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Abstract Adaptive learning offers real attention to individual students’ differences
and fits different needs from students. This study proposes a bi-level recommen-
dation system with topic models, gradient descent, and a content-based filtering
algorithm. In the first level, the learning materials were analyzed by a topic model,
and topic proportions to each short item in each learning material were yielded
as representation features. The second level contains a measurement component
and a recommendation strategy component which employ gradient descent and
content-based filtering algorithm to analyze personal profile vectors and make an
individualized recommendation. An empirical data consists of cumulative assess-
ments that were used as a demonstration of the recommendation process. Results
have suggested that the distribution to the estimated values in the person profile
vectors were related to the ability estimation from the Rasch model, and students
with similar profile vectors could be recommended with the same learning material.
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1 Introduction

In recent years, especially during the pandemic, efforts have been made to expand
online learning beyond the traditional classroom environment as it enables indi-
viduals to benefit from rich and high-quality learning resources (Dhawan, 2020;
Liang & Hainan, 2019). The advantages of online learning have been recognized
since it offers real attention to the individual differences and fits for different
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needs of students (Imhof et al., 2020). More importantly, it makes it possible
to analyze students’ latent information, here referred to as profile information or
profile, through human-computer interactions, and in particular, with the maturity of
cutting-edge learning analytics, individualized adaptive learning provides students
the prospects of access to tailored learning instructions, guidance, and content
(Mavroudi et al., 2018). With the popularization of remote education and online
learning, offering individualized and adaptive learning resources is an emerging
research topic (Cheng & Bu, 2020). Individualized adaptive learning systems aim
to provide learning materials fit to the current status of a student, and the pace
and of learning and instruction approach are optimized for the need of each
student (United States Department of Education, 2017). The individualized adaptive
learning system provides flexible adaptation beyond what can be accomplished in
traditional classroom settings in terms of learning resources (Koedinger et al., 2013).

The purpose of adaptive learning is realized by using a recommendation system,
which may recommend the next learning materials based on the psychometric
results and possibly other individual-level characteristics (Chen et al., 2018).
Specifically, the recommendation system requires three components, an information
learning component, a measurement component, and a recommendation strategy
component. The information learning component employs a learning model to
analyze features from the learning materials such that each learning material’s
features can be represented in a numerical space. The features can be used as
representations of a series of skills or attributes that are available in the learning
system (Chen et al., 2018). Traditional recommendation systems suggest online
learning materials based on students’ interests, knowledge, and data from other
students with similar interests (Romero et al., 2007). These traditional methods,
which utilize vector space models (Castells et al., 2006) in the information learning
component, have disadvantages in both effectiveness and scalability (Kuang et al.,
2011). In addition, with a heterogeneous student population and many learning
materials, the learning model can be complex, and thus calibrating the model
requires expensive computation (Tang et al., 2019). Topic modeling such as the
Latent Dirichlet allocation (LDA; Blei et al., 2003), a hierarchical Bayesian topic
model, was used to obtain a low dimensional vector that denotes each online
learning activity in various adaptive learning scenarios, such as online course
recommendations (Lin et al., 2021) and online documents recommendation (Kuang
et al., 2011). Compared with traditional recommendation systems based on the
student-item interactions and similarity, the topic model-based recommendation
systems can consider the learning portfolios’ textual features (Cao et al., 2019).
With the learned features, the measurement component can find the profile vectors
for students which may reveal students’ proficiency on each attribute (Chen et al.,
2018). Given the features and profiles, the prediction component uses a predicting
model that predicts the outcomes of a student studying under a particular set
of materials, and sequentially makes recommendations to each student on what
to learn at the next step, based on the current information it obtained from the
aforementioned two components. Content-based filtering (CB; Ghauth & Abdullah,
2010) algorithm, using information about students and/or learning materials, has
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been used as a prediction component in many recommendation systems (Bian &
Xie, 2010; Romero et al., 2007). The CB focuses on the properties of learning
materials, and learning materials’ similarity is determined by the similarity in their
features.

