parameter.

Definition 2 (GDPR-based Test Case). Given a GDPR-based SUT Model
ModelGDPR(PAR, V), a GDPR-based Test Case is a tuple TCGDPR(ATT)
where: ATT = {ATTi | ATTi ⊆ Vi , i ∈ PAR and Vi ∈ V }.

The GROOT methodology takes as an input a GDPR-based implementation,
that is a representation of the GDPR in terms of a specification language. As
detailed in Sect. 2, currently, different proposals are available and can be used
for the purpose. Under this hypothesis GROOT is composed of three main steps
(see Fig. 1): GDPR-based Model Derivation; Test Cases Generation; and Test
Cases Translation.

GROOT: A GDPR-Based Combinatorial Testing Approach 213

GDPR-Based Model Derivation (Step 1). In line with Definition 1, the
GDPR-based SUT Model of the GDPR-based implementation is then derived.
For this, the GDPR-based implementation is parsed in order to identify the set of
parameters P, and the associated set of sets V. More precisely, for each parameter
i, the subset Vi, containing the values used in the GDPR-based implementation,
is derived.

Test Cases Generation (Step 2). In this step, the combinatorial testing is
performed. Based on the derived parameters’ values sets, different combinatorial
strategies can be adopted such as: all-combinations, pairwise combinations or t-
wise combinations. For instance, in the all-combinations test strategy according
to the Definition 2, for each parameter i and its set of value Vi, the power set of
Vi (P (Vi)) is derived, i.e., all possible subsets of Vi. Then, the obtained power
sets P (Vi) are combined so as to derive the test cases i.e., the TCGDPR(ATT)
tuples. Because combinatorial testing is a costly activity, the selection of the best
combinatorial strategy, that could be adopted, may depend on different testing
objectives such as: coverage, effectiveness, reduction or prioritization.

Test Cases Translation (Step 3). According to the domain specific lan-
guage, each of the obtained TCGDPR(ATT) tuples in Step 2 is translated into
specific executable test case. In the context of AC, a test case is represented
through an AC request that can be evaluated by the ACM.

Fig. 1. GROOT methodology.

3.2 Using GROOT

In this section, we illustrate the application of GROOT through a use case sce-
nario based on a realistic fitness environment. More precisely, we consider Alice,
a Data Subject, who wants to use a smart fitness application to monitor her
daily activities to achieve a predefined training objective. In this case, we sup-
pose that a customized (mobile) application is provided by a generic myFitness
company (Controller). To meet Alice’s needs, myFitness has so far defined two
purposes (MyCholesterol and Untargeted Marketing), each related to a specific
data set of Personal Data and achieved by allowing access to perform a specific
set of Actions. Specifically, the MyCholesterol purpose is achieved by perform-
ing AGGREGATE, DERIVE, and QUERY actions; whereas the Untargeted
Marketing purpose is achieved by performing COLLECT, QUERY, and SEND
actions. At the time of subscribing to the myFitness application, Alice provided
her Personal Data (i.e., e-mail, Age, Gender, and Blood Cholesterol) and gave

214 S. Daoudagh and E. Marchetti

her consent to process her e-mail and Age for Untargeted Marketing purpose,
and her Blood Cholesterol for MyCholesterol purpose. In turn, myFitness gave
Alice controller’s contacts that include: orgName, address, e-mail, and phone
number.

GDPR-Based Implementation. In this application example, the GDPR-
based implementation refers to the Art. 6.1(a) of the GDPR. In the context
of AC, considering for instance the GDPR formalization proposed by [6], the
article is represented through the access control policy (called Alice’s policy)
reported in the listing below. The policy allows a lawfulness of processing of
Personal Data related to Alice and it is composed of two rules (R1 and R2):

Alice’s Policy:

R1: permission(data controller=myFitness, data subject=Alice, per-
sonal data={Blood Cholesterol, Age, Gender}, purpose=MyCholesterol,
action={DERIVE, AGGREGATE, QUERY}, consent=TRUE)

R2: permission(data controller={myFitness, address}, data subject=Alice,
personal data=Email, purpose=UntargetedMarketing, action=SEND,
consent=TRUE)

For instance, R1 allows data controller (who) to process personal data
(which resources) because of the consent (under which circumstances).

GDPR-Based Model Derivation (Step 1). According to the GROOT
methodology presented in the previous section, the GDPR-based Model is parsed
to derive the PAR, and the associated values of the parameters. In the case of
Alice’s policy, the identified set of parameters derived from the policy elements
is PAR ⊆ {DS,PD,DC,C, P, PA}. For instance, the values associated with
parameter P is VP = {MyCholesterol, UntargetedMarketing}. In line with
Definition 1, the result of this step is represented in tabular form in Table 1. The
first column (labeled PE) reports the related Alice’s policy elements, the sec-
ond column (labeled PAR) reports the derived parameters, and the last column
(labeled VPAR) lists the related values.

Test Cases Generation (Step 2). The combination of the parameters’ val-
ues of Table 1 is computed in order to derive the set of test cases. Different
strategies can be adopted in this step. By considering the all-combination, for
each parameter j ∈ PAR, the power set of the associated values is derived.
For instance, the power set associated with parameter P (i.e., Purpose) is
PVP

= {{}, {UntargetedMarketing}, {MyCholesterol}, {UntargetedMarketing,
MyCholesterol} }. Possible test cases are TCGDPR(ATT1) and TCGDPR(ATT2)
where ATT1 ={DC=myFitness, DS=Alice, PD={Blood Cholesterol}, P= MyC-
holesterol, PA=DERIVE, C=TRUE} and ATT2 ={C=myFitness, DS=Alice,
PD={Email,Age}, P=UntargetedMarketing, PA=SEND}.

For all-combination the cardinality of the derived test suite is 16.384, because
the number of test cases follows exponential growth with the numbers of values’

GROOT: A GDPR-Based Combinatorial Testing Approach 215

Table 1. GDPR-based SUT model associated of Alice’s policy.

PE PAR VPAR

data subject DS = Data Subject Alice

personal data PD = Personal Data Blood Cholesterol, Age, Gender, Email

data controller DC = Controller myFitness, Address

consent C = Consent TRUE

purpose P = Purpose UntargetedMarketing, MyCholesterol

action PA = Processing Activity DERIVE, AGGREGATE, QUERY, SEND

parameters. The number of generated test cases can be reduced by consider-
ing different approaches. For instance, by applying the pairwise technique the
cardinality of test suite has been reduced to 259 covering the 16.384 variants.
However, it is out of the scope of this paper discussing solutions for managing
the explosion problem of combinatorial testing. For more details, we refer to [12].

