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Abstract In this study, we compared the numerical performance of reliability
coefficients based on classical test theory and factor analysis. We investigated the
coefficients’ divergence from reliability and their population values using unidimen-
sional and multidimensional data generated from both an item response theory and
a factor model. In addition, we studied reliability coefficients’ performance when
the tested model was misspecified. For unidimensionality, coefficients α, λ2, and
coefficient ωu approximated reliability well and were almost unbiased regardless
of the data-generating model. For multidimensionality, coefficient ωt performed
best with both data generating models. When the tested model was unidimensional
but the data multidimensional, all coefficients underestimated reliability. When the
tested model incorrectly assumed a common factor in addition to group factors
but the data was purely multidimensional, coefficients ωh and ωt identified the
underlying data structure well. In practice, we recommend researchers use reliability
coefficients that are based on factor analysis when data are multidimensional; when
data are unidimensional both classical test theory methods and factor analysis
methods get the job done.
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1 Introduction

Most methods for reliability estimation fall into methods based on classical test
theory (CTT; Lord & Novick, 1968) and factor analysis (FA; e.g., Jöreskog, 1971).
We studied sampling properties of lower bound coefficients α, λ2, λ4, and the
greatest lower bound (GLB) from CTT, and coefficients ωu, ωh, and ωt from
FA. We ran a simulation study assessing statistical properties of these estimators,
using item response theory (IRT) and FA models to generate unidimensional and
multidimensional data while controlling the reliability. As far as we know, this
comparison is novel. We investigated two special cases in which the population
model is a multidimensional FA-model, but the tested model is misspecified. Before
we discuss the process of data generation, we describe the reliability coefficients α,
λ2, λ4, GLB, ωu, ωh, and ωt.

1.1 CTT Coefficients

Based on the CTT layout of the test score, X = T + E (X: test score, sum of item
scores; T: true score; E: random measurement error; see Sijtsma & Pfadt, 2021),
we studied coefficients α, λ2, λ4, and the GLB. These coefficients approximate
reliability, ρ, defined as the proportion of test-score variance that is true-score
variance in a population; that is, ρ = σ 2

T /σ 2
X. The approximations are theoretical

lower bounds to the reliability. The coefficients’ equations are the following (for
further information, see, e.g., Sijtsma & Van der Ark, 2021). For coefficient α, let
σ2X be the test score variance and let σ2j be the variance of item j (j = 1, . . . , J); then

α = J

J − 1

(
1 −

∑J
j=1 σ 2

j

σ 2
X

)
. (1)

For coefficient λ2, let σ2jk be the covariance between items j and k, then

λ2 = 1 −
∑J

j=1 σ2j −
√

J
J−1

∑∑
j �=kσ

2
jk

σ 2
X

. (2)

For coefficient λ4, split a test in two item subsets without overlap and not necessarily
equally sized, call this split partition P, and let σ 2

A and σ 2
B be the variances of the test

scores on each subset. Then, coefficient α for this partition, α(P), equals: α(P ) =
2 ·

(
1 − σ 2

A+σ 2
B

σ 2
X

)
. Coefficient λ4 is the greatest value of α(P) across all partitions P;

that is,

λ4 = max
P

[α(P )] . (3)
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Let �X be the covariance matrix that is split into �X = �T + �E, where �T

contains the true score variances and diagonal �E contains the error score variances.
The estimates for �T and �E are found in an iterative procedure where the trace
of �E is maximized while the matrices �T and �E stay positive semi-definite
(Woodhouse & Jackson, 1977). Then

GLB = 1 − tr (�E)

σ 2
X

. (4)

1.2 FA Coefficients

The FA approach to reliability is based on the assumption that the CTT model,
X = T + E, can be substituted with the FA-model. Note that the models are
different and thus define different reliability conceptions except for extreme cases.
For items, the CTT model is Xj = Tj + Ej, with Tj = E(Xjr

)
, r indexes independent

replications of item j, comparable with the stochastic subject formulation of
response probability in IRT (Holland, 1990). FA models item scores as Xj =
bj + ∑Q

q=1 ajqξq + δj , with intercept bj, latent variable ξq indexed q (q = 1, . . . ,
Q), ajq the loading of item j on latent variable ξq, and δj the residual consisting of
unexplained item components and random measurement error. One may notice that
different items have one or more latent variables in common, whereas in CTT, true
scores unique to the item lack additional modeling. FA extracts one or more factors
from the data. These factors predict the outcome variables, here, the items. The level
of prediction is represented by loadings that link each item with one or more factors.

