Predicting Item Characteristic Curve ®)
(ICC) Using a Softmax Classifier L

Dmitry I. Belov

Abstract The objective of item difficulty modeling (IDM) is to predict the
statistical parameters of an item (e.g., difficulty) based on features extracted directly
from the item (e.g., number of words). This paper utilizes neural networks (NNs)
to predict a discrete item characteristic curve (ICC). The presented approach
exploits one-to-one mapping from monotonically non-decreasing discrete ICCs to
probability mass functions (PMFs). An NN was trained using soft labels for each
item (by mapping ICCs to PMFs), with a softmax output layer representing PMF
and the Kullback-Leibler divergence representing a loss function. Results of a cross-
validation of the NN on 1742 retired logical reasoning items from the Law School
Admission Test are presented and discussed.

Keywords Item difficulty modeling - Item response modeling - Item
characteristic curve - Neural networks - Machine learning - Natural language
processing - Semantic similarity

1 Introduction

The primary task of item difficulty modeling (or, perhaps more appropriately,
item response modeling) is to predict the statistical properties of an item, such as
difficulty, based on features extracted directly from the item. An example of such a
feature might be the number of words in the item. Item difficulty modeling (IDM)
adopts various techniques from data mining, machine learning, and natural language
processing. For a review of IDM and its applications see, for example, Sheehan and
Mislevy (1990), Huff (2006), or Ferrara et al. (2021).

Due to the recent massive migration of high-stakes testing programs from in-
person testing to online testing, the following two issues became much harder to
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address without IDM. First, online test proctoring cannot protect against existing
technology used to steal test content. In the world of online testing, item preknowl-
edge may happen due to (a) using the same test section over different time slots
within the same administration due to a limited number of live proctors; and (b)
pretesting new items. Second, a larger number of test sections is needed to tackle
the problem set forth in (a). However, developing new items without controlling
their statistical parameters may unbalance the pool and limit the assembly of more
test sections, thus decreasing item pool usability.

A recent meta-analysis by Ferrara et al. (2021), compiled from over 100 IDM-
related studies, demonstrated the following. Only about 10% of the studies reported
the coefficient of determination D over 0.5. Most of the research dealt with
reading comprehension (RC) items (commonly associated with a long text). The
most popular item question concerned the main idea of the passage. All methods
predicted only item difficulty. The majority of prediction models utilized linear
regression or a regression tree. Features defined by item writers (i.e., nonautomatic
features) were often the best predictors of item difficulty.

The current paper goes beyond the typical IDM research described above and
instead applies neural networks (NNs) to predict item characteristic curves (ICCs)
for logical reasoning (LR) items (which are associated with a shorter amount of text
compared to RC items) from the Law School Admission Test (LSAT). For a given
item, its ICC maps the examinee’s latent trait (ability) to the probability that the
item will be answered correctly (Lord, 1980). The ICC is bounded between 0 and 1,
is monotonically non-decreasing, and is commonly assumed to take the shape of a
logistic function.

This paper considers discrete ICCs defined on the set of ability levels {—3, —2,
—1, 0, 1, 2, 3} (a coarse grid was chosen just for the sake of illustration; a finer
grid is easily supported). There are at least three advantages of predicting discrete
ICC:s. First, one can avoid the noise produced by the item parameter estimation
procedure, while fitting empirical ICCs with an IRT model, by dealing directly with
empirical ICCs (see Fig. 1). Second, ICCs provide unification when the item pool
has a mixture of models (e.g., part of the item pool modeled by the two-parameter
logistic model [2PLM] and the other part by the 3PLM; Lord, 1980): all parts can
be represented by ICCs computed using corresponding models. Third, once discrete
ICCs are predicted, it is easy to simulate responses from any targeted population of
examinees and then calibrate IRT models (1PLM, 2PLM, or 3PLM), thus providing
continuous ICCs.