The cumulative assessment portfolio has been used as learning material in
online learning (Pfennig, 2020). Cumulative assessments are widely used in many
circumstances to determine at a particular time what students know and do not know
and can help students get access to their learning achievements (Beagley & Capaldi,
2016; Ryan & Nykamp, 2000). The cumulative assessments are comprehensive and
pre-assembled tests that assess students’ knowledge of information from several
didactic domains, and in which each assessment covers all previous contents.
By using the cumulative assessments, instructors can identify a wide range of
knowledge, skills, and concepts that students have mastered or not, so appropriate
adjustments can be made to instructional practices and strategies toward the overall
end-of-year expectations (den Boer et al., 2021). For example, some English
language and arts (Georgia Center for Assessment, 2018) cumulative assessments
were designed to collect evidence on student learning status, and serve as formative
tools that can provide information on how well students understand concepts
and their ability to demonstrate knowledge and skills in a particular content area
or domain. In higher education, it is effective to intersperse several cumulative
assessments throughout a course and the combined score on the assessments weighs
in for the final course grade (den Boer et al., 2021). For example, the United States
Medical Licensing Exam Step I assesses whether the examinees can successfully
apply the knowledge of key concepts in basic sciences and is usually taken by
medical school examinees at the end of the second year (USMLE, 2014). Some
medical schools ask students to take the cumulative licensing examination before
initiating clinical experiences (Cleghorn, 1986; Ryan & Nykamp, 2000). Given the
fact that cumulative assessments have wide applications, this study selects a set of
pre-assembled cumulative assessments as learning materials.

It is suggested that a good recommendation system should make full use of the
information from both the students and the learning materials (Tang et al., 2019).
Therefore, this study designs a bi-level structure. In the first level, the learning
materials (i.e., cumulative assessments) were analyzed by a topic model and the
topic proportions to each item stem in the cumulative assessment were yielded as
representation features to the cumulative assessment. Although most educational
applications with topic models adopt the LDA as a useful model (Wheeler et al.,
2021; Xiong et al., 2019), the use of LDA as a topic model tool is useful for
long documents such as the course syllabus (Apaza et al., 2014), and it suffers
from the severe data sparsity in short text documents (Yan et al., 2013). For
instance, the pre-assembled cumulative assessments may contain some short text
items such as multiple-choice (MC) items, and which lengths are usually less
than a passage or course syllabus content. Obviously, in such a circumstance, the
use of LDA may cause sparse topic structures. To overcome the problem, in this
first level, this study employs another topic model, called the bi-term topic model
(BTM; Yan et al., 2013), which was designed to extract topic proportions for short
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context, to analyze the learning materials (i.e., each cumulative assessment) and
obtain each short item’s topic structure. The second level contains the measurement
and recommendation strategy components which employ profile analysis and CB
filtering algorithms. By proposing such a framework that applies both the BTM and
CB filtering to recommend pre-assembled cumulative assessments with an empirical
data demonstration, this recommendation system can analyze each student’s profile
components based on their response scores to the completed assessments and
then predict rating scores for new assessments. The empirical results suggested
this design can recommend relevant assessments for each student, and realize
individualized recommendations based on the bi-level framework.

2 Method

2.1 Bi-term Topic Model

BTM generates the bi-terms in the whole corpus to reveal topics by considering the
word-pair relation. The bi-term here was referred to as an unordered word-pair co-
occurred in a short context such as the example given in Table 1. The texts given in
the Table 1 are all simple examples of short texts. After removing stopwords such
as “I”, and stemming words into an original form such as changing from “apples” to
“apple”, from “eating” to “eat”, the bi-terms were generated by construction word-
pair combination in an unordered way.

The BTM graphical structure is represented in Fig. 1, and this generative process
in the BTM can be described as:

1. Draw a topic distribution θ from Dirichlet distribution with parameter α, i.e.,
θ ∼ Dir(α).

2. For each topic k ∈ [1, · · · ,K], draw a topic-specific word distribution φk from
the Dirichlet distribution with parameter β, i.e., φk ∼ Dir(β).

