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Abstract The sum score is often used in practical test applications and the joining
of outcomes is common practice, when preparing response data for analysis. Yet,
many models for response data are not designed for this kind of handling of data.
Research on the use of the sum score for stochastic inferences and the discretization
of response variables is extended to the linear normal one-factor. It is shown that
the model implies a stochastic ordering on the latent factor by the sum of the
observed variables, but that this property no longer needs to hold when variables
are discretized prior to taking the sum score. The implications of this result are
discussed.
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1 Introduction

For test and questionnaire data, respondents are often assigned a latent value for the
attribute that the test is aimed to measure, based on a model for the dependencies
that exist between the test items. Because the latent variable is unobserved, it is
convenient to consider the observable sum scores across the test items as a proxy
for the latent values instead. For the use of the sum score, a desirable feature of
a measurement model would then be that a higher sum score also corresponds to
a higher expected latent value, so that the ordering of respondents by their sum
scores stochastically agrees with the ordering by their latent values. The use of the
sum score for making such ordinal inferences has been studied for various item
response theory models (Hemker et al., 1996, 1997; Ligtvoet, 2012, 2015), based on
a monotone likelihood ratio (MLR) ordering of the latent variable by the sum scores.
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For these models, Hemker (2001) also looked at the effect of joining response
categories. The results show that the MLR property is not implied by all models,
and that for some models the model may be invalidated when (adjacent) outcomes
are joined (cf. Andrich, 1995a, 1995b; Roskam, 1995). With the omnipresent use of
the sum (or average) score across many test applications and the common practice of
collapsing outcomes (e.g., median split), there thus seems to be a mismatch between
the models proposed for response data and the way these data are handled in
practice. The present chapter looks at the use of the sum score and the discretization
of response data under the linear normal one-factor (LNF) model.

1.1 The Linear Normal One-Factor

Factor analysis provides a framework to account for dependencies that exist between
the multiple item response variables of a test, whereby item response variables serve
as indicators of the common factors that the test aims to measure. The LNF model
proposes a single latent variable or factor Z to account for the covariances between
the item variables X1, . . . , Xn by the linear relationships

Xi = aiZ + Ui , with ai > 0,

where ai denotes the ith factor loading and Ui is the ith residual or unique factor. It
is assumed that U1, . . . , Un, Z are independent and normally distributed, with zero
means (centered), and (non-negative) variances

Var(Ui) = σ 2
i and Var(Z) = σ 2.

Further, assume that Cov(Ui, Uj ) = 0 (for i �= j ) and Cov(Ui, Z) = 0
(Jöreskog, 1971; Lord & Novick, 1968). Hence, under the LNF model, the variables
X1, . . . , Xn are conditionally independent (CI), given Z = z.

1.2 Monotone Transformations

In this chapter, two monotone (non-decreasing) transformations are considered that
are often used on X1, . . . , Xn in practice. Let X = (X1, . . . , Xn) denote the random
vector containing the variables Xi , with realizations x ∈ R

n. Then, a function φ(x)

is said to be monotone, whenever x < y (element-wise) implies that φ(x) ≤ φ(y).

The Sum Score The first transformation that is considered is the sum score S =
X1 + . . . + Xn often used in practice as a proxy for Z (McNeish & Wolf, 2020),
with φ(x) representing a mapping of many-to-one or aggregation; i.e., φ : Rn → R.
In practice, a LNF model is often fitted to the data in order to assess the validity
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(factorial structure) of the test, whereas in subsequent analysis the sum or average
score is used to ascertain the validity indices (e.g., predictive validity) of classical
test theory. A minimal requirement of the LNF model for such practice is that the
model implies a stochastic ordering of the factor scores by the sum scores, such
that higher factor scores are expected for higher sum scores. Let f (s, z) denote the
joint density of S and Z, then the stochastic ordering by the sum scores is satisfied,
whenever the density f (s, z) is totally positive of order 2; that is

f (s1, z1)f (s2, z2) ≥ f (s1, z2)f (s2, z1), (TP2)

for all s1 < s2 and z1 < z2 (Karlin, 1968, cf. the MLR property).