Test Cases Translation (Step 3). Finally, each of the obtained test cases is
translated into an executable one. In the context of AC, possible AC requests,
associated with TCGDPR(ATT1) and TCGDPR(ATT2) respectively, are reported
below. For instance, Req1 states that myFitness (who) wants to process Blood
Cholesterol (which resources) for MyCholesterol purpose (under which circum-
stances).

Example of Access Control Requests using GROOT:

Req1: request(DC=myFitness, DS=Alice PD=Blood Cholesterol,
P=MyCholesterol, PA=DERIVE, C=TRUE)

Req2: request(C=myFitness, DS=Alice, PD={Email,Age},
P=UntargetedMarketing, PA=SEND)

4 Conclusions and Future Work

In this paper, we presented GROOT, a combinatorial testing strategy specifically
conceived for assessing the compliance with the GDPR of systems managing per-
sonal data. We have firstly presented the conceived methodology, which consists
of three main steps, then we have exemplified its application by considering a
realistic use case scenario coming from fitness environment. In particular, we
illustrated how to apply GROOT for testing GDPR-based access control poli-
cies. It is part of our work-in-progress the assessment of the GROOT approach
by considering real case studies as well as the use of mutation approaches for
evaluating its test effectiveness. We are also working on the GROOT implemen-
tation in order to automatize the overall proposed process. As a future work,
we will customize GROOT approach by considering other technologies such as
consent management systems.

216 S. Daoudagh and E. Marchetti

Acknowledgement. This work is partially supported by the project BIECO H2020
Grant Agreement No. 952702, and by CyberSec4Europe H2020 Grant Agreement No.
830929.

References

1. Abassi, R., El Fatmi, S.G.: Security policies a formal environment for a test cases
generation. In: Artificial Intelligence and Security Challenges in Emerging Net-
works, pp. 237–264. IGI Global (2019)

2. Daoudagh, S., Lonetti, F., Marchetti, E.: XACMET: XACML testing and model-
ing. Softw. Qual. J. 28(1), 249–282 (2020)

3. Daoudagh, S., Marchetti, E.: A life cycle for authorization systems development
in the GDPR perspective. In: Proceedings of the 4th Italian Conference on Cyber
Security, Ancona, Italy, 4–7 February 2020, vol. 2597, pp. 128–140. CEUR (2020)

4. Daoudagh, S., Marchetti, E.: GRADUATION: a GDPR-based mutation methodol-
ogy. In: Paiva, A.C.R., Cavalli, A.R., Ventura Martins, P., Pérez-Castillo, R. (eds.)
QUATIC 2021. CCIS, vol. 1439, pp. 311–324. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-85347-1 23

5. Daoudagh, S., Marchetti, E., Savarino, V., Bernardo, R.D., Alessi, M.: How to
improve the GDPR compliance through consent management and access control.
In: Proceedings of the 7th International Conference on Information Systems Secu-
rity and Privacy, ICISSP 2021, 11–13 February 2021, pp. 534–541. SCITEPRESS
(2021)

6. Davari, M., Bertino, E.: Access control model extensions to support data privacy
protection based on GDPR. In: IEEE International Conference on Big Data (Big
Data), Los Angeles, CA, USA, 9–12 December 2019, pp. 4017–4024. IEEE (2019)

7. Drozdowicz, M., Ganzha, M., Paprzycki, M.: Semantic access control for privacy
management of personal sensing in smart cities. IEEE Trans. Emerg. Top. Comput.
10(1), 199–210 (2022). https://doi.org/10.1109/TETC.2020.2996974

8. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27
April 2016 (General Data Protection Regulation). Official Journal of the European
Union L119, 1–88, May 2016. http://eur-lex.europa.eu/legal-content/EN/TXT/?
uri=OJ:L:2016:119:TOC

9. Khamaiseh, S., Chapman, P., Xu, D.: Model-based testing of obligatory ABAC
systems. In: 2018 IEEE International Conference on QRS 2018, Lisbon, Portugal,
16–20 July 2018, pp. 405–413. IEEE (2018)

10. Mahindrakar, A., Joshi, K.P.: Automating GDPR compliance using policy inte-
grated blockchain. In: 2020 IEEE 6th Intl BigDataSecurity, IEEE International
Conference on HPSC and IEEE International Conference on IDS, pp. 86–93 (2020)

11. Mougiakou, E., Virvou, M.: Based on GDPR privacy in UML: case of e-learning
program. In: 2017 8th International Conference on Information, Intelligence, Sys-
tems Applications (IISA), pp. 1–8 (2017)

12. Nie, C., Leung, H.: A survey of combinatorial testing. ACM Comput. Surv. (CSUR)
43(2), 1–29 (2011)

13. Pandit, H.J., Fatema, K., O’Sullivan, D., Lewis, D.: GDPRtEXT - GDPR as a
linked data resource. In: Gangemi, A., Navigli, R., Vidal, M.-E., Hitzler, P., Troncy,
R., Hollink, L., Tordai, A., Alam, M. (eds.) ESWC 2018. LNCS, vol. 10843, pp.
481–495. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4 31

https://doi.org/10.1007/978-3-030-85347-1_23
https://doi.org/10.1007/978-3-030-85347-1_23
https://doi.org/10.1109/TETC.2020.2996974
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
https://doi.org/10.1007/978-3-319-93417-4_31

GROOT: A GDPR-Based Combinatorial Testing Approach 217

14. Robaldo, L., Bartolini, C., Palmirani, M., Rossi, A., Martoni, M., Lenzini, G.:
Formalizing GDPR provisions in reified I/O logic: the DAPRECO knowledge base.
J. Logic, Lang. Inf. 29(4), 401–449 (2019). https://doi.org/10.1007/s10849-019-
09309-z

15. Sandhu, R.S., Samarati, P.: Access control: principle and practice. IEEE Commun.
Mag. 32(9), 40–48 (1994)

16. Torre, D., Soltana, G., Sabetzadeh, M., Briand, L.C., Auffinger, Y., Goes, P.: Using
models to enable compliance checking against the GDPR: an experience report.
In: 2019 ACM/IEEE 22nd International Conference, MODELS, pp. 1–11. IEEE
(2019)