3. For each bi-term combination bi ∈B :
(a) draw a topic assignment zi ∼ Multinomial(θ)

(b) draw two words, wi,1, wi,2 ∼ Multinomial(φzi
)

where NB is the bi-term corpus which consists of all bi-terms given in a document
collection, α is the prior distribution parameter to the topic distribution θ , β is the

Table 1 Simple bi-term examples

Text Bi-terms

I visit an Apple store. visit Apple, visit store, Apple store

I like eating apples. like eat, like apple, eating apples

I love to watch Apple movies. love watch, love Apple, love movie, watch Apple, watch
movie, Apple movie
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Fig. 1 BTM graphical
structure

prior distribution parameter to the bi-term distribution φk . BTM directly models the
word-co-occurrence pattern instead of a single word.

In this study, each pre-assembled cumulative assessment is treated as learning
material, and adaptive learning happens after the completion of each assessment.
Each MC item stem was modeled as a short text. Suppose the learning system
consists of i = 1, . . . , I cumulative assessments, while each of which consists
of ni MC items, then a total of I × ni items are treated as a large collection of
short documents. Suppose k topics were determined for the learning system, and
then each item can be represented by a k-dimensional feature vector. Therefore,
each cumulative assessment is represented by a ni × k dimensional matrix. To
determine the optimal number of topics k for the corpus, average Jensen-Shannon
(JSD; Tong & Zhang, 2016) was used as criteria. JSD is a popular method of
measuring the similarity between two probability distributions and is also known
as a total divergence to the average. Given two discrete topic distributions Ts and
Tv , the JSD is defined as Eq. 1.

JSD(Ts‖Tv) = 1

2
KLD

(
Ts‖Ts + Tv

2

)
+ 1

2
KLD

(
Tv‖Ts + Tv

2

)
(1)

where KLD
(
Ts‖Ts+Tv

2

)
is the Kullback-Leibler divergence (KLD; Mei et al.,

2007) of Ts from Ts+Tv

2 , and the KLD is defined as in the Eq. 2.

KLD(P ‖Q) =
∑

s

Ps log
Ps

Qv

(2)

The average JSD shown in Eq. 3 is used to calculate the average similarity among
all topic distributions.
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JSD =
∑

s,v JSD(Ts‖Tv)

k
(3)

By applying JSD to the topic assignment for each item in the learning system, it will
measure the distance and similarity between each document. The topic model with
minimal average JSD is used as the optimal topic model. With these k topics, each
MC item n’s features can be represented by a k-dimensional topic proportion vector
fn = (fn1 , · · · , fnk

).

2.2 Loss Function and Gradient Descent

Suppose a random assessment i is given at the initial stage to a total of j = 1, . . . J

students, while the remaining (I − 1) assessments were waiting in the system to
be sequentially recommended to students. With the k-dimensional feature vector
fin = (fin1 , · · · , fink

) for each MC item n in the assessment i, student j ’s profile
vector can also be defined as a k-dimensional vector αj = (αj1, · · · , αjk

). Each
dimension to the profile vector serves as the weight or coefficient to items’ feature
vector. In addition, for each MC item in the assessment i, student j ’s response can
be scored as either correct or incorrect (i.e., tjn = 1/0), so that cross-entropy (De
Boer et al., 2005) is used as a loss function with tjn serving as guiding labels, which
is defined in the Eq. 4

L(α) = − 1

Jni

⎡
⎣ J∑

j=1

[
ni∑

n=1

[
tjn log(pjin) + (1 − tjn) log(1 − pjin)

]]⎤
⎦ (4)

where pjin = σ(αifin) = σ
(
αj1fin1 + · · · + αjk

fink

)
, and the σ(·) represents a

sigmoid function.
The gradient descent (Amos & Yarats, 2020) is used to minimize the loss function

until it reaches convergence. The process of finding the minimized loss function is
described in Table 2, where ρ is a positively defined learning rate, and ∇J (αr) is
the differential at αr . The ρ∇J (αr ) is subtracted from αr and moves toward the
local minimum. So, a monotonic sequence J (αr) ≥ J (αr+1) ≥ J (αr+2) ≥ · · · is
obtained until convergence.