Discretization As a second transformation, consider the discretization of the
variables X1, . . . , Xn. The LNF model is often used for the analysis of discrete
ordinal response data (Jöreskog and Moustaki, 2001), where X1, . . . , Xn are taken
as the ghosts underlying the observable discrete variables V1, . . . , Vn. Here, φ(x)

takes on the form (φ1(x1), . . . , φn(xn)), with

Vi = φi(Xi; b1, . . . , bmi
) and b1 < . . . < bmi

,

where

Vi = vi , whenever bv ≤ xi < bv+1

(bmi+1 = −b0 = ∞ by definition). In words, each discretization φi proposes mi

ordered thresholds, where vi denote the largest threshold passed by the outcome
of Xi . With vi ∈ {0, 1, . . . , mi}, the outcomes of Vi are said to be equidistant
(Andrich, 1995a). Sijtsma and Van der Ark (2017) discuss the use of an equidistant
scoring rule in relationship with the use of the sum score in the context of Mokken’s
monotone homogeneity (MH) model (Mokken, 1971; Molenaar, 1997). In addition
to CI and the unidimensionality assumption, the MH model assumes that the tail
distributions 1−F(xi |z) are non-decreasing in z (Holland & Rosenbaum, 1986). The
LNF model satisfies the MH model assumptions, also after applying a discretization
to X1, . . . , Xn. In case mi = m = 1, the transformation φ(x) corresponds to a
dichotomization of the response variables.

For later reference, the concept of Pólya frequency functions of order 2 (PF2) is
introduced (e.g., Efron, 1965; Schoenberg, 1951).

Definition 1 The density f (x) is said to be PF2, if for all x1 < x2 and y1 < y2

f (x1 − y1)f (x2 − y2) ≥ f (x1 − y2)f (x2 − y1). (1)

Ellis (2015) showed that the (monotone higher-order) one-factor model, with
residuals having PF2 densities (e.g., normally distributed), implies that f (v) is
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multivariate TP2 (Karlin & Rinott, 1980). This in turn implies that each f (vi, vj ) is
TP2.

Strictly speaking, the normality requirements of the LNF model does not hold for
the discrete variables V1, . . . , Vn. However, the LNF may still provide an adequate
approximation of discrete response data (Rhemtulla et al., 2012).

Chapter Overview The purpose of this chapter is to investigate the effect the
discretization of the indicators X1, . . . , Xn has on the use of the sum score for
the stochastic ordering on Z. In the next section, it is shown that the LNF model
implies a stochastic ordering on Z by the sum score S. However, it is also shown
that the stochastic ordering property does not generally hold when the sum score
is used after discretizing the indicators X1, . . . , Xn, except in the special case of
a dichotomization. These results and their implications are further discussed in
Sect. 3.

2 The LNF Model and the Sum Score

In this section, it is shown that the LNF model implies a stochastic ordering on
Z by the sum S = X1 + . . . + Xn. However, after discretization of the variables
X1, . . . , Xn obtained under the LNF model, the sum R = V1 + . . .+Vn of the newly
obtained variables V1, . . . , Vn no longer needs to provide a stochastic ordering on
the factor Z. That is, f (s, z) is TP2 does not imply that f (r, z) is also TP2.

2.1 Preliminaries

In order to show that the LNF model implies a stochastic ordering of Z by S =
X1 + . . . + Xn, it is convenient to express the model in terms of the more general
properties TP2 and PF2. To this end, consider the joint and conditional densities
f (xi, z) and f (xi |z), respectively. First, assuming CI. Then, with E(Xi) = E(Z) =
0, the covariance between Xi and Z equals

E(XiZ) = aiE(Z2) + E(UiZ) = aiσ
2 > 0.

This implies that f (xi, z) is TP2 (Karlin & Rinott, 1983). Second, because Ui is
normally distributed, so is the conditional density f (xi |z). Consequently, f (xi |z)
has a PF2 density (Efron, 1965). Note that, for strictly positive densities, if f (xi, z)

is TP2, then f (xi |z) is TP2 as a function of (xi, z) (Holland & Rosenbaum, 1986).
Because the TP2 property implies that the tail distribution 1 − F(xi |z) is non-
decreasing in z, it thus follows that the LNF model satisfies the assumptions (i.e., is
a special case) of the MH model (Holland & Rosenbaum, 1986).
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The following observation is useful for the proof of Theorem 1 below. Assume
that f (x, y|z) > 0 (as implied by the LNF model). Then, for z1 < z2, the inequality

f (x2, y2|z2)f (x1, y1|z1) ≥ f (x2, y2|z1)f (x1, y1|z2) (2)

holds, whenever

f (x2, y2|z2)

f (x2, y2|z1)
≥ f (x2, y1|z2)

f (x2, y1|z1)
≥ f (x1, y1|z2)

f (x1, y1|z1)
.