This paper is organized as follows. First, the construction, training, and validation
of a neural network (NN) to predict ICCs are described. Second, the data from
retired LR items from the LSAT and features extracted from each item are depicted.
Third, the results of applying the developed NN to the data are presented. Finally,
the results are critically reviewed; followed by a discussion about further research,
design changes, and practical applications.
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Fig. 1 When empirical ICCs are fitted by item response theory (IRT) models, there is always a
possibility of misfit. Here are four real cases showing a large misfit between empirical ICCs (Data)
and ICCs produced by a fitted three-parameter logistic (3PL) model (Model)

2 Method

A neural network (NN) can be considered a vector function with a vector argument.
In this study, the NN maps the vector of features extracted from an item to its ICC.
Parameters of this function can be estimated using a “training” sample, where for
each argument there is a predetermined output of the function called a label, by
minimizing a loss function. In this process, called supervised learning, it is crucial
that the training sample be representative of the general data. The loss function
measures a discrepancy between the output of NN applied to given arguments
and their labels from the training sample. A typical NN has a network structure
with layers of interconnected nodes (Fig. 2) inspired by mathematical modeling
of a biological brain. Each connection has a weight. Each node has an activation
function that maps the node’s input to the node’s output. The node’s input can be
defined as a scalar product of the vector of outputs of the nodes connected to this
node and the vector of weights of the corresponding edges plus an intercept. The
weights and intercepts are estimated by the supervised learning. Neural networks
were successfully applied for image recognition and recently were extended to other
fields (Skansi, 2018). For more information about neural networks and machine
learning terminology used in this paper, the reader is referred to Goodfellow et al.
(2016) or Skansi (2018).
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Fig. 2 Structure of the NN Input layer with nodes

corresponding to features

Layer with 16 nodes, each
with ReLU activation function

Dropout regularization layer
with drop out rate 0.1

Qutput layer defining PMF
corresponding to ICC

Before describing the NN, a specific transformation is built based on the
assumption that the ICC is discrete and monotonically non-decreasing. This one-to-
one transformation maps the discrete ICC to the probability mass function (PMF),
where n = 7 is the number of ability levels (-3, —2, —1, 0, 1, 2, 3) indexed as (1,
2,3,4,5,6,7). Direct mapping is used to create labels, and inverse mapping is used
to predict ICCs; they are defined by the following two equations, respectively:

PMF[1] = ICC[1]
PMF[i]=ICC[i]—ICC[i — 1], i=2,3,...,n (1)
PMF[n + 1] = 1 — ICC [n]

ICC[1] = PMF[1] @)

ICC[i]=PMF[i]+PMF[i —1], i=2,3,...,n
There are numerous degrees of freedom in terms of the number of layers, the types
of layers, the number of nodes in each layer, the types of activation functions,
and the types of regularizations, all affecting properties of the corresponding NN.
These so-called hyperparameters are usually identified via a cross-validation study,
which is discussed later in this section. The result of that study is the following NN
(Fig. 2):

1. Input layer with nodes corresponding to features extracted directly from an item
(see the next section about the actual features used in this study), where the
number of nodes corresponds to the number of features used for predicting the
ICC.

2. Layer with 16 nodes and ReLU activation function f(x) = max(0,x) for each
node.
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3. Dropout regularization layer with 0.1 rate that functions as follows: during the
training of the NN, the output of a node from the previous layer (Fig. 2) is
dropped with probability 0.1. This layer prevents an overfitting of the NN to
the training data.

4. Output layer with softmax activation function f(z;) = exp(z;)/S, S = (exp(z1) +
exp(zz) + - -+ + exp(zg)), i = 1,2,...,8, where z; is input of node i of the output
layer. This layer allows the NN to perform a soft classification, where each class
gets a positive probability of being assigned such that the sum of probabilities is
1. This is in contrast to a conventional classification, where the class assignment
probabilities are from {0, 1}. Thus, the output of the NN is the PMF.

A common choice of loss function for the soft classification is cross entropy, since
(usually in practice) one class is intended to be selected. However, in this study,
the PMF (corresponding to the ICC) should be matched as closely as possible;
therefore, Kullback-Leibler divergence (Kullback & Leibler, 1951) was chosen as
a loss function. This technique also works as an additional regularization to ensure
that predicted ICCs are always monotonically non-decreasing.

In order to train the NN, a stochastic gradient descent (SGD, Goodfellow et
al., 2016) minimized the loss function under the following parameters: learning
rate 0.01; number of epochs 30; number of samples per gradient update 100. The
parameters of SGD, the number of layers in the NN, the number of hidden layers
(i.e., layers between the first layer and the last layer), the number of nodes in hidden
layers, and the drop rate of 0.1 for the regularization layer were chosen during
multiple empirical trials in order to achieve a stable output of a cross-validation
described next. The NN has only one hidden layer with 16 nodes (Fig. 2); any
increase either in the number of hidden layers or in the number of nodes degraded
the results.