Table 2 Pseudo-code gradient descent algorithm

Algorithm Gradient descent

For r = 1, 2, · · ·
repeat αr+1 = r − ρ∇J (αr )

until convergence

Output J (αr+1)&αr+1
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3 Data and Analytic Framework

3.1 Data Description

Learning materials are used to construct a learning pool in which every learning
material is pending to be recommended or not for each student. The learning
pool in this study contains 8 science cumulative assessments (Georgia Center for
Assessment, 2018) as learning materials, and each assessment contains 22 MC
items. The assessments are designed to assess student learning on several sub-
domains in science such as biology, physics, and chemistry. A link to the sample
assessment was provided in the Appendix. Each MC item stem was pre-processed.
This process includes stemming and lemmatization, and stop word removal. The
stemming uses the stem of each word and cuts off the end or the beginning of the
word such as the affixes of plural words. The lemmatization uses the context in
which the word is being used and changes the word into the base forms such as
the irregular verbs and irregular plural nouns. Stop words are high-frequency terms
with little or no information and include words such as “the”, “and”, “is” etc. The
cleaned item stems were treated as short texts and were modeled in BTM to extract
representation vectors. The descriptive statistics to the length of clean item stems
are listed in Table 3. The minimal length to the MC items is only 3, and the average
length of these items is 10.530. Therefore, the lengths of items are relatively short
and the use of BTM is appropriate.

Students’ response to each MC item was scored as either correct (1) or incorrect
(0). Students’ responses tjn to one learning material (i.e., one assessment containing
22 items) were used as guiding labels which are defined in Eq. 4. In this study,
Assessment 4 was selected, and 492 students have responded to the 22 MC items in
the assessment. All the response correctness tjn given by these 492 students were
used as the guiding labels to supervise the parameter estimation.

3.2 Bi-level Recommendation Framework

The bi-level recommendation system is shown in Fig. 2. The feature learning
component in the first level employs the BTM described in Fig. 1 to extract feature
matrix (dimension ni × k) for each assessment. The measurement component
in the second level uses the J students’ responses to each item in one selected
assessment and employs the gradient descent algorithm described in Table 2 to
minimize the loss function to obtain J ’s k-dimensional vectors as students’ profile

Table 3 Descriptive statistics to MC items’ length in the learning pool

Min. Mean Max. SD

3.000 10.530 32.001 10.812
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Fig. 2 Bi-level recommendation framework

vectors. The estimated profile vector was used as a quantified indicator of each
student’s understanding of each of the k topics at this moment. Furthermore, with
the k-dimensional student j ’s profile vector and remaining I − 1 assessments’
feature matrices, the recommendation strategy component predicts student j ’s score
probability on each MC item in each remaining assessment with Eq. 5.

f (zjin) = 1

1 + e−Zjin
(5)

where zjin = αjfin, and student j will be predicted to get a score gjin = 1 for item
n in assessment i when f (zjin) ≥ 0.5, and score gjin = 0 when f (zjin) < 0.5.

3.3 Analytic Procedures

The first step of this recommendation system uses the feature learning component
to construct a representation matrix for each learning material. That is, by modeling
every learning material i in the feature learning component, a k-column feature
matrix was extracted by the BTM with JSD. In this study, each extracted feature
matrix contains 22 rows and k columns, and each feature matrix serves as a rep-
resentation matrix of the corresponding learning material. Once the representation
matrices for all learning materials were constructed, then one learning material was
randomly selected for all students and the remaining I − 1 learning materials are
still in the learning pool. The second step of this recommendation system uses
all students’ complete response patterns to estimate j th student’s k-dimensional
profile vector αj == (αj1 , · · · , αjk) in the measurement component with the loss
function in Eq. 4 and gradient descent algorithm in Table 2. Finally, with the k-
dimensional profile vectors for each student and remaining I − 1 assessments’
feature matrices, the recommendation strategy component predicts j th student’s
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correctness probability on each MC item in each remaining assessment with Eq. 5
and predicts a score gjin for each item n of j th student. The summation gji =∑

n gjin will be used as j th student’s predicted total score on the assessment i in
the learning system. After ranking the predicted total scores for all remaining I − 1
assessments from low to high, the system can make the next recommendation for
each student.

