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Preface

SAMOS is a conference with a unique format. It brings together every year researchers
from both academia and industry on the topic of embedded systems in the perfect setting
of Samos island. Due to the COVID-19 crisis, the SAMOS 2021 conference was held as
a virtual live event on a virtual island, where people could walk around with their virtual
avatars and chat with their peers, and listen to interesting talks.

The SAMOS 2021 keynote with the title “Spectres, Meltdowns, Zombies, Orcs: Can
formal methods banish the ghosts that haunt your hardware?” was given by Wolfgang
Kunz from University of Kaiserslautern. He presented a new formal method in order to
detect hardware vulnerabilities systematically without demanding the clever thinking of
a human attacker. A specific focus was also placed on virtual prototyping and simulation
through a tutorial by Jakob Engblom from Intel.

The SAMOS 2021 proceedings comprise a selection of publications targeting either
systems themselves - through their applications, architectures, and underlying processors
- or methods created to automate their design. A total of 45 papers were submitted to
the conference and 17 papers were selected by the Program Committee for presentation
at the conference (38% acceptance rate). Four special sessions were organized in the
program to report recent results of European projects, coalesce novel work on next
generation computing (NGC) and security and put a special focus on the lessons learnt
from meaningful negative results.

The SAMOS 2021 committee would like to acknowledge the generous support of
the many reviewers who contributed to the quality of these proceedings. We hope that
you enjoy reading them!

July 2021 Alex Orailoglu
Matthias Jung

Marc Reichenbach
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Simulation and Design Space
Exploration



Accurate LLVM IR to Binary CFGs
Mapping for Simulation of Optimized

Embedded Software

Alessandro Cornaglia1(B), Alexander Viehl1, and Oliver Bringmann2

1 FZI Research Center for Information Technology, Karlsruhe, Germany
{cornaglia,viehl}@fzi.de

2 University of Tübingen, Tübingen, Germany
oliver.bringmann@uni-tuebingen.de

Abstract. In this paper, we present a new approach for mapping LLVM
IR to binary machine code for overcoming the current limitations of host-
based simulations of performance-critical embedded software imposed by
compiler optimizations. Our novel, fully automated mapping approach
even copes with aggressive compiler optimizations without requiring any
modification to the compiler or the need of expert supervision. Exper-
imental results show that accurate mappings are produced even when
compiling with the highest level of optimization (average error below
2%). The proposed simulation methodology provides a speedup of at
least 26 compared to the widely used gem5 simulator.

Keywords: Performance estimation · Host-based simulation · IR to
binary CFGs mapping · Design space exploration

1 Introduction

The design of embedded systems requires dealing with the complexity of the
actual processor architectures, the constant need for reducing the waste of pre-
cious resources and the strictness of the non-functional requirements. The per-
formance of a program is generally optimized by applying compiler optimiza-
tions that focus on increasing the instruction-level parallelism (ILP) by making
the best run-time use of the physical resources available on the processor. In
this context, the designers need early feedback about the performance of the
software program regarding its execution on a given target platform. The eval-
uation is usually conducted by simulating the target system on a development
host machine.

Traditional simulators like instruction-set simulators (ISS) or gate level RTL
simulators often cover too many unnecessary details in too much depth that
make them too slow and unsuitable for supporting the design activities. Fast
host-based simulation techniques are an alternative for tackling this limitation.
Host-based simulators execute a software binary version that differs from the

c© Springer Nature Switzerland AG 2022
A. Orailoglu et al. (Eds.): SAMOS 2021, LNCS 13227, pp. 3–15, 2022.
https://doi.org/10.1007/978-3-031-04580-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04580-6_1&domain=pdf
https://doi.org/10.1007/978-3-031-04580-6_1


4 A. Cornaglia et al.

one produced for the target. The target performance can be simulated by com-
piling the program for the host machine and executing it. The simulation can
be executed on different software representations such as the source code, its
compiler intermediate representation (IR) or the host binary simulation code.

Source
Code

LLVM
Compiler

Optimizations

IR to Binary
MappingMapping Algorithm

Label
Matching

Isomorphism
Matching

i0

i1

i2

i3 i4

LLVM IR CFG

m0

m1

m2

m3

LLVM MIR CFG

b0

b1

b2

Binary CFG

Fig. 1. Proposed two-steps approach for accurately mapping LLVM IR to binary code
dealing with the effects of the compiler optimizations.

The simulation speedup provided by the host-based simulation techniques
comes at the price of mapping the simulation code representation to the target
binary machine code. Unfortunately, this task can be extremely hard and com-
plex because, especially in typical industrial settings, it is desirable to highly
optimize the program at compile-time. Aggressive compiler optimizations can
substantially change the structure of a program in comparison to the structure
of the original source code. In most cases, when the program is highly optimized,
these transformations make a direct match between the different representations
of the control flow graphs (CFGs) impossible. It is easier to map IR to binary
code rather than trying to map the source code directly. The IR is a lower
level representation of the source code that is internal to the compiler and it is
designed to support architecture-independent compilation passes. Its structure
is closer to the binary representation because it already includes the effects of
some of the compiler optimizations. Mapping IR to binary machine code only
requires considering the effects of the missing back-end transformations.

The main contribution of this paper is the definition of a new and fully auto-
matic approach for generating a precise mapping between LLVM IR and binary
machine code that can deal with aggressive compiler optimizations. The method-
ology relies on the LLVM MIR representation, a machine dependent low-level
code representation designed for applying architecture-dependent optimizations.
The mapping problem is decomposed by initially mapping LLVM IR to MIR
code and consequently mapping the MIR to binary machine code. As a result,
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the precise mapping allows defining a fast host-based simulation methodology
for accurately evaluating non-functional properties of an embedded system, such
as timing, performance and power estimations.

The rest of the paper is organized as follows: Sect. 2 introduces other exist-
ing mapping approaches. An introduction to fundamental LLVM concepts is
provided in Sect. 3. The proposed mapping approach is presented in Sect. 4 and
the host-based simulation methodology is described in Sect. 5. Section 6 shows
the experimental results and Sect. 7 concludes the paper.

2 Related Work

Mapping the structure of the simulation’s code representation to the cross-
compiled binary code is a common requirement for executing host-based simula-
tions. Unfortunately, this is a hard task, especially in the presence of aggressive
compiler optimizations. Some approaches try to directly map the source code to
the binary instructions. Others instead rely on the IR code because its structure
already includes the effects of the architecture-independent compiler optimiza-
tions. The IR structure is consequently closer to the binary in comparison to
the structure of the source code. Our mapping relies on a lower level code repre-
sentation but the methodology is mainly inspired by three different approaches
[5,12,13] that belong to both of the two categories.

The concept described in [13] proposes an automatic approach for mapping
source code statements to the respective binary instructions generated after the
program’s cross-compilation. This approach relies exclusively on the DWARF
debug information generated by the compiler. Unfortunately, even if this infor-
mation is available, the mapping may turn out to be imprecise or ambiguous
due to the effects of aggressive compiler optimizations that break the full trace-
ability between source code and binary instructions [2]. Possible improvements
are proposed in [17] and [16], imprecision and ambiguities are reduced by sub-
stituting the source code parts subjected to aggressive compiler optimizations
with functionally-equivalent optimized IR code. The optimized IR code has a
structure closer to the binary representation, helping in generating the mapping
but without fully solving the problem even considering hierarchical subgraphs
of a CFG as proposed in [11].

An automated flow for mapping IR to binary code is described in [5]. This
algorithm implements a heuristic for mapping the basic blocks of the two different
program representations relying on their similarities. The similarities are defined
considering two numerical metrics: flow value and nesting level. In some cases,
the heuristic fails in producing a complete mapping because of ambiguities in
the CFGs. If this happens, the mapping process requires the supervision of an
expert. The authors in [6] proposed a tracing-based enrichment for making the
algorithm fully automatic. The improvement consists in filling the mapping gaps
by comparing IR and binary execution traces. On the one hand, the solution can
fix the ambiguities problem, but on the other hand, it can be hard to identify the
exact input data that leads the execution to visit the desired control flow path.
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A different approach for mapping IR to binary code with the purpose of
performance estimation in native simulation is presented in [12]. By analyzing
optimized IR code, this approach can focus on managing only the hardware-
dependent optimizations applied during the back-end compilation. In particu-
lar, this approach is focused on identifying, characterizing and finally mapping
the loops in the two different program representations. The experimental results
show that an increase in accuracy can be reached only if all the loop optimiza-
tions are correctly identified and managed. However, every single imperfection
may introduce a substantial percentage of error.

3 LLVM Background

The LLVM Compiler Infrastructure [9] provides tools for analysis and for both
static and dynamic compilation of programs. The compiler’s front-end, clang,
translates the source code to bitcode. The bitcode is the LLVM IR, it is architec-
ture independent and it is structured in modules. The architecture-independent
optimization passes performed by opt, the middle-end, are applied to this inter-
mediate representation. It is possible to link multiple IR modules together via
llvm-link. The compilation, or cross-compilation, process is concluded by llc,
the back-end, that finally translates the bitcode to binary machine code.

Two further architecture-dependent code representations are considered in
LLVM: The LLVM Machine Code (MC) [15] and the LLVM Machine IR (MIR)
[14]. The former is a representation for an object file that is similar to the binary
representation and does not contain any high-level information stored in the
bitcode. The latter is an architecture specific translation of the bitcode that is
utilized by the back-end for applying architecture-dependent optimizations. The
structure of an MIR module resembles the structure of its original IR module. At
the same time, the MIR structure is closer to the binary representation because it
includes most of the effects caused by the architecture-dependent optimizations,
including the ones that change the program structure. For instance, an MIR
module already includes the effects of aggressive loop optimizations such as loop
unrolling, loop-invariant code motion, loop inversion and others. During the final
compilation phases, for every function in the MIR module, the MIR basic blocks
are sequentially translated in order into LLVM MC instructions.

The key idea of our novel mapping mechanism consists in also considering the
program’s structure at the MIR level. Instead of directly map the IR structure to
its corresponding binary, we propose to perform an additional step that requires
matching the MIR representation to both the IR and binary representations. As
shown by the consequent IR, MIR and binary CFG representations of a given
function in Fig. 2, this double mapping mechanism allows to reduce the prob-
lem complexity even when aggressive architecture-dependent optimizations are
applied. The problem’s simplification derives from the fact that: 1) There exists
an implicit direct connection between the IR and MIR basic blocks’ labels and,
2) The MIR structure is very close to the structure of the resulting executable.
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if.end
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if.else.1

if.else.2if.then.2

if.then.1

while.end

while.body

start

exit

(a) Optimized IR CFG.
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(c) Optimized binary CFG.

Fig. 2. Control flow graphs at different code representations for the same function.

4 Mapping Algorithm

The proposed novel mapping approach consists of two separate phases, as shown
in Fig. 1. The first one allows the generation of a mapping between IR and MIR
CFGs relying on the definition of the label matching algorithm. The second
one allows mapping MIR to binary CFGs relying on the isomorphism match-
ing algorithm that automatically generates an isomorphism between them. The
combination of these two mappings together allows producing a precise mapping
from LLVM IR to binary machine code. The two phases are presented in the next
sections with the help of the support of the CFGs provided in Fig. 2. The terms
basic block and node will be utilized in an interchangeable way by following this
definition: a CFG is a directed graph CFG = (N,E) where every node n ∈ N
corresponds to a basic block and each edge e = (ni, nj) ∈ E identifies a connec-
tion between two blocks. The mapping is intended to define a match between
paths (sequence of edges) in the CFGs. This granularity allows considering, for
every single function in the program, only the effects of the optimizations that
change the structure of a graph. The mapping is not intended to model any of
the optimizations that can change the internal structure of the basic blocks. This
assumption does not limit the possibility of future finer granularity extensions.

4.1 Label Matching

The basic block labels are used to support the automatic mapping of IR to MIR
CFGs. The labels are internal to the compiler, specific per function, completely
independent from the debug symbol information (that can be unavailable or
imprecise) and each of them identifies a specific node in the graph. An example is
given in Fig. 2(a) and Fig. 2(b). The two graphs are similar but a direct mapping
between the labels of the two representations is not possible because of the
effects of potential optimizations. MIR nodes can be removed or inserted [1].
An insertion implies the appearance of a new MIR node identified by a new
synthetic label. These labels are not present in the IR CFG. On the opposite, a
removal causes the IR CFG to contain a label not present in the MIR CFG.
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The algorithm starts by labeling the nodes of the CFGs with the labels of
the corresponding basic blocks. The labels are consequently utilized for defining
an initial partial mapping between IR and MIR edges. Relying on the labels,
the algorithm identifies the IR edges that have been preserved from the opti-
mizations and that are part of the graphs of both the representations. The cor-
responding edges can be directly matched as graphically shown by the dashed
arrows in Fig. 3(a). The complete mapping is finally obtained by considering
the remaining unmatched edges. Consecutive unmatched edges are grouped
in paths. Iteratively, and for both the graphs, the algorithm maps a path
p = ((ni, nj), ... , (nx, ny)) of one graph to the shortest path (considering pos-
sible back-edges) in the other graph between the nodes identified by the labels
of nodes ni and ny. These matches, represented as dotted arrows in Fig. 3(a),
complete the IR to MIR mapping.

4.2 Isomorphism Matching

The process for defining an MIR to binary mapping requires the generation of an
isomorphism between their CFGs. The isomorphism can be obtained by modify-
ing the structure of the graphs of both the representations while preserving their
original control flow paths. In fact, similarly to certain compiler optimizations,
specific nodes can be removed in order to obtain two graphs with an isomorphic
structure. The isomorphism ensures the definition of a unique mapping between
the edges and paths of the original graphs as described in Algorithm 1.

The algorithm starts by labeling the nodes of the two graphs with unique IDs.
These IDs are essential for the isomorphism-based direct mapping. As discussed
in Sect. 3, the basic blocks translation from MIR to binary machine code reflects
the order of their appearance in the MIR module. Therefore, every node in the
MIR CFG is labeled with an integer ID relying on the order of appearance in the
MIR function. In a similar way, it is possible to label the binary nodes relying
on their start address (or offset) reported in the binary file.

Fig. 3. Steps of the procedure for mapping IR to MIR to binary paths relying first on
labels and later on the CFGs isomorphism.
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Algorithm 1. Isomorphism Mapping(CFGmir, CFGbin)
1: mapping := ∅

2: sortByAppearance(Nmir); sortByAddress(Nbin)
3: assignIntegerIds(Nmir, Nbin)
4: colorNodes(Nmir, Nbin)
5: CFGiso

mir,CFGiso
bin := remove&Annotate(CFGmir, CFGbin)

6: sortAndupdateIntegerIds(N iso
mir, N

iso
bin)

7: // Isomorphism completed between CFGiso
mir and CFGiso

bin

8: for all (ni, nj)
iso
mir ∈ Eiso

mir do
9: annotatedEdgesmir := getAnnotation

(
(ni, nj)

iso
mir

)

10: pmir := extractPath
(
(ni, nj)mir, annotatedEdgesmir

)

11: annotatedEdgesbin := getAnnotation
(
(ni, nj)

iso
bin

)

12: pbin := extractPath
(
(ni, nj)bin, annotatedEdgesbin

)

13: mapping := mapping
⋃

map(pmir, pbin)

14: return mapping

The algorithm continues by coloring the graphs for identifying the necessary
nodes that have to be removed for obtaining the isomorphism. Initially, all the
nodes are colored in white. Consequently, all the nodes that are eligible to be
removed are colored in black. A node has to be colored in black if, ignoring
potential back-edges, its in-degree is equal to one and its out-degree is at max-
imum one. In order to preserve the original structure of the paths in the final
isomorphic graphs, it is necessary to refine the set of nodes that have to be
removed by further coloring. Any node nj is colored in dark gray if: 1) It is the
direct successor of at least two distinct black nodes or, 2) It is the direct suc-
cessor of the last node nb

n of an uninterrupted path of black nodes (nb
0, ... , nb

n)
and it shares a common direct predecessor np with the first node of the path nb

0.
All the blocks having a dark gray successor instead are colored in light gray.
The nodes that are still colored in black at the end of the coloring have to be
removed. The node removal requires to: 1) Preserve the control flow and nesting
levels of the graphs by updating any affected original edge (or back-edge) and,
2) Update the node IDs for preserving the initial incremental labeling scheme,
3) Annotate the removed edges information in the updated edges. For example,
the graph on the right side of Fig. 3(b) is the result of the removal of the only
remaining black node from its colored CFG.

Finally, as shown in Fig. 3(b), a direct match can be identified by relying
on the isomorphic versions of the two CFGs. Mixing the information from the
node IDs and the annotated edges in the direct match, it is possible to define the
mapping between the two original graphs. Two possibilities have to be considered
while generating the mapping: 1) An edge is part of the original graph only if
it has not been annotated. In this case, the original edge can be mapped with
the corresponding edge or path in the other graph. 2) An annotated edge is
not part of the original graph because it is the result of some node removal
operations. Therefore, if an annotated edge represents a supposed edge (ni, nj)
in one of the original graphs and its annotation is composed of a list of removed
edges

(
(nr

0, n
r
1), ... , (nr

n−1, n
r
n)

)
, the path p =

(
(ni, n

r
0), ... , (nr

n, nj)
)

has to be
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mapped with the corresponding edge or path in the other graph. As a result,
the two steps matching approach allows to accurately map the LLVM IR paths
to their corresponding binary paths by first translating them into MIR paths.

5 Host-Based Simulation

The detailed workflow designed for executing LLVM IR host-based simulations
is described in Fig. 4. The lli tool, which is used as the simulator’s core, allows
executing bitcode on a host machine via Just-In-Time compilation (JIT). The
host-execution cannot directly execute bitcode generated for a different target
architecture but retargeting the IR module requires only minimal effort. This
can be done by implementing an appropriate modification pass for opt.

Fig. 4. Combined and detailed workflows proposed for producing the accurate mapping
and enabling fast host-based simulations.

The simulation requires three different inputs: the bitcode to simulate, the
CFGs mapping and a source of non-functional information, which is used for
updating the simulation results. The simulation bitcode is the result of the link-
age of the annotated retargeted IR module with a custom IR library. The anno-
tation consists in the insertion of a function call at the beginning of every basic
block. At run-time, the function call forces the simulator to execute the code in
the custom library for computing and updating the simulation estimations.

The LLVM IR to binary code mapping is produced as described in Sect. 4
by analyzing and comparing the different CFGs of the IR, MIR and binary
representations. The IR module that is considered during the mapping process
is the final IR version optimized by llc. This version of the bitcode includes some
of the effects of the architecture-dependent optimizations. The MIR module is
generated at the end of the last llc optimization pass and it includes most of
the possible structural changes produced by the back-end.
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Finally, the source of non-functional information can be any kind of informa-
tion that is desired to be considered while simulating. The preference has to be
defined in the custom IR library and it can be a model, a database, an external
simulator or others.

6 Experimental Evaluation

During compilation, the compiler optimizations are commonly applied in groups
of optimization levels rather than individually. Most of them are not indepen-
dent and applying them in different orders may lead to different results. In
our evaluation, we considered all the possible combinations of standard middle-
end and back-end optimization levels. Compared with lower optimization levels,
the highest level of optimization -O3 allows observing substantial changes in the
structure of the different program representations and is therefore harder to map.
For this reason, here we show only the results for the highest level of optimiza-
tion and omit more accurate results caused by a lower mapping complexity. The
evaluation has been conducted on an Intel Core i7-2600K workstation running
at 3.4 GHz. An ARM Cortex-A15 with out-of-order superscalar execution and
multiple cache levels was chosen as target processor. The analyzed benchmarks
are part of the widely-used Mälardalen benchmark suite [7]. The complexity
of the benchmarks, expressed by the quantitative metrics Line Of Codes (LOC)
and Cyclomatic Complexity Number (CCN), is reported in Table 1. We excluded
the benchmarks that introduce non-available library sources because this may
introduce inaccuracies that are not caused by the mapping algorithm’s accuracy.

6.1 Mapping Accuracy

A direct validation of the mapping accuracy is not feasible. Therefore, we took an
indirect approach that consists of measuring the number of executed instructions
and the program execution time and comparing them to the respective results of
a simulation based on our mapping approach. The two measured metrics strongly
depend on the executed control flow. Consequently, a high level of accuracy in
the simulated values indicates a precise mapping of the CFGs.

A fixed number of instructions has been assigned to every binary basic block
by statically analyzing the binary file. It is assumed that the execution of a
basic block implies the execution of all its instructions starting from its start
address. However, the execution time of a basic block can vary depending on
the program’s execution history due to the possible different timing behavior of
the stateful resources included in the processor (e.g. cache memories, pipelines,
etc.). Multiple execution times have been consequently measured for every binary
basic block, extracted from the target via non-intrusive tracing measurements,
allowing to account for the variation caused by the different execution contexts.

The simulator updates both the metrics at run-time relying on the IR execu-
tion paths and the mapping information. The evaluation results are summarized
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in Table 1 showing that the difference between the measured and simulated val-
ues is minimal. In most of the cases, the accuracy is close to 100%. This implies a
high level of accuracy of the simulation results and consequently of our mapping
approach. One reason for the deviation in the results is that the ARM instruc-
tion set includes conditional execution instructions that partially invalidates our
assumption on the complete execution of a basic block. Nevertheless, the effec-
tiveness of the mapping is proven by the accuracy of the simulation results.

Compared to other mapping approaches the one we propose is fully automatic
and achieves a high level of precision. However, since it relies on the information
contained in the LLVM MIR, it requires the analyzed programs to be compiled
with LLVM and cannot simply be ported to other compilers. Furthermore, for
us it has proven to be sufficient to match sequence of edges of the IR CFG
to the binary CFG’s paths. For other approaches requiring the mapping to be
performed on basic blocks or instructions, this may not be suitable.

6.2 Host-Based Simulation Speed

A second evaluation objective has been to determine the potential simulation
speed. We have measured the time required for simulating the benchmarks. The
simulation speed is measured in Million of simulated Instructions Per Second
(MIPS). In Fig. 5 the results of our measurements are shown. For consistency
reasons, the chart shows only the results for benchmarks compiled with -O3

Table 1. Measured mapping’s accuracy with -O3 optimization level.

Benchmark Metrics Instructions count Execution time (us)

LOC CCN Measured Simulated Accuracy Measured Simulated Accuracy

bs 144 9 51 51 100% 7 7 100%

bsort100 128 8 45949 44286 96.38% 2380 2301 96.68%

cnt 267 3 1525 1525 100% 165 165 100%

crc 128 9 11661 11661 100% 635 635 100%

duff 86 10 537 537 100% 37 37 100%

edn 285 4 84992 84301 99.19% 5989 5945 99.27%

fdct 239 3 1834 1834 100% 159 159 100%

fir 276 5 133588 133588 100% 9270 9340 99.24%

insertsort 92 8 1108 1083 97.74% 92 90 97.83%

ludcmp 147 14 1512 1506 99.61% 235 231 98.30%

matmult 163 4 35229 35229 100% 3015 3040 99.17%

ndes 231 11 28625 28566 99.79% 1502 1489 99.13%

prime 47 4 4233 4223 99.76% 449 448 99.78%

qsort exam 121 15 851 867 98.12% 79 76 96.23%

qurt 166 5 514 514 100% 135 135 100%

select 144 16 368 368 100% 34 34 100%

sqrt 77 5 447 447 100% 124 124 100%

st 177 4 70067 70067 100% 4548 4518 99.34%

ud 163 11 1205 1161 96.35% 109 106 97.24%
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optimization level. We considered only the results for the benchmarks that ensure
simulating more than ten thousand ARM instructions. The maximum observed
simulation speed value has been of 69 MIPS while simulating the benchmark
crc. The same benchmark compiled with -O2 showed the highest value of our
entire evaluation reaching the value of 90 MIPS. We observed that the simulation
speed is directly related to the number of simulated instructions. The simulation
of a substantial number of instructions reduces the minimal overhead due to the
basic blocks instrumentation and the JIT compilation. We are confident that
this will be advantageous for real applications considering that they typically
execute more instructions than the used benchmarks. We also observed that the
type of instructions in a program influences the simulation speed. Arithmetic
intensive benchmarks showed higher speed than others.

An additional evaluation has been conducted for comparing the performance
[4] of our host-based simulation approach with the well-known and public avail-
able gem5 simulator [3]. We compared the amount of time required for simulat-
ing the benchmarks with our simulation approach against the time required by
gem5. We compiled gem5 configuring the fast mode of the full system simulation
mode [10]. The histogram’s columns in Fig. 5 show the speedup resulting from
simulating the benchmarks with our approach and requiring a logarithmic scale.
The light gray columns represent the comparison results when gem5 only simu-
lates ARM instructions without timing or physical resource consideration. The
darker columns show the comparison with a full timing gem5 simulation. We
observed a maximum speedup of 20 comparing the simulation of the edn bench-
mark without timing considerations. The maximum observed speedup increased
to 527 simulating the crc benchmark with gem5 and by enabling the considera-
tion of the timing behavior of caches, pipeline and branch predictor. The average
observed speedup in case of timing simulation is 144. The results demonstrate

Fig. 5. Simulation speedup compared with the performance of the gem5 simulator
executed with and without timing considerations.
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that our approach allows executing accurate simulations requiring an amount of
simulation time that is orders of magnitude shorter than simulating with gem5.

7 Summary and Conclusions

In this paper, we presented a new approach for automatic mapping of LLVM
IR to binary embedded code for the purpose of host-based simulations in sup-
port of system design decisions. The mapping approach relies on the information
extracted from the intermediate LLVM MIR representation that is internal to
the compiler without requiring any modification. Overall experiments results
show a high level of accuracy even in presence of aggressive compiler optimiza-
tions (average error smaller than 2%). The conducted evaluation activities prove
that our mapping can be utilized for evaluating the execution cost of embedded
programs in addition to the quantification of code coverage metrics [8] at differ-
ent program representations. Furthermore, the proposed LLVM IR host-based
simulation approach shows a substantial speedup of several orders of magnitudes
compared with the gem5 simulator (144 average observed speedup).

Future work will focus on the further evaluation of different target architec-
tures and benchmarks. Prospectively, we intend to refine the granularity of the
mapping algorithm for identifying a direct mapping between the LLVM IR and
binary instructions. Furthermore, a straightforward extension has been planned
for additionally mapping the source code to LLVM IR. The extension will enable
the possibility of source-level simulations and consequently improving the simu-
lation speed while keeping the showed level of accuracy.

Acknowledgements. This work has been partially supported by the German Federal
Ministry of Education and Research (BMBF) within the projects COMAPCT under
grant 01|S17028C and progressivKI under grant 19A21006M.
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8. Jahić, J., Kuhn, T., Jung, M., Wehn, N.: BOSMI: a framework for non-intrusive
monitoring and testing of embedded multithreaded software on the logical level.
In: 18th International Conference on Embedded Computer Systems: Architectures,
Modeling, and Simulation (2018)

9. Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong program anal-
ysis and transformation. In: International Symposium on Code Generation and
Optimization. IEEE (2004)

10. Lowe-Power, J., Ahmad, A.M., Akram, A., Alian, M., et al.: The gem5 simulator:
Version 20.0+. arXiv preprint arXiv:2007.03152 (2020)

11. Lu, K., Müller-Gritschneder, D., Schlichtmann, U.: Hierarchical control flow match-
ing for source-level simulation of embedded software. In: 2012 International Sym-
posium on System on Chip (SoC). IEEE (2012)

12. Matoussi, O., Pétrot, F.: A mapping approach between IR and binary CFGs dealing
with aggressive compiler optimizations for performance estimation. In: 23rd Asia
and South Pacific Design Automation Conference (ASP-DAC). IEEE (2018)

13. Stattelmann, S., Bringmann, O., Rosenstiel, W.: Dominator homomorphism based
code matching for source-level simulation of embedded software. In: International
Conference on HW/SW Codesign and System Synthesis (2011)

14. The LLVM Compiler Infrastructure: Machine IR (MIR) Format Reference Manual.
https://llvm.org/docs/MIRLangRef.html

15. The LLVM Compiler Infrastructure: The LLVM Target-Independent Code Gener-
ator. https://llvm.org/docs/CodeGenerator.html

16. Wang, Z., Henkel, J.: Accurate source-level simulation of embedded software with
respect to compiler optimizations. In: Design, Automation and Test in Europe
Conference and Exhibition (DATE). IEEE (2012)

17. Wang, Z., Herkersdorf, A.: An efficient approach for system-level timing simulation
of compiler-optimized embedded software. In: 46th Design Automation Conference
(DAC). IEEE (2009)

http://arxiv.org/abs/2007.03152
https://llvm.org/docs/MIRLangRef.html
https://llvm.org/docs/CodeGenerator.html


RVfplib: A Fast and Compact
Open-Source Floating-Point Emulation
Library for Tiny RISC-V Processors

Matteo Perotti1(B) , Giuseppe Tagliavini2 , Stefan Mach1 ,
Luca Bertaccini1 , and Luca Benini1,2

1 ETH Zürich, Gloriastrasse 35, 8092 Zürich, Switzerland
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Abstract. Small, low-cost IoT devices rely on floating-point (FP) soft-
ware emulation on 32-bit integer cores when the cost of a full-fledged
FPU is not affordable. Thus, the performance and code size of the FP
emulation library are decisive for meeting energy and memory-size con-
straints. We propose RVfplib, the first ISA-optimized open-source library
for single and double-precision IEEE 754 FP emulation on RV32IM[C]
cores. RVfplib is 59% smaller and 2× faster than the GCC emulation
library, on average. On benchmark programs, code size reduction is 39%,
and performance boost 1.5×. RVfplib is 5.3% smaller than the leading
closed-source RISC-V commercial library.

Keywords: RISC-V · Embedded · IoT · Floating-point · Library ·
Size · Performance

1 Introduction

Low-cost Internet of Things (IoT) devices are often subject to tight constraints
on their silicon area and memory, which are precious resources in the embedded
systems domain and impact cost and energy consumption [8]. At the same time,
processing FP workloads is a common requirement for many applications. FP
support enables programmers to satisfy the requirements on dynamic range and
precision. In addition, deriving the fixed-point variant of an algorithm proven to
be safe with floating-point numbers is often time-consuming and, in some cases,
very challenging. However, small cores cannot always afford hardware Floating
Point Units (FPUs) and rely on software emulation of FP instructions. Con-
sequently, the code to be stored in memory is inflated, inducing performance
overhead and increased total energy consumption due to higher execution times
and added memory accesses. The code size cost is particularly relevant since FP
emulation support can dominate the total code size of small programs, reaching
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up to 8 kB just for the single and double-precision basic operations. In this sce-
nario, using small and fast FP emulation libraries is necessary to be competitive
in the market.

The RISC-V Instruction Set Architecture (ISA) is gaining industrial trac-
tion in IoT applications where cost is a major concern. The main challenge for
RISC-V low-cost microcontroller units (MCUs) is to reduce code size [3], as cur-
rently experimental evidence shows that the Arm ISA (ARMv7-M), its mature
compilers, and highly size-optimized libraries generate smaller code on average
[12,15]. The code size issue mainly affects applications that require FP arith-
metic. In this case, long FP software emulation functions add a remarkable code
size overhead, even if only a few FP computations are needed.

In this work, we present the following contributions:

1. RVfplib, the first open-source IEEE 7541 FP library for RISC-V, manually
optimized for low code size and high performance for both single and double-
precision FP. RVfplib is compatible with the RV32IM[C] ISA, and implements
addition, subtraction, multiplication, division, as well as comparisons and
conversions. Double-precision division is optional in RVfplib; it targets low
code size and is compatible with cores without an integer divider.

2. RVfplib nd, the reduced version of RVfplib that considers subnormal input-
s/outputs as correctly signed zeroes. RVfplib nd is compatible with the
RV32EM[C] ISA and has smaller code size than RVfplib, making it the perfect
candidate for tightly memory-constrained devices.

3. A comparison of the code size and performance of all RVfplib functions with
their counterparts provided by libgcc. Moreover, we perform a code size com-
parison between the functions in RVfplib nd and the ones available within
SEGGER emFloat, the current state-of-the-art closed-source competitor. We
also compare code size of RVfplib with the Arm-optimized libgcc code.

4. An analysis of the real code size and performance impact that RVfplib has
on full programs.

The rest of the paper is organized as follows: in Sect. 3, we describe the
structure of RVfplib and the main ideas that led to its development, as well as
the techniques used to optimize it and a code comparison with libgcc. In Sect. 4,
we present the experiments used to evaluate RVfplib figures of merit, and we
show the corresponding results in Sect. 5. We close our work with insights about
further improvements to RVfplib and the conclusion of the analysis in Sects. 6
and 7.

2 Related Work

Researchers have proposed different solutions to provide FP capabilities to a core
when the system area is strictly constrained. When a full-fledged FPU leads
1 The library presents some deviations from the standard. It does not support excep-

tion flags, it produces only fixed quiet NaNs, and it provides nearest-even or toward-
zero rounding only.



18 M. Perotti et al.

to an excessive area increase, designers can integrate a slower but tiny FPU,
crafted for tightly constrained IoT cores [2]. Another possibility is to implement
hardware/software approaches, in which hardware optimizations in the integer
datapath speed up critical operations used in the FP emulation libraries [13].
Nonetheless, both the solutions can be adopted only if the system tolerates the
related area overhead, and do not apply to systems that already exist.

Integer-only cores that cannot afford an area increase can execute FP pro-
grams only through FP emulation libraries, usually provided by compiler ven-
dors along with their compilation toolchain. For example, the Arm Keil compiler
comes with the IEEE 754-1985 compliant fplib [1], and GCC with FP support
within libgcc, its low-level runtime library [10]. Since the optimization of these
libraries is essential for producing fast code with a low memory footprint, FP
emulation libraries can also be manually crafted at the assembly-level to ensure
the best code size and performance possible. libgcc provides optimized code
for well established ISAs like Arm but lacks customized support for relatively
new ISAs like RISC-V, which should rely on compiling the generic high-level
FP emulation C functions. The novelty of the RISC-V solution results in sub-
optimal code size and performance that makes it less attractive with respect to
the Arm-based alternatives.

In addition to what is available in compiler ecosystems, designers have imple-
mented optimized FP libraries for specific processors [5,14] and for the maximum
flexibility and compliance with the IEEE 754 standard, like SoftFloat [19]. How-
ever, these solutions are non-RISC-V specific.

To the best of our knowledge, the only available assembly-optimized RISC-
V FP library is emFloat, designed by SEGGER [17]. However, this library is
closed-source and does not support subnormal values, flushing them to correctly
signed zeroes instead.

3 RVfplib Design

RVfplib is the first open-source optimized FP emulation library for RISC-V
processors, for both single and double-precision FP. Its main goals are low code
size and increased performance. Implicitly, this implies lower energy consumption
thanks to the reduced memory bandwidth and execution time.

RVfplib is wholly written in RV32IM assembly. Thanks to the modularity
of the RISC-V C extension, it is also compatible with RV32IMC ISA since the
compiler can compress all the compressible instructions on request.

Functions in RVfplib adhere to the interface of the corresponding libgcc func-
tions [10] and have their same names to ensure compatibility with GCC and a
fast porting to real programs. The aliasing induces GCC to automatically link
using RVfplib functions, if implemented, instead of the ones from libgcc, without
additional modifications to the program. Therefore, there is no need to explicitly
call the RVfplib functions, as the compiler does it automatically.

RVfplib functions have been obtained with ISA-specific assembly level opti-
mizations starting from the libgcc FP functions, with an approach similar to
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the one used for Arm [9]. Compliance with the IEEE 754 standard rules for FP
encoding and computation presents the same deviations that hold for the libgcc
FP support compiled with the default options, namely:

– Exception flags are not supported, and exceptional events only provide their
pre-defined output (i.e., divisions by zero result in a NaN).

– All the produced NaNs are quiet, in the form of 0x7FC00000 for single-
precision and 0x7FF8000000000000 for double-precision.

– Only the default round to nearest, ties to even rounding mode is supported
for the majority of the operations (as in the default libgcc implementation,
some of the conversion functions round toward zero).

3.1 Structure

RVfplib is a static library that comes in two different variants:

– RVfplib.a: the standard version, which targets low code size and increased
performance.

– RVfplib nd.a, which treats subnormal values as signed zeroes and shows an
even smaller code size.

Each variant includes the functions listed in Table 1, in which both the Soft-
Float and the libgcc names are reported. The two not-equal functions are aliased
with the equal ones, as they have the same behavior. Both libraries can be com-
piled with particular code that can increase performance in the presence of spe-
cific input operands, with an additional code size overhead. For example, the
multiplication can include code to deal with power-of-two operands, speeding
up the processing of specific patterns while increasing the code size. Choosing
between one implementation or the other depends on the system constraints and
input workloads.

To further push toward reducing the memory footprint of the library, we also
implemented part of the same FP support environment provided by SEGGER
emFloat, treating subnormal values as correctly signed zeroes. Thanks to the
reduced requirement for registers in its design, RVfplib nd is compliant with
the RV32EM ISA (i.e., with only 16 registers in the register file). The library
currently comes with a double-precision division that does not use any integer
hardware divider, which cannot be included in such small cores2. For this reason,
this function is optional and is only included when targeting the smallest code
size possible. If performance is a more critical constraint, the standard double-
precision division from libgcc is used instead.

2 Such a processor would not be fully compliant with the RV32IM/RV32EM ISA since
the M extension also requires an integer divider. Nevertheless, the compiler allows
for avoiding hardware divisions even when compiling RV32IM code.
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3.2 Design Choices

RVfplib benefits from some essential ideas that, together with the functional
algorithmic choices, contribute to crafting optimized RISC-V functions that
reduce code size and execution times.

1. Make the common case fast : FP algorithms take different decisions depending
on the received inputs and create different control paths within the code.
The latency of each function strongly depends on the inputs since different
data patterns are processed differently. Optimizing the paths taken by the
common input patterns (normal values) is a methodology for reducing the
average latency.

2. Avoid memory references: RVfplib minimizes data memory bandwidth reduc-
ing register spilling in function prologues/epilogues. This is accomplished by
using only caller-saved registers. libgcc functions, on the contrary, do not limit
register usage and have bloated prologues/epilogues.

3. No function calls: Whenever the code makes a call, it must also save the return
address and, in general, any other already-used caller-saved registers. This
process leads to additional memory operations, stack pointer adjustments,
and additional jumps to/from the called function, with a consequent code
size increase and degraded performance. RVfplib contains only leaf-functions
(i.e., functions that do not make other function-calls). This property enables
RVfplib to be independent of other external libraries, minimizing the extra
code linked in the final binary. This is not the case for libgcc, as some of its
functions depend upon clzsi2() calls and the related table clz tab.

4. Maximize potential compression: The RISC-V C extension allows for com-
pressing the most common RISC-V instructions when precise register patterns
are used. For example, the majority of the instructions can be compressed
when using registers from the RVC (i.e., registers in the set a0, a1, a2, a3,
a4, a5, s0, s1). Since s0 and s1 are callee-saved registers, RVfplib does not use
them.

5. Register re-use: Register allocation is optimized at function level to overcome
heuristics of the compiler, whose analysis is mainly limited to the boundaries
of basic blocks. As a basic rule, an operand is placed in the first free register;
when it is no longer used, the register becomes free again.

6. Performance vs. code size tradeoff : Some RVfplib functions use loops to per-
form iterative processes. For example, the leading zeroes count after a numeri-
cal cancellation of an effective subtraction can be reduced to a shift-and-check
loop, in which the result is left-shifted until the implicit one returns to its
original position. This iterative process is convenient in terms of code size, but
it is slow and inefficient. For this reason, it is also possible to use a bisection
algorithm to count the leading zeroes, with better performance and increased
code size. The choice can be taken at compile time. In general, when the
taken-branch penalty is critical, unrolling the loop helps in maximizing the
number of non-taken branches.
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3.3 Comparison with Libgcc

FP functions from libgcc use a complex set of hierarchical C macros to be as
flexible and generic as possible. When compiling the library, it is possible to set
specific high-level parameters to control how the library will treat exceptions,
subnormals, roundings, etc. With the default settings, no exception is raised or
handled, subnormal values are not flushed to zero, and the rounding mode is
rounding to nearest, ties to even (RNE). Even with these minimalistic options,
the generated code is sub-optimal in terms of size and performance.

In Listing 1.1, we report the assembly code of eqsf2() compiled with GCC
10.2.0 and optimized for size (-Os), together with comments and labels that we
added to help the reader understand the code. This function, one of the smallest
of the library, returns 1 if the inputs are not equal, and 0 if they are equal. The
algorithm is straightforward:

1. If at least one input is NaN, return 1.
2. In the case of +0 and -0, return 0.
3. If the numbers are equal, returns 0; otherwise, return 1.

The libgcc function unpacks both the operands in their sign, exponent, and
mantissa before starting the comparison. In eqsf2(), this operation is unnec-
essary and is probably performed to adopt a common coding standard for the
library design. Moreover, separately comparing sign, exponent, and mantissa
improves the code readability but discards possible optimizations.

1 __eqsf2:

2 # Unpack operands , prepare checks

3 srli a3,a0 ,0x17

4 lui a5 ,0x800

5 addi a5,a5 ,-1

6 srli a2,a1 ,0x17

7 andi a3,a3 ,255

8 li a7 ,255

9 and a6,a5,a0

10 srli a4,a0 ,0x1f

11 and a5,a5,a1

12 andi a2,a2 ,255

13 srli a1,a1 ,0x1f

14 # Check and compare

15 checks_0:

16 li a0 ,1

17 bne a3,a7,checks_1

18 bnez a6,return

19 bne a2,a3,return

20 beqz a5,checks_2

21 return:

22 ret

23 checks_1:

24 beq a2,a7,return
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25 bne a3,a2,return

26 bne a6,a5,return

27 checks_2:

28 li a0 ,0

29 beq a4,a1,return

30 li a0 ,1

31 bnez a3,return

32 snez a0,a6

33 ret

Listing 1.1. eqsf2() disassembled libgcc code

In Listing 1.2, we show the eqsf2() function extracted from RVfplib. Writ-
ing in assembly allows to have a better control over the used instructions and
registers when the functions are sufficiently small. All the checks are performed
without unpacking the operands, and we opportunistically reuse the register a5
to reach the desired outcome during the final snez comparison.

1 __eqsf2:

2 lui a5 ,0 xff000

3 # Check for NaNs

4 slli a2,a0 ,0x1

5 bltu a5,a2,end

6 slli a3,a1 ,0x1

7 bltu a5,a3,end

8 # Check for +0, -0

9 or a5,a2,a3

10 beqz a5,end

11 # Effective comparison

12 xor a5,a0,a1

13 end:

14 snez a0,a5

15 ret

Listing 1.2. eqsf2() RVfplib code

We aimed to reach the same optimization level implementing the algorithm of
Listing 1.2 using C, and we managed to halve the code size of the libgcc function
from 84 B to 42 B, showing the importance of choosing an optimized algorithm.
However, the generated code is still 16% larger than the one generated from our
assembly.

Forcing the compiler to reuse precise registers and take branches in a deter-
ministic way is more natural in assembly than in C; during the compilation of our
C function, the compiler creates unexpected intermediate operations and register
moves, with negative effects on both code size and performance.

The same is true for the more complex functions of the library. Functions
from libgcc are safe, generic, flexible, and parametric, but this comes at the
expense of possible critical optimizations in key functions, where more precise
control over the registers and the branch choices would be preferred. Assembly
language helps consider a register as a container for a value, without a precise
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label and meaning as in C; therefore, a more opportunistic usage of the registers
comes more natural, without the need of forcing the compiler to behave in a
precise way.

3.4 Testing

To test RVfplib, we relied on TestFloat [20], which provides an extensive IEEE
754 testing suite for generating test-cases and checking the correctness of custom
FP implementations. Internally, TestFloat uses the fully IEEE 754 compliant
SoftFloat library [19] as a golden reference. We generated the inputs for each
function with the TestFloat engine and compared the function outputs with both
SoftFloat and libgcc golden models. Since not all functions in RVfplib have a
SoftFloat implementation, we used libgcc as a golden model when it was needed
(e.g., for the “greater [or equal] to” functions).

4 Experimental Setup

To analyze the impact of RVfplib, we evaluated its code size and performance
metrics in both a synthetic environment and using real programs. In the first set
of experiments, we extracted the code size of each function; in the second one,
we evaluated the behavior of RVfplib on real benchmarks.

4.1 Benchmarks

Since we evaluate an FP library useful for area-constrained embedded devices, we
selected all the Embench benchmark suite applications [4] that use FP numbers
(cubic, minver, nbody, st, ud, wikisort). On the other hand, we selected three
popular algorithms that can be run on small systems at the edge, on both single
and double-precisions: a convolution (conv), a fast Fourier transform (fft), and
a discrete wavelet transform (dwt).

4.2 Code Size

RVfplib implements most of the FP functions provided by libgcc and all the
implicit arithmetic functions available in emFloat. Therefore, we evaluated the
code size of the functions of our library and compared them against the two
competitors. The code size of the emFloat functions is publicly available for
RV32IMC ISA [17]; thus, we compiled both RVfplib and libgcc functions with
the same target using GCC 10.3 and libgcc originally compiled with the -Os
flag enabled, its default setting. The functions were linked to a fixed C program,
and the code size of the functions extracted from its disassembly-dump. To
create realistic conditions for embedded devices and avoid intricate dependencies
and code size bloating, we always linked our programs against libc nano and
libm nano. For a fair analysis, we compared RVfplib and libgcc since both are
compiled for minimum code size and support subnormal values, and RVfplib nd
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with emFloat since both flush subnormal values to zero and target minimum
code size as well.

Since libgcc is freely available, we extended our comparison linking our real
benchmarks against RVfplib and RVfplib nd first, and then libgcc. To measure
the code size impact that the libraries have on the read-only memory footprint,
we added the size of the .text and the .rodata sections. Since some programs use
the FP division, we also measured their code size when linked against RVfplib
with fast divisions (the double-precision one belongs to libgcc).

To complete the code size analysis, we measured the code size of the Arm-
optimized libgcc FP library and compared it with the code size of both the
generic RISC-V libgcc support and RVfplib.

4.3 Performance

On the performance side, a full profiling of RVfplib and libgcc was performed
for both the single average latencies of the functions and the execution time of
the benchmarks. In the following, when referring to a function, the term latency
indicates the number of cycles required to execute it.

To evaluate the function latencies, we simulated a synthetic C program on the
CV32E40P processor [6] with single-cycle latency memories using Mentor Ques-
taSim, repeating the experiment for each function of the compared libraries.
The C program is composed of a loop that makes an explicit call to the func-
tion under test during each iteration and measures the latency of each function
execution, including the jump/return to/from function cycles, and then aver-
ages the total cycle count on the number of iterations. Each function is fed with
10000 randomly generated values within (0,1), and the overhead of the load/store
operations before and after the call is not considered. Using 1-cycle fixed-latency
memories is a best-case scenario for libgcc performance, as libgcc accesses the
stack inside its FP functions while RVfplib does not, as we avoided in-function
memory requests. Additional memory latency/miss penalties negatively affect
only the functions from libgcc.

We also compare our results to the average latencies reported by SEGGER
emFloat [17]. It is unclear, however, whether this reported performance includes
latency overheads from function calls and function returns. These overheads,
as well as processor-specific branch- and jump penalties, can strongly affect
performance, especially for small functions. SEGGER extracted performance
metrics using a GigaDevice GD32VF103 [18], which is based on a variable 2-
stage pipeline RISC-V core [7]. It is likely that the jump/branch penalties of
CV32E40P (from 2 to 4 cycles) [11] are higher. Moreover, SEGGER only reports
latency results of their “performance-optimized” emFloat library, which is differ-
ent from the one used for the code size results. For this reason, we used our fast
single-precision division and the double-precision division from libgcc to perform
this comparison.

To provide insight into how RVfplib affects the execution time, we simulated
our benchmarks with SPIKE, a RISC-V simulator for a simple processor that
executes one instruction per cycle, and reported the different instruction counts
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linking with libgcc, RVfplib, and RVfplib nd. Since some benchmarks use the
double-precision division, we also reported the execution times of the programs
linked with RVfplib with fast divisions (the 64-bit division is taken from libgcc).

5 Results

5.1 Code Size

We show the code size of the single functions of RVfplib, libgcc, and emFloat
in Table 1. Comparing the total code size of the libraries, we achieve a net gain
of ≈60% by replacing libgcc FP functions with the ones in RVfplib. In absolute
terms, the memory savings reach 7.5 kB, which is a significant code size reduc-
tion, especially for small programs. The small embedded systems we target are
area/memory size constrained and do not have hardware FPUs. Most commonly,
they require performing computations on single-precision data. As such, our high
code size reduction for the most frequent single-precision FP operations (i.e.,
addition, subtraction, multiplication), which is around 67% on average, is very
significant. libgcc subtraction is automatically re-linked as a function different
from the addition, even if their code is shared except for one initial sign change
of the second operand. RVfplib subtraction flips the sign and then executes an
addition, without any other jump that would cause extra latency.

Passing from RVfplib to RVfplib nd, which flushes subnormal values to cor-
rectly signed zeroes, allows saving another 21.6% of the library code size. This
significant gain comes for free when supporting subnormal numbers is not a
requirement. RVfplib nd is almost 5.3% smaller than emFloat, even if the double-
precision division from emFloat is 30% smaller than the one from RVfplib nd.
The functions that gain the most from removing the subnormal support are mul-
tiplication and division, as the addition needs only small adjustments to process
the denormalized inputs.

In Fig. 1, we summarize the code size results of our benchmarks. The code
size savings on libgcc span from 16% of cubic (with libgcc double-precision
division) to 60% (st with RVfplib nd) and are relatively high also for large code
size programs like fft64, which passes from almost 13.8 kB to 8.4 kB with more
than 39% of saving. The average code size reductions with respect to libgcc
are 39.3%, 36%, and 46.5% for RVfplib, RVfplib with libgcc fast divisions, and
RVfplib nd, respectively.

5.2 Performance

Average latencies of each function of RVfplib and libgcc FP support are summa-
rized in Table 2. RVfplib functions are always faster than the ones from libgcc,
except for the two small divisions, which are 1.45× and 2× slower for single and
double-precision, respectively. This fact underlines the importance of trying to
re-implement these operations, changing the core algorithm; nevertheless, RVf-
plib divisions do not use the hardware integer divider, allowing for more flexibil-
ity, and the division operation is not common in simple algorithms used on small
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Table 1. Code size comparison between RVfplib, libgcc FP support, RVfplib nd,
and emFloat. Only the functions implemented in RVfplib are reported. Target ISA:
RV32IMC

Function libgcc name Code size [B]

RVfplib libgcc RVfplib nd emFloat

f32 add addsf3 320 804 274 410

f32 sub subsf3 6 818 6 10

f32 mul mulsf3 310 542 172 178

f32 div divsf3 294 590 188 184

(416)∗ (280)∗

f32 lt ltsf2 56 120 56 58

f32 le lesf2 60 120 60 54

f32 gt gtsf2 52 120 52 50

f32 ge gesf2 60 120 60 62

f32 eq eqsf2 36 84 36 44

f32 ne nesf2 - - - -

f32 i32 fixsfsi 58 96 58 74

f32 ui32 fixunssfsi 50 88 50 50

f32 i64 fixsfdi 120 136 120 146

f32 ui64 fixunssfdi 80 100 80 98

i32 f32 floatsisf 60 186 60 66

ui32 f32 floatunsisf 48 154 48 52

i64 f32 floatdisf 106 258 106 96

ui64 f32 floatundisf 82 214 82 70

f32 f64 extendsfdf2 88 150 56 64

f64 add adddf3 736 1542 572 724

f64 sub subdf3 6 1560 6 10

f64 mul muldf3 506 1080 288 286

f64 div divdf3 742 1334 396 278

(1334)∗ (1334)∗

f64 lt ltdf2 94 166 94 70

f64 le ledf2 96 166 96 70

f64 gt gtdf2 90 166 90 70

f64 ge gedf2 104 166 104 70

f64 eq eqdf2 60 106 60 52

f64 ne nedf2 - - - -

f64 i32 fixdfsi 62 100 62 84

f64 ui32 fixunsdfsi 54 96 54 54

f64 i64 fixdfdi 130 164 130 146

f64 ui64 fixunsdfdi 94 126 94 96

i32 f64 floatsidf 44 102 44 46

ui32 f64 floatunsidf 32 78 32 34

i64 f64 floatdidf 114 372 114 128

ui64 f64 floatundidf 90 328 90 106

f64 f32 truncdfsf2 158 284 104 130

Total 5100 12636 3994 4220
∗RVfplib small divisions can be replaced with faster versions,

yielding better performance and extra code size.
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Fig. 1. Relative code size (.text+.rodata) of benchmarks linked against libgcc, RVfplib,
RVfplib with fast divisions, RVfplib nd. The reference is libgcc.

embedded systems. The fast 32-bit division in RVfplib is slightly faster than one
from libgcc, and the 64-bit one is the same. The single-precision comparisons and
both the multiplications show important speedups (up to 2.57× for the multipli-
cation), and the single-precision addition in RVfplib is faster than the one from
libgcc by more than 1.5×. These data are promising, as these operations are
ubiquitous in almost every FP algorithm. The conversions from integers to FP
numbers are the functions that obtain the highest speed gain, which peaks for
converting a 64-bit unsigned integer to a double-precision FP value with more
than 4× lower latency. Replacing the whole set of libgcc functions with RVfplib
gives an average speedup of 2×.

As already pointed out, making a comparison between RVfplib nd and
emFloat performance using the average latencies reported by SEGGER is not
straightforward. We could not reproduce the experiment in the same conditions
since they used a device that is likely to show a lower cycle count if compared
to the CV32E40P core. Moreover, it is not specified whether the latency of the
jumps to/from functions was taken into account. This is especially valid for
the smaller functions, that can be strongly biased by the jump to/from func-
tion latency overhead. However, if we focus on the bigger functions, the double-
precision addition in emFloat (the subtraction shares the code with the addition)
and both divisions are faster than the ones from RVfplib by factors around 2.7×
and 1.9×, for single and double-precision, respectively.

When we measure the instruction count of the real benchmarks linked against
RVfplib and libgcc, we obtain the data shown in Fig. 2. We chose these bench-
marks to have a good mix of realistic examples, and we found for RVfplib and
RVfplib nd an average speedup of 1.5× even if the benchmarks that use the
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Table 2. Average latency comparison between RVfplib, libgcc FP support, RVfplib nd,
and emFloat. Only the functions implemented in RVfplib are reported.

Function libgcc name Average latency [cycles]

RVfplib libgcc RVfplib nd emFloat∗

f32 add addsf3 50.6 79.5 52.1 49.5

f32 sub subsf3 72.9 114.7 72.4 62.2

f32 mul mulsf3 48 120 47 39.3

f32 div divsf3 252 190 252 67

(182.2)† (182.2)†

f32 lt ltsf2 18 41 18 11

f32 le lesf2 17 41 17 10

f32 gt gtsf2 16 41 16 10

f32 ge gesf2 17 41 17 11

f32 eq eqsf2 14 26.5 14 10

f32 ne nesf2 - - - -

f32 i32 fixsfsi 18.5 21 18.5 14

f32 ui32 fixunssfsi 16 23 16 13

f32 i64 fixsfdi 22 48 22 23.2

f32 ui64 fixunssfdi 18 44 18 18.9

i32 f32 floatsisf 29.5 88.5 29.5 32.6

ui32 f32 floatunsisf 22 78.7 22 33

i64 f32 floatdisf 41.5 131.4 41.5 49.1

ui64 f32 floatundisf 32.5 122 32.5 44.1

f32 f64 extendsfdf2 19 33 18 14.1

f64 add adddf3 87.2 101.1 83.9 62.8

f64 sub subdf3 116.5 138.5 114.9 82.8

f64 mul muldf3 85 219 85 75

f64 div divdf3 769.5 382.2 769.5 197.2

(382.2)† (382.2)†

f64 lt ltdf2 27 46.2 27 16

f64 le ledf2 26 46.2 26 16

f64 gt gtdf2 25 46.2 25 16.1

f64 ge gedf2 27 46.2 27 16.1

f64 eq eqdf2 24 30.5 24 14

f64 ne nedf2 - - - -

f64 i32 fixdfsi 19 19 19 16.8

f64 ui32 fixunsdfsi 17 21 17 13.8

f64 i64 fixdfdi 33 38.4 33 26.9

f64 ui64 fixunsdfdi 30.5 43 30.5 21.5

i32 f64 floatsidf 24.9 61 24.9 31.6

ui32 f64 floatunsidf 18.5 53 18.5 23.9

i64 f64 floatdidf 41 142 41 45.1

ui64 f64 floatundidf 31 134 31 39.3

f64 f32 truncdfsf2 25 61 28 25.1
∗emFloat data were obtained from [17]. It is unclear whether

reported numbers include function call/function return latency over-

heads.
†RVfplib small divisions can be replaced with faster versions, yield-

ing better performance and extra code size.
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Fig. 2. Relative SPIKE instruction count of benchmarks linked against libgcc, RVfplib,
RVfplib with fast divisions, RVfplib nd. The reference is libgcc.

double-precision division in RVfplib are actually slower than the ones linked
against libgcc. In particular, wikisort uses the square root operation that uses
the double-precision division, which is also used by st. In some benchmarks (e.g.,
ud), RVfplib nd performance decreases because of its 64-bit addition, which does
not have a fast-path for equal operands. All the other programs show high-speed
gains thanks to the massive use of multiplications and additions. For RVfplib
with fast divisions, the average speedup grows to 1.6×, and the programs linked
with RVfplib are always faster than the ones linked with libgcc.

5.3 Comparison with Arm

In Fig. 3, we show the code size comparison between the generic RISC-V libgcc
FP support, RVfplib, and the Arm-optimized libgcc FP support. RVfplib brings
the existing FP library code size gap between RISC-V and Arm from 8376 B to
840 B (10× less), reducing the Arm to RISC-V code size inflation from 196.6%
to 19.7%. Arm addresses many comparison-function calls to a generic compare,
reducing the total number of implemented functions and the library code size.
This choice can be implemented in future versions of RVfplib as well.
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Fig. 3. FP libraries code size comparison between RISC-V generic libgcc, RVfplib,
Arm-optimized libgcc.

6 Further Improvements

RVfplib will be released as an open-source project under GPL license, and every-
one will be allowed to contribute to its enhancement, improving and extending
it. SEGGER results unequivocally show that the 64-bit addition in RVfplib can
be further improved to decrease its average latency. Both the divisions can reach
increased code size and performance, maybe with different algorithmic choices
and exploiting the hardware divider. The optimal solution would be to offer
both a version that exploits the divider and one independent from it. On the
other hand, the library misses important functions, such as the square root and
the trigonometric ones, to be more versatile and further save precious memory
space and cycle counts. As already evaluated in [13], hardware support for Count
Leading Zeroes (CLZ) helps in speeding up the FP functions (e.g., addition, trun-
cation) and can also decrease their code size, replacing a block of instructions
with only one. Such support is already present in the PULP extension and in the
draft of the RISC-V B extension [16]. Another improvement to further save code
size would be merging in common functions the repeated code for dealing with
subnormals/special cases, especially when such input patterns are uncommon,
and various comparison into one.

7 Conclusion

In this paper, we presented RVfplib, the first open-source assembly-optimized FP
emulation library for RISC-V small integer-only processors. The library imple-
ments the primary and most common single and double-precision FP operations
like addition, subtraction, multiplication, division, comparisons, conversions, and
adopts the same interface as libgcc to be easily linked by GCC against real
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programs without any source-code modification. The library follows IEEE 754
standard guidelines for encodings and computations, with only minor and easily
modifiable differences. RVfplib is smaller than the libgcc FP support by almost
60% and, on average, 2× faster. We showed that, on real benchmarks, RVfplib
reduces the code size by 39% and speeds up the execution by 1.5× on average,
even when considering benchmarks that heavily use the less optimized functions
in RVfplib. If compared to the Arm-optimized libgcc library, RVfplib reduces
the Arm to RISC-V code size inflation from 196.6% (vs. RISC-V general libgcc
FP support) to 19.7%. We also presented RVfplib nd, which treats subnormal
values as correctly signed zeroes, and shown that its code size is 5.3% smaller
than the SEGGER emFloat FP library, the only available RISC-V optimized
FP emulation library, which is closed-source and treats subnormal values in the
same way.
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Abstract. The design of new products is often an evolutionary process,
where product versions are built on one another. This form of (PGE)
reuses some parts of previously developed systems, while others have to
be designed from scratch. In consideration of subsequent design steps,
i.e., verification, testing, and production, PGE may significantly reduce
the time-to-market as these steps can be skipped for reused parts. Thus,
deciding which components have to be replaced or added to meet the
updated requirements while preserving as many legacy components as
possible is one of the key problems in PGE. A further aspect of PGE is the
potentially more efficient search for valid design candidates. An already
optimized base system can be systematically extended by new function-
ality without the necessity to search the entire design space. To this
end, in this work, we propose a systematic approach, based on Answer
Set Programming, to exploit the ideas of PGE in electronic system-level
design space exploration. The idea is to gather information on a previous
design, analyze the changes to a new version, and utilize the informa-
tion to steer the search towards potentially good regions in the design
space. Extensive experiments show that the presented approach is capa-
ble of finding near-optimal design points up to 1,000 times faster than a
conventional approach.

Keywords: Design space exploration · Heuristic · Answer Set
Programming · Evolutionary design

1 Introduction

Embedded computer systems continuously advance into more areas of everyday
life such as medical devices, automotive industry, and telecommunications. In
addition to the growing number of application areas, the complexity of indi-
vidual systems, influenced by the number of internal components, processes,
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and heterogeneity, grow simultaneously. Due to the growing complexity, for each
system, a vast amount of design decisions has to be made that influence the
characteristics of the system. This includes the allocation of hardware resources,
the partitioning of functionalities into hardware and software, and the synthe-
sis of the communication infrastructure. The aim is not only to design a valid
system, but also to optimize the resulting characteristics of a product. Further-
more, stringent time-to-market requirements, imposed by the pace of technolog-
ical progress, aggravate the problem of designing optimal products. Hence, an
efficient design space exploration is imperative to deliver high-quality products
in a reasonable timeframe. To this end, the design process is started at high
abstractions with lower degrees of detail mitigating complexity and allowing for
a quick exploration of promising design points. Although the DSE is started at
a high abstraction level to accelerate decision-making, the high complexity of
today’s computer systems prevents a complete exploration of the search space.
Hence, finding optimal design points remains complicated.

In reality, many electronic systems do not have to be developed entirely from
scratch. Instead, it is often aspired to have an entire product line with multiple
variants of the system as well as potential successor devices where only marginal
changes to the specification are made. Thus, the development of systems can
be recognized as an evolutionary process where product versions are built on
one another. This form of product design, called product generation engineer-
ing (PGE) [1], reuses components of previous versions, while others have to be
designed from scratch. Deriving a version of an existing product can mitigate the
design time and limits verification and testing to the new parts of the system.

Assume, for example, the product line of current smartphone manufacturers.
Regularly, typically in a one-year interval, a new generation is released. Here, a
generation consists of a base device and derivatives that either have specialized
camera sub-systems, less processing capabilities, or varying display and battery
sizes. While the transition from one generation to the next may be larger than
the changes within one generation, core parts, such as the wireless interface (e.g.,
WiFi, Bluetooth, GSM) or parts of the operating system remain subject to reuse.

To exploit the general trend towards PGE, in this paper, we propose a
methodology that detects similarities of systems in an evolutionary design pro-
cess. The obtained information is subsequently used in the design process aiming
to keep implementation decisions. Our contribution is threefold:

1. We provide an extension to a state-of-the-art system-level design space explo-
ration framework. The information of design decisions of previous product
versions is extracted and used to steer the search towards promising regions
in the design space exploration of the new product version.

2. We propose a declarative encoding of the problem through the utilization of
Answer Set Programming (ASP). This results in a succinct and elaboration
tolerant formulation that is easily extensible for future problems.

3. An extensive study is executed that evaluates the proposed approaches with
a varying number of changes. The results indicate a large improvement on the
quality of found solutions when compared to traditional approaches where no
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information of previous generations can be used. While the overall exploration
time is not reduced with the presented approach, the exploration yields good
solutions three orders of magnitude faster on average.

2 Related Work

In previous works, an effective design reuse model has been developed in [3] and
the question of reusability addressed in [6]. Therefore, the necessity of knowl-
edge reuse in connection with product design tasks has been discovered already
decades ago. Nevertheless, the advantages of design reuse, like time savings, the
prevention of faults as well as an increased extensibility and predictability [3,6]
are still valid nowadays and are targeted by the approach of this paper. To make
a design applicable for reuse, steps, such as documentation, standardization,
parameterization and modularization are carried out [3] enabling that the con-
cept of design reuse is used in processes like design exchange, design evolution
or component-based design [3,6].

As an example, the composition of existing subsystems can be implemented
by the use of hierarchical mapping encodings, which represent the assignment
of functionality to architectural resources [10]. While in that concept subsys-
tems are modeled and combined during the system synthesis steps, the pro-
posed approach aims at identifying similarities between two product versions to
reuse parts from one another on design decision level. The synthesizing problem
can successfully be encoded using SAT [10] or answer set programming (ASP)
[2,11,12]. Contrary to SAT, ASP is based on a closed-world assumption which
allows an efficient implementation in particular for densely connected networks
and multi-hop communication [2,12].

As another application, the concept of PGE combines reuse mechanisms with
significant new developments during the generation of a new technical product.
That allows to build up generations of products based on a reference product.
Such product management expands the view by an economic perspective. Con-
crete technical use cases are illustrated by the product generations of the Porsche
911 or of the iPhone [1]. A platform-based design, moreover, enables the creation
of either module-based or scale-based product families. For those, metrics and
optimization algorithms have been classified [15].

To be able to make use of prior design decisions, similarities and differences
between two product versions have to be identified. In this approach, the compo-
nents of a specification graph are considered whereas in [4] a similarity analysis
and scoring is performed on call graphs from different control software projects.
In another approach, equivalent mappings for symmetrical transformations of the
architecture are determined, thus reducing the number of feasible solutions [7].
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Fig. 1. An example of a specification graph

3 Fundamentals

In this section, we will give an overview of the key prerequisites for the remainder
of the paper. To this end, we first present the underlying system model used
throughout the paper. Subsequently, the exploration approach is defined, that
includes the concept of Pareto optimality and the synthesis model used. Finally,
we introduce Answer Set Programming as the symbolic solving technology that
is employed to realize the concept.

3.1 System Model

In this paper, we specify the system at the electronic system level (ESL). The
specification S = (A,H,M) is split into an application, modeling the behavior of
the system, and a hardware template constraining the structure of the system.
Both the application A = (VA, EA) and the hardware template H = (VH , EH)
are modeled through directed graphs and are connected through a set of mapping
options M , as depicted in Fig. 1. The application is modeled at a task-level
granularity with the set of vertices VA = T ∪C consisting of computational tasks
T and communication messages C. The edges EA ⊆ T ×C ∪C ×T represent the
data flow of the application and therefore, the interdependencies of individual
tasks. Tasks can send and receive messages to exchange data packets according to
their behavior. Each message c ∈ C is required to be sent and received exactly
once, i.e., �c : {(c, ti), (c, tj)} ⊂ EA and �c : {(ti, c), (tj , c)} ⊂ EA. In other
words, only point-to-point communication among tasks can be modeled directly.
Hence, multicast communication is modeled through multiple messages that are
all sent by the same task but have different receivers.

The vertices of the hardware template VH = P∪R represent hardware devices
and are separated into processing elements P and routing units R. While the
processing elements are used to execute the tasks of the application graph, the
routing units cannot execute code but rather form the communication infras-
tructure. The latter is completed by the edges EH ⊆ VH × VH representing
links that establish communication channels between devices. In contrast to the
application graph, the links are not constrained, i.e., potentially each device may



Exploiting Similarity in Evolutionary Product Design for Improved DSE 37

be connected to another device through a link. In this work, we focus on net-
works on chip (NoC) with regular mesh topologies. However, in principle, the
same approach can be used to model bus-based or mixed hardware architec-
tures. Note that the bidirectional edges in Fig. 1 represent two individual links.
For example, the edge between routers R1 and R2 is modeled through the two
links l1 = (R1, R2) and l2 = (R2, R1).

The set of mapping options M ⊆ T × P connects the application and hard-
ware graphs. At least one mapping option m ∈ M = (ti, pj) is defined for each
task that signifies that the task ti may be executed on pj . For the messages, no
mapping options have to be specified explicitly as they are constrained implic-
itly by their sending and receiving tasks, respectively, and can be routed over
the entire communication infrastructure. The function w : M → N assigns an
integer number to each mapping option m = (t, p), signifying the worst case
execution time of the task t on the processing element p. Analogously, further
properties are assigned to the remaining elements of the specification graph to
model heterogeneous architectures. In the present paper, we define the functions
Pstat : VH → N, area : VH → N, and Edyn : M → N that assign the static power
consumption and area costs to each hardware device as well as the dynamic
energy requirements to each mapping option, respectively. Finally, a periodicity
P and a routing energy Er are assigned to the specification that specifies the
time, after which the execution is restarted and the energy a single message hop
consumes when routed over the network, respectively1.

In order to transform the specification into an implementation, a valid allo-
cation, binding, routing, and schedule have to be determined. The allocation α is
composed of devices and links from the heterogeneous architecture template H,
i.e., α ⊆ VH ∪ EH that shall be used in the specific system implementation and
is separated into the device and link allocation αD and αL. The static binding
β ⊆ M and routing γ ⊂ C × 2EH select exactly one mapping option for each
task and a cycle-free route for each message, depending on the binding of the
sending and receiving tasks, respectively. Finally, the schedule τ assigns start
times to each task and message, i.e., τ : T ∪ C �→ N.

3.2 Exploration Model

The aim of the design space exploration (DSE) is the determination of a set
of Pareto-optimal implementations of a specification S = (A,H,M). To this
end, each implementation x has to be evaluated according to a set of desired
objective functions. In this paper, we focus on the overall latency lat(x) of the
system, its area costs area(x), and the energy requirements E(x). Without loss
of generality, the DSE is formulated as a multi-objective minimization problem:

minimize f(x) = (lat(x), area(x), E(x)),
subject to:

x is a feasible system implementation.

1 For simplicity, we restrict the properties to integer values. The proposed ASPmT-
based [5] approach, however, also allows for real-valued properties in principle.
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The area costs of an implementation are calculated as the accumulated area costs
of each allocated hardware device, i.e., area(x) =

∑
d∈αD

area(d). The energy
requirement is the sum of the systems dynamic and static energy requirements:

E(x) = P ·
∑

d∈αD

Pstat(d) +
∑

m∈β

Edyn(m) +
∑

r∈γ

Er · hops(r).

Note that we refer the static energy to one iteration of the system, i.e., the
consecutive execution of all tasks within the given period P. The latency of
the system is defined as the difference between the maximum end time (τ(t) +
w((t, p)), i.e., depending on β) and the minimum start time (τ(t)):

lat(x) = max
(t,p)∈β

(τ(t) + w((t, p))) − min
t∈T

(τ(t)).

For the sake of brevity, we will forgo the exact details of the evaluation steps as
they are not particularly relevant for the proposed approach at hand. Instead,
we refer to [11] for further information.

As is common in multi-objective optimization problems with conflicting
objectives fi, a single optimal solution generally does not exist as solutions are
not totally, but only partially ordered through the dominance relation �. The
dominance relation � is defined for n-dimensional quality vectors of two distinct
solutions. A candidate solution x dominates another solution y (x � y) if x
evaluates at least as good in every objective and better in at least one objective
compared to y. Without loss of generality, for a minimization problem with n
objectives, it is formally defined as follows:

x � y ↔ ∀i ∈ {1, . . . , n} : fi(x) ≤ fi(y) ∧ ∃j ∈ {1, . . . , n} : fj(x) < fj(y). (1)

A solution x is said to be Pareto-optimal if no dominating solution y exists.
Hence, by definition, Pareto-optimal solutions in the Pareto set XP for a given
problem are mutually non-dominated to each other: �x, y ∈ XP : x � y ∨ y � x.

3.3 Answer Set Programming

In the paper at hand, we implement the DSE with ASP, a programming paradigm
that stems from the area of knowledge representation and reasoning. In the
following, we will introduce the basics of ASP that are imperative to understand
the core concepts of the present work. Based on the stable model semantics,
ASP is tailored towards NP-hard search problems. The input is a logic program
formulated in a first-order language that is typically separated into a general
problem description and a specific problem instance. While the former consists
of rules that define how new knowledge is inferred, the latter contains facts
representing the initial knowledge. A stable model, or answer set, of a logic
program conforms to a feasible variable assignment that can be inferred by the
rules applied to the facts. The knowledge is encoded by n-ary predicates, i.e.,
atoms, consisting of a predicate name and n parameters. For example, the unary
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atom task(ti) may encode the existence of a task ti ∈ T , while the binary atom
map(t,p) indicates that task t may be executed on the processing element p.

An ASP rule consists of a head and a body, and indicates that its head
can be inferred if the body holds. In its simplest form, a rule has an empty
body and therefore holds unconditionally, i.e., represent the facts to model
initial knowledge. In contrast, a rule with an empty head, called an integrity
constraint, forces the body not to hold. This way, specific assignments can be
excluded from a stable model. To allow for the general problem description to
be applicable to each problem instance, the rules are encoded with variables,
generally indicated by uppercase letters in the encoding. For instance, the rule
1{bind(T,P) : map(T,P)}1 :- task(T). encodes the binding constraint. The
rule states that exactly one mapping option (t, p) ∈ M has to be selected for
each task t ∈ T . Internally, the rule is grounded into a variable-free representa-
tion resulting in a set of |T | individual rules. Afterwards, the variable-free atoms
are inferred according to the rules given by the problem definition. Therefore,
the ASP solver employs a conflict-driven clause learning (CDCL) strategy where
atoms are inferred subsequently until a conflicting assignment causes the gener-
ation of a conflict clause and the back-jump to a previous decision level.

The order, in which (variable-free) atoms are assigned, is decided by a heuris-
tic that is generally influenced by a generic set of rules, the characteristics of the
problem. These rules can be disparate and usually influence the performance
of the search differently for varying problem classes. The utilized ASP solver
clingo, for example, employs the heuristic Variable State Independent Decaying
Sum (VSIDS) [8] in its default configuration. Here, variables are assigned initial
activities that decay over time and increase if they appear in a learned con-
flict clause. Whenever the search branches, the solver selects the atom with the
highest activity. Although VSIDS is considered to be one of the most efficient
branching heuristics [8], it does not embody domain knowledge. In the paper
at hand, we will propose the use of domain specific heuristics to accelerate the
evolutionary product design. This is discussed in more detail in Sect. 4.3.

Note that an elaborate discussion of ASP solving and the detailed presenta-
tion of the encoding are out of the scope of this paper. The interested reader is
referred to [5,9] and [12], respectively.

4 Similarity of Design Points

The aim of this project is to enhance the development step of the DSE by
applying the idea of evolutionary product design. The therefore required prior
knowledge is provided by a previously developed system representing a product
present on the market. It is given by the parent configuration in Fig. 2 and is
consisting of a specification and an implementation. It has to be noted that
this solution is not guaranteed to be optimal, but very good concerning its
application. Besides, Fig. 2 illustrates the steps of the proposed approach.

As a comprehensive example, a cellphone shall be improved. By modifying the
specification of the parent configuration, a new derived version is created, namely
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Fig. 2. Overview of the proposed approach (A+C) and its comparison (D) to a state-
of-art approach (B)

the child configuration. Since all elements of the specification offer modification
potential, it might be planned to extend the device functionality by changing
its application as well as to equip the cell phone with additional hardware com-
ponents, like a new processor or a second camera to improve its performance.
Depending on the extent of the modification and the affected sections, a change
in the specification can have a considerably large as well as nearly no impact
on the final implementation. To refer to the example given above, an additional
processor is only allocated, when a task is bound on it. If done so, additional
interconnections are required to ensure the communication ability of the new
processor. The modification stage is shown in block A in Fig. 2. The specific
modifications applied in the experiments are given in Sect. 5.

To determine the implementation of the child configuration, two approaches
are distinguished. Block B in Fig. 2 represents the DSE from scratch where solu-
tion candidates are generated. Only valid intermediate solutions are kept and
further optimized concerning the factors latency, energy consumption and area
costs. This procedure is enhanced by the use of heuristics during the DSE shown
in block C in Fig. 2. The heuristic DSE aims at retaining as many design decisions
from the parent implementation as possible. To gain knowledge about reusable
concepts and design decisions from the parent configuration, the specifications
of both systems are analyzed to identify the similarities and differences and
thus, the reuse potential. The corresponding steps are explained in detail in the
following subsections.

Finally in block D, the results of both approaches are compared. Therefore,
for each the optimality of the Pareto front of the final and of all intermediate
solutions is evaluated and set in context to the time when the individual solution
has been found.
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4.1 Analysis of the Specifications

Firstly, as shown in Fig. 2, all elements of the specification graph as well as all
characteristics of both configurations are examined and compared to identify
each similarity and difference. From the perspective of the child configuration,
for each instance of each component type, it is recorded whether it is a common
(equal), an own, i.e., newly added, or an unknown and therefore already deleted
(missing) component. These three cases are demonstrated by means of the com-
ponent type task in Code snippet 1. The comparison is carried out on the basis
of the parameters of the component instances. A task is defined by three con-
stants: an ID, an application number, and a configuration assignment. If for two
instances all parameters except for the configuration constant are identical, these
present a single instance which is common to both systems. Similarly, instances
can be found which only exist in one configuration.

For all other component types in the specification, the procedure is the same.

1 % Equal tasks in both configurations
2 equal task(task(NUM,A,child)) :− task(NUM,A,child), task(NUM,A,parent).
3 % Missing tasks in child configuration with regard to parent configuration
4 missing task(task(NUM,A,child)) :− not task(NUM,A,child),

task(NUM,A,parent).
5 % Added tasks in child configuration with regard to parent configuration
6 added task(task(NUM,A,child)) :− task(NUM,A,child),

not task(NUM,A,parent).

Code snippet 1. The analysis of all instances of the component type task

4.2 Analysis of the Implementations

Besides the specification, the implementation of the parent configuration is
clearly determined and available. To be able to take on a design decision from
the previous system, the prospective decisions made to generate a solution can-
didate for the child configuration have to be evaluated. Like Fig. 2 illustrates, the
results from the evaluation alongside with the optimization objectives influence
the selection of favorable solutions.

To compare two implementations, each decision, including the allocation,
binding, routing and scheduling, is considered. In the following Code snippet 2,
the decision on the task binding is taken as a representative case.

1 % Equally decided bindings in both configurations
2 equal bind(bind(M,task(T,A,child),processor(R,child))) :−

bind(M,task(T,A,child),processor(R,child)) ,
bind( ,task(T,A,parent),processor(R,parent)).

3 % Not equally decided binding for equal tasks in both configurations
4 not equally bind(bind(M1,task(T,A,child),processor(R1,child)),

bind(M2,task(T,A,child),processor(R2,child))) :−
bind(M1,task(T,A,child),processor(R1,child)),
bind(M2,task(T,A,parent),processor(R2,parent)), R1!=R2.
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5 % Missing binding in child configuration with regard to parent configuration
6 missing bind(bind(M,task(T,A,child),processor(R,child))) :−

bind(M,task(T,A,parent),processor(R,parent)), missing task(task(T,A,child)).
7 % Added binding in child configuration with regard to parent configuration
8 added bind(bind(M,task(T,A,child),processor(R,child))) :−

bind(M,task(T,A,child),processor(R,child)) , added task(task(T,A,child)).

Code snippet 2. The analysis of all instances of the decision on the binding

It is identified by a mapping id and a corresponding task mapped to a certain
processor, each belonging to a configuration. Analogical to the scheme presented
in Sect. 4.1, three result types are expected: equal, missing, added and evaluated
from the perspective of the child configuration. The similarity information gen-
erated by use of the terms in Code snippet 1 is used to decide on similarities in
the implementations. For example, a task which was added or deleted cannot be
bound equally and therefore causes an added or a missing bind. Furthermore,
the type not equally is introduced to ensure an unambiguous evaluation. Other-
wise, for two configurations, which might have tasks and processors in common,
but do not share the same binding decision, bindings might be simultaneously
classified as missing and added and, this way, be counted twice. For all other
decision types in the implementation, the analysis is done likewise.

4.3 Use of Heuristics During Design Space Exploration

Through analyzing the specifications and the implementations, an extensive
knowledge is built up which is particularly useful for the development of the
new derived product. It is assumed that, in the search space, a good solution
for the child configuration is to be found near to the design point of the imple-
mentation of the parent configuration. Hoping that the optimal solution of the
DSE for the child configuration is similar to the implementation of the parent
configuration, the gained similarity information is used in heuristics to select
appropriate design decisions from the previous system and set them as an ini-
tial design point. Thus, the exploration starts in a defined area of the search
space and is controlled. At the same time, the search space is not restricted
and no solution is excluded. If there are similarities in the specifications, all
related decisions made in the development of the previous version are adopted
and every variable assignment is preferably decided as previously done for the
parent configuration.

Considering the example from Sect. 4.2, the similarity information about the
decision on the task binding is taken up in a heuristic in Code snippet 3.

1 % Highest priority for deciding the binding equally to the parent configuration
2 #heuristic equal bind(bind(M,T,R)). [23,true]

Code snippet 3. The heuristic influencing the decision on the binding

In the implementation of the heuristic in ASP, a so-called modifier is used. It
prioritizes the individual term in a way that it, if possible, is assigned a specified
value (true or false) and evaluated earlier during the DSE. In the code sample,
the decision to set a binding equally compared to the parent configuration is
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assigned a static priority of 23. At the same time, the decision on the allocation
is indirectly made when a hardware resource is used in a binding. In case of a
task that is only specified in one system, it is impossible to decide the binding
identically. Hence, another heuristic is set whose aim is to, at least, bind the task
to a common processor. Thus, the allocation of a new and additional resource
might become superfluous, if no task is bound to it in the final solution.

The design decision on the binding is considered in the following step of the
routing. If there is a common binding of a task on a processor, the communication
path to and from that processor is adopted from the parent configuration. This
approach is given in Code snippet 4. The heuristics deciding on the scheduling
is considering the execution order of the tasks and similarly implemented.

Further, the synthesis steps are executed in order. According to their prior-
ity, the binding decisions are determined first, followed by the routing and the
scheduling step. It is conceivable as well to decide on all equal elements first and
then to consider the differences. This offers the advantage of a clear separation
between the similarities and the differences.

1 % If binding was equally decided in both configurations , decide for the same
routing like in the parent−configuration

2 #heuristic equal reached(reached(comm(T1, , ,child), processor(P,child) ,
router(R,child))) : equal bind(bind( ,T1,P)). [13,true]

3 #heuristic equal reached(reached(comm( ,T2, ,child), router(R,child) ,
processor(P,child))) : equal bind(bind( ,T2,P)). [ 13,true]

4 #heuristic equal reached(reached(C,router(R1,child),router(R2,child))) . [ 13,true]

Code snippet 4. The heuristic influencing the decision on the routing

Starting with a good implementation for the child configuration consisting
of adopted design decisions from the parent configuration, a faster converge to
optimal solutions is expected.

5 Experiments

The implementation of this project consists of ASP and C++ code as well as
bash scripts for the project execution. The tool clingo is used in version 5.2.2 [13].
To set time stamps and to interrupt a DSE at a certain time (timeout) the tool
runsolver in version 3.4 is used [14]. The experiments introduced subsequently
are tested on Intel Core i7-4770 CPUs with ×86-64 architecture and 32 GiB
RAM. The surrounding environment is Ubuntu version 16.04.7 LTS.

5.1 Experimental Setup

As a setup, 24 parent instances of different characteristics are taken from a set
of test cases generated by an ASP-based benchmark generator [12]. A 3× 3 grid
structure, consisting of nine routers bidirectionally connected to each other and
additionally to one processor each, is common to all configurations while their
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Table 1. Overview of the modification classes specifying the test cases

Change hardware elements Change software elements Combined changes

pt pp pt pp pt pp

I 0 20 V 20 0 IX 20 20

II 0 40 VI 40 0 X 40 40

III 0 60 VII 60 0 XI 60 60

IV 0 80 VIII 80 0 XII 80 80

application graphs are structured differently. These are generated as “series-
parallel graphs” (SPG) having twelve different sizes in the range of 17 to 115
tasks.

To assume good solutions for the parent instances as a basis for the exper-
iments, a DSE for each has been executed for 48 h. Randomly, one of the best
but not necessarily optimal solutions is taken as implementation of the parent
configuration. From each parent specification, ten modified child specifications
are generated. The modification is composed of a randomly decided combination
of different changes including the deletion, addition or exchange of components.
In the experiments, either tasks as representatives of the software side (pt), pro-
cessors as elements of the architecture graph (pp), or combinations of both are
considered. Table 1 gives an overview about the chosen test cases.

In total, we have conducted 2 ∗ 24 ∗ 12 ∗ 10 = 5, 760 DSE runs for up to 30
min to explore the child configurations. This relatively short time was chosen
to be able to consider different modification classes and a sufficient number of
randomly generated modifications to obtain a generally valid statement. The
resulting fronts are evaluated concerning their ε-dominance [16]. Therefore, a
reference front, each consisting of the best solution front found up to a timeout
of the DSE with and without the use of heuristics, is generated. It is considered as
the optimal solution front. Additionally, all intermediate solutions found during
the DSE are assigned with a time stamp and evaluated as well. The results
together with their corresponding time stamps are plotted to identify the quality
improvements over time. Per test case and per parent configuration each, an
average curve is presented along with the individual results for the ten children.

5.2 Experimental Results

The test execution results in 24 diagrams per test case, each illustrating the
progression of the ε-dominance during the DSE with and without heuristics
over time for one parent instance. Until a timeout, which is set as a vertical
line at 1,800 s, is reached, each curve approximates an ε-dominance equals one.
Matching this value indicates that the respective solution front is covering the
reference front in every design point. Obtaining this result at an early time is
the desirable outcome. All in all, four types of curve progressions are identified
and pictured in Fig. 3.
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Fig. 3. The four resulting average curve types

The first and fourth type mark a course where either the scratch or the
heuristic curve is obviously faster approximating the value one. Whereas for the
third type, the heuristic curve is developing to low values fast, but is overtaken
by the scratch curve during the exploration. The second type represents a case
which does not allow a clear determination. Figure 4 aggregates the occurrences
of the four types given in Fig. 3 for all modification classes and considering the
24 configurations. The types 1 (= purple), 2 (= yellow), 3 (= light green), 4
(= dark green) are colored and rated in ascending order with type 4 indicating
the superiority of our proposed approach. Having this overview, a considerable
trend can be detected. The usefulness of the usage of heuristics depends on
the considered configuration. Noting that an increasing configuration number
signifies a larger amount of applications and tasks, the use of heuristics tend to
work better for large configurations. With an increasing size of a configuration,
the time to exhaustively explore the respective design space grows exponentially.
Thus, controlling the DSE by the use of any heuristics is essential to find good
solutions in a reasonable time. For large configurations, the proposed heuristics
provide excellent results, but it can not be evaluated how close these are towards
the real Pareto-optimal solution front because the design space is hardly explored
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Fig. 4. Summary of the occurrence of the result types from Fig. 3 (Purple - Type 1;
Yellow - Type 2; Light Green - Type 3; Dark Green - Type 4) (Color figure online)

after 30 min. At the same time, the DSE for the configurations 1 and 2, mainly
finishing within the given time, shows satisfying results as well.

Considering the kind of modification, a few differences for cases with a lot of
changes like III, IV, VII or XI are visible, but in overall no clear classification is
identifiable.

In a second evaluation, the results for the configuration 11, which contains 55
tasks distributed over two applications, are analyzed in more detail. Table 2 lists
for every change type the time it takes to reach a specified ε-dominance value. A
table entry consists of a number of the explorations reaching the respective level,
an average time value and a corresponding standard deviation. The behavior of
the DSE with and without heuristics is compared.

Thereby, two aspects become visible. At first, not all explorations even reach
an ε-dominance equal to two because large changes on the architecture graph
(pp and pp + pt), mainly in case of deletion of processors, cause the creation of
unsatisfiable child instances. Furthermore, the heuristic DSE for satisfiable child
instances, which are derived by purely changing the hardware side (pp), provides
significantly better results. This becomes more clear, the closer an ε-dominance
equal to one is approximated. More heuristic instances are reaching lower stages
and the results are found up to 1,000 times faster with lower deviations. These
cases are perfect examples for the type 4 from Fig. 3.

Secondly, the results when considering only the modifications on the appli-
cation graph (pt) are ideal representatives for type 3 from Fig. 3. By using the
own heuristics, the first three levels are reached within a few seconds. But as
time goes on, the DSE from scratch is more successful. At the same time, most
cases of both exploration types are finally not reaching an ε-dominance of one,
which means that different design points exclusively were found and several valid
implementations with good properties exist.
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Table 2. Comparison of the influence of different change types

2 1.5 1.3 1.1 1.0

S H S H S H S H S H
pp 20 10 10 10 10 10 10 5 9 0 4

0.70 s 0.73 s 0.70 s 0.73 s 101.62 s 0.81 s 566.03 s 0.91 s – 315.77 s

6.26% 7.59% 6.00% 6.59% 182.06% 8.1% 120.87 % 7.71% – 87.74%

40 9 9 9 9 9 9 6 8 0 1

0.66 s 0.69 s 3.84 s 0.70 s 70.11 s 0.76 s 822.49 s 0.87 s – 558.36 s

7.75% 7.53% 248.05% 8.15% 91.26% 6.78% 63.46% 14.90% – –

60 10 10 10 10 100 10 6 10 0 5

0.66 s 0.67 s 0.66 s 0.67 s 101.28 s 0.75 s 653.43 s 0.96 s – 803.26 s

11.56% 14.14% 11.56% 14.14% 138.32% 23.35% 94,56% 22.85% – 81.10%

80 5 5 5 5 5 4 1 3 0 0

0.64 s 0.63 s 0.80 s 0.63 s 134.22 s 0.66 s 849.31 s 0.76 s – –

12.66% 13.28% 46.39% 13.28% 84.79% 11.46% – 15.63% – –

pt 20 10 10 10 10 10 10 9 6 1 0

0.74 s 0.76 s 6.85 s 0.80 s 175.78 s 0.93 s 694.56 s 14.43 s 1573.48 s –

12.97% 7.89% 132.70% 5.77% 105.01% 10.76% 78.29% 227.26% – –

40 10 10 10 10 10 9 8 7 5 1

120.73 s 0.93 s 129.55 s 0.94 s 185.42 s 1.05 s 752.76 s 1.64 s 1627.63 s 49.54 s

146.54% 23.44% 132.63% 22.50% 124.74% 19.56% 71.24% 47.87% 14.51% –

60 10 10 10 10 10 10 9 8 4 0

0.77 s 0.81 s 52.94 s 0.90 s 175.09 s 1.74 s 453.64 s 305.82 s 1377.95 s –

20.52% 18.08% 172.62% 16.33% 111.62% 112.44% 53.79% 174.50% 25.85% –

80 10 10 10 10 10 10 8 6 1 2

0.81 s 0.81 s 36.85 s 1.37 s 215.07 s 4.25 s 591.55 s 6.68 s 1380.83 s 6.50 s

31.61% 22.40% 10.14% 65.70% 132.61% 177.05% 85.23% 154.22% – 54.11%

pp + pt 20 10 10 10 10 10 10 9 9 1 1

0.80 s 0.73 s 20.09 s 0.74 s 123.77 s 0.89 s 328.02 s 1.13 s 1739.00 s 407.36 s

36.66% 11.02% 154.13% 10.09% 144.38% 19.69% 72.60% 33.53% – –

40 10 10 10 9 10 9 5 5 2 1

0.80 s 0.74 s 9.68 s 0.76 s 116.54 s 0.89 s 372.73 s 1.13 s 1730.17 s 1042.53 s

32.34% 13.67% 108.62% 17.35% 78.60% 21.32% 120.13% 23.52% 0.84% –

60 5 5 5 5 5 5 3 1 1 0

120.51 s 184,54 s 120.52 s 184.57 s 162.42 s 186.84 s 590.29 s 1.21 s 1099.08 s –

112.08% 217.65% 112.07% 217.60% 82.09% 214.29% 42.76% – – –

80 6 6 6 6 6 5 3 3 1 0

152.49 s 0.80 s 188.32 s 0.94 s 412.54 s 1.13 s 435.72 s 5.03 s 1415.28 s –

243.92% 16.71% 211.23% 24.13% 144.05% 19.42% 63.92% 87.86% – –

In general, Table 2 shows that the average times and the standard deviations
for the first solutions from the DSE with and without heuristics are similar.
If the heuristic DSE reaches a low ε-dominance, it takes a significantly shorter
time. Likewise, the deviation is lower. This is an important result, showing that
good results can be found at an early exploration stage without the necessity to
search the entire design space.

6 Conclusion

Within this paper, a systematic approach based on ASP to enhance the DSE of
embedded systems is proposed. It aims at supporting an evolutionary product
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design process in the context of Product Generation Engineering. Exploiting the
similarities between a base system and its derivatives allows to identify parts that
can be reused unchanged. The gained domain knowledge is utilized in heuristics
to steer the search towards regions in the design space potentially containing
solutions with optimal properties.

To ensure a meaningful evaluation of the impact of the used heuristics, an
extensive amount of test cases, consisting of a variety of different configurations
and several systematically derived child instances, was used in the experiments.
As expected, the usage of heuristics in the DSE helps to find good solutions
earlier. While small systems are less likely to profit from the introduction of
the proposed heuristics, particularly in large system configurations, the applica-
tion of heuristics shows a significantly high exploration quality. For the product
development, it is not required to find the optimal implementation because that
goes along with an inestimable long exploration time and high costs. Much more
preferably is a good solution found at an early time. Likewise, in the majority
of the test cases, excellent results were achieved just in a few seconds.

Finally, the implementation at hand can be extended by new heuristics and
further use cases. The experiments have shown that there is more potential
for identifying reusable parts, especially when analyzing how the structure of a
configuration is influencing its reusability.

References

1. Albers, A., et al.: Product generation development-importance and challenges from
a design research perspective. In: Proceedings of ME, pp. 16–21, May 2015

2. Andres, B., Gebser, M., Schaub, T., Haubelt, C., Reimann, F., Glaß, M.: Symbolic
system synthesis using answer set programming. In: Cabalar, P., Son, T.C. (eds.)
LPNMR 2013. LNCS (LNAI), vol. 8148, pp. 79–91. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40564-8 9

3. Duffy, S., et al.: A design reuse model. In: Proceedings of ICED, pp. 490–495,
August 1995

4. Fahimipirehgalin, M., Fischer, J., Bougouffa, S., Vogel-Heuser, B.: Similarity anal-
ysis of control software using graph mining. In: INDIN, vol. 1, pp. 508–515 (2019).
https://doi.org/10.1109/INDIN41052.2019.8972335

5. Gebser, M., et al.: Theory solving made easy with Clingo 5. In: Proceedings of
ICLP, pp. 2:1–2:15 (2016). https://doi.org/10.4230/OASIcs.ICLP.2016.2

6. Girczyc, E., Carlson, S.: Increasing design quality and engineering productivity
through design reuse. In: Proceedings of DATE, pp. 48–53 (1993). https://doi.
org/10.1145/157485.164565

7. Goens, A., Siccha, S., Castrillon, J.: Symmetry in software synthesis. ACM TACO
14(2), 1–26 (2017). https://doi.org/10.1145/3095747

8. Liang, J.H., Ganesh, V., Zulkoski, E., Zaman, A., Czarnecki, K.: Understand-
ing VSIDS branching heuristics in conflict-driven clause-learning SAT solvers. In:
Piterman, N. (ed.) HVC 2015. LNCS, vol. 9434, pp. 225–241. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-26287-1 14

9. Lifschitz, V.: What is answer set programming? In: Proceedings of AAAI, pp.
1594–1597, July 2008

https://doi.org/10.1007/978-3-642-40564-8_9
https://doi.org/10.1109/INDIN41052.2019.8972335
https://doi.org/10.4230/OASIcs.ICLP.2016.2
https://doi.org/10.1145/157485.164565
https://doi.org/10.1145/157485.164565
https://doi.org/10.1145/3095747
https://doi.org/10.1007/978-3-319-26287-1_14


Exploiting Similarity in Evolutionary Product Design for Improved DSE 49

10. Neubauer, K., et al.: Supporting composition in symbolic system synthesis. In:
Proceedings of SAMOS, pp. 132–139, July 2016. https://doi.org/10.1109/SAMOS.
2016.7818340

11. Neubauer, K., et al.: Exact multi-objective design space exploration using ASPmT.
In: Proceedings of DATE, pp. 257–260, March 2018. https://doi.org/10.23919/
DATE.2018.8342014

12. Neubauer, K., et al.: Exact design space exploration based on consistent approxi-
mations. Electronics 9(7), 1057 (2020). https://doi.org/10.3390/electronics9071057

13. Potassco: Clingo homepage. https://potassco.org/clingo/. Accessed 13 Mar 2021
14. Roussel, O.: Controlling a solver execution: the runsolver tool. JSAT 7, 139–144

(2011). https://doi.org/10.3233/SAT190083
15. Simpson, T.W.: Product platform design and customization: status and promise.

AI EDAM 18(1), 3–20 (2004). https://doi.org/10.1017/S0890060404040028
16. Zitzler, E., et al.: Performance assessment of multiobjective optimizers: an analysis

and review. IEEE TEVC 7(2), 117–132 (2003). https://doi.org/10.1109/TEVC.
2003.810758

https://doi.org/10.1109/SAMOS.2016.7818340
https://doi.org/10.1109/SAMOS.2016.7818340
https://doi.org/10.23919/DATE.2018.8342014
https://doi.org/10.23919/DATE.2018.8342014
https://doi.org/10.3390/electronics9071057
https://potassco.org/clingo/
https://doi.org/10.3233/SAT190083
https://doi.org/10.1017/S0890060404040028
https://doi.org/10.1109/TEVC.2003.810758
https://doi.org/10.1109/TEVC.2003.810758


Automatic Search-Space Compression
in System-Level Design Space Exploration

Using Deep Generative Models

Valentina Richthammer(B) and Michael Glaß

Institute of Embedded Systems/Real-Time Systems, Ulm University, Ulm, Germany
{valentina.richthammer,michael.glass}@uni-ulm.de

Abstract. Major challenges for system-level Design Space Exploration
(DSE) include (a) tremendous search-space sizes for modern many-core
architectures and networked systems and (b) the preponderance of infea-
sible solutions in the search space from which no actual implementations
can be derived. Since current DSE approaches are not equipped to handle
these developments, we propose the integration of deep generative mod-
els into DSE to automatically compress large-scale search spaces, thus (I)
reducing problem complexity faced by the optimizer while (II) learning
a model of feasible solutions to focus the optimization on. The proposed
approach is seamlessly integrated into state-of-the-art DSE flows, is com-
plementary to existing search-space pruning techniques, and its potential
to improve optimization quality by up to ≈ 66% is demonstrated for a
variety of DSE problems.

Keywords: Design automation · Deep learning · Compression

1 Introduction

Design automation at the Electronic System Level (ESL) is a combinato-
rial Multi-Objective Optimization Problem (MOOP) where application-to-
architecture mappings are optimized for a variety of conflicting design objec-
tives simultaneously. To this end, system-level Design Space Exploration (DSE)
techniques need to derive a multitude of implementation options from an input
specification that defines the application, architecture, as well as functional and
non-functional requirements on feasible solutions in the form of data depen-
dencies, energy budgets, latency, etc. Deriving a single feasible implementation
is an NP-complete problem [19], also known as system synthesis, which makes
DSE a hard-constrained MOOP. With increasingly complex system specifica-
tions, as, e.g., introduced by large-scale many-core architectures or networked
automotive applications with extensive communication requirements, exact tech-
niques are no longer able to exhaustively analyse the complete search space
of all implementation possibilities [17]. Thus, metaheuristic optimization tech-
niques are employed to efficiently traverse these large-scale search spaces [12].
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Fig. 1. Optimization flow for hard-constrained combinatorial MOOPs (top) and pro-
posed search-space compression using Deep Generative Models (bottom).

These metaheuristics require an encoding of solutions from the design space into
a suitable search space that can be efficiently explored by an optimizer. For
hard-constrained combinatorial problems as DSE, an encoding that is feasible
by construction is impossible. Thus, DSE search spaces are mainly populated by
infeasible solutions with few and scattered feasible solutions inbetween (see Fig. 1
(top), where green dots in the search space represent feasible solutions, while the
rest of the search space is infeasible). During the optimization, a dedicated repair
mechanism needs to be integrated when deriving solutions in the design space
from the search space to guarantee that only feasible solutions are evaluated
and optimized. Nevertheless, the predominance of infeasible search-space areas
combined with tremendous search-space sizes hinder its efficient exploration.

Contributions: As a remedy, this work presents an automatic search-space
compression scheme using Deep Generative Models (DGMs), as also illustrated
in Fig. 1. DGMs learn a compressed representation, i.e., an encoding of data
together with the corresponding encoding and decoding functions. Thus, we
propose to train a DGM to learn a compression of the original search space, so
that a new compact search space can be used for further exploration. The DGM’s
decoder is used to reconstruct the compressed solutions in the original search
space that can then be mapped into the design space as in standard DSE.

Since the compressed search space is much smaller than the original search
space due to the dimensionality reduction performed by the DGM, problem
complexity for the optimizer is reduced, facilitating the optimization. Finally, a
DGM architectural pattern to be integrated into DSE is proposed that suits a
variety of DSE problems across a range of application domains.

The proposed integration of Deep Learning (DL) techniques into DSE is
well-suited, since DSE already generates hundreds of thousands of implemen-
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tations to evaluate and optimize. This data can seamlessly be used to train a
DGM. Furthermore, any DSE approach needs to ensure the feasibility of opti-
mized solutions (by, e.g., repair or discarding of infeasible solutions), so that
only feasible solutions from the search space are eventually mapped into the
design space. A DGM can, therefore, be trained with feasible DSE data only, so
that a compressed representation of predominantly feasible areas of the search
space is learned. Thus, the compressed search space may actually represent a
model of feasible solutions (see Fig. 1 (bottom)). Additionally, all solutions are
automatically evaluated w.r.t. the optimization objectives during DSE. Thus,
the proposed approach offers the possibility to incorporate quality information
into the learned model by predominantly training with high-quality solutions.

We present two possibilities to integrate a trained DGM into DSE: The latent
space of the model can either be explored as a new and more compact search
space by the original optimizer, where the exploration of the search space is
facilitated for conventional techniques by reducing search-space size (Fig. 1(I)).
Alternatively, DGMs offer the possibility to generate novel instances of the model
directly via a generator (Fig. 1(II)).

However, since the DGM is not able to learn an exact model of feasibility in
practice, the newly generated solutions in both cases (I) and (II) still need to
undergo the same feasibility check and repair as in the original optimization flow
when being mapped into the design space. Furthermore, DGMs are designed for
lossy compression to avoid overfitting the model. Thus, high-quality solutions
may potentially be lost during the compression. Despite this, we demonstrate
using experimental results that compact search spaces generated by encoding via
a DGM can be explored more efficiently and solutions of superior optimization
quality are found for different problem domains, compared to full-size DSE search
spaces. This is in line with related works on search-space pruning (e.g. [17]),
where an improved exploration of compact search spaces is already shown.

2 Related Work

Deep Generative Models (DGMs) are unsupervised-learning techniques that
are able to produce new data points from a trained model. Two prevailing
types are Generational Adversarial Networks (GANs) and Variational Autoen-
coders (VAEs) that have been applied to a wide array of problem domains,
ranging from image, video, or music generation [14] to the synthesis of arith-
metic expressions and molecules [7]. In this work, we focus on VAEs, since they
are explicitly designed for dimensionality reduction by concurrently training an
encoder coupled with the respective decoder, so that its latent space is a com-
pressed representation of the input training data.

In DSE, Machine Learning (ML) has been applied for two main purposes up
until now: First, overall DSE time is reduced by approximating the design objec-
tives during the evaluation of solutions using ML techniques where a simulative
or analytical evaluation may be expensive or infeasible. For example, [4] proposes
Recurrent Neural Networks for latency estimation, [18] investigates predictive
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modelling techniques in DSE for high-level synthesis, while [9] evaluates differ-
ent ML approaches to approximate cost, area, power, and performance for DSE
of reconfigurable accelerator systems—among many others. Secondly, ML meth-
ods are used to improve the traversal of the search space, i.e. the exploration
phase of the optimization. This is done by, e.g., improving local search based
on ML predictions in many-core DSE [5] or by applying reinforcement learn-
ing to generate high-quality system configurations in Network-on-Chip (NoC)
design [15]. In contrast, this work presents an ML-based search-space compres-
sion that allows continued optimization using standard optimization techniques
on a simplified search space for a variety of constrained MOOPs.

For an overview of recent DSE techniques, see [12]. However, these algo-
rithms are mostly geared towards specific DSE problem instances with no partic-
ular focus on the general problem of large-scale and sparse combinatorial search
spaces, as present for any DSE problem. While other search-space pruning tech-
niques for constrained optimization and DSE do exist [13,17], the compression
approaches presented in the work at hand are orthogonal to any other technique
and can be applied in conjunction before or after other such measures.

3 Fundamentals

This section introduces a DSE system model commonly used in literature
together with a description of DSE as hard-constrained Multi-Objective Opti-
mization Problem (MOOP).

3.1 System Model

Many current DSE techniques use a graph-based system model to represent
application, architecture, and mapping possibilities [19]. All feasible implemen-
tation possibilities are represented in a system specification that defines a set of
mapping edges EM between an application graph GT and an architecture graph
GR (see Fig. 2(a)).

Definition 1 (Application Graph). The application graph is a bipartite
directed acyclic graph GT(VT , ET ), with vertices VT = T ∪ C representing pro-
cessing tasks T and messages C for data dependencies. Sender-receiver relations
of messages are modelled by edges ET ⊆ (T ×C)∪ (C ×T ) connecting tasks and
messages (or vice versa).

Definition 2 (Architecture Graph). The architecture graph is a directed
graph GR(R,L) with resources R as vertices and edges L modeling available
communication links.

Definition 3 (Mapping Edges). The set of mapping options between tasks T
and resources R is given by mapping edges EM ⊆ T × R, where mapping edge
mt,r ∈ EM represents a feasible binding of task t ∈ T to resource r ∈ R.
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Fig. 2. System specification of DSE with one feasible implementation (a), search-space
representation of an implementation (b), automatic search-space compression using
VAEs (c), and DSE using VAE-compressed search spaces (d).

The specification in Fig. 2(a) shows an application with two tasks t0, t1 with a
total of 5 mapping edges m0,0−m1,3 to the 2 × 2 architecture. A concrete imple-
mentation, that may be derived during DSE by selecting one feasible binding for
each task, is shown using solid mapping arrows m0,0,m1,0.

3.2 DSE as Hard-Constrained MOOP

During DSE, feasible implementations need to be derived from the specification
by determining an allocation of resources, a binding for each task, a routing
of messages, and a schedule for the execution of tasks. This in itself is an NP-
complete problem that is further subject to functional and non-functional design
constraints, e.g., on physical system properties such as limited link bandwidth,
maximal energy budgets, etc. DSE is, therefore, a hard-constrained MOOP:

Definition 4 (DSE as MOOP)

minimize {f(x) | Ax ≤ b} (1)

with A ∈ Zm,n,b ∈ Zm, and x ∈ {0, 1}n.

f(x) = (f1(x), . . . , fz(x)) is a vector of z objective functions to evaluate imple-
mentations represented by an n-dimensional binary decision vector x ∈ {0, 1}n.
A straight-forward encoding of implementation options is a representation by a
mapping vector (cf. Fig. 2(b)), where each mapping edge mt,r ∈ EM is encoded
as one binary variable whose value indicates whether this mapping is activated
in an implementation (mt,r = 1) or not (mt,r = 0). However, when decoding a
mapping vector from the search space to the design space, it needs to be ensured
that all design constraints Ax ≤ b are satisfied by each solution. If any constraint
is violated, a repair scheme must be applied or the solution is discarded from
the optimization.
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Since efficient symbolic repair techniques have been integrated into state-
of-the-art DSE flows [10,11], feasible solutions can automatically be derived
from the search space. Further non-linear constraints (e.g. on schedulability,
reliability, etc.) must be considered separately using background theories or other
specialised analyses. By repairing or discarding any solutions violating these
additional constraints, DSE is guaranteed to optimize feasible solutions only.

However, an efficient exploration of largely infeasible search spaces is still a
problem for many optimizers, so that techniques to prune DSE search spaces—
without eliminating feasible and high-quality solutions—are much-needed.

4 VAEs for Search-Space Compression

To address these issues, we propose to integrate automatic search-space com-
pression using Variational Autoencoders (VAEs) into DSE, see Fig. 2(c). A VAE
is an unsupervised-learning technique that learns a compressed representation of
an input data space with the corresponding encoding and decoding, i.e., recon-
struction scheme. Furthermore, it is able to generate new data from the learned
model [6,16]. This is achieved by learning the probability distribution of the
latent space L for an input data set I. VAEs combine a symmetric Deep Neural
Network (DNN) architecture representing the encoder and decoder. The encoder
compresses the input space I to the mean μ and standard deviation σ of the
probability distribution over the latent space L, while the corresponding decoder
maps from L to the output space D. During training, an encoder-decoder com-
bination is learned by adjusting the weights and biases of the network, so that
the error between the original training samples in I and their reconstructions in
D after encoding and decoding are minimized.

Formally, this is defined as follows [6]: Let x ∈ I be an input sample and
z ∈ L its representation in the latent space. A probabilistic encoder qθ(z|x)
infers a conditional distribution of the latent space based on hidden variables
z that generate an observation x. This distribution is typically modelled as
a Gaussian distribution, so that the encoder network outputs the mean and
variance parameters of this distribution.

A probabilistic decoder pφ(x|z) reverses this process: Given a latent repre-
sentation z, its output is a distribution over the observation x it is caused by.
The output can then be mapped to a reconstruction of the original input.

In VAEs, DNNs are used to model encoder and decoder. Consequently,
encoder and decoder are parametrized with weights and biases θ, φ, respectively,
that are parameters of the corresponding networks. During training of the VAE,
they are adjusted by minimizing a loss function L: Let the VAE be trained with
N data points li whose separate losses li(θ, φ) can be calculated independently
as follows:

li(θ, φ) = −Ez∼qθ(z|xi)[log pφ(xi|z)] + KL(qθ(z|xi)||p(z)) (2)

The first term in Eq. (2) measures the reconstruction loss between encoded and
decoded solutions as expected log-likelihood of the ith data point li, so that the
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network is trained to closely reconstruct the input data points. The second term
is added to enforce the regularity of the latent representation. This allows to gen-
erate new instances by sampling from the latent space. Regularity is enforced by
minimizing the loss of the compression. This is done by minimizing the Kullback-
Leibler divergence between the encoder distribution qθ(z|x) and the prior p(z)
on the latent space1. The total loss L is aggregated over all N training samples:

L =
N∑

i=1

li(θ, φ) (3)

4.1 Training VAEs in DSE

VAEs learn an efficient encoding that performs a lossy dimensionality reduction
of the input space, so that a reduced number of features describing the original
space are extracted. For automatic search-space compression in constrained opti-
mization, we propose to train a VAE using feasible decision vectors x ∈ {0, 1}n as
input I to the encoder. These training samples are automatically generated dur-
ing any DSE, since feasibility of design points needs to be guaranteed by either
repair or a filtering of infeasible solutions. Parameters θ, φ of the VAE’s encoder
and decoder are trained using gradient descent for a set number of iterations, or
until they converge.

