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Preface

The Covid-19 pandemic was still present in most parts of the world and thus the
86th annual meeting of the Psychometric Society was conducted virtually. This
volume represents presentations given at this meeting. This is the second IMPS
meeting held exclusively online and took place from July 20 to 23, 2021. There
were 244 abstracts submitted (including 164 oral presentations, 53 posters, and 4
organized symposia). The virtual meeting attracted 381 participants, 67 of whom
also participated in virtual short course pre-conference workshops. There was one
keynote presentation, five invited presentations, five spotlight speaker presentations,
one dissertation award presentation, two early career award presentations, and one
career award presentation.

Since the 77th meeting in Lincoln, Nebraska, Springer publishes the proceedings
volume from the annual meeting of the Psychometric Society to allow presenters at
the annual meeting to spread their ideas quickly to the wider research community,
while still undergoing a thorough review process. To share research through virtual
presentations and written work is especially important as meeting in person is still
difficult in many parts of the world in 2021. The previous nine volumes of the
IMPS proceedings were received successfully, and we expect these proceedings to
be successful as well.

The authors were asked to use their presentation at the meeting as the basis of
their chapters. The authors also had the possibility to extend their chapters with
new ideas or additional information. The result is a selection of 24 state-of-the-art
chapters addressing several different aspects of psychometrics. The contents of the
chapters include but are not limited to item response theory, test scores, cognitive
diagnostic models, response time, psychometric models, and several applications
within different fields.

Umeå, Sweden Marie Wiberg
Amsterdam, The Netherlands Dylan Molenaar
Santiago, Chile Jorge González
Madison, WI, USA Jee-Seon Kim
Montreal, QC, Canada Heungsun Hwang
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Some Adventures in Reliability
Estimation

Anne Thissen-Roe

Abstract In many measurement settings, the reliability of a measure can be
straightforwardly estimated. One might have a test that is at least supposed to
be unidimensional, on which everyone is supposed to respond to all the same
items, and the score is a simple sum of correct answers. Or maybe one has a
computerized adaptive test, producing score estimates with individual errors of
measurement and corresponding individual reliability values, all based on the same
posterior distribution. But sometimes, such as in industry applications of gamified
assessment, one arrives at measures for which one wants to estimate the reliability—
and yet, they don’t look much like traditional tests, or use IRT for scoring. Then, one
is obliged to be adventurous. This collection of anecdotes from a career-matching
platform features applications of a variety of techniques for estimating reliability
in unusual situations, such as composite reliability, structured applications of split-
half, and modeling and simulation.

Keywords Reliability · Game-based assessment

1 Background

At pymetrics, we do career matching. We’ve turned a set of classic psychology and
neuroscience experiments into web and phone games. From the gameplay we get
a highly multidimensional set of measures, on which we use machine learning to
map users’ score patterns to job families where people like them are successful.
A benefit of this approach is that we can match applicants to careers based on
qualities of people from every walk of life. Most measures do not have “good”
and “bad” directions, but distinguish the needs of one kind of job task from another,
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2 A. Thissen-Roe

so that every form of responding can have a match to some kind of employment.
Multidimensional measurement also allows us to optimize for prediction subject
to fairness constraints (Wilson et al., 2021). Finally, the two-step approach lets
pymetrics do selection, internal mobility, outplacement, a job marketplace, all based
on one set of measures.

Thus, we have game-based psychological measurement with substantial plurality
of purpose. To support this, the measures need to be robust, reliable, and as broadly
as possible valid. The machine learning algorithm for selection models works to
ensure that irrelevant or noisy measures aren’t used to select people into a job, but
even machine learning benefits from good “feature engineering” of its inputs. That
is, using the tools of psychometrics, we audit measurement quality and find ways to
improve it.

One of the metrics of quality we care about is reliability, or standard error of
measurement, or signal to noise ratio. Those are all algebraic transformations of
each other, and can be conditional or general depending on the circumstances.
Internally at pymetrics, we talk about all three; this chapter discusses the issue
primarily in terms of reliability.

Reliability is corroborating evidence for our validity argument. The preferred,
primary evidence is a criterion validation study, but reliability helps us be sure that
study is not capitalizing on chance. For our client contacts, many of whom have
background in industrial-organizational psychology, reliability is a familiar concept
and a reassuring metric to have available. In addition, reliability estimates help us
evaluate proposed changes to measures, and help us make sense of the factor model
we use for our explanations and descriptions. We have measures that legitimately
measure non-redundant constructs, but we have also had some plain noisy ones, and
reliability information helps us not to confuse the two. Notably, these measurements
are delivered to machine learning models and not directly to humans, alleviating the
need to communicate uncertainty in an individual score to an end user.

Games being games, our measure set is laden with eccentric scoring algorithms.
To estimate reliability, we can’t always rely on Cronbach’s alpha, or get conditional
standard errors from our latent trait estimation procedure. Some of our measures are
strange beasts, and estimating their reliability is an adventure.

So this is a collection of short stories of reliability estimation in our applied
context. I hope they prove encouraging or useful to somebody else who needs to be
creative, or at the very least, they’re entertaining.

These anecdotes include a case where we had interdependencies between the
value of one measure and the reliability of another, and a case where we had
an unusual scoring algorithm combined with extensively counterbalanced stimuli.
There are two cases of composite scores, and finally, one case where the best answer
came from process modeling.
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2 Interdependencies: The Story of Easy or Hard

In modern test scoring, a measure’s reliability may not be a uniform property
applicable to all possible persons, scores and response patterns. We are accustomed
to the standard error of measurement being higher at extreme scores, or perhaps
for atypical response patterns. We can find the conditional standard error of
measurement for a user, and then convert it to an individual reliability value
applicable to a score; we can profile the quality of measurement across a population
or across the range of measurement.

The situation becomes more complicated when the reliability of one measure
depends in part on performance on another measure. This was the challenge
presented by Easy or Hard.

Easy or Hard is adapted for brevity from the Effort-Expenditure for Rewards
Task (EEfRT) (Treadway et al., 2009), a popular measure of motivation for rewards
developed initially to study effort-based decision-making (Fig. 1). A pymetrics user
is presented with a series of choices between an easy task and a hard task. Both
tasks involve tapping a key or touch-screen hotspot a certain number of times
within a certain interval, but the hard one is more demanding: sixty taps in twelve
seconds instead of five times in three seconds. Each choice offers different game
money rewards for the two tasks, with an equal probability of payout upon success,
regardless of the task chosen. The probability of payout varies across trials. Easy or
Hard has nine different expected value differences based on probability and amount
of payout.

There is a total time limit of two minutes, after which the game ends. This makes
Easy or Hard, in essence, a resource allocation task: a finite quantity of available
time must be divided among task-choosing decision time, time to complete easy
tasks, and time to complete hard tasks. Hard tasks have higher rewards, but can take
up to twelve seconds to complete, and in addition to the random probability of no
payout, it is realistically possible to fail the hard tap task. By contrast, it’s essentially
impossible to fail the easy task, but it is easy to complete it quickly and move on.
The user is not required to wait out the three seconds. Two or three easy task payouts
can easily exceed one hard task payout. Further, any time spent deciding between
the tasks and their offered rewards is time without pay.

Some users scan the information and then pick a task based on calculation or
heuristics. Some users always choose the easy task, and others always choose hard.
The decision itself is a speeded task, as well. After five seconds, a task is assigned
at random, which is undesirable as a strategy for obtaining rewards.

In addition to neuroscience findings linking hard task selection on the EEfRT to
reward processing brain activity (Treadway et al., 2012), the EEfRT fits in a class of
measures of extrinsic motivation (Ryan & Deci, 2000). In the workplace, a measure
of extrinsic motivation can provide insight into how compensation may motivate
employees, in particular when indicators of intrinsic motivation are also considered
(Cerasoli et al., 2014). A multidimensional view of Easy or Hard begins to address
this construct space.
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Fig. 1 Easy or Hard. Left side: Task selection. The user has five seconds to choose between an
“Easy” and a “Hard” task. Either task, if completed successfully, gives the user a specified chance
(here, 88%) of receiving a game-money reward. The reward is always larger for the “Hard” task.
Right side: Task completion. A user selecting the “Easy” task must press the spacebar five times
in three seconds in order to have the specified probability (here, 12%) of obtaining a game-money
reward. A user selecting the “Hard” task must press the spacebar sixty times in twelve seconds in
order to have the same chance of a higher reward

We are therefore, first, interested in a user’s probability of selecting the hard task
under different expected value conditions, and overall. Some users show a consistent
preference for the hard task even when the rewards are low and its selection is
not strategic; this may be an indicator of one kind of intrinsic motivation. Another
measure is the time taken to choose a task, an indicator of attention paid to the
differential reward information.

The challenge in calculating the reliability of either the hard task preference
measure or the response time measure is that both are conditional on the number of
decision responses contributing to the measure, which is in turn conditional on the
number of hard tasks selected (or assigned following timeout) and also the amount
of time spent on the decision screen. If a user times out or nearly so, and always
chooses or is assigned hard, that user can run out of total time in five tasks. We
observe some cases of that in our data. We also see the occasional user that can race
through thirty, fifty, or a hundred easy tasks, without reading anything. The content
of a user’s choices determines the quality of that user’s measurement.

It was, however, possible to calculate Cronbach’s alpha for the subset of users
that reached each item from the first to the 30th, which included fewer users for
each additional item after five. We produced the whole table, but when we need a
single number for reporting, we prefer the reliability for a user at the median number
of trials.

As shown in Fig. 2, the quality of the RT measures improves rapidly in the
first few trials, and more slowly thereafter for a long time. Averaging log (RT) is
unsurprisingly better than averaging RT, but the same general behavior can be seen
in both.

For the probability of choosing hard, however, the reliability dips for additional
responses between about ten and fifteen. Around ten responses, the number of



Reliability Estimation 5

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

All items

Item Responses

R
el

ia
bi

lit
y

Proportion reached

Chose Hard

RT

log(RT)

Fig. 2 Easy or Hard: Reliability as a function of items reached. Generally, measures of response
time (averaged directly or as logarithms) increased in reliability with each additional task
completed by the user. However, the reliability of preference for the “Hard” task (“Chose Hard”)
dipped in reliability between ten and fifteen items reached. This is a range restriction phenomenon;
due to the time limit, users can only reach items above the low teens by sometimes selecting “Easy”
tasks. The higher the item count, the more “Easy” tasks are generally necessary to reach it. The
range of possible scores on the preference measure is limited, and the variance reduced, on the
right side of the plot. This in turn suppresses the reliability

users reaching each trial declines sharply, especially among the users with a high
probability of picking hard. As a result, the variance of preference for hard across
users drops, and by fifteen items, the complete-data sample is left with only users
who chose several easy tasks. Even if the absolute error of measurement stays the
same or improves, the reliability drops, relative to the surviving user population at
each item. It’s a good reminder that reliability isn’t solely a property of the test, but
of the composition of the sample.

3 Counterbalancing: The Story of Magnitudes

In working with tests that have subject matter constraints, curriculum coverage
requirements, and other intentional non-uniformities in item content, there is a need
to assess reliability in a way that recognizes that the mixture of content is intentional
and would be consistent across hypothetical alternate forms. We frequently see, for
example, a stratified version of Cronbach’s alpha in use.

What happens, though, when an intentional mixture of items meets a scoring
method that isn’t a sum score, mean score, or latent trait score? This was the
challenge we faced for two of the measures in Magnitudes.

Magnitudes is a pair of measures of Approximate Number Sense (ANS): Dots
and Fractions (Fig. 3). Each measure is made up of quantitative comparison items.
In Dots, the user selects the side that has the higher proportion of yellow dots.
In Fractions, the user selects the larger fraction. They measure nearly the same
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Fig. 3 Magnitudes. Left side: Fractions. A user is presented with two fractions side by side, and
must choose the larger. The ratio of the two fractions is manipulated in order to increase or decrease
difficulty. Right side: Dots. A user is presented two side-by-side arrays of mixed yellow and blue
dots, and must select the array with proportionally more yellow dots. The numbers of blue and
yellow dots are manipulated so as to contrive a range of ratios of proportions yellow. Automatic
item generation is used to produce item clones with the specified dot counts, with the variably-sized
dots distributed in a unique, non-overlapping pattern for each user

theoretical construct, but Fractions uses symbolic numbers and Dots uses non-
symbolic quantity.

The primary metric of interest is the Weber fraction w for numerosity, which
comes from psychophysics, and is the minimum difference between two quantities
at which the greater quantity can be reliably recognized by an individual, expressed
as a fraction of the smaller quantity. The Weber fraction w of an individual relates
to the ratio r of the quantities compared, the improper fraction of the larger over the
smaller quantity, which yields 75% accurate performance by that individual (Hunt,
2007):

w = r − 1 . (1)

There is a model of performance implied by each of two theories of neural
development; we currently use the Linear Spacing Model:

P(correct) = Φ(
1

w
∗ (r − 1)√

r2 + 1
) (2)

(Dietrich et al., 2016; Dehaene, 2007).
A separate w score is calculated for each section, because they measure different

attributes (Baker & Thissen-Roe, 2021). Although the Weber fraction can be
estimated as a latent trait (Thissen-Roe & Baker, 2021), we originally implemented
it with estimation using a least squares algorithm (Price et al., 2012). We need to
estimate the reliability of the least squares w as a baseline for evaluating the latent



Reliability Estimation 7

trait version, as well as for the validity and documentation purposes common to all
pymetrics measures.

For the least squares method, trials were grouped into four difficulty levels, ten
trials each. The trials were also carefully counterbalanced for which side, left or
right, has the correct response, and to foil heuristics applicable to each section, such
as pixels of each color or fractions over one half. This counterbalancing creates an
intentional mixture structure, similar to requirements for curriculum coverage. If we
calculated reliability in a manner that failed to attend to the structure, the phenomena
we have counterbalanced against (e.g., a preference for the left or right side in some
users) would appear as a form of unreliability.

If we were using a sum or mean score, we could use stratified alpha. However,
our scoring algorithm is a form of least squares regression. Previously in the
literature, split-half reliability has been used with estimates of the Weber fraction
for numerosity (Dietrich et al., 2016). Split-half reliability, with the Spearman-
Brown prophecy formula for a full-scale estimate, works for any algorithm that can
calculate a score from half the data, and have that score be an unbiased estimator
of the full-scale score; specifically, for Spearman-Brown, the full-scale score is the
unweighted sum or average of the half-scale scores. The former includes our least
squares algorithm, and the latter is a linear approximation.

While stratified alpha is more commonly referenced in our discipline than
stratified stratified sampling of items for split-half, very often, the latter does
work. We computed split-half reliability for the Weber fractions we obtained
from each Magnitudes subtest, based on constrained halves that maintained the
counterbalancing rules.

4 Composite Scores: The Story of Balloons

A relatively common challenge in estimating the reliability of scores used in
employment testing and organizational development is that many of the scores,
as used, are actually linear composites, or more complex functions, of multiple
component measures. Composite scoring is done to reflect the task complexity and
multifaceted nature of most jobs. For example, an employer may wish to allow
candidates or employees to compensate for one area of weakness with another area
of strength.

The pymetrics system has multiple layers of composite scoring (especially if
taken broadly to include more functional forms than linear combinations). Not only
are predictions of job fit made based on machine learning models using dozens of
individual measures as inputs, some of those individual measures result from scoring
functions that can be themselves interpreted as composites. Two types of these are
described here; the first, simpler type includes several of the measures produced by
the game Balloons.

Balloons is an implementation of the Balloon Analogue Risk Task (BART)
(Fig. 4), which is used to measure risk-taking behavior (Lejuez et al., 2002; Lauriola
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Fig. 4 Balloons. Left: Pumping up a blue balloon. This balloon is slowly expanding to fill the
white space after thirty pumps, each good for $0.05. Right: Oops! This orange balloon popped
after seven pumps. The user will not receive $0.35

et al., 2014; Charness et al., 2013). It taps into risk propensity and learning under
uncertainty.

As a user, you pump up a balloon as much as you can before it pops. If you stop
and it hasn’t popped, you get paid game money for how much you pumped it up.
If you pop the balloon, you get nothing. The popping happens at random within a
specified distribution, not at the same number of pumps each time. There are three
colors with different pop distributions. Each user is presented thirteen balloons of
each color, giving the opportunity to learn over time.

High risk propensity in the BART has been found to be significantly associated
with numerous real-world behaviors, including effective workplace maverickism
(Gardiner & Jackson, 2012), propensity for gambling (Lejuez et al., 2002, 2003),
and novel task learning speed (Humphreys et al., 2013). Low risk propensity, that
is, caution, has been associated with more conservative workplace behavior and
higher positions of power (Maner et al., 2007). Different job functions and types call
for different levels of risk propensity (Nicholson et al., 2005), yet risk propensity
remains stable within individuals (Josef et al., 2016). This combination makes it
useful to pymetrics for assessing job fit.

The pymetrics implementation of Balloons produces several measures of change
between the first and last few trials. Do you become more confident, and increase
the number of pumps before you collect your money? Do you figure out where you
need to stop to avoid popping so many balloons? Do you get faster or slow down at
pumping each balloon? These change scores are computed as differences between
ordinary mean scores. This, then, begins our discussion of scores that are derived
from multiple simpler scores: composite scores.

Fortunately for the case of Balloons, reliability of difference scores is a solved
problem. There is a straightforward formula for the calculation of reliability for
difference scores, as given by Feldt and Brennan (1989):

ρDD′ = 1 − σ 2
X2

∗ (1 − ρX2X
′
2
) + σ 2

X1
∗ (1 − ρX1X

′
1
)

σ 2
(X2−X1)

(3)
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With this formula, the reliability ρDD′ of the unit-weighted difference score D
= X2 - X1 can be computed from the reliabilities ρXX′ and variances σ 2

X of each
component measure X, as well as the variance σ 2

(X2−X1)
of the difference score

itself. The latter works to index how non-redundant the two measures are; taking
the difference of two measures that are too closely correlated will result in a low-
variance, low-reliability, not-very-useful difference score.

We were able to use this formula for changes in pump speed and pop frequency,
and the establishment of a margin before a user expects a balloon to pop, as well as
several other difference scores across the pymetrics games. Similar formulas exist,
and are presented in the same chapter (Feldt & Brennan, 1989) for other common
linear composites such as unweighted or weighted sums of two or more scores.

5 Composite Scores: The Story of Lengths

Not all derived scores, however, are linear composites. Estimates of reliability for
derived scores were needed, but in a different way, for the game called Lengths.

Lengths is adapted from the Probabilistic Reward Task (PRT), which was
developed to measure reward responsiveness and reinforcement learning (Pizzagalli
et al., 2008, 2005). In Lengths, a user is asked to distinguish between two slightly
different emoji faces, presented sequentially over seventy trials (Fig. 5). Both faces
are variations on the still-face emoji, presented in white lines on a dark blue
background for contrast. In the “long mouth” face, the flat-line mouth is a few
pixels longer than in the “short mouth” face. The difference between faces is subtle,
designed to be a Just Noticeable Difference under reasonable play conditions.

Fig. 5 Lengths. Long and
short mouth face, enlarged
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Users receive intermittent rewards for correct identification, but the reward
schemes are different for the two faces, and one has a higher expected value; it is
better for earning game money. The higher expected value emoji face is denoted
“rich” and the lower expected value condition is denoted “lean.” There are two
alternate forms with different reward patterns associated with each face, as well
as different sequences of “long mouth” and “short mouth” emoji faces.

The primary measure of Lengths is a measure of reward sensitivity, operational-
ized as response bias. Do you favor the high-reward face when you’re not sure which
one you’re looking at? Do you default to it? And by how much?

The formula for computation of response bias is adapted from earlier literature.
Pizzagalli et al. (2008) used the following formula:

b = 0.5 ∗ log(
Crich ∗ Ilean

Clean ∗ Irich

) (4)

In this formula, the C and I elements are counts of correct and incorrect
identifications in each condition. The Pizzagalli formula is equivalent to a difference
of log odds ratios:

b = 0.5 ∗ (log(
Crich

Irich

) − log(
Clean

Ilean

)) (5)

However, in rare cases, this formula can lead to division by zero or taking the
logarithm of zero. In order to prevent such cases in our large operational setting, as
well as to more conservatively score extreme observed performance (e.g. “lucky
streaks” or forms of inattentive responding), each observed response count was
increased by one-half response, a simple projection of what might have occurred
if the game were extended. (A more sophisticated approach might have been the use
of a Bayesian prior; however, the practical effect would be similar.)

b = 0.5 ∗ log(
(Crich + 0.5) ∗ (Ilean + 0.5)

(Clean + 0.5) ∗ (Irich + 0.5)
) (6)

There remains a simpler formulation as a difference of log odds ratios, albeit with
the half-response adjustment included.

b = 0.5 ∗ (log(
(Crich + 0.5)

(Irich + 0.5)
) − log(

(Clean + 0.5)

(Ilean + 0.5)
)) (7)

It is worth noting that these scoring formulae give relative emphasis to the
less-common incorrect identifications. (They are less common in that individuals
perform above chance; they are not rare.) Theoretically speaking, errors are more
informative than correct responses.

As far as calculating reliability goes, the response bias measure is derived from
two simple sum scores and two transformations of the same sum scores; the correct
and incorrect counts for each face must add up to the number of times the face
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is presented. The reliability of each sum score can be estimated simply. However,
getting from those component reliabilities to the reliability of b, the response bias
measure, is more complex.

Feldt and Brennan (1989) didn’t cover products, or quotients, or logarithms of
scores! And for good reason. Only linear composites have consistent reliability
across users and scores, even if all the components behave according to classical
test theory. In a multiplicative composite, the standard error of measurement
contribution for each component score depends on the value of the other component
score. There are similarly nonlinear behaviors in the standard error of measurement
of proportions, exponents and logarithms.

However, as Feldt and Brennan (1989) did, we can apply standard propagation
of error rules to obtain each individual’s standard error of measurement in a large
and representative sample of our user population. That standard error varies for
different individuals. Therefore, as in other cases where conditional standard error
of measurement is appropriate, we can calculate the marginal reliability across the
population.

Error propagation turned out to be simplest for a weighted sum of two log odds
components, although there were equally valid possibilities for calculating com-
posite reliability using the original log-of-quotient-of-products version. Because the
frequency of correct responses and the frequency of incorrect responses are linearly
dependent—they sum to one—each log odds component is an expression of the
form described by y in the equation below, where x is proportion incorrect and c is
the half-response.

y = log(
(1 − x + c)

(x + c)
) (8)

From this, we can derive a function for the standard error of y in terms of the
value of x and the standard error of x.

sy = sx ∗ (
1

1 − x + c
+ 1

x + c
) (9)

Once the standard errors of the log odds components are obtained, they can be
used with ordinary linear composite rules, as in the previous section, to produce a
reliability estimate across the two mouth lengths.

Using this method, we obtained, as we had hoped, similar marginal reliability
estimates for the two alternate forms, supporting their use in parallel.

6 Simulation and Modeling: The Story of Digits

When no formula seems immediately appropriate, we can sometimes gain insight
into the reliability of a measure through process modeling. As an example, here is
the story of Digits.
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Digits is a visual forward digit span task. Several digits are presented on screen
one at a time, after which the user is asked to type in those digits, in order. If the
user gets it right, the task is repeated with a sequence one digit longer. If the user
gets a sequence wrong, the next sequence has one less digit the next time. On the
third error, the game terminates, and the primary score is the length of the longest
sequence correctly recalled.

A wide variety of jobs call for a good working memory, the ability to hold
information briefly in mind without external assistance. Importantly to pymetrics,
memory span tasks have been found to show smaller differences between demo-
graphic groups than more general measures of cognitive ability (Verive &McDaniel,
1996); it is thus more feasible to create a fair composite score that includes digit
span, when it is demonstrated to be job-relevant.

Digit span measures have been around for more than a century, and there are
numerous established methods in the literature for computing their reliability, each
dependent on the specifics of the task. Non-adapting versions of the digit span
task (and other related memory span tasks) are amenable to estimation of split-
half reliability or Cronbach’s alpha (Waters & Caplan, 2003). Sometimes digit span
reliability is obtained just by having some or all users do the task twice, and then
correlating the results. However, in an effort to respect our users’ time, we use a
simple adaptive form and only present the task once.

In order to explore how error of measurement arises and manifests in Digits, we
simulated user behavior using a simple item response model that has an error term
built in. The model was a two-parameter normal ogive model, with a mean drawn
from a distribution that approximates our observed scores, and a constant standard
deviation across simulees, spans and trials.

While the standard deviation of the digit span score was observable in our data,
the standard deviation parameter of the item characteristic curve (a transformation
of item discriminability) was not directly observable. The simulation setup allowed
us to test a range of values for the parameter, and map the effects on observable
individual and population metrics. One such metric was the difference in length
between the highest span with a correct response and the last span tested, which by
definition got an incorrect response. The possible values are −1, 0 and 1, except
in the rare case where a user enters no correct values, usually due to technical
problems.

The objective of the simulation, then, was to relate the standard deviation
parameter of the item characteristic curve to the proportions of each of the
three possible last span deltas, and from that function, map the actual observed
proportions back to a standard deviation parameter, or at least a small range of
plausible parameter values. The standard deviation parameter can be translated back
into a reliability estimate, using the concept that a reliability ρXX′ is the proportion
of score variance σ 2

X not attributable to error of measurement.

ρXX′ = (σ 2
X − ε2)

σ 2
X

(10)
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Because the stopping rule depends on a single (third) error, the reliability of the
measure is effectively the reliability of a single item response.

The assumption that the standard deviation parameter (or item discriminability)
holds constant across all individuals and sequence lengths is important. There is no
reason from the theory of working memory to believe it must be constant; however,
it is necessary to obtain a constant estimate of reliability across all users and scores
on Digits. Therefore, the simple model was used.

The form of the simulation study allowed for different approaches to estimating
the standard deviation parameter. Optimization methods such as maximum likeli-
hood could be used to obtain a single best value. First, however, we chose to plot
the simulation results, in order to visually assess the range of plausible values, as
well as checking to see that the model was plausible at all given the actual triplet of
observed last span delta frequencies.

The simulation results, and the observed user proportions, are plotted in Fig. 6. If
the model were perfect, the top, middle and bottom pairs of solid and dashed lines
should cross at the same left-right location. They don’t. That’s a sign of model misfit.
In particular, the model doesn’t account for the handful of users with technical
problems, and also under-predicts a small percentage of users that appear to give
up at some point, whether due to frustration or interruptions. These few users have
all three sequential errors right at the end, and often the kind of error that suggests
not trying (e.g., blank, repetitive or very brief responses).

The misfit isn’t severe. There is a plausible range of values defined by the places
where the three pairs of lines do cross, and a modest amount of difference in
the observed and predicted probabilities through most of that range. That whole
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Fig. 6 Digits: Difference between two span scores as a function of the standard deviation of the
item characteristic curve of recalling an individual sequence of digits. Solid lines represent the
simulated frequencies of each last span delta according to the standard deviation parameter of the
item characteristic curve for a single trial of recalling a digit sequence. Dashed horizontal lines
represent observed frequencies in a population of actual users. Dashed vertical lines show a region
of plausible values for the parameter, with the corresponding measure reliability noted
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plausible range is consistent with values obtained in prior literature for the reliability
of similar digit span tasks (Waters & Caplan, 2003). On the other hand, out toward
the right of the plot, all of the curves flatten out, and don’t change much. This
suggests that neither eyeballing nor optimization is ever going to come to a highly
certain and replicable result here. Nor is it likely to be apparent whether conditional
standard error of measurement is needed.

For now, we choose to use the most conservative estimate of reliability in the
plausible range, with a standard deviation of 1 and a reliability of 0.88.

7 Conclusion

As technology allows measurement to grow more complicated, integrated, and
comprehensive, reliability becomes more difficult to estimate, but not less relevant.
As with other forms of technical quality assurance, we must innovate to keep up
with innovation in scoring, and rely on creativity to keep up with creativity in
measurement. I hope these anecdotes provide some inspiration to you, my readers,
when your own measures are up to their own shenanigans. Good luck to all of you!
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Detecting Testlet Effects in Cognitive
Diagnosis Models

Youn Seon Lim

Abstract A testlet is a cluster of items that shares a common stimulus (e.g., a
set of questions all related to the same text passage). The testlet effect calls into
question one of the key statistical assumptions of any tests: local independence of
the test item responses. Local dependence among test item responses is typically
induced by the under-specification of the latent ability dimensions supposed to
underlie a test. Hence, evaluating whether local independence holds for the items of
a given test can be used as a diagnostic tool for detecting testlet effects. This study
studied and compared the MH statistic, the Chi-squared statistic and the absolute
deviations of observed and predicted corrections in detecting testlet effects in
cognitively diagnostic tests. Various simulation studies were conducted to evaluate
their performance under a wide variety of conditions.

Keywords Cognitive diagnosis models · Testlet effects · Mantel-Haenszel
statistic · Chi-squared statistic · Absolute deviations of observed and predicted
corrections

1 Introduction

A testlet is “a group of items related to a single content area that is developed
as a unit and contains a fixed number of predetermined paths that an examinee
may follow” (Wainer & Kiely, 1987, p. 190). A typical example is a reading
comprehension test in which a reading passage is used as the stimulus for more than
one item to measure examinees’ ability to comprehend the reading passage. Another
example refers to ordering sentences to make a complete passages, where the items
(sentences) are embedded in the passage itself. Responses to items within a testlet
calls into question of the key statistical assumptions of any test: local independence
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of the test item responses. Local dependence among test items is typically induced
by the under-specification of the measured latent dimensions by a test (i.e., Lim &
Drasgow, 2019a,b; Rupp et al., 2010).

Various methods have been suggested for examining local dependence in cog-
nitive diagnosis models. For example, de la Torre and Douglas (2004) evaluated
item pair dependence using bivariate information. Templin and Henson (2006)
expanded their method by using a parametric bootstrap method to estimate the
distribution of the item association measures to estimate a p-value for their test
statistic. Chen et al. (2013) used comparing the residual between the observed
and expected Fisher-transformed correlation, and the residual between the observed
and expected between log-odds ratios for the measure of association for each pair
of items. Lim and Drasgow (2019a,b) also modified the Mantel Haenszel (MH)
statistic for the measure. Those statistics have been used for the model fit or Q-
matrix fit evaluation. This study evaluates the performances of the MH statistic
(Lim & Drasgow, 2019a,b), the Chi-squared statistic xjj ′ (Chen & Thissen, 1997),
the absolute deviations of observed and predicted corrections rjj ′ (Chen et al.,
2013) in detecting testlet effects in cognitively diagnostic test in various simulation
conditions.

2 Cognitive Diagnosis Models

Three cognitive diagnosis models were considered in this study: Deterministic-
Input, Noisy “And” gate (DINA) model, Generalized Deterministic Inputs, Noisy
“And” gate (G-DINA) model (saturated model), and Additive Cognitive Diagnosis
Model (A-CDM).

Let Yij denote the binary item response of the ith examinee to the j th item,
i = 1, . . . , I, j = 1, . . . , J with 1 = correct and 0 = incorrect. Cognitive diagnosis
models formulate the conditional distribution of item responses Yij given examinee
latent attributes αi = {αik}, for k = 1, . . . , K. (e.g., de la Torre & Douglas, 2004).
Each entry αik indicates whether the ith examinee has mastered the kth attribute
with 1 = mastered and 0 = not mastered. The binary J × K Q-matrix is an essential
component of cognitive diagnosis models. The Q-matrix has a row for each item,
j = 1, . . . , J, and a column for each attribute, k = 1, . . . , K . Each entry qjk in the
matrix indicates whether the kth attribute is required for the solution of the j th item
with 1 = required and 0 = not required.

A common cognitive diagnosis model is the DINAmodel (e.g., Junker & Sijtsma,
2001). In this model, an ideal response ηij is used to indicate whether all required
attributes for the j th item are mastered by the ith examinee. The item response
function (IRF) for the DINA model is

P(Yij = 1 | αi, sj , gj ) = (1 − sj)
ηij g

(1−ηij)

j ,

where sj = P(Yj = 0 | ηj = 1) and gj = P(Yj = 1 | ηj = 0).
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Henson et al. (2009) proposed the Log-Linear Cognitive Diagnosis Model
(LCDM). The LCDM can fit a full continuum of cognitive diagnosis models that
range from fully compensatory models to fully conjunctive models. The DINA
model can be written as a special case of the LCDM. In particular, if an item requires
two attributes, the IRF can be written as

P(Yij = 1 | αi) = exp[λjα1 + λjα2 + (λj )α1α2 − η1]
1 + exp[λjα1 + λjα2 + (λj )α1α2 − η1] ,

where ηj = −ln(gj /1 − gj ) and λj = ηj + ln(sj − 1/sj ).
de la Torre’s Generalized DINA (G-DINA) model is another example (de la

Torre, 2011). Similar to the LCDM, the G-DINA model can be reduced to special
cases of general cognitive diagnosis models with different link functions: identity,
logit, and log. The framework of the G-DINA is based on the DINA model.
However, the 2K latent class memberships of the DINA model are partitioned into
2K�

j latent groups, where K�
j =∑K

k=1 qjk denotes the number of required attributes
for item j . Let α�

lj be the reduced attribute vector whose elements are the required
attributes for item j . Then the probability that a test taker mastering the attribute
pattern α�

lj (i.e., all elements of α�
ljwould answer item j correctly is given by

P(α�
lj ) = P(Yij = 1 | α�

lj )

= λj0 +
K�

j∑

k=1

λjkαljk +
K�

j∑

k′>k

K�
j −1
∑

k=1

λjkk′αljkαljk′ . . . + λj1,...K�
j

K�
j∑

k=1

αljk,

where λj0 is the intercept, λjk is the main effect, λjkk′ and λj1,...K�
j
are interaction

effects.
Without the interaction terms, the G-DINA model becomes the Additive-CDM

(A-CDM). The A-CDM is one of several reduced models that can be derived from
the saturated G-DINA model. The IRF of the additive model is given by

P(α�
lj ) = P(Yij = 1 | α�

lj ) = λj0 +
K�

j∑

k=1

λjkαjk.

Item j has K�
j + 1 parameters in this model. The mastery of an attribute has a

constant and direct impact on the probability of a correct response.

3 Fit Statistics for Local Dependence

Three fit statistics were evaluated in this study: MH statistic (Lim & Drasgow,
2019a,b), the Chi-squared statistic denoted by xjj ′ (Chen & Thissen, 1997), the
absolute deviations of observed and predicted corrections denoted by rjj ′ (Chen
et al., 2013).
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Lim and Drasgow (2019a,b) modified the MH chi-square statistic which were
originally introduced by Mantel and Haenszel (1959) to test for conditional inde-
pendence of two dichotomous or categorical item responses j and j ′ by forming the
row-by-column contingency table, conditional on the levels of the control variable
C, where c = 1, 2, . . . , 2K = C proficiency class membership. Let {ij,j ′c} denote
the frequencies of examinees in the 2 × 2 × C contingency table, and then

MHχ2 = [∑c(i11c −∑c E(i11c)]2
∑

c var(i11c)
,

where E(i11c) = i1+ci+1c/i++c and var(i11c) = i0+ci1+ci+0ci+1c/i2++c(i++c − 1).
The Chi-squared statistic xjj ′ (Chen & Thissen, 1997) is computed by forming

the row-by-column contingency table,

χ2 =
∑

j

∑

j ′

(ijj ′ − E(ijj ′))2

E(ijj ′)
,

where E(ijj ′) =Epq =N
∫

Pj (θ)pPj (θ)q [1−Pi(θ)](1−p)[1−Pj (θ)](1−q)f (θ)dθ,.
where Pi(θ) is the trace link for item j, f (θ) is the population distribution.
For cognitive diagnosis models, E(ijj ′) is estimated by an examinee’s posterior
distributions (Robitzsch et al., 2020).

The absolute deviations of observed and predicted corrections rjj ′ (Chen et al.,
2013) is calculated by

rjj ′ = |Z[Corr(Yj , Yj ′)] − Z[Corr(Yj , Yj ′)]|,

where Corr(·) is the Pearson’s product-moment correlation, Z(·) is the Fisher’s
transformation.

4 Simulation Studies

To investigate the performance of the MH statistic, the Chi-squared statistic xjj ′ ,
the absolute deviations of observed and predicted corrections rjj ′ , a variety of
simulation conditions were studied by crossing the numbers of examinees I , items
J , and examinees’ latent attribute distributions ρ for three different cognitive
diagnosis models.

For each simulation condition, a set of item response vectors was simulated for
100 replications. Item response data of sample sizes I = 500 (small), or 2000 (large)
were drawn from a discretized multivariate normal distribution MVN(0K,

∑
),

where the covariance matrix
∑

has unit variance and common correlation ρ =
0.3 (low) or 0.6 (high). Test lengths J = 20 (short) or 40 (long) were studied.
A Q−matrix was generated randomly from a discrete uniform distribution on the
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Table 1 Correctly specified
Q (K = 3)

Item k1 k2 k3

1 1 0 0

2 0 1 0

3 0 0 1

4 1 0 0

5 1 0 0

6 1 1 0

7 1 0 0

8 0 1 0

9 0 0 1

10 0 1 0

11 1 1 0

12 1 1 0

13 1 0 0

14 0 1 0

15 0 0 1

16 1 0 0

17 0 1 0

18 0 0 1

19 1 0 0

20 1 0 0

Table 2 T-Matrix: testlet specification (M = 2)

Item

Testlet 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0

maximum 2K − 1 possible q-vectors for each condition and fixed for replications.
The correctly specified Q-matrix for J = 20 is presented in Table 1. The Q-matrix
for J = 40 was obtained by duplicating this matrix two times to study the longer
length of item under the same attribute specification conditions.

Data were generated using three different models: the DINAmodel, A-CDM, and
a saturated model (i.e., the G-DINA model). For the DINA model, item parameters
were drawn from Uniform (0, 0.3). For the A-CDM and the saturated model,
like Chen et al. (2013), the parameters were restricted as P(α�

ij )min = 0.10 and
P(α�

ij )max = 0.90, where α�
ij was the reduced attribute vector whose components

are the required attributes for the jth item (see de la Torre, 2011, more details).
A fixed and pre-specified Item-by-testlet T -matrix was utilized to simulate testlet

data. The entry tmj of the T -matrix indicates whether the mth testlet, for m = 1, 2,
. . . , M , includes the j th item. For each replication of 100 replications, the transpose
of T -matrix shown in Table 2 was combined with Q-matrix (K = 3) in Table 1,
to simulate item responses. A model was fitted only with the Q-matrix (K = 3).
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The R Core Team (2020) was used for the estimation in this study (CDM package
Robitzsch et al., 2020).

The MH statistic, Chi-squared statistic xjj ′ (Chen & Thissen, 1997), absolute
deviations of observed and predicted corrections rjj ′ (Chen et al., 2013), and their
corresponding p-values were computed for all (J × (J − 1))/2 item-pairs in an
individual replication. Across 100 trials for each condition, the proportion of times
the p-value of each item-pair was smaller than the significance level 0.05 was
recorded and is summarized.

5 Results

Across 100 trials for each condition, the proportion of times the p-value of
each item-pair was smaller than the significance level 0.05 was recorded and is
summarized in the tables shown below. The type 1 errors and power rates of the three
statistics are reasonable for detecting testlet effects in cognitive diagnosis models.

5.1 Type I Error Study

In this simulation study, the correctly specified Q-matrices (K = 3) were used to fit
the data to examine type I error rates. The summarized rejection rates are reported in
Table 3. The type I error rates of the rjj ′ became conservative when the numbers of
items J and examinees I were increased. The Chi-squared test statistic xjj ′ was very
conservative, with type I error rates below 0.024. The MH statistic got consistent
under all conditions when item J = 40.

Table 3 Type I error study when K = 3

J = 20 J = 40

α with ρ = 0.3 α with ρ = 0.6 α with ρ = 0.3 α with ρ = 0.6

I MH xij ′ rij ′ MH xij ′ rij ′ MH xij ′ rij ′ MH xij ′ rij ′

DINA model

500 0.042 0.019 0.044 0.045 0.014 0.033 0.048 0.017 0.053 0.042 0.020 0.053

2000 0.046 0.023 0.052 0.045 0.015 0.033 0.049 0.019 0.052 0.048 0.019 0.045

A-CDM

500 0.036 0.009 0.029 0.031 0.009 0.026 0.039 0.011 0.030 0.036 0.011 0.028

2000 0.048 0.013 0.030 0.049 0.010 0.026 0.048 0.010 0.029 0.047 0.010 0.026

Saturated model

500 0.034 0.010 0.025 0.033 0.009 0.026 0.040 0.010 0.029 0.035 0.011 0.028

2000 0.047 0.010 0.028 0.045 0.010 0.025 0.046 0.010 0.029 0.047 0.009 0.026
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Table 4 Simulation study: testlet dependent data

J = 20 J = 40

α with ρ = 0.3 α with ρ = 0.6 α with ρ = 0.3 α with ρ = 0.6

I S MH xij ′ rij ′ MH xij ′ rij ′ MH xij ′ rij ′ MH xij ′ rij ′

DINA model

500 T 0.928 0.925 0.946 0.803 0.869 0.925 0.815 0.853 0.900 0.896 0.903 0.937

E 0.052 0.050 0.113 0.041 0.080 0.168 0.042 0.103 0.188 0.044 0.107 0.198

2000 T 0.999 0.998 0.999 0.968 0.995 1.000 0.983 0.993 0.996 0.977 0.996 0.998

E 0.131 0.058 0.124 0.073 0.174 0.267 0.052 0.271 0.372 0.056 0.271 0.366

A-CDM

500 T 0.713 0.770 0.848 0.672 0.779 0.862 0.733 0.758 0.844 0.683 0.769 0.858

E 0.041 0.041 0.081 0.037 0.065 0.117 0.043 0.047 0.094 0.042 0.076 0.137

2000 T 0.998 0.999 1.000 0.987 0.995 0.999 0.996 0.995 0.998 0.989 0.993 0.996

E 0.075 0.105 0.172 0.063 0.197 0.281 0.049 0.140 0.217 0.048 0.272 0.362

Saturated model

500 T 0.535 0.606 0.708 0.448 0.562 0.702 0.567 0.608 0.714 0.456 0.577 0.691

E 0.039 0.032 0.071 0.040 0.039 0.084 0.040 0.043 0.087 0.041 0.060 0.960

2000 T 0.922 0.963 0.978 0.845 0.928 0.955 0.945 0.953 0.979 0.874 0.929 0.960

E 0.070 0.079 0.140 0.064 0.149 0.234 0.050 0.106 0.178 0.049 0.199 0.287

5.2 Power Study: Testlet Model

As shown in Table 4, high rejection rates for testlet dependent item pairs T were
obtained for the three statistics (i.e., 0.803 or above in the DINA model, 0.672 or
above in the A-CDM, and 0.448 or above in the saturated model). The power rates
were moderately consistent under all conditions. Unlike the Chi-squared statistic
xjj ′ , and transformed correction statistic rjj ′ , the rejection rates of the MH statistic
for the item pairs in which only one item of a pair was testlet-dependent E were low
(i.e., 0.075 or below). This implies that the MH test can play an important role in
detecting only testlet dependent items. Not surprisingly, the performance of the test
tends to slightly deteriorate in the saturated model.

6 Discussion

The simulation studies investigated the usefulness and sensitivity of the MH
statistic, the Chi-squared statistic xjj ′ , the absolute deviations of observed and
predicted corrections rjj ′ in a variety of cognitive diagnosis modeling settings with
testlet dependent items. The primary findings are that most type I error rates of
the three different statistics were around the nominal significance level of 0.05.
Furthermore the statistics perform reasonably well in detecting testlet dependent
items. Nonetheless, the statistics are somewhat conservative and less sensitive to
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different model settings. In summary, the statistics might be a promising tool for
detecting testlet effects in cognitive diagnostic modeling.

For the popularity of testlets in large-scale assessments, it is necessary to inves-
tigate the issues related to testlet effects in cognitive diagnosis models. Ignoring
testlet effects leads to inaccurate estimates of item parameters and misclassifications
of examinees depending on the strengths of testlet effects with minimal influences
of other properties of test constructions and administration (Lim et al., 2022). A few
(unpublished) dissertations and two or three papers (e.g., Hansen, 2013) study testlet
effects—but mainly in terms of how to model testlet effects. Till now, few testlet-
effect detection procedures for cognitive diagnosis model have been investigated.
Therefore, the significance of this study lies in investigating test statistics to detect
testlet effects.

This study is not without limitations. One limitation is that the performance of
the statistics was not evaluated with an empirical data. Another limitation is that the
statistics were investigated with simple cognitive diagnosis models with testelts.
With those limitations, researcher recommends further studies to be conducted
with more complex cognitive diagnosis models and real datasets. Furthermore, the
findings show that a cognitive diagnosis model that accounts for testlet effects is
necessary.
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Abstract Latent Dirichlet Allocation (LDA; Blei et al., J Mach Learn Res 3:993–
1022, 2003) is a probabilistic topic model that has been used to detect the latent
structure of examinees’ responses to constructed-response (CR) items. In general,
LDA parameters are estimated using Gibbs sampling or variational expectation
maximization (VEM). Relatively little evidence exists, however, regarding the
accuracy of either algorithm in the context of educational research, such as small
numbers of latent topics, small numbers of documents, short average lengths
of documents, and small numbers of unique words. Thus, this simulation study
evaluates and compares the accuracy of parameters estimates using Gibbs sampling
and VEM in corpora typical of educational tests employing CR items. Simulated
conditions include number of documents (300, 700, and 1000 documents), average
answer length (20, 50, 100, and 180 words per document), vocabulary of unique
words in a corpus (350 and 650 unique words), and number of latent topics (3, 4, 5,
6, and 7 topics). Accuracy of estimation was evaluated with root mean square error.
Results indicate both Gibbs sampling and VEM recovered parameter estimates well
but Gibbs sampling was more accurate when average text length was small.
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1 Introduction

Constructed response (CR) items have been widely used for measuring the reason-
ing and inquiry skills in examinees’ answers on educational tests (Crossley et al.,
2016). Typically, CR items are hand graded using a rubric. In large-scale settings,
however, hand grading is expensive and time-consuming. Recently, due to the
availability of algorithmic methods, such as Latent Semantic Analysis (Deerwester
et al., 1990), it has been possible to mirror human grading of CR items, automating
the scoring of a considerable number of answers in a fraction of the time needed for
human grading.

More recently, another topic model, latent Dirichlet allocation (LDA; Blei et
al., 2003), has been applied in the assessment setting to enhance the information
gained from examinees’ responses to CR items (e.g., Cardozo-Gaibisso et al., 2019;
Kim et al., 2017). LDA is a probabilistic clustering model developed to analyze the
latent thematic structure of collections of textual data. In the context of educational
measurement, this type of topic model uses word co-occurrences to extract the latent
topic structure in a collection of examinees’ responses (Choi et al., 2019; Xiong
et al., 2019). LDA parameters have been estimated using the variational expectation
maximization algorithm (VEM; Blei et al., 2003) or Gibbs sampling (Griffiths &
Steyvers, 2004). Relatively little evidence exists, however, regarding accuracy of
the two algorithms in conditions common in educational research, such as small
numbers of latent topics, small numbers of examinees, short lengths of answers,
and small numbers of unique words.

Different researchers have pointed out that text length and the sample of
documents influence the accuracy of LDA parameters. Short text lengths, for
example, do not seem to contain the necessary word co-occurrences to estimate
the parameters effectively (e.g., Hu et al., 2009). Further, the size of the corpus of
documents seems to be the salient aspect that affects the performance of LDA as a
small sample of documents is not sufficient to identify the latent topics (Tang et al.,
2014).

Although applying LDA in answers to CR items has shown promising results,
responses to test items tend to be smaller and shorter in length than the corpora for
which LDA was initially developed. More importantly, the terms in the answers
tend to be constrained by the prompts or questions. Thus, the vocabulary of
unique words is also smaller than in the usual LDA data. Therefore, it is not clear
whether the usual corpora of textual responses to CR items are enough to estimate
LDA parameters accurately. This simulation study, then, evaluated the accuracy of
parameter estimates using Gibbs sampling and VEM under conditions typical of
educational tests.
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2 Latent Dirichlet Allocation (LDA)

LDA is a probabilistic topic model designed to detect the latent structure in a
corpus of textual documents. This cluster tool assumes that a corpus is a collection
of D documents. Each document is a mixture over K topics, and each topic is a
probability distribution over the vocabulary of V unique words (Blei et al., 2003).
LDA estimates two structural parameters: topics and topic proportions. Topics
or topic-word proportions are the proportion of assignment of topics over the
vocabulary of unique words. Topic proportions or document-topic probabilities are
the mixture of document’s probabilities that are assign to each of K topic.

The main parameters in LDA are topics, also referred to as topic-word proba-
bilities, and the topic proportions, also referred to as document-topic probabilities.
Topics, denoted by φk, where k ∈ 1, 2, . . . , K,are a set of probabilities over the
vocabulary in the corpus. Topic proportions, expressed by θd, where d ∈ 1, . . . ,
D, are the mixture of document proportions that are assigned to each K topic.
Additionally, LDA estimates a topic membership for every word in each document.
Topic assignments are denoted by zd, n, where d ∈ 1, . . . , D, n ∈ 1, . . . , N(d), and
N(d) indicates the number of words in document d.

For a given document d and topic k, the LDA model assumes the following
distributions for the latent parameters: topics (φk) follow a Dirichlet distribution
with a prior hyperparameter β, topic proportions (θd) follow a Dirichlet distribution
with a prior hyperparameter α, and topic assignments (zd, n) follow a multinomial
distribution with parameters θd and N(d). Given the topic assignments for each
word, LDA estimates the topics and topic proportions by assuming the words for
each document (wd, n) follow a multinomial distribution with parameters φk and
N(d) (Ponweiser, 2012). The joint probability distribution of all latent and observed
variables for LDA is expressed as:

p (w, z, θ,φ|α, β) =∏K
k=1p (φk|β)

∏D
d=1p (θd |α)

∏N(d)

n=1p
(
zd,n|θd

)
p
(
wd,n|φk, zd,n

)
,

(1)

where p(φk| β) is the probability distribution of all topics over the vocabulary in the
corpus, p(θd| α) is the probability distribution of the topic proportions of a document,
p(zd, n| θd) is the probability distribution of the topic assignments of a document, and
p(wd, n| φk, zd, n) is the probability distribution of the observed words of a document
(Ponweiser, 2012). Integrating over θ and φ, and summing over z, the marginal
likelihood of a document is:

p (w|α, β) =
∫

φ

∫

θ

p (θ|α) p (φ|β)
∏N

n=1

∑

zn

p (zn|θ) p (wn|zn,φ) dθdφ

(2)
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The marginal likelihood of each document is used to calculate the likelihood of
a corpus by taking the product of each document’s marginal likelihood. It can be
expressed as:

p (W |α, β) =
∏D

d=1
p (wd |α, β) (3)

Summing over the combination of all the topic assignments in Eq. 2, however, is
computationally intractable. Thus, it is not possible to obtain exact estimates of the
parameters (Blei et al., 2003).

2.1 Estimation Method

Different methods have been used to estimate LDA parameters, such as variational
approximation and Gibbs sampling (Blei et al., 2003; Griffiths & Steyvers, 2004).

Gibbs Sampling
Gibbs Sampling algorithm approximate the multivariate probability distribution
by randomly sampling a Markov chain of samples until they reach a stationary
distribution (Taddy, 2012). Note that samples of the beginning of the chain tend to be
correlated (Li et al., 2009). Thus, they may not be an accurate representation of the
distribution. Therefore, samples of the beginning of the Markov chain are discarded
and parameter estimates are obtained from the predictive posterior distribution. One
of the drawbacks of this algorithm is that it requires a long convergence process to
find the posterior of the document-topic distribution. As a result, Gibbs sampling is
a slow and computationally time intensive estimation method (Kim, 2020).

Variational Expectation Maximization (VEM)
VEM is a deterministic algorithm to infer the posterior of the distribution of
the latent variables. Instead of sampling the posterior, VEM uses optimization
to approximate the lower bound of the log-likelihood. Thus, it is an estimation
method that tends to be faster and computationally less time intensive than MCMC
methods (Blei et al., 2017). To do this, VEM imposes a family of tractable simpler
distributions over the latent variables of the LDA, i.e., to estimate the topic-
proportions and topic assignments. VEM consists of two steps: the E-step, which
find the optimizing values of the topic-proportion and topic assignment, and the
M-step, which maximizes the lower bound of the log-likelihood by minimizing the
Kullback-Liebler Divergence (KLD) between the approximation of the true and the
estimated distribution (Taddy, 2012). It is important to note that although VEM is
faster than the Gibbs sampling, it may underestimate the variance of the posterior
(Blei et al., 2017).

What can affect the estimation procedure in LDA?
As Eq. 3 indicates, the Dirichlet prior hyperparameters play an important role in
the estimation of the LDA model (Syed & Spruit, 2018). The Dirichlet distribution
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assumes that parameters are mutually independent (Geiger & Heckerman, 1997).
That is, the proportions of documents and words within topics are assumed to
be independent. When these hyperparameters are larger than one, documents and
words are equally likely to belong to all topics. Conversely, if the hyperparameters
are less than one, it is more likely to produce fewer but more dominant topics (Syed
& Spruit, 2018; Wallach et al., 2009).

The numbers of topics, documents, words, and text lengths have also been shown
to affect the estimation of the LDA parameters. Tang et al. (2014) reported the
accuracy of LDA models decreased considerably for a small number of documents
when β = 1, regardless of average text length. Similarly, LDA performed poorly,
when average text length was small, even for large numbers of documents. LDA
performed better, however, when the distance between topics was larger. i.e., when
topics were more distinguishable. Zuo et al. (2016), and Chen et al. (2016) also
noted that LDA failed to provide accurate results when documents with small
average text lengths contained low word counts. Further, Kwak (2019) suggested
that the larger the vocabulary and the number of words per document, the more
accurate the estimates of the topics and topic proportion, respectively. Kwak (2009)
also reported that using hyperparameters of α = 50/K and β = 200/V from Griffiths
and Steyvers (2004), the accuracy of estimating φk appeared to depend on the
number of unique words, whereas the performance of θd tended to be influenced
by average text length.

3 Methods

3.1 Simulation Design

The aim of this simulation study was to investigate and compare the accuracy of
LDA parameters estimated using Gibbs sampling and VEM in situations common
in the assessment setting, i.e., small sets of documents, small numbers of unique
words, short answer lengths, and small numbers of topics. Simulation conditions
were chosen following the criteria mentioned in previous research on CR items
(e.g., Hellman et al., 2020; Kim et al., 2017; Kwak, 2019; Xiong et al., 2019).
Simulation conditions included the number of documents in a corpus (small = 300,
medium= 700, and large= 1000 words), the number of unique words (small= 350,
and 650 words), average length of documents (very small = 20 words, small = 50
words, medium = 100 words, and large = 180 words), and the numbers of topics
in a corpus (3, 4, 5, 6, and 7 topics). Additionally, three sets of hyperparameters for
the LDA models were chosen to emulate the effects on detection of the latent topic
structure for distributions of documents and words typically found in measurement
contexts (e.g., Kim et al., 2017; Wheeler et al., 2021; Xiong et al., 2021). Thus,
this study used hyper-parameters that generate few but more distinguishable topics(
α = 0.5&β = 0.05, α = 1

K
&β = 1, α = 1

K&β = 0.5
)
. Due to the computational
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cost of estimation of an LDA model (Wheeler et al., 2021), and that previous result
have suggested that a great number of replications are not necessary to get precise
results (Cohen et al., 2010), all conditions were crossed with 50 replications for
each.

Documents, words, and topic assignments were simulated following the gen-
erative process described in Blei et al. (2003). For each LDA model, topics were
drawn from a Dirichlet distribution using the hyperparameter for β. Similarly, for
each document, topic proportions were drawn from a Dirichlet distribution using
the hyperparameters above for α. The number of words in a document were drawn
from a Poisson distribution given the number of documents and average text length.
Next, for every word in a document, LDA estimates the topic assignment following
a multinomial distribution with parameters θd and N(d). Then, a corpus of documents
is sampled from a multinomial distribution given zd, n and φk. Finally, a document-
term matrix is created to estimate candidate LDA models.

3.2 Parameter Estimation

LDA models were estimated using two algorithms: Gibbs sampling and VEM (Blei
et al., 2003; Griffiths & Steyvers, 2004), both are implemented in the R package
topicmodels (Grün & Hornik, 2011). As mentioned above, parameter estimates
from Gibb sampling were obtained from the predicted posterior distribution. In this
study, 10,000 iterations were used as a burn-in and 5000 as post-burn-in to estimate
the posterior. The same set of hyperparameters were used as priors to simulate the
data. For VEM, LDA parameters were estimated using two procedures: (1) fixing
α to the same hyperparameters used to simulate the data and (2) estimating α. The
β hyperparameters were estimated freely as it cannot be fixed in the R package
topicmodels.

3.3 Label Switching

Label switching may occur in LDA when the topics change their membership label
either or both within iterations of a single MCMC chain or between chains. This
study used the cosine similarity between simulated and estimated parameters to
detect label switching. Cosine similarity values closer to one indicate that generated
and estimated topics are similar, and that label switching had not occurred. Cosine
similarity values close to zero or below were interpreted to mean that the simulated
and estimated parameters were not similar, and therefore, label switching had
occurred (Wheeler et al., 2021).

After correcting for label switching, the performance of Gibbs sampling and
VEM were assessed for each condition in this study. The performance of an esti-
mator can be measured by the bias and precision for estimating model parameters.
Mean square error (MSE; Tietjen 1986), for example, calculates the mean of the
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square differences by taking the variance of the estimates and the square mean error
(Walther & Moore, 2005). Since MSE squares the differences, we used the root
mean square error (RMSE) to have a measure in the same scale as the original data.
RMSEs were estimated in Eq. 4, where R represent the number of replications,
ŷr are the estimated parameters, and yr are the true parameters. Values near zero
suggest parameters estimate were more accurate.

RMSE =
√
√
√
√

R∑

r=1

(
ŷr − yr

)2

R
(4)

4 Results

The accuracy of Gibbs sampling and VEM for estimating LDA parameters are
presented in Figs. 1, 2 and 3. In general, estimation was faster and less compu-
tationally intense using VEM than Gibbs sampling. Both algorithms performed
well at estimating topic-word proportions, regardless of the other conditions. The
performance of the algorithms to estimate the document-topic proportions, however,
appeared to decrease under certain conditions.

Fig. 1 Comparison of RMSE results for document -topic proportions when the true hyper-
parameters were α = 0.5 & β = 0.05
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Fig. 2 Comparison of RMSE results for document -topic proportions when the true hyper-
parameters were α = 1

K&β = 0.5

Fig. 3 Comparison of RMSE results for document -topic proportions when the true hyper-
parameters were α = 1

K&β = 1
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The accuracy of estimating the topic proportion tended to be better across
conditions when the hyperparameters used were α = 0.5 & β = 0.05. Under this
condition, RMSE values tended to be close to zero. No apparent differences were
found between the performance of the Gibbs sampling and the VEM algorithm in
estimating the document-topic proportion. The accuracy of both algorithms, how-
ever, tended to decrease when the set of hyperparameters were α = 1/K & β = 0.5,
and α = 1/K & β = 1.

When the hyperparameters were α = 1/K & β = 0.5, Gibbs sampling and VEM
seemed to be accurate in estimating topic proportions except when the average text
length was 20 words. Under this condition, accuracy of estimating topic proportions
tended to decrease, particularly when VEMwas used to estimate the document-topic
proportions with 300 documents.

Similarly, when the set of hyperparameters were α = 1/K & β = 1, the accuracy
of the algorithms appeared to be influenced by the average text length. In general,
Gibbs sampling was better for estimating topic proportions than VEM, particularly
when average text length was less than 100 words and the size of the corpus was
300 documents. In addition, RMSE values tended to be higher when α and β were
freely estimated.

5 Discussion

LDA has become popular for analyzing very large corpora of text. Recently, it has
also been applied to analyze examinees’ answers to CR items. Important differences
in the assessment setting include often smaller numbers of documents, fewer unique
words, and smaller average text length than the corpora typically used with LDA.
In this study, the accuracy of Gibbs sampling and VEM algorithms were studied in
estimating the LDA parameters in conditions that are usually seen in CR answers to
test questions.

This study suggested that the topic-word distribution does not seem to depend
on the estimator methods, or the conditions tested. Although some differences were
found in parameter estimates using both algorithms, these differences were in the
second decimal of RMSE values. Therefore, those discrepancies do not seem to be
significant.

Results suggest some impact of estimation method on the accuracy of the topic
distribution. The impact was influenced by the set of hyper-parameters, the average
text length, and in some situations, on the number of documents. In general,
parameter estimates for both were more accurate when hyperparameters were
α = 0.5 & β = 0.05. Although the influence of hyper-parameters tends to decrease
as the text length increased.

Additionally, results suggested that Gibbs sampling algorithm was more accurate
for estimating topic proportions than VEM when the average text length was
small. Accuracy differences between parameter estimate, however, decreased as the
average text length increased. These results suggest the VEM algorithm does about
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as well the Gibbs sampling while using less time and less computational resources.
Furthermore, contrary to previous evidence (e.g., Syed & Spruit, 2018; Tang et al.,
2014), this simulation study showed that LDA results can be accurate for corpora
with small average text length.

This study provides useful information about the performance of two estimators
for LDAmodels under conditions typical of CR answers on test items. Future studies
would be useful to investigate the effect of the Dirichlet priors for these estimators.
Future research also could compare the results of this study using real data.
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Abstract The aim of this study is to examine the relationship between students’
college admissions test results and their performance in higher education using
sum scores and optimal full-data scores. We used students from four university
programs to examine predictive validity in terms of how the students performed on
their studies in terms of obtained credits, as compared with their college admissions
test results. The students’ test results were calculated using the commonly used
sum scores and the recently proposed optimal scores. We also examined the
predictive validity of the test scores while controlling for the student backgrounds
in terms of educational background, migration background, and gender. The results
show that using optimal scores or sum scores yields slightly different test score
distributions, especially the score distribution among the highest test performers
differed. Practical implications of which test scores to use in college admissions
testing in the future are discussed.
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1 Introduction

Sum scores are used in most standardized tests across the world, for example the
Graduate Record Exam (GRE) (GRE, 2021), the Scholastic Aptitude Test (SAT)
produced by the College Board, the aptitude tests produced by American College
Testing (ACT) (Dorans, 1999), and the Swedish scholastic aptitude test (SweSAT)
(Lyrén et al., 2014). Recently, optimal scoring was proposed as an alternative to
sum scores which takes care of the different information provided by different items
(Ramsay & Wiberg, 2017a,b). An advantage with optimal scores is that the scores
becomes fairer in comparison to the actual knowledge level and thus high achievers
may achieve higher optimal scores than sum scores as seen in Wiberg et al. (2019).

In Sweden, the selection component in admissions to university (the other
component being eligibility) is based on a quota system. A certain proportion of
candidates are admitted from quota groups based on different selection instruments,
where grades from upper-secondary school (USGPA) and scores from the optional
admissions test, SweSAT, are the two most common ones. Candidates who have
both a valid USGPA (which most candidates have) and a valid SweSAT score will be
placed in both quota groups, so taking the SweSAT can only increase one’s chances
of being admitted. If a test taker has several valid SweSAT scores, the best score is
used in the admissions.

The goal of the SweSAT is to select those students who are most likely to perform
well in higher education. Consequently, as is the case with any other selection
instrument, the predictive validity of the scores is central to the overall validity
of the use and interpretation of SweSAT test scores. Predictive validity studies on
selection instruments in Sweden have often compared the predictive strength of
the USGPA and SweSAT scores. The most common finding is that the USGPA
is a better predictor than SweSAT scores (Svensson et al., 2001; Cliffordson,
2008; Cliffordson & Askling, 2006; Lyrén, 2008) and that the predictive strength
differs between university programs for both instruments. For example, Lyrén et al.
(2014) analyzed eleven different programs and found that the correlation between
SweSAT scores and the performance criterion was non-significant for two programs
(medicine and social work) and that it varied between 0.2 and 0.4 for the other nine
programs (engineering, nursing, economics, teaching, etc.). They also found that the
correlations were similar for the two section scores (Verbal and Quantitative), except
for engineering programs where the correlations were higher for the Quantitative
score than for the Verbal score.

In this paper we are interested in examining the predictive validity of the SweSAT
if we use full information optimal scoring (Ramsay et al., 2020) as compared with
using sum scores. Previous studies with optimal scores have focused on examining
the possibility to use optimal scores instead of sum scores when we have binary
scored multiple choice items (Ramsay & Wiberg, 2017b,a) and also a comparison
between full information optimal score and binary sum scores (Wiberg et al., 2018)
as well as a comparison between binary optimal scores and item response theory
scores (Wiberg et al., 2019). In this paper we use full information optimal scores as
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described in Ramsay et al. (2020). It is called full information optimal score because
information in both correct and incorrect responses was used for scoring. This paper
is different from previous papers as the focus is not to refine optimal scoring but
instead to examine the predictive validity of the optimal scores in terms of how
students perform once they have been admitted to a university program of their
choice. The overall aim is to examine the predictive validity and thus the relationship
between students’ college admissions test results and the students’ performance in
higher education using sum scores and optimal scores.

The rest of this paper is structured as follows: Next, the method section with the
different test scores, the sample used and the statistical analysis are described. This
section is followed by a result section and the paper ends with a discussion with
some concluding remarks.

2 Method

2.1 Test Scores

We focus on two different kinds of test scores; sum scores and full information
optimal scores. For multiple choice items, sum scores are typically defined as the
number of items the test taker answered correctly. The full information optimal
score, further referred to as optimal scores, is formally defined in Ramsay et al.
(2020) and thus only briefly described here. In the later empirical study, we use the
freely available software R and especially the package TestGardener (Ramsay & Li,
2021) to estimate the optimal scores. The initial proposal of optimal scores were
made by Ramsay and Wiberg (2017b).