4 Results

4.1 Step 1: Feature Learning Component with BTM and JSD

In the feature learning component, JSD was used as criteria for some exploratory
topic models from 2 topics to 6 topics for all items in the learning system. Figure 3a
is the average JSD values against the different number of topics, and the minimal
JSD was achieved when the number of topics is four. So, it is suggested that the
four-topic model fits best for all items in the learning system. After fitting a four-
topic BTM, every item stem was characterized by a 4-dimensional vector and each
dimension represents a topic’s proportion in the item stem. For example, the item
n in assessment i can be characterized by a vector of fin = (0.1, 0.3, 0.1, 0.5) in
which each value describes the topic distribution to this item such that 10% of words
in the item belong to Topic 1 and 30% of words belong to Topic 2, etc. Table 4 lists
the top 10 words under each of the four topics. Topic 1 can be described as words
related to the chemistry process and natural resources, Topic 2 tends to employ
words about the ecosystem, Topic 3 contains question words such as “select the
class from the following samples”, and Topic 4 shows words from astronomy and
physics.
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Fig. 3 (a) Average JSD against the number of topics; (b) PCA to the feature matrix
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Table 4 Top 10 words from each of the four topics in the cumulative assessments

Topic 1 Topic 2 Topic 3 Topic 4

water 0.034 model 0.019 class 0.021 earth 0.017

create 0.014 population 0.018 light 0.015 moon 0.015

rock 0.014 organism 0.016 give 0.015 sun 0.015

temperature 0.014 cell 0.016 form 0.012 weather 0.013

heat 0.013 base 0.015 see 0.011 layer 0.012

soil 0.011 show 0.014 sample 0.011 feather 0.011

hot 0.010 system 0.012 student 0.011 white 0.011

air 0.009 animal 0.012 leave 0.010 eye 0.010

plant 0.008 picture 0.010 need 0.009 gibbous 0.010

different 0.007 energy 0.009 question 0.009 move 0.010

Items may have different topic structures from each other; therefore, each item
focuses on a domain combination in the cumulative assessment. If we denote
the topic with the highest proportion as the dominant topic for an item, for
instance, for the item with fin = (0.1, 0.3, 0.1, 0.5), its dominant topic was
denoted as Topic 4. Figure 3b shows the principal component analysis (PCA; Chou
& Wang, 2010) to the feature matrix with identity information from dominant
topics. The two principles, PCA1 and PCA2, are associated with test domains.
PCA1 represents environment-associated contents, and PCA2 stands for biology-
associated contents. Each point represents an item in the two-dimensional space
and each color represents a dominant topic. In this figure, items with similar topic
distributions could be closer to each other, which indicates the items with similar
topic distributions may measure similar test domains. We also noticed that some
items with different dominant topics are mixed, which is because these items’ topic
distributions are flat such that the dominant topic has a close proportion to other
topics.

The analysis in the feature learning component yielded 8 feature matrices and
each has a dimension of 22×4. In each feature matrix, every row represents an item
feature vector fin for nth item in ith assessment. Each dimension in the vector fin

represents for the topic proportion of nth item. Therefore, j th student’s unknown
profile vector is also 4-dimensional such that αj = (αj1 , αj2 , αj3 , αj4).

4.2 Step 2: Measurement Component with Gradient Descent

After constructing the feature matrices for all learning materials, Assessment 4
was randomly selected for all 492 students. With the obtained feature matrix for
Assessment 4, the response patterns were used to estimate j th student’s profile
vector αj = (αj1, αj2 , αj3 , αj4) in the measurement component. Students’ profile
vectors are obtained by gradient descent on the loss function. The gradient descent
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Table 5 Summary statistics
on the estimated profile
distribution

Min. Mean Max. SD

αj1 −1.045 −0.188 0.743 0.399

αj2 −1.039 0.201 1.498 0.364

αj3 −1.001 −0.017 0.859 0.339

αj4 −1.047 −0.084 0.686 0.364

changes are reflected in Fig. 4, which shows the cost decrease against each iteration.
From Fig. 4, the estimation converged with increasing iterations finally and the
cost was less than 0.1. The obtained estimations are student profile vectors that are
coefficients to each dimension in the feature matrix.

