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Abstract In many measurement settings, the reliability of a measure can be
straightforwardly estimated. One might have a test that is at least supposed to
be unidimensional, on which everyone is supposed to respond to all the same
items, and the score is a simple sum of correct answers. Or maybe one has a
computerized adaptive test, producing score estimates with individual errors of
measurement and corresponding individual reliability values, all based on the same
posterior distribution. But sometimes, such as in industry applications of gamified
assessment, one arrives at measures for which one wants to estimate the reliability—
and yet, they don’t look much like traditional tests, or use IRT for scoring. Then, one
is obliged to be adventurous. This collection of anecdotes from a career-matching
platform features applications of a variety of techniques for estimating reliability
in unusual situations, such as composite reliability, structured applications of split-
half, and modeling and simulation.
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1 Background

At pymetrics, we do career matching. We’ve turned a set of classic psychology and
neuroscience experiments into web and phone games. From the gameplay we get
a highly multidimensional set of measures, on which we use machine learning to
map users’ score patterns to job families where people like them are successful.
A benefit of this approach is that we can match applicants to careers based on
qualities of people from every walk of life. Most measures do not have “good”
and “bad” directions, but distinguish the needs of one kind of job task from another,
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so that every form of responding can have a match to some kind of employment.
Multidimensional measurement also allows us to optimize for prediction subject
to fairness constraints (Wilson et al., 2021). Finally, the two-step approach lets
pymetrics do selection, internal mobility, outplacement, a job marketplace, all based
on one set of measures.

Thus, we have game-based psychological measurement with substantial plurality
of purpose. To support this, the measures need to be robust, reliable, and as broadly
as possible valid. The machine learning algorithm for selection models works to
ensure that irrelevant or noisy measures aren’t used to select people into a job, but
even machine learning benefits from good “feature engineering” of its inputs. That
is, using the tools of psychometrics, we audit measurement quality and find ways to
improve it.

One of the metrics of quality we care about is reliability, or standard error of
measurement, or signal to noise ratio. Those are all algebraic transformations of
each other, and can be conditional or general depending on the circumstances.
Internally at pymetrics, we talk about all three; this chapter discusses the issue
primarily in terms of reliability.

Reliability is corroborating evidence for our validity argument. The preferred,
primary evidence is a criterion validation study, but reliability helps us be sure that
study is not capitalizing on chance. For our client contacts, many of whom have
background in industrial-organizational psychology, reliability is a familiar concept
and a reassuring metric to have available. In addition, reliability estimates help us
evaluate proposed changes to measures, and help us make sense of the factor model
we use for our explanations and descriptions. We have measures that legitimately
measure non-redundant constructs, but we have also had some plain noisy ones, and
reliability information helps us not to confuse the two. Notably, these measurements
are delivered to machine learning models and not directly to humans, alleviating the
need to communicate uncertainty in an individual score to an end user.

Games being games, our measure set is laden with eccentric scoring algorithms.
To estimate reliability, we can’t always rely on Cronbach’s alpha, or get conditional
standard errors from our latent trait estimation procedure. Some of our measures are
strange beasts, and estimating their reliability is an adventure.

So this is a collection of short stories of reliability estimation in our applied
context. I hope they prove encouraging or useful to somebody else who needs to be
creative, or at the very least, they’re entertaining.

These anecdotes include a case where we had interdependencies between the
value of one measure and the reliability of another, and a case where we had
an unusual scoring algorithm combined with extensively counterbalanced stimuli.
There are two cases of composite scores, and finally, one case where the best answer
came from process modeling.
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2 Interdependencies: The Story of Easy or Hard

In modern test scoring, a measure’s reliability may not be a uniform property
applicable to all possible persons, scores and response patterns. We are accustomed
to the standard error of measurement being higher at extreme scores, or perhaps
for atypical response patterns. We can find the conditional standard error of
measurement for a user, and then convert it to an individual reliability value
applicable to a score; we can profile the quality of measurement across a population
or across the range of measurement.