The basic idea is to estimate the scores based on the interaction between
the performance of items/options and test taker; and using surprisal Wim(θ) =
−logMPim(θ) rather than probability Pim(θ) in the estimation process, where θ

is the given test taker’s ability and M is the number of options of item i. Let
m = 1, . . . Mi represent the different answer options for item i, and let Pim(θ) be
the probability of a test taker with ability θ choosing the m option. The multinomial
item response function can then be defined as

Pim(θ) = exp [Wim(θ)]
∑Mi

l=1 exp [Wil(θ)]
· (1)

whereWim is an unbounded function associated with themth answer option for item
i. We see in this formulation two actions: (1) the exponential transform that ensures
that the probability will be positive, and (2) the normalization by dividing by sum
exp(W) in order to ensure that the probability values sum to one. The optimal score
is found by minimizing the value of θ as defined by the following equation
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dH

dθ
= −

n∑

i=1

⎡

⎣
Mi∑

m−1

[Uim − Pim(θ)]
dWim

dθ

⎤

⎦ = 0, · (2)

where Uim − Pim is the difference between the data and the model fit and

dWim/dθ

is a coefficient that gives more weight if the item option contributes more to
the knowledge of the test taker’s ability. For more computational details of full
information optimal scores, please refer to Ramsay et al. (2020).

2.2 The SweSAT

To examine student performance and to predict their success in university we used
scores from the college admissions test SweSAT. The test is optional and is given
twice a year. The test taker can repeat the test as many times as they prefer as
only the best results counts. The test results are valid for five years. The SweSAT
contains 160 multiple choice items and is divided into one verbal section and one
quantitative section with 80 items each. The verbal section contains Vocabulary (20
items), Swedish reading comprehension (20 items), English reading comprehension
(20 items) and Sentence completion (20 items). The quantitative section contained
Data sufficiency (12 items), Diagrams, tables and maps (24 items), Mathematical
problem solving (24 items) and Quantitative comparisons (20 items). Sum scores are
used to calculate the test takers score on the test. There are 4–5 response alternatives
to each of the multiple-choice items.

2.3 Participants

We used samples of students who were admitted to four different higher education
programs in Sweden. The programs were chosen as they have different variations
in their test score distributions and the chosen programs were: biomedical analysts
(biomed), civil engineering (cing), college engineering (hing), and medical program
(medical). The distribution of students at the different examined programs are given
in the result section in Table 1.

The following student background variables were examined. Migration defined
as 1 if the student or at least one of the students’ parents were born in Sweden
and 0 otherwise. Boys were coded as 1 and girls were coded as 0. Educational
background was coded as 0 if the student had high school education or lower, and
it was coded as 1 if the student had any post high school education. As it is also
possible to get admitted to a university program in Sweden using only high school
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grades, we used a grade variable which was composed by the final high school grade
for each student. The grade variable was a constructed grade variable from the years
1997–2012, as we had high school graduates from all those years. The constructed
grade variable was used so that all students were placed on the same grading scale
even though the grade scale has changed in Sweden during those years. A grade
A is equivalent to 20, a grade B is equivalent to 17.5, a grade C is equivalent to
15, a grade D is equivalent to 12.5, grade E is equivalent to 10 and the grade F
is equivalent to 0. A student can also get extra credits (0.40) for extra curriculum
activities. This means that the grade point average has a range of 0.0–20.40.

To get a measure of the students’ achievement on their college education program
we used a constructed variable, Relprest which have been used in other validation
studies (e.g. Lyrén et al., 2014). Relprest is defined as the ratio between the students’
passed credits and registered credits in their first year of college or university. The
range of Relprest is 0.0–2.0, as students get zero if they do not take any of the credits
they signed up for and some students have signed up for twice as many credits as
the normal study rate.

2.4 Statistical Analysis

In the analyses we used both SweSAT sum scores and SweSAT optimal scores.
We started by examining the score distributions using histograms and to examine
the linear relationship between the two test scores we used scatterplots. Next, we
examined the linear relationship between the test scores and Relprest with Pearson
correlation. To examine the possible predictive effect, we used linear regressions
with Relprest as dependent variable and the different test scores together with the
students’ background variables as independent variables. We also examined the test
score distributions of the top 10% students with respect to their sum scores. The
optimal scores were calculated using TestGardener (Ramsay & Li, 2021; Li et al.,
2019) and the other statistical analyses were done in SPSS.

3 Results

Figure 1 displays the test score distributions for sum scores and optimal scores and
Fig. 2 gives the scatterplot for the whole sample of those who took the SweSAT.
From this figure it is clear that the distributions are not exactly the same. The
distributions however share some similar features as the mean of the sum scores was
94.26 (SD= 21.98, Range: 32–151) and the mean for optimal scores was 94.39 (SD
= 21.95, Range: 40.12–142.79). Although the sum scores have lower minimum and
higher maximum than the optimal scores, the mid score range is a bit more flatten
for the optimal score distribution as compared with the sum score distribution. The
upper score range also differed depending on used test score.
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Fig. 1 Test score distributions with optimal scores to the left and sum scores to the right

Fig. 2 Scatterplot between optimal scores and sum scores

The left part of Table 1 shows the correlation between full information optimal
scores, sum scores and Relprest for the total SweSAT and the two SweSAT
subsections; Quantitative and Verbal. From this table it is evident that there are
overall quite small differences between optimal scores and sum scores. The non-
significant correlations for the medical program are probably due to the fact that the
variations of test scores are small in the medical programs. The right part of Table 1
gives the correlation between the students’ high school grades and Relprest. Again,
the weak correlation for medical students is due to the small variation of high school
grades in this group.

To study the linear correlation between the SweSAT optimal score and the
SweSAT sum scores we refer to Fig. 3 for the four university programs of interest.
The correlations were very high and ranged between 0.98 (Biomed and Hing) to
0.99 (Cing and Medical). From these numbers and Fig. 3, it is evident that the sum
scores and optimal scores are highly correlated but the scores differ for most of the



Test Scores in Higher Education 45

Table 1 Correlations between full information optimal scores, sum scores and Relprest in the left
columns for the total SweSAT and the two subsections. The right columns shows the correlations
between grades and Relprest

Total Quant Verbal Grade

Exam n r Sig. r Sig. r Sig. n r Sig.

Biomed

Optimal 178 0.39 *** 0.30 *** 0.38 *** 149 0.44 ***

Sum 178 0.38 *** 0.28 *** 0.38 *** ***

Cing

Optimal 3172 0.22 *** 0.26 *** 0.12 *** 3036 0.38 ***

Sum 3172 0.21 *** 0.25 *** 0.12 *** ***

Hing

Optimal 1404 0.20 *** 0.22 *** 0.13 *** 1297 0.38 ***

Sum 1404 0.19 *** 0.21 *** 0.13 *** ***

Medical

Optimal 827 −0.03 NS 0.00 NS −0.05 NS 740 0.24 ***

Sum 827 0.01 NS 0.01 NS −0.05 NS ***

Biomed = Biomedical analytics, Cing = civil engineering, Hing = College engineering, Medical
= Medical program. Total = Total SweSAT scores. Quant = Quantitative section scores, Verb =
Verbal section scores. Grade = Correlation between Relprest and grades. NS = non-significant
*** = p-value less than 0.01

Fig. 3 The relationship between SweSAT optimal scores and SweSAT sum scores in the four
different university programs
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Fig. 4 Optimal test scores and sum score distributions for top 10% performers chosen from
SweSAT sum scores

test takers. The differences differ over the score range depending on the university
program and the score difference can be as large as 10 score points.

As SweSAT is primary used as a higher education admissions test, higher scores
are of more interest than the lower score range. The 10% top performers admitted
to the programs as defined from the sum scores are given in Fig. 4. From these plots
it is evident that the top performers have slightly different test score distributions.

To further examine the predictive validity of the SweSAT scores we used the
variable Relprest which is an indication of how the admitted students performed
in their first year of university in comparison to what courses they have signed up
for. We examined several student background variables, but the students’ gender or
educational background was never significant in any of the examined programs and
thus the result is excluded from the table. The reason for the non-significance of the
educational background is probably due to the rough definition of this variable as
it only stated whether or not you have studied anything after high school or not. In
Table 2, linear regressions with Relprest as dependent variable with optimal scores
on every second line and sum scores on the other lines are given. We examined
three different linear regression models. In model 1, only either optimal scores or
sum scores were used as independent variable. In model 2, we used the test scores
together with the grade variable. Finally, in model 3 we included the test scores,
grades and the students’ migration home background. The best fitting model was
model 2 for all university programs and for the total SweSAT as well as for the
subsections. Model 3 had many non-significant variables for most of the examined
programs, regardless of test score used. We give the value of R from the linear
regressions in the table and note that the values are very similar regardless of the test
score used. Only small differences are shown and those were mainly when model 1
was used. Again, a reason for the non-significant values for the medical program is
probably due to the very small variation in test scores for those who got admitted to
the program.



Test Scores in Higher Education 47

Table 2 The R values and the sample sizes (n) from the three different linear regression models
with Relprest as dependent variable with optimal scores on every second line and sum scores the
other lines

Model 1 Model 2 (G) Model 3 (GI)

Exam n Tot Q V Tot Q V Tot Q V

Biomed

Optimal 178 0.39** 0.30** 0.38** 0.46** 0.44 0.47** 0.47 0.47 0.49

Sum 178 0.38** 0.28** 0.38** 0.46** 0.44 0.48** 0.47 0.47 0.49

Cing

Optimal 3172 0.22** 0.26** 0.12** 0.39** 0.41** 0.39 0.39 0.41* 0.39

Sum 3172 0.21** 0.25** 0.12** 0.39** 0.41** 0.38 0.39 0.41* 0.39

Hing

Optimal 1404 0.20** 0.22** 0.13** 0.39** 0.40** 0.38** 0.40** 0.41** 0.39

Sum 1404 0.20** 0.21** 0.13** 0.39** 0.40** 0.38** 0.40** 0.41** 0.39

Medical

Optimal 827 0.03 0.00 0.05 0.24 0.24 0.24 0.25 0.25 0.25

Sum 827 0.02 0.01 0.05 0.24 0.24 0.24 0.25 0.25 0.25

All

Optimal 5581 0.25** 0.26** 0.19** 0.40** 0.40** 0.40** 0.40** 0.41** 0.40**

Sum 5581 0.25** 0.26** 0.19** 0.40** 0.40** 0.39** 0.40** 0.41** 0.40**

Biomed=Biomedical analytics, Cing= civil engineering, Hing=College engineering, Medical=
Medical program. N = Number of test takers. Tot = Total test score. Q = Quantitative test score, V
= Verbal test score. Sum = Sum scores are used as independent variable instead of optimal scores.
G = Grade, I = Immigration
** = p-value less than 0.01, * = p-value less than 0.1

4 Discussion

The overall aim was to examine the predictive validity and thus the relationship
between students’ college admissions test results and the students’ performance in
higher education using sum scores and optimal scores. The results indicated that
both optimal scores and sum scores can predict the students’ university performance
similarly regardless if we control for some covariates or not. Although the test score
distributions differed, the overall results of predictivity of the students’ performance
were similar. This is good news as it means that optimal scores can be used in these
situations. Although the overall conclusions were similar, the test score distributions
differed in the sense that the optimal score distribution had a slightly more flattened
curve than the sum score distribution. This means that for a certain student it may
have impact which test score is used when the test score is used for selection to
higher education even though a clear difference is not seen on the overall results.
The differences between test results based on sum scores and optimal scores are
typically larger for programs which require high test scores. The result that different
test takers may get different sum scores and optimal scores are inline with previous
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studies of optimal scores (Ramsay & Wiberg, 2017a,b; Wiberg et al., 2018). The
impact for a specific student should be addressed further in the future.

There were a few limitations of this study. First, as a measure of success in higher
education we used a relative performance measure of the students’ performance.
This measure is probably a bit blunt and thus future studies should probably use
a more refined measurement. However, this measure was used in the SweSAT
prognosis study by Lyrén et al. (2014), which obtained similar result for the sum
scores as in our study. Note, some numbers concerning the sum scores differed
between our study and their study as we in contrast to them only used complete
cases. Second, we only had access to a few student background variables and in
future studies, it would be of interest to include other background variables. Third, in
this study we only had access to those admitted to the university programs and thus
the study has a range restriction. As the optimal scores and sum scores differ in their
distributions, it is likely that the rank of the students differ within the test scores. If
one would change from sum scores to optimal scores it is likely that some students
may have not admitted to a program and others were admitted to a program and thus
the choice of test score could potential influence the life of a student. However, on a
group level the results are similar and thus one should be comfortable to use either
sum scores or optimal scores in admissions tests. An advantage of using optimal
scores in sum scores, seen in e.g. Ramsay and Wiberg (2017b), is that the precision
of estimating the ability of the students is better and thus optimal scores should be
considered for high stakes test as it would be a fairer instrument for the students.
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Statistical Properties of Lower Bounds
and Factor Analysis Methods for
Reliability Estimation

Julius M. Pfadt and Klaas Sijtsma

Abstract In this study, we compared the numerical performance of reliability
coefficients based on classical test theory and factor analysis. We investigated the
coefficients’ divergence from reliability and their population values using unidimen-
sional and multidimensional data generated from both an item response theory and
a factor model. In addition, we studied reliability coefficients’ performance when
the tested model was misspecified. For unidimensionality, coefficients α, λ2, and
coefficient ωu approximated reliability well and were almost unbiased regardless
of the data-generating model. For multidimensionality, coefficient ωt performed
best with both data generating models. When the tested model was unidimensional
but the data multidimensional, all coefficients underestimated reliability. When the
tested model incorrectly assumed a common factor in addition to group factors
but the data was purely multidimensional, coefficients ωh and ωt identified the
underlying data structure well. In practice, we recommend researchers use reliability
coefficients that are based on factor analysis when data are multidimensional; when
data are unidimensional both classical test theory methods and factor analysis
methods get the job done.
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1 Introduction

Most methods for reliability estimation fall into methods based on classical test
theory (CTT; Lord & Novick, 1968) and factor analysis (FA; e.g., Jöreskog, 1971).
We studied sampling properties of lower bound coefficients α, λ2, λ4, and the
greatest lower bound (GLB) from CTT, and coefficients ωu, ωh, and ωt from
FA. We ran a simulation study assessing statistical properties of these estimators,
using item response theory (IRT) and FA models to generate unidimensional and
multidimensional data while controlling the reliability. As far as we know, this
comparison is novel. We investigated two special cases in which the population
model is a multidimensional FA-model, but the tested model is misspecified. Before
we discuss the process of data generation, we describe the reliability coefficients α,
λ2, λ4, GLB, ωu, ωh, and ωt.

1.1 CTT Coefficients

Based on the CTT layout of the test score, X = T + E (X: test score, sum of item
scores; T: true score; E: random measurement error; see Sijtsma & Pfadt, 2021),
we studied coefficients α, λ2, λ4, and the GLB. These coefficients approximate
reliability, ρ, defined as the proportion of test-score variance that is true-score
variance in a population; that is, ρ = σ 2

T /σ 2
X. The approximations are theoretical

lower bounds to the reliability. The coefficients’ equations are the following (for
further information, see, e.g., Sijtsma & Van der Ark, 2021). For coefficient α, let
σ2X be the test score variance and let σ2j be the variance of item j (j = 1, . . . , J); then

α = J

J − 1

(

1 −
∑J

j=1 σ 2
j

σ 2
X

)

. (1)

For coefficient λ2, let σ2jk be the covariance between items j and k, then

λ2 = 1 −
∑J

j=1 σ2j −
√

J
J−1

∑∑
j �=kσ

2
jk

σ 2
X

. (2)

For coefficient λ4, split a test in two item subsets without overlap and not necessarily
equally sized, call this split partition P, and let σ 2

A and σ 2
B be the variances of the test

scores on each subset. Then, coefficient α for this partition, α(P), equals: α(P ) =
2 ·
(

1 − σ 2
A+σ 2

B

σ 2
X

)

. Coefficient λ4 is the greatest value of α(P) across all partitions P;

that is,

λ4 = max
P

[α(P )] . (3)
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Let �X be the covariance matrix that is split into �X = �T + �E, where �T

contains the true score variances and diagonal �E contains the error score variances.
The estimates for �T and �E are found in an iterative procedure where the trace
of �E is maximized while the matrices �T and �E stay positive semi-definite
(Woodhouse & Jackson, 1977). Then

GLB = 1 − tr (�E)

σ 2
X

. (4)

1.2 FA Coefficients

The FA approach to reliability is based on the assumption that the CTT model,
X = T + E, can be substituted with the FA-model. Note that the models are
different and thus define different reliability conceptions except for extreme cases.
For items, the CTT model is Xj = Tj + Ej, with Tj = E

(
Xjr

)
, r indexes independent

replications of item j, comparable with the stochastic subject formulation of
response probability in IRT (Holland, 1990). FA models item scores as Xj =
bj +∑Q

q=1 ajqξq + δj , with intercept bj, latent variable ξq indexed q (q = 1, . . . ,
Q), ajq the loading of item j on latent variable ξq, and δj the residual consisting of
unexplained item components and random measurement error. One may notice that
different items have one or more latent variables in common, whereas in CTT, true
scores unique to the item lack additional modeling. FA extracts one or more factors
from the data. These factors predict the outcome variables, here, the items. The level
of prediction is represented by loadings that link each item with one or more factors.

The FA approach to reliability is based on the assumption that the sum of the
squared factor loadings approximates the true-score variance of items. The residual
variances, the part of items the factor(s) cannot predict, substitute the error-score
variance. Reliability is defined as the proportion of the test-score variance that is due
to one or more common factors. For instance, the single-factor model (Spearman,
1904) describes the data matrix X of multivariate observations as

X = gcT + E, (5)

where c denotes the factor loadings on one common factor g (replacing general
notation ξ ) and E the matrix of residuals, the part of the item scores that the
common factor cannot explain. Since the residuals are assumed independent, the
covariance matrix of E is diagonal and has elements ej representing residual
variances. Coefficient ωu (u for unidimensional; McDonald, 1999) equals

ωu =
(∑

c
)2

(∑
c
)2 +∑ e

. (6)
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When data are multidimensional, one can either estimate reliability for each
subscale using ωu or one can employ coefficients ωh (h for hierarchical) and ωt (t
for total; Zinbarg et al., 2005). Therefore, consider the following multidimensional
bi-factor model,

X = gcT + FAT + E, (7)

where A denotes the J × Q loading matrix for the Q group factors collected in F.
The Q group factors are common to some items but not all. The residual variances
ej of the residual matrix E represent the part of the items that the common factor
and the group factors cannot explain. Coefficient ωh equals

ωh = cT c

cT c + 1T
QAT A1Q +∑ e

, (8)

where 1Q is a Q × 1 sum vector. The coefficient describes the common factor
saturation of a test in the presence of group factors. The value of coefficient
ωh addresses the question “how well does a multidimensional scale represent a
common attribute”. Coefficient ωh is not an estimate of the reliability as indicated
by coefficient ωt, because coefficient ωh does not relate all true score variance to the
total variance of a test, but only the variance due to a general factor. Coefficient ωt

equals

ωt = cT c + 1T
QAT A1Q

cT c + 1T
QAT A1Q +∑ e

, (9)

and describes the proportion of variance in the test that is due to a common attribute
and specific attributes that pertain to subsets of items, which is the true-score
variance. The loadings and residual variances for the ω-coefficients can be obtained
from both a confirmatory factor model and an exploratory factor model.

2 Simulation Study

We compared reliability coefficients estimated in samples of simulated data with the
reliability of the population model that generated the data. Oosterwijk et al. (2017)
compared several lower bounds with population reliability by generating data from
a two-dimensional graded response model (GRM; Samejima, 1968). From the GRM
parameters, they computed the item true scores and then the reliability. Zinbarg et al.
(2006) used a factor model to generate data for the evaluation of estimation methods
for coefficient ωh. Assuming the factor variance represents the true score variance,
one can obtain the population reliability from the factor model parameters.
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To rule out the possibility that the data generation process confounds the
outcomes, we generated data both with the GRM and a factor model, and evaluated
the lower bound coefficients α, λ2, λ4, and the GLB, and the FA-coefficients ωu,
ωh, and ωt. Furthermore, we investigated the ramifications of a misspecified model
when estimating reliability coefficients. We generated data based on researchers (1)
overlooking a scale’s multidimensionality, and (2) incorrectly assuming presence of
a common attribute.

2.1 Method

Data Generation from GRM

The data generation based on the GRM in this study is similar to the data generation
in Oosterwijk et al. (2017). The GRM defines for each polytomous item j a slope
parameter aj and a location parameter bjx for each item score x. The cumulative
response probability of scoring at least x (x = 0, . . . , m) on item j as a function of
latent variable(s) θq (q = 1, . . . , Q) collected in θ is expressed as

P
(
Xj ≥ x | θ) =

exp
[∑Q

q=1 ajq

(
θq − bjx

)]

1 + exp
[∑Q

q=1 ajq

(
θq − bjx

)] . (10)

The response probability of scoring exactly x on item j is given by

P
(
Xj = x | θ) = P

(
Xj ≥ x | θ)− P

(
Xj ≥ x + 1 | θ) , (11)

with P(Xj ≥ 0| θ) = 1 and P(Xj > m| θ) = 0 for response categories 0, . . . , 4. For
our study, we chose Q = 1 and Q = 3. The model definition and data generation for
the GRM largely follows Oosterwijk et al. (2017) but for clarity we reiterate most
of it here.

Unidimensional Model To model a wide range of person parameters, we defined
θ = −5, −4.95, −4.9, . . . , 4.9, 4.95, 5, that is, 201 evenly spaced values in total
that followed a standard normal distribution. Numbers of items were J = 9, 18, item
scores were x= 0, . . . , 4, and slope parameters aj ∈U(1, 1.5). Item location parame-
ters were bjx = τj + κx, with τj = (j−1)/(J−1) −.5 and κx = (−1.5,−0.5, 0.5, 1.5)T ,
with x = 0, . . . , 4 for five item scores.

Multidimensional Model We chose Q = 3, identical equally-spaced person
parameter vectors θ1, θ2, θ3 as in the unidimensional case, and a multivariate
normal distribution with means 0, variances 1, and correlations .3. Numbers of
items and item scores were the same as for the unidimensional model. Multidi-
mensionality was achieved by assigning slopes ajq ∈ U(1, 2) for latent variable
θq to a third of the items and ajq = 0 to the other items, and so on. For
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example, for J = 9, a1 = (1.75, 1.25, 1.55, 0)T , a2 = (0, 1.60, 1.04, 1.30, 0)T , and
a3 = (0, 1.67, 1.40, 1.28). Herein, vector 0 denotes a vector of zeros; for a1, 0 has
six elements, for a2, both 0s have three elements each, and for a3, 0 has six elements.
Location parameters were defined as in the unidimensional model.

Population Reliability Reliability equals ρ =(1T�T1)/(1T�X1). Matrix �T dif-
fers from matrix �X by the diagonal only, which for �T contains the item true-score
variances. Population values of coefficients α, λ2, λ4, the GLB, ωu, ωh and ωt (for
the multidimensional model) were computed from covariance matrix �X . �X has
diagonal item variances σ2j and off-diagonal covariances σ2jk . Following Oosterwijk

et al. (2017), we compute σ2j = E
(
X2

j

)
− [

E
(
Xj

)]2, and σjk = E
(
XjXk

) −
E
(
Xj

)
E(Xk). Furthermore, E

(
Xj

) =∑x xP
(
Xj = x

)
, E
(
X2

j

)
=∑x x2P

(
Xj = x

)

and E
(
XjXk

) =∑x

∑
yxyP

(
Xj = x,Xk = y

)
, with x = 0, . . . , 4.

Marginal probability P(Xj = x) equals

P
(
Xj = x

) =
∑

θq

P
(
θq

)
P
(
Xj = x|θq

)
, (12)

and joint probabilities P(Xj = x,Xk = y) equal

P
(
Xj = x,Xk = y

) =
∑

θq

P
(
θq

)
P
(
Xj = x|θq

)
P
(
Xk = y|θq

)
. (13)

To obtain �T , we substitute the diagonal of �X with the true item variances σ 2
Tj
. We

compute σ 2
Tj

from

σ 2
Tj

=
∑

θq

P
(
θq

) [(
Tj |θq

)
− E
(
Tj

)]2
, (14)

with true scores Tj | θq = ∑
x P
(
Xj ≥ x|θq

)
, and E

(
Tj

) = E
(
Xj

)
. Probability

P(θq) is computed as follows. First, for Q = 1, we compute the value of the
probability density function of the standard normal distribution at each θ-value and
then transform the resulting values to the zero-to-one probability scale by dividing
each value by the sum of all values. Second, for Q = 3, the reference probability
density function is the multivariate normal. Subsequently, the value of the density
function is computed for each possible permutation of the three θ -vectors.

Data Generation First, for Q = 1, we drew N θ -values from a standard normal
distribution and computed the cumulative and exact response probabilities from Eqs.
(10) and (11) for each of the N θ -values. For Q = 3, we drew N triplets of θ -
values from a multivariate normal with a specified correlation matrix (ρ = .3) and
computed the required probabilities. Second, using the exact response probabilities,
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we randomly drew N scores on sets of J Items from a multinomial distribution. We
scaled these scores ordinally, consistent with a five-point Likert-scale.

Data Generation from FA-Model

We created a covariance matrix implied by a particular factor model. The procedure
differed between one- and three-factor models. We used the matrix as the data-
generating covariance matrix.

Unidimensional model The covariance matrix the model implies is defined as
�U = cφcT + �, with φ as the variance of factor g, and � as the diagonal
covariance matrix of E (Eq. 5; Bollen, 1989). We sampled standardized model
loadings in c from U(0.3, 0.7). Then, the residual variances in the diagonal matrix
� become 1 − c2. We assumed factor variance is φ = 1. We computed parameters
for coefficients α, λ2, the GLB, and ωu from the model-implied covariance matrix
�U.

Multidimensional Model The multi-factor model was a second-order model for
which we assumed three group factors each explaining a unique third of the
items, and one general factor explaining the group factors. Group factor loadings
came from a uniform distribution U(.4, 1) and loadings of group factors on the
general factor came from U(.5, 1). Loadings were standardized, so that squared
loadings together with the residual variances added to 1. General-factor variance
equaled 1. Using the Schmid-Leiman transformation (Schmid & Leiman, 1957) we
transformed group and general factor loadings to loadings of a bi-factor model (Eq.
7). Residual variances were the same. The model-implied covariance matrix was
�M = ���T + � (Bollen, 1989). Matrix � contains the loadings of the items on
both the group factors and the general factor, � is the diagonal factor covariance
matrix with Q+1 entries that equal 1, and � is a diagonal matrix containing the
residual variances. We computed the parameters for α, λ2, λ4,the GLB, ωh, and ωt

from the model implied covariance matrix �M.

Population Reliability Reliability is defined as ρ = σ 2
T /σ 2

X. Assuming that
squared factor loadings represent item true-score variances, population reliability
equaled ωu (see Eq. 6) for the unidimensional models and ωt (see Eq. 9) for the
multidimensional models.

Data Generation We drew random samples from a multivariate normal distri-
bution with means of 0 and model-implied covariance matrices �U and �M ,
respectively. The resulting data were then continuous.

Factor Analysis Method We estimated all factor models by means of a confirma-
tory factor analysis (CFA). To obtain coefficients ωh and ωt, we first performed a
CFA with a second-order factor model and transformed the resulting loadings into
bi-factor loadings, c and A (Eq. 7), using the Schmid-Leiman transformation.
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In the simulation study, we used λ4 as the population coefficient, and λ4(.05)
as the sample estimate in the simulation runs, where λ4(.05) is the .05 quantile of
a distribution of approximations to λ4 that avoid having to consider all possible
item splits, thus running into combinatorial problems (Hunt & Bentler, 2015).
Coefficient λ4(.05) counteracts chance capitalization that sometimes leads to gross
overestimation of population reliability.

Conditions

Numbers of items were J = 9, 18. Sample sizes were N = 500, 2000. Together
with two data generation methods and two dimensionality conditions, 16 conditions
resulted that were replicated 1000 times. In addition, we identified two misspecified
models when estimating FA-coefficients ωu, ωh, and ωt. First, we considered
incorrectly assuming one factor, thus estimating coefficient ωu, when the truth is a
multi-factor model. We generated data using a second-order factor model with three
group factors and a general factor, for J = 12 and N = 1000, with 1000 replications,
and computed coefficient ωu. Second, we considered incorrectly assuming multiple
factors with an underlying common factor, thus computing coefficients ωh and ωt,
when the true model is purely multi-factor and does not contain a common factor.
The factor model had three orthogonal group factors. We assumed that coefficientωt

equaled the population reliability and coefficient ωh equaled zero as loadings on the
general factor were zero. Number of items was J = 12, sample size was N = 1000,
and number of replications was 1000. We estimated α, λ2, λ4, the GLB, ωh, and ωt.

Outcome Variables

We determined discrepancy, and the mean and standard error of bias. Discrepancy
is the difference between parameters for reliability methods and reliability, for
example, α − ρ. Bias is the difference between the mean sample coefficient and
its parameter value, for example, E

(
α̂
)− α. Standard error is the standard deviation

of estimates relative to the parameter, for example, σα̂ =
(
E
[(

α̂ − α
)2
]) 1

2
. We

tested significance of the bias being different from zero.

2.2 Results

Unidimensional Models

Table 1 shows discrepancy, bias, standard error and significance results. Coefficients
α, λ2, λ4, GLB, and ωu showed similar results in both data generating scenarios.
The discrepancy of λ2, the GLB, and ωu was small in all unidimensional conditions.
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Table 1 Discrepancy, bias, and standard error (between parentheses) of several reliability
methods for unidimensional models

J = 9 J = 18

N N

500 2000 500 2000

Coefficient Discrepancy Bias Discrepancy Bias

IRT-data

ρ= .798 ρ= .889

α −0.48 −0.66 (0.42) −0.32 (0.21) −0.21 −0.34 (0.23) −0.06 (0.12)

λ2 −0.29 00.06 (0.41) −0.15 (0.21) −0.12 −0.08 (0.23) 0.05 (0.11)

λ4 −4.46 −8.31 (0.42)* −7.39 (0.21)* 0 −8.05 (0.22)* −5.95 (0.12)*

GLB 0 28.51 (0.38)* 14.12 (0.21)* 0 −27.10 (0.19)* 13.91 (0.11)*

ωu −0.23 −0.21 (0.41) −0.21 (0.21) −0.11 −0.13 (0.23) −0.01 (0.12)

FA-data

ρ= .748 ρ= .859

α −4.61 −1.17 (0.53)* −0.57 (0.27)* −2.16 −0.46 (0.30) −0.07 (0.15)

λ2 −0.87 0.04 (0.52) 0.31 (0.26)* −0.22 −0.20 (0.29) −0.09 (0.15)

λ4 0 −15.88 (0.53)* −11.78 (0.28)* 0 −3.12 (0.28)* −4.75 (0.15)*

GLB 0 −35.11 (0.50)* −17.66 (0.26)* 0 33.86 (0.24)* 17.42 (0.13)*

ωu 0 −0.47 (0.53) −0.42 (0.26) 0 −0.13 (0.29) 0.00 (0.15)

Note. Significance is indicated with *. Table entries are transformed and rounded for better interpretation; real
values are obtained by multiplying entries by 10−3, e.g., the discrepancy for α (J = 9; IRT-data) is −0.48 ×
0.001 = −0.00048. Discrepancy for λ4 was λ4 − ρ, bias was estimated using λ4(.05)

The discrepancy of coefficient λ4 improved considerably with a larger number of
items. Discrepancy was negative for all coefficients, a desirable result. Mean bias of
coefficients α, λ2, and ωu was relatively small. Table 1 shows that the discrepancy
of the GLB is almost equal to 0, but its bias is largely positive, a finding consistent
with results reported by Oosterwijk et al. (2017). Estimate λ4(.05) underestimated
population value, λ4. Increase in sample size resulted in better performance for all
coefficients. Except for the GLB, an increase in the number of items led to smaller
bias. Except for λ4 and the GLB, the coefficients’ performance was satisfactory
across all unidimensional conditions.

Multidimensional Models

Table 2 shows that all coefficients had smaller discrepancy and bias as samples
grew larger and, except for the GLB, results improved as the number of items grew.
Discrepancy was highly similar for both data generation procedures. As expected,
discrepancy of lower bounds α and λ2 was much larger for the multidimensional
data than for the unidimensional data. Coefficient λ4 showed an unexpectedly large
discrepancy with the multidimensional IRT-data and considerable negative bias
throughout all multidimensional conditions. The GLB had very small discrepancy
but an expectedly large bias. As expected, an increase in the number of items
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Table 2 Discrepancy, bias, and standard error (between parentheses) of several reliability methods
for multidimensional models

J = 9 J = 18

N N

500 2000 500 2000

Coefficient Discrepancy Bias Discrepancy Bias

IRT-data

ρ = .738 ρ = .853

α −82.13 −0.38 (0.73) −0.18 (0.36) −44.61 −0.77 (0.39)* −0.39 (0.20)

λ2 −67.82 −1.41 (0.65)* −0.24 (0.32) −36.14 −0.23 (0.35) −0.12 (0.18)

λ4 −31.74 −16.32 (0.59)* −14.94 (0.31)* −0.04 −13.72 (0.31)* −8.65 (0.16)*

GLB −0.07 26.15 (0.52)* −12.08 (0.28)* 0 32.34 (0.25)* 16.37 (0.15)*

ωh −325.91 7.01 (1.39)* 1.82 (0.69)* −376.23 3.41 (1.23)* −0.18 (0.64)

ωt −0.10 0.70 (0.55) 0.05 (0.27) −0.04 −0.37 (0.29) −0.24 (0.15)

FA-data

ρ = .872 ρ = .917

α −59.19 −1.46 (0.40)* −0.59 (0.21)* −29.84 −0.36 (0.23) −0.20 (0.12)

λ2 −49.93 −0.67 (0.36) −0.37 (0.19)* −24.41 −0.10 (0.22) −0.06 (0.11)

λ4 −13.18 −30.18 (0.34)* −26.8 (0.17)* −0.28 −11.68 (0.17)* −11.99 (0.08)*

GLB 0 11.74 (0.26)* −5.65 (0.14)* 0 −18.14 (0.15)* 9.17 (0.08)*

ωh −217.61 −0.98 (0.83) −0.87 (0.42)* −212.22 −0.42 (0.69) −0.20 (0.35)

ωt 0 −0.55 (0.27)* −0.24 (0.14) 0 −0.09 (0.17) −0.04 (0.08)

Note. Significance is indicated with *. Table entries are transformed and rounded for better interpretation; real
values are obtained by multiplying entries by 10−3, e.g., the discrepancy for α (J = 9; IRT-data) is −82.1 ×
0.001 = −0.0821. Discrepancy for λ4 was λ4 − ρ, bias was estimated using λ4(.05)

produced a larger bias for the GLB, because capitalization on chance increases with
the number of items.

Results for coefficient ωh were not consistent with results for the other estima-
tors. The population value of the coefficient ωh was much lower than the population
reliability. This was expected, given that ωh indicates how well a common attribute
is represented irrespective of the real factor structure. The difference between
coefficients ωh and ωt indicates the presence of multidimensionality. Coefficient ωh

performed well with the FA-data, but with the IRT-data bias was positive, meaning
it overestimated the population ωh.

Coefficient ωt performed well across all multidimensional conditions. It had
negligible discrepancy (by definition, zero with the FA-data) and small mean bias
across all conditions.

Misspecified Models

In the first case, the misspecification occurred by estimating the wrong coefficient,
ωu, which is suited for one-factor data expect data were in fact multi-factorial. The
population value of coefficient ωu was far from the population reliability (Table 3).
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Table 3 Discrepancy, bias,
and standard error (between
parentheses) of several
reliability methods for
misspecified models

Coefficient Discrepancy Bias

Case (1), ρ = .899
ωu −42.18 −0.80 (0.22)*

Case (2), ρ = .807
α −155.43 −1.23 (0.52)*
λ2 −102.09 −0.15 (0.37)
λ4 −2.95 −25.57 (0.32)*
GLB 0 19.88 (0.27)*
ωh −805.02 155.67 (3.76)*
ωt 0 0.13 (0.27)

Note. Case (1): Multi-factor population model
and data; computations assumed unidimension-
ality. Case (2): Multi-factor population model
with group factor but no common factor, and
data; computations assumed a common fac-
tor. Significance is indicated with a *. Table
entries were transformed and rounded for bet-
ter interpretation; real values are obtained by
multiplying entries by 10−3, e.g., discrepancy
for ωu is −42.18 × 0.001 = −0.04218. J = 12
items and N = 1000

Subsequently, the estimates for ωu were far off. In the second case, multi-factor data
with a common factor was incorrectly assumed when the model generating the data
contained only group factors but no common factor. The discrepancy of coefficients
α and λ2 was quite large, mirroring the multidimensionality of the data (Table 3).
Coefficient λ4 and the GLB had small discrepancy. The discrepancy of coefficient
ωh was huge, meaning the coefficient properly identified the absence of a common
attribute. Because data were noisy, ωh had considerable bias. Coefficient ωt showed
small bias. Its discrepancy was 0 since we used a factor model to generate the data.
Arguably, a cautious researcher should always check model fit before estimating
reliability coefficients that assume a certain structure of the data.

3 Discussion

The population values of the reliability methods were all fairly close to the
population reliability with unidimensional data, which changed when data were
multidimensional. Most coefficients had small bias in almost all conditions, except
for the positive bias of the GLB and the negative bias of λ4. All coefficients did
well with unidimensional data. For multidimensional data, coefficients α and λ2 on
average underestimated reliability, while other methods were closer to reliability.
For high reliability, coefficients α and λ2 had high values, albeit somewhat smaller
than the true reliability. The question is whether in this situation one should rather
estimate reliability for each dimension separately. Among other things, this depends
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on the practical use of the test when it is sensible to distinguish different attributes
or different aspects of the same attribute. In general, FA-coefficients performed very
well. Coefficient λ4 and the corrected estimate λ4(.05) were not satisfactory, because
the discrepancy between λ4 and population reliability was often larger than expected
and the bias of λ4(.05) was too large to distinguish the coefficient from other lower
bounds such as α.

The goal of the simulation study was investigating whether the reliability
methods performed differently with discrete data generated by IRT and continuous
data generated by FA. Does this difference in data types cause problems when
comparing reliability methods results? We argue it does not, because different
data types only present another hurdle the coefficients have to take rendering
their performance evaluation more interesting. Regarding our simulation outcomes
(discrepancy and bias), we found that the methods performed equally well with
ordinal IRT data as with continuous FA data.

A limitation to our study was that we considered point estimation, but interval
estimation, which is not common practice yet, may be more informative. Recent
studies have shown that with unidimensional and multidimensional data, Bayesian
credible intervals for coefficients α, λ2, the GLB, ωu, ωh, and ωt perform well
(Pfadt, van den Bergh, &Moshagen, 2021a, b). We assume that the credible intervals
of the reliability coefficients relate to population reliability in the same way as the
population values of the coefficients do (as denoted by the discrepancy values we
found).

In addition to the dominant CTT and FA reliability methods, less well-known
methods based on IRT (Holland & Hoskens, 2003; Kim, 2012) and generalizability
theory (GT; e.g., Brennan, 2001) exist. In IRT, use of typical IRT reliability methods
is rare given the focus on the scale-dependent information function, which proves
to be a powerful tool in IRT applications, such as adaptive testing and equating.
GT provides an attempt to incorporate the influence of different facets of the
test design and environment in the estimation of reliability. Suppose one studies
the effect of test version and score rater on test performance. This requires a
design with factors persons (i), test versions (t), and raters (r). Item scores are
decomposed into person effect (νi), test effect (νt), and rater effect (νr), interaction
effects, and a residual effect (�itr), comparable with an ANOVA layout, so that
Xitr = μ + νi + νt + νr + νit + νir + νtr + �itr. Reliability methods, called
generalizability and dependability methods identify variance sources that affect
relative and absolute person ordering, respectively, and correct for other, irrelevant
sources. The GT approach provides a different perspective relevant to some research
contexts where richer data are available and is worth pursuing in future research.

To conclude, when researchers have unidimensional data, the choice of a
reliability coefficient is mostly arbitrary (if λ4 and the GLB are discarded). With
multidimensional data, the use of a factor model coefficient is encouraged, but lower
bounds such as α prevent researchers from being too optimistic about reliability.
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Modeling Covarying Responses
in Complex Tasks

Amanda Luby and Riley E. Thompson

Abstract In testing situations, participants are often asked for supplementary
responses in addition to the primary response of interest, which may include
quantities like confidence or reported difficulty. These additional responses can be
incorporated into a psychometric model either as a predictor of the main response
or as a secondary response. In this paper we explore both of these approaches for
incorporating participant’s reported difficulty into a psychometric model using an
error rate study of fingerprint examiners. Participants were asked to analyze print
pairs and make determinations about the source, which can be scored as correct
or incorrect decisions. Additionally, participants were asked to report the difficulty
of the print pair on a five point scale. In this paper, we model (a) the responses
of individual examiners without incorporating reported difficulty using a Rasch
model, (b) the responses using their reported difficulty as a predictor, and (c) the
responses and their reported difficulty as a multivariate response variable. We find
that approach (c) results in more balanced classification errors, but incorporating
reported difficulty using either approach does not lead to substantive changes
in proficiency or difficulty estimates. These results suggest that, while there are
individual differences in reported difficulty, these differences appear to be unrelated
to examiners’ proficiency in correctly distinguishing matched from non-matched
fingerprints.
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1 Introduction

It is increasingly common to collect collateral responses alongside the main
responses of interest in testing or survey situations. For example, we may record
a confidence level for a multiple-choice question, response time for a Likert-scale
survey question, or ask participants to report how difficult they found an item. In this
paper, we outline two general approaches for incorporating this type of observed
data into a psychometric model:

1. as a covariate for predicting responses
2. as a second response using additional latent variables.

In the first setting, the covarying responses are treated as predictors for our
outcome variable of interest, so we would use confidence or response time to
explain our primary response variable (usually correctness). In the second setting the
covarying responses are treated as a second outcome, so we would model confidence
or response time alongside correctness as a multivariate response variable.

Throughout this paper, we will use Yij to denote our main outcome of interest,
where i indexes participants and j indexes items. Xij represents the covarying
response. In approach (1), we model P(Yij |θi, bj ,Xij ), while in the second
approach we model, P(Yij , Xij |θi, bj , ψ), where θi represents participant i’s
proficiency, bj represents item j ’s difficulty, and ψ represents possible additional
latent variables. These two approaches and their uses in the literature are discussed
in further detail in Sect. 2.

We demonstrate the use of these two approaches and compare their performance
using data collected in the FBI “Black Box” study (Ulery et al., 2011). The
purpose of this study was to evaluate the accuracy and reliability of decisions made
by fingerprint examiners in the U.S. After fingerprint examiners completed each
question, they were also asked to report the difficulty of the comparison on a 5-
point scale. Reported difficulty is likely to vary depending on both the examiner
and the item, and may provide further information about θ , b, or allow for the
estimation of further latent variables. Luby (2019) demonstrated the use of item
response models such as the Rasch (1960) and partial credit (Masters, 1982) models
on this data, Luby et al. (2020) applied more advanced process models and used
the joint modeling approach outlined above to account for the reported difficulty,
and Luby et al. (2021) expanded on the use of tree-based modeling approaches for
this data (De Boeck & Partchev, 2012; Jeon et al., 2017). In the current paper, we
evaluate the use of the joint modeling approach compared to a covariate approach.

The remainder of the paper is structured as: Sect. 2 introduces the modeling
framework we use throughout, Sect. 3 discusses the fingerprint comparison applica-
tion in further detail, and in Sect. 4 the results are presented. We discuss limitations
and future work in Sect. 5.
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2 Methods

2.1 Rasch Model

The Rasch model (Rasch, 1960; Fischer & Molenaar, 2012), a simple yet powerful
IRT model, uses a mixed effect logistic regression approach with random effects for
both participant proficiency, θi , and item difficulty, bj . Responses can be represented
in an I x J matrix. The information stored within the matrix is a binary response
variable, where a 1 corresponds to a correct response and a 0 corresponds to an
incorrect response. Below is an example of such a matrix:

Y =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 − . . . 1
0 − 1 . . . 0
1 1 − . . . −
...

...
...

. . .
...

0 0 − . . . 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

The probability of a correct response is formulated as in Eq. 1:

P(Yij = 1) = exp (θi − bj )

1 + exp (θi − bj )
. (1)

Note that additional constraints are needed in order to identify the model. Using
a Bayesian modeling approach, we use the convention of setting the mean of
the proficiency parameters to be zero. We also use the recommended priors for
efficiency in estimation in the brms R package (Bürkner, 2017). That is,

Yij ∼ Bernoulli(pij )

pij = logit−1(θi − bj )

θi ∼ N(0, σ 2
θ )

bj ∼ N(0, σ 2
b )

σθ , σb ∼ Half-T3(0, 2.52),

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(2)

where Half-T3(0, 2.52) refers to a folded T-distribution with 3 degrees of freedom.
Using brms, it is possible to fit Bayesian multilevel models using identical

syntax to the lme4 package (Bates et al., 2015), which fits multilevel models
using maximum likelihood techniques. brms uses the Stan modeling language
(Stan Development Team, 2018b) for estimation and interfaces with R (R Core
Team, 2013; Stan Development Team, 2018a). Stan is a probabilistic programming
language for statistical inference that fits Bayesian models using HamiltonianMonte
Carlo and No-U-Turn sampling. For further information on fitting IRT models with
brms, see Bürkner (2019) for an excellent overview.
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2.2 Rasch Model with Response-Level Covariates

There is a rich literature on a number of different approaches for incorporating
variables that are not the response variable into an IRT analysis. When the additional
variables are covariates describing either the participants or the items, they can
be used as predictors for proficiency or difficulty in the IRT model (De Boeck &
Wilson, 2004). A further approach is Differential Item Functioning (DIF), which
represents the additional covariate as an interaction between an item indicator and a
person predictor representing group membership (Holland & Wainer, 2012).

The first method we use to incorporate a covarying response is to treat it as a
covariate at the response level. That is, we do not consider it as a covariate specific
to participants or items, but one that varies with both. Similar to the response matrix
above, we can represent the covarying responses as an i × j matrix, where each row
corresponds to a participant’s responses and each column corresponds to an item.
In the case where the covarying response is an ordered categorical variable, such as
confidence or reported difficulty, with ordered categories A < B < C < D < E,
this matrix will be something like the following:

X =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

A C − . . . B

C − C . . . C

D A − . . . −
...

...
...

. . .
...

E B − . . . A

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(3)

Let the covarying response matrix X be as above, and let Xij be a vector of indicator
variables for each of the possible categories A-E. We can then represent the Rasch
model with Response-Level covariates as in Eq. 4:

Yij ∼ Bernoulli(pij )

pij = logit−1(θi − bj + βXij)

θi ∼ N(0, σθ )

bj ∼ N(0, σb)

βk ∼ N(0, 5)
σθ , σb ∼ Half-T3(0, 2.52).

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(4)

However, this exact model formulation may not be appropriate for every type
of covarying response. In the case of response time, for example, the covarying
response matrix could instead contain real-valued responses, in which case the
indicator variables defined above would not be needed. Care should be taken
when choosing prior distributions to ensure that the type of covarying response is
accounted for.
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2.3 Joint Rasch Model

Variables such as confidence or response time, which are not observed prior to
observing the responses, could not be used to predict responses in a realistic setting.
Using covarying responses as a predictor in the model for responses may improve
predictive performance of a model, but are not truly a ‘predictor’. While this is
not necessarily an issue for inferential modeling, it does suggest an alternative
framework may be more appropriate.

As an alternative, we can treat the covarying response as a secondary outcome
using a multivariate response. Assuming the same X and Y response matrices
defined above, the joint responses model we use is given in Eqs. 5 and 6.

Yij ∼ Bernoulli(pij )

pij = logit−1(θi − bj )

Xij∗ = logit−1(β0 + hi + fj )

(θi, hi) ∼ MV N(0, σθLθL
′
θσθ )

(bj , fj ) ∼ MV N(0, σbLbL
′
bσb)

Lθ , Lb ∼ LKJ(1)
β0, γi ∼ N(0, 5)
σθ , σb ∼ Half-T3(0, 2.52)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5)

Xij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

A X∗
ij ≤ γ1

B γ1 < X∗
ij ≤ γ2

C γ2 < X∗
ij ≤ γ3

D γ3 < X∗
ij ≤ γ4

E X∗
ij > γ4.

(6)

To model the ordered categorical variable Xij , a continuous latent variable for
each (i, j) pair, X∗

ij , is estimated and then binned into the categorical variable Xij

according to category cutoffs γi . We additionally constrain γ1 < γ2 < γ3 < γ4 to
account for the ordered categories. The additional variables hi and fj allow for the
possibilities that participants over- or under-estimate the covarying response relative
to the reporting tendencies of other participants. The fj term tells us whether a
similar difference is present for the items. To estimate θ , b, h and f , we assume:

1. Yi· ⊥ Yi′·: participant responses are independent of other participants’ responses
2. Yij ⊥ Yij ′ |θi and Xij ⊥ Xij ′ |θi, hi : participant responses (and covarying

responses) are conditionally independent given the latent variables θ , h for any
given participant

3. Xij ⊥ Yij |θi, bj , g, hi, fj : covarying responses are conditionally independent of
primary responses given all latent variables for each i, j pair.
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Assumptions (1) and (2) correspond to the local independence assumption and
are common in the IRT literature. Assumption (3) is an extension of (2) to the
covarying response variable.

Thissen (1983) provides an early example of this type of modeling, where the
logarithm of response time is modeled as a linear function of the standard IRT
quantity (θi − bj ) and additional latent variables for both items and participants.
Ferrando and Lorenzo-Seva (2007), van der Linden (2006) each propose various
models for modeling response time jointly with the traditional correct/incorrect
IRT response. Modeling collateral information alongside responses in such a way
has been shown to improve estimates of IRT parameters through the sharing of
information (van der Linden et al., 2010).

2.4 Model Evaluation

We use three approaches to evaluate model fit. First, a posterior predictive check
provides a high-level measure of whether the predicted responses follow a sim-
ilar distribution as the observed responses. We then assess in-sample predictive
performance for both correct and incorrect responses. Finally, we estimate the out-
of-sample predictive performance using the widely-applicable information criterion
(WAIC, Watanabe, 2010). Each of these evaluation metrics is discussed in more
detail below.

Posterior Predictive Check For a preliminary assessment of model validity, we
perform a posterior predictive check (Sinharay et al., 2006). In such a check,
parameter values from each posterior draw are used to generate a simulated dataset,
resulting in a large number of replicate datasets. We then compute the predicted
responses (Yij ) for each i × j pair in the original dataset and display the overall
distribution aggregated over all responses. If the model is performing adequately,
the distribution of the simulated responses will be similar to the observed responses.

In-sample Predictive Performance We also assess model fit using in-sample
predictive performance. While the posterior predictive check above investigates the
overall distribution of predicted responses, it does not measure whether the model is
correctly predicting individual observations. The in-sample predictive performance
investigates how well the model is predicting responses at the observation level.

In this check, we use the posterior means to compute P(Yij = 1) under the model
for each i × j pair. If P(Yij = 1) > 0.5, we predict a correct response, otherwise
we predict an incorrect response. We then compare each predicted response to
the original response, and summarize model performance through the number of
false positive errors (i.e. the model predicts correct when the observed response
was incorrect) and false negative errors (i.e. the model predicts incorrect when the
observed response was correct). If the number of false positive and false negative
errors is low, the model is performing well in terms of predicted performance.
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Out-of-sample Predictive Performance To complement the in-sample predictive
performance described above, we also estimate the out-of-sample predictive per-
formance. Out-of-sample predictive performance describes how well the model
performs at prediction, while correcting for the bias in using the same set of data
to evaluate the model that was used to estimate the parameters. We use the widely-
applicable information criterion (WAIC, Watanabe, 2010) as defined in Vehtari et al.
(2017) to compare the model fit. This quantity provides an estimate of pointwise
out-of-sample predictive performance using posterior draws:

WAIC = −2 × (l̂pd −
N∑

n=1

V S
s=1 log(p(yn, xn|θs, bs, f s, hs))) (7)

where V S
s=1 represents the sample variance, θs, bs, f s, hs are the parameter esti-

mates from the sth posterior draw, and

l̂pd =
N∑

n=1

log
1

S

S∑

s=1

p(yn, xn|θs, bs, f s, hs)

is the log pointwise predictive density. Estimates of the standard error of the WAIC
( ˆSE(WAIC)) can also be computed. If the WAIC of one model is lower (better)
than a second model, but the two WAIC values are within two standard errors from
one another, the difference may be due to sampling error and not to a true difference
in model performance (Vehtari et al., 2017).

Parameter Estimates In addition to model fit assessments, we also use the
parameter estimates to gauge the performance of each model. We look for rea-
sonable population-level covariates and informative latent variables describing the
participants. By ‘population-level’ covariates, we mean that these covariates are not
specific to participants or to items but instead describe the responses at the i×j level
(e.g. the β estimates from Eq. 8 and 9). We also investigate the correlation between
the latent variables across items and participants. If the correlations are strong,
the reported difficulty responses likely measure similar trends as the comparison
responses. Weak correlations, on the other hand, suggest that the two responses are
measuring different latent tendencies.

3 Application: Forensic Fingerprint Comparisons

For the remainder of the paper, we will demonstrate each of the modeling frame-
works introduced above applied to forensic fingerprint comparisons. The general
task involves comparing a crime-scene print (called a latent print) to a known-source
reference print to determine whether the two prints came from the same source.
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ACE-V Procedure The process in which examiners compare prints is called ACE-
V (Analysis, Comparison, Evaluation, Verification). In the analysis stage, examiners
are shown a latent print and are tasked with determining if the print has value for
individualization (VID), value for exclusion only (VEO) or no value (NV).1 If a
print has value, either VEO or VID, the examiner is then presented with a reference
print in the comparison stage. Prints with no value are no longer examined and do
not proceed into the comparison stage.

In the comparison stage, an examiner compares the latent and reference print
side by side. This usually involves comparing the ‘minutiae’, or small details in
the fingerprint ridge pattern, between the two prints. The evaluation stage occurs
when the examiner determines whether or not the reference and latent print are
from the same source. In the evaluation stage, an examiner can make one of three
determinations: individualization, exclusion, or inconclusive.2 ‘Individualization’
means the examiner concluded that the two prints are from the same source,
exclusion means they concluded that the prints are from two difference sources,
and inconclusive comparisons mean that the examiner could not determine whether
or not the two prints are from the same source. Verification requires independent
confirmation of the determination from another fingerprint examiner. For more
details on fingerprint comparison and the ACE-V process, see AAAS (2017).

FBI Black Box Study The FBI, with NOBLIS Inc., conducted the Black Box
study to simulate realistic casework for finger print examiners (Ulery et al., 2011).
The purpose of the Black Box Study was to analyze the accuracy and reliability
of fingerprint examiners. Specifically, the goal of the study was to calculate the
frequency of false positive and false negative responses. A false positive occurs
when an examiner individualizes non-mated pairs and a false negative occurs when
an examiner excludes mated pairs.

A total of 169 latent print examiners participated in the study. Each examiner was
given a randomized examiner ID to keep their responses anonymous. Examiners
were assigned a random set of roughly 100 latent prints to analyze using the ACE-V
framework. There were 365 latent prints and 484 reference prints from 21 people,
which were combined to form 744 latent-reference pairs. Each latent-reference pair
was assigned a pair ID.

A mated pair describes two prints in which the prints were obtained from the
same source. Therefore, for any mated pair both the latent and exemplar print are
from the same finger on the same person. Non-mated pairs, however, are two prints

1 These latent evaluation categories may vary depending on different laboratory practices. We use
the categories that were recorded in the Black Box study (Ulery et al., 2011).
2 Individualizations are no longer recommended in practice, in favor of ‘identification’ or ‘same
source’ conclusions. Since the data used in this paper was collected in 2011 and used the
‘Individualization’ terminology, this is what we use throughout. See Friction Ridge Subcommittee
of the Organization of Scientific Area Committees for Forensic Science (2017, 2019) for further
discussion and current recommendations.
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that are not from the same source. This means that the latent and exemplar print are
from different people or different fingers on the same person.

For the purposes of this paper, correct responses were defined to be individual-
izing mated pairs and excluding non-mated pairs. All inconclusive responses and
well as erroneous responses, such as individualizing non-mated pairs and excluding
mated pairs, were scored as incorrect.

Covarying Response: Reported Difficulty Reported difficulty was recorded for
each complete response in the Black Box study. A ‘complete’ response refers to
the examiner making it to the comparison/evaluation stage and making a source
decision (individualization vs. exclusion vs. inconclusive). After examiners came
to a decision, they were asked to report the difficulty of the comparison task.
The difficulty scale examiners were asked to report on was: A-Obvious, B-Easy,
C-Medium, D-Difficult, or E-Very Difficult. See Table 1 for descriptions of the
categories that were given to participants while completing the Black Box study,
as well as the proportions of each response.

We emphasize two reasons that interpreting reported difficulty is a complex task.
First, individuals may naturally have subjective thresholds on what constitutes a
‘difficult’ as compared to a ‘very difficult’ item, for example. These subjective
thresholds may also be influenced by the type of training or typical casework
involved in that particular examiner’s career. Second, reported difficulty itself is
ambiguous. For example, in the Analysis stage an examiner can determine that a
latent print has value (VID or VEO), but make a determination of Inconclusive. An
examiner could have quickly and “easily” came to the inconclusive determination
and rated the difficulty either A-Obvious or B-Easy. This scenario differs from one
in which an examiner was able to individualize mates or exclude non-mates with
ease.

Table 1 shows the infrequency in which examiners select difficulty ratings
‘Obvious’ and ‘Very Difficult’. A simple solution is to regroup the original difficulty
scale to have a more even distribution of responses per difficulty. The original
difficulty scale was rescaled such that ‘Obvious’ and ‘Easy’ were combined to the
category entitled ‘Easy’. Additionally, ‘Difficult’ and ‘Very Difficult’ were grouped

Table 1 Proportion of responses for reported difficulty category, along with the description
provided to participants while completing the Black Box study

Difficulty rating Proportion Description

Obvious 8.14% The comparison determination was obvious.

Easy 26.45% . . . easier than most latent comparisons.

Moderate 44.31% . . . a typical latent comparison.

Difficult 17.87% . . .more difficult than most latent comparisons

Very difficult 3.23% . . . unusually difficult, involving high distortion

and/or other red flags
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Table 2 Proportion of
responses for each
transformed category,
including corresponding
original difficulty categories

Transformed difficulty Original difficulty Proportion

Easy Obvious/easy 34.59%

Medium Moderate 44.31%

Hard Difficult/very difficult 21.10%

into the category ‘Hard’. The 3-point scale created more balance amongst the new
three categories (see Table 2).

A second reason we might prefer the transformed difficulty scale is that responses
appear to be more stable across time. In a follow up study in which the set of
examiners re-analyzed 25 pairs that they had seen in the original Black Box study
(Ulery et al., 2012), ‘Medium’ was the only category in which a majority of
responses did not change: 57.35% of comparisons that were reported to be ‘A-
Obvious’ on the original Black Box study changed in the retest study, 51.63% of
original ‘B-Easy’ responses changed, 45.27% of original ‘C-Medium’ responses
changed, 58.26% of ‘D-Difficult’ responses changed, and 100% of original ‘E-Very
Difficult’ responses changed in the retest study. By combining ‘A-Obvious’ with
‘B-Easy’, and ‘E-Very Difficult’ with ‘D-Difficult’, responses become more stable.
On the transformed scale, only 37.20% of responses that were ‘Easy’ (‘A-Obvious’
and ‘B-Easy’ combined) on the initial study changed to a different difficulty on the
retest, 45.27% of ‘Medium’ responses changed, and 51.31% of ‘Hard’ (‘D-Difficult’
and ‘E-Very Difficult’ combined) changed on the retest study. While we still observe
a substantial proportion of responses changing on the retest, the transformed 3-
category difficulty scale appears to be more stable across time than the original
5-category difficulty scale.

3.1 Model Formulation

Rasch Model The first model that we fit to the Black Box data was the standard
Rasch model as outlined in Sect. 2, Eq. 1, which estimates a proficiency for each
participant (θi) and a difficulty for each item (bj ).

Covariate (5-Point Scale) The reported difficulty scale can be added to the Rasch
model as a population-level covariate. This formulation results in coefficients that
are constant across all responses. In other words, the difficulty coefficient does not
vary depending on the item or the examiner. The probability of a correct response
using the covariate approach can be modeled as:

P(Yij = 1) = logit−1(θi − bj + βD5) (8)

where D5 consists of indicator variables for each of the five possible reported
difficulties representing the examiner’s difficulty response on the pair.
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Covariate (3-Point Scale) The transformed difficulty scale can also be added to the
Rasch model as a population-level covariate. The probability of a correct response
using the covariate approach can be modeled as:

P(Yij = 1) = logit−1(θi − bj + βD3) (9)

where D3 consists of indicator variables for each of the three possible rescaled
difficulties for each examiner’s response on the item.

Joint Response (5-Point Scale) In the joint response approach (outlined in more
detail in Sect. 2), we treat both Yij (correctness) and Xij (reported difficulty) as
outcome variables:

P(Yij = 1) = logit−1(θi − bj ) (10)

X∗
ij = logit−1(β0 + hi + fj ) (11)

and Xij consists of the reported difficulty responses on the original five-point scale
and is modeled with the piecewise cutoff function in Eq. 6.

Joint Response (3-Point Scale) The joint response model for the 3-point scale is
formulated the same as the 5-point scale (See Eqs. 9 and 10), but Xij consists of the
rescaled difficulty responses on the three-point scale and is modeled with a modified
piecewise cutoff function as in Eq. 6, with three possible categories.

4 Results

In this section, we focus on two aspects of the results of the model. First, we present
a comparison of the model fits using the methods outlined in Sect. 2. Second, we
investigate the latent parameters for participants (θ and h) across each of the five
models, their correlation, and the estimated impact of reported difficulty.

4.1 Model Comparison

Posterior Predictive Check We begin by performing a simple posterior predictive
check on all five models. In Fig. 1, we compare the overall number of predicted
incorrect (yrep = 0) and correct (yrep = 1) among each of the posterior draws
to the actual number of correct and incorrect responses observed in the Black Box
study. We see that all models do quite well at matching the overall distribution of
responses. The same type of posterior predictive check was also performed for the
covarying responses in the Joint Responses models, and the models again performed
quite well at capturing the overall number observed in each category (see Fig. 2).
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Fig. 1 Results from a posterior predictive check for the Rasch model, Covariate models (both
5-category and transformed 3-category), and joint models (both 5-category and transformed
3-category). Simulated responses based on posterior draws are denoted yrep , while observed
responses are denoted by y. All five models perform quite well according to the posterior predictive
check

Fig. 2 Results from a posterior predictive check with reported difficulty as the response for the
two joint models. Simulated responses based on posterior draws are denoted yrep , while observed
responses are denoted by y. Both joint response models perform quite well according to the
posterior predictive check

In-sample Predictive Performance In-sample predictions for each Yij observa-
tion, for each of the five models, is displayed in Fig. 3. In general, each model tends
to make more “false positive” predictions (observed incorrect but P(Correct) >

0.5) than “false negative” predictions (observed correct but P(Correct) < 0.5).
While different thresholds for P(Correct) could also be used to optimize model
performance, our primary interest is comparing models to one another and so we
use 0.5 for convenience and interpretability.

We also observe that the joint models (“Joint (5)” and “Joint (3)”) are more
balanced in the error rates compared to models that include reported difficulty as
a covariate (“Covariate (3)” and “Covariate (5)”): they tend to make fewer false
positive errors and more false negative errors. The Rasch model (which does not
incorporate any information about the reported difficulty) performs more similar to
the joint models than to the covariate models, suggesting that the latent variables
for correctness (θ ) and for difficulty perception (h) do not have a strong enough
correlation to influence one another. We discuss this further in Sect. 4.2.
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Fig. 3 Predictive performance of each of the five models

Table 3 Estimated out-of-sample prediction error according to WAIC as computed by the brms
package (Bürkner, 2017). The WAIC for the Joint Models is computed using only ‘correct’ as a
response to remain comparable to the other models

WAIC (y) ˆSE (WAIC)

Covariate (5) 6847.9 123.5

Covariate (3) 6855.4 123.3

Rasch 6873.4 123.6

Joint (3) 6884.3 123.8

Joint (5) 6889.7 123.9

Out-of-sample Predictive Performance The estimated out-of-sample predictive
performance is shown in Table 3. The WAIC for the joint response models (“Joint
(3)” and “Joint (5)”) have been adjusted to use only the log pointwise predictive
density for correctness (e.g., Yij ) so that they remain comparable to the other models
and is shown in the first column (labeled WAIC(y)). We see that the covariate
models perform the best according to WAIC (since they have the lowest values),
the joint models perform the worst according to WAIC, and the Rasch model is
somewhere in the middle. However, all of the WAIC values are well within a single
standard error of one another (as seen in column 2, ˆSE(WAIC)), suggesting that
these differences may be due to sampling error and not true differences in model
performance.

4.2 Parameter Estimates

Predictive performance is only one aspect of model evaluation, and while the
joint models appear to have more balanced error rates, there is not a clear best-
fitting model in terms of prediction error. Here, we compare our person parameter
estimates (θ and h) among each of the models, and also investigate the population-
level covariates (β’s).



78 A. Luby and R. E. Thompson

Population-Level Covariates Figure 4 displays the estimated coefficients with
95% posterior intervals. We observe that easier categories tend to have the expected
result (higher probability of a correct response), but that items that are rated as
‘Difficult’ or ‘Very Difficult’ (or ‘hard’ in the Covariate (3) model) are expected to
have a higher probability of a correct response than items that are rated as ‘medium’.
These results suggest that examiners may be over-rating the items that are labeled
as ‘very difficult’ or under-rating items labeled as ‘medium’.

Latent Variables Describing Participants The θ estimates for each participant in
the Black Box study under each model are shown in Fig. 5, along with 95% posterior
intervals. Perhaps unsurprisingly given the structure of the models, each model
results in similar estimates for each examiner, and a similar amount of uncertainty
in the estimate. There are a couple of examiners who receive higher θ estimates in
the joint models as compared to the covariate and Rasch model, which suggests
that extreme differences in reported difficulty may lead to different proficiency
estimates, but overall these differences are not significant.

Fig. 4 β Estimates for the covariate models along with 95% posterior intervals

Fig. 5 Proficiency estimates for each model along with 95% posterior intervals. We obtain similar
estimates for proficiency in every model
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Fig. 6 Comparison of h estimates among the two joint models

Table 4 Correlation between
the latent variables in the
joint models

Model Cor(θ, h) Cor(b, f)

Joint (3) −0.24 [−0.10, −0.39] 0.48 [0.40, 0.55]

Joint (5) −0.27 [−0.12, −0.42] 0.47 [0.40, 0.54]

A comparison of the h estimates between the two joint models is shown in Fig. 6.
The histograms on the diagonal show the overall distribution of h estimates in the
5-category (left) and 3-category (right) models, and show that the 5-category model
may have slight shrinkage of the estimates compared to the 3-category model. We
see the same trend in the scatterplot (lower left plot), where the h estimates from the
Joint (3) model are displayed on the y-axis and the Joint (5) model is on the x-axis.
However, the differences between the two models are quite small and the correlation
between the estimates remains extremely high (0.983).