The estimated profile vectors are summarized in Table 3. In Table 3, each row
lists descriptive statistics of one dimension. As introduced, the estimated coefficient
αjk

can be interpreted as j th student’s understanding of kth dimensional feature.
For example, a student with the minimal value of αj1 = −1.054 may indicate that
the student owns a relatively low understanding status of −1.054 on Topic 1, while
a student with the maximal value of αj1 = 0.743 means that the student owns a
relatively high understanding status to this topic. The standard deviations to the four
dimensions were from 0.339 to 0.399. The αj2 has the largest range from −1.039 to
1.498, while the other three dimensions are distributed between −1 and 1 (Table 5).

An item response analysis was conducted to help interpret profile vectors. Stu-
dents’ correctness responses were analyzed by a Rasch model, which can calibrate
students’ ability levels into logit scale and rank the logits on a one-dimensional
continuum (Engelhard, 2013), to explore the relationship between students’ profile
vector and students’ latent ability. By assuming there is a unidimensional ability of
students for answering these items correctly, the density of calibrated Rasch ability
is plotted in Fig. 5a, which is approximately normally distributed with a mean of
0.000. The minimal student ability value is −1.942 and the maximal ability value is
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Fig. 5 (a) Rasch ability density with 4 quartiles; (b) Distribution of α in each quartile

1.521. The first quartile (the lowest 25%), second quartile (between 25.1 and 50%),
and third quartile (50.1–75%) to the estimated Rasch ability are −0.413, 0.056,
and 0.380, respectively. By labeling students into four categories according to their
Rasch ability such that Q1: (−1.942,−0.413), Q2: (−0.413, 0.056), Q3: (0.056,
0.380), Q4: (0.380, 1.521), the order from Q1 to Q4 also represents both the ability
levels and the probability of answering items correctly are increasing.

Figure 5b shows the distribution of α’s based on every quartile category. It is
clear to observe that each dimensional α value shows a trend of increasing from
lower category to higher category and the α2 exhibits the most obvious increase
trend. Possibly Topic 2, containing words about the ecosystem, covers the main test
sub-domain in the cumulative learning material. From Q1 to Q4, the Rasch estimates
are increasing, and the probability of answering items correctly is increasing. Since
each student’s profile vector indicates the student’s understanding status of certain
topics, larger α will lead to a higher probability of taking each item correctly. This
further verifies the homogeneity of Rasch analysis and profile analysis in terms of
item correctness probability, and students with higher ability values are also likely
to have higher profile values on each dimension.

4.3 Step 3: Recommendation Strategy Component with
Predicted Total Scores

Given students’ current understanding status of certain topics, their predicted total
scores for all remaining assessments in the learning pool were calculated based on
the profile vectors and learning matrices in the recommendation strategy component.
Every two students tend to have different profile vectors unless they have the same
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responding pattern to the 22 MC items. Therefore, the predicted patterns on each of
the remaining learning materials for every two students could be different.

All 492 profile vectors were multiplied to each of the learning matrices of the
remaining assessments for predicting j th student’s nth item score gjin of learning
material i using Eq. 5. For j th student, the summation of all item scores within ith
assessment gji = ∑

n gjin is used as the predicted total score on the assessment i

in the learning system. These scores indicate a student’s predicted achievements on
the remaining learning materials that the student may obtain based on their current α