17. Zhang, Y., Zhang, B.: A new testing method for XACML 3.0 policy based on abac
and data flow. In: 2017 13th IEEE International Conference on Control Automation
(ICCA), pp. 160–164 (2017)

https://doi.org/10.1007/s10849-019-09309-z
https://doi.org/10.1007/s10849-019-09309-z

Appendix – Project Reports

H2020 DIGITbrain – Advanced Digital Twins
for Manufacturing

Antonio M. Ortiz1(&), Jeanett Bolther1(&), Carolina Salas1(&),
Luong Nguyen2(&), and Monika Rakoczy2(&)

1 PNO Innovation, S.L, Barcelona, Spain
{antonio.ortiz,jeanett.bolther,carolina.salas}

@pnoconsultants.com
2 Montimage EURL, Paris, France

{luong.nguyen,monika.rakoczy}@montimage.com

Abstract. DIGITbrain presents the Digital Product Brain (DPB) that extends
the traditional Digital Twin concept with memorizing capacity. Together with a
smart business model called manufacturing as a service (MaaS) to allow the
customisation and adaptation of on-demand Data, Models, Algorithms and
Resources for industrial products according to individual conditions. MaaS will
enable manufacturing SMEs to reach advanced manufacturing facilities within
their territories and beyond. DIGITbrain supports the development of advanced
digital and manufacturing technologies through more than 20 highly innovative
cross-border experiments, in addition to training and assisting Digital Innovation
Hubs in the implementation of the Maas model, contributing to their long-term
sustainability.

Keywords: Digital Twins � Manufacturing � Validation � Testing � Monitoring

1 DIGITbrain in a Nutshell

The manufacturing industry is in constant evolution; customers have new requirements
and want more personalisation; interoperability with new products and technologies is
expected; regulations and norms are becoming stricter; the environment calls for more
protection; the ageing of the workforce jeopardises the collective know-how. These
aspects cause an increasing pressure that the manufacturing industry needs to address.
Especially manufacturing SMEs are challenged, because of the limited resources and
the difficulty in accessing digital technologies and advanced manufacturing hardware
tailored to their needs.

Digital Twins [1] are a way to answer these challenges. However, implementing
Digital Twins is yet another challenge for many manufacturing SMEs, since it requires
a lot of expertise and a holistic approach ranging from the manufacturing machines to

The DIGITbrain project has received funding from the European Union’s Horizon 2020 research and
innovation program under grant agreement No 952071. https://digitbrain.eu/.

© IFIP International Federation for Information Processing 2022
D. Clark et al. (Eds.): ICTSS 2021, LNCS 13045, pp. 221–223, 2022.
https://doi.org/10.1007/978-3-031-04673-5

https://digitbrain.eu/
https://doi.org/10.1007/978-3-031-04673-5

become data resources, to data-driven and/or physically based modelling, to mastering
data lakes and compute resources such as HPC, Cloud and Edge Computing.

The DIGITbrain project aims to enable customised industrial products and to
facilitate cost-effective distributed and localised production for manufacturing SMEs,
by means of leveraging Edge-, Cloud- and HPC-based modelling, simulation, opti-
misation, analytics, and machine learning tools, and through augmenting the concept of
digital twin with a memorising capacity towards: (a) recording the provenance and
boosting the cognition of the industrial product over its full lifecycle, and (b) em-
powering the network of DIHs to implement the smart business model Manufacturing
as a Service (MaaS). Figure 1 shows the full digital and physical lifespan covered by
DIGITbrain.

1.1 DIGITbrain Objectives

The main objectives are:

• To implement the concepts behind the Digital Brain, to orchestrate Data, Models,
Algorithms, and Resources available for the Industrial Products.

• To provide the DIGITbrain Solution extending the CloudiFacturing [2] platform
with new automated deployment, support for co-simulation, etc.

• To develop feasible business models for MaaS-empowered DIHs to foster a
growing community of stakeholders.

• To augment the capabilities of an established market- and workplace technology by
supporting the operation of the Digital Brain concept and the nurture of MaaS-
empowered DIHs.

Fig. 1. DIGITbrain conceptual overview.

222 A. M. Ortiz et al.

• To conduct 3 waves of application experiments (2 of them through funded Open
Calls) to validate the project results [3].

• To evangelise the manufacturing community on the benefits of MaaS.

References

1. Boschert, S., Rosen, R.: Digital twin—the simulation aspect. In: Hehenberger, P., Bradley, D.
(eds.) Mechatronic Futures, pp. 59–74. Springer, Cham (2016). https://doi.org/10.1007/978-3-
319-32156-1_5

2. H2020 CloudiFacturing project. https://www.cloudifacturing.eu/
3. https://digitbrain.eu/experiments

H2020 DIGITbrain – Advanced Digital Twins for Manufacturing 223

https://doi.org/10.1007/978-3-319-32156-1_5
https://doi.org/10.1007/978-3-319-32156-1_5
https://www.cloudifacturing.eu/
https://digitbrain.eu/experiments

Definition and Assessment of Security
and Service Level Agreements (Project Report)

Huu Nghia Nguyen(B) and Edgardo Montes de Oca

Montimage, Paris, France
{huunghia.nguyen,edgardo.montesdeoca}@montimage.com

Abstract. The fifth generation of mobile networks relies on a complex,
dynamic and heterogeneous environment that implies the emergence of
numerous security challenges and testing objectives. In this paper, we
propose a framework that we are developing in the context of H2020
INSPIRE-5GPlus project to allow users to formalise and define secu-
rity and service level agreements (SSLAs). The framework will then be
able to assess in realtime the SSLAs and eventually trigger automatic
remediation strategies when an SSLA is violated.

Keywords: 5G · SSLAs · Rule-Based assessment · Auto remediation

1 Context: INSPIRE-5GPlus Project

Intelligent Security and Pervasive Trust for 5G and Beyond (INSPIRE-5GPlus)
project1. It is intended for advancing security of 5G and Beyond networks from
different perspectives [1], i.e., overall vision, use cases, architecture, integration
to network management, assets, and models. Such advancements of the secu-
rity vision will be archived for the first time through the adoption of a set of
emerging trends and technologies, such as Zero-touch network Service Manage-
ment (ZSM), Software-Defined Security (SD-SEC) models, AI/ML techniques
and Trusted Execution Environments (TEE). New breed of SD-SEC assets and
models are being developed to address some of the challenges that remain (e.g.,
adaptive slice security) or are completely new (e.g., liability and proactive secu-
rity) to cover the whole cybersecurity spectrum for fulfilling the SSLAs [2]. The
project will then ensure that the provided security level is in conformance to the
requirements coming from the security-related legalisation, verticals needs, and
the standard requirements.