To validate the NN, the k-fold cross-validation method was used (Goodfellow et
al., 2016), where labeled data is divided into k non-overlapping samples. Then, in
each iteration (out of k iterations total), the k — 1 samples are used to train the NN
and 1 sample is used to test the NN on predicting ICCs. This way, each data point is
used once to train the NN and once to test it. In this study, kK = 10 in order to comply
with studies reviewed by Ferrara et al. (2021). The output of the validation includes
error (E), residual (R), and coefficient of determination D computed using errors on
true and average (estimated on testing samples) ICCs.

With a true ICC (given the ICC of an item) and its prediction by the NN, denoted
as ICC and ICC*, respectively, the error is computed as follows:

E= ((ICC [1] - ICC*[1])” + - - + (ICC [7] — ICC* [7])2) /7 3)
And the residual is computed as follows:

R = ((ICC[1] = ICC*[1]) + - - - + (ICC[7] — ICC*[7])) /7 4)
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Additional output includes outliers with E over 0.15 and data points with R within
a certain range.

3 Data

A total of 1742 retired logical reasoning (LR) items from the Law School Admission
Test were used in this study to build a prediction model. Each item has the following
structure:

1. Passage
2. Question
3. Five answer options (A, B, C, D, E)

Detailed information about each LR item can be described as follows:

Text of the passage
Text of the question
Text of each answer option (A, B, C, D, E)
Correct option index (the key)
Item type
Item subtype defining the type of question
Item property 1
Item property 2
9. Item property 3
10. Item property 4
11. Item rank {1, 2, 3, 4} (an estimation of item difficulty by item writer)
12. Item pretest position (item position, defined by item writer, in unscored section
for pretesting new items)
13. ICC computed from corresponding 3PLM (response matrices were not avail-
able for computing empirical ICCs)

PENAN R DD~

The above information was used to compute multiple features for each item. An
additional 2009 LR items without item rank and item pretest position were used to
compute some numerical features for the above 1742 LR items. As a rule of thumb,
an acceptable performance of an NN is observed when there are around 5000 labeled
data points per category (Goodfellow et al., 2016). Therefore, the studied data is too
small to expect superior results; in fact, because there are nine different question
types, the data is partitioned into even smaller pieces.

The rest of this section describes features extracted directly from an item. For
each item, six categorical features were provided by the item writer:

1. Item type (categorical feature from {1, 2})

2. Ttem subtype (categorical feature from {1, 2, 3,4, 5,6, 7, 8, 9})
3. Ttem property 1 (categorical feature from {1, 2, 3})

4. Ttem property 2 (categorical feature from {1, 2, 3, 4, 5})
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5. Item property 3 (categorical feature from {1, 2, 3})
6. Item property 4 (categorical feature from {1, 2})

Each categorical feature was represented as a one-hot code vector (Goodfellow et
al., 2016); for example, if the item type (see above) was 1 then it was represented as
vector (1, 0), and if the item type was 2 then it was represented as vector (0, 1). Using
this representation allows neural networks to apply the divide-and-conquer strategy
similarly to CARTs (Breiman et al., 1984). There were 12 groups of numerical
features:

1.
2.
3.

10.

11.

Item rank, denoted as itemRank.

Item pretest position, denoted as itemPosition.

Text features for passage: PTF.nSentences (number of sentences), PTF.nWords
(number of words), PTEnNouns (number of nouns), PTF.nNSynsets (number
of synsets (Fellbaum, 1998) of the nouns), PTF.nVerbs (number of verbs),
PTFEnVSynsets (number of synsets of the verbs), PTF.nAdjs (number of adjec-
tives), PTE.nASynsets (number of synsets of the adjectives), PTF.readability
(Dale—Chall readability index; Dale & Chall, 1948).

. Text features for question: QTF.nWords (number of words), QTF.nNouns (num-

ber of nouns), QTF.nNSynsets (number of synsets of the nouns), QTF.nVerbs
(number of verbs), QTF.nVSynsets (number of synsets of the verbs), QTF.nAdjs
(number of adjectives), QTF.nASynsets (number of synsets of the adjectives),
QTF.readability (Dale—Chall readability index).