values. Learning materials with lower scores indicate that the student may perform
comparatively worse on that materials than the ones with higher scores. For each
student, the predicted scores on remaining learning materials were ranked from low
to high, and the learning material with the lowest score was recommended to the
student for next-step learning. Figure 6 shows students’ predicted scores distribution
for each of the remaining learning materials, where the vertical axis stands for the
predicted scores. In this figure, the predicted scores for each assessment range from
0 to 22. The predicted scores of Assessment 1 have a relatively lower 1st quantile
value, which indicates that more students were predicted to have a lower score on
Assessment 1. The predicted scores of Assessment 7 have a higher 3rd quantile
value than other assessments, which means that more students were predicted to
have a higher score on Assessment 7.
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Fig. 6 Students’ predicted scores distribution for each of the remaining learning materials
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Table 6 Correlations
between each dimension of
the profile vectors and each
principal component

PCA1 PCA2

αj1 0.524 0.229

αj2 0.711 0.575
αj3 0.190 0.207

αj4 0.250 0.544

Figure 7 shows the PCA on students’ profile vectors with colors indicating their
recommendation results on the 7 accumulative assessments. In this figure, each
point represents a student, and students with similar profile vectors were close to
each other on this lower-dimensional space. It can be seen that many students were
recommended to take Assessment 1, and which is consistent with the observation
from Fig. 6 that more students were predicted to have a lower score on Assessment
1. In addition, students with similar profile vectors could be recommended with the
same learning material.

Table 6 listed the correlations between each dimension of the profile vectors
and each principal component, and correlations higher than 0.500 were in bold.
PCA1 is strongly correlated with two dimensions of the profile vectors and PCA1
increases with increasing αj1 and αj2 . This component can be viewed as a measure
of the values to αj1 and αj2 . Furthermore, we see that the first principal component
correlates most strongly with αj2 . Considering the interpretation of αj1 and αj2 ,
PCA1 may indicate students’ understanding status of concepts with the ecosystem
and natural resources. PCA2 also correlates with two dimensions of the profile
vectors, αj2 and αj4 . Similarly, this component can be viewed as a measure of
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the understanding of Topic 2 and Topic 4, so PCA2 primarily stands for students’
understanding status of concepts with astronomy and physics.

5 Discussion and Conclusion

This study proposed a bi-level recommendation system consisting of three compo-
nents. An empirical study shows that, by employing the topic model and gradient
descent algorithm, students profile vectors can be extracted and individualized
recommendations can be made based on the predicted scores for the learning
materials. The analysis also suggested that the distribution to the estimated values
in the person profile vectors were related to the ability estimation from the Rasch
model. Future researches can focus on a simulation study that explores the recovery
accuracy of the profile vectors.

Although the recommendation component shows interesting findings and pre-
dicts individual scores on each item in the learning material, one thing still needs
to note is that, for each student, learning materials with different score patterns
may be predicted with the same final scores. This is because the sum scores for
each learning material were used. For example, suppose a four-item cumulative
assessment of predicted score patterns of s = (0, 1, 0, 1) has the same sum
score as another assessment with pattern s = (1, 0, 1, 0), then both assessments
could be recommended next. In addition, this empirical data demonstration used
assessments that have the same length. However, when learning materials consist
of learning materials with different item numbers, a biased situation may be
produced as short-length learning materials may be preferred if the sum score is
still used. To better process situations with these problems, one possible solution
is that the recommendation component design in the future study could assess the
psychometric properties that each item has such as the item difficulties, and items
with different difficulties can be assigned different weights when sum score was
used.

Appendix

Data

Cumulative Assessments are aligned and assess a representation of the Georgia
Standards of Excellence (GSE). These cumulative forms can help teachers to gather
strong evidence on student learning toward the overall end-of-year expectations at
each grade level. The sample assessment items were provided on this web site:
https://www.lennections.com/assesslets-science

https://www.lennections.com/assesslets-science
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R Code

############################################################
##########################read data#########################
############################################################
data<-read.csv(file=’data.csv’, header=T, sep=",", fill=T,

stringsAsFactors = F)
#processing
data2 <- udpipe(data, "english")
biterms <- as.data.table(data2)[, cooccurrence(x = lemma,

relevant = upos %in%
c("NOUN",
"ADJ", "VERB") &
nchar(lemma) > 2 & !lemma
%in%
stopwords("en"),
skipgram = 3),
by = list(doc_id)]

data3 <- data2[, c("doc_id", "lemma")]