2 SSLAs: Definition and Assessment

The framework concerns the definition of SSLAs for assessing and testing that:
1) the security functions are correctly implemented, 2) the security properties are
not violated, and 3) the violations trigger self-healing and -protection strategies.
1 The Horizon 2020 INSPIRE-5GPlus project was started on November 1st, 2019 and
lasts 3 years. More details can be found in: https://www.inspire-5gplus.eu/.

c© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
D. Clark et al. (Eds.): ICTSS 2021, LNCS 13045, pp. 224–226, 2022.
https://doi.org/10.1007/978-3-031-04673-5

http://orcid.org/0000-0002-5778-0752
http://orcid.org/0000-0001-6771-0689
https://www.inspire-5gplus.eu/
https://doi.org/10.1007/978-3-031-04673-5

Definition and Assessment of Security 225

The functional architecture is depicted in Fig. 1. SSLAs are defined in a High-
level Security Policy Language (HSPL) for specifying abstract security policies
regardless of the underlying technology. This key feature of the framework allows
multiple implementations and enforcement points for the same high-level policy.
This level of abstraction also provides other important features such as allow-
ing a non-technical end-user to specify general protection requirements without
possessing deep knowledge of the lower technical layers of the system.

Fig. 1. Functional architecture diagram

The SSLAs are then interpreted into a lower level to perform the assessment.
The outcome is used by 1) a Security Orchestrator, e.g., to deploy the probes
to collect metadata or to realise the remediation, and 2) the Security Analytic
Engine. The interpretation can add or modify specific protocols or data parser
plugins so that the probes can capture the needed data and the framework can
trigger reactions. The probes provide in realtime the metrics required by the
SSLAs and integrate local analysis functions. They should have the ability of
analysing the data using specified rules extracted from the SSLAs, and analysing
statistics and behaviour using machine learning techniques. The metrics are feed
to the Security Analytic Engine to perform the assessment based on the rules
and algorithms to detect the non-respected SSLAs. The Decision Engine will
trigger the corrective actions that could involve interacting with the Security
Orchestrators or directly with the Security Functions and Controllers.

226 H. N. Nguyen and E. M. de Oca

References

1. Murillo, J.O., de Oca, E.M., et al.: INSPIRE-5Gplus: intelligent security and per-
vasive trust for 5G and beyond networks. In: ARES 2020, pp. 105:1–105:10 (2020)

2. Rios, E., Mallouli, W., Rak, M., Casola, V., Ortiz, A.M.: SLA-driven monitoring of
multi-cloud application components using the MUSA framework. In: ICDCS Work-
shops, pp. 55–60 (2016)

Attack Configuration Engine for 5G Networks

Zujany Salazar(B) , Huu Nghia Nguyen(B) , Wissam Mallouli(B) ,
Ana R. Cavalli(B) , and Edgardo Montes de Oca(B)

Montimage, Paris, France
{zujany.salazar,huunghia.nguyen,wissam.mallouli,
ana.cavalli,edgardo.montesdeoca}@montimage.com

Abstract. The evolution of 5G mobile networks towards a service-based
architecture (SBA) comes with the emergence of numerous new test-
ing challenges and objectives. Regarding security testing, 5G issues have
been the subject of numerous studies. Standardization organisms list col-
lections of threats and vulnerabilities, also investigated by academia and
industrial researchers. However, there is no specific tool on the market
that allows easy 5G security testing to verify if its components are pro-
tected against reported security issues. In this paper, we propose AcE
which is an attack configuration engine conceived in the context of H2020
SANCUS project dealing with 5G network security.

Keywords: 5G · Traffic engineering · Attack injection · Fuzz testing

1 AcE: Attack Configuration Engine for 5G Networks

1.1 Context: SANCUS Project

Security, Trust and Reliability are crucial issues in mobile 5G networks from both
hardware and software perspectives [2]. These issues are of significant importance
when considering implementations over distributed environments, i.e., corpo-
rate Cloud environment over massively virtualized infrastructures as envisioned
in the 5G service provision paradigm. The SANCUS1 solution intends provid-
ing a modular framework integrating different engines in order to enable next-
generation 5G system networks to perform automated and intelligent analysis
of their firmware images at massive scale, as well as the validation of applica-
tions and services. SANCUS also proposes a proactive risk assessment of network
applications and services by means of maximising the overall system resilience
in terms of security, privacy and reliability.

1.2 Attack Configuration Engine

The proposed AcE engine in SANCUS delivers inclusive solution for mod-
elling and emulating network container services and applications, along with
1 H2020 SANCUS project was started on September 1st, 2020 and lasts 3 years. More

details can be found in: https://www.sancus-project.eu/.

c© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
D. Clark et al. (Eds.): ICTSS 2021, LNCS 13045, pp. 227–229, 2022.
https://doi.org/10.1007/978-3-031-04673-5

http://orcid.org/0000-0002-8655-0585
http://orcid.org/0000-0002-5778-0752
http://orcid.org/0000-0003-2548-6628
http://orcid.org/0000-0003-2586-9071
http://orcid.org/0000-0001-6771-0689
https://www.sancus-project.eu/
https://doi.org/10.1007/978-3-031-04673-5

228 Z. Salazar et al.

network-wide attacks, forensic investigations, and tests that require a safe envi-
ronment without the risk of proprietary data loss or adverse impact upon existing
networks. It also simulates the main attacks identified by the ENISA [3]. The
strength of this engine is that it will allow testing not only large-scale network
infrastructures, but also emulating the end-users (IoT, routers, hotspots). One of
the main components of this tool is 5Greplay solution designed by Montimage.

1 Select packet?

2 Forward packet?Rules

MODIFY2

31

X

packets
no

forward

Xdrop

M
yes

nono
X

yes

Config
file

MODIFY packet

MMT-5Greplay

Input NIC Output NIC

3 Default action

.pcap
file

Fig. 1. 5Greplay main architecture

5Greplay2 is an open-source 5G fuzzer that allows forwarding 5G network
packets from one network interface card (NIC) to another with or without modi-
fication. 5Greplay’s global architecture is depicted in Fig. 1. It can be considered
as a one-way bridge between the input NIC and the output one. Its behavior is
controlled by user defined rules and completed by a configuration file. The user
defined rules allow explicitly indicating which packets can be passed through
the bridge and how a packet is to be modified in the bridge. The configuration
file allows specifying the default actions to be applied on the packets that are
not managed by the rules, i.e., if they should be forwarded or not. 5Greplay
address the lack of an open-source tools to perform security testing in 5G net-
works. Thanks to its ability to create a variety of 5G network traffic scenarios,
5Greplay enables the implementation of cyberattacks, such as those identified
by ENISA [3], as well as the security test cases proposed by the 3GPP [1].