4.2 Proposed VAE Pattern

We propose the following VAE pattern that is well-suited to a variety of DSE
problems, as demonstrated in the experimental evaluation in Sect. 5: The first
layer of the VAE consists of n input neurons with relu activation functions, where
n is the dimension of the original DSE search space. The input layer is followed
by three hidden layers; the first increases in dimension by 10% to buffer the
input, while the remaining layers evenly decrease in dimension to a set latent-
space size d. All layers are fully connected to their predecessor and successor
layer. A fourth hidden layer represents the latent space by two d-dimensional
vectors μ, σ that correspond to mean and standard deviation of the Gaussian
distribution describing the latent space. For the decoder, this architecture is
simply reversed. Depending on the selected dimension d of the latent space, the
VAE learns a more or less compact compression of the feasible search space, i.e.
a simplified search space of the problem that can be exploited for the remaining
DSE in the following ways:

4.3 Optimization Using VAEs

Variational Inference. As discussed, the latent spaces of VAEs are designed to be
regularized, so that random sampling from the latent space allows to generate
1 which is set to a standard Normal distribution N (0, 1) to enforce maximal diversity

between encoded values z.
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new data points by feeding the samples through the learned decoder. Conse-
quently, we propose to replace the optimizer of DSE by the sampling process
(Fig. 2(d)(II)). Since a model of the feasible search space is learned, sampling
(or a systematic traversal) of this search space has the potential to improve
optimization, since vast infeasible areas are no longer considered. However, since
feasibility of generated samples cannot be guaranteed by the learned VAE-model,
the synthesized solutions still need to undergo the same feasibility check (and
potential repair) as before; since this is a necessary step of any DSE flow in
any case, variational inference can seamlessly be integrated. Newly generated
solutions are, subsequently, mapped to the design space to be evaluated w.r.t.
the optimization objectives, and a systematic or random exploration can be
continued until sufficient optimization quality is reached.

Exploration of Compressed Search Spaces. Since the previously discussed vari-
ational inference lacks the ability to explicitly improve solutions based on
optimization-quality numbers, we propose to explore the compressed search
space using conventional optimization techniques, as already applied in DSE.
W.l.o.g., we illustrate this using Multi-Objective Evolutionary Algorithms
(MOEAs) as an example (Fig. 2(d)(I)): MOEAs explore a search space using
standardized operators that perform mutation or a crossover between high-
quality solutions. Thus, the optimization quality is implicitly utilized during opti-
mization, since new solutions are created by predominantly varying selected high-
quality solutions. In standard search spaces, such variations frequently result in
infeasible solutions that need to be discarded or repaired—where the repair may
destroy high-quality properties or even reverse any operations performed, thus
not advancing the optimization. By repurposing the MOEA to traverse the com-
pressed search space after training of the VAE is complete, the simplified search
space, i.e. the feasible model of the full-size search space, can be explored, while
solution quality is taken into account. Solutions chosen by the optimization algo-
rithm are, again, decompressed using the decoder of the VAE and subjected to
the feasibility check and/or repair before evaluation.

5 Experimental Evaluation

This section presents an experimental evaluation of the proposed search-space
compression using VAEs in DSE and compares them to a reference DSE EA-ref
using an MOEA [2,10] on the original, uncompressed search space. All pre-
sented approaches use the same SAT-based repair mechanism [10] and DSE
parametrization, implemented in the open-source DSE framework OpenDSE, so
that the impact of the proposed search-space compression can be examined in iso-
lation. Since VAE-based compression is orthogonal to other pruning approaches
and can arbitrarily be combined with other techniques, an exhaustive compari-
son of such combinations is out of scope for this work.

The VAE is implemented in tensorflow [1] and its parameters θ, φ of the
encoder and decoder are trained using gradient descent, as for standard DNNs.
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The VAEs investigated in this work are trained with 10,000 feasible samples
over 125 training epochs. The approach VAE-EA explores the VAE-compressed
search space using a ranking-based MOEA NSGA-II [2] as frequently employed in
multi-objective optimization. Approach VAE-VarInf utilizes the VAE’s in-built
generator capabilities that allow to directly generate new solutions by sampling
from the latent space, thus removing the need for a dedicated optimizer in the
subsequent DSE. Samples are selected from a normal distribution. To compare
this to an iteration-based MOEA, we have implemented a sampling scheme that
iteratively generates a fixed number of new solutions for a set number of itera-
tions, so that the same number of solutions can be compared for all approaches.
Furthermore, we present the results of a random sampling of the uncompressed
search space to verify the effectiveness of the compression.

5.1 Experimental Setup

We evaluate the proposed approaches for large-scale embedded many-core sys-
tems. The benchmarks telecom and automotive are taken from the Embedded
Systems Synthesis Benchmarks Suite (E3S) [3] and evaluated for 8× 8
and 12 × 12 heterogeneous tiled many-core architectures. The benchmark
specifications—including original search-space sizes—are summarized in Table 1.

Optimization Quality. We evaluate DSE quality using the ε-dominance mea-
sure [8] for multi-objective optimization quality. ε-dominance determines the dis-
tance between the solutions obtained by one optimization approach to a reference
set of non-dominated solutions in the objective space. Thus, values → 0 indicate
higher optimization quality. For complex optimization problems as DSE, where
the true Pareto set of solutions is unknown, the reference set is approximated
by aggregating the non-dominated solutions across all optimizations performed
for an experiment.

Table 1. System specifications, VAE training times, and compressed search-space sizes
for all benchmarks.

Benchmark E3S [3]

Telecom Automotive 8×8 Automotive 12×12

Application size 18 24 24

Architecture size 64 64 144

Search-space size 21,144 21,536 23,456

Compressed search-space (d ≈ 0.06n) 275 2100 2225

Training time (avg.) [s] 97.5 98.8 3144.2
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Fig. 3. Optimization quality in ε-dominance over DSE time for 500 DSE/sampling
iterations.

5.2 Experimental Results

Preliminary Exploration of Latent-Space Size d. To determine suitable VAE pat-
terns for search-space compression in DSE, we vary the size of the latent space
d, i.e. the degree of search-space compression, for both VAE-DSE approaches.
While a strong compression may result in a smaller and more tractable search
space, more information is potentially lost during encoding. On the other hand,
too large latent spaces may be good models of the original data; however, since
search-space size is a major challenge in system-level DSE, too small a com-
pression may have no effect on the optimizer’s performance. Choosing a suitable
latent-space size is, therefore, a crucial trade-off.

We systematically analyse latent-space sizes d, depending on input-space size
n by performing preliminary experiments for various d, ranging from d = 0.05n
to d = 0.75n and the corresponding VAEs. When the compressed search space is
explored using an actual optimizer VAE-EA, strong compressions to d ≈ 0.06n
result in optimization quality increases for most benchmarks. It is therefore
used in the following experimental evaluation. Larger latent-space sizes, however,
result in quality decreases, indicating that the search.space compression in these
cases is not strong enough for more efficient exploration.

Optimization Quality. All experimental results are averaged over 5 runs for each
approach to compensate for the randomly generated starting solutions of the
MOEA. Figure 3 presents the optimization quality, measured in ε-dominance,
after 500 iterations of the MOEA with 24 newly generated solutions per iteration.
For the sampling approaches (random sampling (as reference) and the proposed
VAE-VarInf), 500 × 24 solutions are sampled for a fair comparison.

The actual exploration of the simplified search space using VAE-EA improves
optimization quality in both 8×8 benchmarks by up to 66% in ε-dominance. For
automotive 12×12, both EA-based approaches achieve comparable optimization
quality, while the proposed VAE-EA offers an advantage in quicker convergence.

Variational inference also significantly improves optimization quality com-
pared to a standard DSE EA-ref in two out of three benchmarks; however, the
effect is not as strong as when employing an actual optimization algorithm. This
validates the effect of the search-space compression, since VAE-VarInf does not
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use an explicit optimizer to explore the search space. The only exception to
this is, again, benchmark automotive 12×12, where VAE-VarInf does not meet
DSE-optimization quality and, in fact, no feasible solution could be derived by
sampling the compressed search space. This may be due to the fact that this
benchmark has a significantly larger input dimension, so that a more complex
VAE-architectural layout may be required to achieve a better compression. In
comparison, a random sampling of the original search space is significantly infe-
rior for all benchmarks.

Optimization Time. Optimization times for all new approaches, compared to
the original DSE, vary between benchmarks. While VAE-optimization time for
automotive 8× 8 is halved compared to EA-ref, approximately the same amount
of DSE time is required for automotive 12× 12. For telecom 8× 8, DSE time is
increased by a factor of ≈1.5. Thus, the additional required decoding step from
the compressed search space to original search-space does add varying overhead
that cannot always be compensated by reduced repair times. Furthermore, the
time to train each VAE needs to be taken into account, which is in the range of
≈1.5–51 min (cf. Table 1), compared to an average DSE time of 1.25 h.

On the other hand, optimization quality in DSE typically stagnates after
some time [17], so that more DSE time is not guaranteed to—and in practice
typically will not—yield new high-quality solutions after a certain point.

6 Conclusion

This work investigates the need for search-space compression in hard-constrained
multi-objective optimization, since vast and sparse search spaces are detrimen-
tal to effective exploration using standard optimizers. As a remedy, we propose
automatic search-space compression using VAEs for facilitated optimization on a
learned and compressed model of the feasible search space. Alternatively, novel
solutions can directly be extracted from the model using VAE’s built-in gen-
erator capabilities. Experimental results for a variety of application domains
demonstrate the compression’s potential to significantly improve DSE in terms
of optimization quality with limited runtime overheads.
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Abstract. Compressed cache layouts require adding the block’s size
information to the metadata array. This field can be either constrained—
in which case compressed blocks must fit in predetermined sizes; thus,
it reduces co-allocation opportunities but has easier management—or
unconstrained—in which case compressed blocks can compress to any
size; thus, it increases co-allocation opportunities, at the cost of more
metadata and latency overheads. This paper introduces the concept of
partial constraint, which explores multiple layers of constraint to reduce
the overheads of unconstrained sizes, while still allowing a high co-
allocation flexibility. Finally, Pairwise Space Sharing (PSS) is proposed,
which leverages a special case of a partially constrained system. PSS
can be applied orthogonally to compaction methods at no extra latency
penalty to increase the cost-effectiveness of their metadata overhead.
This concept is compression-algorithm independent, and results in an
increase of the effective compression ratios achieved while making the
most of the metadata bits. When normalized against compressed sys-
tems not using PSS, a compressed system extended with PSS further
enhances the average cache capacity of nearly every workload.

Keywords: Cache · Hardware compression · Cache organization

1 Introduction

Cache compressors process data in uncompressed format to generate compressed
output. Typically, compressors focus on reaching good compression factors or fast
decompression latencies to improve system performance or cache capacity [17].
However, compression by itself is not enough to achieve these goals; a compaction
scheme (or cache organization, or compactor) must be used to determine what
to do with the compressed data. That is, compaction schemes expand the capa-
bilities of conventional tag-data mapping methods to account for compressed
blocks and their ability to share data entries.

Some compaction techniques limit compression to fixed sizes (e.g., 25% and
50% of the line size), adding padding to lines smaller than these sizes [18,19].
These constrained methods have low metadata overhead, but limit co-allocation
by removing opportunities. Moreover, while cache compressors may be successful
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in some workload regions, there is still plenty of data that fails to attain favorable
compressed sizes for compaction; the average compressed size in SPEC 2017 for
multiple state-of-the-art compressors [1,3,4,6,11,12,15], is still far above 50% of
the uncompressed size (Fig. 1), making it hard to effectively co-allocate blocks
with such limitations.

Fig. 1. Average compression ratio of SPEC 2017 workloads for multiple state-of-the-art
cache compression methods applied to the Last-Level Cache (L3). Lower is better.

Other proposals remove these limits, allowing blocks to be compressed to
any size [2,6]—a concept we will refer to as unconstrained methods. Although
these methods allow compression to reach its full potential, they significantly
increase metadata overhead due to the number of bits needed to represent the
compressed size. Besides, locating lines becomes non-trivial: they can be found
anywhere in the data entry. This results in a few more cycles being added to the
access path.

We have come up with Pairwise Space Sharing (PSS), a technique that
achieves the best trade-off between limiting the number of possible sizes and hav-
ing an unconstrained representation. PSS introduces the notion of a partially-
constrained representation: blocks are stored in groups of two—block pairs—and
although each pair must fit in a fixed-size entry, the blocks within a pair have
less restrictions. As a result, PSS keeps line location trivial, and requires
far less metadata bits than conventional unconstrained methods, while
still making the most out of co-allocation opportunities. Moreover, Pair-
wise Space Sharing can be applied in conjunction with most state-of-the-art
cache compaction proposals.

This paper makes the following contributions:

– We show a particular case of size constraints that significantly reduce meta-
data and latency overheads of existing methods.

– We demonstrate that having a fully unconstrained representation is sub-
optimal when the compression design is focused on neighbor-block co-
allocation.

– We group these benefits to propose Pairwise Space Sharing, an expansion to
compaction layouts which allows the benefits of unconstrained compaction
with minimal tag overhead and no extra latency.

The following terms will be used throughout this paper: compression ratio
is the ratio between the compressed size and the cache line size [16]; and com-
paction ratio—also referred to in the literature as effective cache capacity—is
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the number of valid blocks in a data entry. The former measures how efficient
a compressor is, while the latter exposes the efficacy of the compressed system
(compression + compaction).

2 Size Constraints of Compressed Blocks

After a block is compressed, a compaction method is used to determine if it
can be co-allocated with other block(s). These techniques may use different
approaches to decide how to co-allocate, but they must always rely on one piece
of information: the block size. Co-allocated blocks must fit in their designated
space, which means that each block’s size must always be retrievable; thus, a
compressed block’s size is an inherent metadata overhead. Sizes are typically
represented at a byte granularity to slightly reduce this overhead [2,6].

The size field can be either unconstrained—i.e., all sizes are possible—
or constrained—i.e., compressed blocks are padded to fit in predetermined
sizes. While unconstrained sizes are theoretically ideal to make the most out of
compression, they come at a high cost: large metadata overhead. Furthermore,
its placement process is fairly complex due to varying available sizes and higher
number of location possibilities, which may require a few extra cycles to process.

Constrained sizes use larger granularities to ease these drawbacks—e.g., at
half-line granularities a compressed block can either be compressed to half or be
left uncompressed, which would require a single-bit size field, and generate only
two possible block locations—but add a penalty to the compression efficiency:
data entries routinely end up wasting many bits with padding [18,19].

2.1 Partial Constraint

We hereby define a third possibility: partially constrained sizes. A partially
constrained entry is split into multiple constrained segments, and each of those
segments uses an unconstrained layer. For example, a 512-bit data entry can be
divided into four 128-bit segments. Each segment can co-allocate blocks without
constraints, as long as they fit in its 16-byte space, as depicted in Fig. 2.

Fig. 2. Example of a data entry split into four constrained segments. Each segment
co-allocates blocks in an unconstrained fashion: blocks can be compressed to any size,
as long as their sum fits in their segment’s 128 bits.

One possible goal of smaller constrained entries is to allow restricting place-
ment. If a rule is applied so that, for example, a given block B can only be

assigned to S specific segments, then
P − S

P
of the P placement locations
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are removed from the possibilities. This reduces the number of size bits by
�log2(P − S)�. Nonetheless, this restriction is not enough to satisfy latency
requirements, because B can still be stored anywhere within its allowed seg-
ments, which may still be a large gamma of placement possibilities.

2.2 A Case for Latency-Efficient Partial Constraint

There are, however, two special cases of partial constraint that deserve distinct
attention: when the number of blocks allowed per segment are, respectively, 1 and
2. When only one block can be allocated per segment, there are two possibilities:
either it is an uncompressed cache (the segment size matches the cache line’s
size); or it is a general constrained method—the segment size is smaller than the
cache line’s, and compressed blocks must fit in fixed-sized entries.

The other case, when there are up to two blocks per segment, has a peculiarity
that can be exploited to greatly simplify locating blocks. Within a constrained
segment, no matter its size, there are two invariable locations: its leftmost bit,
and its rightmost bit (i.e., the extremities). These can be used as markers that
define the beginning of a sub-block, with one of the sub-blocks being stored in
reverse order (the MSB becomes the LSB and vice-versa) (Fig. 3a). Since these
locations are statically defined, there is no latency overhead to locate blocks within
a segment. We will refer to segments that contain up to two blocks as a block
pair (BP).

(a) Block placement in an entry containing
a single BP. E is stored conventionally, and
F is stored with its bits reversed.

(b) A data entry with two segments sup-
ports up to four sub-blocks — there are
two BPs. R and S are paired up in a BP
1, and Q is in BP 0. Q’s companion is not
present. Q and S are stored reversed.

Fig. 3. Overview of the sub-block placement in BPs. Each sub-block is stored relative
to an extremity of its BP.

Another advantage of having fixed extreme locations is that, since the bits in
between the sub-blocks are unused, data contractions and expansions that still
fit in the pair do not need recompaction.

3 Pairwise Space Sharing

We herewith introduce Pairwise Space Sharing (PSS): a partially con-
strained co-allocation technique that uses block pairs (BPs). Contrary to previous
approaches, Pairwise Space Sharing stores metadata implicitly, and reduces the
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likelihood of data expansions—i.e., it reduces the metadata overhead, yet yields
better results. PSS is independent of the space available; thus, it can be applied
to compressed cache layouts that allow more than two blocks per data entry.

For instance, in YACC [19] a superblock’s compression factor (CF) defines
the minimum size a sub-block must attain to be compressed: a quarter (CF = 4),
and half of the data entry (CF = 2). If, for example, PSS is applied on top of
YACC, this limitation is lessened, and the pair’s size must fit in a half or a
whole data entry instead, respectively. No further modifications are needed, and
sub-blocks are paired like in YACC: when CF = 2 there is only one BP, and
any of its four sub-blocks can be paired in it (Fig. 3a); when CF = 4, there are
at most two pairs, and each sub-block’s position in the data entry is fixed—sub-
block 0 can only be paired with 1, and sub-block 2 with 3. Figure 3b shows an
example of data entry containing more than one BP.

It is important to notice, however, that PSS is not limited to a YACC-like
design, so it could handle placement differently (e.g., by adding a position field
to the metadata when the CF is 4 too to allow sub-blocks to be placed in any of
the available extremities—see Sect. 3.4 for more information on that). In short,
PSS decides where and how, not which blocks are allocated in a data entry; thus,
it can be applied to non-superblock-based layouts too.

3.1 Decreasing the Number of Unsuccessful Co-allocations

A BP’s size is fixed, but dependent on the CF (see Eq. 1). For example, given
64B cache lines, a superblock with CF = 2, has one BP; so, the size fields of
its two blocks would naively require 2 · 6 bits; when CF = 4, two BPs can
reside in the superblock, so 4 · 5 bits would be needed for the size fields, per
tag entry. This naive approach assumes that any size is valid; however, the
probability distribution of compressed sizes follows a non-uniform cumulative
distribution function: barely compressing a block is significantly more frequent
than compressing it to a tiny size (as seen in Fig. 1).

BPSizeCF = 2 · cacheLineSize
CF

(1)

Consequently, a large block will likely not co-allocate, and impose an unnec-
essary decompression latency fee on hits. This observation is especially true for
superblock-based compaction methods, since neighbor blocks tend to have sim-
ilar compressibility [14], so a large sub-block will probably have a comparably
sized counterpart. Hence, one can limit the range of possible sizes within a seg-
ment to increase the likelihood of co-allocating blocks.

Sizes are stored as a number relative to minSizeCF . By limiting the range of
valid compressed sizes ([minSizeCF :maxSizeCF ], with values respecting Eq. 2),
not only does the likelihood of having non-co-allocated blocks reduce, but also
the size field’s width is also decreased (Eq. 3 if 2 · maxSizeCF �= BPSizeCF ; 0
otherwise). This means that sizes are stored as numbers relative to minSizeCF .
As a consequence, blocks whose size is smaller than minSizeCF are rounded up
to minSizeCF .
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minSizeCF = BPSizeCF − maxSizeCF (2)

sizeBitsCF = log2 (2 · maxSizeCF − BPSizeCF ) (3)

In the previous example, if the size-field range is set so that maxSizeCF =
62.5%·BPSizeCF of the uncompressed line (minSize2 = 24B, maxSize2 =
40B, minSize4 = 12B, maxSize4 = 20B), the width of a size entry is reduced
to sizeBits2 = 4, and sizeBits4 = 3. Therefore, an absolute size of 30B would be
stored as a relative size of 6B (30B −minSize2 = 6B =01102), and an absolute
size of 10B would be stored as 0B.

3.2 Halving the Number of Size Fields

Since the segment’s size and location, and the blocks’ location are always known,
one can further reduce the size-related metadata overhead: only one of the sub-
blocks’ sizes needs to be stored in the tags, in the pair’s respective size field entry,
and the other (e.g., the non-reversed sub-block’s) can be implicitly estimated as
its complement. If only the non-reversed block is present in the pair, the stored
size represents the available space for the reversed sub-block.

This optimization has the drawback that the reversed block must be decom-
pressed and re-compressed to retrieve the real available size in the BP whenever
its companion suffers a data expansion (i.e., a write larger than its current size
occurs). Figure 4 presents how the size field is interpreted under different CFs,
for both non-optimized and optimized configurations. Nonetheless, this event is
rare, not on the critical path, and the re-compression step can be removed by
adding a delimiter code to the end of the companion’s compressed data.

Fig. 4. A comparison of size-related metadata used at different compression factors
for different configurations. CS is the compressibility state (whether CF is 1, 2, or 4).
When CF=1, only the CS field is used (i.e., the block is not compressed).

3.3 Total Size-Related Overhead

A data entry in a cache layout using Pairwise Space Sharing needs enough size-
field bits to cover the worst-case scenario, in which the maximum amount of
blocks compressed to the best compression factor (maxCF ) are co-allocated
(Fig. 4). This means that besides the usual tag, replacement state and coherence
fields, each data entry must dispose of log2 (maxCF ) bits to inform the number
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of BPs in the data entry (equivalent to a conventional field informing the com-

pressibility state—CS); and log2 (
maxCF

2
) size field entries to bear the size of

the smallest possible BP entry (sizeBitsmaxCF ), taking into account whether
the single-size-per-BP optimization is being used—see Eq. 4.

totalentry = log2 (maxCF )+ log2 (
maxCF

2
) ·sizeBitsmaxCF ·numSizesPerBP

(4)
For instance, the case of PSS where the maximum compressed size allowed is

50% is similar to constrained methods allowing three possible sizes—25%, 50%
and 100%—such as YACC [19] and SCC [18]: maxCF = 4, BPSize2 = 64B,
BPSize4 = 32B, maxSize2 = 32B, maxSize4 = 16B, sizeBits2 = sizeBits4 =
0, thus totalentry = 2 bits.

3.4 Position Bits

It is important to notice that a block’s size may not be the only piece of metadata
needed to locate blocks: starting-position bits may also be necessary. When no
positional information is explicitly provided the sizes are used to deduce the
blocks’ starting position. This means that a size can only be updated along with
a recompaction step (see Fig. 5). If the design chooses not to update a block’s
size right away on a data contraction or eviction, these bits must be added to
the size of the previous block in the sequence so that the starting positions of
the following blocks are kept correct - i.e., those bits are wasted.

(a) A is stored at position 0, and B is
stored relative to A.

(b) If A’s size changes, and B is not moved,
B can no longer be located.

Fig. 5. Locating blocks without a position field.

Under these circumstances, some layouts may opt to add a position field to
the blocks’ metadata. Assume that C is the number of coherence bits, up to four
blocks can co-allocate in a data entry, and that the number of tag bits is the
same for all methods: an unconstrained layout’s metadata bits would include 1
compression-state (CS) bit per data entry, and 6 size bits and 6 position bits per
block (Eq. 5); a constrained layout needs 1/2 CS bits per data entry, and 1/2
index bits per valid sub-block (depends on the CS) (Eq. 5); finally, PSS reduces
the size restrictions of the constrained approach, so it adds one or two 3/4 size
bits per valid block pair on top of Tcons (Eq. 7).

T (otal)uncons = 1 + 4 · 6 · 6 + 4 · C (5)
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Tcons = max(TconsCF4, TconsCF2) = max(1 + 4 · (2 + C), 2 + 2 · (2 + C)) (6)

TPSS = max(TconsCF4 + 2 · (1|2) · 3, TconsCF2 + 1 · (1|2) · 4) (7)

For example, if C is 3, Tuncons = 157, Tcons = 21, and TPSS = 27|33. As seen,
PSS has a huge metadata advantage over the unconstrained approach,
while not adding much when compared to the constrained technique.

4 Related Work

Dictionary-based compressors use the values in a cache line to fill a dictionary
of previously seen values. While parsing a line, the dictionary entries are com-
pared against patterns for full or partial matches, which are referred to by the
compressed data, along with the discrepant bits in case of a partial match.

C-Pack [6] applies the basic ideas of dictionary-based compressors; X-Match
and X-RL reorder the dictionary to apply Huffman code on the most-recently
seen value [12]; BDI [15] limits the dictionary to two entries, which are matched
through delta comparisons to achieve 1-cycle decompression; DISH [14] improves
BDI’s low compression efficiency by sharing dictionaries between multiple lines.

COCO [21] applies BDI’s idea to objects, instead of cache lines; FPC-D [1]
uses a 2-entry FIFO as its dictionary to reduce decompression latency. FPC
[3] has no dictionary (i.e., a pattern-only scheme); BPC [11] further compresses
base-delta-like compressed data with bit-plane transformations; and SC2 [4] uses
probabilistic models to build a global dictionary.

Compressors must be associated with a compaction scheme to increase the
effective cache capacity. Some compacted layouts allow any pair of lines to co-
allocate by doubling the number of tags and informing the compressed sizes in
the metadata [2,6,13]. This overhead is cumbersome, so modern proposals tend
to focus on using superblock tags, which associate multiple neighbor blocks to
a single shared tag [18,19]. Recent proposals move the tag information to the
data entry [9]. Other approaches redesign the cache, with ideas ranging from
adding extra caches holding the compressed data [8] to a full overhaul of the
cache organization [21]. PSS is orthogonal to these design decisions.

Chen et al. introduced pair-matching [6], which co-allocates blocks in pairs
as long as the sum of their compressed sizes’ fits in a data entry, requiring
one size field per sub-block. Pairwise Space Sharing has up to 73% less size-
related metadata overhead due to its insights on the probabilities of co-allocation,
and removal of the partially redundant companion’s size information. Besides,
since sub-block location is fixed, and unused bits are located in-between blocks,
PSS greatly simplifies data insertion, removes the need for recompaction, and
minimizes the likelihood of data expansions.

5 Methodology

Our simulations have been performed using gem5 [5]. Compression-related statis-
tics are averaged across all (de)compressions. Compaction-related statistics are



A Case for Partial Co-allocation Constraints in Compressed Caches 73

averages of snapshots (taken every 100K ticks) of the cache’s contents. We took
multiple checkpoints per benchmark of the SPEC 2017 benchmark suite [7] using
SimPoints [20]. Workloads were warmed up for 100M instructions, and then
executed for 200M instructions. The average of each benchmark’s statistics has
been calculated with the arithmetic mean of its checkpoints, and the total geo-
metric mean of the benchmarks was normalized to a baseline system without
compression. Benchmarks whose number of Misses Per Kilo-Instruction (MPKI)
was lower than 1 were discarded from the analysis—as they barely benefit from
having larger caches, compression is not useful.

The baseline model executes out-of-order (OOO), and is detailed in Table 1.
All compression and compaction algorithms are applied to the L3 on top of this
common configuration.

Table 1. Baseline system configuration.

Cache line size 64B

L1 I/D 32KB, 4-ways, 4

cycles, LRU

L2 256KB, 8-ways, 12

cycles, RRIP [10]

Shared L3 1MB, 8-ways, 34

cycles, RRIP

MSHRs and write

buffers

64

DRAM DDR4 2400MHz

17-17-17,

tRFC=350ns, 4GB

Processor 1 core, OOO, 8-issue

Architecture ARM 64 bits

Clock 4GHz

Image Ubuntu Trusty,

Little Endian

6 Results

In this section we analyse which size range provides the most cost-effective
results. We also compare the efficiency and effectiveness of PSS when applied on
top of multiple state-of-the-art compressors. Finally, we provide an area estimate
comparison.

6.1 Selecting the Size-Field Range

As stated previously, neighbor blocks tend to have similar data contents, and
thus similar compressibility. If a line compresses to a size greater than 50% of the
BP’s size, its companion has a high likelihood of compressing to a size greater
than 50% too; consequently, there is lower co-allocation chance. This means that
reducing size constraints may actually degrade performance.

To find out the best number of bits to be used in the size field, we have
analysed the different compaction ratios achieved, as well as the proportion of
blocks that co-allocated with another block at the moment it was compressed.
The highest ratio of successful co-allocations is achieved when block sizes are
within the absolute range [37.5%: 62.5%] of the BP’s size (Fig. 6, left). This
is reflected in compaction ratio improvements (Fig. 6, right). Unless stated
otherwise, future references to PSS use the [37.5%: 62.5%] range.
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Fig. 6. Comparison of the best range choice for multiple state of the art compression
methods under a YACC layout with PSS. Values for each compressor are normalized
to the respective compressor using a PSS of 50%. Left plot is the ratio of successful

co-allocations (
numCoAllocations

numCompressions
). Right plot is the compaction ratio.

6.2 Compaction Ratio

Figure 7 shows the difference in compaction ratio for various state-of-the-art
compressors while coupling YACC [19] to PSS. All PSS configurations outdo their
non-PSS counterpart because of the better ratio of successful co-allocations.

Fig. 7. Compaction ratio of multiple state of the art compression methods under a
YACC layout without and with PSS applied to them. X-RL’s results are similar to
X-Match’s, and are not shown due to space constraints.

6.3 Number of Size Fields per BP

Having a single size per BP has a drawback in case the block whose size is stored
expands: the exact size of its companion is unknown, so the companion’s data
must be read, decompressed and re-compressed to check if evictions are needed.
We simulated a worst case scenario where the latency of a read was added to
every block overwrite, and the differences in IPC and compaction ratio were far
below 1% because these steps could often be done off the critical path; hence,
halving the number of size fields has marginal negative impact.

6.4 Effects on Data Expansions

Although rare, data expansions can be inconvenient. We compare the number
of data expansions of YACC using PSS with 1) a conventional 50% constrained
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design (Con50), and 2) a PSS design that co-allocates at non-extremities loca-
tions (i.e., blocks are allocated sequentially, at the first available bit), at a byte
granularity (PSSNE). PSS generates a much smaller data-expansion footprint,
as seen in Fig. 8.

Fig. 8. Number of data expansions with Con50 and PSSNE (normalized on PSS—e.g.,
there are 15% more data expansions in BDI+Con50 than in PSS). Only the means of
the benchmarks are shown due to space constraints. The number of data expansions is
normalized on top of the selected PSS configuration, so any value above the horizontal
line signifies that its respective configuration has more data expansions than PSS. All
other configurations are above the horizontal line; thus, PSS has significantly less data
expansions than any other compared configuration.

6.5 Area Overhead

We have implemented the placement decisioning logic under a generic uncon-
strained, a generic constrained, and the PSS approaches using Quartus II Web
Edition v21.1 and assuming that the metadata contains a position field. Con-
strained and PSS require, respectively, 4% and 14% of the area of the uncon-
strained method. These two techniques also manage to always calculate new posi-
tions in a single cycle, while the unconstrained approach needs multiple cycles at
a much slower clock rate.

7 Conclusion

This paper explores Pairwise Space Sharing (PSS), a special case of pair-
wise block compression which uses implicit information to reduce compression-
size metadata, increase co-allocation opportunities, and remove re-compaction
needs. This concept is layout-independent, but highly advantageous for spatially
close block co-allocation techniques (e.g., superblocks). PSS reaches an effec-
tive metadata-bits usage, and improves the compaction ratio of nearly every
compressed-system configuration, while still being simple enough to handle
compressed-line placement decision in a single cycle.
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Abstract. Offloading the most demanding parts of applications to an
edge GPU server cluster to save power or improve the result quality is
a solution that becomes increasingly realistic with new networking tech-
nologies. In order to make such a computing scheme feasible, an applica-
tion programming layer that can provide both low latency and scalable
utilization of remote heterogeneous computing resources is needed. To
this end, we propose a latency-optimized scalable distributed heteroge-
neous computing runtime implementing the standard OpenCL API.

In the proposed runtime, network-induced latency is reduced by means
of peer-to-peer data transfers and event synchronization as well as a
streamlined control protocol implementation. Further improvements can
be obtained streaming of source data directly from the producer device
to the compute cluster. Compute cluster scalability is improved by dis-
tributing the command and event processing responsibilities to remote
compute servers. We also show how a simple optional dynamic content
size buffer OpenCL extension can significantly speed up applications that
utilize variable length data.

For evaluation we present a smartphone-based augmented reality ren-
dering case study which, using the runtime, receives 19× improvement
in frames per second and 17× improvement in energy per frame when
offloading parts of the rendering workload to a nearby GPU server. The
remote kernel execution latency overhead of the runtime is only 60 ms on
top of the network roundtrip time. The scalability on multi-server multi-
GPU clusters is shown with a distributed large matrix multiplication
application.

1 Introduction

End-user applications are increasingly moving to battery-powered devices, and
at the same time, the computational complexity of their functionalities increase.
Offloading parts of applications to an edge node that resides within a short net-
work round-trip from the user device is a solution that is becoming more feasible
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with low-latency next-gen networking technologies such as 5G and WiFi6. The
overall concept of utilizing edge cluster resources across low latency network
links, called Multi-access Edge Computing (MEC) [29] is now an active field of
research and development.

In the application layer, the MEC paradigm calls for a solution that both
minimizes end-to-end latency overheads and allows utilizing all the heteroge-
neous compute resources in the remote edge cluster in a scalable and portable
manner. To this end, we propose a scalable low-latency distributed heteroge-
neous computing runtime that implements the standard OpenCL API [15] and
is targeted for usage by the application layer either directly or transparently as
a backend for higher level interfaces with OpenCL backends such as SYCL [16]
and oneAPI [10].

Unlike the previous distributed OpenCL projects, the proposed runtime
called PoCL-R focuses on latency and the edge cluster side scalability at the
same time. Furthermore, PoCL-R also provides support for low latency dis-
tributed streaming applications where data is read from a remote input device
to the end user (client) device, which then needs to be further processed to
produce the output. With PoCL-R, the input data can be streamed directly
to the remote compute node, reducing the client’s bandwidth use and overall
latency. Overall, a key benefit of PoCL-R is that the whole edge cluster workload
distribution can be orchestrated from the client application logic side without
application-specific server-side software, thanks to the generality and power of
the heterogeneous OpenCL API.

We identify the following novel aspects in the runtime presented in this paper:

– Utilization of edge cluster compute resources with peer-to-peer (P2P) com-
munication and synchronization for improved compute scalability.

– Capability of supporting applications with both high performance and low
latency demands to support distributed compute offloading scenarios of MEC
with a wide complexity range.

– Enable transfers of input data straight from a producer server to the edge
cluster before passing it to the client device while still only utilizing the
standard OpenCL API’s features.

– A minimal (optional) OpenCL API extension that can improve transfer times
of dynamic-size buffers dramatically. This is especially useful for taking advan-
tage of buffers with compressed data.

– The first distributed OpenCL runtime that is integrated to a long-maintained
widely used open source OpenCL implementation framework PoCL [13] and
is thus usable and extensible for anyone freely in the future.1

In order to test the latency of the runtime in a real-time context, we present
a real-time augmented reality mobile case study, which receives significant
improvements in both frames per second (FPS) and energy per frame (EPF)
by offloading parts of the object rendering workload to a remote GPU server.
The edge compute cluster side performance is reported separately with a remote
1 The source code is available at http://code.portablecl.org/.

http://code.portablecl.org/
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kernel execution latency overhead measurement and a multi-server multi-GPU
cluster scaling experiment.

The paper is organized as follows. Section 2 gives an overview of the PoCL-
R top level design and its usage aspects. Section 3 describes the most relevant
techniques in the proposed runtime to achieve the low latency while retaining
scalability. Section 4 lays out the results in terms of latency and throughput
measurements, and Sect. 5 presents the MEC offloading case study. Section 7
describes some plans for future work and concludes the paper.

2 Architecture

The focus of PoCL-R is on minimizing the end-to-end latency to enable high
quality user experience in responsive real-time edge cluster use scenarios as well
as enable scalable use of diverse compute resources in the cluster.

The whole application logic is defined in a single host application, as speci-
fied by the OpenCL standard. The application includes both the main program
running in the local device as well as the kernel programs that are executed on
local, or in the case of PoCL-R, remote OpenCL devices. The OpenCL standard
allows the kernel programs to be defined in a portable source code or an inter-
mediate language, and alternatively using target-specific binary formats. This
can be used to bypass long synthesis steps at application runtime when using
FPGA-based accelerators.

PoCL-R runtime is implemented as a standard client-server architecture. The
client is implemented as a special remote driver in Portable Computing Language
(PoCL) [13], an open source implementation of the OpenCL API with flexible
support for custom device backends. The remote driver acts as a “smart proxy”
that exposes compute devices on a remote server through the OpenCL platform
API the same way as local devices, making the use of remote devices in OpenCL
applications identical to using local devices at the program logic level. Features
of the remote devices depend on what their native drivers support.

A host application using the OpenCL API can use PoCL-R as a drop-
in implementation without recompilation. When the host application is linked
against PoCL-R, OpenCL calls are made to the PoCL-R client driver, which
in turn connects to one or multiple remote servers, each providing one or more
remote compute devices. The remote servers can form interconnected clusters
visible and controlled by PoCL-R as peers to avoid round-trips back to the
client whenever synchronization or data transfers are needed between the remote
devices. The application can identify remote devices by the device name string
that contains an additional “pocl-remote”. This allows optimising choices of
command queues and kernel implementations.

The server side is a daemon that runs on the remote servers and receives
commands from the client driver, and dispatches them to the OpenCL driver of
the server’s devices accompanied with proper event dependencies.

The daemon is structured around network sockets for the client and peer
connections. Each socket has a reader thread and a writer thread. The readers



PoCL-R: A Scalable Low Latency Distributed OpenCL Runtime 81

Fig. 1. The information flow from an application to the PoCL-R daemon and between
remote servers. Two different commands are illustrated, one that transfers buffer con-
tents from one remote node to another and one that doesn’t.

do blocking reads on the socket until they manage to read a new command,
which they then dispatch to the underlying OpenCL runtime, store its associated
OpenCL event in a queue and signal the corresponding writer thread. The server
writer thread iterates through commands in the queue and when it finds one that
the underlying OpenCL runtime reports as complete, writes its result to the
socket representing the host connection. Peer writers have separate queues, but
work otherwise similar to the server writer. Figure 1 illustrates this architecture
and the flow of commands and data through it.

3 Latency and Scalability Optimizations

The following subsections describe the essential latency and scalability optimiza-
tion techniques of PoCL-R.

3.1 Peer-to-Peer Communication

PoCL-R supports transferring buffers directly between devices on the same
remote server (provided that the server’s OpenCL implementation supports it),
P2P transfers of buffers between servers, as well as distributed event signaling.

Figure 2a illustrates the various possible links between the host application
running in the client device that communicates with remote servers and devices.
In a typical edge cluster use case, the client connection to the remote servers
is much slower than the interconnect between servers in the cluster, thus the
bandwidth savings versus transferring data always to the client application and
back to another remote device can affect the overall performance dramatically. In
addition, the number of network requests from the client are reduced drastically,
since the host application only needs to send the migration command to the
source server.
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3.2 Distributed Data Sourcing

When working with data that are not originally sourced from the client device,
they would normally have to be transferred to the client first, and then dis-
tributed to compute devices from there. With OpenCL’s custom devices feature
it is possible to wrap arbitrary data sources to appear as devices in the OpenCL
platform. Such devices can then utilize the P2P buffer migration functionality
to transfer input data directly to the compute device that needs it.

Figure 2b illustrates the difference between routing input data from a pro-
ducer device through the host application and sending it directly to the com-
pute device that needs it. In case the client application also needs the raw input
data, some extra bandwidth use is naturally incurred. This can be mitigated by
compressing the data in flight, at the cost of a slight latency and throughput
overhead.

(a) Possible connections PoCL-R (b) Input data streaming

Fig. 2. Various connections between devices in a PoCL-R context. Roundtrips to the
client device are avoided when possible.

3.3 Low-Overhead Communication

The base of the client-server communication is a pair of raw TCP sockets. One
socket is dedicated to commands and the other to buffer data transfers, their
send and receive buffer sizes tuned for their respective purposes. To minimize
latency on the network level, TCP fast retransmission is enabled for both sockets.

While optimization of serialization protocols has been researched a lot and
some extremely low-overhead protocols such as FlatBuffers [9] and MessagePack
[7] have emerged, using a separate wire format for communication still adds
overhead both on the sending and receiving side. PoCL-R uses the in-memory
representation of commands as its wire format, avoiding this. The only added
data is a fixed-size integer indicating the length of the next command structure.

The trade-off of this approach is that all remote servers as well as the client
device running the host application need to have the same integer byte order.
In practice we consider this not a noticeable limitation after successfully test-
ing PoCL-R across a range of devices, from commodity mobile SoCs to PC and
server room hardware. A bigger hurdle is the OpenCL C application code itself,
as OpenCL has no knowledge about buffer contents’ endianness and makes mixed
endianness related swapping the application writer’s responsibility [15]: Appli-
cations meant to work on platforms with mixed endianness need their kernels
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to be adapted to account for the difference and swap the byte order of multi-
byte values stored in OpenCL buffers when crossing devices with different byte
orders.

3.4 Decentralized Command Scheduling

OpenCL provides command completion events as a synchronization mechanism
between commands. PoCL-R relies heavily on these for keeping execution in
sync across nodes with minimal overhead. Commands are pushed to the remote
servers immediately when OpenCL enqueue API calls are made by the client.
Event dependencies are mapped to platform-local events on each server and
events for commands running on other servers are substituted with user events.
This way the heterogeneous task graph based on event dependencies defined by
the application stays intact on the remote servers and the runtime can apply
optimisations utilizing the dependency rules outlined in [12].

In addition to the control and data connections to the client, each remote
server keeps a direct connection to each of its peers. This is used for peer-to-
peer buffer migrations and to signal event completions to other servers for use in
command scheduling as illustrated in Fig. 1. Thanks to this setup, enqueuing a
command that depends on a buffer produced by a command on a different device
only requires two network requests from the host application to the source server,
which then signals other servers as needed.

3.5 Dynamic Buffer Content Size Extension

OpenCL allows applications to allocate memory in the form of buffers whose
size is fixed once they are created. However, for many applications the amount
of data actually produced or consumed varies greatly over time. As a means to
improve performance when dealing with kernels dealing with varying size data,
we propose a simple yet powerful OpenCL extension named cl pocl content size.
The extension provides an optional way to signal the actual used portion of
an OpenCL buffer to the runtime as well as the consuming kernels. It works by
designating a separate buffer, just large enough to hold a single unsigned integer,
that holds the number of bytes actually being used by the buffer for valid data.
PoCL-R runtime reads the content size buffer as an hint to only transfer the
meaningful portion of buffers when migrating them between remote servers.

An example of using the extension is shown in the code snippet of Fig. 3. The
only addition to the standard OpenCL API calls is the call which associates a
content size buffer with a data buffer (clSetContentSizeBufferPOCL), and the
addition of this “size buffer” to the kernels’ arguments.
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Fig. 3. Example of using the proposed dynamic buffer extension in a sequence of two
kernels. The user defines a designated buffer where the kernel stores the size, which
can be then used by the runtime to optimize the buffer transfers and migrations, as
well as by the consumer kernels of the buffer to read the input size.

4 Latency and Scalability Results

The following subsections describe the experiments performed to measure the
latency and scalability of the PoCL-R runtime and the results obtained. In order
to more accurately measure the performance overhead of PoCL-R, wired network
connections were preferred. In real-world use, client connections would generally
be wireless and introduce network-dependent latency and jitter.

4.1 Command Overhead

Since low latency is a key priority of PoCL-R, we constructed a synthetic bench-
mark to measure the overheads imposed by the runtime itself using a kernel that
simply exists. Some runtimes don’t handle this well but it is a good indicator for
command handling overhead. We compare the numbers against the roundtrip
time reported by the ping utility which is generally accepted as a good baseline
for network latency.
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This benchmark creates a no-op kernel, enqueues it and waits for it to com-
plete using clFinish. This is repeated 1000 times and the results are averaged.
The client is a desktop PC with a 100-Mbps wired connection to the server. Time
stamps are taken in the application code before the clEnqueueNDRangeKernel
and after a clFinish call to ensure the completion of the command has been
registered by the client application. The duration between the two is used for
the host-measured timings.

Two machines with a Ryzen Threadripper 2990wx CPU and two Geforce
2080 Ti GPUs each were used for testing. The machines were connected to a
100Mbit LAN.

The results of this test are shown in Fig. 4a. For reference, the ICMP round-
trip latency as reported by the ping utility fluctuates around 0.122 ms. On
localhost the ICMP round-trip latency was measured to average at 0.020 ms.
The average command duration was observed to be consistently around 60 ms
more than ping. We consider this to be a good result given that connections
between consumer devices and application servers usually measure in tens to
hundreds of milliseconds even in realtime applications and even on our 100-
Mbps LAN with a ping delay two to three orders of magnitude less than the
aforementioned case, the overhead on top of ping is only a fraction of the full
command duration. Running the application and server on the same machine
confirms that the overhead is constant.

The closest related work that we could successfully make run and benchmark
against was the latest version (1.3.3) of SnuCL [18] (released in 2015). SnuCL has
a similar idea to PoCL-R but seems to focus more on datacenter-side throughput
scalability.

In order to compare PoCL-R imposed minimum runtime latencies to SnuCL,
a simple passthrough kernel that simply copies its single integer input to an
output buffer was implemented. Kernel runtimes as reported by the OpenCL
event profiling API were measured for three setups of interest: The proprietary
NVIDIA driver used without any distribution layer, the SnuCL Cluster imple-
mentation and PoCL-R. The runtime differences here are indicative of internal
command management overhead of the respective frameworks on top of the
native driver and the additional overhead imposed by the MPI runtime in case
of SnuCL. The results of this benchmark as shown in Fig. 4b put PoCL-R notice-
ably ahead of SnuCL with the average command duration in PoCL-R being only
around 1

6 of SnuCL’s. In comparison to running without a distribution layer,
PoCL-R takes almost twice as long, indicating some room for improvement.
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Fig. 4. Comparison of runtime duration of a no-op command in various network con-
ditions.

4.2 Data Migration Overhead

The authors of SnuCL report data movement being the bottleneck in some of
their benchmarks [18]. In order to get a general idea of how much the runtime
affects the communication overhead due to data movement, it is interesting to
measure the minimum time a buffer migration between devices takes due to
runtime overhead. This is done separately from the no-op command overhead
measurements because PoCL-R remote servers communicate directly with each
other in a P2P fashion: the host application only has to send a migration com-
mand to the source server which in turn forwards the command to the destination
server.

The test triggers 1000 migrations between remotes and averages the durations
at the end. A buffer of 4 bytes is used to minimize the effect of transfering the
actual contents and better measure runtime overhead. All kernel invocations
were enqueued in sequence and after waiting for completion of all commands
the buffer migrations inserted by the PoCL-R runtime were extracted and their
timing information was analyzed. The results are shown in Fig. 5. When using a
100-Mbps ethernet connection between the remote servers the average timings
add up to around 3× the overhead of a no-op command on top of network ping,
which seems reasonable for a 3-step roundtrip (from the host to the first server,
to the second server and back to the host) with extra buffer management on the
intermediate hops.

Using an 40-Gbps direct infiniband link shortens the total duration in com-
parison to the ping noticeably, mostly because this is a dedicated direct con-
nection between the two machines with no switches or other network equipment
on the way and no interference from other traffic from the operating system.
The benchmark was also run with two PoCL-R daemons running on the same
machine as well as one daemon migrating data between two GPUs installed on
one machine. However, the native OpenCL implementation used by the dae-
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Fig. 5. Duration of a migration of a 4-byte buffer between two devices using different
connectivity between servers, as well as using the native NVIDIA driver for reference.
Numbers are averaged across 1000 migrations. The dashed line represents the average
ICMP ping for the given connection.

mon turned out to exhibit a notable performance regression when using two
GPUs simultaneously instead of just one, making this configuration impossible
to compare.

A comparison with SnuCL was attempted, but calling clEnqueueMigrate-
MemObjects consistently resulted in a segmentation fault.

Two machines with an AMD Ryzen Threadripper 2990wx CPU and two
NVIDIA Geforce 2080 Ti GPUs each were used for testing. The machines were
connected to a 100 Mbit LAN and had an additional direct 40 Gbit infiniband
link between them.

4.3 Distributed Large Matrix Multiplication

For a non-trivial throughput scalability benchmark, we constructed a distributed
matrix multiplication application. This benchmark multiplies two NxN matrices
using as many devices as the OpenCL context has available. Every device gets
the full data of both input matrices and calculates a roughly equal number of
rows of the output matrix. Five independent multiplications are run in parallel
in order to keep all GPUs saturated and demonstrate total throughput. While
the actual calculations are an embarrassingly parallel task, the partial results
from each device have to be collected into a single buffer for the final result,
which makes the workload as a whole non-trivial to scale.

This is largely similar to the matrix multiplication used in the benchmarks
of SnuCL [18] with the exception that here the parts of the output matrix are
combined to a single buffer on one of the GPUs and this is included in the host



88 J. Solanti et al.

timings. The NVIDIA example that is mentioned as the source for the bench-
mark in [18] only measures the duration of the actual compute kernel invoca-
tions, which corresponds to the device-measured timings in our benchmark. It
is unknown if the time to combine the partial results was accounted for in the
SnuCL benchmark, but given that they report scalability problems it likely was
part of the measurements.
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Fig. 6. Relative speedup when multiplying two 8192 × 8192 matrices using 1 to 16
remote devices spread across 4 servers.

Benchmarking was done on a cluster with three servers with an IntelTM

XeonTM E5-2640 v4 CPU and four NVIDIA Tesla P100 GPUs. An additional
server with an IntelTM XeonTM Silver 4214 CPU and four NVIDIA Tesla V100
GPUs was used to fill the number of usable compute devices to a total of 16
GPUs. All cluster servers were connected to each other and to the machine
running the host application with a 56-Gbps infiniband link.

The relative speedup when multiplying two 8192 by 8192 matrices with an
increasing number of GPUs is shown in Fig. 6. We observe logarithmic speedups
compared to using a single GPU up to slightly below 6× with 16 GPUs. This is
roughly in line with the results reported in [18] with the version of SnuCL that
uses their proposed MPI collective communication extensions. Our implementa-
tion also doesn’t exhibit the performance regression suffered by the unextended
P2P version of SnuCL when using more than 8 devices.

5 Real-time Point Cloud Augmented Reality Rendering
Case Study

In this section, we describe a full application task offloading case study, a smart-
phone application [21] that renders a streamed animated point cloud in aug-
mented reality (AR). Figure 7 shows the application in action. The point cloud
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is received as an HEVC-encoded [22,28] VPCC (Video-based Point Cloud Com-
pression) stream [8] which is decompressed using the mobile device’s hardware
decoder and reconstructed using OpenGL [30] shaders [26]. A more in-depth
explanation of this process is given in [24].

Fig. 7. Screenshot of the AR application used to measure the effect of offloading heavy
computation. A streamed animated point cloud of a person holding a small tablet
device is displayed in augmented reality on top of a real-world chair.

Visual quality can be greatly improved by using alpha blending to hide point
boundaries, but this requires sorting the points by distance to the viewer, which is
a costly operation and a prime candidate for remote offloading. When offloading
is enabled, the VPCC stream is sent to both the device and directly to the
remote compute server and decoding and point reconstruction are performed on
both. However the point sorting is only done on the remote and the sorted point
indices are sent back to the mobile device for rendering.

The remote daemon makes use of the OpenCL 1.2 custom device type feature
to provide a virtual device that exposes the server’s video decoding capabilities
using VDPAU and OpenGL; the decoder appears to the application as a fully
conformant OpenCL device of type CL DEVICE TYPE CUSTOM and thus does not
require the use of any API extensions. The decoded result is made available as an
OpenCL buffer with the OpenGL-OpenCL interoperation feature. The proposed
dynamic buffer size extension can optionally be used to speed up transfers of the
buffers between the OpenCL devices as their sizes vary wildly between frames –
especially the compressed VPCC stream which on average has a much smaller
chunk size than its worst case.
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Framerates measured from the application are shown in Fig. 8a. The first two
measurements are obtained using the local (mobile) GPU only for reconstruction
sorting and AR positioning. The next two measurements offload point sorting
to a GPU on a PoCL-R remote server with P2P buffer transfers disabled and
enabled, for a roughly 2.3× speedup over the full reconstruction, sorting and
AR workload done on the mobile GPU. Finally, the figure shows an almost 19×
speedup when using the dynamic buffer size extension.

Figure 8b shows energy consumption per frame (EPF) measured on the
mobile device in the same offloading configurations. The power usage of the
smartphone was retrieved using Android’s Power Stats HAL interface. Offload-
ing the sorting of the point cloud compensates for most of the added energy
consumption from AR positioning even without further optimizations. Enabling
P2P buffer transfers and the content size extension further cuts energy consump-
tion per frame to a mere fifth of the non-AR case. Overall the results point to
PoCL-R being a powerful enabler for rendering advanced content on handheld
devices.

Testing was done on a PC with an Intel Core i7-6700 CPU and a NVIDIA
GeForce 1060 3 GB GPU that was connected to an ASUS ROG Rapture GT-
AX11000 WiFi6 router via gigabit ethernet. The mobile device used was a Sam-
sung Galaxy S10 SM-G973U1 with a Qualcomm R© SnapdragonTM 855 chipset.
The streaming data source emulated a camera feed by looping a prerecorded
stream from a file.
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Fig. 8. Performance of the AR demo application in various offloading configurations.
lGPU and rGPU refer to the mobile device’s local GPU and the remote GPU exposed
via PoCL-R. AR indicates live position tracking. P2P refers to transferring buffer data
from the (remote) data source directly to the remote GPU and DYN indicates that the
buffer content size extension is used.
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6 Related Work

Multiple projects [14,20,23,31] have expanded the scope of originally single
server targeting heterogeneous APIs for distributed use in the past, but most
of them have long since faded into obscurity and their implementations are no
longer available for use and comparison, let alone for further development.

Various projects [1–4,14] also solely target HPC clusters with their existing
library ecosystem and optimize purely for throughput. By contrast, our proposed
runtime targets to support both compute clusters and realtime applications, and
most interestingly, their combination.

Among the previous projects we found, the closest to PoCL-R is SnuCL [18].
It provides an implementation of the standard OpenCL API that enables exe-
cution of OpenCL commands on remote servers. However, it focuses solely on
throughput in HPC cluster use cases with no consideration of latency. For com-
munication it relies on the MPI framework. SnuCL supports peer-to-peer data
transfers, but they report scaling problems in some tasks such as the matrix
multiplication we used in our benchmarking. SnuCL solves these scaling issues
with a proposed OpenCL extension that maps MPI collective operations to a set
of new OpenCL commands. In contrast, PoCL-R uses plain TCP sockets with
a custom protocol and socket settings tuned for low latency. SnuCL also han-
dles command scheduling on the host machine, whereas PoCL-R lets remotes do
their scheduling autonomously.

Further work on SnuCL also exists in the form of SNUCL-D [17], which fur-
ther decentralizes computation by duplicating the control flow of the entire host
program on each remote server. This results in great scalability improvements
in theory, but requires the host application to be fully replicable on all servers
which is naturally not possible by default.

Another very close project in terms of the overall idea is rCUDA[5]. At
the time of this writing, rCUDA is one of the most actively developed related
projects, but being based on the proprietary CUDA API it is limited in hardware
support and portability.

There is also a recent open source project by the name RemoteCL [6] that
takes the same approach with plain network sockets as PoCL-R. However, it
only aims to fit the needs of the author and makes no attempt at providing a
full conformant implementation of the OpenCL API. It also does not appear to
support more than one remote server.

In a wider point of view, when used for accelerating graphics rendering of
interactive content, PoCL-R could be thought of as an alternative to already
commercialized game streaming services such as Google Stadia. The key differ-
ence is that when using PoCL-R for rendering acceleration, the use cases can be
more flexible and adaptable to the available resources: A lightweight client device
can render content using slower local resources and opportunistically exploit edge
servers to improve quality instead of rendering exclusively on the server.
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7 Conclusions and Future Work

In this paper we proposed a scalable low-latency distributed heterogeneous com-
puting runtime PoCL-R which is based on the standard OpenCL API’s features.
We also proposed an API extension that significantly improves buffer trans-
fer times for cases with varying data sizes. The unique latency and scalability
enhancing features were tested with a distributed real-time augmented reality
case study which reached 19× improvement in FPS and 17× in EPF by remote
offloading a rendering quality enhancement kernel using the runtime. The remote
kernel execution latency overhead was measured to be at 60 ms while the scal-
ability at multi-server multi-GPU cluster level was shown with a logarithmic
scaling of a distributed large matrix multiplication. These results indicate the
significance of the proposed runtime as an enabler for high-performance low
power distribution of computation and application deployment without needing
additional distribution API layers.

In the future, we will research various low hanging fruits for improving the
performance of the runtime further, e.g., by transparent and intelligent use of
RDMA [25], GPUDirect [19] and similar technologies for improving cross-server
and cross-GPU data transfer latencies. We will also investigate improvements
to dynamic multi-user scheduling and load balancing such as the approaches
described in [27] and [11]. Wireless networks can be unreliable for various reasons,
so we will add handling for network instability.
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Abstract. Loop tiling is a well-known loop transformation that
enhances data locality in memory hierarchy. In this paper, we initially
reveal two important inefficiencies of current analytical loop tiling mod-
els and we provide the theoretical background on how current analytical
models can address these inefficiencies. To this end, we propose a new
analytical model which is more accurate that the existing ones. We show-
case, both theoretically and experimentally, that the proposed model can
accurately estimate the number of cache misses for every generated tile
size and as a result more efficient tile sizes are opted. Our evaluation
results provide high cache misses gains and significant performance gains
over gcc compiler and Pluto tool on an x86 platform.

Keywords: Loop tiling · Data cache · Data reuse · Analytical model ·
Cache misses

1 Introduction

Loop tiling is a loop transformation that exploits locality of data accesses in loop
nests; the reused data stay in the cache and thus the number of cache misses
is reduced. Although loop tiling does not always align with performance, it is
one of the key optimizations for memory-bound loop kernels. The selection of an
efficient tile size is of paramount importance as tiles of different sizes can lead
to significant variations in performance. In this paper, we define a tile size as
efficient if it achieves a reduced number of cache misses.

The two main strategies to address the tile size selection problem are ana-
lytical [16] and empirical [24]. The former refers to static approaches in which
the tile size is selected based on static code analysis of the loop kernel and the
memory configuration (number of caches, cache sizes, associativity, line size).
Typically, the analytical model outputs the cache misses as a function of tile
sizes, input size (of the executed kernel), and cache characteristics. The second
strategy refers to empirical (experimental-based) approaches that rely on auto-
tuning. In auto-tuning, the input program is executed multiple times assuming
c© Springer Nature Switzerland AG 2022
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different tile sizes, until the best solution is found. The input program is consid-
ered as a black-box and no information of the source code is extracted.

In this paper, we first demonstrate two important inefficiencies of current
analytical models and provide the theoretical background on how current mod-
els can address these inefficiencies. Second, we propose a new more accurate
analytical model for loop tiling, for single-threaded programs.

The first drawback of current analytical models is that they do not accurately
calculate the tiles sizes and as a consequence additional unforeseen cache misses
occur (not captured by the model). The second drawback is that the tiles cannot
remain in the cache in most cases due to the cache modulo effect. This is because
the cache line size, cache associativity and data reuse of tiles, are not efficiently
taken into account. Therefore, current models cannot accurately calculate the
number of cache misses for each tile size, leading to sub-optimal tile sizes. On
the contrary, the proposed method provides efficient tile sizes by accurately
estimating the number of cache misses for each tile size.

Our experimental results show that by using our method it is possible to
estimate the number of cache misses with an accuracy of about 1% using sim-
ulation and about 3% and 5.5% by using the processor’s hardware counters on
L1 data cache and L3 cache, respectively, leading to more efficient tile sizes for
static loop kernels.

The remainder of this paper is organized as follows. In Sect. 2, the related
work is reviewed. The proposed methodology is presented in Sect. 3 while experi-
mental results are discussed in Sect. 4. Finally, Sect. 5 is dedicated to conclusions.

2 Related Work

In [20], an analytical model for loop tile selection is proposed for estimating the
memory cost of a loop kernel and for identifying the optimal tile size. However,
cache associativity is not taken into account. In [8], the authors combine loop
tiling with array padding in order to improve the tile size selection process for
specific array sizes. In [4], authors use Presburger formulas to express cache
misses, but they fail to accommodate the high set associativity values of modern
caches. In [16], an improved analytical model is proposed where associativity
value is taken into account, but the cache hardware parameters (cache line size
and associativity) and data reuse, are not efficiently taken into account.

As we showcase in this work there is ample room for improvement in existing
analytical approaches, as cache line size and associativity and the arrays’ memory
access patterns, are not fully exploited.

Due to the problem of finding the optimum tile size is very complex and
includes a vast exploration space [9], in addition to general methods, a large
number of algorithm-specific analytical models also exist for Matrix-Matrix Mul-
tiplication (MMM) [12,14], Matrix-Vector Multiplication [13], tensor contrac-
tions [15], Fast Fourier Transform [10], stencil [23] and other algorithms, but
the proposed approaches cannot be generalized. In particular, regarding stencil
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applications, there has been a long thread of research and development tack-
ling data locality and parallelism, where many loop tiling strategies have been
proposed such as overlapped tiling [5,26], diamond tiling [2] and others.

The second line of techniques for addressing the tile size selection problem
relies on empirical approaches. A successful example is the ATLAS library [25]
which performs empirical tuning at installation time, to find the best tile sizes
for different problem sizes on a target machine. The main drawback in empirical
approaches is the enormous search space that must be explored.

Moreover, there are several frameworks able to generate tiled code with
parameterized tiles such as PrimeTile [7] and PTile [1]. Parameterized tiling
refers to the application of the tiling transformation without employing prede-
fined tiles sizes, but inserting symbolic parameters that can be fixed at run-
time [19]. In [1], a compile-time framework is proposed for tiling affine nested
loops whose tile sizes are handled at runtime. In [19], authors present a formu-
lation of the parameterized tiled loop generation problem using a polyhedral
set. Pluto [3] is a popular polyhedral code generator including many additional
optimizations such as vectorization and parallelization.

In [6], a thorough study on the major known tiling techniques is shown.
In [21], authors use an autotuning method to find the tile sizes, when the outer-
most loop is parallelised. In [11], loop tiling is combined with cache partitioning
to improve performance in shared caches. Finally, in [22], a hybrid model is pro-
posed by combining an analytical with an empirical model. However, this model
ignores the impact of set associativity in caches.

3 Proposed Methodology

3.1 Inefficiencies of Current Analytical Models

A. Current analytical models do not accurately calculate the tiles sizes
Current methods, such as [16,20], calculate the number of cache lines occupied
by a tile, by using the following formula:

number.lines = � tile.size.in.bytes
line.size.in.bytes

� (1)

However, Eq. 1 is not accurate as different tiles (of the same size) occupy a
varied number of cache lines. Let us give an example (Fig. 1). Consider an one-
dimensional (1-d) array of 200 elements and non-overapping tiles consisting of
25 elements each. Also consider that each array element is of 4 bytes and the
cache line size is 64 bytes. The array elements are stored into consecutive main
memory locations and thus into consecutive cache locations. Current methods
assume that each tile occupies two cache lines (� 25×4

64 � = 2) (Eq. 1), therefore
just two cache misses are assumed when loading the tile into the cache. However,
as it can be shown in Fig. 1, half of the tiles occupy two cache lines and the other
half occupy three cache lines.
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16 32 48 64 80 96 112 128 144 160 176 192 208

0 25 50 75 100 125 150 175 200

1st tile
2 lines

2nd tile
3 lines

3rd tile
2 lines

4th tile
3 lines

5th tile
2 lines

6th tile
3 lines

7th tile
2 lines

8th tile
3 lines

Fig. 1. An 1-d array is partitioned into tiles. 25 element tiles occupy a varied number
of cache lines

The number of cache lines occupied by a tile is given by Eq. 2, where a = 0
or a = 1, depending on the tile size and cache line size values.

number.cache.lines = � tile.size.in.bytes
line.size.in.bytes

� + a (2)

There are cases where the tiles occupy a varied number of cache lines (e.g.,
in Fig. 1, a = 0 holds for some tile sizes and a = 1 holds for others) and cases
where the tiles occupy a constant number of cache lines.

To ascertain that the tiles remain in the cache, in Subsect. 3.2, we show that
the cache size allocated must equal to the largest tile size value.

B. The tiles proposed by current analytical models cannot remain in
the cache. Related works such as [20] assume that if the aggregated size of
the tiles is smaller than the cache size, then the reused tiles will remain in the
cache; however, this holds true only in specific cases because even the elements
of a single tile might conflict with each other due to the cache module effect.
An improved model is proposed in [16], where the cache associativity value is
taken into account, but still the tiles cannot remain in the cache in many cases,
leading to a significant number of unforeseen cache misses.

Let us showcase the above problem with another example, the well-known
Matrix-Matrix Multiplication (MMM) algorithm (Fig. 2). Although different
tiles of A and B are multiplied by each other, the tile of C is reused N/Tile
times (data reuse), where Tile is the tile size and N is the arrays size in each
dimension. The current analytical models, such as [16], will consider data reuse
in this case and therefore they will include this information to their cache misses
calculation model; therefore, current models do assume that the tile of C is
loaded just once in the cache, not N/Tile times, which is accurate. However,
the tile of C cannot remain in the cache unless all the following three
bullets hold (in current analytical models only the first condition is satisfied):
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C A B

= x

j loopj loop

i loop i loop k loop

k loop
for (ii=0; ii<N; ii+=Tilei)
for (jj=0; jj<N; jj+=Tilej)
for (kk=0; kk<N; kk+=Tilek)

for (i=ii; i<ii+Tilei; i++)
for (j=jj; j<jj+Tilej; j++)
for (k=kk; k<kk+Tilek; k++)
C[i][j] += A[i][k] * B[k][j];

Fig. 2. An example. Loop tiling for MMM algorithm

– Each tile must contain consecutive memory locations
The sub-rows of tile of C are not stored into consecutive main memory loca-
tions and therefore cache conflicts occur due to the cache module effect.
A solution to this problem is array copying transformation; an extra loop
kernel is added prior to the studied loop kernel where it copies the input
array to a new one, in a tile-wise format; therefore, the tile elements are
stored in consecutive main memory locations.

– A cache way must not contain more than one tiles, unless they are
stored into consecutive memory locations.
Assume an L1 data cache of 32 KB 8-way associative and
(Tilei, T ilej, T ilek) = (112, 32, 32); the size of tile of C, A and B is 14336
(Tilei× Tilej × 4 bytes), 14336 and 4096 bytes, respectively (32768 bytes in
total) and they occupy (3.5, 3.5, 1) cache ways, respectively (each way is 4096
bytes), assuming that each element is 4 bytes. Therefore, one cache way will
be used to store part of the tiles of C and A (Way-0 in Fig. 3). In this case,
Way-0 will store part of Tile of C and part of A; when the next tiles of A are
loaded into the cache, they will be stored into different cache lines and there-
fore part of the C tile will be removed from the cache due to the cache module
effect. This problem does not occur when (Tilei, T ilej, T ilek) = (64, 64, 32),
as the tiles occupy (4, 2, 2) cache ways, respectively (Fig. 3).

Set 0

Set N-1
Way 0 Way 1 Way 2 Way 3 Way 4 Way 5 Way 6 Way 7

256-bit

Set 0

Set N-1
Way 0 Way 1 Way 2 Way 3 Way 4 Way 5 Way 6 Way 7

Fig. 3. An illustration of how tiles might be allocated to the cache, for the example
shown in Fig. 2. On the top, (Tilei, T ilej, T ilek) = (112, 32, 32) is shown, while in
the bottom (Tilei, T ilej, T ilek) = (64, 64, 32). Each tile is shown in a different colour.
(Color figure online)
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For the reminder of this paper, we will be writing that a tile is written in a
separate cache way if an empty cache line is always granted for each different
modulo (with respect to the size of the cache) of the tile memory addresses,
e.g., in Fig. 3, the tile in red is written in two ’separate’ cache ways as an
empty cache line is always granted for each different cache modulo value.

– Extra cache space must be granted for the non-reused tiles
Even if the two aforementioned bullets hold, it is false to assume that the C
tile will remain in the cache just because the aggregated size of the three tiles
is smaller than the cache size. This is because there is no cache space allocated
for the next tiles of A and B; therefore, when the next tiles of A and B are
loaded into the cache they will evict cache lines from the tile of C (LRU cache
replacement policy is assumed). However, if (Tilei, T ilej, T ilek) = (64, 64, 16)
is selected instead of (Tilei, T ilej, T ilek) = (64, 64, 32), then cache space for
2 tiles of A and B is allocated and therefore the Tile of C will remain in the
cache.

We evaluated the above assumptions on a PC (see Sect. 4) using
Cachegrind tool [17] (simulation) and the following tile sets (Tilei, T ilej, T ilek)
= (112, 32, 32), (64, 64, 32), (64, 64, 16) give (10.2, 9.8, 5.2) million dL1 misses
and (3.1, 3, 3, 7.4) Gflops, respectively (square matrices of size N = 1344).

3.2 The Proposed Analytical Model

Our approach is given in Algorithm 1. The proposed method generates the iter-
ators to be tiled, their order as well as their tile sizes, for a given cache memory.

Algorithm 1. Proposed Loop Tiling Algorithm
Step.1 Specify the iterators that loop tiling is eligible to (n iterators)
for (i=1,n) do

Step.2 Generate all different iterator orderings using i out of n iterators
for (each different ordering found in Step.2) do

Step.3 Construct Eq. 3. Eq. 3 holds all the tiles sizes that fit and remain in
the cache
if (If the tiles’ memory locations overlap) then

Step.4 Merge the tiles into one and update Eq. 3
end if
for (each different tile size) do

if (the tiles contain non-consecutive memory locations) then
Step.5 Either discard this tile size or use array copying transformation

end if
Step.6 Estimate the number of cache misses for each tile set

end for
end for

end for
Step.7 Choose the tile set achieving the minimum number of cache misses
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STEP.1: The iterators that loop tiling is applicable to are manually provided;
not all the loops are eligible to loop tiling mainly because of dependencies.

Step.2: The next step is to specify the iterators that loop tiling will be applied
to as well as their nesting level values. For example, in a loop kernel with three
iterators (i, j, k) eligible to loop tiling, such as the original (non-tiled) version of
MMM in Fig. 2, the following 15 loop tiling implementations will be generated:
(i), (j), (k), (i, j), (i, k), (j, i), (j, k), (k, i), (k, j), (i, j, k), (i, k, j), (j, i, k), (j, k, i),
(k, i, j), (k, j, i). All different orderings are processed so as not to exclude any
efficient implementations.

Step.3: In Steps.3–6, the main part of the proposed loop tiling algorithm takes
place. First, a mathematical inequality is constructed holding the tile sizes for
which the tiles fit and remain in the cache:

m ≤ � Tile1
Li/assoc

� + �Tile1 next

Li/assoc
� + ... + � Tilen

Li/assoc
� + �Tilen next

Li/assoc
� ≤ assoc (3)

where Tilei is the tile size in bytes, Li is the cache size in bytes, n is the number
of tiles, assoc is the Li associativity and m defines the lower bound of the tile
sizes and it equals to the number of arrays in the loop kernel. The tile sizes not
included in Eq. 3 are discarded as they cannot remain in the cache.

In Eq. 3, a separate tile exists for each array reference (in the loop kernel)
and thus an array might have multiple tiles. Furthermore, for each tile, we grant
cache space for its next tile too (to address the third bullet in Sect. 3.1.2). Note
that the overlapping tiles are merged into Step.4. All the tiles contain consecutive
memory locations (1st bullet in Subsect. 3.1.2). The value of (� Tile1

Li/assoc
�) is an

integer representing the number of Li cache ways used by Tile1, or equivalently,
is an integer representing the number of Li cache lines with identical cache
addresses used for Tile1. Equation 3 satisfies that the array tiles directed to the
same cache subregions do not conflict with each other as the number of cache
lines with identical addresses needed for the tiles is not larger than the assoc
value (second bullet in Sect. 3.1.2).

Tilei which contains consecutive memory locations is given by Eq. 4:

Tilei = max.number.cache.lines × cache.line.size × element.size (4)

where cache.line.size is the size of the cache line in elements, element.size is
the size of the array’s elements in bytes and the max.number.cache.lines gives
the maximum number of cache lines occupied by the tile (Eq. 2).

Step.4: In this step, the overlapping tiles in Eq. 3 are merged to one, normally
bigger tile, which consists of their union; if the tiles match, then the new tile’s
size remain unchanged. Step.4 is needed so as there are no tile duplicates in the
cache. For the rest of this paper we will write that two tiles overlap, if their
memory locations overlap.
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Consider the example where the following two array references exist in the
loop body A[i][j − 2], A[i][j + 2] and j loop spans from 2 to N-2. By applying
loop tiling to j loop with tile size T, the 1st tile of the 1st array reference spans
within (0,T) and the 1st tile of the 2nd array reference spans within (4, T + 4).
These tiles are merged and a single bigger tile is created of size (T + 4).

Step.5 in Algorithm 1: In Step.5, all the remaining tile sizes with no consec-
utive memory locations are either discarded as they cannot remain in the cache
or array copying transformation is applied.

It is common practice to apply array copying transformation before loop
tiling in order all the tiles to contain consecutive memory locations. An extra
loop kernel is added prior to the studied loop kernel where it copies the input
array to a new one, in a tile-wise format. This adds an extra overhead and this
is why it is performance efficient only in limited number of loop kernels.

Step.6 in Algorithm 1: In Step.6, the number of cache misses is approxi-
mated theoretically, considering the cache hardware parameters, the array mem-
ory access patterns of each loop kernel and the problem’s input size. To do so,
we calculate how many times the selected tiles (whose dimensions and sizes are
known) are loaded/stored from/to the cache.

We are capable of approximating the number of cache misses because the
number of unforeseen misses has been minimised (the reused tiles remain in the
cache). This is because only the proposed tiles reside in the cache, the tiles are
written in consecutive memory locations, an empty cache line is always granted
for each different modulo and we use cache space for two consecutive tiles and
not one (when needed). Additionally, we refer to CPUs with an instruction cache;
in this case, the program code typically fits in L1 instruction cache; thus, it is
assumed that the shared cache or unified cache (if any) is dominated by data.

The number of cache misses is estimated by Eq. 5.

Num Cache Misses =
∑i=sizeof(Tiles.List)

i=1 (repetition i× cache.lines i) (5)

where repetition i gives how many times the array of this tile is loaded/stored
from/to this cache memory (given by Eq. 7), cache.lines i is the number of cache
lines accessed when this tile traverses the array (given by Eq. 6) and Tiles.List
contains all the tiles that contribute to Eq. 5.

The Tiles.List is initialised with all the tiles specified in Eq. 3, after the
merging process (Step.3b) in Algorithm1 (the ‘next’ tiles are not included; the
only reason they exist in Eq. 3 is to grant extra cache space). There are cases
where not all the tiles contribute to Eq. 5 and this is why some tiles might be
deleted from the Tiles.List. This happens when an array has multiple array
references (in the loop body) and therefore multiple tiles. Thus, different tiles of
the same array might access memory locations that have already been accessed
just before and thus the tile resides in the cache; in this case, accessing the tile
will lead to a cache hit, not a miss.
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The cache.lines value in Eq. 5 is given by

cache.lines =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

N

Ty
×

j=M/Tx∑

j=1

(� j × Tx

line
� − � (j − 1) × Tx

line
�), row-wise data array layout

j=tiles∑

j=1

(� j × (Tx × Ty)

line
� − � (j − 1) × (Tx × Ty)

line
�), tile-wise

(6)

where (Tx, Ty) are the tile sizes of the iterators in the (x,y) dimension of the
array’s subscript, respectively, (N,M) are the corresponding iterators’ upper
bounds (for 1D arrays Ty = 1), line is the cache line size in elements, tiles is the
total number of the array’s tiles and (tiles = N/Ty×M/Tx) or (tiles = M/Tx)
whether for 2D/1D arrays, respectively.

Let us give an example for the first branch of Eq. 6, consider a 2D floating
point array and a tile of size (10 × 10) traversing the array in the x-axis. Also
consider that (line = 16) array elements. The first tile occupies 10 × (� 10

16� −
� 0
16�) = 10 cache lines while the second tile occupies 10 × (� 20

16� − � 10
16�) = 20

cache lines. Although the array’s tiles are of equal size, they occupy a different
number of cache lines. Equation 6, gives the number of cache lines occupied in
the case where array copying has been applied and therefore the array is written
tile-wise in memory; in this case, the first tile lies between (0, 100), the second
between (100, 200) etc.

The repetition value in Eq. 5 is given by

repetition =
∏j=U

j=1
(upj−lowj)

Tj
× ∏k=Q

k=1
(upk−lowk)

Tk
(7)

where U is the number of new/extra iterators (generated by loop tiling) that
a) do not exist in the corresponding array’s subscript and b) exist above of the
iterators of the corresponding array, e.g., regarding the B tile in Fig. 2, this is
the ii iterator. Q is the number of new/extra iterators that a) do not exist in
the array and b) exist between of the iterators of the array, e.g., regarding the
A tile in Fig. 2, this is the jj iterator; the ii iterator forces the whole array of B
to be loaded N/Tile times, while the jj iterator forces the whole array of A to
be loaded N/Tile times.

4 Experimental Results

The experimental results are extracted in a host PC (Intel i7-4790 CPU at
3.60 GHz, Ubuntu 18.04) and the codes are compiled using gcc 7.5.0 compiler.

The benchmarks used in this study consists of six well-known memory-bound
loop kernels taken from 4.1 PolyBench/C suite [18]. These are: gemm, mvm,
gemver, Doitgen, Bicg and gesumv. The input size of the loop kernels is specified
with letter ‘N’ (square matrices are taken of size N × N).
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Table 1. The error in cache misses is measured for five different tile sizes using Eq. 8
and the maximum value is shown.

dL1 cache
kernel Cachegrind Perf Cachegrind Perf

(HW counters) (HW counters)
gemm Input size N=1000 N=2000

Tile sizes (25,25,25), (40,40,25) (20,20,50),(25,25,25)
(-,2,-),(-,4,-),(25,25,40) (25,25,40),(-,2,-),(40,40,25)

Error 0.8% 2.8% 0.8% 2.9%
mvm Input size N=6000 N=9000

Tile sizes (-,2000), (-,1000), (6,1000) (-,2000), (-,1000), (6,1000)
(3,2000), (4,1000) (3,2000), (4,1000)

0.7% 2.8% 0.7% 2.7%
doitgen Input size N=128 N=256

Tile sizes (-,32,32,32), (-,16,16,64) (-,32,32,32), (-,16,16,64)
(-,16,64,16) (-,16,64,16)

(-,64,16,16),(-,16,16,32) (-,64,16,16),(-,16,16,32)
Error 0.9% 2.5% 0.9% 3.1%

gemver Input size N=6000 N=9000
Tile sizes (-,1500), (-,1000), (2,1000) (-,1500), (-,1000), (2,1000)

(3,1000), (1,1000) (3,1000), (1,1000)
Error 0.9% 2.9% 0.8% 2.9%

bicg Input size N=6000 N=9000
Tile sizes (3,1000), (1,1000), (2,1000) (-,1500), (-,1000), (2,1000)

(-,1500), (-,1000) (3,1000), (1,1000)
Error 0.9% 2.9% 0.8% 2.9%

gesumv Input size N=4000 N=8000
Tile sizes (2,800), (1,1000), (2,1000) (2,800), (1,1000), (2,1000)

(-,800), (-,1000) (-,800), (-,1000)
Error 0.9% 2.7% 0.9% 2.7%

L3 cache
Cachegrind Perf Cachegrind Perf

(HW counters) (HW counters)
N=3000 N=6000

(500,500,600), (-,250,-) (500,500,600), (-,100,-)
(500,500,500) (500,500,500)

(-,200,-),(600,600,300) (600,600,300), (-,75,-)

0.8% 5.4% 0.8% 5.8%
N=10000 N=12000

(100,2000), (50,2000), (100,2500) (20,2000), (40,2000), (80,2000)
(50,2500), (125,2500) (80,3000), (60,3000)

0.7% 1.9% 0.7% 2.0%
N=512 N=600

(-,512,256,512), (-,512,512,256) (-,600,300,600), (-,600,600,300)
(-,256,256,256) (-,300,600,600)

(-,256,512,256),(-,512,512,512) (-,300,300,600),(-,600,300,300)
0.9% 2.5% 0.9% 2.6%

N=10000 N=12000
(100,2000), (50,2000), (125,2000) (20,2000), (40,2000), (80,2000)

(50,1250), (80,1250) (80,1500), (60,1500)
0.8% 2.0% 0.8% 2.0%

N=10000 N=12000
(100,2000), (50,2000), (125,2000) (20,2000), (40,2000), (80,2000)

(50,1250), (80,1250) (80,1500), (60,1500)
0.8% 2.0% 0.8% 2.0%

N=8000 N=12000
(40,2000), (40,1000), (20,2000) (20,2000), (20,1500), (10,2000)

(20,1000), (25,2000) (30,2000), (30,1500)
0.9% 2.1% 0.9% 2.1%

4.1 Validation of the Proposed Methodology

In this sub-section we showcase that i) the tiles generated by the proposed
methodology fit and remain in the cache and ii) the proposed equations (Step.6)
can accurately estimate the number of cache misses. To validate the proposed
method, we have applied the proposed methodology to L1 data cache (dL1)
(32 KB, 8-way) and L3 cache (8 MB, 16-way). The tile sizes and the iterators to
be tiled are given by Algorithm1.

The number of cache misses is measured for five tile sizes and the maximum
error value is calculated (Eq. 8) using i) Cachegrind tool [17] (simulation) and ii)
Perf tool using the ‘l1d.replacement’, ‘LLC-load-misses’ and ‘LLC-store-misses’
hardware counters.

error% = |cache.misses.measured−Eq. 5.misses|
Eq. 5.misses

× 100 (8)

Cachegrind and Perf give different cache misses values, because the perf mea-
sures the number of cache misses of all the running processes, not just the process
we are interested in.

In Table 1, we compare the dL1 and L3 misses as extracted from Eq. 5 against
the measurements from Cachegrind and Perf. As Table 1 indicates the proposed
equations provide roughly the same number of cache misses as Cachegrind. This
means that first, the proposed tiles fit and remain in the cache and second, the
proposed equations give a very good approximation of the number of misses.

Regarding dL1, the error values are higher (about 3%) when using the dL1
hardware counter (Table 1), as other processes are loading/storing data from/to
this memory too. Note that Table 1 shows only the tile sizes that need roughly the
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size of seven out of eight cache ways, or less; the tiles that use more cache space
give a much higher error value, which is up to 20%. Given that this inconsistency
holds only for the Perf measurements and not for Cachegrind, it is valid to assume
that this is due to the fact that other processes using the dL1. In this case, each
dL1 access of another process leads to an unforeseen miss.

For the same reason, on the right of Table 1, we show the tile sizes that need
roughly the size of 9 out of 16 L3 cache ways, or less. mvm, doitgen, bicg, gesumv
and gemver give a small L3 error value as their arrays fit and remain in L3 even
without using loop tiling. This is not the case for gemm and this is why the error
value in gemm is higher.

Table 2. Comparison over gcc on Intel i7-4790.

Tiling for dL1 only
dL1 perf. tile dL1 perf. tile Pluto

kernel misses gain size misses gain size perf.
gain gain gain

gemm N=600 N=900
x40.9 x3.7 (60,60,10) x61.0 x4.1 (60,60,10) 1.01

mvm N=9000 N=12000
x1.5 x0.98 (-,3000) x1.5 x0.98 (-,3000) x0.91

doitgen N=256 N=512
x34.2 x1.79 (64,64,16) x41.4 x1.93 (64,64,16) x0.99

gemver N=8000 N=12000
x2.0 x1.08 (-,2000) x2.0 x1.09 (-,2000) x0.89

bicg N=8000 N=12000
x2.0 x0.92 (-,2000) x2.0 x0.92 (-,2000) x0.42

gesumv N=8000 N=12000
x1.25 x0.91 (-,2000) x1.25 x0.91 (-,2000) x0.87

Tiling for dL1 and L3
L3 perf. tile L3 perf. tile Pluto

misses gain size misses gain size perf.
gain gain gain

N=1800 N=3400
(900*,60,900*) (850*,50,850*)

x57.2 x4.09 (60,60,10) x59.3 x4.2 (50,50,20) 1.01
N=9000 N=12000

x1.00 x1.01 (120,3000) x1.00 x1.01 (100,3000) x0.91

- - - - - - -
N=8000 N=12000

x1.00 x1.09 (80,2000) x1.00 x1.18 (60,2000) x0.89
N=8000 N=12000

x1.00 x1.03 (80,2000) x1.00 x1.04 (60,2000) x0.42
N=8000 N=12000

x1.00 x1.01 (40,2000) x1.00 x1.01 (30,2000) x0.87

4.2 Evaluation over Gcc Compiler and Pluto

In all cases, the six studied loop kernels are compiled using ‘gcc -O2 -floop-block
-floop-strip-mine’ command and the generated binaries are those that the pro-
posed methodology is compared to. The ‘-floop-block -floop-strip-mine’ option
enables gcc to apply loop tiling transformation. The C codes of the proposed
method are compiled using ‘gcc -O2’ command.

On the left of Table 2, the proposed methodology has been applied to dL1
only. The proposed method provides significant dL1 miss gains at all cases but
performance gains just for gemm, doitgen and gemver. Reducing the number of
dL1 misses does not always align with performance; in this case, the selected tile
sizes for mvm, bicg and gesumv (which minimize dL1 misses) slighly increase
the number of L3 misses and this is why performance is degraded. Note that
the dL1 miss gain is higher in gemm and doitgen comparing to the other loop
kernels, as all their tiles achieve data reuse; the tiles remain in L1 and also being
loaded many times from L1, highly reducing the number of L1 misses.

It is important to note that the baseline binary code that we compare our
method to for mvm, bicg and gesumv in Table 2, does not include loop tiling
(although the loop tiling option has been enabled, gcc disables its application in
gesumv, bicg and mvm, by considering it not performance efficient).
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On the right of Table 2, the proposed methodology has been applied first to
dL1 and then to L3. Applying loop tiling for mvm, gemver, bicg and gesumv
just for L3 cache is pointless as their arrays fit and remain in the cache even for
very large input sizes and as a consequence the number of L3 misses cannot be
reduced. However, applying loop tiling for L3 to the implementations shown on
the left of Table 2 is beneficial, as these implementations give a higher number of
L3 misses than the no tiled implementations. Regarding doitgen, applying loop
tiling to L3 cannot give any gain as the arrays fit in the cache. The ‘*’ in Table 2
indicates that these iterators are interchanged.

The proposed methodology has been also evaluated using Pluto [3] (version
0.11.4). For a fair comparison, only the loop tiling phase of Pluto is activated.
Pluto applies square tile sizes of size 32 at all cases and this is why gcc perfomrs
better. Pluto is a powerful tool which is not limited to loop tiling and if we
enable all its phases, then it provides higher speedup values than gcc.

5 Conclusions and Future Work

In this article, we first demostrate two important inefficiencies of current analyt-
ical loop tiling models and provide insight on how current models can overcome
these inefficiencies. Second, we propose a new model where the number of cache
misses is accurately estimated for each generated tile size. This is achieved by
leveraging the target memory hardware architecture and data access patterns.

As far as our future work is concerned, the first step includes the validation
and evaluation of the proposed method to other CPUs. Second, we plan to work
towards correlating the number of cache misses with execution time.
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Abstract. Recently, High Performance, Big Data, and Cloud Comput-
ing worlds tend to converge in terms of workload deployment with con-
tainerization technology acting as an enabler towards this direction. In
such cases of application diversity and multi-tenancy, a universal sched-
uler able to satisfy the end-user needs for seamless, yet, efficient appli-
cation deployment is required. While Kubernetes container orchestrator
seems to be the answer that enables application-agnostic deployment, it
still depends highly on coarse system metrics for its scheduling policies,
thus, neglecting the performance degradation due to resource contention
in the underlying system.

In this paper, we design and implement an interference-aware modular
framework, able to balance incoming workload based on low-level metrics
monitoring. We evaluate our proposed solution over different workload
mixes and co-location scenarios showing that against the state-of-art,
but interference unaware Kubernetes scheduler the proposed framework
significantly improves the latency distribution of the converged cloud
infrastructure, improving median latency up to 27% and reducing stan-
dard deviation up to 25%.

Keywords: Resource management · Kubernetes · Interference-aware ·
High-Performance Computing · Cloud computing

1 Introduction

Recently, High-Performance Computing (HPC) and Cloud worlds are getting
more and more close. The latest advancements and performance improvements
of containerization technology [14] have driven many HPC applications to be
containerized, enabling increased productivity through prompt and seamless
updates and rollbacks to previous versions. Respectively, cloud computing over
the past twelve years has relieved users of physical infrastructure management
as various technologies such as virtual machines, containers, and serverless have
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Fig. 1. Kube-scheduler sub-optimal node selection, neglecting the L3 cache stress

emerged. Thus, containers seem to be the common ground between cloud and
HPC. However, containerization has led to a proliferation of virtual resources to
be managed. The small resource footprint resulting in decreased startup latency,
as well as a previously unseen flexibility regarding dependency packaging, have
contributed to the adaptation of this technology by more and more users. Hence,
since fleets of containers were deployed on data-center machines, the need for
container orchestration frameworks in order to manage and automate the essen-
tial infrastructure operational tasks has arisen. Kubernetes [9] is currently the de
facto solution for cloud infrastructure management. More specifically, in mod-
ern data-centers, in which HPC, Cloud and Big Data workloads co-exist, the
infrastructure offerings by Kubernetes are indispensable to manage heteroge-
neous kinds of applications such as batch style (MapReduce), HPC stateful ser-
vices, and others. In addition, heavy computation and unprecedented dataset
sizes need to be combined with efficient resource sharing and ease of use. Thus,
multi-tenancy is a critical, emerging factor, since different users run their het-
erogeneous workloads on top of a pool of finite shared resources.

While the cloud is becomingmore andmorepopular, the amount of applications
deployed and executed on cloud providers’ shared hardware, competing for shared
resources usage, has also radically increased. The increment in the number of work-
loads uploaded and executed on the cloud, has forced data-center (DC) operators
and cloud providers, such as Google Cloud Platform [1] and Amazon Web Services
[5], to embrace workload co-location and multi-tenancy as first-class system design
concerns. On top of that, they need to provide QoS guarantees to foster the needs
of the users. Academia [35] has identified that contention on the low-level shared
resources of a system, i.e. low-level caches and bus bandwidth, can lead to unpre-
dictable performance variability and degradation, which highly reduces the QoS
of applications and may lead to Service Level Agreements violations.

Cloud users have their clusters mostly managed by container orchestrators,
e.g., Kubernetes. Even though container orchestrators provide major benefits,
such as ease of use and deployment, the abstraction of resources, scaling, and oth-
ers, they are focusing mostly on availability rather than performance optimiza-
tion, relying on coarse metrics, e.g., CPU or memory utilization, thus neglecting
interference effects, overlooking the specifications of the underlying infrastructure
and the nature of the imposed stress on the shared resources. In fact, Kubernetes
scheduler (kube-scheduler) fails to select the most appropriate node when it comes
to undetected low-level resources contention. To quantitatively motivate further
the above discussion, we consider a kube-scheduler assigned the task of placing
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an incoming application from the scikit-learn [26] suite (Lasso Regression). In the
two candidate hosts h1, h2 have been initially scheduled L3 cache and compute-
intensive workloads respectively from iBench [12]. Kube-scheduler neglecting the
nature of the stress imposed by each of the applications, based on coarse policies
such as CPU resources allocation, placed repeatedly the test application into the
host h1 which was suffering from L3 cache contention. However, by placing the
scikit-learn application in h2, where it experiences less interference on the delay
prone Last Level cache resource, we achieve an average speedup of 1.46x as it is
also illustrated in Fig. 1 with optimal and default placement bars.

In this work, we propose an interference-aware custom scheduler as a Kuber-
netes in-tree extension, able to efficiently place applications on a cluster of avail-
able machines. Specifically, a) we try to identify interference and depict the
contention volume of a system by utilizing low-level system metrics. b) By ana-
lyzing various benchmarking libraries’ performance under resource pressure, we
propose a custom metric achieving high correlation with performance degrada-
tion. c) We design and implement a modular Kubernetes scheduler extension,
which distributes incoming workload leveraging the aforementioned custom met-
ric. Using a universal approach for every kind of workload behaviour and dura-
tion our framework aims to minimize application execution delays provoked by
interference phenomena by achieving a fairer resource utilization. d) Finally, we
evaluate the median execution latency in the deployed applications’ distribution.
Compared to prior works [21,32], which employ offline application execution to
identify implications of interference per application, our approach character-
izes the contention in socket-level. Our scheduler outperforms the default one
of Kubernetes, improving the performance of the scheduled workloads up to
27%, by efficiently equilibrating the usage of the resources between the available
cluster machines. As tail-latency of the distribution, we signify the applications
that suffer the most and experience higher volumes of performance degradation.
Thus, we aim to result in a more equal resource exploitation in order to lift up the
average tail-latency rather than to decrease the tail-latency for each application.

2 Related Work

Co-scheduling: Multi-tenancy and workload co-scheduling [16] to improve
resource utilization has been issues that attracted the research community’s
attention over the years. Interference-aware methods are known to improve the
distribution of the performance of applications in environments where large-scale
resources are shared among multiple parties. As regards the existing interference-
aware co-scheduling methods, a scheduling policy is set up that lowers the
interference rate. Zhuravlev et al. [35] propose a contention-aware scheduling
approach to mitigate contention for shared resources. Their approach classi-
fies the application into four classes and identifies applications that should and
should not be scheduled together. Mars et al. [22] used models so as to pre-
dict performance interference and QoS degradation by identifying co-locations
of pre-characterized workloads aiming to improve data-center utilization. Dif-
ferent approaches have determined the sensitivity of applications to memory
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pressure, either statically [21] or dynamically [32], in order to co-schedule high-
priority services with best-effort workloads. Finally, other works follow a sep-
arated, workload-specific scheduler approach for different classes of workloads
[18]. In orchestration platforms such as Kubernetes, there are several prior-
ity functions provided, enabling system operators to customize the scheduling
policies according to their application needs. Those functions include workload
placement policies based on user- explicitly-defined resource allocation i.e. CPU
cores and memory. Thus, orchestration platforms cherish application availabil-
ity rather than performance optimization. In the proposed solution, incoming
workloads are treated as black boxes, without any offline nor online application
classification or profiling [29]. We identify interference at the socket level utiliz-
ing a custom scoring function composed of micro-architectural events monitoring
and apply a best-fit heuristic for initial workload placement.

Performance Monitoring: Performance monitoring in data-center multi-core
server architectures is essential to provide insights regarding the load that the
cluster nodes experience. Today, state-of-the-art orchestrators [4], such as Kuber-
netes and Mesos, rely on naive metrics to manage workloads. However, much
research has been conducted regarding monitoring approaches [7] and several
frameworks have been developed to enable lightweight logging and fusion of
micro-architectural events [27,28]. Moreover, services like Prometheus [6] allow
for custom monitoring and optimization of running workloads, forming a promis-
ing area for low-level monitoring tools. In contrast to the aforementioned works,
we monitor the system on a socket-level granularity and store the extracted
metrics on a time series database with short retention policies.

Low-Level Metrics: The exploitation of performance characteristics of a sys-
tem through hardware performance counters has been identified as a prominent
step for improving the efficiency of data centers [20]. In addition, prior works
has shown that hardware performance counters can also improve the scheduling
policies inside modern NUMA multi-cores [8]. While the importance of low-
level performance counters has been pinpointed, there has been minimal work
regarding their exploitation, or even how these values are affected by interfer-
ence effects. Even though various works [30,33], present state-of-the-art bench-
mark suites along with information about the low-level metrics of the included
workloads, they provide no analysis regarding the fluctuation of these metrics
when the workloads are executed in multi-tenant environments. Masouros D.
et al. [23], utilize low-level counters “on-the-fly” to provide application-specific,
runtime performance predictions under interference leveraging Long Short-term
Memory (LSTM) networks. In this work, we utilize hardware performance coun-
ters (e.i. IPC, memory reads/writes etc.) to identify socket-level contention and
place incoming applications accordingly.

3 Contention Analysis

Containerization technology contributed to application resource isolation by uti-
lizing cgroups. Cgroups organize processes into namespaces and allocate and/or
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limit the resource usage for each of them. The aforementioned resources include
the CPU time and memory. However, lower-level system resources such as cache
misses, memory, disk, and network I/O bandwidth are not isolated as well. Thus,
interference on those resources can still lead to unpredictable performance vari-
ability. On top of that, container orchestrators such as Kubernetes, taking into
account the previously defined coarse resources on a compute node abstraction
level, place incoming applications in a manner that the anticipated node avail-
ability is maximized. However, Kubernetes scheduler fails to select the most
appropriate node, neglecting contention at low-level resources.

3.1 Benchmarks

Modern data-center server machines accommodate a wide range of workloads,
which are basically either batch/best-effort (BE), or user-interactive /latency-
critical (LC) applications. The former type of workloads require the highest
possible throughput, whereas the latter demand to meet their QoS constraints.
In order to cover both BE and LC workloads, we consider workloads from four
popular scientific benchmarking libraries, i.e., scikit-learn [26], SPEC CPU 2006
[19] and HPCG [13] (as BE) and cloudsuite [15] (as LC) suite.

Regarding the scikit-learn suite, we examine workload skeletons, which are
representative of modern machine learning applications. The datasets used in
the training phase of these workloads are comprised of 40,000 instances, with
784 features per instance. The SPEC CPU 2006 benchmarks are computational
heavy workloads as well as everyday operations deployed in cloud environments
(e.g. sphinx3 performs speech recognition). For SPEC CPU 2006, we use the
default settings.

Next, the cloudsuite benchmarks are based on real-world online services
hosted in modern data-centers. In-Memory analytics utilizes Apache Spark [34]
and runs a collaborating filtering algorithm on a movie ratings dataset. Data-
Serving relies on the Yahoo! Cloud Serving Benchmark [11] and the Cassandra
data store [10]. For the data-serving benchmark we increased the amount of
operations to 300,000. Data-caching, uses the Memcached data caching server,
simulating the behavior of a Twitter caching server using a Twitter dataset.

The High-Performance Conjugate Gradients (HPCG) [13] project is a bench-
mark suite for ranking HPC systems. It is designed to exercise computational
and data access patterns that match a broad set of applications. HPCG is a com-
plete, written in C++, standalone code that implements sparse matrix-vector
multiplication, vector updates, and many other operations. It also supports MPI
and OpenMP frameworks.

Deployment in Kubernetes: For the purposes of this evaluation, we con-
tainerized all the benchmarks utilizing the Docker runtime. More specifically,
regarding the cloudsuite benchmarking suite, for the data-serving benchmark,
we deploy two docker containers implementing a client-server architecture. The
client is deployed only after the server and the implemented database service
are up and running. The same applies for the web-serving benchmark. In order
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to deploy those benchmarks in our Kubernetes cluster, we needed to create the
appropriate deployment, pod and services utilizing YAML configuration files.
For the in-memory-analytics benchmark, we use a single node deployment.

3.2 Socket-Level Contention

Resources such as Last Level Cache (LLC) and memory bandwidth are shared
between sub-system components, the sockets. In this work, we seek to iden-
tify contention aiming to improve node selection and to specify the deployment
environment at socket level.

Proper scheduling requires a score that reflects the interference on the system,
in our case the socket. For this purpose, in order to detect some correlation
pattern between the imposed stress and the performance of applications, we
tentatively co-schedule cloudsuite, scikit-learn and SPEC CPU 2006 workloads
as described in Table 1 with iBench [12].

iBench provides contentious micro-benchmarks that can simulate stress in
different intensities and for different shared resources, ranging from core up to
memory levels (e.g. compute/L1i/L1d etc.). At the same time, we monitor the
socket low-level metrics utilizing Intel Performance Counter Monitoring (PCM)
[28]. We extract L3 cache misses, C0-state percentage, reads and writes from
and to the memory and instructions per cycle(IPC). C0-state describes the per-
centage of physical cores in executing state (not being idle). Memory reads and
writes are the requests for data on behalf of LLC misses, as well as DRAM traffic
due to prefetching, providing a low-level performance counter able to depict the
number of memory accesses. Thus, the count of those memory I/O operations
seems to be a great indicator for the contention status of a system. On the other
hand, IPC value is not a reliable metric since it depends both on system utiliza-
tion and contention levels. In other words, IPC is low both in an empty and on a
contended cluster. However, during a high volume of interference, different pro-
cesses are competing for memory access, and as the available bandwidth is not
able to support all requests at the same time, neither memory reads and writes
number nor L3 cache misses are any longer valuable indicators of the contention
beyond this point. Therefore, we compose the custom metric S = Reads+Writes

IPC
(1) in order to detect contention levels beyond the memory bandwidth limits.
Higher values of this metric indicate a more contended system.

Table 1. Summary of workloads used as cloud applications.

Suite Benchmarks Type

Scikit-Learn Lasso, Linear Regression, Linear Discriminant Analysis, Ada Boost

Classifier, Random Forest Regressor, Random Forest Classifier

Best-Effort

SPEC CPU 2006 astar, leslie, cactus, sphinx, mcf, lbm batch

Cloudsuite web-serving, in-memory analytics, data-serving Latency-critical

HPCG Sparse matrix-vector multiplication, Vector updates, Global dot

products. Local symmetric Gauss-Seidel smoother etc.

HPC
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Fig. 2. Correlation between applications performance degradation and system metrics.

To show the effectiveness of the proposed metric, we compare different met-
rics’ accuracy on reflecting the system’s condition utilizing the Pearson’s correla-
tion between the performance of each application and the metric’s average value
prior to the application’s scheduling. Figure 2 shows the correlation between the
applications’ normalized performance under different levels of stress and the cor-
responding metrics’ values. We use the execution time when the application runs
isolated as reference for the normalization. Our custom metric seems to be highly
correlated with the application’s performance in most scenarios. In L3-iBench,
the custom score and the C0-state of the sockets are competing for the first place.
Furthermore, in the memory bandwidth-iBench stress, L3 misses seem to be cor-
related with applications performance too. In those two previous scenarios, the
high value of C0-state in performance correlation is disorienting. C0-state per-
centage will keep increasing as the number of pre-scheduled contentious bench-
mark increases. However, in Fig. 2c, when various resource stressing benchmarks
are deployed and the contention is heterogeneous, C0 is not a reliable system state
indicator anymore. The same applies for our custom metric to a lesser extent, due
to the impact of core availability which is not captured. Therefore, we take into
consideration this parameter in our proposed solution (Sect. 5.2).

4 Target Cluster Infrastructure

Architecture: Virtualization technology has led to the democratization of High-
Performance Computing. Therefore, in many cases, clusters of high-end multi-
processor systems are designed in order to serve multiple tenants. The target
infrastructure setup in this paper is such a multi-node system. More specifically,
the cluster is composed of 4 dual-socket worker nodes. Each one of them con-
sists of two Intel R© Xeon R© E5-2690 processors, and 132 GB RAM. Additional
specifications are described in Table 2.
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Fig. 3. Overview of our custom framework

Use-Case Scenario: The cluster we refer to in the rest of this paper is used by
multiple parties, which execute a big variety of workload types. On top of those
nodes, we deployed the Kubernetes container orchestrator. Kubernetes is an
application-agnostic framework, designed to remove the burden of management
and scheduling tasks from the end-users, providing seamless scalability and high
availability for them at the same time. More specifically, workloads varying from
web services that are mostly executed on the cloud to resource-hungry HPC
tasks, will need to be co-scheduled under the same system. In this manner, in the
following sections, we describe our proposed framework that aims to unburden
both the scientists as well as the application developers from exercising resource
management, and workload placement tasks depending on the current state of
the different nodes of the system.

5 Interference-Aware Orchestration Framework

In this section, we describe the implementation of our custom interference-aware
placement mechanism. The proposed framework is highly modular; therefore an
easily scalable framework closely integrated with Kubernetes. Thus, except for
its additional functionality, it also exploits any utilities provided by the open-
sourced Kubernetes scheduler. The schema of our framework is illustrated in
Fig. 3. Our framework is based on four different components, (i) the Monitor-
ing Agent ( 1 ), (ii) a time-series storage database, (iii) the interference-aware
scheduler ( 2 ) and (iv) the Node Agent ( 3 ). The Monitoring Agent is replicated
on each node of the cluster. Each Monitoring Agent continuously monitors the

Table 2. Hosts specifications

Processor Model IntelR© XeonR© E5-2690 v3 L2 Cache 256KB

Cores per socket 12 (24 logical) L3 Cache 30MB

Base/Turbo Frequency 2.60GHz/3.5GHz Memory 132GB @2133MHz
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underlying system and stores the monitored metrics in the time series database.
The main scheduler prioritizes the nodes based on information retrieved from
this database. Finally, the Node Agent is also replicated on each node of the
cluster and is responsible for pinning the scheduled application in the less con-
tended socket. We describe each component more thoroughly in the rest of this
section.

5.1 Monitoring Agent

Several approaches have been discussed about hypervisor-based monitoring.
Open-sourced services like Prometheus [6] provide well-organized systems for
metrics logging, aggregation, and querying. They extract metrics mostly used
for alert generation and security insight, only providing a brief overview of the
system’s condition. As a result, the resource under contention cannot be identi-
fied and the root cause of application degradation remains unmanageable. Con-
trarily, low-level metrics, which describe micro-architectural events, can provide
useful information regarding the resource under contention, namely the origin of
a system’s inability to serve workloads’ needs efficiently.

As a first step, we need to get an insight into the low-level system metrics.
Those metrics describe micro-architectural events of the host machine. For this
purpose, we use the Performance Counter Monitor (PCM) [28], a tool developed
by Intel. It is used as an agent 1 , extracting metrics from the system it is running
on. We deploy one PCM agent per node. The Intel Performance Counter Monitor
provides sample C++ routines and utilities to estimate the internal resource
utilization of the latest Intel Xeon and Core processors.

Using PCM we were able to extract system and socket metrics. Most of the
metrics provide useful information about the state of the system (Instructions
per Cycle, L3 cache misses, Memory reads/writes etc.). Since, PCM extractor
is written in C++, we added an influxDB [25] client [31] and store the desired
metrics in a 500 ms interval, in batch mode for increased throughput on a time-
series database. Intervals larger than 1 s can result to undetected system metrics’
spikes [17], while much smaller ones provide non-essential granularity. We store
information retrieved from the socket up to the system-level. The end-to-end
latency from storing the metric in the database to getting it consumed by the
scheduler is ∼15 ms. InfluxDB provides real-time monitoring with the precision
of nanosecond, allowing the user to define short retention periods for data that
are no longer needed. It was proved to be very efficient for the purposes of our
framework compared to MySQL [24].

5.2 Interference-Aware Custom Scheduler

Kubernetes Vanilla Scheduler: The popular, state-of-the-art, widely used
container orchestrator Kubernetes, offers a scheduler that is responsible for
node selection for any incoming pod’s placement. Upon the pod creation by the
user/controller, the scheduler monitoring the object store for unassigned pods,
will assign the pod to a node. Kubernetes also exploits container tags, called
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labels. Users can explicitly define node/pod affinity/anti-affinity for their appli-
cation (pod) or set of applications (deployment). User’s preferences can be either
preferred or required during scheduling, which indicate soft and hard require-
ments respectively. Any preference defined as a hard requirement bypasses the
procedure described below.

The scheduling process uses node scoring, accounting for constraints, and
load balancing, and consists of two stages. The first one is the node filtering,
when the scheduler determines the set of feasible placements, which is the set of
nodes that meet a set of given constraints. All filter functions must yield true
for the node to host the pod. Those constraints called predicates are related to
resources such as disk, volumes, memory, cores, network and ports availability as
well as inter-pod affinity and node tolerations and taints. The node prioritization
phase comes second. After the filtering, with only the feasible nodes remaining,
Kubernetes scheduler (kube-scheduler) using a set of predefined rating functions,
determines the viability of each node. Those functions are mostly related to
resources availability, as well as node affinity provided by the user. The pod will
be scheduled in the host with the highest viability. Kubernetes also supports
resources declaration at the time of pod creation. The user is able to request
any fraction of virtual cores and memory (RAM) which will be a guarantee for
the deployed applications’ minimum resource usage. This resource reservation
prevents usage from other applications by offering runtime isolation. However,
this constitutes only the lower bound of resources usage. The upper bound is set
by defining the resource limits.

On the other side, the proposed framework supports application-agnostic
deployment, removing the burden of workload profiling and resource allocation
from the end-users. While the absence of such resource allocation policies may
decrease the quality of service of the target application, macroscopically, it will
increase resource utilization by exploiting any available system resource and
fairly placing the incoming workload into the isolated parts of the cluster.

Custom Implementation: The main component 2 of our implementation is
an extended version of the vanilla Kubernetes scheduler. Since the Kubernetes
scheduler consists of different predicate and priority functions, we added a cus-
tom priority function in the code of the Kubernetes open-source project. First,
it filters the available nodes, applying user and system-defined strict require-
ments if any. Then, our custom function prioritizes the remaining nodes based on
their most viable socket leveraging the proposed metric in Eq. 1. Thus, instead
of selecting the predominant node, we select the node with the predominant
socket. The main scheduler gets acquainted with system specifications down to
the socket level through a configuration file.

– Retrieve latest low-level socket metrics: In order to acquire the most
recent system condition information, by the time of a scheduling request, we
query the time-series database, retrieving the moving average of the last 5 s
metrics. This information allows our custom scheduler to greedily schedule
applications in a manner that minimizes interference.
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Algorithm 1. Calculate Score for server i

1: for ∀i do
2: for ∀sij do
3: if sij〈c6〉 ∗ oj > 1 then
4: space ← space + 1
5: end if
6: if space ≥ 1 then
7: c ← oj
8: else
9: c ← oj ∗ sij〈c6〉

10: end if
11: min, j ← min(min, sij〈reads〉 + sij〈writes〉) / sij〈ipc〉 ∗ c)
12: end for
13: return j
14: end for

– Node prioritization: In our implementation, we prioritize the candi-
date nodes based on their most viable socket. By convention, each server
is uniquely identified by an identifier i ∈ N

≤n, where n is the total number
of servers available on the cluster. We also denote the jth, j ∈ N

≤mi socket
of server i as sij , where mi is the total number of sockets of server i. Every
socket sij∀i, j is characterized by its attributes 〈C6, IPC,Reads,Writes〉 and
is consisted of oi number of cores.
During the node scoring (Algorithm1), we calculate our custom score accord-
ing to the following two factors: a) cache interference and b) core availability.
We use the custom metric described in Eq. 1, in order to take into consid-
eration the contention in the last level cache (LLC) and the memory bus.
Respectively, in cases of limited core availability in the examined socket, we
multiply our previous result by the core-C6 state, which describes the per-
centage of further parts of the core that are shut down or power-gated.