The situation becomes more complicated when the reliability of one measure
depends in part on performance on another measure. This was the challenge
presented by Easy or Hard.

Easy or Hard is adapted for brevity from the Effort-Expenditure for Rewards
Task (EEfRT) (Treadway et al., 2009), a popular measure of motivation for rewards
developed initially to study effort-based decision-making (Fig. 1). A pymetrics user
is presented with a series of choices between an easy task and a hard task. Both
tasks involve tapping a key or touch-screen hotspot a certain number of times
within a certain interval, but the hard one is more demanding: sixty taps in twelve
seconds instead of five times in three seconds. Each choice offers different game
money rewards for the two tasks, with an equal probability of payout upon success,
regardless of the task chosen. The probability of payout varies across trials. Easy or
Hard has nine different expected value differences based on probability and amount
of payout.

There is a total time limit of two minutes, after which the game ends. This makes
Easy or Hard, in essence, a resource allocation task: a finite quantity of available
time must be divided among task-choosing decision time, time to complete easy
tasks, and time to complete hard tasks. Hard tasks have higher rewards, but can take
up to twelve seconds to complete, and in addition to the random probability of no
payout, it is realistically possible to fail the hard tap task. By contrast, it’s essentially
impossible to fail the easy task, but it is easy to complete it quickly and move on.
The user is not required to wait out the three seconds. Two or three easy task payouts
can easily exceed one hard task payout. Further, any time spent deciding between
the tasks and their offered rewards is time without pay.

Some users scan the information and then pick a task based on calculation or
heuristics. Some users always choose the easy task, and others always choose hard.
The decision itself is a speeded task, as well. After five seconds, a task is assigned
at random, which is undesirable as a strategy for obtaining rewards.

In addition to neuroscience findings linking hard task selection on the EEfRT to
reward processing brain activity (Treadway et al., 2012), the EEfRT fits in a class of
measures of extrinsic motivation (Ryan & Deci, 2000). In the workplace, a measure
of extrinsic motivation can provide insight into how compensation may motivate
employees, in particular when indicators of intrinsic motivation are also considered
(Cerasoli et al., 2014). A multidimensional view of Easy or Hard begins to address
this construct space.
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Fig. 1 Easy or Hard. Left side: Task selection. The user has five seconds to choose between an
“Easy” and a “Hard” task. Either task, if completed successfully, gives the user a specified chance
(here, 88%) of receiving a game-money reward. The reward is always larger for the “Hard” task.
Right side: Task completion. A user selecting the “Easy” task must press the spacebar five times
in three seconds in order to have the specified probability (here, 12%) of obtaining a game-money
reward. A user selecting the “Hard” task must press the spacebar sixty times in twelve seconds in
order to have the same chance of a higher reward

We are therefore, first, interested in a user’s probability of selecting the hard task
under different expected value conditions, and overall. Some users show a consistent
preference for the hard task even when the rewards are low and its selection is
not strategic; this may be an indicator of one kind of intrinsic motivation. Another
measure is the time taken to choose a task, an indicator of attention paid to the
differential reward information.

The challenge in calculating the reliability of either the hard task preference
measure or the response time measure is that both are conditional on the number of
decision responses contributing to the measure, which is in turn conditional on the
number of hard tasks selected (or assigned following timeout) and also the amount
of time spent on the decision screen. If a user times out or nearly so, and always
chooses or is assigned hard, that user can run out of total time in five tasks. We
observe some cases of that in our data. We also see the occasional user that can race
through thirty, fifty, or a hundred easy tasks, without reading anything. The content
of a user’s choices determines the quality of that user’s measurement.

It was, however, possible to calculate Cronbach’s alpha for the subset of users
that reached each item from the first to the 30th, which included fewer users for
each additional item after five. We produced the whole table, but when we need a
single number for reporting, we prefer the reliability for a user at the median number
of trials.