The FA approach to reliability is based on the assumption that the sum of the
squared factor loadings approximates the true-score variance of items. The residual
variances, the part of items the factor(s) cannot predict, substitute the error-score
variance. Reliability is defined as the proportion of the test-score variance that is due
to one or more common factors. For instance, the single-factor model (Spearman,
1904) describes the data matrix X of multivariate observations as

X = gcT + E, (5)

where c denotes the factor loadings on one common factor g (replacing general
notation ξ ) and E the matrix of residuals, the part of the item scores that the
common factor cannot explain. Since the residuals are assumed independent, the
covariance matrix of E is diagonal and has elements ej representing residual
variances. Coefficient ωu (u for unidimensional; McDonald, 1999) equals

ωu =
(∑

c
)2(∑

c
)2 + ∑

e
. (6)



54 J. M. Pfadt and K. Sijtsma

When data are multidimensional, one can either estimate reliability for each
subscale using ωu or one can employ coefficients ωh (h for hierarchical) and ωt (t
for total; Zinbarg et al., 2005). Therefore, consider the following multidimensional
bi-factor model,

X = gcT + FAT + E, (7)

where A denotes the J × Q loading matrix for the Q group factors collected in F.
The Q group factors are common to some items but not all. The residual variances
ej of the residual matrix E represent the part of the items that the common factor
and the group factors cannot explain. Coefficient ωh equals

ωh = cT c

cT c + 1T
QAT A1Q + ∑

e
, (8)

where 1Q is a Q × 1 sum vector. The coefficient describes the common factor
saturation of a test in the presence of group factors. The value of coefficient
ωh addresses the question “how well does a multidimensional scale represent a
common attribute”. Coefficient ωh is not an estimate of the reliability as indicated
by coefficient ωt, because coefficient ωh does not relate all true score variance to the
total variance of a test, but only the variance due to a general factor. Coefficient ωt

equals

ωt = cT c + 1T
QAT A1Q

cT c + 1T
QAT A1Q + ∑

e
, (9)

and describes the proportion of variance in the test that is due to a common attribute
and specific attributes that pertain to subsets of items, which is the true-score
variance. The loadings and residual variances for the ω-coefficients can be obtained
from both a confirmatory factor model and an exploratory factor model.

2 Simulation Study

We compared reliability coefficients estimated in samples of simulated data with the
reliability of the population model that generated the data. Oosterwijk et al. (2017)
compared several lower bounds with population reliability by generating data from
a two-dimensional graded response model (GRM; Samejima, 1968). From the GRM
parameters, they computed the item true scores and then the reliability. Zinbarg et al.
(2006) used a factor model to generate data for the evaluation of estimation methods
for coefficient ωh. Assuming the factor variance represents the true score variance,
one can obtain the population reliability from the factor model parameters.
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To rule out the possibility that the data generation process confounds the
outcomes, we generated data both with the GRM and a factor model, and evaluated
the lower bound coefficients α, λ2, λ4, and the GLB, and the FA-coefficients ωu,
ωh, and ωt. Furthermore, we investigated the ramifications of a misspecified model
when estimating reliability coefficients. We generated data based on researchers (1)
overlooking a scale’s multidimensionality, and (2) incorrectly assuming presence of
a common attribute.