Hence, (2) holds, if both (a) f (x, y|z) is TP2 as a function of (y, z), with y1 < y2
and X = x2 (fixed), and (b) f (x, y|z) is TP2 in (x, y), with x1 < x2 and Y = y1.

The next result is proven in Ligtvoet (2021), but here adapted to the LNF model.

Theorem 1 The LNF model implies that f (s, z) is TP2.

Proof Suppose that Theorem 1 holds for n = 2, with X1 = X and X2 = Y . The
proof of Theorem 1 then follows, by sequentially taking X = X1 + . . . + Xi−1 and
Y = Xi , for i = 2, . . . , n. Hence, it is sufficient to show that f (s, z) is TP2, for
S = X + Y .

Due to CI, the conditional density of S is given by the convolution f (s|z) =∫
g(x|z)h(s − x|z)dx. Then, f (s, z) is TP2, if for any s1 < s2 and z1 < z2 it holds

that f (s2|z2)f (s1|z1) ≥ f (s2|z1)f (s1|z2), which yields

∫ s1

−∞

∫ s2

−∞
g(x2|z2)h(s2 − x2|z2)g(x1|z1)h(s1 − x1|z1) (3)

− g(x2|z1)h(s2 − x2|z1)g(x1|z2)h(s1 − x1|z2) dx2dx1 ≥ 0.

Note that (3) has the form of (2), with f (x, y|z) = g(x|z)h(s − x|z). So, it is
sufficient to show that (3) holds for the case that X is constant between z1 and z2,
and the case that Y is constant between z1 and z2. Because both cases are symmetric
in their arguments, we’ll only consider taking Y to be constant at Z = z (for z1 ≤
z ≤ z2). For (3), this yields

∫ s1

−∞

∫ s2

−∞
h(s2 − x2|z)h(s1 − x1|z) · (4)

(g(x2|z2)g(x1|z1) − g(x2|z1)g(x1|z2)) dx2dx1 ≥ 0.

Because g(x, z) is TP2, the function within the integral of (4) has a positive
outcome for x1 < x2 and negative values for x1 > x2. What remains to be shown is
that the density of the area of the integral spanning all x′

1 > x′
2 is smaller than the

area spanning all x′′
1 < x′′

2 (see Fig. 1 for illustration). Let x′
1 = x0 and x′

2 = x0 − ε,
with ε > 0, and accordingly x′′

1 = x0 − ε and x′′
2 = x0. This yields a one-to-

one (injective) mapping of each pair (x′
1, x

′
2) that yields negative values in (4) to

(x′′
1 , x′′

2 ), as shown in Fig. 1. Also, let s1 = s and s2 = s + δ, with δ > 0. Then, it is
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Fig. 1 Plot of x1 and x2,
with the point (x′′

1 , x′′
2 ) in the

gray areas above the identity
yielding positive values of (4)

s

s + δ

x0x0 − ε

x0

x0 − ε

(x′′
1 , x′′

2)

(x′
1, x

′
2)

sufficient to show that for all values x0, ε, s, δ, and z1 < z2,

(g(x0|z2)g(x0 − ε|z1) − g(x0|z1)g(x0 − ε|z2)) · (5)

(h(s − x0 + ε|z)h(s − x0 + δ|z) − h(s − x0 + ε + δ|z)h(s − x0|z)) ≥ 0.

The first part of (5) in parentheses is non-negative, because g(x, z) is TP2. The
second part in parentheses is also non-negative, because h(y|z) is PF2. This can be
seen by taking x1 = s − x0, x2 = s − x0 + ε, y1 = −δ, and y2 = 0 in (1). 	