Correlation Between Latent Variables Finally, we investigate the correlation
between θ and h and between b and f in the joint models. The correlation estimates,
with 95% posterior intervals, are shown in Table 4. The estimates are consistent
across the two models, suggesting that the transformed reported difficulty does not
lead to substantial changes in overall trends. We also find that there is a stronger
correlation between the latent variables describing the items (b and f ) than the
latent variables describing the participants (θ and h). Items on which participants
performed worse (i.e. high b) also tended to be rated as more difficult (i.e. high f ).
On the other hand, participants who performed better (i.e. high proficiency) tended
to rate items as less difficult on average (i.e. lower h), but this relationship is not as
strong.
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5 Discussion

In this paper, we discussed two broad approaches for incorporating covarying
responses within an IRT framework. The first approach involves including the
covarying response as a predictor at the same i × j level as the primary response
of interest (e.g. “correctness” in a usual IRT model). The second approach involves
treating the outcome as a multivariate response. We used separate latent variables to
model each response, but the joint responses could also depend on shared latent
variables (see Luby et al. (2020) for one example). We applied each of these
models to the FBI ‘Black Box’ study, which measured the performance of forensic
fingerprint examiners. In this setting, our primary outcome of interest was whether
or not the fingerprint examiner came to the correct source conclusion, and our
secondary outcome was the examiner’s reported difficulty of each comparison task.

In terms of predictive performance, including reported difficulty as a population-
level covariate offers no improvement to the model. We also find very few
differences in conclusions between the models using the original reported difficulty
scale and the models using the transformed difficulty scale. The joint models esti-
mated nonzero reporting tendencies for participants (h) and items (f ), suggesting
that there are detectable differences in reporting behaviors. We prefer the joint
modeling approach as obtaining latent variable estimates for reported difficulty
provides useful information about variability in reporting behavior.

A limitation with this analysis that we did not address is in scoring the data.
While the FBI provided information on whether each pair of fingerprints came from
the same source or different sources, there is no keyed correct response. This is
especially important when considering “inconclusive” responses. In this analysis,
inconclusive responses were treated as incorrect (since the participant was not able
to come to the correct conclusion), but in reality we may expect an inconclusive
result for very low-quality images. The treatment of inconclusive determinations in
determining error rates is an ongoing discussion in the forensic science literature,
particularly in pattern evidence disciplines such as fingerprints (Koehler, 2007;
Luby, 2019; Dror & Scurich, 2020), palm prints (Eldridge et al., 2021), and firearms
(Hofmann et al., 2020).

However, any scoring of the inconclusive responses necessarily results in a loss of
information. As an alternative to scoring inconclusive results as correct or incorrect,
it is also possible to use a consensus-based approach or ‘IRT without an answer key’
(Batchelder & Romney, 1988; Luby et al., 2020). This is another potential avenue of
future research, since how the responses are scored has a significant impact on the
estimated proficiency and difficulty estimates, and we may expect a similar effect
for estimating secondary latent variables.

A further challenge in modeling joint responses in general, particularly in
application areas in which it is infeasible to undergo substantial validation testing,
is that using the raw secondary response may lead to overfitting. As noted in Sect. 3,
reported difficulty was not consistent for examiner × item pairs in a follow-up
repeatability study using the same participants and item pool (Ulery et al., 2012). In
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future studies, providing an opportunity for participants to calibrate their secondary
responses may improve inferences.

In the future, we would also like to investigate whether there is a differential use
of subjective reporting scales in forensic science. Allowing the category thresholds
in Eq. 6 to vary across participants would be one way of accounting for differential
use of the reporting scales.

Even with the challenges outlined above, it is important to study these secondary
responses and better understand the variability among participants and items. While
it is not standard to collect a reported difficulty on a five-point scale in forensic
casework, it is common for examiners to testify in court regarding their conclusions.
If there is substantial variability in how examiners perceive the difficulty of
fingerprint comparisons, this may lead to variability in testimony that is provided
to judges and juries. Collecting and modeling covarying information (reported
difficulty or otherwise) could provide additional insight into the differences in
perception and decision-making than responses alone.
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Exploring the Utility of Nonfunctional
Distractors

Merve Sarac and Richard A. Feinberg

Abstract Functional distractors (the incorrect options in a multiple-choice ques-
tion) should draw attention from those test-takers who lack sufficient ability or
knowledge to respond correctly. Unfortunately, previous research on distractors has
demonstrated the unsettling reality that this rarely occurs in practice leading to
recommendations for creating items with fewer incorrect alternatives. The purpose
of the present study was to explore if these nonfunctional distractors (NFDs) may
still yield value in detecting unusual examinee behavior. Using empirical data from
a high-stakes licensure examination, examinees who selected an excessive number
of NFDs were flagged and analyzed with respect to their response times and overall
performance. Results indicated that these flagged examinees were also of extremely
low ability, selected NFDs consistently across item sequence, and were homogenous
in their pacing strategies - spending a similar amount of time when choosing a
nonfunctional or functional distractor. Implications for relevant policy decisions,
mitigation strategies, operational applications, and test security considerations are
discussed.

Keywords Distractor quality · Aberrant responses · Response time ·
Multiple-choice test

Multiple-choice questions (MCQs) have been ubiquitous in standardized testing
over time and across various disciplines due to their cost-effective development,
intuitive presentation, and objective scoring (e.g., Gierl et al., 2017). Given modern
advances in automated item generation (e.g., von Davier, 2018; Prasetyo et al., 2020)
and distractor generation (e.g., Susanti et al., 2018; Maurya & Desarkar, 2020),
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MCQs will likely continue to be widely used in the foreseeable future. MCQs are
generally composed of a stem or prompt followed by a series of discrete response
options, one of which being the (most) correct answer. While the literature on
constructing quality MCQs is vast, historically, the focus has been on developing
the stem and correct option, though studies on the incorrect options or distractors
have been gaining attention (Thissen et al., 1989; Gierl et al., 2017).

An effective or functional distractor should draw attention from those test-takers
who lack sufficient ability or knowledge to respond correctly. Previous research on
distractors has demonstrated the unsettling reality that in many contexts they tend
to be statistically nonfunctional (e.g., not disproportionately attracting examinees
who lack ability or knowledge), prompting practitioners to question their necessity
(Delgado & Prieto, 1998; Haladyna et al., 2002; Raymond et al., 2019; Rodriguez,
2005; Rogausch et al., 2010). For instance, a traditional MCQ presentation would
include at least four options with three distractors to mitigate correct guessing,
thereby making exam scores more valid and reliable (Haladyna & Downing, 1993;
Rodriguez, 2005). However, nonfunctional distractors (NFDs) are so implausible
that even low ability test-wise examinees can easily eliminate them to increase their
probability of correct guessing (Delgado & Prieto, 1998; Haladyna & Downing,
1993; Rodriguez, 2005). Further, NFDs introduce other costs and risks related to the
item development efforts in creating the distractors, allotting sufficient testing time
for examinees to read all response options, and potentially exacerbating negative
perceptions about a test’s integrity with incredulous response options. For these
reasons, researchers have investigated the optimal number of distractors for MCQs
(Delgado & Prieto, 1998; Haladyna et al., 2002; Raymond et al., 2019; Rogausch et
al., 2010) with Rodriguez (2005) concluding after a meta-analysis across 80 years
of research that three-response options are ideal.

Despite NFD prevalence, distractor analyses are routinely carried out in oper-
ational testing programs to improve item quality (Haladyna, 2016). It is well
documented that the item information function under an item response theory
(IRT) framework is affected by distractor characteristics such as difficulty and
discrimination (Haladyna & Downing, 1988; Revuelta, 2004). Additionally, items
with distractors of similar difficulty are more informative about an examinees’
ability than those with varying difficulty levels. Beyond improving test development
practices, modeling the propensity to choose distractors has been shown to increase
measurement precision (Levine & Drasgow, 1983; Thissen & Steinberg, 1984).
For example, several IRT models for distractors were developed in the literature
(Bock, 1972; Briggs et al., 2006; Haberman & Lee, 2017; Samejima, 1979; Suh &
Bolt, 2010; Thissen et al., 1989). Additionally, to extract diagnostic information on
examinee learning deficits or misconceptions, cognitive diagnostic models (CDMs)
have been proposed to systematically develop and analyze distractors (de la Torre,
2009). Distractor analyses also improve the detection of unusual response similarity
in the context of test security (e.g., Haberman & Lee, 2017; Wollack, 1997). Several
research studies use information from distractors in addition to the correct options
to identify aberrant patterns of matching responses between examinees (e.g., ω
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(Wollack, 1997), M4 (Maynes, 2014), and Generalized Binomial Test (GBT: van
der Linden & Sotaridona, 2006).

Though previous research recommends replacing or eliminating NFD to imple-
ment MCQs with fewer response options, distractor analyses are utilized in various
ways by operational testing programs to optimize score validity. The purpose of
the present study is to extend this distractor literature by focusing specifically on
the potential value of NFDs. Particularly, we highlight the extent to which excessive
NFD selection may serve as a mechanism to detect unusual response behavior. Thus,
illustrating how NFDs are, counter-intuitively, worth retaining for forensic analyses.

1 Methods

Item response data was obtained from a licensure examination in which the primary
purpose is a pass/fail classification. As a high-stakes assessment, prospective
examinees were well-informed of the non-trivial financial cost (over $500) to
register as well as the consequences for a failing attempt. Thus, examinees should
be highly motivated to only test when they are ready to perform to the best of
their ability. Data included responses from 61,088 examinees, each completing a
form composed of 280 MCQs in which most (97%) had either four, five, or six
response options. MCQs were randomly administered across seven 40-item blocks
with 60 minutes allotted to complete each block.

First, distractors across all items were categorized as either functional or non-
functional. Though several definitions have been proposed in the literature, a simple
and commonly used approach was employed to classify nonfunctional distractors as
any incorrect option selected by less than 5% of the group (Wakefield, 1958). Using
this NFD definition, the total number of NFDs selected by each examinee and their
corresponding rank relative to the entire group was calculated. Zipf’s law (1949)
was used to detect outliers among examinees who selected an excessive number of
NFDs. Zipf’s law states that the relationship between the log of the frequency of an
event and its rank among other events is linear (i.e., a linear relationship between
the number of occurrences of NFD and its rank ordering), a relationship that holds
reasonably well in many situations (Wainer, 2000; Aitchison et al., 2016). The top
1% of all examinees who selected NFDs abundantly more than expected from the
linear relationship between the NFD log frequency and its rank were flagged.

The remaining analyses focus on the flagged examinees who engaged in exces-
sive NFD selection. First, the relationship between NFD selection and examinees’
response times was investigated as previous research has demonstrated connections
between response time and motivation (Wise & Kuhfeld, 2020) and speededness
(Feinberg et al., 2021), both of which may be potential causal factors for NFD
selection. Average standardized response times relative to an item’s time-intensity
were calculated for all examinees for only the responses in which they selected an
NFD. Flagged examinees were then further subdivided into three groups: fast (their
average standardized NFD response time in seconds was greater than 0.5), slow
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(their average standardized NFD response time was less than −0.5), or typical (their
average standardized NFD response time was between −0.5 and 0.5). Next, overall
test performance (i.e., total scores) was compared against NFD selection to detect
conditional differences across ability levels, potentially informing a stopping-rule
criterion. Lastly, the relationship between NFD selection and item characteristics,
such as item difficulty and stem length (in word counts), was explored to explain
why some items received higher rates of NFD selection.

2 Results

Following the definition of a distractor as nonfunctional if selected by less than 5%
of examinees, we described the number of functional distractors by MCQ option set
(Table 1). For instance, in the 5-option set, only 5% of the items had all functional
distractors, 82% between 1 and 3 functional distractors, and 14% had no functional
distractor (i.e., all were NFDs). These results aligned with the literature that many
incorrect responses were not distracting well. Items with no functional distractors
can be considered extremely easy - typically in which the proportion of the group
responding correctly (p value) is greater than 90% (Gierl et al., 2017). Easy items
tend to commonly appear in licensure and certification tests due to content coverage
requirements.

Figure 1 shows the log-frequency of NFDs selected by their rank, revealing an
exponential increase as the percentile approached 100. Highlighted in red were
examinees at or above the 99th percentile for how often they selected an NFD. A
total of 603 examinees were flagged as excessively selecting NFDs more than would
be expected – on at least 64 of the 280 MCQs.

When selecting NFDs, these flagged examinees were categorized as either fast,
slow, or typical relative to the item’s standardized response time (Fig. 2). Examinees
highlighted in green were very slow but ultimately selected an NFD. Perhaps
they lacked sufficient knowledge yet engaged for a lengthy amount of time before
providing a misinformed response. In comparison, examinees in red were those who
picked an NFD quickly. One explanation could be that they incidentally selected
NFDs from a rapid random guess due to speededness.

Table 1 Percent of distractors that are functional for MCQs with 4, 5, or 6 response options

# of Distractors 4 Option Sets (n = 697) 5 Option Sets (n = 5426) 6 Option Sets (n = 1023)

5 – – 2%
4 – 5% 8%
3 13% 17% 19%
2 40% 31% 29%
1 33% 34% 30%
0 13% 14% 12%
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Fig. 1 Log frequency of NFDs by their rank

Fig. 2 Average standardized response time when selecting NFDs by number of NFDs selected

However, this explanation seems unlikely given the results presented in Fig. 3;
fast responder flagged examinees also tended to complete the test with ample
remaining time. Not shown here, but the percentage of examinees by flagged group
choosing an NFD was stable across item encounter sequence - NFD selection
was not more prevalent at the end of each section. Thus, the results suggest NFD
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Fig. 3 Average section response time by number of NFDs selected

selection was not influenced by speededness (Bolt et al., 2002; Harik et al., 2020;
Feinberg et al., 2021).

The relationship between total test score and the number of NFDs selected
(Fig. 4) indicated that flagged examinees were also those with the lowest overall
performance, well below the passing score threshold. All those flagged failed the
test, in addition to any examinees with more than 45 NFD selections. This finding
also suggested that examinees who selected a high number of NFDs might have
been the least prepared for the test. If so, then for low ability examinees NFDs were
indeed functional as they were helping to distinguish uninformed responders.

Figure 5 illustrates the relationship among total test score by the response
time difference between NFD and functional distractors. The plot indicates that
the time examinees spent choosing an incorrect option that was nonfunctional
vs. functional varied more for examinees of higher ability.1 Flagged examinees,
who also happened to be of the lowest ability, had a relatively small variance
in pacing (i.e., their pacing is similar for when they selected a functional or
nonfunctional distractor). Thus, slow flagged examinees spent a long time on all
incorrect responses, and fast flagged examinees spent very little time on all incorrect
responses, regardless of whether they chose an NFD.

Lastly, Table 2 shows how the frequency of NFD selection for flagged examinees
related to item difficulty (b-parameter in the Rasch model) and stem length in word
counts (mean-centered at 117.4 words). Due to non-normality of NFD frequency,
bootstrap confidence intervals were provided for the linear regression estimates.

1 Note that this relatively higher variance may also be an artifact of increased standard error due to
selecting fewer incorrect responses in general.
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Fig. 4 Total test score by the number of NFDs selected

Fig. 5 Total test score by nonfunctional and functional distractor response time difference

Table 2 Summary of the
linear regression of item NFD
frequency

Estimate 95% CI

Constant 10.61* [10.02, 11.22]
Item difficulty (b-parameter) −4.28* [−5.36, −3.37]
Stem length (in word counts) −0.03* [−0.05, −0.02]

Note: * p < .001. Stem length is mean-centered (M = 117.4)

Item difficulty was negatively associated with the number of NFDs selected after
controlling for stem length (β = − 4.28). As item difficulty (b-parameter)
decreased, the number of NFDs selected increased (i.e., easier items tended to have
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more NFDs selected). Item stem length was also negatively associated with the
number of NFDs selected, controlling for item difficulty (β = − 0.03). As stem
length decreased, the number of NFDs selected increased.

3 Discussion

Though NFDs can be prevalent among MCQ response options, they may offer value
for posttest forensic analysis and insight into examinee behavior. Results from this
study suggest that flagged examinees who excessively selected NFDs were also
of extremely low ability, selected NFDs consistently across item sequence, and
were homogenous in their pacing strategies - spending a similar amount of time
when choosing an NFD or functional distractor. Additionally, many of the flagged
examinees had ample time remaining, which could have been used to consider a
more attractive response option, perhaps even the correct answer.

Response time investigations revealed that among those flagged with extreme
NFD selection, slow responders used most if not all the time available while
fast responders had plenty of time remaining. Causal factors to explain these
different behavior patterns, such as incorrect content preknowledge, malicious test-
taking behavior (e.g., item harvesting) or purposeful failure to perpetuate retest
opportunities and gain exposure to secure test material, would be important to
investigate in future studies. If the methods described in this paper were used
operationally, practitioners may want to further subdivide the flagged examinees,
if possible, by other relevant characteristics (e.g., school, testing location, or
native language), which might provide additional insight into explanatory factors.
Researchers could also investigate the retest performance (or passing rates) for
the flagged examinees to distinguish between low ability and aberrant behavior.
Further exploration could also include analyses on the match on NFD selections
among those flagged, which could relate to the (incorrect) content preknowledge or
collusion.

This study used only one frequency-based definition of NFDs as recommended
by Wakefield (1958). Results may differ across more sophisticated or conservative
approaches that incorporate other ancillary information such as item discrimination,
biserial correlations, or an average total score of those selecting the distractor (e.g.,
Haladyna & Downing, 1988). Additionally, licensure and credentialing tests similar
to the one used in this study tend to have easier items for a more homogenous
testing population, leading to relatively more NFDs (based on a response-frequency
NFD definition) than one might expect with a heterogeneous achievement testing
population. Thus, results from this study should be interpreted with caution in how
they may generalize to other contexts.

As automated item generation (AIG) models and techniques, mostly imple-
mented using natural language processing (NLP: Prasetyo et al., 2020), are receiving
growing attention in various disciplines of standardized testing, algorithms allowing
for automated generation of distractors are becoming more practical. Several
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approaches in the AIG literature have been focused on generating quality distractors
that are in context with items but semantically dissimilar to the correct options
(Maurya & Desarkar, 2020). Thus, as the creation of distractors evolves over time,
additional research will be needed on the mechanisms to evaluate their efficacy and
appropriateness for different purposes.

Findings from this study support the utility of NFDs for identifying aberrant
examinee behavior. High NFD selection could occur for various reasons, such
as low motivation, population knowledge deficiencies, incorrect preknowledge,
purposeful poor performance, or malicious content harvesting. Though the intent
of the examinees is challenging to ascertain, results from this study highlight that
NFDs could be used to inform test security procedures, particularly for licensure and
credentialing exams. For instance, a within-day stopping rule could be implemented
without pass/fail implications (e.g., after an examinee selects a predetermined
number of NFDs). Further, limiting the number of repeating attempts or the time
between attempts may also be warranted. Efforts to restrict content exposure may
also benefit non-malicious yet unprepared examinees, who would be best served by
mitigating their risk for academic consequences due to additional failing attempts.
Thus, using NFDs as a mechanism to identify aberrant behavior could be mutually
beneficial to both testing programs and examinees by maintaining the health of item
banks through decreased exposure rates, preserving the unidimensionality of a test
by mitigating construct-irrelevant factors, and preventing examinees from retesting
who need substantial remediation.
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Abstract The use of polytomous items as part of background or context ques-
tionnaires and complex sampling designs are two features common in international
large-scale assessments (ILSA). Popular choices to model polytomous items within
ILSA include the partial credit model, the graded response model, and confirmatory
factor analysis. However, an absent model in ILSA studies is the continuation ratio
model. The continuation ratio model is a flexible alternative and a very extendable
response model applicable in different situations. Although existing software can
fit this model, not all these tools can incorporate complex sampling design features
present in ILSA studies. This study aims to illustrate a method to fit a continuation
ratio model including complex sampling design information, thus expanding the
modelling tools available for secondary users of large-scale assessment studies.

Keywords Continuation Ratio Model · Polytomous items · Item response
theory · Bullying

D. Carrasco (�)
Centro de Medición MIDE UC, Pontificia Universidad Católica de Chile, Santiago, Chile
e-mail: dacarras@uc.cl

D. T. Irribarra
Escuela de Psicología, Pontificia Universidad Católica de Chile, Santiago, Chile

Millennium Nucleus on Intergenerational Mobility: From Modelling to Policy (MOVI), Vitacura,
Chile
e-mail: davidtorres@uc.cl

J. González
Departamento de Estadística, Pontificia Universidad Católica de Chile, Santiago, Chile

Millennium Nucleus on Intergenerational Mobility: From Modelling to Policy (MOVI), Vitacura,
Chile
e-mail: jorge.gonzalez@mat.uc.cl

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Wiberg et al. (eds.), Quantitative Psychology, Springer Proceedings
in Mathematics & Statistics 393, https://doi.org/10.1007/978-3-031-04572-1_8

95

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04572-1_8&domain=pdf
https://orcid.org/0000-0002-1195-6206
https://orcid.org/0000-0003-0415-3795
mailto:dacarras@uc.cl
mailto:davidtorres@uc.cl
mailto:jorge.gonzalez@mat.uc.cl
https://doi.org/10.1007/978-3-031-04572-1_8


96 D. Carrasco et al.

1 Introduction

Most of the items contained in background and context questionnaires in large-
scale assessment (ILSA) (Rutkowski et al., 2010) use a polytomous response
format with ordered options. Popular response models used to generate scale scores
based on the ordered responses from these questionnaires are the partial credit
model (PCM, Masters, 1982), the graded response model (GRM, Samejima, 1968)
and confirmatory factor analyses (CFA, Jöreskog, 1969) which have been used
in TIMSS, PIRLS and ICCS (IEA), TERCE (UNESCO), in LSCE (UNICEF)
and in TALIS (OECD); (for a summary see Table 1). However, an absent model
in ILSA studies is the continuation ratio response model (CRM, Tutz, 2016).
This item response model, in its constrained form, satisfies some of the Rasch
model properties, such as stochastic ordering (Hemker et al., 2001), parameter
separability (Tutz, 1990), and monotonicity (Van Der Ark, 2001). The continuation
ratio models can include different random terms within the generalized latent
variable framework, the typical continuous latent variable, and mixture random
terms (Masyn, 2003), resulting in a very extendable and flexible response model
applicable to different situations. This model is also called the sequential model
(Tutz, 2016), and it can be seen as a special case of an IRTree model (Jeon & De
Boeck, 2016). We believe that the sparse adoption of the CRM is related to its lack of
availability in off-the-shelf software. Although there are tools that can fit this model,
including, for instance, R libraries such as mirt (Chalmers, 2012) and lme4 (Bates et
al., 2015; De Boeck et al., 2011), the program gllamm in STATA (Rabe-Hesketh et
al., 2004), and generalized latent variable software such as LatenGold (Vermunt &
Magidson, 2016), not all these tools can handle complex sampling design features
as those usually seen in ILSA studies. In this paper, we illustrate a method to fit
a continuation ratio model, based on data expansion techniques (Gochyyev, 2015).
Our aim is to expand the modelling tools available for secondary users of large-scale
assessment studies.

The paper is organized as follows: In section “Polytomous Scales and Item
Response Theory Models” we describe a common background multi-item bullying
scale with polytomous ordered responses, for which the continuation ratio response
model is applicable. Item response theory models that have been used in ILSA
studies, and the Continuation Ratio Model are also briefly described in terms
of the way the logit link is used in their specification. Section “Inferences to
the Population” describes how the estimates generated with this response model
can be used to make inferences about a population. Then, in section “Methods”,
we describe in more detail the data used for illustration purposes, alongside the
expansion technique used to fit the continuation ratio response model. In section
“Results” we describe the obtained results. We conclude in section “Conclusion
and Discussion” with discussing some pertinent expansions of this model to its
application on bullying scales.
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Table 1 Summary of latent
variable models used to
generate scale scores with
context questionnaires

ILSA study PCM CFA GRM

TIMSS 2019 X
PIRLS 2016 X
PISA 2018 X
ICCS 2019 X
TALIS 2018 X
TERCE 2013 X
LSCE 2019 X

Note: ILSA international large scale assessment study,
PCM partial credit model, CFA confirmatory factor
analysis, GRM graded response model, TIMSS trends
in international mathematics and science study, PIRLS
progress in international reading literacy study, PISA
program for international assessment, ICCS international
civic and citizenship education study, TALIS teaching
and learning international survey, TERCE third regional
comparative and explanatory study, LSCE life skills and
citizenship education study

2 Polytomous Scales and Item Response Theory Models

2.1 An Applied Example of Polytomous Scale

The battery of items “Students’ experience of physical and verbal abuse at school”
is a good example of a multi-item scale with polytomous response options present
in different ILSA studies. It contains six different items, a frame of reference of
the last 3 months, and four ordered response options. This collection of items
comes from the International Civic and Citizenship Education Study, commonly
abbreviated as ICCS 2016. The chosen bullying scale is an example of a students’
school victimization battery, which collects responses regarding how often students
have suffered from different events of bullying at their school. For short, we will
call this scale the “bullying scale” throughout this manuscript. Similar instruments
are present in other ILSA studies, such as the “Student bullying scale” in TIMSS
2019 (Yin & Fishbein, 2020), and similar versions of this battery are present both
in PIRLS 2016, “Student bullying scale” (Martin et al., 2017) and in PISA 2018
(“Exposure to Bullying”; OECD, 2019).

Different item response theory models can be used to handle polytomous
responses generated with this type of instruments. For instance, PISA 2018 relied
on a generalized partial credit model (OECD, 2020), while both TIMSS 2019 and
PIRLS 2016 used a partial credit model for their “Student bullying scale” (Martin
et al., 2017; Yin & Fishbein, 2020). Similarly, ICCS 2016 also used a partial credit
model to assess the propensity of “Students’ experience of physical and verbal abuse
at school” (Schulz et al., 2018).
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2.2 Item Response Models

Multiple item response theory models have been developed to deal with polytomous
items with ordered response options. Among them, three of the most common
models are characterized by the use of different formulations of the logit link (De
Boeck & Partchev, 2012): the partial credit model (PCM) is based on the adjacent
ratio logit, the graded response model (GRM) on the cumulative ratio logit, and the
sequential model on the continuation ratio logit. The adjacent ratio generates logits
of the odds for contiguous categories of responses (1 vs 2; 2 vs 3; 3 vs 4); while
the cumulative ratio logits are logits of the odds for 1 vs higher categories, 1–2 vs
higher, and 1–2–3 vs 4. Finally, the continuation ratio logit generates logits for the
odds of the second category and its previous response among the response options,
the third category and its previous, and the last category and all its previous. In the
present study, we are interested in this last formulation.

2.3 Continuation Ratio Model

Continuation Ratios can be specified in increasing or decreasing order (Gochyyev,
2015). This modelling decision changes the interpretation of the item parameters,
and of the generated realizations of the response model.

We consider the continuation ratio logit link is applicable to model the response
options of the bullying scale given that the structure of the ordered response options:
“none at all” should have occurred before a “once” response; a “2 to 4 times”
should have occurred before a “5 or more times”, thus conforming to the assumed
sequential process (Agresti, 2019).

If the response options of the chosen “bullying scale” are numerically coded from
zero to three, expressing the higher frequency of each event, then “not at all” would
be zero, “once” would be 1, “2 to 4 times” would be 2, and “5 times or more” would
be 3. Using these numeric codes, we can express the continuation ratio link for each
of the response options formally.

Let ypi be the response of student p to item i from the chosen “bullying scale”, and
θp models the students’ propensity of being bullied, while δi models how frequent
the event of bullying across the students is, in comparison to its earlier category of
response. Formally, we can express the continuation ratio in increasing order in the
following way:

log

(
Pr
(
ypi ≥ s

)

Pr
(
ypi = s − 1

)

)

= θp − δis, s = 0, 1, 2, 3 (1)

A continuation ratio model specified for response options in increasing order would
compare all the categories, including its target category, to its previous category.
Thus, if our target category is “once”, the estimated logits express the chances of
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being bullied at least once in 3 months, in comparison to not suffering that form of
bullying at all.

In the present study, we are interested in the decreasing ordered specification.
When using the same numeric codes for each response category and specifying a
decreasing order for the continuation ratio link, θp models the students’ propensity
of being bullied, while δi models how frequent the event of bullying across the
students is, in comparison to all earlier frequency options. Formally, we can write
this model specification as follows:

log

(
Pr
(
ypi = s

)

Pr
(
ypi < s

)

)

= θp − δis, s = 0, 1, 2, 3 (2)

This last specification is formally similar to how survival and hazard models use the
continuation ratio (Agresti, 2019; Masyn, 2014), where the numerator of the odds is
a single category, and the denominator of the odds varies as the category of response
of interest is higher.

3 Inferences to the Population

One of the main aims of ILSA is to enable comparison between countries among
different constructs of interests (Lietz et al., 2017). To guarantee meaningful
comparison, two features of the study design are of importance. The first is
concerned with whether the same instrument was used across all participants to
collect responses. In ILSA studies, by design, the battery of items are equivalent,
besides their translation variants (Schulz & Carstens, 2020). The second relates
to the sampling design. For example, the International Civic and Citizenship
Education Study uses a stratified probability sample of schools, and select intact
classrooms within selected schools, to represent the population of 8th graders in
the participating countries (Schulz et al., 2018). In this design, the observations
are weighted, and the secondary user can include the complex sampling design
information to generate estimates that are generalizable to the target population.

Monte Carlo simulations of Zheng and Yang (2016) showed that including the
complex sampling design information in the estimation of the response model
produced less biased estimates. Thus, including the complex sampling design
allows us to produce results generalizable to the population of students using latent
variable models (Stapleton, 2013; Sterba, 2009). In contrast, a response model
fitted to the same data, while ignoring its complex sampling design, would be
assuming observations that come from a simple random sample. This means that the
estimated parameters would not properly refer to the target population from which
the observations were collected. The inclusion of the survey complex sampling
design within the response model estimation allows us to correctly interpret and
generalize the estimates of the response model to the intended target population.
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In this paper, we use the “Students’ experience of physical and verbal abuse
at school” from ICCS 2016 to illustrate how to fit a continuation ratio response
model and interpret its estimates referring to the target population of the study. In
the following section, we describe the data source, the measures, and the expansion
technique used to specify the continuation ratio response model.

4 Methods

4.1 Selected Data and Measures for Illustrations

We used the responses from the International Civic and Citizenship Education Study
from ICCS 2016. We retrieved the responses from the Latin American countries
that participated in the study, including Chile, Colombia, Dominican Republic,
Mexico, and Peru. All these countries are Spanish speaking countries; thus, the
responses we selected for illustration purposes were generated with the same battery
of items. ICCS 2016 uses a two-stage sampling design, where schools are chosen
using a stratified design in each participating country, and in a second step, all
students from the same classroom are selected to participate in the study. With this
sampling design, ICCS 2016 reaches representative samples of 8th graders for all
participating countries. Nominal samples are composed of 5081 students and 178
schools/classrooms from Chile, 5609 students and 150 schools/classrooms from
Colombia, 3937 students and 141 schools/classrooms from Dominican Republic,
5526 students and 213 schools/classrooms fromMexico, and 5166 students and 206
schools/classrooms from Peru.

Dependent variables The “Students’ experience of physical and verbal abuse
at school” (ypi) scale. Students indicate how frequent six bullying events have
happened to them in the last 3 months, using four ordered category options: “none
at all”, “once”, “two to four times”, and “five times or more”. Examples of these
bullying events are “A student said things about you to make others laugh” and “A
student threatened to hurt you”. Table 2 shows the full list of items and the content
of the scale, including the frame of reference and its response options.

4.2 Data Expansion Technique

As we argued earlier, not all the off-the-shelf software can fit a continuation ratio
model in decreasing order and account for the complex sampling design in its
estimates. Therefore, to tackle the first issue and make fitting the CRM a possibility,
we follow the expansion technique proposed by Gochyyev (2015). Under this
approach, the original item with k responses is expanded into k−1 pseudo items
into a wide data format, where the observed response marks the suffered event in
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Table 3 Illustration of the
conversion of the responses to
the polytomous item bul1
from the bullying scale, into
three pseudo items

Response bul1 bul1_3 bul1_2 bul1_1 n

Not at all 0 0 0 0 9994
Once 1 0 0 1 7495
2–4 times 2 0 1 NA 3521
5 times or more 3 1 NA NA 3804
Missing response NA NA NA NA 505

Note: Response = is the response category. bul1 = refers to the
original responses to item “A student called you by an offensive
nickname.”, bul1_3- bul1_1 = are the dummy coded values
following the decreasing ordered expansion technique proposed
by Gochyyev (2015). n= is the observed number of cases in each
category

the respective frequency category with a dummy coded variable. For example, if a
student answers that he/she has been called by an offensive nickname in the last 3
months once (bul1), then we need a pseudo item (bul_1) coded as one, while the
rest of response options is left as missing. In contrast, if the student answers “2 to
4 times”, this response option is coded as 1, the previous categories are coded as
0, and the higher categories are left as missing. Finally, if the student answered,
“5 times or more”, then “bul1_3” is coded as 1 for this category and all previous
categories are dummy coded as zero. Table 3 shows a schematic representation of
this procedure.

We proceed in the same way with all the original items, generating a dummy
coded matrix of values with three additional vectors for each original item, thus
creating a matrix of n cases, and 18 new columns.

The expansion technique implemented here is similar to transforming a person
response data, to a multivariate format by including the generated pseudo items as
additional columns (Hoffman, 2015). Person response data uses a single row per
person, and a single column for each ordinal response. Transforming the person
response data to the multivariate format is similar to the approach used by Masyn
(2009, 2014), in survival models, where single records are turn into multivariate
data frames by including the needed dummy coded variables as additional columns
in a data frame, to generate continuation ratio logits for a single survival spell. In
contrast, De Boeck and colleagues (2011; Jeon & De Boeck, 2016) relied on a stack
data format expansion to generate estimates for continuation ratio logits. In the latter
case, the person record and its responses are expanded as rows instead of columns
and includes additional rows per response as needed. The multivariate format allows
retrieving the same estimates that the stack data format with appropriate model
constraints (e.g., slopes constraints to one, and free variance); thus, conforming
to a Rasch Model specification over the generated pseudo items. We rely on the
multivariate format so we can use the complex sampling weights and stratification
variables into the estimation without further transformations of these latter variables.
Moreover, the generated pseudo items are allowing us to retrieve the expected
continuation ratio logits of interest.
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4.3 Analytical Strategy

To consider the survey complex sampling design, we prepared the original data
to merge all observations into a single file, thus generating a pooled international
sample. We first generate normalized weights, also called senate weights (Gonzalez,
2012). These are the total survey weights, linearly transformed to weight cases
up to a constant, in this case up to 1000. This procedure assures that cases from
different countries weight observations to a common figure. If this procedure
is not undertaken, then estimates can be distorted since survey weights expand
observations up to the expected population. The expected population varies between
countries. A country like Mexico for example, expands its observed sample of 5526
cases to an expected population of 2,240,779 students in 8th grade; while the sample
from Dominican Republic, expands its sample from 3937 cases to an expected count
of 138,418 of 8th grade students. As such, the original sampling weights would give
a higher contribution to Mexico, than to Dominican Republic observations. Thus,
if a secondary user wants to generate a pooled sample to fit models, where two or
more samples are contained, survey weights need to be re-scaled accordingly. We
called the scaled survey weight variable “ws”. Similarly, we converted the pseudo
strata vector from each country that varies from 1 to 75, into a unique vector across
countries thus generating 375 unique pseudo strata (“id_s”). We proceed in a similar
way with the cluster variable, so each value identifies each primary sampling unit,
i.e., the schools, as a unique value across countries (“id_j”).

We use Taylor Series Linearization to get corrected standard errors and pseudo
maximum likelihood (Asparouhov, 2005) as implemented in Mplus 8.6 (Muthén &
Muthén, 2017). Table 4 summarizes the code used to fit the chosen model.

5 Results

In this section we describe the results for the fitted model, separated in two parts. We
first describe the fixed effect estimates of the model, used to model item properties.
Next, we describe the random effects estimates used to model person estimates in
the model. To summarize the main results, we use a item-person map as shown in
Fig. 1.

5.1 Item Side

A response model resembles a multivariate analysis of variance. In this light, the
item parameters can tell us how frequent an event of bullying is across the popu-
lation of students, accounting for the rest of bullying events present in the battery,
and the propensity of students being bullied at school. For the present application,
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Table 4 Mplus syntax used to fit the continuation ratio response model with decreasing ordered

TITLE:CRM_MLR;
DATA:
FILE = “bull_scale.dat”;
VARIABLE:
NAMES =
id_i id_j id_s ws
bul1 bul2 bul3 bul4 bul5 bul6
bul1_2 bul1_1 bul1_0
bul2_2 bul2_1 bul2_0
bul3_2 bul3_1 bul3_0
bul4_2 bul4_1 bul4_0
bul5_2 bul5_1 bul5_0
bul6_2 bul6_1 bul6_0;
MISSING=.;
CATEGORICAL =
bul1_2 bul1_1 bul1_0
bul2_2 bul2_1 bul2_0
bul3_2 bul3_1 bul3_0
bul4_2 bul4_1 bul4_0
bul5_2 bul5_1 bul5_0
bul6_2 bul6_1 bul6_0
;
USEVARIABLES =
bul1_2 bul1_1 bul1_0
bul2_2 bul2_1 bul2_0
bul3_2 bul3_1 bul3_0
bul4_2 bul4_1 bul4_0
bul5_2 bul5_1 bul5_0
bul6_2 bul6_1 bul6_0
;
IDVARIABLE = id_i;

WEIGHT = ws;
CLUSTER = id_j;
STRATIFICATION = id_s;
ANALYSIS:
TYPE = COMPLEX;
ESTIMATOR = MLR;
MODEL:
[theta@0];
theta;
theta by bul1_0@1;
theta by bul1_1@1;
theta by bul1_2@1;
theta by bul2_0@1;
theta by bul2_1@1;
theta by bul2_2@1;
theta by bul3_0@1;
theta by bul3_1@1;
theta by bul3_2@1;
theta by bul4_0@1;
theta by bul4_1@1;
theta by bul4_2@1;
theta by bul5_0@1;
theta by bul5_1@1;
theta by bul5_2@1;
theta by bul6_0@1;
theta by bul6_1@1;
theta by bul6_2@1;
OUTPUT:
STANDARDIZED
CINTERVAL
RESIDUAL;
SAVEDATA:
SAVE = FSCORES;
FILE = crm_svy_eap.dat;

Note: The Mplus syntax consists of a single column of text. In the present table this is presented
in two columns to make the code fit into a single page, starting from left to right

the population is the pooled population of students from Chile, Colombia, Mexico,
Dominican Republic and Peru.

In these results we can see that the most frequent bullying event across students
is to be mocked (bul2) and having an offensive nickname (bul1). In the present
model a value of 0 logits can be interpreted as the average propensity to be bullied
by students. With that in mind we can see in the figure that being mocked and
having an offen-sive nickname are two events that can be commonly experienced
by students who are exposed to an average chance or above chance to be bullied,
which in this case represent more than half of the students. The least frequent event
is being shamed on the internet by other students (bul6). According to the models’
results, only students in the highest propensities to be bullied are likely to suffer
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Fig. 1 Item person map of the bullying scale, using the estimates of the continuation response
model

this kind of abuse. The estimated logit of this last item, for its first odds comparing
“once” over “not at all” responses, is higher than three logits from the center of
the distribution. Students with such a high propensity, and therefore likely to have
suffered from being shamed upon on the internet by their peers in the last 3 months
are also at higher risk of suffering all the other kinds of bullying, including threats
and physical attacks.
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5.2 Person Side

The generated scores (EAP predictions) presents a person separability of .72
(Adams, 2005). This observed reliability index is slightly smaller in contrast to
other background and context questionnaires (Schulz et al., 2018). However, this
result is not uncommon given that the distribution of cases is positively skewed. This
distribution is common for measures of bullying, where there is a high proportion
of students who do not report suffering from bullying. Thus, mimicking a case of a
“zero-inflation”, where a substantive portion of the observations do not present the
attribute of interest (i.e., suffering from bulling), while the rest of the distribution
becomes smaller at higher values of the propensity continuum.

We fit a CRM, GRM, and PCM models to the same data, estimating person and
items parameters only (θ , δ), leaving item slopes fixed to a unity, and including
the complex sampling design (as seen in Table 4). Although, the relative fit
indices favor the PCM model (BICpcm = 226970.254; BICgrm = 227050.074;
BICcrm = 227746.389), the generated score per person (EAP predictions), are
highly correlated between models: PCM with GRM (r = .99); PCM with CRM
(r = .99): GRM with CRM (r = 1.00). We also correlated the generated scores of
the CRM model, with a sum score, which also presents a high correlation (r = .95).
We also estimated an informative index (in Asparouhov, 2006) for including the
sampling weights EAP estimates means and theta variance. This informative index
compares an unweighted model parameter, and its weighted model parameter
counterpart divided by its variance or standard errors (using a t-test). These two
comparisons yield t-scores close to zero. Thus, the sampling survey design of this
study, is not informative for the fitted model. So, in general terms, we can conclude
that students can be ordered in terms of their propensity to be bullied using the
CRMmodel in a manner comparable with other, more commonly used, polytomous
models.

6 Conclusion and Discussion

We have illustrated a method to fit a continuation ratio model subject to a complex
sampling design, commonly used in ILSA. Using the expansion technique proposed
by Gochyyve (2015) we have shown how it is possible to fit the continuation ratio
response models using statistical software that can fit Rasch models and that can deal
with missing data. Using this technique, it is possible to produce complex sampling
design estimates, generalizable to the finite population. Kim (2016) has illustrated
the applicability of the continuation ratio model to polytomous ordered responses.
Calderón and González (2021) compared the performance of some traditional
polytomous IRT models with the more recently introduced IRTree models in the
modeling of self-report non-cognitive latent traits. Such comparison is motivated
by the fact that IRTree models allow to account for extreme response style (ERS)
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effects in attitudinal measurements, while at the same time providing estimates of
the target trait. The present work aims to expand these applications to the context
of large-scale assessment studies, where complex sampling design is an informative
feature to produce scores and results.

The continuation ratio response model, can be expanded to include floor
effects (Yamamoto, 1987), or “censored” like latent classes (Masyn, 2003). This
is important for the school victimization literature. Bullying scales generated
with sum scores, present a substantive proportion of cases at the lowest possible
value, thus identifying cases who declare not suffering any form of bullying at
school. Accordingly, previous studies have used zero inflated poisson regression to
condition sum scores on predictors (e. g., Rutkowski et al., 2013). Censored cases
are cases that are at the lowest level of bullying risk. In the survival literature,
censored cases are worrisome. If this type of cases is not accounted for in the
model, inferences regarding the relationship with covariates are downward biased
(Masyn, 2003). This latter bias is problematic for the study of the effectiveness
of interventions on school bullying, the comparison of schools regarding bullying
prevalence, and the general study of risk and protective factors of bullying. Thus,
impeding one of the mains aim of ILSA studies: to provide valid and reliable
information for public policy.

Kim (2016) suggests that the continuation ratio response model present advan-
tages for metric linking and equating. In essence, once pseudo items are generated
users can easily use different routines available for dichotomous items, without large
modifications. Moreover, invariance studies using DIF techniques (Masyn, 2017),
different multigroup models (Van de Vijver et al., 2019) and alignment methods
(Muthén & Asparouhov, 2014) can be easily adapted using the expansion technique
illustrated in the present work.

The informative index proposed by Asaparouhov (2006) shows that the sampling
design of ICCS 2016 is not substantively informative for the studied responses of the
bullying scale. As such, a clustered error model could be enough to fit the proposed
model, and get corrected standard errors (Stapleton, 2013). However, even though
the bullying scale generated estimates that are similar with or without sampling
design, it is not advisable to plainly ignore the study survey design for any other
context questionnaire scale. Complex sampling design in large scale assessment
includes stratification variables of schools, that are informative for the target score
of the test (Meinck, 2020), in the case of ICCS the civic knowledge test. Moreover,
the stratification variables used to select schools could be informative for the battery
of items of socioeconomic status. As such, multi-item scale scores related to the
stratification variables of each country could display higher informative indexes.
Yet, the informative indexes calculated for the bullying scale mean and variance
were quite small.

Further research is needed to illustrate the expected benefits of the presented
model for scale linking, DIF studies, and invariance evaluation. Specially, for the
expected benefits of rethinking the response model for inferences with censored
like cases.
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Impact of Likelihoods on Class
Enumeration in Bayesian Growth
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Abstract Bayesian methods have been widely used to estimate models with
complex structures. To assess model fit and compare different models, researchers
typically use model selection criteria such as Deviance Information Criteria (DIC),
Watanabe-Akaike Information Criteria (WAIC) and leave-one-out cross validation
(LOO-CV), the calculation of which is based on the likelihoods of the models.
When models contain latent variables, the likelihood is often specified as conditional
on the latent variables in popular Bayesian software (e.g., BUGS, JAGS, and
Stan). Although this practice reduces computation work and does not affect model
estimation, the previous literature has shown that model comparisons based on
the conditional likelihood could be misleading. In contrast, marginal likelihoods
can be obtained by integrating out the latent variables and be used to calculate
model selection criteria. In this study, we evaluate the effect of using conditional
likelihoods and marginal likelihoods in model selection for growth mixture models.
Simulation results suggest that marginal likelihoods are much more reliable and
should be generally used for growth mixture modeling.
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1 Introduction

Growth mixture modeling (GMM) is a method for identifying multiple unobserved
subgroups in a population, describing longitudinal change within each subgroup,
and examining differences in change among those subgroups (Ram & Grimm,
2009). GMM has been increasingly used in social and behavioral sciences (e.g.,
Frankfurt et al., 2016; McDermott et al., 2018; Smith & Ehlers, 2020; Ren et al.,
2021) to flexibly model growth trajectories with substantial individual variations.
Despite the popularity of GMM, several issues are involved in its model estimation
(Bauer & Curran, 2003; Hipp & Bauer, 2006), including violation of distributional
assumptions, obtaining local solutions, nonconvergence, etc. Researchers have
made efforts in addressing these issues, many of which are in the Bayesian
framework (e.g., Depaoli, 2013; Kim et al., 2021a; Lu et al., 2011). Bayesian
approaches are relatively flexible in accounting for the nonnormality in data
and enable incorporating prior information into model estimation to help yield
converged results when there are not enough samples or latent classes are not
well separated (Depaoli, 2014; Kim et al., 2021b). In addition, data augmentation
and Markov chain Monte Carlo (MCMC) techniques can be naturally applied in
the Bayesian framework to reduce the mathematical demands for complex model
estimation.

Deciding the appropriate number of latent classes (i.e., unobserved subgroups)
is critical in GMM and is typically achieved by comparing models with different
number of latent classes and selecting the best fitting model. In Bayesian statistics,
model comparison and selection can be performed using the Bayes factor which is
the ratio of the posterior odds to the prior odds of two competing models. Since
the calculation of the Bayes factor is often difficult and greatly influenced by the
priors, model comparison in GMM is typically conducted using information criteria
and cross validation which estimate out-of-sample predictive accuracy using within-
sample fits. The calculation of the model selection criteria is based on the likelihoods
of the models.

In popular Bayesian software (e.g., BUGS, JAGS, and Stan), the likelihood of
GMM is often specified as conditional on the latent variables. However, recent
studies (e.g., Kim et al., 2021a; Merkle et al., 2019) reported that model selection
and comparison based on the conditional likelihood in latent variable modeling
can be misleading. Instead, marginal likelihoods were used where latent variables
were integrated out in the likelihood functions. Although conditional and marginal
likelihoods do not make differences in terms of model estimation after all Markov
chains converge, the distinction between them in model selection is substantial
but is often overlooked. As far as we are aware, only Merkle et al. (2019) has
particularly studied the difference between conditional and marginal likelihoods
and recommended use of marginal likelihood based information criteria in Bayesian
latent variable analysis.



Impact of Likelihoods on Class Enumeration in Bayesian Growth Mixture Modeling 113

Due to the complexity of GMM and unique challenges associated with it, in
this study, we will evaluate the performance of conditional and marginal likelihood
in GMM class enumeration. We focus on two information criteria: Deviance
Information Criterion (DIC; Spiegelhalter et al., 2002) and Widely Applicable
Information Criterion (Watanabe-Akaike Information Criterion, WAIC; Watanabe,
2010), and one cross validation approach: leave-one-out cross validation (LOO-CV;
Gelman et al., 2013; Vehtari et al., 2017). Their performance based on different
likelihoods in GMM class enumeration will be investigated. The paper is organized
as follows. We first briefly review growth mixture models, introduce the associated
conditional and marginal likelihoods, and different model selection criteria. Then we
use a simulation study to assess the impact of conditional and marginal likelihoods
on GMM model selection. Recommendations are provided at the end of the article.

2 Bayesian GMM Model Selection

2.1 A Brief Review of Growth Mixture Models

Growth mixture models extend growth curve models by assuming that a population
consists of a number of latent classes (i.e., unobserved subgroups) and each latent
class is characterized by a unique growth trajectory. Suppose that a population
consisted of G latent classes that have distinct patterns of change. Let yi =
(yi1, . . . , yiTi

)
′
denote a vector of Ti repeated observations for individual i (i ∈

{1, . . . , N}). A general form of growth mixture models can be expressed as

yi |(zi = g) = Λibig + εi , (1)

where the subscript g indicates that a corresponding parameter or variable is class-
specific. In this model, zi represents a class indicator for individual i with mixing
proportion for class g being P(zi = g) = πg , Λi is a Ti × q matrix of factor
loadings that determines the shape of the growth trajectories, big is a q × 1 vector
of latent factors for class g (g ∈ {1, . . . , G}), and εi = (εi1, . . . , εiTi

)
′
is a Ti × 1

vector of intraindividual measurement errors. The latent factors are often assumed
to follow multivariate normal distributions such that big ∼ MN(βg,Ψ g), where
βg is the mean of big and Ψ g is the covariance matrix of big . The measurement
errors are also assumed to be normally distributed, εi ∼ MN(0,Σg), leading the
conditional mean of yi given big to be E(yi |big) = Λibig . In practice, it is common
to further assume that the intraindividual measurement errors have equal variances
and are independent across time, so that Σg = σ 2

g I , where σ 2
g is a scale parameter

for class g. We assumed this measurement error structure for the rest of this study.
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2.2 Conditional and Marginal Likelihoods of Growth Mixture
Models

With the normality assumption, the likelihood function of the model in Eq. (1)
can be specified. As stated previous, popular Bayesian software often specify the
likelihood as conditional on the latent variables. That is,

LC(big, zi , σ
2
g |y) = p(y|big, zi = g, σ 2

g ), (2)

where p(yi |big, zi = g, σ 2
g ) is the density function of the multivariate normal

distribution MN(Λibig, σ
2
g I ).

To obtain the marginal likelihood of Model (1), the latent variables big and zi

have to be integrated out of the conditional likelihood. The marginal likelihood for
the normal-distribution-based GMM has a closed form:

LM(βg,Ψ g, πg, σ
2
g |y) = p(y|βg,Ψ g, πg, σ

2
g ) =

N∏

i=1

G∑

g=1

πgp(yi |βg,Ψ g, σ
2
g ),

(3)

where p(yi |βg,Ψ g, σ
2
g ) is the density function of the multivariate normal distribu-

tion MN(Λiβg,ΛiΨ gΛ
′
i + σ 2

g I ).
Given the likelihood functions, model selection criteria can be computed. Based

on the model selection criteria, we can compare GMMs with different number of
latent classes and select the best fitting model.

2.3 Model Comparison Criteria

In this paper, we use DIC, WAIC, and LOO-CV to select the optimal number of
latent classes for GMM. We briefly introduce the three model comparison criteria
below.

DIC was proposed by Spiegelhalter et al. (2002). Although it has received much
criticism (e.g., Celeux et al., 2006), it is widely used in Bayesian model selection.
DIC is defined as the sum of the expected deviance over the parameter space and
the effective number of model parameters,

DIC = D̄ + pD.

The expected deviance is

D̄ = EΘ [−2log p(y|Θ)|y] + C,

where Θ is a set of model parameters, and C is a constant that can be canceled out
when comparing models. D̄ is calculated as the posterior mean of the deviance. The
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effective number of parameters, pD , measures the complexity of the model and is
defined as

pD = D − D̂,

where D̂ is the deviance calculated at the posterior mean of Θ . Models with smaller
DICs are preferred.

WAIC was proposed more recently and have been shown to have advantages
over DIC (Vehtari et al., 2017). WAIC uses the entire posterior distribution, is
asymptotically equal to Bayesian cross validation, is invariant to parameterization,
and works for singular models. We used the following definition of WAIC (Gelman
et al., 2013).

WAIC = −2
N∑

i=1

log

(
1

S

S∑

s=1

p(yi |Θ(s))

)

+ 2
N∑

i=1

V arS
s=1log p(yi |Θ(s))),

where S is the number of MCMC iterations, Θ(s) is a draw from the posterior
distribution at the sth iteration, and V arS

s=1 represents the sample variance,

V arS
s=1as = 1

S − 1

∑S
s=1(as − ā)2. Models with smaller WAICs are preferred.

LOO-CV evaluates the model fit based on an estimate of the log predictive
density of the hold-out data. Each data point is taken out at a time to cross validate
the model that is fitted based on the remaining data. LOO-CV is defined as

LOO = −2
N∑

i=1

log
∫

p(yi |Θ)p(Θ|y−i )dΘ,

and in practice, it can be approximately calculated as

̂LOO = −2
N∑

i=1

log
1

1
S

∑S
s=1

1

p(yi |θ (s))

.

Vehtari et al. (2017) showed that although WAIC is asymptotically equal to LOO-
CV, LOO-CV is more robust in the finite case with weak priors or influential
observations.

3 A Simulation Study

We now present a simulation study to evaluate the impact of conditional and
marginal likelihoods based model selection criteria on GMM class enumeration.
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We generated data from a two-class linear growth mixture model with 4
equally spaced measurement occasions. Namely, in Eq. (1), G = 2, Ti = 4,
Λi = ((1, 1, 1, 1)′, (0, 1, 2, 3)′), the latent intercept and slope for class 1, bi1 ∼
MN(β1,Ψ 1) and the latent intercept and slope for class 2, bi2 ∼ MN(β2,Ψ 2).
The covariance matrix of the latent intercepts and slopes were set to be Ψ g = Ψ =
(
0.25 0
0 0.04

)

for g = 1 and 2, and the intraindividual measurement error variance

was set at σ 2 = 0.2. These variance and covariance parameters were assumed to
be the same across the two latent classes. We manipulated three factors that could
potentially influence the performance of GMM in the simulation study: sample size,
class separation, and class proportions. Two different sample sizes were considered
(N = 300 or 500). Class separation was characterized using Mahalanobis distance,

which can be calculated as MD =
√

(β1 − β2)
′
Ψ −1(β1 − β2), where β1 repre-

sented the means of latent intercepts and latent slopes for the first latent class, and
β2 represented the means of latent intercepts and latent slopes for the second latent
class. We evaluated the influence of a high class separation and a relatively low class
separation. For the high separation, the first class had an average latent intercept of 2
and an average slope of 0.5, β1 = (2, 0.5)

′
, so in general, the scores were increasing

over time. The second class had an average latent intercept of 1 and an average
slope of 0, β2 = (1, 0)

′
, indicating that the overall trajectory was a flat line. This

setting yielded a Mahalanobis distance MD = 3.2. For the low class separation,
β1 = (1.5, 0.5)

′
and β2 = (1, 0)

′
, which had MD = 2.7. The class proportions

were set to be either unbalanced (25% from the first class and 75% from the second
class) or balanced (50% from both latent classes).

For each simulation condition, 200 datasets were generated. For each dataset, we
fit growth mixture models with one class (G = 1), two classes (G = 2), and three
classes (G = 3). Bayesian estimation of GMM was conducted using JAGS with
the rjags R package (Plummer, 2017). JAGS is a Bayesian data analysis program
that uses MCMC algorithms (e.g., Gibbs sampler) for generating samples from the
posterior distribution of model parameters. In JAGS, we obtained posterior samples
of the model parameters by augmenting the latent variables (big and zi). With the
sampled parameters and the likelihood of the model, DIC, WAIC, and LOO-CV can
be calculated. Since the likelihood can be calculated in Equation (2) or Equation (3)
when a model contains latent variables, DIC, WAIC, and LOO-CV were calculated
based on the conditional likelihood and the marginal likelihood, separately. We
then assessed the performance of the model comparison criteria based on different
likelihoods in class enumeration.

The following priors were used for model inferences as these priors had little
information about the parameters: p(βg) = MN(0, 103 × I ) for g = 1, . . . , G,
p(Ψ ) = InvWishart (2, I 2), p(σ 2) = InvGamma(.01, .01), and p(π) ∼
Dirichlet (10jG), where G is the total number of latent classes, and jG is a G × 1
vector that has 1 for all components for G > 1. The number of MCMC iterations
was set to 10,000, and the first half of the iterations were discarded for burn-in.
Although our pilot study showed that the 10,000 iterations were enough for the
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chains to converge, to guarantee convergence, we also allowed up to 10 different
starting values for each model estimation to obtain converged results.

3.1 Results

Figure 1a–b summarize the model selection results based on DIC, WAIC, and LOO-
CV when class proportions are 25% and 75%. For balanced classes, the relative

Fig. 1 Model selection results based on DIC, WAIC, and LOO-CV when class proportions are
25% and 75%. (a) N = 300. (b) N = 500
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performance of the model comparison criteria based on conditional and marginal
likelihoods has the same pattern and thus is not repeated in this section. Figure 1a
and b report the results for N = 300 and N = 500, respectively. For each figure, the
vertical axis (i.e., height of the bars) represents the probability of the correct model
(2-class growth mixture model) being selected.

From Fig. 1, it can be seen that, in general, model selection based on DIC, WAIC,
and LOO-CV is more likely to be correct when sample size is larger and the class
separation is higher. When the class separation is relatively low (e.g., MD = 2.7),
increasing sample size raises the chance to select the correct number of latent classes
in GMM. For example, the marginal likelihood based DIC has 39% of the chances
to select the correct model when N = 300. This percentage increases to 87% when
the sample size is 500.

In addition, model selection criteria based on the marginal likelihood are more
reliable as the bars on the right panel of Fig. 1a–b (marginal likelihood based
criteria) are generally taller than the bars on the left panel of the figures (conditional
likelihood based criteria). Although conditional likelihood based model selection
criteria may perform well under some conditions (e.g., when N = 500, DIC
calculated with the conditional likelihood has 87% of the chance to select the correct
model), they are unstable in general. In practice, it is difficult to tell whether the
conditional likelihood based model selection criteria are reliable or not for the study
setting. Therefore, the conditional likelihood should not be used to calculate model
selection criteria for model comparison. We have further investigated the probability
of each model being selected for different data conditions. As demonstrated in
Fig. 2, even when the class separation is relatively low, DIC, WAIC, and LOO-CV
calculated based on the marginal likelihood almost always select the correct 2-class
model. In contrast, the model selection criteria calculated based on the conditional
likelihood tend to prefer simpler models (i.e., 1-class model) under this condition.

Fig. 2 The comparison between the conditional likelihood and marginal likelihood in selecting
different growth mixture models when N = 500 and MD = 2.7. The height of the bar represents
the percentage that the corresponding model is selected
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Moreover, when the marginal likelihood is used, DIC, WAIC, and LOO-CV
provide similar values. WAIC and LOO-CV, in particular, provide almost identical
values. However, when the conditional likelihood is used, DIC, WAIC, and LOO-
CV are not as similar as those we get from the marginal likelihood. In addition,
WAIC and LOO-CV seem to perform slightly worse than DIC, especially when the
class separation is relatively low.

4 Discussion

Bayesian methods have been increasingly used for GMMmodel estimation because
of their flexibility and capability to handle model with complex structures. An
important task of GMM is to determine the number of latent classes, and is typically
conducted by model comparisons. Commonly used Bayesian model comparison
criteria are calculated based on the likelihood of the model. In this paper, we
evaluated the impact of the conditional likelihood and the marginal likelihood on
the performance of different model comparison criteria using a simulation study.
We would like to note that the simulation results showed a very salient pattern and
were robust against the simulation settings. Our study echoed the previous literature
and emphasized the use of marginal likelihood for the calculation of Bayesian model
selection criteria when models contain latent variables.

We want to point out that when data are normally distributed, the marginal
likelihood is recommended to use and DIC, WAIC, and LOO-CV calculated based
on the marginal likelihood can almost guarantee the correct class enumeration. How-
ever, the performance of the model selection criteria based on different likelihoods
were not systematically evaluated when data are contaminated by outliers. Previous
research (e.g., Kim et al., 2021a) suggested the application of robust methods
for dealing with the nonnormality in class enumeration in GMM. We expect that
combining robust methods with marginal likelihood based model selection criteria
may improve the model selection accuracy. Future research needs to be conducted
towards this direction.

We also would like to note that in our study, the normality assumption is applied
to the growth mixture model, with which a close form of the marginal likelihood is
available. When a close form of the marginal likelihood cannot be obtained (e.g.,
a robust model using Student’s t distributions), we need to numerically integrate
the conditional likelihood with respect to the latent variables. Since numerical
integration takes time, the entire class enumeration procedure may be slowed down.
It is worth investigating ways to solve numerical integrations faster.
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A Bi-level Individualized Adaptive
Learning Recommendation System Based
on Topic Modeling

Jiawei Xiong, Jordan M. Wheeler , Hye-Jeong Choi, and Allan S. Cohen

Abstract Adaptive learning offers real attention to individual students’ differences
and fits different needs from students. This study proposes a bi-level recommen-
dation system with topic models, gradient descent, and a content-based filtering
algorithm. In the first level, the learning materials were analyzed by a topic model,
and topic proportions to each short item in each learning material were yielded
as representation features. The second level contains a measurement component
and a recommendation strategy component which employ gradient descent and
content-based filtering algorithm to analyze personal profile vectors and make an
individualized recommendation. An empirical data consists of cumulative assess-
ments that were used as a demonstration of the recommendation process. Results
have suggested that the distribution to the estimated values in the person profile
vectors were related to the ability estimation from the Rasch model, and students
with similar profile vectors could be recommended with the same learning material.

Keywords Individualized learning · Recommendation system · Topic model

1 Introduction

In recent years, especially during the pandemic, efforts have been made to expand
online learning beyond the traditional classroom environment as it enables indi-
viduals to benefit from rich and high-quality learning resources (Dhawan, 2020;
Liang & Hainan, 2019). The advantages of online learning have been recognized
since it offers real attention to the individual differences and fits for different
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needs of students (Imhof et al., 2020). More importantly, it makes it possible
to analyze students’ latent information, here referred to as profile information or
profile, through human-computer interactions, and in particular, with the maturity of
cutting-edge learning analytics, individualized adaptive learning provides students
the prospects of access to tailored learning instructions, guidance, and content
(Mavroudi et al., 2018). With the popularization of remote education and online
learning, offering individualized and adaptive learning resources is an emerging
research topic (Cheng & Bu, 2020). Individualized adaptive learning systems aim
to provide learning materials fit to the current status of a student, and the pace
and of learning and instruction approach are optimized for the need of each
student (United States Department of Education, 2017). The individualized adaptive
learning system provides flexible adaptation beyond what can be accomplished in
traditional classroom settings in terms of learning resources (Koedinger et al., 2013).

The purpose of adaptive learning is realized by using a recommendation system,
which may recommend the next learning materials based on the psychometric
results and possibly other individual-level characteristics (Chen et al., 2018).
Specifically, the recommendation system requires three components, an information
learning component, a measurement component, and a recommendation strategy
component. The information learning component employs a learning model to
analyze features from the learning materials such that each learning material’s
features can be represented in a numerical space. The features can be used as
representations of a series of skills or attributes that are available in the learning
system (Chen et al., 2018). Traditional recommendation systems suggest online
learning materials based on students’ interests, knowledge, and data from other
students with similar interests (Romero et al., 2007). These traditional methods,
which utilize vector space models (Castells et al., 2006) in the information learning
component, have disadvantages in both effectiveness and scalability (Kuang et al.,
2011). In addition, with a heterogeneous student population and many learning
materials, the learning model can be complex, and thus calibrating the model
requires expensive computation (Tang et al., 2019). Topic modeling such as the
Latent Dirichlet allocation (LDA; Blei et al., 2003), a hierarchical Bayesian topic
model, was used to obtain a low dimensional vector that denotes each online
learning activity in various adaptive learning scenarios, such as online course
recommendations (Lin et al., 2021) and online documents recommendation (Kuang
et al., 2011). Compared with traditional recommendation systems based on the
student-item interactions and similarity, the topic model-based recommendation
systems can consider the learning portfolios’ textual features (Cao et al., 2019).
With the learned features, the measurement component can find the profile vectors
for students which may reveal students’ proficiency on each attribute (Chen et al.,
2018). Given the features and profiles, the prediction component uses a predicting
model that predicts the outcomes of a student studying under a particular set
of materials, and sequentially makes recommendations to each student on what
to learn at the next step, based on the current information it obtained from the
aforementioned two components. Content-based filtering (CB; Ghauth & Abdullah,
2010) algorithm, using information about students and/or learning materials, has
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been used as a prediction component in many recommendation systems (Bian &
Xie, 2010; Romero et al., 2007). The CB focuses on the properties of learning
materials, and learning materials’ similarity is determined by the similarity in their
features.