2.1 Method

Data Generation from GRM

The data generation based on the GRM in this study is similar to the data generation
in Oosterwijk et al. (2017). The GRM defines for each polytomous item j a slope
parameter aj and a location parameter bjx for each item score x. The cumulative
response probability of scoring at least x (x = 0, . . . , m) on item j as a function of
latent variable(s) θq (q = 1, . . . , Q) collected in θ is expressed as

P
(
Xj ≥ x | θ) =

exp
[∑Q

q=1 ajq

(
θq − bjx

)]
1 + exp

[∑Q
q=1 ajq

(
θq − bjx

)] . (10)

The response probability of scoring exactly x on item j is given by

P
(
Xj = x | θ) = P

(
Xj ≥ x | θ) − P

(
Xj ≥ x + 1 | θ)

, (11)

with P(Xj ≥ 0| θ) = 1 and P(Xj > m| θ) = 0 for response categories 0, . . . , 4. For
our study, we chose Q = 1 and Q = 3. The model definition and data generation for
the GRM largely follows Oosterwijk et al. (2017) but for clarity we reiterate most
of it here.

Unidimensional Model To model a wide range of person parameters, we defined
θ = −5, −4.95, −4.9, . . . , 4.9, 4.95, 5, that is, 201 evenly spaced values in total
that followed a standard normal distribution. Numbers of items were J = 9, 18, item
scores were x= 0, . . . , 4, and slope parameters aj ∈U(1, 1.5). Item location parame-
ters were bjx = τj + κx, with τj = (j−1)/(J−1) −.5 and κx = (−1.5,−0.5, 0.5, 1.5)T ,
with x = 0, . . . , 4 for five item scores.

Multidimensional Model We chose Q = 3, identical equally-spaced person
parameter vectors θ1, θ2, θ3 as in the unidimensional case, and a multivariate
normal distribution with means 0, variances 1, and correlations .3. Numbers of
items and item scores were the same as for the unidimensional model. Multidi-
mensionality was achieved by assigning slopes ajq ∈ U(1, 2) for latent variable
θq to a third of the items and ajq = 0 to the other items, and so on. For
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example, for J = 9, a1 = (1.75, 1.25, 1.55, 0)T , a2 = (0, 1.60, 1.04, 1.30, 0)T , and
a3 = (0, 1.67, 1.40, 1.28). Herein, vector 0 denotes a vector of zeros; for a1, 0 has
six elements, for a2, both 0s have three elements each, and for a3, 0 has six elements.
Location parameters were defined as in the unidimensional model.

Population Reliability Reliability equals ρ =(1T�T1)/(1T�X1). Matrix �T dif-
fers from matrix �X by the diagonal only, which for �T contains the item true-score
variances. Population values of coefficients α, λ2, λ4, the GLB, ωu, ωh and ωt (for
the multidimensional model) were computed from covariance matrix �X . �X has
diagonal item variances σ2j and off-diagonal covariances σ2jk . Following Oosterwijk

et al. (2017), we compute σ2j = E
(
X2

j

)
− [E(Xj

)]2, and σjk = E(XjXk

) −
E(Xj

) E(Xk). Furthermore, E(Xj

) = ∑
x xP

(
Xj = x

)
, E

(
X2

j

)
= ∑

x x2P
(
Xj = x

)
and E(XjXk

) = ∑
x

∑
yxyP

(
Xj = x,Xk = y

)
, with x = 0, . . . , 4.

Marginal probability P(Xj = x) equals

P
(
Xj = x

) =
∑
θq

P
(
θq

)
P
(
Xj = x|θq

)
, (12)

and joint probabilities P(Xj = x,Xk = y) equal

P
(
Xj = x,Xk = y

) =
∑
θq

P
(
θq

)
P
(
Xj = x|θq

)
P
(
Xk = y|θq

)
. (13)

To obtain �T , we substitute the diagonal of �X with the true item variances σ 2
Tj
. We

compute σ 2
Tj

from

σ 2
Tj

=
∑
θq

P
(
θq

) [(
Tj |θq

)
− E(Tj

)]2
, (14)

with true scores Tj | θq = ∑
x P

(
Xj ≥ x|θq

)
, and E(Tj

) = E(Xj

)
. Probability

P(θq) is computed as follows. First, for Q = 1, we compute the value of the
probability density function of the standard normal distribution at each θ-value and
then transform the resulting values to the zero-to-one probability scale by dividing
each value by the sum of all values. Second, for Q = 3, the reference probability
density function is the multivariate normal. Subsequently, the value of the density
function is computed for each possible permutation of the three θ -vectors.

