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Abstract A testlet is a cluster of items that shares a common stimulus (e.g., a
set of questions all related to the same text passage). The testlet effect calls into
question one of the key statistical assumptions of any tests: local independence of
the test item responses. Local dependence among test item responses is typically
induced by the under-specification of the latent ability dimensions supposed to
underlie a test. Hence, evaluating whether local independence holds for the items of
a given test can be used as a diagnostic tool for detecting testlet effects. This study
studied and compared the MH statistic, the Chi-squared statistic and the absolute
deviations of observed and predicted corrections in detecting testlet effects in
cognitively diagnostic tests. Various simulation studies were conducted to evaluate
their performance under a wide variety of conditions.
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statistic · Chi-squared statistic · Absolute deviations of observed and predicted
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1 Introduction

A testlet is “a group of items related to a single content area that is developed
as a unit and contains a fixed number of predetermined paths that an examinee
may follow” (Wainer & Kiely, 1987, p. 190). A typical example is a reading
comprehension test in which a reading passage is used as the stimulus for more than
one item to measure examinees’ ability to comprehend the reading passage. Another
example refers to ordering sentences to make a complete passages, where the items
(sentences) are embedded in the passage itself. Responses to items within a testlet
calls into question of the key statistical assumptions of any test: local independence
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of the test item responses. Local dependence among test items is typically induced
by the under-specification of the measured latent dimensions by a test (i.e., Lim &
Drasgow, 2019a,b; Rupp et al., 2010).

Various methods have been suggested for examining local dependence in cog-
nitive diagnosis models. For example, de la Torre and Douglas (2004) evaluated
item pair dependence using bivariate information. Templin and Henson (2006)
expanded their method by using a parametric bootstrap method to estimate the
distribution of the item association measures to estimate a p-value for their test
statistic. Chen et al. (2013) used comparing the residual between the observed
and expected Fisher-transformed correlation, and the residual between the observed
and expected between log-odds ratios for the measure of association for each pair
of items. Lim and Drasgow (2019a,b) also modified the Mantel Haenszel (MH)
statistic for the measure. Those statistics have been used for the model fit or Q-
matrix fit evaluation. This study evaluates the performances of the MH statistic
(Lim & Drasgow, 2019a,b), the Chi-squared statistic xjj ′ (Chen & Thissen, 1997),
the absolute deviations of observed and predicted corrections rjj ′ (Chen et al.,
2013) in detecting testlet effects in cognitively diagnostic test in various simulation
conditions.

2 Cognitive Diagnosis Models

Three cognitive diagnosis models were considered in this study: Deterministic-
Input, Noisy “And” gate (DINA) model, Generalized Deterministic Inputs, Noisy
“And” gate (G-DINA) model (saturated model), and Additive Cognitive Diagnosis
Model (A-CDM).

Let Yij denote the binary item response of the ith examinee to the j th item,
i = 1, . . . , I, j = 1, . . . , J with 1 = correct and 0 = incorrect. Cognitive diagnosis
models formulate the conditional distribution of item responses Yij given examinee
latent attributes αi = {αik}, for k = 1, . . . , K. (e.g., de la Torre & Douglas, 2004).
Each entry αik indicates whether the ith examinee has mastered the kth attribute
with 1 = mastered and 0 = not mastered. The binary J × K Q-matrix is an essential
component of cognitive diagnosis models. The Q-matrix has a row for each item,
j = 1, . . . , J, and a column for each attribute, k = 1, . . . , K . Each entry qjk in the
matrix indicates whether the kth attribute is required for the solution of the j th item
with 1 = required and 0 = not required.

A common cognitive diagnosis model is the DINAmodel (e.g., Junker & Sijtsma,
2001). In this model, an ideal response ηij is used to indicate whether all required
attributes for the j th item are mastered by the ith examinee. The item response
function (IRF) for the DINA model is

P(Yij = 1 | αi, sj , gj ) = (1 − sj)
ηij g

(1−ηij)

j ,

where sj = P(Yj = 0 | ηj = 1) and gj = P(Yj = 1 | ηj = 0).
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Henson et al. (2009) proposed the Log-Linear Cognitive Diagnosis Model
(LCDM). The LCDM can fit a full continuum of cognitive diagnosis models that
range from fully compensatory models to fully conjunctive models. The DINA
model can be written as a special case of the LCDM. In particular, if an item requires
two attributes, the IRF can be written as