The cumulative assessment portfolio has been used as learning material in
online learning (Pfennig, 2020). Cumulative assessments are widely used in many
circumstances to determine at a particular time what students know and do not know
and can help students get access to their learning achievements (Beagley & Capaldi,
2016; Ryan & Nykamp, 2000). The cumulative assessments are comprehensive and
pre-assembled tests that assess students’ knowledge of information from several
didactic domains, and in which each assessment covers all previous contents.
By using the cumulative assessments, instructors can identify a wide range of
knowledge, skills, and concepts that students have mastered or not, so appropriate
adjustments can be made to instructional practices and strategies toward the overall
end-of-year expectations (den Boer et al., 2021). For example, some English
language and arts (Georgia Center for Assessment, 2018) cumulative assessments
were designed to collect evidence on student learning status, and serve as formative
tools that can provide information on how well students understand concepts
and their ability to demonstrate knowledge and skills in a particular content area
or domain. In higher education, it is effective to intersperse several cumulative
assessments throughout a course and the combined score on the assessments weighs
in for the final course grade (den Boer et al., 2021). For example, the United States
Medical Licensing Exam Step I assesses whether the examinees can successfully
apply the knowledge of key concepts in basic sciences and is usually taken by
medical school examinees at the end of the second year (USMLE, 2014). Some
medical schools ask students to take the cumulative licensing examination before
initiating clinical experiences (Cleghorn, 1986; Ryan & Nykamp, 2000). Given the
fact that cumulative assessments have wide applications, this study selects a set of
pre-assembled cumulative assessments as learning materials.

It is suggested that a good recommendation system should make full use of the
information from both the students and the learning materials (Tang et al., 2019).
Therefore, this study designs a bi-level structure. In the first level, the learning
materials (i.e., cumulative assessments) were analyzed by a topic model and the
topic proportions to each item stem in the cumulative assessment were yielded as
representation features to the cumulative assessment. Although most educational
applications with topic models adopt the LDA as a useful model (Wheeler et al.,
2021; Xiong et al., 2019), the use of LDA as a topic model tool is useful for
long documents such as the course syllabus (Apaza et al., 2014), and it suffers
from the severe data sparsity in short text documents (Yan et al., 2013). For
instance, the pre-assembled cumulative assessments may contain some short text
items such as multiple-choice (MC) items, and which lengths are usually less
than a passage or course syllabus content. Obviously, in such a circumstance, the
use of LDA may cause sparse topic structures. To overcome the problem, in this
first level, this study employs another topic model, called the bi-term topic model
(BTM; Yan et al., 2013), which was designed to extract topic proportions for short
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context, to analyze the learning materials (i.e., each cumulative assessment) and
obtain each short item’s topic structure. The second level contains the measurement
and recommendation strategy components which employ profile analysis and CB
filtering algorithms. By proposing such a framework that applies both the BTM and
CB filtering to recommend pre-assembled cumulative assessments with an empirical
data demonstration, this recommendation system can analyze each student’s profile
components based on their response scores to the completed assessments and
then predict rating scores for new assessments. The empirical results suggested
this design can recommend relevant assessments for each student, and realize
individualized recommendations based on the bi-level framework.

2 Method

2.1 Bi-term Topic Model

BTM generates the bi-terms in the whole corpus to reveal topics by considering the
word-pair relation. The bi-term here was referred to as an unordered word-pair co-
occurred in a short context such as the example given in Table 1. The texts given in
the Table 1 are all simple examples of short texts. After removing stopwords such
as “I”, and stemming words into an original form such as changing from “apples” to
“apple”, from “eating” to “eat”, the bi-terms were generated by construction word-
pair combination in an unordered way.

The BTM graphical structure is represented in Fig. 1, and this generative process
in the BTM can be described as:

1. Draw a topic distribution θ from Dirichlet distribution with parameter α, i.e.,
θ ∼ Dir(α).

2. For each topic k ∈ [1, · · · ,K], draw a topic-specific word distribution φk from
the Dirichlet distribution with parameter β, i.e., φk ∼ Dir(β).

3. For each bi-term combination bi ∈B :
(a) draw a topic assignment zi ∼ Multinomial(θ)

(b) draw two words, wi,1, wi,2 ∼ Multinomial(φzi
)

where NB is the bi-term corpus which consists of all bi-terms given in a document
collection, α is the prior distribution parameter to the topic distribution θ , β is the

Table 1 Simple bi-term examples

Text Bi-terms

I visit an Apple store. visit Apple, visit store, Apple store

I like eating apples. like eat, like apple, eating apples

I love to watch Apple movies. love watch, love Apple, love movie, watch Apple, watch
movie, Apple movie
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Fig. 1 BTM graphical
structure

prior distribution parameter to the bi-term distribution φk . BTM directly models the
word-co-occurrence pattern instead of a single word.

In this study, each pre-assembled cumulative assessment is treated as learning
material, and adaptive learning happens after the completion of each assessment.
Each MC item stem was modeled as a short text. Suppose the learning system
consists of i = 1, . . . , I cumulative assessments, while each of which consists
of ni MC items, then a total of I × ni items are treated as a large collection of
short documents. Suppose k topics were determined for the learning system, and
then each item can be represented by a k-dimensional feature vector. Therefore,
each cumulative assessment is represented by a ni × k dimensional matrix. To
determine the optimal number of topics k for the corpus, average Jensen-Shannon
(JSD; Tong & Zhang, 2016) was used as criteria. JSD is a popular method of
measuring the similarity between two probability distributions and is also known
as a total divergence to the average. Given two discrete topic distributions Ts and
Tv , the JSD is defined as Eq. 1.

JSD(Ts‖Tv) = 1

2
KLD

(

Ts‖Ts + Tv

2

)

+ 1

2
KLD

(

Tv‖Ts + Tv

2

)

(1)

where KLD
(
Ts‖Ts+Tv

2

)
is the Kullback-Leibler divergence (KLD; Mei et al.,

2007) of Ts from
Ts+Tv

2 , and the KLD is defined as in the Eq. 2.

KLD(P ‖Q) =
∑

s

Ps log
Ps

Qv

(2)

The average JSD shown in Eq. 3 is used to calculate the average similarity among
all topic distributions.
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JSD =
∑

s,v JSD(Ts‖Tv)

k
(3)

By applying JSD to the topic assignment for each item in the learning system, it will
measure the distance and similarity between each document. The topic model with
minimal average JSD is used as the optimal topic model. With these k topics, each
MC item n’s features can be represented by a k-dimensional topic proportion vector
fn = (fn1 , · · · , fnk

).

2.2 Loss Function and Gradient Descent

Suppose a random assessment i is given at the initial stage to a total of j = 1, . . . J
students, while the remaining (I − 1) assessments were waiting in the system to
be sequentially recommended to students. With the k-dimensional feature vector
fin = (fin1 , · · · , fink

) for each MC item n in the assessment i, student j ’s profile
vector can also be defined as a k-dimensional vector αj = (αj1, · · · , αjk

). Each
dimension to the profile vector serves as the weight or coefficient to items’ feature
vector. In addition, for each MC item in the assessment i, student j ’s response can
be scored as either correct or incorrect (i.e., tjn = 1/0), so that cross-entropy (De
Boer et al., 2005) is used as a loss function with tjn serving as guiding labels, which
is defined in the Eq. 4

L(α) = − 1

Jni

⎡

⎣
J∑

j=1

[
ni∑

n=1

[
tjn log(pjin) + (1 − tjn) log(1 − pjin)

]
]⎤

⎦ (4)

where pjin = σ(αifin) = σ
(
αj1fin1 + · · · + αjk

fink

)
, and the σ(·) represents a

sigmoid function.
The gradient descent (Amos &Yarats, 2020) is used to minimize the loss function

until it reaches convergence. The process of finding the minimized loss function is
described in Table 2, where ρ is a positively defined learning rate, and ∇J (αr) is
the differential at αr . The ρ∇J (αr ) is subtracted from αr and moves toward the
local minimum. So, a monotonic sequence J (αr) ≥ J (αr+1) ≥ J (αr+2) ≥ · · · is
obtained until convergence.

Table 2 Pseudo-code gradient descent algorithm

Algorithm Gradient descent

For r = 1, 2, · · ·
repeat αr+1 = r − ρ∇J (αr )

until convergence

Output J (αr+1)&αr+1



Adaptive Learning Recommendation 127

3 Data and Analytic Framework

3.1 Data Description

Learning materials are used to construct a learning pool in which every learning
material is pending to be recommended or not for each student. The learning
pool in this study contains 8 science cumulative assessments (Georgia Center for
Assessment, 2018) as learning materials, and each assessment contains 22 MC
items. The assessments are designed to assess student learning on several sub-
domains in science such as biology, physics, and chemistry. A link to the sample
assessment was provided in the Appendix. Each MC item stem was pre-processed.
This process includes stemming and lemmatization, and stop word removal. The
stemming uses the stem of each word and cuts off the end or the beginning of the
word such as the affixes of plural words. The lemmatization uses the context in
which the word is being used and changes the word into the base forms such as
the irregular verbs and irregular plural nouns. Stop words are high-frequency terms
with little or no information and include words such as “the”, “and”, “is” etc. The
cleaned item stems were treated as short texts and were modeled in BTM to extract
representation vectors. The descriptive statistics to the length of clean item stems
are listed in Table 3. The minimal length to the MC items is only 3, and the average
length of these items is 10.530. Therefore, the lengths of items are relatively short
and the use of BTM is appropriate.

Students’ response to each MC item was scored as either correct (1) or incorrect
(0). Students’ responses tjn to one learning material (i.e., one assessment containing
22 items) were used as guiding labels which are defined in Eq. 4. In this study,
Assessment 4 was selected, and 492 students have responded to the 22 MC items in
the assessment. All the response correctness tjn given by these 492 students were
used as the guiding labels to supervise the parameter estimation.

3.2 Bi-level Recommendation Framework

The bi-level recommendation system is shown in Fig. 2. The feature learning
component in the first level employs the BTM described in Fig. 1 to extract feature
matrix (dimension ni × k) for each assessment. The measurement component
in the second level uses the J students’ responses to each item in one selected
assessment and employs the gradient descent algorithm described in Table 2 to
minimize the loss function to obtain J ’s k-dimensional vectors as students’ profile

Table 3 Descriptive statistics to MC items’ length in the learning pool

Min. Mean Max. SD

3.000 10.530 32.001 10.812
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Fig. 2 Bi-level recommendation framework

vectors. The estimated profile vector was used as a quantified indicator of each
student’s understanding of each of the k topics at this moment. Furthermore, with
the k-dimensional student j ’s profile vector and remaining I − 1 assessments’
feature matrices, the recommendation strategy component predicts student j ’s score
probability on each MC item in each remaining assessment with Eq. 5.

f (zjin) = 1

1 + e−Zjin
(5)

where zjin = αjfin, and student j will be predicted to get a score gjin = 1 for item
n in assessment i when f (zjin) ≥ 0.5, and score gjin = 0 when f (zjin) < 0.5.

3.3 Analytic Procedures

The first step of this recommendation system uses the feature learning component
to construct a representation matrix for each learning material. That is, by modeling
every learning material i in the feature learning component, a k-column feature
matrix was extracted by the BTM with JSD. In this study, each extracted feature
matrix contains 22 rows and k columns, and each feature matrix serves as a rep-
resentation matrix of the corresponding learning material. Once the representation
matrices for all learning materials were constructed, then one learning material was
randomly selected for all students and the remaining I − 1 learning materials are
still in the learning pool. The second step of this recommendation system uses
all students’ complete response patterns to estimate j th student’s k-dimensional
profile vector αj == (αj1 , · · · , αjk) in the measurement component with the loss
function in Eq. 4 and gradient descent algorithm in Table 2. Finally, with the k-
dimensional profile vectors for each student and remaining I − 1 assessments’
feature matrices, the recommendation strategy component predicts j th student’s
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correctness probability on each MC item in each remaining assessment with Eq. 5
and predicts a score gjin for each item n of j th student. The summation gji =∑

n gjin will be used as j th student’s predicted total score on the assessment i in
the learning system. After ranking the predicted total scores for all remaining I − 1
assessments from low to high, the system can make the next recommendation for
each student.

4 Results

4.1 Step 1: Feature Learning Component with BTM and JSD

In the feature learning component, JSD was used as criteria for some exploratory
topic models from 2 topics to 6 topics for all items in the learning system. Figure 3a
is the average JSD values against the different number of topics, and the minimal
JSD was achieved when the number of topics is four. So, it is suggested that the
four-topic model fits best for all items in the learning system. After fitting a four-
topic BTM, every item stem was characterized by a 4-dimensional vector and each
dimension represents a topic’s proportion in the item stem. For example, the item
n in assessment i can be characterized by a vector of fin = (0.1, 0.3, 0.1, 0.5) in
which each value describes the topic distribution to this item such that 10% of words
in the item belong to Topic 1 and 30% of words belong to Topic 2, etc. Table 4 lists
the top 10 words under each of the four topics. Topic 1 can be described as words
related to the chemistry process and natural resources, Topic 2 tends to employ
words about the ecosystem, Topic 3 contains question words such as “select the
class from the following samples”, and Topic 4 shows words from astronomy and
physics.
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Fig. 3 (a) Average JSD against the number of topics; (b) PCA to the feature matrix
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Table 4 Top 10 words from each of the four topics in the cumulative assessments

Topic 1 Topic 2 Topic 3 Topic 4

water 0.034 model 0.019 class 0.021 earth 0.017

create 0.014 population 0.018 light 0.015 moon 0.015

rock 0.014 organism 0.016 give 0.015 sun 0.015

temperature 0.014 cell 0.016 form 0.012 weather 0.013

heat 0.013 base 0.015 see 0.011 layer 0.012

soil 0.011 show 0.014 sample 0.011 feather 0.011

hot 0.010 system 0.012 student 0.011 white 0.011

air 0.009 animal 0.012 leave 0.010 eye 0.010

plant 0.008 picture 0.010 need 0.009 gibbous 0.010

different 0.007 energy 0.009 question 0.009 move 0.010

Items may have different topic structures from each other; therefore, each item
focuses on a domain combination in the cumulative assessment. If we denote
the topic with the highest proportion as the dominant topic for an item, for
instance, for the item with fin = (0.1, 0.3, 0.1, 0.5), its dominant topic was
denoted as Topic 4. Figure 3b shows the principal component analysis (PCA; Chou
& Wang, 2010) to the feature matrix with identity information from dominant
topics. The two principles, PCA1 and PCA2, are associated with test domains.
PCA1 represents environment-associated contents, and PCA2 stands for biology-
associated contents. Each point represents an item in the two-dimensional space
and each color represents a dominant topic. In this figure, items with similar topic
distributions could be closer to each other, which indicates the items with similar
topic distributions may measure similar test domains. We also noticed that some
items with different dominant topics are mixed, which is because these items’ topic
distributions are flat such that the dominant topic has a close proportion to other
topics.

The analysis in the feature learning component yielded 8 feature matrices and
each has a dimension of 22×4. In each feature matrix, every row represents an item
feature vector fin for nth item in ith assessment. Each dimension in the vector fin

represents for the topic proportion of nth item. Therefore, j th student’s unknown
profile vector is also 4-dimensional such that αj = (αj1 , αj2 , αj3 , αj4).

4.2 Step 2: Measurement Component with Gradient Descent

After constructing the feature matrices for all learning materials, Assessment 4
was randomly selected for all 492 students. With the obtained feature matrix for
Assessment 4, the response patterns were used to estimate j th student’s profile
vector αj = (αj1, αj2 , αj3 , αj4) in the measurement component. Students’ profile
vectors are obtained by gradient descent on the loss function. The gradient descent
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Table 5 Summary statistics
on the estimated profile
distribution

Min. Mean Max. SD

αj1 −1.045 −0.188 0.743 0.399

αj2 −1.039 0.201 1.498 0.364

αj3 −1.001 −0.017 0.859 0.339

αj4 −1.047 −0.084 0.686 0.364

changes are reflected in Fig. 4, which shows the cost decrease against each iteration.
From Fig. 4, the estimation converged with increasing iterations finally and the
cost was less than 0.1. The obtained estimations are student profile vectors that are
coefficients to each dimension in the feature matrix.

The estimated profile vectors are summarized in Table 3. In Table 3, each row
lists descriptive statistics of one dimension. As introduced, the estimated coefficient
αjk

can be interpreted as j th student’s understanding of kth dimensional feature.
For example, a student with the minimal value of αj1 = −1.054 may indicate that
the student owns a relatively low understanding status of −1.054 on Topic 1, while
a student with the maximal value of αj1 = 0.743 means that the student owns a
relatively high understanding status to this topic. The standard deviations to the four
dimensions were from 0.339 to 0.399. The αj2 has the largest range from −1.039 to
1.498, while the other three dimensions are distributed between −1 and 1 (Table 5).

An item response analysis was conducted to help interpret profile vectors. Stu-
dents’ correctness responses were analyzed by a Rasch model, which can calibrate
students’ ability levels into logit scale and rank the logits on a one-dimensional
continuum (Engelhard, 2013), to explore the relationship between students’ profile
vector and students’ latent ability. By assuming there is a unidimensional ability of
students for answering these items correctly, the density of calibrated Rasch ability
is plotted in Fig. 5a, which is approximately normally distributed with a mean of
0.000. The minimal student ability value is −1.942 and the maximal ability value is



132 J. Xiong et al.

Min

25%

50% 75%

Max

0.0

0.2

0.4

0.6

−2 −1 0 1 2

Rasch Ability

D
en

si
ty

(a)
Q1 Q2 Q3 Q4

α1 α2 α3 α4 α1 α2 α3 α4 α1 α2 α3 α4 α1 α2 α3 α4

−1.0

−0.5

0.0

0.5

1.0

1.5

V
al

ue

group

profile1

profile2

profile3

profile4

(b)

Fig. 5 (a) Rasch ability density with 4 quartiles; (b) Distribution of α in each quartile

1.521. The first quartile (the lowest 25%), second quartile (between 25.1 and 50%),
and third quartile (50.1–75%) to the estimated Rasch ability are −0.413, 0.056,
and 0.380, respectively. By labeling students into four categories according to their
Rasch ability such that Q1: (−1.942,−0.413), Q2: (−0.413, 0.056), Q3: (0.056,
0.380), Q4: (0.380, 1.521), the order from Q1 to Q4 also represents both the ability
levels and the probability of answering items correctly are increasing.

Figure 5b shows the distribution of α’s based on every quartile category. It is
clear to observe that each dimensional α value shows a trend of increasing from
lower category to higher category and the α2 exhibits the most obvious increase
trend. Possibly Topic 2, containing words about the ecosystem, covers the main test
sub-domain in the cumulative learning material. FromQ1 to Q4, the Rasch estimates
are increasing, and the probability of answering items correctly is increasing. Since
each student’s profile vector indicates the student’s understanding status of certain
topics, larger α will lead to a higher probability of taking each item correctly. This
further verifies the homogeneity of Rasch analysis and profile analysis in terms of
item correctness probability, and students with higher ability values are also likely
to have higher profile values on each dimension.

4.3 Step 3: Recommendation Strategy Component with
Predicted Total Scores

Given students’ current understanding status of certain topics, their predicted total
scores for all remaining assessments in the learning pool were calculated based on
the profile vectors and learning matrices in the recommendation strategy component.
Every two students tend to have different profile vectors unless they have the same
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responding pattern to the 22 MC items. Therefore, the predicted patterns on each of
the remaining learning materials for every two students could be different.

All 492 profile vectors were multiplied to each of the learning matrices of the
remaining assessments for predicting j th student’s nth item score gjin of learning
material i using Eq. 5. For j th student, the summation of all item scores within ith
assessment gji = ∑

n gjin is used as the predicted total score on the assessment i

in the learning system. These scores indicate a student’s predicted achievements on
the remaining learning materials that the student may obtain based on their current α
values. Learning materials with lower scores indicate that the student may perform
comparatively worse on that materials than the ones with higher scores. For each
student, the predicted scores on remaining learning materials were ranked from low
to high, and the learning material with the lowest score was recommended to the
student for next-step learning. Figure 6 shows students’ predicted scores distribution
for each of the remaining learning materials, where the vertical axis stands for the
predicted scores. In this figure, the predicted scores for each assessment range from
0 to 22. The predicted scores of Assessment 1 have a relatively lower 1st quantile
value, which indicates that more students were predicted to have a lower score on
Assessment 1. The predicted scores of Assessment 7 have a higher 3rd quantile
value than other assessments, which means that more students were predicted to
have a higher score on Assessment 7.
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Fig. 6 Students’ predicted scores distribution for each of the remaining learning materials
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Table 6 Correlations
between each dimension of
the profile vectors and each
principal component

PCA1 PCA2

αj1 0.524 0.229

αj2 0.711 0.575
αj3 0.190 0.207

αj4 0.250 0.544

Figure 7 shows the PCA on students’ profile vectors with colors indicating their
recommendation results on the 7 accumulative assessments. In this figure, each
point represents a student, and students with similar profile vectors were close to
each other on this lower-dimensional space. It can be seen that many students were
recommended to take Assessment 1, and which is consistent with the observation
from Fig. 6 that more students were predicted to have a lower score on Assessment
1. In addition, students with similar profile vectors could be recommended with the
same learning material.

Table 6 listed the correlations between each dimension of the profile vectors
and each principal component, and correlations higher than 0.500 were in bold.
PCA1 is strongly correlated with two dimensions of the profile vectors and PCA1
increases with increasing αj1 and αj2 . This component can be viewed as a measure
of the values to αj1 and αj2 . Furthermore, we see that the first principal component
correlates most strongly with αj2 . Considering the interpretation of αj1 and αj2 ,
PCA1 may indicate students’ understanding status of concepts with the ecosystem
and natural resources. PCA2 also correlates with two dimensions of the profile
vectors, αj2 and αj4 . Similarly, this component can be viewed as a measure of
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the understanding of Topic 2 and Topic 4, so PCA2 primarily stands for students’
understanding status of concepts with astronomy and physics.

5 Discussion and Conclusion

This study proposed a bi-level recommendation system consisting of three compo-
nents. An empirical study shows that, by employing the topic model and gradient
descent algorithm, students profile vectors can be extracted and individualized
recommendations can be made based on the predicted scores for the learning
materials. The analysis also suggested that the distribution to the estimated values
in the person profile vectors were related to the ability estimation from the Rasch
model. Future researches can focus on a simulation study that explores the recovery
accuracy of the profile vectors.

Although the recommendation component shows interesting findings and pre-
dicts individual scores on each item in the learning material, one thing still needs
to note is that, for each student, learning materials with different score patterns
may be predicted with the same final scores. This is because the sum scores for
each learning material were used. For example, suppose a four-item cumulative
assessment of predicted score patterns of s = (0, 1, 0, 1) has the same sum
score as another assessment with pattern s = (1, 0, 1, 0), then both assessments
could be recommended next. In addition, this empirical data demonstration used
assessments that have the same length. However, when learning materials consist
of learning materials with different item numbers, a biased situation may be
produced as short-length learning materials may be preferred if the sum score is
still used. To better process situations with these problems, one possible solution
is that the recommendation component design in the future study could assess the
psychometric properties that each item has such as the item difficulties, and items
with different difficulties can be assigned different weights when sum score was
used.

Appendix

Data

Cumulative Assessments are aligned and assess a representation of the Georgia
Standards of Excellence (GSE). These cumulative forms can help teachers to gather
strong evidence on student learning toward the overall end-of-year expectations at
each grade level. The sample assessment items were provided on this web site:
https://www.lennections.com/assesslets-science

https://www.lennections.com/assesslets-science
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R Code

############################################################
##########################read data#########################
############################################################
data<-read.csv(file=’data.csv’, header=T, sep=",", fill=T,

stringsAsFactors = F)
#processing
data2 <- udpipe(data, "english")
biterms <- as.data.table(data2)[, cooccurrence(x = lemma,

relevant = upos %in%
c("NOUN",
"ADJ", "VERB") &
nchar(lemma) > 2 & !lemma
%in%
stopwords("en"),
skipgram = 3),
by = list(doc_id)]

data3 <- data2[, c("doc_id", "lemma")]

############################################################
####################decide optimal numbers##################
############################################################
cd_k<-seq(2,10)
#JSD
model=NULL
for (i in cd_k) {

model[[i]] <- BTM(data3, biterms = biterms,
k = i,
alpha = 1,
beta = 1,
window = 3,
iter = 5000, background = F,
trace = F,detailed = F)

}

# Compute Jensen-Shannon Divergence for each value in model
scores <- predict(model[[1]], newdata = data3)
colnames(scores)<-c("topic1","topic2","topic3","topic4")
JSD <- function(p, q) {
m <- 0.5 * (p + q)
divergence <-

0.5 * (sum(p * log(p / m)) + sum(q * log(q / m)))
return(divergence)
}

n <- dim(scores)[1]
X <- matrix(rep(0, n*n), nrow=n, ncol=n)
indexes <- t(combn(1:nrow(scores), m=2))
for (r in 1:nrow(indexes)) {
i <- indexes[r, ][1]
j <- indexes[r, ][2]
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p <- scores[i, ]
q <- scores[j, ]
X[i, j] <- JSD(p,q)
}

############################################################
####################Estimation and predict##################
############################################################
#read students’ response data
student = read.csv(file=’4_Cumulative_Assesslet.csv’,

header=T, sep=",",
fill=T,stringsAsFactors = F)

#M4 is feature matrix of 4th assessment
M4 = read.csv(file=’M4.csv’, header=T, sep=",",

fill=T,stringsAsFactors = F)

X = as.matrix(M4)
y= as.matrix(student)
N= dim(y)[1]*dim(y)[2]
theta.init = matrix(rnorm(n=dim(X)[2]*dim(y)[1],

mean=0,sd = 1),
nrow=dim(y)[1],ncol=dim(X)[2], byrow=T)
e = y - theta.init%*%t(X)
grad.init = -(2/N)*(e)%*%X
theta = theta.init - eta*(1/N)*grad.init
l2loss = c()
for(i in 1:iters){
myMatrix = y - theta%*%t(X)
# empty matrix for the results
squaredMatrix = matrix(nrow=dim(myMatrix)[1],

ncol=dim(myMatrix)[2])
for(i in 1:nrow(myMatrix)) {
for(j in 1:ncol(myMatrix)) {
squaredMatrix[i,j] = myMatrix[i,j]^2
}
}
l2loss = c(l2loss,sqrt(sum(squaredMatrix)))
e = y - theta%*%t(X)
grad = -(2/N)*e%*%X
theta = theta - eta*(2/N)*grad
# empty matrix for the results
squaredMatrix2 = matrix(nrow=dim(grad)[1],

ncol=dim(grad)[2])
for(i in 1:nrow(grad)) {
for(j in 1:ncol(grad)) {
squaredMatrix2[i,j] = grad[i,j]^2
}
}
if(sqrt(sum(squaredMatrix2)) <= epsilon){
break
}
}
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values<-list("coef" = theta, "l2loss" = l2loss)

h=sigmoid(X%*%t(theta.init))
sum(diag(-y%*%log(h)-(1-y)%*%log(1-h)))/m
#sigmoid function, inverse of logit
sigmoid <- function(z){1/(1+exp(-z))}

#initialize theta
theta <- matrix(rnorm(n=dim(X)[2]*dim(y)[1],

mean=0,sd = 1),
nrow=dim(y)[1],ncol=dim(X)[2], byrow=T)
#comput GD
compCost<-function(para){
m <- dim(y)[1]*dim(y)[2]
j=0
for (i in seq(1,492*4,by=4)) {
k=match(i,seq(1,492*4,by=4))
l1_1=sigmoid(colSums(para[i:(i+3)]*t(X)))
l1 <- log(l1_1)
l2 <- log(1-l1_1)
j=j+sum(y[k,]*l1+(1-y[k,])*l2)
}
J=-j/m
}
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Derivation of the Percentile Based
Parameters for Tukey HH, HR and HQ
Distributions

Yevgeniy Ptukhin, Yanyan Sheng, and Todd Headrick

Abstract In the statistical literature, there exist several systems of distributions
and types of transformations. These systems can be estimated using the method of
moments (MOM), the method of L-moments (MOL), or the method of percentiles
(MOP). The MOM has been widely used for deriving conventional moment-
based estimators of different parameters. Although the method is comparatively
simple and produces consistent estimators, these estimators can be biased, affected
by outliers, or can have large variances. The MOP provides a useful alternative
to the MOM when the distributions are non-normal, specifically being more
computationally efficient in terms of estimating population parameters. In this paper,
we focus on the Tukey HH, HR and HQ distributions, as extensions of the Tukey
g-h (GH) family, to theoretically derive the parameters based on the use of the MOP.
More specifically, closed-form solutions are obtained for the fifth-ordered percentile
based system parameters of these distributions.

Keywords Tukey distribution · Power method · Method of Percentiles

1 Introduction

A few types of transformations and systems of distributions are present in the
statistical literature. They include the Pearson system (Pearson, 1895, 1901, 1916),
the Burr system (Burr, 1942, 1973; Burr & Cislak, 1968), the Johnson system
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(Johnson, 1949), the power method (Fleishman, 1978; Headrick, 2002), and the
Tukey g-h (GH) family with its extensions (Hoaglin, 1985; Morgenthaler & Tukey,
2000; Tukey, 1960, 1977). The estimation methods for these systems consist of
the method of moments (MOM, Headrick et al., 2008; Kowalchuk & Headrick,
2010), the method of L-moments (MOL, Headrick & Pant, 2012), and the method
of percentiles (MOP, Kuo & Headrick, 2014).

The MOM has been widely used for deriving conventional moment-based
estimators of different parameters. For instance, its use has been well established
with the power method (Headrick, 2010), Johnson system (Johnson, 1949), Burr
distributions and their extensions (Burr, 1942, 1973; Yari & Tondpour, 2017).
Furthermore, the MOM estimates have been developed for Tukey g-h family and
its extensions of HH, HR and HQ distributions, where univariate moments up to the
4th moment (Headrick et al., 2008) as well as multivariate moments (Kowalchuk &
Headrick, 2010) have been introduced.

Even though MOM is relatively simple and produces consistent estimators, these
estimators can be biased, affected by outliers, or can have large variances (Headrick,
2010). The MOP offers a useful alternative to the MOM for situations where it
is difficult or impossible to use the MOM for the distribution moments, e.g. for
chi-square distributions (Kuo & Headrick, 2017). Indeed, Kuo and Headrick (2014,
2017) demonstrated that the fitting, estimation, relative bias, and relative error are
superior for MOP-based characterization of Tukey g-and-h distributions compared
with the MOM-based characterization.

The MOP estimation of the fifth-ordered percentile-based system of the Tukey
g-h distribution was introduced by Kuo and Headrick (2017). Even though MOP
estimators have been derived for Burr type III and type XII distributions (Pant &
Headrick, 2017), and the power method (Kuo & Headrick, 2017), such estimates for
Tukey HH, HQ and HR distributions, remain to be derived to complement existing
MOM and MOL estimates for those distributions. In view of the above, this paper
focuses on the MOP estimation by deriving in closed form the parameters for the
fifth-ordered percentile based (Kuo & Headrick, 2017) system for the Tukey HH,
HQ, and HR families of distributions.

2 Tukey g-h Family of Distributions and the Extensions

The family of symmetric H distributions (Tukey, 1960) was introduced by Tukey
for the purpose of constructing nonnormal random deviates. This family uses the
monotone transformation of standard normal random deviates (Z) with the following
inverse cumulative distribution function:

F−1(h) = Z ∗ exp
(
0.5hZ2

)
, where h > 0, (1)

which creates heavier tails than the normal probability density function.
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The family of H distributions has shown its usefulness in different situations such
as modeling stock returns (Badrinath & Chatterjee, 1988, 1991), financial times
stock exchange index returns (Mills, 1995), returns of aluminum and zinc (Fischer
et al., 2003), operational risk (Guegan & Hassani, 2009), and solar flare data (Goerg,
2011).

Further research adds more flexibility to the topic of H distributions. The inverse
cumulative distribution functions of the g and g-h families were derived (Hoaglin,
1985; Tukey, 1977) and are as follows:

F−1(g) = (exp(gZ) − 1) /g, h = 0 (lognormal) (2)

F−1(gh) = ((exp(gZ) − 1) /g ) ∗ exp
(
0.5hZ2

)
, g �= 0, h > 0. (3)

Still, in contrast to the Pearson (1895, 1901, 1916) system of distributions, the
family of g-h monotonic distributions does not cover the entire set of values for
the skewness and kurtosis (Tukey, 1977). To address this issue, additional families
denoted as HH, HR, and HQ distributions were developed (Morgenthaler & Tukey,
2000) to serve as extensions of the Tukey family. Specifically, the HH distribution
is an asymmetric generalization of the family of H distributions. In place of the one
parameter of h, a pair of parameters (hL and hR – for dealing with left and right tails
separately) is considered as

F−1(h) =
{

Z ∗ exp
(
0.5hLZ2

)
Z ≤ 0

Z ∗ exp
(
0.5hRZ2

)
Z > 0

hL �= hR (4)

for hR ≥ 0 and hL ≥ 0.
The HQ family of distributions was developed to expand the tail elongation, so

the exponent was modified to encapsulate the additional term 0.25qZ4. The formula
for the inverse cumulative distribution function of the HQ distribution is

F−1 (h, q) = Z ∗ exp
(
0.5hZ2 + 0.25qZ4

)
(5)

for q≥0, h ≥ 0 or h < 0, q ≥ h2/4.
The HR family of distributions features both heavy tails and shape affected. For

this family, the formula for the inverse cumulative distribution function is given as

F−1 (h, r) = Z ∗ exp
(
hZ2/

(
2 + rZ2

) )
(6)

for r ≥ 0 and h > −2r.
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3 Derivation of the Fifth-Ordered Percentile Based System
Parameters

The percentiles (θp) associated with a Tukey family of distributions can be obtained
by making use of the standard normal distribution, and hence the commonly used
location, scale, and shape parameters are defined as (Karian & Dudewicz, 2011, p.
172–173)

α1 = θ0.5, −∞ < α1 < ∞

α2 = θ0.9 − θ0.1, α2 ≥ 0

α3 = θ0.5 − θ0.1

θ0.9 − θ0.5
, α3 ≥ 0

α4 = θ0.75 − θ0.25

θ0.9 − θ0.1
, 0 ≤ α4 ≤ 1,

for the median, inter-decile range, left-right tail-weight ratio (related to skew),
and tail-weight factor (related to kurtosis), respectively. More recently, Kuo and
Headrick (2017) extended them to a more general fifth-ordered percentile based
system:

α1 = θ0.5

α2 = θ0.9 − θ0.1

α3 = θ0.7 − θ0.5

θ0.5 − θ0.3

α4 = θ0.625 − θ0.375

θ0.7 − θ0.3

α5 = θ0.5 − θ0.1

θ0.9 − θ0.5

α6 = θ0.75 − θ0.25

θ0.9 − θ0.1
.
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The derivation of the general percentile based system parameters for the HH,
HQ, and HR distributions begins by substituting the standard normal distribution
percentiles (Zp) into the inverse cumulative function, and specifically for the HR
family of distributions, the parameters α3, α4 α5, α6 are derived as follows

α3 = F−1 (Z0.7) − F−1 (Z0.5)

F−1 (Z0.5) − F−1 (Z0.3)

=
(Z0.7) exp

(
hZ2

0.7/
(
2 + rZ2

0.7

) )
− (Z0.5) exp

(
hZ2

0.5/
(
2 + rZ2

0.5

) )

(Z0.5) exp
(
hZ2

0.5/
(
2 + rZ2

0.5

) )
− (Z0.3) exp

(
hZ2

0.3/
(
2 + rZ2

0.3

) ) = 1

(7)

α4 = F−1 (Z0.625) − F−1 (Z0.375)

F−1 (Z0.7) − F−1 (Z0.3)

=
(Z0.625) exp

(
hZ2

0.625/
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0.625
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) )

(8)

α5 = F−1 (Z0.5) − F−1 (Z0.1)
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=
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α6 = F−1 (Z0.75) − F−1 (Z0.25)
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For the HQ distribution, the 5fth-ordered percentile based system parameters are
derived as

α3 = F−1 (Z0.7) − F−1 (Z0.5)

F−1 (Z0.5) − F−1 (Z0.3)

= (Z0.7) exp
(
0.5hZ2

0.7 + 0.25qZ4
0.7

)− (Z0.5) exp
(
0.5hZ2

0.5 + 0.25qZ4
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)
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(
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)
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α4 = F−1 (Z0.625) − F−1 (Z0.375)
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α5 = F−1 (Z0.5) − F−1 (Z0.1)
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α6 = F−1 (Z0.75) − F−1 (Z0.25)
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Since parameter q affects the tail elongation in HQ distributions, this parameter is
convenient for approximating heavy-tailed distributions.
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The derivation of the 5fth-ordered percentile based system parameters for the HH
family is based individually on hL and hR (hL �= hR) and depends on the (100p)th
percentiles, Zp(L) and Zp(R) from the standard normal distribution for left and right
tails, respectively:

α3
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α5
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αR
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αl
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In situations where hL = hR, the HH distribution is symmetric, and consequently the
third and fifth cumulants are equal to 1.
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4 Discussion

The key theoretical result of this paper is that the fifth-ordered percentile based
system parameters can be derived for the Tukey family of HR, HQ, and HH
distributions. The existence of closed-form solutions helps the practitioners in
simulating these distributions using the MOP estimates, as there is no need for the
use of numerical methods.

There is a possibility to develop other methods of transformation using for
example the Johnson or Burr system in terms of MOP. It is known from the literature
that the MOP approach results in a relatively smaller bias and standard error than
the MOM approach. Future studies can examine the comparison of the MOP vs.
MOM to further support this conclusion.
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Predicting Human Psychometric
Properties Using Computational
Language Models

Antonio Laverghetta Jr., Animesh Nighojkar, Jamshidbek Mirzakhalov,
and John Licato

Abstract Transformer-based language models (LMs) continue to achieve state-of-
the-art performance on natural language processing (NLP) benchmarks, including
tasks designed to mimic human-inspired “commonsense” competencies. To better
understand the degree to which LMs can be said to have certain linguistic reasoning
skills, researchers are beginning to adapt the tools and concepts from psychometrics.
But to what extent can benefits flow in the other direction? In other words, can LMs
be of use in predicting the psychometric properties of test items, when those items
are given to human participants? If so, the benefit for psychometric practitioners
is enormous, as it can reduce the need for multiple rounds of empirical testing.
We gather responses from numerous human participants and LMs (transformer-
and non-transformer-based) on a broad diagnostic test of linguistic competencies.
We then use the human responses to calculate standard psychometric properties of
the items in the diagnostic test, using the human responses and the LM responses
separately. We then determine how well these two sets of predictions correlate. We
find that transformer-based LMs predict the human psychometric data consistently
well across most categories, suggesting that they can be used to gather human-like
psychometric data without the need for extensive human trials.

Keywords Classical test theory · Item response theory · Natural language
processing

1 Introduction

The current generation of transformer-based language models (TLMs) (Vaswani
et al., 2017) continues to surpass expectations, consistently achieving state-of-the-
art results on many natural language processing (NLP) tasks. Transformers are a
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type of artificial neural network that connect text encoders and decoders without
using recurrent links, as was the case in previous architectures such as Long Short
Term Memory (LSTM) networks (Hochreiter and Schmidhuber, 1997). Instead,
they rely on a computationally efficient self-attention mechanism (Vaswani et al.,
2017). Especially surprising is the remarkable performance of these models on
benchmark tasks designed to assess “commonsense” reasoning (e.g., Wang et al.,
2018, 2019), possibly owing to their ability to encode and retrieve a surprising
amount of structural knowledge (Goldberg, 2019; Hu et al., 2020; Cui et al., 2020).

Understanding how TLMs reason is a complex task made more difficult by the
fact that the sizes of contemporary TLMs are so large that they are effectively
black boxes. As such, researchers are continually searching for new methods to
understand the strengths and limitations of TLMs. One promising approach is to
draw from the tools of psychometrics, which allows us to measure latent attributes
like reasoning skills, even if the mechanisms giving rise to these attributes is not well
understood. Although some have called for bridging the gap between psychometrics
and artificial intelligence (AI) (Bringsjord, 2011; Bringsjord and Licato, 2012;
Hernández-Orallo et al., 2016; Wilcox et al., 2020), the amount of work attempting
to do so has been limited. While methods from psychometrics could certainly be
useful as a diagnostic tool for AI practitioners, the remarkable performance of TLMs
on reasoning tasks suggests that they might also be useful to psychometricians
when designing evaluation scales. Most prior work has focused on the benefits
psychometrics can bring to AI, however, and has not considered whether tools from
AI can also benefit psychometrics, which is the focus of the present paper.

To illustrate how AI might be applied to psychometrics, assume that someone
wishes to design a test to assess the degree to which a person possesses mastery of
some cognitive skill S . A good place to start is for a panel of experts to design a set
of test items I, such that they believe solving I requires S , and can therefore be used
to measure mastery of S . A common task in psychometrics is to design measurement
tools such as I, and then to apply I to a large number of human participants. The
data obtained from these trials can be used to estimate psychometric properties of
the items in I, such as their reliability, validity, and fairness. But establishing these
properties can be prohibitively costly, requiring large numbers of human participants
to answer the items in I and iteratively refine them. This drawback motivates our
central research question: Can TLMs be used to predict psychometric properties
of test items? Psychometrics would benefit greatly if so, as TLMs could be used in
place of human participants, reducing the need for extensive human trials.

We present the first exploration into how well TLMs can be used to predict
certain psychometric properties of linguistic test items. To do this, we identified
a subset of items from the General Language Understanding Evaluation (GLUE)
broad coverage diagnostic (Wang et al., 2018), a challenging benchmark of lin-
guistic reasoning skills used to measure the progress of language modeling in the
NLP community. We collected human responses on these items to assess simple
psychometric properties, designing a novel user validation procedure to do so. We
then assess the performance of 240 language models (LMs) on these diagnostic
items. Our resulting analysis suggests TLMs show promise in modeling human
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psychometric properties in certain sub-categories of linguistic skills, thus providing
fruitful directions for future work.

2 Background in Natural Language Processing

As our work draws heavily on models, datasets, and techniques from NLP, we will
begin by briefly introducing some important concepts that will be used throughout
this work. Note that this is not meant to be an exhaustive introduction to the field;
the interested reader is encouraged to refer to the citations throughout this section
for more details.

2.1 Language Modeling

In NLP, language models (LMs) are the primary tool used to perform tasks related to
natural language understanding (e.g., sentiment analysis, machine translation, and
so forth). All the models used throughout this work are examples of LMs. Given
a sequence of words, the task of an LM is to predict which word is most likely to
come next:

P(wt |w1:t−1) (1)

Where wt is the word to be predicted by the LM at timestep t , and w1:t−1 is the prior
t − 1 words given to the LM to be used to make said prediction (Jurafsky, 2000).

An LM can be constructed using a variety of probabilistic models, however,
the one most relevant to this work is the artificial neural network (ANN). ANNs
are models from deep learning that consist of three types of units: an input layer,
one or more hidden layers, and an output layer. At a high level, they operate by
taking in as input a vector representation in the input layer, performing a series of
transformations on the input in each hidden layer, and finally mapping the hidden
layer to fixed-length representation in the output layer. Figure 1 shows a schematic
representation of a simple 2-layer ANN. As the hidden layers within an ANN
can perform a variety of non-linear transformations to the input, ANNs are quite
expressive in the kinds of representations they can learn (Yarotsky, 2022), which
makes them highly effective as models of language. The neural language model was
first introduced in Bengio et al. (2003), and works by using ANNs to approximate
the probability of each word, given the prior sequence of words.

Since the advent of neural language modeling, more sophisticated neural net-
works have been employed in NLP, including Long Short Term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997) networks, and transformers (Vaswani et al.,
2017). These types of neural networks perform the same basic set of operations as
the vanilla ANN, but they differ in how their architectures are designed. LSTMs rely
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Fig. 1 A simple ANN for the task of sentiment analysis. Words are input to the hidden layers,
which learn to map an arbitrary sequence to a fixed output space (positive or negative sentiment).
Note that the input layer is typically not counted when listing the total number of layers

on using recurrent (cyclic) links between hidden layers, which allows information
from previous hidden layers to affect the representations learned in later layers.
Transformers rely on a technique in deep learning called attention, which is meant
to mimic the attention employed in human cognitive systems. Attention works
by masking out less relevant portions of the input, such that they contribute less
information to later layers. For example, given the sentence “The dog sat in the
chair.”, attention would learn that “sat” and “chair” contribute more to the meaning
of “dog” in this sentence than words like “the.” As discussed earlier, while attention
has been employed in previous types of neural networks, transformers are unique
in that they use only attention to learn representations of the input, throwing out
recurrent layers entirely. Figure 2 shows the general structure of a transformer. A
transformer block consists of only an attention operation, followed by a standard
hidden layer from a typical ANN. Despite their simplicity, transformers have proven
to be highly versatile models, and have surpassed the performance of previous
successful architectures on virtually every NLP task.

Training any LM requires that we have access to a large corpus of text, which the
LM uses to learn which words frequently occur in which contexts. While there are
a variety of approaches to training an LM, by far the most successful of them was
pioneered by Devlin et al. (2018) who introduced the BERT (Bidirectional Encoder
Representations from Transformers) LM. BERT is a transformer that is trained in
two stages, the first being pre-training where the model is trained using a self-
supervised language modeling objective over a large corpus of text. In the second
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Fig. 2 The architecture of the transformer. The input sequence is given with a mask token
<mask> and the correct word is given as output. The model predicts the probability distribution
for the mask token and changes its weights after comparing its predictions with the actual next
word. During pre-training, this process is repeated many times over a large number of sentences
and documents

finetuning stage the model is further trained on a labeled dataset for a particular
task, thus allowing the same pre-trained model to be used for many different tasks.
One can think of the pre-training stage as giving the model a large amount of
domain-general knowledge, whereas the finetuning stage focuses on how to use that
knowledge to solve a specific task. Most transformers introduced after BERT use
this same training strategy, though the details may differ.

2.2 Natural Language Inference

Natural language inference (NLI) is a common task in NLP for evaluating the
reasoning capabilities of LMs. NLI problems consist of two sentences: a premise
(p) and hypothesis (h), and solving such a problem involves assessing whether p

textually entails h. There are typically three choices: either p does textually entail
h (entailment), p entails that h is impossible (contradiction), or h’s truth can not
be determined from p alone (neutral). Whether p entails or does not entail h can
depend on many factors, such as the syntactic relationships between the sentences,
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the information that the sentences convey, or some external knowledge about the
world. For example, consider an NLI question with p = “My dog needs to be
walked.” and h = “My dogs need to be walked.” We would say that h contradicts
p because it was established in p that I have only one dog. As another example,
consider p = “The BART line I always take was delayed.” and h = “I’m going
to miss my tour of the Statue of Liberty.” We might say that this is a contradiction
because the BART operates in San Francisco and not New York City. However, we
might also say that p is neutral with respect to h (perhaps I need to ride the BART to
the airport, where I will then fly to New York City). Regardless, this demonstrates
how the NLI task can also incorporate external information not explicitly stated in
either sentence.

The NLI task was formalized in the PASCAL recognizing textual entailment
tasks (Dagan et al., 2006), which were a series of workshops designed to spur the
development of NLP systems for inferential reasoning. The NLI datasets developed
for these tasks were quite small, having only a few thousand items in total, which
made it very difficult to train deep neural networks on them. The Stanford natural
language inference (SNLI) (Bowman et al., 2015) corpus was the first large-scale
dataset of NLI questions, having around 570,000 items in total, which made it
practical to train LMs for NLI. Since the release of SNLI, other large-scale NLI
datasets have been curated, including MultiNLI (MNLI) (Williams et al., 2018) and
Adversarial NLI (ANLI) (Nie et al., 2020), each of which curates NLI questions of
varying levels of difficulty and covers different domains of text (fictional stories,
news, telephone conversations, etc.). This has made the NLI task quite general in
the kinds of reasoning it can test for, while also being straightforward to administer
to both humans and LMs, which makes the task ideal for the present study.

2.3 Benchmarks of Commonsense Reasoning

A common task in NLP is the development of tasks and datasets meant to
assess the language understanding and reasoning capabilities of new models. Such
tasks are typically narrowly scoped, focusing on how well the model performs
on one specific task. More recently, there has been a trend to developing more
comprehensive assessments of LM performance, meant to mimic the diverse skill
sets a model would need to master when operating in the real world. The General
Language Understanding Evaluation (GLUE), as well as its more recent extension
SuperGLUE (Wang et al., 2018, 2019), are such benchmarks and are meant to assess
a broad set of linguistic reasoning competencies. GLUE was curated by combining
previous datasets into a single benchmark task, covering a diverse set of underlying
skills, including NLI, question answering, paraphrase detection, and others. As
there has been rapid progress in NLP in recent years, the authors of GLUE found
that the benchmark quickly lost the ability to discriminate between high and low-
performance LMs on the tasks it covered. SuperGLUE (Wang et al., 2019) was then
curated to address this, using a newer suite of more challenging tasks.
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Most relevant to this work is the GLUE task known as the broad coverage
diagnostic, which is a set of items formatted as NLI problems. The diagnostic
covers four main categories of linguistic competencies: lexical semantics, predicate-
argument structure, logic, and knowledge and common sense. These categories are
further divided into multiple sub-categories, each of which covers a specific and
interesting phenomenon in language. The broad coverage diagnostic was manually
curated by linguistics and NLP experts and is meant to assess broad psycholinguistic
competencies of LMs across multiple categories. For instance, the propositional
structure category contains questions that exploit propositional logic operators,
e.g., p = “The cat sat on the mat.” and h = “The cat did not sit on the mat.”
The diagnostic thus aims to be a comprehensive test of linguistic reasoning skills,
making it suitable for our present study. As discussed in Sect. 3, we use only the
following seven sub-categories from the diagnostic for our experiments:

1. morphological negation: Covers questions that require reasoning over negation
in either its logical or psycholinguistic form.

2. prepositional phrases: Tests for the ability to handle ambiguity introduced by
the insertion or removal of prepositions (e.g., p = “Cape sparrows eat seeds,
along with soft plant parts and insects.” and h = “Soft plant parts and insects eat
seeds.”).

3. lexical entailment: Covers hypernymy, hyponymy, and other types of monotonic
relationships at the word level (e.g., a dog is an animal, but is not a cat).

4. quantifiers: Tests for the ability to reason over the universal and existential logical
operators.

5. propositional structure: Tests for the ability to reason over the core suite of
logical operators, including conjunction, disjunction, and conditionals.

6. richer logical structure: Covers higher-level forms of logic, especially those
dealing with temporal or numeric reasoning.

7. world knowledge: Tests for knowledge of specific factual information about the
world.

3 Gathering Language Model Data

We begin by gathering results on the broad coverage diagnostic from a suite of
LMs. We first selected a subset of the diagnostic items that were a member of
only one sub-category, to better isolate factors. From this subset, we had 811
diagnostic questions encompassing 20 sub-categories. Each sub-category had at
least 15 questions, and we selected the seven sub-categories enumerated in Sect. 2.3
to use in our experiments. We selected these 7 sub-categories based on how much
the average performance of the LMs improved after pre-training and finetuning. A
substantial performance improvement indicated the category was solvable by the
models, and would therefore provide a meaningful comparison to the human data.
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We gathered responses to the diagnostic from a wide array of TLMs, including
BERT (Devlin et al., 2018), RoBERTa (Liu et al., 2019), T5 (Raffel et al., 2020),
ALBERT (Lan et al., 2020), XLNet (Yang et al., 2019), ELECTRA (Clark et al.,
2020), Longformer (Beltagy et al., 2020), SpanBERT (Joshi et al., 2020), DeBERTa
(He et al., 2020), and ConvBERT (Jiang et al., 2020). Each of these models
differs from the others along one or more factors, including underlying architecture,
pre-training objective and data, or the general category the model belongs to.
We experimented with multiple different “snapshots” of each TLM. We obtained
these snapshots from HuggingFace (Wolf et al., 2020). For each model we used
a smaller version, designated with the small or base suffix, and a larger version,
designated with the base or large suffix. The smaller versions of each TLM
contained fewer transformer blocks, and thus fewer trainable parameters, making
them less expressive models of language. We used LSTM-based LMs (Hochreiter
and Schmidhuber, 1997) as a baseline, which, unlike TLMs, primarily rely on
recurrent links, as opposed to attention.

We used the SNLI (Bowman et al., 2015), MNLI (Williams et al., 2018), and
ANLI (Nie et al., 2020) datasets to finetune our models for the NLI task. To increase
the variance in our results as much as possible, we finetuned all models on various
combinations of these datasets: (1) SNLI alone, (2) MNLI alone, (3) SNLI + MNLI,
and (4) SNLI + MNLI + ANLI. Recall that all TLMs are trained in two stages: pre-
training and then finetuning. As the performance of our models on the diagnostic
will be affected by both, we systematically alter whether a model is pre-trained or
finetuned to further increase variance, using the following combinations:

– Zero shot: The model is initialized with random weights in the hidden layers and
is evaluated on the diagnostic without any training. This is meant to test whether
there is any property of the architecture itself which is useful for solving the
diagnostic.

– Pre-train, no finetune: The model is pre-trained but not finetuned. In this case,
the language model is still fully trained, but it has not been specifically optimized
for NLI.

– No pre-train, finetune: The model weights are initialized randomly, but we
finetune the model before evaluating it. The model is trained for NLI, but the
total amount of language it has been exposed to is much smaller without pre-
training.

– Pre-train and finetune: The model is fully trained before evaluation.

For BERT, we experimented with both Devlin et al. (2018)’s pre-trained models,
and a BERT model we trained from scratch. Our BERT model had an identical
architecture to bert-base and was pre-trained on Google’s One Billion Words corpus
(Chelba et al., 2014), which is a dataset of documents from various sources created
by Google for pre-training LMs.

In summary, this process allowed us to vary the underlying architecture, the size
of each architecture, and the amount of data the model was trained on. This allowed
us to treat each trained model as effectively being a different “individual” (and we
will refer to them as such), which might have a radically different cognitive profile



Predicting Human Psychometric Properties Using Computational Language Models 159

from its counterparts. For example, a roberta-base model that was pre-trained and
finetuned on all three NLI datasets would likely be much more proficient on our
diagnostic than a roberta-large model trained on no NLI data at all.

4 Human Studies

As our purpose in gathering this LM data was to evaluate it against human
performance, we additionally ran a human study. To do this, we recruited workers
on Amazon Mechanical Turk (mTurk) to complete our subset of GLUE diagnostic
questions. While mTurk makes conducting large-scale human studies convenient,
there are also well-documented problems with participants not completing tasks
in good faith (Berinsky et al., 2014). There are multiple techniques for filtering
out bad-faith participants, such as the use of attention check questions, sometimes
called “instructional manipulation checks” (Hauser and Schwarz, 2015), which are
designed so that a good-faith participant would be unlikely to get them incorrect.
But this alone would not suffice for our purposes here, as we want a certain amount
of low-scoring participants on some sub-categories, so that the population variances
on sub-category items would better reflect their actual variances.

We first obtained attention checks from the ChaosNLI dataset (Nie et al., 2020),
which gathered over 450,000 human annotations on questions from SNLI and
MNLI. Since each question in ChaosNLI was annotated by 100 different workers,
if the inter-annotator agreement for a given question is extremely high, we conclude
that question is likely easy to solve for good-faith participants. We gathered 36
questions from ChaosNLI where the agreement for the correct label was at least
90%. These were enough questions to ensure that each phase of our trials used
a unique set of attention check questions. The human studies were split up into
five phases, and workers who did sufficiently well in a given phase were given a
qualification to continue to the next phase:

1. On-boarding: A qualifying HIT (human intelligence task) open to any worker
located in the United States, who had completed at least 50 HITs with an approval
rating of at least 90%. The HIT consisted of five attention check questions, given
to each worker in the same order. We gathered up to 200 responses and paid
workers $0.50.

2. Phase 1: Included questions from morphological negation, and three attention
checks. We gathered up to 45 responses and paid workers $3.60.

3. Phase 2: Included questions from lexical entailment and prepositional phrases,
as well as six attention checks. We gathered up to 36 responses and paid workers
$7.20.

4. Phase 3: Included questions from quantifiers and propositional structure, as well
as six attention checks. We gathered up to 27 responses and paid workers $7.20.
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5. Phase 4: Included questions from richer logical structure and world knowledge,
as well as six attention checks. We gathered responses from all accepted workers
from Phase 3 and paid workers $7.20.

Our payment structure was designed to incentivize workers to put forth their
best effort when completing the task. Workers were informed that successfully
completing each task would award them the opportunity to earn additional payment
on each subsequent phase. However, if on a given phase a worker failed our
authentication protocol (described below), we rejected their work and did not pay
them. Workers were informed before starting every study that we would evaluate
the quality of their work, and that it might be rejected if we found evidence that they
did not put forth an honest effort.

In each phase, questions were randomly ordered, except for attention checks
which were spread evenly throughout the survey. We used Qualtrics1 to create the
surveys for each HIT and collect the responses. Participants were first presented with
instructions for the task and some examples, which were based on the instructions
originally given to annotators of the MNLI dataset. The questions from each
category were a randomly chosen subset of 15 questions tested on the LMs for that
category, balanced for each label. For each question, workers also had to provide a
short justification statement on why they believed their answer was correct, which
was used to help filter out bad faith participants. To validate the responses to our
surveys, we developed the following authentication procedure:

1. Look for duplicate IPs or worker IDs, indicating that the worker took the HIT
more than once. If there are any, keep only the first submission.

2. If the worker’s overall score was less than 40%, reject the HIT. If their overall
score was greater than 60%, accept the HIT. For workers who scored between 40
and 60%, reject the HIT if they got less than 75% of the attention checks correct.

3. Finally, examine the justifications of all workers not previously rejected. Here we
were looking for simple, but clear, reasons for why workers chose their answer.
We included this step because we found in a pilot study that workers sometimes
provided nonsensical justifications for their answers even when they did well
on the survey, making it unclear whether they were truly paying attention. We
checked that the justifications appeared relevant to the question, that they did
not paste part of the question for their justification, that they did not use the
same justification for every question, and that they did not use short nonsensical
phrases for their justification (e.g., some simply wrote “good” or “nice” as their
justification). This allowed us to keep some low-scoring participants who had put
genuine effort into the task.

Manual inspection of the resulting responses suggested that workers whose
responses were accepted consistently gave higher quality responses than those who
did not. These workers gave more detailed justifications that clearly articulated their

1 https://www.qualtrics.com.

https://www.qualtrics.com
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thought process, often citing specific details from the question. On the other hand,
workers who failed to give good justifications generally scored at or below random
chance, which further indicated that they were not actually paying attention. We,
therefore, believe the use of justifications helped us gather higher-quality responses.

Using this procedure, and those described in Sect. 3, we gathered results from
27 human participants and 240 neural LMs (183 transformer-based and 57 LSTM-
based). In addition to the LSTMs, we also include a true random baseline which
simply guesses randomly on every question. In the following experiments, we use
the human performance on each category as the basis for analyzing the performance
of the artificial populations, specifically using methods from classical test theory
(both simple problem difficulty and inter-item correlation) and Rasch models
(Rasch, 1993) from item response theory. Our goal is to determine how well item
properties measured using artificial models correlate with those measured using
the humans responses, using both pearson and spearman correlation coefficients.
We shall refer to the transformer population as T , the LSTM population as L,
the random population as R, and the human population as H . We used the ltm R
package to fit all Rasch models (Rizopoulos, 2006).

5 Experimental Results

5.1 Classical Test Theory

We began by examining how well TLMs could predict simple problem difficulty
in the human data. For each item i in a given sub-category, we calculated the
percentage of human participants who got that item correct (Di

H ), and then the
corresponding percentage for the TLMs (Di

T ), LSTM-based LMs (Di
L), and the

random baseline (Di
R). We then calculated the Spearman correlation between Di

H

and each of the other populations. Results are shown in Table 1. In almost all cases,

Table 1 Given DH , Spearman correlation and p-values were calculated with transformer-based
(DT ), LSTM-based (DL), and random (DR) estimates of problem difficulty. Note that we have
bolded cells whose correlations (absolute values) were highest, but their p-values were not always
significant. Columns marked with * are significant at p < 0.05, ** at p < 0.01, and *** at
p < 0.001

Category DT DL DR

Morphological negation −0.28 0.27 −0.14

Prepositional phrases ***0.86 0.47 0.42

Lexical entailment *0.62 0.17 −0.22

Quantifiers *0.57 −0.22 0.41

Propositional structure ***0.93 0.27 0.37

Richer logical structure 0.28 −0.03 −0.37
World knowledge ***0.79 0.46 −0.25



162 A. Laverghetta Jr. et. al.

Table 2 Pearson correlation
and p-values for how well
items clustered using human
responses match the clusters
which used transformer-based
(CT ), LSTM-based (CL), and
random (CR) items. Columns
marked with * are significant
at p < 0.05, ** at p < 0.01,
and *** at p < 0.001

Category CT CL CR

Morphological negation 0.18 ***0.40 −0.14

Prepositional phrases **0.31 −0.15 −0.01

Lexical entailment **0.31 −0.03 −0.16

Quantifiers *0.24 −0.01 0.06

Propositional structure ***0.51 0.03 0.04

Richer logical structure ***0.46 −0.07 0.04

World knowledge **0.28 0.00 −0.09

TLMs achieve a much stronger correlation with the human data than either baseline.
The main exceptions are morphological negation and richer logical structure, both
of which fail to produce strong, statistically significant correlations. As we will see,
this pattern will repeat in other measurements as well.

IIC-Based Clustering An important idea in psychometrics is that items that rely
on the same skills should have similar chances of being answered correctly by a
given participant (Rust and Golombok, 2014). Whether items rely on similar skills
can be tested using the inter-item correlation (IIC) between two items, where high
IIC suggests that the items rely on similar underlying reasoning skills. Thus, it
can be assumed that if items cluster together when using IIC as a distance metric,
they rely on similar underlying cognitive skills. To explore this, given a correlation
measure c ranging from −1 to 1, we converted it into a distance metric by taking
1 − c. We used this metric to cluster the diagnostic questions. For each sub-
category, we performed clustering using human, transformer, LSTM, and random
data separately (H , T , L, and R respectively).

After clustering, for each pair of items (i, j ) we define CD
i,j as 1 if i and j are

in the same cluster as determined by dataset D ∈ {H, T ,L,R}, and 0 otherwise.
Finally, to determine how well clusters from the LM responses match the human
responses, we calculated Pearson correlation between CH and each of CT , CL, and
CR . Results are shown in Table 2. Similar to Table 1, we see statistically significant
correlations from TLMs in every sub-category, except again for morphological
negation.

5.2 Item Response Theory

Since TLMs correlated well with humans using the classical techniques we tested,
we wished to examine whether this would still hold using methods from item
response theory (IRT). To do this, we used the diagnostic results from each
population to fit Rasch models (Rasch, 1993). This gave us separate difficulty
parameter estimates bi for each item i, for each population. To determine how
well the difficulty parameters matched between populations, we calculated the
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Table 3 Pearson correlation
and p-values for
transformer-based (DT ),
LSTM-based (DL), and
random (DR) estimates of
problem difficulty computed
using Rasch models. Columns
marked with * are significant
at p < 0.05, ** at p < 0.01,
and *** at p < 0.001

Category DT DL DR

Morphological negation 0.08 0.29 0.19

Prepositional phrases 0.48 **0.69 −0.25

Lexical entailment ***0.88 −0.06 0.14

Quantifiers *0.61 0.03 0.12

Propositional structure *0.61 0.05 −0.25

Richer logical structure 0.16 −0.05 −0.31
World knowledge *0.52 *0.59 −0.1

Pearson correlation between the bi using our human response data (H ), and the
bi obtained using the other populations (T , L, R). Results are shown in Table 3.
As before, TLMs consistently get a stronger correlation than either baseline on
most sub-categories, except formorphological negation and richer logical structure.
Interestingly, LSTM-based LMs achieved stronger correlations than TLMs on
certain sub-categories: world knowledge and prepositional phrases. The only other
experiment where LSTM-based LMs achieved stronger correlation was reported in
Table 2, where they achieved superior correlation on morphological negation.

6 Related Work

What reason do we have to suspect that TLMs can predict the psychometric
properties of test items? Although TLMs were not primarily designed to compute
in a human-like way, there are some reasons to suspect that they may have the
ability to effectively model at least some aspects of human linguistic reasoning:
They consistently demonstrate superior performance (at least compared to other
LMs) on human-inspired linguistic benchmarks (Wang et al., 2018, 2019), and they
are typically pre-trained using a lengthy process designed to embed deep semantic
knowledge, resulting in efficient encoding of semantic relationships (Zhou et al.,
2020; Cui et al., 2020). Common optimization tasks for pre-training transformers,
such as the masked LM task (Devlin et al., 2018) are quite similar to the word
prediction tasks that are known to predict children’s performance on other linguistic
skills (Gambi et al., 2020). Finally, TLMs tend to outperform other LMs in recent
work modeling human reading times, eye-tracking data, and other psychological
and psycholinguistic phenomena (Schrimpf et al., 2020b,a; Hao et al., 2020; Merkx
and Frank, 2021; Laverghetta Jr. et al., 2021).

Despite the potential benefits psychometrics could bring to AI, work explicitly
bridging these fields has been limited. Ahmad et al. (2020) created a deep learning
architecture for extracting psychometric dimensions related to healthcare, specif-
ically numeracy, literacy, trust, anxiety, and drug experiences. Their architecture
did not use transformers and relied instead on a sophisticated combination of
convolutional and recurrent layers in order to extract representations of emotions,
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demographics, and syntactic patterns, among others. Eisape et al. (2020) examined
the correlation between human and LM next-word predictions and proposed a
procedure for achieving more human-like cloze probabilities. In NLP, methods from
IRT have been particularly popular. Lalor et al. (2018) used IRT models to study the
impact of item difficulty on the performance of deep models on several NLP tasks. In
a follow-up study, Lalor and Yu (2020) used IRT models to estimate the competence
of LSTM (Hochreiter and Schmidhuber, 1997) and BERT models during training.
Sedoc and Ungar (2020) used IRT to efficiently assess chat-bots. Martínez-Plumed
et al. (2019) used IRT to analyze the performance of machine learning classifiers in
a supervised learning task. IRT has also been used to evaluate machine translation
systems (Otani et al., 2016) and speech synthesizers (Oliveira et al., 2020). Recent
work has also used IRT models to evaluate progress on benchmark NLP tasks
(Vania et al., 2021; Rodriguez et al., 2021). We contribute to this literature by
providing what is, to our knowledge, the first comprehensive assessment of the
relationships between human and LM psychometric properties on a broad test of
lingusitic reasoning.

7 Conclusion

Overall, we find that TLMs perform consistently better than either of our baselines
in modeling human psychometric properties. However, this improvement is also
not uniform across all categories. In fact, we have found some regularities in this
regard. In particular, TLMs failed to achieve a strong correlation on morphological
negation in all cases. This might be explained by two facts: there is little relative
variance in the human responses in this sub-category, and the average accuracy of
human participants was above 90%, as opposed to LM accuracy of 55%.