Data Generation First, for Q = 1, we drew N θ -values from a standard normal
distribution and computed the cumulative and exact response probabilities from Eqs.
(10) and (11) for each of the N θ -values. For Q = 3, we drew N triplets of θ -
values from a multivariate normal with a specified correlation matrix (ρ = .3) and
computed the required probabilities. Second, using the exact response probabilities,
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we randomly drew N scores on sets of J Items from a multinomial distribution. We
scaled these scores ordinally, consistent with a five-point Likert-scale.

Data Generation from FA-Model

We created a covariance matrix implied by a particular factor model. The procedure
differed between one- and three-factor models. We used the matrix as the data-
generating covariance matrix.

Unidimensional model The covariance matrix the model implies is defined as
�U = cφcT + �, with φ as the variance of factor g, and � as the diagonal
covariance matrix of E (Eq. 5; Bollen, 1989). We sampled standardized model
loadings in c from U(0.3, 0.7). Then, the residual variances in the diagonal matrix
� become 1 − c2. We assumed factor variance is φ = 1. We computed parameters
for coefficients α, λ2, the GLB, and ωu from the model-implied covariance matrix
�U.

Multidimensional Model The multi-factor model was a second-order model for
which we assumed three group factors each explaining a unique third of the
items, and one general factor explaining the group factors. Group factor loadings
came from a uniform distribution U(.4, 1) and loadings of group factors on the
general factor came from U(.5, 1). Loadings were standardized, so that squared
loadings together with the residual variances added to 1. General-factor variance
equaled 1. Using the Schmid-Leiman transformation (Schmid & Leiman, 1957) we
transformed group and general factor loadings to loadings of a bi-factor model (Eq.
7). Residual variances were the same. The model-implied covariance matrix was
�M = ���T + � (Bollen, 1989). Matrix � contains the loadings of the items on
both the group factors and the general factor, � is the diagonal factor covariance
matrix with Q+1 entries that equal 1, and � is a diagonal matrix containing the
residual variances. We computed the parameters for α, λ2, λ4,the GLB, ωh, and ωt

from the model implied covariance matrix �M.

Population Reliability Reliability is defined as ρ = σ 2
T /σ 2

X. Assuming that
squared factor loadings represent item true-score variances, population reliability
equaled ωu (see Eq. 6) for the unidimensional models and ωt (see Eq. 9) for the
multidimensional models.

Data Generation We drew random samples from a multivariate normal distri-
bution with means of 0 and model-implied covariance matrices �U and �M ,
respectively. The resulting data were then continuous.

Factor Analysis Method We estimated all factor models by means of a confirma-
tory factor analysis (CFA). To obtain coefficients ωh and ωt, we first performed a
CFA with a second-order factor model and transformed the resulting loadings into
bi-factor loadings, c and A (Eq. 7), using the Schmid-Leiman transformation.
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In the simulation study, we used λ4 as the population coefficient, and λ4(.05)
as the sample estimate in the simulation runs, where λ4(.05) is the .05 quantile of
a distribution of approximations to λ4 that avoid having to consider all possible
item splits, thus running into combinatorial problems (Hunt & Bentler, 2015).
Coefficient λ4(.05) counteracts chance capitalization that sometimes leads to gross
overestimation of population reliability.

Conditions

Numbers of items were J = 9, 18. Sample sizes were N = 500, 2000. Together
with two data generation methods and two dimensionality conditions, 16 conditions
resulted that were replicated 1000 times. In addition, we identified two misspecified
models when estimating FA-coefficients ωu, ωh, and ωt. First, we considered
incorrectly assuming one factor, thus estimating coefficient ωu, when the truth is a
multi-factor model. We generated data using a second-order factor model with three
group factors and a general factor, for J = 12 and N = 1000, with 1000 replications,
and computed coefficient ωu. Second, we considered incorrectly assuming multiple
factors with an underlying common factor, thus computing coefficients ωh and ωt,
when the true model is purely multi-factor and does not contain a common factor.
The factor model had three orthogonal group factors. We assumed that coefficientωt

equaled the population reliability and coefficient ωh equaled zero as loadings on the
general factor were zero. Number of items was J = 12, sample size was N = 1000,
and number of replications was 1000. We estimated α, λ2, λ4, the GLB, ωh, and ωt.