2 http://5greplay.org/.

http://5greplay.org/

Attack Configuration Engine for 5G Networks 229

References

1. T. 3rd Generation Partnership Project (3GPP). 3GPP TS 33.117 - catalogue of
general security assurance requirements (2020)

2. Ahmad, I., Kumar, T., Liyanage, M., Okwuibe, J., Ylianttila, M., Gurtov, A.:
Overview of 5G security challenges and solutions. IEEE Commun. Stand. Mag.
2(1), 36–43 (2018)

3. ENISA. Enisa threat landscape for 5G networks, February 2021

The BIECO Conceptual Framework Towards
Security and Trust in ICT Ecosystems

Ricardo Silva Peres1,2(B), Lilian Adkinson2, Emilia Cioroaica2,
Eda Marchetti2, Enrico Schiavone2, Sara Matheu2, Ovidiu Cosma2,

Rados�law Piliszek2, and José Barata1,2

1 UNINOVA - Centre of Technology and Systems (CTS),
2829 -516 Caparica, Portugal

{ricardo.peres,jab}@uninova.pt
2 The BIECO Consortium, Caparica, Portugal

Abstract. Modern ICT supply chains are complex, multidimensional
and heterogeneous by nature, encompassing varied technologies, actors
and interconnected resources. This makes it so that cybersecurity has
become a major concern for such ecosystems, particularly given the
tremendous velocity cybersecurity threats evolve requiring continuous
monitoring, assessment and improvement of these ecosystems to assure
their integrity and security. In this regard, BIECO aims to deliver a holis-
tic approach to building and validating methodologies and technologies
tailored to foster security and trust within ICT ecosystems across their
entire lifecycle, from design to runtime phases. Here we present an initial
project report with an overview of the BIECO project, emphasizing its
concept, objectives and main building blocks.

1 Introduction

With progressing digitalization and the trend towards autonomous computing,
systems tend to form digital ecosystems, where each participant (system or actor)
implements its own operational goals. Systems operating within ecosystems can
deploy smart agents [1] in the form of software applications, which would enable
cooperative behaviour with other ecosystem participants, and achievement of
common tactical and strategic goals.

Effective collaboration within these emerging digital ecosystems strongly
relies on the assumption that all components of the ecosystem operate as
expected, and a level of trust among them is established based on that. BIECO
aims to provide mechanisms that ensure the collaboration between ecosystem
participants remains trustworthy in case of failures. By making systems resilient
in the face of malicious attacks, a trustworthy behaviour is always displayed to
the user (which can be an interacting service or a human user). Assessing the
trustworthiness of ecosystem participants requires new platforms that enable
behaviour evaluation at runtime, with this being one of the main goals of BIECO.

c© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
D. Clark et al. (Eds.): ICTSS 2021, LNCS 13045, pp. 230–232, 2022.
https://doi.org/10.1007/978-3-031-04673-5

https://doi.org/10.1007/978-3-031-04673-5

The BIECO Conceptual Framework Towards Security 231

2 The BIECO Concept

The rationale behind BIECO’s concept is to deliver a framework for improving
trust and security within ICT supply chains [2]. These are complex ecosystems
comprising several heterogeneous technologies, processes, actors (e.g., end-users,
software or hardware providers and organizations) and resources, all of which
generate or exchange data forming complex information management systems.

Due to this, cybersecurity and integrity are important aspects to take into
account in this context, which need to be addressed with an integrative app-
roach that contemplates the entire chain, as opposed to restraining it only to
the individual components. BIECO proposes a holistic approach to building
and validating methodologies and technologies tailored to foster security [3] and
trust [4] within ICT ecosystems, with its building blocks being shown in Fig. 1.

Fig. 1. The main building blocks of the BIECO framework.

The goal is to instantiate the framework iteratively in order to enable a
continuous testing and improvement of ICT supply chain’s security [5], given the
speed at which the cybersecurity landscape evolves with new threats emerging
every day. As shown, the methodologies and tools developed or adapted in this
context will be evaluated in three use cases from different domains, namely
within smart grid/energy, financial and the manufacturing industry sectors.

Acknowledgement. This work was partially supported by the project BIECO (www.
bieco.org) that received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No. 952702.

www.bieco.org
www.bieco.org

232 R. S. Peres et al.

References

1. Peres, R.S., Jia, X., Lee, J., Sun, K., Colombo, A.W., Barata, J.: Industrial artificial
intelligence in industry 4.0-systematic review, challenges and outlook. IEEE Access
8, 220121–220139 (2020). https://doi.org/10.1109/ACCESS.2020.3042874

2. Deliverable D2.3, “Overall Framework Architecture Design (1st Draft)”, BIECO
project, February 2021

3. Baldini, G., Skarmeta, A., Fourneret, E., Neisse, R., Legeard, B., Le Gall, F.: Secu-
rity certification and labelling in internet of things. In: 2016 IEEE 3rd World Forum
on Internet of Things (WF-IoT), pp. 627–632. IEEE, December 2016. https://doi.
org/10.1109/WF-IoT.2016.7845514

4. Cioroaica, E., Chren, S., Buhnova, B., Kuhn, T., Dimitrov, D.: Reference archi-
tecture for trust-based digital ecosystems. In: 2020 IEEE International Conference
on Software Architecture Companion (ICSA-C), pp. 266–273. IEEE, March 2020.
https://doi.org/10.1109/ICSA-C50368.2020.00051

5. Cioroaica, E., et al.: Towards runtime monitoring for malicious behaviors detection
in smart ecosystems. In: 2019 IEEE International Symposium on Software Reliabil-
ity Engineering Workshops (ISSREW), pp. 200–203. IEEE, October 2019. https://
doi.org/10.1109/ISSREW.2019.00072

https://doi.org/10.1109/ACCESS.2020.3042874
https://doi.org/10.1109/WF-IoT.2016.7845514
https://doi.org/10.1109/WF-IoT.2016.7845514
https://doi.org/10.1109/ICSA-C50368.2020.00051
https://doi.org/10.1109/ISSREW.2019.00072
https://doi.org/10.1109/ISSREW.2019.00072