Text features for options: OTF.nSentences (number of sentences), OTF.nWords
(number of words), OTE.nNouns (number of nouns), OTF.nNSynsets (number of
synsets of the nouns), OTF.nVerbs (number of verbs), OTF.nVSynsets (number
of synsets of the verbs), OTFnAdjs (number of adjectives), OTF.nASynsets
(number of synsets of the adjectives), OTF.readability (Dale—Chall readability
index).

Semantic similarity between passage and correct option (answer) denoted as
spa. Semantic similarity between two texts is computed as a scalar product
between two embeddings corresponding to two texts; for information about
embeddings see Goodfellow et al. (2016).

. Semantic similarity between passage with correct option (answer) and other

options (distractors), denoted as spad.

Mean, variance, minimum value, and maximum value of semantic similarity
between answer and distractors, denoted as: sadMean, sadVar, sadMin, sad-
Max.

Mean, variance, minimum value, and maximum value of semantic similarity
between all unique pairs of options, denoted as: sooMean, sooVar, sooMin,
sooMax

Mean, variance, minimum value, and maximum value of semantic similarity
between all unique pairs of sentences in the passage, denoted as: sppMean,
sppVar, sppMin, sppMax.

The additional 2009 LR items (called atlas items) without item rank and
item pretest position were used to compute this group of features. The atlas
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items were partitioned into nonintersecting classes based on their type and
subtype. An item, used for constructing the NN, was associated with a class
corresponding to the type and subtype of the item. Each element of the
associated class had the passage and difficulty of some atlas item. For each
element in the class, the semantic similarity between the element’s passage and
the item’s passage multiplied by the element’s difficulty was sampled. Finally,
the mean, variance, minimum value, and maximum value were estimated from
the sample and denoted as: sppbMean, sppbVar, sppbMin, sppbMax.

12. Similarly to the previous group, the following features were computed for the
question: sqgbMean, sqqbVar, sqqgbMin, sqgbMax.

Each numerical feature from above was normalized by subtracting its mean and
then dividing by its standard deviation; such normalization substantially improves
the convergence of SGD (Goodfellow et al., 2016).

Table 1 shows features that correlate with at least |0.1| with a, b, or ¢ parameters
of 3PLM. One may observe some interesting patterns in Table 1. The highest
correlations are observed for itemRank and itemPosition. Most correlations are with
item difficulty except for sppbMean and sqgbMean (which perhaps relate to their
estimation procedure). Most text features in Table 1 are for options, only two for

Table 1 Features that correlate with at least |0.1| with a, b, or ¢ parameters of 3PLM

Feature (see description of each

feature above) Correlation with a | Correlation with b | Correlation with ¢
itemRank 0.10 0.43 0.07
itemPosition 0.12 0.43 0.08
sppbMean 0.12 0.15 0.17
sqqbMean 0.14 0.17 0.21
sqqbVar 0.00 0.12 0.02
sqqgbMax 0.02 0.12 0.03
sppMean 0.06 0.11 —0.02
sadMean 0.07 0.10 0.03
sadMin 0.06 0.11 0.03
sooMean 0.07 0.11 0.01
sooMin 0.07 0.11 0.03
QTF.nVerbs 0.10 0.08 0.07
QTF.nVSynsets 0.13 0.10 0.07
OTF.nSentences 0.06 0.15 0.11
OTF.nWords 0.05 0.20 0.12
OTFEnNouns 0.01 0.14 0.07
OTF.nNSynsets 0.01 0.13 0.03
OTF.nVerbs 0.04 0.18 0.14
OTF.nVSynsets 0.02 0.15 0.11
OTF.nAdjs 0.03 0.12 0.03

OTF.readability —0.07 —0.12 —0.04
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question, and none for the passage, which is unexpected. Overall, text features have
higher absolute correlations than features based on semantic similarity. Feature
sppMean has a positive correlation with item difficulty, which means that more
difficult items may have more closely related sentences in their passages (this is
supported by real data).

4 Results

Table 2 shows the results of 10-fold cross-validation of the NN for different subsets
of features. One can observe that the best results were achieved with features
provided only by item writers (see fifth column in Table 2). Thus, the use of
automatically generated features did not improve the results, although some of them
weakly correlate with a, b, or ¢ parameters of 3PLM (Table 1).