Outcome Variables

We determined discrepancy, and the mean and standard error of bias. Discrepancy
is the difference between parameters for reliability methods and reliability, for
example, α − ρ. Bias is the difference between the mean sample coefficient and
its parameter value, for example, E(

α̂
) − α. Standard error is the standard deviation

of estimates relative to the parameter, for example, σα̂ =
(
E
[(

α̂ − α
)2]) 1

2
. We

tested significance of the bias being different from zero.

2.2 Results

Unidimensional Models

Table 1 shows discrepancy, bias, standard error and significance results. Coefficients
α, λ2, λ4, GLB, and ωu showed similar results in both data generating scenarios.
The discrepancy of λ2, the GLB, and ωu was small in all unidimensional conditions.
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Table 1 Discrepancy, bias, and standard error (between parentheses) of several reliability
methods for unidimensional models

J = 9 J = 18

N N

500 2000 500 2000

Coefficient Discrepancy Bias Discrepancy Bias

IRT-data

ρ= .798 ρ= .889

α −0.48 −0.66 (0.42) −0.32 (0.21) −0.21 −0.34 (0.23) −0.06 (0.12)

λ2 −0.29 00.06 (0.41) −0.15 (0.21) −0.12 −0.08 (0.23) 0.05 (0.11)

λ4 −4.46 −8.31 (0.42)* −7.39 (0.21)* 0 −8.05 (0.22)* −5.95 (0.12)*

GLB 0 28.51 (0.38)* 14.12 (0.21)* 0 −27.10 (0.19)* 13.91 (0.11)*

ωu −0.23 −0.21 (0.41) −0.21 (0.21) −0.11 −0.13 (0.23) −0.01 (0.12)

FA-data

ρ= .748 ρ= .859

α −4.61 −1.17 (0.53)* −0.57 (0.27)* −2.16 −0.46 (0.30) −0.07 (0.15)

λ2 −0.87 0.04 (0.52) 0.31 (0.26)* −0.22 −0.20 (0.29) −0.09 (0.15)

λ4 0 −15.88 (0.53)* −11.78 (0.28)* 0 −3.12 (0.28)* −4.75 (0.15)*

GLB 0 −35.11 (0.50)* −17.66 (0.26)* 0 33.86 (0.24)* 17.42 (0.13)*

ωu 0 −0.47 (0.53) −0.42 (0.26) 0 −0.13 (0.29) 0.00 (0.15)

Note. Significance is indicated with *. Table entries are transformed and rounded for better interpretation; real
values are obtained by multiplying entries by 10−3, e.g., the discrepancy for α (J = 9; IRT-data) is −0.48 ×
0.001 = −0.00048. Discrepancy for λ4 was λ4 − ρ, bias was estimated using λ4(.05)

The discrepancy of coefficient λ4 improved considerably with a larger number of
items. Discrepancy was negative for all coefficients, a desirable result. Mean bias of
coefficients α, λ2, and ωu was relatively small. Table 1 shows that the discrepancy
of the GLB is almost equal to 0, but its bias is largely positive, a finding consistent
with results reported by Oosterwijk et al. (2017). Estimate λ4(.05) underestimated
population value, λ4. Increase in sample size resulted in better performance for all
coefficients. Except for the GLB, an increase in the number of items led to smaller
bias. Except for λ4 and the GLB, the coefficients’ performance was satisfactory
across all unidimensional conditions.