2.2 The Sum Score After Discretization of Variables

Theorem 1 shows that under the LNF model f (s, z) is TP2 for the sum score S =
X1 + . . . + Xn. Next, a discretization is considered, whereby we denote the sum of
the discretized variables as R = V1 +. . .+Vn. As mentioned earlier, the LNF model
satisfies the MH model assumptions. For the special case when a dichotomization
is applied to all variables (i.e., mi = m = 1), the LNF reduces to Mokken’s MH
model for binary variables, which has been shown to imply a stochastic ordering
of the latent variable by the sum score (Ghurye & Wallace, 1959; Grayson, 1988;
Huynh, 1994; Ünlü, 2008). For mi > 2, however, the MH model does not imply
a stochastic ordering of the latent variable by the sum score (Hemker et al., 1996,
1997). The next example also shows that f (r, z) need not be TP2, after discretizing
the variables X1, . . . , Xn obtained under the LNF model.

Example 1 Consider the LNF for n = 2 variables, with a1 = a2 = 1, σ 2 = 1,
and σ 2

1 = 2/5 and σ 2
2 = 5/2. Also, let Vi = φi(Xi;−1/2, 1/2), for i = 1, 2 (i.e.,

mi = m = 2), and R = V1 +V2. Further, define the log-odds ln ωr(z) = ln f (r|z)−
ln f (r − 1|z), for r = 1, . . . , 4, which are non-decreasing in z, whenever f (r, z)

is TP2. Figure 2 shows that for r = 2, 3, the log-odds are decreasing (in violation
of the stochastic property). For r = 2, the gray area in Fig. 2 shows the decrease in
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Fig. 2 Log-odds for the sum
scores as a function of z,
showing a violation
(decrease; e.g., gray area) of
the stochastic ordering of Z

by R = V1 + V2

−2 −1

4

2

−2

−4

lnωr(z)

z
r = 2

r = 1

r = 3

r = 4

log-odds between z = −1.37 and z = −0.10, indicating that for two subjects with
these factor scores, the subject with the (higher) factor score z = −0.10 is about 2.5
times more likely to obtain the lower sum score than the subject that has a factor
score that is more than one standard deviation lower (i.e., a substantial violation).

3 Discussion

The property f (s, z) is TP2 was proposed as a minimal requirement for the use
of the sum S = X1 + . . . + Xn. This property is less restrictive than the tau-
equivalence requirement from classical test theory (Lord & Novick, 1968; McNeish
& Wolf, 2020), but is also limited to ordinal inferences. Theorem 1 implies that
the confirmation of the LNF model justifies ordinal inferences about the latent
factor based on the sum score. For applications that require more than mere ordinal
inferences, the use of the estimated factor score may be more advantageous.

The discretization of variables obtained under the LNF model, not only jeopar-
dizes the normality assumption, but also has implications for the practical use of the
sum score. The extent to which the stochastic ordering property by the sum score is
violated, in a practical sense, will depend on the number of items variables of the
test, as well as the number of categories resulting from the discretization. Simulation
studies may further address this issue.

Instead of assuming a normal distribution to underlie the observed discrete
ordinal response data, alternative approaches for analyzing these data impose
restrictions on the cumulative distributions similar to Samejima’s (1969) graded
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response model. Jöreskog and Moustaki (2001) and Takane and De Leeuw (1987)
showed that the normal ogive model for graded responses is formally equivalent to
the LNF model that assumes a normal distribution to underlie the ordinal responses.
The difference between these models is that, for the graded response model,
the conditional response distributions is discretized prior to taking the marginal
across the latent factor, whereas for the LNF model the discretization is applied
(afterwards) to the marginal distribution (Takane & De Leeuw, 1987, p. 397). In
the latter case, the discretization may invalidate the property f (s, z) is TP2, when
applying the LNF to discrete ordinal response data. That the graded response model
does not imply this property was already shown by Hemker et al. (1996, 1997).

To conclude, the use of the sum score, albeit practical, is not what most models
are designed for. The applied researcher should realize that an ordering on a latent
variable by the sum score is not something that can be simply assumed to hold. If
the applied researcher has a model that accurately describes the response data, it
might generally be best to rely on the model estimates, rather than using the sum
scores. And if a transformation of the data is deemed necessary, the validity of the
model will need to be reassessed.
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