As shown in Fig. 2, the quality of the RT measures improves rapidly in the
first few trials, and more slowly thereafter for a long time. Averaging log (RT) is
unsurprisingly better than averaging RT, but the same general behavior can be seen
in both.

For the probability of choosing hard, however, the reliability dips for additional
responses between about ten and fifteen. Around ten responses, the number of
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Fig. 2 Easy or Hard: Reliability as a function of items reached. Generally, measures of response
time (averaged directly or as logarithms) increased in reliability with each additional task
completed by the user. However, the reliability of preference for the “Hard” task (“Chose Hard”)
dipped in reliability between ten and fifteen items reached. This is a range restriction phenomenon;
due to the time limit, users can only reach items above the low teens by sometimes selecting “Easy”
tasks. The higher the item count, the more “Easy” tasks are generally necessary to reach it. The
range of possible scores on the preference measure is limited, and the variance reduced, on the
right side of the plot. This in turn suppresses the reliability

users reaching each trial declines sharply, especially among the users with a high
probability of picking hard. As a result, the variance of preference for hard across
users drops, and by fifteen items, the complete-data sample is left with only users
who chose several easy tasks. Even if the absolute error of measurement stays the
same or improves, the reliability drops, relative to the surviving user population at
each item. It’s a good reminder that reliability isn’t solely a property of the test, but
of the composition of the sample.

3 Counterbalancing: The Story of Magnitudes

In working with tests that have subject matter constraints, curriculum coverage
requirements, and other intentional non-uniformities in item content, there is a need
to assess reliability in a way that recognizes that the mixture of content is intentional
and would be consistent across hypothetical alternate forms. We frequently see, for
example, a stratified version of Cronbach’s alpha in use.

What happens, though, when an intentional mixture of items meets a scoring
method that isn’t a sum score, mean score, or latent trait score? This was the
challenge we faced for two of the measures in Magnitudes.

Magnitudes is a pair of measures of Approximate Number Sense (ANS): Dots
and Fractions (Fig. 3). Each measure is made up of quantitative comparison items.
In Dots, the user selects the side that has the higher proportion of yellow dots.
In Fractions, the user selects the larger fraction. They measure nearly the same
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Fig. 3 Magnitudes. Left side: Fractions. A user is presented with two fractions side by side, and
must choose the larger. The ratio of the two fractions is manipulated in order to increase or decrease
difficulty. Right side: Dots. A user is presented two side-by-side arrays of mixed yellow and blue
dots, and must select the array with proportionally more yellow dots. The numbers of blue and
yellow dots are manipulated so as to contrive a range of ratios of proportions yellow. Automatic
item generation is used to produce item clones with the specified dot counts, with the variably-sized
dots distributed in a unique, non-overlapping pattern for each user

theoretical construct, but Fractions uses symbolic numbers and Dots uses non-
symbolic quantity.

The primary metric of interest is the Weber fraction w for numerosity, which
comes from psychophysics, and is the minimum difference between two quantities
at which the greater quantity can be reliably recognized by an individual, expressed
as a fraction of the smaller quantity. The Weber fraction w of an individual relates
to the ratio r of the quantities compared, the improper fraction of the larger over the
smaller quantity, which yields 75% accurate performance by that individual (Hunt,
2007):

w = r − 1 . (1)

There is a model of performance implied by each of two theories of neural
development; we currently use the Linear Spacing Model:

P(correct) = Φ(
1

w
∗ (r − 1)√

r2 + 1
) (2)

(Dietrich et al., 2016; Dehaene, 2007).
A separate w score is calculated for each section, because they measure different

attributes (Baker & Thissen-Roe, 2021). Although the Weber fraction can be
estimated as a latent trait (Thissen-Roe & Baker, 2021), we originally implemented
it with estimation using a least squares algorithm (Price et al., 2012). We need to
estimate the reliability of the least squares w as a baseline for evaluating the latent
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trait version, as well as for the validity and documentation purposes common to all
pymetrics measures.