Industrial Machine Learning for Enterprises
(IML4E)

Jürgen Großmann1(&) and Jukka K. Nurminen2

1 Fraunhofer FOKUS, Berlin, Germany
juergen.grossmann@fokus.fraunhofer.de

2 University of Helsinki, Helsinki, Finland
jukka.k.nurminen@helsinki.fi

Abstract. Smart software solutions, i.e., software that includes artificial intel-
ligence (AI) and machine learning (ML), have shown a great potential to
automate processes that were previously not accessible to automation. These
areas include predictive maintenance, the creation of clinical diagnoses, rec-
ommendations systems, speech, image and scenario recognition, automated
driving etc. Since AI and ML differ from classical software development
regarding fundamental activities and processes, it is currently unclear how AI
and ML can be integrated into existing industrial-grade software development
processes. Addressing the industrialization of ML development and operations,
the IML4E project will directly address the specifics of AI and ML by providing
interoperability, automation and reusability in the data and the training pipeline.
Moreover, IML4E enables continuous quality assurance and supervision for
different types of machine learning (supervised learning, unsupervised learning,
etc.) throughout the whole life cycle of a smart software solution. In this project
presentation, we will focus in particular on the quality assurance and testing
research planned in the project.

Keywords: ML � ML-Testing � MLOps

1 IML4E Background

Estimates show that the use of AI-based solutions for business applications will also
experience significant growth in Europe over the next five years, with projected rev-
enues worldwide rising from $14.69 billion in 2019 to an expected $126 billion in
2025. However, the high growth rates for AI-based software and services can only be
achieved if AI- and ML-based software can be produced, operated and maintained with
similar efficiency and quality as classic software. In analogy to classical software, AI-
based software must be implemented and validated according to the requirements of the
end user and fulfil the established quality characteristics of classical software as well as
a number of new quality characteristics (e.g., interpretability, intelligent behavior, non-
discrimination, etc.). Their use must be technologically, socially and ethically
acceptable and safe. All this must be carefully planned, realized, validated and main-
tained throughout the software life cycle.

© IFIP International Federation for Information Processing 2022
D. Clark et al. (Eds.): ICTSS 2021, LNCS 13045, pp. 233–234, 2022.
https://doi.org/10.1007/978-3-031-04673-5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04673-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04673-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04673-5&domain=pdf
https://doi.org/10.1007/978-3-031-04673-5

2 IML4E Objectives

Against this background, the IML4E project1 develops a European framework for the
development, operation and maintenance of AI-based software, thereby ensuring the
development and quality assurance of intelligent services and intelligent software on an
industrial scale. The main IML4E objectives are:

• Improving the modularity and reuse of development and data artefacts throughout
the development process by (a) providing datasets and metadata that may serve the
training of models in different application contexts, (b) pretrained models that are
reused as a basis for further training in different application contexts, and (c) test
patterns and test procedures that allow for standardized test suites to ensure dedi-
cated ML specific quality attributes like security, robustness, transparency etc.

• Boosting the automation, interoperability and tool support throughout the whole
ML lifecycle. In particular, there is currently a lack of tools that allow for (a) au-
tomated processing with integrated quality assurance of data in the data preparation
pipeline, (b) continuous testing and verification of ML artefacts during develop-
ment, reuse and deployment, (c) versioning and traceability of development and
data artefacts (data sets, models, parameters, test results) in the course of data
preparation, training and (d) operations, and systematic surveillance and monitoring
of models in the field (monitoring corner cases, model evolution, functional fitness,
security etc.) including the ability to intervene in case severe deviations are
reported.

It has become clear that a paradigm shift is imminent, especially in the area of
quality assurance for AI-supported software. Classical verification approaches are not
applicable due to the complexity of deep neural networks. Basic assumptions about the
stability of the software and its non-determinism no longer hold, as the well-known
problems with adversarial attacks and concept drift show. Quality assurance must
become a continuous process that accompanies the entire life cycle of the software.
Appropriate methods and tools with the necessary degree of automation as well as a
focus on known ML vulnerabilities and stochastic applications are missing.

3 Expected IML4E Results

The IML4E project will develop methods and tools for risk-based quality assurance
over the next three years that are specifically adapted to the characteristics of deep
neural networks. This includes a catalogue of formalized quality attributes dedicated to
data, ML and ML-based software, tools for debugging, testing and safeguarding ML
especially in safety critical areas as well as an MLOps methodology that seamlessly
integrate ML and data science activities with processes and best practices from soft-
ware engineering, quality assurance and safety engineering.

1 https://itea4.org/project/iml4e.html.

234 J. Großmann and J. K. Nurminen

https://itea4.org/project/iml4e.html

NLP-based Testing and Monitoring for Security
Checking

Andrey Sadovykh1,6(B), Zujany Salazar2(B), Wissam Mallouli2(B),
Ana R. Cavalli2(B), Dragos Truscan4(B), Eduard Paul Enoiu3(B),

Rosa Iglesias5(B), and Olga Hendel3(B)

1 Softeam, Paris, France
andrey.sadovykh@softeam.fr

2 Montimage EURL, Paris, France
{zujany.salazar,wissam.mallouli,ana.cavalli}@montimage.com

3 Mälardalen University, Väster̊as, Sweden
{eduard.paul.enoiu,olga.hendel}@mdh.se
4 Åbo Akademi University, Turku, Finland

dragos.truscan@abo.fi
5 Ikerlan Technology Research Centre, Basque Research and Technology Alliance

(BRTA), Gipuzkoa, Spain
riglesias@ikerlan.es

6 Innopolis University, Innopolis, Russia
a.sadovykh@innopolis.ru

Abstract. VeriDevOps aims at bringing together fast and cost-effective
security verification through formal modelling and verification, as well as
test generation, selection, execution and analysis capabilities to enable
companies to deliver quality systems with confidence in a fast-paced
DevOps environment. Security requirements are intended to be processed
using NLP advanced algorithms in order to deliver formal specifications
of security properties to be checked during development and operation
of a system under test.

Keywords: Model-Driven engineering · Cybersecurity · Test and
validation · Runtime analysis · Natural language processing.