Except for adding the additional code of our custom function, we needed to
tweak the native code in various additional points as well. One of those points is
the function that selects the most viable node. In our case, we wanted to schedule
the incoming pod in a specific socket of the node. Thus, we implemented a gRPC
[2] client, which sends a request to the winning node with the name of the pod
and the desired socket to be placed, using a protocol buffer [3] file. More details
about the gRPC server will be described in Sect. 5.4.

5.3 Node Agent

This framework applies distributed node management using node agents 3 .
The exploitation of this component is currently limited to placing the incoming
application (pod) into the desired socket. A gRPC [2] server running in the agent
manages the aforementioned task. After the node selection, the main scheduler
sends a gRPC request containing the name of the pod and the desired socket to



Interference-Aware Workload Placement 119

be consumed by the node agent. On receipt of the request, the node agent adds
the pod to a list of the awaiting pods to be executed. A background process
checks iteratively whether a pod has been successfully started running, removes
it from the queue, and pins it in the appropriate socket. We have also set a
timeout for a pod’s existence in the list in order to get rid of failed or delayed
pods. In that case, the pod gets scheduled without core affinity. However, such
cases only occur on large, unseen images that need to be downloaded.

5.4 Components Intercommunication

Fig. 4. gRPC code generation

PCM monitoring agents communicate with the centralized influxDB through a
C++ client that implements the HTTP protocol. Respectively, a Go client is
implemented in Kubernetes scheduler that queries the database on scheduling
events. Regarding scheduler-node agent communication, we utilize gRPC. gRPC
is a modern open-source high-performance remote procedure call (RPC) frame-
work that can run in any environment. The end-to-end flow, from definition to
implementation is illustrated in Fig. 4. It uses HTTP/2 for transport and Pro-
tocol Buffers as the interface description language. We defined the request and
response messages in protocol buffer format, compiled them, and used Golang
both for the client and the server implementations. While the server resides in
the node agent, the client is embedded inside the main scheduler. The gRPC
communication service we used is unary. Once the client calls a stub method,
the server is notified that the RPC has been invoked with the client’s metadata
for this call, the method name, and the specified deadline if applicable.

6 Evaluation

In this section we evaluate our custom approach in terms of a) workload aware-
ness, b) co-location with HPC workloads, and c) fair placement. In order to avoid
warm-up cache effects, we flush the cache between any consecutive experiments.

Workload awareness: As the first stage of our evaluation, we examined the
awareness of the Kubernetes scheduler regarding the running workload and the
contention in the nodes of the system. Thus, leveraging deployments’ feature
replica sets, we scheduled 20 pods running a sleep command in an infinite loop
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Fig. 5. Incoming workload placement and performance of 32 application scenario

in nodes n1 and n2. Afterwards, we assigned both in our custom scheduler and
Kubernetes’ default scheduler the task to schedule 32, 64, and 128 applications.
Those applications were randomly chosen from the benchmark suites referred in
Table 1 and were deployed in random intervals varying from 1 to 5 s. In Fig. 6a,
we plot the distribution of the normalized performance using violin plots. In
the X axis, are shown all the different workload densities deployed, while in the
Y axis we plot the normalized performance, using the execution time without
interference as reference. Hence, values close to 1 indicate minimal performance
degradation. As we can see the distribution of our framework in all cases is more
robust, achieving both higher median and lower standard deviation, providing
a more predictable performance across the deployed workloads. A conclusion
derived from those results and logical reasoning is that Kubernetes is unaware
of workload’s resource usage behaviour.

Co-scheduling with HPC Workloads: Next, by utilizing the HPCG bench-
mark, we scheduled MPI workloads on half of the available nodes of our evalua-
tion. More specifically, the benchmark was configured to run with 4 MPI workers
in nodes n{1, 2, 5, 6}. Each worker included one process per socket (two pro-
cesses per worker in total). On top of this workload, we repeated the previous
procedure and scheduled randomly picked benchmarks from Table 1 in different
densities. While this time, there was no excessive number of idle pods to mislead
the decision of the scheduler, it kept on scheduling any incoming workload in a
round-robin approach. Figure 5, illustrates the workload distribution among the
available nodes, as well as the normalized performance of each application for
each node over time. We observe a contention unaware application placement
in the default scheduler’s case. On the other hand, our custom approach does
not neglect the contention and acts towards a more balanced resource usage.
The performance degradation of an application is also related to other condi-
tions (e.g. network bandwidth contention, the sensitivity of each application to
different kinds of interference), but such an analysis is not part of the current
work.

Regarding the distribution of the normalized performance of the deployed
applications, according to Fig. 6b, there is a more predictable performance
achieved. In lower densities, the mean of the distribution is higher in the cus-
tom approach, because unused resources are exploited. However, as long as the
system becomes more and more saturated, the performance gain is eliminated,
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(a) Workload awareness (b) Co-scheduled with HPCG (c) Randomly picked application
scheduling

Fig. 6. Applications relative performance distribution

since even a bad distribution will benefit from applications running on a less con-
tended system. In such a scenario, further performance degradation in a highly
contended system reaches a plateau. Still, the distributions in higher densities
are more robust, providing results with a smaller by 25% on average standard
deviation. The median is up to 19% higher, while the 95th tail latency of the
distribution is improved up to 13.5% in the 32 application scenario.

Workload Placement Without Prior Application Scheduling: Finally,
we evaluated the scenario of placing different densities of applications in nodes
with no prior application scheduling. The distribution occurred by our custom
scheduler placements, presented a 25–27% smaller expected value, and up to
19% greater median. The tail latency is constantly higher by 12–30% (Fig. 6c).

7 Conclusion

In this paper, we address the problem of interference in multi-tenant, converged
HPC/Big Data cloud infrastructures. More specifically, we discuss the emer-
gence of such environments due to HPC and Big Data democratization, as well
as the need for a global, application-agnostic scheduler. In addition, we try to
identify interference and depict the contention volume of a system by utilizing
PCM. We analyzed workloads from different scientific benchmarking libraries’
performance under pressure on various resources in different intensities. Thus,
we identified resource contention and we proposed a highly correlated with appli-
cation slowdown indicator able to depict the system’s condition. We designed
an integrated with Kubernetes and highly modular interference-aware custom
scheduler implementing a fair resource usage policy by identifying contentious
nodes using a custom scoring function composed of low-level metrics. Finally,
we experimentally evaluated the workload placement of our proposed scheduler
using different scenarios and compared it with the default Kubernetes scheduler.
Our results showed that our custom approach can improve the overall perfor-
mance of the deployed workloads, while, at the same time, it achieves a more
balanced resource utilization.
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Abstract. Nowadays, many application scenarios, such as mobile
phones, drones, mobile robots, require Convolutional Neural Networks
(CNNs) inference on embedded CPUs-GPUs MPSoCs. CNN model
inference is usually computation intensive while the embedded CPUs-
GPUs MPSoCs are usually energy consumption constrained. Therefore,
how to achieve computationally-intensive CNN inference in an energy-
efficient and high-throughput way is an important issue. However, exist-
ing Deep Learning (DL) frameworks only pay attention to achieving
high-throughput inference when deploying CNN models on CPU or GPU
processors without specifically considering the energy consumption.

In this paper, we propose a novel methodology which features design-
time optimization techniques in order to achieve energy efficiency and
high throughput when deploying CNN models on embedded CPUs-GPUs
MPSoCs. Our methodology finds Pareto-optimal mappings of a CNN
model onto a CPUs-GPUs MPSoC with voltage and frequency scaling
(VFS) configurations with the help of a two-objective Genetic Algorithm
(GA) which optimizes the system throughput and energy consumption
simultaneously. Moreover, we propose two analytical models, that are
used as fitness functions in the two-objective GA to evaluate very fast
the system throughput and energy consumption of CNNs mapped onto
embedded CPUs-GPUs MPSoCs. Also, we confirm the high accuracy of
these two analytical models by experimental evidence. Finally, our exper-
imental results show that our novel methodology is able to achieve both
energy efficiency and high throughput when deploying CNN models on
embedded CPUs-GPUs MPSoCs, in comparison with TensorRT which is
the best-known CNN deployment optimizer designed for NVIDIA embed-
ded MPSoCs.

Keywords: Convolutional Neural Networks · SDF · Pareto-optimal
mapping · High-throughput · Energy-efficient · MPSoCs · TensorRT

1 Introduction

Convolutional Neural Networks (CNNs) are biologically inspired graph computa-
tional models, characterized by high degree of available parallelism. Due to their
c© Springer Nature Switzerland AG 2022
A. Orailoglu et al. (Eds.): SAMOS 2021, LNCS 13227, pp. 127–143, 2022.
https://doi.org/10.1007/978-3-031-04580-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04580-6_9&domain=pdf
https://doi.org/10.1007/978-3-031-04580-6_9


128 E. Tang et al.

ability to handle large, unstructured data, CNNs are widely used to perform var-
ious tasks in areas such as computer vision and natural language processing [1].
The CNNs execution typically includes two phases: training and inference [1]. At
the training phase the optimal CNN parameters are established. At the inference
phase, a trained CNN is applied to the actual data and performs the task for
which the CNN is designed. Due to the high complexity of state-of-the-art CNNs,
their training and inference phases are usually performed by high-performance
platforms, and provided as cloud services. However, some applications, e.g. [2–4],
require high-throughput execution of the CNNs inference, which cannot be pro-
vided as a cloud service. These applications are typically deployed on embedded
devices.

Many modern embedded devices are based on multi-processor systems-
on-chip (MPSoCs) [5]: complex integrated circuits, that consist of processing
elements with specific functionalities. Due to their specific design, MPSoCs
offer energy-efficient and high-throughput solutions for applications running on
embedded devices. In addition to hosting various processing elements, capable
of running the CNN inference, such as central processing units (CPUs), embed-
ded graphics processing units (embedded GPUs), and field-programmable gate
arrays (FPGAs), MPSoCs integrate many other components, such as commu-
nication network components and video accelerators, that allow to deploy the
entire embedded application on a single chip. Therefore, MPSoCs seem to be a
promising solution for the deployment of the CNN inference phase on embedded
devices.

Embedded CPUs-GPUs MPSoCs are usually energy consumption con-
strained while the CNN model inference is computation intensive. For example,
in many application scenarios requiring CNN inference on embedded MPSoCs,
such as mobile phones, drones, mobile robots, the battery capacity is usually
very limited. So, how to achieve computationally-intensive CNN inference in an
energy-efficient way on embedded CPUs-GPUs MPSoCs is an important issue.

However, existing Deep Learning (DL) frameworks [6–16], that enable execu-
tion of the CNN inference on embedded CPUs-GPUs MPSoCs, only pay atten-
tion to achieving high-throughput inference when deploying CNN models on
CPU or GPU processors without specifically considering the energy consump-
tion, which can be influenced by the utilized number of processors and by the
possibility for CPUs-GPUs voltage and frequency scaling (VFS). These frame-
works rely on the operating system to determine the utilized number of proces-
sors and the CPUs-GPUs operating frequency at run-time and do not support
design-time optimizations for energy-efficient deployment of the CNN inference.

Therefore, in this paper, we extend the methodology in [16], with design-time
optimization techniques in order to achieve energy efficiency and high throughput
when deploying CNN models on embedded CPUs-GPUs MPSoCs. We propose
to extend [16] because it exploits explicitly both task- and data-level parallelism,
available in a CNN, thereby achieving higher throughput compared to the other
existing DL frameworks [6–15]. We exploit this higher throughput in combination
with different CPUs and GPUs utilization and VFS configuration possibilities to
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reduce the energy consumption and to optimize the CNN inference on an MPSoC
at design-time. The goal of our optimization is to find an MPSoC configuration
which achieves the same or higher throughput with less energy consumption
compared to existing DL frameworks.

Paper Contributions
In this paper, we extend the methodology in [16], which consists of three main
steps, introduced in Sect. 3.1. In Step 1, a CNN model is automatically converted
to a functionally equivalent Syndchronous Dataflow (SDF) model. In Step 2, an
efficient mapping of the SDF model onto a CPUs-GPUs MPSoC is obtained
using a single-objective genetic algorithm (GA) to achieve high throughput by
utilizing the hardware resources as much as possible. Our main novel contribu-
tions are related to Step 2 and include: 1) We propose to use a two-objective
GA in order to optimize for system throughput and energy consumption simul-
taneously. To enable such two-objective GA-based optimization, we propose
novel and very accurate analytical models and use them as fitness functions
in the GA to evaluate very fast the system throughput and energy consump-
tion of CNNs mapped onto embedded CPUs-GPUs MPSoCs; 2) We confirm
the high accuracy of our aforementioned analytical models by comparing the
system throughput and energy consumption numbers provided by our models
with measured numbers obtained by deploying real-world CNNs on the Nvidia
Jetson-TX2 embedded platform; 3) We use the extended methodology and mod-
els, mentioned above, to find pareto-optimal mappings of real-world CNNs onto
the Nvidia Jetson-TX2 MPSoCs platform. The obtained results, in terms of sys-
tem throughput and energy consumption, are compared with results obtained
by the best-known DL framework for Jetson MPSoCs called TensorRT [15]. This
comparison shows that our extended methodology can achieve CNN inference on
embedded CPUs-GPUs MPSoCs with the same or higher throughput but with
less energy consumption.

The remainder of the paper is organized as follows: Sect. 2 gives an overview
of the related work. Section 3 introduces the background material needed for
understanding the contributions of this paper. Section 4 presents our proposed
extension of the methodology in [16], briefly introduced in Sect. 3.1, including
our two novel analytical models. Section 5 shows the experimental results and
Sect. 6 ends the paper with conclusions.

2 Related Work

Among the existing DL frameworks [6–15], NVidia TensorRT [15] is the best-
known CNN deployment optimizer designed for embedded MPSoCs such as
Nvidia Jetson TX2. This optimizer is built on top of CUDA and includes several
optimizations techniques to deliver high throughputs and low latencies for deep
neural network applications. TensorRT tries to minimize the memory footprint of
a CNN by reusing memory and applying fusion operations. Also, it exploits data-
level parallelism, available in a CNN, for efficient utilization of embedded GPUs.
However, TensorRT relies on layer-by-layer (sequential) execution of CNN layers
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and only one CPU processor is utilized for launching GPU engines and sending
data. In this way, the available CPUs-GPUs MPSoC hardware resources are not
utilized in the most efficient way in terms of high-throughput. Moreover, the
focus of TensorRT is only to improve the system throughput, so optimizing the
energy consumption is not considered. The CPUs and GPUs processors do not
operate at proper frequency configurations, which is not a good solution for some
energy constrained DL applications, such as drones or other light battery mobile
robots. In contrast, our extended methodology exploits both data-level paral-
lelism within the same layer and task-level parallelism among different layers of
a CNN. At the same time, our methodology also considers different number of
processors to be utilized and different CPUs-GPUs VFS to be applied. Therefore,
compared to TensorRT, our methodology can achieve same or better inference
system throughput, and lower energy consumption at the same time. Moreover,
our extended methodology is implemented on top of TensorRT, thereby inherit-
ing some benefits of TensorRT as well, such as minimizing the memory footprint
and applying fusion operations.

In [16], a novel methodology for execution of the CNN inference on embedded
CPUs-GPUs MPSoCs is proposed. It takes full advantage of all CPU and GPU
resources, available in an MPSoC, and ensures high-throughput CNN inference
execution on CPUs-GPUs MPSoCs by efficiently exploiting task-level (pipeline)
parallelism, available among CNN layers, together with data-level parallelism,
available within CNN layers. [16] achieves higher CNN inference throughput on
embedded CPUs-GPUs MPSoCs compared to the aforementioned NVidia Ten-
sorRT [15] deployment optimizer. However, utilizing all possible CPU and GPU
resources increases the energy consumption, which may fail to meet the energy
consumption budget of some battery constrained applications. In contrast, in this
paper, we extend [16] in order to enable fast and accurate multi-objective design
space exploration to find more efficient utilization of CPU and GPU resources at
proper VFS configurations. Therefore, we reduce the energy consumption while
still achieving high CNN inference throughput.

3 Background

In this section, we briefly introduce the methodology in [16] for execution of
the CNN inference on embedded CPUs-GPUs MPSoCs as well as we describe
the specific features of the embedded CPUs-GPUs MPSoCs, we consider in this
paper, and the Synchronous Dataflow (SDF) model [17]. All these are essential
for understanding our paper contributions.

3.1 CNN Inference on Embedded CPUs-GPUs MPSoCs

[16] proposes a novel methodology to deploy a CNN model on embedded CPUs-
GPUs MPSoCs. This methodology consists of three main steps. An overview
of this methodology is shown in Fig. 1. In Step 1, a CNN model is converted
into a functionally equivalent Synchronous Dataflow (SDF) model. Unlike the
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CNN model, the SDF model explicitly specifies task- and data-level parallelism,
available in a CNN, as well as it explicitly specifies the tasks communication
and synchronization mechanisms, suitable for efficient mapping and execution
of a CNN on an embedded MPSoC. Thus, a conversion of a CNN model into
a SDF model is necessary for efficient mapping and execution of a CNN on an
embedded CPUs-GPUs MPSoC. In Step 2, a Genetic Algorithm (GA) is uti-
lized to find an efficient mapping of the SDF model, obtained on Step 1, on an
embedded CPUs-GPUs MPSoC. The mapping, obtained by the GA, describes
the distribution of the CNN inference computational workload on an embed-
ded MPSoC, that exploits efficiently both task-level and data-level parallelism,
available in the CNN. In Step 3, the mapping obtained in Step 2 is utilized
to convert a CNN model into a final platform-aware executable Cyclo-Static
Dataflow (CSDF) application model [18]. The CSDF model, obtained in Step 3,
describes the CNN inference as an executable application, efficiently distributed
over embedded MPSoC processors and exploiting the right amount of task- and
data-level parallelism, which matches the computational capacity of an embed-
ded MPSoC. Thus, this methodology takes full advantage of all CPU and GPU
resources, available in an MPSoC, and enables high-throughput execution of the
CNN inference on embedded CPUs-GPUs MPSoCs.

Fig. 1. An overview of the methodol-
ogy in [16]

Fig. 2. Embedded MPSoC

3.2 Embedded CPUs-GPUs MPSoCs

We define an embedded MPSoC as a tuple MPSoC(cpu, gpu), where cpu =
{cpu1, cpu2, ..., cpun} is a set of all CPU cores, available in the MPSoC; gpu =
{gpu1, gpu2, ..., gpum} is a set of all GPU devices, available in the MPSoC, and
typically m ≤ n. An example of an embedded CPUs-GPUs MPSoC with n =
5 CPU cores and m = 1 GPU device is shown in Fig. 2. CPU cores are usually
divided into several clusters. The CPU cores in a cluster can operate at one of
the frequencies from the set fcpu = {fc1, fc2, ..., fcp}. Each GPU can also operate
at one of the frequencies from the set fgpu = {fg1, fg2, ..., fgq}.

3.3 Synchronous Dataflow (SDF) Model

The SDF model [17] is a well-known dataflow model of computation, widely
used in the embedded systems community for efficient mapping of applications
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on embedded devices, including embedded CPUs-GPUs MPSoCs. An applica-
tion, modeled as a SDF, is a directed graph G(A,C), which consists of a set of
nodes A, also called actors, communicating through a set of FIFO channels C.
An example of a SDF model with |A|=23 actors and |C|=24 FIFO channels is
given in Fig. 3. Every actor ai ∈ A is a task, which performs certain applica-
tion functionality, represented as a function Fi. An example of SDF actor a3 is
shown in Fig. 3. Actor a3 performs function F3 = {ReLU}. Every FIFO channel
cij ∈ C represents data dependency and transfers data in tokens between actors
ai and aj . cij has data production rate Uij and data consumption rate Vij . Uij

specifies the production of data tokens into channel cij by actor ai. Vij specifies
the consumption of data tokens from channel cij by actor aj . An example of a
communication FIFO channel c36 is shown in Fig. 3. Channel c36 transfers data
between actors a3 and a6. It has production rate U36=[112640], specifying, that,
at each firing, actor a3 produces 112640 data tokens into channel c36 and con-
sumption rate V36=[112640], specifying, that, at each firing, actor a6 consumes
112640 data tokens from channel c36.

Fig. 3. An example of a SDF model

4 Methodology Extension

In this section, we present our proposed extension of the methodology, intro-
duced in Sect. 3.1, to find an energy-efficient mapping of a SDF model,
obtained automatically from a CNN model, onto an embedded CPUs-GPUs
MPSoC(cpu, gpu), defined in Sect. 3.2, with a proper configuration (proper uti-
lization of the processors and VFS). In order to achieve this, first, we give our
definition of a mapping of a SDF model onto an MPSoC with certain VFS
configuration - see Sect. 4.1. Then, we use a two-objective GA in order to opti-
mize the MPSoC system throughput and energy consumption simultaneously -
see Sect. 4.2. To enable such two-objective GA-based optimization, we propose
novel and very accurate analytical models, see Sect. 4.3, and use them as fitness
functions in the GA to evaluate very fast the system throughput and energy
consumption of CNNs mapped onto embedded CPUs-GPUs MPSoCs.
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4.1 Mapping with VFS Configuration

In our extended methodology, the CNN inference tasks, explicitly specified as
SDF actors, are executed on embedded CPU cores, that are able to efficiently
handle the task-level parallelism among the different tasks. To efficiently utilize
the data-level parallelism, available within the tasks, some of the CPU cores
offload computations on the embedded GPUs. Since the number of embedded
GPU devices is limited, it may occur, that the efficient exploitation of task-level
parallelism, by embedded CPUs, is disrupted due to CPUs competition for the
limited embedded GPU devices. To avoid such disruption, for every embedded
GPU gpuj ∈ gpu, we allocate a single CPU core cpui ∈ cpu, which offloads
computations on gpuj .

Based on the discussion above, we define a mapping of SDF model G(A,C)
onto MPSoC(cpu, gpu) with a VFS configuration, as a partition of actors set
A into n subsets, where n = |cpu| is the number of CPU cores, available in the
MPSoC. We denote such mapping as nA = {nA1,

nA2, ...,
nAn}, where each

nAi ∈ nA is a subset of actors, mapped on cpui, such that ∩n
i=1

nAi = ∅,
and ∪n

i=1
nAi = A. The first m = |gpu| number of CPU cores in mapping nA

offload computations on the corresponding embedded GPUs, i.e., the computa-
tions within every actor ak ∈ nAj , j ∈ [1,m] are performed on gpuj , and the
computations within every actor ak ∈ nAi, i ∈ [m + 1, n] are performed on cpui.
Each cpui operates at a frequency fcp ∈ fcpu, and CPUs of the same cluster
operate at the same frequency. Each gpuj operates at a frequency fgq ∈ fgpu.

An example of a mapping with a VFS configuration, 5A =
{5A1,

5A2,
5A3,

5A4,
5A5} of the SDF model G(A,C), shown in Fig. 3 and

explained in Sect. 3.3, on the embedded MPSoC, shown in Fig. 2 and explained
in Sect. 3.2, is given in Table 1. In this example, we consider that fcpu =
{fc1, fc2, fc3, fc4} and fgpu = {fg1, fg2, fg3, fg4, fg5}. Every Column in Table 1
corresponds to a subset 5Ai, i ∈ [1, 5]. For example, Column 1 in Table 1 cor-
responds to subset 5A1 = {a1, a2, a3, a4, a5, a6, a7}. The actors within subset
5A1 are mapped on cpu1, which offloads computations on gpu1. cpu1 and gpu1

operate at frequencies fc1 and fg2, respectively. Column 2 in Table 1 describes
subset 5A2 = {a8, a9, a10, a13}. Every actor ai ∈ 5A2 is mapped on cpu2, and
cpu2 operates at frequency fc3. Since the MPSoC does not have gpu2, all com-
putations within actors in 5A2 are performed only on cpu2. Since cpu2 and cpu3

belong to the same cluster, as shown in Fig. 2, cpu3 also operates at frequency
fc3. Similarly, cpu4 and cpu5 operate at frequency fc4.

Table 1. Example of a Mapping with a VFS configuration

cpu1@fc1/gpu1@fg2 cpu2@fc3 cpu3@fc3 cpu4@fc4 cpu5@fc4

a1, a2, a3, a4, a5, a6, a7 a8, a9, a10, a13 a11, a12 a14, a15, a16, a17, a18, a21, a22, a23 a19, a20
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Fig. 4. Mapping chromosome example

4.2 Two-objective GA Optimization

With the aforementioned mapping in Sect. 4.1, we associate two system charac-
teristics, (1) the system throughput: the amount of data processed per unit of
time, for example measured in images per second (img/s); (2) the system energy
consumption: the total energy needed to process a unit of data, for example mea-
sured in joules per image (J/img). We assume a mapping to be efficient if the
system throughput is maximized and the system energy consumption is mini-
mized. As these two objectives are conflicting, i.e., the increase of the throughput
will cause increase of the energy consumption, we note, that obtaining such an
efficient mapping of an SDF graph onto a CPUs-GPUs MPSoC with a VFS
configuration is not possible. Thus, we have to perform a complex Design Space
Exploration (DSE) in order to find a set of Pareto-optimal mappings [19] that
we will consider efficient in our case. In our extended methodology, to solve
this problem, we propose to use a two-objective Genetic Algorithm (GA) [20]: a
well-known heuristic approach, widely used for finding Pareto-optimal solutions
for complex DSE problems. We use a GA with standard two-parent crossover, a
single-gene mutation, and standard user-defined GA parameters, such as initial
offspring size, number of epochs, mutation and crossover probabilities [20]. To
utilize such a GA for searching of Pareto-optimal mappings with a VFS configu-
ration, we have to specify problem-specific GA attributes, namely a chromosome
and fitness functions [20]. The chromosome is a representation of a GA solution
(in our extended methodology a solution is a mapping with a VFS configuration)
as a set of parameters (genes), joined into a string [20]. We represent mapping
nA, as a string of length |A|, where every gene is a CPU core cpui ∈ cpu running
at a frequency fcp ∈ fcpu. For a CPU core which offloads computations on a
GPU, the gene also includes the GPU frequency fgq ∈ fgpu. An example of the
chromosome, corresponding to the mapping with the VFS configuration, shown
in Table 1, is given in Fig. 4.

4.3 Analytical Models as Fitness Functions

The aforementioned fitness functions are special functions that estimate the
quality of the GA solutions and guide the GA-based search. We propose two
analytical models and use them as fitness functions φ1 and φ2 during the GA-
based search.

On the one hand, φ1 estimates the system throughput during the GA search
and is given as the following equation:

φ1 = 1/τ (1)
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Note that our SDF model, for CNN inference, features pipeline execution
of actors on CPUs to exploit both task-level and data-level parallelism (see
Sect. 3.3). The bottleneck CPU in such pipeline execution will determine the
system throughput φ1 = 1/τ , where τ is the execution time needed for all SDF
actors, mapped on the bottleneck CPU, to process one unit of data given as an
input to the pipeline. So, we can compute τ as follows:

τ = max{ max
∀cpui,i∈[m+1,n]

{τcpui
}, max

∀cpui,i∈[1,m]
{τcpui

′}} (2)

where τcpui
′ and τcpui

are the execution times needed for all SDF actors mapped
on cpui to process one unit of data given as an input to the pipeline, when cpui

offloads and does not offload tasks on a GPU, respectively. For every cpui ∈ cpu,
τcpui

or τcpui
′ is computed as:

τcpui
= τ t

cpui
+ τ com

cpui
(3)

τcpui

′ = τ t
cpui

′ + τ com
cpui

(4)

where τ t
cpui

′ and τ t
cpui

are the times cpui spends only on computations for all
actors mapped on cpui, when cpui offloads and does not offload tasks on a
GPU, respectively. τ com

cpui
is the time, spent by cpui, on communication with

other embedded processors. τ t
cpui

and τ t
cpui

′ are computed as:

τ t
cpui

=
∑

ak∈nAi

τ(Fk,cpui,fcp) (5)

τ t
cpui

′ =
∑

ak∈nAi

τ(Fk,cpui,fcp,fgq) (6)

where nAi is the set of actors, mapped on cpui; Fk is the function of actor
ak ∈ nAi; fcp ∈ fcpu is the frequency of cpui. τ(Fk,cpui,fcp) is the time, taken by
cpui to execute Fk at frequency fcp; τ(Fk,cpui,fcp,fgq) is the time, taken by cpui

at frequency fcp to execute Fk, when the computation of Fk is offloaded on a
GPU running at frequency fgq ∈ fgpu. The time τ com

cpui
is computed as:

τ com
cpui

=
∑

ak∈nAi

(τw (fcp) ∗
∑

ckj∈C

Ukj + τr (fcp) ∗
∑

cjk∈C

Vjk) (7)

where nAi is the set of all actors, mapped on cpui; ckj ∈ C is an output channel
of actor ak ∈ nAi, to which, at each firing, actor ak produces Ukj data tokens;
cjk ∈ C is an input channel of actor ak, from which, at each firing, actor ak

consumes Vjk data tokens; τr (fcp) and τw (fcp) specify the times, needed by a
CPU core, to read and write one data token, at specific CPU frequency fcp,
respectively.

The accuracy of the analytical model φ1 to estimate the system throughput
depends on the accuracy of the parameter values τ(Fk,cpui,fcp), τ(Fk,cpui,fcp,fgq),
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τr (fcp) and τw (fcp). These values can be obtained accurately by real measure-
ments on the target CPUs-GPUs MPSoC. An experimental confirmation of the
accuracy of φ1 is given in Sect. 5.2.

On the other hand, φ2 estimates the system energy, consumed to process one
unit of data given as an input to the system pipeline, during the GA search and
is given as the following equation:

φ2 =
∑

∀cpui,i∈[m+1,n]

Ecpui
+

∑

∀cpui,i∈[1,m]

Ecpui

′ +
∑

∀gpuj∈gpu

Egpuj
(8)

where Ecpui

′ and Ecpui
are the energy consumption needed for all SDF actors,

mapped on cpui, to process one unit of data given as an input to the pipeline,
when cpui offloads and does not offload tasks on a GPU, respectively; Egpuj

is
the energy consumption needed for all offloaded SDF actors on gpuj to process
one unit of data given as an input to the pipeline. For every cpui and gpuj ,
Ecpui

, Ecpui

′ and Egpuj
are computed as:

Ecpui
= Pidle(cpui, fcp) ∗ T

+(P (cpui, fcp, A) − Pidle(cpui, fcp)) ∗ τcpui
(9)

Ecpui

′ = Pidle(cpui, fcp) ∗ T

+(P (cpui, fcp, A) − Pidle(cpui, fcp)) ∗ τcpui

′ (10)

Egpuj
= Pidle(gpuj , fgq) ∗ T

+(P (gpuj , fgq, A) − Pidle(gpuj , fgq)) ∗ τgpuj
(11)

where Pidle(cpui, fcp) and Pidle(gpuj , fgq) are the power consumption of cpui and
gpuj , when there are no actors mapped on them, and they operate at frequencies
fcp and fgq, respectively; P (cpui, fcp, A) and P (gpuj , fgq, A) are the average
power consumption of cpui and gpuj when all actors of the SDF model (i.e.,
actor set A) are mapped on them, and they operate at frequencies fcp and fgq,
respectively. T is the total time, taken by the system pipeline, to process one
unit of data given as an input to the pipeline and is computed as follows:

T =
∑

∀cpui,i∈[m+1,n]

τcpui
+

∑

∀cpui,i∈[1,m]

τcpui

′ (12)

τcpui
and τcpui

′ are calculated as shown in Eq. (3) and (4), respectively. τgpuj

is the time needed for gpuj to execute all tasks offloaded by its corresponding
cpui and is computed as follows:

τgpuj
=

∑

ak∈nAj

τ(Fk,gpuj ,fgq) (13)
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where nAj is the set of actors mapped on cpui and offloaded by cpui for execution
on gpuj ; Fk is the function of actor ak ∈ nAj ; fgq is the frequency of gpuj .
τ(Fk,gpuj ,fgq) is the time, taken by gpuj to execute Fk at frequency fgq.

If no actors are mapped on cpui or gpuj , then τcpui
, τcpui

′ or τgpuj
will be 0.

In this case, Ecpui
, Ecpui

′ or Egpuj
equals to the idle energy consumption, i.e.,

Pidle(cpui, fcp) ∗ T or Pidle(gpuj , fgq) ∗ T , as shown in Eq. (9), (10), (11).
The accuracy of the analytical model φ2 to estimate the system energy

consumption depends on the accuracy of the parameter values Pidle(cpui, fcp),
Pidle(gpuj , fgq), P (cpui, fcp, A) and P (gpuj , fgq, A). These values can be
obtained accurately by real measurements on the target CPUs-GPUs MPSoC.
An experimental confirmation of the accuracy of φ2 is given in Sect. 5.2.

5 Experimental Results

In this section, we present our results from experiments, in which real-world
CNNs from the ONNX models zoo [21] are mapped and executed on the NVIDIA
Jetson TX2 embedded CPUs-GPUs MPSoC [22]. The goal of the experiments
is to demonstrate that, thanks to our contributions presented in this paper, our
extended methodology can deliver CNN inference on embedded CPUs-GPUs
MPSoCs with the same or higher throughtput but with lower energy consump-
tion compared to existing DL frameworks that support CNN inference on such
MPSoCs. First, we explain the setup for our experiments in Sect. 5.1. Then,
in Sect. 5.2, we confirm the accuracy of our analytical models, introduced in
Sect. 4.3. Finally, in Sect. 5.3, we use our extended methodology and models,
introduced in Sect. 4, to find Pareto-optimal mappings and analyze our experi-
mental results.

5.1 Experimental Setup

We use three real-world CNNs, namely Vgg19, Alexnet and Emotion fer, from
the ONNX models zoo [21] that take images as input for CNN inference. These
CNNs are utilized in different applications and have diverse number and type
of layers. Such diversity leads to a diverse scale of system throughtput and
energy consumption when these CNNs are mapped and executed on the same
hardware platform. Vgg19 and Alexnet are used for image classification and they
have 19 layers and 8 layers, respectively. Emotion fer is used for body, face, and
gesture analysis and it has 10 layers. So, these three CNN models are sufficiently
representative and good examples to apply our extended methodology on and
to demonstrate its merits.

The three CNN models, mentioned above, are mapped and executed on the
NVIDIA Jetson TX2 embedded CPUs-GPUs MPSoC [22] which features 6 CPUs
(Quad-Core ARM and Dual-Core NVIDIA Denver 2) plus 1 Pa GPU device. The
6 CPUs are divided into two different clusters, where the CPUs from the same
cluster can operate at 12 different frequencies and the GPU can operate at 13
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different frequencies. We select NVIDIA Jetson TX2 as our experimental hard-
ware platform because it is a well-known and easy-to-use embedded platform.
Moreover, we can easily and accurately acquire the needed system throghput
data and energy consumption data of each processor by setting timers within
the executed code and by sampling the integrated power sensors onboard, respec-
tively. In addition, NVIDIA Jetson TX2 is supported by the TensorRT frame-
work [15], which is the best-known CNN deployment optimizer designed for
NVIDIA embedded MPSoCs, as mentioned in Sect. 2. The results obtained by
using our extended methodology are compared with TensorRT implementation
results as reference in order to show the benefits of our extended methodology.

For every optimized reference system implementation, obtained by using Ten-
sorRT, the system throughput and energy consumption is directly measured on
the NVIDIA Jetson TX2 platform, as the average value over 50 CNN inference
executions. For the Pareto-optimal systems, obtained by using our extended
methodology, the system throughput and energy consumption data is provided
by our analytical models, introduced in Sect. 4.3. The two-objective GA of our
methodology is executed with initial population size 5000, number of genera-
tions = 100, mutation probability = 5%. For all experiments, the original data
precision (i.e., float32) is utilized in order to preserve the original CNN accuracy.

5.2 The Accuracy of Our Analytical Models

In this section, we confirm the accuracy of our system throughput and energy
consumption analytical models, introduced in Sect. 4.3. We compare the esti-
mated system throughput φ1 and system energy consumption φ2, obtained by
our analytical models, with the corresponding numbers, obtained by direct mea-
surements, on the reference system implementations, as described in Sect. 5.1.
The results are shown in Table 2. In Column 1, we list the three experimen-
tal CNN models, mentioned in Sect. 5.1. For each CNN model, the experiments
are performed with 9 different CPU and GPU frequency configurations. For
the CPU and GPU frequencies, we use the maximum frequency, the minimum
frequency, and a frequency in the middle, as shown in Column 2 and 3. For
example, Row 2 shows that, when we perform the experiment on Vgg19 with
CPU frequency 2.0 GHz and GPU frequency 1.3 GHz, we obtain system through-
put of 14.30 img/s by a direct measurement, as shown in Column 4. Then, we
obtain the estimated system throughput of 14.11 img/s by our analytical model,
as shown in Column 5. Based on the data in Column 4 and 5, we calculate the
error for the system throughput as (14.11 − 14.30)/14.30 = −1.3%, shown in
Column 6. In Column 6, a negative error value means that the system through-
put is under-estimated and a positive value means that the system throughput
is over-estimated. Similarly, Column 7 shows the system energy consumption
of 0.58 J/img, obtained by a direct measurement and Column 8 shows the esti-
mated system energy consumption of 0.56 J/img, obtained by our analytical
model. Column 9 shows the error rate for the system energy consumption. We
can see in Table 2 that the error rate for the system throughput is below 6%
and the error rate for the energy consumption is below 9%. This fact confirms
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that our analytical models are accurate enough for finding pareto optimal points
during a complex design space exploration because such accuracy is sufficient to
relatively compare different design points [23].

Table 2. Accuracy evaluation for our analytical models

CNN model CPU fre-

quency

(GHz)

GPU fre-

quency

(GHz)

System

through-

put by

measure-

ment

(img/s)

φ1 (img/s) Throughput

error (%)

System

energy

consump-

tion by

measure-

ment

(J/img)

φ2
(J/img)

Energy

error (%)

2.00 1.30 14.30 14.11 −1.3 0.58 0.56 −3.4

2.00 0.73 10.45 10.94 4.7 0.44 0.47 6.8

2.00 0.11 1.89 1.96 3.7 1.32 1.27 −3.8

1.27 1.30 13.04 12.67 −2.8 0.54 0.52 −3.7

Vgg19 1.27 0.73 10.28 10.55 2.6 0.30 0.32 6.7

1.27 0.11 1.88 1.91 1.6 0.59 0.62 5.1

0.35 1.30 6.52 6.53 0.2 1.04 1.08 3.8

0.35 0.73 6.23 6.55 5.1 0.44 0.42 −4.5

0.35 0.11 1.85 1.79 −3.2 0.54 0.57 5.6

2.00 1.30 81.17 82.02 1.0 0.055 0.051 −7.3

2.00 0.73 70.82 70.44 −0.5 0.049 0.048 −2.0

2.00 0.11 13.47 13.56 0.7 0.148 0.159 7.4

1.27 1.30 70.92 69.89 −1.5 0.054 0.055 1.9

Alexnet 1.27 0.73 61.69 62.22 0.9 0.045 0.044 −2.2

1.27 0.11 11.74 11.85 0.9 0.110 0.115 4.5

0.35 1.30 38.88 38.69 −0.5 0.090 0.088 −2.2

0.35 0.73 30.90 31.21 1.0 0.068 0.072 5.9

0.35 0.11 6.46 6.50 0.6 0.155 0.161 3.9

2.00 1.30 224.7 220.5 −1.9 0.017 0.016 −5.9

2.00 0.73 178.6 181.1 1.4 0.017 0.018 5.9

2.00 0.11 35.2 35.9 2.0 0.062 0.059 −4.8

1.27 1.30 192.3 189.3 −1.6 0.015 0.015 0

Emotion fer 1.27 0.73 164.7 166.8 1.3 0.012 0.013 8.3

1.27 0.11 32.55 33.01 1.4 0.034 0.032 −6.3

0.35 1.30 57.77 58.21 0.8 0.033 0.032 −3.0

0.35 0.73 46.73 45.99 −1.6 0.023 0.024 4.3

0.35 0.11 27.26 27.61 1.3 0.033 0.034 3.0

5.3 Pareto-optimal Mappings

In this section, we show the benefits of using our extended methodology, intro-
duced in Sect. 4, through a comparison between the Pareto-optimal mappings,
found by our methodology and the Pareto-optimal mappings, found by exhaus-
tive search when using TensorRT for CNN inference implementation because
TensorRT [15] is the best-known CNN deployment optimizer designed for
NVIDIA embedded MPSoCs such as the NVIDIA Jetson TX2.

First, in order to find the Pareto-optimal mappings by using our methodology,
we perform a design space exploration (DSE), by using the two-objective GA
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of our methodology, introduced in Sect. 4.2, among possible mappings with a
CPU and GPU VFS configuration, when Vgg19, Alexnet, and Emotion fer are
executed on the NVIDIA Jetson TX2 platform. The reason for using the two-
objective GA for DSE is that the design space, which has to be explored and
is supported by our methodology, consists of |A||cpu|∗|gpu|∗|fcpu|∗|fgpu| possible
mappings. This is a huge number of mappings considering our experimental
setup, thus exhaustive search is not feasible.

Second, in order to find the Pareto-optimal mappings when using TensorRT
only, we perform a DSE by exhaustive search, among all possible mappings with
a CPU and GPU VFS configuration, when Vgg19, Alexnet, and Emotion fer are
executed on the NVIDIA Jetson TX2 platform. Since TensorRT utilizes only
one fixed CPU to offload all CNN inference tasks to one fixed GPU on NVIDIA
Jetson TX2, the size of the design space when using only TensorRT depends
on the possible CPU frequency levels |fcpu| and the possible GPU frequency
levels |fgpu|. Therefore, in this case, the design space consists of |fcpu| ∗ |fgpu| =
12 ∗ 13 = 156 design points to explore. Such small design space can be explored
by exhaustive search in order to find all Pareto-optimal mappings with 100%
guarantee.

Finally, we present and compare the Pareto-optimal mappings found by using
the aforementioned two methods. The experimental results are shown in Fig. 5, 6
and 7. The horizontal axis shows the system throughput in images per second
(img/s). The vertical axis shows the system energy consumption to process one
image in joules per image (J/img). Each point in Fig. 5, 6 and 7 represents a
Pareto-optimal mapping with certain system throughput and energy consump-
tion. The red (+) points in the figures represent the Pareto-optimal mappings
found by using our extended methodology. The green (×) points represent the
Pareto-optimal mappings found by exhaustive search and using TensorRT only.

Fig. 5. Pareto-optimal mappings for
Vgg19

Fig. 6. Pareto-optimal mappings for
Alexnet
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Fig. 7. Pareto-optimal mappings for Emotion fer

From the experimental results, we can see that: (1) For Vgg19, as shown in
Fig. 5, our methodology can deliver the same or better system throughput with
a lower system energy consumption compared with TensorRT; (2) For Alexnet,
as shown in Fig. 6, when the system throughput is lower than 100 img/s, our
methodology can deliver the same or better system throughput with a lower sys-
tem energy consumption compared with TensorRT. When the system through-
put is higher than 100 img/s, only our methodology can deliver such system
throughput but with a higher system energy consumption; (3) For Emotion fer,
as shown in Fig. 7, our methodology can always deliver a better system through-
put with a lower system energy consumption compared with TensorRT. So, in
conclusion, our extended methodology is able to achieve both energy efficiency
and high throughput when deploying CNN models on embedded CPUs-GPUs
MPSoCs.

6 Conclusions

In this paper, we propose an extended methodology to achieve energy efficiency
and high throughput when deploying CNN models on embedded CPUs-GPUs
MPSoCs. Our methodology finds Pareto-optimal mappings of a CNN model onto
a CPUs-GPUs MPSoCs with VFS configurations with the help of a two-objective
GA which optimizes the system throughput and energy consumption simulta-
neously. Moreover, we propose two analytical models, that are used as fitness
functions in the two-objective GA to evaluate very fast the system throughput
and energy consumption of CNNs mapped onto embedded CPUs-GPUs MPSoCs
and we confirm the high accuracy of these two analytical models by experimental
evidence. Finally, the experimental results of real-world CNNs execution on the
NVIDIA Jetson TX2 platform show that, compared with the best-known CNN
deployment optimizer TensorRT, our extended methodology is able to achieve
both energy efficiency and high throughput when deploying CNN models on
embedded CPUs-GPUs MPSoCs.
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Abstract. In this paper we evaluate the use of system identification
methods to build a thermal prediction model of heterogeneous SoC plat-
forms that can be used to quickly predict the temperature of different
configurations without the need of hardware. Specifically, we focus on
modeling approaches that can predict the temperature based on the
clock frequency and the utilization percentage of each core. We inves-
tigate three methods with respect to their prediction accuracy: a lin-
ear state-space identification approach using polynomial regressors, a
NARX neural network approach and a recurrent neural network app-
roach configured in an FIR model structure. We evaluate the methods
on an Odroid-XU4 board featuring an Exynos 5422 SoC. The results
show that the model based on polynomial regressors significantly out-
performed the other two models when trained with 1 h and 6 h of data.

1 Introduction

In recent years, heterogeneous System-on-Chip (SoC) platforms have perme-
ated many types of IT systems [11,16] due to the efficient balance they provide
between their computing power and power consumption. However, the challenge
they provide is in choosing the correct configuration for a specific application
workload. This is particularly difficult due to the very large configuration space.

Performing exhaustive testing on these types of systems becomes unfeasi-
ble, as the number of possible configurations is vast and requires the presence
of hardware setups to experiment with. In order to speed up the exploration
process, we investigate system identification methods to build a model of the
platform that can be used to predict the temperature of different configurations
quickly without the need of hardware.

Modeling a processor based on theoretical relationship between the power
and thermal dissipation requires extensive knowledge about the characteristics
of the processor and its environment. For some processors, numerical values
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for the thermal characteristics of the materials and placement of the processor
parts are readily available. However, for many processors, these values are not
provided and have to be estimated or measured. Therefore, in this work, we
focus on modeling approaches that can predict the temperature based on the
clock frequency and the utilization percentage of each core. In this paper, we only
consider an asymmetric single-ISA CPU, however including other computational
units (like GPUs and DSPs) would only impact the number of configuration
parameters of the platform and require different types of workload.

To that extent, we evaluate three system identification methods with respect
to their prediction accuracy: a linear state-space identification approach using
polynomial regressors, a NARX neural network approach and a recurrent neural
network approach configured in an FIR model structure. We evaluate the three
methods on an Odroid-XU4 board featuring an Exynos 5422 SoC and perform
a set of experiments to evaluate their prediction accuracy using a 1-h and a 6-h
dataset. The Exynos 5422 SoC is composed of a big.LITTLE octa-core mobile
processor combining a Cortex-A15 and Cortex-A7 quad-core. We acknowledge
the Odroid XU4 is a few years old platform at the time of writing this paper,
however we consider that the proposed approach, with its benefits and draw-
backs, can be applied to other modern SoC platforms.

2 System Identification and Selection of Methods

System identification [10] is a field which deals with creating mathematical mod-
els of dynamical systems through statistical and machine learning approaches.

Several works have utilized neural networks for thermal modeling and have
been proposed in the past. Some of them [5,12] propose white-box approaches
that are based on the theoretical equation that governs the power and heat
dissipation of a processor. These implement a bottom-up technique, where the
thermal model is based on the layout of the SoC, the conditions of the external
environment and the conductive properties of materials. These approaches simu-
late the thermal dissipation directly at chip-level with some level of abstraction.
This type of modeling relies heavily on the accuracy of the technical parameters
and how much detail is lost through abstractions and simplifications.

Another approaches [7,8] use the thermal-electrical analogy, in which the
chip is broken down into small parts; each part is represented as a combination
of current sources, resistors and capacitors. A common tool for these is HotSpot
[19]. These approaches also rely heavily on knowledge about the characteristics
as well as the location of components within the chip.

Several researchers applied gray-box identification approaches to model the
thermal characteristics of a processor. Beneventi et al. [2] propose an approach
where a multi-core processor is modeled as a thermal-electrical circuit. In their
approach, the processor is divided into blocks that correspond to each core and
the section of the copper heat spreader directly above each core. The parame-
ters of the model are then optimized using an Output-Error approach. A similar
approach was proposed by Aguia et al. [3]. They suggested an implementation
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where the cores of a multi-core processor and the cache memory are represented
as blocks in a thermal-electrical-equivalent circuit. The subspace identification
method, N4SID, is then applied to find the optimal parameters for the model.
Another approach that utilizes a state-space identification method has been
proposed in [9]. Here, the researchers deploy a piece-wise linear subspace iden-
tification method that estimates a linear model for each temperature range.
Shetu et al. [14], however, suggest a different approach with a polynomial model
for approximating the temperature of a CPU. In their study, a thermal model
is constructed by creating polynomials based on the size and intensity of the
workload.

Several black-box approaches based on neural networks have been proposed.
Vincenzi et al. [17] and Sridhar et al. [15] predict thermal dynamics of an inte-
grated circuit using ARX linear neural networks. These approaches were shown
to be effective at simulating heat flow in three-dimensional and highly granu-
lar, integrated circuits. Zhang et al. [20] use a feed-forward neural network to
simulate the heat dissipation in processors By comparing the performance of a
Gaussian process model, a neural network model and a linear regression model
the researchers showed that the neural network model outperformed the lin-
ear model in terms of prediction accuracy by 30%, but was approximately three
times more computationally expensive. The Gaussian process model also showed
good prediction accuracy, at the expense of twice the computational overhead
of the neural network model.

Pérez et al. [13] compared recurrent and feed-forward neural network struc-
tures for thermal prediction of immersive cooling computer systems. The core
frequency and processor utilization measurements from the past minute were
used for temperature predictions.

Differently from the previous approaches which rely on power measurements
to predict the temperature of a processor, work has been done on predicting the
power dissipation of a processor. Walker et al. [18] predict the power consumption
of a multi-core processor by utilizing core frequencies, core voltages and event
counters (e.g., cycle counter, bus and cache accesses) to train a linear regression
model. Zhang et al. [21] built a linear regression model based on data collected
from a CPU, where they utilized the idle states and idle time of each core.
In addition, Balsini et al. [1] deploy a genetic algorithm to find the optimal
parameters for a function that represents the theoretical relationship between
power dissipation and quantities such as the core voltage and clock frequency.

In reality, as most models are constructed based on some knowledge and
observations of a system, their corresponding modeling approaches can be viewed
as being gray-box approaches to some degree [6]. Most of the white-box and
gray-box approaches utilize power as an input variable or regressor. When the
thermal properties and the blueprint are not directly available for the ARM
CPUs, a white-box approach is not suitable. Many gray-box approaches also
relied on the close-to-linear relationship between temperature and power. This
also makes these approaches less appealing when the objective of this work is
to perform modeling based only on measurable processor state variables, like
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frequency and processor utilization. However, some previous works exploit the
theoretical relationship between frequency, voltage and utilization to estimate
the power dissipation of a processor [1,18]. Therefore, combining such an app-
roach with a linear model identification technique, such as the N4SID method
suggested in [3], was selected as an approach to be evaluated in this work.

Other approaches that have produced promising results are neural network-
based approaches [15,20]. A neural network in an ARX structure, could through
the addition of a nonlinear hidden layer, learn to replicate the nonlinear dynamics
of the heterogeneous processor. This would create a Hammerstein type of NARX
model. As the dynamics of a heterogeneous processor is rather deterministic and
the noise component in measurements can be expected to be rather low, an ARX-
based model was also selected as an approach to be evaluated in this work.

Recurrent neural network approaches have not seen much attention in appli-
cations related to thermal modeling of computing systems. However, the app-
roach in [13], where an RNN model is trained in an FIR structure, showed
promising results. We therefore selected such RNN-based model as an approach
to be evaluated.

The above approaches were not applied to create prediction models for ther-
mal dissipation of heterogeneous SoCs. Thus in this paper we provide two contri-
butions: a) we evaluate some of the proposed methods in the context of thermal
dissipation and b) we propose a new approach, polynomial N4SID, as a combi-
nation of two existing methods.

3 Evaluated Methods

Based on the surveyed literature three methods have been selected for compari-
son. They will be described in the following: the first is a polynomial extension to
N4SID, which we denote hereafter as Polynomial N4SID, a nonlinear state-space
model structure using nonlinear regressors. The second is a NARX approach,
where a neural network is recursively trained to predict the temperature. The
third approach is an FIR model structure that utilizes an RNN layer to predict
the thermal dissipation. The performance of these three modeling approaches has
been assessed for two different lengths of training data: 1 h and 6 h. The error of
each model has been measured using Mean Squared Error (MSE) as the metric.
All three methods start with 10 regressors, i.e., the two cluster frequencies and
the utilization of each of the eight cores.

3.1 Polynomial N4SID

The first model structure is a parametric approach based on the state-space
identification method N4SID to estimate a linear state-space model. There is a
direct relationship between the power dissipation of a processor and its thermal
dissipation. This relationship could, therefore, be exploited to construct a linear
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model of the system. This type of approach has been suggested in both [2] and
[3]. In this work, however, the objective is to compare modeling approaches that
can predict the temperature based on the clock frequency and the utilization
percentage of each core. The power consumption has a nonlinear relationship
with the core frequency, the core voltage and the core utilization. While the
dynamic power dissipation is linearly dependent on the core utilization, the core
utilization cannot, on its own, be used to describe it, as it is also dependent
on the core frequency and voltage. Therefore, a non-linearity relation had to be
introduced to approximate the power dissipation, in the form of new nonlinear
regressors as polynomial combinations of the core frequency and core utilization.

In our work, we approximate the relation between the voltage and the core
frequency as V ∝∼

√
f . The dynamic part of the power consumption is expressed

as Pdyn
∝∼ f2, while the static part of the power consumption was estimated to

be approximately proportional to f1.5. In this scenario, the core utilization is
expected to be directly proportional to the dynamic power consumption.

Using these approximate relationships as a basis, the polynomials were cre-
ated as the product of the core utilization to a power of 0 or 1 and the core
frequency to a power of between 1 and 3 in increments of 0.5. This was per-
formed for each core and resulted in 58 new nonlinear regressors with a total of
68 regressors, including the original 10.

The N4SID algorithm does not have many parameters that can be tuned.
However, the model order can be viewed as a hyperparameter. In this implemen-
tation, the selection of nonlinear regressors can also be considered as hyperpa-
rameters. Optimization of the utilized regressors was performed using correlation
analysis and grid search.

A randomized search was performed over 500 iterations on values measured
over a one hour workload execution time, as describe in Sect. 4. In each iteration,
three random combinations of core frequency to a power between 1 and 3 and
core utilization to a power of 0 or 1 were selected. The combinations were then
applied to the regressors belonging to each core to create the new regressors.
At the end of each iteration, the average mean square error (MSE) was mea-
sured. Using the results, a pair-wise correlation analysis was performed to detect
overall contribution of each regressor to the error. Figure 1 shows that most of
the regressors with only a single frequency component showed a positive cor-
relation. That is, they increased the error when they were utilized. Those that
showed a negative correlation produced a decrease in the error when they were
utilized. The regressors with a positive correlation were therefore removed from
the regressor set.

Grid search and cross-validation were performed as an additional reduction
step. During the grid search, the model order was set to 5 for all iterations.
This was implemented to reduce computational time. The model order that pro-
duces the best performance was, however, expected to be higher than 5. An
assumption was made, though, that a fifth-order model would be representative
enough for this hyperparameter validation step. All permutations of the remain-
ing regressors were tested and the best regressor configuration was saved. The
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Fig. 1. Correlation between regressor and MSE.

best regressor set is shown in (1), where f is core frequency, u is core utilization
and i indicates the number of cores.

Unl = [f1.5ui, f
2ui, f

3ui, ui, f
2], i = 1..8 (1)

Fig. 2. Validation error and model order.

The final number
of regressors utilized
in this approach is
34. Furthermore, these
regressors were selected
for implementation for
both 1-h and 6-h block
lengths. The average
validation error was
measured for orders
between 2 and 60.
Figure 2 shows the
model performance for
each order. We pre-
sented this approach in
detail in [4].

3.2 Hammerstein-NARX

The second model structure chosen was an NARX approach implemented as an
artificial neural network. As shown by Zhang et al. [20] and Sridhar et al. [15], a
neural network can be trained to predict the temperature at the next time step
based on previous temperature values and some exogenous inputs that affect
the temperature. The two approaches were in this implementation combined
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to create a Hammerstein-NARX structure. In this approach, a network with
one hidden nonlinear layer and one linear output layer has been constructed.
The inputs are the 10 regressors and their respective values shifted back in
time nx time steps. The nonlinear layer uses a sigmoid activation function to
approximate the nonlinearity of the system. The output layer is a linear function
that produces a weighted sum of the values that are produced by the nonlinear
layer. The output from the linear output layer is fed back to itself for the past
ny time steps. Figure 3 shows how the network was structured during training.

Fig. 3. Offline Hammerstein-NARX structure used for training.

The network is trained in an offline configuration. This was chosen since the
online configuration suffered from the vanishing gradient problem during train-
ing. In an offline configuration, there is no recurrence in the network. Thus,
the vanishing gradient is not an issue. Early stopping on the validation perfor-
mance was implemented as well. The training was stopped when the error on
the validation set started to increase. When the training of the network was
finalized, the model structure was closed to produce the online layout shown
in Fig. 4. Using this structure, the network can generate predictions of future
values of the temperature without relying on actual temperature measurements
as inputs.

A few hyperparameters for this approach were selected based on the network
structures suggested in [20] and [15], as well as some empirical experience. The
activation function was selected to be a sigmoid function. Additionally, only
a shallow structure with one hidden layer was tested. The selected optimiza-
tion algorithm, Levenberg-Marquardt, was also not changed and its associated
parameters were kept as the default for the trainlm function in Matlab’s Deep
Learning Toolbox. The Levenberg-Marquardt optimization algorithm was cho-
sen since it was the only algorithm that could successfully converge to a solution
during training on the offline configuration.



Evaluating System Identification Methods 151

Fig. 4. Online Hammerstein-NARX structure used to produce predictions.

In Fig. 5, the validation performance for different layer sizes is shown. For
the 1-h block length, 3 neurons in the hidden layer produced the best validation
performance on average. When training the model structure using 6 h of data, 5
neurons yielded the lowest average prediction error.

Fig. 5. Validation error per size of the hidden nonlinear layer.

3.3 FIR-RNN

The final model structure that was assessed is based on a recurrent neural net-
work. This structure has one recurrent layer followed by a single linear layer.
This is based on an FIR structure, where the output is predicted solely based
on nx previous inputs.

This modeling approach is based on the structure utilized by Pérez et al. [13].
They found that a shallow structure with either GRU or LSTM layers produced
the best performance in their immersive cooling experiment. A similar approach
is therefore implemented, as shown in Fig. 6. A single layer of RNN neurons
is followed by a single linear layer. Each time step, the RNN layer takes the
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input vector x, which corresponds to the 10 original regressors, and passes it
through the neurons to produce a vector of nonlinear states h that is passed to
the next time step. This is performed until the current time step is reached. The
hidden state vector h is then passed through a linear function to determine the
prediction ŷ. The nonlinear function that is applied inside each recurrent unit
differs depending on whether it is a GRU unit or an LSTM unit and on the
activation function that is utilized. Early stopping on the validation set has also
been utilized for this approach.

Fig. 6. FIR-RNN model structure.

The hyperparameters that were selected empirically were the optimizer and
activation function utilized in the RNN nodes. Pérez et al. [13] utilize the Nes-
terov Adaptive Momentum (Nadam) optimizer and a tanh activation function.
Thus, these parameters were selected in this implementation, as well.

The first hyperparameter that was assessed was the number of time steps
for the input that had to be considered. Since this approach is not recursive,
many time steps have to be included to capture the response of the system. To
estimate the settling time of the system, a step response was measured by going
from 0 to 100% utilization on all cores when the Odroid board was configured
to run at 1800 MHz and 1500 MHz for the big and little cluster, respectively.
Measurements shows that it takes approximately 100 s for the system to settle.
Therefore, it can be concluded that an FIR model would need the input values
for the past 100 s to be able to simulate the dynamics of the system accurately.

The sample rate and the number of samples were tested through grid search
and cross-validation. Three other hyperparameters were also tested in conjunc-
tion: the unit type (LSTM or GRU), the number of units and the batch size.
For both the 1-h and 6-h block lengths, a sample length of 50 samples spread
out logarithmically between 0 and 100 s, performed the best. The GRU unit also
outperformed the LSTM unit using both block lengths. A batch size of 1 and
a unit size of 10 was found to be the optimal values for the 1-h block length.
Using the longer block length, a batch size of 4 and a unit size of 18 generated
the lowest average validation error.

4 Experimental Setup

For this study, a desktop experiment setup to benchmark and measure the tem-
perature of a heterogeneous processor was created. The experimental setup in
Fig. 7 was used to generate and gather data in this study.
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System Under Test. In this case the system under test was an Odroid XU4
Exynos 5422 board - a single-board computer allows the control of the frequency
on a per cluster basis between 200 MHz and 2000 MHz for the big cluster and
200 MHz and 1500 MHz for this little cluster. The operating frequency cannot
be controlled independently for each core inside the clusters. The voltage levels
can also be set for each cluster. However, in the Linux operating system for
this platform, these are set to static values for each operating frequency by the
kernel. The operating voltage levels are, therefore, not considered as a variable
in the implementations in this work.

The Odroid board has been configured to trigger a thermal throttle when
the core temperature for the big cores reaches 90◦C. This means that the pro-
cessor’s frequency governors will reduce the maximum available frequency when
the temperature is reached to prevent the processor from overheating.

Fig. 7. Overview of the experimental setup

Experimental workload utilized in this experiment was an RGB-YUV
image conversion. This image conversion was chosen as the workload because it
is a highly parallel workload that can be distributed to many cores.

A custom-built stress configures the platform by setting the utilization of each
core, the frequency of each cluster, and the amount of time for the execution
of the workload. Inside the application, a thread for each core in the system is
created. Each core thread runs its assigned workload independently from the
other cores.

The cluster frequencies are controlled using the Performance frequency gov-
ernor. The used application does not adjust the frequencies directly, it sets the
maximum allowed frequency and the frequency governor then adjusts the fre-
quency accordingly.

The workload is in this work constant. Thus, the total number of possible
configurations can be calculated using Eq. (2), where U is the number of utiliza-
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tion levels, C is the number of cores, fb is the clock frequency of the big cluster
and fl is the frequency of the little cluster.

Nc = UCfbfl (2)

Each core has five different utilization levels, and the big and little clusters
have ten and six discrete clock frequency levels, respectively. For the imple-
mentation in this work, this yields a total of approximately 23 million possible
configurations of the heterogeneous SoC.

Thermal Measurements. Due to the absence of a core temperature sensor
for each core on the Odroid-XU4, a Melexis MLX90640 thermal camera was
used. The camera, with a resolution of 32× 24 pixels, has been mounted close
to the SoC of the Odroid-XU4 in order to obtain a more accurate reading of the
temperature across the surface of the SoC. The camera sensor has a temperature
range of 40 ◦C to 300 ◦C and an accuracy of approximately ±1 ◦C.

Cooling. Due to the use of the thermal camera, the heat sink the SoC was
removed and the external cooling was provided via a fan as direct cooling which
allowed the big cluster to be able to run at up to 1900 MHz. For this work, the
fan is constantly running at 100% speed and the environment temperature has
been kept constant at around 21◦C.

Data Collection. A Raspberry Pi has been deployed as the control and data
collection unit. It controls the experimental workloads and captures the thermal
response. The data from the temperature sensor and the Odroid board were sam-
pled 32 times per second. This sample rate was selected since it is the maximum
sample rate for the thermal sensor. The data set for model selection was cre-
ated by executing a sequence of randomly selected configurations of the Odroid
board using the stress application mentioned above. The configuration of the
board was changed after a random amount of time in the range of 10 to 60 s.
Both the selection of configuration parameters (cluster frequencies and core uti-
lization) and execution period followed a uniform distribution. Throughout the
experiment, the ambient temperature was kept steady at 21◦C.

5 Model Selection and Evaluation

The performance of the three selected modeling approaches has been assessed
for two different lengths of training data: 1 h and 6 h. The error of each model
has been measured using MSE as the metric. A flowchart of the entire model
identification methodology is shown in Fig. 8.

The previously collected data set was divided into two sets, a development
set and a test set. The first 79% of the data became the development set. This
is the portion of the data that the models were trained on and the models’
hyperparameters were evaluated with. The last 20% of the data were chosen as
the test set. This is the data set that the final prediction error was assessed
upon and was not utilized for model training and selection. A small set of data
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Fig. 8. Flowchart of system identification procedure.

corresponding to 1% of the total data, lodged between the development and test
sets, is omitted to ensure that there is no interference between the development
set and the test set. Furthermore, the same data split was utilized for all three
modeling approaches.

1-h Performance. Using the hyperparameters and model structures described
in the previous section, the models were validated through 10-fold cross-
validation. Table 1 shows the result for the model on the 1-h block length.

Table 1. MSE for the implemented approaches trained with 1 h of data.

Folds

Method 1 2 3 4 5 6 7 8 9 10 Avg

Polynomial N4SID 0.16 0.15 0.15 0.16 0.16 0.14 0.16 0.16 0.17 0.14 0.16

Hammerstein-NARX 0.53 1.28 0.61 0.74 0.74 0.55 0.65 0.85 0.79 0.54 0.73

FIR-RNN 2.28 2.14 1.42 1.44 1.05 2.12 1.60 1.30 2.77 0.80 1.69

Table 1 shows that the Polynomial N4SID approach showed the lowest aver-
age MSE. It can also be noted that the N4SID based approach has, by far, the
lowest variance, with a standard deviation of just 0.01. The other two approaches
had significantly worse performance on the test data.

Figure 9 shows the models’ performance on the test set when trained on the
seventh fold. This fold is selected since it is the fold that is the closest to the
average for all three approaches. The configuration parameters of the board were
randomly changed every 10 to 60 s. This means that approximately 57 different
board configurations were utilized in the 2000 s window.
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Fig. 9. 1-h model predictions on the last 2000 s of the test data.

Looking at the above figure, it can be seen that the Polynomial N4SID model
produced a good approximation of the true measured temperature. The other
two models produced less desirable results, but they still yielded a decent approx-
imation of the true temperature. Furthermore, the Polynomial N4SID model does
not appear to have any particular problem areas or specific configurations that it
struggles with. The other two models and especially the FIR-RNN show varying
performance in regards to the different board configurations.

The average training time, average prediction time and the number of param-
eters were also measured for the three model structures. Table 2 shows that the
N4SID-based model structure has the lowest training and prediction time. How-
ever, it is closely followed by the Hammerstein-NARX model structure. The
FIR-RNN model takes the longest both to train and to make predictions. The
training time is especially significant as it is about 100 times that of the other
two approaches.

6-h Performance. The same procedure was utilized for the 6-h block length.
The models were validated through 4-fold cross-validation. Table 3 shows the
result for the model when trained with 6 h of data.

The prediction error of the Polynomial N4SID model was reduced even further
when trained with 6 h of data. It improved by approximately 50% compared to
its 1-h performance. The FIR-RNN model, however, has improved substantially.
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Table 2. Average training time, average prediction time and number of parameter for
the 1-h models.

Method Training time (s) Prediction time (s) Number of parameters

Polynomial N4SID 6 0.25 2144

Hammerstein-NARX 7 0.558 347

FIR-RNN 987 4.9 671

Table 3. MSE for the implemented approaches trained with 6 h of data.

Folds

Method 1 2 3 4 Avg

Polynomial N4SID 0.11 0.11 0.11 0.11 0.11

Hammerstein-NARX 0.26 0.25 0.28 0.28 0.27

FIR-RNN 0.24 0.21 0.18 0.19 0.21

It yields a prediction MSE of 0.21 when trained with more data. The
Hammerstein-NARX model did also improve compared to the 1-h block length,
but it did not see the same level of improvement as the recurrent FIR model.
Figure 10 shows the three modeling approaches’ performance on the final 2000 s
of the test set when trained on the second fold.

The average training time, average prediction time and the number of param-
eters for the three model structures on 6 h of training data is shown in Table 4.
Just as for 1 h of training data, the N4SID and NARX-based models have sig-
nificantly lower training and prediction times. Interestingly, the Hammerstein-
NARX model’s prediction time only increased slightly and is more than twice
as fast as the Polynomial N4SID model.

Table 4. Average training time, average prediction time and number of parameter for
the 1-h models.

Method Training time (s) Prediction time (s) Number of parameters

Polynomial N4SID 60 1.34 3354

Hammerstein-NARX 67 0.65 571

FIR-RNN 2580 10.5 1639



158 J. Öhrling et al.

Fig. 10. 6-h model predictions on the last 2000 s of the test data.

6 Conclusion

The results of this study show that several types of modeling approaches can be
utilized to predict the temperature dissipation of a heterogeneous SoC. However,
Polynomial N4SID outperforms the others in its ability to learn the dynamics of
a system from a limited amount of data and to predict with higher accuracy the
thermal dissipation. We consider that this is because the non-linear regressors
are able to better estimate the quadratic relationship between frequency and
power consumption.

Future work is intended to address some of the limitations of the current
study, for instance to consider several types of SoCs and workloads, to take into
account the ambient temperature and humidity, and to investigate the accuracy
of our models in a real-world setup without removing the heat sink and providing
constant active cooling.
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13. Pérez, J., Pérez, S., Moya, J.M., Arroba, P.: Thermal prediction for immersion
cooling data centers based on recurrent neural networks. In: Yin, H., Camacho,
D., Novais, P., Tallón-Ballesteros, A.J. (eds.) IDEAL 2018. LNCS, vol. 11314, pp.
491–498. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03493-1 51

14. Shetu, R.A., et al.: Workload-based prediction of CPU temperature and usage for
small-scale distributed systems. In: 2015 4th International Conference on Computer
Science and Network Technology (ICCSNT), vol. 01, pp. 1090–1093 (2015)

15. Sridhar, A., et al.: Neural network-based thermal simulation of integrated circuits
on GPUs. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 31(1), 23–36
(2012)

16. Ullman, B.: Designing an ARM-based Cloud RAN cellular/wireless base station,
December 2013. https://www.embedded.com/designing-an-arm-based-cloud-ran-
cellular-wireless-base-station/. Accessed 28 May 2021

17. Vincenzi, A., et al.: Fast thermal simulation of 2D/3D integrated circuits exploit-
ing neural networks and GPUs. In: IEEE/ACM International Symposium on Low
Power Electronics and Design, pp. 151–156 (2011)

18. Walker, M., et al.: Accurate and stable empirical CPU power modelling for multi-
and many-core systems. In: Adaptive Many-Core Architectures and Systems Work-
shop, 15 June 18, June 2018. https://eprints.soton.ac.uk/421995/

https://doi.org/10.1007/b98334
https://doi.org/10.1007/b98334
https://doi.org/10.1007/978-3-642-11802-9_11
https://doi.org/10.1007/978-3-642-11802-9_11
www.embedded-computing.com
https://www.embedded-computing.com/embedded-computing-design/whats-next-for-mobile-heterogeneous-processing-evolves
https://www.embedded-computing.com/embedded-computing-design/whats-next-for-mobile-heterogeneous-processing-evolves
https://www.embedded-computing.com/embedded-computing-design/whats-next-for-mobile-heterogeneous-processing-evolves
https://doi.org/10.1007/978-3-030-03493-1_51
https://www.embedded.com/designing-an-arm-based-cloud-ran-cellular-wireless-base-station/
https://www.embedded.com/designing-an-arm-based-cloud-ran-cellular-wireless-base-station/
https://eprints.soton.ac.uk/421995/
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Abstract. The problem of finding good mappings is central to design-
ing and executing applications efficiently in embedded systems. In het-
erogeneous multicores, which are ubiquitous today, this problem yields
an intractably large design space of possible mappings. Most methods
explore this space using heuristics, many of which implicitly use geo-
metric notions in mappings. In this paper we explore the geometry of
the mapping problem explicitly, for finding embeddings of the mapping
space that capture its structure. This allows us to formulate new map-
ping strategies by leveraging the geometry of the mapping space, as well
as improving existing heuristics that do so implicitly. We evaluate our
approach on a novel mapping heuristic based on gradient descent, as
well as multiple existing meta-heuristics. For complex architectures, our
methods improved the results of established exploration meta-heuristics
by about an order of magnitude in average.

1 Introduction

As the complexity of hardware systems increases, the problem of efficiently pro-
gramming them not only becomes harder but also more crucial. For Cyber-
Physical System (CPS) and embedded systems in general, there is a family of
methods called software synthesis [3,6]. Inspired by hardware design flows, it
aims to bridge the ensuing software productivity gap by integrating knowledge
of the application and target multicore architecture into the compilation process.

A central concept in software synthesis is that of mappings, which divide
the tasks in an application between the different processing elements (PEs) of
the target architecture. Using mappings allow the compiler to produce code
for heterogeneous Instruction-Set Architectures (ISAs), find especially efficient
configurations and even increase the predictability in systems with homogeneous
ISAs like ARM big.LITTLE [11]. The mapping problem, of finding such efficient
mappings, is a difficult yet crucial step in this process. Because of the sheer size of
the mapping space, which grows prohibitively large with increasing architecture
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and application complexities, exploring it exhaustively is intractable. Moreover,
there is a complex relationship between a mapping and its performance, which
in general cannot be modeled well analytically, which is why we need simulation
to estimate it.

A great deal of research has focused on the mapping problem, spawning
many sophisticated heuristics and meta-heuristics to find mappings with differ-
ent characteristics. A survey of mapping approaches can be found in [29]. Many
of these mapping meta-heuristics are based on an intuitive notion of a geom-
etry of the mapping space. For example, the Tabu Search algorithm proposed
in [18] relies on exploring neighboring mappings in order to improve their perfor-
mance. Other similar principles underly methods like Simulated Annealing [22],
Lp-adaptation [15] or genetic algorithms [9,24]. This is usually done in an ad-
hoc fashion, without explicitly considering how to best endow the mapping space
with such a geometric notion. Mappings are simply considered as integer vectors
where the components represent the tasks, and the values represent the PEs
these tasks are mapped to.

Fig. 1. A visualization of the mapping space. The axes are random proyections in the
multi-dimensional space and have no direct interpretation.

Figure 1 shows a rendering of the design space of mappings for an audio filter
C for Process Networks (CPN) benchmark onto the MPPA3 Coolidge architec-
ture [16]. We generate this rendering using the methods of [17], generating a
smoothening from a triangulation of a random projection of 1000 random map-
pings as an artistic interpretation that we can visualize with ParaView [1]. The
height of the mountains and valleys in this landscape, as well as their coloring,
represent the value of the execution time for the mappings being visualized. We
see how the mapping space has multiple local minima and maxima, and generally
a complex structure. The complexity of this structure is a direct consequence of
the geometry we endow it.
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In this paper we argue that we can find better geometries for the mapping
space, simplifying the mapping problem by construction. We do this by consid-
ering a systematic approach to reason about the geometry of the mapping space.
We also present some concrete alternative geometric structures for the mapping
space, and discuss methods to find embeddings of these geometries to real vector
spaces for computation. Since these embeddings can have a very high dimension,
we also discuss and evaluate methods to reduce their dimension.

We show how this geometric structure can be leveraged by proposing a map-
ping algorithm based on the simple and well-known gradient descent method.
Other algorithms which implicitly assume an underlying geometric structure
also benefit from our approach, and we show how we can improve them as well.
Finally, we evaluate these methods on their effect on multiple benchmarks, show-
ing how the geometric structure plays an important role in the mapping problem
and can be used to find novel mapping methods as well as improving established
ones.

2 Related Work

Many flows exist that enable model-based design in a software synthesis
flow [5,10,23,30,31]. In this paper we focus on the mapping problem addressed
in these systems. As mentioned in the introduction, many such mapping algo-
rithms implicitly use geometric structures of the mapping space [9,15,18,22,24].
These approaches do not explicitly model and reason about the geometry of the
mapping space, this is done in an ad-hoc fashion.

In [32], Thompson and Pimentel exploit the mapping space structure explic-
itly, making explicit considerations of the geometry for defining operators in a
genetic algorithm. These can both be seen as special cases of the methods pre-
sented in this paper, albeit for a simpler case with homogeneous architectures.
In a related idea, in [33] they also introduce the concept of “shapes”, which is
also an explicit consideration of some geometric aspects.

The work from Richthammer and others [25–27] is very similar in nature to
the applications discussed in this paper. They also aim to improve Design-Space
Exploration (DSE) methods by statically exploiting the architectural structure,
although the concrete structure they exploit is different. They leverage the con-
crete structure of NoC meshes, by considering sub-structures in the architecture.

In previous work we have considered the geometry explicitly [12] but did
not apply it to design-space exploration. Similarly, in [13] we discussed some
geometric aspects of Network on Chip (NoC)-based architectures. This paper
can be seen as an extension on the geometric considerations in these previous
works.

3 Mapping Tasks to Multicores

As motivated in the introduction, the mapping problem [19] is the decision prob-
lem of assigning physical resources (hardware) to the logical tasks and data
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(software) of an application. We formulate this problem mathematically as find-
ing graph morphisms. We model the architecture as a graph A = (VA, EA).
Here, the nodes VA represent the PEs in the architecture and annotated with
core types. The edges EA represent communication primitives [7], an abstraction
that models any method for communicating between PE, like caches, scratchpad
memories or Direct Memory Access (DMA). The application we model as a graph
K = (VK , EK), where the nodes represent computation tasks (actors, processes)
and the edges EK represent data flow or dependencies. We model mappings as
functions m : K → A, i.e. assigning physical resources to the logical ones. A map-
ping also needs to be consistent. If it assigns two tasks t1, t2 ∈ VK to different
PEs, when these tasks exchange data (i.e., (t1, t2) ∈ EK), the data communica-
tion channel needs to be mapped to a physical channel that respects the task
assignment: we require that m((t1, t2)) = (m(t1),m(t2)) ∈ EA. This condition,
mathematically, means precisely that a mapping respects the graph structure of
K and A. In other words, a mapping is a morphism of graphs m : K → A.

Fig. 2. An example of the mapping space for a simple two-task application.

Figure 2 depicts the mapping problem on a very simple example. The exam-
ple is based on a telecom application of the E3S benchmark suite [8], chosen
specifically because it consists of exactly two tasks, which allows the mapping
space to be visualized in two dimensions. The mappings are plotted by encoding
the mapping of each of the two tasks as the x and y coordinates of the grid, and
the color of the squares in the grid encodes the (simulated) execution time on an
Odroid-XU4 architecture. The actual values of the execution time are irrelevant
here and have been deliberately omitted. In the figure it is clear that the minimal
execution time is obtained by mapping the two tasks to two distinct Cortex-A15
(big) cores.

The example in Fig. 2 is chosen deliberately to be so simple that it can be
depicted in a figure. There are exactly 82 = 64 mappings in the mapping space.
For the audio filter application from the introduction, this space has already
88 = 16777216 mappings and finding the minimal execution time is much less
tractable. In general, the mapping space has cardinality |VA||VK |, and thus grows
exponentially with the number of tasks |VK |. For an 85-core architecture like the
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MPPA3 Coolidge [16], the mapping space of a moderately-large application with
42 tasks has more than 1081 possible mappings, more than there are atoms in
the observable universe.

4 Metric Spaces

We endow the mapping space with a geometric structure by using the concept
of metric spaces. In mathematics, metric spaces are an abstract structure that
describes a space where distances can be measured. As such, it is described as a
tuple (M,d), with a set M , the space, and a (non-negative) “distance” function
d : M ×M → R≥0, called the metric. To be a metric space, this distance function
d has to follow the following axioms:

1. The distance of any object to itself is 0:

d(x, x) = 0, for all x ∈ M.

2. The distance metric is symmetric:

d(x, y) = d(y, x), for all x, y ∈ M.

3. A version of the triangle inequality:

d(x, z) ≤ d(x, y) + d(y, z), for all x, y, z ∈ M.

Traditionally, we encode mappings as vectors m =
(
a1, . . . , a|VK |

)
where

ai ∈ VA are the PEs where task i is mapped. If we interpret these vectors as
being (real) vectors in R

|VK |, we can endow them with a vector distance, like the
Euclidean distance dEuclidean(v, w) =

√∑
i(vi − wi)2. This can be generalized

to other p-norms, as dLp
(v, w) =

∑
i((|vi − wi|)p)1/p, which is a norm for p ≥ 1.

For p = 1, this norm is also known as the Mathattan distance, in allusion to the
distance between buildings in a regular mesh like the streets of Manhattan. We
can endow the space of mappings with a metric also by using the Hamming dis-
tance, which counts only the number of differing entries in the vector. However,
none of these metrics are ideal for the mapping space, as we will now explain.

4.1 Metrics

In the example illustrated in Fig. 3 we saw intuitively how mappings can be more
or less similar. This intuitive notion clearly depends on the underlying architec-
ture. It is the hardware architecture that determines the cost of communicating
data between processes. In order to endow the space of mappings with a metric
space structure, we should first do so with the architecture.

We can use the intuition behind the example to define a metric that takes
latency into account this way [12]. The fundamental observation here is that in
a multicore architecture, communication between different PEs takes different
amounts of time. There are multiple problems with using the communication
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Fig. 3. An intuitive example of distance between mappings.

time between PEs directly as a distance between PEs. Firstly, communication
times depend on multiple factors: the latency and bandwidth of the communi-
cation resources used, the amount of data being sent, the (software) communi-
cation protocol, clock synchronization between hardware resources like the PEs
and buses, arbitration or other contention issues, etc. Of course, we can model
these to various degrees. However, the distance between PEs needs to be a fixed
number and not a function of all these factors. As an approximation, however,
we can use the expected latency for a package of a standardized size (e.g. 8
bytes). As an expected value, this is a fixed number, but through its statistical
nature it can include as much complexity in the model as required1.

The second issue we run into when using communication times for defining a
distance is that, by definition, the distance between a point and itself has to be 0,
but usually a PE has to communicate with itself using an L1 cache, scratchpad
memory or similar, which has a small but non-zero latency. In this sense, the
expected communication latency between cores is not a metric space distance,
but it approximates one well. We propose thus to ignore this latency and set the
distance to 0, to obtain the mathematical metric space structure.

Finally, this metric space structure depends strongly on the unit used to
measure latency (e.g. cycles, milliseconds, etc.), as well as on the absolute speed
of the communication sub-architecture. Since the goal of exposing this structure
is to leverage it for algorithmic decisions like finding good mappings, it is useful to
have comparable distances between different architectures. For this, we propose
to norm the metric distance function such that the average distance between
PEs is 1.

Put together, these principles yield the following definition:

Definition 1 (Architecture Metric Space). Let A = (VA, EA) be an archi-
tecture graph and lat : VA → VA be the expected latency between PEs. Then we
set

1 If communication in the architecture is asymmetric, this will not define a metric.
We can average the communication from p to q and from q to p to fix this, but we
should probably consider this case separately.
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dA : VA × VA, (p, q) �→
{

lat(p, q), if p �= q
0, otherwise (1)

Remark 1. For an architecture graph A = (VA, EA), the tuple (VA, dA) is a
metric space.

Proof. Obviously dA(p, p) = 0 for all p ∈ VA, by definition, and dA(p, q) > 0
for p �= q since the expected latency between PEs is always greater than 0. For
p, q, r ∈ P we have dA(p, q) + dA(q, r) ≥ dA(p, r) since the expected latency of
moving data from p to q and then to r will always be at least as much as moving
it from p to r directly.

In this way we endow M with a discrete metric space structure, with a metric
that reflects the memory subsystem of the architecture, or more generally, its
communication. This is the metric introduced in [12], which has some issues.
In particular, it does not distinguish between core types on heterogeneous sys-
tems. To fix this, we propose an alternative metric space structure on M , by
adding extra dimensions for the communication and the computation. This is
fundamentally very similar to adding channels in the mapping vectors. We thus
define a metric on the channels, based on the metric defined by Definition 1.
The distance between two channels c, c′ ∈ EA is defined as | lat(c1) − lat(c2)| for
the communication channel between the cores. We then apply a similar concept
for the cores, and take relative values of the expected runtime. Disregarding
the ISA or micro-architecture, we can use the frequencies as a first estimation,
which is what we do here. Thus, we set the distance between two cores p, p′ as
| freq(p) − freq(p′)|. Obviously the frequency is not the best estimation of the
expected differences in execution times between PEs, but we restrict our consid-
eration to this for the scope of this paper. Future work should focus on finding
better metrics for the mapping space.

This definition would not produce a metric, since distinct cores with the
same frequency will have a distance of 0, and similarly channels with the same
latency. To deal with this, we add a minimal distance between distinct cores and
channels (e.g. 0.1 times the distance between the next two core types).

Application Distances. To go from A to M , we can use the same principle as
the Lp norms and define d(m,m′) = (

∑
i d(mi,m

′
i)

p)1/p, which can immediately
be checked to be a metric on M . This way we can consider, as a metric space
(embedding), the structure of A to be

M ⊥ . . . ⊥︸ ︷︷ ︸
×|VK |

M, i.e. M × . . . ×︸ ︷︷ ︸
×|VK |

×M with d(Mi,Mj) = {0} for all i �= j. (2)

There are multiple issues with this as well. A very crucial problem with it
is that this does not consider the dependencies between tasks in the application
graph A, nor does it consider how multiple tasks might be more or less relevant.
Many methods can be considered to account for this fact, like having factors for
the dimensions of the copies of M in the orthogonal sum.
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5 Low-Distortion Embeddings

We have seen so far how we can endow the mapping space with multiple metrics
dM : M × M → R≥0 to define distances between mappings. A problem with
this is that the mapping space is a discrete space, with a very large cardinality.
To algorithmically do any computation in this space, e.g. in DSE, we need to
iterate through the whole space. For example, we might have a mapping m0, for
which we want to find all mappings that are within a radius r of it, i.e. compute
the ball Br(m0) with radius r around m0. For this we need to iterate over all
m ∈ M and calculate if dM (m0,m) ≤ r, which is intractable for all but the
simplest examples.

To deal with this, we use established methods from discrete geometry to
calculate low-distortion embeddings. A mapping ι : M ↪→ R

n such that there
exists a D > 0 with

D−1d(x, y) ≤ ‖ι(x) − ι(y)‖ ≤ d(x, y) (3)

is called an embedding with distortion D. In other words, the relative error of
the distances is at most D. Using convex optimization [20], we can calculate
a low-distortion embedding for a finite metric space. This allows us to work
with vectors of real numbers which make many algorithmic tasks scalable, e.g.
computing random points in a ball.

Since the size of the mapping space grows exponentially with the number
of tasks and changes for every application, computing such an embedding for a
large mapping space every time we want to do DSE would also be intractable.
We can avoid this by using the orthogonal sum construction from Eq. 2. Given
an embedding ι : A ↪→ R

k with distortion D for the architecture with a given
metric dA, we can construct an embedding ιk of the mapping space defined as
in Eq. 2 with distortion D [12].

The mapping space can still have a very high dimension, a problem usually
called the curse of dimensionality. With this construction, for the metric without
the extra dimensions, the dimension of the embedding ιk is k|VA| = |VK ||VA|.
The Johnson-Lindenstrauss lemma can be used to reduce the dimension with a
projection [20]. We do this with an iterative method, described in Algorithm 1

Algorithm 1 exponentially increases the dimension, running
numIterationPerDim iterations of a Johnson-Lindenstrauss transform and test-
ing the distortion to see if a target distortion has been reached. Using this algo-
rithm, or variants thereof, we can control the trade-off between the distance and
the dimension of the embedding.

To compare the different metrics and embeddings, for each of them we calcu-
lated 1000 mappings of an audio filter benchmark from the MAPS framework [5]
on the Odroid XU4 platform. For a random subset of the 10002 = 106 pairs of
mappings we calculated the (relative) distance between two mappings and the
relative runtime of the simulation on these two mappings.

There is basically no correlation between mappings distance and the (relative)
runtimes. Two mappings can be very far apart and have (almost) the same
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Algorithm 1. Iterative dimensionality reduction via the Johnson-Lindenstrauss
lemma.
input: A discrete metric space M , a low-distortion embedding ι : M ↪→ R

n and a
target distortion D.

output: An embedding with dimension ≤ n and distortion at most D.
1: dim ← 1
2: while dodim ≤ n
3: for ∈ numIterationsPerDim do
4: ι̃ ← JLReduction(ι, dim)
5: D̃ ← CalculateDistortion(ι̃)
6: if D̃ ≤ D then return ι̃

7: dim ← 2dim
return ι

execution time. This seems very plausible if we consider the symmetries of the
problem [14], where multiple mappings are equivalent yet distinct. There are also
other similarities in mappings. For example, audio filter benchmark computes
an Fast Fourier Transform (FFT) and inverse FFT (IFFT) which are virtually
identical, yet not precisely so.

A perhaps better assessment of the metrics is to ask what is the maximal
relative execution time possible for a given distance. While we understand why
two similar mappings that are far apart will have similar results, we would expect
two mappings that are close to each other to have similar execution times with a
good metric. To test this, we just consider the maximal relative execution time
for two mappings which are (at most) the given distance apart. In the figure, the
metrics described in this section are labeled as follows: We call SimpleVector
the Euclidean norm on the mappings described as simple vectors. The metric
based on the latencies as motivated from Fig. 3 we denote as Embedding, whereas
we add the annotation ED for the metric with extra dimensions which accounts
for heterogeneous PEs.

Figure 4 shows this maximal relative execution times for the data of the
Odroid XU4. It also includes a linear regression of the points for each metric
and embedding. We can see that indeed, most of the metrics are pretty good as
an upper bound on the relative runtime, as seen by the linear behavior on the
figure.

The Odroid XU4 architecture is comparatively small, which obviously has
consequences for the mapping space. The smaller (discrete) space results in an
embedding space that is not as high-dimensional. Figure 5 shows how this situ-
ation changes for the MPPA3 Coolidge.

Similar to the case for the Odroid XU4, Fig. 6 shows the same comparison
with the maximal run-time difference for the MPPA3 Coolidge. Again we see
that many metrics seem to be a decent bound for the difference in execution
time, although less so than for the simple Odroid XU4 platform. The Euclidean
norm on the simple vector mappings, for example, is considerably worse than
in this case than in the Odroid XU4. We can quantify more precisely how good
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Fig. 4. Comparison of multiple distance metrics as predictors of the maximal run-time
difference on the Odroid XU4 platform.
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Fig. 5. The topology of the MPPA3 Coolidge platform, which consists of five clusters
fully connected with a NoC, each cluster consisting of 16 identical general-purpose
cores, as well as a secure and management core.

metrics are as a bound for the execution time by comparing the R2 value as
goodness of fit assessment of the depicted linear regressions.

Figure 7 shows the R2 value, comparing the predictive power of the differ-
ent distance metrics and their embeddings. Here it is also very clear that the
Euclidean norm on simple vectors is not so good for the MPPA3 Cooldige, while
it is comparable to other metrics in the Odroid XU4. We also see how the curse
of dimensionality yields a trade-off not only in the computation time (for larger-
dimensional spaces), but also in the predictive quality of the different norms.
This is more visible on the MPPA3 Coolidge. We see that the trade-off between
the predictive power and the distortion is not very clear from this preliminary
results. Future work should investigate this trade-off more in-depth.
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Fig. 6. Comparison of multiple distance metrics as predictors of the maximal run-time
difference on the MPPA3 Coolidge platform.
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6 A Heuristic for Design-Space Exploration

Having defined a geometric interpretation for the mapping space, we show how
we can leverage this in DSE. For this, we proposed a simple mapping algorithm
based on the geometric structure of the mapping space. We discuss and evaluate
our methods on the example objective of execution time, but do not use its
structure directly. As such, we expect them to generalize to other objectives,
like energy consumption.

Our algorithm is based on an observation of the geometry mapping space. The
design spaces of mappings seem to consist of multiple islands of performance with
similar properties, separated by poorly-performing mappings. Our “performance
islands” hypothesis implies the mapping space is full of local minima. Guiding
a local search towards an optimum should thus not be as conducive to good
results. Instead, we can use a simple and fast meta-heuristic to find a local min-
imum quickly and apply it to multiple points spread around the design space’s
geometry. As meta-heuristic for finding local minima we use the well-known gra-
dient descent optimization algorithm with the momentum method [28]. For the
step-size we use the Barzilai-Borwein [2] method.

In its regular form, this heuristic will quickly get stuck in a local minimum
and produce poor mapping results, as confirmed by experiments (which we omit
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here). However, we can add a simple additional meta-heuristic to leverage the
“performance islands” hypothesis. We start the heuristic at multiple random
points, uniformly distributed in the design space, as defined the distance metric.
In these spread-out locations we execute (parallel) gradient descent optimiza-
tions which we cancel as soon as they reach a local minimum, which empirically
happens after a handful of iterations. The meta-heuristic returns the fastest
mapping found in any of the different starting locations.

We can also improve other meta-heuristics by changing the vectors on which
they operate, instead of the simple vectors of an ad-hoc geometry, we use our
embeddings [12].

7 Evaluation

To evaluate our methods, we implemented the Tabu Search [18] and Simulated
Annealing [22] mapping heuristics in mocasin [21], a framework for evaluating
mapping algorithms. We also implemented our gradient-descent-based mapper.
We configure the meta-heuristic to run on 5 different locations with a maximum
of 20 iterations each, even though this maximum is almost never reached in
practice in the experiments. We compare the results of these two heuristics on
two benchmark suites, one being the Embedded System Synthesis Benchmarks
Suite (E3S) [8] and another one based on MAPS (based on a language called
CPN) [5]. The E3S suite consists of task graphs for 20 benchmarks from 5 differ-
ent domains: auto-indust., networking, telecom, consumer and office-automation.
The CPN benchmarks, on the other hand, are three benchmarks: a two-channel
audio filter, a Histogram of Oriented Gradients (HOG)-based pedestrian recogni-
tion application and speaker recognition application [4]. For each meta-heuristic,
each representation and each benchmark application, we measure the results of
10 runs with different random seeds.

Figure 8 shows the results of these experiments for the Odroid XU4 platform.
The columns labeled as SimpleVector correspond to the Euclidean norm on the
simple mapping vectors used commonly in most mapping scenarios. On the other
hand, the label MetricSpaceEmbedding corresponds to the algorithms using the
embedding as discussed here. Concretely, the embedding of the metric with the
extra dimensions, without dimensionality reduction.

The logarithmic scale of the figure shows two different comparison criteria,
the relative results of the mapping and the relative exploration time of the
DSE. Both are normed to the results of the simulated annealing heuristic with
the SimpleVector representation. For the DSE results, we summarize execution
time as the geometric mean of the relative times of the benchmark, as simulated.
The other metric is the relative exploration time. This is the time that the DSE
needed to explore the design space. The error bars show the variance between
the different benchmarks and the 10 different runs with different random seeds.
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Fig. 8. The effect of embedding-based representations on the Odroid XU4 platform.

We see that changing geometry of the design space is not very effective for
this simple architecture, although it does show more improvement for the E3S
benchmarks. The gradient descent meta-heuristic with our performance island
hypothesis is on par with the other meta-heuristics, which is already a strong
result given the simplicity of the algorithm. As was seen before on the comparison
of the metrics, the Euclidean norm on the simple vector representation is a
decent metric for this space, which explains the results. On the other hand,
using embeddings increases the execution time. This is because of the large
dimension, and the necessity to do a nearest-neighbor approximation. In future
work, applying methods for improving nearest-neighbor algorithms like in the
Annoy library2 could improve this time. We also did not reduce the dimension for
this evaluation, to see the effects on the algorithm. In future work this trade-off
could be exploited to improve the execution time.

Figure 9 summarizes the results of this experiments for the MPPA3 Coolidge
platform, for which we showed that the metric space structure of our embedding-
based representations is better than the canonical metric in the SimpleVector
representation. We see that the results of the exploration are significantly better
for both meta-heuristics with the representations based on this better distance
metric. More importantly, the gradient-descent-based heuristic performs consid-
erably better even. In some cases, the results of this simple heuristic are on aver-
age over an order of magnitude better than the other unmodified meta-heuristics.
This is perhaps a statement about how poorly established meta-heuristics per-
form on a very complex design space, more so than a testament in favor of our
gradient-descent-based heuristic. It shows thus, that our geometric representa-
tions are particularly useful in more complex architectures. Additionally, the
effect on the exploration time is much less pronounced in this case, since the
overhead of the linear algebra involved becomes a smaller portion of the total
exploration time.

2 https://github.com/spotify/annoy.

https://github.com/spotify/annoy
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Fig. 9. The effect of embedding-based representations on the MPPA3 Coolidge plat-
form.

8 Conclusions

In this paper we have seen how to endow the space of mappings to multicores
with a geometric interpretation, and defined some metrics that might be better
suited to describe the space than the ad-hoc simple vector structure used com-
monly. We have seen from experiments that this structure helps especially well
in the DSE of more complex architectures. Importantly, it allows us to use simple
algorithms like gradient descent for mapping, which otherwise was infeasible. For
two different sets of benchmark suites, our heuristic armed with this geometric
interpretation managed to find good mappings much more reliably than estab-
lished heuristics on the complex architecture topology of the MPPA3 Coolidge.
Mapping heuristics based on tabu search and simulated annealing produced map-
pings about an order of magnitude worse on average for this architecture.

We believe the main contribution of this paper is the geometric view of the
mapping space, not the metrics themselves. Future work should focus on finding
better metrics. This might be especially conducive to machine learning algo-
rithms for mapping, which usually work with embeddings as the ones described
in this paper.
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Abstract. With the ever-expanding attack surface of low-cost proces-
sors in IoT applications, the interest in lightweight hardware support for
improving their security is growing. While industry has already adopted
mostly static low-overhead mitigation approaches against code-injection
attacks, the race against code-reuse attacks is not yet over. One com-
monly proposed measure against code-reuse attacks aims to enforce run-
time-dynamic integrity. In contrast to runtime-dynamic remote attesta-
tion, which is limited by its periodic attestation interval (possibly hours
or weeks), runtime-dynamic integrity enforcement performs runtime-in-
tegrity checking in parallel to the actual execution. This allows very short
attack response times, ideally stopping all evil instructions in flight from
actually taking effect. To guarantee a prevention-in-time, one require-
ment is a low latency trace of uncommitted instructions. This typically
would require a deep and core-specific integration. As an abstraction
layer, we present our highly portable Real-Time Lightweight Integrity
enForcement intErface (RT-LIFE), which is optimized to provide the
core’s state (uncommitted instructions) to an arbitrary runtime-dynamic
low-latency Security Enforcement Unit (SecEU) as early as possible,
while minimizing the interface’s area and clock frequency penalties.
We demonstrate RT-LIFE for six very different RISC-V cores together
with our initial control-flow-integrity-enforcing SecEU DExIE, discuss
the hardware architecture and its timing in detail, and finally provide an
open-source release of RT-LIFE.

Keywords: Hardware security · Security monitoring · Portable
uncommitted instruction tracing · Runtime-dynamic integrity ·
Real-time · IoT · RISC-V · Attack prevention · Code-reuse attacks ·
Open-source

1 Introduction

General-purpose processors are vulnerable to different types of runtime attacks.
One sub-class of these are sophisticated and at the same time practical code-reuse
attacks, which cannot be mitigated by traditional techniques such as read-only
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memory, Write ⊕ Execute, or Address Space Layout Randomization [27]. Code-
reuse attacks do not inject malicious code, but execute existing code gadgets in a
sequence not intended by the developer. This includes Return-into-libc, Return-
and Jump-Oriented Programming (RoP, JoP) Control Flow attacks [1,9,29].

Without injecting new code instructions, Return-into-libc attacks exploit
memory errors such as buffer overflows to replace the return address on a call
stack to target on another subroutine [9]. RoP attacks extend this concept, and
collect a potentially large number of code snippets, which are then concate-
nated and executed in an unintended order via manipulated return addresses
[29]. Besides memory-safe programming languages, which trade performance for
security [25], Return-into-libc and RoP attacks can be mitigated by storing a
duplicate of the original return address on a shadow call stack, to be validated
at return time [5,7,23,30].

JoP attacks further extend the concept of RoP, but place their dispatcher
gadget in heap memory [1]. By manipulating forward edges, JoP attacks bypass
RoP countermeasures such as a shadow call stack. Beyond software solutions [33],
one common mitigation approach is using a hardware monitor to safeguard inter-
and intra-function Control Flow Integrity at runtime [7,21,24,28,32]. Depending
on the attacker, this includes direct and indirect Control Flow (CF) [17,20,26].

Such a hardware monitor’s [3] main functionality can be either deeply inte-
grated into a core’s pipeline [5,6,24], or in an on-chip module [7,23,32], or in a
separate off-chip device, e.g. connected via a debug interface [4,18].

In-pipeline monitors offer low-latency, but impose invasive changes to the
pipeline, caches, memory, and executable binary [5,6,24]. On-chip and off-chip
solutions are typically trace-based, and require only minimally-invasive changes
(signal taps, stall, reset, interrupt). Off-chip monitors leave the entire SoC
unchanged, but suffer from limited transmission data rates, data drops, and
longer latency [4,18]. Despite their tighter integration, many on-chip monitors
cannot fully achieve short detection latencies. E.g. PHMon [7] evaluates only
fully-committed instructions, which potentially cannot be reverted or aborted
after detection. Additionally, PHMon relies on queues (2048 entries) and has
multiple stages itself, thus no short detection is possible. This is potentially inse-
cure, as an attack’s impact may occur earlier than the monitor’s delayed reaction,
thereby circumventing the attack prevention capability. PHMon’s design choice
is a trade-off between low-invasiveness (tapping only the final stage) and per-
formance (high Fmax, no stalls) at the cost of latency-related security. However,
PHMon gives an example (Heartbleed) where its detection latency is sufficient
and network information leakage still can be prevented.

As an alternative, our prior work Dynamic Execution and Integrity Engine
(DExIE) is an on-chip real-time SecEU for global and local control flow integrity
enforcement [31] that is capable of stopping ongoing attacks early within short
and guaranteed latency. To fulfill this guarantee, it must be supplied with a
low-latency trace of early uncommitted instructions.

This trace is realized by RT-LIFE (in this work and in [31]). As a security
monitoring interface built for attack prevention, RT-LIFE is the first portable
interface providing an attached Security Enforcement Unit (SecEU) such as
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DExIE sufficient time to reliably make its decision (Decision Latency, DL)
to actually prevent illegal instructions from having any externally visible effects
(Fig. 1). To this end, RT-LIFE retrieves the relevant signals of uncommitted
instructions from the pipeline as early as possible and forwards them with low
Capture Latency (CL) to the SecEU. The feedback loop (CL+DL) includ-
ing the SecEU should be faster than the processor. No or only very few extra
stall cycles are introduced into the regular pipeline, when the SecEU is oper-
ating (Sec. 8). If a SecEU introduces stall cycles, they can be fully-predictable
at compile time, as this allows the tight Worst Case Execution Time (WCET)
computations that are crucial for real-time applications.

After focusing on existing related interfaces (Sect. 2), Sect. 3 introduces RT-
LIFE’s security model and timings. In order to discuss requirements, Sect. 4
presents a case-study using our SecEU (DExIE). Section 5 explains RT-LIFE’s
behavior. The next section sets the design considerations (Sect. 6) which are
followed by the concrete RT-LIFE implementations (Sect. 7). The final sections
contain the evaluation (Sect. 8) and conclusion (Sect. 9).

Key Contributions

– Whereas existing portable tracing interfaces forward only fully-committed
instructions, RT-LIFE reduces the latency by tracing uncommitted instruc-
tions in early pipeline states. Ideally, and also depending on the attached
SecEU, this would allow to catch any malicious instruction in flight (and
prevent it from being committed) without any extra stall cycles.

– We re-use our prior work DExIE to provide a practical use-case for RT-LIFE.
As a trade-off between latency-related security, performance and portability,
DExIE guarantees to stop any illegal CF in time and before any (directly) sub-
sequent malicious and potentially irreversible Memory-Mapped I/O (MMIO)
write access will be committed (take effect).

– We explain our hardware architecture and the given RISC-V cores in detail to
facilitate reproducibility. We also publish our work in an open source reposi-
tory [8]. This is an initial step to flexibly combine a variety of future attack-
prevention SecEUs with different cores.

Sample RISC-V Core

Fe De Ex Mem WB

RT-LIFE
Security Enforcement Unit
Decision Latency (DL)

Stage 1 ... Stage NCapturing Status Signals from uncommitted
Instructions via RT-LIFE (Capture Latency, CL)

Stall or Reset
via RT-LIFE

Fig. 1. Feedback loop for a generic RT-LIFE-enhanced RISC-V core and a generic
SecEU. If the loop’s accumulated latency (CL+DL) is longer than the core’s latency
to fully execute the first harmful instruction, stalls can be issued to halt the core,
increasing the time interval available for detection and thus preventing an attack in
time.
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2 Related Work

We differentiate between open-loop monitoring for debugging and tracing pur-
poses, and closed-loop security enforcement for attack prevention. Whereas the
latter requires tight timing, monitoring does not. All interfaces discussed below
are designed for monitoring only. As both use-cases require similar signals, we
discuss which available standard RISC-V interfaces could be suitable for enforce-
ment as well.

The RISC-V Formal Interface (RVFI) [13] contains a number of signals
intended for formal verification. We used RVFI for an early draft monitoring
unit. However, the RVFI focuses on retired instructions and only provides one
global valid (rvfi valid) signal for all captured data. Instead of directly forward-
ing captured data, earlier stages’s signal values need to be delayed until the
instruction reaches the pipeline’s final stage. An earlier capture would require
individual valid signals, which are not covered by the standard. Thus enforcement
and attack prevention of an instruction is impossible. Stalling any pipeline stage
would not solve the issue, as it equally delays an instruction and its CL, thus
cannot increase the available DL. With RFVI, an attack would only be detected
after occurring, but could not be prevented in time. Additionally, RVFI does
not integrate stall control signals, which are, under some conditions, necessary
to fulfill our security guarantees.

The RISC-V Debug Specification [12] describes debugging interfaces for
RISC-V processors. The execution of a Hardware Thread (HART) can be paused
via explicit breakpoint instructions or debugger triggers. The debugger then has
access to the state of the HART, including the Program Counter (PC) and reg-
isters. The interface would support our intended security guarantees for enforce-
ment. However, continuous single-stepping would be necessary for capturing the
instruction before execution, resulting in a massive performance drop. Therefore,
we do not see this as a reasonable choice for SecEUs, except for very lightweight
applications without real-time requirements.

In contrast to the RISC-V Debug Specification, the RISC-V Trace Spec-
ification [14] is designed for execution tracing without the externally induced
stalls of single-stepping. However, compared to RT-LIFE, it focuses exclusively
on CF. The specification differentiates between the HART to Encoder Interface
and the Encoder’s output, namely the Branch Trace Interface. For compatibility
with off-chip debug units, the bandwidth must be reduced. Thus, the Branch
Trace Interface [14] focuses on retired instruction blocks and uses compactly
encoded packets. Both decisions lead to longer CL, making it incompatible for
our attack prevention. The lower-level HART To Encoder Interface [14] also
focuses on retired instruction blocks. Again, this interface can be used for CF
monitoring without tight timing requirements, but is unsuitable for enforcement.

Although one could use other interfaces for monitoring, there is no other
option, which forwards uncommitted instructions. Hence, none of the existing
interfaces is suitable for analyzing and eventually stopping the currently ongoing
(possibly malicious) instruction before it will be committed.
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3 Fundamentals

3.1 RT-LIFE’s Security Model

Attacker Model: Whereas the specific Threat Model defended against depends
on the attached SecEU unit, RT-LIFE is designed to thwart an attacker who has
access to the core’s state and can arbitrarily alter CF, register write instructions,
and memory store instructions [1,9,20,29].

Guarantees: With constant and short CL, RT-LIFE provides the core’s current
state early and thus allows a long DL to the SecEU attached to the core. RT-
LIFE’s signals provide support for trace-based SecEUs [3] that require the core’s
current status. This includes SecEUs that support a broad range of security
policies, including Control Flow (CF), Data Flow (DF), Memory Security, and
Value Invariant Enforcement [3,7]. With the information captured by RT-LIFE,
attached SecEUs can guarantee to prevent illegal instructions from execution,
often without incurring additional pipeline stalls.

Assumptions: RT-LIFE is intended to support mitigating code-reuse attacks, it
thus monitors the dynamic execution of instructions in the core. As we assume
read-only memory (enforced via a Memory Protection Unit - MPU, or static
partitioning), RT-LIFE does not perform static (memory) integrity attestation
(against code injection attacks).

3.2 Decision Latency for CF, DF and Memory Attack Prevention

To our current knowledge, all existing interfaces (Sect. 2) have CLs that are too
long, leading to the remaining DL between capture and an attack with real-world
impact to be too short to make a decision (Fig. 1). Stalling each instruction to
meet DL requirements is possible, but this would slow down code execution.
Instead, we optimize the interface as well as the SecEU for a reduced latency,
where additional stalls are avoided, and will only be introduced for handling
edge cases.

We define a successful attack by its immediate real-world impact, which
can be caused by (A) MMIO write instructions, or (B) tampering with Control
and Status Registers (CSR). These attacks should be stopped before they take
effect. Other scenarios without immediate real-world impact, e.g., combinatorial
General Purpose Register (GPR) writes, are categorized as less harmful, and
can be safely stopped just after the manipulation occurred. In closer detail, four
latency guarantees, grouped by MMIO (A) and CSR (B) tampering, have
been implemented:

(A1) If a manipulated CF Instruction (CFI) is followed by a memory instruc-
tion potentially writing to an attached MMIO device, RT-LIFE guarantees to
provide a DL of at least one clock cycle to the SecEU to make its decision. (B1)
If a manipulated CFI is followed by a malicious CSR register write, RT-LIFE
guarantees to provide a DL of one cycle to the SecEU. (A2) For a malicious
memory write access, RT-LIFE can guarantee to capture its value and address,
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such that a SecEU can combinatorially (DL = 0) decide and prevent the write
from taking effect. (B2) In the RISC-V ISA, a CSR cannot be directly written.
Instead, its new value is moved from a GPR. Therefore, we are focusing on GPR
integrity. At the latest safe moment, RT-LIFE allows stopping code execution
directly after a GPR is maliciously written, with a guaranteed combinatorial
DL. But this is still sufficiently early to prevent a subsequent CSR write from
actually taking effect.

4 DExIE - A Sample Security Enforcement Unit

Before further elaborating on RT-LIFE’s details, this section introduces our
sample implementation of a SecEU, which itself is called DExIE - Dynamic
Execution Integrity Engine [31]. It requires RT-LIFE’s low latency, and already
uses the CF-focused subset of RT-LIFE’s functionality for a low-overhead fine-
grained Control Flow Enforcement. A forward edge in a Control Flow Graph’s
(CFG) corresponds either to a jump, branch or call instruction. Backward edges
always correspond to return instructions. DExIE enforces forward edges via
auto-generated CFG- or profiling-based (for increased granularity) Enforcement
FSMs (EFSM). In contrast, backward edges are safeguarded by an EFSM-state-
agnostic Shadow Stack. Each subroutine corresponds to one EFSM at a time.
Branches and jumps correspond to the current function’s EFSM-internal transi-
tions. For calls and returns, that function’s EFSM becomes active. Per call, the
Shadow Stack holds return address, return EFSM, and return EFSM state.

After discussing DExIE’s security model, which employs a subset of RT-
LIFE’s features, the DExIE tool-chain and architecture are explained, and the
realization of security guarantees as well as DExIE’s behavior is presented.

4.1 DExIE’s Security Model

Threat Model: DExIE is fitted for (industrial) real-time IoT devices with
MMIO peripherals. The device’s firmware includes memory unsafe languages
such as C with possible vulnerabilities that are (remotely) exploitable.

Attacker Model: The attacker (in)directly and arbitrarily tampers with control
flow instructions [1,9,29].