Multidimensional Models

Table 2 shows that all coefficients had smaller discrepancy and bias as samples
grew larger and, except for the GLB, results improved as the number of items grew.
Discrepancy was highly similar for both data generation procedures. As expected,
discrepancy of lower bounds α and λ2 was much larger for the multidimensional
data than for the unidimensional data. Coefficient λ4 showed an unexpectedly large
discrepancy with the multidimensional IRT-data and considerable negative bias
throughout all multidimensional conditions. The GLB had very small discrepancy
but an expectedly large bias. As expected, an increase in the number of items
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Table 2 Discrepancy, bias, and standard error (between parentheses) of several reliability methods
for multidimensional models

J = 9 J = 18

N N

500 2000 500 2000

Coefficient Discrepancy Bias Discrepancy Bias

IRT-data

ρ = .738 ρ = .853

α −82.13 −0.38 (0.73) −0.18 (0.36) −44.61 −0.77 (0.39)* −0.39 (0.20)

λ2 −67.82 −1.41 (0.65)* −0.24 (0.32) −36.14 −0.23 (0.35) −0.12 (0.18)

λ4 −31.74 −16.32 (0.59)* −14.94 (0.31)* −0.04 −13.72 (0.31)* −8.65 (0.16)*

GLB −0.07 26.15 (0.52)* −12.08 (0.28)* 0 32.34 (0.25)* 16.37 (0.15)*

ωh −325.91 7.01 (1.39)* 1.82 (0.69)* −376.23 3.41 (1.23)* −0.18 (0.64)

ωt −0.10 0.70 (0.55) 0.05 (0.27) −0.04 −0.37 (0.29) −0.24 (0.15)

FA-data

ρ = .872 ρ = .917

α −59.19 −1.46 (0.40)* −0.59 (0.21)* −29.84 −0.36 (0.23) −0.20 (0.12)

λ2 −49.93 −0.67 (0.36) −0.37 (0.19)* −24.41 −0.10 (0.22) −0.06 (0.11)

λ4 −13.18 −30.18 (0.34)* −26.8 (0.17)* −0.28 −11.68 (0.17)* −11.99 (0.08)*

GLB 0 11.74 (0.26)* −5.65 (0.14)* 0 −18.14 (0.15)* 9.17 (0.08)*

ωh −217.61 −0.98 (0.83) −0.87 (0.42)* −212.22 −0.42 (0.69) −0.20 (0.35)

ωt 0 −0.55 (0.27)* −0.24 (0.14) 0 −0.09 (0.17) −0.04 (0.08)

Note. Significance is indicated with *. Table entries are transformed and rounded for better interpretation; real
values are obtained by multiplying entries by 10−3, e.g., the discrepancy for α (J = 9; IRT-data) is −82.1 ×
0.001 = −0.0821. Discrepancy for λ4 was λ4 − ρ, bias was estimated using λ4(.05)

produced a larger bias for the GLB, because capitalization on chance increases with
the number of items.

Results for coefficient ωh were not consistent with results for the other estima-
tors. The population value of the coefficient ωh was much lower than the population
reliability. This was expected, given that ωh indicates how well a common attribute
is represented irrespective of the real factor structure. The difference between
coefficients ωh and ωt indicates the presence of multidimensionality. Coefficient ωh

performed well with the FA-data, but with the IRT-data bias was positive, meaning
it overestimated the population ωh.

Coefficient ωt performed well across all multidimensional conditions. It had
negligible discrepancy (by definition, zero with the FA-data) and small mean bias
across all conditions.

Misspecified Models

In the first case, the misspecification occurred by estimating the wrong coefficient,
ωu, which is suited for one-factor data expect data were in fact multi-factorial. The
population value of coefficient ωu was far from the population reliability (Table 3).
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Table 3 Discrepancy, bias,
and standard error (between
parentheses) of several
reliability methods for
misspecified models

Coefficient Discrepancy Bias

Case (1), ρ = .899
ωu −42.18 −0.80 (0.22)*

Case (2), ρ = .807
α −155.43 −1.23 (0.52)*
λ2 −102.09 −0.15 (0.37)
λ4 −2.95 −25.57 (0.32)*
GLB 0 19.88 (0.27)*
ωh −805.02 155.67 (3.76)*
ωt 0 0.13 (0.27)

Note. Case (1): Multi-factor population model
and data; computations assumed unidimension-
ality. Case (2): Multi-factor population model
with group factor but no common factor, and
data; computations assumed a common fac-
tor. Significance is indicated with a *. Table
entries were transformed and rounded for bet-
ter interpretation; real values are obtained by
multiplying entries by 10−3, e.g., discrepancy
for ωu is −42.18 × 0.001 = −0.04218. J = 12
items and N = 1000