############################################################
####################decide optimal numbers##################
############################################################
cd_k<-seq(2,10)
#JSD
model=NULL
for (i in cd_k) {

model[[i]] <- BTM(data3, biterms = biterms,
k = i,
alpha = 1,
beta = 1,
window = 3,
iter = 5000, background = F,
trace = F,detailed = F)

}

# Compute Jensen-Shannon Divergence for each value in model
scores <- predict(model[[1]], newdata = data3)
colnames(scores)<-c("topic1","topic2","topic3","topic4")
JSD <- function(p, q) {
m <- 0.5 * (p + q)
divergence <-

0.5 * (sum(p * log(p / m)) + sum(q * log(q / m)))
return(divergence)
}

n <- dim(scores)[1]
X <- matrix(rep(0, n*n), nrow=n, ncol=n)
indexes <- t(combn(1:nrow(scores), m=2))
for (r in 1:nrow(indexes)) {
i <- indexes[r, ][1]
j <- indexes[r, ][2]
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p <- scores[i, ]
q <- scores[j, ]
X[i, j] <- JSD(p,q)
}

############################################################
####################Estimation and predict##################
############################################################
#read students’ response data
student = read.csv(file=’4_Cumulative_Assesslet.csv’,

header=T, sep=",",
fill=T,stringsAsFactors = F)

#M4 is feature matrix of 4th assessment
M4 = read.csv(file=’M4.csv’, header=T, sep=",",

fill=T,stringsAsFactors = F)

X = as.matrix(M4)
y= as.matrix(student)
N= dim(y)[1]*dim(y)[2]
theta.init = matrix(rnorm(n=dim(X)[2]*dim(y)[1],

mean=0,sd = 1),
nrow=dim(y)[1],ncol=dim(X)[2], byrow=T)
e = y - theta.init%*%t(X)
grad.init = -(2/N)*(e)%*%X
theta = theta.init - eta*(1/N)*grad.init
l2loss = c()
for(i in 1:iters){
myMatrix = y - theta%*%t(X)
# empty matrix for the results
squaredMatrix = matrix(nrow=dim(myMatrix)[1],

ncol=dim(myMatrix)[2])
for(i in 1:nrow(myMatrix)) {
for(j in 1:ncol(myMatrix)) {
squaredMatrix[i,j] = myMatrix[i,j]^2
}
}
l2loss = c(l2loss,sqrt(sum(squaredMatrix)))
e = y - theta%*%t(X)
grad = -(2/N)*e%*%X
theta = theta - eta*(2/N)*grad
# empty matrix for the results
squaredMatrix2 = matrix(nrow=dim(grad)[1],

ncol=dim(grad)[2])
for(i in 1:nrow(grad)) {
for(j in 1:ncol(grad)) {
squaredMatrix2[i,j] = grad[i,j]^2
}
}
if(sqrt(sum(squaredMatrix2)) <= epsilon){
break
}
}
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values<-list("coef" = theta, "l2loss" = l2loss)

h=sigmoid(X%*%t(theta.init))
sum(diag(-y%*%log(h)-(1-y)%*%log(1-h)))/m
#sigmoid function, inverse of logit
sigmoid <- function(z){1/(1+exp(-z))}

#initialize theta
theta <- matrix(rnorm(n=dim(X)[2]*dim(y)[1],

mean=0,sd = 1),
nrow=dim(y)[1],ncol=dim(X)[2], byrow=T)
#comput GD
compCost<-function(para){
m <- dim(y)[1]*dim(y)[2]
j=0
for (i in seq(1,492*4,by=4)) {
k=match(i,seq(1,492*4,by=4))
l1_1=sigmoid(colSums(para[i:(i+3)]*t(X)))
l1 <- log(l1_1)
l2 <- log(1-l1_1)
j=j+sum(y[k,]*l1+(1-y[k,])*l2)
}
J=-j/m
}
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