Guarantees: For any illegal CFI, DExIE immediately resets the core, thus pre-
vents it from executing any subsequent memory write instruction, which might
have a potentially irreversible real-world impact. As EFSMs are stored and pro-
tected in on-chip SRAM and no caching is used, DExIE guarantees to react in
constant time. DExIE and RT-LIFE operate faster than the attached core can
fully execute a memory write instruction following an illegal CF.

Assumptions: By exploiting a software weakness (e.g., a huge overflow), an
attacker could potentially overwrite a function’s code with new instructions
which do not include any CF, or have identical CF, and thus would not vio-
late any EFSM imposed by DExIE. Therefore, we assume read-only program
memory (e.g., enforced via a MPU).
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4.2 DExIE’s Fundamentals

Figure 2, shows DExIE’s key idea. First, the sample application C-Code (a) is
compiled into RISC-V assembly code (b). The DExIE [31] compiler reconstructs
the program structure, to build and interconnect the CFG-based function-
individual EFSMs (c), that are actually being used for enforcement [2].

a) C
Code

b) RISC-V
Assembly Code

c) Enforcement FSMs
(EFSM)

int callee(){
int i=42;
return i;
}
void caller(){
int y=0;
if(y){
callee();
}
return 0;
}

144: <callee>
144-15c: non CFI
160: ret

164: <caller>
164-178: non CFI
17c: beqz 184
180: jal <callee>
184-194: non CFI
198: ret

144-160
State 0

164-17c
State 0

180-180
State 1

184-198
State 2

taken
branch

u. br.

call

return

EFSM #1

EFSM #0

Fig. 2. A standard compiler compiles C-code (a) into Assembly code (b), which gets
automatically converted into interconnected enforcement FSMs (c)

4.3 DExIE’s Behavior and Interface Requirements

CF monitoring is limited by the frequency of CFI in the executable. We call
the number of CFI per clock cycle the CFRate. DExIE’s microarchitecture can
cope with a CFRate of one CFI per cycle for calls and returns, and still achieves
a single clock cycle of DL (Fig. 3a). For branches and jumps, the required DL
is two cycles, thus dropping the maximum CFRate that can be handled with-
out stalling to 1/2 (Fig. 3b). Stalls are only needed for chained branches and
jumps in combination with a successful branch prediction. For DExIE, the ideal
interface to the core would collect all required CF-related data (PC, Instruction,
Next PC), write it into a register, and ideally leave two (or more) cycles of DL
headroom. For memory writes, combinational comparators will validate values
and addresses against DExIE’s statefully loaded constraints (Fig. 3c). For GPR
writes, DExIE will stop execution directly after the write occurred (Fig. 3d).
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PC
Instruction
Next PC

} Input
Register

Output
Register

DL=1 Sync Reset

Async Reset

(a) DExIE’s timing behaviour for calls and returns: After RT-LIFE’s signal capture,
which happens before the input register, DExIE needs one clock cycle of DL for its
decision to reach the output register.

PC
Instruction
Next PC

} Inp.
Reg.

Reg.
Out.
Reg.

DL=2 clock cycles

Sync Reset

Async Reset

(b) DExIE’s timing behaviour for jumps and branches: Two cycles of Decision Latency
(DL) are required.

PC,
Address,
Size, Data

} &

DL=combinational

Wr. Enable

Wr. Enable

(c) DExIE’s timing behaviour for memory writes: Combinational comparators for mem-
ory writes react within the same clock cycle.

PC, Instr.
Target Reg.,
Data

} Register
DL=combinational Sync Reset

Async Reset

(d) DExIE’s timing behaviour for general purpose register (GPR) writes: Combina-
tional logic stops a core directly after an illegal GPR write.

Fig. 3. DExIE’s timing behaviour under different conditions

5 RT-LIFE: Signals and Behavior

After the discussion of DExIE as a sample SecEU to motivate the design of
RT-LIFE, this section focuses on RT-LIFE’s actual implementation.

Table 1 gives an overview of the signals used in RT-LIFE, grouped by their
corresponding type of enforcement function. Columns (a) to (c) contain CF and
DF signals, which are captured from the processor. Column (d) provides the
control signals from SecEU to the core, closing the feedback loop.

In case the core processes a CF instruction (a), RT-LIFE provides the PC,
instruction and the Next PC together with a valid signal. For memory store
instructions (b), the instruction’s PC, the target address, the access size, the data
to be written, and a valid signal are captured. For a register write instruction
(c), the interface provides the PC, the target register ID, and the corresponding
data.
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Table 1. RT-LIFE’s signals

(a) CF (b) Mem. Store (c) Reg. Write (d) SecEU control

To SecEU From SecEU

Valid, Valid, CF-Stall (CFS),

PC, PC, PC Stall-on-Store (SoS),

Instruction, Address, Target Register Continue-Store (CS)

Next PC Size, Data (0: invalid), Data Reset

If a SecEU’s decision latency is too long to prevent real-world impact of an
instruction, it can request additional time by asserting the stall signals (d) CF-
Stall (CFS), Stall-on-Store (SoS), and Continue-Store (CS). The CFS signal is
used if a CF instruction decision takes too long, and the following instruction
with potential real-world impact could not be stopped otherwise. In case the
signal is set, the following instruction is to be stalled before it reaches the WB
and MEM stages, gaining additional DL clock cycles for the SecEU. For memory
writes, the SoS signal allows a SecEU to combinatorially validate the data to be
written, and combinatorially stall a memory write operation before the validation
is complete. To prevent combinatorial loops, which can be caused by RT-LIFE’s
constantly captured signals, the SecEU then asserts a separate combinatorial CS
signal, if the write operation is deemed valid.

6 RT-LIFE Design and Behavior Considerations

For reduced logic overhead, RT-LIFE by default does not compute the next PC
itself, but utilizes the core’s computation. We decided against branch prediction
awareness, as it would increase RT-LIFE’s complexity and potentially degrade
portability. Per group of signals (each column in Table 1), DExIE captures all
signals in the same cycle, and thus would not benefit if only a subset of a group’s
signals were valid. Thus, we capture the signals as soon as all of them are valid.

7 RT-LIFE Implementation

To achieve portability for SecEUs and maintain compliance with the specified
behaviour (Sect. 5), the microarchitecture of RT-LIFE is adapted individually to
each core. We show six examples here for different cores.

With the exception of their pipeline depth, which is 3 and 5 stages respec-
tively, Piccolo (Fig. 4) and Flute are closely related RISC-V cores [10]. Figure 4
shows Piccolo and draws vertical separation lines between its pipeline stages. As
Flute adds additional separators between FE, DE and EX, and RT-LIFE only
interacts with EX and later stages, the same RT-LIFE microarchitecture can be
used for both cores.
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DExIE

Fetch, Decode, Execute|Memory|Writeback
Piccolo |Cache|Writethrough(Bus)

CFS,
SoS

CF:
PC, Instr., Next PC

Reg. Write:
PC, Address, Size, Data

Mem. Store:
PC, Target Reg.,
Data

Fig. 4. RT-LIFE microarchitecture for the Piccolo RISC-V core. Vertical lines separate
the three pipeline stages and the dedicated memory write stages (Cache, Writethrough
(Bus)). Flute is similar, with FE, DE, EX being separated.

DExIE

Fetch|Decode(1)|Decode(2)|Execute|Writeback
Orca |Cache|Writethrough|Bus

CFS,
SoS

CF: PC, Instr.,
Next PC (valid or unknown)

Mem. Store:
Address,Size, Data

CF: Late Next PC

Reg. Write:
PC, Target Reg., Data

Fig. 5. RT-LIFE microarchitecture for Orca RISC-V core. Vertical lines separate
pipeline stages. Note the increased memory write latency.

VectorBlox’ Orca (Fig. 5) is a 5-stage core. One interface difference to Pic-
colo and Flute is the possibility of an unknown Next PC in the EX stage, which
becomes only known later in the WB stage. Another difference is the addi-
tional clock cycle for memory write accesses after the Execute stage (Cache,
Writethrough, Bus), increasing DL headrom for memory writes.

PicoRV32 (Fig. 6) [11] is a fast-clocked non-pipelined multicycle core, which
already implements the RVFI. PicoRV32 uses an FSM to control the current
instruction’s execution. Figure 6 shows the control FSM extended with RT-LIFE.
A CF-stall blocks all FSM transitions towards the fetchFSM state, which are also
marked as red crosses in Fig. 6. The SoS signal only stalls the stmem FSM state.

Fig. 6. RT-LIFE microarchitecture for PicoRV32 RISC-V core.
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Fig. 7. RT-LIFE microarchitecture for Taiga RISC-V core. Dashed blue horizontal
lines separate pipeline stages.

Taiga’s (Fig. 7) [15] execution units work partly independently and in parallel.
The elastic pipeline also causes instructions to reach the WB stage possibly out-
of-order, and bypassing of values can happen even earlier. However, the final
WB always happens in-order at retirement time. Our interface’s SoS affects the
Load Store Unit (LSU), which is only stalled if a subsequent write instruction
enters the LSU. Compared to other cores with intermediary AXI busses, Taiga
employs directly attached BRAMs, resulting in a shorter latency for memory
accesses.

VexRiscv (Fig. 8) [16] is a modular core of adaptable pipeline depth with a
plugin-based implementation. It supports RVFI via its FormalPlugin. We imple-
mented a new plugin to externally stall the execute stage. The DBusSimplePlugin
is extended to autonomously stall one cycle, if a CF instruction is directly fol-
lowed by a memory write operation (DL = DL + 1).

Fig. 8. RT-LIFE microarchitecture for VexRiscv RISC-V core. Vertical lines separate
pipeline stages.

8 Evaluation

We implemented all designs as Processing Elements (PE) in the FPGA SoC
framework Task Parallel System Composer (TaPaSCo) [19,22] on the VC709
Xilinx Virtex 7 device prototyping board using Vivado 2018.3 (in this particular
use case 2018.3 reached higher clock frequencies than more recent versions).
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This includes the original cores, the RT-LIFE-enabled cores, and the DExIE-
monitored cores. Table 2 shows each core’s RISC-V ISA type, the Hardware
Description Language (HDL) used, and its number of pipeline stages. Regarding
the interface, the table lists two decision latencies. First, it gives the number of
clock cycles between a captured CFI and a subsequent memory store instruction
taking effect. Second, it gives the latency between captured CFI signals and a
subsequent register write instruction taking effect. The number of clock cycles
can be seen directly in the core diagrams, except for PicoRV32 (Sect. 7). For
all cores behavior is constant and identical (therefore not shown in the table)
for plain memory stores (combinatorial DL, can be blocked in time) and GPR
writes (comb. DL, safe to stop directly after malicious GPR write).

The following diagrams (Fig. 9a to 9d) show the fmax, LUTs, register and
BRAM usage for all cores. By comparing each core’s implementation against
the corresponding RT-LIFE-augmented implementation, we show that RT-LIFE
itself has no or only minimal overheads. In some cases, RT-LIFE seems to even
improve the performance. This is an artifact and unrelated to RT-LIFE. It is
caused by the Xilinx Vivado proprietary logic synthesis flow, which also includes
heuristic algorithms, which may produce slightly better or worse results in differ-
ent runs, even on the same design. Compared to the other cores, RT-LIFE shows
somewhat higher overheads for PicoRV32 (due to our FSM modifications, see
Fig. 6). Only when combined with a full-blown SecEU like DExIE do the over-
heads increase. This is expected, as enforcing fine-grained Control Flow Integrity
within only 1–2 clock cycles is quite challenging. The critical path lies within
DExIE for four out of the six cores. With DExIE being attached, the number of
additional stalls introduced ranges from 0% for the higher clocking, but longer
latency PicoRV32, to 10.4% for Taiga, which employs partially parallelized exe-
cution units. The wall-clock performance penalty with DExIE ranges from 0%
for Piccolo, to 134 % for PicoRV32. The latter is the worst-case scenario, as its
fmax suffers most. For all of these tests, DExIE was configured identical to mon-
itor the execution of Embench-IoT 0.5 draft benchmarks, namely Aha-Mont64,
Edn, Matmult-Int, and Ud.

Table 2. Characteristics and timing headroom for different RISC-V cores and CF
scenarios

Core ISA RV32 HDL Pipeline Stages Cycles betw.

CF & subseq.

memory store

Cycles betw.

CF & subseq.

reg. WB

Flute ACIMU BlueSpec 5 2 2

Orca IM VHDL 5 3 1

Piccolo ACIMU BlueSpec 3 2 2

PicoRV32 IM Verilog Multicycle Core 4 0

Taiga IMA SystemVerilog 3 (var.) 3 2

VexRiscv IM SpinalHDL 5 2 2
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As we have described in our related work (Sect. 2), we are not aware of
any other portable interface for tracing uncommitted instructions. Thus, we can-
not directly compare RT-LIFE to any similar implementation. Also, attaching
DExIE [31] to one of the many interfaces tracing committed instructions would
be insecure, as the SecEU would no longer be able to stop evil instructions before
taking effect.

Fig. 9. Maximum frequency in MHz, number of look up tables and registers, BRAM
in kB

9 Conclusion

To the best of our knowledge, RT-LIFE is the first approach for building a
portable security monitoring interface, aiming for reduced latency, guaranteed
timing, and low overhead that captures uncommitted instructions. We identi-
fied and demonstrated these attributes as key requirements for SecEUs with
guaranteed attack prevention, with no or only limited performance overhead.

With its inter-core portability, RT-LIFE can ease future research in the area
of real-time low-overhead SecEUs, with our SecEU DExIE serving as an ini-
tial use-case. Future work will further reduce DExIE’s overhead, and add Data
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Flow and Invariant Enforcement to DExIE. The RT-LIFE specifications, the
RT-LIFE-extended RISC-V cores, and a simple demonstration SecEU have been
released as open-source [8].
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Research, Science and the Arts within their joint support of the National Research
Center for Applied Cybersecurity ATHENE.
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Abstract. Predicting workload behavior during execution is essential
for dynamic resource optimization of processor systems. Early stud-
ies used simple prediction algorithms such as a history tables. More
recently, researchers have applied advanced machine learning regression
techniques. Workload prediction can be cast as a time series forecasting
problem. Time series forecasting is an active research area with recent
advances that have not been studied in the context of workload predic-
tion. In this paper, we first perform a comparative study of representa-
tive time series forecasting techniques to predict the dynamic workload of
applications running on a CPU. We adapt state-of-the-art matrix profile
and dynamic linear models (DLMs) not previously applied to workload
prediction and compare them against traditional SVM and LSTM mod-
els that have been popular for handling non-stationary data. We find
that all time series forecasting models struggle to predict abrupt work-
load changes. These changes occur because workloads go through phases,
where prior work has studied workload phase detection, classification and
prediction. We propose a novel approach that combines time series fore-
casting with phase prediction. We process each phase as a separate time
series and train one forecasting model per phase. At runtime, forecasts
from phase-specific models are selected and combined based on the pre-
dicted phase behavior. We apply our approach to forecasting of SPEC
workloads running on a state-of-the-art Intel machine. Our results show
that an LSTM-based phase-aware predictor can forecast workload CPI
with less than 8% mean absolute error while reducing CPI error by more
than 12% on average compared to a non-phase-aware approach.

Keywords: Run time workload prediction · Time series forecasting

1 Introduction

Predicting dynamic workload behaviors has become an essential step in optimiz-
ing hardware resources at runtime. For example, anticipating an application’s
memory intense period can result in power savings if the power management
module switches the core frequency promptly. In addition to power manage-
ment, prediction of workload metrics such as CPI has also been exploited in a
c© Springer Nature Switzerland AG 2022
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variety of applications including reduction of task interference in multi-tenant
systems [13], task migration and scheduling [19], and defending against side-
channel attacks [17]. Predictions allow systems to behave proactively instead of
reactively. It has been previously shown that proactive decisions yield better
optimization results [1]. However, proactive approaches are challenging because
they require predicting the future.

Looking at the past is often a reliable way of estimating the future. Pro-
gram applications specifically present variable workload behaviors throughout
their execution and many of them exhibit periodic trends or patterns. Workload
prediction techniques exploit these characteristics to estimate future behaviors.
Early work in dynamic workload forecasting investigated basic methods such
as exponential averaging and history tables [7]. Later studies proposed more
advanced approaches, ranging from linear regression [20] to, more recently, recur-
rent neural networks (RNNs) [13]. Their objective is to minimize the forecasting
error of periodically measured CPU workload metrics, such as CPI. This peri-
odic collection of metrics forms a time series; hence, runtime workload behavior
forecasting is formally a time series forecasting problem [6,7,20,26].

Time series analysis has been studied for numerous applications, such as stock
price prediction, earthquake detection and traffic forecasting [15]. Researchers
have proposed many recent advances in these fields that have not been studied
in the context of dynamic workload forecasting. In this paper, we first perform
a comparative study of representative time series forecasting models applied to
predicting CPU workload metrics on a single core. We focus on models that
can handle non-stationary program behaviors. We compare classic support vec-
tor machine (SVM) [21] and RNN-based long-short term memory (LSTM) [8]
regressors against auto-regressive dynamic linear models (DLMs) [11] from the
controls domain as well as predictors based on state-of-the-art matrix profile
(MP) [27] time series data mining models.

Our results show that all time series forecasting techniques struggle to pre-
dict abrupt workload changes. Such changes occur because workloads go through
phases. Program phases and their detection, classification and prediction at
runtime have been extensively studied [4]. Phase predictors excel at predict-
ing abrupt workload changes since, by definition, a phase is composed of inter-
vals of execution with similar behaviors. A change of phase is thus a change in
average workload behavior. We propose to complement time series forecasting
with phase classification and prediction. Our approach trains multiple regression
models, one per program phase. At runtime, sampled workload traces are fed
into the appropriate phase-specific model and forecasted workload metrics are
selected and concatenated based on the output of a phase classifier and predictor.
Our results show that complementing time series forecasting with phase predic-
tion consistently decreases the forecasting error of all forecasting techniques and
programs that go through phases.

We summarize the contributions of this paper as follows:

1. We perform a comparative study of representative time series forecasting
techniques to predict application workload behavior at run time. Our com-
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parative study includes state-of-the-art time series techniques that, to the
best of our knowledge, have not previously been adopted for time series fore-
casting before.

2. We propose to complement time series forecasting techniques with phase pre-
diction by implementing a separate forecaster per workload phase, which
results in significant reductions of forecasting errors for all benchmarks.

3. We perform our study and evaluate our approach for prediction of large-scale
SPEC benchmark behavior running on state-of-the-art CPUs for up to 20 time
steps into the future. Results show that a phase-aware LSTM provides the
best predictions, where a phase-aware approach improves prediction accuracy
by more than 12% compared to a non-phase-aware setup.

The remainder of this paper is organized as follows. We review the related
work in the next section. In Sect. 3, we provide background about the forecasting
models that we evaluate. We summarize the workload forecasting formulation
and explain how we complement it with phase prediction in Sect. 4. Section 5
presents the experimental methodology and Sect. 6 shows our results. Finally,
we present our conclusions in Sect. 7.

2 Related Work

Time series analysis applications are prevalent in economics, demography, indus-
trial process control, etc. [15]. Time series forecasting has been used in a wide
range of computing applications as well. In [3], the auto-regressive moving aver-
age (ARMA) model was compared against exponential averaging, history table
predictor, and least squares regression for thermal prediction in multiprocessor
SoCs. In data centers, forecasting has been used to predict cluster utilization [24].
Nikravesh et al. [16] noticed that SVMs and MLPs have comparative accuracies
in predicting data center user requests over time. Matrix profile is a state-of-the-
art technique used for time series motif discovery and analysis [27]. It has been
applied in detecting anomalies in CPU utilization traces of various workloads [5].
However, existing work has not studied matrix profile for time series prediction.
In our work, we specifically demonstrate its adoption for workload forecasting.

Early studies in forecasting dynamic workload metrics proposed basic sta-
tistical and table-based predictors. Duesterwald et al. [7] compared a last-value
predictor with exponentially weighted moving average (EWMA) and history pre-
dictors to forecast instructions per cycle (IPC) and L1D cache misses. The his-
tory table predictor resulted in the lowest mean absolute error (MAE). Another
study [20] evaluated linear regression to forecast IPC. The results show that
they have a lower MAE than the last-value predictor. Kalman filters have been
recently used in the context of CPU workload prediction [14]. They are used
to predict cycles per instruction (CPI) to optimize dynamic energy manage-
ment. One of the forecasting models that we study in this work is DLM [11],
which uses a state-space representation similar to Kalman filters. It additionally
can capture short-term periodicity and trends in time series, but has not been
applied to workload prediction before. Advanced machine learning techniques
have shown to be more accurate than traditional predictors. Zaman et al. [26]
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found that a SVM regressor results in the lowest MAE when forecasting various
performance counters. They compared an SVM against last-value, history table,
and ARMA predictors. ARMA is an auto-regressive predictor that assumes that
the time series is stationary. Since workload behaviors are not stationary, we
include DLM as representative auto-regressive technique that does not assume
stationarity. With recent popularity of RNNs, a later study [13] investigated the
design space of LSTMs to forecast IPC and other metrics of workloads when
they are co-allocated with other tasks in data centers. They compared LSTMs
against linear regression and MLPs, concluding that LSTMs result in the highest
coefficient of determination (R2) scores.

Multiple studies have proposed to detect and classify workload phases using
hardware counters. Early work [9] categorized the memory-boundedness of a
workload into phases. A more recent study [10] uses unsupervised learning to
cluster samples of hardware counters. In addition to detection and classification,
studies in phase prediction focus on predicting discrete workload transitions, i.e.,
its phase changes. In [9], a global phase history table was proposed. In [10] a
genetic algorithm uses phase labels and other parameters for thermal prediction,
where changes occur at a slower pace as opposed to CPU workload prediction,
where changes can be abrupt. Laun et al. [12] compared Markov tables with
last-value predictors. They observed that the same phase is detected in con-
secutive sampling periods and proposed to use run-length encoding to predict
phase changes and estimate phase duration interval ranges. This observation has
been made in more recent studies as well. Srinivasan et al. [23] proposed a lin-
ear adaptive filter to predict the duration of classified phases. To the best of our
knowledge, however, there is no existing work that has short-term workload time
series forecasting with phase prediction to capture long-term patterns. In this
work, we aim to evaluate how the notion of phases impacts forecasting accuracy
orthogonal to any specific phase prediction approach. As such, we implement an
oracle predictor and leave research into phase predictors for forecasting to future
work.

3 Background

This section describes in further detail the models that we evaluate in this study.

Support Vector Machines (SVMs). An SVM is a supervised learning model whose
objective is to minimize an error bound instead of minimizing residuals. This
objective has the purpose of generalizing unseen data [21]. We use SVMs for
regression, which is commonly referred to as support vector regression (SVR). It is
common to apply non-linear transformations, called kernels, to the SVM’s input
space. In this work, we show the performance of both linear and kernel SVRs. We
use a radial-basis function (RBF) as kernel, which is expected to improve accu-
racy compared to a linear SVR at the expense of computational cost. SVMs take
a vector of features as their input. Thus, we convert the multivariate history win-
dow to a single-dimensional space. In our study, when the forecast horizon, k, is
greater than 1, multiple SVM models are learned independently.
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Dynamic Linear Models (DLMs). Dynamic linear models (DLMs) [11] are recur-
sive models formulated as state space models with state parameters correspond-
ing to the structure of the time series. We include DLM components for the
general trend of the time series, seasonality of a given size (to capture period-
icity) and dynamic regression with predictor variables. These components are
combined into state space form to iteratively estimate the next step in time
series given the previous inputs of a certain window size. Due to the iterative
nature, the model can only consider the previous input window to make a predic-
tion. Making the window size and seasonality too large might result in infeasible
computation time. As such, this model is suitable for short term but not long
term periodicity.

Long-Short Term Memory (LSTM). LSTM networks are a type of RNN whose
structure is characterized by having a memory unit that holds long-term infor-
mation. The architectures used in this work is composed out of one or more
stacked LSTM layers and one fully connected layer. The LSTM layers process
the inputs in the time domain to encode a feature vector that the fully con-
nected layer uses to output the forecasts. This architecture is formally classified
as an acceptor LSTM. The fully connected layer has k output neurons, which
simultaneously predict each value of the forecast horizon.

Matrix Profile (MP). Matrix profile is a recent and fast algorithm for uni-variate
time series motif discovery [27]. Motifs are defined as pairs of subsequences of
the same time series that are very similar to each other. We propose to adopt
matrix profile for workload forecasting by finding a window in a workload time
series yt that is most similar to the most recent window of size h, (yt−h+1, ..., yt).
The samples that follow the most similar window are then used as the forecast
values at time t. In other words, there is a subsequence (yv−h+1, ..., yv), v + h <
t, that matrix profile finds to be the most similar to (yt−h+1, ..., yt). The k
samples that follow v are then used as the forecast at time t, i.e. (ŷt+1, ..., ŷt+k) =
(yv+1, ...yv+k).

4 CPU Workload Forecasting

In the following, we first summarize the task of forecasting CPU workload metrics
as used in this work. We then describe our proposal to combine forecasting with
phase detection and prediction.

4.1 Basic Forecasting

Workload time series are formed from hardware counter data collected using
the CPU’s performance monitoring units (PMU). Multiple PMU counters are
collected each period, resulting in a multivariate time series. The forecasting
techniques focus on predicting one of the counters and may use the rest of them
as inputs for additional information. We run different programs and consider the
execution of each program as a separate time series forecasting task.
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Forecast

Forecast

Fig. 1. Example of forecasting executions of two different phases of nab (Color figure
online)

Formally, each multivariate time series U ∈ R
n×m is composed out of n

observations of m variables. In the case of workload metric forecasting, the value
of m depends on the maximum number of PMU counters that can be collected
at the same time. We are interested in predicting one of the m variables, y ∈ U .
The observation of this variable at time t, 1 ≤ t ≤ n, is denoted as yt. We are
interested in predicting k future values of y at time t, (ŷt+1, ..., ŷt+k), using only
past observations Ui, i ≤ t. k is known as the forecast horizon. At each step t,
a predictor generally takes as input a history window of size h, (Ut−h+1, ..., Ut).
In summary, the time series forecasting problem can be formalized as follows:

(ŷt+1, ..., ŷt+k) = mp,w

(
(Ut−h+1, ..., Ut)

)
, (1)

where mp,w represents the trained model function of predictor p with its set of
trainable parameters w.

Finding model parameters w is a supervised learning problem. We use a sub-
set of observations t in U with known true values ŷ to create a training data
set. During prediction at runtime, we use sliding windows of h history values for
every new time step t in the test set to predict k future values rooted at t.

4.2 Phase-Aware Forecasting

As our results will show, basic forecasting techniques show low prediction accu-
racy for workloads that exhibit distinct long-term phase behavior, even when
those phases repeat over time. We propose to alleviate this problem by expand-
ing the scope of time series forecasting using phase detection and prediction.
Figure 1 shows the intuition behind our approach. The center of the figure shows
a snippet of the nab workload going through two different phases, highlighted as
red and green regions. We partition the trace based on phases, concatenate the
sub-traces, and train a predictor specific to each phase. The forecasts belonging
to a phase are thus only dependent on the history of that phase, and phase-
specific predictors can be specialized to a single phase to increase accuracy.
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Fig. 2. Phase-aware workload forecasting.

Finally, with knowledge of the future phase behavior, phase-specific forecasts
are concatenated and assembled to reconstruct the forecast for the overall time
series.

Formally, we use c to denote the total number of distinct phases that a
workload cycles through. An overview of our phase-aware forecasting approach
is shown in Fig. 2. Our approach consists of four high-level stages: (1) phase
classification and separation, (2) phase-based forecasting, (3) phase prediction,
and (4) forecast reconstruction. In the following, we formalize each step in detail.

Phase Classification and Separation. A phase classifier, Θ, maps each sam-
ple, Ut, to a phase, αt, 1 ≤ αt ≤ c:

αt = Θ(Ut). (2)

The samples of U that share the same phase, i, are concatenated into a single
vector. In total, there are c disjoint time series Vi, defined as follows:

Vi =
(
Ut|αt = i

)
, 1 ≤ i ≤ c (3)

with observations Vi,t′ , where t′ represents the mapping of original observations
Ut into a new time dimension t′ for each series. Note that the following conditions
must be true:

U =
c⋃

i=1

Vi, and
c⋂

i=1

Vi = ∅. (4)
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Phase-Based Forecasting. Each new time series, Vi is processed by a different
model mp,wi

, where p again denotes the prediction technique and wi the corre-
sponding set of trained parameters. Note that all models use the same model
architecture and predictor type, i.e. they differ only in trained parameters. The
models are otherwise handled in the same way as in Sect. 4.1; they use h samples
to forecast k values of a predicted variable zi ∈ Vi as follows:

(ẑi,t′+1, ..., ẑi,t′+k) = mp,wi

(
(Vi,t′−h+1, ..., Vi,t′)

)
. (5)

Phase Prediction. A phase predictor, ψ, further takes outputs αt from the
phase classifier to predict k future phases at time t based on the history of d
previous phases. In other words:

(α̂t+1, ..., α̂t+k) = ψ
(
(αt−d+1, ..., αt)

)
. (6)

Forecast Reconstruction. Finally, since the forecasting models mp,wi
are

unaware of their interactions and relationships to the original time series, we use
the outputs α̂t from the phase predictor to select those values of ẑi,t′ that should
be output as overall forecast ŷt. Formally:

(ŷt+1, ..., ŷt+k) = (ẑα̂t+1,t′+1, ..., ẑα̂t+k,t′+k). (7)

5 Experimental Methodology

To generate the workload traces, we use a subset of programs from the SPEC
CPU 2017 benchmark suite [22]. The subset was chosen to represent different
representative workload phase behaviors: a uniform pattern (nab), abrupt tran-
sitions (cactuBSSN ), hard to predict non-stationary patterns (mcf ), long phase
durations (xz ), and workloads with only a single phase (perlbench). We used the
ref inputs given by the benchmark suite. The execution time of all workloads
is more than one minute, which provides enough data to train the forecasting
models. Table 1 summarizes the workloads and their phase characteristics.

Our target platform is an Intel Xeon-SP running Ubuntu 18.04. We collect
PMU counters every 10 ms using Intel’s EMON command-line tool. We con-
strained our data features to the number of PMU events that can be accessed
simultaneously. In the case of the Intel Xeon-SP platform, 4 fixed counters and
up to 8 variable counters can be sampled per core (or uncore) simultaneously. In
addition to fixed instruction and cycle counters, we selected 8 counters for predic-
tion that can characterize the workload behaviors by their memory boundedness
(L2 accesses, L2 hits and L3 misses, i.e. main memory accesses), control flow
predictability (retired total and mispredicted branch instructions), and opera-
tion mix (retired floating point operations). We also use executed μOps and stall
cycles to account for other resources stalling the CPU pipeline execution. Nor-
malizing the PMU counters to the number of instructions yielded more accurate
results for all multi-variate models. We also found that reducing dimensionality
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Table 1. Benchmark summary.

Benchmark Samples No. of phases Avg. phase length

cactuBSSN 202,179 5 167

mcf 52,673 5 599

nab 170,251 5 231

perlbench 16,462 1 –

xz 126,669 4 7,037

with principal component analysis (PCA) improves the performance of SVR and
LSTM models. Finally, we applied a median filter to the data to eliminate noise.
A median filter was preferred over other smoothing techniques for its ability to
preserve workload behavior changes.

CPI is used as the variable of interest, y, to compare our models. The rest
of the collected performance counters are used by some of the models as inputs.
The matrix profile algorithm is designed for uni-variate time series; therefore,
we only use CPI as input. The rest of the models use the other counters in a
multi-variate fashion as described in Eq. (1).

We split each time series into 70% of samples used for training, hyperpa-
rameter tuning and model selection, and 30% of samples for testing. We use the
mean absolute percentage error (MAPE) between measured and predicted CPI
to evaluate our forecasting models. We set a fixed forecast horizon of all models
of k = 20. With this, we compute a separate MAPEi for every step 1 ≤ i ≤ k
in the forecast horizon as follows:

MAPEi =
100%

n

n−k∑

t=1

( |yt+i − ŷt+i|
yt+i

)
(8)

When comparing different models, we look at the average MAPE (AMAPE) of
all 20 predictions: AMAPE = 1

k

∑k
i=1 MAPEi.

In addition to evaluating forecast errors, we measured the inference time
corresponding to one prediction step. To perform a fair comparative study, we
run the inference of all forecasting models on the same machine, an Intel Core i9-
9900K running Debian 9.13. We use Python’s time standard library to measure
the inference time. The frameworks that we use to implement and train our
forecasting models are PyDLM [25] for DLM, scikit-learn [18] for SVM, Keras [2]
for LSTM, and PySCAMP [28] for matrix profile.

To evaluate the benefits of phase-aware forecasting independent of a specific
phase prediction approach that comes with its own inaccuracies, we use an oracle
phase predictor. We focus our work on the study of forecasting models in phase-
aware versus -unaware settings, and leave the selection of phase predictors to
future work.
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6 Experimental Results

We first discuss tuning of hyperparameters and selection of forecasting model
architectures. We then evaluate and compare accuracy of different phase-aware
versus -unaware variants of each model. As described above, we use 70% of the
trace of each benchmark for training and 30% for testing. For hyperparameter
tuning and model selection, we further split the training set into 50% of samples
used for exploration, i.e. to train the models with different hyperparameters,
and 20% used for validation, i.e. to select the best parameters based on the
average performance across benchmarks. We then train the final models with
the complete 70% of samples and use the remaining 30% in the test set to
evaluate accuracy of each forecasting technique.

6.1 Hyperparameter Tuning and Model Selection

We evaluate each technique’s sensitivity to history window size, h, and other
relevant model parameters to select the best overall architecture for each model.
Figure 3 shows the exploration of all forecasting models. We plot the tradeoff
between the mean AMAPE across all benchmarks on the y-axis and the inference
time on the x-axis. We also show the finally selected hyperparameters of each
model with a dotted green circle on each figure.

For SVMs (Fig. 3a), we explored both linear and RBF kernels. Given inher-
ently non-linear workload behavior, RBF kernels show significantly better accu-
racy, but come at the expense of higher computational cost. Window size impacts
inference time with an RBF kernel, where more complex models with larger input
features increase computation time. By contrast, the forecast error is very sim-
ilar across window sizes. In general, a window size that is too small to capture
workload periodicity will result in larger errors. At the same time, very long
window sizes result in a model that averages samples instead of learning their
interactions. The optimal window size strongly depends on the workload, how-
ever. The mean AMAPE is lowest for a window size of 70, but smaller window
sizes have better accuracy for nab while larger window sizes are better for xz.
We chose a window size of h = 50 due to its faster inference time and mean
AMAPE that is very close to h = 70 (less than 1% difference).

For DLM (Fig. 3b), in addition to history window sizes, we selected sea-
sonality (periodicity) through validation. Larger periodicity improves accuracy
regardless of the window size, albeit at the cost of a significant increase in compu-
tation time. Window sizes show similar accuracy and inference time trends than
in SVMs, but they have a stronger impact on accuracy for DLMs. Medium win-
dow sizes show best accuracy at intermediate computation costs. These trends in
window sizes and periodicity were consistent in all benchmarks. The best mean
AMPAE with reasonable computation time was found to be for a window size of
h = 80 with periodicity of 100. Our DLM model also includes a degree 2 trend
component and a multivariate dynamic regression component with 8 predictor
variables. The DLM was found to do better with the multivariate predictor vari-
able component compared to without it.
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(a) SVM exploration (b) DLM exploration

(c) LSTM exploration (d) MP exploration

Fig. 3. Exploration of the forecasting techniques hyperparameter space. (Color figure
online)

The exploration of LSTM hyperparameters (Fig. 3c) included the number of
LSTM layers and the number of features per layer in addition to input window
size h. They all impact the computational costs, with fewer features, fewer layers
and smaller window sizes being faster. Having more features reduces the fore-
casting error. This is a trend we observed across all benchmarks except perlbench,
which showed an opposite trend. We thus selected 128 as the number of features.
A smaller number of layers generally decreases mean AMAPE, but the impact
on forecasting error is dependent on the number of features and the workload.
For example, for nab, increasing the number of layers with 16 features reduces
AMAPE, but the trend is opposite with 40 features. The models with lowest
mean AMAPE, however, all have 1 and 2 layers. As such, we chose 1 layer for
our final model as the inference time is faster and the mean AMPE difference is
not significant. The window sizes with lowest mean AMAPE were 70 and 100.
The best performing window, however, was different for each benchmark. The
best window size was 100 for cactuBBSN, 70 for mcf, 50 for nab and 10 for xz.
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Fig. 4. Accuracy of phase-unaware versus-aware (PA) models.

Similar to SVM and DLM models, the error decreases up to those values and
then increases again. The mean AMAPE is best for h = 100, which is what we
chose in the end.

Finally, the range of window sizes that we show for matrix profile (Fig. 3d) is
at a larger scale than the other forecasting techniques. This is because MP did
not perform well with smaller window sizes. Similar to other models, we observed
that for most benchmarks, the forecast error decreases with increasing window
sizes up to a certain value, while larger window sizes increase computational
cost. The only benchmark that was not significantly impacted in accuracy by
the window size was xz. The best mean AMAPE for matrix profile was for
h = 500, which we chose for this model.

Overall, with the exception of DLM, all models show similar validation accu-
racies and inference times. DLM, however, is both significantly more inaccurate
and slower than other approaches. The technique with the fastest inference time
is SVM with 2.1 ms, followed by LSTM with 3.9 ms, matrix profile with 9.8 ms
and lastly, DLM with 46 ms. These time measurements were taken with the pur-
poses of comparing the inference times of different models relative to each other
in their base software implementation. Further investigation is required to opti-
mize their implementations and reduce overhead for actual deployment, e.g., by
pruning or hardware acceleration. We evaluate final model accuracy for the test
set in the next section.

6.2 Accuracy Evaluation

Figure 4 shows the accuracy comparison of all four forecasting techniques using
a basic and our proposed phase-aware (PA) setup. In addition to AMAPE, the
graph also shows the range of MAPE1 and MAPE20 across the nearest and
farthest prediction in the forecast horizon for each model and benchmark. Most
benchmarks and models show that the closest forecast is more accurate than the
farthest, with the mean between them.
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Fig. 5. Accuracy per forecast steps of phase-aware and -unaware LSTM for xz.

When comparing traditional models with phase-aware approaches, results
show that using phase-specific models consistently decreases the forecasting error
of all techniques for all benchmarks except perlbench. The workload traces of
perlbench do not go through phases and there is no room of improvement for
phase-aware forecasting.

We observe that cactuBSSN exhibits the most impact in forecasting error
reduction with a phase-aware approach. Some of its transitions between phases
have very abrupt changes where the CPI value increases by 500%. Any mispre-
dictions of these transitions result in very large error penalization. This is also
reflected in the large variation in errors between the first and last prediction in
the forecast horizon. A phase-unaware LSTM in particular struggles to predict
those changes and benefits significantly from a phase-aware approach. By con-
trast, mcf is impacted the least from phase-aware models and generally exhibits
poor accuracy and larger error variations. This is because its phases continu-
ously change and reduce in length over time, which makes the workload hard
to predict overall. Note that matrix profile in particular cannot accurately pre-
dict this trend since its predictions are purely based on recalling past behavior
unchanged. As opposed to mcf, the phases of nab have repetitive uniform pat-
terns, where phase-aware models have a significant impact in decreasing forecast
error. A basic LSTM is able to accurately learn both short-term and long-term
phase patterns for this workload, but its phase-aware counterpart still had room
for improvement.

Finally, Fig. 5 shows the MAPE of all steps in the forecast horizon of a phase-
aware and -unaware LSTM when predicting xz. While a phase-unaware LSTM
provides good AMAPE across all steps, it shows high maximum errors due to
its inability to predict phase changes with larger CPI jumps for this workload.
The phase-unaware LSTM will sometimes predict a phase change when there
is none or will fail to predict a change at the right time, which results in large
errors for certain forecast steps. By contrast, the phase-aware LSMT shows small
variations in errors across steps with a general trend of slightly increasing errors
the further the predictions are made into the future.
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7 Summary and Conclusions

In this paper, we formulated runtime CPU workload prediction as a time series
forecasting problem and performed a comparative study among different repre-
sentative techniques including classical auto-regressive (DLM), machine learn-
ing (SVM and LSTM), and a state-of-the-art motif discovery (matrix profile)
approach that we proposed for workload forecasting. We showed that the main
challenge in workload forecasting is the prediction of abrupt changes due to work-
load phase behavior. We proposed a novel phase-aware forecasting approach that
leverages phase classification and prediction to separate time series into phases
and train a separate, specialized prediction model for each phase. Results on
a subset of SPEC 2017 benchmarks running on a state-of-the-art workstation
show that phase-aware forecasting improves MAPE by 14% on average across
different models and benchmarks. A phase-aware LSTM was the best performing
predictor with less than 8% average MAPE across benchmarks and a forecast
horizon of 20 steps. By contrast, a phase-aware SVM is almost twice as fast but
at decreased accuracy of 13% MAPE. A phase-aware matrix profile predictor can
in some cases outperform an LSTM, but at much higher computational cost.

Future work includes investigating phase-aware forecasting for a wider range
of workloads, integrating phase predictors to complement phase-aware mod-
els, approaches for online training of predictors, efficient hardware or software
deployment of predictors, application of phase-aware workload forecasting to
various use cases such as power management or system scheduling, as well as
workload forecasting for multi-threaded workloads running in multi-core settings,
where task interference effects are considered in phase classification, detection
and forecasting.
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Abstract. Mice and rats can rapidly move their whiskers when explor-
ing the environment. Accurate description of these movements is impor-
tant for behavioral studies in neuroscience. Whisker tracking is, however,
a notoriously difficult task due to the fast movements and frequent cross-
ings and juxtapositionings among whiskers. We have recently developed
WhiskEras, a computer-vision-based algorithm for whisker tracking in
untrimmed, head-restrained mice. Although WhiskEras excels in track-
ing the movements of individual unmarked whiskers over time based
on high-speed videos, the initial version of WhiskEras still had two
issues preventing its widespread use: it involved tuning a great num-
ber of parameters manually to adjust for different experimental setups,
and it was slow, processing less than 1 frame per second. To overcome
these problems, we present here WhiskEras 2.0, in which the unwieldy
stages of the initial algorithm were improved. The enhanced algorithm
is more robust, not requiring intense parameter tuning. Furthermore, it
was accelerated by first porting the code from MATLAB to C++ and
then using advanced parallelization techniques with CUDA and OpenMP
to achieve a speedup of at least 75x when processing a challenging
whisker video. The improved WhiskEras 2.0 is made publicly available
and is ready for processing high-speed videos, thus propelling behavioral
research in neuroscience, in particular on sensorimotor integration.

Keywords: Whisker tracking · Algorithmic improvement ·
Acceleration

1 Introduction

Whiskers, or vibrissae, are tactile hairs found in most mammals [3]. Some
rodents, like mice and rats, engage in active touch behavior during which they
make fast rhythmic movements with their facial whiskers [10]. The facial whiskers
are arranged in a conserved geometric pattern in the skin, which is reflected in
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the organization of the primary somatosensory cortex [23]. The behavioral rele-
vance of whisker use and the well-defined anatomy of whisker representation in
the brain have made them particularly interesting for neuroscience.

Whisker movements are typically recorded using high-speed cameras with
up to 1,000 frames per second, required to faithfully capture whisker movements
during whisking, back-and-forth movements with frequencies of up to >25 Hz at
speeds up to ∼1000 deg./s [5,21]. Whisker movements can be described by the
angle of the whisker root relative to the snout. Keeping track of the angle of each
whisker over time, however, is challenging. Most current whisker trackers make
compromises to provide accurate tracking, like clipping of most of the whiskers
(e.g., see [7]), or attaching markers to individual whiskers [13].

Recently developed, WhiskEras [2] is a promising framework for collecting
accurate tracking data from untrimmed head-restrained mice, without the need
for attaching markers to the whiskers. It was built to increase the performance
of the BIOTACT Whisker-Tracking Tool (BWTT) [18]. In particular, BWTT
can only detect whiskers frame by frame, but does not track them through time.
For this reason, WhiskEras introduced a tracking module. WhiskEras, however,
involves tuning a great number of parameters, owing to the various algorithmic
steps it involves. It is expected that, in order to maximize the quality of results,
many of these parameters need to be re-tuned for different videos, which is
cumbersome and tough to automate. Furthermore, it is slow, processing less
than 1 frame per second, which makes it ill-suited for long videos.

This work focuses on studying WhiskEras, identifying and extending its
potential and accelerating it. For a complete, detailed description of this work,
refer to [1]. The contributions of this paper are summarized as follows:

• Deliver WhiskEras 2.0, an improved version of the original framework which
is more robust and easier to tune.

• Accelerate WhiskEras 2.0 by 74.96x by porting the code from MATLAB to
C++, exploiting parallel execution on the CPU and GPU and performing
several optimizations. The code is available online.1

• Pinpoint the limitations of computer-vision based approaches in whisker
tracking, steering future endeavors in the field.

This paper is organized as follows: In Sect. 2, related works on whisker track-
ing are presented. Section 3 outlines the algorithmic stages of WhiskEras. In
Sect. 4, the shortcomings of WhiskEras are pinpointed and its performance is
analyzed. Then, Sect. 5 contains the implementation details of this work. In
Sect. 6, WhiskEras 2.0 is compared to the original WhiskEras in terms of qual-
ity and performance, using two benchmark videos. Finally, conclusions of this
work and some recommendations for future work are given in Sect. 7.

2 Related Work

In theory, high-speed videography allows accurate and non-invasive detection of
whisker movements, but, for instance, crossings and juxtapositions complicate
1 https://gitlab.com/neurocomputing-lab/whisker/whiskeras-2.0.

https://gitlab.com/neurocomputing-lab/whisker/whiskeras-2.0
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tracking. There are two common solutions to this problem. One way is reducing
complexity by clipping all but one or a few whiskers, e.g. as is the case with
Janelia Whisk [7]. This algorithm uses complex image-processing, statistical and
machine-learning methods to follow whisker trajectories. However, it is not very
accurate when tracking many whiskers [2]. Also, studies using the DeepLabCut
framework, based on modern deep-learning methods, to track whiskers still used
whisker clipping [8]. The clipping of whiskers, however, affects animal behaviour
and neural processing [15], and should therefore ideally be avoided.

Alternatively, one can detect all whiskers, but without attempting to track
individual whiskers over time, as does BWTT [18]. The original version of BWTT
was slow, but was accelerated previously to achieve almost real-time processing
[17]. A post-processing script, also developed previously, was deployed to track
whiskers over time, but it does so with low accuracy [21].

WhiskEras is more promising in terms of tracking whisker movement of
unmarked and untrimmed mice [2]. It is an unsupervised algorithm, which uses
computer-vision algorithms to detect whiskers, and a machine-learning method
to track them. Hence, there is no need for collecting labelled data to feed to a
neural network for training, as necessary for (most) deep-learning techniques. In
this sense, WhiskEras can be more convenient as it is ready to use on various
experimental setups, particularly after the improvements described in this work.

3 WhiskEras Algorithm

WhiskEras comprises two main modules: Detection and Tracking, responsible
for detecting whiskers and fitting them into a compact representation of sev-
eral parameters, and for following these whiskers, frame-by-frame, respectively
(Fig. 1). The system can also be organized into three components:

1. Whisker-Point Detection involves preprocessing of each frame in order
to remove the background, silhouette and fur of the animal. Its result is an
image of bright whiskers on a dark background. Then, Centerline Extraction
is used to locate the whisker points on the centerline of each whisker, using
Steger’s Curvilinear Detector algorithm [22].

2. Whisker Forming takes as input the centerline positions of the whisker
points in the image and performs Local Clustering to form groups of points
which belong to the same whisker. This clustering, however, does not yet
result in complete grouping, so that Cluster Stitching is required to unify
clusters belonging to the same whisker. Afterwards, Parameter Fitting takes
place, where each whisker representation is encoded as a set of four parame-
ters.

3. Tracking over time matches whiskers found in the current frame with
whiskers found in previous frames. The Tracking - Learning - Detection (TLD)
technique [14] was adopted, to achieve consistency across a long sequence of
frames. Tracking whiskers, from frame n − 1 to n is performed using either
a Kalman filter or by fitting whisker points to previously detected whiskers.
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Fig. 1. WhiskEras pipeline overview: algorithmic steps are illustrated between the
processing states of a whisker video frame, in the Detection module. The Tracking
module makes use of the results from the current and previous frames, as well as an
SVM Classifier to track whiskers over time.
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(a) Curve on the right is
interrupted and noisy

(b) The curve segment
on the junction seems to
belong to both whiskers.

(c) Whisker is
interrupted near

intersection.

Fig. 2. Centerline extraction issues

Also, a Support Vector Machine (SVM) Classifier is deployed to learn the
characteristics (features) of each whisker (Learning) and recognize them in
new frames (Detection). Tracking is necessary to collect a minimum num-
ber of data to train the SVM on. Then, the SVM is relied upon to identify
whiskers in a consistent way, while tracking is used to potentially fit whiskers
that were not recognized by the SVM.

4 Application Analysis

4.1 Quality Limitations

WhiskEras involves many tunable parameters, whose optimal values may differ
between recording settings and/or experimental setups. Examples of parame-
ters are the weight attributed to the whisker-point’s orientation relative to the
distance between neighbours during Local Clustering, or the allowed maximum
distance between two clusters for Cluster Stitching. The effect of these param-
eters on the results was explored and a bounded discrete space was defined
for each [1]. It appeared that parameters related to the Cluster-Stitching step
were the most relevant, but some of these are incapable of handling a variety of
situations, even within a single video.

Also Steger’s Curvilinear Detector algorithm, used for Centerline Extrac-
tion and Local Clustering, had limitations (Fig. 2). Possibly due to experimental
noise, whisker centerlines are not always extracted accurately, in particular when
whiskers intersect with each other. Furthermore, whiskers that appear to be fad-
ing into the background are not fully recovered. Hence, we made changes to
the Cluster-Stitching step and replaced the hard-to-tune parameters with other,
more robust ones, and improved the currently employed Unbiased Curvilinear
Detector [22] for Centerline Extraction. To overcome the second obstacle, an
adaptation of Improved Curve Tracing [20], an expansion on the Curvilinear
Detector algorithm, was materialized.

4.2 Performance Profiling

WhiskEras is coded in MATLAB, a high-level programming language, which is
generally inefficient for applications that demand large processing power. The
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Fig. 3. Cluster stitching: maximum angle condition and distance between clusters

implementation of WhiskEras was done nearly optimally, taking advantage of
any inherent parallelization present in its algorithmic stages. Centerline Extrac-
tion is performed on the GPU, exploiting the massive data-level parallelism
(DLP), while some costly steps during Cluster Stitching and Learning are also
parallelized, using multiple threads on the CPU. Despite these optimizations,
the application takes about 1.3 s to process a single frame. For context, a 50-
second-long high-speed video (1,000 fps) would require ∼18 h of processing on a
powerful machine.

For acceleration, the code was ported to C++, a high-level language incor-
porating also low-level features in C, such as efficient memory management,
optimized compiler support, and the availability of many fast libraries. Fur-
thermore, the parallelizable portions had to retain multithreading, following the
MATLAB implementation. To this end, the OpenMP API and CUDA API were
used, respectively for CPUs and GPUs. After this initial acceleration, an iterative
process was performed where the code’s most expensive portions were pinpointed
through profiling, and optimizations were carried out accordingly.

5 Implementation

5.1 Quality Improvements

Pairs of clusters belonging to the same whisker are stitched together based on
the distance between the edges of these clusters, and their orientation proximity.
Originally, the maximal distance between clusters to allow stitching was a fixed
value, as specified a priori by the user, limiting the flexibility to stitch more
distant clusters, e.g. of disappearing and re-emerging whiskers (Fig. 2c). Instead,
to guard against invalid stitchings, Radon Transform, a technique usually used
in tomographic reconstruction in medical imaging [19], was deployed. We imple-
mented first-order, Localized Radon Transform to detect lines between the edges
of two clusters. If a line in between them is not found in the unprocessed frame
of whiskers, then stitching of this pair is aborted.

In addition, a maximum-angle condition was utilized (Fig. 3a). Clusters that
are not rooted within the angle margin, derived from cluster 1’s orientation,
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cannot be stitched to cluster 1. In addition, the distance between two clusters
can be analyzed parallel and perpendicular to the orientation axis of one cluster.
These components are dx1 and dy1, respectively, if cluster 1 is the reference
(Fig. 3b). In WhiskEras, only one cluster was used as reference to compute these
distances and invalidate inappropriate stitchings according to a threshold, but
now we compute the distances with reference to both clusters. Then, the smallest
ones are used to determine if a stitching is valid. This proved to be favorable, as
the edge of one of the two clusters belonging to the same whisker is often noisy,
not pointing towards the other edge.

In WhiskEras, the stitching score was given by

score =
√

dx2 + dy2 + c · β

where β is the angle difference of the edges of the two clusters and c is its weight.
However, dy and β should be weighted more heavily than dx, especially as dx
grows larger, but dy and β should be allowed to be a bit larger when two clusters
are really close to each other, since they are disconnected in the first place due
to noise. Taking all these into consideration, the new score is

score =
{

dx + dy + β, if d ≤ d0
dx + c

dx · dy + c · β, if d > d0

Notice that dy and β are weighted as much as dx for small distances, up to d0
(e.g. d0 = 5 px). When the distance indicates that the clusters are not proximal
whisker segments, dy and β should be the prime factors. This necessitates the
use of a large value for c (e.g., c = 200).

In contrast to the original version of WhiskEras, we consistently opt for
Steger’s Curvilinear Detector for Centerline Extraction and Local Clustering.
Steger’s algorithm works as follows: it uses a characteristic 1D line profile to
model curves in 2D images by computing the Hessian Matrix of the image and
then the first- and second-order derivatives of the image in the direction per-
pendicular to the curves. A pixel point potentially contains a curve point if the
first directional derivative vanishes in its vicinity. The lower the second direc-
tional derivative value, the more likely it is that a pixel indeed contains a curve
point. This concludes the curve-point detection part of the algorithm. This step
is completely retained in Improved Curve Tracing.

The rest of the algorithm finalizes the curve points, while forming clusters,
which constitute curves, at the same time. For this purpose, a threshold tr2
is used. Pixels with second directional derivative less than −tr2, whose first
directional derivative vanishes, are marked as curve points. The rest of the curve
points are found by extending the curves, starting from these points. A curve
is extended neighbour-by-neighbour as long as there is a valid curve point near
the last curve point detected, in the curvilinear direction. This part is referred
to as Steger Clustering in [2].

Improved Curve Tracing enhances Steger Clustering by expanding on how a
new neighbour can be discovered by considering the following problematic cases:
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multiple and possibly intersecting curves, disappearance and re-emergence of a
curve, and tracing curves that fade out. Even though the intuition should be
similar in improving the Curvilinear Detector algorithm in whisker tracking,
WhiskEras already partially deals with some of these issues by using Cluster
Stitching. Improved Curve Tracing was not found to work well with Cluster
Stitching. On the other hand, using Improved Curve Tracing and completely
eliminating the Cluster Stitching step was also disadvantageous. Thus, an alter-
native implementation was adopted, that is largely inspired by the Improved
Curve Tracing method. In this work, we call it Improved Whisker Tracing.

During Steger Clustering, a neighbour curve point is located by searching in
the orientation of the current curve point, which is computed by the Curvilinear
Detector algorithm, in a 1-pixel radius (Steger linking). In Improved Whisker
Tracing, this radius can be >1, as sometimes there is an apparent gap between
neighbour whisker points. This is now named pixel peeking. Additionally, beam
scanning, a new neighbour-detecting step was added. If no neighbour is found
during pixel peeking, beam scanning is used to search for a neighbour some pixels
further, in the orientation of the last whisker point found. A K = 15 distance -in
pixels- is used but this can also be configured. The addition of these two steps is
not trivial, as there is some back-and-forth of extending each whisker cluster from
both sides and using pixel peeking and beam scanning interchangeably. Although
noisy videos pose challenges to the algorithm, the new methods generally result in
larger and fewer initial clusters than using Steger Clustering. This significantly
reduces the workload of Cluster Stitching, improving the quality of the final
results.

5.2 Acceleration

Accelerating WhiskEras 2.0 was no trivial task due to complex algorithmic stages
which required careful implementation to eliminate redundant operations and
reduce computational cost. First, the code was ported from MATLAB to C++.
This required analyzing many high-level MATLAB functions and writing them in
C++, top-down, using imperative statements in an efficient way. Then, the par-
allelizeable sections were located. Both Preprocessing and Centerline Extraction
are performed on an NVidia GPU, using CUDA, exploiting pixel-level paral-
lelism. Furthermore, Parameter Fitting is done using multiple threads on the
CPU, one for each whisker to be fitted. The same was done for each pair of
whisker classes during the SVM Classifier’s one-vs-one training. Finally, prop-
erties of the clusters, such as rotation data, necessary in Cluster Stitching, are
also computed in parallel using CPU multithreading. After this initial phase of
acceleration, several optimizations per algorithmic stage were pursued:

1) Separable convolution: Centerline Extraction was a particularly expen-
sive step. Specifically, during this step, five convolutions between the image
and Guassian derivative kernels are performed. Initially, this step was the
bottleneck, yielding a computational complexity of O(n·m2), where n are the
image dimensions and m is the kernel’s width (m = 20). It was found that
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the kernels used to convolve the image were separable: instead of carrying
out normal convolutions, we can perform spatially separable convolutions
and obtain the exact same results. The total complexity is now reduced to
O(n · 2m). This implementation is extremely efficient, making use of the
GPU’s shared memory to minimize memory access latency between consec-
utive accesses to the same image pixels.

2) GPU-based sorting: In the Local-Clustering step, the whisker points with
the second directional derivatives are accessed from the lowest to the highest
values. Initially, before extending every new curve, an unvisited whisker
point with the minimum value of this array was located. This proved to
be slow. Thus, this array was sorted before entering the loop, instead. This
optimization was even taken one step further by performing the sorting on
the GPU, using the highly optimized CUB library.

3) CPU-GPU-transfer reduction: Costly data transfers between the host
(CPU) and the device (GPU) were minimized in two ways:
• Constant-sized structures that accommodated variable data per frame

are allocated once at the start of processing in the host’s pinned memory.
This alleviates the need to first transfer the data from the host’s page-
able memory to pinned memory and then to the GPU, thus maximizing
transfer bandwidth [12].

• The whisker points’ orientations and second directional derivative values
were originally transferred to the host in arrays with as many entries
as image pixels, to be used in the Local Clustering step. This was a
naive approach. Instead, another image-sized array was allocated on the
device to indicate the presence of whisker points. Then, the CUB library’s
DeviceSelect class was used to discard non-whisker points from the arrays
of interest and keep whisker points only. Consequently, the size of these
arrays, which are transferred from the GPU to the CPU, decreased dra-
matically.

4) Optimal SVM-library selection: Different libraries were tested on their
performance in the demanding SVM training, which can occur e.g. every
five frames (user-selectable): a commonly-used SVM library in libSVM [6],
a GPU SVM library in gpuSVM [16], a library using Stochastic Gradient
Descent for SVM training in sgdSVM [4], with the best choice being an
SVM library specialized in linear kernels in libLinear [9].

6 Evaluation

The quality and performance of WhiskEras 2.0 is demonstrated in this section by
utilizing only two videos (Fig. 4), due to paper space restrictions. However, the
videos are markedly different, originating from different experimental setups,
thus showcasing the robustness of the WhiskEras 2.0 approach. Video A is
focused on one side of the animal’s snout, while the whole snout is visible in
Video B. The whole Video A (34,133 frames) and a segment from Video B
(frames 5,000–30,000) were evaluated qualitatively. The processing power was
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Fig. 4. Representative frames from videos used for evaluation

Table 1. Metrics to compare the quality of WhiskEras vs WhiskEras 2.0

Evaluation metric Description

Detected whiskers per frame Number of whiskers detected per frame

Detection ratio Fraction of the video in which whiskers were

detected

Tracking quality Trajectory of whiskers’ angles in time

Signal-to-noise ratio Ratio of smoothened whisker angle trajectory to

(subtracted) noisy whisker angle trajectory (in

dB)

measured by taking the average execution time per frame, over 1,000 frames.
The hardware used to assess performance included an AMD EPYC 7551 32-
Core Processor @ 2.0 GHz with 64 threads and an NVidia Tesla V100-PCIE
GPU. The C++ 17 standard was used, compiled with g++ 4.8.5 using the -O3
flag to perform aggressive optimizations such as loop unrolling and vectorized
operations. OpenMP 3.1 and CUDA 11.1 were used for multithreading on the
CPU and the GPU, respectively. The OpenCV 4.2 library was used to read video
frames and perform out-of-the-box, image-processing functions, while Eigen 3.3
[11] was used to perform fast linear algebra operations.

6.1 Quality Improvements

To evaluate the effect of the improvements, WhiskEras and WhiskEras 2.0 were
run on the same video segments, after manually tuning parameters for both
versions. In addition, both were configured to follow the same whisker tracks,
i.e., have the same starting point to measure how well they can follow their tra-
jectories. Video A contains numerous whiskers, which also intersect and often
hide behind each other. On the other hand, we only track the whiskers on the
right side of the snout in Video B. Thus, Video A poses more challenges which
WhiskEras 2.0 is expected to deal with more consistently than WhiskEras. Eval-
uating quality is no trivial task, since there is no ground truth. Consequently,
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the metrics used to compare the quality of results attempt to quantify tracking
quality in an automated way and are the same used in [2], presented in Table 1.
The results for each criterion are given below.

Fig. 5. Histogram of detected whiskers per frame

Fig. 6. Detection ratios

1. Detected whiskers per frame: This metric should be fairly stable, mean-
ing a constant number of whiskers is detected throughout a video. Although,
whiskers are often hidden, the variance of this metric should be kept to a
minimum, indicating algorithmic robustness to whisker movement. A sec-
ond point of interest is the average number of whiskers detected per frame,
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Fig. 7. Angle tracking

reflecting false positives as well as false negatives. For Video A, Fig. 5a shows
a 19% decrease in standard deviation over the number of detected whiskers
per frame, which is positive. Yet, the average number of whiskers detected
per frame is marginally smaller. The results were quite different for Video
B: a higher average and an almost identical standard deviation (Fig. 5b).

2. Detection ratio: The detection ratio of each whisker indicates the percent-
age of the frames wherein a whisker was successfully tracked. Some whiskers
have different detection ratios in the two WhiskEras versions, in both videos.
It should be mentioned that whisker indexing refers to the starting point
of each whisker (first frame), which is identical for both versions. The same
whisker indices do not necessarily represent the same whiskers, as these
starting points may have evolved to a different trajectory. Overall, however,
the average detection ratios are similar in Video A, while Video B shows a
5% increase for WhiskEras 2.0, compared to WhiskEras (Fig. 6). This also
aligns with the increased number of detected whiskers, which translates to
more successfully tracked whiskers.
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Fig. 8. SNR of trajectories of whiskers’ angles through time

3. Tracking quality: The whisker angle, relative to the snout, is the most
important movement parameter, thus its trajectory was used to evaluate
the tracking quality. When a whisker’s angle transitions smoothly in time,
the whisker is considered to be well-tracked. Two small segments were cho-
sen from each video and only a few of the whiskers’ angle-trajectories are
presented here, for clarity. For Video A, Fig. 7b (WhiskEras 2.0) illustrates
better tracking of most of the whiskers, compared to Fig. 7a (WhiskEras).
This is most evident for whiskers 5 and 6. On the other hand, Video B shows
much lower quality of tracking for both versions and the results are mixed.
For example, whiskers 6 and 7 favour WhiskEras 2.0, while whiskers 2 and
4 show better quality in WhiskEras. Importantly, some of these whiskers do
not have a one-to-one correspondence between the two versions, as already
stated, thus it is hard to draw any conclusions about which version has the
edge in Video B from this metric.

4. Signal-to-noise ratio (SNR) represents the quantitative evaluation of
the angular change. As in [2], this signal was computed by smoothing the
calculated angle of each whisker over time using a Savitzky-Golay filter,
which is appropriate for quick variations. A window size of 9 was chosen
and the data was fit quadratically. The noise was extracted by subtracting
the smoothed data from the actual data. Then, the SNR of each whisker was
computed as the ratio of the squared magnitudes of the signal over the noise,
in dB. For Video A, WhiskEras 2.0 exhibits a larger SNR for most of the
whiskers (Fig. 8a), which was less consistent in Video B (Fig. 8b). Overall,
the algorithmic improvements benefited good-quality videos (Video A) more
than poor-quality ones (Video B), but even for the latter, gains could be
made.
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Fig. 9. Speedup and execution-time profiling when processing Video A

6.2 Acceleration

The performance of WhiskEras 2.0 was tested in both videos, but here we present
the analysis of Video A (see Table 2), due to page limitations. Note that Other
refers to overhead in between algorithmic steps and OpenCV reading video
frames. The speedups obtained are illustrated in Fig. 9a. Simply porting the code
to C++ did not provide a massive speedup, due to the lack of execution paral-
lelism in this purely sequential implementation. MATLAB, on the other hand,
already made use of CPU and GPU multithreading. The Preprocessing and
Centerline Extraction steps, in particular, are much slower in pure C++ than in
MATLAB because of the lack of GPU execution, but the C++/CUDA version
surpasses both. The optimization involving separable convolution reduced the
Centerline Extraction’s execution time even more, by a factor of 10x. Further-
more, using OpenMP to take advantage of multiple CPU threads contributed
to the final speedup of 74.96x. The execution time per algorithmic step is fairly
balanced (Fig. 9b). Further acceleration is not achievable without major invest-
ments. The processing power of the final version of WhiskEras 2.0 for Video

Table 2. Execution time (in milliseconds) per frame for various development stages of
WhiskEras 2.0, as measured when processing Video A

Pre-

process

Centerline

extraction

Local

cluster

Cluster

stitch

Param.

fitting

Track Learn Trans-

fers

Other Total

MATLAB 12.3 23.0 39.7 520.2 421.3 123.0 140.6 – 4.6 1284.7

C++ 23.4 232.1 3.9 4.0 12.1 2.9 9.1 0 20.6 308.1

C++/CUDA 0.9 1.5 3.2 3.9 12.0 1.9 9.9 2.1 1.2 36.6

C++/CUDA/OMP 0.9 1.5 2.5 2.7 3.3 1.9 2.0 1.2 1.1 17.1
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B was measured to be 82 frames/second, faster than the 58 frames/second for
Video A. This difference is mainly attributed to the number of whiskers being
detected and tracked (14 in B vs. 18 in A).

7 Conclusions

WhiskEras 2.0 was developed and accelerated to process around 50–120 frames
per second, depending on their characteristics, with enhanced quality. Specif-
ically, the whisker-tracking system became more robust in addressing differ-
ent whisker-video settings and easier to tune. The speedup achieved can be
attributed to porting the code to C++, exploiting parallel execution on the CPU
and the GPU through multithreading, and a series of optimizations. Future steps
include further algorithmic improvements to the Centerline-Extraction step now
that the Unbiased Curvilinear Detector’s [22] inherent limitations are exposed.
Finally, in order to make WhiskEras 2.0 capable of performing online tracking
– a desired feature which enables neuroscientists to process whisker videos as
they are recorded – more acceleration routes should be explored, such as differ-
ent/more hardware accelerators.
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Abstract. This paper considers strictly periodic schedules for Cyclo-
Static Dataflow Graphs (CSDFGs) where, for every task, only the start
time of the first phase of the first iteration is fixed. This alternative
CSDFG scheduling paradigm presents further computational optimiza-
tion for throughput computations and buffer sizing. It also allows us to
consider a wider range of DSP applications and real-time devices, such as
time triggered architectures and bufferless software-defined Network-on-
chips (NoCs), where the number of periodic executions could be limited.
We propose a new framework that defines a necessary and sufficient
condition for the existence of such schedules, and present throughput
evaluation and buffer sizing use cases.

Keywords: Dataflow models · Scheduling · Throughput · Buffer sizing

1 Introduction

Digital Signal Processors (DSPs) take real-world signals and computationally
manipulate them [1]. The Synchronous Data-flow Graph (SDFG) is a formal-
ism method that is commonly used in the field of DSP. SDFGs are a class of
dataflow graphs, which are directed multi-graphs where the vertices (tasks) rep-
resent computations, and the edges (arcs) represent buffers [2]. The buffers act
as queues that direct the data output of one task to the input of another [1].
SDFGs by design possess a constraint: the amount of data produced (and con-
sumed) by a task on each output (input) edge is a fixed number determined
at compile time [2]. This presents us with the ability to schedule task firing
sequences at compile time, which greatly reduces run-time overheads associated
with data-flow graphs [2].

SDFGs, by nature, are mono-phased: each task produces (and consumes)
a constant unchanging amount of data per execution. This proves to be lim-
iting for some applications, which require greater granularity and variation in
the amount of data produced (and consumed) at each task execution. As such,
Bilsen et al. introduced Cyclo-Static Data-flow Graphs (CSDFGs), a generaliza-
tion of SDFGs [3]. CSDFG tasks iterate through a set of periodically repeating
predefined sequence of phases. The production (and consumption) associated
c© Springer Nature Switzerland AG 2022
A. Orailoglu et al. (Eds.): SAMOS 2021, LNCS 13227, pp. 229–241, 2022.
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with a task is constant at different iterations of a given phase, but may vary
between phases [3]. CSDFGs, similarly to SDFGs, are deterministic – the pro-
duction (and consumption) of data at different phases of each task is statically
determined at compile time.

The scheduling of SDFGs and CSDFGs remains a complex problem for which
there are no ubiquitous ideal solutions. Previous works [4,5] have attempted
to create exact as-soon-as-possible solutions, however, such solutions maintain
exponential computation time. Another class of solutions considers periodic
schedules [6] which order the execution of tasks in a consistent periodic man-
ner. Applying a periodic constraint allows for the construction of schedules with
polynomial sets of linear equations [7]. Moreover, the implementation of periodic
schedules enables the use of linear programming to model the optimization of the
total buffer size problem under a minimum throughput requirement [7–10]. This
is especially pertinent to certain applications with dynamic overhead limitations
such as time triggered hardware. The design of more complex real-time hardware
such as time triggered architectures [11] and software-defined Network-on-Chip
(NoC) with programmable routers [12] presents a new constraint to dataflow
scheduling techniques.

With dynamic software schedulers [13] and dynamically routed Network-on-
Chips [14], the schedule of dataflow applications is implicitly expressed by data-
driven constraints (such as the buffer sizes) at run-time. Conversely, statically
scheduled real-time devices require explicit definition of the application sched-
ule [15]. More importantly, this schedule definition must fit in the hardware.
For example, the SPECTRUM architecture [12] has been designed to support
the Long Term Evolution (LTE) 4G/5G communication protocol. This archi-
tecture is made of programmable routers, each containing only four scheduling
entries. Supporting such hardware requires scheduling techniques that trade-off
the size of schedule definition versus its performance. In some cases (such as
SPECTRUM), this necessitates the introduction of different classes of periodic
schedules.

This paper specifically considers strictly periodic schedules, as introduced
in [15]. We present a novel mathematical framework that formalizes strictly
periodic schedules, adding a rudimentary layer to prune through existing peri-
odic methods. Our mathematical formalism of strictly periodic schedules differs
from [15] in that we present not only necessary, but also sufficient bounds for the
formation of strictly periodic schedules; this allows us to construct and confirm
exact solutions for strictly periodic schedules. We present two practical applica-
tions of the framework for throughput evaluation and buffer sizing. In addition,
we study the size of schedule definition. The paper first develops relevant termi-
nology, before exploring related works. It then presents our novel mathematical
constraints and theorems, which are integrated in the respective algorithms. The
paper concludes by comparing the performance of existing scheduling strategies,
including the strictly periodic schedules.
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2 Syntax and Problem Definition

2.1 Model Definition

A Cyclo-Static Dataflow Graph (CSDFG) is denoted by G = (T,A) where T
(resp. A) is the set of tasks (resp. arcs).

Tasks: Every task t ∈ T is composed of ϕ(t) ∈ N − {0} phases - these can be
interpreted as incremental sub-tasks. An iteration of the task t ∈ T corresponds
to the ordered executions of the phases (t1, ..., tϕ(t)). The firing of the kth phase,
k ∈ {1, ..., ϕ(t)}, of t is denoted tk, and has a duration time d(tk) ∈ R. Entire
tasks can be iterated over several times. The nth firing, n ∈ N − {0} of the kth

phase of t is denoted 〈tk, n〉. At 〈tk, n〉, all phases have been iterated through n−1
times, with the phases up to and including the kth one iterating one more time.
A Synchronous Data-Flow Graph can be viewed as an instance of a CSDFG,
where each task only has one phase.

Buffers: Every arc a = (t, t′) ∈ A represents a buffer b(a) from t to t′ that
stores data. We suppose that ∀k ∈ {1, ..., ϕ(t)}, ina(k) data is written in b(a) at
the end of the execution tk. Similarly, ∀k′ ∈ {1, ..., ϕ(t′)}, outa(k′) data is read
from b(a) before the execution t′k′ . Buffers may have initial stored data, denoted
M0(a).

Figure 1a shows a CSDFG with 5 arcs. Arc h is an example of a buffer between
the two tasks A and B. The number of phases associated to the tasks A and
B is ϕ(A) = 2 and ϕ(B) = 3. The associated rate vectors of h and its initial
amounts of data are inh = [3, 5], outh = [1, 1, 4], and M0(h) = 0.

For an arc a ∈ A, we define Ia〈tk, n〉 to be the total amount of data produced
by t in b(a) at the completion of 〈tk, n〉 [7]. Similarly, Oa〈t′k′ , n′〉 is defined to be
the total amount of data consumed by t′ in b(a) at the completion of 〈t′k′ , n′〉.
Given the constant nature of phase sequences, we can formalize the following;

(a) CSDFG application with 4 tasks.
Execution times are d(A) = [1, 1], d(B) =
[1, 2, 1], d(C) = [1], and d(D) = [1].

As soon as possible:

Strictly periodic:

(b) The as-soon-as-possible schedule hyper-
period is ΩS

G = 16.0, the strictly periodic
hyper-period is ΩS

G = 24.0.

Fig. 1. Example of a CSDFG and corresponding schedules.
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Ia〈tk, n〉 = (n − 1) ×
ϕ(t)∑

i=1

ina(i) +
k∑

i=1

ina(i)

Oa〈t′k′ , n′〉 = (n′ − 1) ×
ϕ(t′)∑

j=1

outa(j) +
k′∑

j=1

outa(j)

As a shorthand notation, we set ia = Ia〈tϕ(t), 1〉 and oa = Oa〈tϕ(t′), 1〉. These
values represent the amount of data, respectively, produced and consumed by
one complete iteration of tasks t and t′ respectively in some buffer b(a). For
example, in Fig. 1a, ih = Ih〈A2, 1〉 = 8 and oh = Oh〈B3, 1〉 = 6. Finally, we note
a constraint on all buffers, which states that the amount of data in every buffer
b(a) must remain non negative - this implies a precedence constraint between
the executions of tasks.

2.2 Precedence Constraints

There exist a precedence constraint between two task executions when the latter
execution requires data produced from the former. More formally, supposing an
arc a = (t, t′) ∈ A, there exists a precedence constraint between 〈tk, n〉 and
〈t′k′ , n′〉 if the following conditions hold:

1. 〈t′k′ , n′〉 can only be executed after the completion of 〈tk, n〉.
2. The phase firing preceding 〈t′k′ , n′〉, denoted Pr〈t′k′ , n′〉, can be executed

before the completion of 〈tk, n〉.
These are self-evident formalisations of classical notions of precedence con-

straints. In their paper, Benazouz et al. [9] built on these principles to prove
Lemma 1:

Lemma 1 [9]. Let a = (t, t′) ∈ A, a couple (k, k′) ∈ ({1, ..., ϕ(t)} ×
{1, ..., ϕ(t′)}). For any couple (n, n′) ∈ N

2, there exists a precedence relation
from 〈tk, n〉 to 〈t′k′ , n′〉, iff

ina(k) > M0(a) + Ia〈tk, n〉 − Oa〈t′k′ , n′〉 ≥ max{0, ina(k) − outa(k′)}

2.3 Schedules

A feasible schedule associated with a CSDFG is a function S that associates a
starting time S〈tk, n〉 ∈ R for the nth execution of tk such that the amount of
data in every buffer b(a) remains non negative. This means that for any schedule
to be feasible, no data is read before it is produced. If there exist a precedence
constraint between two executions 〈tk, n〉 and 〈t′k′ , n′〉 then the following holds:

S〈tk, n〉 + d(tk) ≤ S〈t′k′ , n′〉.
This effectively implies that the latter execution must start after the prior has
fully completed execution.
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2.4 Consistency and Liveness

The existence of a feasible schedule is partially dependent on the consistency of
a CSDFG [1]. A CSDFG is said to be consistent if it admits a repetition vector
q ∈ N

|T |, with qt the repetition factor of any task t ∈ T , such that

∀a = (t, t′) ∈ A, qt × ia = qt′ × oa.

This constraint result from the fact that the amount of data consumed should
ultimately be equal to the amount of data produced.

The repetition vector defines the number of times each task need to be exe-
cuted in a scheduling sequence that preserves data quantities [2]. The repetition
vector of Fig. 1a is q = [3, 4, 6, 1].

In order to admit a valid schedule, an application also needs to be deadlock-
free. A CSDFG is alive if every task in the application can be executed infinitely
often. This is the liveness property.

2.5 Throughput and Hyper-period

For any given schedule S, the throughput of a task t ∈ T with a start time for
the nth iteration S〈t1, n〉 is defined as

ThS
t = lim

n→∞
n

S〈t1, n〉 .

Stuijk et al. prove that for any couple (t, t′) ∈ T 2, ThS
t

qt
= ThS

t′
qt′ [16]. By

extension, we define the hyper-period of schedule S for a graph G,

ΩS
G =

qt

ThS
t

.

3 Related Works

This paper builds a new mathematical framework to reflect upon and analyze
cyclo-static dataflow schedules. We can use this framework to conduct both
throughput analysis and buffer sizing.

The question of throughput evaluation of a CSDFG in a given time constraint
remains open. A complete solution for throughput evaluation of HSDFGs (where
for any task t and arc a = (t, t′), ϕ(t) = 1, ia = 1, oa = 1) has existed for some
time [17]. However, translation of such solutions to SDFGs and CSDFGs have
been limited. Lee & Messerschmitt proved that any SDFG can be translated
into an HSDFG; however this operation leads to graphs of exponential size [2].
Several works, such as [18], have since employed and improved this SDF to
HSDF translation model, developing exact approaches that remain constrained
by being in exponential time.

Other approaches to throughput analysis have been presented using symbolic
execution [4], but the exponential execution time issue remained for most case.
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de Groote [5] presents Max-plus algebra as an exact approach and near exact
application to CSDFGs using single-rate approximations, unfolding transforma-
tions, and execution state. Interestingly, single-rate approximations for CSDFG
are very close to the definition of strictly periodic schedules. However the num-
ber of constraints to consider is different (execution time of phases can vary),
thus it does not exactly match the performance of strictly periodic schedules.

Some authors have attempted to circumvent exponentiation by incorporat-
ing elements of periodic scheduling into their throughput analysis. [19] intro-
duces periodic static-order schedule (PSOS), which looks at the firing order of
tasks, but not task start times, to examine task firing order sequences. [20]
conducts throughput analysis and analyzes the scheduling of Cyber-Physical
Systems (CPSs), composed of periodic and aperiodic components.

The present paper considers and builds upon scholarship conducting through-
put analysis of fully periodic schedules. Benabid et al. [6] proved that any periodic
schedule of an SDFG may be characterized using linear equations on the start-
ing times of the first execution of the tasks. The paper importantly showed that
the throughput achieved with this scheduling policy will remain a lower bound
of the maximum throughput. Bodin et al. [7] built on [6] to construct periodic
schedules for all CSDFGs. These periodic schedules present a lower bound on
throughput, and allow for buffer size analysis.

Buffer sizing was initially defined to be NP-hard for all classes of dataflow
graphs, including HSDFGs [1]. Albeit this, Stuijk et al. [16] developed the first
exact method exploring all buffer sizes for SDFGs, eventually generalizing to
CSDFGs [21]. Performance of this method is limited by the fact that throughput
evaluation is itself in exponential time. Throughput-buffer sizing is leveraged in
[22] to present an algorithm that minimizes total buffer sizing given different
throughput constraints.

One approach to measuring buffer sizing is to consider only periodic sched-
ules, which allows us to obtain buffer sizing linear constraints. It is shown that
buffer sizes can be computed given a periodic sequence of tasks in polynomial
time, defined by a set of linear equations [8]. Benazouz et al. [10] then showed
that the execution policy of such phases may also be modelled with linear pro-
grams.

This paper deviates from these proposed solutions, as we tackle throughput
evaluation and buffer sizing under a strictly periodic scheduling constraint. The
closest work we can see is certainly from Niknam et al. [15]: they propose a
sufficient condition for the existence of a strictly periodic schedule for a CSDF
while focusing on real-time applications. However, similarly to the single-rate
approximation [5], their method is an over-approximation. Our framework is
intended to be more general and includes a necessary and sufficient condition of
existence, leading to exact solutions for strictly periodic schedules.
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4 Strictly Periodic Scheduling

In this section we define strictly periodic schedules and present our main contri-
bution - the formalization of linear constraints to compute any strictly periodic
schedules.

Definition 2. Given a CSDFG G = (T,A), a schedule S of hyper-period ΩS
G is

strictly periodic if it verifies, for any task t ∈ T :

S〈tk, n〉 = S〈t1, 1〉 + (k − 1)
ΩS

G

ϕ(t)qt
+ (n − 1)

ΩS
G

qt
.

Given such mathematical paradigms, Fig. 1b is a strictly periodic schedule,
specifically scheduling the CSDF in Fig. 1a. The schedule period is in general
not optimal. However, we recognize the considered benefits of applying a strictly
periodic schedule as described in Sect. 5.3.

To prove a necessary and sufficient condition for the linear constraint formu-
lation of a feasible strictly periodic schedule, we make use of the existing work
from Bodin et al. [7].

Given an arc a = (t, t′) ∈ A and a couple (k, k′) ∈ {1, . . . , ϕ(t)} ×
{1, . . . , ϕ(t′)}, define

αmin
a (k, k′) = �Oa〈t′k′ , 1〉 − Ia〈tk, 1〉 − Mo(a) + max{ina(k) − outa(k′), 0}	gcda

αmax
a (k, k′) = 
Oa〈t′k′ , 1〉 − IaPr〈tk, 1〉 − Mo(a) − 1�gcda

with gcda = gcd(ia, oa), and the operators 
α�γ = 
α
γ � × γ and �α	γ = �α

γ 	 × γ

defined for any pair (α, γ) ∈ Z × N − {0}.
For any pair (k, k′), αmin

a (k, k′) and αmax
a (k, k′) represent the lower and upper

bound, respectively, of the amount of data needed for the existence of a prece-
dence constraint from the execution of 〈tk, n〉 to the execution of 〈t′k′ , n′〉 for any
(n, n′) ∈ (N − {0})2. In other words, if αmin

a (k, k′) > αmax
a (k, k′) then there is

no couple (n, n′) ∈ (N− {0})2 such that a induces a precedence constraint from
〈tk, n〉 to 〈t′k′ , n′〉.

The following theorem provides the basis for the proof of our main result.

Theorem 3 ([7]) . Let G = (T,A) be a strongly connected CSDFG. For any
feasible periodic schedule S, precedence constraints associated with an arc a =
(t, t′) ∈ A are fulfilled if and only if, for every couple (k, k′) ∈ {1, . . . , ϕ(t)} ×
{1, . . . , ϕ(t′)} with αmin

a (k, k′) ≤ αmax
a (k, k′)

S〈t′k′ , 1〉 − S〈tk, 1〉 ≥ d(tk) + ΩS
G

αmax
a (k, k′)

iaqt
.

Given a duration time l and an arc a = (t, t′) ∈ A, define δl
a to be the set

of phases k of t with duration time l such that there is a k′ ∈ {1, . . . , ϕ(t′)} for
which αmin

a (k, k′) ≤ αmax
a (k, k′):

δla = {k ∈ {1, . . . , ϕ(t)}|d(tk) = l & ∃k′ ∈ {1, . . . , ϕ(t′)}, αmin
a (k, k′) ≤ αmax

a (k, k′)}.
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Then for any l ∈ R and task t ∈ T , define

βmax
a (δla) = max{βa(k, k′)|k ∈ δla & k′ ∈ {1, . . . , ϕ(t′)}, αmin

a (k, k′) ≤ αmax
a (k, k′)},

where βa(k, k′) = αmax
a (k, k′) − (k′−1)oa

ϕ(t′) + (k−1)ia
ϕ(t) .

The next theorem presents a necessary and sufficient condition for the exis-
tence of a feasible strictly periodic schedule.

Theorem 4. Let G = (T,A) be a strongly connected CSDFG. For any feasible
strictly periodic schedule S, precedence constraints associated with an arc a =
(t, t′) ∈ A are fulfilled iff

S〈t′1, 1〉 − S〈t1, 1〉 ≥ l +
ΩS

G

iaqt
βmax

a (δl
a)

for every l such that δl
a �= ∅

Proof. Let k ∈ δl
a and suppose that the arc a induces a precedence constraint

from 〈tk, n〉 to 〈t′k′ , n′〉.
From Theorem 3 (Theorem 2 of [7]) we know that every precedence constraint

is verified for any periodic schedule iff

S〈t′k′ , 1〉 − S〈tk, 1〉 ≥ l + ΩS
G

αmax
a (k, k′)

qtia
(1)

for every pair (k, k′) ∈ {1, . . . , ϕ(t)} × {1, . . . , ϕ(t′)}, with αmin
a (k, k′) ≤

αmax
a (k, k′). Furthermore from Definition 2

S〈tk, n〉 = S〈t1, 1〉 + (k − 1)
ΩS

G

ϕ(t)qt
+ (n − 1)

ΩS
G

qt
.

Therefore

S〈t′k′ , 1〉 − S〈tk, 1〉 = S〈t′1, 1〉 + (k′ − 1)
ΩS

G

ϕ(t′)qt′
− S〈t1, 1〉 − (k − 1)

ΩS
G

ϕ(t)qt
. (2)

Combining (1) and (2)

S〈t′1, 1〉 − S〈t1, 1〉 ≥ l + ΩS
G

αmax
a (k, k′)

qtia
− (k′ − 1)

ΩS
G

ϕ(t′)qt′
+ (k − 1)

ΩS
G

ϕ(t)qt

Recalling that qt × ia = qt′ × oa,

S〈t′1, 1〉 − S〈t1, 1〉 ≥ l +
ΩS

G

qtia

(
αmax

a (k, k′) − (k′ − 1)oa

ϕ(t′)
+

(k − 1)ia
ϕ(t)

)
.

As k ∈ δl
a, by definition of βmax

a (δl
a),

αmax
a (k, k′) − (k′ − 1)oa

ϕ(t′)
+

(k − 1)ia
ϕ(t)

= βa(k, k′) ≤ βmax
a (δl

a)

thus the theorem condition holds. �
Theorem 4 can be directly used to express linear problems that maximize

throughput or minimize buffer size. This is demonstrated in Sect. 5.
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5 Applications

In this section, we present three possible uses of the devised strictly peri-
odic scheduling framework. First, we compare strictly periodic scheduling (S-
Periodic) with 1-Periodic and K-Periodic solutions in the context of throughput
evaluation. We then consider these techniques in the context of buffer sizing.
Lastly, we consider the problem of scheduling definition size.

While results in terms of throughput and buffer size are expected to be
notably lower than traditional techniques, it is important to note that such tra-
ditional techniques are not realistic solutions for recently proposed time triggered
hardware such as real-time systems [15]. Furthermore, strictly periodic schedules
fit very small programmable areas such as programmable NoC routers [12].

Experiments1 are performed on a 3.7 GHz Intel Xeon processor and consider
real-life and synthetic CSDFG benchmarks from [23] - we recall them on Table 1.
Graphs marked with the sized suffix are graphs where a particular buffer size
has been used to constraint the schedule.

5.1 Throughput Evaluation

The proposed framework is directly applicable to the maximum throughput eval-
uation of a strictly periodic schedule for CSDFGs. Using linear programming,
we minimize the hyper-period with the given framework constraints.

Table 1 summarizes the performance of different scheduling strategies in
terms of maximal reachable throughput. The S-Periodic approach is compared
to a 1-Periodic strategy (as defined from [7]) that sets one starting time per
phase of each task, and the K-Periodic strategy that may set several start times
per phase in order to reach optimality [23].

These experiments confirm the expected results. Because S-Periodic schedul-
ing is more constrained than the 1-Periodic and K-Periodic counterparts, its
maximal throughput performance will necessarily be lower.

In the case of an acyclic CSDFG (such as Black-Scholes), the 1-Periodic
paradigm was proven to produce optimal schedules [7]. We observe from these
experiments that this is not the case with S-Periodic schedules. We can explain
this interesting finding by considering a single-task example. If a task has two
phases with different execution times, a 1-Periodic solution can execute each
phase one after the other, producing an optimal solution. Conversely, an S-
Periodic schedule will be constrained by the shortest phase having to wait as
long as the duration of the longest phase. As a result, while 1-Periodic schedules
can often be optimal or near-optimal, S-Periodic schedules may be much slower.

From these results, even if strictly periodic schedules are necessary for certain
real-time devices, this demonstrates the limitations of hardware on application
performance. From a model point of view, we note that strictly periodic schedules
are more appropriate when applications have uniform execution time across task
phases.

1 Available online: https://github.com/bbodin/kiter.

https://github.com/bbodin/kiter
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Table 1. Throughput Evaluation of Benchmark Applications. (higher is better). A
“-” indicates there was no possible solution or, in the case of the optimal solution,
the computation time exceeded 24 h. Complexity is defined as the size of a repetition
pattern (

∑
qt × ϕ(t)). The optimal value is the maximal reachable throughput of the

application.

Graph #tasks #buffers Complexity S-Periodic 1-Periodic Optimal

autogen1 90 617 250992 – 4.85E−08 3.84E−05

autogen2 70 473 41331062 – 1.56E−11 –

autogen3 154 671 308818852 – 4.76E−13 –

autogen4 2426 2900 51301 2.08E−02 2.68E−02 2.78E−02

autogen5 2767 4894 312485 5.25E−05 5.25E−05 2.44E−03

BlackScholes 41 40 2379 1.79E−08 2.38E−08 2.38E−08

BlackScholes sized 41 80 2379 6.22E-09 1.53E−08 1.55E−08

Echo 38 82 42003 4.06E-11 1.96E−10 1.96E−10

Echo sized 38 164 42003 4.06E−11 5.47E−11 1.67E−10

H264 666 3128 1471 – 4.20E−06 4.20E−06

H264 sized 666 6256 1471 – 3.92E−06 3.92E−06

JPEG2000 240 703 29595 4.11E−07 4.11E−07 4.11E−07

JPEG2000 sized 240 1406 29595 – – 2.05E−07

PDectect 58 76 4045 4.92E−07 4.92E−07 4.92E−07

PDectect sized 58 152 4045 2.54E−09 2.46E−07 2.46E−07

5.2 Buffer Sizing

Buffer sizing can be a major constraint in the context of embedded systems,
particularly DSPs that need to manipulate extensive amounts of data while
keeping the memory footprint as low as possible. Even if an application could be
supported by an S-Periodic schedule, it is important to verify that the amount
of memory required remains realistically feasible.

Table 2 presents our experimental results comparing S-Periodic and 1-
Periodic based buffer sizing techniques for instances where an S-Periodic solu-
tion is supported. While we intend to primarily focus on comparing the buffer
sizes obtained with 1-Periodic and S-Periodic schedules, we also present optimal
results if they were computed in a reasonable amount of time (>24 h).

The experiments show that the buffer sizes required to admit a strictly peri-
odic solution may be significantly higher than alternative periodic methods, pre-
senting up to a 20% overhead with certain applications (autogen4). Comparing
to optimal buffer sizing – when it was possible to compute it – the overhead
remained acceptable, only citing a 7% overhead for Pdetect.
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Table 2. Minimal buffer size estimation of Benchmark Applications for applications
that admit a S-Periodic solution. (lower is better). Absence of result implies the com-
putation time was greater than 24 h.

Graph S-Periodic 1-Periodic Optimal

BlackScholes 16250 16250 16250

Echo 30206 30206 28022

JPEG2000 3865869 3608503 –

Pdetect 4263895 4187155 3958195

autogen4 36412 29294 –

autogen5 1464710 1442122 –

5.3 Scheduling Definition

The main motivation for considering strictly periodic scheduling was to find a
way to reduce the size of the application schedule. This is a crucial problem for
real-time devices that support a limited number of start times per task [12,15].

In Table 3, we compare the size of different schedules in terms of the number
of start times required to define them. In order to better contextualize the gain,
we also present K-Periodic and HSDFG expansion [18], two methods that present
optimal throughput.

Table 3. Size of the schedule definition (in number of starting time) for several
strategies.

Graph S-Periodic 1-Periodic K-Periodic MCM

autogen1 – 126 (1.4) 250992 (2788.8) 250992 (2788.8)

autogen2 – 196 (2.8) – 41331062 (590443.7)

autogen3 – 368 (2.4) – 308818852 (2005317.2)

autogen4 2426 (1.0) 5422 (2.2) 5449 (2.2) 51301 (21.1)

autogen5 2767 (1.0) 4167 (1.5) 60009 (21.7) 312485 (112.9)

BlackScholes 41 (1.0) 261 (6.4) 261 (6.4) 2379 (58.0)

BlackScholes sized 41 (1.0) 261 (6.4) 264 (6.4) 2379 (58.0)

Echo 38 (1.0) 45 (1.2) 45 (1.2) 42003 (1105.3)

Echo sized 38 (1.0) 45 (1.2) 42003 (1105.3) 42003 (1105.3)

H264 – 1375 (2.1) 1375 (2.1) 1471 (2.2)

H264 sized – 1375 (2.1) 1375 (2.1) 1471 (2.2)

JPEG2000 240 (1.0) 639 (2.7) 639 (2.7) 29595 (123.3)

JPEG2000 sized – – 9934 (41.4) 29595 (123.3)

PDectect 58 (1.0) 4045 (69.7) 4045 (69.7) 4045 (69.7)

PDectect sized 58 (1.0) 4045 (69.7) 4045 (69.7) 4045 (69.7)
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As the objective is to reduce the number of starting times per task, we also
include in parenthesis the ratio of starting time per task. By definition, the
strictly periodic schedule always has a single start time per task.

From these results, we note that when there exists a strictly periodic schedule,
the size of these schedules are on average 142 times smaller than any optimal
scheduling solution, and 15 times smaller than 1-Periodic results.

6 Conclusion

This paper presents a necessary and sufficient condition for the existence of
strictly-periodic schedules of CSDFGs. Application tests are presented to dis-
play both the strengths and drawbacks of strictly-periodic schedule generation
relative to different state-of-the-art techniques. In certain cases, strictly-periodic
schedules performed similarly to more computationally expensive counterparts
(which is to be expected in cases where the optimal schedule happens to be
strictly-periodic), however in most cases the generated schedule throughput is
smaller. Generation of strictly-periodic schedules under bounded buffers is more
noticeably limited. Keeping this in mind, in many cases the generated schedules
are still sufficient such that the applications in question run for real-life systems.

A potential extension of this work would be to create an algorithm that com-
bines strictly-periodic schedules with other defined periodic scheduling methods,
effectively extending upon the methods presented in [23]. Integrating strictly-
periodic schedules would further optimize the work done in [23], such that in
cases where a strictly-periodic schedule is optimal, there would be no need to
consider more computationally expensive alternatives.
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Abstract. Probabilistic models are receiving increasing attention as
a complementary alternative to more widespread machine learning
approaches such as neural networks. One particularly interesting class
of models, so-called Sum-Product Networks (SPNs), combine the expres-
siveness of probabilistic models with tractable inference, making them
an interesting candidate for use in real-world applications.

Previously, inference in SPNs has successfully been accelerated by
fully pipelined FPGA-based hardware. However, with these approaches,
the maximum size of the SPN for FPGA acceleration has effectively been
limited by the fully spatial mapping of arithmetic operations into hard-
ware and the number of available resources in the FPGA.

In this work, we present an extended and specialized modulo schedul-
ing algorithm based on Integer Linear Programming (ILP) for time-
multiplexed sharing of hardware arithmetic operators in the SPN infer-
ence accelerator. In addition and in order to scale the scheduling to
large SPN graphs, we combine the scheduling algorithm with a graph-
partitioning heuristic, exploiting the graph structure of SPNs.

The combination of heuristic graph partitioning and ILP-based
scheduling allows generating pipelined accelerators with the best pos-
sible initiation interval, while limiting the resource utilization to pre-set
bounds. The evaluation discusses the effect different parameters have
on convergence time and solution quality. A performance comparison
shows that the FPGA improves the inference throughput over a compa-
rable CPU- and GPU platform by a factor (geo.-mean) of 4.4x and 1.7x,
respectively.
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1 Introduction

Probabilistic models are receiving increasing attention from both academia and
industry, as a complementary alternative to more widespread machine learn-
ing approaches such as (deep) neural networks (NNs). Probabilistic models can
handle the uncertainty found in real-world scenarios better [17] and are also, in
contrast to NNs, able to express uncertainty over their output.

While many probabilistic models quickly become intractable for larger use
cases, so-called Sum-Product Networks (SPNs) provide efficient inference for a
wide range of probabilistic queries in different real-world use cases. Similar to
neural networks, for which both accelerated inference and training have been
implemented on reconfigurable architectures, SPNs lend themselves to acceler-
ated inference on FPGAs [11,19]. Key to the efficient computation of probabilis-
tic queries in prior work was the pipelining of batches of queries. This task is
further complicated by the fact that the probability values computed in the SPN
require expensive floating-point arithmetic and in general cannot be quantized
to integer values as it is done for neural network inference. So, despite successful
efforts to realize the necessary probabilistic arithmetic efficiently with specialized
hardware operators [20,23], prior approaches are constrained by the fully spatial
mapping of operations and the available FPGA resources, effectively limiting
the maximum size of the SPN that can be mapped to the physical resources
on the target FPGA. A possible solution to overcome this limitation is to map
multiple operations to the same hardware arithmetic operator, so that operators
are time-shared. In order to retain as much performance as possible, this time-
sharing of operators needs to be combined with efficient pipelining, requiring a
resource-aware modulo scheduler [12].

Our main contribution is a scheduling algorithm specialized for the automatic
mapping of SPNs to a pipelined FPGA accelerator. Our approach extends an
existing Integer Linear Programming (ILP) formulation [21] to also optimize the
size of the multiplexers used to realize the time-sharing of operators, a crucial
factor for the operating frequency of the whole accelerator. Beyond that and in
order to be able to handle large SPN graphs during scheduling, a divide-and-
conquer heuristic leveraging the special graph structure of SPNs is presented.

2 Background

SPNs [15,17] are a relatively young class of probabilistic models. Similar to other
probabilistic graphical models (PGM), SPNs are able to efficiently handle real-
world uncertainties, such as missing feature values, and express uncertainty over
their output. They are used in several domains [17] including, but not limited
to, image classification and reconstruction, image segmentation, robotics, and
natural language processing.
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Sum-Product Networks capture the joint probability distribution over a num-
ber of variables as a directed acyclic graph. As shown in the example in Fig. 1,
the graph consists of three different types of nodes, namely weighted sum-nodes
(red), product nodes (green) and nodes representing univariate distributions
(orange), where the latter can only occur as leaf nodes.

The graph structure of Sum-Product Networks, including the parameters
such as weights and distribution parameters, can either be hand-crafted, com-
pletely learned from data (e.g., [10]) or can be generated and refined through
learning of parameters (e.g., [14]).

Semantically, the product nodes in the graph correspond to factorizations of
independent variables. As variables in a joint probability distribution are not
independent in general, the weighted sum nodes come into play. They represent
mixtures of distributions and, through clustering, expose independencies for fac-
torization. If, after repeated mixture and factorization, only a single variable
remains, the univariate distributions of these variables are captured by the leaf
nodes. In this work, based on the approach for Mixed Sum-Product Networks by
Molina et al. [10], univariate distributions of discrete variables are represented
as histograms.

In contrast to many other probabilistic graphical models, inference in Sum-
Product Networks is tractable, even for large graphs with many variables [13].
Enabled by the graph structure capturing the joint probability, a wide range of
probabilistic queries, including conditional probability and most-probable expla-
nation (MPE), can be computed efficiently by evaluating the SPN graph bottom-
up (starting at the univariate distributions at the leaf nodes) one or multiple
times (linear w.r.t. to the graph size). This work focuses on the efficient evalua-
tion of a batch of queries and generation of pipelined FPGA accelerators under
resource constraints.

Fig. 1. Example of a Sum-Product Network graph.

3 Modulo Scheduling of SPN Inference

The core of our work is a resource-aware modulo scheduler tailored for SPN infer-
ence computations, which are described as acyclic data-flow graphs (DFGs).
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Operations in these data flow graphs include additions, multiplications, his-
togram evaluations, and constant weights. Among the operators realizing these
operations, only adders and multipliers are subject to operator sharing. Other
operations require only very few resources to realize in hardware and there are
few opportunities to share these operators.

The throughput of a shared, modulo-scheduled datapath is chiefly determined
by the initiation interval (II), the duration between starting successive over-
lapped computations in the datapath. As recurrences in the DFG significantly
constrain the achievable II, the fact that we only need to support acyclic DFGs
simplifies some typical challenges of modulo scheduling: without recurrences, the
resource-constrained minimum II [16] is not just a lower bound on feasible IIs,
but always equals the minimal feasible II. This allows us to determine the small-
est II and smallest number of operators for a given hardware resource budget
and SPN up-front before scheduling begins, rather than repeatedly attempting
scheduling with different candidate IIs, as in most other applications of modulo
scheduling.

To illustrate why the resource-constrained minimum II is always feasible,
consider a variant of ASAP scheduling that starts operations once all their inputs
are ready, but delays these start times as necessary to avoid over-subscription of
operators. The resulting schedule will most likely be sub-optimal, but without
recurrences that would impose additional upper limits on the start times of
operations, such a schedule will always exist.

Based on similar considerations, we developed a divide-and-conquer heuristic
for scheduling and binding, detailed in Sect. 3.2. Once II and available operators
have been determined, this heuristic partitions the DFG and the available opera-
tors to produce a set of smaller scheduling and binding problems, whose solutions
can be combined into a solution for the whole problem.

These sub-problems are then translated to ILP instances with an objective
that attempts to reduce multiplexing overhead, detailed in Sect. 3.1. The bind-
ings – the mapping of each DFG operation to a specific physical operator –
heavily influence the amount of multiplexing necessary to realize the sharing of
the operators, and this multiplexing can, in turn, limit the maximum operating
frequency of the accelerator. As schedule and bindings influence and constrain
each other, we consider them together in a joint optimization problem, rather
than computing one before the other. After schedules and bindings for each sub-
problem have been found by an off-the-shelf ILP solver, the results are combined
into overall schedule and bindings by the heuristic component.

The heuristic combination of solutions for sub-graphs obtained by expensive,
high-quality scheduling algorithms has been proposed before [5,6]. In our con-
text, it provides a simple way to trade scheduling effort for solution quality, and
offers a practical way of optimizing for a different objective than usual (reducing
multiplexing overhead) without having to develop new heuristics specifically for
this purpose.
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3.1 ILP Extension for Multiplexer Reduction

We extended an ILP formulation of modulo scheduling and binding proposed by
Š̊ucha and Hanzálek [21]. Out of the several variants presented there, we use the
formulation for general processing time and multiple operator types (see Sects. 4
and 5 there). This formulation prohibits over-subscription of shared operators by
encoding the bindings in binary decision variables ẑiv which are constrained such
that ẑiv = 1 if and only if the operation identified by i should be bound to the
vth suitable operator (assuming some arbitrary but consistent numbering of the
operator instances). We reuse these decision variables to also model connections
between operators, as a proxy for multiplexing overhead.

Formally, each operation i ∈ O is associated with a type of operator q such
as adders, multipliers, histograms, and constant weights. For those operator
types subject to sharing (in our case, adders and multipliers), there is a limited
number mq of operator instances, while the other types are unlimited – they are
instantiated once per operation requiring them.

The baseline ILP formulation as presented by Š̊ucha and Hanzálek assumes
all operator types are subject to sharing. It is simple to adapt the formulation to
support unlimited operators: we can just omit decision variables and constraints
related to bindings of operations implemented by unlimited operators1 and leave
only start time constraints in place. Due to space limitations, we do not show
the ILP formulation here with these minor modifications applied.

The multiplexer at input port p of a shared operator v needs to select among
all the physical locations in the datapath which produce the pth input operand
to any of the operations bound to v. In our accelerator’s datapath, these val-
ues can be sourced from the output ports of other operators – whether they
are themselves shared or not – as well as from shift registers inserted to buffer
intermediate results for several cycles between being produced and consumed.
Modeling the latter in the ILP formulation requires significant additional com-
plexity: Sittel et al. [18] measured the register area by the maximum lifetime of
intermediate results that can share registers, while multiplexer width is deter-
mined by the number of distinct lifetimes among intermediate results that could
share a connection, which is far more difficult to linearize. This extra complexity
is likely not justified in our context, as we combine the ILP formulation with a
heuristic and thus will not obtain globally optimal solutions in any case.

Instead, we model only the presence or absence of connections between oper-
ator output ports and the input ports of shared operators. These connections
are induced by the data flow edges (i → j) ∈ E and the bindings, encoded in
the ILP by binary decision variables ẑiv and ẑjv. The shared operators are iden-
tified by their type q and an index v from 1 to mq. We also need to distinguish
the different input ports p of the operators (typically, the operators are binary
and thus p ∈ {1, 2}). Thus, for all q′, v′, p identifying a shared operator input
port, there are binary variables crq′v′p for r ranging over the possible sources of
a connection. These sources are the shared operator instances (q, v) as well as

1 Specifically, variables x̂ij , ŷij , ẑiv and all constraints mentioning them.
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the operations i ∈ O which are unlimited, i.e., not subject to operator sharing.
Each such variable should be 1 if the result of operator r needs to be connected
to port p of the shared operator (q′, v′).

Note that a single connection suffices for multiple edges (i1 → j1), . . . , (in →
jn) ∈ E if all the i1 . . . in are mapped to the same shared operator, all the
j1 . . . jn are mapped to the same shared operator, and each value is routed to
the same input port of that shared operator. This is shown in Fig. 2(b), while (c)
shows different bindings that prevent sharing. When the sources of the data flow
edges are not subject to operator sharing (d), separate connections are always
required.

Fig. 2. Dataflow graph (a) and the impact of binding two operations to the same (b)
or different (c) shared operator. When operations are not subject to operator sharing
(d), multiple connections are necessary regardless of bindings.

To encode these considerations into the ILP, we add constraints for every
data flow edge (i → j) ∈ E whose destination j is subject to operator sharing,
as those edges are the cause of the connections we model. Let q be the operator
type of i and q′ of j. When i is also subject to operator sharing, then it is bound
to some shared operator (q, v) which will be connected to the input port p of
the operator (q′, v′) which j is bound to. Hence, we add the following set of
constraints:

cqvq′v′p ≥ ẑiv + ẑjv′ − 1
∀v = 1, . . . ,mq

∀v′ = 1, . . . ,mq′
(1)

Otherwise, if j requires an unlimited operator type, we simply have a connection
from i to whatever operator (q′, v′) the operation j is bound to. In that case, we
add the following set of constraints:

ciq′v′p ≥ ẑjv′ ∀v′ = 1, . . . ,mq′ (2)

Constraints (1) and (2) only ensure that a connection indicator is set to 1 if
the corresponding connection is required, but not the inverse implication. This
modeling is correct within our formulation: we only use the values of these deci-
sion variables for the objective function (unlike other decision variables, which
yield the schedule and bindings), and objective functions suitable for our pur-
pose (reducing multiplexers or connection density) cannot be improved by setting
more crq′v′p to 1 than necessary.
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For the objective function, we first and foremost minimize the total connec-
tions between operators:

min
∑

r,q′,v′,p

crq′v′p (3)

This objective was proposed by Cong and Xu [4] in the context of choosing oper-
ator and register bindings for an already-determined schedule. As they noted,
this objective is only an approximation of the real (non-linear) hardware cost,
but minimizing it correlates with minimizing the number of multiplexer inputs,
so it is a reasonable way to address the need for a linear objective function. They
could only evaluate it on relatively small examples, but found it to be effective
at least in those cases.

Objective (3) is combined with the classical sum-of-start-times objective (as
in [21]) in a strictly hierarchical multi-objective optimization problem. In our
throughput-oriented accelerator, the schedule length – the overall latency from
inputs to final result of a single computation in the shared datapath – only has a
small effect on the number and size of the aforementioned shift registers buffering
intermediate results. The hardware resource cost of these registers is negligible,
while large multiplexers can negatively affect the maximum frequency, so we
prioritize multiplexer reduction over schedule length reduction.

Overall, our proposed ILP formulation consists of these two objectives and
the constraints of the formulation by Š̊ucha and Hanzálek [21] – not repeated
here due to the page limit – plus our constraints (1) and (2).

3.2 Divide-and-Conquer Heuristic

In this section, we present an algorithm for decomposing a modulo scheduling
and binding problem on an acyclic DFG into smaller sub-problems whose solu-
tions can be combined into a solution for the original problem. As presented
here, the algorithm works for any acyclic DFG and any partitioning, although
our implementation (Sect. 4) and evaluation is limited to DFGs that are trees,
since most SPN learning algorithms only produce trees.

For now, assume some arbitrary partitioning of the DFG is given. We first
partition the modulo reservation table (MRT) [8] – a data structure organizing
the operations by the operator they are bound to and the time step modulo II in
which they are scheduled – to match the DFG partitioning. Each available time
step (modulo the II) on each available operator is exclusively assigned to one of
the DFG partitions: only operations from that part of the DFG will be permitted
to use that operator in that time step. By assigning each partition at least as
many operator time slices as there are operations requiring such an operator in
the partition, we ensure that each of the sub-problems is feasible in isolation.
In addition, the exclusive assignment avoids conflicting bindings between the
solutions of each sub-problem: no two operations from different partitions can
use the same operator at the same time.

Figure 3 shows such a partitioning of DFG and MRT, along with a solution
for each partition. Note that the two available adders are each fully assigned
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to one or the other partition, while the multiplier is split up: node C can only
be scheduled in even cycles while node D can only be scheduled in odd cycles.
Although the schedules are correct with respect to each partition, the data flow
edge C → E was ignored: the result of C is only available by cycle 10 (start time
six plus latency of four), while E was scheduled to start in cycle five.

Fig. 3. Example of scheduling with graph partitioning (II = 2, all operators have a
latency of four cycles). Left: partitioning and partial solutions (MRT, operation start
times). Right: overall solution after merging the partial solutions, including the adap-
tation of E’s schedule to preserve dependencies.

To repair such inconsistencies arising from data flow between partitions, we
delay the start time of affected operations when we combine partial schedules.
Specifically, we inspect all edges between the different partitions, and if the
destination operation starts before the source operation finishes, we increase
the start time of the destination operation by the smallest multiple of the II
that fixes this problem. After the adjustment has been made, successors of the
delayed operation may face a similar problem and we also delay their start times
as necessary until all start time constraints are satisfied.

Note that a smaller delay may work sometimes, but would place the operation
in a different MRT cell, which may not be available. For simplicity, we always
use a multiple of the II, as shown in Fig. 3: while all inputs to operation E are
ready by cycle 10, our algorithm schedules it for time step 11 since that is the
earliest start time compatible with the MRT chosen previously.