For the least squares method, trials were grouped into four difficulty levels, ten
trials each. The trials were also carefully counterbalanced for which side, left or
right, has the correct response, and to foil heuristics applicable to each section, such
as pixels of each color or fractions over one half. This counterbalancing creates an
intentional mixture structure, similar to requirements for curriculum coverage. If we
calculated reliability in a manner that failed to attend to the structure, the phenomena
we have counterbalanced against (e.g., a preference for the left or right side in some
users) would appear as a form of unreliability.

If we were using a sum or mean score, we could use stratified alpha. However,
our scoring algorithm is a form of least squares regression. Previously in the
literature, split-half reliability has been used with estimates of the Weber fraction
for numerosity (Dietrich et al., 2016). Split-half reliability, with the Spearman-
Brown prophecy formula for a full-scale estimate, works for any algorithm that can
calculate a score from half the data, and have that score be an unbiased estimator
of the full-scale score; specifically, for Spearman-Brown, the full-scale score is the
unweighted sum or average of the half-scale scores. The former includes our least
squares algorithm, and the latter is a linear approximation.

While stratified alpha is more commonly referenced in our discipline than
stratified stratified sampling of items for split-half, very often, the latter does
work. We computed split-half reliability for the Weber fractions we obtained
from each Magnitudes subtest, based on constrained halves that maintained the
counterbalancing rules.

4 Composite Scores: The Story of Balloons

A relatively common challenge in estimating the reliability of scores used in
employment testing and organizational development is that many of the scores,
as used, are actually linear composites, or more complex functions, of multiple
component measures. Composite scoring is done to reflect the task complexity and
multifaceted nature of most jobs. For example, an employer may wish to allow
candidates or employees to compensate for one area of weakness with another area
of strength.

The pymetrics system has multiple layers of composite scoring (especially if
taken broadly to include more functional forms than linear combinations). Not only
are predictions of job fit made based on machine learning models using dozens of
individual measures as inputs, some of those individual measures result from scoring
functions that can be themselves interpreted as composites. Two types of these are
described here; the first, simpler type includes several of the measures produced by
the game Balloons.

Balloons is an implementation of the Balloon Analogue Risk Task (BART)
(Fig. 4), which is used to measure risk-taking behavior (Lejuez et al., 2002; Lauriola
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Fig. 4 Balloons. Left: Pumping up a blue balloon. This balloon is slowly expanding to fill the
white space after thirty pumps, each good for $0.05. Right: Oops! This orange balloon popped
after seven pumps. The user will not receive $0.35

et al., 2014; Charness et al., 2013). It taps into risk propensity and learning under
uncertainty.

As a user, you pump up a balloon as much as you can before it pops. If you stop
and it hasn’t popped, you get paid game money for how much you pumped it up.
If you pop the balloon, you get nothing. The popping happens at random within a
specified distribution, not at the same number of pumps each time. There are three
colors with different pop distributions. Each user is presented thirteen balloons of
each color, giving the opportunity to learn over time.

High risk propensity in the BART has been found to be significantly associated
with numerous real-world behaviors, including effective workplace maverickism
(Gardiner & Jackson, 2012), propensity for gambling (Lejuez et al., 2002, 2003),
and novel task learning speed (Humphreys et al., 2013). Low risk propensity, that
is, caution, has been associated with more conservative workplace behavior and
higher positions of power (Maner et al., 2007). Different job functions and types call
for different levels of risk propensity (Nicholson et al., 2005), yet risk propensity
remains stable within individuals (Josef et al., 2016). This combination makes it
useful to pymetrics for assessing job fit.