P(Yij = 1 | αi) = exp[λjα1 + λjα2 + (λj )α1α2 − η1]
1 + exp[λjα1 + λjα2 + (λj )α1α2 − η1] ,

where ηj = −ln(gj /1 − gj ) and λj = ηj + ln(sj − 1/sj ).
de la Torre’s Generalized DINA (G-DINA) model is another example (de la

Torre, 2011). Similar to the LCDM, the G-DINA model can be reduced to special
cases of general cognitive diagnosis models with different link functions: identity,
logit, and log. The framework of the G-DINA is based on the DINA model.
However, the 2K latent class memberships of the DINA model are partitioned into
2K�

j latent groups, where K�
j = ∑K

k=1 qjk denotes the number of required attributes
for item j . Let α�

lj be the reduced attribute vector whose elements are the required
attributes for item j . Then the probability that a test taker mastering the attribute
pattern α�

lj (i.e., all elements of α�
ljwould answer item j correctly is given by

P(α�
lj ) = P(Yij = 1 | α�

lj )

= λj0 +
K�

j∑

k=1

λjkαljk +
K�

j∑

k′>k

K�
j −1
∑

k=1

λjkk′αljkαljk′ . . . + λj1,...K�
j

K�
j∑

k=1

αljk,

where λj0 is the intercept, λjk is the main effect, λjkk′ and λj1,...K�
j
are interaction

effects.
Without the interaction terms, the G-DINA model becomes the Additive-CDM

(A-CDM). The A-CDM is one of several reduced models that can be derived from
the saturated G-DINA model. The IRF of the additive model is given by

P(α�
lj ) = P(Yij = 1 | α�

lj ) = λj0 +
K�

j∑

k=1

λjkαjk.

Item j has K�
j + 1 parameters in this model. The mastery of an attribute has a

constant and direct impact on the probability of a correct response.

3 Fit Statistics for Local Dependence

Three fit statistics were evaluated in this study: MH statistic (Lim & Drasgow,
2019a,b), the Chi-squared statistic denoted by xjj ′ (Chen & Thissen, 1997), the
absolute deviations of observed and predicted corrections denoted by rjj ′ (Chen
et al., 2013).
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Lim and Drasgow (2019a,b) modified the MH chi-square statistic which were
originally introduced by Mantel and Haenszel (1959) to test for conditional inde-
pendence of two dichotomous or categorical item responses j and j ′ by forming the
row-by-column contingency table, conditional on the levels of the control variable
C, where c = 1, 2, . . . , 2K = C proficiency class membership. Let {ij,j ′c} denote
the frequencies of examinees in the 2 × 2 × C contingency table, and then

MHχ2 = [∑c(i11c − ∑
c E(i11c)]2

∑
c var(i11c)

,

where E(i11c) = i1+ci+1c/i++c and var(i11c) = i0+ci1+ci+0ci+1c/i2++c(i++c − 1).
The Chi-squared statistic xjj ′ (Chen & Thissen, 1997) is computed by forming

the row-by-column contingency table,

χ2 =
∑

j

∑

j ′

(ijj ′ − E(ijj ′))2

E(ijj ′)
,

where E(ijj ′) =Epq =N
∫

Pj (θ)pPj (θ)q [1−Pi(θ)](1−p)[1−Pj (θ)](1−q)f (θ)dθ,.
where Pi(θ) is the trace link for item j, f (θ) is the population distribution.
For cognitive diagnosis models, E(ijj ′) is estimated by an examinee’s posterior
distributions (Robitzsch et al., 2020).

The absolute deviations of observed and predicted corrections rjj ′ (Chen et al.,
2013) is calculated by

rjj ′ = |Z[Corr(Yj ,Yj ′)] − Z[Corr(Yj ,Yj ′)]|,

where Corr(·) is the Pearson’s product-moment correlation, Z(·) is the Fisher’s
transformation.

4 Simulation Studies

To investigate the performance of the MH statistic, the Chi-squared statistic xjj ′ ,
the absolute deviations of observed and predicted corrections rjj ′ , a variety of
simulation conditions were studied by crossing the numbers of examinees I , items
J , and examinees’ latent attribute distributions ρ for three different cognitive
diagnosis models.