After repairing the start time constraints, the start times and bindings of
each partial solutions can be combined without further changes to produce a
valid schedule and bindings for the entire DFG. As each operation belongs to
exactly one partition, the start time and binding of each operation is uniquely
determined, start time constraints are now satisfied, and the up-front partition-
ing of the MRT ensures no operator is over-subscribed in the combined solution.
As the bindings are combined without changes, the effort expended by the ILP
solver trying to optimize the bindings within each partition carries over into the
overall solution.

To ensure that each partition only uses the parts of the MRT assigned to it,
we need to modify the ILP construction slightly. We create virtual operations
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that occupy partially-available operators in the time steps assigned to other
partitions, substituting constants for the ILP decision variables relating to the
virtual operations. This increases the size of the ILP, which is quadratic in
the number of operations even without our extensions. We limit this increase
by partitioning the MRT such that every partition has at most two operators
partially assigned to it, and where possible prefer to exclusively assign operators
to a single partition. This is the case for Adder 2 in Fig. 3, which is assigned
entirely to Partition 2 even though there is only one addition in that partition.

4 Implementation

We extended an existing toolflow for generating SPN inference accelerators [20]
implemented in Chisel, replacing the fully spatial datapath and ASAP scheduling
used there with a modulo-scheduled, operator-shared datapath. To realize the
schedule-dependent sharing of operators in the new datapath, we use a local state
machine per operator, which tracks the current cycle modulo II, and translates
this local state to the control signals of multiplexers for selecting the current
inputs to the operator. Due to space constraints, we must leave the presentation
of the overall accelerator architecture to the prior work [20].

During scheduling, the multiple sub-problems generated by the divide-and-
conquer approach are solved in parallel by launching multiple single-threaded
ILP solver instances in a thread pool.

Graph partitioning is performed recursively, applying balanced 1-cuts repeat-
edly until the number of operations subject to operator sharing (which influences
the size and difficulty of the ILP) falls below a user-specified threshold. We call
this parameter the split threshold S and will evaluate its impact in Sect. 5. This
approach works well in our domain, because most algorithms for learning SPNs
produce trees rather than general directed acyclic graphs, but the latter could
also be supported by using a more general graph partitioning method.

As in prior work, the open-source TaPaSCo framework [7] is used to inte-
grate the core accelerator (load unit, store unit, data path, and controller) into
a platform-specific SoC design, and provides a software API for interacting with
the accelerator from the host CPU. In contrast to prior work [20], we also target
MPSoC systems with shared memory between the host CPU and FPGA. How-
ever, the current version of TaPaSCo does not yet support cache-coherent shared
memory between host and accelerator. To avoid the costs of copying input and
output buffers, we use a custom user-space mappable memory buffer to make
the input and output data available to both CPU and FPGA, rather than using
the TaPaSCo-provided APIs for host-accelerator data transfers. This buffer is
marked as cacheable, and the CPU cache is flushed explicitly and invalidated
before launching inference jobs on the accelerator.

5 Evaluation

Our evaluation comprises two parts: an evaluation of the proposed ILP formu-
lation and graph partitioning-based heuristic on a range of SPNs, FPGA plat-
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forms, IIs and resource constraints; and a case study on real hardware platforms
suitable for embedded computing, comparing operator-shared accelerators on a
Xilinx UltraScale+ MPSoC device to an Nvidia Jetson Xavier device.

In both parts of the evaluation, we use the customized floating-point formats
and operators developed for SPN inference in prior work [20], which represent the
probabilities on a linear scale, and were found to be more resource-efficient than
a log-scale representation of probabilities in most cases. For the SPNs already
investigated in the prior work, we use the format parameters as reported there.
For the other SPNs, we use a format with 10 exponent bits and 26 mantissa bits,
as it has the largest exponent range, and therefore is least vulnerable to overflow
and underflow out of the currently implemented formats.

5.1 Scheduler Evaluation

For the scheduler evaluation, we target Digilent PYNQ-Z1, AVNET Ultra96-V2,
and Xilinx VC709 boards. We used 14 out of 16 SPNs used in prior work [20],
excluding NIPS5 and MSNBC 300 for being too small to benefit from operator
sharing on any of the target platforms. To these, we add another SPN over
binary data (DNA) and three large-scale artificial examples that were randomly
generated to serve as stress tests: fully spatial realizations of these SPNs would
require 1499, 2249 and 2699 floating-point adders and multipliers respectively,
far larger than practical for ILP-based modulo scheduling.

Experimental Setup. Each of these 18 SPNs is tested against the resource
model of each target platform to determine the resource-constrained minimum
II. In many cases, this results in an accelerator design that would be severely
memory-bound and could use a larger II – allowing more sharing and thus requir-
ing fewer FPGA resources – without loss of performance. Thus, we also compute
an alternative II (per SPN and platform) that would balance computational
throughput with memory bandwidth requirement. Out of these 18×3×2 candi-
date {SPN, Platform, II} triples, the 35 unique combinations with II from two
to seven (inclusive) are used.

For each of the 35 {SPN, Platform, II} combinations, we perform scheduling
and binding for three different resource constraints: the minimum number of
operators possible, that minimum scaled up by a factor of 1.25 (rounded), and
the largest number of operators that will fit on the device. These 105 scheduling
tasks capture a wide range of DFG sizes and available number of operators.

Each scheduling task is solved by constructing a single large ILP instance
as well as by our proposed divide-and-conquer heuristic with varying granular-
ity for the graph partitioning step. In each case, we compare the baseline ILP
formulation [21] to our proposed extension (Sect. 3.1).

Experiments were performed with Gurobi 8.1 as ILP solver, on systems
equipped with two 12-core Intel Xeon E5-2680 v3 CPUs and 64 GiB of RAM.
Each scheduler run was given access to four cores and 16 GiB of RAM, and
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wall clock running time was limited to two hours each. For each individual sub-
problem generated by graph partitioning, the ILP solver was given a time limit
of 15 min.

For the split threshold S controlling the granularity of the graph partitioning,
we evaluate S ∈ {1, 5, 10, 14, 18, 22, 26, 30} – using 1 as naive baseline, 5 and 10
as very fast but low-quality variants, and equidistant values from 10 to 30 to
explore the trade off between running time and solution quality as sub-graphs
become more complex.

Fig. 4. Scheduler runtime profile for different split thresholds (S) with the baseline
and proposed ILP formulation, plotting scheduler run time against the cumulative
percentage of instances solved within that time frame.

Scheduler Runtime. Attempting to schedule the entire DFG by a single ILP is
impractical on many of the instances in our benchmark suite. With the baseline
ILP formulation, the solver finds a solution for just 57 out of 105 instances,
of which only 30 are proven to be optimal solutions, while the other instances
run out of time or memory while solving the ILP, or already while creating the
constraints. Results are even worse with our proposed extension of the ILP: only
31 solutions are found, and none of them could be proven optimal.

In contrast, fine-granular graph partitioning (S ≤ 10) enables heuristic
scheduling within a minute on almost all examples, with only a few exceptions
taking slightly longer. As Fig. 4 shows, run times rapidly increase as the graph
partition gets more coarse. Curiously, although a significant number of instances
are solved almost instantaneously with the baseline ILP formulation, with the
extended ILP formulation, we observe fewer outliers that take exceptionally long
to schedule. With the extended ILP formulation, the configuration S = 14 sched-
ules most examples in 15 min, and all within 30 min. Even with S = 30, the
majority of instances are successfully scheduled within one hour, but too many
exceed the two hour time limit (especially with the baseline ILP formulation) to
claim that larger values of S are always beneficial.

Solution Quality. For lack of a clear baseline to compare the scheduling algo-
rithms against, we resort to scoring the different scheduler variants by how well



Efficient Operator Sharing Modulo Scheduling for SPN Inference on FPGAs 253

their solutions for each instance score relative to the best solution found by all of
the variants evaluated. We compare both the schedule length (datapath latency)
achieved and the multiplexer size (as encoded in the ILP objective) achieved by
each variant. We record this ratio for every instance and report the distribu-
tion of these ratios in Fig. 5a and Fig. 5b (standard box plots with whiskers at
Q1 − 1.5 · IQR and Q3 + 1.5 · IQR).

Fig. 5. Solution quality of different scheduler variants w.r.t. to schedule length (5a)
and multiplexer size (5b) objective. Split threshold = ∞ is the case of a single ILP for
the whole graph. Values closer to 1 are better.

Note that many variants, especially those with a single large ILP for the
entire problem, did not find solutions for all of the 105 scheduling tasks. The
number of solutions found within two hours is listed in Table 1.

Table 1. Number of solutions found by each scheduler variant.

ILP-Form. Split threshold

1 5 10 14 18 22 26 30 ∞
Baseline 105 105 105 105 103 101 99 99 57

Proposed 105 105 105 105 104 101 98 98 31

Generally, coarser partitioning (larger S) yields better results – at the cost of
longer running time, as seen above. The divide-and-conquer heuristic combined
with our proposed ILP formulation improves multiplexer sizes, and prioritizing
this objective does not have a negative impact on the schedule length. How-
ever, the improvements beyond S = 14 are marginal and may not justify the
significantly longer running times.

While the baseline ILP without graph partitioning (S = ∞) achieves best-in-
class schedule lengths on most instances where the ILP solver finds any solution,
the third quartiles show that the heuristic schedulers with S ≥ 14 get within
10% of the schedule length achieved by the ILP solver in the majority of cases,
and occasionally obtain even better results.
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5.2 Hardware Evaluation

Out of the 35 {SPN, Platform, II} combinations used in the scheduler evaluation,
13 target the AVNET Ultra96-V2 device. We generate accelerators for these con-
figurations, using the heuristic scheduler with our proposed ILP formulation and
S = 14. This configuration gives acceptable results, while also reliably finishing
in half an hour, which is a typical time frame for FPGA implementation of the
entire accelerator for the target device.

Table 2. SPN graph properties, scheduling results, FPGA resource utilization on
Ultra96-v2 platform and comparison of inference throughput. FPGA utilization is given
as percent of the overall available resources. Best throughput results highlighted bold.

Freq. Resource Util. [%] Throughput [samples/µs]

Benchmark II SL Add Mult. [MHz] LUT Reg. CLB DSP Xavier CPU Xavier GPU FPGA

Accidents 2 81 27 217 275 61.30 38.04 92.23 60.56 7.53 17.61 39.85

Audio 4 88 12 275 280 51.94 30.91 77.65 76.67 4.05 16.82 35.01

DNA 3 73 2 363 260 66.09 38.49 96.92 67.22 1.51 15.22 25.95

Netflix 2 73 11 231 260 62.07 37.82 92.85 64.44 3.44 26.63 44.31

Plants 3 140 14 256 280 53.58 35.85 86.63 95.56 4.21 30.23 48.98

NIPS20 2 47 7 56 350 38.00 20.33 57.03 15.56 27.55 19.42 30.01

NIPS30 2 65 10 87 345 49.57 24.94 71.52 24.44 15.95 15.82 24.67

NIPS40 3 74 16 122 350 51.52 26.62 76.17 22.78 10.27 12.61 21.39

NIPS50 4 80 16 143 340 57.95 26.29 78.72 20.00 7.79 11.59 17.74

NIPS60 4 77 13 156 350 57.85 27.74 81.89 21.67 5.23 10.28 14.86

NIPS70 5 88 14 180 205 62.52 28.36 84.17 20.83 3.09 9.36 14.00

NIPS80 2 85 32 265 245 83.16 43.53 99.34 74.72 3.20 6.41 12.48

NIPS80 5 93 32 265 245 68.49 34.18 93.84 30.28 3.20 6.41 12.39

We performed a design space exploration using the development version of
the open-source framework TaPaSCo2 and Vivado version 2019.2 to determine
the highest possible frequency and corresponding FPGA resource utilization.
Results are reported in Table 2, with resource utilization given as percentage of
the total number of available resources (70,560 LUT, 141,120 Reg., 8,820 CLB,
360 DSP).

With these maximum frequencies, we compare the performance of the FPGA
accelerators with the CPU and GPU implementations of the same inference com-
putations running on another SoC suitable for embedded and edge AI computa-
tion, namely an Nvidia Jetson AGX Xavier SoC, having ARM CPU cores and an
integrated 512-core Volta-class GPU. Similar to prior work [20], optimized C++
(single-threaded) or CUDA code is generated from the SPN description using an
automated toolflow and then compiled by the respective compiler available on
the Jetson Xavier System (NVCC version 10.0, GCC version 7.5.0). Just as in
the Ultra96 used for FPGA performance measurements, CPU and GPU on the
Jetson AGX Xavier share the same physical memory, which removes the need
for expensive host-accelerator data transfers.
2 https://github.com/esa-tu-darmstadt/tapasco.

https://github.com/esa-tu-darmstadt/tapasco
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Table 2 lists the throughput achieved by the CPU, GPU and FPGA
implementations. Each measurement is averaged over five runs. Our accelera-
tors achieve better throughput than the implementations on CPU (geo.-mean
speedup 4.4x) and GPU (geo.-mean speedup 1.7x) on the Xavier device.

Avoiding data transfers between CPU and GPU, respectively CPU and
FPGA, has significant impact: it allows these embedded SoCs to achieve perfor-
mance much closer to the more powerful workstations evaluated in prior work
[20] than one would expect from comparing hardware specifications. On several
benchmarks, the Xavier GPU implementation even achieves significantly higher
throughput than the discrete Nvidia 1080Ti GPU used in prior work, primarily
because the latter needs to transfer all input data and results over PCIe.

Note that the two FPGA accelerators for NIPS80 have vastly different datap-
ath throughput (II = 2 versus 5) and resource (DSP) requirements. They achieve
essentially the same end-to-end performance because the larger II = 2 configu-
ration is limited by memory bandwidth, while the smaller II = 5 configuration
was selected to match the memory bandwidth.

6 Related Work

Two key components of our work are the use of graph partitioning to accelerate
modulo scheduling and the optimization of operator bindings. The discussion in
this section focuses on works related to these aspects. Please note that many
other approaches to heuristic modulo scheduling exist [1,3,24].

Compared to scheduling in compilation flows for neural networks on FPGAs,
our approach works on a much finer level of granularity. As outlined in the
survey by Venieris et al. [22], scheduling in compilation flows for neural networks
typically happens on the granularity of coarse-grained neural network operations,
such as matrix multiplication, convolution, or even entire layers, whereas our
scheduler operates on individual arithmetic operations.

6.1 Graph Transformations for Modulo Scheduling

Fan et al. [6] previously used graph partitioning to decompose large modulo
scheduling tasks into multiple sub-problems. Due to recurrences, solutions to the
sub-problems can not necessarily be combined into a valid solution to the whole
problem. To address this, they perform scheduling of sub-graphs sequentially and
back-track when later sub-graphs cannot be scheduled due to conflicts arising
from previous decisions. As a consequence, this approach fails to schedule some
examples even with a relatively fine-grained partitioning (ca. eight operations
per sub-graph).

Dai and Zhang [5] used strongly connected components (SCCs) to parti-
tion the graph. As this partitioning does not split recurrences, partial solutions
can always be combined into a full schedule. They demonstrate that this often
accelerates scheduling significantly, though it is less effective when a single SCC
encompasses most of the graph.
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6.2 Optimization of Bindings

There are numerous works optimizing the bindings alongside the schedule as one
of the key factors affecting the physical realization of operator sharing. Cong and
Xu [4] perform this in a separate step after scheduling using a heuristic based
on min-cost network flows. LegUp [2] is a more recent example of binding as a
separate phase after scheduling, focusing on balancing multiplexer sizes.

Other works are more closely related to our approach of integrated scheduling
and binding. The aforementioned work by Fan et al. [6] focuses on ASIC imple-
mentations, while Memik et al. [9] target FPGA architectures. More recently
and most closely related to our ILP formulation, Sittel et al. [18] incorporated
the operator bindings into an ILP-based modulo scheduler to optimize the area
required for registers holding intermediate values.

7 Conclusion and Outlook

In this paper, we presented an ILP formulation for modulo scheduling and bind-
ing of SPN inference computations, and a divide-and-conquer heuristic that
makes the ILP-based approach practical for use on large SPNs by graph parti-
tioning and combination of partial solutions.

This heuristic can schedule very large examples in minutes, while finding
the optimal II by construction and making only minor sacrifices in schedule
length – within 10% of the best known solution for most instances. In addition,
our extended ILP formulation also reduces datapath multiplexing significantly,
compared to scheduling approaches that only target the schedule length.

Using this scheduling algorithm, we generate SPN inference accelerators on
an embedded FPGA-CPU hybrid SoC, where a fully spatial realization of the
datapath would exceed the available hardware resources. These FPGA acceler-
ators achieve higher throughput than CPU and GPU implementations on an
Nvidia Jetson Xavier SoC in our benchmarks, with geometric mean speed-up of
4.4x over CPU and 1.7x over GPU.

The properties of acyclic data flow graphs that enable our divide-and-conquer
heuristic also suggest other approaches to heuristic scheduling that hold promise
for improving the running time and/or solution quality further. Since a feasible
suboptimal solution is easy to find, local search approaches such as simulated
annealing could be used as well, which allow specifying non-linear constraints
and objectives directly.
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Abstract. Synchronous data-flow graphs (SDF) are widely used in the
design of concurrent real-time digital signal processing applications on
multiprocessor system-on-chip. The increasing complexity of these hard-
ware platforms advocates the use of real-time operating systems and
fixed-priority scheduling to manage applications and resources. This
trend calls for new methods to synthesize and implement actors in SDF
graphs as real-time tasks with computed scheduling parameters (peri-
ods, priorities, processor mapping, etc.). This article presents a frame-
work supporting scheduling synthesis, scheduling simulation, and code
generation of these graphs. The scheduling synthesis maps each actor to
a periodic real-time task and computes the appropriate buffer sizes and
scheduling parameters. The results are verified by a scheduling simulator
and instantiated by a code generator targeting the RTEMS (Real-Time
Executive for Multiprocessor Systems) operating system. Experiments
are conducted to evaluate the framework’s performance and scalability
as well as the overhead induced by the code generator.

1 Introduction

Data-flow models of computation are commonly used in embedded system design
to describe stream processing or control applications. Their simplicity allows the
adaptation of automated code generation techniques to limit the problematic and
error-prone task of programming real-time parallel applications. Among data-
flow models, synchronous data-flow (SDF) [6] is one of the most popular in the
embedded community.

Multiprocessor system-on-chips, which are used to host real-time applica-
tions, are so complex that real-time operating systems (RTOS) with fixed-
priority preemptive scheduling are used to manage resources and host real-time
c© Springer Nature Switzerland AG 2022
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tasks. The implementation of a data-flow application on an RTOS calls for meth-
ods to efficiently synthesize periodic real-time tasks from a data-flow model.

The work in [8] has established a strong theoretical background on schedul-
ing synthesis of SDF graphs. The tool Affine Data-Flow Graph (ADFG) [8,15]
was developed to support a large number of scheduling synthesis algorithms.
From an input SDF graph, ADFG synthesizes a fixed priority periodic task set
preserving the consistency of the SDF graph with the objective of maximizing
the throughput and minimizing the buffer size requirement. Nevertheless, some
important elements are not covered in the scope of ADFG. First, scheduling in
multiprocessor platforms can be highly impacted by extra parameters such as
interference due to resource sharing (bus and memory) and preemption costs. To
take these elements into account, a viable solution is to apply either dedicated
feasibility tests or scheduling simulation to verify schedulability. Second, when
the computed schedule is verified to be schedulable, one must take advantage
of the SDF model to quickly and reliably generate the corresponding scheduler
code. This requires knowledge of the implementation of a specific scheduler by
using the APIs provided by an RTOS.

Problem Statement and Contribution: Motivated by these observations,
the problem addressed in this paper is the lack of integration of the results
synthesized by ADFG in a real-time scheduling simulator and a code generator.

This article presents a framework to integrate the scheduling synthesized by
ADFG into a scheduling simulator and a code generator targeting the RTEMS
(Real-Time Executive for Multiprocessor Systems) [1] RTOS. Scheduling simula-
tion is achieved by Cheddar [22], which is interoperable with ADFG. Automated
scheduler code generation is achieved by exploiting the lightweight data-flow
environment (LIDE) [16] to implement the core functionality of actors and then
instantiate them as POSIX threads. Our framework provides novel capabilities
for design space exploration and iterative tuning of real-time, SDF-based signal
processing systems.

The rest of this article is organized as follows. Section 2 describes the back-
ground of our work. Section 3 provides a brief summary of scheduling synthesis
and focuses on our approach to achieve scheduling simulation and code genera-
tion. Section 4 shows two experiments conducted to evaluate the performance of
the framework. Finally, Sect. 5 presents related work and Sect. 6 concludes the
article and discusses future work.

2 Background and Terminology

In this section, we present the SDF graph model, the periodic real-time task
model, and the notations used in the article. In addition, we briefly introduce
our usage of scheduling simulation and code generation.

An SDF graph is a directed graph G = (V,E) consisting of a finite set of
actors V = {v1, ..., vN} and a finite set of one-to-one channels E. A channel
eab = (va, vb, p, q) ∈ E connects the producer va to the consumer vb such that
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Fig. 1. An SDF graph of 3 actors, 2 channels and its FPP scheduling

the production (resp., consumption) rate is given by an integer p ∈ N (resp.,
q ∈ N). A channel eab has a bounded buffer size δab and can have a number
of initial tokens. Every time an actor fires, it consumes q tokens from an input
channel and produces p tokens to an output channel.

On the scheduling analysis front, we assume the classic fixed priority periodic
(FPP) scheduling on a multiprocessor platform. A task τi is defined by a sextuple:
(Ci, Ti, Di, Πi, Oi, Pi). The parameter Ci, called the capacity, denotes the worst-
case execution time (WCET) of task τi when it executes non-preemptively. Ti,
called the period, denotes the fixed interval between two successive releases of
τi. Di is the deadline of τi. In this article, we assume that tasks have implicit
deadlines (i.e., ∀i : Di = Ti). A task is assigned a priority level Πi and makes
its initial request at time Oi, called the offset. The last parameter Pi, called the
mapping, denotes the processing unit that the task is assigned to.

Figure 1 shows a simple SDF graph consisting of three actors and two chan-
nels. The notation Ci below an actor represents its WCET. For a channel
va

p q−−−→ vb, the production rate and consumption rate are provided. The chan-
nel sizes are not set here because these values depend on the computed schedule.
An iteration [6] of an SDF graph is a non-empty sequence of firings that returns
the graph to its initial state. For the graph in Fig. 1, firing actor v1 3 times, actor
v2 2 times and actor v3 2 times forms an iteration.

FPP scheduling of an SDF graph requires the mapping of each actor to a peri-
odic real-time task. The tasks must allow a consistent schedule for one iteration
of the graph. By definition, a schedule is consistent if it has bounded buffer sizes,
and if there is no deadlock, overflow, nor underflow. For a given actor vi, we need
to synthesize a periodic task τi and its scheduling parameters. Amongst those
presented parameters, only the capacity is available in the SDF model. Other
scheduling parameters must be computed to guarantee the consistency. In the
next section, we introduce our approach and elaborate on how the approach
supports consistent, real-time scheduling of SDF graphs.

3 Approach

Our framework consists of three main steps illustrated in Fig. 2. First, from an
input SDF graph, ADFG computes the required buffer sizes and synthesizes
periodic scheduling parameters. The objective is to guarantee the consistency of
the SDF graph while maximizing the throughput and minimizing the buffer size
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Fig. 2. Framework

requirement. Second, a scheduling simulation is run by the Cheddar scheduling
analyzer [22] to verify the schedulability and to give a thorough analysis of the
synthesized schedule. Finally, after the schedule is verified, ADFG generates a
real-time implementation of the computed schedule. We assume that actors are
implemented in the lightweight data-flow environment (LIDE) [16] and we target
the RTEMS RTOS. In the generated code, the input SDF graph is instantiated
as a graph of LIDE actors and channels. Scheduling parameters are taken into
account by using the POSIX thread API.

3.1 Scheduling Synthesis with ADFG

In this section, we present the ADFG tool and give a brief summary of the
constraints and the objectives that we need to take into account in the scheduling
synthesis step. ADFG [8,15] is a free real-time scheduling synthesis tool for
data-flow graphs. Periodic scheduling synthesis in ADFG takes into account the
following two constraints to guarantee SDF graph consistency.

Underflow Constraint: we have an underflow when an actor attempts to read
and there are not enough tokens on the channel. Thus, we need to compute the
firing dependencies that guarantee no underflow. For a channel va

p q−−−→ vb, the
nth firing of vb is enabled if and only if the number of produced tokens is larger
than q ·n. Hence, vb has to wait for the lth firing of va such that: l · p−n · q ≥ 0.

Overflow Constraint: we have an overflow when an actor attempts to write
and there are not enough empty spaces on the channel. For a channel va

p q−−−→ vb
of size δab, the lth firing of va is enabled if and only if the number of produced
tokens is smaller than or equal to the number of empty spaces. Hence, va has to
wait for the nth firing of vb such that: l · p − n · q ≤ δab.

In addition, ADFG accounts for two objectives in order to optimize the syn-
thesized schedule. Scheduling requires computing the task periods and buffer
sizes such that there is no buffer underflow or overflow, while maximizing the
throughput and minimizing the total buffer size. Then the total buffer size and
the throughput are the main metrics to compare different scheduling parameter
valuations. In [8], Bouakaz proved that the maximum throughput problem can
be translated to a maximum processor utilization one.
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Considering the SDF graph in Fig. 1, ADFG computes the smallest possible
actor periods to ensure the consistency. For example, if the targeted system has 2
processing units, ADFG finds the periods T1 = 10, T2 = 15, T3 = 15 and offsets
O1 = 0, O2 = 20, O3 = 20. Actor v1 is mapped alone on the first core, for a
total processor utilization factor of U = 1.87 for two cores. Part of the resulting
schedule is depicted in Fig. 1. Actors v2 and v3 are released at the same time
but ADFG sets a higher priority to v2 and thus v2 is executed first.

3.2 Scheduling Simulation with Cheddar

In our approach, scheduling simulation is used to provide a thorough analysis of
the schedule synthesized by ADFG. It allows us to verify not only the correct-
ness of the results but also obtain additional information including the number
of preemptions and the buffer utilization. The second advantage of scheduling
simulation is that it allows a thorough analysis of interference due to shared
resources such as caches and memory bus. While this data is not directly given
by ADFG, we have the possibility of using an external static analysis tool to
obtain a richer execution profile of an actor. In [25], a preliminary work has
been implemented in ADFG to support time-triggered schedules with memory
interference but not yet FPP schedules.

In the development of our proposed framework, we have extended ADFG with
capabilities that enable interoperability with Cheddar [22]—an open-source real-
time scheduling analyzer. Classical feasibility tests, scheduling algorithms and
a simulator are implemented in Cheddar. System architectures are defined with
the Cheddar Architecture Description Language (Cheddar-ADL). The periodic
scheduling of periodic tasks with buffer communication is supported by the sim-
ulator and used to evaluate the results of ADFG in [15]. ADFG generates the
scheduling synthesized to an XML file compliant to Cheddar-ADL.

If the schedule synthesized by ADFG is shown to be not schedulable with
Cheddar due to interference, some adjustments must be made. For example, the
cache related preemption delay [2], which is a well-studied source of interference
in preemptive scheduling, can make a schedulable task set become unschedulable.
A solution is to incorporate this delay in the WCET of actors and rerun the
scheduling synthesis with ADFG. This is an example of the important kinds of
design iteration that are facilitated by the proposed framework.

3.3 Code Generation with LIDE

The final step is to generate the implementation of the graph with computed
scheduling parameters. It consists of generating the graph implementation from a
set of pre-implemented actors and instantiating them with scheduling parameters
by using the APIs supported by an RTOS.

ADFG supports automated code generation of the computed buffer sizes and
scheduling parameters for data-flow applications that are implemented in the
Lightweight Data-flow Environment (LIDE) [16]. LIDE is a flexible, lightweight
design environment that allows designers to experiment with data-flow-based
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LIDE Prototype 1: Actor and FIFO functions
1 lide c <actor name> context type *lide c <actor name> new(<FIFO pointer list>, [parameter

list])
2 boolean lide c <actor name> enable (lide c <actor name> context type *context);
3 void lide c <actor name> invoke (lide c <actor name> context type *context);
4 void lide c <actor name> terminate (lide c <actor name> context type *context);
5 lide c fifo pointer lide c fifo new (int capacity, int token size)

implementations directly. A data-flow graph consists of LIDE actors that can
be initialized with parameters including channels and buffer sizes. The usage of
LIDE allows a systematic way to instantiate data-flow graphs with the buffer
size parameters computed by ADFG. In addition, it also allows us to separate
concerns involving the implementation of actors and schedulers.

RTEMS [1] is an open-source real-time operating system that supports open
standard application programming interfaces such as POSIX. We consider the
usage of the RTEMS to generate the computed scheduling parameters. Actor
invocations and fixed-priority periodic scheduling are achieved by the usage of
the POSIX thread library.

The code generator’s inputs are the results computed by ADFG, including:
buffer sizes, periods, offsets, priorities and mapping. The generated code is cross-
compiled and tested by using the QEMU tool to emulate an ARM platform with
RTEMS. Next, we introduce LIDE and demonstrate our method of taking into
account the computed results in the code generation process.

Actors and Channels. Graph elements in LIDE are designed and implemented
as abstract data types (ADTs) that provide C based, object-oriented implemen-
tation of actors and channels [16]. Each actor has an associated context, which
encapsulates pointers to the FIFO channels that are associated with the edges
incident to the actor. Four interface functions, namely new, enable, invoke and
terminate presented in the LIDE Prototype 1, are required to create an actor.
Designers can develop their own actors by appropriately specializing the proto-
type function templates.

To implement a data-flow application we need to instantiate predefined
actors, allocating channels and connecting them together. A channel is instan-
tiated with the function lide c fifo new which takes two input parameters:
capacity and token size. It allows us to apply buffer size results computed by
ADFG in the code generation step.

– Capacity: the computed buffer size for a channel is given as an input parame-
ter of the function lide c fifo new. It is the number of tokens of which sizes
are given as the second input parameter to the function.

– Token size: this information is given in the specification of the graph and
passed directly to the code generator. In case of complex types, we assume
that their specifications in C are also provided.

An actor is instantiated with the interface function lide c <actor name> new.
The input parameters are FIFOchannels that are connected to the actor.An exam-
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Fig. 3. Actors and channels declaration with LIDE

Fig. 4. Generated code configuring the scheduling parameters in RTEMS

ple of the generated code is given in Fig. 3. We generate a graph of two channels and
three actors corresponding to the SDF graph in Fig. 1.

Scheduling Parameters. Actor firings are managed by a scheduler with
scheduling parameters computed by ADFG. Four scheduling parameters are
computed, namely: priority, mapping, period and offset. Code generation
for these parameters is done by exploiting the POSIX thread API supported by
RTEMS. The priority and mapping parameters are natively supported. The
period and offset are taken into account by implementing a FPP scheduler.

– Priority: POSIX set affinity function is used to set thread priorities.
– Mapping: POSIX provides the cpu set property that allows us to choose the

set of cores that a thread can execute on.
– Period: is implemented by exploiting the nanosleep function. The sleep dura-

tion is equal to the period minus the execution time of a thread.
– Offset: is generated by adding an idle period to the first execution of a thread.

An example of the generated code is given in Fig. 4. We create a data struc-
ture named rtems actor that encapsulates a lide c actor context and its
scheduling parameters. Then, these parameters are passed to the attributes of a
pthread accordingly. This example and its code can be duplicated systematically
for all the actors in the graph and their corresponding threads in order to apply
scheduling parameters computed by ADFG.
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Fig. 5. Performance, scalability and code generation overhead

4 Evaluation

Experiments are conducted to evaluate our framework by three criteria. First, we
show the time taken by each analysis step with SDF graphs of various sizes. Sec-
ond, we present the overhead induced by the code generator in terms of lines of
code (LoC) added to a data-flow application. Then, we discuss the run-time over-
head introduced by the usage of our framework. In summary, our experiments
show that with scalable compile-time cost, and relatively low run-time overhead,
our framework is capable of deploying FPP scheduling based on ADFG theory
that are automatically generated, correct by construction, and jointly optimized
for throughput and memory requirements.

4.1 Framework Performance and Scalability

We evaluate the framework with synthetic SDF graphs generated by the SDF3
tool [23]. The number of actors varies from 10 to 100 in steps of 10. We generate
100 graphs per number of actors. SDF3 takes many parameters besides number
of actors; however, their values are chosen arbitrarily as they do not have a
significant impact on the performance of our toolchain. The number of processing
units is fixed at 4. This experiment is conducted on a PC with an Intel Core i7-
8650U (1.90 GHz × 8) processor, having 16 GBs of memory, and running Ubuntu
18.04.4.

Figure 5a shows the average computation time of each analysis step. It takes
from 1.85 s to 7.01 s to synthesize, simulate, and generate FPP scheduling for
the tested SDF graphs. We observe that the computation time grows linearly
with the number of actors so the framework has an acceptable scalability. If
we analyse each analysis step, scheduling synthesis and code generation have a
better scalability than scheduling simulation. The differences between the max-
imum and minimum computation time of each step are 1.4 s, 3.54 s, and 0.22 s.
Scheduling simulation is also the analysis step taking the most time with up to
60% of the total computation time.
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4.2 Code Generation Overhead

The code generator is evaluated by comparing the number of lines of code (LoC)
added to a data-flow application. As our targets of hardware platforms are
embedded systems, code size is an important metric to evaluate.

For a given application, we count the LoC of its core functionality. Then
we count the LoC added in order to implement each actor with LIDE interface
functions. Next, we count the LoC generated for the parameters computed by
ADFG. We have selected a subset of applications in the STR2RTS benchmark
[21], which is a refactored version of the StreamIT benchmark.

The LoC added to support LIDE interface functions are 30 LoC per unique
actor. In an SDF graph, we often observe that some actors are duplicated to
exploit the parallelism. In other words, they are copies of an actor and they
have identical functionalities As a result, they only need to be implemented
once. The LoC added to support the POSIX thread API are 14 LoC per actor
and 3 LoC per buffer. On the contrary to the first category, we always need to
generate the code for an actor, even if it is a duplication of another actor.

The result of the evaluation is given in Fig. 5b. On average, the LoC generated
are about 60% of the complete application. As actors in the benchmark have
simple functionality and do not support the implementation of multi-threaded
execution, this proportion is expected. This number is lower for SDF graphs with
a high number of actors but a low number of unique ones such as DES 16round.

4.3 Run-Time Overhead

In this section, we discuss and evaluate the run-time overhead introduced by the
usage of our framework. This overhead can be categorized in three sources: (1)
RTOS overhead, (2) FPP scheduling overhead, and (3) LIDE overhead.

RTOS overhead is due to the usage of an operating system such as RTEMS
and its services instead of a bare-metal implementation. In [18], the authors
provided an evaluation of RTEMS core characteristics. RTOS overhead depends
on the choice of system designers and the evaluation of different embedded RTOS
is not in the scope of our work. FPP scheduling overhead is due-to the usage of
a FPP scheduler instead of a rate optimal one. A comparison between the two
schedulers in ADFG has been presented in [8].

LIDE overhead is due to the code added when refactoring SDF actors and
the usage of LIDE functions to read/write data in the channels. We present in
Table 1 the WCET of the added functions. WCET analysis is done by the tool
OTAWA [4] and the compiler used is arm-linux-gnueabi-gcc version 9.3.0. The
token size, which is used to determine the loop bound when using the memcpy
function to read/write data in the channels, is set to 8 bytes (integer token).

WCET analysis cannot be done for the functions 5, 6, 7 in Table 1 because
the usage of the system calls free and malloc, which cannot be analyzed by
the WCET analyzer. These functions are only called once at the initialisa-
tion/termination step and are not used when the system enters the steady-state.
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Table 1. WCET analysis of LIDE functions

LIDE C functions WCET analysis

1 lide c <actor name> enable 165 cycles

2 lide c fifo write 825 cycles (token size = 8)

3 lide c fifo read 815 cycles (token size = 8)

4 lide c <actor name> invoke 1640 cycles (token size = 8)

5 lide c <actor name> terminate System call: free()

6 lide c <actor name> new System call: malloc()

7 lide c fifo new System call: malloc()

We compare the obtained results with the average WCETs of actors found
in the StreamIT [24] benchmark to have a quantitative evaluation. As presented
in [21], the average WCETs in the benchmark ranges from 273 to 2.94e5 cycles.
Compared to this result, the overhead of the LIDE functions varies between 12.6
and 0.01 times the WCET of the actors. This high variation exists because in the
benchmark, there are both fine-grained actors with only few lines of code and
coarse-grained ones, which contain more complex actors. Coarse-grained SDF
graphs are the main targets of our framework as we consider the usage of RTOS
and FPP scheduling.

5 Related Work

In this section, we position our contribution by providing discussions on SDF
graph analysis tools. Many tools are able to analyze SDF graphs, to derive
various properties (e.g. mapping and buffer size), and finally to generate the glue
code of the schedule automatically: for example, DIF-GPU [17], PREESM [20],
MAPS [9], Diplomat [7], Gaspard [12], PeaCE [14], and Ptolemy [13]. But these
tools either do not jointly consider real-time execution and FPP scheduling, or
do not perform all syntheses automatically.

Another line of work is to build a complete data-flow compilation toolchain.
In [24] and [3], the authors both introduce their own programming languages,
namely, StreamIT and ΣC. Many analysis steps are applied to compute a static
time-triggered schedule and generate an executable. Our approach differs from
the two in terms of the choice of programming language and scheduling strategy.
First, we refactor programs written in the C programming language to facilitate
the generation of scheduling parameters. Second, we aim to generate a FPP
scheduling instead of static time-triggered ones as described in [19,27].

The most related work to ADFG is the DARTS tool [5]. It allows to compute
the strictly periodic scheduling parameters achieving the best throughput under
earliest deadline first or rate monotonic scheduling policies. The main difference
is that DARTS considers a non-constrained number of available processors on
the target system and requires a constraint on the maximum total buffer size.
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Compared to prior work on data-flow analysis tools, such as those summa-
rized above, and to prior work on tools for real-time embedded systems (e.g.,
[10,11], and [26]), our proposed framework provides a novel integration of real-
time execution, periodic scheduling, resource-constrained mapping, and capabil-
ities for iterative tuning and optimization of scheduling parameters.

6 Conclusions

In this article, we present a framework for periodic scheduling synthesis of SDF
graphs. The framework is built from three open-source tools: ADFG [15], Ched-
dar [22], and LIDE [16]. Starting from an SDF graph, we synthesize its FPP
scheduling with ADFG and then verify the result with Cheddar. We assume
that actors are implemented in LIDE and generate the implementation of the
graph and the computed schedule by targeting the RTEMS RTOS. Our experi-
ments have shown that the proposed framework has an acceptable performance,
thus it can be used in the early stage of system design when changes occur
quite frequently. For future works, we want to extend the scheduling synthe-
sis in ADFG to take into account interference in order to provide more precise
results. In addition, we aim to extend the framework with the integration of
static resource analysis tools to directly obtain the timing and memory foot-
print of actors instead of relying on external sources of information.

Engineering effort has been put in this framework to assure that tool interop-
erability is achieved by data file export/import and a set of scripts. Nevertheless,
the process of installing and configuring all the tools presented can be complex
and time-consuming. We are investigating options to make a ready-to-use setup
of the framework such as a pre-configured virtual machine.
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Abstract. Control-Flow Integrity (CFI) is a popular technique to
defend against State-of-the-Art exploits, by ensuring that every (indi-
rect) control-flow transfer points to a legitimate address and it is part
of the Control-flow Graph (CFG) of a program. Enabling CFI in real
systems is not straightforward, since in many cases the actual CFG of
a program can only be approximated. Even in the case where there is
perfect knowledge of the CFG, ensuring that all return instructions will
return to their actual call sites, without employing a shadow stack, is
questionable.

In this work, we explore the implementation of a full-featured CFI-
enabled Instruction Set Architecture (ISA) on actual hardware. Our new
instructions provide the finest possible granularity for both intra-function
and inter-function Control-Flow Integrity. We implement hardware-
based CFI (HCFI) by modifying a SPARC SoC and evaluate the proto-
type on an FPGA board by running SPECInt benchmarks instrumented
with a fine-grained CFI policy. HCFI can effectively protect applica-
tions from code-reuse attacks, while adding less than 1% average runtime
and 2% power consumption overhead, making it particularly suitable for
embedded systems.

1 Introduction

The diversification of computing systems and the wide adoption of IoT devices
that pervade our lives has grown the security and safety concerns in home appli-
ances, enterprise infrastructure and control systems. Typical examples range
from traditional IoT environments where data are collected and processed in
back-end cloud systems, to more sophisticated, edge-based scenarios where part
of processing also occurs in end-devices. Protecting against such cases using
software-only solutions is not sufficient, since advanced attacks can modify even
the security software itself, thus bypassing any restrictions posed. In addition,
c© Springer Nature Switzerland AG 2022
A. Orailoglu et al. (Eds.): SAMOS 2021, LNCS 13227, pp. 275–287, 2022.
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the performance overheads of software-based solutions is non-negligible in cer-
tain cases. The use of hardware-backed solutions can vitally improve the security
of embedded devices, even though this is still challenging due to their limited
resources and their intrinsic budget of performance and memory.

At the same time, the exploitation threats are constantly evolving. More
than a decade ago, exploiting software was as easy as just simply smashing
the stack [16]. An attacker could simply inject code into a vulnerable buffer
in the stack and overwrite the return address (of the current stack frame) to
point back to their code. Today, this is not possible due to data execution
prevention (DEP) mechanisms, however attackers can still exploit software in
other ways. For instance, code-reuse attacks, such as Return-Oriented Program-
ming (ROP) [19] and Jump-Oriented Programming (JOP) [6] can potentially
take advantage of any vulnerability and transform it to a functional exploit.
These techniques do not require any code injections; instead, they re-use exist-
ing parts of the program to build the necessary functionality without violating
DEP. According to a recent report, more than 80% of the vulnerabilities are
exploited using code-reuse attacks [18].

Code randomization techniques [17] are shuffling the location of the code,
in order to make code reuse attacks harder to achieve. Still, even a small infor-
mation leak can reveal all of the process code and bypass any randomization
scheme [20]. Instead of hiding the code, another way for stopping exploits is
to prevent the execution of any new functionality, by employing Control-Flow
Integrity (CFI) techniques [3]. An attacker cannot inject code or introduce any
new functionality that is not part of the legitimate control-flow graph (CFG).
Unfortunately, the majority of existing CFI proposals have still many open issues
(related to accuracy and performance), that hinder its applicability [5].

In this work, we extend our previous hardware-assisted CFI (HCFI) [8] in
order to enhance its granularity and flexibility. The implementation of new hard-
ware instructions dedicated for CFI, and the deployment of shadow memory
within the processor core, increase the granularity of CFI (especially in forward-
edge situations); moreover they cover a couple of intrinsic situations (including
the instrumentation of fall-through functions and indirect jumps, such as switch
statements, within functions). Performance-wise, the implementation in hard-
ware is the optimal choise; our approach adds less than 1% average runtime and
2% power overhead, making it suitable for embedded systems.

Overall, HCFI is a hardware design that offers a CFI solution that is (i)
complete, since it protects both forward and backward edges, (ii) fast, since the
experienced overhead is, on average, less than 1%, and (iii) more accurate, since
it employs a full-functional shadow stack implemented inside the processor core.
Furthermore, we argue that HCFI is the most complete hardware implementa-
tion of CFI so far, supporting many problematic cases (such as setjmp/longjmp,
recursion, fall-through functions and indirect jumps within functions).
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2 Background

Control-Flow Integrity (CFI) [3] constraints all indirect branches in a control-
flow graph (CFG), which is determined statically before the program execution.
In essence, this is achieved by setting a simple set of rules that a program exe-
cution flow must adhere to:

1. A call-site “A” can call a function “B” only if the edge (the call itself) is
part of the Control-Flow Graph (CFG). This is called Forward-Edge CFI
and can easily applied to direct calls, as the only way to modify a direct call
is to overwrite the code itself. This is not the case for indirect calls though,
where function pointers are typically stored in data regions.

2. A function “B” can only return to the call-site “A” that actually called
it, and no other place in the code. This is called Backward-Edge CFI.
Backward-edges are, in essence, indirect calls, since they rely on a pointer
(return address) to jump to their target.

An attacker cannot inject code or introduce any new functionality that is
not part of the legitimate control-flow graph (CFG). The majority of existing
CFI proposals have still many open issues (related to accuracy and performance
overhead), that hinder its applicability, especially, to embedded devices [5,22].
For instance, it is not always easy to compute the program’s CFG. This is mainly
because the source code might not always be available, while even if it does,
dynamic code that might be introduced at run-time or the heavy use of function
pointers can lead to inconclusive target resolution [5]. This problem has led
researchers to develop CFI techniques that are based on a relaxed approximation
of the CFG [22], also known as coarse-grained CFI.

Unfortunately, coarse-grained CFI has been demonstrated to exhibit weak
security guarantees and it is today well established that it can be bypassed [12].
Approximation of the ideal CFG through code analysis is not always sound,
therefore, at least for protecting backward edges, the community has suggested
shadow stacks [9] - secure memory that stores all return address during func-
tion calls. Many research efforts have stressed that shadow stacks are important
for securing programs, even when we know the program’s CFG with high accu-
racy [11]. A trivial case is when a function is called by multiple places in the
program. According to the CFG, all return locations are legitimate, however
only one is actually correct. Moreover, implementing fine grained CFI solely on
software, introduces prohibitive performance impact. In the original CFI pro-
posal by Abadi [3], the average performance was 21%. More recent approaches
like SafeStack [15], are designed to offer fine grained backward edge protection
with minimal overhead. The applications are instrumented during compilation in
order to use a different, protected stack for storing control flow variables used in
backward edges. However, protecting memory regions using software techniques
has been proven ineffective against sophisticated attacks [7,13].

To overcome there restrictions, hardware-assisted CFI implementations can
provide architecturally protected memory regions for storing control-flow vari-
ables, while at the same time accelerate significantly any checks required during
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control-flow transitions; this enables the use of fine-grained CFI even in low-
powered devices.

3 Threat Model

Our threat model assumes an attacker that can exploit a vulnerability, either a
stack or heap overflow, or use-after-free. This vulnerability can be further used to
overwrite key components of the running process like return addresses, function
pointers, or VTable pointers. We also consider that the attacker has successfully
bypassed ASLR or fine-grained randomization [20], and has full knowledge of the
process’ memory layout. Nevertheless, the system enforces that (i) the .text seg-
ment is non-writable preventing the application’s code from being overwritten,
and (ii) the .data segment is non-executable blocking the attacker from execut-
ing directly data with proper CFI annotation. Both of these are commonplace
in today’s systems preventing software exploitation.

4 Hardware-Enforced Control-Flow Integrity

HCFI enforces the set of CFI rules (described in Sect. 2) in hardware, while
also provide workarounds for certain corner cases. More specifically, a valid call
requires that the call site and the destination have been previously acknowledged
to be a valid pair in the CFG. A simple way to avoid checking a list of valid
pairs for every indirect call, is to group valid pairs with a label. If the label of
the source and the destination match, then the edge is legal.

On the contrary, a valid return is typically simpler to validate. Whenever a
call takes place, the return address is pushed to the stack. If the address reached
after a return, matches the top of the stack, the return is valid. This is achieved
by also pushing the return address to a new, hidden, stack (namely shadow
stack), and comparing the return’s target to the one stored at the top of the
shadow stack. However, this is not the case for the setjmp/longjmp case, in
which a function does not necessarily return to its caller. In particular, longjmp
never returns to its caller but to its matching setjmp (Fig. 1).

To support this functionality, the ISA is extended with new instructions
(shown in Table 1): two for the instrumentation of the backward edges, two for
the forward edges, and two for handling setjmp/longjmp cases. The instruc-
tions are strategically placed, so as to wrap the Control-Flow edges. SetPC and
SetPCLabel are paired with direct and indirect calls respectively, while CheckPC
is paired with return instructions, and CheckLabel is placed in function entry
points, if the function is an indirect call target. Finally, SJCFI and LJCFI are
paired with the calls to setjmp and longjmp themselves. LJCFI is placed imme-
diately before the call to longjmp, while SJCFI is placed immediately after the
call to setjmp, so that it will be the first instruction executed after a return
from setjmp, no matter if setjmp or longjmp was called.
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Fig. 1. The basic FSMs for the hardware-based CFI. For return instructions, the target
Program Counter is compared with the top value of the stack everytime a CheckPC

instruction is received and the execution continues normally.

Finally, given that the design of HCFI does not track stack frames, but spe-
cific addresses instead, recursion may result in the same address being pushed
to the shadow stack multiple times. From this observation, a very simple opti-
mization can be implemented; namely, not storing the address when it equals
the top of the stack, but instead marking the address at the top as recursive.
This effectively negates the spacial requirements of immediate recursion. During
CheckPC execution, if the top address in the shadow stack is marked as recursive
and is the same as the target of the return instruction it will not be popped.
If not, the top address will be popped and the target address will be compared
with the next top address in the shadow stack. If the two addresses are equal,
the execution will continue normally and the top of the shadow stack will be
popped (if the address was not marked as recursive). If the addesses are not
equal, CheckPC will result in a CFI violation.

Table 1. Instructions needed to support HCFI.

SetPC Pushes the current program counter (PC) in the shadow stack

CheckPC Pops the shadow stack and compares the result with the next PC

SetPCLabel Can push the PC onto the shadow stack and carries a label used to
verify forward edges which is stored in a dedicated register (Label
Register). Finally, it sets the requirement the next instruction must
be a CheckLabel

CheckLabel Carries a label that is compared to the one in the Label Register

SJCFI Sets the environment for a future longjmp and acts as a landing
point for an executing one

LJCFI Signifies that a longjmp is underway
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Fig. 2. The extended FSM for Indirect Call States. A SetPCLabel instruction is
received, the appropriate memory modules are set, and the core enters a state where
only CheckLabel instructions are accepted. Once a CheckLabel instruction with the
appropriate label is received, the execution returns to its normal flow.

5 Fine-Grained CFI Instrumentation

The instructions presented in Sect. 4 are created in order to enable a policy
agnostic CFI mechanism. Especially for the backward edges, they can easily
support the finest possible granularity: by using an architecturally protected
shadow stack where only the CFI instructions can modify values, we can ensure
that a function will always return to the original call site. However, for forward
edges, the granularity is proportional to the effort of analysis performed on the
code of the executable. Ideally, every function in the binary will be reachable by
a minimum set of indirect call sites. We note that our design can even support
more relaxed forward-edge schemes, where indirect call sites can target every
function entry point, i.e. by using only one label in the whole binary—this can
be practical in cases, where extensive control flow analysis is not feasible.

To allow for finer granularity and flexibility, we make the following mod-
ifications to our initial design. Previously, every CheckLabel instruction was
requiring the Label Register to be set, and hold the correct label. Under the
new design, an unset Label Register, or one carrying an incorrect label, does
not lead to a violation, as long as the next instruction is also a CheckLabel.
Also, the SetPCLabel instruction can now ommit pushing the PC to the shadow
stack, depending on its arguments. Moreover, we allow the instrumentation of
indirect branching within the same function. Ignoring CheckLabel instructions
does not raise security concerns, if the whole binary is instrumented properly.
Forward-edge transitions should only be checked during indirect call and branch
instructions—during normal execution, the CheckLabel instructions do not need
to make any checks, since the control-flow is not influenced by data.
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5.1 Finer Forward-Edge Granularity

When Control Flow Integrity was first introduced by Abadi et al. [3], indirect
call targets with a common source had to be grouped together. For example,
if a call site “A” indirectly called a call target “B”, and a call site “C” could
indirectly call “D” and “B”, then both call sites “A” and “C”, as well as the
call targets “B” and “D”, would have to share the same label. This is a usual
case in C++ applications where indirect calls, dereference virtual table pointers.
Target functions that are common between indirect call sites, will force the use
of the same label across a large portion of the application. Thus, the granularity
of forward-edge protections become significantly coarser.

In this work, we offer the option to set a unique label for each indirect call
site, and add as many CheckLabels in the call target as needed. The previous
example can now be instrumented with 2 labels in the “B” entry point (one for
each indirect call-site). Call site “A” and “C” will carry different labels in their
CheckLabel instructions. This has the effect of not allowing call site “A” to jump
to “D”, which was previously possible. This allows for much finer forward-edge
CFI on top of an already powerful design. Figure 2 presents the operation of
CheckLabel instruction.

Fall-Through Functions. In many popular libraries, such as GNU libc, there
are functions with overlapping code sections [4]. In such cases, the execution of a
function falls-through into another function’s entry point (without using branch
instructions). If these functions are possible targets of indirect call instructions,
they should be instrumented with CheckLabel instructions, otherwise even if the
indirect transition is valid it will result to a CFI violation. Since CheckLabels
do not cause a CFI violation when the processor is not in indirect jump state,
they are just ignored during execution. Thus, when a function falls through,
the execution of the inner function’s CheckLabel instructions will not result in
a CFI violation. This allows for fall-through functions to be instrumented like
regular functions.

Intra-Function Forward-Edges. Most CFI schemes do not take into account
indirect branches, targeting addresses within the same function. For example,
large switch statements are usually compiled to jump tables in order to reduce
the code size of the binary. In these cases the address of each case is stored
in a jump table. At runtime, the result of the switch statement is used in an
indirect jump in order to dereference the jump table at the appropriate index.
Thus, instead of emitting absolute jumps for every possible statement result,
the compiler emits a single indirect jump that uses the statement result as an
index in the jump table. In our design we offer the capability to instrument those
indirect jumps in order to ensure that the target address is the entry point of
one of the cases. Each indirect jump will be instrumented with a SetPCLabel
instruction that will not push a return address in the shadow stack (i.e. SetPC
bit is ’0’), and the entry points of each case basic block will be instrumented
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with the appropriate CheckLabel instruction. Every switch statement in the
binary should use a different label for better granularity.

6 Prototype Implementation

To implement the hardware-based CFI described in the previous sections, we
extended the Leon3 SPARC V8 processor, which is a 32-bit open-source syn-
thesizable processor. Overall, the additions to the core can be grouped in the
following two categories: (i) Memory Components and (ii) CFI Pipeline.

6.1 Memory Components

The following new memory components are deployed in the Register File of the
core:

– A 256 * 32 bit dual-port Block RAM was used for the Shadow Stack.
– A 256 * 8 bit single-port Block RAM was used for the setjmp and longjmp

support (SJLJRAM).
– A 18 bit register was used to store the label for forward edge validation (Label

Register).
– A 256 * 1 bit array helped us optimize recursive calls (Recursion Array).

6.2 CFI Pipeline

Our instructions enter the Integer Unit’s (IU) pipeline as usual, however they
do not interfere with it. We have developed a new pipeline within the IU (CFI
Pipeline) that operates in parallel and provides the functionality required every-
time the instructions are decoded.

– SetPC first tops the Shadow Stack and compares it to the current Program
Counter (PC). If the memory addresses match, the Recursion Array is set;
otherwise, the address is pushed onto the shadow stack. In case the Shadow
Stack is full a Full violation is raised.

– SetPCLabel is in essence two instructions, meaning that it acts exactly as a
SetPC and what could be described as a SetLabel. The SetPC functionality
works only if the 25th LS bit of the instruction is set. Regardless of the
SetPC functionality, the Label carried in its 18 LS bits is written to the
Label Register, and the CFI Pipeline transitions to the SetLabel state. This
mandates that only CheckLabel instructions can be executed, until one with
the correct label is issued. If any other instruction is issued, a Control Flow
violation is raised.

– CheckLabel compares the Label carried in its 18 LS bits to the label stored
in the Label Register, if the CFI Pipeline is in the SetLabel state. Otherwise,
it is ignored and acts as a nop. If the comparison holds, the Label Register
is reset and the pipeline transists from SetLabel state to normal execution.
If not, the execution continues, but if an instruction other than checklabel is
issued, a Control Flow violation will be raised.
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– CheckPC first checks the Shadow Stack; if it is empty, an Empty violation
is raised. Otherwise, it tops the Shadow Stack, increments the value by four
(one instruction) and compares it to the next PC. If the addresses match and
the equivalent recursion bit is not set, the Shadow Stack is popped. If the
addresses did not match but the recursion bit is set, the address is popped
and another comparison is performed with the next value. Again, if they
match and the top value is not recursive, it is popped. If the first comparison
failed and the top address was not recursive, or if both comparisons failed, a
PC Mismatch violation is raised.

– SJCFI changes its functionality depending on whether the CFI Pipeline is
in the longjmp state. If it is not, it writes the current depth of the Shadow
Stack to the SJLJRAM. The address is provided by a label it carries on
its 8 LS bits. Otherwise, it uses the same label to read the address from
the SJLJRAM and set the Shadow Stack to that depth. The Shadow Stack
will not allow an index higher than the current, so that previously popped
addresses cannot be abused. The CFI Pipeline returns to its default state.

– LJCFI sets the pipeline in the longjmp state until an SJCFI instruction is
executed.

7 Performance Evaluation

We synthesize and program our new design, based on the Leon3 softcore, on a
Xilinx ml605-rev.e FPGA board. The FPGA has 1024 MB DDR3 SO-DIMM
memory and the design operates at 120 MHz clock frequency. Since we are tar-
geting embedded systems, we run all tests without an operating system present.
We instrumented most of the SpecInt2000 suite and a few microprocessor bench-
marks, namely Coremark, Dhrystone, and Matmul.
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Fig. 3. The runtime overhead measured with our implementation.
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Fig. 4. The runtime overhead added by using 1–10 labels on an empty function or a
function that increments a value.

Runtime Overhead . When instrumenting only calls (both direct and indirect)
and returns, the average overhead lies at a little under 1% as shown in Fig. 3. In
the case of gap benchmark, the reported overhead is the result of a tight loop
executing a multitude of indirect calls to relatively small functions.

We also run two series of microbenchmarks to see the effect of adding multiple
labels to a function. We did this by executing a tight loop with an indirect
call to one of two functions. The first was an empty function, which results
in three assembly instructions. The second was a function that incremented a
global variable, this has a body of ten instructions. We added one to ten labels
on the function entry points. With these benchmarks we can find the maximum
percentage of runtime overhead imposed when a function is called indirectly with
CFI instrumentation. We present our results in Fig. 4. In our previous design the
maximum runtime overhead that could be imposed is the same as the overhead
reported for the empty function with only one label. The runtime overhead is
relative to the number of indirect call sites that can point to each function (i.e.
the number of labels in the entry point) and the number of instructions in the
function. In large functions, CFI instructions will account for a small percentage
of the function’s code. Thus, we expect that the performance overhead will be
significantly less in real world applications. By also instrumenting indirect jumps,
the overhead can increase; even though this depends on the total number of
indirect branches that the program uses. For example, forward-edge protection
in the jump table implementation of switch statements, can be accomplished
with the execution of just two additional instructions. In our new design, the
granularity of forward-edge can be adjusted, i.e. use the same labels in some
indirect call sites in order to reduce the number of labels in function entry
points. Thus, application designers can opt to reduce forward-edge granularity
in order to favor performance.
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Hardware Overhead . We implemented our design initially without longjmp
support and the recursion optimization. The resulting area overhead, as detailed
by the reports of the Xilinx tools used to synthesize the design, is very low,
using an additional 0.65% registers and 0.81% LUTs (look-up tables). The area
overhead increases significantly to 2.52% registers and 2.55% LUTs, when placing
the longjmp support and the recursion optimization.

Power Consumption . We measure the power consumption of our design using
the Xilinx XPower Analyzer tool. For the unmodified design the tool reported
6072.11 mW power consumption. The required modifications for the CFI instruc-
tions increase the power consumption to 6149.32 mW. The full fledged design
with CFI and SJ/LJ support has a power consumption of 6176.92 mW. The
results indicate that the power consumption overhead is about 1.2%, which
increases to 1.7% when adding longjump support.

8 Related Work

CFI is the base of many proposed mitigation techniques in the literature. Most of
them are software-based, although there are some attempts for delivering CFI-
aware processors. In this section, we discuss a representative selection of CFI
strategies proposed in the literature and the industry as well as their limitations.
Davi et al. [10] proposed HAFIX, a system for protecting backward edges based
on active set CFI. HAFIX deploys dedicated, hidden memory elements for storing
critical information. Their implementation utilizes labels to mark functions as
active call sites. Labels are used as index in a bitmap, which dictates if a function
is active or inactive. A return can only point to an active function. However,
it has been proven that this notion is very relaxed and can be circumvented
[21]. In our design we use an architecturally protected shadow stack, a technique
considered to be the state of the art for protecting beackward edges. Moreover,
our design offers forward edge protection. HAFIX proposes the use of software
techniques for protecting forward-edges.

Intel plans to include Control-flow Enforcement Technology (CET) [1] in
future processors. In CET a shadow stack is defined in order to protect backward-
edge control flow transfers in a manner similar to our design. With regards
to forward-edge control flow transfers ENDBRANCH instruction is used to mark
the legitimate landing points for call and indirect jump instructions within the
applications code. However, an indirect jump can point to any ENDBRANCH. In
comparison, HCFI can support multiple labels in every function entry offer-
ing per indirect call-site granularity for forward edges. ARM presented Pointer
Authentication Code (PAC) [2]. This mechanism utilizes cryptographic primi-
tives (hashing) in order to verify that the control flow pointers are not corrupted
before using them. The pointer authentication code (PAC) of each control flow
pointer is stored in the unused bits of the pointer (i.e. 24 MS bits of the pointer).
Each process has a unique key which is used in order to calculate and authenti-
cate the control flow pointers. The encryption algorithm used is QARMA. This
technology has been already deployed in Apple products with ARMv8.3 cores.
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A recent study from Googles project zero identified several vulnerabilities in
this technology [14]. Pointer authentication can offer similar levels of protection
with our design. However, the use of cryptographic primitives in PAC instruc-
tions imposes signifficantly more overhead in terms of performance and area
compared to our design.

9 Conclusions

In this paper, we designed, implemented and evaluated a flexible and policy-
agnostic Control-Flow Integrity Instruction Set Extension. Our extensions intro-
duced less than 1% runtime overhead on average and less than 2% increase in
power consumption, will only imposing very little overhead in terms of additional
hardware circuitry (less than 2.55%). Our plan for the future is to extend our
implementation to support multi-threading. While our forward-edge protections
can be easily deployed in multi-threaded applications, for protecting backward-
edges a single shadow stack is not enough. We plan to implement a new technique
that allocates memory pages for each thread’s shadow stack.
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Abstract. Fault attacks exploit the possibility to inject a fault in an
electronic device, during the execution of a cryptographic algorithm,
leading the device to erroneous operation(s). An adversary can exploit
these errors and extract valuable information, making the development of
countermeasures against fault attacks necessary. In this work, we present
a novel countermeasure that applies to cryptographic primitives that
make use of a permutation with almost shift-invariant round functions.
Our countermeasure offers protection against fault attacks that rely on
the injection of a fault in multiple executions of the same algorithm.
In order to demonstrate the hardware overhead of the proposed counter-
measure, we implement an FPGA-oriented protected version of Xoodyak,
an authenticated encryption lightweight scheme in the NIST lightweight
cryptography standardization competition.

Keywords: Authenticated encryption · Fault attacks · Xoodyak

1 Introduction

Fault attacks intend to invoke erroneous computation in an electronic device by
introducing a physical disturbance in the hardware or the software of the system.
When fault attacks target implementations of cryptographic algorithms, the goal
of the attacker is to extract information on the secret key or other internally pro-
cessed data based on the faulty output generated by the device. Several types of
fault attacks are based on the analysis of tens, hundreds, thousands or even more
faulty input-output pairs. The countermeasure against fault analysis attacks pro-
posed in this paper, is based on the assumption that a fault attack using multiple
input-output pairs will be more difficult to mount when every execution of the
algorithm processes the internal data in a different, semi-randomized represen-
tation. More specifically, we concentrate on a specific category of authenticated
encryption algorithms, namely those that have round functions that are almost
c© Springer Nature Switzerland AG 2022
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shift-invariant. This allows us to calculate a rotated representation of the out-
put based on a rotated representation of the input. We call our countermea-
sure “ROCKY: Rotation Countermeasure for the Protection of Keys and Other
Sensitive Data”. After giving background information on round functions that
are almost shift-invariant, and fault analysis and countermeasures in Sect. 2, we
present the design principles of ROCKY in Sect. 3. We implement and evaluate
three proof-of-concept implementations in Sect. 4. Conclusions and future work
are discussed in Sect. 5.

2 Background

In this section we analyze almost shift-invariant round functions and their prop-
erties. Also, related work on fault analysis and countermeasures is presented.

2.1 Round Functions that are Almost Shift-Invariant

Several cryptographic permutations have a round function that consists of a
series of steps that are shift-invariant mappings. A mapping α is shift-invariant
if it commutes with certain (cyclic) shift operations τ : α◦τ = τ ◦α. If all steps of
a round function R are shift-invariant, the round function itself is shift-invariant:
R ◦ τ = τ ◦ R.

Shift-invariance is a symmetry property that is desired in design: symmetry
tends to reduce the range of possible attack vectors. However, symmetry is a
double-edged sword and can also be exploited in attacks, such as rotational
cryptanalysis [2] and slide attacks [9]. For that reason, one often includes in the
round function of cryptographic permutations the addition of a round constant
to break the symmetry. In block ciphers with shift-invariant steps, one ensures
that the key schedule does not generate round keys that are shift-invariant. We
will call such permutations almost shift-invariant.

Some round functions are not strictly shift-invariant but have a symmetry
property that is similar: they satisfy R ◦ τ = τ ′ ◦ R, with τ and τ ′ shifts over
different, but related, offsets (Table 1).

One can apply a permutation with a shift-invariant round function to a
shifted version of a state A. Let f = Rd with d the number of rounds, then
we have:

f(A) = τ−1(f(τ(A)) .

hence, given a circuit or program to compute f , shifting the state A before
presenting to A and shifting back the result gives the same result as just applying
f on the state directly.



290 K. Miteloudi et al.

Table 1. Permutations with a (almost) shift-invariant round function. The range of
shifts is indicated in bold. E.g., Salsa is shift-invariant with respect to shifts over 4 × 4
different offsets and Keccak-f with respect to 64 different offsets.

Primitive State size Width Height Depth Round constant

Salsa [5] 512 4 4 (32) No

Chacha 512 4 4 (32) No

Keccak-f [6] 1600 64 5 5 Yes

Ascon [14] 320 64 5 (1) Yes

Xoodoo 384 32 3 4 Yes

Subterranean [12] 257 257 (1) (1) Yes

AES unkeyed 128 4 4 (8) No

If the round function includes the addition of a round constant, one can
still apply this trick by additionally shifting the round constants. Let us denote
the round constant C and assume without loss of generality that the round
constant is added at the end of the round. Let B = C + R(A), then clearly
B = τ−1(τC + R(τ(A))).

2.2 Fault Analysis and Countermeasures

The effects of faulty behaviour of chips caused by external disturbances have a
long history. However, a possible impact that fault injection could have on cryp-
tographic implementations was only revealed in 1997, when the first Differential
Fault Attack (DFA) on the RSA cryptosystem system was introduced by Boneh
et al. [10]. The authors presented the concept and outlined how a single fault on a
private-key computation of RSA with Chinese Remainder Theorem (CRT) could
result in breaking the scheme, i.e. factoring the RSA modulus. They also pro-
posed a countermeasure. Later, Aumüller et al. [3] showed the feasibility of the
attack on a micro-controller and they presented another countermeasure. Most
of the ideas behind countermeasures were based on the concept of duplication, so
to perform the same computation twice and compare the results, or to follow up
on the (sensitive) private-key computation by the corresponding public-key one.
Needless to say, both imply a substantial overhead in performance and resources
such as memory, power and energy.

Considering other algorithms, the first differential fault attack on Elliptic
Curve Cryptography (ECC) was presented by Biehl et al. in 2000 [7]. In the
proposed attack scenario, the resulting elliptic curve point is not on the orig-
inal curve anymore, but on another one on which the Elliptic Curve Discrete
Logarithm problem is easy. Hence, to mitigate this attack, the authors propose
to validate that the point is on the given elliptic curve. Many other practical
attacks on real-world ECC schemes followed, such as [1,19].

Close to that time, Biham and Shamir published a DFA attack on secret-
key cryptosystems [8] that was contextualized with the DES algorithm [17] but
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the attack itself does not apply to AES [13]. The first one to propose the DFA
attack on AES was Giraud [15]. The two attacks assumed different fault models
and were requiring close to 50 or 250 faulty ciphertexts respectively. Never-
theless, both were successfully demonstrated on a smartcard implementation.
Later, as the attackers’ capabilities and accordingly fault models improved,
the DFA attacks on AES reached the requirement of only one faulty cipher-
text [16]. Attacks and countermeasures on other symmetric-key ciphers followed
and the topic remains active due to its impact to real-world embedded security
applications.

More recently, researchers have started considering fault resistance in the
algorithm design phase and as a consequence several proposals came out, such
as CRAFT [4] and FRIET [20]. Nevertheless, effective and efficient (in terms of
added overhead) countermeasures that are also generic and broadly applicable
remain a topic of interest.

3 New Countermeasure: ROCKY

In this section we present the proposed countermeasure paired with the Xoodoo
primitive and double modular redundancy.

3.1 Concept

Redundancy techniques offer high fault coverage against many types of random
faults, but can be nullified by an attacker by injecting the same fault to all
executions or replications of the computation. For example, Fig. 1 (left) depicts
the classical scheme of Double Modular Redundancy in hardware. Assuming that
the attacker can induce an error (bit-flip, byte change etc.) at the state register
(type 1) or can attack in the same way both permutation functions (type 2),
then the error can not be detected and the countermeasure becomes ineffective.

Figure 1 (right) shows our novel countermeasure, which we call “ROCKY:
Rotation Countermeasure for the Protection of Keys and Other Sensitive Data”.
Instead of repeating the same computation twice, we propose to have one circuit
with the regular input, and one circuit with a rotated version of the input. By
applying the inverse rotation to the output, the input-output behavior of both
computations is the same for (almost) shift-invariant round functions. If the
number of bits over which the rotation and the inverse rotation take place is
randomly chosen and unknown to the attacker, it will be much more difficult
for an attacker to inject the same fault in both computations and to bypass the
detection mechanism.
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Fig. 1. Typical error detection architecture in hardware, based on Double Modular
Redundancy (left) and our proposed ROCKY countermeasure (right)

3.2 Example of Error Propagation

Xoodyak. In order to analyze the countermeasure, we chose Xoodyak, one
of the finalists in NIST’s lightweight cryptography standardization competi-
tion [11]. The Xoodyak authenticated encryption algorithm is built on Xoodoo, a
48-byte cryptographic permutation. Xoodoo applies iteratively a round function
Ri on a 384-bit, three-dimensional state A. State A is depicted in Fig. 2. On the
z-axis there is a 32-bit array, the lane. On the x-axis, 4 lanes are combined to
form a plane. On the y-axis, three planes form a full state. A specific bit inside
the state has coordinates (y,x,z).

Fig. 2. State representation of Xoodoo

The round function, Ri, consists of 5 steps: a mixing layer θ, a plane shifting
ρwest, the addition of round constants ι, a non-linear layer χ, and another plane
shifting step ρeast. These steps are specified in Alg. 1. Ay refers to a plane y
of state A, Ay ≪ (t, v) refers to a cyclic shift of Ay, moving a bit in (x, z)
to position (x + t, z + v) and the rest of the operations are AND, XOR and
negation. Ci refers to the round constants, whose values can be found in [11].
We can transform the three-dimensional state (x, y, z) into an array of i bits,
using the type i = z + 32(x + 4y).
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Algorithm 1: Definition of Xoodoo[nr] with nr the number of rounds
Parameters : Number of rounds nr

for Round index i from 1 - nr to 0 do
A = Ri(A)

end
Here Ri is specified by the following sequence of steps:

θ :
P ← A0 ⊕ A1 ⊕ A2

E ← P ≪ (1, 5) ⊕ P ≪ (1, 14)
Ay ← Ay ⊕ E for y ∈ {0, 1, 2}

ρwest :
A1 ← A1 ≪ (1, 0)
A2 ← A2 ≪ (0, 11)

ι :
A0 ← A0 ⊕ Ci

χ :
B0 ← A1 • A2

B1 ← A2 • A0

B2 ← A0 • A1

Ay ← Ay ⊕ By for y ∈ {0, 1, 2}
ρeast :

A1 ← A1 ≪ (0, 1)
A2 ← A2 ≪ (2, 8)

Fig. 3. Error propagation of an example bit-flip (left) after one round on the unmodified
state (middle) and the shifted state (right)
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Error Propagation. Figure 3 (left) shows an example of the change of one bit
in the initial state of Xoodoo. After one round, the effect of the bit-flip on the
unmodified state (middle) and the shifted state (right) are shown, respectively.
It is clear that the effect is different.

In [18], the idea of transformation functions that change the fault space is
explored as a countermeasure. The concept behind the fault space transforma-
tion is to ensure that the computations for two redundant rounds R0 and R1 are
performed under different encodings, such that it is difficult to inject equivalent
faults. They authors provide a classification of such functions in two categories
(’good’ or ’bad’ ) based in two criteria: 1) The transformation function must
ensure that a smaller fault space F0 should be mapped onto the subspace of a
larger fault space F1. This is because a larger fault space makes it more diffi-
cult for the adversary to achieve the desired fault with the desired precision. 2)
The occurrence of faults in the original and transformed fault spaces should be
uncorrelated in order to reduce the fault collision probability.

The transformation we propose in ROCKY is a cyclic-shift. Figure 4 shows
the results of a simulation experiment where 10000 faults are induced with a
bit-flip in the state of Xoodoo at a specific group of eight bits (0× 04). The
bit-flip is produced randomly with a uniform distribution such that every bit
will theoretically flip 10000/8bits = 1250 times (top). We examine the effect
on an unmodified version of the algorithm (middle) and on a version where the
state is randomly shifted before every execution (bottom). After one round of
Xoodoo, for the unmodified state, the fault space is smaller than for the randomly
shifted state, and the distribution of the errors is not uniform across the state.
In contrast, when the state is randomly shifted for each of the 10000 executions,
the fault space is much larger and the distribution of errors is more uniform
across the state.

Fig. 4. Distribution of errors in the state

We can perform the same experiment for faults injected in each byte of the
input state and get to a similar conclusion. This does not prove the strength of
the proposed countermeasure, but it shows that, by randomly shifting the input
state, the injected fault will have an effect on a larger part of the output state.
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4 Proof-of-Concept Implementation

In this section, we take Xoodoo as a case study and we elaborate on the details
of the implementation with the shifted input.

4.1 Architecture

Figure 5 shows the top level architecture. It consists of two cyclic shifters and the
Xoodoo round function. The input is rotated before permutation, over a value
τ . After 12 rounds of Xoodoo, the output is rotated over the same value, in the
opposite direction.

Fig. 5. Top level architecture

In each clock cycle, our design takes as input all 32-bit lanes that form the
state, and the shift value τ . The parameter τ can take values from 0 to 31, hence
5 bits are needed. We treat a lane as a 32-bit integer and feed it to a multiplier
circuit, where it is multiplied with a power of two number. First, the shift value
is decoded into a 32-bit array, in which all bits but one, are zero. From the
multiplication, we get a 64-bit product in which we add the 32 most significant
bits to the 32 least significant bits. Our purpose for this approach is the use of
DSP48E1 slices, taking advantage of their optimized hardware implementation
and dedicated interconnection to achieve a fast and time-constant shift operation
(Fig. 6).

Fig. 6. Implementation of the cyclic shift

After all 12 lanes are shifted, they go into the Xoodoo round function. One
round takes one clock cycle to produce a new state. A register keeps the initial
state before the first round and all the intermediate ones. After 12 rounds, ρeast
gives the final state to the output shifter. Along with the state, Xoodoo gets the
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Fig. 7. Xoodoo module

round constants for the ι step. All 12 round constants, with all their possible
shifted values are stored in a BRAM with a depth of 384 (Fig. 7).

For rotating in the opposite direction we apply the same method where only
the decoder that generates the shift value is changed. If forward cyclic shift value
is τ positions to the left, the backward cyclic shift value will be (32-τ) positions
to the left, which corresponds to shifting τ positions to the right.

The critical path of the design is in the combinatorial shifter. In order to
reduce total latency, two alternatives are examined. The first alternative com-
bines more than one round of Xoodoo in one cycle and keeps the clock period
almost the same. We experimented with the number of Xoodoo rounds that can
be executed in one clock cycle: two, three and four rounds. In the implementation
that executed three rounds in one clock cycle, the clock period is similar to the
one with one round per cycle, so we use that implementation for our evaluation
in Sect. 4.2.

As shown in Fig. 8, core 1 executes Xoodoo rounds 1, 4, 7 and 10, core
2 is for rounds 2, 5, 8 and 11 and core 3 is for rounds 3, 6, 9 and 12. Another
modification that we do in this design is related to the reading of round constants
from memory. We now need three round constants in each clock cycle. Therefore,
we cannot read them one by one in every round. In order to avoid additional
timing overhead, we read all constants in parallel while we read and shift the
input lanes and store them into registers.

Fig. 8. Xoodoo module with 3 rounds per cycle
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The second alternative we examine is to add pipeline registers to the multi-
pliers that are responsible for the shifting. This way, critical path of the shifter
becomes similar to the critical path of one round and the clock frequency is
reduced. Compared to the first baseline design, the only modification we do here
is the addition of pipeline registers. the feeding of the round constants does not
need to be altered. Figure 9 shows the new shifter.

Fig. 9. Shifter with 5 pipeline stages

4.2 Implementation Results

In this section we present and compare the results of all implementations pre-
viously described with an unprotected architecture. We target a Xilinx Artix-7
FPGA (XC7A100T-FTG256) and we use Xilinx ISE 14.7. We measure one full
operation, reading and shifting input lanes, followed by 12 rounds of Xoodoo,
followed by shifting and writing the output lanes. The first input in the design
is a 5-bit shift value, followed by the twelve 32-bit lanes that form the 384-bit
state. The outputs are generated in the same way, one lane in each clock cycle.
The unprotected design implements the round function without shifting. In our
first protected architecture, each Xoodoo round takes one cycle and the Xoodoo
round function module is occupied for 12 cycles, until all rounds are finished.
For a complete operation, the first protected design takes 40 cycles with a 9.8ns
clock period. As can be seen in Table 2, the second protected design takes 32
cycles with the same clock period. In this alternative, 12 rounds of Xoodoo take
4 cycles. In the third design, we need 50 cycles for the operation, but we reduced
the clock period to 3.9 ns, achieving the minimum latency, compared to the first
two protected architectures.

Table 2. Timing of the unprotected and the three protected architectures

Architecture Clock cycles Clock period Latency

Comb. mult. & 1 round/cycle 40 9.8 ns 392 ns

Comb. mult. & 3 rounds/cycle 32 9.8 ns 313.6 ns

5-stage pipel. mult. & 1 round/cycle 50 3.9 ns 195 ns

Unprotected 38 3.3 ns 125.4 ns
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Table 3 shows how many FPGA resources our designs consume. Each shifter’s
multiplier uses 4 DSP48E1s, while the 32× 384 memory uses 1 BRAM block.
If we compare the protected designs, the first one costs the least, because all
changes that we did in the other two alternatives had as only criterion to reduce
the latency. We can notice that the design with combinatorial multiplier and
3 rounds/cycles needs the most resources. As expected, the unprotected imple-
mentation costs less than the protected ones in timing and in resources. There
is a slight increase in LUTs in the unprotected design (compared to the first
protected design), because the round constants are not stored in BRAM.

Table 3. Resources of the unprotected and the three protected architectures

Architecture LUTS Flip-Flops DSP48E1 BRAM

Comb. mult. & 1 round/cycle 1,083 1,335 8 1

Comb. mult. & 3 rounds/cycle 2,383 1,758 8 1

5-stage pipel. mult. & 1 round/cycle 1,452 1,544 8 1

Unprotected 1,335 1,211 0 0

5 Conclusions and Future Work

In this paper, we propose ROCKY, a new countermeasure against fault analysis
attacks. By randomly rotating the input in symmetric-key ciphers that make use
of a permutation with almost shift-invariant round functions, we make it more
difficult for an attacker to introduce the same fault more than once in consecutive
iterations or parallel executions of the same computation. The countermeasure
can be used in combination with Double Modular Redundancy or in fault attacks
that require the injection of a fault in multiple executions of the same algorithm.
We measure the effectiveness and efficiency of ROCKY by evaluating the distri-
bution of a single-bit error and the resources needed for an implementation on
FPGA.
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Abstract. Side-channel analysis (SCA) is launched by exploiting the
information leaking from the implementation a cryptographic algorithm,
e.g., power consumption information. Recently, deep learning-based SCA
techniques have also facilitated SCA against software and hardware
implementations of various cryptographic algorithms. In this work, we
perform SCA using various deep learning (DL) techniques such as Multi-
layered Perceptron (MLP), Convolutional Neural Network (CNN), and
Recurrent Neural Network (RNN) on the datasets collected from hard-
ware and software platforms. The objective of this work is to identify the
performance of DL techniques in performing SCA for secret key recovery
and finding out the best settings for the model to optimize the attack
performance in terms of on computation time and SCA efficiency. In our
study, we have focused on two open-source AES-128 encryption algo-
rithm databases, ASCAD and DPA contest v2 (DPAv2), where ASCAD
database consists of the power traces captured from a software imple-
mentation of the AES and DPAv2 database consists of the power traces
captured a hardware implementation of the AES. For the first time,
we applied hyperparameter tuning with Bayesian Optimization and dis-
tributed computing on ASCAD database and we investigated the impact
of MLP and RNN along with the distributed computing and hyperparam-
eter tuning with Bayesian optimization on DPAv2 database. Our results
show that the CNNs are the best models for performing the attack on
software implementation while MLPs are the best for attacking hardware
implementation of cryptographic algorithms.

Keywords: Deep learning · SCA · AES · ASCAD · DPA contest v2

1 Introduction

Despite the complex algorithms used for encryption in cryptography, there may
still be security problems due to the difference between theoretical part and actual
implementation. Information leakage caused by potential problems in physical
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implementation can be used by an attacker for obtaining the secrets. An attacker
can bypass the defense mechanisms implemented in a target device and collect the
samples of data which is being processed inside the device without leaving any
traces of device interactions. Obviously, such type of interactions do not necessar-
ily mean the weaknesses in the implementation of algorithm used for encryption.
For instance, if anyone is monitoring the variations in power consumed by a cryp-
tographic device, they could observe the difference in the power consumption in
idle phase and when some processing is happening inside the device. These vari-
ations can give an insight to the attacker for retrieving the data used inside the
device or possibly access to the encryption key. This illustrative example presents
side-channel analysis (SCA), which is a type of cryptographic attack exploiting
the information leaked from the physical environment to recover the secret key.
The leakage from the hardware while running the algorithm can be captured as
timing variations, power consumption and EM emanations.

In this work, the focus is on the profiling SCA, which is one of the most
powerful physical attacks. Due to the mathematical nature of models describ-
ing the relation between plaintext, encrypted data and secret key, these attacks
can be transformed into classification problem of supervised machine learning
(ML). Specifically for power consumption example, traces of consumed power
by the device can be collected by the attacker and they may establish the rela-
tion between those traces and label through a mathematical model which can
be a powerful tool in the form of classification model. As mentioned by [20], DL
techniques may help in exploring the correlation between the leaked information
and secret key. DL-based SCAs enable the adversary to use little leaked infor-
mation (e.g., power traces in power analysis) at the attack stage with a trained
model. This makes DL-based SCA significantly more efficient. This motivated
us to investigate how much SCAs can be improved in performance by using DL.

In our study, we focus on the characteristics of the traces available in various
open source datasets (ASCAD [4] and DPA Contest v2 (DPAv2) datasets [2,3])
along with plain and encrypted data and which specific DL model would be the
most fit for obtaining the secret key. Both datasets are based on AES-128 encryp-
tion algorithm but the power traces are collected from different implementation
platforms, i.e., ASCAD datasets are collected from an AES software implemen-
tation while DPAv2 is collected from an AES hardware implementation. In this
work, we investigated the DL models Multi Layer Perceptron (MLP), Convolu-
tion Neural Network (CNN), and Recurrent Neural Network (RNN). We chose
these DL models because our datasets are having time-series characteristics, the
size of datasets are very large, and these models take care of the non-linearity
in dataset, so better accuracy can be obtained for predicting the key.

The work in [16] focused on the effect of various parameters on the model
performance and identifying the best parameters using normal grid search and
random search methods which are time consuming. In our work, for this hyper-
parameter tuning step, distributed computing is used with Python Libraries
Hyperas and Hyperopt, which results in huge reduction in tuning time. We use
the key results obtained in [16] in deciding the search space for various param-
eters of a model. In [16], the main focus is on profiling attacks using MLP
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and CNN; in our work, we also focus on RNN. Other studies exist for SCA
with RNN on protected and unprotected AES [14]; however, we also apply dis-
tributed computing via Hyperas and Hyperopt as already pointed. In the case
of DPAv2 datasets, most of the work has been done using non-profiling attacks
using Differential Power Analysis (DPA) and Correlation Power Analysis (CPA).
Only attacks based on CNN model are applied on DPAv2 so far, and our major
contribution is attacking DPAv2 datasets using specifically the DL models MLP
and RNN (and also CNN) and providing a comparison of these models in terms
of speed and SCA efficiency. For hyperparameter tuning and model training,
distributed computing is used similar to the case of ASCAD datasets.

2 Related Work

So far, several researchers have investigated the applications of DL techniques
for SCA purposes on various datasets collected from hardware and software
implementations. In our study, we focus on three of these previous works, [14,
16,19], which showcase the application of DL in SCA in detail.

In [14], a comparison of 7 machine learning models on DPAv2 is made by
using key recovery with Autoencoder, CNN, MLP with PCA, MLP without
PCA, Random Forest and Long Short Term Memory (LSTM) alongside a Tem-
plate Attack, in which CNN outperformed all the attacks. This paper does not
elaborate the implementation and pre-processing of the dataset, which makes
it difficult for us to reproduce the results. The work in [19], extended the work
performed in [14] by focusing on CNN for 4 different datasets including DPAv2.
The network parameters used in this paper are presented in detail but the pre-
processing part of the implementation is not sufficient to reproduce the results in
our experiments. Also, CNN architecture used in this study is clearly described
but other models are missing, so we focused on other models along with CNN.

For the ASCAD datasets, which contain unprotected and protected AES-
128 implementation traces, a very detailed study is done by [16] with a good
explanation on effect of each parameter value on model performance. They left
an open question for finding the optimal configuration/training strategies in the
SCA context which may lead to more accurate results by determining the most
pertinent strategy for finding best parameters.

In contrast to software implementation, most of the research on the hardware
implementation of AES algorithm is based on non-profiling attacks [15]. In par-
ticular, for DPAv2 datasets1 very few studies are available based on various DL
techniques. Also, the available resources are not very detailed for reproducibil-
ity of the results. As described in [9], the limitation of resources for DPAv2 is
due to the noisy nature of traces acquired from AES hardware implementation.
[18] gives a detailed description of attack on hardware implementation using ML
techniques. In addition to these works, some other studies such as [7,8,11,13]
extended the literature and helped us shaping this work.
1 ASCAD and DPAv2 are the databases that cannot be directly used for model train-

ing so the datasets are prepared with some pre-processing to make it compatible for
model training. The word database and datasets are used accordingly in the paper.



DL for SCA on AES Data Collected from HW and SW Platforms 303

2.1 AES-128 Implementation Platforms

ASCAD database [4] is prepared using a masked AES-128 implementation on
ATMega8515 microcontroller. Total 100,000 time samples (at 2 GSamples/sec)
are captured for power consumption traces by a 4 MHz clock. The ATMega8515
microcontroller is not secure as it can work with an external clock and it does
not have the hardware random generator. So, the information leakage is very
high with no desynchronization noise and jittering, which makes it easier for an
adversary to attack the algorithm and recover the key. Two types of captures are
available for experimentation, one with fixed key and another with the variable
key in which the variable key and fixed key are used in the ratio of 66:33.

DPAv2 dataset is collected from an unprotected AES-128 implemented on a
SASEBO-GII board with a Xilinx FPGA Virtex-5 and Spartan-3A [1]. DPAv2
requires known-message and profiled attacks. Three trace databases are available
in DPAv2 [3]: template database (1,000,000 traces with random keys and plain
texts), public database, and private database. Public and template databases,
are publicly available for designing, testing, and optimizing the attack. Due to a
large number of traces in the template database, it can be used for performing
template attacks that require profiling a device with a large number of inputs.

3 Approach

A very sound and detailed research is published in [16] for the ASCAD database.
Following the methodology in this paper, which uses MLP and CNN DL tech-
niques for SCA, we extended the SCA on ASCAD with RNN. In order to optimize
the results obtained by [16] in terms of computation time and SCA efficiency
(number of traces required to attack the database), new model parameters are
evaluated for existing MLP, CNN, and newly introduced RNN models. But dur-
ing the analysis, it was observed that the hyperparameter tuning step is consum-
ing a large amount of the computation time if performed on a single machine
with random search method, so distributed computing methods are identified
and used in the analysis. The parameter search space for these DL models is
selected with the help of analysis results obtained by [16]. For DPAv2 datasets,
very few studies using DL-based methods for SCAs are published; the available
literature is mostly based on non-profiling attacks and the data pre-processing
is not explained in these studies. Also, due to the noisy nature of traces cap-
tured from FPGA, the authors of [14,19] could not achieve good performance
for the classification task. For DPAv2, our first step was data pre-processing in
which the relevant samples of the available traces are identified. This resulted in
a smaller size for dataset which can easily be used by the DL models.

Then in the next step, hyperparameter tuning is done for each model. Since
this task would normally have needed a lot of manual hyperparameter tuning,
it would not be possible without automated distributed computing to perform
this step in the time frame of this work. The system that we have built would
have to compete in speed and performance with already established types of
SCAs so this automated hyperparameter tuning using Hyperas library resulted
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as an efficient methodology. Due to the limited availability on the text related to
effect of each parameter on the model performance from previous research, this
step for DPAv2 dataset became very crucial. By utilizing the faster processing
thanks to distributed computing, it became easier to identify the effect of each
parameter on the model performance. After getting the best parameters for each
model, the attacks are performed using MLP, CNN, and RNN. The steps used
for analysis of both the datasets is shown in Fig. 1.

Fig. 1. Roadmap for DL-based SCA

Hardware Configuration. The training step is run on computers equipped
with 13 GB of RAM with Nvidia DGX-1 (equipped with 8 T P100 GPUs con-
nected with NVLink technology to provide super fast inter-GPU communi-
cation)2 and on Google Colab consisting of Tesla K80 GPUs (using popular
libraries such as TensorFlow, Keras, PyTorch, and OpenCV).

Model Hyperparameter Tuning. For each DL model, the first step is to per-
form hyperparameter tuning to extract the best parameters for the correspond-
ing model. In [16], this step was done separately for each parameter and the effect
of each parameter is analyzed on the model performance. For our case, this step
is done using distributed hyperparameter tuning with the help of Python Pack-
ages “Hyperas” and “Hyperopt” [5,6]. The effect of using this package can be seen
in terms of reduction in tuning time. DL models are complex models and hence
each time we analyze the model performance with respect to each parameter, it
adds to consumed training time. By using these packages with Bayesian optimiza-
tion, this time can be reduced drastically as the best value for a set of parame-
ters is obtained with a probabilistic approach, i.e., the best parameters selected in
the previous iteration govern the most probable parameters in the next iteration
whereas the parameters for the next iteration are selected randomly in the random
search method. This DL library includes TPE (in other words, Bayesian optimiza-
tion) which we used in our work to search the best values out of the given search
space for hyperparameters. In the implementation section, the hyperspace used
for each model is presented in tables with the best parameter obtained as a result
after hyperparameter tuning. Note that the hyperspace for the ASCAD database
is decided based on the analysis results obtained by [16] for each model parame-
ter. For DPAv2, firstly the bigger hyperspace is chosen with some most probable
random values with a broad dynamic range for each parameter. This was done to

2 This work was done when both authors were at the University of Sheffield, and the
high performance cluster at the university is used for this study.
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analyze the best values selected by the model and plotting the performance of the
model with respect to each value of each parameter. If the model selects the smaller
values out of given hyperspace for a particular parameter, then it means a smaller
value is better for that parameter and vice versa. Using this logical approach, the
second step is to shrink the hyperspace with a more specific narrow dynamic range
to obtain the most optimal values for the model. The first tuning task is to identify
the number of traces required for the profiling phase. We cannot use all traces for
the training because it enhances the computation time. After some experiments
on the training set, it was observed that 1,00,000 training traces are required for
getting good SCA efficiency. During the profiling of all models, early stopping is
used to avoid over-fitting by monitoring the validation loss. Considering the trade-
off between SCA efficiency and computation time & resources, hyperparameters
are defined for all attacks and can be made public when requested.

4 Profiling Attacks on ASCAD and DPAv2

4.1 ASCAD Data Pre-processing

SCA ASCAD.ipynb file is used to extract the profiling and attack traces dataset
from the raw traces database file ATMega8515 raw traces.h5 (raw traces without
labels). In other words, this script generates ASCAD.h5 (synchronized traces, no
jitters), ASCAD desync50.h5 (similar, but has traces with a 50 samples window
maximum jitter), and ASCAD desync100.h5 (similar, but has traces with a 100
samples window maximum jitter) file system. The details of ASCAD data pre-
processing for dataset extraction are explained in Fig. 2.

Fig. 2. ASCAD data pre-processing for dataset extraction
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Data Split into Profiling/Attack Traces. As explained in the [16], out of
100,000 traces the minimum traces required for SCA are 60,000, which results in
a dataset size of 60000 samples with 700 features and 256 class labels. With these
specifications, the raw traces database is split into profiling and attacking set
with 80:20 split. The processed dataset has two groups named the profiling group
and the attacking group. The number of profiling and attacking phase are kept
the same as the in [16], i.e., 50000 and 10000, respectively. [16] explain that after
performing 10-fold cross-validation, by keeping all the other parameters fixed,
these number of traces are sufficient for getting the optimum performance.

Based on [16], we can make the following conclusions for MLP parameters.

– # of layers: As the number of layers increase, the model performance
improves.

– # of nodes in each layer: Number of nodes in a layer is proportional to
the model performance; but as the nodes increase, the computation time also
increases.

– Activation function: For most of the cases ReLU and SELU could be better
choices to be chosen activation functions.

– Learning rate: The lower values of learning rate are better for good SCA
efficiency but the smaller the value the more computation time is required to
train the model.

– Number of epochs: As the number of epochs increases the SCA efficiency
improves but computation time also increases.

– Batch size: As the batch size reduces the SCA efficiency improves.

Based on these points, we decided on the search space for MLP (see Table 2).
The basic composition of a CNN involves the type of layers, number of layers, the
number of nodes in each layer, the activation function used, learning rate, kernel
size, padding, strides, batch size, and the number of epochs [12]. For choosing
the search space, the analysis results of [16] are used. Hyperparameter tuning is
done for three datasets, i.e., without jitter and with added jitter of 50 samples
and 100 samples. The best values obtained are shown in Table 2.

4.2 DPAv2 Data Pre-processing

For implementing the attack on the DPAv2 database, we initially extracted the
datasets from the available database files. The summary of pre-processing file
architecture is depicted in Fig. 3. From the first iteration of the hyperparameter
tuning on training datasets, following crucial points are observed which helped
in determining the chosen search space of the model.

– # of layers: The performance of an MLP model improves with increasing
the number of layers in the model. But very large values cannot be taken as
the computation time also increases.

– # of nodes in each layer: The model performance enhances with the
increasing number of nodes but in this case also computation time becomes
worse.
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– Activation function: ReLU and SELU are chosen as the best in all the
iterations.

– Learning rate: Learning rate is an important parameter for the model as the
model is very sensitive to the values chosen for the learning rate. In particular,
lower values are better for good SCA efficiency, but the smaller the value the
more computation time is required to train the model.

– Number of epochs: The number of epochs plays a very important role
in model performance. As the number keeps on increasing the model may
encounter overfitting. To control this parameter, the best way is to use Early
Stopping criterion. In this case, the validation loss is chosen as the stopping
criterion.

– Batch size: This parameter has an inverse relation with the model perfor-
mance, i.e., as the batch size increases, the model performance deteriorates.

Fig. 3. Extraction of profiling dataset from DPAv2 template database (a) and extrac-
tion of attacking dataset from DPAv2 public database (b)

Considering the trade-off between SCA efficiency and computation time and
resources, the search space was chosen for the MLP model in the second iteration.
The best parameters obtained are mentioned in Table 2.

The best values obtained after hyperparameter tuning are used to train the
MLP model which will be used to check the performance on attack traces. For
all the models the input layer always has the dimensionality of 400 as we have
chosen 400 samples and the output layer always has the dimensionality 256 as
for 8 bits of a key total of 256 classes are possible for the classification problem.

Basic CNN is composed of layered architecture in which the number of layers
in the model, type of layers, the number of nodes in each layer, the activation
function used, strides, kernel size, type of padding, batch size, and the number
of epochs are to be tuned [10]. Hyperparameter tuning is performed for the
training dataset. Using the same approach for MLP, first the best smaller range
for the hyperparameter is identified by analyzing its behaviour. The behaviour
of the parameters, explained for MLP remains the same for this case as well. In
addition to other CNN-specific parameters, the following points are observed:
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– # of filters: s the number of filters increase, the performance improves with
increased training time.

– Kernel size: Model performance is highly sensitive to this parameter but
this parameter is highly dependent on the type of data available.

– Pooling type: Both Average and Max pooling perform well on the model.
– Padding type: Only three choices are available so can be tested on actual

data.

Keeping these observations into consideration, the hyperspace is chosen (see
Table 2). The best values obtained after hyperparameter tuning are used to train
the CNN model which will be used to check the performance on attack traces.

Basic RNN is composed of layered architecture in which the number of layers
in the model, type of layers, the activation function used, batch size, and the
number of epochs are to be tuned [17]. Hyperparameter tuning is performed for
training datasets. The effect of parameters for example number of nodes, learn-
ing rate, batch size, and number of epochs on model performance remains the
same as explained before for MLP, but for RNN different types of layers are used.
There are various types of layers available for an RNN model such as LSTM,
GRU, SimpleRNN, Bidirectional, Dense, Time Distributed, etc. LSTM, GRU,
and SimpleRNN are chosen for the model as these layers resulted in faster per-
formance. The hyperparameters chosen and the best values obtained are shown
in Table 2. The best values obtained after hyperparameter tuning are used to
train the RNN model and to check the performance on attack traces.

5 Results and Discussion

5.1 Performance Evaluation of ASCAD

Testing (Attack Phase). After obtaining the best trained models using best
parameters obtained using hyperas package for hyperparameter tuning, those
trained models are used to test the performance on the attack dataset. For
attack phase 2000 samples are used from the attack traces extracted from raw
traces file. In order to check the performance, rank metric is used; hence, the
trained models are tested with a single key with 2000 traces.

For the MLP model, 2000 samples are used for evaluating the rank of correct
key. The model performance is checked with three variants, i.e., without jitter,
with 50 sampled jitter, and with 100 sampled jitter. In Fig. 5(a), it can be seen
that for detecting the correct key minimum 250 traces are required from the
attack device that is the case when there is no desynchronization. In Fig. 5(b),
it can be seen that with the desynchronized traces with 50 sample displacement,
the performance is not as good as without jitter although the rank of the correct
key lies between 40 to 10. In Fig. 5(c), with 100 sample desync, the performance
is again not very well although the rank of the correct key lies between 40 to 5.
The rank of the correct key is zero after 250 samples in case when there is no
desynchronization. That means with the model the correct key can be extracted
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with 250 traces. These models depict almost similar performance as previous
studies, but faster computation thanks to the tuning with Hyperas.

Also for the CNN model, 2000 samples are used for evaluating the rank of
correct key. In Fig. 5(d), it can be seen that for detecting the correct key mini-
mum 100 traces are required from the attack device that is the case when there
is no desynchronization. In Fig. 5(e), it can be seen that with the desynchro-
nized traces with 50 sample displacement, the performance is not as good as
without jitter although the rank of the correct key is less than 5. In Fig. 5(f),
with 100 sample desync, the performance is again not very well although the
rank of the correct key is less than 5 mostly. The rank of the correct key is zero
after 100 samples in case when there is no desynchronization. That means with
the model the correct key can be extracted with 100 traces. The model with no
jitter depicts almost similar performance as [16] while with the added jitter the
performance is better than previous works.

Also for the RNN model, 2000 samples are used for evaluating the rank of
correct key. In Fig. 6(a), the rank of the correct key is less than 30, which is not a
good performance as was obtained in case of MLP and CNN. In Fig. 6(b), it can
be seen that with the desynchronized traces with 750 sample displacement, the
performance is not as good as without jitter although the rank of the correct key
is less than 5. In Fig. 6(c), with 100 sample desync, a very good performance was
obtained and only 300 traces are required from the attack device for extracting
the correct key. The rank of the correct key is zero after 300 samples in case when
there is 100 sample desynchronization. That means with the model the correct
key can be extracted with 300 traces. None of the works so far used RNN for
ASCAD database, so our work shows that RNN could also be a good technique
for the attack, although being computationally costly.

5.2 Performance Evaluation of DPAv2

A performance comparison between various DL model is shown using the rank
metric. The secondary metrics chosen for measuring the classification perfor-
mance, are accuracy and loss. As per the [19], DPAv2 is one of the most difficult
to classify which is also proven to be true in our case. A reason for the poor clas-
sification performance is high overlapping of traces of different classes, which
makes the data highly indistinguishable by the networks. In our work, we tried
to make the models achieve a better efficiency by playing with parameters and
architectures of the model. The results for DL models are as follows.

Testing (Attack Phase). During the attack phase, randomly a key is selected
out of 32 keys given in the dataset and the attack is launched using the corre-
sponding 20,000 samples given in DPAv2. This is to ensure that the attack device
will have only one key; and for attacking a device, one will capture samples from
it to decrypt the key. In our case, to check the performance rank metric is used.
Although the loss and accuracy plots are also obtained for checking the model
overfitting, underfitting, but this metric did not indicate very useful results in



310 T. S. Rastogi and E. B. Kavun

terms of detecting the correct key which in our case is the main target of 256
class classification problem. By using the rank metric, all these classes are sorted
in decreasing order of their likelihood. So the key with the maximum probability
has the minimum rank, i.e., ideally the correct key should have rank zero. To
check the performance of the model, the rank of the correct key is checked after
sorting. If the rank curve which is plotted for rank of correct key in each trace
for all 20,000 traces becomes flattened or start getting minimum values, so we
can analyze the model performance. Using this approach, the trained models are
tested with a single key with 20,000 traces. Here used the same byte of plaintext
and key, i.e., 3rd byte to calculate the S-Box value, as in training phase.

For the MLP model initially all 20,000 samples are used for evaluating the
rank of correct key. After checking the curve, it was observed that the rank
curve becomes almost flattened with the less than 2500 samples of a key. In
Fig. 4 (a), it can be seen that for detecting the correct key minimum 1250 traces
are required from the attack device. The rank of the correct key is close to
zero but not exactly zero for many traces (generally less than 5). As this model
was not evaluated by any of the works before, we found this model performing
satisfactorily with the hardware implementation of AES.

For the CNN model all 20,000 samples are used for evaluating the rank
of correct key. In Fig. 4 (b), it can be seen that for detecting the correct key,
minimum 17,500 traces are required from the attack device although with 10,000
traces the rank of the correct key becomes less than 30. The rank of the correct
key is close to zero but not exactly zero for many traces (generally less than 10).
This model was evaluated by [14,19], but both the works concluded with poor
performance and the reason behind that was explained with the noisy nature
due to parallel processing. In our work, this model performs satisfactorily, the
overall plot shows that the rank of correct key is generally less than 40.

For the RNN model all 20,000 samples are used for evaluating the rank of
correct key. In Fig. 4 (c), we observe that minimum 17,500 traces are required
from the device for detecting the correct key, although with 10,000 traces the
rank of the correct key becomes less than 30. The rank of the correct key is close
to zero but not exactly zero for many traces (generally less than 10). Previous
works reported poor performance as in CNN, but we observed that this model is
performing satisfactorily. Looking at the plot, we may see that the rank of correct
key is generally less than 40, which is an acceptable threshold for satisfactory
performance (less than 5 is very good [14]). Although RNNs are good on the
time-series data, noise reduction is not done. As there is noise reduction in the
filtering layers of CNN, the rank reduces; but for RNN, the rank starts increasing
which basically means that RNNs are not good for noisy time-series data.

5.3 Comparison

The results for DL-based SCA are summarized in Table 1. It can be observed
from Table 1 that the RNN models are computationally very demanding and
very slow although they can result into an efficient model for SCA. In the case of
ASCAD, RNN model with 100 desync samples shows almost similar performance
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as MLP with no jittering. In the case of DPAv2, in fact, early stopping for the
RNN models is much required for the system to run the jobs efficiently. For
ASCAD, CNNs are most in the context of perfectly synchronized observations
and CNN performs better than MLP in the presence of noise in the form of
desynchronization/jittering. Thus CNN is a better choice for launching the SCA
although the model takes long time and memory resources to train, which is
similar to the results obtained in [16]. For DPAv2, MLP model is the most
efficient compared to CNN and RNNs in this case as MLP requires only 1250
samples to recover the correct key, so MLP is a better choice for hardware. In
our case, also the mean rank is not exactly zero; but it is less than 5, which
means that better results could be achieved if the noise reduction techniques are
applied in the traces captured from hardware implementation of AES-128.

Fig. 4. Plots for (a) MLP with DPAv2 for 2000 traces, (b) CNN with DPAv2 for 20000
traces, (c) RNN with DPAv2 for 2000 traces
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Fig. 5. Plots for (a) MLP with ASCAD with no jitter, (b) MLP with ASCAD with 50
sample jitter, (c) MLP with ASCAD with 100 sample jitter, (d) CNN with ASCAD
with no jitter, (e) CNN with ASCAD with 50 sample jitter, (f) CNN with ASCAD
with 100 sample jitter
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Fig. 6. Plots for (a) RNN with ASCAD with no jitter, (b) RNN with ASCAD with 50
sample jitter, (c) RNN with ASCAD with 100 sample jitter

Table 1. Performance of ASCAD (light grey) and DPAv2 (dark grey) datasets

Model Epochs Min Traces Mean Rank Computation Speed Resources Required

MLP (no jitter) 100 250 0 25 mins 2 Cores/64GB RAM

MLP (50 sample jitter) 100 2000 Between 40 and 10 30 mins 2 Cores/64GB RAM

MLP (100 sample jitter) 75 2000 Between 40 and 5 35 mins 2 Cores/64GB RAM

CNN (no jitter) 75 75 0 75 mins 1 GPU on Google Colab

CNN (50 sample jitter) 100 1000 less than 5 75 mins 1 GPU on Google Colab

CNN (100 sample jitter) 75 250 less than 5 90 mins 1 GPU on Google Colab

RNN (no jitter) 75 2000 20-40 7 hours 1 GPU on Google Colab

RNN (50 sample jitter) 12 750 Less than 5 6 hours 1 GPU on Google Colab

RNN (100 sample jitter) 35 300 0 7 hours 1 GPU on Google Colab

MLP 75 1250 Less than 5 50 minutes 2 Cores/64GB RAM

CNN 18 10000 Between 40 and 10 130 minutes 6 Cores/64GB RAM

RNN 75 More than 20000 More than 100 72 hours 6 Cores/128GB RAM/1 GPU
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Table 2. Best MLP (light grey), CNN (dark grey), RNN (white) parameters for
ASCAD and DPAv2 profiling datasets (evaluation metric for all MLP: accuracy)

Hyperparameter Search Space
ASCAD
no jitter

ASCAD
50 sample jitter

ASCAD
100 sample jitter DPAv2

# of layers [6,7,8,9,10] 8 9 6 10

Nodes in each layer

1st Layer :
Dense [32,64, 128,256]
Hidden Layers:
Dense [32,64,128,200,256,512]

1st Layer : 128
Hidden Layers: 512

1st Layer : 256
Hidden Layers: 256

1st Layer : 256
Hidden Layers: 256

1st Layer : 128
Hidden Layers: 128

Activation function [SELU,ReLU,Sigmoid,tanH] ReLU ReLU ReLU SELU

Learning rate [0.01,0.0001,0.00001,0.000001] 0.00001 0.000001 0.000001 0.00001

Optimizer [SGD,RMSProp,Adam] RMSProp Adam RMSProp RMSProp

Loss function
[MSE,Categorical
Cross Entropy]

Categorical
Cross Entropy

Categorical
Cross Entropy

Categorical
Cross Entropy

Categorical
Cross Entropy

Batch size [100,200,300,500] 200 100 200 200

Epochs [50,75,100] 100 100 75 75

Layer types [Dense,Dropout] Dense Dense Dense Dense

Layer 1 nodes
and layer type

1D convolution layer,
[64,128,256] 128 64 128 64

Layer 2 nodes
and layer type

1D convolution layer,
[64,128,256] 256 128 256 128

Layer 3 nodes
and layer type

1D convolution layer,
[128,256,512] 128 512 128 256

Layer 4 nodes
and layer type

1D convolution layer,
[256,512,1024] 512 512 512 512

Layer 5 nodes
and layer type

1D convolution layer,
[256,512,1024] 512 1024 512 -

Layer 1 padding [Valid,Same] Valid Valid Valid Same

Layer 2 padding [Valid,Same] Same Same Same Same

Layer 3 padding [Valid,Same] Same Same Same Same

Layer 4 padding [Valid,Same] Same Same Same Same

Layer 5 padding [Valid,Same] Same Same Same -

Layer 1 strides [2,3,4] 4 2 4 2

Layer 2 strides [2,3,4] 2 2 2 2

Layer 3 strides [2,3,4] 3 2 3 2

Layer 4 strides [2,3,4] 4 2 4 2

Layer 5 strides [2,3,4] 2 2 2 -

Pooling type [Max,Average] Average Average Average Average

Layer 1 kernel Size [7,11,12,13] 11 12 11 12

Layer 2 kernel Size [7,11,12,13] 11 12 11 12

Layer 3 kernel Size [7,11,12,13] 11 12 11 12

Layer 4 kernel Size [7,11,12,13] 11 12 11 12

Layer 5 kernel Size [7,11,12,13] 11 12 11 -

Activation function [SELU,ReLU,tanH,Sigmoid] ReLU ReLU SELU SELU

Optimizer [RMSProp,Adam] RMSProp RMSProp RMSProp RMSProp

Learning rate [0.01,0.0001,0.00001] 0.00001 0.00001 0.00001 0.00001
Fully connected
layer 1 node Dense, [512,1024,4096] 4096 4096 4096 1024
Fully connected
layer 2 nodes Dense, [1024,2048,4096] 1024 4096 1024 1024

Batch size [50,100,200,300] 200 50 200 50

Epochs [50,75,100] 100 100 100 75

Layer 1 # of nodes [32,64,128,256,512,1024] 1024 32 1024 1024

Layer 1 type
[LSTM,Gated
Recurrent Unit (GRU)] LSTM GRU GRU GRU

Layer 2 # of nodes [64,128,200,256,512,1024,2048] 200 64 1024 2048

Layer 2 type [SimpleRNN,LSTM,GRU] SimpleRNN LSTM SimpleRNN LSTM
Layer 2
activation function [ReLU,tanH,SELU] - tanH tanH -

Layer 3 # of nodes [64,128,256,512,1024,2048] 64 128 2048 -

Layer 3 type [LSTM,GRU,Dense] LSTM Dense Dense -
Layer 3
activation function [ReLU,tanH,SELU] - tanH tanH -

Learning rate [0.01,0.0001,0.00001] 0.00001 0.0001 0.00001 0.00001

Optimizer [RMSProp,Adam,SGD] RMSProp RMSProp RMSProp RMSProp

Batch size [20,30,50,100,200,300] 200 20 20 50

Epochs [50,75,100,150] 75 150 75 75
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6 Conclusion

In this study, we empirically surveyed how SCA can be performed on data col-
lected from software and hardware platforms and how different DL techniques
and DL parameters of a model can be utilized to enhance the performance of the
attack. In particular, several parametrization options and distributed computing
techniques have been discussed. Our hyperparameter tuning approach using dis-
tributed computing can help researchers to make their own choice for the design
of new DL models with limited computation time available. Our results matched
the results available in [16] in terms of performance efficiency while the results
overperformed drastically in terms of computational speed. Since CNNs have
displayed almost similar performance as MLPs for perfectly synchronized traces
but displayed better performance in jittering environment, similar to previous
studies, this work also suggests that the CNNs are very efficient choice for SCA
on software-based implementations. For SCA on hardware-based implementa-
tions, MLPs are the best choice because of reduced time-consumption.
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Fig. 1. Availability of the EDRA AMIs (EMIs) through the AWS marketplace to cus-
tomers.

workload processing than conventional software-based configurations for a large
range of high-performance applications. However, mapping applications onto
FPGAs is a cumbersome process that requires extensive background on hard-
ware development and specialized IT personnel.