The pymetrics implementation of Balloons produces several measures of change
between the first and last few trials. Do you become more confident, and increase
the number of pumps before you collect your money? Do you figure out where you
need to stop to avoid popping so many balloons? Do you get faster or slow down at
pumping each balloon? These change scores are computed as differences between
ordinary mean scores. This, then, begins our discussion of scores that are derived
from multiple simpler scores: composite scores.

Fortunately for the case of Balloons, reliability of difference scores is a solved
problem. There is a straightforward formula for the calculation of reliability for
difference scores, as given by Feldt and Brennan (1989):

ρDD′ = 1 − σ 2
X2

∗ (1 − ρX2X
′
2
) + σ 2

X1
∗ (1 − ρX1X

′
1
)

σ 2
(X2−X1)

(3)
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With this formula, the reliability ρDD′ of the unit-weighted difference score D
= X2 - X1 can be computed from the reliabilities ρXX′ and variances σ 2

X of each
component measure X, as well as the variance σ 2

(X2−X1)
of the difference score

itself. The latter works to index how non-redundant the two measures are; taking
the difference of two measures that are too closely correlated will result in a low-
variance, low-reliability, not-very-useful difference score.

We were able to use this formula for changes in pump speed and pop frequency,
and the establishment of a margin before a user expects a balloon to pop, as well as
several other difference scores across the pymetrics games. Similar formulas exist,
and are presented in the same chapter (Feldt & Brennan, 1989) for other common
linear composites such as unweighted or weighted sums of two or more scores.

5 Composite Scores: The Story of Lengths

Not all derived scores, however, are linear composites. Estimates of reliability for
derived scores were needed, but in a different way, for the game called Lengths.

Lengths is adapted from the Probabilistic Reward Task (PRT), which was
developed to measure reward responsiveness and reinforcement learning (Pizzagalli
et al., 2008, 2005). In Lengths, a user is asked to distinguish between two slightly
different emoji faces, presented sequentially over seventy trials (Fig. 5). Both faces
are variations on the still-face emoji, presented in white lines on a dark blue
background for contrast. In the “long mouth” face, the flat-line mouth is a few
pixels longer than in the “short mouth” face. The difference between faces is subtle,
designed to be a Just Noticeable Difference under reasonable play conditions.

Fig. 5 Lengths. Long and
short mouth face, enlarged
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Users receive intermittent rewards for correct identification, but the reward
schemes are different for the two faces, and one has a higher expected value; it is
better for earning game money. The higher expected value emoji face is denoted
“rich” and the lower expected value condition is denoted “lean.” There are two
alternate forms with different reward patterns associated with each face, as well
as different sequences of “long mouth” and “short mouth” emoji faces.

The primary measure of Lengths is a measure of reward sensitivity, operational-
ized as response bias. Do you favor the high-reward face when you’re not sure which
one you’re looking at? Do you default to it? And by how much?

The formula for computation of response bias is adapted from earlier literature.
Pizzagalli et al. (2008) used the following formula:

b = 0.5 ∗ log(
Crich ∗ Ilean

Clean ∗ Irich

) (4)

In this formula, the C and I elements are counts of correct and incorrect
identifications in each condition. The Pizzagalli formula is equivalent to a difference
of log odds ratios:

b = 0.5 ∗ (log(
Crich

Irich

) − log(
Clean

Ilean

)) (5)

However, in rare cases, this formula can lead to division by zero or taking the
logarithm of zero. In order to prevent such cases in our large operational setting, as
well as to more conservatively score extreme observed performance (e.g. “lucky
streaks” or forms of inattentive responding), each observed response count was
increased by one-half response, a simple projection of what might have occurred
if the game were extended. (A more sophisticated approach might have been the use
of a Bayesian prior; however, the practical effect would be similar.)

b = 0.5 ∗ log(
(Crich + 0.5) ∗ (Ilean + 0.5)

(Clean + 0.5) ∗ (Irich + 0.5)
) (6)

There remains a simpler formulation as a difference of log odds ratios, albeit with
the half-response adjustment included.

b = 0.5 ∗ (log(
(Crich + 0.5)

(Irich + 0.5)
) − log(

(Clean + 0.5)

(Ilean + 0.5)
)) (7)

It is worth noting that these scoring formulae give relative emphasis to the
less-common incorrect identifications. (They are less common in that individuals
perform above chance; they are not rare.) Theoretically speaking, errors are more
informative than correct responses.