For each simulation condition, a set of item response vectors was simulated for
100 replications. Item response data of sample sizes I = 500 (small), or 2000 (large)
were drawn from a discretized multivariate normal distribution MVN(0K,

∑
),

where the covariance matrix
∑

has unit variance and common correlation ρ =
0.3 (low) or 0.6 (high). Test lengths J = 20 (short) or 40 (long) were studied.
A Q−matrix was generated randomly from a discrete uniform distribution on the
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Table 1 Correctly specified
Q (K = 3)

Item k1 k2 k3

1 1 0 0

2 0 1 0

3 0 0 1

4 1 0 0

5 1 0 0

6 1 1 0

7 1 0 0

8 0 1 0

9 0 0 1

10 0 1 0

11 1 1 0

12 1 1 0

13 1 0 0

14 0 1 0

15 0 0 1

16 1 0 0

17 0 1 0

18 0 0 1

19 1 0 0

20 1 0 0

Table 2 T-Matrix: testlet specification (M = 2)

Item

Testlet 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0

maximum 2K − 1 possible q-vectors for each condition and fixed for replications.
The correctly specified Q-matrix for J = 20 is presented in Table 1. The Q-matrix
for J = 40 was obtained by duplicating this matrix two times to study the longer
length of item under the same attribute specification conditions.

Data were generated using three different models: the DINAmodel, A-CDM, and
a saturated model (i.e., the G-DINA model). For the DINA model, item parameters
were drawn from Uniform (0, 0.3). For the A-CDM and the saturated model,
like Chen et al. (2013), the parameters were restricted as P(α�

ij )min = 0.10 and
P(α�

ij )max = 0.90, where α�
ij was the reduced attribute vector whose components

are the required attributes for the jth item (see de la Torre, 2011, more details).
A fixed and pre-specified Item-by-testlet T -matrix was utilized to simulate testlet

data. The entry tmj of the T -matrix indicates whether the mth testlet, for m = 1, 2,
. . . , M , includes the j th item. For each replication of 100 replications, the transpose
of T -matrix shown in Table 2 was combined with Q-matrix (K = 3) in Table 1,
to simulate item responses. A model was fitted only with the Q-matrix (K = 3).
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The R Core Team (2020) was used for the estimation in this study (CDM package
Robitzsch et al., 2020).

The MH statistic, Chi-squared statistic xjj ′ (Chen & Thissen, 1997), absolute
deviations of observed and predicted corrections rjj ′ (Chen et al., 2013), and their
corresponding p-values were computed for all (J × (J − 1))/2 item-pairs in an
individual replication. Across 100 trials for each condition, the proportion of times
the p-value of each item-pair was smaller than the significance level 0.05 was
recorded and is summarized.

5 Results

Across 100 trials for each condition, the proportion of times the p-value of
each item-pair was smaller than the significance level 0.05 was recorded and is
summarized in the tables shown below. The type 1 errors and power rates of the three
statistics are reasonable for detecting testlet effects in cognitive diagnosis models.

5.1 Type I Error Study

In this simulation study, the correctly specified Q-matrices (K = 3) were used to fit
the data to examine type I error rates. The summarized rejection rates are reported in
Table 3. The type I error rates of the rjj ′ became conservative when the numbers of
items J and examinees I were increased. The Chi-squared test statistic xjj ′ was very
conservative, with type I error rates below 0.024. The MH statistic got consistent
under all conditions when item J = 40.

Table 3 Type I error study when K = 3

J = 20 J = 40

α with ρ = 0.3 α with ρ = 0.6 α with ρ = 0.3 α with ρ = 0.6

I MH xij ′ rij ′ MH xij ′ rij ′ MH xij ′ rij ′ MH xij ′ rij ′

DINA model

500 0.042 0.019 0.044 0.045 0.014 0.033 0.048 0.017 0.053 0.042 0.020 0.053

2000 0.046 0.023 0.052 0.045 0.015 0.033 0.049 0.019 0.052 0.048 0.019 0.045

A-CDM

500 0.036 0.009 0.029 0.031 0.009 0.026 0.039 0.011 0.030 0.036 0.011 0.028

2000 0.048 0.013 0.030 0.049 0.010 0.026 0.048 0.010 0.029 0.047 0.010 0.026

Saturated model

500 0.034 0.010 0.025 0.033 0.009 0.026 0.040 0.010 0.029 0.035 0.011 0.028

2000 0.047 0.010 0.028 0.045 0.010 0.025 0.046 0.010 0.029 0.047 0.009 0.026
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Table 4 Simulation study: testlet dependent data