To alleviate this hurdle, the FET project “EXTRA” (Exploiting eXascale
Technology with Reconfigurable Architectures - GA 671653) [2] focused on
devising efficient ways to deploy ultra-efficient heterogeneous compute nodes
in order to meet the massive performance requirements of future exascale High
Performance Computing (HPC) applications. A major outcome was the design
and implementation of a novel framework that maps applications onto FPGAs
employing a Decoupled Access Execute Reconfigurable (DAER) architecture for
HPC platforms [1], originally based on the idea of Decoupled Access-Execute
architectures [7].

During the EXTRA project, various algorithmic workloads were mapped
to reconfigurable HPC platforms using the DAER approach, achieving signif-
icant performance improvements in spite of different memory access patterns
and/or computational requirements. However, there are still two main obstacles
for making the EXTRA results available and easily accessible to the market:
(a) launching applications onto the EXTRA hardware is currently based on a
semi-automatic tool flow, requiring developers to manually separate memory
accesses from data processing tasks, and (b) FPGA-based acceleration requires
the additional inherent cost of specialized hardware.

To this end, the EDRA framework tackles the aforementioned drawbacks as
follows:

– it provides a fully-automated software workflow that automatically generates
DAE-compatible application executables requiring only minor code annota-
tion;

– it combines the EDRA workflow with Amazon’s software library for taking
advantage of the available reconfigurable hardware;

– it integrates the complete stack with the EXTRA DAE architecture, wrapped
within a single Amazon Machine Image (AMI) dubbed EMI (EDRA AMI).

Figure 1 illustrates the EMI exploitation strategy; EDRA plans to list the
EMI instance to the AWS marketplace with EDRA software, libraries/drivers
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(e.g., the Xilinx Runtime System for interfacing the FPGA), and domain-specific
DAER IPs for accelerating application workloads. End-users can deploy an EMI
instance via the AWS marketplace listing it Amazon’s EC2 FPGA-supported
machine instance, charged on a pay-as-you-go basis. The AWS marketplace plat-
form is responsible for forwarding subscription fees paid by end-users to Amazon
(for hosting EMI instances to its infrastructure) and the 3rd party seller (i.e.,
EDRA).

The rest of the paper is organized as follows: Sect. 2 presents the project
achievements and impacts. Section 3 describes the EDRA framework, whereas
Sect. 4 provides results on the developed MVP in terms of performance against
other solutions. Section 5 elaborates on a market analysis tailored to the EDRA’s
MVP, and finally Sect. 6 concludes the paper.

2 Project Achievements and Impact

2.1 Project Achievements

EDRA was a FET Innovation Launchpad (GA #851631)1, that run from May
2019 until October 2020. Interested users can follow EDRA on Twitter2 and
LinkedIn3, as well as find more details on the project website4.

EDRA achieved its goal on making the DAER technology ready for entering
the market by reaching the following achievements:

1. EDRA framework: The project successfully updated the EXTRA IP, and
developed a full-fledged framework that can (semi) automatically cre-
ate DAE-compatible applications, capable to facilitate available hardware
resources for faster workload processing.

2. MVP in the domain of phylogenetics: Having a strong scientific background
in the domain of phylogenetics, EDRA decided to develop and deploy a first
MVP using its in-house framework that accelerates phylogenetics analysis
on Amazon’s FPGA-supported machines.

3. MVP market analysis: Towards validating the decision of deploying the
MVP to the market, the team conducted a thorough analysis on market
size and opportunities with respect to the bioinformatics domain. Results
suggest that an estimated market size directly fitting to the EDRA MVP is
valued at approximately 7.9 Me, 10.8 Me and 14.6 Me for 2021, 2022 and
2023 respectively.

4. Business model formulation: EDRA developed a complete and sustainable
business model. Its value proposition is based on solutions to customers
who would like to execute applications faster compared to their current
setup, as well as reduce IT costs related to deployment and maintenance.

1 https://cordis.europa.eu/project/id/851631.
2 https://twitter.com/ProjectEdra.
3 https://www.linkedin.com/groups/8790812/.
4 https://edra-project.eu/.

https://cordis.europa.eu/project/id/851631
https://twitter.com/ProjectEdra
https://www.linkedin.com/groups/8790812/
https://edra-project.eu/
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Due to the team expertise on hardware design and background on compu-
tational phylogenetics, EDRA plans to also provide dedicated application
acceleration services on phylogenetics. Key resources required to support the
EDRA value proposition are budgets related to staff support, cloud/digital
resources, and facilities and IPR management. Customer segments comprise
users from the HPC domain and academic institutes in the domain of Bioin-
formatics. As shown in Fig. 1, the revenue model is based on fixed charges for
deploying customer applications to Amazon’s marketplace using the EDRA
framework. The EDRA’s MVP revenues will be based on Amazon’s pay-as-
you-go charging policy.

2.2 Project Impact

– Economic and business impact: The project has delivered the EDRA frame-
work, a novel technology for rapid and (semi) automatic hardware-accelerated
deployment of applications to cloud resources. The framework essentially
allows the quick launch of cloud-supported services for SMEs and corpo-
rations, thus enabling faster and better services for end users, a key aspect
for economic growth.

– Increased value creation from FET projects by picking up innovation oppor-
tunities: Based on the framework developed by EDRA, the team formulated a
go-to-market strategy for offering hardware-acceleration services to the cloud
for demanding applications. Moreover, EDRA released an MVP that enhances
research on phylogenetics, an important area that can assist on the fight
against the COVID-19 outbreak and other potential pandemics.

– Improved societal and market acceptance: The COVID-19 outbreak demon-
strated that scientists need access to powerful computational resources with
fast turnaround times of results on drug analysis and model simulation.
EDRA’s MVP addresses today’s important need for more computational
power towards faster analyses of virus evolution.

– Contributing to the competitiveness of European industry/economy: EDRA
picked up on the fact that major cloud providers, such as Amazon and
Alibaba, started offering services that support FPGAs; the DAE framework
allows the offer of generic low-risk hardware-acceleration services on the cloud
for customers that wish to remove their application back end from their
premises.

– Stimulating, supporting and rewarding an open and proactive mind-set:
EDRA’s ability for quick deployment of hardware-accelerated applications,
allow SMEs and corporations to investigate and propose new services to end-
users with minimum investment risk, strengthening even more the European
industry sector.

– Scientific impact: EDRA’s MVP is a novel solution that allows biologists and
researchers in phylogenetics to increase their productivity while reducing IT
costs. The majority of the software tools used for experiments are compute-
bound, hence the additional processing power that EDRA’s MVP provides
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can further assist on understanding the origins of lethal viruses. This is a
valuable asset for constraining the spread of potential new pandemics, should
anytime happen.

3 The EDRA Framework

3.1 Source-to-Source Translation

EDRA developed a source-to-source translator infrastructure, henceforth
referred to as “EDRA-gen”, to facilitate code annotation and translation. Its
purpose is to reduce development time and yield a correct-by-construction design
for the final accelerated system. Automated hardware generation in EDRA-gen is
inspired by a generic Decoupled Access-Execute (DAE) architectural paradigm.

Fig. 2. Source-to-source translation stages of EDRA-gen.

EDRA-gen-based hardware generation starts with a minimally annotated
user source code that indicates at least one target for-loop. The flow consists
of 7 discrete steps (Fig. 2) that collectively extract the code block of interest in
the user’s code (the target for-loop), resolve dependencies (if exist), construct
an abstract syntax tree (AST), and use it to generate all the required data-
fetch (ACCESS) and process (EXECUTE) units. EDRA-gen relies on LLVM to
generate token lists for the source files and implements a series of algorithms
directly on the token lists to extract the AST. Once the AST is created, a series
of algorithms operate on the AST to generate C code for each DAE component,
driven by the available Vivado HLS directives to be used.

3.2 Hardware Support

Figure 3 shows how the EDRA hardware architecture is mapped to the AWS
F1 machine instance. EDRA allows hardware accelerators to exchange data
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Fig. 3. DAE implementation to the AWS F1 machine instance.

with the F1 host processor either via the shared DDR4 memory accessible from
the DDR4-C memory controller or the APP PF memory space, accessible via
the PCIe. Supporting both of the aforementioned methods allows concurrent
memory access (read and write) and task offloading to accelerators either with
OpenCL or the AWS FPGA PCI library, providing maximum flexibility to pro-
grammers during application development:

– Shared data stored in the DDR4 memory: an application can share data with
the accelerator via the DDR4 memory, using OpenCL functions. In this case,
the “read dataDDR” module reads data via the DDR4-C memory controller
over an AXI4 protocol, and then forwards it over an AXI4 Stream interface
to the hardware IP (HW IP) for processing. The HW IP sends results to the
“write dataDDR” also over an AXI4 Stream interface, which forwards them
via an interconnect (IC) module back to the DDR4-C memory controller.

– Shared data stored in the APP PF: an application can also share data with
the accelerator using the AWS FPGA PCI library. In this case, the APP PF
exposes a physical address space up to 127 GiB that facilitates data transfers
between the host processor and the accelerator; the “read dataPCI” module
reads data via the PCIES (PCIe Slave) interface (also based on the AXI4
protocol), and then forwards it via an AXI4 Stream interface to the “HW
IP”. When data processing is finished, the “HW IP” sends results back to
the “write dataPCI” module, which forwards them to the host CPU via the
PCIEM (PCIe Master) interface.

Finally, the BAR0 (Base Address Registers) AXI4 interface space exposes the
BAR0 APP PF memory space that facilitates management and monitoring (CL
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Fig. 4. Top-level decoupled access/execute architecture of the PLF accelerator core.

MGT) of the hardware accelerator (e.g., start/stop and sync barriers) by the
application executed at the host CPU.

4 MVP Architecture and Performance

A detailed description of the EDRA MVP is provided by Malakonakis et al. [4].
Figure 4 illustrates the PLF accelerator based on the DAE approach. Overall,
the PLF core has seven access units and a single execution unit. There are six
input access units that fetch data from memory to the accelerator (Left and
Right Vectors, Left and Right Matrices, EV vector and scaling vector (WGT)),
and a single output access unit that writes the results of the computation back
to memory.

An invocation of the accelerator consists of two steps. First, the Left- and
Right-matrix access units retrieve the left and right probability matrices, and
the EV access unit retrieves the inverted eigenvector (RAxML computes P(t)
matrices based on eigenvector/eigenvalue decomposition) from memory and store
them into register files. Then, the two FIFO-based access units fetch the Left
and Right vectors that correspond to the left and right child nodes, and stream
them through the PLF datapath. The output Parent vector is stored in memory
through a FIFO-based access unit. The access units that prefetch data into
register files do not contain FIFOs to lower resource utilization.

It should be noted that resource utilization coverage does not exceed 30% of
the available resources in any of the FPGA hardware primitives (BRAMs, Logic
Cells etc.). This provides a potential for further optimization of the design by
adding more PLF accelerator engines. Moreover, a double-buffering mechanism
was adopted to reduce data transfer overheads.
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Fig. 5. PLF accelerator system architecture (AWS F1).

Figure 5 depicts the PLF integration to the AWS F1 machines. The memory
controllers allow up to 512-bit-wide connections to the FPGA compute resources
through an AXI stream interface. The PLF accelerator uses two such interfaces
in order to transfer the two matrices from memory to the EX unit and another
one to transfer the results back to memory. A fourth interface to the remaining
memory channel (64 bits wide) is used for the R and L matrices and EV vector
as well as the scaling factors.

Fig. 6. Execution time of the PLF function on AWS F1 instance. Software PLF is
executed on the same F1 instance. N refers to the number of elements of the left and
right probability vectors. All times are reported in seconds.

The PLF performance was compared against an optimized software imple-
mentation of RAxML on the same platform as the accelerated system. The
underlying hardware platform is the CPU system of the AWS F1 instance, which
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is based on an Intel Xeon E5-2686v4 processor (8 vCPUs available). Figure 6
lists a set of experimental results that compares the software and hardware-
accelerated PLF implementations. Comparing the execution time of the best
accelerator case on the Amazon F1 and the time required to compute the same
function in software, it can be seen that the accelerator provides 2.3x to 5.2x
better performance. The performance gap widens as the input size increases. For
the overall RAxML application, this translates to up to 3.2x reduction in the
overall execution time for the most demanding datasets that were tested.

5 MVP Market Analysis

5.1 Market Size

EDRA’s MVP accelerates the RAxML application [8], a well-established tool for
phylogenetic analyses of large datasets under maximum likelihood. RAxML has
more than 13K citations from its original publication (2006), and an additional
10,800 citations from researchers globally over the last 5.5 years (2014–2019)
on its latest version. Based on accumulated data the estimated market size is
valued at approximately 7.9 Me, 10.8 Me and 14.6 Me for 2021, 2022 and 2023
respectively. Knowing the market size is a valuable aspect, however a market
strategy needs to reflect the target customer segments as well. Towards building
the client profile for EDRA’s MVP, the EDRA team used Google Scholar to
collect information with respect to authors citing RAxML in their work. More
specifically, starting on 2016, EDRA examined the first 100 publications each
year that cite RAxML, and identified each article’s leading author’s affiliation
and location. Figure 7 shows the analysis results from 2016 until Q2 2020. As
observed, throughout each year leading authors affiliated with research institutes
located in Europe and US represent 88% (2016), 72% (2017), 84% (2018), 82%
(2019), and 64% (Q2 2020).

An interesting observation is that until Q2 2020 publications from authors
affiliated with academic institutes in Asia raised from 6% in 2016 to 28%.
One reason is that RAxML is widely used to study the evolution of viruses
(among others), hence many researchers used it for analyzing the evolution of
the COVID-19 virus in Asia, where the first recorded case occurred according
to the World Health Organization records. This fact shows the importance of
making available ample computing power to biologists, in order to speed up their
analysis experiments.

Overall, the above study leads to the following conclusions:

– The potential market size for EDRA’s MVP is valued at approximately 7.9
Me, 10.8 Me and 14.6 Me for 2021, 2022 and 2023, respectively.

– The primary client segment for EDRA’s MVP is biologists and scientists
working either for academic institutes or Contact Research Organizations.

– RAxML users can utilize additional processing power to conduct faster their
experiments on COVID-19 evolution analysis.
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Fig. 7. Geographical breakdown of RAxML users from 2016 to Q2 2020.

5.2 Other Approaches

RAxML is made available to the community under a GNU Public License (GPL).
Moreover, RAxML is already optimized for multi-threaded CPUs as well as
GPUs [3,6], hence researchers clone it either on workstations or private servers to
run their experiments. This approach though requires specialized IT personnel to
ensure that a machine is properly configured (e.g. installing OS updates, drivers,
software development tools installed, etc.), leading to increased costs related to
infrastructure acquisition (e.g. buying server-class machines that cost thousands
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of e) and maintenance (e.g. paying electricity bills, hosting facilities for servers,
salaries for extra IT personnel, etc.).

The above ad-hoc approaches are not identically configured (e.g. different OS
versions, hardware resources) and usually impose significant development chal-
lenges, resulting in reduced productivity, non-optimal utilization of the available
computational resources, and excessive IT costs. To partially alleviate the issue
of system software variations, Informatics LLC created a virtual machine on
Amazon’s marketplace, called MolBioCloud [5], that contains a large set of soft-
ware tools related to molecular biology. MolBioCloud offers a fully configured
and tested environment in the form of a virtual machine for biologists working
on different research areas. However, MolBioCloud does not support hardware
acceleration.

6 Conclusions and Next Steps

EDRA successfully delivered an end-to-end framework for mapping applications
onto Amazon’s FPGA-supported cloud platforms based on the DAE approach.
Moreover, the project delivered a pioneering MVP that enables faster processing
of workloads related to phylogenetics, as well as conducted thorough research
with respect to market addressable size and the MVP average customer persona.

Towards pushing the EDRA MVP to the market, the project team has
already initiated the process of launching a spin-off based on the formulated
business plan. The spin-off will focus on deploying the MVP to Amazon’s mar-
ketplace, where biologists and researchers on phylogenetics will be able to down-
load it on a pay-as-you-go charging policy, and instantly conduct their experi-
ments up to 2.5x faster compared to the currently available software-optimized
configurations.
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Abstract. Current technology and application trends push for both per-
formance and power efficiency. EuroEXA is a project that tries to achieve
these goals and push its performance to exascale performance. Towards
this objective, EuroEXA node integrate reconfigurable (FPGA) acceler-
ators to offload computational intensive workloads. To fully utilize the
FPGA’s resource pool, multiple accelerators must be instantiated. Sys-
tem design and dimensioning requires an early performance estimation to
evaluate different design options, including using larger FPGA devices,
instantiating larger number of accelerator instances, etc.

In this paper, we present the preliminary results of modeling the scal-
ability of EuroEXA reconfigurable accelerators in the FPGA fabric. We
start by using simple equations to bound the total number of kernels that
can work in parallel depending on the available memory channels and
reconfigurable resources. Then, we use a 2nd degree polynomial model to
predict the performance benefits of instantiating multiple replicated ker-
nels in a FPGA. The model suggests whether the switching to another
larger FPGA is advantageous choice in terms of performance. We ver-
ify our results using micro-benchmarks on two state-of-the-art FPGAs;
AlveoU50 and AlveoU280.

Keywords: FPGA · FPGA modeling · EuroEXA · Reconfigurable
accelerators · Performance prediction

1 Introduction

The HPC domain is well known for the gap between the theoretical peak per-
formance of an actual platform and the achieved performance when running
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real applications. EuroEXA1 is a project that attempts to reduce this dispar-
ity, by enabling -through co-design- an innovative solution that achieves both
extreme data processing and extreme computing. EuroEXA pushes its nodes to
exaflop-level performance by implementing a new system architecture that better
balances the required computing resources compared to today’s systems, sup-
porting the acceleration of key applications. A compute node in EuroEXA assem-
bles general purpose processors, graphic processors units and reconfigurable
accelerators.

Current technology and application trends push for both computational per-
formance and power efficiency. A very promising way to achieve both prerequi-
sites is the development of specialized hardware functions. Field-Programmable
Gate Arrays (FPGAs) are strong candidates for implementing custom design
circuits, as they can be programmed to easily implement a computational data-
path suited for a fixed application. The fact that FPGAs are re-programmable,
as compared to their ASIC counterparts, offers great flexibility for their inte-
gration to larger systems, to support emerging workloads and computational
intensive kernels.

State-of-the-art FPGAs are offering a large pool of re-programmable
resources, e.g. 6-port LUTs, flip flops, block memories and DSPs, as well rich
interconnection between the units. Large banks of memory and processor cores
are paired with FPGAs, in order to increase the overall performance of applica-
tions. A bitstream with a hardware kernel is offloaded into the FPGA, and a host
application sends data and requests to it like a co-processor. In a development
environment such as Vitis2 platform from Xilinx, host applications are usually
written in a high-level programming language (e.g. OpenCL), while kernels are
written in C++ with HLS primitives. A toolchain converts the high-level kernel
into RTL code, and then produces the bitstream with the hardware accelerated
design. In EuroEXA, multiple reconfigrable accelerators are instantiated into
the same FPGA fabric, to exploit the large pool of resources offered by FPGAs.
However, to design the system and the application deployment, the performance
benefits of this approach should be gauged. In this paper, we will try to model the
scalability of reconfigurable accelerators, and predict the performance benefits
acquired by adopting a larger FPGA as compared to a current smaller platform.

Roofline [4] is a model that helps an application developer to classify his com-
putational kernel into two different classes; compute-bound or memory-bound.
While a plethora of optimizations can be applied to increase the kernel’s perfor-
mance, it is still bound to the computational capabilities of the processor unit
and to the offered memory bandwidth. After a few years, Roofline for FPGAs[2]
is introduced, where the authors extended the classic Roofline approach to recon-
figurable accelerators. They introduced optimization guidelines to increase the
performance of the accelerator and exploit the available resources of FPGA’s
fabric. However, most of hardware accelerators utilize a fraction of available
resources, leaving a large part of fabric unused.

2 https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html.

https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html
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Summarizing, the primary objectives of this work are to:

1. Bound the maximum number of compute units that can be mapped on
available reconfigurable resources and memory channels.

2. Create a model that can predict the performance benefits from increasing
the total number of compute units.

3. Verify our model on two different FPGA accelerator cards; a smaller
AlveoU50 and a larger AlveoU280.

The rest of the paper is organized as follows. In Sect. 2, we present our model
for the scalability of reconfigurable accelerators. In this section we present two
key parameters that strongly affects our model, FPGA area fabric and available
memory channels. Furthermore, we will discuss how these parameters bound the
number of kernels that can mapped in a FPGA, and how FPGA modeling can
predict the performance benefits from implementing multiple instances of a kernel
to a larger or newer FPGA. In Sect. 3, we present our preliminary experimental
evaluation of our model, followed by Sect. 4 to finally conclude the paper.

2 FPGA Modeling

In this section, we will discuss about our model regarding the scalability of the
reconfigurable accelerators in a FPGA. The two key parameters of our discussion
are area and memory. The scalability of our model is strongly affected from area,
as the resources of a FPGA are limited and we will provide an upper bound of
maximum number of kernels that can be mapped. Furthermore, the congestion of
memory bandwidth between kernels is another significant issue that may lead to
performance degradation. In this section we will discuss and provide an analysis
of how congested memory bandwidth can be avoided.

2.1 Scalability Limitations Due to Area Congestion

The current generation of FGPAs includes a large pool of reconfigurable
resources, which include BRAM, DSPs, LUTs and FFs. The computational ker-
nels designed for FPGAs usually bind a small fraction of the available resources.
Newer FPGAs achieve to contain even more reconfigurable resources into a die
region, while FPGAs with multiple die regions (SLRs) into the same package
are available by the vendors [5]. So, the transition to a newer FPGA leads that
the same computational kernel will bind even fewer resources. One of the most
straightforward ideas to take advantage of the computational capabilities that a
FPGA can offer is to create multiple instances of the same kernel. By implement-
ing multiple instances of a kernel, a host machine can either execute multiple
times an algorithm in parallel, or it can dispatch the work items of a single algo-
rithm into the accelerated instances. The replicated instances from now on will
be referred as compute units.

A computational kernel needs a fraction of the available resources to instan-
tiate it in a FPGA. The amount of resources that a kernel binds is dependent
to optimization decisions of the designer, to maximize his kernel performance.
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While development decisions play a huge role on the performance capabilities of
a single kernel, they are out of the scope of this paper. In our model, a kernel
is considered as a “black box” so as to limit the information that our model
needs to evaluate. For area scaling the only piece of information that is needed
is kernel’s resources which will be referred from now on as {BRAM, DSP, FF,
LUT} design.

The development platforms used by designers, such as Vitis, restrict the uti-
lization of the FPGA area. The suggested maximum resource utilization for a
design is restricted to 80% for BRAMs and DSPs resources, while the corre-
sponding ratio for LUTs and FFs is 70%, as reported from the vendors. In our
model, we decided to bound the available resources to a more optimistic app-
roach. So the total number of compute units that a FPGA can map is given
from Eq. 1.

#CUarea = min(
⌊

0.85 ∗ BRAMtotal

BRAMdesign

⌋
,

⌊
0.85 ∗ DSPtotal

DSPdesign

⌋
,

⌊
0.75 ∗ FFtotal

FFdesign

⌋
,

⌊
0.75 ∗ LUTtotal

LUTdesign

⌋
)

(1)

As shown from the equation, the total number of compute units is restricted
by the most consuming resource of the computational kernel, while the floor in
the equation offsets the optimistic approach that we took earlier on maximum
resource utilization. If other designs occupy a fraction of the total available
resources in the FPGA fabric, it is clear that the committed resources must be
subtracted from each numerator in Eq. 1.

As we will discuss in Sect. 3, the scalability of reconfigurable accelerators in a
FPGA platform may be restricted by HLS toolchains, especially when the num-
ber of compute units is large enough (i.e. 10–12 compute units). HLS toolchains
consider each compute unit to be a distinct building block which consumes recon-
figurable resources equal to the original one. So, compute resources increase
linearly as more compute units are mapped into the FPGA fabric. When the
number of compute units is high enough, the distinct blocks congest over the
same wires into the FPGA fabric for routing. When there are not any available
wires in the FPGA fabric, or timing requirements cannot be met, the toolchain
rejects the design, even though there are available logic resources. This is a lim-
itation in our current prediction model for the scalability of accelerators. In our
future work, we will try to model the routing restrictions from HLS toolchains,
and bound the total number of compute units in the FPGA fabric depending on
the routing complexity as well available resources.

2.2 Scalability Limitations Due to Memory Congestion

Another key parameter that strongly affects the scalability of the reconfigurable
accelerators is memory. Data are fetched from memory banks into compute units
through memory channels. The management of memory channels from develop-
ers is the main reason for bottlenecks in a application performance. When multi-
ple compute units try to access the same memory bank through the same memory
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channel, they are competing for the same memory bandwidth. The congestion of
memory bandwidth and the sharing of memory channels can significantly limit
the performance and can convert an algorithm from compute-bound to memory-
bound, as fewer data are fetched is second to each unit. In this subsection we
discuss how memory congestion can be avoided and provide guidance for better
memory management between multiple kernels.

The majority of FPGA boards contain large off-chip DDR memories (e.g.
32–48 GB for state-of-the-art devices), which are used for storing large sets of
data. Data are initially stored on off-chip memory and then are streamed into
compute units for processing. DDR memories usually are separated in 2 to 4
banks, and a same amount of memory channels are used for communication with
compute units. As discussed in the previous subsection, the FPGA fabric can fit a
large number of kernels, so memory channels must serve multiple compute units
concurrently, decreasing the overall performance of the system due to sharing.
With the advent of High Bandwidth Memory (HBM), FPGAs are offering a
much higher number of memory channels and overall memory BW at the cost of
smaller storage. Xilinx states that in state-of-the-art AlveoU50 and AlveoU280,
32 HBM channels are available for communication between memory banks and
compute units. As more memory channels are available for data transmission,
congestion can be avoided by statically partitioning memory channels to compute
units.

By partitioning the memory channels, each memory bank will serve a sin-
gle compute unit. Performance bottlenecks from sharing are prevented, and a
compute unit can utilize the whole available bandwidth from a memory channel.
So, a “one-to-many” communication type is suggested to avoid congestion over
memory bandwidth, where a compute unit is atomically served either by a single
memory bank or by multiple ones concurrently. An alternative solution to pre-
vent the sharing of memory bandwidth is to enqueue work items into compute
units in different time periods, but our scope in this paper is that compute units
work in parallel to provide peak performance and maximum throughput.

Given the number of memory channels that a compute unit utilizes, the total
number of kernels that can work in parallel without performance degradation
due to sharing, is given in Eq. 2.

#CUmem =
⌊
MemChannelsAvail

MemChannelsdesign

⌋
(2)

2.3 FPGA Performance Modeling

In the previous subsections, we provided simple equations, and discussed how
our model can extract the total number of compute units that a FPGA can
map given a certain amount of logic and memory resources. Equation 1 provides
an upper bound of compute Units due to limitation in the FPGA fabric, while
Eq. 2 an upper bound due to limited memory channels. The ideal number of
compute units that can work in parallel without performance loss is given by
Eq. 3. However, the performance benefits from the transition to a larger or newer
FPGA are still unclear.
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#CUsideal = min(#CUarea,#CUmem) (3)

Our approach for modeling the scalability of the reconfigurable accelerators
is to consider the computational kernel as a “black box”, where the development
decisions are unknown, and minimal information about the kernel is needed
for modeling. During the transition to a newer or larger FPGA, the compu-
tational kernel is not subject to modifications. If no architectural changes are
made from generation to generation or from FPGA to FPGA, such as LUTs
or DSPs, almost the same amount of resources are needed to implement and
map the same computational kernel. So, as long as more compute units can
fit in a FPGA, the performance have to keep increasing linearly. However, we
expect reduced performance growth, because as it was mentioned the frequency
of compute units is decreased when more compute units are mapped, while an
extra software overhead is introduced in order to enqueue work items into the
accelerated kernels.

The performance prediction model for FPGAs can be created by following a
series of small steps. At first, a scattered graph is created by extracting perfor-
mance results from an initial FPGA platform. At least two performance points
are needed to create a simple model, when a single kernel is mapped in the
FPGA fabric and the maximum number respectively. To further increase the
accuracy of the prediction model, we recommend inserting more performance
points from the initial platform, for different number of compute units. From
the performance points of the initial used FPGA platform, a 2nd degree poly-
nomial model is exported. 2nd degree polynomial models have been adopted by
other similar works [1], to create prediction models for general purpose proces-
sors units. With the help of the prediction model, an application developer can
find out the performance benefits from the transition to another FPGA. By inte-
grating a newer FPGA in a system, a larger pool of reconfigurable resources or
more memory channels are available. By using our models’ equations, the total
numbers of compute units can be extracted for the new FPGA platform, and
from the 2nd degree polynomial model, the performance benefits can be found
out by implementing more compute units.

3 Preliminary Experimental Results

In this section, we will present our preliminary results regarding the FPGA mod-
eling on reconfigurable accelerators. For our case study, we use two state-of-the-
art FPGAs platforms: AlveoU50 and Alveo280, while their available resources are
listed in Table 1. For the application development, Vitis 2020.2 unified software
platform is used, the kernel was written in C++ with HLS primitives, and the
host side uses OpenCL to enqueue work items to hardware kernels and to trans-
fer data between the host machine and the FPGA. Three micro-benchmarks are
used; Conv2D, MatrixMult and Sequential Read/Write. The first two are used to
evaluate the performance capabilities of our platform, as compute units are keep
increasing, while the latter one is used to evaluate the communication between
HBM channels and kernels.



Modeling the Scalability of the EuroExa Reconfigurable Accelerators 337

Table 1. Available resources of AlveoU50 and AlveoU280 and their maximum memory
bandwidth.

FPGA BRAM DSP LUTs (K) Registers (K) Mem BW (GB/s)

Alveo U50a 1344 5,952 872 1,743 316

Alveo U280b 2,016 9,024 1,304 2,607 460
a https://www.xilinx.com/products/boards-and-kits/alveo/u50.html
b https://www.xilinx.com/products/boards-and-kits/alveo/u280.html

3.1 Sequential Read/write

To avoid memory bandwidth congestion between multiple compute units, we
assumed to statically partition memory channels to kernels. At first, we need
to evaluate our decision by finding out the potential drawbacks of this choice.
In Table 2, we present our results for two communication patterns, by using
Sequential Read and Write. In Sequential Read/Write, data are streamed into a
compute unit, and then are streamed out to off-chip memory again. One-to-all
communication is when a compute unit utilizes all available memory channels,
while one-to-one communication is the worst case scenario where each compute
unit utilizes only one memory channel. From our results, the static partitioning
of memory channels does not introduce any significant overhead in our micro-
benchmarks, and almost the entire memory bandwidth can be exploited. Our
results come to an agreement with a recent paper that evaluates the HBM chan-
nels of Alveo devices, [3]. Our results confirm that congestion of memory band-
width can be easily avoided by using partition, and the number of compute units
can be bounded by the available memory channels.

Table 2. Available memory channels and memory bandwidth for a) one-to-all com-
munication and b) one-to-one communication.

FPGA One-to-all One-to-one Channelsavail

AlveoU50 309.97 GB/s 307.31 GB/s 24

AlveoU280 388.82 GB/s 386.07 GB/s 30

3.2 Scalability of Accelerators

To model the scalability of reconfigurable accelerators in the FPGA fabric, we use
two computational kernels with different kernel sizes, Conv2D and MatrixMmult.
As the original compute units are considered “black boxes”, the only pieces of
information that we need for modeling are the necessary design’s resources and
the number of channels that utilizes. Table 3 reports the information that our
model needs to find out the total number of compute units.

https://www.xilinx.com/products/boards-and-kits/alveo/u50.html
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html
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Table 3. Resource utilization for our micro-benchmarks when a single compute unit
is mapped

Kernel Kernel size BRAM DSP LUTs Registers Channelsdesign

Conv2D 120 131 43 18,766 23,423 1

150 227 88 13,200 14,980 1

MatrixMult 80 31 459 15,782 23,129 1

100 47 602 51,375 58,087 1

We use two FPGA platforms, AlveoU50 as the initial FPGA where our model
will be created, and AlveoU280 to verify our performance results. At first, our
model exports the total number of compute units that AlveoU50 can map in
its fabric based on designer’s computational kernel. For Conv2D the most costly
resource is BRAM while for MatrixMult is DSP. From Eq. 1, our model calculates
the number of compute units and in Figs. 1 and 2 we report our results. For
Conv2D the total number of compute units is 8 and 4 for kernel sizes 120 and
150 respectively, while for MatrixMult is 11 and 8 for 80 and 100 kernel sizes.
The results verify our equations, as we cannot map any more compute units.
Meanwhile, we report the speedup as we increase the number of compute units,
by using as baseline the execution time of a single kernel in AlveoU50.

For all kernels, the speedup (Blue Triangles and Red X Marks on all Figures)
does not scale linearly as more compute units are instantiated in the FPGA
fabric. The loss in performance is the result of the reduced frequency. As more
compute units are implemented in the FPGA, the reduction in frequency is
getting bigger, until the speedup is yielded around a value. This is the result
of the increased latency in data transfers, as data have to cross a larger area
until their destination. Fewer data are fetched each second in the compute units,
which increase the overall execution time of a kernel. Our model captures the
decreasing frequency from instantiating multiple compute units, and predicts
the potential drawbacks in performance from implementing a high number of
computational kernels.

To export the 2nd degree polynomial model, the execution time is needed for
multiple number of compute units. The minimum performance points needed are
for a single compute unit and for the maximum numbers respectively. To further
increase the accuracy of the model, more performance points can be included.
The model for each type of kernel is printed with a light blue line in Figs. 1 and 2.
The choice of the 2nd degree polynomial model is made to capture the reduced
frequency on compute units as they keep increasing, and it is more adapting
based on our results. By using the exported model, the potential speedup can
be predicted from using a larger FPGA with either more resources in its fabric
or memory channels.
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Fig. 1. Modeling the scalability of Conv2D for Kernel Size = 120 (Left) and Kernel
Size = 150 (Right). From AlveoU50 performance points (Blue Triangle), we exported
the performance model of the kernel (Light Blue Line) and we verified our model with
AlveoU280 performance points (Red X Mark). (Color figure online)

Fig. 2. Modeling the scalability of MatrixMult for Kernel Size = 80 (Left) and Kernel
Size = 100 (Right). From AlveoU50 performance points (Blue Triangle), we exported
the performance model of the kernel (Light Blue Line) and we verified our model with
AlveoU280 performance points (Red X Mark). (Color figure online)

One of our objectives in this paper is to predict the performance benefits from
implementing the same computational kernel to a larger FPGA. For this case
study AlveoU280 is used, which has almost 35% more available reconfigurable
resources compared to AlveoU50. As Figs. 1 and 2 reports, the maximum number
of compute kernels are increased on all micro-benchmarks we used. However, the
increase differs from kernel to kernel. Conv2D indeed benefits the most from the
transition to a larger FPGA, as the number of compute units are capped in
the FPGA fabric. However, MatrixMult cannot take full advantage of the more
available resources, as the high routing complexity prevents the implementation
of a high number of computational kernels due to congestion over the same wires.
The wiring congestion prevents the full utilization of the FPGA fabric, and it is
a limit in our current prediction model.
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The final step is to verify the exported 2nd degree polynomial model from the
initial platform. As more compute units can be mapped in our new FPGA, the
speedup must increase non-linearly, and our model must be able to capture the
increased performance. As reported Figs. 1 and 2 from the red scattered marks,
AlveoU280 performs slight worse than the model reports. We figured out that the
difference in performance is due to the reduced frequency from transferring the
kernel from our initial FPGA to AlveoU280. The reduced frequency is observed
regardless of the number of kernels, and is the result of the larger distance
that data have to cross from memory banks into compute units, which further
increases the latency as fewer data are fetched. In our future work, we will try
to integrate the changes in frequency from transferring a computational kernel
from a FPGA to a smaller or larger FPGA.

4 Conclusion and Future Work

In this paper, we present our preliminary results on modeling the scalability of
EuroEXA reconfigurable accelerators. FPGA modeling is necessary to predict
the performance benefits by utilizing a newer and larger FPGA. In our model, by
using simple equations the total number of compute units can be calculated. The
replicated kernels can work in parallel without degradation in performance either
due to routing or memory congestion. We presented a performance 2nd degree
polynomial model which can predict the speedup by increasing the number of
compute units. We verified our results by using as initial FPGA platform the
AlveoU50 acceleration card, and we tried to predict the speedup gains from using
a larger FPGA platform, AlveoU280.

Our future work includes two points. The first one is to include the differences
in frequency from implementing a kernel to another FPGA, as our current pre-
diction model is proved slightly more optimistic about the performance benefits.
Furthermore, high routing complexity limits toolchains to integrate a high num-
ber of compute units (i.e. 12–14) into the FPGA fabric, even though there are
available logic resources. Consequently, the second point is to model the routing
restrictions from congestion over FPGA wires in fabric to increase the accuracy
of our equations.
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Abstract. Software projects must adhere to a variety of non-functional
requirements, also known as software qualities. Automated evaluation
with respect to such requirements can be conducted thanks to a wide
array of available tools. Each tool usually focuses on a specific quality,
since heterogeneous analyses are needed for each non-functional require-
ment. Apart from an overall index expressing the project’s performance
in terms of the software quality they specialize on, many tools recommend
code changes that are expected to improve the aforementioned index.
Thus, a development team that cares for more than one non-functional
requirement is facing the problem of unknown trade-offs; besides improv-
ing the quality on which the tool that generated each suggestion focuses,
how would this code change, if implemented, affect the rest of the non-
functional requirements? We present a framework for dealing with this
problem. We pick energy efficiency, technical debt and software secu-
rity as our qualities of interest, and use three respective tools for the
analysis of several open-source projects with regard to these qualities.
We develop an extensible empirical model, based on fuzzy sets, for the
characterization of each suggestion’s trade-offs. Finally, we present an
intuitive visualization of said trade-offs, and suggest a method of utiliz-
ing them towards reliable decision-making.

Keywords: Software quality · Trade-off analysis · Decision-making

1 Introduction

Researchers have been studying software quality for more than four decades [1–
3]. Although substantial efforts of standardizing it do exist (the most notable
example being ISO/IEC 25010:20111), each software product most often ends
up with its own, “internal” definition of quality, also known as non-functional

1 https://www.iso.org/standard/35733.html.
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requirements. Apart from this definition, developer teams also pick specific soft-
ware metrics which are intended to measure the qualities defined.

This variety implies a multitude of team-dependent frameworks and method-
ologies with regard to measuring and improving software quality. It is also evi-
dent that a major portion of the aforementioned improvement will come in the
form of changes in the source code. These changes are either products of expert
knowledge and collaboration, or of automated diagnostic tools like [4], and each
one of them is naturally expected to focus on a single quality.

A team that would like to improve several aspects of software quality would
thus face the problem of unknown trade-offs ; besides improving the quality on
which its derivation focuses, how would each code change, if implemented, affect
the rest of the non-functional requirements? We present a framework for dealing
with this problem. The main contributions of this paper are:

– an empirical framework for discovering trade-offs between heterogeneous code
changes with respect to arbitrary software qualities

– a suggestion as per how to utilize our framework’s products towards deciding
which code change to eventually implement

2 Related Work

The work presented in this paper presupposes the identification of specific non-
functional requirements that are to be optimized, or at least improved, by a
team of developers. Additionally, the toolsets for quality-specific analysis and
code change recommendation are assumed to be known and integrated.

2.1 Software Quality Models

The definition of a non-functional requirement like energy efficiency is not
identical to its quantitative evaluation. Due to this discrepancy, Bakota et al.
[5] propose a probabilistic framework for measuring software quality. Driven
by open-source development and its impact, Samoladas et al. [6] provide a
measurement-based method for open source software evaluation. Miguel, Mauri-
cio and Rodriguez [7] present a comprehensive review of recent work on software
quality models.

2.2 Code Refactoring

In the context of this paper, refactoring is important since it is the form in which
several software quality analysis tools recommend beneficial code changes. Mens
and Tourwe provide an in-depth survey of refactoring until 2004 [8]. In his 2018
book, Fowler records many decades of refactoring knowledge [9]. A very recent
work by Brito, Hora and Valente introduce the notion of refactoring graphs, for
assessing refactoring over time [10].
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2.3 Tools

The SonarQube platform exposes a plug-and-play interface for analyzing a soft-
ware project’s non-functional requirements [11] like security and technical debt.
Customized program analysis through dynamic instrumentation, useful when
profiling an application’s energy efficiency, can be achieved with Pin [12].

3 Proposed Method

Fig. 1. A high-level description of the proposed flow

The proposed mechanism is depicted schematically in Fig. 1 with added com-
ponents and interactions of its functionality. This paper focuses on derivation
of the “Lookup table” component, which contains trade-offs between available
decisions.

In the following subsections, work relevant to our mechanism’s inputs is
described on high-level terms.

3.1 Software Quality Toolboxes

Three individual Software Quality toolboxes are used [13].
Technical Debt Toolbox is responsible for monitoring and improving the appli-

cation Maintainability. Its three main components include: Technical Debt Anal-
ysis, that analyses the entire projects’s evolution, New Code, that analyzes the
commit history and proposes quality gates and Refactorings Suggestion.

Energy Toolbox estimates the energy of a given project and suggests optimiza-
tions that can be applied. It firstly identifies the critical parts of the application
and then recommends optimizations for each one of the these parts, including
data-flow transformations, concurrency data accesses related optimizations, and
acceleration recommendations.

Dependability Toolbox monitors the Security and Reliability level of the given
software applications. More specifically, it includes three sub-components: Quan-
titative Security Assessment evaluates the internal security level of an applica-
tion providing a high-level security indicator, Vulnerability Prediction identifies
places of security issues and Optimum Checkpoint Interval suggests optimum
checkpoint intervals for programs with loops [14].
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3.2 Refactorings Retrieval

The user will need an overall catalogue of the suggestions proposed by each
individual suggestion. As a result, upon invocation from the user interface, the
Trade-off Manager back-end sends requests to all 3 of the analysis toolboxes,
expecting distinct reports for the current project as responses.

3.3 Design Space Exploration

None of the individual toolboxes does take into consideration code qualities other
than the one it optimizes. To take meaningful decisions, however, the user will
need to evaluate all refactorings universally. Regardless of the source toolbox of
a suggestion, the displayed information should include its impact on all aspects:
energy, technical debt and security. From this point on, this information will be
referred to as ‘design space’.

Production of the design space is non-trivial, and approximate methods have
to be employed. Each analysis toolbox deals with extremely dissimilar aspects
of software (particularly taking energy into consideration). Moreover, it is hard
to provide a fine-grained estimation of a suggestion’s impact without actually
applying it to the code and repeating the analysis, and this holds true even for
individual toolboxes and their own suggestions and optimized qualities. Finally,
the approach should be as project- and platform-agnostic as possible.

To mitigate this, a common knowledge base has been set up. Anyone with
valid credentials can inspect and update this knowledge. The format chosen
is that of a look-up table. Each row represents an individual code refactoring
proposed by one of the analysis toolboxes (actual origin is not included for
universal treatment). To ensure agnosticity as regards project and platform, the
possible values of impacts are coarse-grained:

– Worsen
– No Impact
– Improve

Usage of such coarse categories is both a necessity and a valuable feature,
since it can be viewed as an entry point for the introduction of uncertainty. This
can be achieved, for example, with fuzzy logic. In the Trade-off Manager flow,
and after gathering all proposed refactorings from all the toolboxes, the look-up
table is queried for each of the suggestions. All matching entries are returned,
forming the final design space of the problem with which the decision-maker is
faced.

The next paragraphs present a more detailed analysis of the impact of each
individual Toolbox’s refactoring suggestions on the rest of the quality attributes.
A systematic approach based on empirical results obtained through a number of
experiments or found in the literature based on the inherent characteristics of a
refactoring was followed [15].
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Impact of Energy Refactorings on TD and Dependability. We selected
applications from two open source benchmark suites, namely Rodinia [16] and
Polybench[17], that have clearly documented test cases and execution scenarios.

The most popular energy optimization suggestions of the utilized Energy
Toolbox is Cache blocking and acceleration optimization. These are both appli-
cable in the selected applications. After analysing these applications with the
Energy Toolbox, we apply the proposed refactorings for optimizing Energy Con-
sumption. In order to evaluate the impact on the other two qualities, the follow-
ing metrics are utilized: Lines-of-Code (LOC) and Cyclomatic Complexity for
Maintainability and Num. of Security issues for Security.

Typical examples of Cache blocking (or Data-flow) optimizations are the loop
transformations that aim to improve the cache performance. In cases where the
Cache blocking refactoring was proposed by the Energy Toolbox, we applied the
optimization manually. Most of the optimizations are Loop tiling. The Com-
plexity increases from 10% up to 105% and LOC increases from 7% up to 50%
[18].

Following the same procedure, we applied the Acceleration optimization
(using CUDA). We observe that the LOC are increased from 1% up to 100%
while there is an increase of 0% up to 78% for Complexity. The application some-
times needs a large number of changes (even to the algorithm itself) for applying
acceleration, but on another analysed projects require simple restructuring (for
example, if the for loop is already written in a way that is parallelizable and
the kernel is easy to be developed). In some other cases, the first version of the
application was already written with high complexity and the refactorings did
not lead to more complex code.

According to these results, we might conclude that there is a clear negative
impact on Maintainability.

Cache-blocking has no direct impact on security as it makes small changes
in the loops. Regarding the acceleration refactoring, sometimes we observe an
indirect impact on software security After comparing the CPU and GPU versions
of some applications from the Rodinia benchmark suite, we observe changes in
the number of the Security issues. There are a lot of applications for which
we observed a negative impact on security. However, there are also cases in
which the number of security issues may be reduced. It is worth mentioning that
the measured impact is not due to the refactoring itself, but due to adjacent
changes in the application code [19], so we might claim that the energy-related
refactorings have no impact on security.

Impact of TD Refactorings on Energy and Dependability. Following
the same procedure described in the previous paragraph regarding Energy opti-
mizations impact, open source projects were selected and analysed by the TD
Toolbox. The two representative TD refactorings selected to be presented in the
context of this manuscript are the extract method that aims to solve the Long
method smell and the replace conditional with polymorphism.
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Extract Method is applied on Maven, PDFBox and SEMI software applica-
tions. The impact on Energy varies from 58% up to 500% and on Security from
74% up to 101%. In the most of the cases Energy is affected negatively but we
can not have a clear conclusion, while Security level remains the same for the
most cases.

Regarding the Replace Conditional with Polymorphism refactoring, we see
no impact on Security and a negative impact on Energy (from 130% to 560%).

Impact of Dependability Refactorings on TD and Energy. Following
the same procedure, a number of refactorings provided by the Dependability
Toolbox were tested in terms of their impact on Energy and TD. In most of the
cases, the security refactorings seem to have no to negative impact on the energy
consumption of software programs, while we observe a positive impact on the
Technical Debt [20].

Some representative Security refactorings that improve also TD are Null
Pointer, Exception Handling, Misused Functionality, Synchronization, String
Issues and I/O Issues (improving TD from 20% up to 60%). Their impact on
Energy is neutral. Some Security refactorings like Logging and Overflow checking
might slightly affect the Energy consumption negatively.

3.4 Visualization

The user would benefit greatly from an intuitive, friendly presentation of the
available decisions (i.e. the design space). An appropriate method would be to
treat each suggestion as a 2-dimensional vector in 3 distinct axis settings: Energy
vs. Technical Debt, Technical Debt vs. Security, Energy vs. Security.

Fig. 2. A sample depiction of 2 code refactorings

Figure 2 (pulled directly from the Trade-off Manager front-end) follows the
approach described above. The chart is informative and interactive. The user
can select any subset of the available refactorings for depiction.
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3.5 Implementation

The rest of the Section provides an overview of the user interface designed for the
proposed Trade-off Manager component. The front-end has been written with
use of the React2 framework. The back-end infrastructure is described in detail.
All the required information with regard to the micro-services being invoked,
APIs, and databases is provided.

Docker Infrastructure. Trade-off Manager follows a dockerized architecture.
Docker3 is a platform for packaging software applications in tiny environments
similar to, but better performing than, virtual machines (VMs). In the Docker
lingo, these environments are called containers. The benefit of using containers is
that they decouple any dependencies of the packaged projects with the platform
they run on. A container developed on a Linux system can as a result be executed
seamlesssly on Windows and vice-versa.

The functionality is divided in 2 sub-components:

– RefactoringsGatherer, which leverages existing APIs of the rest of the plat-
form in order to get the refactoring proposals from the individual toolboxes.

– RefactoringsVisualizer, which is responsible for rendering the design space
to the front-end. Please note the data dependency between the 2 sub-
components: unless RefactoringsGatherer has finished constructing the design
space, RefactoringsVisualizer has nothing to visualize

The front-end then performs the following API calls:

– The retrieval of all the information that is required to perform the subse-
quent call, returning an object that contains the URL of the analyzed project
repo, and toolbox-specific data provided manually from the user. More specif-
ically, the API data includes the URL that invokes this service, the Technical
Debt, Energy and Dependability reports that include each quality refactoring
recommendations.

– Queries to the design space look-up table in order to augment each refactoring
retrieved from calls of the previous step with quality impact information

Construction of the Design Space. The Trade-off Manager constructs
project-specific design spaces, whom the user can then explore. These design
spaces are a product of matching code refactoring suggestions with entries in
the look-up table described in Sect. 3.3.

From the technical perspective, this look-up table has been implemented as
a dockerized database endpoint managing a PostgreSQL4 database. PostgreSQL
is a very popular option for production-grade applications, providing security,
reliability, and an excellent community around it. A user can interact with our
database through API’s that inspect and/or modify it.
2 https://reactjs.org/.
3 https://www.docker.com/.
4 https://www.postgresql.org/.

https://reactjs.org/
https://www.docker.com/
https://www.postgresql.org/
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4 Potential Extensions

In the above sections we have presented a method for quantifying the trade-offs
inherent between heterogeneous code changes when considering more than one
non-functional requirements. Trade-offs, however, are not useful in themselves,
especially as the numbers of available refactoring options as well as those of
software qualities of interest increase. On top of that, trade-off magnitudes orig-
inating from defuzzified values cannot be accurate in the same degree for all
possible use cases.

Thus, in this section we propose two meaningful extensions to our method.

4.1 Application-Specific Trade-Offs

As a first step, we should depart from the static nature of our refactoring impact
model (lookup table), since its empirical one-off derivation most probably does
not describe all potential scenarios. We should instead compute all trade-offs
per project ; our static model could or could not be used as a form of a priori
knowledge, but what is certain is that the source code under inspection should
be either profiled or statically analyzed in order to retrieve a concrete view
of dependencies existing, for instance, between classes of objects (or between
modules, libraries, etc.). The field of change impact analysis [21] could prove
useful in this sense. A recent use of change impact analysis to control refactoring
is that of Mongiovi et al. [22], focusing on security considerations.

The output of this imagined component should be an updated lookup table
containing project-specific information.

4.2 Preference Encoding and Decision Making

We are interested in the pragmatic goal of utilizing discovered trade-offs in order
to improve a project’s software quality. The main problem here is that of quan-
tifying, as was done with trade-offs, a developer team’s preferences with respect
to each of the examined non-functional requirements. If this was done, then a
final ranking of available decisions (refactoring options, code changes) could be
easily derived; each option’s “value” would be a weighted sum of its trade-offs
multiplied with a set of weights, each representing the team’s degree of interest
to a particular quality.

In essence, what is described above is the field of Multiple-Criteria Decision
Making [23] (MCDM), which solves the central problem of encoding preferences
on a set of conflicting criteria. This is an all but abandoned field, with recent
published applications on energy [24], text classification [25], markets [26] and
other domains.

4.3 Forecasting Quality Evolution

A team might want to decide with a deep time horizon in mind. It is true, espe-
cially for open-source collaborations, that software quality is always evolving.
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A wise decision would thus take this evolutionary process into consideration.
Software evolution has and is still being studied in numerous works [27–29].

Provided a set of predictors (each one treating a separate quality), a simple
mechanism would then be to use its output to scale each option’s value accord-
ingly. A decision maker could then see how good or bad would each code change
pay off in X versions from now, if that change were to be implemented.

4.4 Prototype

It is our strong belief that application-specific, reliable trade-off quantifica-
tion coupled with a state-of-the-art MCDM algorithm and a software quality
forecaster would prove extremely useful for both researchers and practitioners.
One such prototype (though with a static lookup table for refactoring impacts)
was developed in the context of the European H2020 projects SDK4ED and
EXA2PRO. [13]5.

As an example, let us consider Fig. 3. Here we see the ranking of nine code
changes produced by an array of source code analysis tools, each one of which
focuses respectively on energy efficiency, technical debt and dependability6. This
ranking is the output of a state-of-the-art MCDM algorithm [30] that we repro-
duced in the platform’s backend. The “values” are real numbers expressing the
degree to which a change’s discovered trade-offs match the user’s preferences7

Fig. 3. Prototype code change values.

Last but not least, Fig. 4 showcases each change’s value evolution based on
a prototype quality forecaster’s output [31]. The potential usefulness of such a
projection in the future for each candidate code change is evident.

5 platform.sdk4ed.eu/.
6 Since this is a prototype, we do not intend to delve into further details. We use the

figures in this section as assistants to the reader’s intuition.
7 Preference declaration is trivial given an MCDM algorithm. The reader may study

[30] for the particular case that we implemented.

https://platform.sdk4ed.eu/


The Known Unknowns 351

Fig. 4. Prototype future code change values evolution.

5 Conclusion

This paper treats the problem of assigning quantitative trade-offs to heteroge-
neous code changes. This heterogeneity stems from the fact that different devel-
oper teams construct different (i.e. dependent on their products’ needs, their
members’ experience, etc.) descriptions of non-functional requirements.

More specifically, we demonstrated an empirical methodology for calculating
the fuzzy impact of refactoring on qualities such as energy efficiency, technical
debt and dependability. We showed a simple, intuitive way of visualizing this
impact in two-dimensional grids. We explicitly described the technical infras-
tructure employed, and proposed substantial extensions to our work. Last but
not least, we demonstrated some elementary, prototype implementations for said
extensions.

Acknowledgments. This work has received funding by the EU H2020 research and
innovation programme EXA2PRO under grant agreement No. 801015.
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Abstract. Nowadays, we witness an ever-increased number of applica-
tions deployed over Edge, Cloud and HPC infrastructures. This rapid
explosion of computing devices across the computing continuum poses
new challenges in terms of providing a power-efficient, secure and auto-
matic way for deployment of different applications in such heterogeneous
environments. Moreover, the need for performance efficient deployments
within such environments, has introduced the presence of hardware accel-
erators over the entire computing stack.

In this paper, we present SERRANO’s approach for providing effi-
cient HW accelerated deployments over edge-cloud infrastructures. First,
we give a brief overview of the SERRANO project, describing its goals
and objectives, providing a high-level overview of SERRANO’s platform
architecture and presenting the use-cases involved. Then, we describe
SERRANO’s approach for providing efficient HW accelerators by identi-
fying trade-offs between performance, accuracy and power consumption
and also demonstrate how SERRANO aims to automate the optimiza-
tion process through machine learning models in order to construct a
generic optimization heuristic to fine-tune programs for both GPU and
FPGA accelerators. Through some illustrative examples, we showcase
that by applying approximation and optimization techniques, we are
able to achieve an average decrease of 28% in power consumption for
FPGA devices and trade-off between performance and power usage for
GPUs, achieving up to ×1.21 speedups and 8% power improvement.
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1 Introduction

In recent years, emerging applications in Machine Learning, security or cloud
storage have achieved great success and have been among the most responsible
for the high demands in data-center or edge workloads. Different vertical sectors
with diverse requirements have gained traction and induced a rise to a number of
fundamental challenges that relate to the application deployment, the support of
heterogeneous systems and the provided security. According to several analytical
agencies, the global market for such cloud services will reach 332 billion USD in
2021 [1]. This is 50 billion USD more than 2020 and 100 billion USD more than
2019. Clouds are used in almost all high-tech industries: in software development,
in projects based on IoT, for big data analysis, etc. Many organizations have
already moved their workloads to the cloud. According to another research,
migrations to the public cloud has grown from 89% to 92% in the last three
years and over 80% of firms with more than 1000 workers use multiple cloud
platforms, while, by 2024, this percentage is expected to jump up to 90% [2].

Additionally, there is a movement to define an intent-based paradigm of oper-
ating federated infrastructures consisting of edge, cloud and HPC resources that
will make the process of application deployment automated across the various
computing technologies and platforms. The enormous compute needs of such ser-
vices and applications operating in the cloud requires joining different processing
units in a networked-based system such that each task is preferably executed by
the unit which is able to efficiently perform it. Heterogeneous computing rep-
resents a well established way to achieve further scalability in the computing
sector, while, at the same time service assurance mechanisms are required along
with a safety-critical and coordinated mechanism to adjust the required tasks.

A solution to overcome these problems and to fully align with the current
trends of the cloud computing sector is to introduce various specialized hardware
acceleration platforms. Such devices (e.g., GPUs, FPGAs) can achieve higher
performance than typical processing systems and also significantly higher per-
formance for the same power envelope [8]. The use of highly specialized units
designed for specific workloads can greatly enhance server or edge CPUs and
their power budget. Last, a cognitive orchestration of these devices can lead to
a single borderless infrastructure which can shrink the existing technology gaps.

In this paper, we present an overview of the SERRANO H2020 project
towards Transparent Application Deployment in a Secure, Accelerated and Cog-
nitive Cloud Continuum. SERRANO aims to introduce a novel ecosystem of
cloud-based technologies, spanning from specialized hardware resources up to
software toolsets, evaluated through three well-defined use cases in cloud storage
services, fintech and manufacturing. We focus on SERRANO’s approach for effi-
cient hardware acceleration in the edge-cloud computing continuum, by applying
device-specific optimizations and approximation techniques on FPGA and GPU
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devices. We describe SERRANO’s vision to apply such optimizations in an auto-
mated manner and leverage them for power-/performance-efficient application
deployments within the underlying platform. By employing a set of illustra-
tive examples, we showcase that by applying a set of optimization techniques
on accelerated kernels, we are able to trade-off between power and performance
efficiency both on GPU and FPGA accelerators, realizing SERRANO’s ambition
for dynamic, requirement-driven deployments on heterogeneous infrastructures.

2 The SERRANO Project

SERRANO1 aims to deliver a novel ecosystem of hardware- and software-
based technologies under the SERRANO platform, contributing to critical cloud
related areas, including: a) application deployment, b) resource interoperabil-
ity, c) privacy and security and d) cognitive and autonomous operation. SER-
RANO’s approach is expected to reduce significantly the design and development
time, through infrastructure agnostic application development, providing high
quality services that utilize efficiently the available resources, thus, boosting the
digital productivity. Below, we describe the project’s objectives, give an overview
of SERRANO’s architecture and briefly present the use-cases involved.

2.1 SERRANO Goals and Objectives

In the context of its mission, SERRANO aims to satisfy 6 concrete research
objectives, that are going be validated through several individual success indica-
tors (KPIs). Initially, SERRANO aims to define an intent-driven paradigm
of federated infrastructures, with edge, cloud and HPC resources. An
abstraction layer will automate the operation and the full exploitation of the
available diverse resources in order to simplify the developer’s workload. The
intent-driven feature of this layer will enable applications to express their high-
level requirements in an infrastructure agnostic manner and translate them to
infrastructure-aware configuration parameters.

On a second level, it ambitions to develop security and privacy mecha-
nisms for accelerated encrypted storage over heterogeneous and fed-
erated infrastructures. SERRANO will ensure GDPR compliant distributed
secure storage and data sharing, accessible at low latency with cryptographic
primitives and network coding techniques. This essential capability that protects
the content itself, complies with privacy implications for personal or confidential
information and enables HPC applications to offload their data to edge or cloud,
overcoming the local storage restrictions.

SERRANO targets to provide workload isolation and execution trust
on untrusted physical tenders as well. It desires to deliver a secure,
lightweight, and efficient framework that embraces interoperable microservices
in the cloud, the fog and the edge, providing specific solutions for the low-level
software stack.
1 https://ict-serrano.eu/.

https://ict-serrano.eu/
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Moreover, it focuses on providing acceleration and energy efficiency
at both the edge and cloud. SERRANO aims to introduce advanced “inline”
and “online” data sampling in order to decrease the amount of data offloaded
from edge/fog to cloud/HPC and therefore will develop a novel “smart sampling”
technique based on approximate computing for dynamic data packing of multiple
inputs into a single variable.

Furthermore, SERRANO attempts to develop an hierarchical architec-
ture for end-to-end cognitive orchestration and transparent applica-
tion over edge/fog and cloud/HPC infrastructures. To this end, SER-
RANO will develop intelligent and autonomous orchestration mechanisms that
will automatically determine the most appropriate resources to be used. It
will exploit multi-objective optimizations, graph theory, AI/ML techniques and
heuristics to design an algorithmic toolkit, aiming to provide different trade-offs
between optimality and complexity.

Finally, it visions to demonstrate the capabilities of the secure, disag-
gregated and accelerated SERRANO platform in supporting highly-
demanding, dynamic and safety-critical applications with 3 use cases
(UCs) across different domains with heterogeneous needs. The UCs include
secure storage for data protection, secure launching of ultra-large number
of fintech processing performing real-time operations, and advanced real-time
anomaly detection of manufacturing machines.

2.2 SERRANO’s Architecture Overview

The heterogeneity of distributed edge/cloud environments has revealed the
importance of efficient resource orchestration. When multiple applications
request different types of resources, meeting the requests in an optimal way
becomes a challenging task, particularly when the applications have high
resource demands. Heading to more complex infrastructures, the development
of intelligent and self-managed orchestration mechanisms is a key factor to opti-
mize resource utilization and meet the application requirements. SERRANO
aims to contribute to the aforementioned open issue by proposing a scheme for
end-to-end cognitive orchestration together with closed-loop control, based on
the principles of observe, decide and act.

SERRANO targets an orchestration system that manages the underlying
heterogeneous infrastructure at a more abstract and disaggregated manner com-
pared to the current state-of-the-art solutions. This is achieved through a hier-
archical architecture, consisting mainly of three components: a) the central
resource orchestrator b) a set of resource-hosted local orchestrators and c) the
telemetry framework. Figure 1 depicts the orchestrator’s architecture.

Each application submitted to the SERRANO platform, provides a set of
high-level requirements that describe the desired application state. The cen-
tral resource orchestrator being aware of the underline edge, cloud and HPC
resources and the current infrastructure state, decides the optimal placement of
the application. Based on AI/ML algorithms, this mechanism aims to satisfy the
user-defined requirements and efficiently use the underline infrastructure. When
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Fig. 1. SERRANO’s high-level orchestration architecture

the optimal placement is decided, the central resource orchestrator assigns the
workloads to the selected resources along with the desired performance state
and coordinates the required data movement. Then the control is passed to local
orchestrators that are responsible for the actual deployment based on the desired
performance requirements.

SERRANO resource orchestrator follows a declarative approach, instead of
an imperative one, for describing the workload requirements to the local orches-
trator. This approach provides several degrees of freedom to the local orches-
trator for serving in an optimal manner the request, satisfying both the central
orchestrator and the resources’ objectives (e.g. trade-off accuracy against power
for inference tasks that their accuracy constraint is over-satisfied). Finally, it is
evident that the service assurance provided by the central and local orchestrators
would not be possible without a telemetry framework that captures information
concerning the current infrastructure’s and applications’ state.

2.3 SERRANO’s Use-Cases

The performance of the SERRANO platform will be evaluated based on three
use-cases from different scientific domains. Each use case consists of challenging
case studies that will be deployed and tested on the SERRANO platform, show-
casing the platform’s capability to address multiple computationally intensive
problems, each one with varying requirements.

Use-Case 1: Secure Data Storage. The first use-case will be from the field
of security and distributed data storage. Its purpose is to demonstrate the plat-
form’s capacity for high-performance, yet secure data storage across cloud and
edge devices. For this case, SERRANO aims to explore network coding tech-
niques that fragment the encoded data in multiple parts, allowing the encoded
pieces to be stored in distributed locations, and thus provide a secure storage
solution. For SERRANO, the computing ecosystem consists of data center and
edge nodes that will perform high-performance computations for the encoding
and decoding tasks and transfer the data pieces securely across heterogeneous
environments without compromising data integrity and privacy.
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Use-Case 2: High-Performance Fintech Analysis. The second use-case
belongs to the finance sector, and more specifically in the domain of portfolio
management and analysis. This use-case will underline the platform’s capability
for high-performance processing of various AI algorithms for investment manage-
ment applications in a secure computing environment. Through the SERRANO
platform, the automatic management of personalized portfolios and the market
prediction mechanisms will be accelerated, scaling-up the overall efficiency by
performing precise predictions and increasing the number of managed portfolios.
The enhanced security will be fulfilled by the transparent execution of different
tasks in multiple devices, allowing processes to switch dynamically among dif-
ferent cloud and edge nodes, and hence decreasing the platform dependency.

Use-Case 3: Machine Anomaly Detection in Manufacturing Environ-
ments. The third use-case belongs to the machine anomaly detection domain.
Specifically, high-frequency sensors generate data that are processed in real-time
in order to automatically detect anomalies in machines. However, due to the
large volumes of the acquired data, edge devices have limitations for analyzing
and detecting the faulty parts. Through this use-case the platform’s capacity to
analyze large volumes of data and perform high-performance real-time compu-
tations will be demonstrated. In the context of SERRANO project cloud devices
are planned to be exploited for storing and performing anomaly detection algo-
rithms on the acquired data. Moreover, SERRANO’s orchestration mechanisms
aim to move data across different platforms in order to achieve real-time anoma-
lies detection through high-performance computations.

3 Efficient Acceleration in Heterogeneous Architectures

SERRANO hardware infrastructure exposes a wide range of acceleration devices
for both edge and cloud environments. Moving towards the transparent utiliza-
tion of heterogeneity, SERRANO is enabled to manage and orchestrate accel-
erated kernels, to optimally meet their requirements (e.g. accuracy, latency).
In addition, by providing a source-to-source kernels’ transformation mechanism,
SERRANO aims to automatically apply device specific acceleration and resource
optimizations in order to minimize developers’ effort and enable efficient utiliza-
tion of the underline infrastructure.

3.1 Target Hardware Infrastructure

Heterogeneous hardware architectures have increased their range of practical
applications especially in the cloud and edge domains. SERRANO will intro-
duce a novel deployment model of accelerators both in the cloud and edge sectors
which will influence the use of parallel and distributed algorithms. FPGAs and
GPUs as hardware platforms will be attached directly in servers or shared over
the network in edge workloads. The SERRANO HW infrastructure is expected
to reduce the power and execution times of the assigned tasks by extending the
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existing development tools and providing novel schemes for scheduling, commu-
nication, and synchronisation with the programmable accelerators.

The aim is to virtualize the available hardware accelerators such as Xilinx
Alveo FPGAs or Nvidia T4 GPUs in the servers through an efficient device pass-
through scheme which will limit the overheads and isolate the devices in each
different guest operating system (OS). Overall, a novel VM appliance model for
provisioning of data to shared accelerators will be introduced scaling intelligently,
automatically and transparently from edge (local cloud) to public cloud.

3.2 Optimization Techniques for Efficient FPGA Acceleration

FPGA devices have been proven to be a promising acceleration alternative when
programmed with optimal configuration [7]. Designing hardware for FPGAs can
be performed at varying levels of abstraction with the commonly used being
the register-transfer level (RTL) and the algorithmic level. These methodologies
differ; RTL (i.e. VHDL, Verilog) is used for circuit-level programming while
algorithmic level methodologies such as High Level Synthesis (HLS) are used for
describing designs in a more abstract and user-friendly way [5].

Device Specific HW Optimizations: SERRANO will leverage HLS tools
in order to provide accelerated kernels for the computationally intensive tasks
of the use cases. Employing HLS for FPGA design, enables a faster and more
flexible development process compared to RTL. By adding different directives
on a C/C++ or OpenCL code, users are able to instruct the HLS compiler to
synthesize kernels. In particular, the kernels will be designed by using the Xilinx
Vitis framework [3] which provides a unified OpenCL interface for programming
edge (e.g. MPSoC ZCU104) and cloud (e.g. Alveo U200) Xilinx FPGAs. In this
manner, the kernel designing process is simplified and thus more effort can be put
to the design space exploration (DSE) phase which targets the performance opti-
mization with respect to the architecture and resources of the available FPGAs.
It is evident that the kernel acceleration process is device specific, meaning that
different HLS pragmas should be applied to the same application when it is
targetted to different FPGAs (e.g. in loops with multiple iterations, different
unrolling factors should be applied for a U200 and a ZCU104 FPGA, due to the
different available resources).

Approximate Computing Techniques for FPGAs: In order to effi-
ciently use the FPGA resources of the SERRANO infrastructure and minimize
the power consumption, approximate computing techniques (ACT) will be per-
formed on the accelerated applications. ACTs are used in computationally com-
plex, error-resilient applications, trading-off algorithmic performance with power
consumption and resource utilization. Over the years, various ACTs were pre-
sented in the literature, targeting different layers of the computing stack [18].
SERRANO mainly focuses on software based ACTs, such as precision scaling,
loop perforation and approximate memoization, as they can be easily applied to
kernels.

Precision scaling [9,11] is a technique that changes the bit-width of input
or intermediate operands to reduce storage and computing requirements. Xilinx
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(a) Alveo U200 (b) MPSoC ZCU104

Fig. 2. Accuracy and power consumption vs decimal bits for Gaussian Naive Bayes
algorithm in U200 (a) and ZCU104 (b) platforms

[4] provides tools and libraries that support a wide range of fixed-point preci-
sion data types, enabling the creation of power and resource efficient designs.
Figure 2a and 2b show the relation between accuracy and power for different
bit width approximations, for the Gaussian Naive Bayes algorithm on U200 and
ZCU104 platforms. As the figures depict, for 8 bit approximation an average
decrease of 28% in power consumption can be achieved without sacrificing accu-
racy. Loop perforation [12,16] is another ACT that selectively skips entire loop
iterations to reduce computational overhead and hence resource and power con-
sumption. Finally, approximate memoization [17,19] stores the results of expen-
sive function calls for later use and returns the cached values when similar inputs
reoccur. By replacing functions that are complex to implement on hardware with
a simple look-up table, memoization leads to significant resource and power sav-
ings.

3.3 Optimization Techniques for Efficient GPU Acceleration

In order to provide acceleration and energy efficiency at both the edge and the
cloud as visioned, SERRANO makes use of GPU accelerators in order to meet
the desired requirements. The project aims not only to accelerate the provided
use cases, but to study and apply several parallel kernels’ optimizations in order
to tune them in terms of both performance and power efficiency. Therefore, to
achieve applications’ close-to-peak efficiency, several optimization techniques are
applied.

Approximate Computing Techniques for GPUs: SERRANO aims to
apply approximation techniques in order to further improve its applications’
efficiency. Such as the FPGA case, precision scaling will be applied by executing
the kernels on after-Volta architecture featured Tensor Cores [15], instead of
CUDA cores, in order to enable mixed-precision computing and provide efficient
implementations. Driven primarily by the need for training in deep learning,
Volta, Turing and Ampere GPU architectures provide specific programmable
matrix multiply-accumulate units able to deliver a theoretical peak performance
of 110 teraFLOP/s in FP16-TC. More specifically, the V100 GPU (used for the
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SERRANO purposes) features 8 Tensor Cores per streaming processor for a total
of 640 Tensor Cores where each Tensor Core can compute D = A×B + C per
clock cycle. A and B must be in FP16, but C and D can be in either FP16
or FP32. The multiplication occurs in FP16 and is accumulated in FP32 with
other products and therefore is able to further accelerate operations using the
powerful tool of low-precision floating-point arithmetic.

Furthermore, SERRANO manages to trade accuracy for latency and power
efficiency by perforating thread iterations. Such as in the loop perforating tech-
nique in loops of serial programs, launching GPU kernels with fewer threads and
processing a part of the output result instead of the whole, promises significant
gains in both performance and power consumption by loosing accuracy.

Kernel’s Block Coarsening Transformation: Block coarsening is an
optimization for parallel applications such as GPU programs. It refers to the ker-
nel transformation that merges together the workload of 2 or more thread blocks
and therefore reduces their total number by leaving the number of threads per
block the same. Consequently, it merges multiple neighboring blocks in order to
deal with the problems associated with extensive fine-grained parallelism.

Kernel’s Thread Coarsening Transformation: In contrast with block,
thread coarsening transformation fuses together 2 or more neighboring threads
within the same block and can be proved beneficial on several parallel programs
and architectures. In that case, it reduces the number of threads per block,
while leaving the number of launched blocks the same. It is able to increase the
amount of work performed by each kernel by replicating the instructions in its
body, while it reduces the number of instantiated threads at the runtime.

Insights about Thread VS Block Coarsening Optimizations: Similar
but with different impacts, both the block and thread coarsening transformations
are able to improve efficiency of various parallel applications on different archi-
tectures. While they both reduce the total number of each kernel’s threads, they
distribute them in a different way across GPU’s resources and thereupon affect
kernel’s execution at runtime differently. Listing 1.1 depicts a simple squared
kernel written in CUDA, while Listings 1.2 and 1.3 demonstrate how it is trans-
formed after block and thread coarsening transformation accordingly. Integer bc
and tc parameters, named as BCF and TCF for the rest of the work, constitute
an effective design parameter and refer to the number of blocks and threads
merged together accordingly.

From an architectural perspective, GPUs map blocks to SMs (multiproces-
sors) and threads grouped in warps to CUDA cores. Therefore, reducing blocks
per kernel with block coarsening, reduces the number of occupied SMs, while
thread coarsening reduces the number of threads per block and therefore the
number of warps scheduled by each SM, while the number of SMs occupied by
the kernel remains the same. Figure 3 depicts a simplified architectural view of
mapping between software and hardware resources when a kernel is launched
after block and thread coarsening transformation.

Even though both transformations attempt to improve parallel applications’
efficiency, their impact seems to highly depend on exogenous factors such as
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1 g l o b a l void square ( f l o a t ∗ in , f l o a t ∗out ){
2 i n t g id=blockIdx . x∗blockDim . x+threadIdx . x
3 out [ g id ]= in [ g id ]∗ in [ g id ] ; }

Listing 1.1. Original squared CUDA kernel

1 g l o b a l void square bc ( f l o a t ∗ in , f l o a t ∗out , i n t bc ){
2 i n t g id=(blockIdx . x∗bc )∗blockDim . x+(threadIdx . x∗bc )
3 f o r ( i n t index=0; index<bc ; index++)
4 out [ g id+index ]= in [ g id+index ]∗ in [ g id+index ] ; }

Listing 1.2. Block coarsened squared kernel

1 g l o b a l void squa r e t c ( f l o a t ∗ in , f l o a t ∗out , i n t tc ){
2 i n t g id=blockIdx . x∗( blockDim . x∗ tc )+(threadIdx . x∗ tc )
3 f o r ( i n t index=0; index<tc ; index++)
4 out [ g id+index ]= in [ g id+index ]∗ in [ g id+index ] ; }

Listing 1.3. Thread coarsened squared kernels

device architectures, type of kernels, input size and data types. In order to high-
light the difference between these transformations and their impacts’ variation
through different input sizes, we apply both optimizations on syr2k, a linear
algebra CUDA kernel hosted in Polybench GPU Suite [10]. Polybench initially
launches syr2k kernel with 2 dimensional thread blocks with total 1024 threads
each ( blockDim.x= 32, blockDim.y= 32) while we apply the transformations
for 1, 2, 4, 8 and 16 factors for block and thread coarsening. The final trans-
formed kernel is evaluated for 2 different input sizes (512 ×512 and 1024 ×1024
fl. point input matrices) on a 128-core NVIDIA Maxwell GPU featured in Jetson
Nano Development Kit and their experimental results are presented in Fig. 4.

It is clear, that from Fig. 4, we observe trade-offs between performance and
power consumption that vary through both transformations and input sizes.
More specifically, for 512 × 512 input matrices, all the block coarsening factors
seem to improve performance and degrade power efficiency compared with the
initial kernel, while thread coarsening presents a more complicated behaviour
with 2, 4 and 8 TCFs to provide the most efficient solution from the perfor-
mance perspective with big losses in power consumption. On the other hand,
for 1024 × 1024 input matrices, 2, 4 and 8 BCFs seem again to boost perfor-
mance by burdening the power efficiency, while thread coarsening degrades per-
formance and improve the power for big TCFs. Finally, we clearly discover that
for small and big input matrices, both of the optimization techniques deliver an
improvement in performance with ×1.212, ×1.216, ×1.044 and ×1.033 speedups
on Figs. 4a, 4b, 4c and 4d respectively. For the case of power, only thread coars-
ening transformation (for TCF = 16) delivers an optimal solution, reducing by
110 mW the initial kernel’s power usage.
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Fig. 3. Block and thread coarsening transformations from hardware perspective

(a) 512x512 syr2k (b) 512x512 syr2k (c) 1Kx1K syr2k (d) 1Kx1K syr2k

Fig. 4. Block (a,c) and thread (b,d) coarsening’s latency and power trade-offs for syr2k
kernel for various input sizes on 128-core NVIDIA Maxwell GPU

3.4 Automatic Optimization Heuristics

Employing fine-tune implementations on both GPU and FPGA accelerators
enables performance and power efficient executions, meeting the SERRANO’s
objectives set in Subsect. 2.1. However, studying optimization problems and
building hand-written heuristics constitutes a time consuming and demanding
task, that often leads to suboptimal solutions. Selecting and tuning manually
appropriate features is a difficult task even for human experts, mainly because
of the large design decisions space and its variation through different hardware
devices. Hence, accurate automatic optimization heuristics are necessary for deal-
ing with the complexity and diversity of modern hardware and software, in order
to avoid time loss and inaccurate code transformations.

SERRANO aims to simplify this optimization process by building automatic
machine learning heuristics able to predict optimal decisions based on represen-
tative features of unseen programs. There are several works constructing auto-
matic heuristics for optimization of either serial or parallel programs. Wang et
al. [20] use machine learning techniques to optimize applications for multi-cores,
while Magni et al. [14] were the first to predict the optimal thread coarsening
factor for OpenCL kernels, based on code’s static features. Finally, based on their
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Fig. 5. Generic view of SERRANO’s automatic optimization heuristic

works, Cummins et al. [6] were the first to make use of Deep learning models
to automatically extract kernel’s representative features to be fed to their pre-
dictive model for optimal decisions of parallel optimization problems. However,
to our knowledge, there is no published work to address automatic optimization
transformations as universally as SERRANO aims to do.

In contrast to previous works that build heuristics for specific optimiza-
tion problems and processors, SERRANO ambitions to construct an end-to-end
machine learning based heuristic to automate various applications’ optimiza-
tions for both GPU and FPGA accelerators. Figure 5 gives a intuitive view of
how SERRANO’s model will be constructed and its several processing steps.

At first, applications’ source codes are planned to be fed into the model
as training inputs, where an automatic source-to-source compiler is responsible
for converting them to accelerator compiler-compatible representations (CUDA
and HLS for our case). Afterwards, through feature engineering, the model will
extract the representative code’s features in order to feed them to the model for
the learning process. Finally, new unseen programs are provided to the trained
model in order to automatically make its decisions about accelerators’ optimiza-
tions problems and provide fine-tuned kernels in terms of both time and power
requirements.

3.5 Hardware Accelerated Deployments Within SERRANO

The source-to-source transformation will provide a library of kernels for the
computationally intensive tasks of each use case, targeting GPUs and/or FPGAs.
Furthermore, different versions of the aforementioned kernels will be produced by
applying thread/block coarsening and approximate computing techniques for the
GPU and the FPGA case respectively. This library will provide several degrees
of freedom to the SERRANO orchestration framework for optimally meeting the
application requirements and efficiently using the underline infrastructure. This
approach differentiates from former state-of-the-art orchestration schemes [13]
that specify the exact resources an application requires.
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As it was mentioned in Sect. 2.2, each use case application submitted to the
SERRANO platform, will provide a set of high level requirements that describe
the desired application state. The central orchestrator, based on the current
infrastructure state acquired from telemetry, will decide whether the computa-
tionally intensive task of the application will be mapped on a particular GPU
or FPGA. Then the application and the specifications are forwarded to the
local orchestrator of the selected device. Local orchestrator, based on the cur-
rent device and application state, is able to change between different versions
of this kernel (different block coarsening factors, different bit-width approxima-
tions etc.) in order to satisfy the application requirements and optimally use the
underline resources.

4 Conclusions and Future Work

In this work, we presented an overview of the SERRANO H2020 project, focusing
on the efficient deployment of HW accelerated kernels on the edge-cloud com-
puting continuum. SERRANO aims to create an abstraction layer that will fully
exploit the available hardware resources and automate/orchestrate their use.
The overall hardware acceleration will be performed in a holistic and automated
manner overcoming the existing platform barriers stemming from the hetero-
geneity of computing units. The efficient utilization of accelerators in both edge
and cloud applications will significantly improve the performance and power effi-
ciency of the target workloads while at the same time novel transprecision com-
puting mechanisms will be exploited to examine the accuracy versus resource or
speed tradeoffs. Finally, as a future work, SERRANO aims to develop new key
concepts and approaches to cloud infrastructures that aim to close existing tech-
nology gaps and aspires to have strong innovation potential in a wide number
of real-world applications from different markets.
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Abstract. The complexity of systems continues to increase rapidly,
especially due to the multi-level integration of subsystems from different
domains into cyber-physical systems. This results in special challenges
for the efficient verification and validation (V&V) of these systems with
regard to their requirements and properties. In order to tackle the new
challenges and improve the quality assurance processes, the V&V work-
flows have to be documented and analyzed. In this paper, a novel app-
roach for the workflow modelling of V&V activities is presented. The
generic approach is tailorable to different industrial domains and their
specific constraints, V&V methods, and toolchains. The outcomes com-
prise a dedicated modelling notation (VVML) and tool-support using
the modelling framework Enterprise Architect for the efficient documen-
tation and implementation of workflows in the use cases. The solution
enables the design of re-usable workflow assets such as V&V activities
and artifacts that are exchanged between workflows. This work is part
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of the large scale European research project VALU3S that deals with
the improvement and evaluation of V&V processes in different technical
domains, focusing on safety, cybersecurity, and privacy properties.

Keywords: Verification and validation · Safety · Cybersecurity ·
Privacy · Automated systems · V&V workflows · V&V tool chains

1 Introduction

In complex software-intensive systems, analytical quality assurance activities,
especially verification and validation (V&V), on different levels have become
crucial for achieving high product quality. The resulting systems have to fulfill
a wide range of stakeholder requirements. Depending on the concrete properties
to be assessed and the domain of the system being developed, different V&V
methods and tools are applied. The underlying V&V process plays a key role for
the efficiency of the quality assurance strategy and its implementation as a tool
chain in the project. Workflows of the V&V activities have to consider multiple
aspects of the development and quality assurance process. V&V workflows are
closely linked to the requirements and constraints of the corresponding projects
and use cases, as well as the V&V framework, methods and tools that are used.

The remainder of the paper is structured as follows: The VALU3S project
with its objectives is introduced in Sect. 2. Section 3 summarizes goals and first
results of the different work packages in the project. The workflow modelling
approaches with its notation and tool-support is introduced in Sect. 4. Finally,
Sect. 5 summarizes the main conclusions.

2 The VALU3S Project

The ECSEL JU (Joint Undertaking) project VALU3S focuses on the V&V of
cyber-physical automated systems with respect to safety, cybersecurity and pri-
vacy (SCP) requirements. The project aims at the design and implementation
of V&V methods, tools and tool chains that reduce the time and effort needed
to assure the SCP requirements [1,2]. The main assets of the project and the
correlating work package (WP) numbers are illustrated in Fig. 1.

This paper reports on the current status of the activities connected to cre-
ation and detailing of V&V workflows. VALU3S also aims to create and evaluate
a multi-domain verification and validation framework, which facilitates the eval-
uation of automated systems from component level to system level. This way, the
project provides practitioners with detailed information about all components
involved in the V&V process. Such information is then used to facilitate the
V&V process through the identification of V&V tools, concepts and processes
used in different application domains targeted by the project. These domains are
automotive, agriculture, railway, healthcare, aerospace, and industrial robotics.

In order to ensure and show the broad applicability of the results (framework,
improved methods and tools, etc.), demonstrators will be built from the 13 use
cases selected in the project from the target domains.
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Fig. 1. VALU3S project assets

2.1 Project Objectives

The high-level objective of the project is to design, implement and evaluate
state-of-the-art V&V methods and tools that reduce the time and cost needed
to verify and validate automated systems with respect to SCP requirements. In
order to achieve this objective, the following sub-objectives are defined and are
planned to be followed-up on during the execution of the project:

– Objective 1. To develop a Multi-layered framework enabling more effective
verification and validation

– Objective 2. To overcome the SCP gaps and limitations of cyber-physical
systems

– Objective 3. To present a novel, standards compliant V&V workflow that is
generic to reference methods in selected cyber-physical domains

– Objective 4. To demonstrate, verify and validate the usefulness and wider
acceptance of the proposed framework by realistic pilots

– Objective 5. To suggest and validate new as well as state-of-the-art evaluation
scenarios for safety, cybersecurity and privacy evaluation

– Objective 6. To develop and improve V&V tools and evaluation criteria
– Objective 7. To revisit and identify the weaknesses of relevant safety and secu-

rity standards and develop a concrete strategy to influence the development
of new standards

– Objective 8. To present guidelines for end users and practitioners as well as
to disseminate the project results aiming to increase the awareness on the
importance of conducting SCP V&V.

Note that multiple KPIs (key performance indicators) have also been defined
to facilitate the monitoring of obtaining the project objectives. Nine of the KPIs
defined are used to monitor the project’s progress from the technical point of
view, while multiple other KPIs are defined to monitor the project’s impact
through conducting dissemination (8 KPIs), exploitation (7 KPIs), standardisa-
tion (1 KPI), and communication (8 KPIs) activities.
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3 Project Structure and Work Packages

VALU3S is structured into six technical work packages and one management
work package. The following sub-sections describe goals and first results from
technical work packages, covering the industrial use cases, the multi-dimensional
framework, the V&V method library, the systematic evaluation, and the dissem-
ination and exploitation activities.

3.1 Industrial Use Cases in VALU3S

In WP1, 13 use cases were described in detail, covering all six domains of auto-
motive, agriculture, railway, healthcare, aerospace, and industrial robotics. Some
domains include a single use case (e.g., Aircraft engine controller in the domain
of aerospace), while others have multiple (e.g., Intelligent Traffic Surveillance,
Car Teleoperation, Radar system for ADAS in the automotive domain).

For each use case, several evaluation scenarios, SCP requirements, and test
cases were defined and collected in repositories: The evaluation scenarios encom-
pass a high-level classification of the underlying test requirements and a descrip-
tion of what needs to be evaluated and why. The SCP test requirements define a
required behavior of a system in a corresponding scenario and will be the basis
the systems and demonstrators will later be verified and validated against. The
test cases are derived from the evaluation scenarios and test requirements and
describe how a test of a certain scenario should be conducted, with regard to
safety, cybersecurity and privacy requirements.

The test cases were then mapped on the multi-dimensional framework that
was developed in WP2. The test case descriptions were expanded to include
references to other framework elements, namely the V&V methods to be used
(previously defined in WP3), the components that are tested, and relevant eval-
uation criteria (as defined in WP5).

In total 57 evaluation scenarios, 239 requirements, and 192 test cases were
defined in WP1. To find similarities and possibly synergies between scenarios,
requirements, and test cases, a commonality evaluation was conducted, identi-
fying common points across all use cases. This plays an important part in the
establishment of a real multi-domain V&V framework and will be taken advan-
tage of during the demonstrator implementation.

3.2 Multi-dimensional V&V Framework

The main objective of WP2 is to create a multi-dimensional layered framework
for V&V of automated systems with respect to SCP requirements. The frame-
work will be represented as a web-based repository where all elements of the
framework will be stored. Taking as input the VALU3S framework, the Web
repository is intended to serve as a searchable catalogue of V&V methods appli-
cable to specific domains and application scenarios. The repository is planned
to be updated throughout the course of the project to take into account all
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the outputs of the project. To this end, the first step is to design a multi-
dimensional framework defining a clear structure around the components and
elements needed to conduct V&V processes through identification and classifi-
cation of evaluation methods, tools, environments and concepts that are required
to verify and validate automated systems with respect to SCP requirements. The
second step is to develop a web repository based in the multi-dimensional frame-
work to store the V&V information created by each of the Use Cases and tasks
of VALU3S project. The last step of WP2 is to populate the web repository with
the information regarding V&V activities carried out in the project. The Web
repository will be populated with the test cases and requirements specification
detailed in WP1, V&V methods in WP3, V&V tools identified and developed
in WP4 and the evaluation results of the V&V process in WP5. The repository
will store also main WP outputs such as V&V methods, processes and tools.

The framework specifies which data related with each V&V activity must be
collected and defines the data format. Through a structured classification of the
components required for the V&V of automated systems, the framework pro-
vides practitioners with detailed information about all components involved in
the V&V process. That information facilitates the V&V process through identi-
fication of state-of-the-art V&V methods, tools and processes used in different
domains, as well as the application of those methods to use cases. The framework
is therefore a key instrument to achieve the main objective of the project, which
is the design and development of V&V methods and tools that shorten time and
lower cost of V&V processes. In order to describe the design and structure of the
V&V multi-dimensional framework, a meta-model as a UML class diagram has
been created with the V&V methods as its central elements. These methods are
categorized using the dimensions, by means of many-to-one and many-to-many
relationships between the V&V method entity and the various dimensions. The
framework currently has 8 dimensions and is also layered as the evaluation pro-
cess may include multiple alternatives to choose from in each of the dimensions,
see Fig. 2.

Fig. 2. VALU3S multi-dimensional layered framework
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3.3 V&V Method Library

In the project WP3 focuses on developing new methods, method improvements,
and innovative combinations of methods for V&V. In a first step, fifty-three V&V
methods have been identified, described and characterised [3]. The methods fall
into the following (not strictly disjoint) categories:

1. Injection: introducing some phenomenon in a system to analyse its response.
2. Simulation: studying the behaviour of a model of a system.
3. Testing : checking system execution under certain conditions before operation
4. Runtime verification: evaluating system execution during operation.
5. Formal analysis: for V&V methods with a mathematical basis.
6. Semi-formal analysis: for V&V methods that exploit some structured means

but without a full mathematical basis.
7. Informal analysis: for V&V methods that do not follow any predefined struc-

ture or have mathematical basis.

They were analysed for improvement potential from two directions: a) known
limitations and weaknesses of the methods and b) needs of the use cases that are
currently not sufficiently addressed by the methods. This analysis led to a set of
400 gaps that could be addressed. The gaps fall into one of nine types: Functional-
ity, Accuracy, Scalability, Deployment, Learning Curve, Reference Environment,
Costs, Lack of Automation, and Standards. Figure 3 shows the distribution of
gaps over these gap types and over the method categories.

Fig. 3. Identified gap types distributed over method categories
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Realistically, only a sub-set of gaps will be successfully solved, but a first col-
lection of planned method improvements and new method combinations already
led to sketches for 37 method improvements and 4 new method combinations,
addressing 145 of the gaps. The methods and their implementations into tools
form the building blocks for the V&V work-flows blocks. But there are also
method-internal flows that need to be documented and communicated.

3.4 Demonstration and Evaluation

The VALU3S project is use case driven which means that improvement in engi-
neering processes, especially their V&V parts, is motivated by real problems from
industry and will be demonstrated on real development and verification and val-
idation. Some of the designed V&V workflows or their parts will be shared by
several use cases targeting some commonalities among them. The commonali-
ties are either in the same domain, namely but not limited to detecting objects
using radar in traffic surveillance and in an ADAS system, or across domains like
remote control of a car (automotive domain) or a robot (agriculture domain).
These workflows can share the same V&V approach using the same toolchain. On
the other hand, there is also diversity in engineering processes which comes from
different product-specific requirements, the size of engineering team, and/or the
team’s level of expertise of V&V methods. Improvement of V&V can be achieved
by different ways following different V&V workflows.

Improvement of V&V can directly target the quality of developed product
and/or the quality of used process to create the product. These two approaches
are closely related. By utilising a new verification method which will require more
effort in the V&V process, one can uncover previously unknown bugs leading to
better quality of a product; on the other hand, by applying automated tools, the
effort in V&V can be lowered while gaining the same results. The design and
development of V&V workflows and tool chains will be adjusted to the needs of
use cases focusing on improving the quality of their V&V.

Since quality of a product and a process are related and product- and team-
specific, there is a need for objective criteria for collecting feedback from the
evaluation of the improvements. In WP5, several criteria are provided aiming at
different aspects of quality of a product and overall effort spent in V&V. Some
of these criteria are already used in practice for years, but most of them focus
on some specific aspects and are unable to provide objective measurements. The
evaluation of improvement should combine all the parameters of quality. There
are two lists of criteria proposed for the evaluation. One set of criteria are used
for measurement of the quality of a product focusing on safety, cybersecurity, and
privacy attributes. The other criteria focus on the measurement of improvement
of the V&V process.

The set of criteria targeting SCP attributes include 17 different evaluation
criteria, each of which uses different metrics or items to measure. The most
commonly used criterion is the number or ratio of fulfilled product requirements
in VALU3S, the criterion is used or planned to be used by 9 out of 13 use cases.
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There are also 7 completely new criteria previously not documented or defined
before.

The set of criteria used for measurement of a V&V process includes 13 eval-
uation criteria. The most commonly used criterion in practice focuses on the
workforce needed for the engineering phases (overall 7 use cases in VALU3S).
There are 4 new criteria focusing on time, cost, and effort spent on V&V pro-
cesses directly or indirectly (see Table 1).

Table 1. Overview of new evaluation criteria

Evaluation criteria for SCP Evaluation criteria forV&Vprocess

Likelihood of faults and attacks

Potential impact of incidents and attacks

Reliability measures of decisions

Number of attack/incident typologies exam-

ined

Accuracy of simulated sensor output

Simulator environment quality

Simulator environment functionality

Time of test execution

Joint management of SCP requirements

Reduced cost and time for work on certifica-

tion process and functional safety

Workforce required to the user for

preparation and running the tool

3.5 Dissemination, Exploitation, and Standardization

WP6 of the project is concerned with ensuring that the work and results
of VALU3S are properly conveyed to the target stakeholders and audiences,
which include industry and academia members who work on the V&V of auto-
mated systems, and standardization bodies that can benefit from the project’s
outcomes. For that, the several tasks of the work package have planned and
defined the necessary activities focused on dissemination, training, exploitation,
standardization, and communication that will guarantee the aimed impact of
VALU3S’ results. The implementation of the plans has already made consider-
able progresses and the first outcomes are described below.

In terms of dissemination and training, the main activities were concerned
with the implementation of the internal communication channels, the defini-
tion of publication rules, processes, KPIs, and the monitoring of dissemination
actions. In terms of training, two training sessions consisting of 11 presentations
covering various V&V methods identified and classified under the activities of
work package 3 have been organized (the videos of the presentations were made
publicly available in the project’s YouTube channel [16]).

In what concerns exploitation, most of the effort has been directed towards
the collection of the necessary information that facilitates identification of
exploitable results, the means of exploiting these results, the target stakeholders,
and establish the plans to implement the exploitation strategy. To measure the
effectiveness of the actions performed within the project, KPIs have been defined
for that purpose.
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In the context of standardization, the focus was given to standards and stan-
dardization initiatives related to the work in VALU3S. For that purpose, a survey
was designed based on a list of initially identified standards with the objective of
collecting further relevant standards and start the evaluation of relevant meth-
ods, tools and approaches related to the work planned for the project. After a
detailed analysis, a set of initial standards have been defined as the primary
focus of the project.

Finally, for communication purposes, the focus was given to relevant actions
like implementing blog articles with high-level technical content, production of
communication materials and, importantly, setting up and triggering the actions
for the creation of liaisons with other related R&D projects in order to maximize
the impact of dissemination and communication activities. Communication in
the project’s social media channels has also been a key activity that includes
regular posts of partners profiles, announcement of new project publications,
and also videos related to activities in the project.

4 Modelling of Verification and Validation Workflows

The efficient conduction of software development and quality assurance activities
in complex projects require their systematic description and modelling including
their sub-activities, execution steps, and work products that they process and
produce and the provision of appropriate tool support for executing the activi-
ties. In WP4, a generic V&V workflow design approach and modelling language
has been developed to allow tool-supported and highly automated instantiation
to specific industrial use cases and implementation as concrete tool chains. The
solution have paved the way towards the efficient evaluation and optimization
of V&V workflows and tool chains for specific quality properties. The activ-
ity has been performed in close cooperation with the V&V method library to
support the systematic description, extension, and gap analysis of V&V meth-
ods. The following sub-sections give a general introduction into workflows, the
project requirements for V&V workflows, and the VALU3S solution assets with
the VVML modelling notations and the tool-support for workflow modelling.

4.1 Introduction into Workflow Modelling

A process workflow is an orchestrated and repeatable pattern of activities,
enabled by the systematic organization of resources into processes that pro-
vide services or process information. It consists of sequences of operations and
supports a user task [13]. Process workflows refer to a series of activities or tasks
that need to be completed sequentially or in parallel to achieve a business out-
come. Process management is about how to create, edit and analyse predictable
processes that improve the core of a business.

Basically, a workflow is a sequence of tasks that processes a set of data. Any
time data is exchanged between systems and humans, a workflow can be defined.
In general, the process is non-variant and proceeds in a sequence determined by
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actions or pre-defined business rules. In a standard workflow, with the automa-
tion of procedures where documents, information or tasks are passed between
participants according to a defined set of rules, an overall business goal is aimed
to be achieved. In the VALU3S project, a V&V workflow is understood as a
reusable V&V activity pattern.

4.2 Workflow Modelling Notations

The application of process workflows for software and systems engineering activ-
ities with dedicated models and notations started in the late 1990s s with the
introduction BPMN [5] and adaptations of behavior models in standardized
modelling languages like UML activity diagrams [6].

BPMN is a graphical illustration of business processes which aims to provide
easy and understandable notations for different user groups including business
analysts, technical developers, and business managers. It has become part of
the OMG standards [5]. BPMN defines workflows with specific patterns and
so-called Business Process Diagrams.

UML is a general purpose-modelling language, which is popularly used in
software engineering for specifying, visualizing, constructing, and documenting
artifacts in software applications [6]. UML provide various notations for repre-
senting behavior including Activity Diagrams, which enables the description of
sequential and parallel flows of activities.

In given notation formats, BPMN and UML are commonly used in process
modelling. There are some differences between BPMN and UML in diagramming
the sequence pattern. Both notations use rounded rectangles in activities and
utilize directed lines to show the direction of flow [14]. However, UML is a
general-purpose visual modelling language that is more than a visual notation
tool. BPMN is a modelling notation which aims to be easily understood by all
business users [15].

In given modelling languages, it is possible to represent the same workflow in
many ways. While flexibility of the modelling notations offer variety of solutions,
not each individual is expert in these modelling languages or notations. For the
workflow modelling notation, specific requirements and constraints from V&V
process stakeholders have been collected in the project:

– simple and clear notation, i.e., providing few element types and few diagrams
– based on behavior modelling approaches in software engineering
– implementable in state of the practice modelling frameworks
– exchange of artifacts between V&V methods
– decomposition of V&V methods as implementation of sequences of lower level

activities, which enable the stepwise production of output artifacts
– composition of methods to higher level methods
– preparation for automated and tool-supported analysis of V&V workflows

The generic workflow modelling notations from the previous subsection do not
completely fulfill the requirements listed above. Therefore, a novel modelling
notation based on a domain-specific language that represents the V&V perspec-
tive has been developed.
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4.3 Tool-Support for Workflow Modelling with Enterprise Architect

In order to facilitate the application of the modelling approach, tool-support
has been provided using the Enterprise Architect (EA), a UML modelling tool
by Sparx Systems [4]. In EA, new modelling languages can be created with
UML-Profiles, which can be used directly afterwards or can be packaged into an
MDG (Model Driven Generation) Technology for more comfortable use. MDG
Technologies seamlessly plug into Enterprise Architect to provide additional tool-
boxes, diagrams, UML profiles, shape scripts, patterns, tagged values and other
modelling resources. Such an MDG technology, automatically generates a list
of elements and relationships in the Diagram Toolbox, for each of the diagram
within the technology, therefore implementing the V&V framework using the
MDG Technology rapidly decreases the effort and simplifies the modelling of
V&V workflows for VALU3S. EA provides a simple user-friendly interface for
modelling of V&V workflows by specially customized diagram types enabling
modelling workflow with V&V methods, V&V work products, sequential control
flows, quasi parallel control flows, and flow of work products.

4.4 The VVML Modelling Language

In modelling languages such as UML, it is possible to represent the same idea
in many ways. While the flexibility that the language has offers its positive
aspects, it also brings problems in communicating ideas effectively. By creating
a dedicated domain specific language (DSL) that clearly specifies what diagrams
and elements can be used in creating a V&V method definition or its workflow,
everyone follows a common standardized notation. Modelling V&V workflows
falls into a specialized domain that requires a tailored modelling approach for
activity models. To meet such requirements, there is a need to develop a UML
profile for V&V Modelling Language - shortly VVML profile - introducing a set of
model constructs and deploy the UML profile with other extension mechanisms
as a modelling framework enabling rapid modelling of V&V workflows. Two
levels of modelling are considered:

1. V&V Method Specification
2. V&V Workflow Definition

V&V Method Definition. The V&V method definition enables the design
of the base elements of the workflow. It provides an overview of the main V&V
method properties such as name, interfaces, artifacts, and constraints. Three
element types Method, Artifact, and MethodArtifact are defined (see Fig. 4).

The modelling element Method is a unit that represents a process workflow
dedicated to a specific V&V phase. It has a defined method type, which is cur-
rently used to represent the automation level, here: automated, semi-automated,
or manual. The type Artifact is an object that is exchanged between methods
or activities within methods. It has a dedicated type. An Artifact is either an
information object or an active unit, i.e., program code or executable. Every
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Fig. 4. VVML modelling elements

Method owns a set of MethodArtifacts, which represent the method interfaces
for the Artifacts that they consume or produce. A Method shall produce at least
one output Artifact to show the external use of the Method. The meta-model for
three main element types of VVML is shown in Fig. 4.

An example for a V&V method definition with its artifacts and interfaces
using the EA profile is given in Fig. 5.

Fig. 5. VVML sample method definition

The EA profile provides a dedicated toolbox for designing new elements, i.e.,
methods, artifacts, and method interfaces. The method is represented by a yel-
low box with its name, constraints, tags, and sub-activities. Additionally, the
method artifacts as input and output interfaces are annotated as red rectan-
gles with arrows. Interfaces with arrows pointing to the method correspond to
inputs such as Requirements and Regulations in the example. Interfaces with
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arrows pointing to the environment represent output artifacts like the Verifica-
tion Report. The example also contains the definition of an artifact Regulations,
which is referenced by the method in its interfaces.

V&V Workflow Definition. The actual implementation of a V&V Workflow
is specified by the V&V workflow definition. Its main purpose is to organize
and specify the composition of activities, to reflect their sequential dependencies
and the internal flow of artifact while executing the method. Table 2 presents
elements of the V&V workflow implementation.

Table 2. VVML workflow definition elements

Element Decription

Start workflow Node that initiates the beginning of a workflow

Stop workflow Node that indicates the end of a workflow

Activity Atomic action that is not further decomposed into steps

Call behavior Invocation of another method, which is further decomposed
in another method workflow diagram

Activity artifact Activity interface for its input and output artifacts

Gateway Branching of sequence flow based on condition

Fork/Join Enables parallel sub-paths of sequence and artifact flows

Sequence flow Sequential connection of VVML activities

Artifact flow Exchange of artifacts between activities or from/to method
interfaces

The workflow definition is also supported by the profile with a dedicated
diagram type and toolbox. An example of a workflow definition in EA is shown
in Fig. 6. A workflow defines Control Flows and Artifact Flows. A Control Flow is
defined by sequences of Activities that are executed in a defined order. Branches
in the Control Flow are supported by Gateways. Quasi parallel execution is
realized by Fork and Join Elements. Start and End Nodes indicate beginning and
ending of a workflow. Activities can exchange Artifacts through their interfaces,
which define the Artifact Flow of the workflow. The internal artifact flow is
defined between activities, whereas the external artifact flow is defined from the
method interfaces to the activities for method inputs or from the activities to
the method interfaces for method outputs. In the example, two method inputs
(Requirements and Regulations) are internally processed and one method output
(VerificationReport) is provided to the environment.
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Fig. 6. VVML sample workflow

5 Conclusion

In this paper, the VALU3S ECSEL JU project is presented with its structure
and first outcomes of the different work packages, covering the industrial use
cases, the multi-domain V&V framework, the V&V methods, workflows and tool
chains, the evaluation and demonstration approach, and the dissemination and
exploitation activities. The modelling approach of the verification and validation
activities is described in detail with its modelling notation VVML and the tool-
support using the Enterprise Architect framework. The two levels of VVML are
presented. The first one covers the base elements: methods, artifacts, and method
interfaces. The second level enables the definition of workflows with sequences
of activities and internal artifacts flows.
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Abstract. This paper presents a partial automated workflow for a hard-
ware and software co-design used to generate analog convolutional neural
networks. The developed workflow provides an automated generation of
the schematic and layout of analog neural networks itself as well as the
verification of the created circuit with an automated simulation setup.
The designed application-specific integrated circuit (ASIC) has an energy
consumption of 450 nJ (235 nJ for the frontend and 215 nJ for the neu-
ral network) and needs 369 µs (362 µs for the front-end and 7 µs for the
neural network) per inference.

Keywords: Neuromorphic computing · Analog computing · Hardware
and software co-design · Workflow · Integrated circuits · Analog
synthesis

1 Introduction

The workflow presented in this paper has been used for an ASIC design in the
22FDX technology of Globalfoundries, which consists of a mixed-signal frontend
and an analog neural network [1–3]. It was implemented for the “Pilotinnovation-
swettbewerb KI-Energieeffizients System” [4] in the KI-Sprung ADELIA project.
The aim of the project was the classification of two minutes electrocardiogram
(ECG) data with an energy efficient system based on artificial intelligence.

This paper focuses in describing the hardware/software co-design workflow
developed for the automatically generation of the analog convolutional neural
network. The special feature of our workflow is the automatic generation of
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the neural network based on analog neurons that allows the creation of both
schematic and layout from the trained network within approx. 30 min.

The topic of neuromorphic computing requires hardware and software co-
design due to the complexity of the design task, in order to meet the specifications
in terms of accuracy and energy efficiency, for automating tasks and for verifica-
tion and co-simulation. The resulting analog neural network is a mapping of the
neural network algorithm that takes advantage of the workflow and framework
developed during the project. Thus, the algorithm and the circuit were developed
in parallel decreasing development time. Besides design and software frameworks
developed for some fully developed neuromorphic systems like SpiNNaker, IBM’s
TrueNorth and FACETS/BrainScaleS, there is not much development of hard-
ware/software co-design frameworks for neuromorphic hardware [5].

The paper is structured as follows: Sect. 2 provides an overview of the hard-
ware/software co-design workflow implemented and employed for the automatic
generation of the convolutional neural network. In order to obtain a neural net-
work that can be implemented with an analog design, the training should be
aware of the constraints at circuit level as explained in Sect. 3. For the automa-
tion of the design tasks of the analog neural network, a hierarchical architecture
approach has been followed for the layers implemented as described in Sect. 4.
Section 5 gives a detailed explanation of the simulation steps followed in our
workflow. Finally, Sect. 6 summarizes the conclusions of the paper.

2 Design Workflow for Hardware/Software Co-Design

Figure 1 shows the workflow followed in the design of the analog neural network
for the ADELIA ASIC and that can also be employed in other analog implemen-
tations of neural networks. The neural network is trained with the limitations
and parameters of the hardware design to assure that the accuracy of the inte-
grated circuit network will match the algorithm. After the training has finished,
multiple Data files are exported. Two of them are the ONNX and the Hyper
Parameters files. ONNX is a standard model exchange format to describe the
architecture of a neural network whilst the Hyper Parameters file gives addi-
tional information about the network such as weight and batch normalization
quantization values. For the verification at circuit level of the analog neural net-
work, an additional set of files is exported, which contains the values before and
after the activation function of the algorithm (Activation Values) to be compared
with the results of the electrical simulations.

The network generator is an analog synthesis tool built around a Fraunhofer
IIS internal automation framework called UnilibPlus, a Python-based Cadence
Virtuoso add-on that supplies a framework to automate design tasks similar to
the Berkeley Analog Generator [6,7]. The network generator builds the complete
analog neural network circuit from the given ONNX and Hyper Parameter files
as well as the Circuit Building Blocks. By using the information stored in the
given files and the building blocks as the input of the network generator, the
flexibility of the circuit generation is assured since changes in the network archi-
tecture caused for example by re-training a network or by addressing a different
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Fig. 1. Workflow from training to simulation of an analog neural network by means of
hardware/software co-design.

use case are reflected in these files. The files are automatically created at the
end of the training and can afterwards be used to create a new analog neural
network circuit using the newly defined architecture. Thus, different network
architectures and their corresponding circuits can be created in a time efficient
way. The circuit generation flow starts by extracting the needed information
such as input and output dimension for fully connected layer or kernel size and
stride value for convolutional layer from the ONNX and Hyper Parameter files.
Afterwards, layer by layer will be created in a hierarchical way where the process
always starts at the lowest hierarchy level and then combines the results from
each level till the layer is complete. The generated layers are then combined to
create the top level circuit as described in Sect. 4.