The strong correlation TLMs consistently achieved suggests they can produce
similar responses to human participants on diagnostic items. This has many
implications for psychometrics, notably the possibility of using them as a sort of
simulated test taker for building evaluation scales. If this were successful, it would
greatly reduce the burden of multiple rounds of empirical testing.

Of course, this study also has some important limitations. The number of human
participants in our study was somewhat small compared to typical psychometrics
studies (which often contain hundreds or thousands of participants), making it
difficult to draw stronger conclusions. As stated earlier, practical limitations on
population size is a common problem in psychometrics research, one which our
present work hopes to alleviate somewhat. Future work will need to repeat our
experiments with much larger population sizes, and also take measures to ensure
sufficient diversity in the study population (e.g., age, income, education level,
English fluency, etc.). Furthermore, although we reported in detail on certain
psychometrics measures where our method demonstrated promising results for
TLMs, it is worth reporting that certain other measures we examined did not appear
to align well. For example, item-total correlations using human data did not appear
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to correlate with any LM data better than with the random baseline. Likewise, our
LMs failed to predict average inter-item correlations between either random subsets
of items or our diagnostic sub-categories. More work is needed to better understand
why.

While this study has given us some insights into which fundamental reasoning
skills TLMs can model well, it does not tell us anything about the order in which
these skills are acquired, and especially whether this order is at all human-like. For
example, in our experiments, we found that TLMs consistently achieved a strong
correlation on items requiring mastery of logical operators and lexical entailment
(e.g., p = “The dog is on the mat and the cat is in the hat” and h = “The dog is on the
mat”). However, if we found that TLMs develop the ability to solve problems with
conjunct-containing sentences before those with simpler sentences (e.g., p = “The
dog is on the mat” and h = “The dog is not on the mat”) this would clearly not reflect
the order of skill acquisition we would expect to see in humans. Other methods from
psychometrics, especially cognitive diagnostic models (Rupp and Templin, 2008)
might give us a more nuanced understanding of how effective TLMs are as a model
of human learning and development.

Finally, while our experiments have given us some insights into the validity and
reliability of the diagnostic items, it is unclear whether our approach can allow us to
measure their fairness. It is not known whether the test items we examine here are
consistent across different groups of differing socio-economic statuses, and we did
not control for this in our recruitment. Being able to probe this property of items
would have interesting downstream applications. For instance, it might indicate
whether a diagnostic gives an unfair advantage to certain types of classifiers, and
thus might discriminate against certain groups.

We believe our work offers a clear path forward for bridging psychometrics and
AI. The use of psychometric measures gives us a more nuanced understanding
of the latent abilities of LMs than single-valued measures like accuracy or F1
can provide. Furthermore, the increasingly powerful ability of TLMs to model
human “commonsense” reasoning and knowledge suggests new ways to predict
psychometric properties of test items, reducing the need for costly human empirical
data.
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Predicting Item Characteristic Curve
(ICC) Using a Softmax Classifier

Dmitry I. Belov

Abstract The objective of item difficulty modeling (IDM) is to predict the
statistical parameters of an item (e.g., difficulty) based on features extracted directly
from the item (e.g., number of words). This paper utilizes neural networks (NNs)
to predict a discrete item characteristic curve (ICC). The presented approach
exploits one-to-one mapping from monotonically non-decreasing discrete ICCs to
probability mass functions (PMFs). An NN was trained using soft labels for each
item (by mapping ICCs to PMFs), with a softmax output layer representing PMF
and the Kullback-Leibler divergence representing a loss function. Results of a cross-
validation of the NN on 1742 retired logical reasoning items from the Law School
Admission Test are presented and discussed.

Keywords Item difficulty modeling · Item response modeling · Item
characteristic curve · Neural networks · Machine learning · Natural language
processing · Semantic similarity

1 Introduction

The primary task of item difficulty modeling (or, perhaps more appropriately,
item response modeling) is to predict the statistical properties of an item, such as
difficulty, based on features extracted directly from the item. An example of such a
feature might be the number of words in the item. Item difficulty modeling (IDM)
adopts various techniques from data mining, machine learning, and natural language
processing. For a review of IDM and its applications see, for example, Sheehan and
Mislevy (1990), Huff (2006), or Ferrara et al. (2021).

Due to the recent massive migration of high-stakes testing programs from in-
person testing to online testing, the following two issues became much harder to
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address without IDM. First, online test proctoring cannot protect against existing
technology used to steal test content. In the world of online testing, item preknowl-
edge may happen due to (a) using the same test section over different time slots
within the same administration due to a limited number of live proctors; and (b)
pretesting new items. Second, a larger number of test sections is needed to tackle
the problem set forth in (a). However, developing new items without controlling
their statistical parameters may unbalance the pool and limit the assembly of more
test sections, thus decreasing item pool usability.

A recent meta-analysis by Ferrara et al. (2021), compiled from over 100 IDM-
related studies, demonstrated the following. Only about 10% of the studies reported
the coefficient of determination D over 0.5. Most of the research dealt with
reading comprehension (RC) items (commonly associated with a long text). The
most popular item question concerned the main idea of the passage. All methods
predicted only item difficulty. The majority of prediction models utilized linear
regression or a regression tree. Features defined by item writers (i.e., nonautomatic
features) were often the best predictors of item difficulty.

The current paper goes beyond the typical IDM research described above and
instead applies neural networks (NNs) to predict item characteristic curves (ICCs)
for logical reasoning (LR) items (which are associated with a shorter amount of text
compared to RC items) from the Law School Admission Test (LSAT). For a given
item, its ICC maps the examinee’s latent trait (ability) to the probability that the
item will be answered correctly (Lord, 1980). The ICC is bounded between 0 and 1,
is monotonically non-decreasing, and is commonly assumed to take the shape of a
logistic function.

This paper considers discrete ICCs defined on the set of ability levels {−3, −2,
−1, 0, 1, 2, 3} (a coarse grid was chosen just for the sake of illustration; a finer
grid is easily supported). There are at least three advantages of predicting discrete
ICCs. First, one can avoid the noise produced by the item parameter estimation
procedure, while fitting empirical ICCs with an IRT model, by dealing directly with
empirical ICCs (see Fig. 1). Second, ICCs provide unification when the item pool
has a mixture of models (e.g., part of the item pool modeled by the two-parameter
logistic model [2PLM] and the other part by the 3PLM; Lord, 1980): all parts can
be represented by ICCs computed using corresponding models. Third, once discrete
ICCs are predicted, it is easy to simulate responses from any targeted population of
examinees and then calibrate IRT models (1PLM, 2PLM, or 3PLM), thus providing
continuous ICCs.

This paper is organized as follows. First, the construction, training, and validation
of a neural network (NN) to predict ICCs are described. Second, the data from
retired LR items from the LSAT and features extracted from each item are depicted.
Third, the results of applying the developed NN to the data are presented. Finally,
the results are critically reviewed; followed by a discussion about further research,
design changes, and practical applications.
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Fig. 1 When empirical ICCs are fitted by item response theory (IRT) models, there is always a
possibility of misfit. Here are four real cases showing a large misfit between empirical ICCs (Data)
and ICCs produced by a fitted three-parameter logistic (3PL) model (Model)

2 Method

A neural network (NN) can be considered a vector function with a vector argument.
In this study, the NN maps the vector of features extracted from an item to its ICC.
Parameters of this function can be estimated using a “training” sample, where for
each argument there is a predetermined output of the function called a label, by
minimizing a loss function. In this process, called supervised learning, it is crucial
that the training sample be representative of the general data. The loss function
measures a discrepancy between the output of NN applied to given arguments
and their labels from the training sample. A typical NN has a network structure
with layers of interconnected nodes (Fig. 2) inspired by mathematical modeling
of a biological brain. Each connection has a weight. Each node has an activation
function that maps the node’s input to the node’s output. The node’s input can be
defined as a scalar product of the vector of outputs of the nodes connected to this
node and the vector of weights of the corresponding edges plus an intercept. The
weights and intercepts are estimated by the supervised learning. Neural networks
were successfully applied for image recognition and recently were extended to other
fields (Skansi, 2018). For more information about neural networks and machine
learning terminology used in this paper, the reader is referred to Goodfellow et al.
(2016) or Skansi (2018).
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Fig. 2 Structure of the NN

Before describing the NN, a specific transformation is built based on the
assumption that the ICC is discrete and monotonically non-decreasing. This one-to-
one transformation maps the discrete ICC to the probability mass function (PMF),
where n = 7 is the number of ability levels (−3, −2, −1, 0, 1, 2, 3) indexed as (1,
2, 3, 4, 5, 6, 7). Direct mapping is used to create labels, and inverse mapping is used
to predict ICCs; they are defined by the following two equations, respectively:

PMF [1] = ICC [1]
PMF [i] = ICC [i] − ICC [i − 1] , i = 2, 3, . . . , n
PMF [n + 1] = 1 − ICC [n]

(1)

ICC [1] = PMF [1]
ICC [i] = PMF [i] + PMF [i − 1] , i = 2, 3, . . . , n

(2)

There are numerous degrees of freedom in terms of the number of layers, the types
of layers, the number of nodes in each layer, the types of activation functions,
and the types of regularizations, all affecting properties of the corresponding NN.
These so-called hyperparameters are usually identified via a cross-validation study,
which is discussed later in this section. The result of that study is the following NN
(Fig. 2):

1. Input layer with nodes corresponding to features extracted directly from an item
(see the next section about the actual features used in this study), where the
number of nodes corresponds to the number of features used for predicting the
ICC.

2. Layer with 16 nodes and ReLU activation function f (x) = max(0,x) for each
node.
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3. Dropout regularization layer with 0.1 rate that functions as follows: during the
training of the NN, the output of a node from the previous layer (Fig. 2) is
dropped with probability 0.1. This layer prevents an overfitting of the NN to
the training data.

4. Output layer with softmax activation function f (zi) = exp(zi)/S, S = (exp(z1) +
exp(z2) + · · · + exp(z8)), i = 1,2, . . . ,8, where zi is input of node i of the output
layer. This layer allows the NN to perform a soft classification, where each class
gets a positive probability of being assigned such that the sum of probabilities is
1. This is in contrast to a conventional classification, where the class assignment
probabilities are from {0, 1}. Thus, the output of the NN is the PMF.

A common choice of loss function for the soft classification is cross entropy, since
(usually in practice) one class is intended to be selected. However, in this study,
the PMF (corresponding to the ICC) should be matched as closely as possible;
therefore, Kullback-Leibler divergence (Kullback & Leibler, 1951) was chosen as
a loss function. This technique also works as an additional regularization to ensure
that predicted ICCs are always monotonically non-decreasing.

In order to train the NN, a stochastic gradient descent (SGD, Goodfellow et
al., 2016) minimized the loss function under the following parameters: learning
rate 0.01; number of epochs 30; number of samples per gradient update 100. The
parameters of SGD, the number of layers in the NN, the number of hidden layers
(i.e., layers between the first layer and the last layer), the number of nodes in hidden
layers, and the drop rate of 0.1 for the regularization layer were chosen during
multiple empirical trials in order to achieve a stable output of a cross-validation
described next. The NN has only one hidden layer with 16 nodes (Fig. 2); any
increase either in the number of hidden layers or in the number of nodes degraded
the results.

To validate the NN, the k-fold cross-validation method was used (Goodfellow et
al., 2016), where labeled data is divided into k non-overlapping samples. Then, in
each iteration (out of k iterations total), the k − 1 samples are used to train the NN
and 1 sample is used to test the NN on predicting ICCs. This way, each data point is
used once to train the NN and once to test it. In this study, k = 10 in order to comply
with studies reviewed by Ferrara et al. (2021). The output of the validation includes
error (E), residual (R), and coefficient of determination D computed using errors on
true and average (estimated on testing samples) ICCs.

With a true ICC (given the ICC of an item) and its prediction by the NN, denoted
as ICC and ICC*, respectively, the error is computed as follows:

E =
((
ICC [1] − ICC∗ [1]

)2 + · · · + (ICC [7] − ICC∗ [7]
)2
)

/7 (3)

And the residual is computed as follows:

R = ((ICC [1] − ICC∗ [1]
)+ · · · + (ICC [7] − ICC∗ [7]

))
/7 (4)
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Additional output includes outliers with E over 0.15 and data points with R within
a certain range.

3 Data

A total of 1742 retired logical reasoning (LR) items from the Law School Admission
Test were used in this study to build a prediction model. Each item has the following
structure:

1. Passage
2. Question
3. Five answer options (A, B, C, D, E)

Detailed information about each LR item can be described as follows:

1. Text of the passage
2. Text of the question
3. Text of each answer option (A, B, C, D, E)
4. Correct option index (the key)
5. Item type
6. Item subtype defining the type of question
7. Item property 1
8. Item property 2
9. Item property 3

10. Item property 4
11. Item rank {1, 2, 3, 4} (an estimation of item difficulty by item writer)
12. Item pretest position (item position, defined by item writer, in unscored section

for pretesting new items)
13. ICC computed from corresponding 3PLM (response matrices were not avail-

able for computing empirical ICCs)

The above information was used to compute multiple features for each item. An
additional 2009 LR items without item rank and item pretest position were used to
compute some numerical features for the above 1742 LR items. As a rule of thumb,
an acceptable performance of an NN is observed when there are around 5000 labeled
data points per category (Goodfellow et al., 2016). Therefore, the studied data is too
small to expect superior results; in fact, because there are nine different question
types, the data is partitioned into even smaller pieces.

The rest of this section describes features extracted directly from an item. For
each item, six categorical features were provided by the item writer:

1. Item type (categorical feature from {1, 2})
2. Item subtype (categorical feature from {1, 2, 3, 4, 5, 6, 7, 8, 9})
3. Item property 1 (categorical feature from {1, 2, 3})
4. Item property 2 (categorical feature from {1, 2, 3, 4, 5})
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5. Item property 3 (categorical feature from {1, 2, 3})
6. Item property 4 (categorical feature from {1, 2})
Each categorical feature was represented as a one-hot code vector (Goodfellow et
al., 2016); for example, if the item type (see above) was 1 then it was represented as
vector (1, 0), and if the item type was 2 then it was represented as vector (0, 1). Using
this representation allows neural networks to apply the divide-and-conquer strategy
similarly to CARTs (Breiman et al., 1984). There were 12 groups of numerical
features:

1. Item rank, denoted as itemRank.
2. Item pretest position, denoted as itemPosition.
3. Text features for passage: PTF.nSentences (number of sentences), PTF.nWords

(number of words), PTF.nNouns (number of nouns), PTF.nNSynsets (number
of synsets (Fellbaum, 1998) of the nouns), PTF.nVerbs (number of verbs),
PTF.nVSynsets (number of synsets of the verbs), PTF.nAdjs (number of adjec-
tives), PTF.nASynsets (number of synsets of the adjectives), PTF.readability
(Dale–Chall readability index; Dale & Chall, 1948).

4. Text features for question: QTF.nWords (number of words), QTF.nNouns (num-
ber of nouns), QTF.nNSynsets (number of synsets of the nouns), QTF.nVerbs
(number of verbs), QTF.nVSynsets (number of synsets of the verbs), QTF.nAdjs
(number of adjectives), QTF.nASynsets (number of synsets of the adjectives),
QTF.readability (Dale–Chall readability index).

5. Text features for options: OTF.nSentences (number of sentences), OTF.nWords
(number of words),OTF.nNouns (number of nouns),OTF.nNSynsets (number of
synsets of the nouns), OTF.nVerbs (number of verbs), OTF.nVSynsets (number
of synsets of the verbs), OTF.nAdjs (number of adjectives), OTF.nASynsets
(number of synsets of the adjectives), OTF.readability (Dale–Chall readability
index).

6. Semantic similarity between passage and correct option (answer) denoted as
spa. Semantic similarity between two texts is computed as a scalar product
between two embeddings corresponding to two texts; for information about
embeddings see Goodfellow et al. (2016).

7. Semantic similarity between passage with correct option (answer) and other
options (distractors), denoted as spad.

8. Mean, variance, minimum value, and maximum value of semantic similarity
between answer and distractors, denoted as: sadMean, sadVar, sadMin, sad-
Max.

9. Mean, variance, minimum value, and maximum value of semantic similarity
between all unique pairs of options, denoted as: sooMean, sooVar, sooMin,
sooMax

10. Mean, variance, minimum value, and maximum value of semantic similarity
between all unique pairs of sentences in the passage, denoted as: sppMean,
sppVar, sppMin, sppMax.

11. The additional 2009 LR items (called atlas items) without item rank and
item pretest position were used to compute this group of features. The atlas
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items were partitioned into nonintersecting classes based on their type and
subtype. An item, used for constructing the NN, was associated with a class
corresponding to the type and subtype of the item. Each element of the
associated class had the passage and difficulty of some atlas item. For each
element in the class, the semantic similarity between the element’s passage and
the item’s passage multiplied by the element’s difficulty was sampled. Finally,
the mean, variance, minimum value, and maximum value were estimated from
the sample and denoted as: sppbMean, sppbVar, sppbMin, sppbMax.

12. Similarly to the previous group, the following features were computed for the
question: sqqbMean, sqqbVar, sqqbMin, sqqbMax.

Each numerical feature from above was normalized by subtracting its mean and
then dividing by its standard deviation; such normalization substantially improves
the convergence of SGD (Goodfellow et al., 2016).

Table 1 shows features that correlate with at least |0.1| with a, b, or c parameters
of 3PLM. One may observe some interesting patterns in Table 1. The highest
correlations are observed for itemRank and itemPosition. Most correlations are with
item difficulty except for sppbMean and sqqbMean (which perhaps relate to their
estimation procedure). Most text features in Table 1 are for options, only two for

Table 1 Features that correlate with at least |0.1| with a, b, or c parameters of 3PLM

Feature (see description of each
feature above) Correlation with a Correlation with b Correlation with c

itemRank 0.10 0.43 0.07
itemPosition 0.12 0.43 0.08
sppbMean 0.12 0.15 0.17
sqqbMean 0.14 0.17 0.21
sqqbVar 0.00 0.12 0.02
sqqbMax 0.02 0.12 0.03
sppMean 0.06 0.11 −0.02
sadMean 0.07 0.10 0.03
sadMin 0.06 0.11 0.03
sooMean 0.07 0.11 0.01
sooMin 0.07 0.11 0.03
QTF.nVerbs 0.10 0.08 0.07
QTF.nVSynsets 0.13 0.10 0.07
OTF.nSentences 0.06 0.15 0.11
OTF.nWords 0.05 0.20 0.12
OTF.nNouns 0.01 0.14 0.07
OTF.nNSynsets 0.01 0.13 0.03
OTF.nVerbs 0.04 0.18 0.14
OTF.nVSynsets 0.02 0.15 0.11
OTF.nAdjs 0.03 0.12 0.03
OTF.readability −0.07 −0.12 −0.04
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question, and none for the passage, which is unexpected. Overall, text features have
higher absolute correlations than features based on semantic similarity. Feature
sppMean has a positive correlation with item difficulty, which means that more
difficult items may have more closely related sentences in their passages (this is
supported by real data).

4 Results

Table 2 shows the results of 10-fold cross-validation of the NN for different subsets
of features. One can observe that the best results were achieved with features
provided only by item writers (see fifth column in Table 2). Thus, the use of
automatically generated features did not improve the results, although some of them
weakly correlate with a, b, or c parameters of 3PLM (Table 1).

The cross-validation of the NN constructed from categorical features and
numerical features itemRank, itemPosition provided additional results as follows.
Graphical representation of error and residual computed for each ability level
separately is illustrated in Figs. 3 and 4, where distributions of error and residual
are characterized by box plots. One can see that the largest errors and residuals
happened for ability level 0. Figure 5 shows a random sample of nine pairs of true
and predicted ICCs, shown as blue and green curves, respectively, where the residual
fell within one standard deviation from its mean; overall, 67% of predicted ICCs
satisfied that range. One can observe that true and predicted ICCs are different in
terms of variability (see Fig. 5), and that the variability of true ICCs is higher than
the variability of predicted ICCs (Fig. 6; this finding is compatible with low values
of D in Table 2).

5 Discussion

This paper describes the NN approach to predicting ICCs using features extracted
directly from an item. A total of 1742 retired LR items from the LSAT were used to
build, train, and validate the NN.

Multiple features extracted directly from an item were used in the input layer
of the NN (see Fig. 2). A cross-validation study using different subsets of the
features demonstrated (see Table 2) that using features provided by item writers
(categorical features and numerical features itemRank, itemPosition) produced
the best predictions whereas automatically generated features did not improve
the predictions. Even more, just using two features (itemRank and itemPosition)
produced the second best results. This indicates that the data sample is too small for
the categorical features to play any role in prediction. That may also explain why
automatically generated features were useless, since the number of items in each
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Fig. 3 Box plots of error for each ability level

Fig. 4 Box plots of residual for each ability level

category was even smaller. The best subset of features provided a low D, which was
expected as the data was too small.

This study is in line with 90% of the studies (Ferrara et al., 2021) reporting a
low coefficient of determination D. This paper confirms that the best predictors are
features provided by item writers (see Table 2). As expected, in contrast to reading
comprehension items, LR items have a weak correlation between text features and
item difficulty (see Table 1).
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Fig. 5 A random sample of nine pairs of true and predicted ICCs (blue and green curves
respectively), where the residual was within one standard deviation from its mean. Overall, 67%
of predicted ICCs fell within that range

Fig. 6 Distribution of true ICCs (left box plot) and predicted ICCs (right box plot)

Online test proctoring cannot protect against existing technology used to steal
test content. Therefore, one has to accept an error generated by a predictive model
if the error is symmetrically distributed about zero. A possible application scenario
would be as follows: (1) develop a model predicting ICC; (2) use predicted ICCs
to simulate a real administration of pretested sections; (3) based on simulated
responses, calibrate items (e.g., calibrate 3PLMs); (4) assemble a test using these
items as already pretested; (5) administer the test to a real population; (6) use real
responses for recalibrating items and updating the model. In this scenario, new
items are not pretested (i.e., not administered to a real subpopulation of examinees).
Therefore, a regular scaling based on anchor items pretested in the past is no longer
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possible. This can be addressed by using an additional, previously administered
section as an anchor section. Modern methods of detecting item preknowledge
(Belov, 2016, 2020; Drasgow et al., 1996; Karabatsos, 2003; McLeod et al., 2003;
Tendeiro & Meijer, 2012; van Krimpen-Stoop & Meijer, 2001) can be applied to
filter out examinees with possible preknowledge of the anchor section in order to
estimate scaling coefficients without bias.

If presented approach were applied to predict empirical ICCs, then the assump-
tion of monotonically non-decreasing ICCs could be violated by some empirical
ICCs (Fig. 1). In this case, the NN could be modified as follows: The output layer
with linear activation function could have seven nodes corresponding to ability
levels (−3, −2, −1, 0, 1, 2, 3), and the loss function could be the mean squared
error.

The approach could be easily adapted to predict parameters of 3PLM directly.
The only modification would be that the output layer with linear activation function
would have three nodes (for a, b, and c, respectively) and the loss function would
be the mean squared error.

Future research will be directed toward procuring a larger data sample, engineer-
ing new features, minimizing E, and maximizing D, while keeping R symmetrically
distributed about zero. The latter is crucial in order for items with predicted
statistical parameters to be included on a test. Larger data may allow the use of
embeddings (Goodfellow et al., 2016) for the passage, question, and options directly
(instead of computing features as semantic similarities between various parts of the
item, as was done in this study); that way a deeper NN could “figure out” more
useful features. Text features used in this study can be extended with Coh-Metrix
(Ferrara et al., 2021). Another method to generate new features is described in the
final two groups of numerical features in the Data section above. For a given item,
the method could be generalized as follows. From the atlas items (items without
item rank and item pretest position), form a class using a certain criterion; for
example, select items with multiple negations in their passages. Each element of
the class has the passage and difficulty of some atlas item. For each element in
the class, the semantic similarity between the element’s passage and the item’s
passage, multiplied by the element’s difficulty, is sampled. Then the mean, variance,
minimum value, and maximum value estimated on the sample could be used as the
new features.
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Pooled Autoregressive Models
for Categorical Data

Zhenqiu (Laura) Lu and Zhiyong (Johnny) Zhang

Abstract Time series capture time dependent intra-individual variation within a
single participant. When data are collected from more than one subject, methods
developed for single subject intra-individual relationship may not fully work and
laws governing inter-individual relationship may not apply to intra-individual
relationship, especially when outcomes are categorical or ordinal data. These data
are usually collected by the Likert table. This article aims to investigate the
performance of four estimation methods for pooling time series data focusing on
categorical outcomes and to address related issues through an an autoregressive
model, AR(1). In this article, models for pooling time series were formulated,
estimation methods were derived, simulation studies were conducted, results were
summarized and compared.

Keywords Pooling time series · Autoregressive model · Categorical data ·
Conditional likelihood · Exact likelihood · Maximum likelihood estimation

1 Introduction

The variation analysis in psychological, social, and behavioral researches has
many ramifications. Among them two main branches are inter-individual variation
and intra-individual variation. Inter-individual variation is the variation between
individuals, and also widely known as the analysis of cross-sectional data in many
researches. Intra-individual variation is the time dependent variation within a single
participant’s time series. It is also known as the analysis of time series data or P-
technique in Cattell’s (1952) data-box Cattell (1952). In this type of study, usually
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one subject is measured and the variables of interests are collected from each of
a large number of occasions. Many methods are available for single time series
analysis (e.g., Cattell et al., 1947; Molenaar, 1985; Nesselroade & Molenaar, 2003).

However, data collected in this way do not have inter-individual differences
since there is only one subject involved, but they can reflect changes across
occasions. Intra-individual analysis has become popular advanced by Nesselroade,
Molenaar, and colleagues. So many researches on intra-individual relationship, data
are collected from more than one subject. When multiple subjects are involved,
methods developed for single subject intra-individual relationship may not fully
work. Also, laws governing inter-individual relationship may not apply to intra-
individual relationship (Molenaar, 2004; Nesselroade & Ram, 2004, e.g.,). There are
few methods in literature dealing with the analysis of pooling multiple time series
(Cattell & Scheier, 1961; Daly et al., 1974; Molenaar et al., 2003; Nesselroade &
Molenaar, 1999, e.g.,). The attention of this article will be drawn to multiple subjects
intra-individual variation analysis. Also, the data in educational and social areas are
usually collected by Likert tables. But the research on multiple subjects time series
for categorical outcomes is very few. So we fill the gap by focusing our research in
this area.

This article aims to investigate the performance of different estimation methods
for pooling time series data focusing on categorical outcomes and to address
related issues through an AR(1) model. We focus on four estimation methods
for multiple time series: pooling conditional likelihood estimation, pooling exact
likelihood estimation, connecting data conditional likelihood, and connecting data
exact likelihood.

This article is organized as follows. In the next section some introductory remarks
about time series are given. First single series and multiple series focusing on
the AR(1) model are described and formulated. And then different estimation
methods for multiple time series are introduced and derived. Then follows a
section of simulation studies in which the performance of four estimating methods
are investigated under various conditions. Simulation results are provided after
simulation design and implementation. The closing part of this article summarizes
the simulation results, compares different estimation methods of aggregating time
series, and provides practical implication.

2 Autoregressive Model and Categorical Data

2.1 First-Order Autoregressive Model, AR(1)

We first consider a model for a single subject (or individual). And then we extend
it to the model for multiple subjects. Suppose we are interested in a first-order
autoregressive model, AR(1), as follows.
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y1 : the initial value

yt = μ + α yt−1 + zt (t > 1) with zt ∼ i.i.d. N(0, φ) (1)

where yt is the observed value at time point t , α is the model autoregressive
coefficient, μ is a parameter correlated with the mean of y, z is a shock variable, or
a white noise sequence, satisfying a normal distribution with mean 0 and variance
φ. In this case, the vector of population parameters to be estimated consists of
θ = (μ, α, φ)′. When |α| < 1, there is a covariance stationary process for yt

satisfying Eq (1). Thus, the remainder of this discussion of AR(1) assumes that
|α| < 1. By algebra and Taylor expansion, we have the mean, the variance, and the
j th autocovariance of yt .

E(yt ) = μ

1 − α
, (2)

Var(yt ) = φ

1 − α2 , (3)

Cov(yt , yt−j ) = αj φ

1 − α2
(4)

So we have the following distribution of yt

{
y1 ∼ N(

μ
1−α

,
φ

1−α2 ),

yt |yt−1 ∼ N(μ + α yt−1, φ), (t > 1).

For multiple subjects, suppose there are N individuals, we can express the
constant coefficient AR(1) model as follows:

yit = μ + α yi(t−1) + zit , (i = 1, ..., N; t = 2, ..., T )

where zit i.i.d. ∼ N(0, φ) and the parameters μ, α and φ are constants which
keep the same values across all individuals. This model is very useful when the
sample size (or number of participants) is small but with fairly large measurement
occasions.

2.2 Categorical Data

Let c be the number of categories and τ = (τ1, ..., τc−1) be thresholds. Assume
yit is a continuous normality distributed variable following AR(1) model yit =
μ + αyi(t−1) + zit . With the assumption of the normality distribution of yt , the
thresholds τ can be created from the standardized thresholds τ z as

τ = μy + τ zσy
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where μy = μ
1−α

and σy =
√

φ

1−α2 . With thresholds τ , categorical data y∗
it can be

created by

⎧
⎨

⎩

y∗
it = 1, when yit ≤ τ1;

y∗
it = k, when τk−1 < yit ≤ τk;

y∗
it = c, when yit > τc−1.

The scale of y∗
it is from 1 to c. Let π be a c-dimensional vector π = (π1, ..., πc)

which is defined as

π1 = Φ(τ1)

πk = Φ(τk) − Φ(τk−1) (2 ≤ k ≤ c − 1)

πc = 1 − Φ(τc−1),

then each πk (1 ≤ k ≤ c) is defined to be the probability of corresponding kth
category. With π , the mean of c categories is

Mc =
c∑

k=1

πk k

Therefore, the true μ and φ of c categories are

μc = Mc (1 − α),

φc =
[

c∑

k=1

πk (k − Mc)
2

]

(1 − α2),

3 Estimation Methods and Likelihoods

This study investigates two MLE estimation methods: (1) exact MLE estimation
method: the parameters are estimated by maximizing the exact log-likelihood
function including the distribution of deterministic y1 which requires stationarity
assumption, and (2) conditional MLE estimation method: the parameters are
estimated by maximizing the conditional log-likelihood function without y1. For
multiple subjects we pool likelihood functions for all individuals. In practice, there
is another method to deal with time series data by connecting all similar time series
from multiple subjects together as from a single subject (reference here). It assumes
there is some relationship between yiT and y(i+1)1. We have pooled data exact MLE
and pooled data conditional MLE.
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3.1 Exact MLE for Pooled Likelihood Function

The exact likelihood function of the stationary AR(1) model described in Eq. (1)
and its corresponding log likelihood function are

Li(α, μ, φ|yi ) = 1
√
2π(

φ

1−α2 )

exp

[

− (yi1 − μ
1−α

)2

2 (
φ

1−α2 )

]

×
{

T∏

t=2

1√
2πφ

exp

[

− (yit − μ − α yi(t−1))
2

2φ

]}

,

log(L) = N

2
log(1 − α2) − 1 − α2

2φ

N∑

i=1

(yi1 − μ

1 − α
)2 − NT

2
log(2πφ)

− 1

2φ

N∑

i=1

T∑

t=2

(yit − μ − α yi(t−1))
2.

In order to obtain the maximum likelihood estimates (MLE) of parameters μ,
α and φ, we make all of their first order derivatives with respective to these
parameters 0 and their corresponding second order derivatives negative. The MLE
obtained through solving the exact likelihood function is called the exact MLE.
Unfortunately, there is no simple solution for θ in terms of ({yit }, 1 ≤ i ≤ N, 1 ≤
t ≤ T ). But with the help of computers, we can use iterative or numerical procedures
to solve the equation.

3.2 Exact MLE for Pooled Data

The exact likelihood function of the connected stationary AR(1) model and its
corresponding log likelihood function are

L(α,μ, φ|y) = 1
√
2π(

φ

1−α2 )

exp

[

− (y1 − μ
1−α

)2

2 (
φ

1−α2 )

]

×
{

NT∏

t=2

1√
2πφ

exp

[

− (yt − μ − α yt−1)
2

2φ

]}

,

log(L) = 1

2
log(1 − α2) − 1 − α2

2φ
(y1 − μ

1 − α
)2

−NT

2
log(2πφ) − 1

2φ

NT∑

t=2

(yt − μ − α yt−1)
2.



190 Z. (Laura) Lu and Z. (Johnny) Zhang

By making the first derivatives zero equal to 0 to obtain the solution. Again,
unfortunately, there is no simple solution for θ in terms of ({yit }, 1 ≤ i ≤ N, 1 ≤
t ≤ T ).

3.3 Conditional MLE for Pooled Likelihood Function

The conditional likelihood function of the stationary AR(1) model does not take the
distribution of y1 into consideration, so the likelihood and its log likelihood function
are

Li(α, μ, φ|yi ) =
T∏

t=2

1√
2πφ

exp

[

− (yit − μ − α yi(t−1))
2

2φ

]

, (5)

log(L(α,μ, φ|y)) = −N(T − 1)

2
log(2πφ) − 1

2φ

N∑

i=1

T∑

t=2

(yit − μ − α yi(t−1))
2. (6)

To obtain the MLE of parameters μ, α and φ, we make their first derivatives zero
and the second order derivatives negative, and we have

μ̂ = 1

N(T − 1)

N∑

i=1

T∑

t=2

(yit − α̂ yi(t−1)) (7)

α̂ =
∑N

i=1
∑T

t=2

[
(yit − μ̂)yi(t−1)

]

∑N
i=1
∑T

t=2 y2
i(t−1)

(8)

φ̂ = 1

N(T − 1)

N∑

i=1

T∑

t=2

(yit − μ̂ − α̂ yi(t−1))
2 (9)

We can also use the ordinal least square (OLS) estimation method to obtain μ

and α,

β̂ =
[
μ̂

α̂

]

=
[

N(T − 1)
∑N

i=1
∑T

t=2 yi(t−1)∑N
i=1
∑T

t=2 yi(t−1)
∑N

i=1
∑T

t=2 y2
i(t−1)

]−1 [ ∑N
i=1
∑T

t=2 yit∑N
i=1
∑T

t=2 yi(t−1)yit

]

.

And φ can be obtained by inserting the estimates of (μ, α) into Eq. (9). The OLS
solution is exactly the same as the MLE solution.
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3.4 Conditional MLE for Pooled Data

The conditional likelihood function and its corresponding log likelihood function of
the connected stationary AR(1) model are

L(α,μ, φ|y) =
NT∏

t=2

1√
2πφ

exp

[

− (yt − μ − α yt−1)
2

2φ

]

,

log(L) = −NT − 1

2
log(2πφ) − 1

2φ

NT∑

t=2

(yt − μ − α yt−1)
2.

4 Simulation Study

We conduct a simulation study to investigate the performance of the exact MLE
estimation method and conditional MLE estimation method fitting different models
fitting categorical data. We use iterative or numerical procedures to solve the
equations which have no explicit solutions.

4.1 Data Generation

The true values in this simulation are set as μ = μc, α = 0.5, φ = φc. The
replication number is 1000. We use the following 3 steps to generate the categorical
data y∗it .

Step 1: Generate the continuous data according to the constant coefficients AR(1)
model yit = μ + αyi(t−1) + zit .

Step 2: Generate thresholds τ = (τ1, ..., τc−1). With the assumption of the
normality distribution of yt , the thresholds τ are created by (1) obtaining the
standardized thresholds τ z by dividing the segment [−2, 2] into c − 2 parts
evenly, and then (2) transform τ z to τ according to the original data scale. For
example, if c = 5, the standardized thresholds are τ z = (τz1, τz2, τz3, τz4) =
(−2,−2/3, 2/3, 2), then τ = μy + τ zσy .

Step 3: Generate the categorical data y∗
it by

⎧
⎨

⎩

y∗
it = 1, when yit ≤ τ1;

y∗
it = k, when τk−1 < yit ≤ τk;

y∗
it = c, whenyit > τc−1.

Simulation condition factors in this study include the initial value, the number
of categories, the lengths of series, and the number of subjects. (1) The initial value



192 Z. (Laura) Lu and Z. (Johnny) Zhang

y1 has 3 cases: (i) a fixed yc1 based on a fixed y1 = 0; (ii) a random yc1 based
on a random y1 from N(0, φ); and (iii) a random yc1 based on a random y1 from
N(

μ
1−α

,
φ

1−α2 ). (2) The number of categories is c = (5, 7, 9). (3) The lengths of
series is set as T = (5, 10, 15, 20, 30, 40, 50) to catch the change patterns. (4) The
number of subjects is N = (50, 100, 150, 200). In total, there are 3∗3∗7∗4 = 252
conditions, with each condition having 1000 replications.

4.2 Model Estimation and Evaluation

When the categorical data are ready, we use four estimation methods: pooled
likelihood exact MLE, pooled likelihood conditional MLE, pooled data exact MLE,
and pooled data conditional MLE. We use MSE, the mean square error of the
estimate, to compare accuracy of estimates.

MSE = Bias.abs2 + SE.emp2

where Bias.abs is the absolute bias of the estimate, and SE.emp is the empirical
standard error across 1000 replications.

R language was used to generate data, estimate parameters, and summarize
results. The main R functions for data generating and model estimation are attached
in Appendix 1.

5 Results, Conclusions and Discussion

5.1 Results

In total, there are 252 (= 3 initial values × 3 numbers of categories × 7 lengths of
series× 4 number of subjects) simulation conditions. For each condition, there are 4
estimation methods. Part of simulation results are summarized and shown in Tables
1, 2, and 3. For example, Table 1 summarized part of the estimation results from
1000 replications with c = 5 categories, including sample size N = 50 or N = 200
individuals, time series length T = 5 or T = 50 observations per individual, and
the initial value of y from y1 = 0, y1 ∼ N(0, ψ) or y1 ∼ N(

μ
1−α

,
ψ

1−α2 ).
From Table 1, we see that the max value of MSE under all conditions of

N = 200 and T = 50 is 0.0516 and the min value is 0.0009. But under the
conditions with fewer individual participated N = 50 and shorter time series
T = 5, the max and min values of MSE are 0.3596 and 0.0021, respectively. The
smaller MSE value, the more accurate the estimate. So the longer the time series
or the more individual participated, the more accurate the estimate. By comparing
all three Tables Tables 1, 2, and 3 with difference categories, we can also see
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a pattern that the more categories, the more accurate the estimate. Within each
table, by comparing the pooled likelihood methods (P.L.) and the pooling data
methods (P.D.), theMSE values obtained from P.L. are in general smaller than those
obtained from P.D., which indicated that the P.L. methods perform better than the
P.D. methods. We further compare the exact-likelihood estimation method and the
conditional-likelihood estimation method within each table. For the case of random
y1 ∼ N(

μ
1−α

,
ψ

1−α2 ), the pooled likelihood exact MLE are the best. For the other
two initial values, the pooled likelihood conditional MLE are the best. In other word,
the pooled likelihood conditional MLE is not sensitive to initial values.

5.2 Conclusions

Through the simulation, we have the following conclusions: (1) The pooled
likelihood methods perform better than the pooling data methods. (2) For the case
of random y1 ∼ N(

μ
1−α

,
ψ

1−α2 ), the pooled likelihood exact MLE are the best. For
the other two initial values, the pooled likelihood conditional MLE are the best. In
other word, the pooled likelihood conditional MLE is not sensitive to initial values.
(3) The more categories, the more accurate the estimate. (4) The longer the time
series, the more accurate the estimate. (5) The more individual participated, the
more accurate the estimate.

5.3 Discussion

In this article, the intra-individual variation for multiple subjects with categorical
outcomes are examined. In reality, when multiple subjects are involved, methods
developed for single subject intra-individual relationship may not fully work.
Also, laws governing inter-individual relationship may not apply to intra-individual
relationship, especially when outcomes are categorical, which are very common in
social and behaviorial fields. The categorical or ordinal data are usually collected
by the Likert table. There are few methods in literature dealing with the analysis of
pooling multiple time series. Fewer for categorical data. This article fill the gap by
investigating the performance of four estimation methods for pooling time series
data focusing on categorical outcomes and to address related issues through an
AR(1) model.
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Appendix 1

##-----------------------------------##
## Data Generation Functions ##
## Random y1~ N(mu/1-a, sig^2/1-a^2) ##
##-----------------------------------##

ar1.ranI2.sim <- function(T, a, mu, sig, nc){
ymean <- mu/(1-a)
ysig <- sig/(sqrt(1-a^2))
et <- rnorm(T, 0, sig)
y <- rep(1,T)
y[1] <- rnorm(1,ymean,ysig)
yc <- rep(1,T)

##----------------------------##
## Categorical data
##----------------------------##
th <- seq(-2, 2, length=nc-1)*ysig + ymean ## thresholds
categ <- seq(1, nc) ## categories

## For yc[1] when time=1
if (y[1] <= th[1]) {yc[1] <- categ[1]} ## s=1
if (y[1] > th[nc-1]){yc[1] <- categ[nc]} ## s=nc
for (s in 2:(nc-1)){

if ((th[s-1] < y[1])&(y[1] <= th[s]))
{yc[1] <- categ[s]} }

## For yc[2:T]
for (i in 2:T){

temp <- mu+a*y[i-1]+et[i]
if (temp <= th[1]) {yc[i] <- categ[1]} ## s=1
if (temp > th[nc-1]){yc[i] <- categ[nc]} ## s=nc
for (s in 2:(nc-1)){

if ((th[s-1] < temp)&(temp <= th[s]))
{yc[i] <- categ[s]} }

}
return(yc)}

##-----------------------------------##
## Model Estimation Functions ##
## Exact-likelihood Estimation ##
##-----------------------------------##
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exactllike <- function(par, y){
mu <- par[1]
a <- par[2]
psi <- par[3]
N <- nrow(y)
T <- ncol(y)
Y1 <- as.vector(y[,1])
Yt <- as.vector(y[,2:T])
Yt1 <- as.vector(y[,1:(T-1)])
sum <- (1-a^2)*t(Y1-mu/(1-a))%*%(Y1-mu/(1-a))

+ t(Yt-mu-a*Yt1)%*%(Yt-mu-a*Yt1)
llik <- -.5*N*T*log(2*pi*psi) + .5*N*log(1-a^2) - sum/
(2*psi)-llik}

##-----------------------------------##
## Model Estimation Functions ##
## conditional-likelihood Estimation ##
##-----------------------------------##
condllike <- function(par, y){

mu <- par[1]
a <- par[2]
psi <- par[3]
N <- nrow(y)
T <- ncol(y)
Yt <- as.vector(y[,2:T])
Yt1 <- as.vector(y[,1:(T-1)])
sum <- t(Yt-mu-a*Yt1)%*%(Yt-mu-a*Yt1)
llik <- -.5*N*(T-1)*log(2*pi*psi) - sum/(2*psi)
-llik}

##-----------------------------------------##
## Core Code in Main Program of Estimation ##
##-----------------------------------------##
result <- nlm(exactllike, c(0,1/2,1/2), y, hessian=T)
result <- nlm(condllike, c(0,1/2,1/2), y, hessian=T)
se <- sqrt(diag(solve(result$hessian)))

y.conn <- as.vector(t(y))
result <- arima(y.conn, c(1,0,0), include.mean=T)
se <- sqrt(diag(result$var.coef))
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An Investigation of Prior Specification on
Parameter Recovery for Latent Dirichlet
Allocation of Constructed-Response
Items

Jordan M. Wheeler , Jiawei Xiong, Constanza Mardones-Segovia ,
Hye-Jeong Choi, and Allan S. Cohen

Abstract Latent Dirichlet Allocation (LDA) is a probabilistic model to analyze
textual data. It was originally developed for corpora containing large amount of
textual data, such as large sets of journal abstracts, blogs, and newspaper articles.
Recently, LDA has been applied in psychological and educational measurement
fields to analyze examinees’ responses to open-ended items on assessments. The
amount of textual data found in educational measurement scenarios, however, is
notably less than the amount of data originally used for LDA. The observed data,
therefore, may not be enough to accurately recover the parameters. Thus, it is
important to explore how various priors influence the parameter recovery of the
LDA model. In this study, we investigated the effects of prior hyperparameters
parameter on recovery through a simulation using various conditions that are
common in educational assessment settings. Specifically, five sets of priors ranging
from highly informative to noninformative were used. For each set of priors, four
factors were manipulated and all factors were crossed for a total of 108 conditions.
The four factors used in this study were: number of unique words (3 levels: 250,
500, and 750 words), average response length (3 levels: 5, 25, and 50 words per
document), number of documents (3 levels: 100, 250, and 500 documents), and
number of topics (3 levels: 3, 4, and 5 topics). The results of the simulation showed
that the prior specification of the LDA model influenced the parameter recovery
rates.
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1 Introduction

Latent Dirichlet Allocation (LDA; Blei et al., 2003) is a type of topic model that
uses a probabilistic framework to estimate a predetermined number of latent topics
within a collection of documents. The estimated latent topics are clusters of words
that characterize common sets of words that are seen throughout the collection of
documents. Each document within the collection is given a set of proportions that
expresses the usage of each latent topic.

LDA, along with other topic models, was originally developed for large corpora
as a way to easily index and characterize each document. More recently, LDA
has been used in educational measurement as a method to analyze responses to
constructed-response (CR) items. The results of this method provide researchers
with a set of topics that are used across the responses for a particular CR item.
Additionally, this method provides researchers with a set of proportions that show
relatively usage of the topics for each response, which can be used to classify or
cluster subsets of responses.

In educational measurement, LDA has been used in a wide array of studies.
Choi et al. (2019) and Xiong et al. (2019) used LDA to analyze a set of middle-
grade CR items and investigated the relationship between the topics and scores. Kim
et al. (2017) showed that the results from the LDA analysis on CR item responses
provided additional useful information about examinees beyond the scores. Duong
et al. (2019) showed that LDA can be used to capture the effects of instructional
interventions. LDA has also been used to investigate rater accuracy to determine
potential reasons why some responses were more difficult to score accurately than
others (Wheeler et al., 2022).

One issue is that the interpretation of the results from LDA in the above studies
depended on selecting an appropriate number of latent topics to estimate, which is
determined by the researchers and not the LDA model. In these studies, researchers
employ various model selection indices and methods that help determine the most
appropriate number of topics for a given set of responses. The number of topics
selected for an LDAmodel depend on both the model selection method and the prior
specification. Mardones et al. (2021) conducted a simulation study that evaluated
the effectiveness of various model selection methods used for LDA under realistic
educational conditions. The researchers noted that there seemed to be an effect
of prior specification on the performance of the various model selection methods,
however, it was not the main focus of their study. Furthermore, there has been no
study that specifically looked into the effect of prior specification for the LDA
model with educational data. This study, therefore, conducts a simulation study
to investigate the effects of prior specification on parameter recovery of the LDA
model.
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1.1 Purpose of Study

The purpose of this study was to evaluate the effect of prior specifications on param-
eter recovery of the LDA model. Specifically, this study investigated two questions:
(1) Does prior specification for the LDA model significantly impact the recovery of
model parameters? and (2) what types of prior hyperparameters perform best under
realistic measurement settings? The paper is structured as follows. First, the LDA
model is presented with emphasis on the influence the prior hyperparameters have
on the estimated parameters. Next, a simulation study is presented to investigate the
effects of prior hyperparameters on parameter recovery under common constructed-
response scenarios. The results of the simulation study are presented and an analysis
of variance is conducted to evaluate which manipulated factors had a significant
influence on the parameter recovery. Finally, the study is concluded by discussing
the practical implications of the results of the simulation study.

2 Latent Dirichlet Allocation

The LDA model estimates three main parameters from a corpus of documents: a
set of word probabilities (i.e., topics) β, a set of topic proportions for individual
documents θ , and a set of topic assignments z. Each topic is a set of probabilities
over the vocabulary V , which is the set of unique words found across all documents.
The set of probabilities that constitute a topic express the probabilities of each word
from the vocabulary appearing under the given topic. Each document is given a
set of topic proportions which is a vector of proportions over the topics. The topic
proportions express the proportion of each topic being used in the given document.
Additionally, each document is given a set of topic assignments that represent the
topic membership of each word that appears in the document.

The LDA model is a hierarchical mixture model where topics are considered
corpus-wide parameters, topic proportions are considered document-wide param-
eters, and topic assignments are considered word-wide parameters. The mixture
component of LDA is that topics are a mixture of words from the vocabulary and
topic proportions are a mixture of topics. Additionally, LDA assumes the following
generative process: (1) assume that there are K topics, (2) assume each document is
generated by first generating its topic proportion, (3) assume a topic is assigned
to each word in the document which is determined by its topic proportion, (4)
assume each word in the document is generated given the topic assignment and
topic distribution.
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2.1 Mathematical Formulation

Suppose that there is a corpus that contains d = 1, 2, ...,D documents, each
document contains Nd words, and there are V unique words across all documents.
The LDA model assumes a priori that there are K corpus-wide topics. The joint
distribution for the observed word variables (w1:D), the latent topic assignment
variables (z1:D), the topics (β1:K ), and the topic proportions (θ1:D) is given by

p(w1:D, z1:D,β1:K, θ1:D|η, ν), (1)

where η and ν are the prior hyperparameters. The joint distribution for LDA can
subsequently be factorized into the conditional distributions (i.e., likelihood of the
data) and priors, which is shown in

p(w1:D, z1:D,β1:K, θ1:D|η, ν) =
p(w1:D|z1:D,β1:K)p(z1:D|θ1:D)p(β1:K |ν)p(θ1:D|η),

(2)

where p(w1:D|z1:D,β1:K) is the conditional distribution of the observed words
given the topic assignments and the topics and is assumed to follow a multinomial
distribution; p(z1:D|θ1:D) is the conditional distribution of topic assignments given
the topic proportions and is assumed to follow a multinomial distribution; p(β1:K |ν)

is the prior distribution for the topics where ν is the prior hyperparameter which
controls the density of the word probabilities and is assumed to follow a Dirichlet
distribution; and p(θ1:D|η) is the prior distribution for the topic proportions where
η is the prior hyperparameter which controls the density of topic proportions and is
assumed to follow a Dirichlet distribution (Blei et al., 2003; Ponweiser, 2012).

The prior hyperparameters, ν and η, are V -dimensional and K-dimensional
vector space parameters, respectively, such that ν = [ν1, ν2, ..., νV ] and η =
[η1, η2, ..., ηK ]. The values within the ν and η vectors influence the estimates for
the topic and topic proportion parameters, respectively. When the hyperparameter
for the topics are set to small values, such as ν1, ν2, ..., νV < 1, then this causes
the estimated topics to have large probabilities for a small subset of words and
small probabilities for the other words. Similarly, when the hyperparameter for
the topics are set to small values, such as η1, η2, ..., ηK < 1, then this causes the
estimated topic proportions to estimate high proportions for few topics and small
proportions for the other topics. When the hyperparameter for the topics are set
to large values, such as ν1, ν2, ..., νV > 1, then this causes the estimated topics
to have evenly spread probabilities for majority of the words. Similarly, when the
hyperparameter for the topics are set to large values, such as η1, η2, ..., ηK > 1,
then this causes the estimated topic portions to have evenly spread proportions for
majority of all topics. Specifying the hyperparameters for the two priors in LDA
may impact the estimated parameters, especially when datasets are smaller (i.e.,
fewer documents, fewer unique words, fewer number of topics, and smaller average
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document length); therefore, it is important to consider how the prior specification
will influence parameter estimation.

Since the joint distribution is intractable due to its dimensionality, LDA infers
the latent parameters (z1:D,β1:K, θ1:D) through the conditional distribution of these
parameters given the observed words: p(z1:D,β1:K, θ1:D|w1:D). This distribution
is referred to as the posterior distribution, which is proportional to the joint
distribution, given by

p(z1:D,β1:K, θ1:D|w1:D) ∝ p(w1:D, z1:D,β1:K, θ1:D), (3)

where p(w1:D, z1:D,β1:K, θ1:D) is the joint distribution shown in Eq. (2). Given the
dimensionality of the corpus, the posterior distribution can be factorized as

p(z1:D,β1:K, θ1:D|w1:D) ∝
K∏

k=1

P(βk|ν)

D∏

d=1

(

P(θd |η)

Nd∏

n=1

P(wd,n, zd,n|θd ,β)

)

.
(4)

The posterior distribution of LDA can be estimated through various techniques.
The two primary methods for estimating the posterior is through Gibbs sampling
and variational inference (Blei et al., 2003).

2.2 Generative Model

In addition to the joint distribution for the LDA Model, there is also an assumed
generative process. The LDA model assumes that a document is generate through
the following process with D documents and K topics (Blei et al. 2003; Blei, Ng,
& Jordan 2002):
For each document d = 1, 2, ...,D,

1. Choose Nd ∼ Poisson(λ)

2. Choose θd ∼ Dirichlet (η)

3. For each word n ∈ 1, 2, ..., Nd :

i. Choose zd,n ∼ Multinomial(θd)

ii. Choose wd,n ∼ Multinomial(βk|zd,n)

where Nd is the number of words in document d; λ is the average document length;
θd is the topic proportions of document d, zd,n is the topic assignment for nth word
in document d, wd,n is the generated observed text for the nth word in document d;
and βk are the word probabilities for the kth topic. The estimation algorithms use
this generative process to infer the latent parameters θ1:D , β1:K , and z1:D .
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2.3 Requirements for Analysis

There are a few requirements to obtain interpretable features from latent Dirichlet
allocation. First, to obtain features that are representative of the documents, word
that are high frequency and have low meaning should be removed. These words
are often referred to as stop words and consist of words such as: the, and, a, it,
was, is. Second, to extract meaningful features using latent Dirichlet allocation,
the same words from different tenses must be converted to the same tense. This
process is referred to as stemming and converts words such as running, ran,
runs, run into the same word/tense run. These two data preparation requirements
increase the interpretability and quality of the features extracted (Schofield et al.,
2017). Beyond removing stop words and stemming, there are no requirements for
extracting features using latent Dirichlet allocation except for the words and the
documents that they belong to. The word data is converted into vectors where each
word is associated with a number and each position in the vector is associated with
a document.

3 Simulation Design

The impact of prior specification on parameter recovery for the LDA model was
investigated using a simulation study using 30 replications. For each condition
of the simulation study, an LDA model was estimated using a collapsed Gibbs
sampling algorithm (Griffiths & Steyvers 2004, Hoffman, Bach, & Blei 2010). The
topic parameter estimates and the topic proportion parameter estimates estimated
were compared to the generating parameters to determine how well the model
recovered the parameters. The following subsections explain the simulation design
and conditions, the data generation mechanism, the software used to estimate the
model, and the evaluation criteria.

3.1 Simulation Design and Conditions

There were a total of five factors manipulated in the study: number of topics,
vocabulary length, number of documents, average document length, and prior
hyperparameters. Table 1 shows the levels for each factor manipulated. The levels
for the vocabulary length, the average essay length, the number of topics, and the
number of documents were determined from previous simulation studies involving
LDA (Mardones et al. 2021; Wheeler et al. 2021). The average essay length
condition represents constructed-response items that require shorter responses and
the number of documents condition represents school and district size samples. The
prior hyperparameters that were used in the simulation study were chosen based
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Table 1 The manipulated factors for the simulation study

Factor Number of levels Levels

Vocabulary length 3 250, 500, 750

Average document length 4 5, 25, 50

Number of topics 3 3, 4, 5

Number of document 3 100, 250, 500

Prior hyperparameters 5 ν = 5 and η = 5, ν = 1 and η = 1, ν = 0.5
and η = 0.5, ν = 1/K and η = 1/V , ν = 0.1
and η = 0.1

on values used from previous applications of LDA to educational data (e.g., Kwak
2019; Xiong et al. 2019; Xiong et al. 2021). The computational cost of estimating
the LDA model is expensive due to the total number of parameters in the model,
therefore, only 30 replications were used in this study. For each replication, all
conditions were crossed and the topic and topic proportion parameter estimates were
compared to the generating parameters to evaluate the degree of recovery.

3.2 Data Generation

To generate the data for this simulation study, we followed the generative model
shown in the previous section. One thing that Choi et al. (2020) noted is that the
topics estimated from responses to CR items often overlap each other. That is, when
students are prompted with a CR item, they are constrained to what they can write
about, which constrains the estimated topics and can often cause them to overlap.
To emulate this in our simulation study, we used real data from a middle-grade
English Language Arts CR item to derive the generating parameters for the topics.
Specifically, we used the real data to estimate the LDAmodel and used the estimated
topics, which overlapped, as the generating Dirichlet distribution for our simulation
study.

3.3 Model Estimation

The joint posterior distribution specified in Eq. (2) is intractable, but it can be esti-
mated through various techniques, such as the collapsed Gibbs sampling algorithm.
The collapsed Gibbs sampling method was used to estimate the LDA using the
simulated data. We used the R programming language to first generate the data and
then used the topicmodels (Hornik & Grün, 2011) and lda (Chang, 2015) packages
to implement the collapsed Gibbs sampling algorithm for LDA to estimate the
parameters from the generated data.
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3.4 Evaluation of Parameter Recovery

Cosine similarity and root mean squared error (RMSE) are used to measure the
performance of parameter recovery of the word probabilities (i.e., topics). The
cosine similarity measure is given in Eq. (2),

cos(β̂,β) =

V∑

v=1
β̂v · βv

√
V∑

v=1
β̂i

2 ·
√

V∑

v=1
β2

v

, (5)

where β̂ is the estimated word probability; β is the known generated word
probability; and V is the length of the vocabulary. Cosine similarity is a type of
correlation measure and is often used for large dimensional vectors. Within a topic
modeling context, cosine similarity measures the similarity between two topics
(Singhal, 2001). In this study, the cosine similarity is measuring how similar the
estiamted topic is to the known generated topic. A cosine similarity near 1 indicates
that the estimated and known topics are similar, whereas a cosine similarity near
0 indicates that the estimated and known topics are not similar. Previous LDA
studies use a cosine similarity value of 0.8 or higher to indicate parameter recovery
(Wheeler et al., 2021).

Additionally, RMSE is used to evaluate the recovery of word probabilities. The
RMSE measure for word probability recovery is given in Eq. (3),

RMSE =

√
√
√
√
√

V∑

v=1
(β̂v − βv)2

V
, (6)

where β̂ is the estimated word probability; β is the known generated word
probability; and V is the length of the vocabulary. RMSE is a measure that indicates
a relative error. An RMSE of 0 mean that there was perfect recovery for the topics,
therefore, a smaller RMSE indicates better recovery. In this study, we also used
RMSE to evaluate the recovery of topic proportions. The RMSE measure for topic
proportion recovery is given in Eq. (2),

RMSE =

√
√
√
√
√

K∑

k=1
(θ̂k − θk)2

K
, (7)

where θ̂k is the estimated topic proportion for topic k; θk is the known topic
proportion for topic k; and K is the number of topics. Similar to RMSE of word
probabilities, a smaller RMSE indicates better recovery. That is, a smaller RMSE
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between the estimated topic proportions and the generated topic proportions indi-
cates that the LDA model successfully recovered the topic proportion parameters.

Additionally, we conducted an analysis of variance for word probabilities and
topic proportions. For the analysis of variance for word probabilities, we used the
RMSE to determine which simulation factors had significant influence on parameter
recovery. Similarly, for the analysis of variance of topic proportions, we used the
RMSE values to determine which simulation factors had significant influence on
parameter recovery.

4 Results

For each condition of the simulation study, 30 replications were conducted. The
average RMSE of word probabilities (topic distributions) and topic proportions were
calculated across the 30 replications for each condition. An analysis of variance
for the manipulated factors according to the average RMSE for both the word
probabilities and topic proportions was conducted. Table 2 shows the result of the
analysis of variance for the average RMSE of word probabilities. Additionally, an
effect size (partial η2) was calculated for each factor.

From Table 2, it can be seen that all factors that were manipulated for this
simulation study had a significant effect on the RMSE of word probabilities.
Furthermore, it can be seen that the vocabulary length and prior hyperparameter
conditions had the largest effect sizes (partial η2 = 0.77 and partial η2 = 0.62,
respectively). This result suggests that researchers should consider the number of
unique words within the corpus when selecting an appropriate prior hyperparameter
for the word probabilities.

Table 2 Analysis of variance for simulation factors according to the average RMSE of word
probabilities (i.e., topics)

Sources of
variation Df Sum sq (×10−2) Mean sq (×10−2) F value P value Partial η2

Vocabulary
length

2 0.0800 0.0400 649.55 <0.001 0.77

Prior hyperpa-
rameters

4 0.0389 0.0097 158.01 <0.001 0.62

Average
document
length

2 0.0142 0.0071 115.11 <0.001 0.37

Number of
topics

2 0.0138 0.0069 112.16 <0.001 0.36

Number of
documents

2 0.0083 0.0042 67.62 <0.001 0.26

Residuals 392 0.3505 0.0009
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Figure 1 shows two plots for the average cosine similarity between the estimated
and true word probabilities. The left-hand plot shows the results when there are 3
topics, a vocabulary length of 250, and an average document length of 5. The right-
hand plot shows the results when there are 3 topics, a vocabulary length of 250, and
an average document length of 50. From the two plots, it can be seen that a prior
hyperparameter for word probabilities around 1 (ν = 0.5 or ν = 1) performed better
regardless of the number of documents or average document length in the corpus.

Table 3 shows the result of the analysis of variance for the average RMSE of topic
proportions. Additionally, an effect size (partial η2) was calculated for each factor.
From Table 3, it can be seen that all factors that were manipulated for this simulation
study had a significant effect on the RMSE of topic proportions. Furthermore, it can
be seen that the prior hyperparameter conditions had the largest effect size (partial
η2 = 0.67), and that the vocabulary length and number of document conditions had
relatively small effect sizes (partial η2 = 0.02 and partial η2 = 0.02, respectively).

Fig. 1 Side by side plots for the average cosine similarity between estimated and true word
probabilities (i.e., topics) under various simulation conditions. Note. Simulation condition for
left hand plot: number of topics = 3, vocabulary length =250, and average document length =
5; Simulation condition for right hand plot: number of topics = 3, vocabulary length =250, and
average document length = 50

Table 3 Analysis of variance for simulation factors according to the RMSE of topic proportions

Sources of variation Df Sum sq Mean sq F value P Value Partial η2

Prior hyperparameters 4 0.7092 0.1773 198.31 <0.001 0.67

Average document length 2 0.2197 0.1098 122.82 <0.001 0.39

Number of topics 2 0.0791 0.0395 44.21 <0.001 0.18

Vocabulary length 2 0.0074 0.0037 4.16 0.016 0.02

Number of documents 2 0.0060 0.0030 3.36 0.036 0.02

Residuals 392 0.3505 0.0009
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Fig. 2 Side by side plots for the average RMSE between estimated and true topic proportions
under various simulation conditions. Note. Simulation condition for left hand plot: number of
topics = 3, vocabulary length =250, and average document length = 5; Simulation condition for
right hand plot: number of topics = 3, vocabulary length =250, and average document length = 50

The results from Table 3 suggest that the recovery of topic proportions does
not heavily rely on the vocabulary length nor number of documents and that the
prior hyperparameters have a large influence on parameter recovery. Furthermore,
this result suggests that researchers need to carefully consider an appropriate prior
hyperparameter for topic proportions if they want to accurately recover the true
parameters.

Figure 2 shows two plots for the average RMSE between the estimated and true
topic proportions. The left-hand plot shows the results when there are 3 topics, a
vocabulary length of 250, and 100 documents. The right-hand plot shows the results
when there are 5 topics, a vocabulary length of 250, and 100 documents. From the
two plots, it can be seen that a larger prior hyperparameter for topic proportions (η =
5) when the average document length is small (∼ 5) performed better regardless of
the number of topics. Additionally, when the average document length increases for
smaller number of topics, a prior hyperparameter for topic proportions near 1 (i.e,
η = 0.5 or η = 1) resulted in better parameter recovery.

5 Discussion

This study investigated the effects of prior specification on parameter recovery for
the LDA model under conditions that are often seen in educational measurement
settings. The results of the simulation study show that the prior specification
does significantly influence parameter estimation. Additionally, the other factors
manipulated in this study also had significant effects on the parameter estimates.
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This suggests that when fitting an LDA model to measurement data, the researchers
must consider not only the prior hyperparameters but also the characteristics of the
corpus, such as vocabulary length, number of documents, average document length,
and number of topics.

Based on the analysis of variance on simulation conditions for the RMSE
of word probabilities (i.e., topic distributions), the vocabulary length and prior
hyperparameters had the biggest effect sizes. This suggests that when specifying the
prior hyperparameter for topics, one should consider the number of unique words in
the corpus being analyzed. Furthermore, Fig. 1 shows the average cosine similarity
for topic recovery and suggests that a prior hyperparameter near 1 (ν1:V = 1)
performed the best under most conditions. Based on the analysis of variance on
simulation conditions for the RMSE of topic proportions, prior hyperparameters
and average document length had the biggest effect sizes. This suggests that
when specifying the prior hyperparameter for topics, one should consider the
average length of the documents in the corpus being analyzed. Furthermore, the
average RMSE for topic proportion recovery suggest that as the average length
of a document increases, then a prior hyperparameter for topic proportions near
1 (η1:K ∼ 1) performed better. Additionally, the results also suggest that a larger
prior hyperparameter for topic proportions (η1:K > 1) performed best when there
were more topics.
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Methods to Retrofit and Validate
Q-Matrices for Cognitive Diagnostic
Modeling

Charles Vincent Hunter , Hongli Li , and Ren Liu

Abstract Cognitive diagnostic models (CDMs) are a family of constrained latent
class models that estimate relationships between observed item responses and
latent attributes (Rupp and Templin, Educ Psychol Meas 68:78–96, 2008). An
important input needed in any CDM is the Q-matrix, an item-by-attribute table that
represents a particular hypothesis about which attributes are required to answer each
test item successfully. A large number of CDMs have been developed; however,
many applications involve retrofitting a CDM to an existing non-diagnostic test.
In this study, we conducted a systematic review to describe the current picture of
retrofitting Q-matrices to non-diagnostic tests and consequently using the tests for
diagnostic purposes.

Keywords CDM · Q-matrix · Retrofit

1 Introduction

Cognitive diagnostic models (CDMs) are a family of constrained latent class models
that estimate relationships between observed item responses and latent traits (Rupp
& Templin, 2008). These models assume that the items measure multiple latent traits
and the latent traits are categorical (Liu & Shi, 2020). CDMs have been advocated
as having the potential to provide rich diagnostic information from tests to aid
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Table 1 Sample Q-matrix Attribute A Attribute B Attribute C

Item 1 1 0 0
Item 2 0 1 1
. . . . . . . . . . . .

instruction and learning, because they provide a profile for each student in regard
to whether or not the student has mastered the required skills (a.k.a. attributes) to
provide correct responses to the test items. CDMs, therefore, are able to provide
useful diagnostic feedback to teachers and students.