1 The VeriDevOps Concept

Figure 1. depicts the overall concept of the project. VeriDevOps intends to
advance the state of the art by tailoring formal verification of security require-
ments to DevOps and real-world CD pipelines. Given an existing system under
continuous integration/delivery, security and safety requirements at physical,
application and network level [2] come in different forms. These can be standard
requirements, such as those from ISA/IEC 62443 standard for control systems
or description of vulnerabilities from common repositories, as well as reports

H2020 VeriDevOps project: https://cordis.europa.eu/project/id/957212

c© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
D. Clark et al. (Eds.): ICTSS 2021, LNCS 13045, pp. 235–237, 2022.
https://doi.org/10.1007/978-3-031-04673-5

https://cordis.europa.eu/project/id/957212
https://doi.org/10.1007/978-3-031-04673-5

236 A. Sadovykh et al.

from security experts. In all cases, these requirements should be immediately
taken into account according to their severity. In this way, the protection mech-
anisms such as firewalls may be the first to be re-configured in order to avoid
an immediate danger and secure the system perimeter. Next, the design of the
system should be examined in order to locate the root-cause of the potential
security breach and identify the remediation methods on code level as a patch
or upgrade, at the design level, as a major redesign.

Fig. 1. The VeriDevOps main concept

The use of security requirements for protection and prevention suffers from
limited automation support which is mostly limited to vulnerability scanners.
There is still a tremendous amount of manual work to configure protection means
at operations level and locate and prevent the vulnerabilities at design level,
beyond the use of tools for scanning the libraries and tool chains used during the
implementation. Despite the large volume of academic research on software test-
ing and verification, there are relatively few commercial and industry-strength
tools for security testing that require formal specifications of the system. In addi-
tion, the formalization of requirements is still a very human-intensive activity;
much information is informally exchanged among the engineers and due to this,
most verification activities cannot be automated and need human intervention.
We argue that this formalization of security requirements and the creation of
environment and system models could increase the product quality, and make
the development and operation more efficient and less costly.

Thus, the key challenge of the project is to automatically express and manage
security requirements in an effective and unambiguous way, by formalizing them
using NLP [1], such that both engineers and stakeholders have a common under-
standing of their content. Once these security requirements are unambiguously
specified and decomposed, one needs to verify the compliance of the realiza-
tions to required security behavior by formal verification and testing for both
protection and prevention means. In order to save time and lower the effort for
adjusting the prevention and protection mechanisms, VeriDevOps automates the
specification and analysis of requirements with security relevance, at the system

NLP-based Testing and Monitoring for Security Checking 237

and network levels, testing of system realizations and the integration of these
techniques and tools with current VeriDevops practices in industry.

References

1. Garousi, V., Bauer, S., Felderer, M.: NLP-assisted software testing: a systematic
mapping of the literature. Inf. Softw. Technol. 126, 106321 (2020)

2. Khan, R.A., Khan, S.U., Khan, H.U., Ilyas, M.: Systematic mapping study on secu-
rity approaches in secure software engineering. IEEE Access 9, 19139–19160 (2021)

Author Index

Adkinson, Lilian 230
Arts, Thomas 73

Barata, José 230
Bergenthal, Moritz 3
Bolther, Jeanett 221
Bombarda, Andrea 65
Bonfanti, Silvia 65
Braz, Rafael S. 90

Catillo, Marta 196
Cavalli, Ana R. 227, 235
Cioroaica, Emilia 230
Cosma, Ovidiu 230

Daoudagh, Said 210
de Oca, Edgardo Montes 224, 227
Derrick, John 37

Enoiu, Eduard Paul 235
Entekhabi, Sina 73
Eslami Abyane, Amin 160

Foster, Michael 37
Fritze, René 181

Gargantini, Angelo 65
Großmann, Jürgen 233
Groz, Roland 90

Halm, Moritz 90
Hemmati, Hadi 160
Hendel, Olga 235

Ibias, Alfredo 106
Iglesias, Rosa 235

Khurshid, Sarfraz 123
Krafczyk, Niklas 3
Kushik, Natalia 55

Llana, Luis 106
López, Jorge 55

Mallouli, Wissam 227, 235
Marchetti, Eda 210, 230
Marinov, Darko 123
Matheu, Sara 230
Mostowski, Wojciech 73
Mousavi, Mohammad Reza 73

Nguena Timo, Omer 20
Nguyen, Huu Nghia 224, 227
Nguyen, Luong 221
Núñez, Manuel 106
Nurminen, Jukka K. 233

Oriat, Catherine 90
Ortiz, Antonio M. 221

Patel, Smit 148
Pecchia, Antonio 196
Peleska, Jan 3
Peres, Ricardo Silva 230
Piliszek, Radosław 230

Rakoczy, Monika 221
Rave, Stephan 181

Sachtleben, Robert 3
Sadovykh, Andrey 235
Salas, Carolina 221
Salazar, Zujany 227, 235
Schiavone, Enrico 230
Schneider, Kurt 141
Shi, Jianwei 141
Simao, Adenilso 90
Sinha, Roopak 148

Tazl, Oliver A. 131
Truscan, Dragos 235

Vassiliou-Gioles, Theofanis 189
Vecchio, Andrea Del 196
Villano, Umberto 196

Walkinshaw, Neil 37
Wang, Wenxi 123
Wotawa, Franz 131

Yevtushenko, Nina 55
Yi, Pu 123

240 Author Index

	Preface
	Organization
	Contents
	Finite State Machine-based Testing
	libfsmtest An Open Source Library for FSM-Based Testing
	1 Introduction
	2 Basic Facts About FSMs
	3 Library Overview
	3.1 The Class Library
	3.2 The Main Programs
	3.3 The Test Harness

	4 Related Work
	5 Conclusion
	References

	Mining Precise Test Oracle Modelled by FSM
	1 Introduction
	2 Preliminaries
	3 The Oracle Mining Problem and Overview of the Proposed Solution
	4 Boolean Encodings
	4.1 Candidates in an Imprecise Oracle
	4.2 Candidates Involved in Executions of an Imprecise Oracle
	4.3 Test-Equivalent Candidate
	4.4 Reducing an Imprecise Oracle

	5 Mining an Oracle
	5.1 Verifying Adequacy of a Test Set for Mining the Proper Oracle
	5.2 Test Generation in Mining an Oracle

	6 Experimental Results
	7 Related Work
	8 Concluding Remarks
	References

	Reverse-Engineering EFSMs with Data Dependencies
	1 Introduction
	2 Background
	2.1 Definitions
	2.2 Genetic Programming
	2.3 EFSM Inference
	2.4 Limitations of Existing Approaches