Subsequently, the estimates for ωu were far off. In the second case, multi-factor data
with a common factor was incorrectly assumed when the model generating the data
contained only group factors but no common factor. The discrepancy of coefficients
α and λ2 was quite large, mirroring the multidimensionality of the data (Table 3).
Coefficient λ4 and the GLB had small discrepancy. The discrepancy of coefficient
ωh was huge, meaning the coefficient properly identified the absence of a common
attribute. Because data were noisy, ωh had considerable bias. Coefficient ωt showed
small bias. Its discrepancy was 0 since we used a factor model to generate the data.
Arguably, a cautious researcher should always check model fit before estimating
reliability coefficients that assume a certain structure of the data.

3 Discussion

The population values of the reliability methods were all fairly close to the
population reliability with unidimensional data, which changed when data were
multidimensional. Most coefficients had small bias in almost all conditions, except
for the positive bias of the GLB and the negative bias of λ4. All coefficients did
well with unidimensional data. For multidimensional data, coefficients α and λ2 on
average underestimated reliability, while other methods were closer to reliability.
For high reliability, coefficients α and λ2 had high values, albeit somewhat smaller
than the true reliability. The question is whether in this situation one should rather
estimate reliability for each dimension separately. Among other things, this depends
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on the practical use of the test when it is sensible to distinguish different attributes
or different aspects of the same attribute. In general, FA-coefficients performed very
well. Coefficient λ4 and the corrected estimate λ4(.05) were not satisfactory, because
the discrepancy between λ4 and population reliability was often larger than expected
and the bias of λ4(.05) was too large to distinguish the coefficient from other lower
bounds such as α.

The goal of the simulation study was investigating whether the reliability
methods performed differently with discrete data generated by IRT and continuous
data generated by FA. Does this difference in data types cause problems when
comparing reliability methods results? We argue it does not, because different
data types only present another hurdle the coefficients have to take rendering
their performance evaluation more interesting. Regarding our simulation outcomes
(discrepancy and bias), we found that the methods performed equally well with
ordinal IRT data as with continuous FA data.

A limitation to our study was that we considered point estimation, but interval
estimation, which is not common practice yet, may be more informative. Recent
studies have shown that with unidimensional and multidimensional data, Bayesian
credible intervals for coefficients α, λ2, the GLB, ωu, ωh, and ωt perform well
(Pfadt, van den Bergh, &Moshagen, 2021a, b). We assume that the credible intervals
of the reliability coefficients relate to population reliability in the same way as the
population values of the coefficients do (as denoted by the discrepancy values we
found).

In addition to the dominant CTT and FA reliability methods, less well-known
methods based on IRT (Holland & Hoskens, 2003; Kim, 2012) and generalizability
theory (GT; e.g., Brennan, 2001) exist. In IRT, use of typical IRT reliability methods
is rare given the focus on the scale-dependent information function, which proves
to be a powerful tool in IRT applications, such as adaptive testing and equating.
GT provides an attempt to incorporate the influence of different facets of the
test design and environment in the estimation of reliability. Suppose one studies
the effect of test version and score rater on test performance. This requires a
design with factors persons (i), test versions (t), and raters (r). Item scores are
decomposed into person effect (νi), test effect (νt), and rater effect (νr), interaction
effects, and a residual effect (�itr), comparable with an ANOVA layout, so that
Xitr = μ + νi + νt + νr + νit + νir + νtr + �itr. Reliability methods, called
generalizability and dependability methods identify variance sources that affect
relative and absolute person ordering, respectively, and correct for other, irrelevant
sources. The GT approach provides a different perspective relevant to some research
contexts where richer data are available and is worth pursuing in future research.

To conclude, when researchers have unidimensional data, the choice of a
reliability coefficient is mostly arbitrary (if λ4 and the GLB are discarded). With
multidimensional data, the use of a factor model coefficient is encouraged, but lower
bounds such as α prevent researchers from being too optimistic about reliability.
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