The cross-validation of the NN constructed from categorical features and
numerical features itfemRank, itemPosition provided additional results as follows.
Graphical representation of error and residual computed for each ability level
separately is illustrated in Figs. 3 and 4, where distributions of error and residual
are characterized by box plots. One can see that the largest errors and residuals
happened for ability level 0. Figure 5 shows a random sample of nine pairs of true
and predicted ICCs, shown as blue and green curves, respectively, where the residual
fell within one standard deviation from its mean; overall, 67% of predicted ICCs
satisfied that range. One can observe that true and predicted ICCs are different in
terms of variability (see Fig. 5), and that the variability of true ICCs is higher than
the variability of predicted ICCs (Fig. 6; this finding is compatible with low values
of D in Table 2).

5 Discussion

This paper describes the NN approach to predicting ICCs using features extracted
directly from an item. A total of 1742 retired LR items from the LSAT were used to
build, train, and validate the NN.

Multiple features extracted directly from an item were used in the input layer
of the NN (see Fig. 2). A cross-validation study using different subsets of the
features demonstrated (see Table 2) that using features provided by item writers
(categorical features and numerical features itemRank, itemPosition) produced
the best predictions whereas automatically generated features did not improve
the predictions. Even more, just using two features (itemRank and itemPosition)
produced the second best results. This indicates that the data sample is too small for
the categorical features to play any role in prediction. That may also explain why
automatically generated features were useless, since the number of items in each
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category was even smaller. The best subset of features provided a low D, which was
expected as the data was too small.

This study is in line with 90% of the studies (Ferrara et al., 2021) reporting a
low coefficient of determination D. This paper confirms that the best predictors are
features provided by item writers (see Table 2). As expected, in contrast to reading
comprehension items, LR items have a weak correlation between text features and
item difficulty (see Table 1).
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Online test proctoring cannot protect against existing technology used to steal
test content. Therefore, one has to accept an error generated by a predictive model
if the error is symmetrically distributed about zero. A possible application scenario
would be as follows: (1) develop a model predicting ICC; (2) use predicted ICCs
to simulate a real administration of pretested sections; (3) based on simulated
responses, calibrate items (e.g., calibrate 3PLMs); (4) assemble a test using these
items as already pretested; (5) administer the test to a real population; (6) use real
responses for recalibrating items and updating the model. In this scenario, new
items are not pretested (i.e., not administered to a real subpopulation of examinees).
Therefore, a regular scaling based on anchor items pretested in the past is no longer
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possible. This can be addressed by using an additional, previously administered
section as an anchor section. Modern methods of detecting item preknowledge
(Belov, 2016, 2020; Drasgow et al., 1996; Karabatsos, 2003; McLeod et al., 2003;
Tendeiro & Meijer, 2012; van Krimpen-Stoop & Meijer, 2001) can be applied to
filter out examinees with possible preknowledge of the anchor section in order to
estimate scaling coefficients without bias.

If presented approach were applied to predict empirical ICCs, then the assump-
tion of monotonically non-decreasing ICCs could be violated by some empirical
ICCs (Fig. 1). In this case, the NN could be modified as follows: The output layer
with linear activation function could have seven nodes corresponding to ability
levels (=3, —2, —1, 0, 1, 2, 3), and the loss function could be the mean squared
error.

The approach could be easily adapted to predict parameters of 3PLM directly.
The only modification would be that the output layer with linear activation function
would have three nodes (for a, b, and c, respectively) and the loss function would
be the mean squared error.

Future research will be directed toward procuring a larger data sample, engineer-
ing new features, minimizing E, and maximizing D, while keeping R symmetrically
distributed about zero. The latter is crucial in order for items with predicted
statistical parameters to be included on a test. Larger data may allow the use of
embeddings (Goodfellow et al., 2016) for the passage, question, and options directly
(instead of computing features as semantic similarities between various parts of the
item, as was done in this study); that way a deeper NN could “figure out” more
useful features. Text features used in this study can be extended with Coh-Metrix
(Ferrara et al., 2021). Another method to generate new features is described in the
final two groups of numerical features in the Data section above. For a given item,
the method could be generalized as follows. From the atlas items (items without
item rank and item pretest position), form a class using a certain criterion; for
example, select items with multiple negations in their passages. Each element of
the class has the passage and difficulty of some atlas item. For each element in
the class, the semantic similarity between the element’s passage and the item’s
passage, multiplied by the element’s difficulty, is sampled. Then the mean, variance,
minimum value, and maximum value estimated on the sample could be used as the
new features.
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