As summarized by DiBello et al. (2007), a systematic cognitive diagnostic
assessment involves six steps: (i) describing assessment purpose; (ii) describing skill
space; (iii) developing assessment tasks; (iv) specifying psychometric model; (v)
performing model calibration and evaluation; and (vi) score reporting. However,
very few large-scale tests are designed under a cognitive diagnostic modeling
framework. Therefore, in most CDM applications, a non-diagnostic preexisting test
is analyzed, which is referred to as retrofitting (Liu et al., 2017). A major challenge
involved in retrofitting is that constructing the post-hoc Q-matrix is time consuming.
In addition, calibrating an existing unidimensional test with a multidimensional
CDM may not work or may be inefficient (Haberman & von Davier, 2007).

The Q-matrix that represents a particular hypothesis about which attributes are
required to answer each test item successfully (Tatsuoka, 1983). As shown in
Table 1, each row represents an item of the test and each column represents an
attribute. A Q-matrix can have a simple structure—each item requires only one
attribute—or a complex structure—at least one item requires more than one attribute
(Rupp et al., 2010). A sound Q-matrix is critical for a successful CDM application
(Gorin, 2009).

2 Method

Studies that met the following criteria were included in our review. First, the study
had to apply CDM(s) to a real dataset. If a study adopted a Q-matrix developed
and validated in a previous study, we would only keep the earlier study to avoid
duplicates. For example, Jang et al. (2015) used the same Q-matrix that was
developed and validated in Jang et al. (2013). We only included Jang et al. (2013).
Second, only journal articles in English from 1983 to March 2021 were included.

To begin with, we performed a systematic search of ERIC and APA PsychInfo
using keywords “cognitive diagnostic” or “diagnostic classification.” The authors
read the full-text of each article to decide whether it was eligible. Then, we searched
Google scholar using the same keywords “cognitive diagnostic” or “diagnostic
classification.” The authors went through each entry to decide if any new study
would be added to our previous findings. Finally, we consulted the studies included
in Sessoms and Henson (2018), who reviewed the application of CDMs from 2008
to 2016.
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After selecting the initial set of articles, the authors held several rounds of dis-
cussions among themselves to refine the selection criteria. During these discussions,
we decided to restrict the study to journal articles published in English, in order
to complete the study in a timely manner. We also realized that several articles
used a Q-matrix developed in an earlier study, which would have created duplicates.
Because of this, we decided to include only the earliest study. In the end, we found
80 articles that met our inclusion criteria. Seven of the articles reported two different
CDM studies. For each of these articles, two studies were included for the final
coding. Therefore, 87 studies from 80 published journal articles were included in
this review.

We first drafted a coding sheet based on existing literature and prior CDM
study review (e.g., Sessoms & Henson, 2018), with an emphasis on the Q-matrix
development and validation. After several rounds of discussion and training of
the coding procedure, one author coded all the studies. Then another author went
through the coding of each article multiple times. All discrepancies and questions
were resolved through discussion and negotiation until a consensus was reached.

3 Results

The earliest study included in our review was published in 1993 (Birenbaum &
Tatsuoka, 1993). Fewer than 10 articles per year were published until 2019, when
11 were published. Seventeen were published in 2020. The articles were published
in a variety of journals with journals focused on education and psychology being the
most frequent categories, such as Studies in Educational Evaluation and Frontiers
in Psychology. The most studies conducted in a single country were 34 in the US,
followed by 11 in Iran. Thirteen studies used data collected from multiple countries,
primarily because the tests used were the Programme for International Student
Assessment (PISA) or the Trends in International Mathematics and Science Study
(TIMSS). Many sample sizes were extremely large because of the multinational
samples, and the Korean National Assessment of Educational Achievement (NAEA)
exam, which had a sample of over 16 million examinees (Table 2). The number of
items per assessment ranged from 4 to 216; and the number of attributes ranged
from 2 to 27.

Table 2 Study descriptive statistics

Sample sizea Sample sizeb Number of items Number of attributes

Max 16,928,895 120,767 216 27
Min 96 96 4 2
Mean 415,952.8 5449.0 39.3 8.3
Std dev 2,612,318.7 15,749.3 34.9 5.1
Median 1454 1252 33 7
Mode 10,000 10,000 20 5
aWith Kim (2014)
bWithout Kim (2014)
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Table 3 Content area studied Area studied Frequency

Language skillsa 30
Mathematics 30
Psychology (normal and pathological) 10
Listening 9
Science and medicine 2
Civic knowledge 1
Intrapreneurship 1
MOOC engagement 1
Professional competencies 1
Situational judgment 1
Social justice advocacy 1
aReading, writing, grammar, foreign language skills,
and foreign language arts

In terms of the construct being tested, language skills and mathematics, which
appeared in 30 studies each, were the most frequent. Ten studies looked at different
areas of psychology, such as personality, and pathological behavior (Table 3).

In all the studies, the attribute classification was dichotomous (i.e., master vs.
non-master). Six of the studies reported correlations among the attributes. Although
many of the studies discussed how to prepare score reports, none of the studies
reported whether such diagnostic results were actually delivered to students or
teachers.

The Q-matrices in 74 studies had a complex structure, while eight had a
simple structure. In five of the studies, the relationships among the attributes were
hierarchical. In 24 of the studies, the authors modified their initial Q-matrices, and
in 52 of the studies, the authors provided the final Q-matrix. A variety of CDMs
were used in the applications, and it was common for one study to apply multiple
CDMs. The deterministic input, noisy “and” gate (DINA) and the generalized
deterministic input, noisy “and” gate (GDINA) models were the most frequently
used and appeared in 23 studies each, followed by the Reduced Reparameterized
Unified Model (RRUM or FUSION) model (20 times; Table 4).

The Q-matrices were developed using combinations of different techniques
(Table 5). The most common was using a literature review to determine the attributes
(or skills) needed to respond to the items correctly. Review of the assessment
items by content experts was the second most common method. Consulting the test
specifications was used in eight studies, while asking examinees about how they
answered questions was used in seven studies. Thirty-six studies did not report how
the Q-matrix was developed.

Checking model fit indices was the most common means of validating the Q-
matrix. Indices of both absolute fit (e.g., SRMSR, MAD) and relative fit (e.g.,
AIC, BIC) were used (Chen et al., 2013). Relative fit indices were used to compare
different Q-matrices or different CDMs, and to compare CDM results to results from
Classical Test Theory (CTT) or Item Response Theory (IRT) models. The Wald test
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Table 4 CDM used

CDM Number of articles

ACDM 6
Attribute hierarchy method (AHM) 3
DINAa 23
DINOb 13
GDINAc 23
GDM 4
Hierarchical diagnostic classification model (HDCM) 1
Log-linear cognitive diagnosis model (LCDM) 4
LLM 3
Mixture model 1
RRUM/FUSIONd 20
Rule space method 10
aIncludes four variant types of DINA
bIncludes three Bayesian variant types of DINO
cIncludes one variant type of GDINA
dIncludes three variant types of RRUM

Table 5 Q-matrix development and validation

Development Validation
Task Frequency Task Frequency

Literature review 39 Model fit indices 25
Not reported 36 Attribute mastery predictions 13
Content expert review 29 Compare with CTT/IRT 12
Author coding 15 Not reported 12
Test framework – specifications 8 Item parameters 11
Student reports 7 Reliability indices 10

Empirical validation algorithms 8
Compare different Q-matrices 6
Cross validation with other criteria 5
Student interviews 4
Factor analysis 3
Regression 3
Discuss with experts 2
Review of misfitting items 1

was also used to compare different models. Checking attribute mastery predictions
(both for accuracy and for consistency) was the second most common validation
technique. This was used in 13 studies. Other methods include evaluating item
parameters and reliability indices, as well as using empirical validation algorithms
(e.g., de la Torre and Chiu’s (2016) validation method, implemented in R package
GDINA (Ma & de la Torre, 2020)). Twelve studies did not report their validation
methods.
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4 Discussion and Significance

The Q-matrix is of vital importance for the proper functioning of a CDM. If the
Q-matrix is misspecified, the usefulness of the CDM is impaired (Gorin, 2009). It
is, therefore, important to have a Q-matrix that is well-founded theoretically, as well
as supported by empirical evidence (Rupp et al., 2010).

Developing a Q-matrix is an iterative process that involves theoretical guidance
and content knowledge about the construct being tested. After an initial set of
attributes has been developed, the Q-matrix needs to be refined to ensure that
there are sufficient high-quality items for each attribute to produce stable results.
Also, redundant or closely overlapped attributes need to be identified, combined or
removed for parsimony. This is frequently done by removing an attribute that has
high correlation with other attributes, or that has low correlation with item difficulty
(Buck & Tatsuoka, 1998).

The most common methods of Q-matrix development are literature reviews and
ratings by content experts. In addition, consulting test specifications and consulting
with examinees via think-aloud or posttest interviews are good ways to understand
cognitive processes when examinees respond to the test items. However, test
specifications are often not available for a retrofitted test, and consulting examinees,
which can provide valuable insights, sometimes may be not be feasible given the
development context. It is common to find a CDM study that uses multiple methods
discussed above in their Q-matrix development stage (e.g., Li & Suen, 2013).
Utilizing evidence from multiple sources greatly strengthens their Q-matrix.

Similarly, high quality CDM application studies tend to adopt multiple proce-
dures to validate their Q-matrices from different perspectives. Our review shows
that there are three main types of Q-matrix validation procedures: (a) comparing
the CDM model results with results from CTT or IRT models; (b) examination
of model fit indices; and (c) examination of attribute mastery predictions. First,
it is not always valid to compare CDM results with results from IRT models.
CDMs are multidimensional while IRT models are usually unidimensional. Even
when multi-dimensional IRT is used, the assumptions are different as the latent
variables in CDMs are categorical while the latent variables in IRT models are
continuous. Therefore, such comparison does not always lead to meaningful results.
Second, model fit indices have played an important role in Q-matrix validation.
Both absolute and relative fit indices are utilized. With the lack of well-established
criteria for the absolute fit indices for CDMs (Lei & Li, 2016), the relative fit indices
(e.g., AIC, BIC) seem to be more useful when results from different models are
compared. Some studies (e.g., Ravand et al., 2020) allowed the items to “choose”
the best fitting model, but Hemati and Baghaei (2020) found that overall model fit
for this procedure was not as good as using the GDINA model for all items.

Attribute mastery predictions usually consist of evaluating both classification
accuracy and consistency of the whole latent class pattern for examinee responses.
As Park et al. (2020) note, predicting the accuracy and consistency of examinee
scores by a model is a measure of reliability. CDM studies in earlier years usually
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did not report attribute reliability information, but more recent studies (Min & He,
2021; Wu et al., 2020, 2021) start to report such information.

In addition, in more recent years, a few studies (e.g., Effatpanah, 2019; Javi-
danmehr & Anani Sarab, 2019; Kilgus et al., 2020) used the Q-matrix empirical
validation algorithm (de la Torre & Chiu, 2016) which was further available in
the GDINA R package (Ma & de la Torre, 2020). This offers the possibility of
a convenient way to validate the Q-matrix empirically. However, this empirical
algorithm can only serve as a supplementary information for Q-matrix validation.
As recommended by de la Torre (2008), it is always important to combine the Q-
matrix empirical validation results with content knowledge.

Suggestions. Our findings suggest several procedures that should be followed
when developing a retrofitted Q-matrix, as well as some procedures that should
be used only with caution. Our primary recommendation is that researchers and
practitioners should consider perspectives from both construct theory and statistical
analysis. The process of developing a retrofitted Q-matrix should always include
subject matter experts who know both theory and content of the test construct
(Rupp et al., 2010). Second, the set of attributes developed should be based on the
principle of parsimony where highly correlated attributes may be combined (Buck
& Tatsuoka, 1998). Finally, more than one method needs to be used to develop the
Q-matrix so that evidence from multiple sources can be combined to strengthen the
validity of the Q-matrix (Li & Suen, 2013).

Once the Q-matrix has been developed statistical testing needs to be done to
verify the appropriateness of the matrix. This can be done by testing for model
fit and reliability using actual data, using both absolute and relative fit indices to
compare different models (Lei & Li, 2016) to select the best fitting one. Also,
researchers should test for reliability by evaluating both classification accuracy and
classification consistency of the whole latent class pattern for examinee responses
(Park et al., 2020). An empirical validation algorithm (e.g., de la Torre and Chiu’s
(2016) empirical validation model for DINA) could also be used.

We recommend against comparing results from CDM models with IRT or CTT
models, because they are based on different theory and are not strictly comparable.
Results from such comparisons may not be meaningful. For optimal model fit,
given sufficient sample size, we recommend starting the analysis with a saturated
CDM and examining the significance of the main effects and interaction effects (if
any), before considering specific smaller CDMs with particular assumptions on the
relationship between items and attributes (Hemati & Baghaei, 2020).

Limitations. A major limitation of this review is that we only included journal
articles published in English. Adding dissertations, conference presentations, and
articles published in other languages has the potential of opening up more methods
of Q-matrix development and validation, as well as insights into the CDM applica-
tions. These are areas for continued work. Furthermore, some CDM studies did not
provide details about their Q-matrix development and validation procedures so that
we were not able to code such information for every study included in the review.
We, therefore, call for a detailed report of Q-matrix development and validation
procedures in future CDM application studies.
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Notwithstanding these limitations, this review contributes to the research into
Q-matrix and CDM applications by highlighting the present state of Q-matrix
development and validation, some of the possible tools for the process, and the need
to use multiple methods in developing and validating Q-matrices.
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The Sum Scores and Discretization of
Variables Under the Linear Normal
One-Factor Model

Rudy Ligtvoet

Abstract The sum score is often used in practical test applications and the joining
of outcomes is common practice, when preparing response data for analysis. Yet,
many models for response data are not designed for this kind of handling of data.
Research on the use of the sum score for stochastic inferences and the discretization
of response variables is extended to the linear normal one-factor. It is shown that
the model implies a stochastic ordering on the latent factor by the sum of the
observed variables, but that this property no longer needs to hold when variables
are discretized prior to taking the sum score. The implications of this result are
discussed.

Keywords Discretization · Linear normal one-factor model · Pólya frequency
functions · Sum scores · Totally positive densities

1 Introduction

For test and questionnaire data, respondents are often assigned a latent value for the
attribute that the test is aimed to measure, based on a model for the dependencies
that exist between the test items. Because the latent variable is unobserved, it is
convenient to consider the observable sum scores across the test items as a proxy
for the latent values instead. For the use of the sum score, a desirable feature of
a measurement model would then be that a higher sum score also corresponds to
a higher expected latent value, so that the ordering of respondents by their sum
scores stochastically agrees with the ordering by their latent values. The use of the
sum score for making such ordinal inferences has been studied for various item
response theory models (Hemker et al., 1996, 1997; Ligtvoet, 2012, 2015), based on
amonotone likelihood ratio (MLR) ordering of the latent variable by the sum scores.
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For these models, Hemker (2001) also looked at the effect of joining response
categories. The results show that the MLR property is not implied by all models,
and that for some models the model may be invalidated when (adjacent) outcomes
are joined (cf. Andrich, 1995a, 1995b; Roskam, 1995). With the omnipresent use of
the sum (or average) score across many test applications and the common practice of
collapsing outcomes (e.g., median split), there thus seems to be a mismatch between
the models proposed for response data and the way these data are handled in
practice. The present chapter looks at the use of the sum score and the discretization
of response data under the linear normal one-factor (LNF) model.

1.1 The Linear Normal One-Factor

Factor analysis provides a framework to account for dependencies that exist between
the multiple item response variables of a test, whereby item response variables serve
as indicators of the common factors that the test aims to measure. The LNF model
proposes a single latent variable or factor Z to account for the covariances between
the item variables X1, . . . , Xn by the linear relationships

Xi = aiZ + Ui , with ai > 0,

where ai denotes the ith factor loading and Ui is the ith residual or unique factor. It
is assumed that U1, . . . , Un, Z are independent and normally distributed, with zero
means (centered), and (non-negative) variances

Var(Ui) = σ 2
i and Var(Z) = σ 2.

Further, assume that Cov(Ui, Uj ) = 0 (for i �= j ) and Cov(Ui, Z) = 0
(Jöreskog, 1971; Lord & Novick, 1968). Hence, under the LNF model, the variables
X1, . . . , Xn are conditionally independent (CI), given Z = z.

1.2 Monotone Transformations

In this chapter, two monotone (non-decreasing) transformations are considered that
are often used on X1, . . . , Xn in practice. Let X = (X1, . . . , Xn) denote the random
vector containing the variables Xi , with realizations x ∈ R

n. Then, a function φ(x)

is said to be monotone, whenever x < y (element-wise) implies that φ(x) ≤ φ(y).

The Sum Score The first transformation that is considered is the sum score S =
X1 + . . . + Xn often used in practice as a proxy for Z (McNeish & Wolf, 2020),
with φ(x) representing a mapping of many-to-one or aggregation; i.e., φ : Rn → R.
In practice, a LNF model is often fitted to the data in order to assess the validity
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(factorial structure) of the test, whereas in subsequent analysis the sum or average
score is used to ascertain the validity indices (e.g., predictive validity) of classical
test theory. A minimal requirement of the LNF model for such practice is that the
model implies a stochastic ordering of the factor scores by the sum scores, such
that higher factor scores are expected for higher sum scores. Let f (s, z) denote the
joint density of S and Z, then the stochastic ordering by the sum scores is satisfied,
whenever the density f (s, z) is totally positive of order 2; that is

f (s1, z1)f (s2, z2) ≥ f (s1, z2)f (s2, z1), (TP2)

for all s1 < s2 and z1 < z2 (Karlin, 1968, cf. the MLR property).

Discretization As a second transformation, consider the discretization of the
variables X1, . . . , Xn. The LNF model is often used for the analysis of discrete
ordinal response data (Jöreskog and Moustaki, 2001), where X1, . . . , Xn are taken
as the ghosts underlying the observable discrete variables V1, . . . , Vn. Here, φ(x)

takes on the form (φ1(x1), . . . , φn(xn)), with

Vi = φi(Xi; b1, . . . , bmi
) and b1 < . . . < bmi

,

where

Vi = vi , whenever bv ≤ xi < bv+1

(bmi+1 = −b0 = ∞ by definition). In words, each discretization φi proposes mi

ordered thresholds, where vi denote the largest threshold passed by the outcome
of Xi . With vi ∈ {0, 1, . . . , mi}, the outcomes of Vi are said to be equidistant
(Andrich, 1995a). Sijtsma and Van der Ark (2017) discuss the use of an equidistant
scoring rule in relationship with the use of the sum score in the context of Mokken’s
monotone homogeneity (MH) model (Mokken, 1971; Molenaar, 1997). In addition
to CI and the unidimensionality assumption, the MH model assumes that the tail
distributions 1−F(xi |z) are non-decreasing in z (Holland &Rosenbaum, 1986). The
LNF model satisfies the MHmodel assumptions, also after applying a discretization
to X1, . . . , Xn. In case mi = m = 1, the transformation φ(x) corresponds to a
dichotomization of the response variables.

For later reference, the concept of Pólya frequency functions of order 2 (PF2) is
introduced (e.g., Efron, 1965; Schoenberg, 1951).

Definition 1 The density f (x) is said to be PF2, if for all x1 < x2 and y1 < y2

f (x1 − y1)f (x2 − y2) ≥ f (x1 − y2)f (x2 − y1). (1)

Ellis (2015) showed that the (monotone higher-order) one-factor model, with
residuals having PF2 densities (e.g., normally distributed), implies that f (v) is
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multivariate TP2 (Karlin & Rinott, 1980). This in turn implies that each f (vi, vj ) is
TP2.

Strictly speaking, the normality requirements of the LNF model does not hold for
the discrete variables V1, . . . , Vn. However, the LNF may still provide an adequate
approximation of discrete response data (Rhemtulla et al., 2012).

Chapter Overview The purpose of this chapter is to investigate the effect the
discretization of the indicators X1, . . . , Xn has on the use of the sum score for
the stochastic ordering on Z. In the next section, it is shown that the LNF model
implies a stochastic ordering on Z by the sum score S. However, it is also shown
that the stochastic ordering property does not generally hold when the sum score
is used after discretizing the indicators X1, . . . , Xn, except in the special case of
a dichotomization. These results and their implications are further discussed in
Sect. 3.

2 The LNF Model and the Sum Score

In this section, it is shown that the LNF model implies a stochastic ordering on
Z by the sum S = X1 + . . . + Xn. However, after discretization of the variables
X1, . . . , Xn obtained under the LNF model, the sum R = V1+ . . .+Vn of the newly
obtained variables V1, . . . , Vn no longer needs to provide a stochastic ordering on
the factor Z. That is, f (s, z) is TP2 does not imply that f (r, z) is also TP2.

2.1 Preliminaries

In order to show that the LNF model implies a stochastic ordering of Z by S =
X1 + . . . + Xn, it is convenient to express the model in terms of the more general
properties TP2 and PF2. To this end, consider the joint and conditional densities
f (xi, z) and f (xi |z), respectively. First, assuming CI. Then, with E(Xi) = E(Z) =
0, the covariance between Xi and Z equals

E(XiZ) = aiE(Z2) + E(UiZ) = aiσ
2 > 0.

This implies that f (xi, z) is TP2 (Karlin & Rinott, 1983). Second, because Ui is
normally distributed, so is the conditional density f (xi |z). Consequently, f (xi |z)
has a PF2 density (Efron, 1965). Note that, for strictly positive densities, if f (xi, z)

is TP2, then f (xi |z) is TP2 as a function of (xi, z) (Holland & Rosenbaum, 1986).
Because the TP2 property implies that the tail distribution 1 − F(xi |z) is non-
decreasing in z, it thus follows that the LNF model satisfies the assumptions (i.e., is
a special case) of the MH model (Holland & Rosenbaum, 1986).
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The following observation is useful for the proof of Theorem 1 below. Assume
that f (x, y|z) > 0 (as implied by the LNF model). Then, for z1 < z2, the inequality

f (x2, y2|z2)f (x1, y1|z1) ≥ f (x2, y2|z1)f (x1, y1|z2) (2)

holds, whenever

f (x2, y2|z2)
f (x2, y2|z1) ≥ f (x2, y1|z2)

f (x2, y1|z1) ≥ f (x1, y1|z2)
f (x1, y1|z1) .

Hence, (2) holds, if both (a) f (x, y|z) is TP2 as a function of (y, z), with y1 < y2
and X = x2 (fixed), and (b) f (x, y|z) is TP2 in (x, y), with x1 < x2 and Y = y1.

The next result is proven in Ligtvoet (2021), but here adapted to the LNF model.

Theorem 1 The LNF model implies that f (s, z) is TP2.

Proof Suppose that Theorem 1 holds for n = 2, with X1 = X and X2 = Y . The
proof of Theorem 1 then follows, by sequentially taking X = X1 + . . . + Xi−1 and
Y = Xi , for i = 2, . . . , n. Hence, it is sufficient to show that f (s, z) is TP2, for
S = X + Y .

Due to CI, the conditional density of S is given by the convolution f (s|z) =∫
g(x|z)h(s − x|z)dx. Then, f (s, z) is TP2, if for any s1 < s2 and z1 < z2 it holds

that f (s2|z2)f (s1|z1) ≥ f (s2|z1)f (s1|z2), which yields

∫ s1

−∞

∫ s2

−∞
g(x2|z2)h(s2 − x2|z2)g(x1|z1)h(s1 − x1|z1) (3)

− g(x2|z1)h(s2 − x2|z1)g(x1|z2)h(s1 − x1|z2) dx2dx1 ≥ 0.

Note that (3) has the form of (2), with f (x, y|z) = g(x|z)h(s − x|z). So, it is
sufficient to show that (3) holds for the case that X is constant between z1 and z2,
and the case that Y is constant between z1 and z2. Because both cases are symmetric
in their arguments, we’ll only consider taking Y to be constant at Z = z (for z1 ≤
z ≤ z2). For (3), this yields

∫ s1

−∞

∫ s2

−∞
h(s2 − x2|z)h(s1 − x1|z) · (4)

(g(x2|z2)g(x1|z1) − g(x2|z1)g(x1|z2)) dx2dx1 ≥ 0.

Because g(x, z) is TP2, the function within the integral of (4) has a positive
outcome for x1 < x2 and negative values for x1 > x2. What remains to be shown is
that the density of the area of the integral spanning all x′

1 > x′
2 is smaller than the

area spanning all x′′
1 < x′′

2 (see Fig. 1 for illustration). Let x′
1 = x0 and x′

2 = x0 − ε,
with ε > 0, and accordingly x′′

1 = x0 − ε and x′′
2 = x0. This yields a one-to-

one (injective) mapping of each pair (x′
1, x

′
2) that yields negative values in (4) to

(x′′
1 , x′′

2 ), as shown in Fig. 1. Also, let s1 = s and s2 = s + δ, with δ > 0. Then, it is
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Fig. 1 Plot of x1 and x2,
with the point (x′′

1 , x′′
2 ) in the

gray areas above the identity
yielding positive values of (4)

s

s + δ

x0x0 − ε

x0

x0 − ε

(x′′
1 , x′′

2)

(x′
1, x

′
2)

sufficient to show that for all values x0, ε, s, δ, and z1 < z2,

(g(x0|z2)g(x0 − ε|z1) − g(x0|z1)g(x0 − ε|z2)) · (5)

(h(s − x0 + ε|z)h(s − x0 + δ|z) − h(s − x0 + ε + δ|z)h(s − x0|z)) ≥ 0.

The first part of (5) in parentheses is non-negative, because g(x, z) is TP2. The
second part in parentheses is also non-negative, because h(y|z) is PF2. This can be
seen by taking x1 = s − x0, x2 = s − x0 + ε, y1 = −δ, and y2 = 0 in (1). ��

2.2 The Sum Score After Discretization of Variables

Theorem 1 shows that under the LNF model f (s, z) is TP2 for the sum score S =
X1 + . . . + Xn. Next, a discretization is considered, whereby we denote the sum of
the discretized variables as R = V1+. . .+Vn. As mentioned earlier, the LNF model
satisfies the MH model assumptions. For the special case when a dichotomization
is applied to all variables (i.e., mi = m = 1), the LNF reduces to Mokken’s MH
model for binary variables, which has been shown to imply a stochastic ordering
of the latent variable by the sum score (Ghurye & Wallace, 1959; Grayson, 1988;
Huynh, 1994; Ünlü, 2008). For mi > 2, however, the MH model does not imply
a stochastic ordering of the latent variable by the sum score (Hemker et al., 1996,
1997). The next example also shows that f (r, z) need not be TP2, after discretizing
the variables X1, . . . , Xn obtained under the LNF model.

Example 1 Consider the LNF for n = 2 variables, with a1 = a2 = 1, σ 2 = 1,
and σ 2

1 = 2/5 and σ 2
2 = 5/2. Also, let Vi = φi(Xi;−1/2, 1/2), for i = 1, 2 (i.e.,

mi = m = 2), and R = V1+V2. Further, define the log-odds lnωr(z) = ln f (r|z)−
ln f (r − 1|z), for r = 1, . . . , 4, which are non-decreasing in z, whenever f (r, z)

is TP2. Figure 2 shows that for r = 2, 3, the log-odds are decreasing (in violation
of the stochastic property). For r = 2, the gray area in Fig. 2 shows the decrease in
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Fig. 2 Log-odds for the sum
scores as a function of z,
showing a violation
(decrease; e.g., gray area) of
the stochastic ordering of Z

by R = V1 + V2

−2 −1

4

2

−2

−4

lnωr(z)

z
r = 2

r = 1

r = 3

r = 4

log-odds between z = −1.37 and z = −0.10, indicating that for two subjects with
these factor scores, the subject with the (higher) factor score z = −0.10 is about 2.5
times more likely to obtain the lower sum score than the subject that has a factor
score that is more than one standard deviation lower (i.e., a substantial violation).

3 Discussion

The property f (s, z) is TP2 was proposed as a minimal requirement for the use
of the sum S = X1 + . . . + Xn. This property is less restrictive than the tau-
equivalence requirement from classical test theory (Lord & Novick, 1968; McNeish
& Wolf, 2020), but is also limited to ordinal inferences. Theorem 1 implies that
the confirmation of the LNF model justifies ordinal inferences about the latent
factor based on the sum score. For applications that require more than mere ordinal
inferences, the use of the estimated factor score may be more advantageous.

The discretization of variables obtained under the LNF model, not only jeopar-
dizes the normality assumption, but also has implications for the practical use of the
sum score. The extent to which the stochastic ordering property by the sum score is
violated, in a practical sense, will depend on the number of items variables of the
test, as well as the number of categories resulting from the discretization. Simulation
studies may further address this issue.

Instead of assuming a normal distribution to underlie the observed discrete
ordinal response data, alternative approaches for analyzing these data impose
restrictions on the cumulative distributions similar to Samejima’s (1969) graded



234 R. Ligtvoet

response model. Jöreskog and Moustaki (2001) and Takane and De Leeuw (1987)
showed that the normal ogive model for graded responses is formally equivalent to
the LNF model that assumes a normal distribution to underlie the ordinal responses.
The difference between these models is that, for the graded response model,
the conditional response distributions is discretized prior to taking the marginal
across the latent factor, whereas for the LNF model the discretization is applied
(afterwards) to the marginal distribution (Takane & De Leeuw, 1987, p. 397). In
the latter case, the discretization may invalidate the property f (s, z) is TP2, when
applying the LNF to discrete ordinal response data. That the graded response model
does not imply this property was already shown by Hemker et al. (1996, 1997).

To conclude, the use of the sum score, albeit practical, is not what most models
are designed for. The applied researcher should realize that an ordering on a latent
variable by the sum score is not something that can be simply assumed to hold. If
the applied researcher has a model that accurately describes the response data, it
might generally be best to rely on the model estimates, rather than using the sum
scores. And if a transformation of the data is deemed necessary, the validity of the
model will need to be reassessed.
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Identifying Zones of Targeted Feedback
with a Hyperbolic Cosine Model

Ye Yuan and George Engelhard

Abstract Formative assessments are used to identify student strengths and weak-
nesses, but they frequently do not identify targeted feedback strategies for improving
student achievement. The study introduces the concept of Zones of Targeted
Feedback for identifying the sets of optimal feedback strategies that can be used for
improving student writing. The study suggests a non-cumulative responses process
for linking feedback strategies and achievement levels. We offer an unfolding model
as an alternative measurement paradigm to identify and improve the effectiveness
of teacher feedback strategies linked to levels of student achievement. The study
presents two examples (an illustrative one and an empirical one) of using an
unfolding model called the Hyperbolic Cosine model to illustrate our conceptual
framework.

Keywords Writing · Feedback · Unfolding model · Formative assessment

1 Introduction

Feedback is one of the most powerful influences on student achievement, and
feedback can be viewed as a “consequence of performance” (Hattie & Timperley,
2007, p. 81). A significant body of research stresses the importance of feedback
effectiveness in assessment and instruction (Bangert-Drowns et al., 1991; Kluger
& DeNisi, 1996; Kulhavy, 1977; Kulhavy & Stock, 1989; Narciss & Huth,
2004; Shute, 2008; Willingham, 1990). Important tasks for teachers include the
identification of a student’s level of achievement, and then selection of feedback
strategies that can move the student forward in their learning. Feedback strategies on
different areas may not be appropriate for a given student based on their current level
of achievement. Therefore, educators must target their feedback for each student.
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The purposes of the study are to explore the use of an unfolding model to identify
the Zones of Targeted Feedback, and to discuss how teachers might use Zones of
Targeted Feedback to provide scaffolding to assist in the development of appropriate
feedback strategies. The study first introduces the concept of Zones of Targeted
Feedback, and then describes an unfolding model that can be used to link levels of
student achievement with recommended feedback strategies. Next, the approach is
illustrated with two examples. The first example is an illustration of the idea, and the
second example is an application of our idea with an empirical study in the context
of writing assessment. The results of this empirical study are briefly described.

2 Zones of Targeted Feedback

Feedback holds promise for improving student achievement, but the promise is not
guaranteed and depends in no small part on the care taken in choosing an appropriate
mode of feedback (Hattie & Timperley, 2007). Appropriate feedback can be
related to the concept of Zone of Proximal Development (ZPD; Vygotsky, 1978).
Vygotsky defined ZPD as “the distance between the actual developmental level as
determined by independent problem-solving and the level of potential development
as determined through problem solving under adult guidance or in collaboration
with more capable peers” (1978, p. 86). In this study, we propose adapting this idea
to identify zones of targeted feedback (ZTF) that can assist teachers in identifying
effective feedback strategies based on student levels of achievement. Formative
assessments provide the identification of achievement levels, while the method
proposed in this study can be used to identify the targeted feedback strategies to
match an individual student’s ZPD with the goal of improving each student’s level
of achievement.

Figure 1 shows the conceptual map of the study. The achievement levels of
three students (Students A, B, and C) are shown on the first line from low to high
achievement. The second line defines the locations of feedback strategies (S1, S2,
and S3). The ZTF can be defined based on the recommended feedback strategies
identified by teachers for students located at different levels on the achievement
continuum. Take student B as an example, the bell curve in the middle can be
recognized as the ZTF for student B. Comparing other feedback on the second
scale, the feedback strategies in this range are judged to relatively effective and
appropriate for student B. The optimal feedback for student B is the “peak” of
the ZTF, which is feedback strategy S2. Teachers are less likely to provide the
other two feedback strategies (S1, S3) as they are not in student B’s ZTF. In the
context of writing, a feedback strategy below a student’s level might be related to
feedback on the neatness of their handwriting, while a feedback strategy above a
student’s proficiency level might focus on more complex matters of organization,
such as transitions between sentences. The key idea is that feedback strategies
below or above a student’s achievement level may not provide optimal feedback
for improving student writing, so it is important to connect student achievement
levels to a set of feedback strategies that define the ZTF for each student.
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Table 1 Ideal response pattern for cumulative and unfolding scales

Panel A
Ideal Response Patterns

Cumulative Scale:
Scalogram (Guttman, 1950)

Unfolding Scale:
Parallelogram (Coombs, 1964)

Person A B C D E F G A B C D E F G

1 1 0 0 0 0 0 0 1 1 0 0 0 0 0

2 1 1 0 0 0 0 0 1 1 1 0 0 0 0

3 1 1 1 0 0 0 0 0 1 1 1 0 0 0

4 1 1 1 1 0 0 0 0 0 1 1 1 0 0

5 1 1 1 1 1 0 0 0 0 0 1 1 1 0

6 1 1 1 1 1 1 0 0 0 0 0 1 1 1

7 1 1 1 1 1 1 1 0 0 0 0 0 1 1

Panel B
Operating Characteristic Functions

Deterministic Deterministic

The study suggests viewing this bell curve of ZTF as an unfolding response
process because the probability of a positive response is a single-peaked function
(Andrich, 1997), which is different from cumulative response processes. Most
measurement models are based on cumulative response processes. In the cumulative
response processes, the probability of a positive response is a monotonic function of
the relevant parameters. A comparison of a cumulative scale and an unfolding scale
is shown in Table 1 (Andrich, 1988). Panel A in Table 1 illustrates a cumulative
scale for seven persons and seven items (A–G). The persons and items are ordered
by row and column scores. This ordering yields the distinctive triangular pattern
that defines a Guttman scale (positive responses highlighted). The unfolding scale
is also ordered, and the responses exhibit a parallelogram structure that is iconic for
an unfolding scale (positive responses highlighted). Panel B in Table 1 shows the
underlying operating functions for the two scales. A Guttman scale has a distinctive
stairstep pattern, while the unfolding scale can be represented by distinctive top-hat
pattern. The comparison helps to illustrate the distinction between the cumulative
and unfolding principles.

3 Hyperbolic Cosine Model

This study proposes to use a Hyperbolic Cosine model as an innovative method
to identify the appropriateness of feedback. The Hyperbolic Cosine Unfolding
Model (HCM; Andrich & Luo, 1993) can be viewed as a probabilistic model for
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non-cumulative scales that can be used to identify an ideal point on a continuum
that represents a person’s location. It implies a single-peaked response function
where a person has a higher probability of endorsing a subset of items, and these
items identify the location of a person on the unfolding scale. The probability of
endorsement increases when the person’s location gets closer to the item’s location.
This feature reflects the basic characteristic of an ideal point process (Coombs,
1964) with the probability of a person endorsing a statement dependent on the
distance between the person’s location and the item’s position. The HCM takes
the following form (Andrich, 1996; Luo, 2001):

P
(
Xij = k

) =
[
cosh

(
θi − λj

)]m−k∏k
l=1 cosh (ρi)

∑m
k=0

[
cosh

(
θi − λj

)]m−k∏k
l=1 cosh (ρi)

,

when, k = 0,
∏k

l=1 cosh (ρi) ≡ 1;
where, in the context of writing,

k = 0, . . . , m, and m + 1 is the number of rating categories,
Xij = observed rating given to student essay i on feedback strategy j,
θ i = location of the student essay i,
λj = location of the feedback strategy j,
ρj = threshold/unit parameter for feedback strategy j (these threshold parameters

reflect the ZTF for each strategy), and

the underlying unfolding scale for the feedback strategies used by teachers for
essays is called the joint (J) scale (Coombs, 1964). Each feedback strategy (items)
and essay have a unique location on the J scale. The relative distances between
feedback strategies and an essay are important and meaningful in the unfolding
scaling; therefore, we also construct individual (I) scales for each essay by folding
the J scale at the ideal point (i.e., HCM location) of each essay on the J scale. The I
scale reflects an ordering of strategies based on their relative location for each essay
on the unfolding continuum.

4 A General Illustrative Example

An illustrative example is discussed in this section. Let us assume student achieve-
ment is represented by different achievement levels as shown in the first scale in
Fig. 1. Meanwhile, some feedback strategies focus on different aspects or levels of
student achievement. We simulate three possible situations of teachers providing
feedback to students: they will not provide a type of feedback strategy, they may
provide this type of feedback strategy, and they will provide it to the students. We
use a rating scale (0–2) to indicate how likely they would be to provide this type of
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feedback at this achievement level: 0 = No, 1 = Possibly, and 2 = Yes. We used the
RateFOLD program (Luo & Andrich, 2003) to run the HCM analysis.

Teacher responses are shown in Table 2 (Panel A). For student response A, the
teacher chooses to use Feedback 1 and 2, possibly to use Feedback 3 and 4, and not
to use Feedback 5 and 6. The HCM scale ranges from −3.53 for Feedback 6 to 2.92
for Feedback 1. Table 2 (Panel B) provides information in terms of the distance
between feedback strategies and the locations of the answers on the HCM scale.
The entries in this table are the absolute values of these distances. Smaller values
are highlighted because they are more likely to be endorsed than the others. They
indicate the most recommended feedback strategies by the teachers for each essay.
For example, the smallest distance for student response B is .16 for Feedback 2 with
this being the most recommended feedback strategy. For response C, Feedback 3
is the most recommended one with the smallest distance of .19. Figure 2a shows
a HCM map for the feedback strategies. In the HCM map, the ZTF for student
response C is highlighted. A useful check on the appropriateness of the HCMmodel
is to fit a polynomial model for the relationship between the location of feedback

Table 2 Illustration based on six feedback strategies for five essays

Panel A: Illustrative ratings

Essays
Feedback 

strategies
A B C D E Feedback

location
1 2 1 1 1 0 2.92

2 2 2 2 1 1 1.10

3 1 2 2 2 1 -0.02

4 1 1 2 2 1 -0.56

5 0 1 2 2 1 -1.15

6 0 0 1 1 2 -3.53

Essay location: 2.73 1.26 -0.21 -0.68 -3.10

Panel B: Absolute values of differences between essays and feedback locations

Essays
Feedback 

strategies
A B C D E Feedback

location
1 1.63 1.66 3.13 3.60 6.02 2.92

2 1.63 0.16 1.31 1.78 4.20 1.10

3 2.75 1.28 0.19 0.66 3.08 -0.02

4 3.29 1.82 0.35 0.12 2.54 -0.56

5 3.88 2.41 0.94 0.47 1.95 -1.15

6 6.26 4.79 3.32 2.85 0.43 -3.53

Essay location: 2.73 1.26 -0.21 -0.68 -3.10

Note: Cell entries are the absolute values of the differences between essay and feedback
locations on the unfolding scale. The feedback strategies with smaller distances are highly
recommended by the teachers
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Fig. 2 Illustrative example. (a) Recommend feedback strategies for essay C. (b) Relationship
between location for essay C (second degree polynomial)

strategies and the proportion of teacher judgments for each feedback strategy. This is
shown in Fig. 2b with a R-square value of .9822 that supports the use of an unfolding
process for these feedback data.

5 Application to Writing Assessment

To develop a deeper understanding of the conceptual map and the approach
discussed in the previous section, an empirical study that examined feedback in
the context of writing assessment is briefly introduced in this section. In this
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Table 3 Questionnaire

Short labels Items (feedback strategies)

A. Organization
Introduction 1. Feedback should focus on how to create a more effective

introduction to the response.
Organization 2. Feedback should focus on how to organize the response more clearly.
Conclusion 3. Feedback should focus on how to create a more effective conclusion

to the response.
B. Development
Relevant evidence 4. Feedback should focus on how to incorporate relevant evidence from

the source texts into the response.
Elaborate evidence 5. Feedback should focus on how to elaborate more effectively on the

evidence incorporated from the source texts.
Tone 6. Feedback should focus on how to create a tone that is appropriate for

the task.
C. Language usage and conventions

Create sentences 7. Feedback should focus on how to create clear, complete sentences.
Vary sentences 8. Feedback should focus on how to vary sentence structure.
Usage 9. Feedback should focus on usage (e.g., subject-verb agreement,

pronoun-antecedent agreement, and using correct forms of homonyms).
Mechanics 10. Feedback should focus on mechanics (e.g., use of internal

punctuation, spelling, capitalization, paragraph indentations, etc.)

Notes: Teachers responded to these questions using a 4-point scale indicating how likely they
were to provide feedback in each area: 1 = Definitely not, 2 = Probably not, 3 = Probably and
4 = Definitely

empirical study, we conducted both a qualitative design to collecting the data and
a quantitative analysis to demonstrate the application of HCM analysis. Essays
written by middle school students with different writing proficiencies are used in
this study (N = 20). A questionnaire was constructed based on a focus group
of English teachers’ recommendations of the possible feedback strategies for the
essays (see Table 3). The ten feedback strategies in the questionnaires focus on
three aspects: (1) organization (e.g., feedback should focus on how to create a
more effective introduction to the response), (2) development, and (3) language
usage (e.g., feedback should focus on how to create clear, complete sentences).
Next, middle school ELA teachers (N = 20) responded to this questionnaire for
identifying feedback strategies for the set of 20 essays. The HCM analysis was done
in the RateFOLD program after we collect the responses to the questionnaire from
the teachers.

It is beyond the scope of this chapter to describe the empirical study results
in detail; however, Fig. 3 shows the calibration of essays and feedback on the
unfolding continuum. In Table 4, the absolute values of the distances between
HCM scale and person ability are showed. Smaller values indicate more highly
recommended feedback strategies by the teachers for each essay. Distances less than
2 were highlighted as the ZTF for each essay. These strategies were more likely to
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Feedback Feedback Categories
HCM Scale Items Organization Development Language 

Usage
6 6 Tone

5

4

3 8, 5 Elaborate 

Evidence

Vary Sentences

2

1 3 Conclusion

0 1 Introduction

-1 4,2 Organization Relevant 

Evidence

-2

-3 7,10 Mechanics, 

Create Sentences

-4

-5

-6 9 Usage

Fig. 3 Map of feedback strategies

be recommended than the others for each essay. The preliminary results from this
study suggest that this is a promising approach for identifying ZTF. This program
of research uses the HCM to model the recommended feedback strategies, and the
next step is to extend the approach to other content areas including mathematics,
science, and social studies.

6 Discussion

The study introduces the concept of Zones of Targeted Feedback, and illustrates
how to use a Hyperbolic Cosine unfolding model to identify and improve the
effectiveness of feedback. The study also briefly presents empirical work in the
field of middle school writing assessment. Our illustration indicates that unfolding
models can be used as measurement tools to identify the optimal strategies for
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students at different writing proficiency levels, and to define ZTF that may be
effective for improving student writing.

Further analyses of ZTF can identify strategies in different content areas.
Moreover, examining students’ reception of the feedback and exploring empirical
evidence of effective learning is essential in the coming future. As researchers
generalize from this study to broader contexts, examining appropriate feedback
strategies may help fill the gap between formative assessments and what teachers
can do in practice to improve student achievement. Research is also needed to
explore other unfolding models, such as the nonparametric unfolding IRT model
(Post & Snijders, 1993), and the generalized graded unfolding model (Roberts et
al., 2000). In summary, the identification and use of zones of targeted feedback
(ZTF) offer a promising strategy for moving students forward to a higher level of
achievement.
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A Reduced Social Relations Model for
Dyad-Constant Dependent Variables

Terrence D. Jorgensen and K. Jean Forney

Abstract Dyadic network data occur when each member in a group provides data
about each other member in the group (e.g., how much they like each other person).
Such data have a complex nesting structure, such that bivariate responses (e.g.,
Person A’s liking of B and vice versa) are dependent upon out-going and in-coming
random effects that are correlated within individuals. Dyadic network models for
such data include the social relations model for normal data and the p2 and j2
models for dichotomous data, but we have seen no application or generalization
to accommodate a rarely discussed type of variable from this framework: variables
that are constant within a dyad. Dyad-constant variables could include background
variables such as whether a dyad is same or opposite sex or how many years two
friends have known each other, which require no special modification to use as
predictors (Jorgensen et al., Soc Netw 54:26–40, 2018). But they could also be
outcomes, such as the difference in a married couple’s relationship satisfaction or
the similarity in symptoms of a (set of) psychological disorder(s). We explore how
such dyad-constant outcomes can be modeled, demonstrating on a data set from a
clinic for patients with eating disorders.
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1 Introduction

In this paper we present a modified social relations model (SRM) for network-
structured outcomes that are constant within a dyad. The SRM is traditionally
applied to data gathered from a round-robin design (Warner et al., 1979), wherein
each member of a group provides information about each other member of the group
(e.g., how much person i likes person j ). For a group of size N , this would yield
N2 − N = N(N − 1) unique observations—two observations for each pair (dyad)
in the group, depicted by the vector y{ij}, where the braces indicate the ordering of
members i �= j is arbitrary. Because each member belongs to multiple dyads, each
bivariate dyadic observation is nested in the set of observations in which person i is
a member, as well as in the set of observations in which person j is a member.

From a multilevel-modeling perspective (Snijders & Kenny, 1999), the bivariate
dyadic (i.e., Level-1) observations y{ij} are cross-classified under both ego and
alter (i.e., Level-2) effects. However, round-robin data (also called sociometric
data, relational data, interpersonal data, and network data) are more complexly
structured than textbook examples of cross-classified data (e.g., students nested
with schools and neighborhoods, whose effects are independent of each other). The
nature of the network structure is explained by way of introducing the SRM and its
extensions, followed by showing how the SRM can be specified to accommodate
data that do not vary within a dyad (the focus of this chapter). Results are presented
from an empirical clinical-psychology example, which was the motivation behind
developing this innovation. The discussion includes comparison with related models
and suggestions for future developments.

1.1 The Social Relations Model

The SRM can be depicted as a random-effects model (Nestler, 2016) that decom-
poses y{ij} into person- and dyad-level components:

y{ij} =
[
yij

yji

]

= μ +
[
Ei + Aj + Rij

Ej + Ai + Rji

]

, (1)

where μ is the expected value of the observations (e.g., average amount of liking
in the group). Ei and Aj are person-level ego (out-going) and alter (in-coming)
effects, respectively—for example, Ei would represent how much person i likes
others in general, and Aj would represent how much person j is generally liked by
others (i.e., likeability). EachR is a dyad-level residual, which contains relationship-
specific effects (e.g., how much i uniquely likes j beyond what is expected from
their person-level effects) as well as measurement error. More descriptive terms have
been used for Ei and Aj , such as actor and partner effects when y{ij} are behavioral
interactions (e.g., social mimicry; Salazar Kämpf et al., 2018) or perceiver and target
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effects when y{ij} are interpersonal perceptions (e.g., of personality traits; Kenny,
1994).

Each person’s vector of ego and alter effects is assumed bivariate normally
distributed:

[
Ei

Ai

]

∼ N
([

0
0

]

, ΣEA =
[

σ 2
E

σEA σ 2
A

])

, (2)

where σ 2
E and σ 2

A are the variances of the random person-level effects, respectively,
and ρEA = σEA

σEσA
is their correlation, termed generalized reciprocity (Kenny,

1994). Following from the liking example, positive generalized reciprocity would
be observed when those who have a propensity to (dis)like people are also generally
(un)likeable. Negative generalized reciprocity might be observed when measuring
helpfulness in a collaborative work situation: those who receive the most help (e.g.,
because they have lower competence) could be expected to provide the least help to
others.

Each dyad’s pair of residuals is also assumed bivariate normally distributed:

[
Rij

Rji

]

∼ N
([

0
0

]

, ΣR = σ 2
R

[
1
ρR 1

])

, (3)

where variances σ 2
R are constrained to equality for indistinguishable dyads (Kenny

et al., 2006, ch. 8) and the (residual) correlation ρR between relationship effects
is called dyadic reciprocity (Kenny, 1994). Following from the liking example,
positive dyadic reciprocity implies that if person i particularly likes person j (i.e.,
more than would be expected given person i’s general propensity for liking and
person j ’s general likeability), then person j particularly likes person i, too (i.e.,
the feeling is mutual). Negative dyadic reciprocity might be observed if person i

found person j particularly helpful during collaboration, in which case person j

might not have received much help from person i.
A common goal of univariate SRM studies is to calculate the relative contribu-

tions of each level of analysis on the overall variability in y{ij} (σ 2
y ). This can be

expressed as the proportion of variance accounted for by each orthogonal variance
component:

σ 2
y = σ 2

E + σ 2
A + σ 2

R. (4)

Note that although Ei and Ai can be correlated within person i, the random effects
of different persons i and j are assumed independent (and identically distributed).
Thus, for a single observation yij , the ego and alter components are independent.
The proportions of variance explained by each component can be used to compare
their relative impact on the observed phenomenon. For example, is the degree to
which person i likes person j influenced more by person i’s propensity to like
others, by person j ’s likeability, or is it primarily their personal chemistry with each
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other? The decomposition of the full covariance matrix for y{ij} (i.e., Σy) follows a
similar logic:

Σy = ΣEA + Σ
′
EA + ΣR , (5)

σ 2
y

[
1

ρij 1

]

=
[

σ 2
E σEA

σEA σ 2
A

]

+
[

σ 2
A σEA

σEA σ 2
E

]

+ σ 2
R

[
1 ρR

ρR 1

]

. (6)

1.2 Extending the SRM with Covariates

Covariates can be added to the SRM, either as explicit predictors of random effects
(e.g., Koster & Leckie, 2014; Lüdtke et al., 2013) or as auxiliary correlates (e.g.,
Brunson et al., 2016), which can alleviate the effects of missing data (Jorgensen
et al., 2018). When person-level covariates (x) are added as predictors of ego and
alter effects, the distributional assumption in Eq. 2 applies to Level-2 residuals ε

and δ:

[
Ei

Ai

]

=
[∑P

p=1 βpxi,p + εi
∑P

p=1 αpxi,p + δi

]

, (7)

where P is the number of person-level predictors, βp is the effect of predictor xp

on ego effects, and αp is the effect of predictor xp on alter effects. For example,
personality traits (x) such as openness to experience and extraversion could be used
to predict general liking (E) and likability (A), respectively.

Likewise, dyad-level predictors q = 1, . . . ,Q can be added to the Level-1
model:

[
yij

yji

]

= β0 +
[
Ei + Aj +∑Q

q=1 γqwij,q +∑Q
q=1 λqwji,q + Rij

Ej + Ai +∑Q
q=1 γqwji,q +∑Q

q=1 λqwij,q + Rji

]

, (8)

where the intercept β0 is a conditional mean that supplants the role of the grand
mean μ in Eq. 1. The E and A terms in Eq. 8 can also incorporate predictors as in
Eq. 7. Intrapersonal (γ ) and interpersonal (λ) slopes can be distinguished (Nestler,
2016). For example, Salazar Kämpf et al. (2018) reported that person i especially
liking person j was associated with person i especially mimicking person j (an
intrapersonal effect) in subsequent interaction; however, after a time lag, person i

especially mimicking person j was then associated with person j especially liking
person i (an interpersonal effect).

Like dyad-level outcomes, dyad-level predictors can differ for each member of
the dyad (i.e., wij �= wji)—for example, how attractive or agreeable each person
thinks the other person is. However, predictors could also be constant within a dyad
(w{ij} = wij = wji), which is often (but not necessarily) a function of person-
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level variables. For example, a dummy code indicating same- or opposite-sex dyads
is a function of the members’ sexes. Alternatively, how many months or years the
members of a dyad have been acquainted is not a function of their person-level
characteristics, but it is nonetheless constant within a dyad. Note that when wij,q =
wji,q , the intrapersonal and interpersonal effects in Eq. 8 cannot be distinguished
(γq = λq ), so the predictor w{ij},q should only be included once. But even when
a predictor W varies within a dyad, intrapersonal (γ ) and interpersonal effects (λ)
are each constrained to equality across the bivariate observations. These equality
constraints hold for indistinguishable dyads, for the same reason there is an equality
constraint on the residual variances (i.e., the order within dyad {ij} is arbitrary).

2 Reducing the SRM for Dyad-Constant Outcomes

Dependent relational/network variables can also be constant within a dyad (yij =
yji). For example, we might be interested in explaining why friends differ in how
much they like each other. No method has been formally defined for accommodating
such data, so introducing such a method is the primary goal of this paper. We will
begin by focusing only on the basic SRM in Eq. 1, which suffices to discuss the
relevant issues. We then consider covariate effects after resolving the issues.

A dyad-constant outcome y{ij} is equivalent to equating bivariate observations
on the left-hand side of Eq. 1 (yij = yji), which implies the equality of the summed
components on the right-hand side of Eq. 1:

Ei + Aj + Rij = Ej + Ai + Rji ; thus, (9)

Rij = Rji and (10)

Ei + Aj = Ej + Ai ; furthermore, (11)

Ei = Ai and (12)

Aj = Ej . (13)

Because the person- and dyad-level components of Eq. 9 are independent, this
further implies the equivalence of the relationship components in Eq. 10 and of
the sum of person components in Eq. 11. Finally, person i’s random effects are
independent of person j ’s effects, implying the ego and alter effects are equivalent
for persons i (Eq. 12) and j (Eq. 13).

Returning to the social-mimicry example (Salazar Kämpf et al., 2018), we might
be interested in the degree to which persons i and j differ in how frequently they
(un)consciously imitate each other during a conversation. Larger absolute values of
this discrepancy (y{ij} = |yij − yji |) could be interpreted as evidence of social
dominance within a dyad, whereas smaller absolute values might indicate more
equity among conversation partners.
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The equivalence of person-level effects (Ei = Ai) implies equivalence of their
variance components in Eq. 2 (σE = σA) and a correlation of ρEA = 1. The
equivalence of relationship effects (Eq. 10) also implies a correlation of ρR = 1:

[
Ei

Ai

]

∼ N
([

0
0

]

, σ 2
E

[
1
1 1

])

and

[
Rij

Rji

]

∼ N
([

0
0

]

, σ 2
R

[
1
1 1

])

. (14)

This simplifies the distributional assumptions from bivariate normality (Eqs. 2
and 3) to univariate normality:

Ei ∼ N (0, σE) and R{ij} ∼ N (0, σR), (15)

where the use of E or A subscript is arbitrary given their equivalence, and again the
braces around {ij} indicate the order is arbitrary. Thus, the dyad-constant outcome
y{ij} can be expressed as a univariate function of person- and dyad-level effects:

y{ij} = μ + Ei + Ej + R{ij}. (16)

In the social-dominance (discrepancy in mimicry) example, the person-level effect
Ei would represent person i’s general tendency to dominate (yij −yji > 0) or defer
(yij − yji < 0) control of a conversation, and the residual R{ij} continues to capture
relationship-specific tendencies along with other sources of error.

The reduced SRM in Eq. 16 still contains components from both members of
the dyad because the observations y{ij} are still nested under (a) all the dyadic
observations in which person i is a member, as well as (b) all the dyadic observations
in which person j is a member. That is, the observations are still cross-classified, but
there is simply no way to distinguish between out-going ego effects and in-coming
alter effects. There is simply a single vector of person-level effects, two of which
(Ei and Ej ) are components of any dyadic observation y{ij}. Thus, the variance
decomposition in Eq. 4 becomes

σ 2
y = 2σ 2

E + σ 2
R. (17)

In practice, the proportion of variance in dyad-constant y{ij} attributable to person-
level characteristics (e.g., individuals’ general tendencies to seize or surrender
control of a conversation) should therefore be calculated by doubling the estimated
variance of person-level effects: 2σ̂ 2

E/(2σ̂ 2
E + σ̂ 2

R).
The reduced SRM presented in Eqs. 16 and 15 can be applied to variables y{ij}

that are identical within a dyad (yij = yji) or are of equal magnitude but opposite
signs (yij = −yji), which would still be redundant information with the same
variance decomposition. Dyad-constant variables could be defined independently,
such as the number of things persons i and j found in common when getting
acquainted, or y{ij} could be a function of person- or dyad-level variables. For
example, differences in personality traits (person-level characteristics) would be
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dyad-specific but constant in absolute magnitude, as would differences in how much
each person likes the other (dyad-level characteristics).

Beyond questions of whether network-level phenomena are driven primarily by
person- versus dyad-level characteristics, the reduced SRM provides no information
about qualitatively distinct person-level variances (σ 2

E = σ 2
A), nor does it provide

information about generalized or dyadic correlations (both ρ = 1 because Ei = Ai

and Rij = Rji). Thus, the reduced SRM might not garner much interest for
substantive applications. When network-structured variables are constant within
each dyad, we imagine substantive interest would lie primarily in explaining
individual or relationship differences at each level of analysis.

We now extend the reduced SRM to include covariates, which was what
motivated its development (see Sect. 3). Given Ei = Ai , Eq. 7 reduces to

Ei =
P∑

p=1

βpxi,p + εi . (18)

Substituting the Level-2 model (Eq. 18) into the reduced SRM (Eq. 16) yields an
interesting result:

y{ij} = β0 + Ei + Ej + R{ij}

= β0 +
( P∑

p=1

βpxi,p + εi

)

+
( P∑

p=1

βpxj,p + εj

)

+ R{ij}

= β0 +
P∑

p=1

βp(xi,p + xj,p) + εi + εj + R{ij},

(19)

in that the slope βp can be multiplied by the sum of person i’s and j ’s values on
predictor xp.

Similarly, dyad-level predictors can be added, but when yij = yji , intra- and
interpersonal effects cannot be distinguished (γ = λ), resulting in a similar result
as in Eq. 19:

y{ij} = β0 + Ei + Ej +
Q∑

q=1

γqwij,q +
Q∑

q=1

γqwji,q + R{ij}

= β0 + Ei + Ej +
Q∑

q=1

γq(wij,q + wji,q) + R{ij}.

(20)

When a predictor is also constant within dyads (wij,q = wji,q ), the slope is
effectively a weight for 2 × w{ij},q . In this case, it would be more intuitive to
either (a) divide w{ij},q by 2 prior to analysis or (b) only include one “copy” of
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w{ij},q in Eq. 20, so that γ̂q could be interpreted as expected difference in y{ij} per
unit-increase in w{ij},q . In Sect. 3, we use option (b) to estimate the effect of a three-
category dyad-constant predictor, represented by two dummy codes.

3 Motivating Example

3.1 Background

Eating disorders are serious psychiatric conditions characterized by overconcern
with weight and shape and by problematic behaviors such as fasting, binge-eating,
and self-induced vomiting that contribute to increased morbidity and elevated risk
of death (van Hoeken and Hoek, 2020). Risk models for eating disorders, such as the
Tripartite Influence Model, posit that appearance pressures from peers contribute to
the development of eating disorder symptoms (Thompson et al., 1999). Existing
research supports the importance of both socialization (i.e., contagion) of some
disordered eating behaviors (i.e., binge-eating like behaviors; Zalta and Keel, 2006),
and selection effects, that is, individuals forming friendships with those who share
similar attitudes (Rayner et al., 2013). If peer attitudes and behaviors increase risk
for eating-disorder attitudes and behaviors, then peers might also be able to help
mitigate risk or clinically significant eating-disorder symptoms. Indeed, changes
in perceptions of peer norms predict decreases in disordered eating attitudes in
prevention settings (Cruwys et al., 2015).

While peers are prominent in sociocultural models of eating disorder risk, less
is known about the role of peers in the maintenance or treatment of clinically diag-
nosed eating disorders. Outpatient treatment models rely on one-to-one interactions
between patients and clinicians. Augmenting this standard care with mentorship
from a recovered peer improves some treatment outcomes (Ranzenhofer et al.,
2020). More intensive treatments, such as partial hospitalization programs, occur
in group settings for significant periods of time (e.g., 30 hours/week). By the
nature of the group setting, peers with eating disorders are an integral part of treat-
ment in partial hospitalization programs. Preliminary work suggests that patients
who develop quality friendships in treatment have greater motivation to change
(Malmendier-Muehlschlegel et al., 2016). However, engagement in relationships
developed during treatment is associated (after discharge) with both positive and
negative outcomes, depending on the types of interactions that take place (Saffran
et al., 2016).

Taken together, the literature suggests that friendships—and the disordered
eating attitudes and behaviors of those friends—may a play a role in the maintenance
of eating disorder behaviors and thus may also play a role in facilitating positive
treatment outcomes. Existing literature has been limited by reliance on perceptions
of peers, but social network data can overcome these limitations by “objectively”
measuring peer eating-disorder symptoms (Jorgensen et al., 2018). The current
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study represents the first step in understanding how friendships formed in treatment
may contribute improved treatment outcomes via the modeling of socialization
and recovery-oriented attitudes and behaviors. We sought to understand whether
similarity in the severity of eating disorder symptoms was associated with reported
friendships. We hypothesized that eating disorder symptoms would be more similar
among friends than non-friends.

3.2 Method

Participants and Procedure Participants were recruited from a nonprofit partial
hospitalization program for eating disorders in the midwestern United States.
Patients were enrolled in 30 hours of evidence-based treatment per week, with
most treatment occurring in a group setting. As part of routine care, patients
completed assessments on a weekly basis. For the current study, participants were
provided a letter from the second author inviting the participant to participate in
a study of social influences on eating-disorder treatment outcomes. A graduate
research assistant was available to answer any questions that patients had about
the research study. After having questions answered, participants provided written
informed consent. All study procedures were approved by the local Institutional
Review Board. Once enrolled, participants were asked to complete a weekly
assessment of eating disorder symptoms and a social network assessment. In
addition, participants were asked to provide permission to access their medical
record to extract diagnosis, demographic information, and weekly assessments of
depressive and anxiety symptoms. Data collection occurred over an 8-week period.
Over the 8-week period, 18 individuals were invited to participate, 13 individuals
provided informed consent, and 12 individuals provided data on their eating disorder
symptoms and social network. Because patients both began and ended treatment
during the course of the study, participation by week ranged from 3 to 7. The current
study focuses on the three consecutive weeks with highest absolute participation.
Among those who provided data, mean age was 27.25 years (SD = 14.59). All
participants identified as non-Hispanic, White females. The modal eating-disorder
diagnosis was “Other Specified Feeding or Eating Disorder,” and all patients had a
comorbid mood or anxiety disorder.

Measures Eating-disorder symptoms were measured using the Eating Disorder
Examination Questionnaire Short Form (Gideon et al., 2016), an adapted version
of the well-established Eating Disorder Examination Questionnaire (Fairburn and
Beglin, 1994). Twelve questions assess eating-disorder attitudes and behaviors over
the previous 7 days; possible scores ranged 0–36. Scale reliability ranged from
α = 0.89–0.95 across weeks.

Participants were provided a roster of all patients in the partial hospitalization
program. They were asked to identify “your friends, that is, the group members you
hang around with the most or are closest to. You are welcome to list as many friends
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as appropriate.” They were also given the option to identify group members whom
they looked to as a role model for recovery.

3.3 Estimating a Reduced SRM

Our outcome of interest was the absolute difference in eating-disorder symptoms
between patients i and j (i.e., y{ij} was a function of person-level characteristics).
Higher values indicated greater dissimilarity in a dyad, and values closer to zero
indicated greater similarity. Our focal predictor was whether patients i and j

considered each other friends, which is a dyad-level variable that can vary within
dyads. Using mutual nonfriendship as the reference category, we used a dummy
code to indicate dyads with reciprocated friendship (w{ij},2). Because the outcome
did not vary with dyads, we could not distinguish between asymmetry in one
direction (ij ) or the other (ji), so a single dummy code (w{ij},1) represented
nonreciprocal, asymmetric friendship. Thus, in our fitted model:

y{ij} = |yi − yj | = β0 + γ1w{ij},1 + γ2w{ij},2 + Ei + Ej + R{ij}, (21)

β0 represents the average dissimilarity in eating disorder symptoms among mutual
nonfriends. The slopes for dummy codes in Eq. 21 represent how different from
nonfriends the average (dis)similarity was among asymmetric (γ1) and mutual (γ2)
friends. Our fitted model does not include person-level effects.

Given the documented limitations of two-step estimation approaches (Nestler,
2016; Nestler et al., 2020; Lüdtke et al., 2018), we only considered options to esti-
mate the whole model simultaneously. Although maximum likelihood estimation
(MLE) is available for round-robin data in the R package srm (Nestler et al., 2019),
the software is not set up to accommodate dyad-constant outcome variables (Nestler
et al., 2020). Instead, we used Markov chain Monte Carlo (MCMC) estimation
(Hoff, 2005; Lüdtke et al., 2013; Jorgensen et al., 2018) using the general Bayesian
modeling software Stan (Carpenter et al., 2017) via the R package rstan. Stan
uses a modified Hamiltonian Monte Carlo (HMC) algorithm called the No-U-Turn
Sampler (NUTS) that simultaneously samples the entire vector of estimates from
the parameter space, as opposed to iterating one parameter at a time like Gibbs
sampling.