At the lowest hierarchy level, manually designed base level building blocks
are used. Dependent on their actual implementation - which the network gener-
ator is agnostic to - , different signals must be routed between the blocks and up
to the top level. These signals define the physical interface of the blocks and as
these interfaces are defined by the blocks them self, each block must be attached
with a configuration file. The configuration file defines the pin naming of analog
inputs and outputs, control signals, reference inputs and power supplies where
the actual function of the pin itself isn’t considered by the network generator.
Moreover, the pins are grouped in classes of pins with different types of func-
tionality where the group defines the needed connections and the routing. In
addition to that, for layout generation, the access directions of the pins are also
used to check the intended signal flow direction. Layout creation also needs the
information about the available metal layer and their width and pitch restric-
tions. Cadence inbuilt PDK functionality together with wire assistant presets are
utilized by UnilibPlus to extract the needed definitions. Therefore, no additional
external technology configuration is needed. Further on, the layout creation must
be flexible and area efficient at the same time. For direct connections between
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base level building blocks and the connection of wells, a generic routing algo-
rithm isn’t sufficient to meet the area efficiency requirements. Thus, the overall
circuit architecture has been designed to enable direct connections between the
base level blocks by simply abutting the cells. The needed electrical connections
between the blocks as well as the definition of well areas can therefore be freely
decided by the circuit designer which enables the most area efficient design.

Up the hierarchy, the circuit generator has to take over the wiring of the
created functional blocks as these connections are depended on the neural net-
work architecture. As mentioned, the connections are grouped in different types.
For each group, a specialised routing algorithm - mostly based on pin-to-trunk
routing in routing channels - has been designed where the used layers are defined
by the pin layer itself. Therefore, the routing is flexible enough for changes in
the architecture of both model and building blocks whilst the circuit designer
can still influence the used layers by changing the pin layers. Furthermore, the
dynamic selection of layers depending on the pin layers enables the independence
from the semiconductor process.

In addition to the circuit generation, Network Configuration files are created
which are then used to configure the analog neural network. The simulation of
the network circuit comprises two steps: 1) weight loading, which also includes
the configuration of batch normalization values, both in simulation and down
the line to configure the finished ASIC via an external interface and 2) inference.
The weight loading step is necessary for configuring the network the first time
or for an update of the values if new training data is used to optimize the
network performance, by changing some of the weights while keeping the same
network structure. Afterwards, the Analog Neural Network circuit can perform
the inference with the Input Data applied to the input neurons.

3 Hardware-aware Training

We reduce the complexity of the trained model by using quantized network
parameters for the forward pass and the backward pass while holding the corre-
sponding floating-point values for gradient updates. This approach ensures that
small gradient updates can accumulate in the floating point hold out value over
multiple updates/batches. To achieve a high sensitivity and specificity we use
hardware-aware training for our deep neural networks by:

– using 7 levels of quantization (three positives, zero and three negatives) for
the weights of fully connected and convolutional layers. The 7 levels have
been chosen as a trade-off between area, linearity and mismatch.

– using custom levels of quantization for gain and offset on the BatchNorm
layers. Offset is quantized to 21 levels centered around zero between -1 and
1. The quantization of gain uses 16 levels.

– using a custom ReLU activation function that is fitted from the transfer
function obtained from the designed circuit.
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4 Architecture of an Automatically Generated Analog
Neural Network

Figure 2 shows the hierarchy of a general neural network with the architecture
implemented in the ADELIA ASIC with both fully connected and convolutional
layers. Green marked blocks are base level building blocks and must be designed
manually. Pooling layers like average pool layers are created using the same
structure as convolutional layers. By using the base level building blocks, the
blue marked blocks are created by the automated workflow described in Sect. 2.
The different layer types are then built of functional blocks and base level building
blocks. A fully connected layer contains the functional blocks: Column, SRAM
Column Control, SRAM Row Control and Batch Normalization Config and the
neuron building block. A convolutional layer contains the functional blocks: Fil-
ter, Memory, Activation and Batch Normalization Config.
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Fig. 2. Network architecture divided in base level building blocks and functional blocks.

The automated workflow enables a manual validation of small examples of
the created circuits by the circuit designers to ensure the correct wiring of the
block circuits and therefore the correct mapping between the designed network
and the implemented hardware. By inspecting, verifying and validating these
exemplary circuits, it can be assumed that the addition of neurons to the layers
is performed correctly.

Figure 3 shows the connections at the top level of an exemplary analog neural
network. The analog inputs are located at the left side of the network whilst the
analog outputs of a layer are connected to the analog inputs of the next layer.
The channels of convolution layers are kept separate when the following layer is
also a convolutional layer whereas a wider bus is created if the next layer is a
fully connected one. Weight loading requires a clock and an init signal as well
as the bit lines used to transfer the current weight value. As shown in Fig. 3,
the bit lines are connected to all layers in a parallel manner in contrast to the
init and clock signals which are forwarded from one layer to the next. Other
connections can be consecutive connection that are also forwarded between the
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Fig. 3. Top level connections of an exemplary analog neural network.

layers as well as further global connections separate for each layer which are not
shown in Fig. 3.

Fig. 4. Top level layout of ADELIA ASIC including the analog neural network.

The ADELIA analog neural network is composed by six layers: three con-
volutional layers, one average pool and two fully connected layers. The layout
generated automatically of the complete analog neural network is shown in Fig. 4.
Here, the signal flow starts at the bottom side an ends at the top right corner.
All control signals as well as supply pins are located at the lower left corner.

4.1 Fully Connected Layer Architecture

All fully connected layers have the same architecture. Inside a fully connected
layer, a multiple of Column cells are placed in which the AWEs (Analog Weight
Emulator) and therefore the weights are contained. Additional to the Columns,
there will always be Neuron cells placed to include the activation function. Since
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there is SRAM (static random-access memory) inside the AWEs, SRAM Column
Control and SRAM Row Control cells for loading the weights are also necessary.
The Batch Normalization Configuration block is an optative block used to con-
trol and optionally store batch normalization offset and gain values.

This section shows the schematic and layout of the last fully connected layer,
named as layer 5, with the schematic in Fig. 5 and the layout in Fig. 6. The layer
has got 18 analog inputs that are connected to Column 0 and from there on
forwarded to Column 1. Thus, each Column of layer 5 contains 18 AWEs and
does the multiplication and accumulation operation for one neuron. Therefore,
two Column blocks connected to two Neuron blocks (Neuron 0 and Neuron 1 )
are necessary since layer 5 has two neurons. To control the weights loading, the
SRAM Row Control and the SRAM Column Control blocks are placed. Unlike
the schematic, the Neurons are placed on the right hand side in the layout and
not at the bottom. The reason for this is to keep the signal flow from left to
right. The vertical size of the Columns is adapted to the space needed by the
neurons of the previous layer.

Fig. 5. Schematic of the fully connected
layer 5.

Fig. 6. Layout of the fully connected
layer 5.

4.2 Convolutional Layer Architecture

Convolutional layers always consist of multiple Filter and Activation blocks.
The Filter contains the Filter Kernels which themselves contain the AWEs. The
Activation block contains the Neurons. As in the fully connected layers, a Batch
Normalization Config block will be placed inside the convolutional layers if batch
normalization is required.

In this section, the schematic and layout of the first convolutional layer,
named layer 0, are presented. All convolutional layers and the average pool layer
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designed in ADELIA use the same architecture. Layer 0 consists of three Filters
and therefore three Activation blocks. In addition to these blocks, the Batch
Normalization Config block is required. In the schematic shown in Fig. 7, the
signal flow is always from left hand side to right hand side.

Fig. 7. Schematic of the convolutional layer 0.

Figure 8 displays the layout of layer 0. The signal flow is given by the imple-
mentation of the AWEs and Neurons and starts in this example at the bottom
and ends at the top of the figure. Another signal flow direction is possible using
a different pin placement in the building blocks. It is also feasible to redirect the
signal flow by using a different implementation for the neurons with the inputs
located on the left hand side and the outputs on the right hand side or vice
versa. The building blocks used in convolutional layers must be implemented
in a way the next layer directly fits to the previous layer to reduce the routing
complexity.

Fig. 8. Layout of the convolutional layer 0.

5 Simulation and Evaluation Workflow
for Hardware/Software Co-Design

In Sect. 5.1, we provide an overview of the initial verification concept for the
ADELIA ASIC based on electrical simulations. Due to the long simulation time,
a simulation and evaluation workflow based on hardware/software co-design
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had to be implemented. The evaluation of the ASIC is done using Python and
PyTorch as described in Sect. 5.2. The correctness of this evaluation is then
verified in Sect. 5.3.

The ADELIA ASIC consists of the analog neural network, its control logic
including the inference finite state machine, a result comparator and the com-
parator control circuit as well as a mixed-signal frontend filtering and buffering
circuit. All these parts of the circuit have to be simulated and evaluated regard-
ing their correct functionality and their energy consumption.

5.1 Initial Verification Concept of the ADELIA ASIC

As neural networks, during their development and training phase, are a very
dynamic structure, where both the internal topology as well as the external inter-
face (number of input and maybe output pins) are prone to frequent changes, a
test bench for them needs to be very flexible as well. Moreover, neural networks
have thousands of neurons, weights and connections that need to be included by
the test bench. An efficient way to create such a test bench for electrical simula-
tions that can handle changes in the DUT (device under test) topology as well as
cope with a large number of different input vectors from test signals is to create
the test bench dynamically with a scripting language. Network information is
gathered from several text files that are created by the Python training tools
and the network generator.

The verification process starts with the weight loading step where the weights
need to be written to the corresponding configuration blocks built into each
synapse circuits, which are labeled as SRAM blocks in Fig. 2. The necessary
values are converted into a serial data stream in form of a digital stimulus file
for the circuit simulator. After simulation, the binary values now stored in the
SRAM cells are saved to a file and automatically filtered and post-processed and
the results verified against the data coming from the ONNX file corresponding
to the trained network. Any bit errors are then reported for further debugging.

During the inference calculation step, the now initialized network is fed with
varying input data sets, named as Input Data in Fig. 1. The resulting outputs
at the end of this second simulation are cross-checked against the known results
from the training and verification data sets. In addition, the inter-layer and
intra-layer voltages of all layers are saved and processed for debugging purposes
of the network circuit when needed. While the test bench tool set created for
verification purposes allows the verification of the complete neural network, it
became clear during the design process that the simulation times necessary to
fully simulate the complete integrated neural network at circuit level are so
long, that it is not feasible to do this in a reasonable time with the current
state of hardware and simulation tools. We estimated that for the first phase
of the simulation, the loading of the weights into SRAM, a simulation time of
several years on current generation hardware utilizing 128 CPU cores, which
is the current maximum possible with the vendor tools, is necessary. Therefore,
analog verification needed to be broken down into more manageable steps. Thus,
two complementary simulation workflows, which are presented in the next two
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sections, were implemented for the verification of the designed ASIC and its
comparison with the algorithm.

5.2 ADELIA ASIC Evaluation Based on Python and PyTorch

As stated in Sect. 5.1, an electrical simulation of the complete analog neural
network is not feasible for verification due to the long simulation time. Therefore,
the functional verification in regards to accuracy metrics and the calculation
of the energy consumption has been implemented using Python and PyTorch
standard modules.

Inference. The inference step of the evaluation concept calculates the sensitiv-
ity and specificity, previously named as accuracy metrics, of the ADELIA ASIC.
To ensure correct calculations, the implementation using Python and PyTorch
must precisely match the characteristics of the analog hardware. This includes:

– characteristic of the filter used in the frontend,
– quantized weight values and batch normalization factors and
– the transfer function of the activation function.

In general, the inference step executes the same calculations as the hardware
aware training described in Sect. 3 but simplifies the user interaction with the
script to ensure the usability for non machine learning expects.

The evaluation script starts with loading the trained network from an ONNX
file and imports them into available PyTorch modules. Afterwards, the input
data is loaded from the ECG files given to the script as a command line param-
eter. The data is then passed through the frontend filter and the network to
calculate the result of the network which is then written to the command line.
The result for each ECG file must afterwards be compared against the original
label of the data to check if the decision taken by the network is correct. Finally,
the result of all comparisons between original label and network decision will be
taken to calculate sensitivity and specificity. We have reached a sensitivity of
94.37% and a 1-specificity of 4.13% on the test set. These metrics are well above
the required minimal sensitivity of 90% and 1-specificity of 20%. Further on,
whilst the inference is calculated, the pre- and post-activation values for each
neuron are saved internally and written to a file for the calculation of the energy
consumption and further debugging.

Energy Consumption. The energy consumption of the ADELIA ASIC can
be divided into the contribution of leakage, switching of digital circuitry, static
consumption of analog blocks and dynamic consumption of analog blocks. All
those different parts the energy consumption consists of have been analyzed for
the different circuit blocks. The gathered information is then used by a Python
based script that calculates the energy consumption of the complete ADELIA
ASIC dependent on the current input data sample. The results for all input data
samples are then averaged to calculate the average energy consumption.
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Inference Finite State Machine. The inference finite state machine has been
created with a standard digital design flow. From there, the power consumption
values are given, see Table 1. As these values are power consumption values, they
have to be multiplied with the time duration the block is used. Leakage must be
considered for the total classification time of 368.6 µs. The switching and internal
power consumption is considered only when the analog neural network processes
the data, which is for 7.24 µs. Therefore, the energy consumption translates to
26.6 nJ for leakage, 56.64 pJ for switching, and 95.3 pJ of internal energy.

Table 1. Inference finite state machine power consumption.

Type Power consumption [mW]

Internal power 0.01316327

Switching power 0.00782203

Leakage power 0.07205890

Total 0.0930442

Mixed-signal Frontend. The mixed-signal frontend is divided into three parts:
a analog storage, a digital-to-analog converter (DAC, including a downsampler
and a buffer) and the frontend finite state machine. The analog storage is divided
into 16 identical blocks, all causing switching and leakage energy consumption.
As mentioned before, the leakage must be considered for the whole classifica-
tion time whilst the switching has influence only during the circuit is active.
Only one of the 16 blocks gets the data from the DAC and therefore only one
of those blocks is active. Thus, taking the switching current of one block and
considering its influence for the total storage time of 61.44 µs is enough. The
leakage currents are considered for the complete 368.6 µs and are multiplied by
16 to include all blocks. Table 2 shows the voltages, currents and the resulting
energy consumption for the analog storage block. The DAC and the finite state
machine used in the frontend have both been simulated completely in an analog
way. This includes dynamic as well as leakage energy consumption. The DAC
consumes 40 µW whilst the finite state machine consumes 6.895 µA * 0.8V =
5.516 µW. The DAC is in use for 61.44 µs and the finite state machine is in use
for the whole classification time of 368.6 µs. It translates to 2.46 nJ for the DAC
and 2.03 nJ for the state machine.
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Table 2. Frontend analog storage energy consumption.

Type Supply Net Voltage [V] Current [µA] Energy [pJ]

Switching VDD 0.8 29.31 1441

Switching VSSM0V2 –0.2 –12.75 157

Leakage VDD 0.8 0.331× 16 1562

Leakage VDDA0V4 0.4 0.035× 16 82.6

Leakage VDDA 0.8 0.754× 16 3557

Leakage VSSM0V2 –0.2 0.073× 16 86.1

Total switching 1598

Total leakage 5287

Total 6886

Analog Neural Network Leakage. The leakage current of the analog neural net-
work must be included in the energy consumption calculation. To simulate the
leakage current, the complete network could be placed in a testbench where a
DC simulation is performed and the current on the supplies is measured. As
the network is large and therefore the circuit simulation takes a long time, a
different approach has been chosen. The network consists of blocks which are
used multiple times. Therefore, it is enough to simulate each block once and
multiply the leakage currents by the number of instances used in the network.
Two advantages are gathered from this procedure: the simulation is fast, and
the debugging is easy.

Neuron. The neurons are characterized in regards to their operating condition
including the input voltage, the load resistance, the load voltage and the batch
normalization gain and offset values. This leads to a five dimensional data set
containing the energy consumption values for all combinations of parameters.
To give an example for a single neuron, Fig. 9 shows a plot of the required
energy consumption of one neuron with varying input voltage and load resistance
and constant values for the other parameters. The used activation function is
a limited ReLU (rectified linear unit) function. It has a constant output value
for negative input voltages and a linear rising output voltage for input voltages
greater than zero till it hits its maximum output voltage. As expected for such a
function, the energy consumption stays constant due to constant output voltage
for negative input voltages. For positive input voltages, the energy consumption
rises linear with the gradient defined by the load resistance. When the output
voltage reaches its maximum value, the energy consumption is again constant
because the output voltage stays constant again.

Total Energy Consumption. To calculate the energy consumption of the whole
neural network, the operating conditions for each neuron have been extracted
during calculating the inference in PyTorch. The information gathered from this
step has then be used to get the energy consumption for each neuron from the
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Fig. 9. Neuron energy consumption depended on input voltage and load resistance.

previous mentioned characterization. Adding up all these energy consumption
values together with energy consumption of the other blocks leads then to the
total energy consumption of the network.

5.3 Electrical Verification of the ADELIA ASIC

In order to prove that the metrics and energy consumption calculated by the
evaluation script are correct, at least a subset of the network, specifically the
last two fully connected layers that only contain 20 neurons in total, has been
simulated in a few hours at circuit level in the time domain.

As shown in Sect. 5.2, the expected post-activation values at the output of
each neuron are exported by the evaluation script. To check the correct func-
tionality of the circuits, these values are extracted and converted into analog
voltage values, which are then used to drive the last two layers of the network
with the correct input signals. The test benches for the analog simulations then
again saves all the post-activation output voltages of every neuron in the last
two layers at the end of the inference step. For these simulations, the exact same
simulation framework as described in Sect. 5.1 has been used.

Figure 10 shows the results of the “inference simulation” for one input vector.
The first vertical marker shows the time point when the outputs of all neurons
have settled to their final value and are sampled shortly thereafter by the next
layer. This time point is extracted in the post-processing part of the simulation
and then used to compare the voltage values with the PyTorch results for layer
4. The second vertical marker shows the same decision point for layer 5, which is
also the last layer of the network. The differential value between the two outputs
corresponds to the decision our network has made with regards to the supplied
input vector and is sampled at this point with a differential comparator, in order
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Fig. 10. Inference simulation results for layer 4 and 5.

to give a binary result of “true” or “false”. In order to check for validity for a
larger set of input vectors, these simulations were scripted and completed for
5 different input vectors. The resulting node voltages are then written to an
external file. The results clearly show the network is working as intended.

For all input vectors, small differences between the simulated and the
expected value are reported by the simulation. These differences come from
the analog nature of the electrical implementation: The voltage limiters that
specify the dynamic range of the system are not perfect, but show a few mV of
static offset. The gain values of the operational amplifiers are also never perfect
in a real implementation and with the circuits being based on switched capac-
itor topologies, a small error in the output voltages caused by leakage effects
and non-perfect gain values are also to be expected. All these error sources do
add up, but the outputs of layer 5 are clearly still correct with regards to the
binary decision the network would make with regards to the input vector speci-
fied. This shows, the network is robust against statistical variations of the node
values which further on displays the correct functionality of the network even if
small calculation errors occur inside the circuits. We can therefore extrapolate
the results to the complete network and predict its correct functionality with
high confidence.

In addition to the evaluation of the correct functionality of the circuit, the
current consumption of the neural network was simulated in Cadence during the
top level-simulation of layers 4 and 5. Table 3 shows the results for the averaged
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current values over the simulated time frame of 2.192 µs and can be used to
compare against the calculated values for layer 4 and 5.

Table 3. Averaged currents for the supply voltage nodes of layers 4 and 5 during layer
activity.

Input data Layer 4 [A] Layer 4 [A] Layer 4 [A] Layer 5 [A] Layer 5 [A] sum [A]

Vector VDDA VDDA1P8 V ACT HI VDDA VDDA1P8

0 0.000388917 2.49E–06 7.14E–05 9.11E–06 2.08E–07 0.000472

1 0.0003501 2.27E–06 5.92E–05 8.20E–06 1.88E–07 0.00042

2 0.000385794 2.45E–06 5.54E–05 8.93E–06 2.04E–07 0.000453

3 0.000380152 2.44E–06 6.10E–05 8.92E–06 2.04E–07 0.000453

4 0.000292457 1.96E–06 6.45E–05 6.91E–07 1.51E–07 0.000366

AVG 0.000359484 2.32112E–06 6.2271E–05 7.169E–06 1.909E–07 0.0004328

The results shown in Table 3 translate into a energy consumption of:

ELayer4 = (359.484 µA · 0.8 V + 2.32112 µA·
1.8 V + 62.271 µA · 0.4 V ) · 2.192 µs = 694.1486 pJ

(1)

ELayer5 = (7.169 µA · 0.8 V + 0.1909 µA · 0.4 V ) · 2.192 µs = 12.7389 pJ (2)

The simulated and the calculated energy consumption values match fairly good,
which shows that the calculations are correct.

6 Conclusions and Future Work

The topic of in-memory computing needs to leverage from hardware/software
co-design frameworks and workflows. This need is even bigger for an analog in-
memory computing implementation since the EDA (electronic design automa-
tion) tools are not prepared for automating the design flow. The approach pre-
sented in this paper allowed the parallel-in-time design of the neural network
algorithm and integrated circuit for an analog convolutional neural network.
Moreover, the automatic generation of the schematic and layout for 6 layers,
1,922 neurons and 72,846 synapses takes only approx. 30 min.

The hardware/software co-design workflow presented allows not only an auto-
matic generation of the neural network circuit but also to simulate and evaluate
its results. Therefore, instead of simulating months for the evaluation of our
ASIC, we just need minutes in order to provide key parameters as inference
results, accuracy metrics, energy consumption and latency.

In comparison with other automation frameworks like the Berkeley Analog
Generator (BAG) [6,7], layout and schematic creation in our solution is imple-
mented in a similar manner but the full control on generator and backend code
enables us to integrate the network generator in the complete design flow. There-
fore, area and energy consumption metrics obtained by the network generator
can be considered and optimized during training.



400 R. Müller et al.

Further work is pending for the reduction of the energy consumption per
inference from 450 nJ to 225 nJ by shorter power on time of the frontend, switch-
ing off all voltage sources except the ones powering the SRAM and re-design of
the Batch Normalization block. Due to the hardware/software co-design work-
flow, the re-design of a base level building block is not a time consuming issue
since the complete neural network is generated automatically. Therefore, contin-
uous improvement of the base level building blocks can be quickly integrated in
the neural network and their improvements evaluated.
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1 Introduction

Artificial neural networks (ANN), as part of artificial intelligence, are widely
used methods for tasks like the recognition of faces [29], human speech [26] or
autonomeous driving [8]. Due to the computational effort involved in the infer-
ence of ANNs, many new processing architectures have been developed in recent
years. Besides the design of traditional digital accelerators for fast computation
of matrix-matrix multiplications, a key research issue is the storage of weights.
Modern neural network topologies can exceed several thousands or even billions
of weights [17], which renders efficient storage necessary. Moreover, the weight
storage should be as close as possible to the computation units, i.e. in best cases
implemented as on-chip memory in order to avoid access to external memories
e.g. to a DRAM module [28]. This is due to the necessity of accessing memory via
a common memory bus that limits throughput and increases power consumption.
This poses a problem in classical Von-Neuman architectures.

With the development of the resistive random-access memory (RRAM) tech-
nology, a new memory technology is available which is predestined to be used as
weight memory: On the one hand, they feature high memory density, especially
due to the possibility to store up to 6.5 bits per RRAM device in Multi-Level
Cells (MLC) [19], whereby, after appropriate quantization of the network, only
one RRAM cell per weight is needed. On the other hand, the technology has
the advantage of non-volatility, by which weight matrices on the chip can be
retained even with transient power supply.

Despite the outstanding features of the RRAM technology, intrinsic device
variabilities, such as cycle-to-cycle (C2C) and device-to-device (D2D) veriations,
cause instabilities and downgrade the network’s performance. Fortunately ANNs
have inherent redundancy, which means that while individual weights may have
errors, the overall impact on the functional performance in terms of accuracy
might be insignificant.

In 2021, the authors of [7] presented a framework which allows a system
evaluation of neural networks running on a digital RRAM-based accelerator
architecture regarding the impact of device-to-device (D2D) variations of the
RRAM process (see Fig. 1). Aside from the RRAM-based weight storage, the
presented architecture is based on conventional digital logic.

NN Processing 

Systolic Array

Weight Storage

RRAM Crossbar

RRAM Control

Read/Write Circuit

Variability Effect?

Fig. 1. System’s workflow proposed in [7]. The synaptic weights are programmed and
stored in a RRAM crossbar and further utilized in a neural network implemented by
a systolic array. (Figure taken from [7])
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The authors used two different example networks namely handwritten digit
recognition on the MNIST dataset and detection of atrial fibrillation in elec-
trocardiogram (ECG) signals, to show how a variation of the oxide thickness
in the RRAM manufacturing process affects the recognition accuracy. Despite
the analysis presented there, two key questions have not been addressed in the
aforementioned paper: (1) Which specific weights in an ANN have a particu-
larly sensitive effect with respect to detection accuracy (“critical weights”)? (2)
Which mitigations can be applied to protect these critical weights from errors
so that the recognition accuracy of the neural network is retained despite the
usage of unreliable memory cells?

This paper adresses and answers those questions, building on the work of [7].
Therefore, the contributions of this work are:

– An analysis of how physical variations in the RRAM process affect different
weights and how this affects the overall recognition accuracy of ANNs.

– The usage, analysis and evaluation of three approaches (fault-aware training,
dropout layer and insertion of redundancy) to make neural networks less
susceptible to these variations

– A methodology and its implementation (reference framework) which performs
the points mentioned above in an automated way.

Train
Network

1 2 3

4

5

6-a

6-b

6-c
7

Create
Network

evaluate accuracy for a
given device spread

accuracy is sufficient

add dropout layer

identify crucial weights

introduce noisy training

Redundancy/ECC

Fig. 2. Methodology and workflow presented in this work.

Figure 2 shows an abstract representation of the methodology and the frame-
work. Steps (1) and (2) correspond to the state-of-the-art procedure for the cre-
ation of neural networks. In step (3), the neural network is analyzed with respect
to the process variation of the weight memory (analogous to [7]). If the accuracy
is sufficient despite process variations (5), the training is finished and an archi-
tecture can be created from it. If the accuracy is not sufficient, an analysis of the
critical weights (4) follows, which are then additionally secured by 3 mitigations
(6a, 6b, 6c). Finally, a retraining (7) is performed and the analysis starts again.

This paper is organized as follows: In Sect. 2, we present other works which
also address these problems. Subsequently, in Sect. 3 we show the effect of D2D
variations on the accuracy of the ANN, depending on the memory location
where errors in the weights storage occur. In Sect. 4, we then present the afore-
mentioned measures to increase accuracy. These are analyzed and evaluated in
Sect. 5. Section 6 summarizes the paper and gives an outlook.
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2 Related Work

Researchers have found that recent ANNs tend to be too computationally expen-
sive to fit them onto embedded systems [3]. Although several counter-measures
(e.g., network compression, pruning, entropy encoding, etc.) have been investi-
gated in literature, the trade-off between computational efficiency and accuracy
is still one of the biggest hurdle that designers have to tackle when developing
neural network for embedded applications [2,14,24].

Unfortunately, reducing the redundancy of the ANN to make it more com-
putationally efficient can make the network more sensitive to errors [30]. Bianco
et al. have concluded, that the efficiency and accuracy of neural networks can
be seen as a conflicting (trade-off) problem.

To cope with these challenges, novel technologies have been deployed to
implement specialized hardware accelerators. In particular, RRAM devices
have gained interest due to their scalability, back-end-of-the-line compatibility,
and low energy consumption [20,22,23,25]. Unfortunately, RRAM devices are
affected by non-idealities, that hinder their implementation. Possible solutions
to these problems are currently pursued by researchers on the material and algo-
rithmic levels [11,13]. While these solutions are tested and the RRAM properties
enhanced, the design of a RRAM-based accelerators requires novel techniques
able to capture these non-idealities on a broader system level.

Hardware-based solutions to correct the errors cause extra power consump-
tion and an undesired overhead, while SW-based solutions are less effective [6].
The authors expand on their work in [18] by introducing a hardware/software
codesign method where they implement few on-chip training iterations which
helps preserving the accuracy with no significant write operations that can hurt
the endurance of the RRAM array. Chen et al. devised a training method to
tackle the variation which prevents large weight values from being mapped to
faulty memristors. Charan et al. proposed a joint algorithm-design, where they
leverage the knowledge of RRAM variations to train a robust ANN model. Sub-
sequently, they use on-chip memory to adapt the processing to compensate for
the performance degradation [5]. Zhang et al. used a low gate voltage on the
backpropagation to reduce the effect of the RRAM variations [31].

There has been non-RRAM-specific research of erroneous weights, as
described in [16,30]. Zahid et al. characterized the error (faults) as “stuck-at”
faults, which assumes that the hardware malfunction will force the activation
values to be stuck at a certain value [30]. Salami et al. analyzed different fail-
ure modes. Although there has been a lot of research in these different fields, a
coherent work which combines these aspects is missing. We combine the research
which has been done to transfer device level properties to system level proper-
ties using approaches which allow to both analyze and render ANNs with highly
quantized weights more resilient. Finally, we map these results to a specific
technology (IHP) in order to enable the development and fabrication of ASICs
utilizing RRAM for weight storage.
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3 Impact of Device Variations

Previous works like [7] have shown that ANNs embedding memristors can be
analyzed regarding the effects of device level properties, such as the spread of
oxide thickness, on system level properties, such as the accuracy of the network.
This is done by extracting the effect of the device level properties on the relia-
bility of the memory cells and simulating a network with defects modeled after
these reliability estimations. Such a method bridges the gap between pure device
level aspects and system level aspects. While this approach yields valuable data,
there are some open questions we address in this work:

1. What effects can be observed in the presence of variations? 2. Depending
on the specific weights affected by variations, the net topology and training, the
accuracy of the network is affected in different degrees. We want to explore how
and to which degree this affects the overall system. 3. How can these effects
be mitigated and how do mitigation strategies affect the metrics defined by the
previous question?

3.1 Effect of Variations

In order to see the behavior in relation to the variability, we ran several simula-
tions to showcase the overall statistical effects. The simulated interferences are
based on RRAM devices with varied device parameters according to the model in
[15], which is in turn based on the Stanford-PKU model. We treat the oxide thick-
ness parameter tox as a normally distributed value around the default thickness
and simulate reading the device multiple times in order to introduce a control-
lable amount of D2D variability to the simulation. This results in a distribution
of potentially erroneous values that can be used as weights in the inference. This
experiment is run multiple times for a set of standard deviations for the varied tox
parameter using a real-world example for a highly quantized network.

3.2 Networks

Since we will be referring to this network throughout the paper as a recurring
example, this subsection will provide a short overview of its task and structure.
The network is trained to detect the characteristic pattern of atrial fibrillation
(AFib) in ECG signals. This poses a real-world data processing task, as such
a network can for example be used in portable medical devices, where it can
monitor the health status continuously during the daily routine of the patient.

The structure of the ANN is a simple convolutional feed-forward network as
shown in Fig. 3. It consists of a stack of N convolutional layers (Conv) followed
by a stack of M fully-connected (FC) layers. These two stacks are separated
by a Maxpooling layer which function is to reduce the dimensionality of the
activations before the FC layers. All the layers (Conv/FC) comprise three oper-
ations: highly quantized Conv/FC, followed by a binary-shift batch normaliza-
tion (BSBN) and finally a rectified linear unit (ReLU). The BSBN is a batch
normalization where the scaling is constrained to powers of 2, yielding only shift
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operations. All the weights of the Conv and FC layers are quantized to ternary
values (−1, 0 and 1) and stored within RRAM cells. This structure is highly
optimized for power consumption, it was the winner of the “Pilotinnovation-
swettbewerb ‘Energieeffizientes KI-System”’ from the German Federal Ministry
of Education and Research (BMBF) for the lowest power consumption in its
track [4]. In this work, we use the same structure to analyze not only power con-
sumption but also the error tolerance of the ANN. This involves changing the
training routine, increasing the network size to increase redundancy and adding
error correction methods.

The starting ANN for the experiments is the original ANN from the compe-
tition. It consists of N = 4 Conv and M = 2 FC stacks. The Conv layers are
Conv1D with a filter length of 15 and a stride of 3 to reduce the activations
and computational overhead with no need for pooling layers. The Conv layers
outputs are 2, 4, 6 and 8 channels. These are followed by a Maxpooling and 2 FC
layers with 8 and 2 neurons respectively. This neural network has 1310 ternary
weights and 60 BSBN coefficients.

BSBN

xN: Conv Layers

QConv ReLUN Maxpool QFC

xM: FC Layers

BSBN ReLUN

Fig. 3. The ANN we attempt to improve upon to render it more robust against device
variations.

3.3 ECG Results
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Fig. 4. Boxplot relating the accuracy in the ECG experiment to the standard deviation
of the tox parameter.

This network is now used as the basis for our experiment. It is run with multiple
introduced errors according to variations in the RRAM device level parameter
tox, varying the standard deviation from 0 to 1 nm. In Fig. 4, the results are
displayed and a few key properties can be deduced:
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1. As expected, the mean accuracy is decreasing until it reaches an accuracy
which is unacceptable for a binary classification task. 2. The mean values seem to
follow the shape of a logistic function. At first the network is mostly unaffected,
then starts to be more affected, and finally tapers off. 3. The spread between
different experiments with the same amount of variation is increasing.

The analysis of this is considered future work, as it requires large sets of
experimental data. The shown dataset already consists of 10.000 data points
with a thousand inferences each.

The increasing spread for stronger variations is pointing to individual or small
sets of weights being more important than others. In order to find more clues
that this is in fact the case, we ran a different simulation. We selected a specific
layer from the network, split it into 6 partitions and ran the experiment with
variations affecting the whole network as well as only parts of it. The results of
this experiment can be found in Fig. 5. Due to the large number of combinations,
we only simulate one parameter set per standard deviation value and therefore
switched from combining multiple results (as shown in the boxplot in Fig. 4) to
evaluating a single sample per σtox .
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Fig. 5. Results of the partitioned network experiment. The red graphs are fitted logistic
functions with offset. (Color figure online)

It can be observed, that the partitions do indeed react differently to vari-
ations: While partition 1 and 4 don’t show much of an reaction to increased
variability, partitions 2 and 3 show a strong reaction. This means that different
kinds of mitigations have to be implemented for different parts of the network.
We will analyze this further in the following sections.

4 Methodology and Implementation

In Sect. 3 it is shown, that a percentage of weights is stored incorrectly due
to non-idealities of the device. In this section, we describe approaches to both
analyze the network and render it more robust.

4.1 Analysis

As a first step, we need to consider how the findings presented in the previous
section can be addressed, especially the fact that different weights have different
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importance to the networks performance. Traditional methods, such as deter-
mining the gradients of individual neurons of an ANN, are not suitable for this
task, as we are dealing with highly quantized networks. As a more appropriate
alternative, we used an experimental approach: Faults are injected into specific
parts of the network (i.e. individual weights, groups of weights or whole layers)
while the rest of the network is unaltered and the accuracy of the network is
evaluated. This process is repeated with every layer and yields an estimate for
the susceptibility of different layers. In the following we will describe possible
mitigations.

4.2 Dropout Layers

A neural network’s training process does not optimize for redundancy, the goal
lies within maximizing a ANN’s accuracy while not overfitting on the training
dataset. As a result single weights might be more critical than others, which
cannot be mitigated by merely increasing the network size [21]. This is problem-
atic when storing weights within error-prone devices since a single erroneously
stored weight might have a large impact on the overall accuracy of the net-
work. Subsequently, the first mitigation we apply to the network consists of the
introduction of dropout layers, which randomly drop weights during the training
process [1], reducing an individual weights impact. Dropout layers are already
common within the training process to prevent overfitting, so introducing them
to mitigate both problems is necessary.

4.3 Fault-Aware Training

As the next step, we introduce fault-aware training by applying noise to the
training data. Zahid et al. were able to show that “by injecting faults in the con-
volutional layers during training, highly accurate convolutional neural networks
(CNNs) can be trained which exhibits much better error tolerance compared to
the original” [30]. Although their focus is on FPGAs utilizing SRAM, the same
technique can be applied to RRAM devices. A similar approach was used to
introduce faults during the training process of the ANN.

4.4 Redundancy/Error Correction

As a final means of mitigation, we add redundancy to the network. Recent work
has investigated redundancy within neural networks as a means to increase over-
all accuracy [10]. However, when individual weights are stored incorrectly, it
might be beneficial to add redundant layers for the sole reason of being more
error tolerant. We investigated a) adding redundant layers and b) adding error
correction by performing a majority vote on redundantly stored weights. The
latter is implemented as follows: Each weight is stored within n storage ele-
ments (n being uneven). When a weight is to-be-read, it is read n times and the
value which has been stored in most of the elements is returned. If there is a tie
between options (e.g. when [−1, 0,−1] is read) the neutral element is returned.
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4.5 Technology

We apply our evaluations to an ANN utilizing the RRAM technology provided
by the Leibniz Institut für innovative Mikroelektronik (IHP). To some extent,
RRAM variability is caused by variations in process parameters of the device
fabrication. One of these is the oxide thickness, which is used in our experiments
to introduce D2D variability to the simulation. A typical standard deviation for
the oxide layer in this process is 0.17 nm [9].

4.6 Implementation

A tool is needed in order to apply the theoretical concepts described above to
a given ANN. We have built this research upon the framework which has been
presented in [7] and which is depicted in Fig. 6a.

The starting point is the creation and training of an ANN with Traditional
NN Training Flow like Tensorflow. After the training process, the weight matri-
ces containing the weights wi are extracted. Next, the RRAM cells and the cor-
responding storage circuitry are characterized using analog simulations run with
traditional analog tooling like e.g. Cadence Maestro. The framework utilizes this
data to calculate new matrices, which contain the weights w′

i as they would be
stored within RRAM arrays of given parameter spreads. Those weight matrices
are used to run inferences on the neural network for different σ of a given device
parameter. The results of such calculations (evaluated using different σtox) are
depicted in Fig. 6b. Two different networks were analyzed, the results for net-
work 1 (handwritten number recognition, based on MNIST dataset) are shown
in red, the results for network 2 (AFib detection on ECG network, similar to
Sect. 3.2) are shown in blue. As it can be seen, this methodology allows us to
deduct the system level property network accuracy for a given device parameter
oxide thickness.

Fig. 6. The methodology and instances of analysis results as presented in [7]. Figures
adapted from [7].

Figure 2 shows our extensions to this framework. While the initial framework
analyzes a given network in regard to robustness against device variations, it is
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now able to a) determine which weights are crucial for maintaining accuracy and
b) apply appropriate countermeasures. This is done repeatedly until the network
is robust enough for a given process.

5 Evaluation

After describing our implementation, this section presents the evaluation of
the results. In order to ensure a consistent naming scheme we will refer to
the four Conv layer stacks of the ECG network described in Sect. 3.2 as
conv4, conv5, conv6, conv7. We apply different mitigations to the remaining
parts of the network, which consists of both a preprocessing step (which was
initially included in the network) and a few small fully connected layers.

5.1 Analyzing Degradation Effects

In order to make informed decisions about applying the proposed mitigations,
it is necessary to interpret the effects of device variability. In Fig. 7 these effects
are plotted by representing the weight storage in a rectangular grid.

(a) σtox=0 (b) σtox=0.2 (c) σtox=0.4 (d) σtox=0.6 (e) σtox=1

Fig. 7. Erroneously read values in different weight matrices using the conv6 layer of
the ECG network according to different σtox [nm]. Red fields indicate read errors, while
orange fields indicate correctly read values.

Significant weight matrix deterioration occurs for σtox > 0.4 nm; a neural
network which has 35% of its weights stored incorrectly is unlikely to yield
meaningful results, unless it contains a lot of inherent redundancy.

Another aspect to look out for is the influence of certain layers of the net-
work. The analysis of the network described in Sect. 4.1 yields the results shown
in Fig. 8a). Individual network layers cope quite differently with weight deteri-
oration: Erroneous weights in the conv4, conv5 and conv7 layers only result in
slight accuracy losses even for large variations of σtox . The conv6 layer reacts
differently, accuracy strongly decreases even for medium variations of σtox .

In order to view this from another perspective, the results from an “inverse”
experiment, where all but a single layer is stored in unreliable RRAM-based
storage can be found in Fig. 8b). The results are in line with the ones presented in
Fig. 8a): the conv6 layer shows the largest impact on overall accuracy, validating
our previous claims.
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Fig. 8. Effects of variation on accuracy for individual layers

5.2 Applying Mitigations

After presenting an analysis of the effects of unreliable storage on the networks
performance, we can use this data in order so study how it affects the proposed
mitigation methodologies presented in Sect. 4. In the following we will show
these effects by adding mitigations in a sequential manner, meaning that each
mitigation is applied to a net that is already treated with all of the previously
evaluated mitigations, which aren’t sufficient on their own.

Preprocessing: For the task described above, a preprocessing consisting of a
non-trainable filter kernel is applied. Since this can be implemented as a convolu-
tional layer, we analyzed whether it makes sense to hardwire this layer, thereby
separating it from the actual ANN. This would be unusual for architectures like
GPUs, but might be beneficial for our architecture. Implementation based on
the existing ANN hardware leads to the results in Fig. 9a), while hardwiring
leads to the results depicted in Fig. 9b). This implies that hardwiring this step
is necessary for large σtox , but not sufficient on its own.

Fig. 9. Accuracy deterioration in different preprocessing configurations: a) (all weights
in RRAM storage) and b) (separate hardwired preprocessing layers)

Fully Connected Layers: As described in Sect. 3.2 the overall network archi-
tecture consists of a combination of larger convolutional layers and two small
fully connected layers. Those FC layers embed a total of 100 weights. This small
number of weights renders these layers exceptionally susceptible to variations.
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We found that they have to be addressed by making the weights themselves
more reliable. A possible mitigation methodology consist of storing the weights
multiple times and implementing majority votes. Figure 10a) shows results for
the implementation of 3-, 5-, 7- and 9-way majority votes and the default config-
uration without error correction. We did not apply device variability to the other
layers for this investigation in order to emphasize their strong impact on overall
performance. It can be seen that the FC layers have a significant effect on the
overall network accuracy. Although this might seem to be expensive, it repre-
sents only a small fraction of the network and is necessary due to the detriment
on the overall accuracy

Fig. 10. Accuracy for redundancy in FC layers and insertion of dropout layers

At this point, the user has to select a level of redundancy depending on
the process the ANN is supposed to be fabricated in. When using the IHP
RRAM technology, 3-way majority vote within the FC layers is likely to achieve
reasonable accuracy (not taking the other parts of the network into account),
this might not be true for a different process with a deviating σtox . The following
sections will assume that reasonable mitigation (using majority votes) has been
applied to the FC layers.

Dropout Layers: As a next step we added dropout layers (Fig. 10b)). Unfortu-
nately, while the spread of results decreased, the overall accuracy of the network
deteriorated. Subsequently, we had to slightly increase the size of the network

Fig. 11. Performance of different mitigations presented in this paper. The solid lines
represent a single layer being investigated, the dashed line represents all of those layers
being analyzed at once.
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to counter the effects of these layers on the overall accuracy (Fig. 10c)). In the
following, we will proceed to use the dropout layers with the expanded network.

Fault-Aware Training: Fault injection during training can be a powerful tool
in order to render a network more error tolerant. We trained two networks with
differently configured noisy training data. The accuracy results when analyzing
both the entire network and individual layers are shown in Fig. 11a) and 11b).
The results show that noisenet2 decreases overall performance while noisenet1
succeeds in mitigating issues for low to medium device variations.

Redundancy - Expanding Channels: Convolutional ANNs work on differ-
ent channels, the number of which can be increased utilizing the technique of
channel expansion [27] in order to add redundancy. Since the original network
is optimized for energy per inference and area, the authors have tried to reduce
redundancy as much as possible. While this is not an issue for traditional archi-
tectures, it causes problems when utilizing RRAM-based weight storage, since
weights might be stored incorrectly. RRAM devices naturally allow for larger
storage densities, overall area savings are possible even if more individual stor-
age cells have to be used in order to introduce redundancy. In order to make
use of this property, we added 16 additional channels to the conv6 and conv7
layers. The results of this experiment can be found in Fig. 11d). It does not seem
to improve the network and actually causes conv7 to be similarly sensitive to
device variations as conv6.

Redundancy - Error Correction: As we will see within the quantitative
analysis, fault tolerant training (applying specific kinds of noise) and expanding
network sizes alone were not sufficient. We therefore opted for additional error
correction for the network. This comes at a cost, but greatly benefits the accuracy
of the resulting system. Since traditional error correction approaches, like error
correction codes, require significant chip area [12], it was decided to implement
a majority vote based error correction, as described above. Adding ECC to
noisenet1 yields the plot shown in Fig. 11c). This vastly improves robustness
and the network is now usable for up to a standard deviation of 0.4 nm of oxide
thickness for an accuracy of 87%. The initial network configuration was only
able to tolerate a σtox of 0.2 nm.

5.3 Quantitative Analysis of Results

When trying to compare these results, a metric must be found that quantifies
the improvements gained. This is not trivial, because the accuracy in our model
is not a fixed value but dependent on the applied variation strength of the
oxide thickness and shows increasing spread with higher variation. Therefore we
present different metrics in order capture the various aspects involved, instead of
a general score. In this paper we are not focusing on this spread, since it requires
very large data sets and therefore causes a significant increase in simulation time.
Instead we are generating one accuracy value per variation sample and iterate
this process over a range of variations.
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Since this data has a rather large amount of noise, which can be seen in the
previous plots, we are fitting the data to a logistic function in order to better
represent the statistical behavior of the model. In Sect. 3.1 we have shown that
this is a good function for this purpose. In the left column of Fig. 12 these fits
are displayed.

These fits alone are not yet a quantitative measure for determining the
improvement a mitigation such as fault-aware training. Here we are proposing
two different metrics (positive values indicate better performing networks):

Fig. 12. Evaluation using fits to logistic functions and metrics

1. Area under Curve (AUC): By integrating the difference between the two
accuracy curves a rather global metric can be defined that takes the whole spec-
trum of variations that were measured into account. This is of course dependent
on the range of variation strengths that were simulated and needs to be kept in
mind when interpreting the results. The results for this metric can be found in
column 2 of Fig. 12.

2. Accuracy increase for target variation strength (Accσtox=x
): Here the

increase in accuracy is evaluated for a given target variation. This metric only
considers a small part of the data and is therefore usually only useful when
estimates for the variation strength are available, but under this circumstance it
provides a more useful metric. We used 0.1 nm, 0.2 nm and 0.3 nm because these
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are realistic numbers, as 0.17 nm resembles the variation for the used technology
by IHP [9]. The results for this metric can be found in columns 3–5 of Fig. 12.

From the numbers two trends can be seen: Firstly, the stronger the variation,
the more effective the mitigations get. Secondly, on a single layer the benefits are
marginal at best, but when the mitigations are applied to the whole network,
they start to work. For our network we found, that noisenet1 can yield some
benefit in some use cases and noisenet1ecc shows similar characteristics but much
stronger.

6 Conclusion

In this work we presented a study of different mitigations for issues from read
errors introduced by device variations in digital RRAM-based ANN accelerators.
These mitigations are then evaluated using an real world example. We have been
able to show that a given neural network can be made resilient against a given
spread of a selected device parameter for a given fabrication process. However,
there still is work to be done regarding the modelling of devices. Although the
stochastic variability in RRAM devices still needs further understanding, it is
known that this inherent characteristic is not only linked to variations in the
thickness of the switching layer. Moreover, the lack of models which are able to
accurately mimic the variability of the devices operation is hindering the study
of its impact in RRAM-based ANNs. Thus, this work stands as a preliminary
assessment of the impact of RRAM variability over quality metrics on system
level. As future work, further studies will consider different modeling approaches
which capture the device’s non-idealities in a more empirical way, e.g. using
behavioral models based on experimental measurements.
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Abstract. The growing popularity of Applied Quantum Mechanics and
Artificial Intelligence drives the need for integrating the two fields. Quan-
tum Neural Networks (QNNs) incorporate quantum aspects into classical
deep learning networks which are capable of performing universal quan-
tum computations. The dense representation of QNNs presents great
challenges in terms of computational cost and noise susceptibility. In
this paper, we present SparseMAX, a novel Sparse Quantum Neural Net-
work (SQNN) that is robust to noise and interference for large volumes
of network parameters. We also introduce Quantron (ψ), a generalized
version of perceptron, which acts on qubits and performs the necessary
quantum operations. Based on these insights, we develop 2 GPU kernels.
The first kernel estimates the network architecture through a quantum
training algorithm. The second kernel accelerates a sparsified version of
the network matrices on a GPU cluster. We validate our kernel perfor-
mance and training algorithm and present the results in terms of infer-
ence time, GPU efficiency and scalability. On an average, SparseMAX
utilizes 54.83% of our GPU cluster’s compute resources, while offering
a 41.51× speedup in terms of serial inference timing measurements for
network layer range [120, 1920] and neurons per layer range [1024,4096]

Keywords: Quantum computing · Neural networks · Sparse models ·
Hardware acceleration

1 Introduction

Researchers have applied Deep Neural Networks (DNN) [1] to a range of scien-
tific and societal applications [2]. Loosely modeled after the complex structure of
a biological learning system, DNNs derive an input-output mapping, through an
interconnected set of nodes. Researchers have often incorporated concepts from
different fields to ascend barriers in reducing the computational cost of train-
ing a DNN. The solutions include expediting matrix computations on hardware
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accelerators through algorithm-hardware co-design, replacing backpropagation
with genetic algorithms for DNN optimization based on natural meta-heuristics,
etc. Our paper follows a similar path, by taking inspiration from multiple fields,
and presents a architecture capable of improving the exisiting methodology [3].

1.1 Quantum Neural Networks

With the advent of Quantum Computing (QC), integrating the main components
of QC with DNNs is an extremely exciting avenue. The eclectic combination of
quantum mechanics with neural computation gave rise to Quantum Neural Net-
works (QNN) [4,5]. QNNs employ quantum entanglement, superposition, and
unitary transformations to circumvent the limitations of classic DNNs in han-
dling complex unstructured datasets. QNNs require a generalized perceptron
structure and associated activation function to accommodate mathematical for-
mulations of quantum mechanics as against the classical representation [6]. The
linear nature of quantum processes serves to be the principle challenge in QNN
development, while DNNs have a crucial dependency on non-linearity. Despite
these challenges, QNNs present an enticing approach to developing large-scale
networks with reduced computational cost [7].

1.2 Injecting Sparsity in a Network

The latency observed, when a QNN is subjected to large volumes of datasets,
contributes to substantial overhead [8]. The main technique employed to reduce
inference latency is to prune the network. Pruning sparsifies a dense network by
trimming off network connections that do not contribute significantly to model
performance. However, there exists a trade-off between the amount of sparsity
introduced and model validity. Researchers have dwelled on the level of fine
tuning to be applied, amongst which element-wise pruning [9] being the most
granular and sparsity pattern being the least granular [10] techniques.

1.3 Accelerating Sparse QNN

To accelerate the Sparse QNN (SQNN), the core computations are ported onto
accelerator platforms. The matrix computations involved in SQNN development
are performed on matrices stored in Compressed Sparse Row (CSR) represen-
tation. The feature row and weight column is processed in parallel by assiging
them to individual warps and threads. We apply a Block-wise pruning technique
with a stride size less than 32 as the GPU architecture limits the thread block
size to 32 × 32. Organizing these blocks along with shared memory offers ultra
fine-tuned task and data parallelism, resulting in high throughput and bottleneck
elimination.

In this paper, we present SparseMAX, a novel Sparse QNN (SQNN) network
architecture with specific shape constraints on the pruning pattern. We also pro-
pose two CUDA kernels for accelerated computation of the pruned SQNN. In
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particular, the primary kernel constructs the QNN architecture by minimizing
the error estimate between input and output qubits. The secondary kernel com-
presses the feature set and weight vector into sparse row representations. The
kernel assigns the weight representation to thread blocks and decomposes the
Sparse Matrix Multiplication (SMM) across multiple blocks of the GPU to accel-
erate the multiplication process. We have used the Amazon Graph Challenge
Data [3] set consisting of synthetic DNNs created by RadiX-Net with varying
numbers of neurons and layers to get inference and scalability results.

2 SparseMAX: A Theoretical Perspective

To develop a QNN, we have modified a basic perceptron into a Quantron (ψ),
to incorporate quantum behavior. The modifications are necessary, as quantum
functions are linear in nature while neural structures are heavily based on non-
linear functions [11]. ψ acts on a set of m input qubits and produces a set of
n output qubits for each layer l [12]. Additionally, the qubits are placed in a
state of superposition to record and analyze the effect of severing any partic-
ular connection. The resulting state space of the neural network composes of
the Hilbert state space having N dimensionality, as each ψ has to operate in a
probabilistic manner. Let φi be the wave equation representing the ith ψ. At
any time t, the action of performing a measurement on the system will describe
the dormancy/firing state of any arbitrary ψ. The quantity being measured is
the probability amplitude which grows in a deterministic manner. The act of
measuring the probability amplitude collapses the curve into a singular value
and represented by a Hermitean operator φ as shown in Eq. 1.

φ =
N∑

i=1

αi|si〉 (1)

where αi and |si〉 represents the ith ψ’s normalized basis and state. The remainder
of the section describes the ψ’s construction, the associated quantum function-
alities and kernel function.

2.1 ψ (Quantron): Specialized Neuron Architecture

Consider a classical perceptron tasked with obtaining an output y given a set
of inputs xi. Equation 2 describes a perceptron model with weight set i and
activation function f.

y = f(
N∑

i=1

wixi) (2)

The weight set is updated according to Eq. 3, where ŷ is the ground truth
and η is the learning rate.
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wi(t + 1) := wi(t) + η(ŷ − y)xi (3)

Constructing a SparseMAX following the learning rule is difficult as there is
no analog F̂ for the non-linear activation function. The proposed ψ introduces
a unitary operation in addition to minor assests to introduce non-linearity into
the architecture [13]. The resulting block is similar to a perceptron in terms of
functionality with additional quantum layers built on top of it, enabling efficient
learning. The ψ takes an input state ρin and produces an output state ρout

through Eq. 4.

ρout = UρinU† (4)

The ground truth of a ψ exists in a fuzzy state, between connection-existing
(1) and connection-severed (0) states, parameterized by the input dataset x and
weight set w. The output obtained through the unitary operation is mapped
onto the phase of a quantum state |x1, . . . , xN〉 in an N-dimensional Hilbert state
space and an enhanced Kitaev phase-estimation algorithm [14,15] is applied with
precision τ . The resulting quantum state ρout = |J1, . . . , Jτ 〉 is an initial estimate
of ψ. The consistent mapping produced from the input to ρout replicates classical
activation functions with a high degree of similarity.

2.2 Quantum Neural Network

Having defined ψ’s functionality, we can now describe the network in detail. The
QNN consists of l hidden layers constructing a mapping between ρin and ρout as
per Eq. 5

ρout ≡ tr(U(ρin ⊗ |J1, . . . , Jτ 〉hidden,out〈J1, . . . , Jτ |)U†) (5)

where U is the cascaded set of unitary matrices U = Uout.Uout−1..Ul.Ul-1..Uin

consisting of ψ acting on input qubits. Given M patterns to learn, the input
states ρini are prepared with a projection operator ρin∗

i . The process of preparing
the ith input, consists of measuring and renormalizing as per Eq. 6.

ρini =
ρin∗

i ρ0ρ
in∗
i

tr(ρin∗
i ρ0ρin∗

i )
(6)

where ρ0 is the density matrix. Similarly, output states are defined with the
corresponding projection operator ρout∗i . The measurement ensures a nonlinear
behaviour in the QNN.

In order to propogate and optimise the network, two local cost functions are
defined: Let Ei denote probability of not finding the input state in the ith state
despite it existing in the ith state and let Fi denote probability of finding the
input state in the ith state despite it not existing in the ith state. A global cost
function E is defined to improve the network performance by re-adjusting the
weight set. Equation 7 formulates the total error for M training samples, with
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the local errors being depicted in the numerator, parameterized by projection
operators ρout∗i , ρin∗

i and their respective orthogonal complements Qout
i and Qin

i .

E =
M∑

i=1

tr(Qout
i Uρin∗

i ρ0ρin∗
i U†Qout

i )

tr(ρin∗
i ρoutρin∗

i )
+ tr(ρout∗

i UQin
i ρ0Qin

i U†ρout∗
i )

tr(Qin
i ρ0Qin

i )

2M
(7)

The technique presented above restricts the set of unitary matrices and
presents the probability of find one such set within an acceptable probability
of error. Gardner [16] suggests the use of the local loss functions Ei and Fi,
rather than probing the entire search space of unitary matrices and finding the
one corresponding to the minimal cost function.

Code snippet presented in Listing 1.1 displays the CUDA kernel responsible
for determining the SparseMAX structure using an accept-reject condition for
ρout. The accept-reject condition is based purely on the basis of quantum super-
position. The probability ρout connection surviving is dependent on the output
of the super imposed input states fed into ψ.

2.3 Complexity of QNN

To analyze the cost of a SparseMAX, we need to associate a cost with each
operation performed. Given k operations being performed on a single qubit, the
total complexity is O(2k). This forms an upper bound on the cost of training a
generic QNN. Quantum Associative networks (QAN) [17] are considered to be a
basic version of QNNs. Hence the time complexity of QANs form the lower bound
for our architecture. QAN’s have a linear time complexity in terms of the number
of elements to be folded in the superposition M and the number of dimensions N
O(MN). The remainder of the paper is focused on reducing hypothesized time
complexity through the introduction of sparsity into the unitary matrices and
finally expediting the training on a GPU cluster.

1 __global__ void calc_features(double* current_fitarray ,

double* memory_fitarray , int data_size , double goal) {

2

3 double theta , c;

4 double mx;

5 double error , est;

6 int xy_data_size = data_size + 1;

7 double* x = new double[xy_data_size ];

8 double* y = new double[xy_data_size ];

9 bool rho_out;

10

11 memory_fitarray [2 * (data_size)] = log10(num);

12 memory_fitarray [2 * (data_size)+1] = log10(pow(

current_fitarray [0], -2) - 1);

13 for (int i = 0; i <= data_size; ++i) {

14 x[i] = memory_fitarray [2 * i];

15 y[i] = memory_fitarray [2 * i + 1];
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16 }

17 //Get Unitary Matrix set U and obtain estimate

18 U = kitaev_phase_estimate(y[i]);

19 est = U*error_interval(x, y, mx, data_size + 1, theta ,

c)*conjugate_transpose (U);

20 error = y[data_size] - x[data_size] * theta - c;

21 //Check if error is smaller than the estimate

22 if (error <= est) {

23 rho_out = 1;

24 }

25 else {

26 rho_out = 0;

27 }

28 }

Listing 1.1. CUDA Kernel pseudo-code for SparseMAX Error Estimation

3 Sparse Matrix-Matrix Computation on GPU

In the previous section, we define the modified perceptron (ψ) along with the
network architecture along with the CUDA kernel for error estimation. In the
following section, we introduce sparse models and the relevant nomenclature.
Finally, we discuss GPU architecture and the proposed CUDA scheme for decom-
posing the matrix computations across the processing elements of the GPU.

3.1 Introducing Sparsity and Related Nomenclature

The resources required to train and serve QNN scales with the network architec-
ture and dataset size. However, physical limitations in terms of computational
power restrict the availability of these resources. As a result, researchers have
looked into neighboring avenues to improve efficiency. The field of finite elements
proposes the concept of sparse matrices, which have a high ratio of zero to non-
zero elements. Sparsifying the matrix reduces the computation cost associated
with the unitary matrices.

An m×n matrix can be converted into a sparse format if the number of non-
zero elements is few enough to bring down the complexity of the model. This
reduces the memory requirements drastically by storing only the non-zero ele-
ments. There exist multiple data structures for data storage, each optimized for
specific operations. In this paper, we adopt the Compressed Sparse Row (CSR)
and the Compressed Sparse Column (CSC) representation for our matrices as
they support efficient access and matrix operations. Libraries like cuSparse are
generally used for executing sparse matrix computations on GPUs. However,
porting cuSparse operations on GPUs are unproductive as the hardware design
is optimized for dense matrices unless the sparsity ratio is extremely high. We can
optimize the performance here by applying constraints on the pruning patterns.

As shown in Fig. 1, there exist three primary pruning techniques for obtaining
sparse matrices [18]. The blocks highlighted in blue are placed under scrutiny and
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Fig. 1. Three primary pruning techniques for an NXN Matrix (L-R): Element-wise
pruning(EW), Vector-wise pruning(VW) (4X1 Vectors), Block-wise pruning(BW) (2X2
Blocks)

the matrix elements corresponding to those blocks can be potentially nullified. In
Element-Wise (EW) pruning, we judge each connection based on its importance.
Note that this technique does not impose any pattern restriction and hence lacks
a structure for acceleration. Moreover, the random distribution of zero elements
makes the kernel function’s memory access irregular and hence poses a challenge
for hardware acceleration. In Vector-Wise (VW) pruning, we divide the matrix
into multiple vectors and perform pruning within each vector. A pre-determined
set of elements are pruned through a ranking process. This ensures randomness
preservation along with a well defined structure. In Block-Wise (BW), we divide
the matrix into blocks of pre-determined size and perform pruning within each
block. BW provides a generalized version of EW, with the block size increasing
on demand. Both VW and BW are well-structured pruning patterns and provide
efficient hardware acceleration. However the lack of rigidity in BW forces us to
opt for the slower, yet detailed VW.

3.2 Design of Sparse Matrix Computation

A Sparse Matrix Multiplication operation (SpMM) performs the computation
AB = C, where A is a sparse matrix in CSR format of dimension m × k, B is a
dense row major matrix of dimension k × n and C is a dense matrix of dimension
m × n. CSR format stores all non-zero elements of a sparse matrix into a vector.
Two additional vectors representing the row and column pointer are used to
access values in the sparse matrix. Figure 2 illustrates a sample sparse matrix
representation.

The number of access operations performed to fetch data from the GPU’s
main memory increases as the matrix dimensionality increase, resulting in
increased latency. Thread-level parallelism (TLP) aims to keep the GPU opti-
mally functioning such that when a warp needs to perform a memory operation,
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Fig. 2. A 4 × 4 Sparse Matrix decomposed through column and row pointers. The
combination of these pointers indicate position of 1 in the matrix.

the scheduler puts the warp to a sleep state and calls one of the warps in the
active state. If the occupancy of the SM is high, the warp- switches decrease
the latency cost. By assigning each thread an equal workload and by merging
memory access operations, we can optimize the overall performance. Any dis-
crepancy in work distribution among threads leads to load-balancing issues [19],
as threads assigned less work than others will stay idle for long periods.

In our work, each row of matrix A is assigned to an individual warp and each
thread is responsible for loading a column of the matrix B. This leads to the
memory access operations being coalesced resulting in optimal scheduling. Each
thread has to perform 32 independent operations, which when combined with
coalesced memory access for matrix B, significantly reduces the cost of memory
operations. Thus, we achieve load balancing by processing instructions in batches
of 32. Code snippet provided in Listing 1.2 shows the CUDA kernel responsible
for conducting SpMM. SpMM loops over the non-empty feature vectors followed
by looping over the non-zero entries in the column vector of the matrix B. Finally,
we compute the dot product at the intersection and store the result in matrix
C.

1 #define BLOCK_DIM 32

2 __global__ void spmspm(COOMatrix *result , CSRMatrix *A, CSCMatrix

*B, float bias) {

3 unsigned int r = blockIdx.y*blockDim.y + threadIdx.y;

4 unsigned int c = blockIdx.x*blockDim.x + threadIdx.x;

5 unsigned int temp = 0;

6 if(r < A->numRows && c < B->numCols) {

7 unsigned int rowPtrA = A->rowPtrs[r];

8 unsigned int nnzA = A->rowPtrs[r + 1] - rowPtrA;

9 if(nnzA > 0){

10 unsigned int *colIdxsA = A->colIdxs + rowPtrA;

11 float *valueA = A->values + rowPtrA;

12 unsigned int colPtrB = B->colPtrs[c];

13 unsigned int nnzB = B->colPtrs[c + 1] - colPtrB;

14 if(nnzB > 0){

15 unsigned int *rowIdxsB = B->rowIdxs + colPtrB;

16 float *valueB = B->values + colPtrB;

17 float sum = 0;

18 unsigned int ia = 0;

19 unsigned int ib = 0;
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20 while(ia < nnzA && ib < nnzB){

21 unsigned int colIdx = colIdxsA[ia];

22 unsigned int rowIdx = rowIdxsB[ib];

23 if(colIdx < rowIdx) {

24 ia++;

25 } else if(colIdx > rowIdx) {

26 ib++;

27 } else {

28 sum += valueA[ia] * valueB[ib];

29 ia++;

30 ib++;

31 }

32 }

33 if(sum > THRESHOLD || sum < -THRESHOLD) {

34 sum += bias;

35

36 if(sum > 0) {

37 if(sum >YMAX) {

38 sum = YMAX;

39 }

40

41 temp = atomicAdd (&result ->nnz , 1);

42 result ->colIdxs[temp] = c;

43 result ->values[temp] = sum;

44 result ->rowIdxs[temp] = r;

45 }

46 }

47 }

48 }

49 }

50 }

Listing 1.2. CUDA Kernel pseudo-code for SpMM Computation

4 Results

In this section, we present our empirical results and analysis of the SparseMAX
kernels introduced in the previous sections. We have developed the kernels for
minimizing the global error. The SparseMAX architecture evolves through these
kernels by parametereizing an initial set of 400 prototypes. Each prototype rep-
resents a variant of a base network architecture.

4.1 Data Description

The MNIST database of handwritten digits is widely used for training and testing
neural networks. It consists of 60,000 28 × 28 pixel images. Each image is resized
to 32 × 32 and 64 × 64, with each pixel in range [0,1]. The image pixels are
converted into a feature vector and saved as a .tsv file.
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The RadiX-Net SDNN generates a wide range of DNNs with varied hyperpa-
rameters, produced with the help of mixed radices. In our experimental setup,
the base networks evolve to produce different prototypes with a varied number
of neurons and layers. The total number of network connections is a function of
the number of neurons per layer and the number of layers.

4.2 Accelerator Platform Description

We have conducted the experiments on VEGA, GPU computing cluster. VEGA
consists of 2 nodes, each node having 2×18 core Intel Xeon Gold 5220 processors
connected to 2×NVIDIA V100 GPUs. We would like to thank the Centre for
Artificial Intelligence, TKM College of Engineering, Kerala Technological Uni-
versity, India, for hosting our code on the VEGA HPC Cluster, powered by V100
GPU Cards.

4.3 Dense QNN Configuration

For the network setup, we have used the RadiX generator to randomly generate
the dense matrices with different floating-point values. We then train the dense
implementations of our prototypes on the MNIST dataset. The base network
consists of convolutional layers, followed by hidden layers and a softmax output
layer. We have trained the prototypes using the error minimization CUDA snip-
pet provided in Listing 1.1. The network’s learning rate is in the range of 0.01 to
0.001, which decreases by a factor of 0.005 after each epoch. The hyperparam-
eters are chosen based on a validation set of 20,000 samples. Figure 3 displays
the global cost per prototype in the presence of arbitrary noise. We can observe
a dip in the cost at around 800 prototypes after 20 rounds. This shows that the
dense format of QNN is resilient to noise, when a large number of prototypes
are used.

4.4 Sparsity-Based Results

The following set of results highlights the effect of introducing sparsity into the
unitary matrices. Once we read the feature vectors and weights from the .tsv
file, we allocate an output vector to create the output matrix C. Subsequently,
we convert the vector and weight set into a CSR format. We adopt a double
buffering scheme to transfer data to the GPU. At each layer we perform the
following actions on the GPU:
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Fig. 3. Error measure of 1000 Dense QNN Prototypes

– Copy data to GPU
– Clear both the co-ordinate lists
– Compute SpMM
– Copy data to co-ordinate list from GPU
– Convert output data to CSR for next layer
– Deallocate memory
– Check Global error

We repeat the entire process for all combinations of neurons per layer and
number of layers. Table 1 describes the various timing parameters and Table 2
times the listed parameters for various network configurations. Note that the
time taken to perform operations T1 to T8 remain the same for a network with
growing depth. However it is worth observing that the processing times T2 and
T4 do not follow this trend. These exceptions can be attributed to fact that these
measurements relate to operations concerned with weight matrices. The weight
matrix set of larger networks will undoubtedly take longer time for perform-
ing read and conversion operations. In contrast to, the feature vector remains
constant for each network. The relative uniformity indicates the workload distri-
bution and the resultant scalability. Inference time cannot be parametereized in
terms of GPU operators and hence increases with an increase in network depth.

Our work emphasizes the scalability of the code as the data size increases
along with an increase in the efficiency of GPU usage. While the inference time
increases exponentially as the architecture grows, the time spent in performing
the SpMM computation remains the same for a fixed number of neurons. The
stagnancy of SpMM time directly correlates to optimal workload distribution
among warps and threads. When compared to [3], SparseMAX offers 41.51×
speedup in terms of serial inference timing measurements for network layer range
[120, 1920] and neurons per layer range [1024, 4096].
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Table 1. Network operations

Variable Network operation

T1 Reading Feature vector

T2 Reading Weight vector

T3 Feature Conversion to CSR

T4 Weight Conversion to CSR

T5 Data Transfer to GPU

T6 SpMM Operation

T7 Data Transfer to Co-ordinate Lists

T8 Convert Co-ordinate Lists to CSR

T9 Inference Time

Table 2. Performance metrics for Network Operations for all neuron-layers combina-
tions

Average Processing time for (in seconds)

Neurons

per Layer

Layer

Count

Number of

Connections

T1 T2 T3 T4 T5 T6 T7 T8 T9

1024 120 3932160 1.629 1.270 0.380 0.036 0.010 0.0524 0.114 0.079 11.385

480 15728640 1.634 9.131 0.464 0.164 0.007 0.042 0.113 0.057 38.497

1920 62914560 1.637 20.579 0.391 0.687 0.003 0.0118 0.040 0.059 149.097

4096 120 15728640 6.458 5.267 3.915 0.153 0.040 0.659 0.438 3.138 160.674

480 62914560 6.435 21.577 3.932 0.651 0.040 0.654 0.439 3.146 601.149

1920 251658240 6.781 84.397 3.962 2.647 0.0398 0.667 0.431 3.152 1435.842

Fig. 4. GPU utilization of a network having 120 layers and 4096 neurons per layer

Figures 4, 5 and 6 represent the GPU utilization for different workloads. We
can observe that as the network scales, the GPU performance increases. The
memory utilization remains constant for a particular architecture set. The usage
of these kernels do not result in any memory spikes and hovers at approximately
40% for any architecture. The CPU readings for both VEGA nodes show increase
in CPU utilization with increase in workload. The GPU cluster achieves peak
performance at multiple instances for heavy workloads, which further cements
the validity of our secondary kernel.
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Fig. 5. GPU utilization of a network having 480 layers and 4096 neurons per layer

Fig. 6. GPU utilization of a network having 1920 layers and 4096 neurons per layer

5 Conclusion and Future Work

In this work, we introduce SparseMAX, an algorithm-architecture codesign of
Sparse Quantum Neural Networks expedited on a GPU cluster. We utilize quan-
tum mechanical aspects to modify and generalize existing DNNs. We employ
widely used compression formats for sparse matrices for representing the net-
work parameters. Currently, we have ported SparseMAX onto a single node of
the VEGA cluster. We could have applied SparseMax on a Quantum comput-
ing environment (physical hardware/simulator) could have been used to realize
our goals. However, the existing platforms do not offer the level of flexibility we
require to integrate the quantum computations with other non-quantum opera-
tions, such as introducing sparsity. We can improvize the kernels to distribute the
workload among multiple nodes. Customized compression techniques can further
improvise the network parameters. The experimental results conclusively prove
the efficacy of SparseMAX over the existing methodology in terms of inference
latency [3].
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Abstract. Due to the slow-down of Moore’s Law and Dennard Scaling,
new disruptive computer architectures are mandatory. One such new app-
roach is Neuromorphic Computing, which is inspired by the functionality
of the human brain. In this position paper, we present the projected SEC-
Learn ecosystem, which combines neuromorphic embedded architectures
with Federated Learning in the cloud, and performance with data protec-
tion and energy efficiency.

Keywords: SNN · Federated learning · Edge cloud · Neuromorphic
hardware · Next generation computing · Virtual prototyping · NVM

1 Introduction

Artificial Intelligence (AI) and Machine Learning (ML) have achieved remarkable
success in a wide range of products from Industry 4.0, over automotive, consumer,
logistics, IoT to smart health applications. Inmost cases, theseAI applications exe-
cute on conventional computer architectures like multi-core CPUs or GPUs. How-
ever, the computationally and memory-intensive algorithms for the realization of
neural networks are pushing these conventional computer architectures to their
limits in terms of performance and energy efficiency, due to the gradual decline
of Moore’s Law and Dennard scaling. Further significant performance leaps will
therefore require new, disruptive approaches that at least partially depart from
today’s prevailing von Neumann architectures. In addition to these technical chal-
lenges, the limited availability of training data, which is often subject to data pro-
tection rules, is an obstacle for many data-intensive applications.

Fig. 1. Sensor edge cloud computing approach
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A solution for this problem is to move AI applications to mobile and edge
devices, which ensures that the data stays under the control of the users. This
requires careful consideration of the load profiles of specific AI applications. For
example, during normal inference operation, a neural network typically requires
only comparatively little power. Training, however, requires a high amount of
computational resources. If the inference has to occur locally whereas the train-
ing is to be done for instance on GPUs within a data center, the communication
overhead and the energy consumption will increase significantly. Consequently,
an alternative is to perform the training in the edge devices, too. This transfer
of computation from the cloud to the edge is a growing trend: It is expected that
in 2025, the edge AI chipset market will overtake the cloud AI chipset market
for the first time1. In order to leverage AI and ML on edge devices, local train-
ing and inference needs to be supported by new energy efficient neuromorphic
processor and memory architectures. Keeping the raw data at the edge, where
it originates, without transferring it to the cloud for processing not only opti-
mizes network use, but is also the only way to meet ever-increasing data security
and privacy requirements, prevent misuse, and ensure acceptance of distributed
applications. The development of specialized neuromorphic hardware promises
significant savings in energy consumption, space requirements, latencies and,
in sufficiently large quantities, much more cost-effective solutions. In particular,
the use of new Non-Volatile Memory (NVM) technologies [5] and Spiking Neural
Networks (SNN) [29] offer the potential for significant improvements.

Despite the clear advantages of local data processing in the edge, the training
of a complex AI system typically requires too much data to keep the training
completely local. Federated Learning (FL) [31], however, offers the ability to
train the AI models locally and only feed back improved parameters, i.e. the
result of local training, to all connected endpoints via a cloud service. There-
fore, AI applications in all nodes share the workload, and still benefit from the
learning success of all participants without having to transfer potentially sensi-
tive raw data to the cloud. The realization of FL therefore requires an ecosystem
that combines neuromorphic hardware accelerators for energy-efficient inference,
accelerators for local training, and a cloud connection for aggregation and dis-
tribution of model updates from and to the users. This technology stack spans
all layers from the cloud to the software and hardware levels on edge devices,
and further down to the level of individual transistors and memristors.

In this position paper, we present for the first time a holistic approach to
tackle the difficult challenge of developing such a complex edge cloud ecosystem
for homomorphically encrypted FL with SNNs. This concept, called SEC-Learn,
is schematically illustrated in Fig. 1. We focus in this work on the description of
the different levels of the technology stack (cf. Figure 2), and the overall ecosys-
tem architecture.

The paper is structured as follows: Chap. 2 gives an overview of related work
and the state of the art. The main Chaps. 3 to 5 depict each layer of the SEC-
Learn ecosystem from the cloud to the memristor, putting emphasis on topics

1 https://www.eenewseurope.com/news/edge-ai-chip-market-overtake-cloud-2025.

https://www.eenewseurope.com/news/edge-ai-chip-market-overtake-cloud-2025
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like FL, model aggregation, and edge computing - and outlines challenges and
solutions of scaling and efficiency. Chapter 6 presents a virtual prototype and a
neural network search tool for the virtual engineering of the SEC-Learn ecosys-
tem. The paper closes with conclusions and considerations on future work.

2 Related Work

In this paper, we focus on Neuromorphic Computing (NC) [5] as a key enabler
for small embedded edge cloud systems and FL. NC, after several decades of
research, has recently seen a resurgence due to the success of deep learning.
Besides digital accelerators for conventional Deep Neural Networks (DNNs), such
as Intel’s Movidius/Myriad chip [33], Google’s Tensor Processing Units [19] or
MIT’s Eyeriss processor [7], a growing number of neuromorphic chips target
SNNs instead and make use of analog or mixed-signal design. Many of these
designs make use of in-memory computing with non-volatile storage cells such
as memristors, which is seen as a key technology for overcoming the von Neu-
mann memory bottleneck [16]. One major European initiative, the Human Brain
Project [30], aims to provide new tools to better understand the brain and its fun-
damental mechanisms, and to apply this knowledge to advance the medical and
computer sciences. The Human Brain Project therefore develops two hardware-
based NC platforms, BrainScaleS2, and SpiNNaker [12]. The BrainScaleS system
uses a mixed-signal approach, employing analog electronics to model up to 1 mil-
lion neurons and 1 billion synapses, as well as digital communication protocols
to model their connections and inter-cellular communication. The SpiNNaker
system, by contrast, is a massively parallel, fully digital computing platform tar-
geted at neuroscience, robotics, and computer science applications. Both systems
comprise the development of hardware accelerators for SNN models, with a long

Fig. 2. Technology stack for the SEC-Learn ecosystem

2 https://brainscales.kip.uni-heidelberg.de/.

https://brainscales.kip.uni-heidelberg.de/
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history in neuroscience, but have only recently seen applications in ML. Other
prominent approaches in this field include IBM’s True North architecture [32],
Intel’s Loihi [10] and Brainchip’s AKIDA3.

The use of SNNs is particularly appealing for hardware development, because
it allows to combine the benefits of analog in-memory computing, namely
area, latency and power-savings, with those of digital communication, namely
improved reliability and better scaling (see also 5.1). However, the event-based
operation of SNNs defies conventional training methods and poses a challenge
for numerical simulation, and hence, comparatively few mature software tools
are available (notable exceptions include NEST [13], Brian [14] and Nengo [1]).
While some gradient-based optimization methods, such as surrogate gradient
training [34], do exist for SNNs, the prevalent approach for “training” SNNs
is therefore the direct conversion of conventional DNNs to SNNs, after being
trained. This approach was shown to work remarkably well even for large neural
networks [37], and it integrates well into our FL-framework.

FL was proposed as a method to mitigate the security and logistical con-
cerns of storing large amounts of sensitive data in a centralized data center.
Instead of storing data centrally, McMahan et al. [31] proposed the FL approach
which allows data to remain on distributed devices by training a shared model
through the aggregation of weight gradients from models trained locally on the
edge devices. To aggregate the weight gradients the authors proposed federated
averaging, which performs element wise averaging of the weight gradients from
participating devices. Kairouz et al. [21] presented a comprehensive overview of
FL and its associated challenges. Two of the main challenges for FL include the
communication over unreliable networks, and local datasets that are statistically
dissimilar, or Not Independent and Identically Distributed (non-IID), between
edge devices due to the heterogeneous nature distributed data collection.

To address these challenges, Sattler et al. [36] proposed to replace the stan-
dard federated averaging with an approach that combines sparsification and
quantization, called Sparse Ternary Compression (STC), for both upstream and
downstream communication. In addition to reducing communication bits and
training time, the authors claim that sparsification methods such as STC out-
perform federated averaging for non-IID data. Hsieh et al. further evaluated the
challenges of non-IID data with FL [15]. They identified problems with the batch
normalization layer, a common layer in many DNN architectures, and proposed
to use group normalization [43] instead. Similarly, to address the problems of
non-IID data, Sattler et al. [35] proposed a clustering operation to group simi-
lar clients (edge devices) based on the cosine similarity of the weight gradients.
The previous methods have focused mainly on image or text-based tasks. To our
knowledge, the only known research or practical applications of FL in the audio
domain are limited to Keyword Spotting (KWS)4 [3,25]. To foster research in FL
and Sound Event Detection (SED), Johnson et al. [18] proposed new FL specific
datasets for SED in urban and domestic environments.

3 https://brainchipinc.com/akida-neuromorphic-system-on-chip/.
4 https://developer.apple.com/videos/play/wwdc2019/708.

https://brainchipinc.com/akida-neuromorphic-system-on-chip/
https://developer.apple.com/videos/play/wwdc2019/708
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3 The SEC-Learn Ecosystem - From Cloud to Memristor

The SEC-Learn ecosystem combines major concepts of NC with FL. For this
disruptive approach, we consider the complete technology stack from cloud, via
edge devices, down to the memristor level. Figure 3 illustrates the functional
architecture and data flows of the proposed SEC-Learn ecosystem. It is essen-
tially divided into two subsystems: (1) the Cloud, which combines and integrates
learned knowledge from the field, enabling FL, and (2) the Edge Devices, which
operate locally in the field and can learn autonomously, resulting in reduced com-
munication with the cloud and bypassing the transfer of individually identifiable
sensor data to the cloud.

Fig. 3. SEC-Learn ecosystem

In normal operation, the neuromorphic SNN core in the edge device contin-
uously performs inference operations on incoming data, enabling applications
that rely on continuous data processing. The key metric for this inference sys-
tem is energy efficiency, which is the reason why low-power SNN structures are
used. The training core, designed as High Performance Computing (HPC) core,
realizes the local training based on collected data to continuously evolve the AI
application in the neuromorphic core. This local training in edge devices reduces
communication and computational overhead in the cloud, resulting in massive
energy savings. To enable FL and boost the training success, the training core
transmits locally learned parameters of the associated NN models to a cloud
application that combines, and integrates the federated learned knowledge. New
parameter sets are sent back to ecosystem participants, and therefore everyone
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benefits from each other’s experience. As the training process is very compu-
tation intensive, the HPC core will have a high power consumption. Therefore,
the training process, the communication with the cloud, as well as the updating
of the weights in the SNN are performed infrequently compared to inference in
order to ensure the energy efficiency of the edge device and thus of the entire
ecosystem.

As pilots, we implement the following use cases with the SEC-Learn ecosystem:

– Sound Event Detection (SED) and Keyword Spotting (KWS) are the
detection of a predefined set of keywords or sound events from a continuous
audio stream. Both are growing research fields with application scenarios in
domestic and urban monitoring [18], as well as industrial sound analysis [17]
for SED and command control or wake word detection of smart devices for
KWS. Typically, these scenarios require recording devices that are constantly
on, calling for energy efficient solutions. FL has the possibility to greatly
improve the performance of SED and KWS algorithms that are used in het-
erogeneous environments with distinct acoustic conditions, and a variety of
voices and accents. In addition, it can support distributed learning even in the
domestic and medical domains, which are both highly sensitive with respect
to personal data sharing.

– Autonomous Driving: Self-driving vehicles require a robust understanding
of the environment. This includes the reliable detection of relevant objects,
estimation of the pose and (future) trajectory of other traffic participants
and the anticipation of potentially dangerous situations. However, providing
the required computing resources for the demanding tasks of computer vision
and sensor fusion is still a major challenge. Additionally, fully automated sys-
tems have to reliably operate in a wide variety of contexts and environmental
conditions. Therefore, despite the availability of public data sets for various
perception tasks many unforeseen edge cases still remain. Local improvement
of existing models with new data can overcome this limitation, while sharing
the learned parameters ensures that all vehicles benefit from scarce events
only experienced by very few of them.

To enable the development of system functions while the overall system is
not available yet, we develop a virtual prototype (c.f. Sect. 6). This enables the
provision of a virtual integration environment that continuously evaluates the
performance of Next Generation Computing (NGC) components in virtual appli-
cation contexts and sets parameters for subsequent hardware realization. In the
following chapters we will describe the aspects of the SEC-Learn ecosystem in
more detail following the path of the technology stack shown in Fig. 2.

4 Cloud and Federated Learning

Some of the most promising AI applications require the collection of vast
amounts of data by a large number of independent edge devices. Typical deep
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learning methods require large centralized datasets for model training, posing
significant security and logistical challenges. However, in many cases this data
has to remain private. Transmitting it to a central cloud service that realizes
training is therefore not feasible. Furthermore, the continuous stream of large
amounts of raw data would put a significant load on communication networks.
To still enable the training of AI applications with this data, training has to be
performed on edge devices, as it must be ensured that the raw data never leaves
the device.

FL [31] offers an attractive approach to mitigate these concerns: Instead of
sending private data to a centralized data store, FL performs model training
directly on many edge devices using locally stored data. The edge devices then
share only their updated parameters with a coordination server, which aggregates
the shared parameters to update a global model, without the necessity of sharing
the actual data. The new global model is then transferred back to the edge
devices. This process continues until convergence, or indefinitely if new data is
continuously acquired [21].

SEC-Learn will furthermore apply FL to ensure that all ecosystem partici-
pants benefit from the shared training efforts. It is based on a cloud-based model
aggregation service that combines training data, and provides in regular inter-
vals updated parameter sets for the SNN on edge devices, therefore gradually
increasing the quality of the AI applications on the edge.

In [18], we introduced two novel data sets to foster research in FL for SED.
To better understand the effects of previously identified challenges associated
with non-IID data in FL, we included both IID and non-IID training sets for
each use case. Additionally, we contributed the evaluation of three baseline neural
network architectures. The results showed that while FL is a promising approach
for SED it is prone to challenges with non-IID data similar to previous FL
research [15,36].

In real world environments we can have thousands or even more edge devices,
of which only a subset may be available during the training procedure. There-
fore, we need a fault-tolerant, dynamic runtime environment for handling these
circumstances. For this reason, we developed a FL runtime called Fed-DART,
which is based on an industry-proven distributed platform for high-performance
systems. It enables high scalability on a wide range of participating devices
and provides the needed fault-tolerant and dynamic runtime environment. The
user can easily implement FL methods without having to deal with the com-
plexity of distributed computing. This is achieved by separating the algorithms
from the technical infrastructure. Fed-DART is device-independent and there-
fore supports a wide range of application options. Furthermore, the integration of
Fed-DART is independent of the ML framework used. The user must only write
executable Python code for the edge device training procedure and the global
aggregation method for the cloud. Fed-DART easily and conveniently integrates
into this code by including the respective pip package. The FL runtime is then
responsible for the communication exchange and scheduling to the edge devices.
In the cloud we define the needed devices for the FL round of a given (valid) task,
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and the function specified for the task is executed on available edge devices. The
current status of the learning progress and the result can be queried at any time.
Fed-DART runs in background, is non-blocking and supports multiple types of
device populations, which allows to start a local training on specific or randomly
selected devices. Fed-DART will run on the SEC-Learn edge device HPC cores.

Once deployed, the SEC-Learn Cloud will have to collect, integrate and re-
distribute model updates proposed by each edge device based on its individual
experience. Even if only the local parameters, and not the training data, are
shared with the cloud, it might be still possible to derive potentially sensitive
information about the edge devices, by performing so called Inference Attacks. A
second relevant attack category are Model Poisoning Attacks, where a potentially
malicious or malfunctioning edge device manipulates the aggregated model by
sending invalid model data to the cloud.

For the first (passive) attack, nearly all participants could be potential attack-
ers: the cloud aggregator, one or several colluding edge devices or even the end
user of the resulting system. For the (active) model poisoning attack, the focus is
set on the edge devices and the cloud. For every application scenario, the sensitiv-
ity of the processed data will be assessed to choose the right defense mechanisms,
overall there are two promising approaches to mitigate such attacks:

– Fully Homomorphic Encryption (FHE): Encryption schemes that allow com-
putations on the ciphertext without decrypting it first. This allows the edge
devices to send the model data encrypted to the cloud, while the aggregator
is still able to compute a global model without access to the plaintext model
data.

– Differential Privacy (DP): By adding noise to the data sent to the cloud, it
is not possible to link back the data to an individual edge device. This helps
to prevent that sensitive data is sent to the cloud in the first place, but also
potentially makes it harder for an individual attacker to “poison” the model.

Both approaches have downsides in making things computationally more expen-
sive and also potentially degrade the overall system performance. With the help
of the virtual prototype (cf. Sect. 6) we will explore the design space of FHE and
DP in the respective application scenarios, in order to ensure that security and
performance goals are met.

5 Edge Device

As mentioned before, given the vast amount of data captured by each edge device
in our use cases, the majority of this deluge of data has to be processed where
and when it is produced, i.e., on the edge device itself. This includes the real-
time processing of incoming data through a dedicated AI inference accelerator
as well as the selection and storage of relevant new data for retraining of the
local model through a dedicated training accelerator.

Processing this huge amount of data consumes a significant amount of power
in our selected use cases: For example, according to [20] the current control units
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for autonomous driving like Audi’s zFAS, Nvidia’s Xavier or Tesla’s FSD, have a
power consumption between 75 W and 500 W. For both, combustion-engine and
electric cars, this power consumption will reduce the driving range significantly.
Therefore, it is important to design an edge device which is sufficiently flexible to
handle a wide range of functions, and is energy efficient for the sensor processing
and inference of neural networks, but also very high performing in the training for
the FL. In [4] the Intel’s neuromorphic research processor Loihi (Wolf Mountain
board) was benchmarked againts CPU (Xeon E5- 2630), GPU (Quadro K4000),
Jetson TX1, and Movidius NCS for the keyword spotting application, leading to
a lowest mean power consumption of 0.27mJ per inference for Loihi.

To support these fundamentally different workloads, we rely on an energy
efficient design for our heterogeneous platform (cf. Figure 3): The inference sys-
tem is always active and continuously processes input data. A dedicated RISC-V
management core orchestrates the SNN core and other accelerators and stores
potential new training data in an energy efficient NVM. The SNN core realizes
the neural network processing in hardware and is therefore more efficient than
software solutions. An HPC core is used for the training and also implements the
cloud communication for FL. It is inactive most of the time to reduce power con-
sumption. Once a certain mass of new training data is collected, and when the
system is not in operation mode, training is started on this core. With respect to
our use cases, an example for such an idle situation would be the charging of an
electric vehicle. In Sect. 5.1 we detail the SNN core of the inference subsystem,
and in Sect. 5.2 we describe the HPC core of the training subsystem, respectively.

5.1 The SNN Accelerator Core

In order to minimize power-consumption during the always-on inference opera-
tion, we develop a dedicated, mixed-signal inference accelerator for SNNs. This
approach combines the respective benefits of both analog and digital design: On
the one hand, it allows us to compute the demanding Multiply-Accumulate Oper-
ations (MACs), which account for most of the computational cost of DNNs, in
very power- and area-efficient analog circuits [42]. On the other hand, the inher-
ently binary, event-driven communication of SNN obviates the need for sensi-
tive analog signal paths and allows for a highly scalable digital package-routing
design.

Moreover, by incorporating either Static Random Access Memories (SRAM)
or NVM elements (or “memristors”) such as Ferroelectric Field-Effect Transis-
tors (FeFETs) directly into the analog circuit, we can co-localize memory storage
and computation and thus minimize data transfers. In the last few years, various
architectures [6] have used embedded in-memory computing to overcome limited
storage density, to reduce static leakage and to provide a wake-up possibility for
extreme low power consumption. The main disadvantage of NVMs to date are
their often lower maturity and endurance in comparison to SRAMs.

Since both SNNs and homomorphic encryption are ultimately memory bound
operations, they stand to gain considerably from in-memory computing [16],
in particular when a weight stationary implementation is chosen, where the
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coefficients are persistently stored in the NVM cells. However, meeting the low
required device-to-device variation in ultra-scaled memory cells is challenging.

In SEC-Learn, we investigate energy efficient, high performance FeFETs as
NVM cells. FeFETs have been shown to operate at very high energy efficiency for
binary and multi-precision convolutional neural networks [2,39], and we expect
this to apply to SNNs, as well. The influence of device-to-device variation on
the synaptic behavior of SNNs was investigated, and SNNs were shown to be
resilient with respect to such variations, e.g. due to temporal sparsity of the input
activation. With optimized peripheral circuits specialized to improve power and
area efficiency, the FeFET inaccuracies can be improved both on the single block
level and on the overall system level [40]. This makes spike encoded operations
possible in the range of < 1fJ per spike. The synaptic efficiency can be extended
further by implementation of Multi-Level Cell (MLC) storage, which was exper-
imentally shown for 3-bit MLC FeFETs [22,26]. Furthermore, analog switching
is possible, which can extent to a larger bitdepth [24].

To combine the benefits of analog in-memory computing and digital commu-
nication, we use a hierarchical approach that connects highly integrated, config-
urable Neuromorphic Processing Units (NPUs) through a tiered, heterogeneous
Network-On-Chip (NoC) infrastructure. Each NPU in this network consists of a
small sub-network of custom dual-output integrate-and-fire neurons (akin to the
concatenated ReLU activation function in conventional DNNs [38]). The neu-
rons are connected through a crossbar arrangement of synaptic connections that
is optimized for some specific type of operation, e.g. 1D convolution or matrix
multiplication. These internally analog NPUs are interconnected through a scal-
able, digital communication network that uses a modified version of the Address
Event Representation (AER) protocol [9].

The on-chip communication network is critical for performance, and must
be designed with the specific requirements of SNNs in mind: Some current neu-
romorphic designs, such as the MIT EYERISS chip [6], utilize a lightweight
mesh network, where the neighbouring processing elements can be directly con-
nected to each other. Most SNN accelerators like SpiNNaker [12], however, use a
meshed package-routing system in order to achieve a higher degree of flexibility.
We instead opt for a tiled, hierarchical network, which we believe results in an
optimal trade-off between latency, area, and design complexity. Figure 4 shows a
preliminary chip-level design. A reconfigurable mesh network connects the indi-
vidual NPUs within each tile, and the tiles are in turn connected through a
high-bandwidth ring bus. Such a hierarchical network offers a good compromise
for two different types of computations:

– Intra-layer computation: Computations within a given SNN layer have to be
highly synchronized. A sufficiently large tile of densely interconnected NPUs
allows computing an entire NN layer in parallel, which is highly beneficial for
performance [27].

– Inter-layer computation: Since the data-flow in a deep neural network is
mostly unidirectional, individual layers can be processed sequentially. A ring
bus is therefore sufficient.
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Fig. 4. System-level SNN accelerator design

A critical design challenge arises from the asynchronous, real-time dynamics
of SNNs as well as from the use of NVM elements, both of which endow the
NPUs with a persistent internal state and thus complicate time-multiplexing.
An efficient implementation of an SNN on our hardware therefore requires an
optimized, automated mapping of the model onto the available NPUs and tiles to
maximally parallelize operations while minimizing data transfer. This process,
much alike high-level synthesis on field-programmable gate arrays (FPGAs),
requires new algorithms and software tools, which we co-develop alongside the
hardware in the SEC-Learn project (c.f. Sect. 6).

5.2 The HPC Training Core

In contrast to the “online” inference, retraining of the model is a more complex
and computing intensive operation that should occur “offline”, i.e. when the sys-
tem is idle or connected to a power source. Nevertheless, also during training
energy efficiency is key. Due to these fundamentally different requirements, we
delegate retraining of the local model to a dedicated training accelerator which
will be integrated into the HPC core. The accelerator is based on the Stencil-
and Tensor-Accelerator (STX) which is developed within the European Proces-
sor Initiative (EPI)5. The STX leverages parts of the PULP architecture [8]
for scalable and energy efficient acceleration devices by using software managed
scratchpad memories, efficient RISC-V cores and specific acceleration units for
tensor and stencil operations. The acceleration units are designed around the
concept of local dependencies and staticly structured access patterns such as
those encountered in dense calculations like in convolutions or spare calculations
such as star-shaped stencil operations. They implement hardware loops and effi-
cient offset address calculations and are fully programmable via openMP. The
optimized Low Level Virtual Machine (LLVM) compiler backend takes care of
the optimization passes and optimal instruction schedules.
5 https://www.european-processor-initiative.eu/.

https://www.european-processor-initiative.eu/
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Fig. 5. Virtual prototype of the SEC-Learn ecosystem

6 Virtual Engineering and Neural Network Design

The development of such a complex system as the SEC-Learn ecosystem pre-
sented above is a challenging endeavour that requires the seamless integration of
many heterogeneous components, each of which is developed by different teams
using diverse technologies from the presented technology stack (cf. Figure 2).
To ensure a close integration, detect errors early on, and to evaluate all com-
ponents already during development, we implement a virtual prototype, which
consists of software simulation models at various levels of abstraction. Since the
ecosystem itself is very heterogeneous, also the virtual platform will consist of
heterogeneous simulation models. The main challenge in the design of this vir-
tual prototype is to find the correct level of abstraction in order to find a good
trade-off between simulation speed and accuracy. For this reason we use the sim-
ulation coupling framework FERAL [23], which offers a seamless integration and
time synchronization of the different models of computation. Figure 5 shows the
virtual platform of the SEC-Learn ecosystem. It consists of two main simulation
loops, first the inference loop and second the training loop.

For the inference loop, for instance, Carla [11] is used for the automotive use
case in order to simulate the environment. It is an open-source simulator based
on the Unreal gaming engine that specifically addresses the needs of autonomous
driving research. The environmental data, generated by virtual sensors, is used
as stimuli for the simulated edge device.

In order to integrate the SNN accelerator into the entire SEC-Learn virtual
platform, a bottom-up modelling approach is followed. Since the goal is to enable
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an as-fast-as-possible simulation, the analog SNN level has to be abstracted into a
more computation-friendly representation. The model, however, must include the
major effects of the SNN accelerator. Therefore, we follow a split approach using
(1) a non-spiking DNN representation based on TensorFlow [28] and (2) the fast
system-level modelling language SystemC/TLM as an interface to the other edge
device components. By avoiding transient spiking signals of an analog model, the
computation time reduces significantly. At the same time, the non-ideal effects
of the transistor-level SNNs are approximated based on characterization of, e.g.,
neuron accuracy, time-delays, and power consumption. The related accuracy
loss is to be traded-off with the simulation speed required. As first step, the
TensorFlow model is adapted accordingly to represent the accuracy. Second, it
is wrapped by SystemC in order to interface seamlessly with the abstraction
levels that support this modelling language, and to include timing effects.

For the simulation of memories we rely on the DRAMSys [41] framework.
For the other models, e.g. the training and management core of the edge we
are using custom SystemC implementations or Register-Transfer-Level (RTL)
implementations, which have been converted to SystemC by using the Verilator
tool. For the simulation of the training loop we use the Software In the Loop
(SiL) principle by executing the actual cloud software and coupling it to one
edge device by using the FERAL framework.

As mentioned in Sect. 5.1, the target platform has properties that constrain
the design space of the DNNs which shall be executed on the device and at the
same time yield the desired performance of the application. Using off-the-shelf
DNN topologies for this purpose, is not only sub-optimal, but can also negate
the efficiency gains from special hardware, if the topology is chosen too unfa-
vorably for the platform. Therefore DNNs must be designed with the hardware
in mind. While the design space is too large to be efficiently explored manually,
its exploration can be automatized by methods of Neural Architecture Search
(NAS).

We introduce our optimization framework called NAS Engine (NASE), which
is specifically designed to incorporate hardware awareness into the exploration
process. First, the search space of the NAS is tailored to the underlying hardware
platform based on our virtual prototype. So the found topologies are guaranteed
to be executable on the SEC-Learn architecture, including aspects like memory
size for intermediate values and the quantization of weights and feature maps.
Second, the optimization targets and constraints for the hardware are formu-
lated as objectives, which possibly can be non-differentiable functions or look-
up tables. NASE is configured for the SNN accelerator by taking into account
aspects like the package routing network, on-chip memory constraints, limited
range of the weights, robustness to device variations, etc., so that the mapping
of the SNN to the NPU tiles can be performed at maximal efficiency, while also
ensuring application performance.

Since the number of hardware constraints and objectives is large, it is imper-
ative that the optimization algorithm can efficiently cope with high-dimensional
optimization spaces. The selection of DNN candidates in NASE is based on a
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multi-stage bayesian approach, which allows to identify intelligently promising
design space regions and reduces the computational workload. The DNN can-
didates are trained in parallel by using our own dynamic runtime scheduler for
HPC clusters (DART), which is able to not only distribute the training tasks,
but also to perform other time-consuming optimizations like quantization fine-
tuning, so that NASE scales with complex applications and search spaces.

7 Conclusion and Future Work

In this position paper, we present the SEC-Learn ecosystem, which combines
neuromorphic embedded architectures with the idea of federated learning in the
cloud. We emphasize that for the holistic development of such an energy efficient
and data protecting edge-cloud system all technology levels from the application
down to the transistor level must be considered. A virtual prototype is imple-
mented to ensure close integration, and early evaluations. After the successful
demonstration with our prototype we plan to manufacture a demonstration chip,
and provide performance and power estimations for concrete use cases.
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Abstract. Energy cost continues to be a significant barrier on all mod-
ern computing platforms. The common wisdom has been to focus on
speed alone through heuristics like “race-to-sleep,” a strategy based on
the observation that the time-dependent components of total energy tend
to dominate. Among different speed-optimal implementations or trans-
formations of a program, however, there is a range of choices to (fur-
ther) reduce energy. One of them is to execute a program with “multiple
passes,” which reduces data accesses while retaining speed optimality,
and was shown to be effective for stencil computations on CPUs. We
try to extend this strategy for a suite of computational kernels on both
CPU and GPU platforms based on prior success. We find that the app-
roach does not appear to generalize well due to practical limitations in
the hardware present on the systems we studied. Despite this negative
result, we illustrate what it would take to be profitable and use it to
understand why it appears to be out of reach on current systems today.

Keywords: Energy efficiency · Program transformations · Multiple
passes

1 Introduction

Optimizing for energy has become increasingly important in the area of high
performance computing. In 2019, the Summit super computer in Oak Ridge
National Lab in the United States had a reported power draw of 10,096 kilo-
watts (kW)1. The average cost of electricity in the United States in 2019 was
$0.11 per kilo-watt-hour (kWh)2. At these rates, operating Summit continuously
at peak performance costs $1,100 per hour, or $26,400 per day in electricity
alone. Optimization strategies that result in energy savings of even as little
as 10% translate into thousands of dollars saved. This is an approximation, of
course, but it illustrates the practical need for energy optimality in today’s high
performance computing systems and the programs that they run.

1 https://www.top500.org/lists/top500/2019/11/.
2 https://www.eia.gov/electricity/.
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Total energy consumption can be thought of as having contributions from
time-dependent and time-independent components. Since the time-dependent
component is becoming more and more dominant in recent computing plat-
forms, it has been observed that finishing all tasks as quickly as possible and
powering everything down is the most energy efficient in many cases [6,11,33].
Recent work has shown that there is room for additional energy savings by min-
imizing portions of the time-independent contributions as well [21,30,35]. This
suggests that the implementation that minimizes energy is among the set of
implementations that also minimizes speed.

In this work, we focus on an approach called multi-pass parallelization [35],
which was shown to provide energy savings up to 14% for stencil computations
on CPUs by further reducing last level cache (LLC) misses without losing speed.
We try to extend this to other computations on other architectures at other
levels of the memory hierarchy. Specifically, we look at matrix multiplication on
CPUs and stencil computations on graphics processing units (GPUs). From the
speed-optimal implementation, provided by high-performance libraries, we ask
the question: to what extent are further energy savings possible using multiple
passes? We attempt to improve locality beyond reaching the point where there is
enough locality for speed. With the speed-optimal implementation as the base-
line, we expect to obtain energy savings if we can further reduce data transfers
and retain speed optimality.

Counter to our initial expectations, this approach does not appear to gener-
alize well for a variety of different architecture-specific reasons in reality. Even
though we can successfully reduce the number of data movements across tar-
geted levels of the memory hierarchy, in some cases, we can not do so without
sacrificing speed due to insufficient disk throughput and LLC capacity. Alter-
natively, in the cases where we do not lose speed, the relative fraction of total
energy saved from the reduced memory traffic is too small to matter.

We begin by providing the necessary background about the program trans-
formations used to carry out multiple passes to illustrate how it reduces memory
traffic and why this ought to lead to energy savings. Then (in Sect. 4) we dis-
cuss how we could extend multiple passes to the following different scenarios:
(i) matrix multiplication on CPUs at the LLC to DRAM boundary, (ii) at the
DRAM to disk boundary, and (iii) stencil computations on GPUs at the LLC to
DRAM boundary. Then (in Sect. 5), we introduce our energy model, and use it
to develop profitability constraints (in Sect. 6) to show why each of these cases
are ultimately not profitable (in Sect. 8).

2 Background

This section summarizes multi-pass parallelization [35] and illustrates why it is
expected to lead to energy savings.



(When) Do Multiple Passes Save Energy? 453

2.1 Optimizing Polyhedral Programs for Speed

Example: The 1D Jacobi (J1D) is a first-order 3-point stencil computation
updating an (N + 1)-element data array over T time steps. The computation of
each point depends on three neighboring points from the previous time step.

Bt,i =

⎧
⎪⎨

⎪⎩

Ai if t = 0
Bt−1,i if 0 < t ≤ T and (i = 0 or i = N)
f (Bt−1,i−1, Bt−1,i, Bt−1,i+1) otherwise

(1)

t 

i 

Fig. 1. Rectangular tiling for J1D after
time skewing (T = 5, N = 6).

Updating data point i at time step
t requires three values from the previ-
ous time step: (i − 1), i and (i + 1).
Due to the dependencies, rectangu-
lar tiling cannot be applied across the
time dimension directly, and a well
known technique, time skewing [24,
31,32], is used to enable tiling across
the time dimension. As illustrated in
Fig. 1 it skews the time dimension with
respect to the data space, to make
all the dependencies lexicographically
positive, and this makes loop blocking legal.

This produces the tile-graph shown in Fig. 2a where each small square is a
tile and arrows show tile dependencies (from consumer to producer). This can
be parallelized in a standard way. All the tiles executed at the same time step
constitute one wavefront, and wavefronts are executed sequentially with a barrier
synchronization. The area of the tile corresponds to the computation volume and
the perimeter corresponds to the data access. By making tile sizes large enough,
the program is fully compute bound and thanks to well developed latency hiding
techniques it achieves optimal execution time.

i

t

(a) Wavefront Parallelization of Tiles.

i

t

(b) Multi-pass wavefronts.

Fig. 2. Execution order of tiles for wavefront parallelization and multi-pass. The dashed
lines indicate the set of tiles that are executed in parallel.

However, for problem sizes where the program’s data footprint exceeds LLC
capacity (i.e., most reasonable programs), the perimeter of every tile corresponds
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to an LLC miss, in the steady state. This is because the wavefront schedule
executes all tiles in a given wavefront before any tile in the next one, leading to
poor data reuse across wavefronts: by the time a tile’s output is required by the
next tile (which is in the next wavefront) that data has been evicted from LLC
by all the other tiles in the current wavefront. As a result, although such codes
are the fastest, they are not the energy optimal ones [35].

2.2 Multiple Passes Reduce LLC Misses

To achieve reuse across wavefronts and thereby improve energy efficiency, the tile
space is partitioned into multiple bands, called passes (see Fig. 2b). Passes are
executed sequentially using standard wavefront parallelization within each pass.
The pass height is chosen such that the “persistent data” between successive
wavefronts fits in the LLC. Note that values needed from the previous pass will
still be misses, but there will be significantly fewer of these than with wavefront
parallelization. Thus, data reuse within one pass is optimized.

Multi-pass parallelization can be viewed as a hierarchical application of tiling,
the outer one being passes, and the inner ones the conventional tiling. From here,
it follows that if multiple passes can be carried out without losing speed, then
the energy that would have been spent on excessive LLC misses resulting from
executing all tiles within a wavefront before moving on to the next wavefront
can be recouped. However, the ability to do this generally without losing speed
is fraught with challenges.

3 Related Work

While this work focuses on the use of multiple passes, there are many other
techniques that could be explored with the goal of energy efficiency.

Prokop [13,26] introduced cache-oblivious algorithms, an algorithmic strat-
egy that seeks to minimize data transfers across all levels of the memory hierar-
chy by exploiting a divide-and-conquer execution schedule. Frigo and Strumpen
proposed serial [14] and parallel [15] cache oblivious implementations of stencil
programs. Pochoir [29] is a domain specific compiler for stencil programs using
this strategy. Autogen [7,8] and Bellmania [20] apply this strategy to dynamic
programming. Most cache oblivious strategies seek to optimize for total execu-
tion time, and hence arguably provide energy efficiency “for free,” or with a little
extra effort [30]. However, it is easy to show that the number of off-chip memory
accesses with a multi-pass strategy is provably lower, albeit by a constant factor.

Other approaches based on the fact that total energy is the product of power
and time allow for longer execution times while operating at a lower power to give
an overall reduction in energy. Techniques like dynamic frequency and voltage
scaling (DVFS) can be used to do this. Yuki and Rajopadhye [33] show that
from the perspective of the system as a whole, the use of DVFS in compilers
to trade off energy for speed results in negligible savings. So it does not make
sense to consider this in the context of multiple passes and further reaffirms the
importance of speed-optimality.
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However, it is also possible to improve energy efficiency through DVFS with-
out sacrificing speed. The main intuition is that the processor may slow down
during memory intensive phases of a program so that the compute power matches
the rate at which data is fed to the processors. Earlier work proposed the use
of profiling techniques to identify the compute-intensity of program regions to
throttle the processor voltage and frequency for energy efficiency [9,19]. Jim-
borean et al. [21] proposed compiler transformations to decouple kernels into
compute-intensive and memory-intensive regions to increase such opportunities
for energy savings. Their work is another example of where the compiler is able
to improve energy efficiency beyond simply compiling for speed.

4 Extending Multiple Passes

Based on prior success of multiple passes at the LLC to DRAM boundary on
CPUs [35], it is reasonable to expect it to be extensible. Multiple passes can
be applied to any of the following memory levels: (0) Lx to LLC, (1) LLC to
DRAM, (2) DRAM to disk, and (3) disk to network. In this work, levels 0
and 3 are not considered since problems at these scales are either too small to
matter or better suited by distributed algorithms, some of which already min-
imize network communication between nodes [17]. We consider general matrix
multiplication (GEMM) on CPUs at levels 1 and 2, and revisit stencils but on
GPUs at level 1. GEMM is highly amenable to tiling and tiles can be executed
in parallel without the startup overhead of wavefront execution. Stencils can
be handled similarly, however there is a wind-up period before substantial par-
allelism among tiles is exposed, as shown in Fig. 2a. This is not a concern on
CPU platforms where there are relatively few processors but becomes a critical
limitation on GPUs, where concurrent start is necessary for speed-optimal per-
formance [16,23]. Tiling schemes for stencils that enable concurrent start include:
hybrid/hexagonal tiling [16], diamond tiling [28], and overlapped tiling [18,22].
In addition, many high performance stencil generation frameworks exist, for
both CPUs and GPUs, that effectively apply these tiling schemes such as Sten-
cilGen [27] and AN5D [23]. However, these frameworks focus on speed optimality
and do not support multiple passes as is, so we will discuss what it would take
to extend them to do so. As mentioned previously, it does not make sense to talk
about energy optimality without starting from the speed-optimal implementa-
tion as a baseline. To this end, BLAS libraries are used for GEMM [1,34] and
AN5D [23] for stencils.

4.1 Matrix Multiply (GEMM)

Recall the standard matrix-matrix product C = AB operation, where Cij =∑
k AikBkj . Note that the only dependencies here exist along the accumulation

dimension k. After tiling, in the 3D tile iteration space, there are entire 2D
i-j planes of tiles that can be executed concurrently. This is a special case of
wavefront execution, in the sense that each plane of tiles corresponds to a single
wavefront and every wavefront contains the same number of tiles.
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The same observation from Sect. 2 applies here; for reasonable problem sizes,
executing all tiles in a given i-j plane before moving on to tiles in the next plane
results in poor data reuse across planes. Instead of executing all tiles in a given
i-j plane, only process a subset of tiles and then process all of the tiles down the
dependence chain along k.