As far as calculating reliability goes, the response bias measure is derived from
two simple sum scores and two transformations of the same sum scores; the correct
and incorrect counts for each face must add up to the number of times the face
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is presented. The reliability of each sum score can be estimated simply. However,
getting from those component reliabilities to the reliability of b, the response bias
measure, is more complex.

Feldt and Brennan (1989) didn’t cover products, or quotients, or logarithms of
scores! And for good reason. Only linear composites have consistent reliability
across users and scores, even if all the components behave according to classical
test theory. In a multiplicative composite, the standard error of measurement
contribution for each component score depends on the value of the other component
score. There are similarly nonlinear behaviors in the standard error of measurement
of proportions, exponents and logarithms.

However, as Feldt and Brennan (1989) did, we can apply standard propagation
of error rules to obtain each individual’s standard error of measurement in a large
and representative sample of our user population. That standard error varies for
different individuals. Therefore, as in other cases where conditional standard error
of measurement is appropriate, we can calculate the marginal reliability across the
population.

Error propagation turned out to be simplest for a weighted sum of two log odds
components, although there were equally valid possibilities for calculating com-
posite reliability using the original log-of-quotient-of-products version. Because the
frequency of correct responses and the frequency of incorrect responses are linearly
dependent—they sum to one—each log odds component is an expression of the
form described by y in the equation below, where x is proportion incorrect and c is
the half-response.

y = log(
(1 − x + c)

(x + c)
) (8)

From this, we can derive a function for the standard error of y in terms of the
value of x and the standard error of x.

sy = sx ∗ (
1

1 − x + c
+ 1

x + c
) (9)

Once the standard errors of the log odds components are obtained, they can be
used with ordinary linear composite rules, as in the previous section, to produce a
reliability estimate across the two mouth lengths.

Using this method, we obtained, as we had hoped, similar marginal reliability
estimates for the two alternate forms, supporting their use in parallel.

6 Simulation and Modeling: The Story of Digits

When no formula seems immediately appropriate, we can sometimes gain insight
into the reliability of a measure through process modeling. As an example, here is
the story of Digits.



12 A. Thissen-Roe

Digits is a visual forward digit span task. Several digits are presented on screen
one at a time, after which the user is asked to type in those digits, in order. If the
user gets it right, the task is repeated with a sequence one digit longer. If the user
gets a sequence wrong, the next sequence has one less digit the next time. On the
third error, the game terminates, and the primary score is the length of the longest
sequence correctly recalled.

A wide variety of jobs call for a good working memory, the ability to hold
information briefly in mind without external assistance. Importantly to pymetrics,
memory span tasks have been found to show smaller differences between demo-
graphic groups than more general measures of cognitive ability (Verive &McDaniel,
1996); it is thus more feasible to create a fair composite score that includes digit
span, when it is demonstrated to be job-relevant.

Digit span measures have been around for more than a century, and there are
numerous established methods in the literature for computing their reliability, each
dependent on the specifics of the task. Non-adapting versions of the digit span
task (and other related memory span tasks) are amenable to estimation of split-
half reliability or Cronbach’s alpha (Waters & Caplan, 2003). Sometimes digit span
reliability is obtained just by having some or all users do the task twice, and then
correlating the results. However, in an effort to respect our users’ time, we use a
simple adaptive form and only present the task once.

In order to explore how error of measurement arises and manifests in Digits, we
simulated user behavior using a simple item response model that has an error term
built in. The model was a two-parameter normal ogive model, with a mean drawn
from a distribution that approximates our observed scores, and a constant standard
deviation across simulees, spans and trials.