The unknown quantities (parameters) in Eq. 21 include β0, the fixed effects (γ1
and γ2), the vector of person-level random effects (E), and the variance components
(σ 2

E and σ 2
R). In our Stan program (available online1 and in the Appendix), we

specified a standard-normal prior distribution for random effects:

1 Data and software scripts are available on the Open Science Framework (OSF): https://osf.io/
j53n8/. No person-level variables are provided, and person-level IDs are randomized within each
week to preserve anonymity (i.e., IDs in Week 6 do not correspond to IDs in Weeks 7 or 8).

https://osf.io/j53n8/
https://osf.io/j53n8/
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E∗ ∼ N (μ = 0, σ = 1). (22)

Priors for other parameters were selected based on descriptive statistics to be
minimally informative without placing undue weight on values far outside the range
of data (Smid et al., 2020). We specified half-normal priors (i.e., normal distributions
truncated below 0) for SDs rather than variances (σE and σR):

σ(E or R) ∼ half-N (
h

5
,
h

5
), (23)

where h = max(y{ij})−min(y{ij})
2 (i.e., half the empirical range of the outcome). The

intercept and slopes were also specified to include the range of plausible values
without being strongly informative:

β0 ∼ N (median(y{ij}), h) (24)

γ(1 or 2) ∼ N (0, h) (25)

To calculate each dyad’s expected values ŷ{ij} each time parameters were sampled
from the posterior (indexed below with superscript m), we added scaled random
effects (E = E∗ × σE) to the intercept and fixed effects (i.e., Eq. 21 but with the
residual R{ij} omitted).

ŷm
{ij} = βm

0 + γ m
1 w{ij},1 + γ m

2 w{ij},2 + (E
∗,m
i + E

∗,m
j )σm

E , (26)

The likelihood was thus specified as:

y{ij} ∼ N (ŷ{ij}, σR). (27)

After 250 burn-in iterations on each of 4 Markov chains, we saved 250 samples
from each chain’s estimated posterior distribution. Convergence was assessed
visually by verifying proper mixing in traceplots, as well as numerically using the
potential scale-reduction factor (R̂ < 1.05; Gelman and Rubin, 1992) and effective
sample size (Neff > 100; Vats et al., 2019), both of which are reported with results
in Table 1. The combined 1000 samples from the posterior were used to calculate
point (posterior mean) and SE (posterior SD) estimates, as well as empirical 95%
credible intervals (CIs) for each (function of) parameter(s). The difference between
slopes (γ2 − γ1) was calculated at each iteration to capture the mean difference
between reciprocal and asymmetric friendships. The 95% CIs were used to infer
whether differences between groups were (non)zero.
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3.4 Results and Discussion

Variability of friendship nominations confirmed that friendships form in partial hos-
pitalized programs, although friendship nominations were not always reciprocated.
Estimated group mean differences in dissimilarity of eating-disorder symptoms
are presented in Table 1. Recall that symptoms were measured on a 0–36 scale,
so absolute differences between subjects could be as large as 36, although they
tended to be smaller because all patients had relatively higher symptom-scores
than would be expected in the general population. The top row indicates that due
to autocorrelation, the 1000 samples from the posterior have an effective sample
size of 421 independent samples from the posterior, which is more than sufficient to
minimize Monte Carlo sampling error. The small R̂ = 1.01 shows no evidence of
convergence problems, and the traceplots (not shown here, but available using the R
script on OSF) show evidence of good mixing across chains. Similar convergence
diagnostics were found across parameters (all R̂ ≤ 1.01), and all other effective
sample sizes in Table 1 exceed 500.

Again focusing on the top row of Table 1, the average dissimilarity between
patients i and j was 2.46 points higher (SE = 2.42) among asymmetric friends than
among nonfriends. The corresponding CI indicates that given the observed data,
there is a 95% posterior probability that the true mean difference is between −2.12
and 7.27, which is a very wide margin of error. Likewise, the second row shows 1.92
points higher average dissimilarity (SE = 2.09) among mutual friends than among
nonfriends, also with a large margin of error: 95% CI [−2.27, 5.73]. These results
contradict our hypothesis that friends would manifest more similar symptoms, but
because both CIs include 0, we cannot reject the H0 that there is simply no effect of
friendship on (dis)similarity. The third row compares asymmetric to mutual friends

Table 1 MCMC summaries from fitting reduced SRM to cross-sectional samples from the 3
weeks with the largest sample sizes (21 dyads). Pairwise comparisons are made between groups
of dyads that indicated no friendship (0), asymmetric friendship (1), or reciprocated friendship (2).
EAP = expected a posteriori (posterior mean), SD = posterior standard deviation, CI = credible
interval calculated from posterior percentiles, Neff = effective number of posterior samples (given
autocorrelation), R̂ = potential scale-reduction factor

Week Groups EAP SD 95% CI Neff R̂

6 1 vs. 0 2.46 2.42 [−2.12, 7.27] 421.06 1.01

2 vs. 0 1.92 2.09 [−2.27, 5.73] 501.27 1.01

2 vs. 1 −0.54 2.18 [−5.14, 3.95] 768.25 1.00

7 1 vs. 0 3.10 5.53 [−7.99, 13.48] 1176.77 1.00

2 vs. 0 −1.00 3.60 [−8.10, 6.16] 961.92 1.00

2 vs. 1 −4.10 6.54 [−16.35, 9.10] 1304.70 1.00

8 1 vs. 0 −3.35 5.23 [−13.26, 7.24] 722.00 1.00

2 vs. 0 −3.00 3.79 [−10.73, 4.31] 602.52 1.01

2 vs. 1 0.35 5.81 [−11.42, 11.17] 1121.66 1.00
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in Week 6, and the remaining rows of Table 1 show the estimated mean differences
between types of dyad for Weeks 7 and 8.

Across weeks, no clear pattern emerged in eating disorder symptoms; friends
were not consistently more or less similar in regards to their eating disorder
symptoms than nonfriends. Whereas Week-6 results descriptively indicate that
asymmetric (1 vs. 0) and mutual friendship (2 vs. 0) led to greater dissimilarity,
Week-8 results showed that asymmetric and mutual friendship led to greater
similarity; Week-7 results were mixed. However, all 95% CIs revealed quite a lack
of precision, so the none of the differences could be distinguished statistically from
zero.

Friendship formation may be more strongly related to other traits, such as
personality factors (Forney et al., 2019) or other aspects of psychopathology, rather
than to eating disorder symptoms. Indeed, a more consistent pattern was observed
such that friends tended to be more similar on depressive symptoms than nonfriends
(see the file “SupplementalResults.pdf” on OSF). Additionally, prior work supports
that the make-up of a therapy group (i.e., between-group effects) has a moderate
effect on treatment outcomes (Kivlighan et al., 2020). Thus, the lack of consistent
findings from week to week may reflect changes in the group make-up as patients
entered or left treatment or got to know one another better. Future work may
wish to examine closeness as a moderator of any similarity effects. Collecting and
combining data from multiple, independent partial hospitalization programs will
allow for a better understanding of factors that influence whether or how eating
disorder symptoms are related to friendship formation and the converse: whether or
how friendship may be related to improvements in eating disorder symptoms.

4 General Discussion

This chapter presents a reduced SRM with covariates designed to enable modeling
of dyad-level outcomes that do not vary within a dyad. The real-data application
showed that the model is estimable with real data, and converges quickly on a
solution, even with relatively little data. However, the low sample size each week
did not provide much power to detect any of the estimated effects. Future research
should verify the practical feasibility of this model via Monte Carlo simulation
studies.

Although it is difficult to anticipate the demand for this model development, it is
noteworthy that similar network models for binary outcomes—the p2 (Van Duijn
et al., 2004; Zijlstra et al., 2006) and j2 (Zijlstra, 2017) models—have also
been adapted for symmetric (dyad-constant) outcomes (Blanken et al., 2021), as
implemented in the b2ML() function of the R package dyads (Zijlstra, 2021).
Future research might compare this implementation to the reduced SRM presented
here, but with a probit link (Koster & Aven, 2018) to accommodate a binary
outcome.
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Appendix

Annotated Stan (Carpenter et al., 2017) syntax for the SRM fitted to the motivating-
example data in Sect. 3.2 is provided below. The *.stan file can be found on the OSF,
along with the data and an R script to fit the model using the R package rstan:
https://osf.io/j53n8/

data {
// sample sizes
int<lower=0> Nd; // number of dyads (Level 1)
int<lower=0> Np; // number of persons (Level 2, cross-classified)
// observed data
vector[Nd] Y; // observed round-robin outcome
vector[Nd] one; // dummy codes: one-way friend nomination
vector[Nd] both; // reciprocal friend nomination
// ID variables above Level 1
int IDp[Nd, 2]; // person-level IDs (cross-classified)

}
transformed data {

// save limits for default priors
vector[2] yLimits;
real halfRange;

// calculate observed limits
yLimits[1] = min(Y);
yLimits[2] = max(Y);
halfRange = (yLimits[2] - yLimits[1]) / 2;

}
parameters {

// means and SDs
vector[3] BETA; // intercept + 2 slopes
real<lower=0> s_d; // dyad-level residual SD
real<lower=0> s_p; // person-level random-effect SD

vector[Np] e_p; // vector of person-level random effects (unit scale)
}
transformed parameters {

vector[Nd] Yhat; // expected values, given random effects
for (n in 1:Nd) {

Yhat[n] = BETA[1] + BETA[2]*one[n] + BETA[3]*both[n] +
s_p*e_p[ IDp[n,1] ] + s_p*e_p[ IDp[n,2] ];

}
}
model {

// priors for means/slopes and SDs, based on empirical ranges:
BETA[1] ~ normal(yLimits[1] + halfRange, halfRange);
BETA[2] ~ normal(0, halfRange);
BETA[3] ~ normal(0, halfRange);
s_d ~ normal(halfRange / 5, halfRange / 5) T[0, ]; // residual SD
s_p ~ normal(halfRange / 5, halfRange / 5) T[0, ]; // person-level SD
// random effects (sample on unit scale)
e_p ~ std_normal();

// likelihood
Y ~ normal(Yhat, s_d);

}
generated quantities{

// mean difference between groups with dummy codes
real recip;
recip = BETA[3] - BETA[2];

}

https://osf.io/j53n8/
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Quality Assurance in Digital-First
Assessments

Manqian Liao, Yigal Attali, Alina A. von Davier, and J. R. Lockwood

Abstract Computational psychometrics, a blend of theory-driven psychometrics
and data-driven algorithms, provides the theoretical underpinnings for the design
and analysis of the new generation of high-stakes, digital-first assessments that
can be taken anytime and anywhere in the world, and their scores impact test
takers’ lives. The unprecedented flexibility, complexity, and high-stakes nature
of these digital-first assessments pose enormous quality assurance challenges. In
order to ensure these assessments meet both “the contest and the measurement”
requirements of high-stakes tests, it is necessary to conduct continuous pattern
monitoring and to be able to promptly react when needed. In this paper, we illustrate
the development of a quality assurance system for a high-stakes and digital-first
assessment. To build the system, educational data from continuous administrations
of the assessments are mined, modeled and monitored. In particular, five categories
of statistics are monitored to assure the quality of the assessment, including scores,
test taker profiles, repeaters, item analysis and item exposure. Various control
charts and models were applied to detect and flag the abnormal changes in the
assessment statistics. The monitoring results and alerts were communicated with the
stakeholders via an interactive dashboard. The paper concludes with a discussion on
how the automatic quality assurance system is combined with the human review
process in real-world application.

Keywords Quality assurance · Digital-first assessment · High-stakes assessment

1 Introduction

Digital-first assessments are assessments that are delivered online and can be
taken anywhere and anytime. The flexibility of digital-first assessments results in
an optimized test taker experience (Burstein et al., 2021). The development and
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delivery of digital-first assessments are dependent on a wide range of digital tools,
including automatic systems for test development, scoring, and test delivery. In
contrast to traditional large-scale assessments that are based on in-person admin-
istration to large groups of test takers in fixed locations, digital-first assessments
are administered continuously to individual test takers. The advantages of digital-
first assessments have manifested themselves during the pandemic, when traditional
group assessments in brick-and-mortar test centers became impractical. When
digital-first assessments are used for high-stakes purposes (e.g., college admission,
employment), they have significant impact on test takers’ lives. Therefore, a rigorous
quality assurance (QA) system is required to ensure the integrity and validity of the
test scores.

QA refers to a systematic process for maintaining the high quality of the test
and assessment scores and to prevent errors at all stages of the test, including
test design, item design and development, test scoring, test analysis and score
reporting (International Test Commission, 2014). QA is a key step to ensure that the
digital-first high-stakes assessments meet both “the contest and the measurement”
requirements of high-stakes tests (Holland, 1994), where the “contest” refers to the
expectation that the test gives everyone a fair chance, and the “measurement” refers
to the requirement that the test is accurate and valid.

Since digital-first assessments differ from traditional assessments in many
aspects (e.g., administration frequency, item bank size), it is challenging but
necessary to develop a QA system that is tailored for digital-first assessments.
Such a QA system must serve two purposes. On one hand, it must keep track of
statistics to evaluate the health of the test. On the other hand, it must raise alerts
when there are irregularities in the statistics. To build such a system, at least four
design questions need to be addressed: (1) What statistics should be tracked in
the quality assurance system? (2) How can the statistics be continuously updated
and monitored? (3) What criteria should be used to identify irregularities in the
statistics? and (4) How can the alerts be communicated and addressed? This paper
is aimed at documenting the development process of a QA system called Analytics
for Quality Assurance in Assessment (AQuAA) for a real-world, digital-first high-
stakes language assessment. Given the data-rich nature of digital-first assessments,
computational psychometrics (von Davier, 2015, 2017; von Davier et al., 2021), a
blend of theory-driven psychometrics and data-driven algorithms, is leveraged to
develop AQuAA. Considerations for each of the four design questions above are
elaborated upon. While each assessment is unique, it is hoped that this paper can
serve as a framework to help future practitioners to develop QA systems for their
own digital-first assessments.

1.1 Theoretical Framework

Quality assurance plays an important role in maintaining test score validity. Allalouf
(2007) indicated that mistakes that jeopardize assessment score validity could occur
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at all stages of assessment development and administration, and that mistakes
could accumulate since many stages are contingent on previous stages. Therefore,
quality control guidelines and step-by-step procedures (Allalouf, 2007; Allalouf et
al., 2017; International Test Commission, 2014) have been developed to help test
developers identify possible mistakes as well as their causes, thereby helping them
to identify solutions to fix the mistakes and prevent them from happening again.

Quality control procedures were primarily designed for traditional large-scale
assessments that are administered on only a few test dates and have large test
volumes in each administration (e.g., Allalouf, 2007), with Allalouf et al. (2017)
being an exception. Allalouf et al. (2017) recommended a quality control procedure
for continuous-mode tests (i.e., tests that are administered to small groups of
test takers on many test dates) which share some similarities with digital-first
assessments. Moreover, Allalouf et al. (2017) have demonstrated an automated
quality control system for continuous-mode tests and the system consists of both an
automatic component and a human review component. These two parts also apply
to the quality assurance of digital-first assessments. In the automatic part, a number
of steps that need to be conducted recurrently and which can be implemented
programmatically are packed into an automatic procedure with the use of digital
tools. Steps in such an automatic procedure may include fetching the data from the
database, conducting a variety of quality control analyses (see Lee & von Davier,
2013 for a review of quality control methods) and generating statistical reports. In
the human review part, human experts are trained to review the statistical reports
generated from the automatic procedure in order to identify the sources for the
potential irregularities or outliers, and determine whether or what actions need to
be taken to handle these irregularities.

The foundation of an automated quality assurance procedure consists of a wide
range of data mining and data visualization techniques. In the realm of quality
assurance, the data mining and data visualization techniques serve two major
purposes: First, to describe the trends and seasonal patterns of the assessment
statistics; Second, to detect abrupt changes in the relevant assessment statistics. Lee
and von Davier (2013) have summarized a number of statistical methods and data
visualization techniques for score quality assurance purposes. Various time series
techniques can be chosen to describe trends or seasonal patterns, which include
linear ANOVA models (Haberman et al., 2008), regression with autoregressive
moving-average (Li et al., 2009), harmonic regressions (Lee & Haberman, 2013)
and dynamic linear models (Wanjohi et al., 2013). The Shewhart chart is a useful
data visualization tool for continuous test score characteristics (Schafer et al., 2011).
In terms of detecting abrupt changes in the assessment statistics, some model-based
approaches have been applied to mine the data and identify abrupt changes in
score time series, such as change-point models and hidden Markov model (Lee &
von Davier, 2013). A data visualization technique for detecting abrupt changes is
cumulative sum (CUSUM) charts (Page, 1954).

The products of the automated QA procedure may include summary tables of
the statistics, graphs and statistical testing results (Allalouf et al., 2017). These
statistical products could be organized into different formats, such as reports
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(Allalouf et al., 2017) and dashboards (Mohadjer & Edwards, 2018). Since the
products of the automated quality assurance procedure serve as the starting point
of the human review process (Allalouf et al., 2017), the choice of organizing format
should be determined by the ease of communication to the targeted stakeholders.

1.2 The Context of AQuAA

The Duolingo English Test is a high-stakes computerized adaptive test that is
designed to be accessible anywhere and anytime (Settles et al., 2020). Thus, it
falls under the category of continuous-mode assessments (Allalouf et al., 2017).
The Duolingo English Test is an adaptive test, with a large item bank that has
been designed by subject matter experts (SMEs) and produced automatically by
computer. The items are reviewed by panels of SMEs to ensure quality and
cultural fit. The items are scored automatically, and the scoring methods are
reviewed periodically by SMEs. Each individual test is proctored remotely using
an asynchronous system that involves both AI-based tools and human proctors.
Certified test takers are expected to get their test scores within 48 hours after they
take the test. The role of AQuAA is to ensure that all test scores are valid and of
high quality.

2 What Statistics Should Be Tracked in the Quality
Assurance System?

To determine what statistics should be tracked in AQuAA, we need to identify
statistics that indicate test quality and score validity of the assessments. As noted
by Kane (2013), the interpretation and use of test scores should be validated from
various aspects, such as scoring and generalization. Accordingly, AQuAA needs to
monitor multiple categories of statistics. In the context of the Duolingo English Test,
we determine that the following five categories of statistics cover most aspects of
test quality and are feasible to be monitored continuously: scores, test taker profile,
repeaters, item analysis, and item exposure.

2.1 Scores

Test scores are directly used by stakeholders (e.g., test takers, institutions), thus
summary statistics of the scores, including overall scores, sub-scores, and item
type scores, are tracked in AQuAA. Score-related statistics include the location and
spread of scores, inter-correlations among scores, bivariate or multivariate outliers,
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internal consistency measures, standard error of measurement (SEM) and validity
coefficients (e.g., correlation with self-reported external measures).

2.2 Test Taker Profile

The composition of the test taker population is tracked over time, as it could be used
to explain the variability in test scores to some extent. Specifically, the (percentage)
volume of test takers in important population categories, such as country, native
language, gender, age, and intent in taking the test, are tracked. In addition, many of
the score statistics are tracked across major test-taker groups.

2.3 Repeaters

In AQuAA, repeaters are defined as those test takers who take the test more than
once within a 30-day window. The prevalence, composition, and performance of the
repeaters are tracked. The composition of the repeater population is defined with
respect to the same test taker profile categories discussed above; the performance
of the repeater population is tracked with many of the same test score statistics
identified above. Statistics that are specific to the “repeaters” category include
location and spread of the first and second test scores, score difference across test
attempts, test-retest reliability and SEM.

2.4 Item Analysis

Ensuring that items are of high quality and that the item quality is stable over time
are the prerequisites of maintaining the validity of the test scores. In AQuAA,
item quality is quantified across four categories of item performance statistics:
item difficulty, item discrimination, item slowness (response time), and differential
item functioning (DIF). Tracking these statistics could help us develop expectations
about the item bank with respect to item performance, flag items with extreme
and/or inadequate performance, and detect drift in measures of performance across
time. Each category of item performance statistics can be computed with various
statistical methods, either descriptive or model-based. For example, the item
difficulty can be represented with the percentage of test takers who respond to the
item correctly (i.e., descriptive method) or with the difficulty parameter estimate
from an Item Response Theory (IRT) model (i.e., model-based method).
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2.5 Item Exposure

The item exposure statistics concern how frequent each item (or each group of
items) are used. An item being used either too frequently (over-exposure) or too
infrequently (under-exposure) are undesirable for maintaining the item quality. An
important statistic in this category is the item exposure rate, which is calculated
as the number of test administrations containing a certain item divided by the total
number of test administrations. Tracking the item exposure rates can help flag under-
or over-exposure of items. Since item exposure rates are jointly affected by various
factors, including the item bank characteristics and the item selection algorithm,
monitoring the item exposure rate could also reveal potential issues in the item bank
and the item selection algorithm.

3 How Can the Statistics Be Continuously Monitored
and Updated?

To continuously monitor and update the statistics and the control charts in AQuAA,
we developed an automated updating pipeline as shown in Fig. 1, and implemented
it with R (R Development Core Team, 2013). The pipeline is scheduled to import
data into R from a database that stores all of the assessment data (e.g., person-
level data, item-response-level data and process data) daily. It then calculates the
statistics that have been planned to track as described in the previous section. Before
calculating the statistics, a series of automatic data inspections are conducted to
check the completeness and quality of the data. For example, one item on the
checklist is whether a specific day’s data are missing from the datasets and whether
there are any irregular values (e.g., negative values in time duration variables) in the
datasets. If one or more of these tests were to fail, the pipeline would raise an alert
and further investigation would be conducted by analysts to examine the causes of

Fig. 1 QA system automated updating pipeline
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the data quality issues. These data quality inspections serve to ensure the accuracy
of the calculated statistics.

To visualize the trends and patterns of the statistics and facilitate communication
in the QA process, statistics are plotted using the ggplot2 R package (Wickham,
2011). Line plots are one of the most basic tools to visualize the time-series data.
Smoothed lines created by the locally weighted scatterplot smoothing (LOWESS;
Cleveland, 1979) method are used to represent the trends of the statistics. The statis-
tics and figures are integrated into an interactive dashboard using the Flexdashboard
(Iannone et al., 2020) package.

Some intermediate data files also result from the statistical calculation; links to
these data files are also integrated into the interactive dashboard so that they can be
accessed by internal researchers for quality audit and/or further analyses.

4 What Criteria Should Be Used to Identify Irregularities
in the Statistics?

Since it is unfeasible to manually monitor the QA dashboard around the clock, it
is necessary to have an alert system to automatically push notifications to the test
developing teamwhenever there is an irregularity in the tracked statistics. Therefore,
the third design question concerns the identification of irregularities in the statistics,
which involves developing AQuAA’s warning mechanism. Developing a warning
mechanism in a digital-first assessment is challenging partly due to the fact that
the population of test takers is constantly evolving and changing. Accordingly, the
baselines of many of the tracked metrics cannot be assumed to be stationary over
time. To the changing score baselines and flag daily irregularities (i.e., days when
the score statistics have irregular trends), a daily score residual (r) is computed:

r = Xobs − Xpred

where Xpred is the daily predicted score that is computed by regressing historical
scores on various background variables, such as gender, native language, and test
taking intent, using a nonparametric regression tree method. The predicted score
has taken into account the changing test-taker demographics and will serve as the
baseline for flagging daily irregularities. Xobs is the daily average observed score. If
a day’s daily score residual has a large absolute value compared to the corresponding
30-day rolling average, (i.e., z > 2.5, where z = � (r − M30)/s30�; M30 and s30 are
the 30-day rolling mean and standard deviation of the daily residuals, respectively),
then the daily residual is flagged as irregular. In such a context, “irregularity” is
defined as a significant daily score change that cannot be explained by changes in
the test taker demographics. Such irregularities should trigger alerts because they
could indicate the occurrence of some unusual events. In Fig. 2, an irregular daily
residual is represented as a colored point (green, blue or red, depending on severity).
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Fig. 2 Daily residual chart. Each dot represents an average daily residual. The black line
represents the 30-day rolling average of the daily residuals, M30. Irregular daily residuals are
represented as colored dots. Green, blue and red indicate slight, medium and large severity,
respectively

Fig. 3 Demo of an alarming email sent to the test developing team

The green points in Fig. 2 indicate that there are a few significant increases in
the overall scores in July and October, but these score increases cannot be fully
explained by the population changes that are indicated by the observed background
variables. An automated email sent to the test developing team is triggered (See
Fig. 3 for a demo) whenever a daily irregularity is detected (e.g., when there is
a colored point coming up in Fig. 2).In a situation such as the one described in
Fig. 2, SMEs will meet and discuss the potential causes for these outliers. One
hypothesis is seasonality, but for a young test like the Duolingo English Test it is
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still too early to establish it. One way to determine the causes is to explore the
potential seasonality is to review major events that concur with the green points
and whether we encountered a similar pattern in the previous years (although this
does not work well for a new test). Examples of major events include institutions’
admission deadlines, which could impose test-taking population changes that have
not been fully captured by the observed background variables. For instance, further
investigations reveal that the green points in late October in Fig. 2 approximately
concur with many universities’ early action deadline on Nov 1 (i.e., deadline for
students to submit their applications early). Another hypothesis is that abnormal
test taking behaviors (e.g., item preknowledge) could be another cause for the score
alerts, which could further threaten the score validity. Therefore, it is important to
collaborate with test security experts in understanding the causes of the alerts. In
this particular case presented in Fig. 2 the evidence supports that seasonality may
exist and we had no evidence of cheating or inappropriate behaviors.

5 What Actions Should Be Taken When There Are Alerts
of Irregularities?

The last design question involves how actions are informed by the alerts of
irregularities. Even though most of the processes (e.g., test development, test
scoring) in the digital-first assessment have been automated, the QA process is
still a combination of automatic processes and human review. AQuAA serves as
a starting point for the human review process, and the human review process,
in turn, helps AQuAA to evolve into a more powerful tool to detect assessment
validity issues. Figure 4 demonstrates an example of the human review process
following each week’s updates of the QA statistics: SMEs meet to review the
alerts raised by AQuAA’s alarming mechanism and check for any anomalies that
have been suggested by the quality control statistics/charts but have not been
caught by AQuAA alarming mechanism. The SMEs review each individual alert
and investigate the possible causes of the alert. As described in the example of
Fig. 2 in Sect. 4, reviewing the major events that concur with the alerts is an
important step in discovering the causes. Additionally, it is crucial to distinguish
the alerts caused by seasonality from those caused by other factors that may
threaten the score validity (e.g., abnormal test taking behaviors). Collaborating
with experts with diverse backgrounds and expertise (e.g., test security experts,
institution engagement experts) can help develop a more comprehensive picture of
the events concurring with the alerts and provide more accurate insights about the
causes of the alerts.
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Fig. 4 Human review process in the QA procedure

If the alert is believed to be caused by a validity issue, follow-up actions are
taken to determine the urgency of the issue, to fix it, and to document it. If a validity
issue had not been caught by AQuAA alarming mechanism, improvements would
be made to AQuAA functionality so that it would be more sensitive in detecting the
issue in the future.

6 Discussion

This paper describes the development of a QA system designed for a high-stakes,
digital-first language assessment. The design of AQuAA was largely motivated by
the characteristics of the assessment. The key design questions and considerations
have been elaborated. It should be noted that the list of QA statistics presented
in this paper is not exhaustive. Instead, due to the data-rich nature of the digital-
first assessment, the list of monitoring statistics is expected to be lengthened
and improved as the research in statistical techniques advances. If applied to
other assessments, the list of monitoring statistics should also be customized to
the purposes and characteristics of the assessments. Hence, the infrastructure of
AQuAA is designed to be flexible so that it can incorporate and monitor additional
statistics.

In the future, besides controlling the quality of the assessment, we aim to use
AQuAA to understand the seasonality of the test. From the statistics and control
charts (e.g., Fig. 2), we have not seen a clear seasonality pattern yet. The lack of
seasonality is possibly due to the fact that the Duolingo English Test is relatively
new so that it has not accumulated sufficient data to reveal a seasonal pattern and
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that the test taking population is constantly changing because of some unpredictable
factors (e.g., the pandemic and the more widespread adoption of the test for
institutional admission decisions). It is hoped that the seasonality pattern gets clearer
as more and more test data get collected.

References

Allalouf, A. (2007). Quality control procedures in the scoring, equating, and reporting of test
scores. Educational Measurement: Issues and Practice, 26(1), 36–46.

Allalouf, A., Gutentag, T., & Baumer, M. (2017). Quality control for scoring tests administered
in continuous mode: An NCME instructional module. Educational Measurement: Issues and
Practice, 36(1), 58–68. https://doi.org/10.1111/emip.12140

Burstein, J., LaFlair, G., Kunnan, A., & von Davier, A. (2021). A theoretical assessment
ecosystem for a digital-first assessment—The Duolingo English Test. https://duolingo-
papers.s3.amazonaws.com/other/det-assessment-ecosystem.pdf

Cleveland, W. S. (1979). Robust locally weighted regression and smoothing scatterplots. Journal
of the American Statistical Association, 74(368), 829–836.

Haberman, S. J., Guo, H., Liu, J., & Dorans, N. J. (2008). Consistency of SAT® I: Reasoning test
score conversions. ETS Research Report Series, 2008(2), i–20.

Holland, P. W. (1994). Measurements or contests? Comments on Zwick, Bond and Allen/-
Donoghue. In Proceedings of the social statistics section of the American Statistical Associ-
ation (pp. 27–29). American Statistical Association.

Iannone, R., Allaire, J. J., Borges, B., RStudio, IO, K., Almsaeed, A., Mosbech, J., Bossart, N.,
Verou, L., Baranovskiy, D., Labs, S., Djuricic, B., Sardyha, T., Lewis, B., Sievert, C., Kunst,
J., Hafen, R., Rudis, B., & Cheng, J. (2020). flexdashboard: R Markdown Format for Flexible
Dashboards (0.5.2) [Computer software]. https://CRAN.R-project.org/package=flexdashboard

International Test Commission. (2014). ITC guidelines on quality control in scoring, test analysis,
and reporting of test scores. International Journal of Testing, 14(3), 195–217. https://doi.org/
10.1080/15305058.2014.918040

Kane, M. T. (2013). Validating the interpretations and uses of test scores. Journal of Educational
Measurement, 50(1), 1–73.

Lee, Y.-H., & Haberman, S. J. (2013). Harmonic regression and scale stability. Psychometrika,
78(4), 815–829.

Lee, Y.-H., & von Davier, A. A. (2013). Monitoring scale scores over time via quality control
charts, model-based approaches, and time series techniques. Psychometrika, 78(3), 557–575.
https://doi.org/10.1007/s11336-013-9317-5

Li, D., Li, S., & von Davier, A. A. (2009). Applying time-series analysis to detect scale drift. In
Statistical models for test equating, scaling, and linking (pp. 327–346). Springer.

Mohadjer, L., & Edwards, B. (2018). Paradata and dashboards in PIAAC. Quality Assurance in
Education, 26(2), 263–277.

Page, E. S. (1954). Continuous inspection schemes. Biometrika, 41(1/2), 100–115.
R Development Core Team. (2013). R: A language and environment for statistical computing.

Retrieved from http://cran.fiocruz.br/web/packages/dplR/vignettes/timeseries-dplR.pdf
Schafer, W. D., Coverdale, B. J., Luxenberg, H., & Ying, J. (2011). Quality control charts in large-

scale assessment programs. Practical Assessment, Research, and Evaluation, 16(1), 15.
Settles, B., LaFlair, G. T., & Hagiwara, M. (2020). Machine learning–driven language assessment.

Transactions of the Association for Computational Linguistics, 8, 247–263. https://doi.org/
10.1162/tacl_a_00310

http://doi.org/10.1111/emip.12140
https://duolingo-papers.s3.amazonaws.com/other/det-assessment-ecosystem.pdf
https://cran.r-project.org/package=flexdashboard
http://doi.org/10.1080/15305058.2014.918040
http://doi.org/10.1007/s11336-013-9317-5
http://cran.fiocruz.br/web/packages/dplR/vignettes/timeseries-dplR.pdf
http://doi.org/10.1162/tacl_a_00310


276 M. Liao et al.

von Davier, A. A. (2015). Virtual and collaborative assessments: Examples, implications, and
challenges for educational measurement. Invited Talk at the Workshop on Machine Learning
for Education, International Conference of Machine Learning 2015

von Davier, A. A. (2017). Computational psychometrics in support of collaborative educational
assessments. Journal of Educational Measurement, 54(1), 3–11.

von Davier, A. A., Mislevy, R., & Hao, J. (Eds.). (2021). Computational psychometrics: New
methodologies for a new generation of digital learning and assessment: With examples in R
and Python. Springer. https://doi.org/10.1007/978-3-030-74394-9

Wanjohi, R. G., van Rijn, P. W., & von Davier, A. A. (2013). A state space approach to modeling
IRT and population parameters from a long series of test administrations. In New developments
in quantitative psychology (pp. 115–132). Springer.

Wickham, H. (2011). ggplot2. Wiley Interdisciplinary Reviews: Computational Statistics, 3(2),
180–185.

http://doi.org/10.1007/978-3-030-74394-9


Effects of Restoring Missing Data
on Uniform Differential Item Functioning
Analysis
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Abstract The fairness of a test is a critical indicator of its quality and the basis
on which it can confidently be administered. The detection of differential item
functioning (DIF) is a vital procedure for examining test fairness. If the missing data
rate is too high, DIF detection cannot function properly. Therefore, knowing how to
handle missing values to ensure reliable DIF detection results is crucial. Because
the method of handling missing values determines the values of the restored data,
it may also subsequently affect the DIF detection results. Finch (Appl Meas Educ
24:281–301, 2011) reported that using multiple imputation (MI) to manage missing
data is advantageous. However, that study only considered the target item missing
and the percentage of missing responses to it instead of also incorporating the effect
of the DIF percentage on the DIF detection results. Thus, this study investigated
how these factors affected the restoration of missing values and the detection of
DIF items. The results demonstrated that although the type of missing data had
the greatest effect on data restoration, the missing data rate also affected it. The
k-nearest neighbors (kNN) method restored missing completely at random (MCAR)
and missing at random (MAR) data most accurately, and the predictive mean
matching (PMM), MI, and classification and regression tree (CART) methods
restored missing not at random (MNAR) data most accurately. The Lord’s chi-
square andMantel–Haenszel DIF detection methods both met the model expectation
of the type I error rate when the DIF percentage was less than 20%. As the DIF
percentage increased, both methods’ type I error rates increased, and their statistical
power decreased.
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1 Introduction

The fairness of a test is a critical indicator of its quality and the basis on which it can
confidently be administered. The detection of differential item functioning (DIF) is
a vital procedure for examining test fairness. This study examined the impact of
missing item response data on the detection of uniform DIF. Uniform DIF exists
when members of one group have a consistent advantage in correctly responding
to an item compared with members of another group across all levels of the skill
that the instrument is measuring (Camilli & Shepard, 1994). Many DIF detection
methods are available, including those based on item response theory (IRT) and non-
IRT approaches. Non-IRT approaches, such as the Mantel–Haenszel method (MH;
Mantel & Haenszel, 1959), logistic regression (Swaminathan & Rogers, 1990),
and SIBTEST (Millsap & Everson, 1993; Shealy & Stout, 1993), do not make
any assumption on the distribution of the latent trait. An IRT approach, however,
assumes that the latent trait is normally distributed among the population, and the
item responses are assumed to follow the distribution of some IRT models. Item
parameters are estimated based on the models and are then compared to identify any
significant difference between groups. IRT approaches include Lord’s chi-square
test (Lord, 1980) and the likelihood ratio test (Thissen et al., 1993).

Rubin (1976) defined three types of missing data: missing completely at random
(MCAR), missing at random (MAR), and missing not at random (MNAR). MCAR
data have no systematic mechanism associated with the missingness, and MAR
means that the probability of a missing response is the same only within groups
defined by the observed data; therefore, examinees from one group might have
a greater likelihood of leaving an item unanswered than examinees from another
group. MNAR means that the reason for the missing data is related to factors
unknown to the researcher. Peugh and Enders (2004) stated that missing data
analyses have received considerable attention in the methodological literature of
statistical modeling, and multiple imputation (MI; Rubin, 1987) and maximum like-
lihood estimation (MLE; Dempster et al., 1977) are recommended. The predictive
mean matching (PMM; Little & Rubin, 2002) method is also a common method
for restoring missing data. Missing data can be deemed a classification problem in
data mining, which is the process of extracting and discovering patterns in large
data sets. The classification and regression tree (CART; Breiman et al., 1984) and
k-nearest neighbors (kNN; Fix & Hodges, 1951) algorithms are commonly used in
data mining. However, the CART and kNNmethods have not been applied to restore
missing data. Methods based on statistic modeling and data mining are included in
this study to restore missing data.

Some DIF detection methods have been applied to missing item response data
(Finch, 2008, 2011; Huisman & Molenaar, 2001; Sijtsma & van der Ark, 2003). If
the missing data rate is too high, however, DIF detection cannot function properly.
Therefore, knowing how to manage missing values to ensure reliable DIF detection
results is essential. Because the method of handling missing values determines the
values of the restored data, it may subsequently affect the DIF detection results.
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Finch (2011) reported that using MI to manage missing data is advantageous.
However, Finch only considered the target item missing and the percentage of
missing responses for it rather than incorporating the effect of the DIF percentage
on the DIF detection results. Robitzsch and Rupp (2009) indicated that interactions
among the type of missing data, data restoration methods, and missing rates might
greatly affect predictions of DIF detection efficiency. Thus, this study investigated
how these factors affect the restoration of missing values and the detection of DIF
items.

2 Method

Two simulations were conducted, and data were generated on the basis of the Rasch
(1960) model. The sample size was 500 for both the reference and focal groups. The
latent traits of both groups were drawn from the standard normal distribution, and
40 item parameters from Robitzsch and Rupp (2009) were used.

2.1 Study 1

The first study focused on data restoration, and five variables were manipulated:
the type of missing data (three levels: MCAR, MAR, and MNAR), missing data
rate (four levels: 0%, 10%, 20%, and 30%), data restoration method (five types:
MI, PMM, MLE, CART, and kNN), DIF percentage (five levels: 0%, 10%, 20%,
30%, and 40%), and DIF amount (three levels: 0, 0.5 and 0.8). Each condition was
replicated 100 times.

For each of the types of missing data conditions, the missing data rate determined
the number of responses that were randomly selected to be missing for each group.
Under the MCAR condition, responses from both groups were selected to be
missing, and under the MAR condition, responses from only the focal group were
selected to be missing. Under the MNAR condition, incorrect responses from both
groups were selected to be missing.

MI allows for uncertainty regarding the missing data by creating several imputed
data sets and combining the results obtained from each. PMM is an appealing
method for conducting multiple imputations for missing data and reduces bias
through imputation by employing real values sampled from the data. For each
missing entry, the method involves forming a small set of cases with complete
and similar responses, and the observed response from one randomly selected case
replaces the missing entry. MLE uses available responses from each case to compute
maximum likelihood estimates for the missing responses. CART seeks predictors
that are used to split the sample by repeatedly dividing the sample into more
homogeneous subsamples; the algorithm uses surrogate splits to calculate the best
split (left or right) for a case with a missing entry if more cases are sent in the
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same direction. kNN replaces the missing entry with the mean value from the kNN
parameter based on training. In this study, a Gower distance (Gower, 1971) was
used to impute missing values. Evaluation criteria included five indicators, namely
accuracy, bias, root mean squared error, mean absolute error, and correlation.

2.2 Study 2

The second study focused on DIF detection, and six variables were manipulated. In
addition to the variables used in Study 1, DIF detection methods (two levels: MH
and Lord’s chi-square) were also incorporated. Each condition was replicated 100
times.

TheMHmethod uses test scores as matching variables for the reference and focal
groups and calculates the common odds ratio for each item to determine whether an
item has DIF. The Lord’s chi-square method entails computing item parameters
for the reference and focal groups and then determining whether the differences
in item parameters are statistically significant. Although the MH method is a non-
IRT approach and Lord’s chi-square method is an IRT approach, both methods are
commonly used for DIF detection. Evaluation criteria included two indicators: type
I error and statistical power. The results were calculated over 100 replications.

3 Results

3.1 Study 1

The results from Study 1 of the MCAR, MAR, and MNAR data are listed in Tables
1, 2, and 3, respectively. When the missing data rates were 10%, 20%, or 30%, the
data restoration accuracy should have started at 0.9, 0.8, and 0.7, respectively. The
type of missing data had a great effect on the data restoration accuracy; the accuracy
of restoring MCAR data was slightly higher than for MAR data, which was higher
than for MNAR data. When MCAR and MAR data had a 10% missing data rate, the
kNN method performed best of all the methods, and the MLE method performed
worst. When MNAR data had a 10% missing rate, the PMM, MI, and CART
methods performed best, and the kNN method performed worst. With all data, the
PMM, MI, and CART methods performed similarly, and the DIF percentage and
DIF amount had little effect on the accuracy of the data restoration. Data restoration
was less accurate as missing data rates increased.
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Table 1 Data restoration accuracy rates for MCAR data

Missing rate (%) DIF amount DIF% PMM MI CART kNN MLE

10 0 0 0.964 0.964 0.964 0.968 0.955
0.5 10 0.964 0.964 0.963 0.967 0.955

20 0.963 0.963 0.963 0.966 0.955
30 0.963 0.963 0.963 0.967 0.955
40 0.962 0.962 0.962 0.966 0.956

0.8 10 0.963 0.963 0.963 0.967 0.955
20 0.964 0.964 0.963 0.967 0.955
30 0.963 0.963 0.963 0.966 0.956
40 0.964 0.964 0.964 0.968 0.955

20 0 0 0.928 0.929 0.928 0.935 0.911
0.5 10 0.927 0.927 0.927 0.933 0.911

20 0.926 0.926 0.925 0.931 0.911
30 0.927 0.927 0.927 0.933 0.911
40 0.925 0.925 0.924 0.931 0.912

0.8 10 0.927 0.927 0.927 0.933 0.911
20 0.927 0.927 0.927 0.933 0.911
30 0.926 0.926 0.926 0.931 0.913
40 0.928 0.928 0.928 0.934 0.911

30 0 0 0.893 0.893 0.892 0.901 0.866
0.5 10 0.891 0.891 0.890 0.898 0.867

20 0.888 0.888 0.888 0.894 0.868
30 0.891 0.890 0.890 0.899 0.867
40 0.887 0.887 0.887 0.894 0.868

0.8 10 0.890 0.890 0.890 0.898 0.867
20 0.891 0.891 0.891 0.898 0.866
30 0.889 0.889 0.889 0.894 0.870
40 0.892 0.892 0.891 0.900 0.866

3.2 Study 2

The second study focused on DIF detection. Because MAR data performed poorly
and MCAR performed similarly to MNAR, only the MCAR results are discussed.
The type I error and statistical power results of the two DIF detection methods for
a 0% missing data rate are listed in Table 4. The results of the type I error and
statistical power of the MH and Lord’s chi-square methods using MCAR data with
a 10% missing data rate are listed in Table 5, and the results of each method for
MCAR data with a 30% missing rate are listed in Table 6. Because each condition
was replicated 100 times, the average type I error and power were calculated over
100 replications. The type I error should be approximately 5% to meet the model
expectations under each condition. If the type I error was less than 4% or more than
6%, the result and the corresponding power in Tables 4, 5, and 6 appear in bold.
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Table 2 Data restoration accuracy rates for MAR data

Missing rate (%) DIF amount DIF% PMM MI CART kNN MLE

10 0 0 0.964 0.964 0.964 0.966 0.955
0.5 10 0.964 0.964 0.963 0.965 0.955

20 0.963 0.963 0.963 0.964 0.955
30 0.963 0.963 0.963 0.965 0.955
40 0.963 0.962 0.962 0.964 0.955

0.8 10 0.964 0.964 0.963 0.965 0.955
20 0.964 0.964 0.964 0.965 0.955
30 0.963 0.963 0.963 0.964 0.956
40 0.964 0.964 0.964 0.965 0.955

20 0 0 0.928 0.928 0.928 0.931 0.910
0.5 10 0.927 0.927 0.926 0.929 0.910

20 0.925 0.925 0.925 0.925 0.911
30 0.926 0.926 0.926 0.928 0.910
40 0.924 0.924 0.924 0.925 0.911

0.8 10 0.927 0.927 0.926 0.929 0.910
20 0.927 0.927 0.927 0.928 0.910
30 0.926 0.926 0.926 0.925 0.912
40 0.928 0.928 0.927 0.929 0.910

30 0 0 0.890 0.890 0.890 0.896 0.865
0.5 10 0.889 0.889 0.888 0.893 0.865

20 0.886 0.886 0.886 0.887 0.865
30 0.888 0.888 0.887 0.892 0.866
40 0.885 0.885 0.884 0.887 0.866

0.8 10 0.888 0.889 0.888 0.894 0.866
20 0.889 0.890 0.889 0.893 0.864
30 0.888 0.888 0.887 0.887 0.867
40 0.890 0.890 0.889 0.895 0.864

The overall results of Study 2 were highly similar for the 0%, 10% and 30%
missing data rates. For all the rates displayed, the type I error of Lord’s chi-square
method was slightly lower than the model expectation when the DIF percentage
was either 0% or 10% with a 0.5 DIF amount. The type I error of Lord’s chi-square
method met the model expectation when the DIF percentage was 10% with a 0.8
DIF amount or when the DIF percentage was 20% with a 0.5 DIF amount. As the
DIF amount increased, the type I error and the power both increased. As the DIF
percentage increased, the type I error increased but power decreased. Multiple data
restoration methods performed similarly in terms of type I error and power.
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Table 3 Data restoration accuracy rates for MNAR data

Missing rate (%) DIF amount DIF% PMM MI CART kNN MLE

10 0 0 0.960 0.960 0.960 0.936 0.951
0.5 10 0.960 0.960 0.959 0.935 0.951

20 0.958 0.958 0.958 0.934 0.951
30 0.960 0.960 0.959 0.935 0.951
40 0.958 0.958 0.958 0.933 0.951

0.8 10 0.960 0.960 0.959 0.935 0.951
20 0.960 0.960 0.959 0.936 0.950
30 0.958 0.958 0.958 0.936 0.951
40 0.960 0.960 0.960 0.936 0.951

20 0 0 0.911 0.911 0.910 0.849 0.890
0.5 10 0.910 0.910 0.909 0.846 0.891

20 0.906 0.906 0.905 0.837 0.889
30 0.910 0.910 0.909 0.846 0.891
40 0.906 0.906 0.905 0.839 0.891

0.8 10 0.909 0.909 0.909 0.845 0.891
20 0.909 0.909 0.908 0.843 0.889
30 0.905 0.904 0.904 0.834 0.888
40 0.910 0.910 0.910 0.847 0.890

30 0 0 0.845 0.845 0.843 0.751 0.812
0.5 10 0.843 0.843 0.841 0.747 0.813

20 0.834 0.834 0.831 0.728 0.807
30 0.843 0.843 0.841 0.749 0.814
40 0.836 0.836 0.833 0.737 0.812

0.8 10 0.842 0.842 0.840 0.747 0.813
20 0.839 0.839 0.837 0.738 0.807
30 0.830 0.830 0.828 0.718 0.803
40 0.844 0.844 0.841 0.748 0.812

When the missing data rate was 0%, the type I error of the MH method was
slightly lower than the model expectation when the DIF percentage was 0%, and
when the missing data rate was 10%, the type I error of the MH method met the
model expectation when the DIF percentage was 0% or when the DIF percentage
was 10% with a 0.5 DIF amount. When the missing rate reached 30%, however, the
type I error of the MH method was slightly lower than the model expectation when
the DIF percentage was 0%. The type I error of the MH method met the model
expectation when the DIF percentage was 10% with a 0.5 DIF amount. The type I
error of Lord’s chi-square method was slightly smaller than the model expectation
when the DIF percentage was either 0% or 10% with a 0.5 DIF amount. As the
missing data rate increased, the type I error and power decreased.
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Table 4 Type I error and
power of 0% missing rate

DIF methods DIF amount DIF% Type I error Power

MH 0 0 .03
0.5 10 .04 .84

20 .08 .74
30 .13 .57
40 .23 .49

0.8 10 .06 .99
20 .16 .98
30 .31 .93
40 .50 .84

Lord 0 0 .02
0.5 10 .03 .82

20 .06 .72
30 .11 .54
40 .21 .44

0.8 10 .05 .99
20 .12 .99
30 .29 .92
40 .48 .82

Table 5 Type I error and power with 10% missing rate of MCAR data

Type I error Power

DIF methods DIF amount DIF% PMM MI CART KNN MLE PMM MI CART kNN MLE

MH 0 0 .04 .03 .04 .04 .03

0.5 10 .04 .04 .04 .04 .04 .73 .73 .74 .73 .72

20 .08 .08 .08 .07 .08 .65 .65 .64 .65 .63

30 .12 .12 .12 .11 .11 .49 .49 .49 .50 .46

40 .20 .19 .20 .20 .19 .40 .41 .42 .41 .38

0.8 10 .06 .06 .06 .06 .06 .98 .98 .98 .99 .98

20 .15 .15 .14 .15 .14 .95 .95 .95 .96 .95

30 .27 .27 .26 .27 .25 .88 .88 .89 .90 .86

40 .43 .43 .43 .42 .41 .76 .76 .76 .77 .72

Lord 0 0 .03 .02 .03 .02 .02

0.5 10 .03 .03 .03 .03 .03 .71 .71 .70 .72 .72

20 .05 .05 .05 .05 .06 .64 .63 .63 .64 .62

30 .09 .10 .10 .10 .08 .45 .46 .45 .46 .43

40 .18 .17 .17 .16 .16 .37 .37 .37 .38 .35

0.8 10 .04 .04 .04 .04 .04 .98 .98 .98 .99 .98

20 .11 .11 .11 .11 .10 .95 .96 .95 .96 .94

30 .25 .25 .24 .25 .22 .86 .87 .88 .88 .84

40 .41 .41 .41 .42 .38 .74 .75 .75 .76 .70
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Table 6 Type I error and power with 30% missing rate of MCAR data

Type I error Power

DIF methods DIF amount DIF% PMM MI CART KNN MLE PMM MI CART kNN MLE

MH 0 0 .03 .03 .03 .03 .03

0.5 10 .04 .04 .04 .04 .04 .48 .51 .51 .55 .48

20 .07 .06 .06 .06 .05 .44 .43 .43 .44 .40

30 .08 .08 .08 .08 .07 .32 .33 .32 .35 .28

40 .13 .13 .13 .14 .11 .25 .26 .26 .27 .23

0.8 10 .06 .06 .05 .06 .05 .88 .90 .88 .91 .89

20 .12 .11 .10 .11 .08 .80 .81 .80 .81 .78

30 .20 .19 .17 .18 .14 .71 .71 .71 .72 .64

40 .31 .30 .27 .30 .24 .58 .57 .53 .57 .46

Lord 0 0 .02 .02 .02 .03 .02

0.5 10 .03 .03 .03 .03 .03 .46 .48 .48 .50 .44

20 .06 .05 .05 .04 .04 .42 .41 .39 .42 .36

30 .07 .07 .07 .07 .06 .28 .29 .28 .31 .25

40 .11 .11 .11 .12 .10 .22 .23 .23 .23 .19

0.8 10 .04 .04 .04 .04 .04 .89 .90 .88 .90 .88

20 .09 .09 .08 .08 .07 .80 .80 .81 .81 .74

30 .18 .17 .16 .16 .12 .67 .68 .68 .68 .60

40 .28 .28 .25 .28 .20 .56 .55 .53 .57 .44

4 Conclusions and Discussion

Four conclusions were drawn from this study. First, the DIF percentage and DIF
amount had little effect on the accuracy of data restoration but had a great effect on
DIF detection. Second, the type and rate of the missing data had a great effect on
the accuracy of data restoration and DIF detection. Third, the kNN method restored
MCAR and MAR data most accurately, and the PMM, MI, and CART methods
restored MNAR data most accurately. However, among these three methods, the MI
method had a longer computation time than the PMM or CART methods. Fourth,
Lord’s chi-square and the MH DIF detection methods both met the model type
I error expectations when the DIF percentage was less than 20%. As the DIF
percentage increased, the type I error rates of both methods increased, and the
statistical power decreased.

Future research can focus on several topics. Similar to Finch (2011), the missing
data in this study was also manipulated. However, the missing data could be
manipulated in other manners depending on the type of data. This study was
conducted for uniform DIF conditions, according to the Rasch model. In practice,
nonuniform DIF conditions are common, and therefore, other models could be
considered for future studies. Five data restoration methods were manipulated in
this study, but other methods could be considered in the future. The MH and Lord’s
chi-square DIF detection methods were used in the study, but other methods of
purification might improve the efficacy of DIF detection. For example, a two-stage
or iterative MH method should be more effective than a one-stage MH method.
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Abstract This study investigates the applicability of topic modeling to analyze
educational data. Topic modeling is useful because it reveals the latent topic struc-
ture underlying a collection of texts. Because metadata provides useful information
about the topics, this study explores a way of including metadata as a covariate
predicting topics and outcomes by topic in a topic model using a two-step approach.
In Study 1, we use structural topic model (STM) and regression model because STM
estimates the topic structure and how covariate is related to the topics. In Study 2,
supervised Dirichlet allocation (sLDA) model is used to investigate the relationship
between topics and the outcome variable: we incorporate sLDA with ANOVA. We
demonstrate that the inclusion of multiple metadata improved the interpretability
of the topic modeling techniques’ results by examining the relationship among
the examinees’ written answers, problem-solving strategies, and scores using the
empirical data of 246 middle school mathematics teachers’ written responses to an
item.
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1 Introduction

Topic modeling is a technique used to extract a hidden thematic structure underlying
a collection of documents (Blei, 2012; Nagwani, 2015). Because topic modeling
allows researchers to investigate how a person generates a document using statistical
estimation, it has been studied in such diverse disciplines as computer science (Phan
et al., 2008) and journalism (Paul & Dredze, 2011). In education, topic modeling has
been used to investigate examinees’ thinking and reasoning processes based on the
text of their answers to constructed response (CR) items (Cardozo-Gaibisso et al.,
2020; Kim et al., 2017; Xiong et al., 2019).

In addition to text, the documents contain additional information, such as the
author’s demographics, publication years, or ratings of the documents, called
metadata. Because researchers have shown that the inclusion of such metadata in the
model improves the interpretability of the analysis results, the models under topic
modeling framework, such as supervised latent Dirichlet allocation model (sLDA)
(McAuliffe and Blei, 2007) or structural topic model (STM) (Roberts et al., 2014),
have been proposed.

We conducted two studies to demonstrate how to include multiple metadata for
analyzing textual datasets in education. By analyzing the mathematics educational
dataset, we demonstrate how teachers’ written answers to a proportional reasoning
item, their problem-solving strategies, and their scores were related to one another.

2 Theoretical Backgrounds

2.1 Structural Topic Model (STM)

The STM model (Roberts et al., 2014) is a topic model that includes covariates in
the model in order to help guide detection of the latent thematic structure (i.e., the
latent topics) in a collection of documents. Suppose that we have a collection of D
documents (i.e., a corpus) with a vocabulary of size V that has K latent topics. Each
document is denoted as d ∈ {1, . . . ,D}, and the words used in each document are
denoted as n ∈ {1, . . . ,Nd}. Then, under STM, the generative process of documents
is as follows:

1. For document d with topic prevalence covariate Xp, choose per-document
topic proportions θd~LogNormal(γXp,�) where γ is the coefficient of topic
prevalence covariate.

2. For the nth word with topical content covariate Xc, choose per-topic word
probabilities ϕk ∼ exp

(
m + κk + κXc + κk,Xc

)
where m is the marginal log-

frequency of word, and κ is the coefficient of topic content covariate.
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3. For the nth word in the dth document,

(i) choose the per-word topic assignment zd, n~Multinomial(θd)
(ii) for the kth topic, choose the word wd,n ∼ Multinomial

(
ϕzd,n

)

2.2 Supervised Latent Dirichlet Allocation (sLDA) Model

The sLDA topic model (McAuliffe and Blei, 2007) is different from the STM
as it includes metadata as an outcome variable predicted by topics rather than as
covariates. For this reason, it is useful to investigate the relationship between topics
and outcome. With the same notations used above, the document-generating process
document under sLDA is as follows:

1. For document d, choose per-document topic proportions θd~Dirichlet(α)
2. For the nth word, choose per-topic word probabilities ϕk~Dirichlet(β)
3. For the nth word in the dth document,

(i) choose per-word topic assignment zd, n~Multinomial(θd)
(ii) for the kth topic, choose the word wd,n ∼ Multinomial

(
ϕzd,n

)

4. Choose y ∼ GLM
(
ηᵀz, σ 2

)
where z := ∑D

d=1
∑Nd

n=1 zd,n where Nd is the
number of words in the dth document.

3 Methods

3.1 Data Description

The data in this study consist of written responses of 246 middle-school mathemat-
ics teachers to items to assess their proportional reasoning. We examined teachers’
proportional reasoning by asking them to explain the relationship between the width
and the height of a photograph.

Variables for this study included the rubric-based score of the item (i.e.,
score), the problem-solving strategy used by the teacher (i.e., strategy), and the
teacher’s written answer (i.e., text). Two mathematics education experts assigned
five strategies and four categories of scores to each teacher’s answer. In this study,
the strategy was used as a topic covariate to predict the use of topics, and the score
was treated as an outcome variable of topic use.

Table 1 presents the frequency of teachers’ problem-solving strategies and scores.
Teachers used scale strategy (N = 113, 45.94%) the most. For scores, most of the
teachers obtained a score of 3, (N = 194, 78.86%), and about 12% of the teachers
obtained zero scores (N = 30, 12.30%).
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Table 1 Descriptive statistics of 246 teachers by strategy and score

Score (Mean = 2.51, S.D. = 1.03)
Strategy 0 1 2 3 Total (%)

Additive 26 0 0 0 26 (10.57)
Proportion 0 3 6 57 66 (26.83)
Scale 1 1 2 109 113 (45.94)
Unit 0 0 2 11 13 (5.29)
Other 3 5 3 17 28 (11.38)
Total (%) 30 (12.20) 9 (3.66) 13 (5.29) 194 (78.86) 246

Note: Number in parenthesis is the percentage of teachers; S.D. = standard deviation

3.2 Data Analysis

Before analyzing the data, we conducted a series of preprocessing steps. Because
the data of this study contained many mathematics expressions in teachers’ answers
it was necessary to first convert them. We categorized mathematics expressions
into two types. The first type was mathematical expressions with the equal sign
“=”. We converted this type into their mathematical operators only. For example,
the equation “16 + 16 + 8 = 40” was changed to “eq_addition.” The reason we
added “eq_” in front of the operation was to distinguish it by the unique words
“addition”, “subtraction”, “multiplication”, and “division” originally used in the
teacher’s written answers.

The second type was mathematical expressions without an equal sign. This group
had seven subtypes; we converted them by following the rules (shown below). These
converted words were treated as one token: [Rule 1] the ratios and the fractions were
converted to the phrases “math_ratio” and “math_fraction,” respectively; [Rule 2]
the numbers with or without the variables or the unit scales were changed to be
textual (e.g., 10 x → ten_x, 10cm → ten_centimeters, 10 → ten, 0.1 → point_one).

After converting the mathematical expressions, removed punctuation, corrected
typographical errors, and replace upper-case with lower-case letters. Then we
performed tokenization, a step that breaks each sentence into individual words,
and normalization, a step that converts the words into their stems according to the
linguistic root., For example, we changed a plural noun to a singular form (e.g.,
lengths → length) or a past tense verb to present tense (e.g., realized → realize). We
then removed the stop words. Stop words are high frequency but low information
words that appear in nearly every document, but their meanings do not affect the
topic structure (Schofield et al., 2017).

As shown in Table 2, the final dataset of 246 written answers contained 3253
tokens, 242 unique words, and an average document length of 15.40.

For Study 1, we used Approach 1, which was a combination of the STM and the
linear regression model. In the first step, we extracted topics using the STM with
the hyperparameter priors γ and � set as 1. This study did not consider the topic
content covariate, so we did not set a prior for κ .



Two-Step Approach to Topic Modeling to Incorporate Covariate and Outcome 291

Table 2 Descriptive statistics of data after pre-processing

# of documents # of tokens # of words Average length of document (S.D.)

246 3253 242 13.22 (9.15)

To determine the best fitting model, we used semantic coherence and exclusivity
(Roberts et al., 2014). Semantic coherence is an index of how likely the words
under a given topic are frequently co-occur in the same document. For a list of
top-R words including the words vi and vj, semantic coherence is calculated by
∑R

i=2
∑i−1

j=1

(
D(vi ,vj )+1

D(vj )

)
where D(vj) is the number of documents in which the

word vj appears at least once, and D(vi, vj) is the number of documents in which the
words vr and vl appear in common. This study used the top 20 words to calculate
semantic coherence, which were the most probable 20 words of the topic with the
highest word probabilities.

Exclusivity is an index of how unique the most probable words of one of the
topics is in the other topics in the model. For example, under a 3-topic model, if
the top 20 words under Topic 1 show low probabilities under Topic 2, then Topic
1 and Topic 2 are considered exclusive to each other. Exclusivity is calculated by
(

ω

ECDF
(
ϕk,v/

∑K
k=1 ϕk,v

) + 1−ω
ECDF(ϕk,v)

)−1

where ECDF is the empirical cumulative

density function, ϕ is the word probability of the word v over the topic k, and ω is
the weight for calculation. This study set ω as 0.7. By the definition of semantic
coherence and exclusivity, the higher values of two measures indicate the better
model fit.

In addition, using the STM, the coefficient estimates βkx, that explain the
relationship between the topics and the teachers’ strategies, were derived from

θtopic1 = β11 × strategy1 + · · · + β1X × strategyX

· · ·
θtopicK = βK1 × strategy1 + · · · + βKX × strategyX

(1)

where θ topic _ k indicates the proportion of the kth topic over each written answer
with k indicating each K topic and x indicating each X strategy.

In the second step, we used the linear regression model

score = β ′
1 × θtopic1 + · · · + β ′

K × θtopicK (2)

to explain how the estimated uses of topics (i.e., topic kth proportions, θ topic _ k)
were related to the teachers’ scores by comparing the coefficients β ′

k .
For Study 2, we used Approach 2, which was a combination of sLDA (Blei &

McAuliffe, 2008) and the ANOVAmodel. In the first step, we extracted topics using
sLDAwith the priors α as 1/K, where K indicates the number of topics, and β as 0.1.
To determine the best-fitting model, we used two indexes as follow. The first index
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was proposed by Cao et al. (2009), that is, a measure of the cosine similarity of word
probabilities between a pair of topics. The Cao et al. (2009) index is calculated by

avg
k �=k′∈K

(
∑V

v=1 ϕk,vϕk′,v√
∑V

v=1 (ϕk,v)
2
√
∑V

v=1 (ϕk′,v)2

)

where there are V words with K topics with

the word probabilities ϕ. If Cao et al. (2009)’s index is lower, which indicates the
cosine similarity between two topics is smaller, that is, they are exclusive to each
other, then, it means the better model fit.

The second index was the Jenson-Shannon divergence (JSD; Deveaud et al.,
2014). This is a measure of word probability between a pair of topics. It is calculated

by avg
k �=k′∈K

[(
1
2

∑
k

∑
v ϕk,vlog

(
ϕk,v

ϕk′,v

))
+
(
1
2

∑
k′
∑

v′ ϕk′,vlog
(

ϕk′,v
ϕk,v

))]
. When

JSD is large, the word probabilities of the topics are far from each other, that is,
each topic is exclusive to each other. This indicates a better model fit.

From the results of the best-fitting sLDA model, we explained the relationship
between the extracted topics and the teachers’ scores by the coefficients β ′

k (see Eq.
2). For the second step, we used the ANOVA model to show how the estimated
topic proportions, θ topic _ k, were different among the teachers depending on their
strategies by the coefficients βkx (see Eq. 1).

Study 2 used two criteria, cosine similarity and JSD, to measure how close the
topics are that were extracted in Study 1 and Study 2. To deal with the topic-related
information, we investigated per-topic word probabilities and per-document topic
proportions. We compared the cosine similarity and JSD of the pair of the per-
document topic proportions between Study 1 and Study 2.

4 Results

4.1 Study 1: Results of Approach 1, STM and Regression

To find the best-fitting model, we calculated semantic coherence and exclusivity
from two- to ten-topic models. As shown in the left plot of Fig. 1, because the
three-topic model showed the highest semantic coherence (−62.939) and exclusivity
(8.380), thus, the best fitting model was determined to be the three-topic model.

This study interpreted the extracted three topics by considering which mathemat-
ical operations and answering strategies were used. We labeled Topic 1 as Setting
Up a Proportion Strategy. Top 10 representative written answers for each topic were
selected and reviewed for each topic in the model. For example,

“I have to find the proportion to be able to get the answer. 16/10 = x/25. I have to cross-
multiply so 10x = 16x25. 10x = 400. x = 40. answer is 40 cm. to check you can check the
proportions. 16/10 = 8/5. 40/25 = 8/5.”

“The poster is 40 cm high. I set up my two proportions. 16/10 = x/25, crossed multiplied
to get 16x25 = 400 and 10 times x which left me with 400 = 10x. Divided both sides by 10
which got me my answer of 4.”
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Fig. 1 Fit indexes of two- to ten-topic models for STM (left) and sLDA (right)

contained the words (in bolded) expressing multiplication operations with setting up
a proportion. Also, these bolded words were among the top 20 highest probability
words for Topic 1.

We interpreted Topic 2 as Use of Multiplicative Comparison Strategies. Top 10
written answers of Topic 2. For example,

“The poster is 24-inche-high because the image is scaled 1.5 times larger. 1.5x16 = 24.”

“It is 40 cm tall because the scale factor from 10 cm to 25 cm is 2.5 so I multiplied 16 by
2.5 to get 40 cm.”

“The poster will be 40 cm. high. To get the width to be 25 cm. the scale needed to be raised
by 2.5. 16 multiplied by 2.5 is 40.”

contained the word “scale” and used the multiplication equations frequently.
Topic 3 was interpreted as Use of Additive Comparison Strategies. Examples of

the top written answers for Topic 3 included the following:

“To get an estimate I would take 25 and subtract 10 from it which would 15. So, the width
is 15cm more. Adding 15cm to the original height would make it 31. Another way to do this
is to see that on the photograph the width is 6 cm smaller than the height. So, on the poster
add 6cm to the width and you would get 31 cm as the height.”

“The picture is 31 cm high. I added 15 to the high because that is how much bigger the
width is from the first picture.”