To do this, the full matrix product is decomposed into multiple series of
smaller sub-matrix products (along k), where each series updates a single patch
of C. The BLAS library is used to carry out the individual sub-matrix products
and can think of one sequential series of calls to BLAS as a pass. The pass
size is chosen such that the volume of data reused across successive sub-matrix
products fits within the targeted level of the memory hierarchy. The pass shape
(i.e., relative tile sizes along each dimension) is chosen such that data reused
across successive products is maximized. This shape corresponds to tall thin
matrices of A, short stout matrices of B, and as large a patch of C as possible.
From this, a single pass consists of the series of tall-thin short-stout (TTSS)
sub-matrix products.

BLAS is used as a proxy for the speed-optimal solution and the performance
of a single BLAS call on the full problem size as our baseline. By composing
smaller BLAS calls on sub-matrix products over multiple passes, we expect to
reduce data movements over the baseline without losing speed, thereby improv-
ing energy efficiency.

4.2 Stencils

Consider the 2D analog of the first order stencil from Sect. 2 characterized by
the following dependencies,

S[t + 1, i, j] → f(S[t, i − 1, j], S[t, i + 1, j], S[t, i, j], S[t, i, j − 1], S[t, i, j + 1])

where 0 ≤ t ≤ T , 1 ≤ i < N − 1, and 1 ≤ j < N − 1.
N and T together represent the problem size. Each point in the input data

grid of size N ×N is repeatedly updated over T time steps from a weighted sum
of its adjacent neighboring elements in the previous time step. The prototypical
implementation of this corresponds to a series of nested loops where the outer
most loop iterates over time, on t.

AN5D generates tiled CUDA code along all dimensions, including time, and
supports concurrent start, specifically through the use of overlapped tiling on
the inner spatial dimensions [23]. Adopting their notation, let bT denote the time
tile size. The generated code operates as a series of T/bT CUDA kernel calls,
where each kernel call updates the entire N × N data space over bT time steps.
One of the reasons AN5D obtains good performance is because it accesses global
memory (DRAM) only at the bottom and top time steps of each kernel call. The
total number of global memory accesses, MAN5D, can be roughly expressed as,

MAN5D =
( T

bT

)
(N2 + (N − 2bT )2) = O(N2T ) (2)
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Fig. 3. The projection of the t-j plane from the stencil’s t-i-j iteration space. Over-
lapped tiling of the inner j dimension corresponds to trapezoidal shaped tiles. The left
image shows one pass and the right shows the subsequent pass.

Due to the fact that each kernel call touches the entire N × N data space,
many LLC misses are expected across successive calls. From this, the observation
that motivates the use of multiple passes is as follows. Instead of processing all of
the tiles along the spatial dimensions with each tile step along the time dimension
(i.e., with each CUDA kernel call), only process a subset of spatial tiles and then
process as many additional tiles along the time dimension as possible subject to
the dependencies. This subset of tiles forms a single pass and two different passes
are illustrated in Fig. 3. The execution of a pass consists of a series of smaller
kernel calls, where each call updates the tiles within the pass boundaries for a
specific time tile step. If the pass size is chosen so that the data reused across
kernel calls within a pass fits in the LLC, then global memory access will only
occur on the pass boundaries.

The iteration space of the p-th pass, described by the pass coordinates pi
and pj , with a constant pass size P along each spatial dimension is represented
by the integer set Ap,

Ap := [pi, pj , N, T ] → {
[t, i, j] : 0 ≤ i < N, 0 ≤ j < N, 0 ≤ t ≤ T, (3)

piP ≤ i + t < (pi + 1)P, pjP ≤ j + t < (pj + 1)P
}

Projecting Ap onto the data space, by the function f : [t, i, j] → [i, j], and
summing over all passes gives the total number of global memory reads Mmp =∑

p f(Ap). Some of the passes along the boundaries will be partial (like the blue
pass in Fig. 3) but the total number of global memory reads can be expressed
with the following over-approximation,

Mmp <

(
N

P

)2(
P 2 + T (2P − 1)

)
= O

(N2T

P

)
(4)

This only represents the number of global memory reads, but the number of
writes is approximately the same and does not change the order. From Eqs. 2
and 4, it follows that the use of multiple passes should reduce the number of
global memory accesses by a factor of the pass size P .
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AN5D is used a proxy for the speed-optimal solution and the performance
of a single AN5D call on the full problem size as our baseline (as with BLAS
above). However, the use of multiple passes here reduces data movements at the
cost of limiting concurrent start. If the pass size P can be chosen such that the
data reused between successive kernel calls fits in LLC then this is expected to
lead to energy savings if speed is maintained.

5 Energy Model

These adaptions are not profitable and to understand why, it is necessary to
define an energy model and formalize what success would look like within this
model. Based on the idea that multiple passes results in fewer data movements,
one would like to express energy consumption as a function of the quantity of
data movements in relation to execution time.

For a given program and target architecture, the goal is to minimize the
total energy consumption, E, which is decomposed into time-dependent and
time-independent components. Let G(T ) represent the time-dependent portion
of energy consumed from simply being powered on for the duration T of program
execution. This includes the processing elements, components of the memory
subsystem from the on-chip caches all the way down to any non-volatile storage
such as spinning disk or solid state drives, the motherboard itself, and any addi-
tional peripherals like system fans. Let H(W ) represent the time-independent
portion of energy consumed due to the actual operational work W necessary to
carry out the computation. This includes things like fused-multiply add process-
ing, instruction fetching and decoding, accessing register files, and both on- and
off-chip data transfers. The total energy E is expressed as the sum of G and H,

E(T,W ) = H(W ) + G(T ) (5)

For a particular implementation, let Pi be the average power dissipated by
the i-th system component, Mq be the number of data movements across the
q-th level of the memory hierarchy (from Sect. 4) and V be the volume of the
iteration space of the computation. Then, the total energy is expressed as,

E =
(
αV +

∑

q

βqMq

)
+

( ∑

i

γiPiT
)

(6)

Now, consider two different implementations that execute instances of the
same problem on the same problem size. V in the first term of Eq. 6 is propor-
tional to the problem size (i.e., number of floating point operations performed).
Techniques like dynamic voltage and frequency scaling (DVFS) can be used to
reduce the contributions of this term but are not used here based on Yuki and
Rajopadhye’s result [33] showing that the time-dependent component still dom-
inates for the class of programs considered. This analysis assumes that DVFS
is not being used and that each implementation contributes equally to the first
term, αV . Conversely, the memory traffic could be different if one implementa-
tion has higher data locality making more efficient use of data while it resides in
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faster memory. Mq and T are the variables that can change through implementa-
tion and characterize the design space. Among the set of fastest implementations
with similar magnitudes of G, the ones that further minimize data transfers Mq

across one or more levels of the memory hierarchy are expected to consume less
total energy.

6 Conditions for Profitability

For an input program and target architecture, let Io represent the baseline speed-
optimal implementation which requires Mq

o data movements across the q-th level
of the memory hierarchy with an execution time To. Let Imp, Mq

mp, and Tmp

be the corresponding values of the implementation using multiple passes. Let
ΔMq = Mq

mp −Mq
o and ΔT = Tmp −To denote the differences over the baseline.

Negative values of ΔMq or ΔT indicate that the multi-pass implementation
results in fewer data movements or a smaller execution time respectively.

Conditions: From this, the following conditions must hold for Imp to have a
lower energy consumption than Io,

ΔMq < 0 (7)

ΔT < ε0 (8)

βq
∑

i γi
> ε1 (9)

for some architecture-dependent values of ε0 and ε1. The first condition simply
indicates that Imp needs to reduce the number of data movements. The second
indicates that Imp did not sacrifice too much speed; ε0 should be close to zero. As
for the last condition, recall that βq represents the energy consumed per unit data
transferred across the q-th memory level and γi represents the time-dependent
portion of energy consumed by the i-th system component. Equation 9 simply
states that fraction of energy spent on data movements needs to be large enough
for the energy saved from ΔMq to matter. As shown in the following sections,
these conditions do not hold.

7 Experimental Setup

Table 1 displays empirical measurements on energy spent per unit data moved in
joules per gigabyte for the LLC to DRAM boundary for the systems evaluated
here. These values represent an estimate for β1 in Eqs. 6 and 9.

Most hardware today exposes performance statistics through performance
monitoring units. Most CPUs support the Running Average Power Limit
(RAPL) interface [10]. The utilities perf [12] for Intel chips and μProf [4] for
AMD chips are used to measure power consumption and LLC misses. For the
GPUs, the NVIDIA profiling tools (nvprof) [3] and the NVIDIA management
library (NVML) [2] are used to collect measurements on the quantity of data
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Table 1. Empirical measurements β1 for energy spent per unit data transferred across
level 1 (LLC and DRAM). We do not calibrate the AMD system because we first
confirmed that multiple passes degrade speed.

System Processor Model DRAM (GB) LLC (MB) β1 (J/GB)

1 CPU Intel Xeon E5-1650V4 16 15.00 0.30

2 CPU AMD Epyc 7452 500 128.00 −
3 GPU NVIDIA GTX 1080 Ti 11 2.75 0.19

4 GPU NVIDIA Titan V 12 4.5 0.21

transferred and energy usage. NVML can be used to programmatically query
the GPU device, specifically for the instantaneous power draw.

To obtain a value for energy per unit data transferred, we compare the dif-
ference in these counter values between measurements from program implemen-
tations that do the same amount of work in the same amount of time. This way
we can attribute the change in energy to the change in the quantity of bytes
transferred. This is what is reported in Table 1.

8 Evaluation

This section evaluates the multi-pass extensions introduced Sects. 4.1 and 4.2.
Intel’s Math Kernel Library (MKL) [1] is used for GEMM on the Intel system
and BLIS [34] is used for AMD.

8.1 GEMM - CPU at LLC to DRAM

Algorithm 1: Multi-pass GEMM
Input: A, B, C, TI , TJ , TK , N
for each pass do

ti, tj ← pass;
c ← getSubMatrix(C, ti, tj);
for each tk in pass do

a ← getSubMatrix(A, ti, tk);
b ← getSubMatrix(B, tk, tj);
gemm(a, b, c, TI , TJ , TK);

In this scenario, the problem size
fits in DRAM. The goal is to mini-
mize data movements between the
LLC and DRAM, so tile sizes
TI , TJ , and TK are chosen such
that the data reused across tall
thin short stout (TTSS) matrix-
matrix products fits within LLC
capacity. Then for each patch of
C, a series of TTSS calls to MKL
or BLIS are issued as shown in
Algorithm 1.

8.2 Intel - Xeon E5-1650V4

Algorithm 1 describes the multi-pass implementation of square-square matrix
multiplication for input matrices A, B, and C with tile sizes TI , TJ , and TK .
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Let the baseline implementation Io be the case when TI = TJ = TK = N (i.e.,
making a single library call on the full problem size). Tile size exploration was
performed with TI = TJ = P for values of P in the range [100, 2500] and TK

values in the range [100, 1000]. The best performing tile sizes were TI = TJ =
1200 and TK = 725. For each combination of tile sizes, the following values
were measured: execution time t, off-chip data transfers M1, perf power/energy-
pkg, and perf power/energy-ram. These are reported in Table 2. The multi-pass
implementation successfully reduced the number of data movements by 72%,
satisfying Eq. 7. However, there were no tile size configurations that did not
violate Eq. 8; all configurations sacrificed speed. This is tightly coupled with
the observation that Eq. 9 does not hold either. The extra energy spent due
to ΔT , reflected in the increased power/energy-pkg value, is larger than the
energy saved from ΔM1. The 72% reduction in M1 only resulted in 1.41 J saved,
while the additional energy consumed due to a slightly longer execution time
was significantly larger, 7.12 J. Even if speed could be maintained, this would
only mean energy savings of 2%. From this, one can conclude that the fraction
of energy spent on data movements between LLC and DRAM is too small to
matter.

Table 2. Best performing multi-pass implementation relative the baseline.

t (sec) GFLOPS/sec %Peak M1 (GB) Energy-pkg (J) Energy-ram (J) Total (J)

Io 0.439 569 82.5 3.47 70.42 3.33 73.75

Imp 0.543 460 66.7 0.97 77.54 1.92 79.46

8.3 AMD - Epyc 7452

Part of the reason for the slowdown in the previous section was due to the
fact that the problem size must be large enough for MKL to perform close
to machine peak. The same thing holds true for BLIS on the AMD system.
This means that multiple calls of smaller sub-problems can not be done without
losing speed relative to the baseline, which involves just a single call on the full
problem. This is problematic because the sub-problems within a pass must be
small enough that they fit in LLC. Figure 4 shows how the performance of BLIS
double precision TTSS (N×K by K×N) matrix products varies with problem
size for several aspect ratios N/K. The Epyc 7452 has two sockets, and the
performance reported here is based on a single socket with 32 physical cores
without hyperthreading (i.e., BLIS NUM THREADS=32).

BLIS does not attain peak performance for problem sizes below 6K, but the
problem sizes exceed LLC capacity. This is enough to conclude that multiple
passes can not be applied to save energy.

8.4 GEMM - CPU at DRAM to Disk

In this scenario, the input matrices A, B, and C do not all fit in DRAM together.
Unlike the previous case, sub-matrix products within a pass are large enough to
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Fig. 4. BLIS performance of tall thin short stout matrix multiplication for increasing
problem size and aspect ratio (N/K).

avoid a loss in speed but the time it takes to swap data into DRAM from disk is
much greater than the time required to bring data into the LLC from DRAM.
So the computation of one sub-matrix product and the communication needed
to swap in the next product’s tiles from disk must be overlapped. The size of
one square tile of C and two tiles of A and B must fit in DRAM,

(TITJ + 2(TKTI + TKTJ))S < DRAMcapacity (10)

where S is the data type size.
On the Intel system, MKL delivers around 500 GFLOPS/sec (75% theoreti-

cal machine peak) for single precision square-square inputs and the spinning disk
hard drive has an advertised throughput μ = 150 MB/sec. Table-3 shows the
minimum throughput needed in order to overlap the communication and com-
putation to keep it compute bound for a range of sub problem sizes. The values
in the “Read” column are the size of the next two patches of A and B (2T 2

o ).
The “MKL” column is an estimate of MKL’s execution time based off of the
problem size and expected performance delivered by MKL (2T 3

o /(500 × 109)).

Table 3. Minimum disk throughput μmin needed in order to overlap communication
and computation for tiles within a pass. The second column represents the left hand
side of Eq. 10 for TI = TJ = TK = To, which must fit in memory.

To DRAM (GB) Read (MB) MKL (sec) μmin (MB/sec)

10000 2.0 800 4.0 200.00

15000 4.5 1800 13.5 133.33

20000 8.0 3200 32.0 100.00

25000 12.5 5000 62.5 80.00

30000 18.0 7200 108.0 66.67
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From Table 3, observe that there is sweet-spot range of tile sizes that fits in
DRAM (16 GB) without requiring unobtainable disk throughputs (greater than
150 MB/sec).

However, the maximum throughput obtained on the Intel system in Sect. 7,
was less than 10 MB/sec which was significantly lower than what was needed.
We were unable to figure out why the throughput was so low. In order to keep
the problem compute bound with a disk throughput this low, the tiles need to
be so large they would no longer fit in memory. Since the minimum throughput
necessary to avoid a loss in speed could not be obtained, it was not necessary to
further confirm or deny conditions in Eqs. 7 and 9. It is possible that spinning disk
drives are simply too slow in this context. Other studies on the energy efficiency
of SSDs [5,25] report that SSDs spend 10–20 J/GB on data movements, which
is two orders of magnitude higher than what was observed on DRAM shown in
Table 1.

8.5 Stencils - GPU at LLC to DRAM

Based on the empirical measurements of β1 in Table 1, 11–17% of the total
energy consumed by AN5D-based stencils can be attributed to data movements
which suggests that (Eq. 9) holds and indicates that this scenario can tolerate
larger values of ε0 in Eq. 8 with respect to execution time. Despite this, multiple
passes can not be carried out without sacrificing speed beyond acceptable levels.
The reasoning behind this is as follows. As described in Sect. 4.2 for stencils on
GPUs, using multiple passes with a pass size P along each spatial dimension
reduces M1 by a factor P at the cost of limiting concurrent start. Recall that
our multi-pass stencil implementation for GPUs is based on a series of calls to a
modified AN5D kernel, where each kernel call has a data footprint η = P 2S for
2D stencils, where S is the data type size. This must fit in LLC,

η < LLCcapacity (11)

Each CUDA thread block carries out the execution of a single tile. In order
for AN5D to obtain speed-optimal performance, it requires the data footprint
of individual tiles (each trapezoid in Fig. 3) to be sufficiently large. Among the
set of optimal tile sizes reported for the set of generic stencils evaluated by
AN5D [23], the smallest tile size configurations have a data footprint of B = 64
KB. However, most were larger, as high as 256 KB. This means that our modified
AN5D kernel only uses Ntiles = η/B tiles. However, concurrent start is necessary
in order to obtain good performance on GPUs, because ample parallelism is
required in order to keep all of the processing elements busy. On a GPU with NSM

streaming multiprocessors (SMs), we need at least NSM tiles that can be executed
in parallel. In reality, this number is probably higher in order to effectively hide
the latency of the arithmetic units. Minimally,

NSM < Ntiles (12)

Together, Eqs. 11 and 12 can be conveyed as,

NSMB < P 2S < LLCcapacity (13)
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The term NSMB represents a hard lower bound on the data footprint of
iterations within a pass. Passes with data footprints below this are not expected
to be speed-optimal. For the GeForce GTX 1080 Ti, with NSM = 28, this cor-
responds to 1.79 MB which is already close to the LLC capacity of 2.75 MB.
This is based on the smallest optimal tile sizes reported by AN5D, larger ones
(B = 128 KB or 256 KB) exceed the 2.75 MB limit. However, for the Titan V
with NSM = 80, the value of NSMB is 5.12 MB which already exceeds the LLC
capacity of 4.75 MB using the smallest optimal tile sizes.

Based on this analytical result, the size of the LLC is the limiting factor for
GPUs. While multiple passes can be used to reduce data transfers, there does not
exist a value of P that is small enough to do so without restricting parallelism
beyond acceptable levels.

9 Conclusion

Through experimental and analytical evaluation, we find that the use of multiple
passes to obtain energy savings beyond the speed optimal solution is largely not
profitable, contrary to prior success with stencils on CPUs. For the LLC to
DRAM case on CPUs, the relative fraction of energy spent on data movements
was too small to overcome the extra energy spent due to a longer execution time.
Even if we could avoid losing speed in this case, the relative magnitude was still
too small to matter, less than 2%. In the GPU case however, the fraction of
energy spent on data movements was significantly larger but we could not avoid
a loss in speed for an entirely different reason, due to a small LLC. Since low disk
throughput was the bottleneck and primary reason for the loss in speed in the
CPU DRAM to disk case, perhaps solid-state drives may be more appropriate
given that they have a much higher throughput. For the case of stencils on GPUs,
if the LLC capacity was larger, then we may have been able to avoid a loss in
speed. Despite this negative result, now we are in a better position to be able to
reason about what such a profitable system looks like.
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Abstract. In this paper, we want to show the potential benefit of a
dynamic auto-tuning approach for the inference process in the Deep Neu-
ral Network (DNN) context, tackling the object detection challenge. We
benchmarked different neural networks to find the optimal detector for
the well-known COCO 17 database [14], and we demonstrate that even if
we only consider the quality of the prediction there is not a single optimal
network. This is even more evident if we also consider the time to solution
as a metric to evaluate, and then select, the most suitable network. This
opens to the possibility for an adaptive methodology to switch among dif-
ferent object detection networks according to run-time requirements (e.g.
maximum quality subject to a time-to-solution constraint).

Moreover, we demonstrated by developing an ad hoc oracle, that an
additional proactive methodology could provide even greater benefits,
allowing us to select the best network among the available ones given some
characteristics of the processed image. To exploit this method, we need to
identify some image features that can be used to steer the decision on the
most promising network. Despite the optimization opportunity that has
been identified, we were not able to identify a predictor function that val-
idates this attempt neither adopting classical image features nor by using
a DNN classifier.

Keywords: Object detection · Application dynamic autotuning

1 Introduction

A lot of progress has been done in the last 10 years in the context of Neural
Networks. They have recently been used to solve complex problems such as
image classification [12], voice to text [2] or object detection [9]. Since their
introduction, they have eclipsed the old methods that were used to perform
these tasks. In particular, they have become the de-facto standard in the field
of computer vision for image classification and detection [20].

However, since there are a lot of different networks in literature, it is difficult
to select the most suitable architecture (in terms of network deployed and hard-
ware architecture used). DNNs are characterized by an accuracy metric. In the
c© Springer Nature Switzerland AG 2022
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object detection field, this metric is called mAP (mean average precision). This
metric tells the user how accurate is the network in finding an object and classi-
fying it. This is not enough, since we may be interested in other characteristics
of the network. Sometimes we have to run the network in resource-constrained
devices, or we have to perform real-time classification, where the response time
is important. As an example in autonomous driving, an approximate detection
in a short time is better than an accurate one that comes too late.

An interesting job in classifying several networks by their accuracy and time
to solution has been done in [11]. In this work, the authors classify some of
the most important object detection networks and provide and compare their
performances on a single GPU architecture.

Starting from that work, we benchmarked different networks on different
CPU-GPU environments. From that experiment, we found out that there is no
single one-fits-all network, even in terms of accuracy on a single image. For this
reason, we decided to analyze the problem of autotuning in this field, searching
for some characteristics of the application or of the network itself that may enable
a runtime network selection, whenever is beneficial. However, we were unable to
find a suitable prediction function that can be used to drive the runtime selection,
and thus to benefit from this optimization possibility.

The contributions of this paper can be summarized as follow:

– We performed a benchmarking campaign on different object detection net-
works aimed at exploring accuracy-performance tradeoffs;

– We demonstrate through a simple automotive use case how the dynamic
autotuning approach can satisfy changing constraints that a single network
was unable to satisfy;

– We built an oracle function based on the benchmarking campaign, that can
select the best network among the used ones for every image of the COCO17
dataset, thus evaluating the possible advantage in having a proactive (per
image) autotuning approach;

– We highlighted the failed attempts done to employ the proactive method
either by finding some image features and training a selector using common
machine learning techniques, or adopting an image classification network.

2 Related Works

Thanks to recent advances in the deep learning field, a lot of different models
have been proposed to tackle the object detection challenge. These networks
have different accuracy and execution times, and selecting the most suitable
one is a complex task. Interesting approaches have been proposed consider-
ing the dynamic selection of networks for the context of image classification
[16,18,22,23]. In [23], the authors propose to select dynamically the image clas-
sification network performing the inference, proving that is possible to improve
both the accuracy and the inference time thanks to an autotuning approach.
There the authors use a K-Nearest-Neighbor predictor to select, among 4 differ-
ent models, which one is the best to use for every different image. The usage of



Dynamic Network Selection for the Object Detection Task 469

Fig. 1. Results of the benchmarking accuracy campaign.

two networks with a big/LITTLE approach is proposed in [18]. In this work, two
different network architectures are created on a chip. One small and fast (the
LITTLE architecture) and one that is more accurate and more time-consuming
(the big architecture). They perform the inference with the little network and
they use the big as a fallback solution only if the little network prediction is
deemed not accurate. However, even in this work, the solution is proposed for
the image classification challenge. Another dynamic methodology for the image
classification has been proposed in [22]. Here the same network is trained several
times, with different datasets, and an ensemble of networks is used to perform
the inference. The networks are used sequentially and if a certain threshold met-
ric is reached the result is returned without executing the remaining networks.
Several other design-time optimizations are proposed in literature to build the
networks [21], to compress them [15] or to switch from image processing to more
expensive and accurate input (e.g. LIDAR) [16]. All of these work targeting the
network selection are done in the context of image classification. Indeed, to the
best of our knowledge, there is no work targeting the dynamic selection of the
network in the object detection challenge.

3 Motivations

To show the potential benefit of having a self-tuning network selector, we run
an extensive benchmarking campaign on different object detection models and
platforms. The objective of this campaign is to explore the behavior of differ-
ent DNN on different platforms and with different configurations. In particular,
we tested on CPU (with and without the AVX2 instructions) and GPU (with
and without the TensorRT library support). We selected 12 different models.
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Table 1. Models used, configuration of Tensorflow and batching sizes used in the
benchmarking campaign

Models Faster-rcnn-resnet50, Faster-rcnn-resnet101, Faster-rcnn-NAS,
Faster-RCNN-inception-resnetv2, ssd-mobilenet-v1-fpn,
ssd-mobilenet-v1-quantized, ssd-mobilenet-v1, ssd-resnet50-fpn,
ssd-inception-v2, ssdlite-mobilenet-v2, rcnn-inception-v2, yolo-v3

TF Configurations CPU, CPU with AVX2, GPU, GPU with TensorRT, GPU with TensorRT
dynamic

Batch sizes 1, 2, 4, 8, 16, 32

Fig. 2. Result of the benchmarking campaign with the measured accuracy. The batch
accuracy loss can be seen in the Faster-RCNN models.

Most of them were coming from the Tensorflow Zoo [1], trying to balance the
SSD-based and the Faster-RCNN based models. To those models, we added a
reimplementation of the YOLO-v3 network.

From the accuracy point of view, the campaign consists of 24 different exper-
iments (12 models and with or without batch resizing). From the performance
point of view, the number of experiments is increased to 360 and the whole
Design of Experiment is reported in Table 1. The experiments have been done
on the whole validation set of the COCO 2017 dataset.

As a motivation for the proposed idea, we will analyze the results of this
benchmarking campaign, firstly from the accuracy point of view, then from the
performance perspective and finally, we will analyze the Pareto frontier.

Figure 1 shows the results of the accuracy benchmarking done while differ-
entiating the accuracy also considering the size of the object to be identified.
In the COCO dataset the objects are divided into three categories, small (up
to 32*32 pixels), medium (from 32*32 to 96*96), and large (everything above).
The most accurate model is Faster-RCNN-NAS, which reaches the overall mAP
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of 44%. Usually, a model with a good overall mAP performs consistently well
across all three object categories. There are, however, some exceptions: SSD-
Inception-v2 has the 2nd best score on large objects, but performs rather poorly
on medium and small objects; on the contrary, YOLO-v3 has the 2nd worst
score on large objects, but is on the 4th place on small objects and performs
OK on medium objects. The bad accuracy obtained on small objects is a well-
known problem of SSD-based models. This is why the Feature Pyramid Network
(FPN) feature have been introduced. Thanks to this feature, the SSD-ResNet50
and SSD-MobileNet-v1 models are able to reach 2nd and 3rd place on small
objects (and on the 2nd and 4th place overall).

The complete result from the exploration can be seen in Fig. 2. Here the color
symbolizes the network used for the inference, while the shape is the backend
and the size of the marker symbolizes the batch size. We can notice that the
GPU backends are faster than the CPU ones and that the bigger points usually
have the best performances.

The images in the COCO dataset have different shapes and sizes. For the
inference to be performed, they need to be resized to match the model input
size. This is usually done inside the network, as a first layer. However, this is
not possible when processing a batch of images. In this case, all the images of a
batch need to be resized before the inference is performed. This procedure may
damage the accuracy: some Faster-RCNN networks have the smallest point (no
batch) at a higher accuracy level compared to the largest points of the same
network. Besides the Faster-RCNN-NAS, the other Faster-RCNN networks have
a keep-aspect-ratio layer, which becomes problematic when resizing the images to
a unique size. However, batching images can be significant for the performances,
so we need to consider this possibility and not just discard it a-priori. Indeed,
as we can see from Fig. 2, usually the bigger points have a better performance
than the smallest one when we use the same backend. This growth can also
be very significant, leading to almost double performances for some networks
(YOLO v3 goes from 32 to almost 60 FPS). However, the general behavior is not
always true. Some networks show some unexpected results demonstrating how
a dynamic selection of the most suitable configuration could be very important
in this field. The first is that batching can be detrimental to the performances:
this happens when working with the Faster-RCNN-NAS on the CPU. Another
interesting result is that some networks perform better on the CPU than the
GPU: an example is the ssdlite-mobilenet-v2 network

To conclude the motivational discussion, Fig. 3 shows the best configuration
(considering ideal accuracy for the Faster-RCNN networks that have problems
with batching). We can notice that there is not a one-fit-all optimal solution,
since both the optimal backend and the optimal batch size changes across the
different models. Moreover, the networks on the Pareto set are also different if
we consider different target accuracy. All these variations strongly suggest that
should a network selector function be found like in the methodology proposed in
[23] for the image classification challenge, the object detection challenge could
largely benefit from an adaptive autotuning approach.
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Fig. 3. Best performance for every network at the different accuracy metrics (small,
medium and large).

4 The Proposed Approach

In this section, we will see the methodology followed while trying to dynamically
select the optimal inference network. At the first time, we will see how exploiting
two networks in analyzing a stream of frames can allow adapting to different
constraints (maximize the accuracy of the prediction or maximize the frame
rate) in a reactive way. With reactive, we mean that the autotuner reacts to the
change of the constraints and responds to this change by selecting a different
inference network, that can respect the new constraints. This approach follows
the traditional reactive autotuning approach, used for example in [3,5–7].

We then try to create a predictor function that can work as an oracle for
unknown images. This is a proactive approach that relies on the concept of input
feature that is present in some works in literature [13,24]. To create the predictor,
we will search for some data features and we use them to create a function that
can predict which is the best network to use to perform the inference.

4.1 Reactive Approach

In the reactive approach, the idea is of having the self-tuning module able to react
to changes in the system or external conditions. Changes in external conditions
are reflected in changes in the constraints. Figure 5 shows the approach from a
high-level point of view: we must process a stream of images while respecting
some constraints that may change during the runtime. We have a set of net-
works with different (and known) characteristics in terms of accuracy and time
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(a) Execution time for every frame.

(b) mAP of all categories

(c) mAP of the car category

Fig. 4. Execution log of the same stream with two different networks, with a change
of network in the middle.

to solution. The autotuning module is in charge of selecting the most suitable
among them according to the current constraints, interacting with factors that
are external from the object detection problem.

To show the validity of this approach, let us suppose a very simplified sce-
nario in the context of autonomous driving, which is one of the most important
contexts in the object detection challenge. We need to find the possible obstacles
on or near the road, and we need to satisfy a strong constraint on the response
time since if the detection arrives too late it is useless. To simplify the approach,
let us suppose that we have 2 possible scenarios: highway and city driving. In
the first case, we need to have a quick response and we need to identify “big”
objects such as cars, while in the second case we have a slower speed, which
means that we can use a slower network but we require a greater accuracy since
we need to identify the “small” pedestrians.

In this simplified example, the autotuner is in charge of switching from con-
text 1 (city driving) to context 2 (highway) and back whenever a threshold speed
is passed. For this experiment, we have used the KITTI dataset [8], which is a
dataset created for the autonomous driving context. As the first network (the
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Autotuning Module

Stream of
images

Network 2

Network n

Image with
detections

Network 1

Constraints

Knowledge

Fig. 5. Architecture of the Reactive module.

fast one for the highway context), we retrained the SSDLite-Mobilenet, while as
the accurate network we retrained the Faster-RCNN NAS network.

We show in Fig. 4 an example of a run where we hypothesize to start the
trip inside the city, where the most accurate network is used, and after a certain
number of processed frames we move to a highway context, where we need faster
processing. We can notice from Fig. 4b that the mAP of the second network is
noticeably worse than the first network. However, we can also notice that the
processing time of a single frame is almost two orders of magnitude faster. If we
look at Fig. 4c instead, we can notice that the accuracy loss of the second network
is slightly noticeable. In this image, we only considered the mAP obtained by
the network in recognizing the car objects. In this way, we show that we can
maintain the ability to find cars on the road within a constrained time to solution,
which is smaller because of the higher navigation speed. This result confirms the
benefit of dynamic network selection in the context of the simplified scenario
hypothesized before. Indeed, we can meet the accuracy/response time request
in both the contexts, while both the considered networks are not able to do it if
taken individually.

The impact of the reactive approach has been demonstrated on a simple use
case considering only two networks. However, it can be easily generalized to a
more complex one where, as an example, the constraints could be a function of
the speed or multiple scenarios (and not only city and highway) can bring to
different optimization problems.

4.2 Proactive Approach

An orthogonal approach to the previous approach is the proactive one. The
proactive approach to dynamically select the network aims at using characteris-
tics of both the network and the image that is going to be processed to match
the image with its best possible network. We believe that if there is not a one-
fit-all best network while considering only the accuracy of the prediction, and
there may be some features of the images that determine if a network behaves
better than other networks in finding objects in that precise image. Thus, we are
interested in finding those characteristics of the images, and building a predictor
that may be able to select the optimal object detection network.

The first step is to verify that the best network to perform the inference would
change across the dataset. We create an oracle function, that selects the best
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Fig. 6. Composition of the Oracle on the full COCO validation set. All the considered
networks are present, which means that they are optimal in predicting some images.

network for all the images of the COCO validation set. In particular, the program
selects the highest mAP after evaluating an image with all the networks, and as
a tiebreaker, it uses the execution time (the fastest one among the network with
the same accuracy wins). Figure 6 reports the pie chart of the oracle. We can
notice that almost half of the chart is occupied by the Faster-RCNN NAS, the
most accurate network. We expected this network to be dominating. However,
this network does not have always the best accuracy. Moreover, the oracle shows
that all the different networks are represented which means that they are optimal
for at least some images. The second step is to search the data features and a
prediction function to drive the network selection proactively given the target
image. Figure 7 shows two different attempts that we performed in building the
predictor. The first one, which we define “traditional Machine Learning (ML)
approach”, can be seen in Fig. 7a. The second attempt, where we used neural
network techniques, can be seen in Fig. 7b. Figure 7a shows the pipeline that
we designed to perform object detection with network selection done with the
traditional ML approach. The first step is Feature Extraction, which is a module
that is in charge of quickly analyzing the image and extract some features. Then
the predictor module is a function in charge of driving the network selection. This
function needs to be able to quickly select the network given the data features
extracted from the previous step. Finally, the image is forwarded to the object
detection network, which performs the detection task and returns the objects
detected in the given image. To create the feature extraction module, we need
to identify a small set of features that can be quickly extracted from the image.

We started the search of the data features from the ones used in [23] since the
authors were already working in the DNN context. Other candidate features are
taken from [13]. In this work, four easily obtained characteristics (mean, vari-
ance, local homogeneity, and covariance) are used to decide how to approximate
an image. Moreover, we considered standard image processing features from
literature [10]. We extracted all of these features and others using well-known
Python packages, such as OpenCV [17] and Skimage [25], collecting in total over
50 image features. The complete list of the considered features is reported in
Table 2. We did extract all of these features, however, we are aware that we need
to reduce the number of features to use, since getting all of these would be too
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Table 2. List of all the features collected to build the predictor.

Number of keypoints Number of corners Number of contours

Dissimilarity Homogeneity ASM

Energy Correlation Number of peaks

Contrast Variance Mean

Hues(4 bins) Saturation (4 bins) Brightness (4 bins)

Histogram of the three colors
(3*8 bins)

Number of pixels that are
edges in the image

Number of objects
(connected components)

Aspect ratio Histogram of gradients (8
bins)

Feature Extraction
Module

Image to
process

Network Predictor
Module

Network 1

Network n

Image with
detections

(a)

Image Classification
Network retrained as

Predictor Module

Image to
process

Network 1

Network n

Image with
detections

(b)

Fig. 7. Structure of the two attempts done in implementing the proactive approach to
object detection, using a traditional Machine Learning approach (a) or using an Image
Classification Neural Network (b).

time-consuming. Moreover, some of them (for example the connected compo-
nents) are too expensive in terms of extraction time and have been discarded a
priori.

The following step is to build the classifier. To do this, we use both the output
of the oracle and the extracted features of the images, since we need to learn the
correlation between these features and the best network. We decided to use the
scikit library [19] since it is a well-known and verified module for the most com-
mon ML algorithms. We used a Principal Component Analysis (PCA) to restrict
the space of features, assigning to this methodology the duty of finding out which
ones are the most important features that we have to consider. We then passed
the output of the PCA to the following step, which is the model training. Before
training the model, we have to create the training and the test set. From the
available 5000 images (for which we have the array of features with the associ-
ated best network), we create a training set of 4500 images, while the other 500
are left as validation set. Since the goal is to implement a classification layer,
we have tested most of the classifier engines available in the scikit-learn mod-
ule. Among them, we tested Decision Tree, Random Forest, Bagging, AdaBoost,
Extra Trees, Gradient Boosting, SGD, MLP, KNeighbors. However, no one of
those algorithms was able to provide a robust classifier that could be used as the
predictor, as we can notice from Fig. 8. In particular, Fig. 8a shows the result on
the complete set of networks. In most cases, the accuracy of the validation set
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(a) Accuracy of the predictors with all the networks

(b) Accuracy of the predictors with a restricted set of
networks.

Fig. 8. Results of the training of the different models.

was around 40% which is also the number of occurrences of the most accurate
model always (the last column in the figure). The tree predictor is the one that
shows the worst result, around 30%. To reduce the noise in the data available for
the learning phase, we restricted the number of models. We decided to use only
the ones that were Pareto optimal in the benchmarking study. This reduced the
number of available models to 6. Nonetheless, even with the reduced number
of target networks, the traditional ML classifiers were unable to learn how to
predict the best network to use to perform object detection given the image.
The result of this final experiment is reported in Fig. 8b. We can notice that
even with this reduction in the possible networks there is no valid predictor: the
last column (Faster-RCNN-NAS) is the predictor that always selects the Faster-
RCNN-NAS network to perform the detection since it is the most accurate one.
This predictor has an accuracy of 55%, which means that in more than half of
the test images the RCNN-NAS has the optimal accuracy in the reduced valida-
tion set. All the predictors have a worse result, meaning that they can guess the
optimal network with less accuracy than always selecting the same, and most
used, network.
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Since the traditional approach did not lead us to a working solution for
our problem, we decided to attempt using a DNN classifier. In particular, we
selected a MobilenetV2, trained on the ImageNet dataset. We decided to perform
transfer learning, thus only modifying the last layers (the classifier layers) of the
network, without changing the feature extraction layers. The network we used
to perform the transfer learning has 154 frozen layers and the last layer has
1280 features coming out, to which we attach the dense layers used to perform
the classification. The total number of parameters of this network is 5,149,771,
and more than half of them are frozen, so they cannot be trained during the
transfer learning. As we can see, we have much more features than with the
previous approach. We used the keras [4] framework to perform the transfer
learning. Since the oracle shows that there is no a similar amount of images
for all the network, we needed to rebalance the dataset to have a fair training
phase. The training data have been preprocessed to obtain a balanced dataset
where all the labels (in our case, the target networks) have the same amount of
training images. This is a well-known technique used to avoid that the dataset
unbalancing can influence the learning process. However, even this approach did
not lead to a working predictor. The new predictor always learns to predict one
or two networks.

We do not know the exact reason behind all of these failures. We believe
that the main reason is that object detection is a much more complex operation
if compared to image classification where a similar attempt was successful [23].
Indeed, the DNN used to tackle this challenge are more complex than the classi-
fication networks: [11] shows how most object detection networks are composed
of two sections, a region proposal network that aims at creating the bounding
boxes of the objects, and a feature extractor, which is an image classification
network that provides the label to the object extracted with the first stage. We
think that this failure may be due to the fact that the image features extracted
with traditional image processing or with feature extraction layers trained for
the classification problem are not enough. Indeed, these features may not be
sufficient to model the region proposal problem. Thus, a different set of features
may be needed.

5 Conclusion

In this paper, we studied the possibility of dynamically select the network used to
perform inference in the object detection context, where to the best of our knowl-
edge has not been already attempted before. We have shown why a dynamic
autotuning methodology could be very profitable for this context, with a large
benchmarking campaign that demonstrates that there is no a one-fit-all optimal
solution. We have seen that the use of a reactive approach can satisfy changing
requirements by exploiting networks that were unable to satisfy the given con-
straints if taken singularly. We tried also to adopt a proactive approach, that
could have been even more profitable if we were able to select in advance the
most suitable network for a specific image. While the oracle confirmed our feel-
ing, we were not able to find any feature extraction technique that was able to
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drive the selection process. Finally, we believe that this work is a good motiva-
tional study and our attempts could be useful by other researchers interested in
the field.
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Abstract. Software transactional memory (STM) is an abstraction used
for thread synchronization that borrows the concept of transactions
from databases. It is often easier to use than locks, proving a high-level
abstraction for software developers. In current multicore architectures,
data locality is an important aspect of STM performance. Sharing-aware
mapping is a technique that aims to improve the performance of applica-
tions by mapping threads and data (in the form of memory pages) accord-
ing to their memory access behavior. In prior work, we successfully used
information gained from tracking STM variables and STM operations
to perform an effective sharing-aware thread mapping. In this paper, we
attempt to extend such a mechanism to perform data mapping. Although
initial results using a synthetic application were encouraging, data map-
ping did not improve performance when using realistic workloads. Con-
trary to thread mapping, where only keeping track of STM operations is
sufficient to perform an effective thread mapping, data mapping requires
a global vision of memory page accesses of the application to be able to
improve the performance, which STM runtimes can not provide.

Keywords: Software transactional memory · Data mapping ·
Sharing-aware · NUMA

1 Introduction

Multicore processors have been used for many years, due to the higher power
consumption and heat dissipation involved on improve the performance of a
single CPU core. The number of cores in a single chip is growing every year for
server, desktop, and mobile CPUs. Beyond that, NUMA (Non-Uniform Memory
Access) architectures are becoming dominant in servers [21]. In these machines,
each multiprocessor is connected directly to a local memory module [9]. Data
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can be stored on the local node or on a node that belongs to another processor
(remote node). Although programs have transparent access to the entire memory,
accessing a remote node implies a higher latency, making the access time non-
uniform, i.e., it depends on the location of the data.

To exploit the parallelism available in these multicore machines, the soft-
ware must be parallel and scalable [11]. In parallel programming, locks still
are the most used abstraction for thread synchronization. However, locks are
error-prone, making the source code hard to read and debug [1] and they can
lead to deadlocks. An alternative abstraction to locks is Transactional Mem-
ory (TM) [11,12]. The main idea of TM is to enclose critical sections in atomic
blocks that will be accessed using transactions, similar to the ones used in
databases. Using TM, the programmer only needs to think about which block of
code needs to be synchronized and not how to synchronize them. Hence, the TM
runtime is responsible to ensure a consistent execution without race conditions
or deadlocks. In this paper, we focused on TM implemented in software (STM).
Nevertheless, the ideas presented on this paper can be used in any kind of TM.

Although there are several approaches to improving the performance of STM,
many of them focus on reducing the number of aborts by using transactional
schedulers [20]. An abort is necessary when two transactions access the same
shared variable and at least one of them is a writer. However, in current mul-
ticore architectures with complex memory hierarchies and different latencies on
memory accesses, it is important to consider the locality of the accesses. Using a
technique called sharing-aware thread mapping [6] which aims to map threads to
cores of an application considering their memory access behavior, we were able
to improve the performance of STM applications [15–17]. Data mapping, where
memory pages are mapped to NUMA nodes considering their memory access
behavior, is also important to improve application performance [5].

In prior work, we successfully used information gained from tracking STM
operations to dynamically perform an effective sharing-aware thread map-
ping [15]. However, while attempting to extend such a mechanism to also per-
form data mapping, we encountered issues due to the lack of global information
about the memory access behavior, and discovered that only taking into consid-
eration STM operations is not sufficient to perform an effective sharing-aware
data mapping. This paper presents our efforts to implement data mapping using
information gained from STM operations, and discusses why this is insufficient
for many STM applications.

2 Background: STM and Sharing-Aware-Mapping

2.1 Software Transactional Memory

Software transactional memory (STM) is an abstraction used for thread synchro-
nization that borrows the concept of transactions from databases. Application’s
critical sections are enclosed in atomic blocks to be executed as a transaction. If
a transaction executes without conflicts a commit happens, i.e., all shared vari-
able modifications are made visible to other threads. A conflict happens if two
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distinct transactions access the same shared variable and at least one transaction
performs a write operation in the variable. If conflicts are detected, an abort is
necessary, discarding all operations made in the transaction and restarting it.

2.2 Sharing-Aware Mapping

Data locality is an important factor in modern multicore and NUMA machines.
One way to better explore locality is to map threads and data according to
their memory access behavior [6]. The goal of data mapping is to optimize the
usage of memory controllers, by mapping memory pages to the same NUMA
node where the core that most accesses it belongs to. On the other hand, thread
mapping aims to improve cache usage and interconnections. Thread mapping
aims to avoid access to the main memory, prioritizing caches. Oppositely, if an
access to the main memory is necessary, data mapping tries to map the memory
that needs to be accessed to a local NUMA node, avoiding remote accesses.

Thread and data mapping based on the memory access behavior of applica-
tions is called sharing-aware mapping [6]. Although the Linux kernel handles
thread and data mapping, it does not consider memory access patterns. For
instance, the Completely Fair Scheduler (CFS) used by default in the Linux ker-
nel mainly focuses on load balancing. For data mapping, the default policy is
called first-touch [9] where the memory is allocated in the NUMA node where
the first access to the memory page is performed.

2.3 Sharing-Aware Mapping in STM

In a previous work [15] we presented a mechanism that, during application exe-
cution, keeps track of transactional shared variables to detect the sharing pattern
of the STM application and performs sharing-aware thread mapping dynam-
ically. The intuition is that the STM runtime has precise information about
shared variables and which threads are accessing them. The main objective of
thread mapping is to optimize cache usage by mapping threads that access shared
variables often closer in the underlying architecture. Hence, contrary to prior
works on sharing-aware thread mapping, it is not necessary to keep track of all
memory access of the applications, only the STM accesses. Therefore, the pro-
posed mechanism has a low overhead and dynamically performs sharing-aware
thread mapping accurately for STM applications. We use the same intuitions to
complement such mechanism to include sharing-aware data mapping.

3 Related Work

This section presents works that use data mapping to improve the data locality
of applications running on shared memory architectures.

ForestGOMP [3] is an extension of OpenMP that uses hints provided by applica-
tion programmers, compiler techniques and hardware counters to perform thread
and data placement dynamically. Threads that share data or synchronize often
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are organized in bubbles. The main objective is to improve the cache usage
and try to make each “bubble” accessing the local memory, migrating pages if
necessary. The kernel Memory Affinity Framework (kMAF) [5] is implemented
directly in the Linux kernel, detecting communication patterns of parallel applica-
tions and migrate threads and data according to their memory affinity. The Car-
refour mechanism [4] is also implemented directly in the Linux kernel. However, it
uses Instruction-Based Sampling (IBS) available only on AMD processors. Barrera
et al. [19] obtain information about characteristics of parallel applications by using
instrumentation and hardware performance counters. After that, using machine
learning, the collected data is processed resulting in information, for instance, if
the application is sensitive to locality and the best thread and data placement.

Analysis tools were proposed to collect information about memory access of
applications. These tools help to understand how applications share data. Using
Pin instrumentation tool, Numalize [7] generates a memory trace of applications
and generated information that helps to choose the best placement of threads and
data. TABARNAC [2] provides a graphical visualization of memory access behavior,
such as the distribution of the accesses by threads and data structures. A more
recent tool, NumaMMa (NUMA MeMory Analyzer) [22] uses hardware counters of
a processor to generate memory traces. When the application finishes, NumaMMa
processes the trace and analyzes the cost of memory accesses of each object
and how threads access them. Also, graphical visualization of the processed
information is available.

Regarding data mapping for STM applications, as far as we know, only Goés
et al. [10] have proposed a mechanism to deal with data mapping. However,
their work focuses on a specific sharing pattern of STM application (worklist),
and their mechanism to exploit memory affinity was implemented inside a new
framework. Hence, applications need to be rewritten with this framework to be
able to use the memory affinity improvements. Also, their data mapping is based
on static page allocation (bind or cyclic).

4 A Mechanism for Sharing-Aware Data Mapping
in STM

This section presents our proposed mechanism to dynamically detect memory
page accesses and perform data mapping for STM applications.

4.1 Detecting Memory Page Accesses in STM Applications

To perform a sharing-aware data mapping in STM, it is necessary to know
which NUMA nodes are accessing each memory page address. In word-based
STM implementations, each transactional data access operation, for instance, a
transactional read or write, explicitly includes the addresses used in the opera-
tion. Hence, it is possible to extract the information of the memory page being
accessed by bit-shifting the full memory address.
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Fig. 1. Mechanism for detecting page accesses. Data structures are shown for a NUMA
machine with 4 nodes (0–3).

Since the idea of the proposed mechanism is to detect page access and per-
forming data mapping during runtime, we use the concept of sampling. In order
to reduce overhead, we do not track all STM reads and writes, but only a subset
of them. Also, to avoid thread synchronization, each thread has its own sampling
interval (si) counter. As our previous work showed [15], a sampling interval of
100 presents the best trade-off between overhead and accuracy. In that case,
for each thread we sample the memory access once for every 100 accesses. The
proposed mechanism is shown in Fig. 1 and detailed in Algorithm 1.

Explaining the Algorithm 1, first, the thread private variable addr sample
(line 1) is incremented to verify if is time to sample the memory access. Then, on
line 2 we verify if the counter of the current thread is greater than the sampling
interval. If true, we zero the variable to be able to detect the next trigger time
(line 3), and it is time to sample the page being accessed. Since the STM runtime
has access to the full memory address, we first need to bit shift the address to get
the information of the memory page (line 4). To keep track of accessed memory
pages, a hash table is used, whose keys are memory pages. Each position of the
hash table contains a structure with the memory address and an array of size
equal to the number of NUMA nodes of the machine (Fig. 1). Each position
of this array contains the number of accesses to the memory page performed
by each NUMA node. Hence, on line 5, the function getPageInfo gets from
the hash table the structure containing information about the memory page
being accessed. To avoid unnecessary page moves, we only update the number
of accesses to this page (line 7) if the page has not been moved already (line 6).

The next part of the algorithm determines when to perform the new data
mapping. We have a special variable called data mapping interval (dmi) used to
determine if it is time to trigger the new data mapping. The idea is to reduce the
number of times that the data mapping is triggered because migrate pages in
runtime implies overheads. Hence, the data mapping interval is based on the total
number of memory addresses. Similar to the sampling interval, to avoid thread
synchronization, we decided to track the total number of accessed addresses
of only one thread. Therefore, we calculate the new data mapping when the
application accessed “data mapping interval” addresses. The lines 8 to 10 are
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Algorithm 1. Detecting memory pages accesses and performing data mapping.
Require:

addr: memory address being accessed
node: NUMA node that is accessing the memory page
tid: thread ID of the thread that is accessing the address
addr sample: thread private variable used to determine if is time to sample the
memory address
total addr: thread private variable used to determine if is time to trigger the
thread mapping
si: sample interval. Default 100
dmi: data mapping interval.
PAGE SIZE BITS: 12 for page size of 4096 bytes

1: addr sample ← addr sample + 1
2: if (addr sample > si) then
3: addr sample ← 0
4: pageaddr ← addr >> PAGE SIZE BITS � Right shift
5: elem ← getPageInfo(pageaddr)
6: if (!elem.moved) then � Verify if the memory page already have been moved
7: elem.nodes[node] ← elem.nodes[node] + 1 � Increase the amount of access

8: if (tid = 1) then
9: total addr ← total addr + 1

10: if (tid = 1) and (total addr ≥ dmi) then
11: Compute new data mapping
12: dmi ← dmi ∗ 2

responsible for keeping track of the amount of memory address accessed, to trig-
ger the data mapping. On line 11, the data mapping is triggered. This step will
be explained in Sect. 4.2. Once again, to avoid the overhead of page migrations,
after triggering the first data mapping, on the line 12, we double the next data
mapping interval (dmi).

4.2 Computing the New Data Mapping

This section explains how to the new data mapping is calculated on line 11 of
Algorithm 1. Usually, to compute the thread mapping is necessary to rely on
complex algorithms or libraries to calculate the best thread placement based on
the underline hardware architecture. For data mapping this step is simpler: we
verify on the hash table each memory page that not have been moved and which
NUMA node has most accessed it. Then, while the application is running, we
send this information to the function move pages of the libnuma library [13] to
perform the page move.

4.3 Implementation

We implemented our proposed mechanism as an extension of our previous work
on thread mapping [15] inside the state-of-art STM library TinySTM [8], version
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1.0.5. The majority of the modifications were made in the file stm internal.h.
Algorithm 1 is called inside the functions stm write and stm load of TinySTM.

5 Improving STM Applications with Data Mapping

To determine if the proposed mechanism can improve the performance of STM
applications, we create an experiment with a synthetic array sum application.
This application uses an array of 230 integer elements. In that case, the array
uses approximately 4 Gigabytes of memory. We force the array to be initialized
with zeros in the main thread. Hence, using the default first touch police, all
memory will be allocated on the NUMA node of the main thread. To force to
use more than one NUMA node, the application was executed using 64 threads
(more details of the machine used for run the application will be described in
Sect. 5.1). The objective of this application is very simple. On each iteration, it
updates the respective array position, incrementing the current value by one.
We use the modified TinySTM library (Sect. 4.3) with data mapping support for
synchronization of shared variables used in the array. Hence, the STM runtime
will be aware of all the memory addresses that belong to the array. We iterate
through the array thirty times to guarantee that if a memory page is migrated
then it will be accessed again in the appropriate NUMA node.

5.1 Methodology

To run the experiments, we used the following NUMA machine (node distances
were gathered with numactl [13]):

– Xeon: 8 Intel Xeon E5-4650 processors and 488 GiB of RAM running Linux
kernel 4.19.0-9. Each CPU has 12 2-HT cores, totaling 96 cores. Each CPU
corresponds to a NUMA node (for a total of 8 NUMA nodes), and 12× 32 KB
L1d, 12× 32 KB L1i, 12× 256 KB L2 and 30 MB L3 cache. Node distances:
50–65. Applications were compiled using gcc 8.3.0.

The default Linux kernel already has routines to improve the memory page
balancing of NUMA nodes. It keeps track of the page faults, moving the page
automatically to the node that most accessed it. This mechanism is called NUMA
balancing [18]. For comparison of our proposed mechanism we used the following
configurations:

– Linux-NBOff is the default Linux CFS scheduler, however with the NUMA
balancing mechanism disabled.

– Linux-NBOn is the default Linux CFS scheduler with the NUMA balancing
mechanism enabled. This approach will be useful to verify if the application
is suitable for data mapping, or if the default first-touch approach is more
effective.

– STMap is the mechanism proposed in our previous work [16]. This mech-
anism detects the communication pattern of threads and performs thread
mapping while the application runs.
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Fig. 2. Execution time of the Array Sum application.

– STMap+DM in this approach, we first trigger the thread mapping one time.
After that, we begin to keeping track of the memory pages being accessed, trig-
gering the first data mapping on data mapping interval of 100,000 addresses.
This interval is used by STMap [16] to trigger the thread mapping.

It is worth noting that the NUMA balancing [18] was enabled only in Linux-
NBOn approach. In all other approaches, this mechanism was disabled.

5.2 Results

Figure 2 shows the results. It is possible to observe that NUMA balancing
(Linux-NBOn) reduced the execution time by 35.5% when compared to the
same mechanism without the balancing (Linux-NBOff). This proves that this
synthetic application has an unbalanced memory page allocation. Although it
was not possible to beat NUMA balancing, our proposed STMap+DM mech-
anism achieved performance gains of 23.3% when compared to Linux-NBOff
and, 19% when compared to STMap. These results motivate the evaluation of
the proposed mechanism using realistic workloads.

6 Evaluation Using Realistic Workloads

6.1 Methodology

The applications used in these experiments were all eight benchmarks (bayes,
genome, intruder, kmeans, labyrinth, ssca2, vacation and yada) from the Stan-
ford Transactional Applications for Multi-Processing (STAMP) [14], version 0.9.10.
The STAMP applications represent realistic workloads and is more appropriate to
determine the effectiveness of the proposed mechanism. In addition to the con-
figurations previously used to evaluate our proposal, described in Sect. 5.1, we
also added two more mechanisms to the comparison:

– DM-100K in this approach the thread mapping (STMap) is not used, only
data mapping, triggering the first mapping on 100,000 addresses.
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– DM-50K this approach is used to verify if a more aggressive data mapping
is better, triggering the first mapping on 50,000 addresses, i.e., half of the
previous configuration.

We run the experiments on the Xeon machine described in Sect. 5.1 using 64
threads. The parameters used to run STAMP are the same as described in [17].

6.2 Results

In general, the results of sharing-aware data mapping were similar for the major-
ity of the applications. Hence, we will not discuss each application individually.
Figure 3 show the results. It shows the performance gains of each mechanism
using Linux-NBOff as a baseline. We also included the average gains (last
column, Average) over all applications.

Overall, the proposed mechanism does not improve the performance of STM
applications. The best gain was achieved by STMap, i.e., only triggering thread
mapping. When the data mapping was enabled together with thread mapping
(STMap+DM) it decreased the performance. In that case, the overhead of the
data mapping mechanism was not compensated by a better exploration of the
locality of memory pages. Analyzing the performance gains, with exception of
Labyrinth, the NUMA balancing mechanism (Linux-NBOn) also decreased the
performance, with all mechanisms performing better than NUMA Balancing.
In that case, for these realistic workloads, the default first-touch policy was
more effective. Despite our encouraging results in our initial experiment with
the synthetic benchmark, these results did not translate into gains for more
realistic applications.
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Table 1. Percentage of memory that the STM runtime is aware of, compared to the
total memory accessed by the application.

Bayes Genome Intruder Kmeans Labyrinth Ssca2 Vacation Yada

Memory seen by
STM runtime (%)

0.01 8.8 57.7 0.02 3.9 7.7 26.8 34.9

Although the proposed mechanism in this paper did not improve the per-
formance of realistic STM applications, a synthetic application showed that in
specific scenarios it can improve the performance. More specifically, it benefits
STM application with atomic blocks that protect a large number of shared vari-
ables with distinct memory addresses. On the other hand, applications with few
shared variables protected by STM, or those that contain considerable amounts
of data private to a thread benefit less, since the STM runtime does not have
sufficient knowledge about private data that could benefit from data mapping.

Since an STM runtime has precise information about shared variables, this
information can be used to choose which threads should be mapped closer to each
other to share caches, i.e., it is not necessary a global vision of the application
sharing behavior [15,16]. However, for an effective data mapping, a more global
view of the memory pages of the application is necessary, not only the ones
accessed by the STM runtime. In the synthetic array sum application presented
in Sect. 5, the STM runtime was aware of all the 4 Gigabytes of the array, which
comprised the vast majority of memory accessed by the application.

Using the realistic workloads, we do not see performance improvements. In
the majority of STM applications, the STM runtime is aware of only a small
part of the entire memory used of the application. We analyzed the difference
between the memory accessed by the application and the memory that is accessed
by the STM runtime by comparing the total number of cache lines accessed by
each application inside the STM runtime [17] and the total memory used by
the entire application. Table 1 present the results. In the best case (Intruder),
the STM runtime is aware of almost half of the entire memory accessed by the
application, but the application is not sensitive to data mapping. On the other
hand, for some applications, the STM runtime is aware of less than 1% of the
memory accessed by the application.

7 Conclusion

This paper proposed an extension to a mechanism that successfully perform
sharing-aware thread mapping only taking into consideration STM operations
to include sharing-aware data mapping. The proposed mechanism keeps track
of the number of accesses of each NUMA node to each memory page of STM
operations. On each data mapping interval, the memory page is moved to the
NUMA node that most accessed it.

Using a synthetic array sum application, we showed that our proposed mech-
anism is able to increase the performance of STM applications on NUMA
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machines. However, using more realistic workloads, it was not possible to improve
the performance. Based on the experiments, we believe that it is infeasible to
perform a sharing-aware data mapping in STM applications by only tracking
STM operations because they represent only a fraction of the memory used by
the entire application. Furthermore, since even the NUMA Balancing mechanism
was not able to improve the performance of these realistic workloads, many STM
applications might be generally unaffected by sharing-aware data mapping.
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Abstract. In this work we present two case studies of FPGAs in
database applications that did not yield the expected results. First, we
analyze the issues when synthesizing algorithms that perform small cal-
culations on lots of randomly accessed data, specifically exact lookups in
a radix tree. We find that even with manual guidance, the results from
high-level synthesis are much slower than the corresponding realization
of the algorithm on x86 CPUs. In the second case study, we present
a lightweight overlay architecture for streaming query processing which
turned out to be too fine-grained to be efficiently placed because the used
partitions are quite small. Here, a prototypic implementation revealed
resource efficiency limitations related to the interface design of partic-
ularly small dynamic reconfiguration partitions. We present approaches
to overcome limitations for both case studies.

Keywords: FPGA · HLS · Database · Index structures · Query
processing · Dynamic partial reconfiguration

1 Introduction

With the ever increasing scale of databases and the breakdown of Dennard scal-
ing, both industry and academia are researching means to accelerate analytical
database processing beyond the limits of classical multi-core CPUs. In the last
few years a new demand for increased power efficiency has also become a major
driver in data center innovation. While modern CPUs still provide vast process-
ing power, the way forward to higher efficiency leads towards custom compute
architectures, not just for database management systems. The compute plat-
forms that evolved from traditional GPUs offer a high degree of data parallelism
and can outmatch CPUs in many database tasks. Yet, they are only slightly
more customized to their tasks than general purpose CPUs. As the manufactur-
ing of ASICs is out of reach for many for reasons of cost, lead time, and ever
changing compute demands, FPGAs are considered the next closest alternative
that allows quicker deployment while maintaining the advantage of implementing
truly custom hardware accelerators.

Since FPGA design work requires more developer effort than software pro-
gramming and requires skills usually not found in traditional software develop-
ment, there have been two broad directions for accelerating database workloads
c© Springer Nature Switzerland AG 2022
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using FPGAs: Single-function accelerators that can ideally be easily integrated
into existing software platforms and overlay architectures that abstract away
the low-level lookup table and flipflop design surface of the FPGA into (still
customized to the application domain) higher-level compute architectures.

We will present difficulties we encountered in each of the two domains: One
case study presents an accelerator design for acceleration of index structures
and the other details an reconfigurable overlay architecture for analytical query
processing. The rest of this paper is structured as follows: For each of the two
FPGA designs for database processing we will give our motivation and then list
related work. After describing their architecture, we will present the lessons we
learned from our work and we will also highlight new research directions based
on the roadblocks we ran into.

2 Case Studies

2.1 High-Level Synthesis for Index Structure Acceleration

Motivation. One of the ideas during our research which initially looked promis-
ing was to utilize FPGAs for accelerating the index structure lookup of a
database, because they are one of the key performance indicators especially
for In-Memory Databases (IMDB). Initially, we took a look at the performance
of several index structures on the CPU. We noticed that smart caching is ben-
eficial for most index structures. Here, we identified a performance bottleneck
in case the index structure grows, severely impacting the lookup performance
(for the CPU case it drops from 200 M Lookups/s to 50 M Lookups/s for larger
structures) and therefore the performance of the whole database. In this work
we apply high-level synthesis (HLS) to the ART (Adaptive Radix Tree) lookup
algorithm and discuss several feasible optimizations to improve the performance.

Related Work. As a consequence, a literature search has been conducted and
yielded quite some results. For example, [3] implemented a GPU-accelerated
search for the ART index structure, yielding a much better performance than the
original CPU-based implementation in [2]. For the classical B+-Tree, there have
been several works that accelerate it on GPUs ([1,4,5]). [6] implemented a hash-
table using GPUs, which could also be used to index a database. Complementary
to the GPU-focused research, common index structures such as the B+-Tree ([7])
and the R-Tree ([8]) have been implemented and evaluated on FPGA platforms,
achieving a significant speedup up to 18x compared to the CPU implementation.

Initial Results. ART is a variant of a radix tree that adapts the inner nodes to
the number of used children. It knows four node types with 4, 16, 48 and 256 chil-
dren, named N4 to N256 respectively. Figure 1 outlines the different node sizes in
use. In our previous research concerning the ART index structure, we found that
an increased memory clock seems to be one of the key factors that contribute to
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Fig. 1. Visualization of a small ART, including the path for a point query with the
key ‘BATH’

the overall lookup performance. Several benchmarks on different platforms such
as a CUDA-based implementation on GPUs with HBM2, GDDR6X and GDDR5
interfaces confirm that the ART is suitable for a massively parallel lookup and
benefits from having a fast memory interface, making both the on-chip SRAM
of an FPGA as well as external DDR4 and HBM suitable. The wide availability
of HBM-enabled FPGAs for data center applications such as the Xilinx Alveo
Cards inspired us to evaluate the performance of ART on this platform. A theo-
retical analysis of the ART lookup algorithm (see following section) visualized in
Fig. 1 indicates that a pipelined FPGA lookup design with an estimated latency
of three to five clock cycles per tree layer is feasible. A pipelined design with
this throughput and latency should be able to perform around 100 million point
queries per second, thus outperforming modern CPUs. In order to ease up the
integration and testing of the code, we chose to do our hardware implementa-
tion using the Xilinx Vitis High Level Synthesis environment. This environment
allows us to dynamically schedule work onto the FPGA using OpenCL on the
host side.
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Fig. 2. Memory layout of the ART nodes, showing different layouts depending on the
node type
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Prefix Compression. The ART search algorithm closely follows the traditional
radix tree lookup, starting at the root node, traversing the trie until a leaf is
reached, while advancing through the search term at the same time as shown in
Fig. 1. The exact implementation steps for ART depend on the node type being
used. As the space saving features of ART to compress common prefixes need to
be handled the same for all non-leaf nodes, we extract this logic into a separate
function. Figure 2 visualizes the memory layout of the node headers, representing
the metadata. They all have a 2 byte integer of the length of the compressed
path as well as a fixed-length array for the prefix. For all node types except N4,
this arrays are 14 bytes in size, whereas the N4 only has 10 bytes. To evaluate
a prefix match, it is necessary to perform a byte-wise comparison of the prefix
bytes to the current position in the string up to either the maximum prefix length
(10 or 14) or the prefix length given in the first two bytes. In theory, a selection
of a 14 byte segment from the current position within the search term padded
with zeroes is sufficient to decide whether the prefix is a miss, match or a partial
match. The latter indicates that only a part of the prefix could be compared
because of missing storage within the node. In parallel to this extraction step,
a bit mask corresponding to the maximum allowed prefix length is built from
the current node type and prefix length. After the 14 byte segment has been
extracted, the whole prefix array can be compared byte-wise and transformed
into a 14 bit logic vector where a one in each position indicates a match for the
specific byte. As a last step, the previously generated bit mask can be applied to
the previously generated result vector, whereas a zero result indicates a match.
The idea is visualized in Fig. 3.

Compare
Mask

Compare Mask
Generation

Prefix 
Length

Partial
Search Term

Search Term
Extraction

Current
Depth

Search
Term

Result
Mask

Byte-Wise
Comparison

Prefix
Data

Prefix
Match?

Result
Compare

Fig. 3. Schematic view of a three-staged prefix matcher, handling different prefix
lengths and search term lengths

We implemented several different approaches and optimizations proposed
both by the Xilinx implementation guidelines as well as the tool chain output.
In general, Vitis infers extremely complex state machines by not unrolling the
prefix compression match loop when generating the logic even if told to do so,
yielding an extremely inefficient implementation which requires > 100 cycles
to handle the prefix compression. One implemented optimization was the usage
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of the Xilinx ap uint type instead of using a byte array to guide the synthesis
tool into implementing the logic with multiplexers, which still yielded an overly
complex state machine.

Node Handling. After the prefix compression/path expansion has been done,
a lookup depending on the node type currently being processed is made. This
lookup uses the byte at the current depth of the search term and then compares
it against the stored keys. While for both the N4 and N16 objects this is simply
a parallel compare, in the case of N48 the original ART implementation used a
256 Byte key array where the index within a values array is encoded. To account
for the parallel programming abilities, we changed the memory layout of an N48
to match the layout of N4 and N16 and unroll the comparison loop. For an
N256, there is no comparison loop but the processing element needs to index the
values array with the current search term byte. For leaves, again it boils down
to a simple comparison of the complete key, which can be up to 32 bytes.

During synthesis it quickly became clear that the HLS tool chain would not
unroll the comparison loops because in the original algorithm we used as a basis
for our work the loops would break upon encountering the first valid element.
While this behavior increases the performance on the CPU, it is malicious for
high level synthesis because the HLS compiler generates a functionally equivalent
version. Therefore the tool chain is not allowed to assume that there will never
be two matches for a single node. The resulting implementation of HLS was
a variable length pipeline which lead us into the problems hiding the pipeline
latency due to a significant amount of random memory accesses, again taking
up to 300 clock cycles in the case of an N48, generating a state machine with
almost 1700 states.

Compared to the CPU ART implementation for reasonably large trees (1 M
to 16 M entries), the CPU outperforms the FPGA implementation by factor
6 when run on a single host thread (250 k Lookups/s on the FPGA vs 1.5 M
Lookups/s on the CPU). The implemented design for the tree lookup required
around 60 k FFs and 55 k LUTs, which means that in theory we can scale the
design up to 6 instances for the Alveo U280 card.

Random Memory Accesses. While modern DRAM implementations claim
random access capabilities, there is in fact a penalty when performing truly ran-
dom accesses. This is due to the clocked command interface and page-oriented
setup of DRAM. When hitting a page that hasn’t been opened before, the
access latency typically is around 50 memory clock cycles. While in FPGAs this
behavior is commonly exploited by utilizing on-chip SRAMs instead of external
DRAMs, this approach is not feasible for maintaining index structures for very
large in-memory databases because those can not fit into the on-chip RAMs.
Therefore it is necessary to not only hide the pipelining latency introduced from
the steps above, but also the access latency of the off-chip DRAMs. We tried
utilizing both the HBMs and the DDR4 RAMs present in the Alveo U280. We
found that for naive implementations, DDR4 is beneficial because of its much
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higher clock rate, leading to less latency in the logic clock domain. On CPUs and
GPUs this is typically solved by coalescing small memory transactions into larger
chunks, trading wasted bandwidth for improved latency for subsequent transac-
tions. Xilinx also offers such IP core to link into existing designs delivering quite
impressive throughput results for random accesses. We found that implementing
this IP core brings only marginal improvements in our design because the design
itself consists of several pipelines of variable length and therefore is not designed
for memory coalescing.

2.2 A Lightweight Reconfigurable Overlay Architecture
for Column-Based Analytical Database Processing

Motivation. Analytical database query processing generally describes the task
of extracting new information from an existing database by joining tables and fil-
tering/aggregating data. It is a data-intensive and moderately compute-intensive
field. Query execution plans for analytical queries can be represented as data flow
graphs, which can vary a lot from query to query.

Since the potential for fine-grain spatial parallelism is a big advantage of
FPGAs over CPUs and GPUs, our idea was to design a system that would
inherently take advantage of this feature. Even with the lower clock rate of
FPGAs, creating deep and flexible pipelines of database operators would allow
us to attack the performance of CPU- and GPU-based operator-at-a-time sys-
tems which do not use runtime compilation. Due to the varied nature of ana-
lytical queries, dynamic partial reconfiguration on FPGAs makes it possible to
construct custom pipelines at runtime for each query that wouldn’t fit in a static
design.

Thus, our goal was to implement an overlay of interconnected reconfigurable
processing units ideally suited for processing the data flow graphs necessary to
compute analytical database queries.

We chose to work with a column-based database. This allows us to only fetch
the necessary data columns from memory. Also, the columns can be accessed
independently. Finally, using column-based tables reduces the need for highly
complex transformation units to rearrange the fields of a row. In order to reduce
random memory accesses the FPGA system should also rely more on column
scans instead of scatter/gather operators. In contrast to fixed-function accelera-
tors, reconfigurable operators can be smaller and simpler, since it is easy and fast
to exchange one operator for another. Also, in contrast to designs that incorpo-
rate multiple interconnected fixed accelerators, data flow routing and switching
is simplified for reconfigurable overlay architectures, since the function units are
adapted to the query. This also applies for the underlying structure and topology
of the interconnect.

Related Work. FPGAs have been extensively used as single function acceler-
ators for individual database operators such as sort [9,10], join [9,11], or regular
expression matching [12]. While these accelerators are often capable of IO-rate
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processing, they still require large amounts of data to be transferred between
CPU and FPGA since only one part of a query can be accelerated. There are
approaches that try to drastically reduce transfer costs through tighter coupling
between accelerator and host system [12–14], but these rely on specialized hard-
ware for both the CPU and FPGA. Streaming data between host and accelerator
is another approach to deal with limited interface throughput [15]: Since selection
relies on table scans, additional DMA copy processes are avoided. In this case,
data compression is also utilized to further reduce the bandwidth requirements
the row-based format incurs.

There have also been systems proposed which allow for more than one opera-
tion to be processed on the FPGA. AxleDB is a programmable query processing
platform that implements a full chain of accelerators on a single FPGA [16].
The system contains accelerators for the common database operations which are
arranged in a fixed streaming-based ring bus in the order in which they are typ-
ically needed. Queries that do not conform to that arrangement require multiple
passes. Another disadvantage of this type of system is that all accelerators have
to fit on the FPGA at the same time, limiting the amount of resources available
to each operator.

A next logical step is to break up the fixed connections between function
units, such as proposed in [17]. This system is not specifically targeted at ana-
lytical database processing. It consists of a grid of fixed function units which are
locally interconnected with a sophisticated communications network. Still, there
is the disadvantage that significant over-provisioning of each type of function
unit is necessary as not every data flow graph consists of a similar composition
of operations.

Dynamic partial reconfiguration can remediate this otherwise static require-
ment to plan out exactly which function units need to be placed where in the
overlay. In [18] this capability of modern FPGAs is used in a smart storage
FPGA preprocessor to swap between different large accelerators depending on
what kind of preprocessing is needed.

A row-based system which heavily features dynamic partial reconfiguration is
proposed in [19]. The system consists of four lanes of 16 reconfigurable function
units through each of which data is streamed linearly and one large reconfigurable
partition that hosts accelerators for sorting, merging, and hash joins. While
this system achieves significant throughput through the accelerator chain, the
limited flexibility of the single 128-bit connection between function units causes
inefficiencies in placement and utilization, some of which is also due to the system
using row-based tables.

Design of the Prototype. Based on our ideas we started to design a prototype
on the ZC706 FPGA development board, which contains a Xilinx 7 Series SoC
with two ARM cores beside the FPGA fabric. To simplify the mapping of data
flow graphs to the overlay architecture, we decided on a homogeneous layout,
meaning that it should be possible to place every streaming operator in every
tile. With these restrictions we managed to fit a 4 by 7 grid of tiles on the 7Z045
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FPGA, as seen in Fig. 4. The tiles are aligned to the FPGA’s DSP columns,
which are required for several database operators. Figure 5 shows that each tile
contains a reconfigurable partition for the function unit plus buffers and small
crossbars for data flow routing and access to a light-weight on-chip communi-
cations network to exchange configuration packets. All data connections are 32
bits wide.

Figure 4 also shows features that physically limit the size of the overlay: On
the top left, there are the two ARM cores. The hard-logic area in which they are
contained also consists of a DDR3 memory controller and caches and is marked
in gray. The IO-pins for the second DDR3 channel are located in the top right
corner. This memory has to be connected to a soft-logic memory controller, which
needs to be physically close to these IO-pins and is highlighted in yellow. Finally,
on the right hand side, there is the PCIe core, which connects the FPGA to the
host system. The PCIe controller is highlighted in pink. All three are wired
together into one global memory bus which serves the DMA engines used to
feed the overlay architecture. These are depicted in green. To meet timing, the
central memory interconnect (shown in blue), the soft DDR3 controller and the
various DMA engines all bunch up in the upper part of the FPGA. It was not
possible to include another row of tiles and still meet timing since the memory
interconnect got restricted. Finally, we also included the capability to stream
a column directly between the host system and the overlay. This is especially
useful to return intermediate results when CPU and FPGA work in tandem on
a single query.

Based on external requirements, there are two different clock domains in the
system: The PCIe core and auxiliary logic run at 250 MHz while the rest is
clocked at 200 MHz.

For the design of the function units, we used high level synthesis to construct
hardware operators from C++ source code. This choice was made to increase
productivity and reduce the amount of debugging since that way all operators
will automatically comply with the interface protocol.

As the data flow graphs that are typical for analytical query processing usu-
ally don’t map perfectly to the 2D-grid of our overlay, it is possible to bypass tiles
by using them just to buffer and forward up to two independent data streams.

Reconfiguration of Small Function Units. On Xilinx 7 Series devices,
reconfigurable partitions generally should span the entire height of a clock region
within the chip and can span from a single column to the whole width of the
clock region. While it is possible to define partitions smaller than the height of
a clock region, in practice the designer limited to exchanging complete columns,
since two partitions cannot share the same column. When the size of a recon-
figurable region is larger, the resulting rectangular or square partition is usually
well-shaped and can be considered a smaller FPGA and will not significantly
challenge the router during implementation more than any other design.

But small reconfigurable modules which only span a single column are very
long and thin, which makes routing more difficult, and can additionally only
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cover very limited routing resources. A reconfigurable partition of this size con-
tains 400 LUTs and 800 FFs. Since our largest operator requires 368 LUTs which
corresponds to a utilization of 92% it is not surprising that Vivado was not able
to place and route it successfully. But after increasing the size of the reconfig-
urable partition to include 800 LUTs (and 1600 FFs) the problem persisted.

Partition-Crossing Signals as the Limiting Factor. With the total of up to
four input streams and two output streams, plus the two configuration network
interfaces and the elongated shape of the reconfigurable partition, signals across
the boundaries of the partitions had become the limiting factor. Summed up,
there were 291 partition IO-pins for Vivado to place in the miniscule reconfig-
urable partition. Only after adding another column with 400 LUTs and 800 FFs
to each reconfigurable partition, routing consistently provided successful results.
This in turn pushed resource efficiency far lower: While the operator with the
largest requirement for LUTs occupies 30% of the available LUTs in a reconfig-
urable partition, averaged over all operators only 15% of the LUTs are in use.
For FFs the numbers are even lower: A maximum utilization of 25% contrasts
with an average utilization of 15%.

From our experiments, the place and route process completed successfully
when there were at least 3 LUTs per signal crossing the partition border avail-
able. This seems to be the minimum size factor required for Vivado to deal with
limited routing resources. The relationship also held true in larger experiments
(501 I/O vs 1600 LUTs). One thing to note is that introducing SIMD-style data
parallelism is not something that can address this issue, since the total number of
IO-pins will increase at nearly the same rate as the required resources. Besides,
to increase the performance of our prototype overlay architecture to the same
level as the 32-core Zen server CPU in the host system would require 4×-SIMD,
while only a factor of 3× would be possible while keeping the high number of
small-scale reconfigurable operators. This is because the multiplication operator
requires 3 out of the 10 DSP slices of a single DSP column and for a single recon-
figurable partition to cover two columns of DSP slices would mean a substantial
increase in size. But, based on our estimations, even the non-SIMD FPGA over-
lay architecture is competitive with the CPU implementation in terms of energy
consumption.

Our overall findings from this small-scale experiment are that for complex
but small HLS-based reconfigurable operators, the limiting factor on resource
efficiency is the number of signals crossing the border of the reconfigurable par-
tition.

3 Lessons Learned and Conclusion

In general, we learned that utilizing HLS for computationally cheap but control-
flow intense tasks will yield unpleasant results even when guiding the compiler
by hand and making functional trade-offs. We showed that both the prefix match
and the node lookup itself are realizable in a few clock cycles. Yet, HLS yields
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a result far from optimal, an underutilization of the compute resources while
blocking too many LUTs/FFs. With regards to the lessons learned from both of
the experiments, we are now proceeding to implement an optimized version in
pure VHDL and to integrate this work into our existing benchmark framework.

In our experiments, we achieved only a fraction of the throughput that a
CPU would achieve, at a much higher cost. In general, implementing such lookup
engine is feasible by employing a carefully optimized HDL design and scaling the
lookup units to Scaling such designs would include instancing of several compute
units and a smart management unit to schedule work and memory accesses.
We believe utilizing the present HBM memories along with the Xilinx HBM
RAMA IP core can deliver the best performance, because each HBM bank has
separate memory controllers and interfaces, allowing for more parallel random
memory accesses. A further improvement would be a hybrid memory layout,
e.g. compacting the upper two first layers into a single node residing in the on-
chip PLRAM, effectively removing two off-chip memory transactions per lookup,
then utilizing the HBM for traversing the tree and finally placing the leaves into
the DDR4 RAMs, with a streaming interface between those stages. Finally, by
removing the pipeline dependencies by not processing search terms one by one
but processing level-wise, a significant increase in throughput could be achieved.

In the second case study we learned that scaling issues can also come from
unexpected limitations, such as routing capabilities and tooling not being able to
deal with tight resource limits. One remedy that we will explore in future work is
employing code fusion to increase the amount of work done within each function
unit while keeping the number of signals into and out of each reconfigurable
partition constant. Our overall findings from the second case study are that for
complex but small HLS-based reconfigurable operators, the limiting factor on
resource efficiency is the number of signals required that cross the border of a
reconfigurable partition.

While HLS has proven itself a valuable tool for calculation-heavy use-cases,
both case studies revealed problems while tailoring HLS-based code to the spe-
cific problems. For both cases we presented the wide range of issues we experi-
enced, ranging from inefficient implementations over memory problems to insuf-
ficient resources when dealing with partitioning the FPGA for dynamic reconfig-
uration. We present several approaches to overcome the highlighted limitations,
ranging from a carefully optimized HDL-based implementation to design-time
improvements that seek to remedy the limitations encountered.
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Abstract. An emerging trend to improve the power efficiency of neu-
ral network computations consists of dynamically adapting the network
architecture or parameters to different inputs. In particular, many such
dynamic network models are able to output ’easy’ samples at early exits
if a certain confidence-based criterion is satisfied. Traditional methods to
estimate inference confidence of a monitored neural network, or of inter-
mediate predictions thereof, include the maximum element of the Soft-
Max output (score), or the difference between the largest and the second
largest score values (score margin). Such methods only rely on a small
and position-agnostic subset of the available information at the output
of the monitored neural network classifier. For the first time, this paper
reports on the lessons learned while trying to extrapolate confidence
information from the whole distribution of the classifier outputs rather
than from the top scores only. Our experimental campaign indicates that
capturing specific patterns associated with misclassifications is nontrivial
due to counterintuitive empirical evidence. Rather than disqualifying the
approach, this paper calls for further fine-tuning to unfold its potential,
and is a first step toward a systematic assessment of confidence-based
criteria for dynamically-adaptive neural network computations.

Keywords: Neural network · Runtime adaptivity · Inference
confidence · Monitoring neural network

1 Introduction

Neural network classifiers are expected to be widely used in edge computing
applications typically featuring strict cost, power and energy constraints [12].
The constrained execution environment has sparked a surge of interest in special-
ized hardware accelerators, which are reducing energy significantly with respect
to traditional parallel processors or GP-GPUs [13].
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Although this trend is far from stabilizing, complementary approaches are
gaining momentum to augment the power-efficient algorithmic computation of
such accelerators with dynamic reconfiguration capability. The key rationale
behind this approach consists of adaptively tuning the amount of computation
to the execution environment at runtime, thus optimizing power consumption.
In particular, the architecture of the neural network model could be dynamically
tailored to the input sample at hand [5], thereby avoiding redundant computa-
tions for easy samples [7,17,18]. Such dynamic neural networks hold promise
of remarkable advantages in efficiency over acceleration techniques that deploy
static models, which handle easy and hard input samples with identical compu-
tational graphs [8,9,14].

From an implementation standpoint, redundant computation is typically
avoided when a certain confidence-based criterion is met on early or interme-
diate predictions. In classification tasks, the confidence is usually represented
by the maximum element of the SoftMax output [7,21]. An alternative metric
includes the first-order score margin [15], that is, the difference between the
largest and the second largest score values of the classifier layer.

These metrics are widely used in deep learning inference frameworks that
strive to meet the tight power budgets of embedded systems [10,19]. For instance,
in [15] the authors use the simple score margin as a confidence metric to evaluate
the predictions of a small, low power/energy neural network and to possibly
invoke the use of a bigger one that, however, drains more power and energy.
Similarly, in [2] a small network model is dynamically switched to a more complex
one when the average confidence score on the latest frames is below a certain
threshold, while the large model is switched back to the small one when the score
is larger than another threshold value. In order to optimize the weight I/O and
storage requirements, the authors in [16] propose a dynamically reconfigurable
approach that, in case the score margin does not provide enough confidence in
classification, adds resources to a basic neural network in order to perform a
more accurate classification while sharing weights across network layers. The
work in [10] builds on the general principle of coarse-to-fine computation and
cascades network architecture levels consisting of feature transformers, classifiers
and confidence threshold comparators to make a decision about early exit.

In general, confidence-based criteria are relatively simple to implement, and
generally require no specific training techniques. A trade-off between accuracy
and efficiency could be controlled by manipulating the thresholds, which are com-
pared with computed confidence levels and usually tuned on a validation dataset.
However, no exploration framework currently exists to determine the compara-
tive capability of the different confidence metrics to discriminate between correct
and misclassified samples [5]. In particular, there is a large gap in the open liter-
ature between the practical relevance of these metrics and their understanding in
terms of: (i) the trade-off they span between confidence quality and complexity
of the associated monitoring circuit, (ii) their sensitivity to the distribution of
the outputs in the monitored classifier, and (iii) their capability to cope with
incorrectly-classified samples with high confidence (overconfidence [3,6]).
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This paper is a first step toward bridging this gap, and aims at exploring a
hierarchy of confidence-based criteria with growing accuracy and computational
complexity for intermediate classifier monitoring in dynamically-adaptive neural
network systems. The work consists of two interrelated contributions toward the
final goal.

Fig. 1. Big-Little neural network system

On the one hand, we consider the score as the simplest existing metric, and
assess the additional capability of the score margin (if any) to distinguish cases
featuring the same score. With respect to (partially) related work [10], our anal-
ysis investigates the role of post-processing network calibration methods for the
effectiveness of these confidence-based metrics. In fact, it has been demonstrated
that modern neural networks are often not well calibrated, that is, probability
estimates may not be representative of true correctness likelihood [3]. This makes
confidence-based decision making challenging due to high sensitivity for thresh-
old setting far away from training data.

On the other hand, for the first time we explore a new monitoring method-
ology of intermediate classifier outputs that aims at extrapolating confidence
information not only from the top(-two) scores like existing metrics, but rather
from the whole distribution of the outputs. For this purpose, we instantiate a
small neural network-based binary classifier (MonNet) fed by the outputs of
a monitored neural network. MonNet is trained on the output samples of the
monitored classifier when the test set is applied and knowledge of correct/wrong
classifications is used for labelling.

Our expectation for this approach is to be able to account both for the posi-
tion of the scores and for marginal values to better capture specific patterns
associated with misclassifications, thus potentially outperforming traditional
score and score margin approaches. Counterintuitively, experimental results do
not strongly support this expectation, since MonNet does not bring signifi-
cant advantages over position-agnostic top score-based metrics. In contrast, the
empirical evidences reported by the paper seem to indicate that only a few output
parameters are correlated to the level of confidence of the monitored classifier.
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However, the presented experimental campaign is only a first step, and not
a final answer, on the effectiveness of neural network-based monitoring. In fact,
the potential of this approach could be better harnessed by extending the set
of monitored neural network variables beyond classifier outputs. This is left for
future work.

2 Framework Description

Without lack of generality, in this paper we target confidence-based exiting poli-
cies applied to the popular dynamic neural network scheme introduced in [15],
which can also be viewed as a multiple serial classifier system [20]. The system
(known as Big-Little) consists of a little deep neural network (DNN) consuming
low energy, and of a full-fledged big DNN, and aims at avoiding the execution
of the big DNN whenever possible. In this approach, the little DNN is invoked
for inference (without executing the big DNN), and its result can be used as the
final inference outcome depending on the estimated confidence on the prediction
(see Fig. 1). If this is not the case, the big DNN is then executed to deliver the
final inference result. This approach aims at low energy by relying on the little
DNN for easy samples, while sustaining accuracy by selectively invoking the big
DNN on hard samples. In this work, we consider the big network as an oracle,
that is, an hypothetical classifier which is always correct. The reason behind that
choice is that our focus is on the monitoring circuit of the little network, and on
the trade-off between the number of big DNN runs and the maximum achievable
accuracy that different confidence-based criteria can strike.

At the same time, we consider a couple of different little neural networks
with growing complexity and accuracy, in order to assess their impact over the
confidence estimation quality of the monitoring circuit. In particular, two convo-
lutional neural networks with different topologies were considered (see Table 1).
One (Little A) is a network based on LeNet [11], but modified in order to obtain
a better classification accuracy. This net, like the original LeNet, is composed of
three convolutional layers, separated by pooling layers. After the convolutional
layers, there is a fully connected section, which includes the output layer and a
Softmax activation function.

However, differently from a traditional LeNet, batch normalization and ReLu
activation functions were used to reach an accuracy, which is nearly 70%. The
other Little network model (Little B) takes advantage of more convolutional
layers than Little A, in order to achieve a better accuracy (89%). However,
while the size of the network is increased (roughly 7x the number of FLOPs),
it is still much smaller compared to most of the state of the art networks [1,4]
for the considered dataset, making Little B suitable to play the role of the little
network. It is worth noting at this point that the size of the network is believed
to be the main factor that may lead to require calibration procedures [3]. This
topic will be further analyzed in Sect. 3.
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All little networks used in this work are trained on the CIFAR10 dataset.
The dataset was partitioned into three sections: 1) the training set Xtrain; 2)
the test set Xtest; 3) the experiment set Xexp, which is used for an independent
verification of the quality of the monitoring circuit.

Table 1. Topologies of the little neural networks used in this study

Network topology

Little A Little B

Conv2D (16), (5× 5) Conv2D (32), (3× 3)

MaxPooling Conv2D (32), (3× 3)

Conv2D (32), (5× 5) MaxPooling2D

MaxPooling Conv2D (64), (3× 3)

Conv2D (500), (1× 1) Conv2D (64), (3× 3)

Dense (10) MaxPooling2D
Conv2D (128), (3× 3)
Conv2D (128), (3× 3)
MaxPooling2D
Dense (10)

3 Score and Score Margin Binary Classifiers

3.1 Preliminary Definitions

Let us consider a neural network based multiclass classifier with nx inputs and
ny outputs that is trained in a supervised way. Let us also define a generic
input set as X characterized by the matrix X ∈ R

nx+|X | and the corresponding
output set Y characterized by the (one-hot encoded) labels matrix Y ∈ R

ny+|Y|.
The neural networks predictions, instead, are described by the set Ŷ to which
corresponds the matrix Ŷ ∈ R

ny+|Y|. Note that X may be one of the followings:
1) the training set; 2) the test set; 3) the validation set that is here added to
have a test set for the monitoring circuit, whose parameters are adjusted on the
test set of the neural network classifier. Let argpos(k, ŷi) : {1..ny} × R

ny →
{1..nx} be a function that returns the index of the output of the neural network
corresponding to the k-th position in ŷi sorted in decreasing order. Therefore,
α̂i = argpos(1, ŷi) = argmax(ŷi) is the predicted class, while β̂i = argpos(2, ŷi)
is the class with the second position.

If αi is the class denoted by the labeling of xi, we can define a variable
δi ∈ {0, 1} that holds 1 if the input is correctly classified (αi = α̂i) and 0
otherwise. Therefore, the accuracy achieved on X is:

acc =
1

|X|
|X|∑

i=1

δi
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The score of a prediction ŷi is si = ŷi
α, while its score margin is smi =

ŷi
α − ŷi

β . In case a Softmax layer is used to produce the outputs, the score should
mimic the probability that the predicted class is the correct one, while the score
margin approximates an uncertainty on such prediction.

Let us now consider a circuit that monitors the neural network. It is a binary
classifier that receives the output of the neural network and produces a label
ϕ ∈ {0, 1} that denotes the binary trust on the output of the neural network. If
ϕi = 0 the network prediction is untrusted, while if ϕ = 1, the network prediction
is trusted. Such a circuit may be either a logic circuit that computes scores and
compares them to a threshold or a monitoring neural network classifier. The
latter is the method proposed in our work.

The simplest methods compare the score or the score margin to a threshold θ
which is subject to optimization. In Sect. 3.3, we will discuss the problems related
to the choice between these two parameters. For instance, in [15], if smi < θ,
the monitoring circuit activates a big network providing a more accurate classi-
fication than the current one. For an input xi, the whole system may produce
one of the following mutually exclusive events accordingly to the distribution of
the mixed random variable (δ, s) or (δ, sm):

– true negative: the neural network correctly classifies the input and the moni-
toring circuit trusts the prediction (δi = 1 ∧ ϕi = 1);

– true positive: the neural network misclassifies the input and the monitoring
circuit does not trust the prediction (δi = 0 ∧ ϕi = 0);

– false negative: the neural network misclassifies the input and the monitoring
circuit trusts the prediction (δi = 0 ∧ ϕi = 1);

– false positive: the neural network correctly classifies the input and the moni-
toring circuit does not trust the prediction (δi = 1 ∧ ϕi = 0);

The numbers of such events are denoted as:

– TN(X) =
∑|X|

i=1 δiϕi for true negatives;
– TP (X) =

∑|X|
i=1(1 − δi)(1 − ϕi) for true positives;

– FN(X) =
∑|X|

i=1(1 − δi)ϕi for false negatives;
– FP (X) =

∑|X|
i=1 δi(1 − ϕi) for false positives;

Based on such quantities, the effectiveness of the monitoring circuit can be
characterized by defining a true positive rate as: TPR = TP/(TP +FN) which
is the probability that a misclassified input is not trusted by the monitoring
circuit. While, the false negative rate is defined as FPR = FP/(TN + FP )
that is the probability that a correctly classified input is not trusted by the
monitoring circuit. In the ideal case, TPR = 1 and FPR = 0. The behavior of
the monitoring circuit as a function of the threshold is summarized by the ROC
curve which plots TPR as a function of FPR.
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3.2 Overfitting Discussion

As noted in the introduction, modern techniques, such as the use of deep net-
works to achieve high accuracy, may lead to a mismatch between the score and
the score margin values and the actual confidence in the prediction [3]. This prob-
lem can be analyzed by estimating the components of the score (score margin)
probability density function corresponding to correct cases (δ = 1, s) (δ = 1, sm)
and misclassifications (δ = 0, s) (δ = 0, sm).

Figures 2a and 3a show the distribution for Little A on the CIFAR10 test set,
for the score and score margin, respectively. Figures 2c and 3c show the same
results applied to Little B.

These results show that overfitting is present both in the very small network
little A and in the larger network little B. Therefore, it is not only a problem
related to network depth, as pointed by [3], but also to other issues related for
instance to activation functions (ReLu instead of sigmoid as in older networks)
and training (batch normalization, regularization).

In order to solve this problem, network calibration is necessary. For the pur-
pose of this study, the networks were calibrated using Vector Scaling, which is
one of the methods proposed in [3]. Thus, for each network we derived a cali-
brated counterpart. The impact of calibration on the score margin is shown in
Figs. 2b and 3b for Little A on the CIFAR10 test set, while Figs. 2d and 3d show
the calibrated results applied to Little B.

The overall comparison of these curves show that calibration reduces the
values of s and sm for a small fraction of miscassified samples, thus helping any
threshold-based monitoring circuit. However, even if calibration provides better
results in separating the distribution of the correctly classified cases from that
of misclassifications, such an improvement is not resolutive, because it can be
observed that in part it degrades correctly classified scores as well. In addition,
the shift in the distribution of misclassified samples is smaller than those shown
in [15], thus indicating that different networks are expected to exhibit rather
different behaviors from this point of view. These results also show that, in the
considered set of networks, the score margin is preferable to the score because
of its capability to account for the strength of the second output (β).

With these premises, the empirical method to make use of the score or score
margin is to compare them with a chosen threshold that may also undergo
optimization, in order to choose the best balance between TPR and FPR for the
chosen application.



512 F. Dall’Occo et al.

(a) (b)

(c) (d)

Fig. 2. Components of the score probability density function estimates on the CIFAR10
test set for little A, in the non-calibrated (a) and calibrated (b) cases, and for Little B
in the non-calibrated (c) and calibrated (d) cases.

3.3 ROC Curves

By varying the threshold, it is also possible to plot the ROC curves that charac-
terize the capabilities of this method to discriminate between correct and wrong
classifications of a given neural network. These curves are also expected to reflect
the improvements introduced by the calibration.

The entity of such improvements, in terms of the discrimination capabilities
of a score-based monitoring circuit, is shown in Fig. 4a for Little A, while the
same data are shown in Fig. 4b in case the score margin is used. Such figures both
consider the non-calibrated and the calibrated cases. Figure 5a and b show the
ROC curves in the calibrated and non-calibrated cases when considering Little
B instead, monitored by using the score and the score margin, respectively.

While the used calibration procedure does not have a large impact on the
network’s accuracy, which is basically the same, the performances of both the
score and the score margin are improved. The ROC curves also show that the
score margin works slightly better than the score.
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(a) (b)

(c) (d)

Fig. 3. Score margin probability density function estimates on the CIFAR10 test set
for little A, in the non-calibrated (a) and calibrated (b) cases, and for Little B in the
non-calibrated (c) and calibrated (d) cases.

3.4 Wider Monitoring Scope

While the use of the score margin allows to implement Big-Little model archi-
tectures featuring a reasonable trade-off between computational workload and
accuracy, the ROC curves reveal that there is still room for consistent improve-
ments. In fact, a score margin classifier only monitors two outputs of the mon-
itored neural network, and does not account for their positions in the output
pattern. Therefore, an intuitive approach for better decision making would con-
sist of extrapolating confidence information from the whole distribution of the
monitored classifier outputs rather than from the top two scores only. This could
be done with small processing overhead by instantiating a small neural network-
based binary classifier capturing specific patterns associated with misclassifica-
tions. The wider monitoring capability of this approach holds promise of better
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(a) (b)

Fig. 4. ROC curve for the CIFAR10 data set obtained by monitoring the output of
little A with the score (a) and the score margin (b).

(a) (b)

Fig. 5. ROC curve for the CIFAR10 data set obtained by monitoring little B with the
score (a) and the score margin (b).

coping with overconfidence, since correctly and incorrectly classified samples
with similar high confidence according to the score margin criteria could be
better discriminated should they generate different output patterns.

Next, the implementation of the novel decision method is detailed and
assessed in depth.

4 MonNet Binary Classifier

MonNet is a small neural network aimed at outperforming state-of-the-art score
margin-based confidence estimators. It is deployed as the monitoring circuit in
Fig. 1, therefore it uses the output of the little network as input.
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Table 2. MonNet configurations depending on the amount of monitored data. The
hidden layers are represented with the number of neurons per layer separated by ’-’.
We assume CIFAR-10 dataset.

Monitored data MonNet network topology

Input layer Hidden layers Output layer

All-10 scores (MN10) 10 32–10 1

Top-2 scores (MN2) 2 12–8 1

For the sake of homogeneous comparison with other metrics, the CIFAR-
10 dataset, composed of 50,000 images, was split into three sets as in Sect. 2:
(1) Xtrain, with 30,000 samples; (2) Xtest, composed of 10,000 samples; and (3)
Xexp, also composed of 10,000 samples. Because of the need to train the MonNet
with the output of the little network, out of the 10,000 samples (3), 7,000 were
used to train MonNet (of which 1,400 were used to validate while training) and
3,000 were used to test the MonNet. These 10,000 samples have been labelled as
hit or miss for the little network, taking into account the success/failure of the
prediction. This allows the MonNet to decide whether to trust the little one, or
to activate the big one instead. To train and conduct the prediction experiments,
we have used TensorFlow 2.4.1. The accuracy results obtained in the Big-Little
model have been performed on the 3,000 samples reserved for MonNet testing.

The complexity of the MonNet network topology (i.e., number of hidden
layers, type of layers, and number of neurons per layer) heavily depends upon
the amount of data to be learnt from the monitored network. Table 2 lists the
two scenarios of data to be monitored that we consider in this work. The first
row corresponds to our main target, that is, feeding MonNet with all scores
from the monitored network’s output so that MonNet can learn any specific
pattern associate with all scores and their positions in the classifier layer – we
assume the CIFAR-10 dataset, thus the input layer of MonNet must be sized
with 10 neurons. In addition, for the sake of comparison, we consider the case of
using the top-2 scores from the monitored network’s output as input to MonNet.
This can be understood as a more incremental extension of the Score Margin
binary classifier in that, unlike the latter, the values of the largest and the second
largest scores are considered for decision making. Regardless the input layer size,
MonNet is configured with an output layer composed of 1 neuron to produce the
output of the binary classifier (ϕ ∈ {0, 1}).

Nonetheless, defining the precise amount and type of hidden layer(s) for
each case that achieves the highest binary classification accuracy with the least
network resources (e.g., number of inter-layer connections or neuron weights)
requires an in-depth design-space exploration and is left for future work. Instead,
we conservatively assume a MonNet architecture that is capable of guaranteeing
the highest binary-classification accuracy. For that, we have configured MonNet
as a simple multi-layer perceptron with the number and size of hidden layers
exposed in Table 2. Note that, even without architectural fine-tuning, the Mon-
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Net variants targeted by this paper are tiny neural network models that could be
efficiently deployed in any heavily-constrained edge computing platform. In fact,
their computational complexity in terms of FLOPs is from four to five orders of
magnitude lower that the considered little networks.

Table 3. Configurations for the experiments with the Score Margin and MonNet binary
classifiers. AUC is the area under the curve for the ROC curves (details in Fig. 6). In
the table, we also show the confusion matrix embedded in a single cell for each of the
cases highlighted in bold font in Tables 4 and 5: matrices’ rows represent the target
prediction and columns the estimated prediction. “No Trust” is the first row/column
and “Trust” is the second row/column).

Network Calibrated Binary classifier Input AUC Confusion
matrix

Little A No Score Margin Top-2 scores 0.816 520 256
464 1760

MonNet All-10 scores 0.819 466 310
357 1867

Top-2 scores 0.820 525 251
473 1751

Yes Score Margin Top-2 scores 0.826 504 251
443 1802

MonNet All-10 scores 0.814 321 435
234 2010

Top-2 scores 0.830 450 306
347 1897

Little B No Score Margin Top-2 scores 0.891 136 231
91 2542

MonNet All-10 scores 0.898 142 225
75 2558

Top-2 scores 0.890 145 222
95 2538

Yes Score Margin Top-2 scores 0.893 137 206
124 2533

MonNet All-10 scores 0.892 91 247
89 2573

Top-2 scores 0.895 115 223
114 2548

5 Evaluation

5.1 Comparing Monitoring Binary Classifiers

For the experimental analysis, we assume the configurations listed in Table 3. We
consider two types of Little neural networks (A and B), whether these networks
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are calibrated or not, and the input data used by each binary classifier – i.e., the
top-2 scores for the calculation of the Score Margin, and the two different types
of monitored data exposed in Sect. 4.

To compare the quality of MonNet vs. Score Margin as a binary classifier,
Table 3 represents the area under the curve (AUC) for the ROC curves that are
illustrated in Fig. 6. Note that the ROC curves for the Score Margin are those
discussed in Sect. 2. To plot the ROC curves for the MonNet we followed the
same approach as for the Score Margin by varying the threshold of the output
classifier layer from 0.0 to 1.0.

At a first glance, we can observe that the ROC curves shown in Fig. 6 are
quite similar (almost overlapped) in all cases. A more in-depth analysis con-
sidering the AUC column of Table 3 confirms this behavior as the AUC values
obtained for MonNet are in the same order of magnitude, considering the first
two decimal places of the numbers, with respect to those reported by the Score
Margin in both Little networks w/ and w/o calibration cases. The high AUC
values are consistent with the large amount of correct predictions made by the
binary classifiers (see the left-to-right diagonal values of the confusion matri-
ces). Interestingly, giving as input to MonNet all 10 scores does not yield any

(a) Little A (b) Calibrated Little A

(c) Little B (d) Calibrated Little B

Fig. 6. ROC curves for Score Margin (SM) and the two MonNet configurations (MN10
and MN2) for Little A and Little B with and without calibration.
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noticeable benefit on the AUC value when compared with the top-2 scores. This
clearly contradicts the original intuition behind the use of MonNet. This counter-
intuitive result also occurs in both calibrated Little A and Little B networks.

By considering the confusion matrices it is worth mentioning that MN10
with calibration always presents the minimum number of true positives and the
minimum number of positives (TP + FP ). Therefore, it provides the minimum
accuracy increase (when calling the big network) and the minimum number of
calls to the big network. In practice, it seems to be overconfident on classifier
results, an issue that has no easy explanation (see Sect. 6) and that will be further
investigated in future work.

5.2 Assessing the Accuracy-Workload Trade-Off

Next, we conduct a set of experiments to estimate the overall accuracy of the Big-
Little model approach using the binary classifiers under test, and the associated
computational cost in terms of number of activations of the big network. To
evaluate this approach, as explained in Sect. 2, we assume an oracle Big neural
network that achieves 100% accuracy for all test images in CIFAR-10.

Tables 4 and 5 show our experimental results for Little A and Little B net-
works, respectively. As discussed in Sect. 3, since the effectiveness of the Score
Margin estimator depends on the chosen threshold value (i.e., it establishes a

Table 4. Overall Big-Little A accuracy (BL-ACC) and percentage of calls to the
big network (Big Calls (%)) considering a range of thresholds for the Score Margin
(SM-T from 0.0 to 1.0), and the best MonNet for the two types of monitored data. For
MonNet, we show “Avg.±Sdev. (Highest)” values using 10 different trained MonNets.
The Big Calls (%) for MonNet are for those MonNet networks with the highest BL-
ACC.

Uncalibrated Calibrated

SM-T BL-ACC Big Calls (%) BL-ACC Big Calls (%)

0.0 74.13 0.00 74.83 0.00

0.1 76.70 4.03 83.47 13.70

0.2 78.67 7.57 88.37 23.53

0.3 80.87 11.43 91.63 31.57

0.4 83.43 15.63 94.20 40.07

0.5 85.53 19.10 96.33 47.37

0.6 87.20 22.50 97.53 54.23

0.7 89.30 27.73 98.53 61.07

0.8 91.47 32.80 99.30 69.33

0.9 94.17 40.83 99.67 79.13

1.0 100.00 100.00 100.00 100.00

MN10 88.07±1.27 (89.66) 27.43 84.62±0.61 (85.50) 18.50

MN2 88.56±2.86 (91.63) 33.26 87.08±2.22 (89.80) 26.56
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Table 5. Same description as in Table 4 but for Little B.

Uncalibrated Calibrated

SM-T BL-ACC Big Calls (%) BL-ACC Big Calls (%)

0.0 87.77 0.00 88.57 0.00

0.1 89.57 2.77 91.30 4.70

0.2 91.23 5.20 93.13 8.70

0.3 92.30 7.57 94.83 12.27

0.4 93.20 9.70 96.17 16.13

0.5 93.80 11.57 97.13 20.03

0.6 94.77 14.33 98.10 24.37

0.7 95.73 17.70 98.83 29.37

0.8 97.00 21.80 99.20 35.40

0.9 98.17 27.60 99.57 45.17

1.0 100.00 100.00 100.00 100.00

MN10 92.06±0.26 (92.50) 7.23 91.59±0.10 (91.76) 6.00

MN2 92.31±0.21 (92.60) 8.00 92.08±0.26 (92.56) 7.63

trade-off between number of executions of the big neural network and the loss
of inference accuracy), we assume a range of thresholds between 0.0 (i.e., the
estimator always trusts the little network, so the big network is never called
and the inference accuracy is the same as the little network), and 1.0 (i.e., the
estimator never trusts the little network, so the big network is always called and
the inference accuracy is the same as the big network). We include these two
extreme values in the tables to represent the lower and upper bounds of our lit-
tle and big networks’ prediction accuracy, respectively (note that the prediction
accuracy of the little networks are consistent with those described in Sect. 3).
For comparison, we also show in the last two rows of the tables the performance
of the MonNet network depending on the two types of monitored data (Table 2).
In the last case, since training a neural network with different initial weights
might change the final prediction accuracy, we have repeated the experiments
for MonNet 10 times and we reported the average and standard deviation values.
Among all 10 experiments, we select the best result a MonNet can achieve as to
the highest overall Big-Little accuracy (it is added in brackets in the tables).

As we can see in Table 4, in the case of the Little A network, the score
margin can considerably increase the overall Big-Little prediction accuracy (up
to 94.17% with a threshold of 0.9) but at the cost of a large number of calls
to the big network (up to 40.83% for the same threshold). The experiments
of MonNet reveal that it cannot outperform such high accuracy, but the best
trained MonNet networks are very close (up to 91.63%) while at the same time
lowering the number of calls to the big network to 33.26%. Considering a similar
number of calls to the big network, with a threshold of 0.8 (see the bold font in
the table) the Score Margin can achieve similar prediction performance (91.47%).
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These results bring out two interesting results. First, MonNet can obtain sim-
ilar performance to Score Margin for a similar number of calls to the Big network.
Second, across the two different configurations for MonNet, we counterintuitively
observe that feeding MonNet with all 10 scores does not help increase prediction
accuracy. The same trend applies also in the calibrated Little A network, but in
this case the Score Margin threshold is 0.2. Even though we have also conducted
the same experiments with a more complex little network (Little B), as shown
in Table 5, the outcomes are similar and lead to the same conclusions.

Finally, it is worth noticing that calibration makes MonNet with all 10 scores
even less effective. This is particularly true in the Little A case (see Table 4).
This may depend on calibration heuristics that attenuate the Softmax function.
They always decrease the top score, while other scores may be either increased
or decreased with respect to the non-calibrated case. Very low scores, instead,
are consistently raised by calibration. The impact of this approach on confidence
metrics is typically positive for the score margin. If smi > smj (i and j being
two predictions) in the non-calibrated case, calibration increases smi/smj in
the largest majority of cases. Conversely, it is easy to verify that calibration
may impair different metrics. For instance, in some cases the score margin takes
advantage of calibration, while the Euclidean distance between two classifier
outputs is consistently lowered. This may not help also the metric induced by
MonNet.

6 Discussion and Conclusions

A crucial operation in most dynamic neural networks for low-power embedded
systems consists of deciding whether a neural network module should be eval-
uated or skipped. Confidence-based criteria are typically used for that, which
monitor a small set of output parameters of intermediate classifiers under test.
This paper reported on a different monitoring approach, relying on a neural-
network based binary classifier (MonNet) to monitor the whole distribution of
intermediate classifier outputs.

Overall, our exploration indicates that all confidence estimation strategies
under test lead to roughly the same operating points for dynamic neural net-
works. Therefore, MonNet is not bringing significant advantages over position-
agnostic top score-based metrics. In contrast, the following empirical observa-
tions emerge. First, the level of confidence of the monitored classifier tends to
be revealed only by few, most significant scores. Second, such confidence seems
to be better reflected by the absolute value of the top scores rather than their
position in the classifier output pattern.

There are a few candidate explanations for the poor performance of MonNet:

– training set unbalanced towards mainly correct classifier predictions;
– MonNet size;
– problems intrinsic to the classifier output distribution.
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The unbalanced training set hypothesis is less likely since, in our experiments,
MonNet works better with Little B, which is more accurate and has a more
unbalanced data set than Little A. At the same time, we experimentally verified
that more complex versions of MonNet featuring up to 4 additional hidden layers
do not provide remarkable accuracy improvements. As a result, the most likely
explanation could reside in the classifier output distribution, which is produced
by the normalization operations of the SoftMax layer. These operations might
destroy several information about its input distribution (logits). In the case of
score and score margin, this problem is partially mitigated by the calibration of
the SoftMax layer, which is not effective for MonNet, as shown by our results.

Overall, this paper does not disqualify neural network-based binary classifiers
for confidence estimation, but rather calls for fine-tuning of the approach along
two directions. First, calibration techniques specifically targeting the use of a
monitoring network instead of score-based metrics could be developed. Second,
the set of monitored neural network variables could be extended beyond the
outputs of the monitored classifier.
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