While the standard deviation of the digit span score was observable in our data,
the standard deviation parameter of the item characteristic curve (a transformation
of item discriminability) was not directly observable. The simulation setup allowed
us to test a range of values for the parameter, and map the effects on observable
individual and population metrics. One such metric was the difference in length
between the highest span with a correct response and the last span tested, which by
definition got an incorrect response. The possible values are −1, 0 and 1, except
in the rare case where a user enters no correct values, usually due to technical
problems.

The objective of the simulation, then, was to relate the standard deviation
parameter of the item characteristic curve to the proportions of each of the
three possible last span deltas, and from that function, map the actual observed
proportions back to a standard deviation parameter, or at least a small range of
plausible parameter values. The standard deviation parameter can be translated back
into a reliability estimate, using the concept that a reliability ρXX′ is the proportion
of score variance σ 2

X not attributable to error of measurement.

ρXX′ = (σ 2
X − ε2)

σ 2
X

(10)



Reliability Estimation 13

Because the stopping rule depends on a single (third) error, the reliability of the
measure is effectively the reliability of a single item response.

The assumption that the standard deviation parameter (or item discriminability)
holds constant across all individuals and sequence lengths is important. There is no
reason from the theory of working memory to believe it must be constant; however,
it is necessary to obtain a constant estimate of reliability across all users and scores
on Digits. Therefore, the simple model was used.

The form of the simulation study allowed for different approaches to estimating
the standard deviation parameter. Optimization methods such as maximum likeli-
hood could be used to obtain a single best value. First, however, we chose to plot
the simulation results, in order to visually assess the range of plausible values, as
well as checking to see that the model was plausible at all given the actual triplet of
observed last span delta frequencies.

The simulation results, and the observed user proportions, are plotted in Fig. 6. If
the model were perfect, the top, middle and bottom pairs of solid and dashed lines
should cross at the same left-right location. They don’t. That’s a sign of model misfit.
In particular, the model doesn’t account for the handful of users with technical
problems, and also under-predicts a small percentage of users that appear to give
up at some point, whether due to frustration or interruptions. These few users have
all three sequential errors right at the end, and often the kind of error that suggests
not trying (e.g., blank, repetitive or very brief responses).

The misfit isn’t severe. There is a plausible range of values defined by the places
where the three pairs of lines do cross, and a modest amount of difference in
the observed and predicted probabilities through most of that range. That whole
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Fig. 6 Digits: Difference between two span scores as a function of the standard deviation of the
item characteristic curve of recalling an individual sequence of digits. Solid lines represent the
simulated frequencies of each last span delta according to the standard deviation parameter of the
item characteristic curve for a single trial of recalling a digit sequence. Dashed horizontal lines
represent observed frequencies in a population of actual users. Dashed vertical lines show a region
of plausible values for the parameter, with the corresponding measure reliability noted
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plausible range is consistent with values obtained in prior literature for the reliability
of similar digit span tasks (Waters & Caplan, 2003). On the other hand, out toward
the right of the plot, all of the curves flatten out, and don’t change much. This
suggests that neither eyeballing nor optimization is ever going to come to a highly
certain and replicable result here. Nor is it likely to be apparent whether conditional
standard error of measurement is needed.

For now, we choose to use the most conservative estimate of reliability in the
plausible range, with a standard deviation of 1 and a reliability of 0.88.

7 Conclusion

As technology allows measurement to grow more complicated, integrated, and
comprehensive, reliability becomes more difficult to estimate, but not less relevant.
As with other forms of technical quality assurance, we must innovate to keep up
with innovation in scoring, and rely on creativity to keep up with creativity in
measurement. I hope these anecdotes provide some inspiration to you, my readers,
when your own measures are up to their own shenanigans. Good luck to all of you!
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