	3 Inferring Output and Update Functions
	4 Implementation
	4.1 Genetic Programming
	4.2 PTA Preprocessing

	5 Evaluation
	5.1 Methodology
	5.2 Results and Discussion
	5.3 Threats to Validity

	6 Conclusion
	References

	Testing Against Non-deterministic FSMs: A Probabilistic Approach for Test Suite Minimization
	1 Introduction
	2 Preliminaries
	3 Introducing the Probabilities in the Specification
	4 Minimizing an Exhaustive Test Suite Against "426830A S, .5-.5.5-.5.5-.5.5-.5, {I1, I2, …, Ik}"526930B
	5 Conclusion
	References

	Test Generation and Selection
	Automatic Test Generation with ASMETA for the Mechanical Ventilator Milano Controller
	1 Introduction
	2 Test Generation
	3 Test Concretization
	4 Test Execution
	5 Related Works
	6 Conclusion
	References

	Locality-Based Test Selection for Autonomous Agents
	1 Introduction
	2 Context
	2.1 SafeSmart Project
	2.2 QuickCheck

	3 Methodology
	3.1 Testing Module
	3.2 Random Data Generation

	4 Filtering DSL: Syntax and Semantics
	4.1 Syntax
	4.2 Semantics

	5 Experiments
	5.1 Fault Detection Time
	5.2 Shrinking Time

	6 Related Work
	7 Conclusions and Future Work
	References

	Improving Model Inference via W-Set Reduction
	1 Introduction
	2 Definitions
	3 Overview of hW-Inference
	3.1 Main Algorithm of hW-Inference
	3.2 Refining h and W
	3.3 Oracles and Counterexamples
	3.4 Dictionary

	4 Approach
	4.1 Motivation
	4.2 Methods for W-Set Reduction
	4.3 Partitions
	4.4 Computing from Product
	4.5 Pruning
	4.6 Combining Methods to Get a W-Set Reduction
	4.7 When to Apply W-Set Reduction?

	5 Experiments
	5.1 Case Study and Basic hW-Inference Without Reduction
	5.2 Impact of W-Set Pruning
	5.3 Impact of W-Set Reduction Through Recomputation from Scratch

	6 Conclusion
	References

	Using Ant Colony Optimisation to Select Features Having Associated Costs
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 SPLA-CRIS: SPLs with Costs
	3.2 Ant Colony Optimisation

	4 ACO for Feature Selection Taking into Account Testing Costs
	5 Experimental Results
	6 Threats to Validity
	7 Discussion About the Suitability of ACO
	8 Conclusions and Future Work
	References

	Initial Results on Counting Test Orders for Order-Dependent Flaky Tests Using Alloy
	1 Introduction
	2 Modeling Flaky Test Orders Using Alloy
	3 Experimental Evaluation
	3.1 Setup
	3.2 Results

	4 Conclusions
	References

	Metamorphic Testing of Logic Theorem Prover
	1 Introduction
	2 Basic Foundations
	3 Metamorphic Theorem Prover Testing
	4 Experimental Evaluation
	5 Conclusions
	References

	AI-based Techniques
	Creation of Human-friendly Videos for Debugging Automated GUI-Tests
	1 Introduction
	2 Investigation of Robot-Like Replay
	3 Related Work
	4 Approach
	4.1 Asynchronous Screen Capturing and Test Execution
	4.2 Replay with Highlight
	4.3 Concept: Code Injection and Frame Manipulation

	5 Conclusion and Future Work
	References

	Combining Holistic Source Code Representation with Siamese Neural Networks for Detecting Code Clones
	1 Introduction
	2 Conceptual Design
	2.1 Code Representation
	2.2 Duplicate Code Detection

	3 Experimental Evaluation
	4 Conclusions, Limitations and Future Work
	References

	Robustness Analysis of Deep Learning Frameworks on Mobile Platforms
	1 Introduction
	2 Background
	2.1 Deep Neural Network (DNN)
	2.2 Robustness and Adversarial Attacks
	2.3 DL Frameworks
	2.4 Quantization

	3 Experiments
	3.1 Experiment Design
	3.2 Results and Discussions
	3.3 Threats to Validity

	4 Related Work
	5 Conclusion and Future Works
	References

	Use Cases
	Specification and Validation of Numerical Algorithms with the Gradual Contracts Pattern
	1 Introduction
	2 Testing a Newton-Raphson Algorithm
	3 Gradual Contracts
	3.1 General Considerations
	3.2 Library Primitives
	3.3 Contingent Pre-/post-conditions

	4 Conclusion and Outlook
	References

	Solving the Instance Identification Problem in Micro-service Testing
	1 Introduction
	2 Instance Identification and Integration Testing
	2.1 Integration Testing
	2.2 Identification of Micro-services as Software Components
	2.3 Micro-service Instance Identification

	3 Comparison with Other External Purpose Header Fields
	4 Limitations and Other Considerations of the Presented Approach
	5 Lessons Learned and Outlook
	References

	On the Quality of Network Flow Records for IDS Evaluation: A Collaborative Filtering Approach
	1 Introduction
	2 Related Work
	3 Proposed Approach
	3.1 Collaborative Filtering
	3.2 Neighbors Selection Metrics
	3.3 Computation of the Sanitized Labels

	4 Experimental Results
	4.1 Reference Dataset
	4.2 Data Preprocessing
	4.3 Quality Assessment and Impact on Intrusion Detection

	5 Conclusion
	References

	GROOT: A GDPR-Based Combinatorial Testing Approach
	1 Introduction
	2 Background
	3 GROOT
	3.1 GROOT Methodology
	3.2 Using GROOT

	4 Conclusions and Future Work
	References

	Appendix – Project Reports
	H2020 DIGITbrain – Advanced Digital Twins for Manufacturing
	Abstract
	1 DIGITbrain in a Nutshell
	1.1 DIGITbrain Objectives

	References

	Definition and Assessment of Security and Service Level Agreements (Project Report)
	1 Context: INSPIRE-5GPlus Project
	2 SSLAs: Definition and Assessment
	References

	Attack Configuration Engine for 5G Networks
	1 AcE: Attack Configuration Engine for 5G Networks
	1.1 Context: SANCUS Project
	1.2 Attack Configuration Engine

	References

	The BIECO Conceptual Framework Towards Security and Trust in ICT Ecosystems
	1 Introduction
	2 The BIECO Concept
	References

	Industrial Machine Learning for Enterprises (IML4E)
	Abstract
	1 IML4E Background
	2 IML4E Objectives
	3 Expected IML4E Results

	NLP-based Testing and Monitoring for Security Checking
	1 The VeriDevOps Concept
	References

	Author Index