“The poster is 31cm high. I got my answer because I found the difference in width of the
two posters (25-10 = 15). Then I took that solution of 15 and added it to the width of the
first poster (16cm). I know that 15cm + 16cm = 31 cm for the width.”

These all used equations with addition and the words related to additive strategy.
Table 3 shows the results explaining the relation between strategies and indi-

vidual topics. At the α = 0.05 level, proportion strategy was the largest significant
factor for Topic 1 (β1 _ proportion = 0.74 with p < .001); thus, the interpretation of
Topic 1 was reasonable. For Topic 2, because the estimated coefficient of scale
strategy (β2 _ scale = 0.80 with p < .001) was the largest, this strategy was the
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Table 3 Effects of
problem-solving strategies on
topics from STM

Strategy Estimate S.E. t-statistic p-value

Topic 1 Setting up a proportion
Additive 0.04 0.03 0.14 0.89
Proportion 0.74 0.03 29.19 <.001
Scale 0.17 0.02 8.39 <.001
Unit 0.28 0.06 4.48 <.001
Other 0.10 0.03 2.86 <.001
Topic 2 Use of multiplicative comparison strategies
Additive 0.01 0.03 0.47 0.64
Proportion 0.25 0.03 9.87 <.001
Scale 0.80 0.02 40.08 <.001
Unit 0.70 0.06 11.28 <.001
Other 0.77 0.03 23.37 <.001
Topic 3 Use of additive comparison strategies
Additive 0.98 0.00 313.35 <.001
Proportion 0.01 0.00 3.13 <.001
Scale 0.03 0.00 19.30 <.001
Unit 0.01 0.00 3.19 <.001
Other 0.13 0.01 21.47 <.001

S.E. = standard error

Table 4 Effects of topic uses on teachers’ scores from regression

Topic Est. S.E. t-stat. p-value

Topic 1 Setting up a proportion strategy 2.75 0.08 33.77 <.001
Topic 2 Use of multiplicative comparison strategies 3.02 0.05 56.79 <.001
Topic 3 Use of additive comparison strategies 0.09 0.10 0.86 0.39

S.E. = standard error

most meaningful factor. For Topic 3, additive strategy showed the largest coefficient
estimate (β3additive

= 0.98 with p < .001). Thus, additive strategy represented Topic
3 the most.

The results of the linear regression analysis are shown in Table 4. The coefficient
of Topic 2 (θ topic _ 2 = 3.02 with p < .001) was larger than the coefficient of Topic 1
(θ topic _ 1 = 2.75 with p < .001). The was interpreted to mean that, when the teacher
used Topic 2 more than Topic 1 to answer the item, the answer was likely to obtain a
higher score. However, Topic 3 was not significant (θ topic _ 3 = 0.09, with p = 0.39)
for the scores.

4.2 Study 2: Results of Approach 2, sLDA and ANOVA

To select the best-fitting model, the values of Cao et al. (2009) and JSD indexes for
two- to ten-topic models are shown in the right plot of Fig. 1. Because of the lowest
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Cao et al. (2009) index (0.058) and the highest JSD index (2.369), the three-topic
model was selected as the best-fitting model.

As with Study 1, we interpreted the three topics based on answers including
discussions of mathematical operations and strategies. Topic 1 was labeled as
Setting Up a Proportion Strategy. Representative written answers include the
following:

“You can set up a proportion to figure this out. It would be (16/10) = (x/25). You cross-
multiply, getting 10x = 16(25). 16(25) is 400 (since 25x4 = 100 and 4x4 is 16). So, your
equation is now 10x = 400. You divide by 10 and your answer is 40 cm.”

“40 cm high. You set up a proportional equation, cross-multiply and then solve for x. so
16/x = 10/25 then cross-multiply to get 10(x) = 400 and solve for x.”

used the equations with multiplications, and the words expressing proportion
strategy.

For Topic 2, we interpret it as Use of Multiplicative Comparison Strategies.
Representative written answers for Topic 2 include the following:

“The poster is 40 cm tall. The length was enlarged 2.5x, so the scale would be the same for
the height. 2.5 x 16 is 40.”

“The poster is 40 cm high. The scale is 1:2.5 which we can find out by looking at the width.
We take that scale and multiply it by the height to find the poster height.”

These all had use of words indicating multiplication equations and scale.
While Topic 3 was interpreted as Use of Additive Comparison Strategies.

Representative answers for Topic 3 include the following:

“The poster is 31cm high. I got my answer because I found the difference in width of the
two posters (25-10 = 15). Then I took that solution of 15 and added it to the width of the
first poster (16cm). I know that 15cm + 16cm = 31 cm for the width.”

“The poster is 31 cm high. The difference between 25 cm and 10 cm is 15. Therefore, I
would add 15 cm to the original height of 16 cm.”

“The poster is 40 cm high. To get from 10 to 25, I doubled it and added half (10+10+5),
so I did the same with the height. I doubled 16 to get 32 and added half to get 40.”

These all contained the addition equations and words about additive strategy.
Results of the sLDA model are shown in Table 5. At the α = 0.05 level, the

estimated coefficient of Topic 2 (θ topic _ 2 = 3.12 with p < .001) were larger than the
estimated coefficients of Topic 1 and Topic 2 (θ topic _ 1 = 2.92 and θ topic _ 3 = 0.46
with p < .001). This indicated that using Topic 2 was more likely to obtain a higher
score on the item.

Table 6 shows how strategies and topics were related. For Topic 1, the most
significant factor was the proportion strategy (β1 _ proportion = 0.79, p < .001). For
Topic 2, the scale strategy showed the largest coefficient (β2scale

= 0.69, p < .001).
For Topic 3, additive strategy showed the largest coefficient (β3 _ additive = 0.88,
p < .001).
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Table 5 Effects of problem-solving strategies on topics from sLDA

Topic Est. S.E. t-stat. p-value

Topic 1 Setting up a proportion strategy 3.00 0.09 34.90 <.001
Topic 2 Use of multiplicative comparison strategies 3.12 0.08 41.03 <.001
Topic 3 Use of additive comparison strategies 0.46 0.12 3.79 <.001

S.E. = standard error

Table 6 Effects of
problem-solving strategies on
topics from ANOVA

Strategy Estimate S.E. t-statistic p-value

Topic 1 Setting up a proportion strategy
Additive 0.05 0.04 1.22 0.22
Proportion 0.79 0.03 29.23 <.001
Scale 0.22 0.02 10.86 <.001
Unit 0.32 0.06 5.32 <.001
Other 0.14 0.04 3.29 <.001
Topic 2 Use of multiplicative comparison strategies
Additive 0.07 0.05 1.37 0.17
Proportion 0.65 0.02 28.27 <.001
Scale 0.69 0.05 14.78 <.001
Unit 0.42 0.07 6.23 <.001
Other 0.14 0.03 4.64 <.001
Topic 3 Use of additive comparison strategies
Additive 0.88 0.03 29.53 <.001
Proportion 0.07 0.02 3.93 <.001
Scale 0.13 0.01 9.12 <.001
Unit 0.26 0.04 6.10 <.001
Other 0.17 0.03 5.83 <.001

S.E. = standard error

4.3 Comparison of Study 1 and Study 2

Table 7 showed the cosine similarity and JSD of per-document topic proportions
estimated from STM in Study 1 and sLDA in Study 2. The cosine similarity values
on the diagonal were close to 1, which indicated the pair of topics from STM and
sLDA were similar. Whereas the off-diagonal values were close to 0, which meant
the pair of topics were different. For JSD, the diagonal values were close to 0, which
indicated that the pair of topics from STM and sLDA were not divergent to one
another. While the off-diagonal values were close to 1, which showed the pair was
divergent. Thus, the results of Study 1 and Study, were in agreement.
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Table 7 Cosine similarity
and JSD between results of
STM in Study 1 and sLDA in
Study 2

sLDA in Study 2
Cosine similarity Topic 1 Topic 2 Topic 3
STM in Study 1 Topic 1 0.95 0.27 0.19

Topic 2 0.43 0.94 0.35
Topic 3 0.07 0.15 0.86

JSD sLDA in Study 2
Topic 1 Topic 2 Topic 3

STM in Study 1 Topic 1 0.04 0.44 0.36
Topic 2 0.44 0.07 0.51
Topic 3 0.46 0.48 0.08

Note: Topic 1 = Setting up a proportion strategy; Topic
2 = Use of multiplicative comparison strategies; Topic
3 = Use of additive comparison strategies

5 Conclusion

In this study, we demonstrated the utility of topic modeling for detecting the
relations among the examinees’ written answers, problem-solving strategies, and
scores. The results showed that it would be helpful to include multiple metadata
into the model to improve the interpretability of the extracted topic structure
underlying the collection of written materials. This study suggests that the inclusion
of metadata could be a useful technique to analyze a collection of texts, especially
for educational test datasets, regarding the examinees’ thinking and reasoning
procedures hidden in written answers. Even though the main purpose of this study
was to show the applicability of both two-step approaches, the researcher would
choose one of these approaches depending on their research questions, especially
which relationship would be more important, either text-covariate or text-outcome.
The findings of this study would be expanded as the research questions in the
future. To provide the practical guidelines for the researchers, a simulation study
manipulating the conditions of the data set, such as the number of written answers
and the unique words, the average lengths of each written answer, or the types of
covariates and the outcome variables, would be considered.

Funding This work was supported in part by the National Science Foundation under grants DRL-
1751309 and DRL-1813760.
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Modeling Student’s Response Time
in an Attribute Balanced Cognitive
Diagnostic Adaptive Testing

Tong Wu, Shaoyang Guo, and Hua-Hua Chang

Abstract Nowadays, more and more people are paying attention to processing
data in different fields. Following the ease of computer implementation within
the classroom and test environment, Cognitive Diagnostic Computerized Adaptive
Testing (CD-CAT) is a new advanced form of assessment. It combines the advan-
tages of the Cognitive Diagnostic Model (CDM) and CAT, which could better
assess students’ learning acquirement. More and more universities are applying
this technique to the university course assessment (Morphew et al, Phys Rev
Phys Educ Res 14(2):020110, 2018). To improve the applicability, accompany
modern processing data use wise, many researchers have started implementing
Response Time (RT) into CD-CAT. Two methods implementing Response Time
(RT) with fulfilling attribute-balancing constraints is proposed: Time Weighted
Modified Maximum Global Discrimination Index and Time Weighted Modified
Posteriori Weighted Kullback-Leibler Information. These methods are compared in
simulation with time-weighted non-attribute balancing methods. The result shows
the proposed methods provide researchers with precise measurement accuracy as
well as improvement in test efficiency.

Keywords CD-CAT · Attribute-balancing · Response time · Measurement
efficiency · Item exposure control

1 Introduction

Cognitive Diagnostic Computerized Adaptive Testing (CD-CAT) (Chang, 2015;
McGlohen & Chang, 2008; Xu et al., 2003) is a tailor-made test that provides
fruitful information about students. Combining the advantages of CD and CAT,
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the personalized test assembly and accurate attribute estimation features make
CD-CAT more and more popular especially in the pandemic season that students
must take tests at home. However, avoid cheating at home has not yet been
addressed by using psychometric methodology. It is urgent to ameliorate the
current psychometric methodologies and apply those to practical usage. Rather
than providing traditional summative scores in a test, RT often provides insights
about students’ testing behavior, solution strategy, and cognitive demands of items.
RT has been proven to be liable as an extra information in the item selection
algorithms (Fan et al., 2012; Finkelman et al., 2014), attribute balance have not
yet been considered which is indispensable in an university course assessment.
This study extends the previous CD-CAT studies with attribute balances (Cheng,
2010) which makes the algorithm more applicable to the needs of university course
assessment. The lognormal RT model (Van der Linden, 2007) is used for this
study.

1.1 CD Models (CDM)

CDMs define examinees’ latent attribute through a vector α = (α1,α2, . . . ,αK),
where K is the numbers of attributes. If the examinee mastered the attribute, then the
specific attribute equals 1, otherwise, it would be 0. In order to select the appropriate
items to measure examinees’ latent attribute, the item bank with items of latent
attribute defined is called Q-matrix. Q-matrix represents the item bank in CDMs
(Tatsuoka, 1985), where J is the total numbers of the item bank, and K is the attribute
column. The qjk represent the jth row and kth column entry of the Q-matrix, if
qjk = 1, then item j is measuring attribute k, and 0 vice versa. Figure 1 shows an
example of Q-matrix, as an example, item 1 is measuring attribute 1, 3, 4:

Content experts determine the validation of Q-matrix prior to the tests (Cheng,
2009; Hsu et al., 2013) and it can also be adjusted and identified by empirical
experiment (De La Torre, 2008).

The DINA Model Many CDMs have been proposed and developed over years.
The model used in this study is the noisy input, deterministic input, noisy ‘and’
gate (DINA) model (Haertel, 1989; Junker & Sijtsma, 2001). It is a popular model
which assumes all the skills are independent with each other. The model considers

Fig. 1 Example of Q-matrix
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two important behaviors in empirical testing: ‘guessing’ and ‘slipping’ parameters.
‘Slipping’ is a capable examinee makes a careless mistake by random reasons while
‘guessing’ is an incapable examinee makes a correct response by guessing. In order
to check whether examinee is capable or not, the model includes an indicator shown
as following:

ηij =
K∏

k=1

α
qjk

ik ,

Where ηij = 1 represents the ith examinee is capable for the jth item, otherwise, ith
examinee cannot answer jth item correctly, unless the examinee ‘guess’ it correctly.
The DINA model then can be demonstrated as follows:

P
(
Xij = 1|αi

) = (1 − sj
)ηij g

1−ηij

j . (1)

The probability of answering the item correct is based on the examinee’s latent
attributes and its production of ‘slipping’ probability with sj to the power of the
indicator and ‘guessing’ probability with gj to the power of one minus the indicator.
Both parameters and examinee’s attribute profile can be estimated by Maximum
Likelihood Estimation (MLE). Maximum a- Posteriori (MAP) can be implemented
to handle extreme cases for students’ attribute profile.

1.2 Item Selection in CD-CAT

Unlike CAT’s feature of measuring students’ latent traits, CD-CAT measures
students’ discrete latent classes. Thus, instead of maximum Fisher information
as item selection in CAT (Lord, 1980), the introduction of the Kullback-Leibler
information (Chang & Ying, 1996) in CAT naturally satisfies the CD-CAT to
measure discrete latent classes. The Kullback-Leibler information measures the
‘distance’ between two probability distributions f (x) and g(x) (Cover Thomas &
Thomas Joy, 1991):

d [f, g] = Ef

[

log

[
f (x)

g(x)

]]

In CD, the Kullback-Liebler (KL) distance between two probability distributions,
one is students’ response conditioning on the current latent attribute estimation,
which is f

(
Xij |âi

)
, and the other is students’ response conditioning on student’s

true latent attributes, which is f (Xij| at), the formula of KL is shown as follow:
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KLj

(
âi | | at

) =
1∑

x=0

log

[
P
(
Xij = x|âi

)

P
(
Xij = x|at

)

]

P
(
Xij = x|âi

)
. (2)

The KL index is measuring how deviate the distance is by answering the item
between the true attribute and the estimated attribute. The larger the KL index,
the more information we would obtain from the examinee for this item. While
administering the items in the test, the true attribute is unknown and there are 2k

possible states for a certain examinee, thus, Xu et al. (2003) proposed the global
discrimination index (GDI), which is equivalent to KL information given 2k possible
latent attributes:

GDIj

(
âi

) =
2k
∑

t=1

[
1∑

x=0

log

[
P
(
Xij = x|âi

)

P
(
Xij = x|at

)

]

P
(
Xij = x|âi

)
]

(3)

The largest GDI selected from the item bank would be the next item to be
administered to examinee. Based on GDI, Cheng (2009, 2010) considered the
attributes balancing method (MMGDI) and the more powerful GDI implementing
the posteriori distribution are so called Posteriori Weighted Kullback-Leibler
Information Index (PWKL). The MMGDI method implement an attribute-balancing
index (Cheng, 2010) would better suit the empirical test settings for attributes
constraints and obtain smaller estimation error:

MMGDIj

(
âi

) = GDIj

(
âi

) K∏

k=1

(
Bk − bk

bk

)qjk

, (4)

where Bk is the number of items required for kth attribute, and bk is the item selected
for kth attribute. qjk indicates the specific item and attribute in the Q-matrix. Note
that in CD assessment, an item normally contains more than one attribute, thus, it is
reasonable to have the sum of all attributes number selected less than test length (L)
prespecified:

K∑

k=1

Bk ≤ L.

Whenever the attribute-balancing index fulfills, the item selection would eliminate
the attribute balance index and apply GDI only to finish up selecting items for the
rest of the test.
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The PWKL is a straightforward method that implements with posteriori distribu-
tion to GDI (Cheng, 2009):

PWKLj

(
âi

) =
2k
∑

t=1

{

π (at |xn−1)

[
1∑

x=0

log

[
P
(
Xij = x|âi

)

P
(
Xij = x|at

)

]

P
(
Xij = x|âi

)
]}

(5)

Where π (ac|xn−1)
)

= p (ac)
∏n−1

j=1 P
(
Xij = 1|ac

)xij
[
1 − P

(
Xij = 1|ac

)1−xij
]

is the posterior distribution and it’s been calculated based on the previous (n –
1) item responses from students. This method improves measurement precision
compared to GDI especially in the situation of item banks containing large slipping
and guessing parameters (Cheng, 2010).

1.3 Response Time Framework

Lognormal model is a popular model from its simple and practical prospect, the
model is proposed by van der Linden (Van der Linden, 2007) shown as follow:

f
(
tij |τi

) = αj

tij
√
2π

e− 1
2 [αj (log tij −βj +τi)]2 , (6)

where tij represents the response time for examinee i on item j, τ i is the latent speed
parameter for examinee i, αj and β j are time discrimination parameters and time
intensity parameters for jth item. The formula can be transferred into a normally
distribution form, it is easily seen that μij = β j − τ i and σ 2

j = 1/α2
j . Thus, for each

item j, examinee i’s response time given his/her speed ability, it follows the normal
distribution as:

log
(
tij |τi

) ∼ N
[
βj − τi, 1/α

2
j

]
. (7)

The estimation methods for latent speed ability is using MLE and its likelihood
function is shown below:

L (τi) =
∏J

j=1

αj

tij
√
2π

e− 1
2 [αj (logtij −βj +τi)]2 , (8)

Since the true speed ability for each examinee is unknown, we need to substitute the
MLE’s speed estimation by taking the first derivative as follow:

τ̂i
mle =

∑
j∈Rm

α2
j

(
βj − logtij

)

∑
j∈Rm

α2
j

. (9)
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The expected time to answer the jth item given the latent MLE estimation of speed
is:

E
[
Tij |τ̂i

mle
]

= e

(
βj −τ̂i

mle+1/
(
2α2

j

))

. (10)

In order to increase measurement efficiency in RT aspect, Fan et al. (2012)
demonstrated the MI combined response time (MIT) selection method:

jm+1 = maxj

⎧
⎨

⎩

Ij

(
θ̂i

mle
)

E
[
Tij |τ̂i

mle
] : j ∈ Rm

⎫
⎬

⎭
. (11)

Using this formula, items contain high information will be chosen rather than the
large time item. Fan et al. (2012) found the more skewness of item exposure for the
MIT, thus they proposed the ASB with response time (ASBT) for balancing the item
exposure:

jm+1 = maxj

⎧
⎨

⎩

1

E
[
Tij |τ̂i

mle
]

| bj − ˆθm |
: j ∈ Rm

⎫
⎬

⎭
, (12)

which shows balanced item exposure and more efficient test time duration.

2 Methods

This section first introduces the simulated data in this study and then the item
selection algorithms. Next, four evaluation criteria are demonstrated.

2.1 Data

We simulated a 300-item bank with the noisy input, deterministic input, noisy ‘and’
gate (DINA) model (Haertel, 1989; Junker & Sijtsma, 2001), the guessing parameter
g ~ unif (0.05,0.25), slipping parameter s ~ unif (0.05,0.25), time discrimination
parameter α ~ unif (2,4), time difficulty parameter β ~ N(0, 0.25). For the Q-
matrix simulation, we have 6 attributes and generate the Q-matrix entry by entry,
each item should measure 20% of the attributes on average. 1000 examinees with
speed parameters (τ ) ~ N (0,1) are simulated. Each examinee’s attribute profile is
randomly generated from unif (0,1). Test length of 30, minimum of 5 items are
required to select from each attribute. Table 1 shows the numbers of items within
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Table 1 Number of items
measuring (or examining
mastering) each attributes

Attributes
A1 A2 A3 A4 A5 A6

Number of items 54 66 57 53 54 55
Number of examinees 477 508 507 499 483 519

Table 2 Number of items
measuring (or examining
mastering) each possible
number of attributes

Number of attributes 0 1 2 3 4 5 6

Number of items 0 199 80 16 5 0 0
Number of examinees 17 87 254 297 232 99 14

each attribute and the numbers of students acquire each attribute. The number of
attributes for items and examinees are presented in Table 2.

Time Weighted Modified Maximum Global Discrimination Index (TW-
MMGDI).

TW − MMGDIj
(
α̂i

) = GDI
(
α̂i

)

E
[
Tij |τ̂i

mle
]
∏K

k=1

(
Bk − bk

bk

)qjk

. (13)

Time Weighted Modified Posteriori Weighted Kullback-Leibler Information (TW-
MPWKL)

TW − MPWKLj

(
α̂i

) = PWKL
(
α̂i

)

E
[
Tij |τ̂i

mle
]
∏K

k=1

(
Bk − bk

bk

)qjk

. (14)

Students’ achievement should be assessed by assigning enough items on each
attribute for comprehensive estimation of knowledge acquirement and the comple-
tion time of each item to detect the speed. Thus, the proposed attribute balancing
methods have an advantage over the non-attribute balancing methods. It can measure
the students’ attribute profile more accurately by assigning specific numbers of each
attribute of items within the test. On the other hand, the non-attribute balancing
methods focus on selecting the deviation of the attribute profiles for item selection.
Even though considering the ‘distance’ for selecting items is appropriate, the chosen
items might be too few for some individual attribute estimation which makes
the estimation inaccurate. Thus, results generated by non-attribute balancing item
selection methods might mislead instructors’ interpretation of students’ knowledge
acquirement. With the attribute constraints, the attribute balancing methods can
measure each attribute comprehensively and improve the measurement accuracy
for individual attribute and attribute profiles. Results generated by the attribute
balancing methods would efficiently assist instructors’ interpretation and generate
better guidance to students’ weakside of knowledge acquirement. Furthermore, the
Response Time implementation improves the test efficiency, saving labor and money
for operational test.
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2.2 Evaluation Criteria

Four evaluation criteria are used to compare the methods:

1. Attribute Recovery Rate (ARR)
The Attribute Recovery Rate (ARR) is determined by the rate of true

indication of attributes:

ARRk =
∑N

i=1 Aik

N
=
∑N

i=1

(
I(α̂ik,aik)

)

N
, (k = 1, 2, 3, . . . k)

2. Pattern Recovery Rate (PRR)
The Pattern Recovery Rate (PRR) is determined by the rate of true indication

of attribute pattern:

PRR =
∑N

i=1 Ai

N
=
∑N

i=1

(
I(α̂i ,ai)

)

N
(15)

3. Average Time Unit
Average time unit is the mean test time duration recorded by the computer in

the system.
4. The χ2 statistic measures the skewness of item exposure rate distribution (Chang

& Ying, 1999):

χ2 =
∑J

j=1

(
rj − L/J

)2

L/J
, (16)

where rj represents the exposure rate of jth item, L represents the test length. J is the
total number of items in the item pool. The smaller the χ2 statistic is, the better the
item exposure would be. There is no suggested criterion value for the statistics but
smaller is better.

The variable-length χ2 statistics is the following:

χ2 =
∑J

j=1

(
rj −∑J

j=1rj /J
)2

∑J
j=1 rj /J

(17)
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3 Results

The results compare item selection algorithm time-weighted attribute balanced
methods with no time-weighted methods and no attribute balanced methods. Table 3
shows the simulation results for test length is 30. By taking advantage of accurate
measurement in MMGDI and considering RT, TW-MMGDI comprehensively
improve from three aspects: decreasing time of test (from 56.9 to 54.6, about
4% decrease), lowering item exposure statistic (from 156.8 to 133.8, about 14.7%
decrease) and maintaining high PRR compared to the no time-weighted method.
TW-GDI has a relatively shorter test time and item exposure statistic compared
to MMGDI. It is mainly because no attribute balance constraints were applied,
and RT is implemented in the algorithm. TW-MMGDI outperforms TW-GDI in
measurement accuracy as well as test time efficiency. TW-MPWKL also decreases
the period of test (from 56.9 to 54.9, about 3.5% decrease), item exposure statistic
(from 85.7 to 79.6, about 7.1% decrease) and maintains high PRR compared to
MPWKL. Turning to the comparison of the two proposed time-weighted attribute
balancing methods, TW-MPWKL obtains a better item exposure statistic than TW-
MMGDI without any item exposure control methods implemented.

Table 4 shows the simulation results for test length is 40. TW-MMGDI out-
performs with decreasing time of test (from 76.7 to 73.99, about 3.5% decrease),
item exposure statistic (from 97.6 to 87.3, about 11% decrease) and maintains high
PRR compared to the no time weighted method. As the test length increase, the
improvement in measurement criteria decreases.

The results show the RT implemented item selection algorithms is feasible
in practical settings of relatively low stakes test that requires high measurement
accuracy. These methods not only shorten the test time 3–4% but also improve item
exposure statistics up to 7% for home testing while maintaining high PRR, ARR.

Table 3 Results for simulation study L = 30

Method A1 A2 A3 A4 A5 A6 Time χ2 PRR

TW-MMGDI .99 .99 .99 .99 .99 .98 54.60 133.8 .968
MMGDI .99 .99 .99 .99 .99 .99 56.92 156.8 .960
TW-GDI .94 .94 .94 .95 .95 .96 55.49 18.2 .719
TW-MPWKL .99 .99 .99 .99 .99 .99 54.96 79.6 .959
MPWKL .99 .99 .99 .99 .99 .99 56.89 85.7 .965
TW-PWKL .91 .92 .94 .94 .94 .96 54.25 46.8 .689

Note: TW-MMGDI Time Weighted Modified Maximum Global Discrimination Index, MMGDI
Modified Maximum Global Discrimination Index, TW-GDI Time Weighted Global Discrim-
ination Index, TW-MPWKL Time Weighted Modified Posteriori Weighted Kullback-Leibler
Information, MPWKL Modified Posteriori Weighted Kullback-Leibler Information, TW-PWKL
Time Weighted Posteriori Weighted Kullback-Leibler Information, TW-GDI and TW-PWKL do
not consider attribute constraint
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Table 4 Results for simulation study L = 40

Method A1 A2 A3 A4 A5 A6 Time χ2 PRR

TW-MMGDI .99 .98 .99 .99 .99 .99 73.99 87.3 .945
MMGDI .99 .99 .99 .99 .99 .99 76.68 97.6 .942
TW-GDI .95 .94 .95 .95 .95 .95 72.68 31.2 .740
TW-MPWKL .99 .98 .99 .98 .99 .99 73.44 66.5 .961
MPWKL .99 .99 .99 .99 .99 .99 75.68 66.9 .966
TW-PWKL .94 .93 .95 .95 .96 .96 72.33 49.2 .732

Note: TW-MMGDI Time Weighted Modified Maximum Global Discrimination Index, MMGDI
Modified Maximum Global Discrimination Index, TW-GDI Time Weighted Global Discrim-
ination Index, TW-MPWKL Time Weighted Modified Posteriori Weighted Kullback-Leibler
Information, MPWKL Modified Posteriori Weighted Kullback-Leibler Information, TW-PWKL
Time Weighted Posteriori Weighted Kullback-Leibler Information, TW-GDI and TW-PWKL do
not consider attribute constraint

Table 5 Results for variable length simulation (Termination rule = (0.8, 0.1))

Method A1 A2 A3 A4 A5 A6 Time χ2 PRR Test length

TW-MMGDI .98 .99 .99 .99 .98 .99 50.35 163.01 .945 27.89
MMGDI .99 .99 .99 .99 .99 .99 53.05 182.25 .959 27.76
TW-GDI .95 .94 .96 .95 .96 .95 89.96 34.30 .757 49.34
TW-MPWKL .99 .99 .99 .99 .99 .99 51.15 72.46 .948 28.32
MPWKL .99 .99 .99 .99 .99 .99 53.58 101.33 .953 28.29
TW-PWKL .95 .94 .94 .94 .95 .96 90.23 50.38 .763 49.31

Note: TW-MMGDI Time Weighted Modified Maximum Global Discrimination Index, MMGDI
ModifiedMaximumGlobal Discrimination Index, TW-GDI TimeWeighted Global Discrimination
Index, TW-MPWKL Time Weighted Modified Posteriori Weighted Kullback-Leibler Information,
MPWKLModified Posteriori Weighted Kullback-Leibler Information, TW-PWKL Time Weighted
Posteriori Weighted Kullback-Leibler Information, TW-GDI and TW-PWKL do not consider
attribute constraint

The methods are also extended into variable length, the preliminary results are
shown in Table 5 with termination rules of the largest attribute pattern greater than
0.8 and the second largest attribute pattern less than 0.1 (Hsu et al., 2013). The other
conditions remain the same as previous. Comparing TW-MMGDI and MMGDI, the
time implemented method improves item exposure and time simultaneously while
maintaining comparable PRR measurement accuracy. TW-MPWKL and MPWKL
show similar results. Comparing both time-weighted methods, TW-MPWKL has a
natural advantages of item exposure and it obtains the features of maintaining the
measurement accuracy as well as improve test efficiency with shorter test time. The
methods are practically useful to implement in university courses and utilize the
item bank wisely.
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4 Discussion

The research aims to explore the applicability of the implementation of RT and
attribute balancing in CD-CAT settings. Results indicated that the proposed methods
could enhance Test time, item exposure, and maintain comparable measurement
accuracy. The improvement is better when the test length is short. Especially in
a classroom setting where students could be disengaged easily, the test within a
short period could gather more information with accurate measurement would be
preferred.

Limitations exist within this study. First, an item bank should normally be at least
12 times as many items as the test length (Stocking, 1994). This study contains a
relatively small item bank which is in a similar condition to a university course.
A larger item bank would lead to a more significant difference between methods.
Secondly, under the fixed-length situation, the time- weighted attribute balancing
methods are proved to be more efficient. The variable-length situation needs more
investigation under various test lengths and times. The information is gathered
from statistical simulations, an empirical study should be investigated to validate
the conclusion in future research. Lastly, this study utilizes the DINA model to
demonstrate the simulation in CD-CAT. It can be easily extended to the different
CDM and RT models for validation. The current study only considers CDMs and
RT estimation and item selections separately. Researchers should consider joint
modeling estimations and item selection algorithms of CDMs and RT models in the
future, which might require more extensive computation power but improve more
in the efficiency of information gathering in CD-CAT test settings.

Appendix

### This is the Item bank generation Code
s = runif(300,0.05,0.25)
g = runif(300,0.05,0.25)
Qmatrix = matrix(0,300,6)
## If 300 items and 4 attributes then we need to have 30%

to be compared, if 6 attributes, then 20%
for (i in 1:300){

for (j in 1:6){
k = runif(1,0,1)
if(k < 0.2){

Qmatrix[i,j] = 1
}
else{Qmatrix[i,j]=0}

}
}
alpha = runif(300,2,4)
beta = runif(300,0,.25)
Qmatrix = cbind(s,g,Qmatrix,alpha,beta)
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Item_num = seq(1,300)
num_select1 = rep(0,300)
Qmatrix = cbind(Item_num,Qmatrix, num_select1)
colnames(Qmatrix) = c(’Item_ID’,’s’,’g’,“q1”,“q2”,“q3”,“q4”,

“q5”,“q6”,’alpha’,’beta’,’num_select’)
Itembank = as.data.frame(Qmatrix )
Examinee_attribute = matrix(0,1000,6)

for (i in 1:1000){
for (j in 1:6){

k = runif(1,0,1)
if(k < 0.5){

Examinee_attribute[i,j] = 1
}
else{Examinee_attribute[i,j]=0}

}
}
##Examinee’s RT parameter
tau = rnorm(N_examinee,0,1)
Examinee = as.data.frame(cbind(seq(1,N_examinee),Examinee_
attribute,tau))
colnames(Examinee) = c(’Examinee’, ’A1’, ’A2’,’A3’, ’A4’,’A5’,
’A6’,’tau’ )

## This is the TWMMGDI Method Code
TWMGDI = function(valid_Itembank,ContentControl,MLE_nodes,est_

attri,est_tau,Examinee_test){
vector_ALPHA=valid_Itembank$alpha
vector_BETA=valid_Itembank$beta
vector_S=valid_Itembank$s
vector_G=valid_Itembank$g
q1 = valid_Itembank$q1
q2 = valid_Itembank$q2
q3 = valid_Itembank$q3
q4 = valid_Itembank$q4
q5 = valid_Itembank$q5
q6 = valid_Itembank$q6
n_item_Examinee_test=sum(is.na(Examinee_test[,1])==FALSE)
current_Examinee_test=Examinee_test[1:n_item_Examinee_test,]
vector_resp=current_Examinee_test$RESP
responded_s = current_Examinee_test$s
responded_g = current_Examinee_test$g
q11 = current_Examinee_test$q1
q21 = current_Examinee_test$q2
q31 = current_Examinee_test$q3
q41 = current_Examinee_test$q4
q51 = current_Examinee_test$q5
q61 = current_Examinee_test$q6
lamda_est=(est_attri[1]ˆq1)*(est_attri[2]ˆq2)*(est_attri[3]ˆq3)

*(est_attri[4]ˆq4)*(est_attri[5]ˆq5)*(est_attri[6]ˆq6)
P_est=Dina(vector_S,vector_G,lamda_est)
lamda_nodes=matrix(NA,nrow(valid_Itembank),64)
P_nodes=matrix(NA,nrow(valid_Itembank),64)
gdi0=matrix(NA,nrow(valid_Itembank),64)
gdi1=matrix(NA,nrow(valid_Itembank),64)
posteriori_weighted = matrix(NA,length(vector_resp),64)
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P_responded = matrix(NA,length(vector_resp),64)
lamda_responded = matrix(NA,length(vector_resp),64)
for (i in 1:64){

lamda_nodes[,i]=(MLE_nodes[i,1]ˆq1)*(MLE_nodes[i,2]ˆq2)*
(MLE_nodes[i,3]ˆq3)*(MLE_nodes[i,4]ˆq4)*(MLE_nodes[i,5]ˆq5)*
(MLE_nodes[i,6]ˆq6)

P_nodes[,i]=Dina(vector_S,vector_G,lamda_nodes[,i])
lamda_responded[,i] = (MLE_nodes[i,1]ˆq11)*

(MLE_nodes[i,2]ˆq21)*(MLE_nodes[i,3]ˆq31)*(MLE_nodes[i,4]ˆq41)*
(MLE_nodes[i,5]ˆq51)*(MLE_nodes[i,6]ˆq61)

P_responded[,i] = Dina(responded_s,responded_g,lamda_
responded[,i])

gdi0[,i]=(1-P_est)*log((1-P_est)/(1-P_nodes[,i]))
gdi1[,i]=P_est*log(P_est/P_nodes[,i])
for (j in 1:length(vector_resp)){

posteriori_weighted[j,i] = P_responded[j,i]ˆvector_resp[j]*
(1-P_responded[j,i])ˆ(1-vector_resp[j])

}
}
pai=rep(NA,64)
for(i in 1:64){

pai[i] = (1/2)ˆ6*prod(posteriori_weighted[,i])
}
GDI=apply((gdi0+gdi1),1,sum)
BkI=apply(t(((ContentControl$Low-ContentControl$CUR)/

ContentControl$Low)ˆt(valid_Itembank[,4:9])),1,prod)
ET=exp(vector_BETA-est_tau+(1/(2*(vector_ALPHAˆ2))))
TWMGDIndex=GDI*BkI/ET
valid_Itembank$TWMGDIIndex=TWMGDIndex
return(list(valid_Itembank))

}

References

Chang, H. H. (2015). Psychometrics behind computerized adaptive testing. Psychometrika, 80(1),
1–20.

Chang, H.-H., & Ying, Z. (1996). A global information approach to computerized adap-
tive testing. Applied Psychological Measurement, 20(3), 213–229. https://doi.org/10.1177/
014662169602000303

Chang, H.-H., & Ying, Z. (1999). Alpha-stratified multistage computerized adaptive
testing. Applied Psychological Measurement, 23(3), 211–222. https://doi.org/10.1177/
01466219922031338

Cheng, Y. (2009). When cognitive diagnosis meets computerized adaptive testing: CD-CAT.
Psychometrika, 74(4), 619.

Cheng, Y. (2010). Improving cognitive diagnostic computerized adaptive testing by balancing
attribute coverage: The modified maximum global discrimination index method. Educational
and Psychological Measurement, 70(6), 902–913.

Cover Thomas, M., & Thomas Joy, A. (1991). Elements of information theory (3rd ed., pp. 37–38).
Wiley.

De La Torre, J. (2008). An empirically based method of Q-matrix validation for the DINA model:
Development and applications. Journal of Educational Measurement, 45(4), 343–362.

http://doi.org/10.1177/014662169602000303
http://doi.org/10.1177/01466219922031338


312 T. Wu et al.

Fan, Z., Wang, C., Chang, H.-H., & Douglas, J. (2012). Utilizing response time distributions for
item selection in CAT. Journal of Educational and Behavioral Statistics, 37(5), 655–670. https:/
/doi.org/10.3102/1076998611422912

Finkelman, M., Kim, W., Weissman, A., & Cook, R. (2014). Cognitive diagnostic models and
computerized adaptive testing: Two new item-selection methods that incorporate response
times. Journal of Computerized Adaptive Testing, 2(3), 59–76.

Haertel, E. H. (1989). Using restricted latent class models to map the skill structure of achievement
items. Journal of Educational Measurement, 26(4), 301–321.

Hsu, C.-L., Wang, W.-C., & Chen, S.-Y. (2013). Variable-length computerized adaptive testing
based on cognitive diagnosis models. Applied Psychological Measurement, 37(7), 563–582.

Junker, B. W., & Sijtsma, K. (2001). Cognitive assessment models with few assumptions, and
connections with nonparametric item response theory. Applied Psychological Measurement,
25(3), 258–272.

Lord, F. M. (1980). Practical applications of item response theory. Lawrence Erbaum Associates.
McGlohen, M., & Chang, H.-H. (2008). Combining computer adaptive testing technology with

cognitively diagnostic assessment. Behavior Research Methods, 40(3), 808–821.
Morphew, J. W., Mestre, J. P., Kang, H. A., Chang, H. H., & Fabry, G. (2018). Using computer

adaptive testing to assess physics proficiency and improve exam performance in an introductory
physics course. Physical Review Physics Education Research, 14(2), 020110.

Stocking, M. L. (1994). Three practical issues for modern adaptive testing item pools 1. ETS
Research Report Series, 1994(1), i–34.

Tatsuoka, K. K. (1985). A probabilistic model for diagnosing misconceptions by the pattern
classification approach. Journal of Educational Statistics, 10(1), 55–73.

Van der Linden, W. (2007). A hierarchical framework for modeling speed and accuracy on test
items. Psychometrika, 72(3), 287. https://doi.org/10.1007/s11336-006-1478-z

Xu, X., Chang, H., & Douglas, J. (2003). Computerized adaptive testing strategies for cognitive
diagnosis. Paper presented at the annual meeting of National Council on Measurement in
Education, Montreal, Canada

http://doi.org/10.3102/1076998611422912
http://doi.org/10.1007/s11336-006-1478-z


Impact of Construct Reliability on
Proposed Measures of Structural Fit
When Detecting Group Differences:
A Monte Carlo Examination

Graham G. Rifenbark

Abstract Structural fit indices (SFIs) have been advanced due to the influence of
the measurement model on the global fit indices (GFIs). First, GFIs are overly
weighted by the measurement model. Second, GFI cut-offs were not determined
in the context of varying magnitudes of the factor loadings; as a result, model fit
seems to improve as the magnitude decreases, known as the reliability paradox.
The focus of this study was to examine the relative performance of the recently
proposed SFIs in their ability to detect a misspecified mean structure or covariance
structure. This study was executed in the context of multiple group models where
the misspecifications were in the form of true differences between populations. Of
key interest was the impact construct reliability had on power rates for these SFIs, as
well as how they performed relative to GFIs. Findings show that structural measures
of fit outperformed the global measures of fit regardless of the type of misfit (e.g.,
mean or covariance). Measures of fit were more sensitive to the magnitude of the
factor loadings when the covariance structure was misspecified, relative to when the
mean structure was misspecified.

Keywords Structural equation modeling · Construct reliability · Multiple
group · Structural misspecification · Statistical power · Goodness-of-fit

1 Introduction

Recently, structural fit indices (SFI) have been developed with the aim of evaluating
approximate fit of the structural model in isolation. Specifically, Lance et al. (2016)
developed a suite of SFIs based on conditions 9 and 10 by James et al. (1982) and
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earlier, McDonald and Ho (2002) developed a structural version of the root mean
square error of approximation (RMSEA)—referred to as RMSEA-Path (RMSEA-
P). The motivation for the development of these SFIs was based on the measurement
model possessing a large proportion of the global degrees of freedom, therefore, a
well fitting measurement model could mask a poor fitting structural model (Lance
et al., 2016; McDonald & Ho, 2002) when utilizing conventional global fit indices
(GFIs) and their common cut-offs per Hu and Bentler (1998, 1999).

To date, research has been conducted to evaluate the performance of GFIs while
varying aspects related to construct reliability, however, this space has not been
explored when evaluating SFI. With respect to construct reliability, key model
characteristics include both the magnitude of factor loadings and the number of
indicators per factor (Gagne & Hancock, 2006). Factor loadings convey the amount
of variance explained by the latent variable, representing common variance and
therefore, factor loadings that are large in magnitude are more easily able to
discriminate between those who are high and low on the measured construct.
The number of indicators per factor is also important seeing as factors with more
indicators are said to be more reliably measured than those with fewer indicators
holding the magnitude of the factor loadings constant (Gagne & Hancock, 2006).

An early example of research that considers characteristics of construct reliability
and model fit was done by Fornell and Larcker (1981). Specifically, they introduced
a method of estimating construct reliability and discuss the interplay between
measurement and theory. To illuminate what constitutes measurement and theory it
is easiest to imagine an observed variance-covariance matrix that contains observed
variables that are thought to measure multiple constructs. Measurement is taken as
elements that correspond to a group of observed variables that measure the same
construct, therefore, if commonalities are high among these observed variables
this would translate to a well defined construct (e.g., the magnitude of the factor
loadings would be large). On the other hand, theory corresponds to relations among
observed variables that are hypothesized to belong to different constructs. Therefore,
if these elements in the observed variance-covariance matrix go against theory
(e.g., covariances are positive when the hypothesized constructs are thought to
be negatively related) then this would constitute poor theory. Fornell and Larcker
(1981) found that as measurement decreases, the χ2 test statistic improves (e.g.,
decreases and the null hypothesis is accepted); meanwhile, as theory decreases, the
χ2 test statistic also decreases (indicating good fit). In sum, Fornell and Larcker
(1981) state that proper evaluation of the structural model can be misguided due to
properties of the measurement model and therefore, consulting the chi-square test
of model fit may not be appropriate when testing theory and propose means for
estimating construct reliability.

More recent research has been carried out with respect to GFIs. Specifically,
Kenny et al. (2015) show that the RMSEA tends to reflect an acceptable fitting
model when there are a large number of degrees of freedom whereas, the CFI and
TLI tend to reflect the opposite (Ding et al., 1995). On the other hand, Hancock and
Mueller (2011) shed light on a phenomenon they call the reliability paradox via a
population analysis. Specifically, given an identical structural misspecification, as
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the magnitude of factor loadings decrease, model fit appears to improve, whereas,
as the magnitude of factor loadings increase, model fit appears to worsen when
consulting Hu and Bentler cut-offs for GFIs. As a solution, Hancock and Mueller
(2011) proposed structural analogs of common GFIs and claim that their procedure,
which requires two stages of estimation, removes the impact of the measurement
model (i.e., the magnitude of factor loadings) and provides a reasonable evaluation
of structural model fit. However, in a recent study, Rifenbark (2019) illustrated that
the approach for constructing SFIs given by Hancock and Mueller (2011) does not
accomplish what it purports to.

The purpose of this study was to determine the impact of construct reliability
on the RMSEA-P and the conditions 9 and 10 (C9 and C10) SFIs when attempting
to detect structural misspecifications in either the covariance or mean structures.
To date, neither the RMSEA-Path, C9 or C10 SFIs have been evaluated while
systematically varying facets of construct reliability when the covariance structure
was misspecified nor have these SFIs been evaluated in the context of a misspecified
mean structure. The evaluation of the structural component of a latent variable
model can take on many different forms depending on the context. One such
context that is widely used in the social and educational sciences are multiple group
structural equation models [MG-SEM; Sörbom (1974)] and therefore, was a natural
choice to accomplish the aims of this study.

Prior to formally presenting and reporting on the Monte Carlo simulation
executed for this study, a brief introduction to latent variable models will be
given along with how data-model fit is judged, as well as key differences between
models (e.g., CFA and SEM) will be exposed, and finally, the methods available for
evaluating structural model fit will be formally introduced and discussed.

2 Latent Variable Modeling

In the social and educational sciences, researchers routinely are unable to observe
phenomenon directly and therefore, utilize latent variable models to measure
these unobservable phenomenon. Latent variable models afford the opportunity to
account for measurement error allowing inferences regarding structural relations
(i.e., among measured constructs) to be made error-free. As an initial step, a
confirmatory factor analysis (CFA) is executed and can include both mean and
covariance structures. Equations for the model-implied covariance matrix (�̂) and
model-implied mean vector (μ̂) are presented below.

�̂ = ���t + �

μ̂ = τ + �α
(1)

In Eq. (1) with respect to the covariance structure, � is a pattern matrix and
contains factor loading estimates that represent common variance among observed
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variables that load onto the same factor. � is a symmetric matrix that corresponds
to the latent variance-covariance matrix; specifically, the diagonal elements of � are
the latent variances in the population and the off-diagonal elements of � correspond
to the relations among latent variables (e.g., bi-directional paths). Finally, �,
corresponds to measurement error (i.e., variance that is unrelated to the measured
construct). With respect to the mean structure, α is a vector of latent means; τ is a
vector of intercepts for the observed variables (i.e., expected value when the latent
mean equals zero); and � is as before. Once a CFA model is found to be acceptable,
structural equation modeling (SEM) is typically utilized to test theory. The key
difference between CFA and SEM then, is that based on theory certain paths among
latent variables are fixed to zero, while other paths are changed such that they are
uni-directional (e.g., causal relations). In other words, endogenous latent variables
are regressed onto exogenous variables and therefore, the system of equations to
model need to be augmented (Widaman & Thompson, 2003):

�̂ = [(τ̂ + �̂(I − B̂)−1α̂)(τ̂ + �̂(I − B̂)−1α̂)′]+
[�̂(I − B̂)−1�̂(I − B̂)−1�̂

′ + �̂]
(2)

Looking at Eq. (2), �̂ now depends on I, B̂, and �̂. I is an identity matrix with as
many rows and columns as there are latent variables. Latent regression coefficients
are stored in B which has the same order as I. Diagonal elements of B must be zero,
whereas, elements below the diagonal contain the latent regression parameters that
can be freely estimated. Finally, � is a matrix with the same dimensions as B. The
diagonal elements of � correspond to the latent variances (exogenous variables) or
the latent disturbances (endogenous variables); whereas, the off-diagonal elements
correspond to covariances between the latent disturbances.

μ̂ = τ̂ + �̂(I − B̂)−1α̂. (3)

With respect to the structural model, looking at Eq. (3), μ̂ now depends on I and
B̂ (defined above) and α̂ is the same as in Eq. (1); further, all measurement model
matrices remain the same as before.

2.1 Model Fit

Model fit for latent variable models, regardless of whether a CFA or SEM is
estimated, is determined by the model’s ability to reproduce the observed variance-
covariance matrix and mean vector. The task at hand for model estimation is to
determine the set of parameter estimates (e.g., maximum likelihood estimates)
that minimize the difference between the model-implied and observed moments
and is referred to as the discrepancy fit function, FML. Considering the mean
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and covariance structures simultaneously, Browne and Arminger (1995) write the
discrepancy fit function as:

FML(�̂,�; μ̂,μ) = (μ−μ̂)t �̂
−1

(μ−μ̂)+ln
∣
∣�
∣
∣+tr(��̂

−1
)−ln

∣
∣�̂
∣
∣−q, (4)

where q corresponds to the total number of free parameters across both the
measurement and structural models. Using ˆFML, a likelihood test statistic (TML)
can be computed: TML = FML ∗N , where N corresponds to sample size. Assuming
multivariate normality, TML is χ2 distributed with its degrees of freedom equal to
P(P+3)

2 − q, where P corresponds to the number of observed variables. χ2 is a test
of exact model fit, however, due to its reliance on sample size this fit statistic can
be sensitive to minor misspecifications, given a large sample size. It is important to
note that when evaluating the fit of a CFA model, misfit from the structural model
(�̂ or α̂) is not possible. This is because all latent parameters, across both mean
and covariance structures are freely estimated. However, when moving to SEM,
elements in B̂ and �̂ are fixed to zero and therefore, degrees of freedom are gained.
This increase in the degrees of freedom affords the opportunity for misfit to stem
from the structural model.

3 Approaches for Evaluating Structural Fit

James et al. (1982) developed conditions 9 and 10 to assess whether causal relations
among latent variables were correctly specified. Condition 9 is satisfied when a
hypothesized non-zero relationship between LVs that is confirmed to be non-zero
in the population. For instance, if a given element in B̂ is found to be significantly
different from zero. On the other hand, condition 10 is satisfied by nested χ2 test
that confirm that a hypothesized null relationship between LVs, is in fact null in the
population. It is no surprise then, that the standard approach for evaluating structural
model fit relies on nested chi-square tests (�χ2) and relies on the estimation of
two models: the correlated factors model (or CFA) and the hypothesized structural
model (or SEM). The correlated factors model (or CFA) estimates all relations
among latent variables (i.e., the off-diagonal of φ) via bi-directional paths, whereas
the hypothesized SEM utilizes uni-directional paths and fixes certain paths to zero.
Therefore, to evaluate the fit of the hypothesized SEM the difference in the test
statistic (χ2) between the CFA and SEM is compared to the critical value which is
a function of the change in degrees of freedom between the two models.

3.1 RMSEA-Path

McDonald and Ho (2002) developed the RMSEA-P to gauge approximate fit of
the structural model. Similar to the global RMSEA, the RMSEA-P provides the
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amount of misfit per degree of freedom in the structural model. In order to construct
the RMSEA-P, information from both the CFA and the hypothesized SEM are used

to construct the structural analog of McDonald’s d: dpath = (�χ2−�df )
(N−1) , where N

corresponds to the sample size.

3.2 Conditions 9 and 10

Lance et al. (2016) developed a suite of SFIs that were either condition 9 (C9) or
condition 10 (C10) using one-of-three approaches: χ2, non-centrality [χ2 − df ],

or ratio [χ2

df
] based. In order to construct the C9 and C10 SFIs, it is necessary

to estimate the CFA, hypothesized SEM, and a null structural model. The null
structural model is one in which all relations among the hypothesized exogenous
and endogenous latent variables are fixed to zero. Therefore, the fit of the structural
model is believed to fall somewhere on the continuum between the worst fitting
structural model (the null structural model) and the best fitting structural model
(the CFA, due to all possible latent parameters being freely estimated), therefore,
regardless of whether a C9 or a C10 SFI is constructed, the denominator is the
same—see Eq. (5) for both the C9 and C10 indices using the non-centrality
approach:

C9 =
(
χ2

null − χ2
SEM

)− (dfnull − dfSEM)
(
χ2

null − χ2
CFA

)− (dfnull − dfCFA)
;

C10 =
(
χ2

SEM − χ2
CFA

)− (dfSEM − dfCFA)
(
χ2

null − χ2
CFA

)− (dfnull − dfCFA)

(5)

Ultimately, Lance et al. (2016) recommend the use of the latter two approaches
and recommend values of 0.99 or greater for C9 SFIs and 0.01 or less for C10 SFIs
as support for an acceptable fitting structural model.

4 Simulation Study

4.1 Method

To determine the impact of construct reliability on the performance of the selected
structural measures of fit, the following factors were manipulated: magnitude of
factor loadings, number of indicators per factor, and group sample sizes. In terms of
group differences, population differences were either small, medium, or large and
were generated in either the mean or the covariance structure.
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Fig. 1 Path diagram: Data Generating Model. Single group model with no misspecifications.
Exogenous latent variables: X1, X2, X3. Endogenous latent variables: Y1 and Y2

Data Generation The data generating model was motivated by MacCallum (1986)
and is depicted in Fig. 1. The plot was generated in R (R Core Team, 2017) using
the semPlot package (Epskamp and with contributions from Simon Stuber, 2017)
and for clarity the measurement model is omitted. The model contains five latent
variables: three are exogenous (X1, X2, and X3) and 2 are endogenous (Y1 and
Y2). Y1 is regressed onto each exogenous latent variable, whereas, Y2 is regressed
onto the latent variables Y1 and X2. Data were generated from the multivariate
normal distribution and the total variance for both the observed and latent variables
were fixed to 1.0. Due to the focus on structural misspecification, full measurement
invariance was generated between the two groups (i.e., all measurement parameters
were identical across groups). All data were generated in R using the simsem
package (Pornprasertmanit et al., 2016).

Manipulated Factors The magnitude of the factor loadings varied between 0.4,
0.6, and 0.8 which translates to indicator reliabilities of 0.16, 0.36, and 0.64,
respectively. The number of indicators per factor (p:f) varied between 3 and 5 to
determine the impact model size had on the performance of the structural measures
of fit. When standardized factor loadings were 0.4 in the population, construct
reliability was 0.36 (p:f = 3) or 0.49 (p:f = 5); when standardized factor loadings
were 0.6, construct reliability was 0.63 (p:f = 3) or 0.74 (p:f = 5); and when
standardized factor loadings were 0.8, construct reliability was 0.84 (p:f = 3) or
0.90 (p:f = 5)—it is important to note that due to the tau-equivalence among
factor loadings, construct reliability equals coefficient H (Gagne & Hancock, 2006).



320 G. G. Rifenbark

Sample size was fixed to 2,000, however, group sample sizes were manipulated.
Specifically, the reference group sample size was either: 600, 1000, or 1400 with
the focal group making up the difference (e.g., when the reference group contained
600 cases the focal group contained 1400 cases).

Group differences were generated either in the mean structure or the covariance
structure. The magnitude of the generated differences spanned three levels. When
group differences existed in the mean structure, the latent mean for X3 was fixed
to 0.0 for the reference group, while the mean for X3 varied between 0.20 (small
effect, d = 0.2), 0.50 (medium effect, d = 0.5), or 0.80 (large effect, d = 0.8) for the
focal group—these effects mimic that of prior research (Fan & Sivo, 2009). When
population differences were present in the covariance structure, the structural path
emitting from X2 to Y2 was selected. Specifically, the standardized regression path
was 0.30 for the reference group and 0.50 for the focal group (small effect, d =
.2), 0.20 for the reference group and 0.60 for the focal group (medium effect, d =
0.4), or 0.00 for the reference group and 0.60 for the focal group (large effect, d =
0.6)—these were chosen based on prior research (Kang et al., 2016).

Group difference conditions were crossed with the other manipulated factors,
therefore, when evaluating group differences a total of 54 [3*2*3*3] unique condi-
tions were investigated for both the mean structure and the covariance structure.
Thus, in sum, a total of 108 simulation conditions were investigated with 1000
replications executed per condition.

Estimated Models The models required to be estimated were the null structural
model, the hypothesized SEM, and the CFA. For each of these models, full metric
and scalar invariance was modeled (i.e., factor loadings and manifest intercepts were
constrained to be the same across groups). The null structural model estimates the
latent covariances among all exogenous latent variables (X1, X2, and X3) and were
not constrained to be the same across groups; on the other hand, all paths between
the exogenous and the hypothesized endogenous latent variables (Y1 and Y2) were
fixed to zero for both groups. With respect to the latent variances and means, these
were freely estimated across groups. The hypothesized SEMwas the data generating
model, therefore, all of the correct structural paths were estimated (e.g., X1 to Y2
was fixed to zero) and constrained to be the same across groups. By doing so,
full structural invariance was modeled and as a result, structural misspecification
was introduced. The CFA model estimates all possible latent parameters (e.g.,
covariances, variances, and means) without any constraints across groups.

To construct RMSEA-P and �χ2, information from the hypothesized SEM
and CFA were utilized, while information from all three models was required to
construct the C9 and C10 SFIs. All models were fitted in R using the lavaan package
(Rosseel, 2012) with the sem function, invoked the mimic = “mplus” option and
employed maximum likelihood estimation. Model identification and scaling was
accomplished using the marker variable method whereby the factor loading and the
manifest intercept of the first indicator for each latent variable were fixed to 1.0 and
0.0, respectively.
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Outcomes To understand the impact construct reliability had on measures of
structural and global model fit, descriptive statistics were estimated separately from
replications that had either a misspecification in the mean or covariance structure.
To quantify the performance of the various measures of fit, statistical power was
determined. Statistical power is a function of Type II error (or β) and is represented
by 1−β. In the context of model fit, Type II errors occur when a measure of fit fails
to detect the misfit and therefore, fails to reject the misspecified model. As such,
statistical power of fit indices represents its probability of rejecting a poor fitting
model when it is truly misspecified. Toward this end, hit rates which are a function
of true positives (TP) and false negatives (FN) were determined as: T P

T P+FN
. In sum,

hit rates correspond to whether the model was correctly rejected when consulting
specific criteria or cut-offs.

For the purposes of this study, the following cut-offs were used: 0.012 for
RMSEA, 0.979 for TLI, and 0.987 for Mc. In terms of structural fit indices, the
cut-offs were: 0.017 for RMSEA-P, 0.994 for C9, 0.006 for C10. It is clear that
the cut-offs utilized in this study depart from those that are traditionally used
[see Schermelleh-Engel et al. (2003)]. Specifically, these cut-offs were derived in
a previous study (Rifenbark, 2019) via a simulation in which the magnitude of
factor loadings, the number of indicators per factor, and group sample sizes were
systematically varied. The cut-offs were selected such that they correspond to the
95th percentile. In terms of �χ2 and χ2 critical values that correspond to an alpha
of 0.05 were utilized.

Afterwards, univariate ANOVAs were estimated to determine the impact of
design factors on the performance of the various measures of fit. Specifically,
between-subject factors were: model size, magnitude of factor loadings, reference
group sample size, and severity of misspecifications; additionally, all possible
interactions were entered into the model. From these models partial η2 was
consulted and 0.01, 0.06, and 0.14 were considered to be small, medium, and large
effect sizes, respectively (Cohen, 1988).

4.2 Results

A convergence rate of 100% was achieved across all 108 simulation conditions.
A subset of the study results are presented here and interested readers can view
all simulation results on the author’s OSF account. Further, due to the similar
performance between the non-centrality [χ2 − df ] and ratio based [χ2

df
] approaches

for constructing the C9 and C10 SFIs, only the non-centrality approach is reported
hereinafter.

https://osf.io/7m8qp/
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Mean Misspecification After applying the empirically derived cut-off values from
Rifenbark (2019) across simulation conditions, mean hit rates were estimated over
all 54,000 replications. With respect to structural fit measures, overall power was
estimated to be: 0.77 (SD = 0.42) for both the C9 and C10 SFIs, 0.82 (SD = 0.39)
for RMSEA-P, and 0.83 (SD = 0.38) for �χ2. In terms of global measures of fit,
overall power rates were found to be lower, specifically: 0.47 (SD = 0.50) for TLI,
0.59 (SD = 0.49) for Mc, 0.71 (SD = 0.46) for RMSEA, and 0.68 (SD = 0.47)
for χ2. Next, an analysis of variance was estimated for each of the measures of
fit using the hit rates as the dependent variable with the following factors: model
size, magnitude of factor loading, reference group sample size, and severity of the
misspecification, as well as all possible interactions. Afterwards, partial η2 was
selected as an effect size to determine the impact of these factors on power for
detecting structural misspecification.

In terms of structural measures of fit, a small-to-medium effect was found for
both C9 and C10 for the interaction between magnitude of factor loadings and
severity (partial η2 = 0.04) and a medium effect was observed for both RMSEA-
P and �χ2 (partial η2 = 0.07). With respect to global fit measures, a small effect
was observed for TLI for the interaction between magnitude of factor loadings,
reference group sample size, and severity (partial η2 = 0.03); meanwhile a large
effect was observed for the interaction between magnitude of factor loadings and
severity (partial η2 = 0.14). Additionally a large effect was observed for Mc for the
interaction between magnitude of factor loadings and severity (partial η2 = 0.20);
whereas, a small effect was observed for RMSEA (partial η2 = 0.03) and a medium
effect was observed for χ2 (partial η2 = 0.06).

Covariance Misspecification Upon converting fit measure estimates into hit rates
based on cut-off derived by Rifenbark (2019), mean power estimates were computed
across all replications. In terms of structural measures of fit, overall power was 0.74
(SD = 0.44) for both the C9 and C10, 0.76 (SD = 0.43) for RMSEA-P, and 0.77
(SD = 0.42) for �χ2. With respect to global fit indices, overall power was estimated
to be 0.25 (SD = 0.44) for TLI, 0.42 (SD = 0.49) for Mc, 0.57 (SD = 0.50) for
RMSEA, and 0.54 (SD = 0.50) for χ2. In a similar fashion, analysis of variance was
conducted for each measure and its hit rates to determine the impact of study factors
on power rates.

In terms of structural measures of fit, a small-to-medium effect was observed
for the interaction between magnitude of factor loadings and severity for the C9
and C10 SFIs (partial η2 = 0.04); whereas, a large effect was observed for both
the RMSEA-P and �χ2 (partial η2 = 0.14). In terms of global fit measures, a
small effect was observed for the interaction between magnitude of factor loadings,
reference group sample size, and severity for RMSEA (partial η2 = 0.01). For
the TLI, two interaction effects were observed, first, a medium effect for the
interaction between magnitude of factor loadings and severity (partial η2 = 0.06) and
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a small effect for the interaction between reference group sample size and severity
(partial η2 = 0.01). For Mc, a large effect was observed for the interaction between
magnitude of factor loadings and severity (partial η2 = 0.26); whereas a medium-to-
large effect was observed for χ2 (partial η2 = 0.10).

Visualizing the Impact of Construct Reliability Depending on the measure of
fit, partial η2 estimates differed for the main effects and the interaction effects.
Therefore, plots were created to graphically represent the effect study design factors
had on power rates and to what extent power rates differed depending on whether
the mean or covariance structure was misspecified. To be succinct, power plots are
presented for C9 (see Fig. 2), RMSEA-P (see Fig. 3), and TLI (see Fig. 4).

5 Discussion

This study was conducted to understand the impact facets of construct reliability
have on statistical power for measures of fit to detect a misspecified structural
model. This was done in the context of multiple group SEM where systematic
misspecifications were placed in either the mean or covariance structure with
varying levels of severity by way of true population differences on targeted
structural parameters between groups. Therefore, when all structural parameters
were constrained to be the same across groups, structural misfit was introduced.
Across all simulation conditions, common GFIs on average failed to detect the
misspecification of the structural model regardless of whether the covariance or
mean structure was misspecified when consulting Hu and Bentler (1998, 1999) cut-
offs, this confirms previous research (Heene et al., 2011; Lance et al., 2016; Hancock
&Mueller, 2011). For this information, please see the supplemental material housed
on OSF.

When viewing the power plots for the selected measures of fit, a pattern emerges.
Primarily, as the magnitude of factor loadings increase given a misspecified
structural model, power to detect the misspecification also increases. However, there
are two exceptions: C9 given a small mean misspecification and TLI regardless of
whether it was the mean or covariance structure that was misspecified. Interestingly,
the impact of the magnitude of the factor loadings on power rates for TLI was the
inverse, namely as factor loadings decrease the TLI seems to posses more statistical
power to detect the structural misspecification. It is believed that this behavior
has to do with the TLI’s reliance on a baseline (or null model). Another pattern
that emerged has to do with the difference in power rates when the covariance
structure was misspecified compared to when the mean structure was misspecified.
Specifically, it appears that all measures of fit possessed more power to detect
a misspecified mean structure rather than a misspecified covariance structure;
however, it is important to recall that different Cohen’s d was utilized—based on

https://osf.io/7m8qp/
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Fig. 2 Power for C9 to detect a mean or covariance misspecification based on severity of
misspecification, measurement quality, and reference group sample size. Note. MQ = measurement
quality (i.e., magnitude of factor loadings); ref.n = reference group sample size. Top corresponds
to a misspecified mean structure and the plot on the bottom corresponds to when the covariance
structure was misspecified. Line color: Red (� = 0.4), green (� = 0.6), and blue (� = 0.8). Line
Type: Solid line (ref.n = 600), dotted (ref.n = 1000), and dashed (ref.n = 1400)

literature—for small, medium, and large misspecification depending on where the
misfit was introduced therefore, little weight should be placed on this behavior.
Finally, it was found that the magnitude of the factor loadings seemed to have
a larger impact on power rates than model size and this was more clear when
evaluating the performance of measures of fit given a misspecified covariance
structure.
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Fig. 3 Power for RMSEA-P to detect a mean or covariance misspecification based on severity of
misspecification, measurement quality, and reference group sample size. Note. MQ = measurement
quality (i.e., magnitude of factor loadings); ref.n = reference group sample size. Top corresponds
to a misspecified mean structure and the plot on the bottom corresponds to when the covariance
structure was misspecified. Line color: Red (� = 0.4), green (� = 0.6), and blue (� = 0.8). Line
Type: Solid line (ref.n = 600), dotted (ref.n = 1000), and dashed (ref.n = 1400)
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Fig. 4 Power for TLI to detect a mean or covariance misspecification based on severity of
misspecification, measurement quality, and reference group sample size. Note. MQ = measurement
quality (i.e., magnitude of factor loadings); ref.n = reference group sample size. Top corresponds
to a misspecified mean structure and the plot on the bottom corresponds to when the covariance
structure was misspecified. Line color: Red (� = 0.4), green (� = 0.6), and blue (� = 0.8). Line
Type: Solid line (ref.n = 600), dotted (ref.n = 1000), and dashed (ref.n = 1400)
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