J = 20 J = 40

α with ρ = 0.3 α with ρ = 0.6 α with ρ = 0.3 α with ρ = 0.6

I S MH xij ′ rij ′ MH xij ′ rij ′ MH xij ′ rij ′ MH xij ′ rij ′

DINA model

500 T 0.928 0.925 0.946 0.803 0.869 0.925 0.815 0.853 0.900 0.896 0.903 0.937

E 0.052 0.050 0.113 0.041 0.080 0.168 0.042 0.103 0.188 0.044 0.107 0.198

2000 T 0.999 0.998 0.999 0.968 0.995 1.000 0.983 0.993 0.996 0.977 0.996 0.998

E 0.131 0.058 0.124 0.073 0.174 0.267 0.052 0.271 0.372 0.056 0.271 0.366

A-CDM

500 T 0.713 0.770 0.848 0.672 0.779 0.862 0.733 0.758 0.844 0.683 0.769 0.858

E 0.041 0.041 0.081 0.037 0.065 0.117 0.043 0.047 0.094 0.042 0.076 0.137

2000 T 0.998 0.999 1.000 0.987 0.995 0.999 0.996 0.995 0.998 0.989 0.993 0.996

E 0.075 0.105 0.172 0.063 0.197 0.281 0.049 0.140 0.217 0.048 0.272 0.362

Saturated model

500 T 0.535 0.606 0.708 0.448 0.562 0.702 0.567 0.608 0.714 0.456 0.577 0.691

E 0.039 0.032 0.071 0.040 0.039 0.084 0.040 0.043 0.087 0.041 0.060 0.960

2000 T 0.922 0.963 0.978 0.845 0.928 0.955 0.945 0.953 0.979 0.874 0.929 0.960

E 0.070 0.079 0.140 0.064 0.149 0.234 0.050 0.106 0.178 0.049 0.199 0.287

5.2 Power Study: Testlet Model

As shown in Table 4, high rejection rates for testlet dependent item pairs T were
obtained for the three statistics (i.e., 0.803 or above in the DINA model, 0.672 or
above in the A-CDM, and 0.448 or above in the saturated model). The power rates
were moderately consistent under all conditions. Unlike the Chi-squared statistic
xjj ′ , and transformed correction statistic rjj ′ , the rejection rates of the MH statistic
for the item pairs in which only one item of a pair was testlet-dependent E were low
(i.e., 0.075 or below). This implies that the MH test can play an important role in
detecting only testlet dependent items. Not surprisingly, the performance of the test
tends to slightly deteriorate in the saturated model.

6 Discussion

The simulation studies investigated the usefulness and sensitivity of the MH
statistic, the Chi-squared statistic xjj ′ , the absolute deviations of observed and
predicted corrections rjj ′ in a variety of cognitive diagnosis modeling settings with
testlet dependent items. The primary findings are that most type I error rates of
the three different statistics were around the nominal significance level of 0.05.
Furthermore the statistics perform reasonably well in detecting testlet dependent
items. Nonetheless, the statistics are somewhat conservative and less sensitive to
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different model settings. In summary, the statistics might be a promising tool for
detecting testlet effects in cognitive diagnostic modeling.

For the popularity of testlets in large-scale assessments, it is necessary to inves-
tigate the issues related to testlet effects in cognitive diagnosis models. Ignoring
testlet effects leads to inaccurate estimates of item parameters and misclassifications
of examinees depending on the strengths of testlet effects with minimal influences
of other properties of test constructions and administration (Lim et al., 2022). A few
(unpublished) dissertations and two or three papers (e.g., Hansen, 2013) study testlet
effects—but mainly in terms of how to model testlet effects. Till now, few testlet-
effect detection procedures for cognitive diagnosis model have been investigated.
Therefore, the significance of this study lies in investigating test statistics to detect
testlet effects.

This study is not without limitations. One limitation is that the performance of
the statistics was not evaluated with an empirical data. Another limitation is that the
statistics were investigated with simple cognitive diagnosis models with testelts.
With those limitations, researcher recommends further studies to be conducted
with more complex cognitive diagnosis models and real datasets. Furthermore, the
findings show that a cognitive diagnosis model that accounts for testlet effects is
necessary.
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